

 大规模Linux集群架构最佳实践：如何管理上千台服务器

 	
 第1章 Linux系统管理入门

 	
 1.1.1 安装CentOS

 	
 1.1.2 首次启动CentOS

 	
 1.1.3 更多设置

 	
 1.2 系统登录

 	
 1.2.1 本地登录

 	
 1.2.2 远程登录

 	
 1.3 用户管理

 	
 1.3.2 新增和删除用户

 	
 1.3.3 新增和删除用户组

 	
 1.3.4 用户切换

 	
 1.4 文件系统

 	
 1.4.2 常见的文件系统

 	
 1.4.3 磁盘分区和创建文件系统

 	
 1.5 文件管理

 	
 1.5.2 文件和目录权限

 	
 1.5.3 文件查找

 	
 1.5.4 文件压缩和打包

 	
 1.6 网络管理

 	
 1.6.1 网络配置管理

 	
 1.6.2 Linux防火墙

 	
 1.6.3 网络连通性诊断

 	
 1.7 进程管理

 	
 1.7.1 什么是进程

 	
 1.7.2 进程的常见状态

 	
 1.7.3 进程优先级的调整

 	
 1.7.4 进程的终止

 	
 1.8 软件安装

 	
 1.8.1 源码编译安装

 	
 1.8.2 使用包管理Yum

 	
 1.8.3 创建自己的Yum仓库

 	
 1.9 系统安全检测与审计

 	
 1.9.1 AIDE系统入侵检测

 	
 1.9.2 审计

 	
 第2章 系统性能分析

 	
 2.2 系统分析的基本工具

 	
 2.2.2 内存性能分析工具

 	
 2.2.3 磁盘性能分析工具

 	
 2.2.4 sar

 	
 2.3 软件分析的基本工具

 	
 2.3.2 strace与ltrace

 	
 2.3.3 ipcs

 	
 2.3.4 systemtap

 	
 2.4 与内存相关的那些事情

 	
 2.4.2 虚拟内存、物理内存与页缺失

 	
 2.4.3 Out of Memory

 	
 2.4.4 Overcommit

 	
 2.4.5 cache与buffer

 	
 2.5 与磁盘相关的那些事情

 	
 2.5.2 HDD磁盘的调度算法

 	
 2.5.3 文件系统中的日志

 	
 2.6 系统资源限制

 	
 2.6.1 ulimit

 	
 2.6.2 Cgroup

 	
 第3章 用户集中认证

 	
 3.2 openLDAP的安装

 	
 3.3 openLDAP的配置

 	
 3.4 利用openLDAP集中认证

 	
 第4章 域名服务器DNS

 	
 4.2 DNS安装配置

 	
 4.2.2 关于chroot的解释

 	
 4.2.3 配置主配置文件

 	
 4.2.4 DNS的正向解析配置

 	
 4.2.5 DNS的反向解析配置

 	
 4.2.6 利用DNS实现负载均衡

 	
 4.3 DNS的主从复制

 	
 4.4 配置纯缓存的DNS服务

 	
 4.5 DNS的客户端配置

 	
 4.5.2 Windows中的配置

 	
 第5章 系统备份

 	
 5.2 常见的备份机制

 	
 5.2.1 完全备份

 	
 5.2.2 增量备份

 	
 5.2.3 差异备份

 	
 5.3 Bacula简介

 	
 5.3.2 Bacula的基本组件

 	
 5.4 Bacula的安装和配置

 	
 5.4.1 Bacula控制器

 	
 5.4.2 Bacula存储守护进程

 	
 5.4.3 Bacula客户端文件守护进程

 	
 5.4.4 Bacula控制台

 	
 5.4.5 启动服务

 	
 5.4.6 Bacula配置综述

 	
 5.5 使用Bacula进行备份和恢复

 	
 5.5.2 文件恢复

 	
 5.6 Bacula的使用和维护

 	
 5.6.2 使用Bacula进行文件验证

 	
 5.6.3 Catalog的维护和备份

 	
 5.7 备份的策略

 	
 5.7.1 备份什么

 	
 5.7.2 备份到哪里

 	
 5.7.3 备份的时间

 	
 5.7.4 测试和监控备份

 	
 第6章 集群与存储

 	
 6.1 存储的基本概念

 	
 6.2 SAN

 	
 6.2.1 SAN的选择

 	
 6.2.2 iSCSI的配置

 	
 6.3 分布式文件系统与集群文件系统

 	
 6.3.2 GlusterFS的配置

 	
 6.4 高可用集群

 	
 6.4.1 Red Hat HA Cluster简介

 	
 6.4.2 配置一个高可用的Apache集群

 	
 6.5 负载均衡集群

 	
 6.5.2 Nginx负载均衡

 	
 6.5.3 LVS负载均衡

 	
 第7章 Graphite

 	
 7.1.2 Graphite的功能和特色

 	
 7.2 Graphite的基本组件

 	
 7.2.1 Whisper

 	
 7.2.2 Carbon

 	
 7.2.3 Graphite Web

 	
 7.3 Graphite的安装

 	
 7.3.1 安装Whisper数据库

 	
 7.3.2 安装Carbon守护进程

 	
 7.3.3 安装graphite-web

 	
 7.4 Graphite的配置（单点）

 	
 7.4.1 配置Carbon守护进程

 	
 7.4.2 给Carbon Cache发送数据

 	
 7.4.3 配置Graphite-web

 	
 7.5 Graphite的配置（集群配置）

 	
 7.5.1 配置Carbon Relay

 	
 7.5.2 Relay中的数据复制

 	
 7.5.3 数据聚合

 	
 7.5.4 Graphite Cluster

 	
 7.6 使用Graphite Web

 	
 7.6.1 Graphite的Render API

 	
 7.6.2 Graphite作图函数

 	
 7.6.3 Graphite Dashboard和Grafana

 	
 7.7 Graphite的性能监控和调整

 	
 7.8 其他

 	
 7.8.2 压力测试

 	
 7.8.3 其他工具

 	
 第8章 系统大规模部署

 	
 8.2 与PXE不得不说的故事

 	
 8.2.2 PXE实战

 	
 8.3 系统部署工具Cobbler

 	
 8.3.2 Cobbler安装

 	
 8.3.3 Cobbler配置

 	
 8.3.4 Cobbler应用

 	
 8.3.5 Cobbler API

 	
 8.3.6 Cobbler Replication

 	
 8.3.7 Cobbler实战

 	
 8.4 操作系统无盘技术

 	
 8.4.2 制作无盘镜像

 	
 8.4.3 测试无盘镜像

 	
 8.5 本章小结

 	
 第9章 Puppet配置管理

 	
 9.1 什么是Puppet

 	
 9.1.1 Puppet对于系统运维意味着什么

 	
 9.1.2 为什么选择Puppet

 	
 9.2 安装Puppet

 	
 9.2.2 安装一个服务端

 	
 9.2.3 安装一个客户端

 	
 9.2.4 连接第一个客户端

 	
 9.2.5 Puppet master上的site.pp

 	
 9.2.6 制作第一个模块

 	
 9.3 深入Puppet

 	
 9.3.2 深入metaparameter

 	
 9.3.3 深入fact

 	
 9.3.4 深入流程控制

 	
 9.3.5 深入function

 	
 9.3.6 深入template

 	
 9.3.7 深入define type

 	
 第10章 Puppet实战

 	
 10.1 扩展Puppet

 	
 10.1.1 自定义模块

 	
 10.1.2 使用公有模块

 	
 10.1.3 神奇的enc

 	
 10.1.4 自定义resource type/facter/function

 	
 10.2 管理好一个Puppet集群

 	
 10.2.2 做好Puppet的容量规划

 	
 10.2.3 使用版本控制来管理代码

 	
 10.2.4 确保你的代码不是留给别人的坑

 	
 第11章 CMDB配置中心管理

 	
 11.2 什么是CMDB

 	
 11.3 运维为什么需要CMDB

 	
 11.3.1 整合信息

 	
 11.3.2 关系映射

 	
 11.3.3 防止配置偏差

 	
 11.3.4 自动化

 	
 11.3.5 中央管理

 	
 11.4 如何选择适合的CMDB

 	
 11.4.2 选择开源的CMDB

 	
 11.5 自主搭建CMDB

 	
 11.5.1 openDCIM安装

 	
 11.5.2 openDCIM配置

 	
 11.5.3 openDCIM API

 	
 11.5.4 解决每个项目都会遇到的那些任务

 	
 11.6 如何管理好一个CMDB

 	
 11.6.2 CMDB与自动化

 	
 11.6.3 做好CMDB的架构设计

 	
 11.6.4 那些年，我们碰过的坑

 	
 第12章 日志管理

 	
 12.2 首先要有一个日志服务器

 	
 12.2.1 rsyslog

 	
 12.2.2 syslog-ng

 	
 12.2.3 如何选择syslog程序

 	
 12.3 常见的日志分析处理工具

 	
 12.4 Splunk的安装配置

 	
 12.4.1 下载Splunk安装程序包

 	
 12.4.2 安装启动Splunk

 	
 12.4.3 配置Splunk

 	
 12.4.4 搜索日志

 	
 12.5 Elasticsearch＋Logstash＋Kiana

 	
 12.5.2 安装ELK软件包

 	
 12.5.3 配置Logstash

 	
 12.5.4 配置Elasticsearch

 	
 12.5.5 配置Kibana

 	
 12.6 Elasticsearch入门

 	
 12.6.1 基本配置

 	
 12.6.2 安装插件

 	
 12.6.3 API

 第1章　Linux系统管理入门

1.1　系统安装

据不完全统计，目前世界上有大概300多种Linux发行版，选择什么样的Linux发行版成为安装前的第一个问题。在众多发行版中，RedHat作为一个成熟的商用发行版，不仅经过了多年的市场考验，也有成熟的认证体系，最重要的是有活跃的读者社区，所以对于初学者而言，RedHat无疑是最好的选择。不过，因其“商用”背景，在使用RedHat时会有一些细节上的限制。近年来，另一个Linux的重要发行版CentOS的发展极为迅速，这个发行版的版本发布和RedHat保持一致，在使用上几乎完全相同，在本书动笔之时CentOS最新的版本已经是7，但是由于CentOS 5/6目前使用者众多，所以本书将以CentOS 6.6作为演示，读者可以使用虚拟机进行学习和测试。

工欲善其事，必先利其器，本章将开门见山、直奔主题，下面会使用过程截图为大家演示Linux系统的具体安装步骤。
1.1.1　安装CentOS

安装CentOS首先需要获得发行版的安装介质，可以通过www.centos.org下载（如图1-1所示），为了获取最快的下载速度，读者可以选择离自己比较近的镜像站点。

下载完成后，如果需要在物理机上安装，则需要将该镜像烧制成可启动的CD，并设置计算机的启动设备为CD。如果是使用虚拟机安装，也需要进行相关的设置。这里笔者将使用VMware Workstation进行演示。

 [image:]

图1-1　下载CentOS

打开VMware Workstation软件并选择“创建新的虚拟机”（如图1-2所示）。

 [image:]

图1-2　创建新的虚拟机

在随后出现的“新建虚拟机向导”中，入门安装推荐选择“典型”（如图1-3所示）。

在“安装客户机操作系统”页面，选择“稍后安装操作系统”（如图1-4所示）。

在“选择客户机操作系统”页面中（如图1-5所示），选择“Linux”并在版本中选择“CentOS 64位”。

 [image:]

图1-3　使用“典型”方式创建虚拟机

 [image:]

图1-4　选择“稍后安装操作系统”

 [image:]

图1-5　选择操作系统的种类

在“命名虚拟机”页面中（如图1-6所示），给虚拟机起一个名字，并选择存储路径。读者不必拘泥于本书介绍，根据自身实际情况设置即可。

 [image:]

图1-6　选择虚拟机存储路径

在“指定磁盘容量”页面中（如图1-7所示），读者可以自行调整虚拟机磁盘的大小。作为初学或大多数轻量级使用而言，20GB的默认磁盘空间已经完全足够。

 [image:]

图1-7　设置虚拟机磁盘大小

在“已准备好创建虚拟机”页面中（如图1-8所示），点选“自定义硬件”。并在随后弹出的“硬件”页面中（如图1-9所示），左侧点选“新CD/DVD”，并在右侧指定之前下载到的ISO镜像文件的具体路径（读者请根据自身实际情况设置）随后点选“关闭”完成最终设置，最后在VMware Workstation的起始页面启动这台虚拟机进入安装过程。

在“硬件”页面中，选择光驱并选择CentOS的安装镜像。

机器启动后，便进入了安装过程（如图1-10所示），启动后选择第一项或是第二项均可，区别主要在于第二项将会安装基本的显卡驱动。选择后，回车确认。机器将首先载入一个安装系统的微型系统（anaconda），然后会尝试检查安装介质是否存在问题影响实际安装，当然如果读者下载到ISO后确认完整无误，这一步可以省略（如图1-11所示）。

剩下的安装步骤，请读者参阅图1-12～图1-24进行。

 [image:]

图1-8　选择“自定义硬件”

 [image:]

图1-9　指定ISO镜像地址

 [image:]

图1-10　安装启动

 [image:]

图1-11　检测磁盘介质

 [image:]

图1-12　点击“Next”继续安装

 [image:]

图1-13　设置安装语言

 [image:]

图1-14　设置键盘

 [image:]

图1-15　设置存储属性

 [image:]

图1-16　确认删除磁盘数据

 [image:]

图1-17　设置主机名

 [image:]

图1-18　设置时区

 [image:]

图1-19　设置密码

 [image:]

图1-20　使用所有磁盘空间安装系统

 [image:]

图1-21　确认分区

 [image:]

图1-22　安装类型

 [image:]

图1-23　安装正式进行

 [image:]

图1-24　完成安装
1.1.2　首次启动CentOS

在完成安装并重启系统后，需要进行首次启动设置，包括许可信息、创建用户、设置时间日期、Kdump设置。设置完毕后，将载入登录页面。这一系列的过程可参照图1-25至图1-30进行。

[image:]创建用户这一页，读者可以暂时略过，直接点击“Forward”即可，本书中所有操作将使用超级用户root来演示。
1.1.3　更多设置

从CentOS 6开始，系统在完成安装后，首次启动设置时将不会提供关闭防火墙、关闭SELinux的页面（SELinux是一套安全控制系统，如果不关闭会对后期操作造成一些不便，所以这里建议关闭）等功能。读者可以在读完下一节后进行此处的操作。

图1-31和图1-32演示了如何通过图形页面配置系统防火墙。

 [image:]

图1-25　首次启动欢迎页面

 [image:]

图1-26　许可证

 [image:]

图1-27　创建用户

 [image:]

图1-28　时间日期设置

 [image:]

图1-29　关闭kdump设置

 [image:]

图1-30　桌面载入

 [image:]

图1-31　打开Firewall配置项

 [image:]

图1-32　点击“Disable”并“Apply”

关闭防火墙后，再关闭SELinux。可以在终端中使用命令“setenforce 0”立即关闭SELinux（立即生效），这种方式的缺陷是系统重启后，SELinux会再次启动，为了彻底关闭SELinux，还需要通过编辑SELinux的配置文件（打开文字编辑器的方式参照图1-33，文件具体路径参照图1-34，即：File System→etc目录→selinux目录下的config文件），图1-33到图1-35演示了如何彻底关闭SELinux。

 [image:]

图1-33　打开文字编辑器

 [image:]

图1-34　编辑SELinux配置文件

 [image:]

图1-35　将enforcing改为disabled
1.2　系统登录

如上节所示，系统安装完成并进行了首次启动设置后，就已经准备就绪了。我们所要做的就是了解如何登录系统。从物理上是否接触这台主机这个角度而言，系统登录分为本地登录和远程登录两种。
1.2.1　本地登录

如果读者使用虚拟环境进行安装，在虚拟机中的登录行为就可以认为是一个本地登录。图1-36和图1-37演示了这种登录行为。

更普遍的是，如果可以直接接触到这台主机，通过直连在主机上的键盘输入用户名和密码进行登录的行为，都称为本地登录。本地登录在真实运维环境中并不多见，因为主机往往是远程托管在IDC机房中，更多情况下需要通过远程登录。

 [image:]

