
首页

378 人次阅读 2020-02-11 07:00:00

96 NameServer在启动的时候都会解析哪些配置信息？图文

狸猫技术

进店逛逛

相关频道

已更新1

详情 评论

NameServer在启动的时候都会解析哪些配置信息？

继《从零开始带你成为JVM实战高手》后，阿里资深技术专家携新作再度出山，重磅推荐：

（点击下方蓝字试听）

《从零开始带你成为MySQL实战优化高手》

1、猜猜NamesrvController到底是个什么东西？

我们现在来正式开始看NameServer的启动流程的源码，首先我们昨天已经讲到，NamesrvStartup这个类的main()方

法会被执行，然后执行的时候实际上会执行一个main0()这么个方法，如下所示。

从 0 开始
间件实战

https://apppukyptrl1086.pc.xiaoe-tech.com/page/401572
https://apppukyptrl1086.pc.xiaoe-tech.com/detail/p_5e0c2a35dbbc9_MNDGDYba/6?fromH5=true

在上面的源码中，我们会注意到这么一行代码：

NamesrvController controller = createNamesrvController(args);

这行代码很明显，就是在创建一个NamesrvController类，这个类似乎是NameServer中的一个核心组件。

那么大家觉得这个类可能会是用来干什么的呢？

我们可以大胆的推测一下，NameServer启动之后，是不是需要接受Broker的请求？因为Broker都要把自己注册到

NameServer上去。

然后Producer这些客户端是不是也要从NameServer拉取元数据？因为他们需要知道一个Topic的MessageQueue都

在哪些Broker上。

所以我们完全可以猜想一下，NamesrvController这个组件，很可能就是NameServer中专门用来接受Broker和客户

端的网络请求的一个组件！因为平时我们写Java Web系统的时候，大家都喜欢用Spring MVC框架，在Spring MVC

框架中，用于接受HTTP请求的，就是Controlller组件！

所以我们看下面的图，大家可以先推测一下，NamesrvController组件，实际上就是NameServer中的核心组件，用

来负责接受网络请求的！

2、NamesrvController是如何被创建出来的？

接着我们来看一下，NamesrvController是如何被创建出来的？还是回到那行代码：

NamesrvController controller = createNamesrvController(args)

这里明显调用了一个createNamesrvController()方法，创建出来了NamesrvController这个关键组件！

所以我们可以初步看一下，createNamesrvController()这个方法中大概是在干什么呢？我们继续往下看。

上面那段代码是不是看着让人感觉特别的痛苦？是不是大家开始初步的感觉到阅读源码的痛苦了？往往看一些开源项

目源码的时候，很多人就是初步看一看，看到类似上面这种代码的时候，就感觉看不下去了，因为实在是看不懂他在

干什么！

这个时候大家不要着急，我们来慢慢的给大家解释一下，分一个一个小的代码片段，来给大家拆解一下上面的代码在

干什么。

3、阅读源码的一个技巧：哪些需要细看，哪些可以暂时先跳过

这里我们结合上面的源码，来给大家讲解一下阅读源码的一个小技巧，简单来说，就是在阅读源码的时候，有些源码

是要细看的，但是有些源码你可以大致猜测一下他的作用，就直接略过去了，抓住真正的重点去看！

比如说上面的createNamesrvController()方法，进入之后，刚开始就有一段让人看不太懂的代码，我们看看下面。

上面这段源码，大家看了有什么感受？其实估计大部分人都没什么感受，就是不知道这段代码是在干什么！

如果这个时候，有的人喜欢钻牛角尖的，直接去分析上面代码中的一些细节，比如看看

ServerUtil.buildCommandlineOptions(new Options())是在干什么，或者看看ServerUtil.parseCmdLine()是在干什