图1-36　本地登录输入用户名

 [image:]

图1-37　本地登录输入密码
1.2.2　远程登录

远程登录又称网络登录，自然需要事先知道主机的IP地址。如果是DHCP环境，只能通过本地登录查看主机的IP地址，因为DHCP动态给主机分配IP地址。读者可以通过Terminal使用ifcomfig命令查看当前主机的IP，如图1-38和图1-39所示。在实际运用中，更多的是给服务器配置一个固定的IP地址。本例中，主机得到的IP为192.168.15.128。

 [image:]

图1-38　打开系统终端

得到主机IP后，要想远程连接需要使用客户端软件。常见的客户端软件有putty、SecureCRT等，其中SecureCRT是一个比较强大的商用软件，有30天的试用期限；putty是一个小巧的免费客户端软件，读者可以轻易地从网络上搜索下载，并根据自己的喜好选择试用。

这里给读者演示如何试用putty远程连接主机。下载并打开putty后，输入想要连接的主机IP，然后点击“Open”即可，在随后弹出的页面中，选择“是”，接着输入用户名root和正确的密码（输入在安装过程中的密码），回车便可远程登录到主机了（如图1-40至图1-42所示）。

 [image:]

图1-39　使用ifconfig命令查看IP

 [image:]

图1-40　使用putty登录主机

 [image:]

图1-41　确认接受指纹信息

 [image:]

图1-42　输入正确的用户名密码登录系统
1.3　用户管理

1.3.1　用户和用户组的概念

Linux是一个多用户系统，要使用系统资源就必须在系统内拥有合法的用户账号，Linux系统可以存在多个用户，但是需要使用唯一的用户名来区分不同的用户，同时所有非系统用户都需要设置密码才可以登录到系统。

和人类不同，Linux系统只能使用数字来记录用户。在实现上，Linux系统采用一个32位的整数来记录用户，这意味着在一套Linux系统中最多可以记录40亿个不同的用户。这个用来区分不同用户的数字被称为user id，简称UID。

在Linux系统中，有三类用户，分别是系统用户、普通用户和根用户。普通用户是Linux的真实用户，这类用户可以通过用户名和密码登录到系统中，通常普通用户的UID大于500；系统用户是系统运行时的一些特殊用户，这类用户往往不能登录到系统中，但是一些进程需要使用这类用户运行，比如系统中的httpd进程就是使用用户apache运行的；根用户又叫root，它的UID为0，也是系统中的超级用户，拥有至高无上的权限。

除了用户之外，Linux系统中还存在用户组，而用户组也是用数字来区分的，即Group ID，简称为GID。

UID和GID之间存在某些关系。比如CentOS系统在创建用户时，系统会在创建这个用户的同时，创建一个同名的用户组。而在内部，系统在分配给该用户一个UID的同时会创建一个用户组（这个用户组也会得到一个唯一的GID），并且默认情况下UID的值等于GID，创建出来的这个用户默认属于这个用户组。用户组除了在创建用户时被创建，也可以独立创建出来。

上面的解释似乎有点晦涩，这里举个例子：在学校里，每个学生都会被分配到一个学号，这个学号一定是唯一的，所以才能区分不同的学生，我们可以拿学号类比一个UID；同时，每个学生都可以自己创建自己的兴趣小组，这个兴趣小组的编号类比于系统中的GID，为了保证唯一，创建的这个兴趣小组的编号的数值可以简单地等于UID，这样可以保证GID也是唯一的。当然，默认情况下，一开始每个兴趣小组的成员都只有一个。当某个学生对其他某个兴趣小组感兴趣时，他可以随时加入其他的小组，这时该学生就属于两个组了，而他加入其他小组的个数越多，他从属于的组就越多，Linux中也是一样，一个用户在创建后，至少属于一个组，而且后期随时可以加入、退出不同的组。
1.3.2　新增和删除用户

在CentOS中新增和删除用户可以分别使用useradd和userdel命令完成。比如现在想要添加一个用户名为john的用户：

[root@localhost ~]# useradd john

需要注意的是，如果仅使用useradd添加用户，该用户并不能登录到系统，必须给该用户设置密码后才可以。同时请记住，新增一个用户的操作，也就默认新增了一个同名的用户组（在这里意味着同时新增了一个名为john的用户组）。

[root@localhost ~]# passwd john

Changing password for user john.

New password:

Retype new password:

passwd: all authentication tokens updated successfully.

删除用户：

[root@localhost ~]# userdel john

在一个账号使用一段时间后，该用户往往会在个人家目录中留下不少个人文件，使用上面的命令删除用户，这些文件还会得以保留。如果确认该用户的文件需要在删除用户时也一并彻底删除，可使用以下命令完成：

[root@localhost ~]# userdel -r john

1.3.3　新增和删除用户组

也可以使用groupadd/groupdel单独创建/删除用户组。示例如下：

[root@localhost ~]# groupadd group1

[root@localhost ~]# groupdel group1

1.3.4　用户切换

很多情况下需要切换用户，比如原先使用了一个普通用户登录系统，后来由于权限问题需要切换为root执行相关命令。或是需要从普通用户1切换为普通用户2，或是从root切换为普通用户等。切换用户的命令为su。

root由于拥有至高无上的权限，所以，root用户可以随时切换为任意的用户，比如下面的例子中，root用户切换为john，注意用户切换成功后，命令提示行中的用户变为用户john了：

[root@localhost ~]# su - john

[john@localhost ~]$

但是，从普通用户切换至root，是必须要知道root的密码的，下面的例子中第一次故意输入了一个错误的密码，系统会拒绝这次用户切换；第二次输入正确的密码后，就可以正确切换为root了。

[john@localhost ~]$ su - root

Password:

su: incorrect password

[john@localhost ~]$

[john@localhost ~]$ su - root

Password:

[root@localhost ~]#

最后，从一个普通用户切换为另一个普通用户的操作，也需要知道被切换的用户的密码，原因应该很好理解。当然，这里也存在一个很明显的问题：用户1切换为用户2的前提是用户1必须知道用户2的密码，这似乎给密码安全带来了一些问题。那么有没有方法可以解决这个问题呢？答案是肯定的。感兴趣的读者可以搜索查看一下sudo命令。
1.4　文件系统

1.4.1　什么是文件系统

简单来说，文件系统是用来管理和组织文件的“方法”。Linux支持多种不同的文件系统，常见的包括ext2、ext3、ext4、zfs、iso9600、msdos、ntfs、vfat、smbfs等，当然还可以通过加载模块的方式来支持更多的文件系统。虽然文件系统多种多样，但大部分Linux下的文件系统都有类似的结构，包括超级块、inode、数据块、目录块等。其中，超级块包括文件系统的总体信息，是文件系统的核心，所以磁盘中会有多个超级块，这样即使某一些超级块损坏了，文件系统依然可以使用。inode存储所有与文件有关的数据，比如文件的权限和文件所指向的数据块等，也就是不包括文件真实内容和文件名。数据块是真实存储数据的部分，一个数据块默认的大小为4KB。目录块包括文件名和文件在目录中的位置，以及inode的信息。
1.4.2　常见的文件系统

1.ext2文件系统

Linux最早引入的文件系统类型是minix，由于其存在一定的局限性，比如文件名最长仅支持14个字符，文件最大为64MB等因素，后来被ext2（The Second Extended File System）文件系统所取代，该系统有着极好的存储性能，所以曾一度成为Linux中的标准文件系统。和很多文件系统一样，ext2文件系统也是采取将文件数据存放到数据块中的方式来存储数据的，这些数据块的大小可以在创建文件系统的时候指定，对于存放的每个文件和目录，都会有一个inode指定，文件系统中所有的inode都是使用inode表来进行记录的，一定数量的块就会组成一个块组。在ext2文件系统中，整个分区的文件系统信息都被存放在超级块中，考虑到超级块的重要性，在每个块组的开头中都有相同的备份。

但是ext2文件系统的弱点也是很明显的，它不支持日志功能，这很容易造成在一些极端场景中丢失数据，这个天然的弱点导致ext2文件系统无法在关键应用中使用，目前已经很少有企业使用ext2文件系统了。

2.ext3文件系统

为了弥补ext2文件系统的不足，有日志功能的ext3文件系统应运而生了。它直接从ext2文件系统发展而来，所以完全兼容ext2文件系统，而且支持非常简单地从ext2转换为ext3（只需要两条命令），这种特性让也更多的老用户转而使用ext3文件系统。

那么为什么需要日志文件系统呢？因为日志文件系统使用了“两阶段提交”的方式来维护待处理的事物。例如在写入数据之前，文件系统会先在日志中写入，然后再开始真实地写数据，写完数据后则会将之前写入日志中的内容删除。这样一来，如果遇到问题需要检查文件系统或对ext3文件系统进行修复时，只需要检查日志即可。而ext2修复文件系统时，需要遍历整个文件系统来检查文件的一致性信息，因此ext3节省了大量修复文件系统所需的时间。不过，由于增加了日志功能，在存取数据时ext3文件系统看起来要比ext2多一次写入操作，但是ext3对写操作做了优化，所以其性能并不比ext2低。

3.ext4文件系统

ext4文件系统从2.6.19内核开始引入，从CentOS 6开始，ext4也已经成为默认的文件系统。和ext2到ext3的升级一样，从ext3到ext4也是可以在线迁移的，和ext3相比，ext4支持1EB的文件系统，以及16TB的文件，同时支持无数量限制的子目录。
1.4.3　磁盘分区和创建文件系统

磁盘使用前需对其进行分割，这种动作被形象地称为分区。磁盘的分区分为两类，即主分区和扩展分区。受限制于磁盘的分区表大小（MBR大小为512字节，其中分区表占64字节），一块磁盘最多只能创建4个主分区，为了能支持更多分区，可以使用扩展分区（扩展分区中可以划分更多逻辑分区），但是即便这样，分区还是要受主分区+扩展分区最多不能超过4个的限制。磁盘在完成分区后，需要进行创建文件系统的操作，最后将该分区挂载到系统中的某个挂载点才可以使用。

下面继续使用VMware虚拟机演示fdisk的使用，首先会在虚拟机设置中添加一块磁盘，方式如图1-43至图1-48所示，完成后启动虚拟机。

 [image:]

图1-43　选择“添加”，为虚拟机增加设备

 [image:]

图1-44　选择“硬盘”

 [image:]

图1-45　选择“创建一个新的虚拟磁盘”

 [image:]

图1-46　选择“SCSI”

 [image:]

图1-47　选择“单个文件存储虚拟磁盘”

 [image:]

图1-48　命名磁盘后完成

重新启动虚拟机后，使用fdisk-l查看一下发现，有一个/dev/sdb设备，这就是新添加的磁盘在操作系统中对应的设备文件。大小是1073MB（笔者在创建磁盘时给的大小是1GB，由于操作系统之间计算容量的差别，所以存在一部分误差），一共有130个柱面，而且没有分区（提示Disk/dev/sdb doesn't contain a valid partition table），如图1-49所示。

 [image:]

图1-49　查看新的磁盘设备

下面开始对/dev/sdb进行分区操作，首先输入fdisk/dev/sdb，然后输入字母n，这个字母代表new，也就是新建分区；然后系统会提示是创建扩展分区（extended）还是主分区（primary partition），这里选择p；在partition number中输入数字1，代表这是第一个分区；下面要输入第一个柱面开始的位置，该处输入1；再要输入最后一个柱面的位置，这里输入130表示将所有的空间划给这个分区；最后输入字母w，代表将刚刚创建的分区写入分区表。这样就完成了第一步分区操作，所有操作步骤见图1-50。

 [image:]

图1-50　分区方法

分区完成后，再使用fdisk-l查看，对比图1-51，发现不同了吗？是的，这里显示出一个设备，叫做/dev/sdb1，这就是下一步需要创建文件系统的设备。

 [image:]

图1-51　确认磁盘分区成功

要在刚刚创建的分区中格式化文件系统，这里使用ext3文件系统作为演示，可以使用命令“mkfs-t ext3/dev/sdb1”来完成，或是简单地将此命令写成“mkfs.ext3/dev/sdb1”，这两个命令是一样的，如图1-52所示。

成功创建文件系统后才可以将磁盘挂载到挂载点，假设这里需要将/dev/sdb1挂载到/mnt，可以使用以下命令：

 [image:]

图1-52　创建文件系统

[root@localhost ~]# mount /dev/sdb1 /mnt

1.5　文件管理

1.5.1　文件和目录简介

Linux使用树状的目录结构组织文件，简单来说就是在一个目录中放置子目录和文件，子目录中可以继续放置子目录和文件，以此类推，形似一棵树的分支（如图1-53所示）。Linux的这种文件结构的起始点为“根目录”，就是“/”，是一切文件的起点。FHS（文件系统层次标准）定义了在根目录下的主要目录和每个目录内应该放置的文件。

请注意在Linux中，“文件”是一种很宽泛的概念，一切皆文件。所以不管是目录还是设备，都是一种文件，或者说，只要是在系统中可以看到的都是文件。

 [image:]

图1-53　查看根目录中的文件

对于系统中任何具体的文件来说，都一定可以通过绝对路径找到。比如系统引导文件grub.conf。

[root@localhost ~]# ls /boot/grub/grub.conf

/boot/grub/grub.conf

但是假设现在所在的目录是/boot，那么该文件就可以使用相对路径找到。

[root@localhost ~]# cd /boot

[root@localhost boot]# ls ./grub/grub.conf

./grub/grub.conf

这里的点（.）代表当前目录，很多时候可以省略。

[root@localhost boot]# ls grub/grub.conf

grub/grub.conf

想要回到当前目录的上层目录，使用两个点（..），代表上层目录，也是一个相对路径的写法。

[root@localhost boot]# cd ..

[root@localhost /]#

1.5.2　文件和目录权限

使用ls命令，结合“-l”参数查看文件的权限，结合“-ld”参数查看目录的权限，查看/root目录以及查看/root目录下文件的权限如下：

[root@localhost ~]# ls -l

total 20

-rw-------. 1 root root 1122 Jul 6 04:57 anaconda-ks.cfg

-rw-r--r--. 1 root root 9562 Jul 6 04:57 install.log

-rw-r--r--. 1 root root 3161 Jul 6 04:56 install.log.syslog

[root@localhost ~]# ll -d /root

dr-xr-x---. 2 root root 4096 Jul 6 05:00 /root

正如上述示例所示，ls-l格式化地输出了文件的详细信息，每个文件都有7列输出。第一列是文件类别和权限，这列由10个字符组成，第一个字符表明该文件的类型。表1-1列出了第一个字符可能的值和对应代表的含义。接下来的属性中，每3个字符为一组，第2～4个字符代表该文件所有者（user）的权限，第5～7个字符代表给文件所有组（group）的权限，第8～10个字符代表其他用户（others）拥有的权限。每组都是“rwx”的组合，如果拥有读权限，则该组的第一个字符显示r，否则显示一个小横线；如果拥有写权限，则该组的第二个字符显示w，否则显示一个小横线；如果拥有执行权限，则第三个字符显示x，否则显示一个小横线。

表1-1　文件权限首字符含义

 [image:]

1.5.3　文件查找

操作系统中有成千上万的文件散落在文件系统的各个角落中，还有不同用户创建的各种文件，随着系统的运行，文件数会越来越多，要想记住所有文件的位置是不可能的，但我们可以通过一些查找命令来进行。最常用的命令有find和locate。

其中find命令的使用格式为：

find PATH -name FILENAME

假设需要在系统中找到一个名为httpd.conf的文件，可以这么写：

[root@localhost ~]# find / -name httpd.conf

这条命令的意思是，从根目录开始寻找名字为httpd.conf的文件。由于是从根开始，find命令会遍历/下的所有文件，然后打印出找到的结果。如果读者有经验，大概知道这个文件可能存在于/etc下，因为看起来这是一个配置文件，这时便可以优化一下查找语句，这样耗时会更少，命令如下所示：

[root@localhost ~]# find /etc -name httpd.conf

可以使用星号通配符来模糊匹配要查找的文件名，比如想找出系统中所有以.conf结尾的文件，或是以httpd开头的文件：

[root@localhost ~]# find / -name *.conf

[root@localhost ~]# find / -name httpd*

和find不同，locate命令依赖于一个数据库文件，Linux系统默认每天会检索一下系统中的所有文件，然后将检索到的文件记录到数据库中，在运行locate命令的时候可直接到数据库中查找记录并打印到屏幕，所以使用locate命令要比find命令的反馈更为迅速。在执行这个命令之前，一般需要执行updatedb命令（非必须，因为系统每天会自动检索并更新数据库信息，但是有时候因为文件发生了变化而系统还没有再更新，所以需要主动运行该命令，以创建最新的文件列表数据库），及时更新数据库记录，下面是使用locate命令查找httpd.conf文件的方法：

[root@localhost ~]# updatedb

[root@localhost ~]# locate httpd.conf

/etc/httpd/conf/httpd.conf

locate命令依赖于其用于记录文件的数据库，该数据库的更新需要使用updatedb。当然，系统每天也会自动运行一次，必要的时候可主动地手动更新。

对一些二进制的命令文件，可以通过which命令找到。which用于从系统的PATH变量所定义的目录中查找可执行文件的绝对路径。例如想查找passwd命令在系统中的绝对路径，可使用如下方法：

[root@localhost ~]# which passwd

/usr/bin/passwd

1.5.4　文件压缩和打包

gzip/gunzip是用来压缩和解压单个文件的工具，使用方法比较简单，例如在/root目录下压缩install.log文件，压缩后产生的文件是install.log.gz文件，然后再使用gunzip文件将其解压缩：

[root@localhost ~]# gzip install.log

[root@localhost ~]# ls install.log.gz

install.log.gz

[root@localhost ~]# gunzip install.log.gz

tar不但可以打包文件，还可以将整个目录中的全部文件整合成一个包，整合包的同时还能使用gzip的功能进行压缩，例如把整个/boot目录整合并压缩成一个文件。一般来说，对于整合后的包，业内习惯使用.tar作为其后缀名，使用gzip压缩后的文件则使用.gz作为其后缀名。因为tar有同时整合和压缩的功能，所以可使用.tar.gz作为后缀名，或者简写为.tgz，下面的命令将/boot目录整合压缩成了boot.tgz文件：

[root@localhost ~]# tar -zcvf boot.tgz /boot

这里-z的含义是使用gzip压缩，-c是创建压缩文件（create），-v是显示当前被压缩的文件，-f是指使用文件名，也就是这里的boot.tgz文件。解压命令如下：

tar -zxvf boot.tgz

上面的命令会直接将boot.tgz在当前目录中解压成boot目录，-z是解压的意思。如需指定压缩后目录存放的位置，需要再使用-C参数，比如说将boot目录解压到/tmp目录中：

tar -zxvf boot.tgz -C /tmp

使用bzip2压缩文件时，默认会产生以.bz2扩展名结尾的文件，这里使用-z参数进行压缩，使用-d参数进行解压缩：

[root@localhost ~]# bzip2 install.log

[root@localhost ~]# ls -l install.log.bz2

-rw-r--r-- 1 root root 3588 Dec 10 03:08 install.log.bz2

[root@localhost ~]# bzip2 -d install.log.bz2

1.6　网络管理

网络才能让Linux发挥最大的功能，所以了解Linux的网络配置也是必备技能，这就需要记住一些常见的配置命令和相关的配置文件。
1.6.1　网络配置管理

使用ifconfig命令可以看到当前系统所有活动网卡的状态（如图1-54所示）。其中eth0表示的是一块网卡，如果有多个网卡，系统会自动往后标注eth1、eth2，以此类推。

 [image:]

图1-54　查看活动网卡

前面的安装过程中，并没有对网络进行过任何配置，所以现在主机得到的IP是采用了默认的DHCP协议得到的，读者使用这个命令看到的IP和图1-54所示的可能不一致。也可以使用ifconfig给主机主动配置IP地址：

[root@localhost ~]# ifconfig eth0 192.168.10.130 netmask 255.255.255.0

#该命令可以简写为：

#[root@localhost ~]# ifconfig eth0 192.168.10.130/24

ifconfig命令是及时生效的，所以如果是通过远程连接的主机，现在要做IP的修改，一旦回车当前的连接就中断了，需要重新登录到新的IP才行。而且这个命令并不会帮助用户把IP记录到任何配置文件中，也就是说，一旦主机重启，主机依然会从DHCP配置IP，所以如果想使用一个固定的IP，则需要手动将该IP写到配置文件中。

CentOS的网络配置相关文件集中存放在/etc/sysconfig/network-scripts目录中，而eth0的配置文件就是该目录下的ifcfg-eth0，如果要将该主机的IP固定配置为192.168.10.130，则可以按照如下配置：

DEVICE=eth0

BOOTPROTO=static

ONBOOT=yes

IPADDR=192.168.10.130

NETMASK=255.255.255.0

1.6.2　Linux防火墙

iptables是Linux下功能强大的防火墙工具，由于它集成于Linux内核，所以效率极高。该工具在系统安装的过程中会默认安装。iptables按照对数据包的操作分为4个表，这4个表分别是filter表（用于一般的过滤）、nat表（地址或端口映射）、mangle表（对特定数据包的修改）、raw表，其中最常用的是filter表；按照不同的Hook点来分则可分为5个链，分别是PREROUTING链（数据包进入路由决策之前）、INPUT（路由决策为本机的数据包）、FORWARD（路由决策不是本机的数据包）、OUTPUT（由本机产生的向外发送的数据包）、POSTROUTING（发送给网卡之前的数据包），最常用的有INPUT、OUTPUT链。

防火墙的工作策略一般包含两种方式：第一种是仅接受允许的数据，这种策略一般是设置防火墙的默认策略为拒绝所有，然后有针对性地放开特定的访问；第二种是只防止不允许的数据，这种策略一般是设置防火墙的默认策略为允许所有，只拒绝已知的非法访问数据。从安全效果而言，前一种防火墙策略表现更为优秀，所以这里使用第一种策略来开发防火墙脚本。

首先在使用iptables之前敲入以下两条命令：

iptables -F #清空所有规则

iptables -X #删除所有自定义的链

下面开始建立iptables防火墙规则。笔者采取的规则是：默认所有的数据都丢弃，仅接受已知的数据包，所以要有针对地打开需要的端口，下面两条命令定义默认全部丢弃数据包。

iptables -P INPUT DROP

iptables -P OUTPUT DROP

#-P参数的意思是policy，即策略。

#第一句的意思是：

#输入(INPUT)的数据包默认的策略(-P)是丢弃(DROP)的

#第二句的意思是：

#输出(OUTPUT)的数据包默认的策略(-P)是丢弃(DROP)的

进行到这一步它已经是一个有用的防火墙了，只不过没有什么意义——因为这和拔掉网线的概念没有什么不同，而且比没有防火墙更糟糕的是本地数据包都无法通信了。所以，这种类型的防火墙需要一些基本策略来保证一些基本功能可用，所以下面的一些规则也是需要的：

iptables -A INPUT -p icmp --icmp-type any -j ACCEPT

#允许icmp包进入。如果确认不需要icmp通信，此条可以不写

iptables -A OUTPUT -p icmp --icmp any -j ACCEPT

#允许icmp包出去

iptables -A INPUT -s localhost -d localhost -j ACCEPT

#允许本地数据包出

iptables -A OUTPUT -s localhost -d localhost -j ACCEPT

#允许本地数据包入

iptables -A INPUT -m state --state ESTABLISHED,RELATED -j ACCEPT

#允许已经建立和相关的数据包进入

iptables -A OUTPUT -m state --state ESTABLISHED,RELATED -j ACCEPT

#允许已经建立和相关的数据包出去

现在需要考虑一些特定策略了，这和用户服务器的应用类型密切相关。如果是一台Web服务器的话，典型的需要是能访问80端口，但是就目前的策略而言是无法访问的，所以需要允许80端口的访问。命令如下：

iptables -A INPUT -p tcp --dport 80 -j ACCEPT

如果读者认为这样就大功告成的话那就错了，不信可以尝试访问一下，会发现依然打开不了Web服务器的主页（假设已设置好Apache服务，并应用了以上的防火墙规则）。为什么呢？考虑一下计算机是怎么工作的。假设用户电脑是A，服务器是B，从A发送了一个目的地址为B、目的端口是80的数据包。服务器B收到这个数据包时发现该数据包匹配INPUT链规则，所以这个包可以正常的进入服务器B；然后服务器B在给A汇包时，回包会进入本地的OUTPUT链——但是OUTPUT链默认是DROP所有包的，而且没有定义相关允许策略，回包无法出去，于是造成了整个访问的过程不完整，所以就需要下面的命令：

iptables -A OUTPUT -m state --state ESTABLISHED,RELATED -j ACCEPT

现在再试试访问Web服务器，一定是成功的。这条命令中使用了状态跟踪模块，意思是对已经建立完整的连接的，以及为了维持该连接需要打开的其他连接所产生的相关连接的所有数据，都可以通过防火墙的OUTPUT链。但是如果需要允许该服务器访问其他的Web服务器，该怎么办呢？只要打开让数据出去的80端口就可以了，这需要两条命令，如下所示：

iptables -A OUTPUT -p tcp -m state --state NEW --dport 80 -j ACCEPT

iptables -A INPUT -m state --state ESTABLISHED,RELATED -j ACCEPT

如果此时尝试使用服务器访问某个域名，比如www.baidu.com，会发现其实还是不能访问到页面，难道是上面的规则不对么？考虑一下使用域名访问网站需要经历什么过程。对了，域名解析。因为服务器访问该域名之前需要先解析出它的IP地址，所以防火墙必须允许域名解析的数据包出去，使用如下的命令就可以了。

iptables -A OUTPUT -p udp --dport 53 -j ACCEPT

到了举一反三的时候了，如果要访问https（默认目标端口为443）的站点，应该打开什么端口呢？这里请读者自己思考尝试。下面还列举了一些常见的需要打开的端口，读者可以参考设置。

#由于管理需要ssh到这台服务器，则需要打开22号端口

iptables -A IPUT -p tcp -dport 22 -j ACCEPT

#如果只允许一个固定的ip能ssh到该服务器的话，上面的语句需要改为

iptables -A INPUT -p tcp --dport 22 -s 192.168.1.10 -j ACCEPT

#可能还需要从该服务器ssh到别的服务器

iptables -A OUTPUT -p tcp --dport 22 -j ACCEPT

到这里一个简单的iptables防火墙就可以使用了，读者可以领悟一下该脚本开发过程中的各个关键点，最重要的是需要了解服务器可以正常工作时对防火墙策略的需求，以及相应的对端口放开INPUT和OUTPUT链上的策略。最后将整个过程脚本化，如下所示：

#!/bin/bash

#DEFINE VARIABLES

HTTP_PORT=80

SECURE_HTTP_PORT=443

SSH_PORT=22

DNS_PORT=53

ALLOWED_IP=192.168.1.10

IPTABLES=/sbin/iptables

#FLUSH IPTABLES

$IPTABLES -F

$IPTABLES -X

#DEFINE DEFAULT ACTION

$IPTABLES -P INPUT DROP

$IPTABLES -P OUTPUT DROP

#DEFINE INPUT CHAINS

$IPTABLES -A INPUT -p icmp --icmp-type any -j ACCEPT

$IPTABLES -A INPUT -s localhost -d localhost -j ACCEPT

$IPTABLES -A INPUT -m state --state ESTABLISHED,RELATED -j ACCEPT

$IPTABLES -A INPUT -p tcp --dport $SSH_PORT -j ACCEPT

#DEFINE OUTPUT CHAINS

$IPTABLES -A OUTPUT -p icmp --icmp any -j ACCEPT

$IPTABLES -A OUTPUT -s localhost -d localhost -j ACCEPT

$IPTABLES -A OUTPUT -m state --state ESTABLISHED,RELATED -j ACCEPT

$IPTABLES -A OUTPUT -p tcp -m state --state NEW --dport $HTTP_PORT -j ACCEPT

$IPTABLES -A OUTPUT -p tcp --dport $SECURE_HTTP_PORT -j ACCEPT

$IPTABLES -A OUTPUT -p udp --dport $DNS_PORT -j ACCEPT

$IPTABLES -A OUTPUT -p tcp --dport $SSH_PORT -j ACCEPT

1.6.3　网络连通性诊断

网络是一切系统赖以正常工作的基础设施，所以保证主机的网络连通性是一切工作得以开展的前提。由于网络协议和设备所具有的复杂性，很多故障解决起来是有难度的，不仅需要有相应的知识结构，有时候还需要有丰富的网络经验。但是从大多数情况看，网络故障主要分为硬件故障、软件故障和网络没有被正确的配置这三种原因。硬件故障又主要分为网卡物理损坏、链路故障等，其中网卡物理损坏主要是指网卡设备由于使用中发生电子元件损坏而造成的网卡设备无法继续使用；链路故障很多时候表现为网线或者水晶头在制作过程中出现线路问题，或是由于线路老化等原因造成物理链路断开，从而致使网络无法物理连通；软件主要表现为网卡驱动故障，也就是操作系统对网卡驱动的不兼容，这个问题往往需要通过安装对应的网卡设备驱动来解决。更多情况下，网络不可达主要不是因为可达性问题，而往往是由于网络未正确配置。

为了诊断网络连通性，我们需要使用一些常见的命令，主要有ping、host、traceroute等。

ping程序的目的在于测试另一台主机是否可达，一般来说，如果ping不到某台主机，就说明对方主机已经出现了问题，但是不排除链路中防火墙的因素、ping包被丢弃等原因而造成ping不通。ping命令最简单的使用方式是接收一个主机名或IP作为其单一的参数，在按回车键后，执行ping命令的主机会向对端主机发送一个ICMP的echo请求包，对端主机在接收到这个包后会回应一个ICMP的reply回应包，在Linux下ping命令并不会主动停止，需要使用Ctrl+C组合键来停止，ping命令将会对发出的请求包和收到的回应包进行计数，这样就能计算网络丢包率。

host命令是用来查询DNS记录的，如果使用域名作为host的参数，命令返回该域名的IP。命令如下所示：

[root@localhost ~]# host www.google.com

www.google.com has address 74.125.128.147

www.google.com has address 74.125.128.103

www.google.com has address 74.125.128.99

www.google.com has address 74.125.128.104

www.google.com has address 74.125.128.105

www.google.com has address 74.125.128.106

www.google.com has IPv6 address 2404:6800:4005:c00::67

在IP包结构中有一个定义数据包生命周期的TTL（Time To Live）字段，该字段用于表明IP数据包的生命值，当IP数据包在网络上传输时，每经过一个路由器该值就减1，当该值减为0时此包就会被路由器丢弃。这种设计可避免出现一些由于某种原因始终无法到达目的地的包不断地在互联网上传递（可以形象地称之为幽灵包），无谓地耗用网络资源。

不过路由器也不是“无声无息”地将TTL值为0的IP包丢弃的，它会同时给发送该IP数据包的主机发送一个ICMP“超时”消息，主机在接收到这个ICMP包后就同时能得到该路由的IP地址。

根据上面两个特点，人们写了一个检测数据包是如何经由路由器的程序——traceroute，该程序的工作原理如下：它先构造出一个TTL值为1的数据包发送给目的主机，这个数据包在经由第一个路由器时，路由器先将TTL值减1变为0，然后路由器将该IP包丢弃，同时给发送一份ICMP消息，这样就得到了经过的第一台路由器的IP地址；然后再构造出一个TTL值为2的数据包，以此类推，就能得到该IP包经历的整条链路的路由器IP。

这里会有一个问题：traceroute如何确认该IP包成功地被目的主机接收了呢？因为目的主机即便收到了TTL值为1的数据包也不会发送ICMP通知给源主机的。这时traceroute所做的工作就是发送一个UDP包给目的主机，同时制定该UDP接收的端口为主机不可能存在的端口，主机在接收到这样的包后，由于端口不可达，因此会返回一个“端口不可达”的通知，这样就能确认目的主机是否可以接收到数据包。

基于以上的命令和原理，解决网络在故障时采用的步骤总结如下（其中，不管哪一步出现问题，都需要先解决当前的问题才能进行下一步测试，当所有测试都通过则表示所有问题都已解决了）：