么，那你就误入迷途了

因为很明显上面的代码并不存在什么核心逻辑，你从他的代码的字面意思就可以大致猜测出来，他里面包含了很多

CommandLine相关的字眼，那么顾名思义，这就是一段跟命令行参数相关的代码！

你其实大致推测一下都知道，我们在启动NameServer的时候，是使用mqnamesrv命令来启动的，启动的时候可能会

在命令行里给他带入一些参数，所以很可能就是在这个地方，上面那块代码，就是解析一下我们传递进去的一些命令

行参数而已！

所以这个地方你大致猜测一下，就可以直接略过去了，其实并没有必要陷入解析命令行参数的各种细节里去。

4、非常核心的两个NameServer的配置类

接着我们继续分析上述的代码片段，你略过刚才那段一看就是在解析命令行参数的代码，继续往下走，可以看到很关

键的三行代码：

上面三行代码才是你真正要关注的，你会看到他创建了NamesrvConfig和NettyServerConfig两个关键的配置类！

从他的类名，我们就可以推测出来，NamesrvConfig包含的是NameServer自身运行的一些配置参数，

NettyServerConfig包含的是用于接收网络请求的Netty服务器的配置参数。

在这里也能明确感觉到，NameServer对外接收Broker和客户端的网络请求的时候，底层应该是基于Netty实现的网络

服务器！

如果有朋友不知道Netty是什么，建议可以上网查一些Netty入门的博客和资料看看。

而且我们通过nettyServerConfig.setListenPort(9876)这行代码就可以发现，NameServer他默认固定的监听请求的

端口号就是9876，因为他直接在代码里写死了这个端口号了，所以NettyServer应该就是监听了9876这个端口号，来

接收Broker和客户端的请求的！

我们看下面的图，在图里我示意了基于Netty实现的服务器用于接收网络请求。

5、看看NameServer的两个核心配置类里都包含了什么？

接着我们看看NameServer的那两个核心配置类里都包含了什么东西，我们直接看下面的两个类的代码片段以及我写的

注释就可以了。

其实看完了上面的NamesrvConfig，你会发现里面并没有什么特别关键的NameServer的配置信息。

其实上面的NettyServerConfig一看就很明确了，那里的参数就是用来配置NettyServer的，配置好NettyServer之

后，就可以监听9876端口号，然后Broker和客户端有请求过来，他就可以处理了。

6、NameServer的核心配置到底是如何进行解析的？

看明白上面两个核心配置类之后，接着我们就可以继续往下看代码，看看那两个核心配置类的配置都是如何解析的。

上面的代码如果看懂了，我来给大家举个例子，比如说你在启动NameServer的时候，用-c选项带上了一个配置文件的

地址，然后此时他启动的时候，运行到上面的代码，就会把你配置文件里的配置，放入两个核心配置类里去。

比如你有一个配置文件是：nameserver.properties，里面有一个配置是serverWorkerThreads=16，那么上面的代码

就会读取出来这个配置，然后覆盖到NettyServerConfig里去！

接着我们来解释剩余的配置相关的代码。

其实在下面的图里，我直接展示出来了，NameServer启动的时候后，刚开始就是在初始化和解析

NameServerConfig、NettyServerConfig相关的配置信息，但是一般情况下，我们其实不会特意设置什么配置，所以

他这里一般都是用默认配置的！

7、跟NameServer启动日志配合起来看

其实我们知道NameServer刚启动就会初始化和解析一些核心配置信息，尤其是NettyServer的一些网络配置信息，然

后初始化完毕配置信息之后，他就会打印这些配置信息，我们此时可以看一下之前讲解源码环境搭建的时候，不是指

定了NameServer的启动日志么？

实际上翻看一下NameServer的启动日志，会看到如下的内容：

2020-02-05 15:10:05 INFO main - rocketmqHome=rocketmq-nameserver

2020-02-05 15:10:05 INFO main - kvConfigPath=namesrv/kvConfig.json

2020-02-05 15:10:05 INFO main - configStorePath=namesrv/namesrv.properties

2020-02-05 15:10:05 INFO main - productEnvName=center

2020-02-05 15:10:05 INFO main - clusterTest=false

2020-02-05 15:10:05 INFO main - orderMessageEnable=false

2020-02-05 15:10:05 INFO main - listenPort=9876

2020-02-05 15:10:05 INFO main - serverWorkerThreads=8

2020-02-05 15:10:05 INFO main - serverCallbackExecutorThreads=0

2020-02-05 15:10:05 INFO main - serverSelectorThreads=3

2020-02-05 15:10:05 INFO main - serverOnewaySemaphoreValue=256

2020-02-05 15:10:05 INFO main - serverAsyncSemaphoreValue=64

2020-02-05 15:10:05 INFO main - serverChannelMaxIdleTimeSeconds=120

2020-02-05 15:10:05 INFO main - serverSocketSndBufSize=65535

2020-02-05 15:10:05 INFO main - serverSocketRcvBufSize=65535

2020-02-05 15:10:05 INFO main - serverPooledByteBufAllocatorEnable=true

2020-02-05 15:10:05 INFO main - useEpollNativeSelector=false

不知道大家有何感觉？是不是感觉通过分析源码以及其中的日志打印，可以初步把源码运行的过程和日志文件的打印

结合起来了？

8、完成NamesrvController组件的创建

在今天最后要讲解的内容，就是初步看一下NamesrvController是如何创建出来的，继续看下面的代码。

这里非常明确，就是直接构造了NamesrvController这个组件，同时传递了NamesrvConfig和NettyServerConfig两

个核心配置类给他。

我们看下面的图示，我们可以看到箭头的指向，两个核心配置类在初始化完毕之后，都是交给了NamesrvController

这个核心的组件的。

9、今天的源码分析作业

今天我们其实着重给大家分析了NameServer启动过程中的createNamesrvController()方法的流程，讲解了他是如何

初始化化两个核心配置类，然后基于核心配置类构造了NamesrvController这个核心组件的。

同时在源码分析的过程中还给大家讲解了一些小技巧，所以希望大家可以今天自己在RocketMQ源码环境中，自己阅

读和分析一下createNamesrvController()这个方法，去体会一下里面的源码逻辑。

End

专栏版权归公众号狸猫技术窝所有

未经许可不得传播，如有侵权将追究法律责任

狸猫技术窝精品专栏及课程推荐：

《从零开始带你成为JVM实战高手》
《21天互联网Java进阶面试训练营》（分布式篇）
《互联网Java工程师面试突击》（第1季）
《互联网Java工程师面试突击》（第3季）

重要说明：

如何提问：每篇文章都有评论区，大家可以尽情留言提问，我会逐一答疑

如何加群：购买狸猫技术窝专栏的小伙伴都可以加入狸猫技术交流群，一个非常纯粹的技术交流的地方

具体加群方式，请参见目录菜单下的文档：《付费用户如何加群》（购买后可见）

https://apppukyptrl1086.pc.xiaoe-tech.com/detail/p_5d0ef9900e896_MyDfcJi8/6
https://apppukyptrl1086.h5.xiaoeknow.com/v1/course/column/p_5d3110c3c0e9d_FnmTTtj4?type=3
https://apppukyptrl1086.h5.xiaoeknow.com/v1/course/column/p_5d3114935b4d7_CEcL8yMS?type=3
https://apppukyptrl1086.pc.xiaoe-tech.com/detail/p_5dd3ccd673073_9LnpmMju/6?fromH5=true

Copyright © 2015-2020 深圳小鹅网络技术有限公司 All Rights Reserved. 粤ICP备15020529号

 小鹅通提供技术支持

http://www.beian.miit.gov.cn/
https://www.xiaoe-tech.com/