·第一步是要确认网卡本身是否能正常工作。利用ping工具可以确认这点。输入ping 127.0.0.1，然后看是否能正常ping通。这里的127.0.0.1被称为主机的回环接口，是TCP/IP协议栈正常工作的前提，如果ping不通，一般可以认为本机TCP/IP协议栈有问题，但出现这种现象的概率比较低。

·第二步是要确认网卡是否出现了物理或驱动故障，使用ping本机IP地址的方式，如果能ping通则说明本地设备和驱动都正常。

·第三步要确认是否能ping通同网段的其他主机。这一步主要是确认二层网络设备（比如交换机或者hub）工作是否正常。如果ping不通往往说明二层网络上出现了问题，可能涉及交换机的端口工作模式、vlan划分等因素。

·第四步要确认是否能ping通网关IP。如果数据包能正常到达网关，则说明主机和本地网络都工作正常。

·第五步确认是否能ping通公网上的IP，如果可以说明本地路由设置正确，否则就要确认路由设备是否做了正确的nat或路由设置。

·第六步确认是否能ping通公网上的某个域名，如果能ping通则说明DNS部分设置正确。

即便实际工作中可能会受到诸如更复杂的网络环境、安全ACL、防火墙等众多因素的影响而使网络排查的困难增大，但以上步骤是排除网络故障的主体躯干，在排除不同的网络之间个性化的设置之外，排查的主要步骤都大同小异。
1.7　进程管理

进程是Linux系统中一个非常重要的概念，虽然我们无需了解这些进程是如何运行的、内核是如何管理调度的、时间片是如何轮转分配的等，但是需要知道如何控制这些进程，包括查看、启动、关闭、设置优先级等，从而完成好系统工程师的本职工作。
1.7.1　什么是进程

进程表示程序的一次执行过程，它是应用程序的运行实例，是一个动态的过程。或者可以更简单地描述为：进程是操作系统当前运行的程序。当一个进程开始运行时，就是启动了这个过程。进程包括动态执行的程序和数据两部分。在现代操作系统中，支持多进程处理，这些进程可接受操作系统的调度，所以说每一个进程都是操作系统进行资源调度和分配的一个独立单位。
1.7.2　进程的常见状态

所有的进程都可能存在三种状态：运行态、就绪态和阻塞态。运行态表示程序当前实际占用着CPU等资源；就绪态是指程序除CPU之外的一切运行资源都已经就绪，等待操作系统分配CPU资源，只要分配了CPU资源，即可立即运行；阻塞态是指程序在运行的过程中由于需要请求外部资源（例如I/O资源、打印机等低速或同一时刻只能独享的资源）而当前无法继续执行，从而主动放弃当前CPU资源转而等待所请求资源。

进程之间，又存在互斥和同步的关系。互斥即进程间不能同时运行，必须等待一个进程运行完毕，另一个进程才能运行。而进程同步指的是进程间通过某种通信机制实现信息交互。现代计算机使用信号量机制来实现进程间的互斥和同步，它的基本原理是：两个或者多个进程可以通过简单的信号进行合作，一个进程可以被迫在某一位置停止，直到它接收到一个特定的信号。任何复杂的合作需求都可以通过适当的信号结构得到满足。
1.7.3　进程优先级的调整

使用top命令显示系统运行的程序状态，其中的NI字段标记了对应进程的优先级，该字段的取值范围是-20～19，数值越低优先级越高，能更多地被操作系统调度运行，如果一个进程在启动时并没有设定nice优先级，则默认使用0。普通用户也可以给自己的进程设定nice优先级，但是范围只限于0～19。top中还有一个PR字段，它也是进程的“优先级”，这两个概念怎么理解呢？实际上，Linux使用了“动态优先级”的调度算法来确定每一个进程的优先级。

一个进程的最终优先级＝优先级＋nice优先级

nice命令仅限于在启动一个进程的时候同时赋予其nice优先级，例如用户写了一个脚本job.sh，想以比较高的优先级来运行它，就可以这么做：

[root@localhost ~]# nice -n -10 ./job.sh

对于已经启动的进程，可以用renice命令进行修改，不过，这需要先查询出该进程的PID（使用ps命令），假设现在需要将PID为5555的进程的nice优先级调整为-10，则可以这么做：

[root@localhost ~]# renice -10 -p 5555

除了使用renice外，还可以使用top提供的功能来修改，前提也是要查到该进程的PID，然后在top界面中按r键，在出现的“PID to renice”后输入PID（如图1-55所示），然后在出现的“renice PID***to value”后输入修改后的nice优先级既可（如图1-56所示）。

 [image:]

图1-55　调整某个PID的优先级

 [image:]

图1-56　成功调整了进程的优先级
1.7.4　进程的终止

要终止一个进程，可以通过kill、pkill、killall等命令来实现。例如有部分进程由于某种原因已经死掉或是工作异常，抑或是要停止一些非关键或非数据业务的进程，这时就需要使用这些命令来终止进程。这些命令的原理都是向内核发送一个系统操作信号和某个进程的标识号，使得内核对指定标识号的进程进行相应的操作。

一般来说，kill命令需要和ps命令联合使用。原因是kill后面跟的应该是需要被终止的进程的PID，典型用法是使用ps查出进程的PID，然后使用kill将其终止。kill的使用方法是：

[root@localhost~]#kill[信号代码]进程ID

假设系统中的dhcpd进程由于某种原因需要终止，那么首先要查找到该进程的PID（从下面的输出中可以看到该PID为2877），然后kill掉这个PID，完成这个操作后再看dhcpd进程，就已经不存在了，示例如下：

[root@localhost ~]# ps -ef | grep dhcp

root 2877 1 0 18:59 ? 00:00:00 /usr/sbin/dhcpd

#这里找出dhcpd的PID是2877

#有个更快速的方式来寻找进程的PID，即使用pidof命令

#[root@localhost ~]# pidof dhcpd

#2877

[root@localhost ~]# kill 2877

命令kill后面可以跟的信号代码一共有64种（如图1-57所示），常用的一般只有3个：HUP（1）、KILL（9）、TERM（15），分别代表重启、强行杀掉、正常结束。

 [image:]

图1-57　系统中64种信号

信号1代表重启，假设需要重启系统中的httpd服务，先查主httpd进程的PID号，这里为2935（注意，在图1-58中，第一次查询的时候，发现有若干个httpd进程，但是主进程只有一个，即由root启动的、PID为2935的第一个进程，其他的都是该进程的子进程），使用kill-12935后，再查看httpd进程的时候，发现主进程的PID没有变化，而子进程的PID都在同一时刻发生了变化，这说明主进程确实经过了重启。也表明，使用kill-1重启进程的时候实际上是不会改变主进程的PID的，即只是发生了原地重启而已。

 [image:]

图1-58　杀掉某个进程

前面成功地使用不带信号代码的kill停止了dhcpd进程，但实际上有一些进程因为运行中出现问题而无法通过这种方式停止，在这种情况下就需要使用-9参数强行停止该进程了，其效果是立即杀死进程，而且该信号无法被阻塞或忽略。但是这个命令也有其天然的危险，即进程直接被系统终止将会导致无法清理之前申请的内存，因此一般情况下不建议使用。而-15这个参数就比较温柔了，它会使进程正常退出，它也是Linux默认的程序中断信号（也就是在不加参数的情况下默认使用的信号）。

由于使用kill命令时要先查询到想要终止的进程的PID，也就是说操作对象是数字，因此相对来说会比较麻烦，而且在实际的工作中，如果看错了PID，其后果是无法估计的（想象一下：如果看错或是输错了PID，恰巧将一个非常重要的应用程序给kill了，那就无异于一场灾难）。事实上，想要终止进程时还有第二个命令可以选择，即killall命令，它可以直接使用进程的名字而不是PID，如果要停止系统中所有的httpd进程，那么只要按照以下方法操作就可以了：

[root@localhost ~]# killall httpd

1.8　软件安装

Linux下安装软件的方式和Windows有很大区别，或者说，更为困难。常见的双击进入安装，不断点击“下一步”到底就能完成安装的方式，在Linux下很不常见。更多的需要使用命令行的方式进行安装。
1.8.1　源码编译安装

由于计算机不能直接执行用高级语言编写的源程序，因此要想运行代码内容，就要使用一种机制让计算机识别和执行。一般来说，计算机中存在解释型和编译型两种语言。所谓解释型语言，就是计算机逐条取出源码文件的一条指令，将其转化成机器指令，再执行这个指令的过程。而编译型语言是指在程序运行前就将所有源代码一次性转化为机器代码（一般为二进制程序程序），再运行这个程序的过程。在Linux下有非常多的开源软件，我们可以通过搜索引擎找到其免费发布的源码包并自由下载使用。使用源码编译安装的方式比较“原始”但也较常见，安装方式简单笼统地讲可分三步：

第一步，运行configure命令（加上必要的参数）生成Makefile；

第二步，运行make命令；

第三步，运行make install命令，以上三步都是需要在对应的软件包目录根目录中运行。

本节将更为实际地演示如何编译安装Apache，希望读者能跟着动手实践，以增强对编译安装软件的理解。首先到Apache的官方主页http://www.apache.org下载。这里演示的版本为apache-2.2.23，读者可以根据实际需求下载不同的版本（如图1-59所示）。

 [image:]

图1-59　下载源码包

下载完成后解压源码包，并进入该目录（如图1-60所示）。

 [image:]

图1-60　解压源码包

进入目录后，需要使用configure工具生成Makefile，运行configure的方式是：

[root@localhost httpd-2.2.23]# ./configure --参数1 --参数2...

由于配置Apache能加的参数非常多，而且对于新手来说也确实无法分清那么多参数各自的意义（具体可用参数都可以在/usr/local/src/httpd-2.2.23/configure中看到），这里将介绍用两个比较简单的参数来完成配置的方法。第一个参数是--prefix=/usr/local/apache/，--prefix，用于指定安装路径，一般来说自行编译安装的软件放置的目录建议为/usr/local/；第二个参数是--enable-modules=most，用于启用Apache的绝大部分模块，非常适合新手使用，回车后configure会产生大量的输出，包括检查编译环境（是否有gcc工具以及软件依赖关系）中间出现任何错误都会导致失败（会有error报错），如果一切顺利，将会在当前目录下生成Makefile文件（如图1-61所示），然后开始执行make以及make install命令即可，此处也会产生大量输出（如图1-62所示），完成后将会出现/usr/local/apache目录。

 [image:]

图1-61　配置编译参数

 [image:]

图1-62　编译并安装

安装完成后，使用以下命令启动Apache服务，并查看一下80端口确实已经被占用。

[root@localhost ~]# /usr/local/apache/bin/apachectl start

[root@localhost ~]# lsof -i:80

COMMAND PID USER FD TYPE DEVICE SIZE NODE NAME

httpd 7149 root 3u IPv6 59986 TCP *:http (LISTEN)

httpd 7150 daemon 3u IPv6 59986 TCP *:http (LISTEN)

httpd 7151 daemon 3u IPv6 59986 TCP *:http (LISTEN)

httpd 7152 daemon 3u IPv6 59986 TCP *:http (LISTEN)

httpd 7153 daemon 3u IPv6 59986 TCP *:http (LISTEN)

httpd 7154 daemon 3u IPv6 59986 TCP *:http (LISTEN)

最后，使用浏览器访问一下服务器的IP（使用ifconfig命令查看服务器IP），如果看到页面中显示“It Works”界面，说明安装成功了。
1.8.2　使用包管理Yum

Yum（全称为Yellow dog Updateer，Modified）是一个基于RPM的shell前端包管理器，能够从指定的服务器上（一个或多个）自动下载并安装或更新软件、删除软件，其最大的优点是可以自动解决依赖关系。

使用yum来安装httpd，只需要使用命令yum install httpd即可，在开始的部分打印出的“Resolving Dependency”后面就是yum首先检查出安装httpd时需要安装的依赖包，可以看出这里需要安装apr和apr-util这两个包，如图1-63所示。为什么之前用RPM进行安装的时候依赖包比这里多呢？那是因为之前在使用rpm包安装Apache时已经安装了必要的依赖包，这里使用yum进行安装的时候已经满足依赖关系了，所以这里只需要再安装缺失的apr包就可以了。

除了安装包之外，yum也可以删除已经安装的包，如果想删除httpd包，只需使用yum remove httpd命令即可。

 [image:]

图1-63　使用yum安装httpd
1.8.3　创建自己的Yum仓库

创建自己的Yum仓库时，可采用如下步骤：

1）安装Apache服务（提供http协议的共享源）；

2）将安装介质中的内容共享出来；

3）在客户机上配置对应的repo文件（repo文件的内容需要根据源的内容做相应的调整）。

首先演示使用CentOS作为源服务器的场景（该服务器的IP为192.168.61.130）。第一步，安装Apache，该步骤请读者自行完成（使用RPM或者yum安装，安装完成后启动httpd服务）。安装完成后，默认Apache的文档目录是/var/www/html，访问光盘安装介质中的文件，可以用两种方式，一种方式是把/misc/cd目录中的所有文件拷贝到/var/www/html中，还有更为简单的一种方式：做软链接，示例如下。

[root@localhost ~]# cd /var/www/html

[root@localhost html]# ln -s /misc/cd/ .

[root@localhost html]# ls -l #看到软连接已经做好了

total 0

lrwxrwxrwx 1 root root 9 Feb 25 21:06 cd -> /misc/cd/

使用浏览器访问该服务器的http://IP/cd来测试Apache是否成功共享安装文件，如果一切正常，应该看到如图1-64所示的界面。

 [image:]

图1-64　访问httpd服务器

至此源服务器就布置好了，接下来用一台服务器作为客户端测试是否可以使用（客户端服务器为RedHat系统，IP为192.168.61.131）。按照如下方式创建FirstYum.repo，然后更新一下Yum缓存，如果成功的话，就可以看到如图1-65所示的界面，也能够成功安装软件，注意到软件来自图1-66所示的FirstYum，这就说明自制的Yum仓库成功工作了。

[root@localhost yum.repos.d]# cat FirstYum.repo

[FirstYum]

name=FirstYum

baseurl=http://192.168.61.130/cd

gpgcheck=1

gpgkey=http://192.168.61.130/cd/RPM-GPG-KEY-CentOS-5

 [image:]

图1-65　从FirstYum中更新软件列表

 [image:]

图1-66　成功从FirstYum中安装httpd
1.9　系统安全检测与审计

现在的企业环境都是通过VPN和防火墙两道设备将自己包裹在里面，防止外部的入侵攻击，但这只能防止外部的攻击，当出现内部攻击时候，VPN和防火墙无能为力，所以系统本身带有入侵检测和安全审计两个模块，可从系统本身防范此类问题。
1.9.1　AIDE系统入侵检测

AIDE（Advanced Intrusion Detection Environment）是系统自带的一个入侵检测工具，主要目的是检查文件一致性，包括文件是否被更改，文件属性是否变化，文件被修改的时间等。一旦出现AIDE监控的文件被篡改的情况，AIDE会触发告警，通知系统管理员。下面来看如何配置AIDE。

1.安装AIDE的包

安装命令如下：

[root@localhost ~]# yum install aide

可以看到配置文件中已经包含了一些默认的规则。如果觉得默认的规则中的监控粒度不够，也可以酌情追加在NORMALDIR和PERMS中。

[root@localhost ~]# cat /etc/aide.conf | grep -A20 'These'

These are the default rules.

#

#p: permissions

#i: inode:

#n: number of links

#u: user

#g: group

#s: size

#b: block count

#m: mtime

#a: atime

#c: ctime

#S: check for growing size

#acl: Access Control Lists

#selinux SELinux security context

#xattrs: Extended file attributes

#md5: md5 checksum

#sha1: sha1 checksum

#sha256: sha256 checksum

#sha512: sha512 checksum

#rmd160: rmd160 checksum

NORMAL = R+rmd160+sha256+whirlpool

NORMAL = R+rmd160+sha256

For directories, don't bother doing hashes

DIR = p+i+n+u+g+acl+selinux+xattrs

Access control only

PERMS = p+i+u+g+acl+selinux

2.配置监控规则

这里以/etc/shadow为例。将/etc/aide.conf配置文件中88行向后部分全部注释掉，然后在文件的默认写入如下规则：

/etc/shadow NORMAL

3.测试

AIDE根据配置文件生成初始化的数据库。然后在系统添加一个user，此时使用aide–check就会看到AIDE检测到这个文件变化了，打印出变化的详情。

[root@localhost ~]# aide --init

AIDE, version 0.14

AIDE database at /var/lib/aide/aide.db.new.gz initialized.

[root@localhost ~]# useradd testuser

[root@localhost ~]# aide --check

File /etc/shadow in databases has different attributes, 340205bbd,240205bbd

AIDE found differences between database and filesystem!!

Start timestamp: 2015-08-03 00:07:44

Summary:

 Total number of files: 4

 Added files: 0

 Removed files: 0

 Changed files: 2

Changed files:

changed: /etc/shadow

changed: /etc/shadow-

--

Detailed information about changes:

File: /etc/shadow

 Size : 851 , 882

 Mtime : 2015-08-02 17:35:49 , 2015-08-03 00:07:39

 Ctime : 2015-08-02 17:35:49 , 2015-08-03 00:07:39

 Inode : 394023 , 394802

 MD5 : 1D5W6SHBejIjtri5qDCOaA== , /ummfboToD0wfdH/g/+PUg==

 RMD160 : yDGi0dfKRWTuhFU+FoBMCU6dlTY= , UNP4d7w+PpJuINW4qGw8dSNAOdE=

 SHA256 : R8ur7INkJdJRkYcCdBqz9n0XR885uXwg , 9lJGd00IhWUaq0j8K3Wmp71Xjw+tYOP5

 SELinux : system_u:object_r:shadow_t:s0 , <NULL>

File: /etc/shadow-

 Size : 725 , 851

 Mtime : 2015-08-02 17:35:45 , 2015-08-02 17:35:49

 Ctime : 2015-08-02 17:35:48 , 2015-08-03 00:07:39

 MD5 : 7UIQmn5osGBtiQcPHGz3cQ== , 1D5W6SHBejIjtri5qDCOaA==

 RMD160 : a5Te4JQ3ppdQRh61TD24gdM+3sM= , yDGi0dfKRWTuhFU+FoBMCU6dlTY=

 SHA256 : BVm7gwaNKd4iYtdxQ+0DKnSpQIujcqbZ , R8ur7INkJdJRkYcCdBqz9n0XR885uXwg

1.9.2　审计

AIDE针对的方向是文件完整性，而对于一些系统的操作，可以用系统中自带的audit服务来帮助记录以及告警。下面介绍如何配置。

首先，确认audit服务是否开启。

[root@localhost ~]# /etc/init.d/auditd status

然后添加一条规则在auditd服务的配置文件中，监测/mnt目录中文件变化的动作，之后重启服务使配置生效。

[root@localhost ~]# cat /etc/audit/audit.rules

This file contains the auditctl rules that are loaded

whenever the audit daemon is started via the initscripts.

The rules are simply the parameters that would be passed

to auditctl.

First rule - delete all

-D

-w /mnt -p wa -k "config-change"

Increase the buffers to survive stress events.

Make this bigger for busy systems

-b 320

Feel free to add below this line. See auditctl man page

[root@localhost ~]# /etc/init.d/auditd restart

Stopping auditd: [OK]

Starting auditd: [OK]

此时可以看到规则已经生效，在/mnt目录中创建一个文件，然后更改这个文件的权限，使用ausearch就可以看到此时审计到的结果。

[root@localhost ~]# auditctl -l

-w /mnt/ -p wa -k "config-change"

[root@localhost ~]# touch /mnt/testfile

[root@localhost ~]# chmod 400 /mnt/testfile

[root@localhost ~]# ausearch --start today -k "config-change" -i

type=PATH msg=audit(08/03/2015 00:24:06.773:406) : item=1 name=/mnt/testfile inode= 262159 dev=08:02 mode=file,644 ouid=rootogid=root rdev=00:00 nametype=CREATE

type=PATH msg=audit(08/03/2015 00:24:06.773:406) : item=0 name=/mnt/ inode=262147 dev=08:02 mode=dir,755 ouid=root ogid=root rdev=00:00 nametype=PARENT

type=CWD msg=audit(08/03/2015 00:24:06.773:406) : cwd=/root

type=SYSCALL msg=audit(08/03/2015 00:24:06.773:406) : arch=x86_64 syscall=open success=yes exit=3 a0=0x7fffed732927 a1=O_WRONLY|O_CREAT|O_NOCTTY|O_NONBLOCK a2=0666 a3=0x3b5dd8f14c items=2 ppid=27507 pid=27715 auid=root uid=root gid=root euid=rootsuid=root fsuid=root egid=root sgid=root fsgid=root tty=pts0 ses=47 comm=touch exe=/bin/touch key="config-change"

type=PATH msg=audit(08/03/2015 00:24:15.158:407) : item=0 name=/mnt/testfile inode= 262159 dev=08:02 mode=file,644 ouid=rootogid=root rdev=00:00 nametype=NORMAL

type=CWD msg=audit(08/03/2015 00:24:15.158:407) : cwd=/root

type=SYSCALL msg=audit(08/03/2015 00:24:15.158:407) : arch=x86_64 syscall=fchmodat success=yes exit=0 a0=0xffffffffffffff9ca1=0x8150f0 a2=0400 a3=0x0 items=1 ppid=27507 pid=27716 auid=root uid=root gid=root euid=root suid=root fsuid=root egid=root sgid=root fsgid=root tty=pts0 ses=47 comm=chmod exe=/bin/chmod key="config-change"

或者可以在日志中查找到这个操作的记录：

[root@localhost ~]# tail -f /var/log/audit/audit.log

type=PATH msg=audit(1438532646.773:406): item=1 name="/mnt/testfile" inode=262159

type=PATH msg=audit(1438532655.158:407): item=0 name="/mnt/testfile" inode=262159 dev=08:02 mode=0100644 ouid=0 ogid=0 rdev=00:00 nametype=NORMAL

第2章　系统性能分析

2.1　性能分析简介

很多人喜欢把系统性能分析称为性能优化，这里特意避免使用“优化”一词，是因为优化是一个复杂的、基于业务场景的工作，有时候看似不正常的系统性能现象也可能是正常的表现；有时候看似做了很多针对性的参数调整，但是实际效果可能不如硬件性能提升来得明显。所以本章并不会重点讲解如何优化，而是重点讲解如何分析系统性能。

一般在条件有限制的情况下，性能分析主要集中在两个方面：

·响应时间

·单位时间效率

本章将通过分析系统CPU、磁盘、内存来讲解寻找系统与应用热点与瓶颈。
2.2　系统分析的基本工具

2.2.1　CPU性能分析工具

1.mpstat

mpstat是报告CPU状态的工具，用法比较简单，基本用法如下。

（1）每1秒统计一次CPU状态，一共统计3次

示例代码如下：

[root@server ~]# LANG=c

[root@server ~]# mpstat 1 3

Linux 3.10.0-123.el7.x86_64 (server.example.com) 05/28/15 _x86_64_ (1 CPU)

02:00:06 CPU %usr %nice %sys %iowait %irq %soft %steal %guest %gnice %idle

02:00:07 all 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00

02:00:08 all 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00

02:00:09 all 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00

Average: all 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00

在上面的代码中，LANG=c的目的是将时间从12小时制转换成24小时制。

（2）查看多核CPU的使用情况

示例代码如下：

[root@server ~]# mpstat -P ALL 1 1

Linux 3.10.0-123.el7.x86_64 (server.example.com) 05/28/2015 _x86_64_ (4 CPU)

02:07:26 AM CPU %usr %nice %sys %iowait %irq %soft %steal %guest %gnice %idle

02:07:27 AM all 0.25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 99.75

02:07:27 AM 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00

02:07:27 AM 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00

02:07:27 AM 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00

02:07:27 AM 3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00

Average: CPU %usr %nice %sys %iowait %irq %soft %steal %guest %gnice %idle

Average: all 0.25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 99.75

Average: 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00

Average: 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00

Average: 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00

Average: 3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00

其中的每一列代表的含义如下：

·%user：用户态程序

·%nice：优先级调整

·%sys：内核态消耗

·%iowait：磁盘等待

·%irp：硬件中断

·%soft：软件中断

·%steal：处理hyperviosr的消耗

·%guest：虚拟机消耗掉的CPU

·%idle：CPU空闲

更多的解释请查看man手册。

2.查看CPU硬件信息的工具

（1）lscpu

lscpu这个命令是在CentOS 6中引入的，在CentOS 5上没有此工具。lscpu可以查看CPU的型号、一级缓存、二级缓存等信息。示例代码如下：

[root@server ~]# lscpu

Architecture: x86_64

CPU op-mode(s): 32-bit, 64-bit

Byte Order: Little Endian

CPU(s): 4

On-line CPU(s) list: 0-3

Thread(s) per core: 1

Core(s) per socket: 4

Socket(s): 1

NUMA node(s): 1

Vendor ID: GenuineIntel

CPU family: 6

Model: 58

Model name: Intel(R) Core(TM) i7-3770 CPU @ 3.40GHz

Stepping: 9

CPU MHz: 3901.000

BogoMIPS: 7802.00

Virtualization: VT-x

Hypervisor vendor: VMware

Virtualization type: full

L1d cache: 32K

L1i cache: 32K

L2 cache: 256K

L3 cache: 8192K

NUMA node0 CPU(s): 0-3

（2）dmidecode

在CentOS 5上查看CPU硬件信息可以使用dmidecode工具，dmidecode会提供比lscpu更为详细的细节信息。示例代码如下：

[root@server ~]# dmidecode -t processor | less

dmidecode 2.12

SMBIOS 2.4 present.

Handle 0x0004, DMI type 4, 35 bytes

Processor Information

 Socket Designation: CPU socket #0

 Type: Central Processor

 Family: Unknown

 Manufacturer: GenuineIntel

 ID: A9 06 03 00 FF FB AB 1F

 Version: Intel(R) Core(TM) i7-3770 CPU @ 3.40GHz

 Voltage: 3.3 V

 External Clock: Unknown

 Max Speed: 30000 MHz

 Current Speed: 3900 MHz

 Status: Populated, Enabled

 Upgrade: ZIF Socket

 L1 Cache Handle: 0x0094

 L2 Cache Handle: 0x0095

 L3 Cache Handle: Not Provided

 Serial Number: Not Specified

 Asset Tag: Not Specified

 Part Number: Not Specified

Handle 0x0005, DMI type 4, 35 bytes

Processor Information

 Socket Designation: CPU socket #1

 Type: Central Processor

 Family: Unknown

 Manufacturer: GenuineIntel

 ID: A9 06 00 00 FF FB AB 1F

 Version: Intel(R) Core(TM) i7-3770 CPU @ 3.40GHz

 Voltage: 3.3 V

 External Clock: Unknown

 Max Speed: 30000 MHz

 Current Speed: 3900 MHz

 Status: Populated, Enabled

 Upgrade: ZIF Socket

 L1 Cache Handle: 0x0096

 L2 Cache Handle: 0x0097

 L3 Cache Handle: Not Provided

 Serial Number: Not Specified

 Asset Tag: Not Specified

 Part Number: Not Specified

Handle 0x0006, DMI type 4, 35 bytes

……

2.2.2　内存性能分析工具

1.free

free是所有系统工程师都会使用的命令，这里要搞清楚cache、buffer、used和total之间的关系。

首先total=used+free，这很容易理解。

·total：物理内存的总大小。

·used：被使用的内存大小。

·free：未被使用的内存大小。

以下是free输出的结果：

[root@server ~]# free -m

 total used free shared buffers cached

Mem: 980 337 643 0 15 91

-/+ buffers/cache: 230 750

Swap: 1023 0 1023

在Mem：这行中的buffers和caches指的是系统已经分配但是还未被使用的buffers和caches。这里为15+91=106，所以共有106MB的cache/buffer还未被使用。

-/+buffers/cache行中，used这列代表实际使用的buffer/cache总量，即337-230=107，约等于前面的106。free这列代表的是系统真正可以使用的内存。

关于cache与buffer的区别，在后面的章节会讲到。

2./proc/meminfo

meminfo里包含了所有的内存相关信息。示例代码如下：

[root@server ~]# cat /proc/meminfo

MemTotal: 1519556 kB

MemFree: 1132324 kB

MemAvailable: 1192320 kB

Buffers: 1120 kB

Cached: 169944 kB

SwapCached: 0 kB

Active: 124640 kB

Inactive: 139784 kB

Active(anon): 93992 kB

Inactive(anon): 8376 kB

Active(file): 30648 kB

Inactive(file): 131408 kB

Unevictable: 0 kB

Mlocked: 0 kB

SwapTotal: 2113532 kB

SwapFree: 2113532 kB

Dirty: 0 kB

Writeback: 0 kB

AnonPages: 93468 kB

Mapped: 30460 kB

Shmem: 9008 kB

Slab: 50548 kB

SReclaimable: 21124 kB

SUnreclaim: 29424 kB

KernelStack: 4920 kB

PageTables: 8332 kB

NFS_Unstable: 0 kB

Bounce: 0 kB

WritebackTmp: 0 kB

CommitLimit: 2873308 kB

Committed_AS: 411276 kB

VmallocTotal: 34359738367 kB

VmallocUsed: 187720 kB

VmallocChunk: 34359533052 kB

HardwareCorrupted: 0 kB

AnonHugePages: 22528 kB

HugePages_Total: 0

HugePages_Free: 0

HugePages_Rsvd: 0

HugePages_Surp: 0

Hugepagesize: 2048 kB

DirectMap4k: 65408 kB

DirectMap2M: 1507328 kB

其中一些参数的含义会在后面的章节提到。

3.vmstat

可以说vmstat是所有系统管理员必会的命令之一，vmstat的用法与mpstat类似。但是vmstat提供了非常丰富的系统信息。因此需要对输出内容有很清楚的了解。下面将讲解几个重点输出，示例如下：

[root@server ~]# vmstat -a 1 5

procs -----------memory---------- ---swap-- -----io---- -system-- ------cpu-----

 r b swpd free inact active si so bi bo in cs us sy id wa st

 1 0 0 1055176 155716 130904 0 0 4 1 9 15 0 0 100 0 0

 0 0 0 1055144 155716 130980 0 0 0 0 44 80 0 0 100 0 0

 0 0 0 1055144 155716 130980 0 0 0 0 30 50 0 0 100 0 0

 0 0 0 1055144 155716 130980 0 0 0 0 34 54 0 0 100 0 0

 0 0 0 1055144 155716 131000 0 0 0 0 24 39 0 0 100 0 0

对于其中部分输出项的说明如下。

（1）procs

在procs中，b这列表示的是不可中断睡眠的进程，这个数值往往与磁盘I/O有关。

（2）system

system这列中有两列，分别是in和cs。

in代表的是每秒钟的中断次数，包括时钟中断。何为时钟中断？时钟中断指的是系统向CPU发出信号，请求处理新的时间片。请求的频率叫做时钟频率。这个参数是在内核中配置的。默认配置是每秒钟1000次，相当于1毫秒一次。这个参数值出现在/boot/config-{kernel-version}中，可以使用grep命令查看到系统当前的数值，示例代码如下：

[root@server ~]# grep HZ /boot/config-2.6.32-431.el6.x86_64

CONFIG_NO_HZ=y

CONFIG_HZ_100 is not set

CONFIG_HZ_250 is not set

CONFIG_HZ_300 is not set

CONFIG_HZ_1000=y

CONFIG_HZ=1000

cs代表的是每秒上下文切换数。何为上下文切换？当CPU收到时钟请求去处理下一个时间片里的进程时，即处理下一个进程缓存在CPU一级缓存的数据，这就是上下文切换。

in与cs数值偏高说明系统非常繁忙。

（3）CPU

CPU这部分中，st这列往往会被很多人忽视，其实这列在虚拟化的环境中是比较重要的。st全称是steal time，指的是强制等待虚拟CPU的时间，如果这个数值过高，说明hypervisor进程正在为别的虚拟机服务，此时需要等待hypervisor。在生产环境中st持续偏高，说明物理主机上运行了太多的虚拟机，已经超出了物理机器的资源。
2.2.3　磁盘性能分析工具

1.iostat

iostat也是所有系统管理员必会的命令之一，具体使用不多细说，但可能很多人并不清楚iostat输出值的单位是什么含义，而这恰恰是非常重要的。

默认情况下iostat输出是以block为单位的。以Blk开头的值都是以block为单位的，在iostat中，一个block是512个字节。示例代码如下：

[root@server ~]# iostat 1 5 /dev/sda

Linux 2.6.32-431.11.2.el6.x86_64 (server.example.com) 05/28/2015 _x86_64_ (16 CPU)

avg-cpu: %user %nice %system %iowait %steal %idle

 5.62 0.00 4.84 0.80 0.00 88.74

Device: tps Blk_read/s Blk_wrtn/s Blk_read Blk_wrtn

sda 24.02 442.14 683.54 14196546071 21947219860

avg-cpu: %user %nice %system %iowait %steal %idle

 6.92 0.00 4.85 0.06 0.00 88.17

Device: tps Blk_read/s Blk_wrtn/s Blk_read Blk_wrtn

sda 2.00 0.00 24.00 0 24

avg-cpu: %user %nice %system %iowait %steal %idle

 6.75 0.00 4.73 0.00 0.00 88.52

Device: tps Blk_read/s Blk_wrtn/s Blk_read Blk_wrtn

sda 0.00 0.00 0.00 0 0

avg-cpu: %user %nice %system %iowait %steal %idle

 8.12 0.00 4.91 0.38 0.00 86.60

Device: tps Blk_read/s Blk_wrtn/s Blk_read Blk_wrtn

sda 5.00 0.00 112.00 0 112

avg-cpu: %user %nice %system %iowait %steal %idle

 2.46 0.00 4.93 1.77 0.00 90.84

Device: tps Blk_read/s Blk_wrtn/s Blk_read Blk_wrtn

sda 42.00 0.00 528.00 0 528

所以如果希望以KB形式显示，需要加上-k参数将其转换成字节，如下：

[root@server ~]# iostat 1 5 -k /dev/sda

Linux 2.6.32-431.11.2.el6.x86_64 （server.example.com） 05/28/2015 _x86_64_ (16 CPU)

avg-cpu: %user %nice %system %iowait %steal %idle

 5.62 0.00 4.84 0.80 0.00 88.74

Device: tps kB_read/s kB_wrtn/s kB_read kB_wrtn

sda 24.02 221.07 341.77 7098281615 10973621830

avg-cpu: %user %nice %system %iowait %steal %idle

 0.75 0.00 5.75 0.00 0.00 93.50

Device: tps kB_read/s kB_wrtn/s kB_read kB_wrtn

sda 0.00 0.00 0.00 0 0

avg-cpu: %user %nice %system %iowait %steal %idle

 0.57 0.00 5.28 0.00 0.00 94.15

Device: tps kB_read/s kB_wrtn/s kB_read kB_wrtn

sda 4.00 0.00 16.00 0 16

avg-cpu: %user %nice %system %iowait %steal %idle

 0.76 0.00 4.79 0.50 0.00 93.95

Device: tps kB_read/s kB_wrtn/s kB_read kB_wrtn

sda 9.00 0.00 100.00 0 100

avg-cpu: %user %nice %system %iowait %steal %idle

 1.07 0.00 4.91 1.20 0.00 92.82

Device: tps kB_read/s kB_wrtn/s kB_read kB_wrtn

sda 34.00 0.00 456.00 0 456

2.iotop

iotop是用Python写的一个类似于top命令的软件，用来监控磁盘I/O的情况。iotop可以实时监控到每个进程及线程的磁盘读写和I/O请求。

其中，需要注意以下几个参数：

·-o：只显示有I/O操作的进程和线程。

·-P：只显示进程数。默认是显示进程和线程。

·-k：以千字节显示，更为友好的输出。

示例代码如下：

[root@server ~]# iotop -h

Usage: /usr/sbin/iotop [OPTIONS]

DISK READ and DISK WRITE are the block I/O bandwidth used during the sampling

period. SWAPIN and IO are the percentages of time the thread spent respectively while swapping in and waiting on I/O more generally. PRIO is the I/O priority at which the thread is running (set using the ionice command).

Controls: left and right arrows to change the sorting column, r to invert the sorting order, o to toggle the --only option, p to toggle the --processes

option, a to toggle the --accumulated option, i to change I/O priority, q to quit, any other key to force a refresh.

Options:

 --version show program's version number and exit

 -h, --help show this help message and exit

 -o, --only only show processes or threads actually doing I/O

 -b, --batch non-interactive mode

 -n NUM, --iter=NUM number of iterations before ending [infinite]

 -d SEC, --delay=SEC delay between iterations [1 second]

 -p PID, --pid=PID processes/threads to monitor [all]

 -u USER, --user=USER users to monitor [all]

 -P, --processes only show processes, not all threads

 -a, --accumulated show accumulated I/O instead of bandwidth

 -k, --kilobytes use kilobytes instead of a human friendly unit

 -t, --time add a timestamp on each line (implies --batch)

 -q, --quiet suppress some lines of header (implies --batch)

2.2.4　sar

sar可以说是系统性能诊断的瑞士军刀了，它可以提供几乎所有的系统信息。同时也可通过结合cronjob、sar记录下系统的实时状态，以便系统管理员能够对过去的性能状态进行分析排错。

1.自动收集系统活动信息

在/etc/cron.d/sysstat里有两个计划任务，sa1收集当前系统的信息，sa2汇集当天的系统信息。在cronjob里设定了sa1每10分钟运行一次，sa2则在每天的23点59分运行一次。这里建议采用默认值。示例如下：

[root@server ~]# cat /etc/cron.d/sysstat

Run system activity accounting tool every 10 minutes

*/10 * * * * root /usr/lib64/sa/sa1 1 1

0 * * * * root /usr/lib64/sa/sa1 600 6 &

Generate a daily summary of process accounting at 23:53

53 23 * * * root /usr/lib64/sa/sa2 -A

这里，sa1调用了sadc来收集当前系统的活动信息，以2进制形式保存数据。sadc叫做数据收集实用程序，它是sar的后端程序。

sa2调用了sar来生成当天的系统信息报告，以文本形式保存。

sa1和sa2都是shell脚本，也是系统管理员学习bash编程的经典教例。

2.查看过去的系统活动信息

sar的基本使用方法大家早已熟练，比如使用-d参数查看磁盘I/O，-r查看系统内存状态等，本节不再重复，具体参数可以详细阅读man手册。本节重点讲解查找过去某一时段内系统状态的方法，比如需要查找过去某个时刻系统进程数最高的那个时间点与进程数时，可以读取位于/var/log/sa中历史的sar数据，然后利用sort命令对指定列进行排序，示例代码如下：

[root@server ~]# sar -f /var/log/sa/sa22 -q | sort -nr -k 3| more

Average: 17 878 3.15 4.56 4.93

02:30:01 PM 56 1044 4.20 5.90 6.04

01:20:01 AM 51 908 4.29 5.26 5.67

05:30:01 PM 50 911 2.53 3.03 3.41

08:30:01 AM 46 931 3.48 5.59 8.40

06:40:01 AM 46 913 4.24 5.40 5.72

08:20:01 AM 44 920 4.20 7.34 10.78

08:10:01 AM 44 999 5.50 19.59 15.37

04:30:01 AM 44 919 1.89 2.97 3.24

……

Linux 2.6.32-279.5.2.el6.x86_64 (server) 05/22/2015 _x86_64_ (24 CPU)

12:00:01 AM runq-sz plist-sz ldavg-1 ldavg-5 ldavg-15

sar-q用于显示队列与进程数，从文件中读取的时候，只需要使用-f参数指定对应的sar信息文件即可。

第三列plist-sz是系统的进程数，使用sort对第三列进行排列就可以找出最大进程数与最大进程数的时间。
2.3　软件分析的基本工具

2.3.1　ldd

ldd是一个用来查看程序运行所需共享库的工具。它会告诉用户这个程序依赖了哪些库文件、库文件的位置，以及是否缺少库文件等。

ldd其实只是一个shell的脚本，其原理是调用ld-linux.so模块来查看程序依赖的共享库。示例代码如下：

[root@el6-build ~]# ldd /usr/bin/mysql

 linux-vdso.so.1 => (0x00007fff4d7df000)

 libncursesw.so.5 => /lib64/libncursesw.so.5 (0x00007f21347eb000)

 libpthread.so.0 => /lib64/libpthread.so.0 (0x00007f21345cd000)

 libmysqlclient.so.16 => /usr/lib64/mysql/libmysqlclient.so.16 (0x00007f 2134249000)

 libcrypt.so.1 => /lib64/libcrypt.so.1 (0x00007f2134012000)

 libnsl.so.1 => /lib64/libnsl.so.1 (0x00007f2133df8000)

 libssl.so.10 => /usr/lib64/libssl.so.10 (0x00007f2133b8d000)

 libcrypto.so.10 => /usr/lib64/libcrypto.so.10 (0x00007f21337ae000)

 libz.so.1 => /lib64/libz.so.1 (0x00007f2133597000)

 libstdc++.so.6 => /usr/lib64/libstdc++.so.6 (0x00007f2133291000)

 libm.so.6 => /lib64/libm.so.6 (0x00007f213300d000)

 libgcc_s.so.1 => /lib64/libgcc_s.so.1 (0x00007f2132df6000)

 libc.so.6 => /lib64/libc.so.6 (0x00007f2132a62000)

 libtinfo.so.5 => /lib64/libtinfo.so.5 (0x00007f2132841000)

 libdl.so.2 => /lib64/libdl.so.2 (0x00007f213263c000)

 /lib64/ld-linux-x86-64.so.2 (0x00007f2134a24000)

 libfreebl3.so => /lib64/libfreebl3.so (0x00007f21323c5000)

 libgssapi_krb5.so.2 => /lib64/libgssapi_krb5.so.2 (0x00007f2132181000)

 libkrb5.so.3 => /lib64/libkrb5.so.3 (0x00007f2131e9a000)

 libcom_err.so.2 => /lib64/libcom_err.so.2 (0x00007f2131c96000)

 libk5crypto.so.3 => /lib64/libk5crypto.so.3 (0x00007f2131a6a000)

 libkrb5support.so.0 => /lib64/libkrb5support.so.0 (0x00007f213185e000)

 libkeyutils.so.1 => /lib64/libkeyutils.so.1 (0x00007f213165b000)

 libresolv.so.2 => /lib64/libresolv.so.2 (0x00007f2131441000)

 libselinux.so.1 => /lib64/libselinux.so.1 (0x00007f2131221000)

2.3.2　strace与ltrace

在Linux系统中，系统调用（system call）就是内核态给用户态提供的一个系统接口，通过这个接口，可以非常容易地从用户态切换到内核态工作，strace和ltrace就是用于追踪这种系统调用的，strace与ltrace分别用来跟踪进程的系统调用和库函数调用。

下面用一个非常简单的python脚本来演示下如何使用strace与ltrace。

首先创建一个python脚本，只需要打印hello world即可。然后使用这个脚本作为strace和ltrace的示例。

[root@server ~]# cat hello.py

#!/usr/bin/python

print 'hello world!'

1.strace

（1）查看hello.py脚本运行过程中系统调用的全过程

查看脚本运行时系统调用的命令非常简单，示例代码如下，从输出中可以看到，在执行这个python脚本的过程中，系统在背后做了很多的事情，因为输出太长，这里只选取开头部分。

[root@server ~]# strace ./hello.py

execve("./hello.py", ["./hello.py"], [/* 22 vars */]) = 0

brk(0) = 0x1a46000

mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x7f2ef2379000

access("/etc/ld.so.preload", R_OK) = -1 ENOENT (No such file or directory)

open("/etc/ld.so.cache", O_RDONLY|O_CLOEXEC) = 3

fstat(3, {st_mode=S_IFREG|0644, st_size=69138, ...}) = 0

mmap(NULL, 69138, PROT_READ, MAP_PRIVATE, 3, 0) = 0x7f2ef2368000

close(3) = 0

open("/lib64/libpython2.7.so.1.0", O_RDONLY|O_CLOEXEC) = 3

read(3, "\177ELF\2\1\1\0\0\0\0\0\0\0\0\0\3\0>\0\1\0\0\0p\363\3\0\0\0\0\0"..., 832) = 832

fstat(3, {st_mode=S_IFREG|0755, st_size=1822488, ...}) = 0

mmap(NULL, 3954184, PROT_READ|PROT_EXEC, MAP_PRIVATE|MAP_DENYWRITE, 3, 0) = 0x7f2ef1d94000

mprotect(0x7f2ef1f0c000, 2097152, PROT_NONE) = 0

mmap(0x7f2ef210c000, 258048, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED|MAP_DENYWRITE, 3, 0x178000) = 0x7f2ef210c000

mmap(0x7f2ef214b000, 58888, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0) = 0x7f2ef214b000

close(3) = 0

open("/lib64/libpthread.so.0", O_RDONLY|O_CLOEXEC) = 3

read(3, "\177ELF\2\1\1\0\0\0\0\0\0\0\0\0\3\0>\0\1\0\0\0\240l\0\0\0\0\0\0"..., 832) = 832

fstat(3, {st_mode=S_IFREG|0755, st_size=141616, ...}) = 0

mmap(NULL, 2208864, PROT_READ|PROT_EXEC, MAP_PRIVATE|MAP_DENYWRITE, 3, 0) = 0x7f2ef1b78000

mprotect(0x7f2ef1b8e000, 2097152, PROT_NONE) = 0

mmap(0x7f2ef1d8e000, 8192, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED|MAP_DENYWRITE, 3, 0x16000) = 0x7f2ef1d8e000

mmap(0x7f2ef1d90000, 13408, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0) = 0x7f2ef1d90000

close(3) = 0

open("/lib64/libdl.so.2", O_RDONLY|O_CLOEXEC) = 3

read(3, "\177ELF\2\1\1\0\0\0\0\0\0\0\0\0\3\0>\0\1\0\0\0\320\16\0\0\0\0\0\0"..., 832) = 832

fstat(3, {st_mode=S_IFREG|0755, st_size=19512, ...}) = 0

mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x7f2ef2367000

mmap(NULL, 2109744, PROT_READ|PROT_EXEC, MAP_PRIVATE|MAP_DENYWRITE, 3, 0) = 0x7f2ef1974000

mprotect(0x7f2ef1977000, 2093056, PROT_NONE) = 0

比如open（"/etc/ld.so.cache"，O_RDONLY|O_CLOEXEC）=3这行，open的这种系统调用可以通过man手册来查阅，具体可以查阅man syscalls。

（2）统计有多少个系统调用

使用-c参数可以统计出所有的系统调用与调用次数。示例代码如下：

[root@server ~]# strace -c ./hello.py

hello world!

% time seconds usecs/call calls errors syscall

------ ----------- ----------- -------- --------- --------------

 16.31 0.001752 9 186 122 open

 15.36 0.001650 28 59 mmap

 13.75 0.001477 22 68 rt_sigaction

 10.58 0.001136 81 14 mprotect

 9.51 0.001021 10 106 read

 7.76 0.000833 13 66 close

 7.32 0.000786 8 99 fstat

 6.01 0.000645 7 89 61 stat

 3.67 0.000394 12 32 munmap

 3.00 0.000322 11 30 brk

 1.31 0.000141 141 1 execve

 0.84 0.000090 18 5 1 ioctl

 0.74 0.000080 80 1 1 access

 0.74 0.000080 80 1 set_tid_address

 0.72 0.000077 77 1 set_robust_list

 0.66 0.000071 71 1 arch_prctl

 0.39 0.000042 21 2 openat

 0.34 0.000037 37 1 rt_sigprocmask

 0.34 0.000037 37 1 getrlimit

 0.34 0.000036 6 6 lstat

 0.32 0.000034 11 3 lseek

 0.00 0.000000 0 1 write

 0.00 0.000000 0 4 getdents

 0.00 0.000000 0 1 getcwd

 0.00 0.000000 0 6 2 readlink

 0.00 0.000000 0 1 getuid

 0.00 0.000000 0 1 getgid

 0.00 0.000000 0 1 geteuid

 0.00 0.000000 0 1 getegid

------ ----------- ----------- --------- --------- ----------------

 100.00 0.010741 788 187 total

（3）按照calls的次数排序

如果希望知道syscall中哪几种call最多，可以使用如下代码：

[root@server ~]# strace -c -S calls ./hello.py

hello world!

% time seconds usecs/call calls errors syscall

------ ----------- ----------- --------- --------- ----------------

 10.62 0.000684 4 186 122 open

 6.97 0.000449 4 106 read

 8.18 0.000527 5 99 fstat

 0.57 0.000037 0 89 61 stat

 3.74 0.000241 4 68 rt_sigaction

 9.56 0.000616 9 66 close

 28.12 0.001811 31 59 mmap

 3.03 0.000195 6 32 munmap

 1.29 0.000083 3 30 brk

 18.12 0.001167 83 14 mprotect

 0.00 0.000000 0 6 lstat

 0.00 0.000000 0 6 2 readlink

 0.00 0.000000 0 5 1 ioctl

 0.00 0.000000 0 4 getdents

 0.00 0.000000 0 3 lseek

 0.00 0.000000 0 2 openat

 0.00 0.000000 0 1 write

 1.34 0.000086 86 1 rt_sigprocmask

 1.47 0.000095 95 1 1 access

 1.49 0.000096 96 1 execve

 0.00 0.000000 0 1 getcwd

 1.34 0.000086 86 1 getrlimit

 0.00 0.000000 0 1 getuid

 0.00 0.000000 0 1 getgid

 0.00 0.000000 0 1 geteuid

 0.00 0.000000 0 1 getegid

 1.57 0.000101 101 1 arch_prctl

 1.32 0.000085 85 1 set_tid_address

 1.27 0.000082 82 1 set_robust_list

------ ----------- ----------- --------- --------- ----------------

 100.00 0.006441 788 187 total

（4）只看某一种syscall的调用情况

下面的代码会使用-e参数指定系统调用的类型。

[root@server ~]# strace -c -e open ./hello.py

hello world!

% time seconds usecs/call calls errors syscall

------ ----------- ----------- --------- --------- ----------------

100.00 0.002185 12 186 122 open

------ ----------- ----------- --------- --------- ----------------

100.00 0.002185 186 122 total

2.ltrace

ltrace的用法与strace类似，重点在函数调用方面。

（1）跟踪库函数的调用

在ltrace里跟踪库函数的调用可使用-cf参数，示例代码如下：

[root@server ~]# ltrace -cf grep root /etc/passwd

root:x:0:0:root:/root:/bin/bash

operator:x:11:0:operator:/root:/sbin/nologin

 % time seconds usecs/call calls function

------ ----------- ----------- --------- -------------------

 19.50 0.006624 86 77 malloc

 18.01 0.006116 98 62 strlen

 12.34 0.004190 59 71 free

 8.40 0.002853 95 30 realloc

 7.83 0.002660 80 33 __ctype_get_mb_cur_max

 7.74 0.002629 97 27 strcpy

 7.05 0.002395 95 25 strncmp

 6.54 0.002220 69 32 mbrtowc

 1.65 0.000562 70 8 calloc

 1.14 0.000386 193 2 setlocale

 1.12 0.000380 95 4 wcrtomb

 0.88 0.000298 74 4 wctob

 0.82 0.000278 139 2 read

 0.72 0.000246 246 1 re_compile_pattern

 0.65 0.000221 55 4 memchr

 0.46 0.000157 157 1 __cxa_atexit

 0.44 0.000148 74 2 __fpending

 0.43 0.000145 72 2 fwrite_unlocked

 0.37 0.000124 124 1 getpagesize

 0.36 0.000123 123 1

 0.36 0.000122 61 2 fclose

 0.34 0.000117 58 2 isatty

 0.33 0.000111 111 1 strrchr

 0.32 0.000109 109 1 _obstack_begin

 0.32 0.000107 107 1 close

 0.25 0.000084 84 1 bindtextdomain

 0.24 0.000080 80 1 textdomain

 0.24 0.000080 80 1 getopt_long

 0.23 0.000079 79 1 re_set_syntax

 0.23 0.000078 78 1 strcmp

 0.22 0.000076 76 1 getenv

 0.17 0.000059 59 1 __xstat

 0.17 0.000058 58 1 open

 0.15 0.000050 50 1 nl_langinfo

------ ----------- ----------- --------- --------------------

 100.00 0.033965 405 total

（2）追踪一个进程的库函数调用

这里以服务器上的一个mysql进程为例，首先获取到mysql进程的pid，然后在ltrace中使用-p参数加上mysql的pid即可追踪mysql这个进程的库函数调用。

[root@server ~]# ps -aux | grep mysql

root 1704 0.0 0.0 106064 1488 pts/0 S 02:04 0:00 /bin/sh /usr/bin/mysqld_safe --datadir=/var/lib/mysql --socket=/var/lib/mysql/mysql.sock --pid-file=/var/run/mysqld/mysqld.pid --basedir=/usr --user=mysql

mysql 1806 0.0 0.6 367948 27288 pts/0 Sl 02:04 0:05 /usr/libexec/mysqld --basedir=/usr --datadir=/var/lib/mysql --user=mysql --log-error=/var/log/mysqld.log --pid-file=/var/run/mysqld/mysqld.pid --socket=/var/lib/mysql/mysql.sock

root 29285 0.0 0.0 103312 824 pts/0 S+ 11:53 0:00 grep mysql

[root@server ~]# ltrace -p 1806

[pid 1813] pthread_mutex_trylock(0x7fe5bff02920, 0, 0, -1, 0x7fe5bcc3dd30) = 0

[pid 1813] pthread_mutex_unlock(0x7fe5bff02920, 0, 0, 0x7fe5c81af628, 0x7fe5bcc3dd30) = 0

[pid 1813] time(NULL) = 1432871609

[pid 1813] difftime(0x5567e2b9, 0x5567e28b, 859093, 0x20c49ba5e353f7cf, 0x963e07f8e9ca) = 0x5567e2b9

[pid 1813] pthread_mutex_lock(0x1669070, 0x5567e28b, 859093, 0x20c49ba5e353f7cf, 0x963e07f8e9ca) = 0

[pid 1813] pthread_mutex_unlock(0x1669070, 3, 1, 0x20c49ba5e353f7cf, 0x1669070) = 0

[pid 1813] pthread_mutex_lock(0x1669070, 0x7fe5bcc3dd90,0x1669070, 0x20c49ba5e353f7cf, 0x1669070) = 0

[pid 1813] pthread_mutex_unlock(0x1669070, 9999, 1, 0x20c49ba5e353f7cf, 0x1669070) = 0

[pid 1813] fflush(0x7fe5c6b4c860) = 0

[pid 1813] select(0, 0, 0, 0, 0x7fe5bcc3dd30 <unfinished ...>

[pid 1812] pthread_mutex_trylock(0x7fe5bfeff2c8, 0, 0, -1, 0x7fe5bd63ed70) = 0

[pid 1812] pthread_mutex_lock(0x19864b0, 0, 0, 0x7fe5c81af628, 0x7fe5bd63ed70) = 0

[pid 1812] pthread_mutex_unlock(0x19864b0, 3, 1, 0x7fe5c81af628, 0x19864b0) = 0

[pid 1812] pthread_mutex_unlock(0x7fe5bfeff2c8, 0, 0x19864b0, 0x7fe5c81af628, 0x19864b0) = 0

[pid 1812] select(0, 0, 0, 0, 0x7fe5bd63ed70 <unfinished ...>

[pid 1813] <... select resumed>) = 0

[pid 1813] pthread_mutex_trylock(0x7fe5bff02920, 0, 0, -1, 0x7fe5bcc3dd30) = 0

[pid 1813] pthread_mutex_unlock(0x7fe5bff02920, 0, 0, 0x7fe5c81af628, 0x7fe5bcc3dd30)

……

2.3.3　ipcs

进程间通信是系统中常见的场景，多个进程可能会需要调用同一个内存内容，比如管道，前一个进程的输出放入内存，后一个命令去读取这段内存。

一共有三种进程间通信方法：

·semaphores：表示信号量。

·message queues：表示消息队列。

·share memory regions：表示共享内存段。

用户可以使用ipcs这个命令来查看以上三种进程间通信的具体情况，示例如下：

[root@server ~]# ipcs

------ Message Queues --------

key msqid owner perms used-bytes messages

------ Shared Memory Segments --------

key shmid owner perms bytes nattch status

0x01125aae 0 root 600 1000 9

------ Semaphore Arrays --------

key semid owner perms nsems

0x00000000 131072 apache 600 1

0x00000000 163841 apache 600 1

0x00000000 196610 apache 600 1

0x00000000 229379 apache 600 1

0x00000000 262148 apache 600 1

1.配置共享内存

一般情况下，系统管理员很少遇到处理共享内存的情况，系统默认的配置已经足够使用，所以这里只做简单的讲解。

假设现在因为一些需求，要限制进程申请的共享内存空间最大1024MB。

首先，使用ipcs-l-m查看到现在系统的最大共享内存空间，这里为1073741824，在kernel中这个参数是由kernel.shmall控制的，kernel.shmall的单位是page，所以要将1024MB转换为page数目。使用sysctl-w可让修改即时生效。示例如下：

[root@server ~]# ipcs -l -m

------ Shared Memory Limits --------

max number of segments = 4096

max seg size (kbytes) = 4194303

max total shared memory (kbytes) = 1073741824

min seg size (bytes) = 1

[root@server ~]# echo $[1024*1024/4]

262144

[root@server ~]# sysctl -w kernel.shmall=262144

kernel.shmall = 262144

[root@server ~]# ipcs -l -m

------ Shared Memory Limits --------

max number of segments = 4096

max seg size (kbytes) = 4194303

max total shared memory (kbytes) = 1048576

min seg size (bytes) = 1

2.清除共享内存

清除共享内存也是一个很少会触发的动作，但还是要知道如何使用ipcs命令查看现在的共享内存段，可使用ipcrm清除共享内存。

示例如下：

[root@server ~]# ipcs -m

------ Shared Memory Segments --------

key shmid owner perms bytes nattch status

0x0112536f 0 root 600 1000 6

[root@server ~]# ipcrm -M 0x0112536f

[root@server ~]# ipcs -m

------ Shared Memory Segments --------

key shmid owner perms bytes nattch status

0x00000000 0 root 600 1000 6 dest

2.3.4　systemtap

systemtap是一个非常著名的内核态进程跟踪程序，它的作用非常广泛，最主要的作用是寻找程序的性能瓶颈。

Linux内核里有一个kprobe机制，这是一个动态的收集debug信息的工具，systemtap就是基于kprobe机制的一个调试工具。systemtap的使用简单，而且可以自己定义脚本，对开发人员、系统管理员来说是一个深入分析性能的利器。本节将讲述如何安装配置systemtap，以及如何使用已有的systemtap脚本。

1.安装准备

systemtap的安装需要准备一台测试机器，先在测试机器上安装kernel-debuginfo、kernel-debuginfo-common、kernel-level、systemtap-runtime、gcc等相关包，然后在测试机器上编译测试脚本，编译测试完成之后将编译好的模块放在生产机器上，生产机器只需要安装systemtap-runtime包即可。

CentOS的debuginfo相关安装包可以在http://debuginfo.centos.org/里找到。

注意，安装kernel-debuginfo时，相应的内核版本一定要一致！

2.安装kernel相关包

首先要确定系统内核版本，然后下载相对应的kernel-debuginfo包。示例如下：

[root@systemtap ~]# uname -a

Linux systemtap.example.com 2.6.32-504.el6.x86_64 #1 SMP Wed Oct 15 04:27:16 UTC 2014 x86_64 x86_64 x86_64 GNU/Linux

[root@systemtap ~]# wget http://debuginfo.centos.org/6/x86_64/kernel-debug-debuginfo-2.6.32-504.el6.x86_64.rpm

[root@systemtap ~]# wget http://debuginfo.centos.org/6/x86_64/kernel-debuginfo- 2.6.32-504.el6.x86_64.rpm

[root@systemtap ~]# wget http://debuginfo.centos.org/6/x86_64/kernel-debuginfo-common-x86_64-2.6.32-504.el6.x86_64.rpm

[root@systemtap ~]# rpm -ivh kernel-debuginfo-common-x86_64-2.6.32-504.el6.x86_64.rpm

Preparing... ### [100%]

 1:kernel-debuginfo-common### [100%]

[root@systemtap ~]# rpm -ivh kernel-debuginfo-2.6.32-504.el6.x86_64.rpm

Preparing... ### [100%]

 1:kernel-debuginfo ### [100%]

[root@systemtap ~]# rpm -ivh kernel-debug-debuginfo-2.6.32-504.el6.x86_64.rpm

Preparing... ### [100%]

 1:kernel-debug-debuginfo ### [100%]

3.安装Systemtap软件包

安装命令如下：

[root@systemtap ~]# yum -y install install gcc systemtap systemtap-runtime kernel-debug kernel-devel kernel-debug-devel kernel-firmware

4.编译Systemtap脚本

Systemtap软件包本身已经提供了一些脚本，这些脚本涉及I/O、内存、网络等，并且几乎可以直接使用。下面以profiling中的topsys.stp为例，讲解如何编译。

[root@systemtap ~]# cd /usr/share/doc/systemtap-client-2.5/example

[root@systemtap examples]# ls -lrt

total 412

-rw-r--r-- 1 root root 5886 Oct 15 2014 README

-rw-r--r-- 1 root root 91092 Oct 15 2014 keyword-index.txt

-rw-r--r-- 1 root root 140946 Oct 15 2014 keyword-index.html

-rw-r--r-- 1 root root 47261 Oct 15 2014 index.txt

-rw-r--r-- 1 root root 79298 Oct 15 2014 index.html

drwxr-xr-x 3 root root 4096 Jun 1 00:29 general

drwxr-xr-x 2 root root 4096 Jun 1 00:29 html

drwxr-xr-x 2 root root 4096 Jun 1 00:29 interrupt

drwxr-xr-x 2 root root 4096 Jun 1 00:29 io

drwxr-xr-x 2 root root 4096 Jun 1 00:29 locks

drwxr-xr-x 2 root root 4096 Jun 1 00:29 memory

drwxr-xr-x 2 root root 4096 Jun 1 00:29 network

drwxr-xr-x 2 root root 4096 Jun 1 00:29 process

drwxr-xr-x 2 root root 4096 Jun 1 00:29 profiling

drwxr-xr-x 3 root root 4096 Jun 1 00:29 stapgames

drwxr-xr-x 2 root root 4096 Jun 1 00:29 virtualization

这里将profiling中的topsys.stp拷贝到/tmp目录，然后查看这个文件。

这段脚本的作用是每隔5秒钟列出当前系统中最高的20个systemcalls。这个脚本对一些系统软件的开发人员作用较大。脚本如下：

#!/usr/bin/stap

#

This script continuously lists the top 20 systemcalls in the interval

5 seconds

#

global syscalls_count

probe syscall.* {

 syscalls_count[name] <<< 1

}

function print_systop () {

 printf ("%25s %10s\n", "SYSCALL", "COUNT")

 foreach (syscall in syscalls_count- limit 20) {

 printf("%25s %10d\n", syscall, @count(syscalls_count[syscall]))

 }

 delete syscalls_count

}

probe timer.s(5) {

 print_systop ()

printf("--\n")

}

下面使用-v参数试跑这个脚本，当输出为pass 5：starting run时，就证明这个脚本通过了调试，可以编译成模块了。

[root@systemtap tmp]# stap -v topsys.stp

Pass 1: parsed user script and 103 library script(s) using 201636virt/29536res/3156shr/26856data kb, in 120usr/10sys/142real ms.

Pass 2: analyzed script: 429 probe(s), 44 function(s), 41 embed(s), 1 global(s) using 306308virt/135184res/4204shr/131528data kb, in 960usr/230sys/1863real ms.

Pass 3: translated to C into "/tmp/stap5s2AT2/stap_6421353660f490975a2a346ed9c7ed0f_182267_src.c" using 306308virt/135576res/4596shr/131528data kb, in 40usr/30sys/79real ms.

Pass 4: compiled C into "stap_6421353660f490975a2a346ed9c7ed0f_182267.ko" in 6980usr/760sys/9346real ms.

Pass 5: starting run.

 SYSCALL COUNT

 read 27

 ppoll 25

 fcntl 4

 pselect6 1

--

通过测试之后，使用-p4-m<模块名><脚本>的命令行即可将脚本编译成一个模块，如下：

[root@systemtap tmp]# stap -v -p4 -m topsys.ko topsys.stp

Truncating module name to 'topsys'

Pass 1: parsed user script and 103 library script(s) using 201408virt/29580res/3200shr/26628data kb, in 120usr/10sys/129real ms.

Pass 2: analyzed script: 429 probe(s), 44 function(s), 41 embed(s), 1 global(s) using 306284virt/135196res/4224shr/131504data kb, in 1010usr/80sys/1090real ms.

Pass 3: translated to C into "/tmp/stapX0bYk3/topsys_src.c" using 306284virt/135516res/4544shr/131504data kb, in 40usr/40sys/77real ms.

topsys.ko

Pass 4: compiled C into "topsys.ko" in 3900usr/180sys/4322real ms.

[root@systemtap tmp]# ll topsys.ko

-rw-r--r-- 1 root root 657770 Jun 1 00:34 topsys.ko

5.测试模块

测试模块时，先在另外一台机器上安装systemtap-runtime包，然后使用staprun直接run编译好的模块。此时就可以看到有多少的systemcall了。

下面用cat命令向/dev/null重定向写入，同时打开新的终端，运行staprun topsys.ko去查看systemcall的实时情况。

[root@test ~]# staprun topsys.ko

 SYSCALL COUNT

 read 27

 ppoll 25

 fcntl 4

 pselect6 1

--

[root@test ~]# cat /dev/zero > /dev/null

[root@test ~]# staprun topsys.ko

 SYSCALL COUNT

 read 1914489

 write 1914462

 ppoll 25

 fcntl 4

 pselect6 1

 poll 1

--

 SYSCALL COUNT

 read 1912028

 write 1912003

 ppoll 25

 rt_sigprocmask 4

 select 2

--

可以看到，此时系统出现了大量的read和write的syscall，两者相差数量不大，这也是比较典型文件复制时会出现的场景。
2.4　与内存相关的那些事情

2.4.1　内存泄漏

如果程序在运行过程中不能正常回收不用的内存，那么时间一长就会导致内存增长很高，最终导致系统不可用，这种情况叫做内存泄漏。内存泄漏是一个让人烦恼的问题，不仅系统管理员烦恼，程序员也烦恼这个问题，所以定位分析内存泄漏是每一个系统管理员需要掌握的技能。

开源的valgrind是一个非常易于上手的内存分析工具，它可以分析内存泄漏、缓存命中等。本节以笔者工作中曾遇到的一个问题为例，讲述如何使用valgrind来定位内存泄漏问题。

笔者在生产环境使用Puppet作为自动化的基础工具，但是发现在CentOS 5的系统中，Puppet进程一段时间之后使用了太多的系统内存，导致服务器宕机。根据监控系统可以看到Puppet进程的内存存在缓慢持续增长的趋势，因此怀疑Puppet有内存泄漏的问题，于是开始查找证据。

首先，用valgrind来分析Puppet在运行过程中是否出现内存泄漏问题。在leak summary中，很明确地指出了内存泄漏，泄漏了多少的量，如下：

[root@server1 ~]# valgrind --tool=memcheck /usr/sbin/puppetd -t

==1794== Memcheck, a memory error detector

==1794== Copyright (C) 2002-2009, and GNU GPL'd, by Julian Seward et al.

==1794== Using Valgrind-3.5.0 and LibVEX; rerun with -h for copyright info

==1794== Command: /usr/sbin/puppetd -t

==1794==

==1794== Conditional jump or move depends on uninitialised value(s)

……

==1794==

==1794== HEAP SUMMARY:

==1794== in use at exit: 23,430,539 bytes in 136,643 blocks

==1794== total heap usage: 702,272 allocs, 565,629 frees, 262,185,929 bytes allocated

==1794==

==1794== LEAK SUMMARY:

==1794== definitely lost: 617 bytes in 18 blocks

==1794== indirectly lost: 0 bytes in 0 blocks

==1794== possibly lost: 84,736 bytes in 1,523 blocks

==1794== still reachable: 23,345,186 bytes in 135,102 blocks

==1794== suppressed: 0 bytes in 0 blocks

==1794== Rerun with --leak-check=full to see details of leaked memory

==1794==

==1794== For counts of detected and suppressed errors, rerun with: -v

==1794== Use --track-origins=yes to see where uninitialised values come from

==1794== ERROR SUMMARY: 583211 errors from 100 contexts (suppressed: 19 from 6)

因为Puppet是由Ruby所写，所以内存泄漏的原因可能是来自Ruby本身。查看系统，得知安装的Ruby版本为1.8.5版本。在将Ruby升级到1.8.7版本之后，发现内存泄漏情况缓解了很多，不过依然有泄漏情况存在。示例如下：

[root@server1 ~]# rpm -qa | grep ruby

ruby-libs-1.8.5-31.el5_9

ruby-shadow-1.4.1-8.el5

ruby-1.8.5-31.el5_9

ruby-augeas-0.4.1-2.el5

可以看到，此时尽管内存泄露的情况缓解了很多，但是无法阻止问题再次发生，于是设置了一个cronjob定期重启Puppet进程，以保证避免内存泄漏而导致服务器宕机的问题发生。
2.4.2　虚拟内存、物理内存与页缺失

众所周知，在计算机发展的开始，内存是一个稀缺资源，即便现在的服务器动辄128GB的内存，它依然是一个稀缺的系统资源。所以内存管理也是影响性能的因素之一。

对于内存，首先，要清楚内存的单位，Paging是内存的最小单位，称为页，类似磁盘的block概念，默认情况一个页是4KB大小。

通常情况下，对于内存的分配，并不是进程申请多少内存，操作系统就给多少内存。一般来说，当进程向操作系统申请10GB的内存时，操作系统收到请求后会进行自我检查，经过分析决定给予进程10GB的内存空间，此时操作系统会对这个进程说：“Hi，我可以给你10GB的内存空间。”这样的内存称为进程虚拟内存。而此时，操作系统并没有真正给予进程10GB内存，操作系统还会对进程说：“Hi，虽然我可以给你10GB内存空间，但现在你实际只需要300MB的内存就可以运行程序了，所以物理内存中现在只划分了300MB给你。”这种实际分配给进程的内存叫做物理内存。

在系统中可以使用ps查看进程的虚拟内存与物理内存大小，如下：

[root@server ~]# ps aux | head -1

USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND

其中，VSZ这列代表的是虚拟内存，RSS这列代表的是物理内存。

由于进程不能直接获取物理内存，而是每一个进程都有一个虚拟内存空间，所以虚拟内存不会直接映射到物理内存，直到使用的时候才会出现映射关系。这里就会产生一个问题，当进程向操作系统请求内存时，可能操作系统并没有准备好。这种情况叫做内存页缺失，页缺失有两种情况：一种是主页缺失，一种是次页缺失。

（1）主页缺失

如果进程请求的数据不在物理内存中，要从磁盘或者交换分区换到内存中，这种叫做主页缺失，这种情况是非常影响性能的。

（2）次页缺失

当第一次物理内存被使用的时候，物理内存中其实没有分配，这时候就产生了一个次页缺失。次页缺失对性能的影响不会特别大，一般情况下可以忽略。

下面说明如何查看进程的页缺失情况，笔者截取了生产系统中一台KVM主机的情况，如下：

[root@kvm01 ~]# ps o pid,comm,minflt,majflt `pidof qemu-kvm`

 PID COMMAND MINFLT MAJFLT

 2834 qemu-kvm 443408224 117369

 2948 qemu-kvm 224733987 63896

19651 qemu-kvm 270213039 66725

20011 qemu-kvm 123041546 66718

20862 qemu-kvm 550133562 197954

26869 qemu-kvm 632148562 165397

32601 qemu-kvm 1103935202 165473

其中，MINFLT是次页缺失，MAJFLT是主页缺失。可以看到虚拟机比较繁忙，有大量的主页和次页缺失。
2.4.3　Out of Memory

Out of Memory（OOM）是系统管理员的另外一个噩梦。OOM发生的原因主要在于，当发生次页缺失的时候，恰好系统无法再释放出物理内存，此时系统只有杀掉一些进程来释放物理内存。

OOM会选择占用内存最多的那个进程开始杀进程，一直到内存足够为止。但是这样的方式往往会造成一些困扰，因为关键进程被kill掉，相当于宕机。其实可以让OOM不杀进程，而是让kernel panic，可通过如下方式来实现。

设置/proc/sys/vm/panic_on_oom为1，这样在发生OOM的时候就会让kernel panic，示例如下：

[root@kvm01 ~]# cat /proc/sys/vm/panic_on_oom

0

[root@kvm01 ~]# echo 1 > /proc/sys/vm/panic_on_oom

实际情况中，如果OOM killer发生了，说明内存真的不足了。这时需要重视内存的使用情况，评估是否需要增加内存。
2.4.4　Overcommit

前面说到了虚拟内存与物理内存的关系，一般情况下进程并不会一次用光申请的内存，所以操作系统为了提高内存使用率，会向进程“超卖”内存，以便能响应更多的进程内存申请，当然，操作系统有时候也是有点节操的，它并不会无限制响应进程的内存申请，这可防止内存申请过多，导致操作系统本身的内存空间不足而无法正常运行。Linux系统中使用Overcommit的方式来控制内存的申请。

控制是否允许内存“超卖”是通过/proc/sys/vm/overcommit_memory来实现的，它有三种模式，分别是0、1、2。示例如下：

[root@kvm01 ~]# cat /proc/sys/vm/overcommit_memory

0

·0是系统默认的模式，在这种模式下，系统会尽可能地响应进程的内存申请，这样一来，有可能发生前面一节所说的Out of Memory情况。

·1的模式下，系统完全响应进程的内存申请，不管自己的资源还剩下多少。

·2的模式下，系统完全不允许进程申请超过系统设置大小的内存空间。在这种模式下，系统设置的可申请内存空间大小是：

Swap+RAM*（“/proc/sys/vm/overcommit_ratio”/100）

其中，/proc/sys/vm/overcommit_ratio就是系统最大可分配内存的百分比，默认为50，也就是说最大为50%。

在使用2模式时，在/proc/meminfo中CommitLimit和Committed_AS这两个值会显得比较重要，CommitLimit就是系统可以申请虚拟内存的最大值，Committed_AS是系统已经申请的虚拟内存的大小。
2.4.5　cache与buffer

cache与buffer这两个词都有缓存的意思，故而成为大家争论的焦点，而且在数据库中也有这两个词，所以网络上众说纷纭，这里只说在free命令中出现的cache与buffer。

buffer指的是索引信息，就是对磁盘文件的索引缓存，这个值一般比较低。

cache则是传统意义上的缓存，它缓存的是文件内容。

关于buffer和cache使用的计算方式请查看前面2.2.2节中free的用法。这里也给出一个示例，如下：

[root@ash0007 ~]# free -m

 total used free shared buffers cached

Mem: 23985 22409 1576 0 14 352

-/+ buffers/cache: 22041 1944

Swap: 20294 1942 18352

2.5　与磁盘相关的那些事情

2.5.1　HDD与SSD

硬件的发展真的非常快，从SSD固态硬盘出现到大规模进入各个公司的生产环境仅仅几年时间，同时HDD机械硬盘的发展也未停滞，HDD硬盘虽然读写速度没有质的突破，但是容量却在不断攀升，现在市场上已经可以买到8TB的单块硬盘，所以在未来的很长的一段时间里，HDD和SSD会在服务器市场上并存。

（1）HDD

HDD性能瓶颈主要两个方面：seek time寻址时间与rotational delay旋转延时。

HDD磁盘读数据的过程是先找到磁道，然后找磁道上的扇区。找到磁道的时间叫做寻址时间，也就是seek time；找到扇区的时间叫做旋转延时，也就是rotational delay，这两个动作的时间加起来可能会达到1s以上。所以针对seek time和rotation delay做优化时主要是减少寻找的时间，以及寻找的次数。

（2）SSD

SSD发展迅速，变化也较快，接口包括SATA、mSATA、PCI-E等，存储的颗粒包括MLC、SLC、TLC等。

·MLC：一个存储单元存储多个（通常是两个）比特位的信息，寿命比SLC短，读写速度慢于SLC，但是价格便宜。

·SLC：一个存储单元只存储一个比特位的信息，寿命长，读写速度快，价格昂贵。

·TLC：一个存储单元存储多个（通常是三个）比特位的信息，速度慢，寿命短，但是价格便宜，多用于手机存储芯片。
2.5.2　HDD磁盘的调度算法

HDD的速度较慢（这不是绝对的！），针对机械硬盘的特性，解决该问题有两种方式：

1）加入中间缓存，比如增大HDD上的缓存。

2）对于I/O请求合并操作，尽可能顺序写入，顺序读取。

根据这两种方式，操作系统会针对不同的应用场景采用不同的磁盘调度方式，查看系统配置的磁盘调度算法如下：

[root@server ~]# cat /sys/block/sda/queue/scheduler

noop anticipatory [deadline] cfq

系统提供了四种调度算法，CentOS 6默认设置在deadline中，下面讲讲这四种调度算法的区别。

·noop（无操作等待算法）：不干预任何的I/O请求，直接将I/O请求交给存储设备，由存储设备自己完成。这个常出现在使用SAN的场景下，由存储自己完成I/O合并优化，或者出现在虚拟机上。宿主机自己会完成I/O请求的合并，虚拟机不需要做I/O请求合并。

·anticipatory（预期算法）：预期调度会将I/O请求放进队列，但并不立刻完成，而是在合并成顺序I/O后再完成请求，对于持续大量顺序I/O的场景适合使用anticipatory。

·deadline（最后期限）：将I/O请求放进队列不处理，一直等到队列中的I/O请求多到足够合并成一个比较好的I/O请求为止。这个方式适合虚拟化环境的物理机，数据库服务器。

·cfq（完全公平队列）：对每一个进程的I/O请求公平处理，I/O响应很快，适合随机存取，比如文件服务器。

如果需要更改磁盘的调度算法，只需用echo方式将算法写入即可：

[root@server ~]# echo cfq > /sys/block/sda/queue/scheduler

[root@server ~]# cat /sys/block/sda/queue/scheduler

noop anticipatory deadline [cfq]

2.5.3　文件系统中的日志

操作系统中数据写入磁盘的方式是先写入缓存，然后再写入磁盘。如果在数据写入了缓存，还没来得及没有写入磁盘的时候，机器断电了或者宕机了，那么在机器重新启动时就会发现实际数据和预期状态不一致。为了能恢复到一致，文件系统会从磁盘划分一个日志空间，在操作系统写数据到磁盘上之前，会将脏数据优先写入日志空间，然后再同步到磁盘。

文件系统的日志写入方式有以下三种。

·ordered方式：只记录元数据到日志空间，待元数据写入日志空间之后，再把数据写入磁盘文件系统。这种方式下文件系统的性能和数据的安全性可以做到相对的均衡。这也是大多数日志文件系统默认的方式。

·writeback方式：元数据和数据会同时写入磁盘，这种方式提供了较好的磁盘性能，但是数据安全性无法保证。

·journal方式：这种方式会先向日志空间写入元数据和数据，然后向文件系统再写一次元数据和数据，这种方式数据最为安全，但是因为元数据和数据都会写两份，文件系统的性能也是最差的。
2.6　系统资源限制

系统资源是有限的，有的时候为了系统安全或者为了能承载更多的压力，需要限制或放开一些进程的资源使用。在早期的Linux系统中，一般用ulimit来限制进程的资源使用，在现在的Linux系统中，kernel又引入了cgroup进一步加强限制进程的资源的使用。
2.6.1　ulimit

ulimit几乎可以说是所有系统管理员都必须熟练掌握的一个配置，大部分的配置都在/etc/security/limits.conf中，配置文件中包含了绝大部分配置的解释。比如，如何限制用户进程数、如何确定打开文件数目等，这已经是大家很熟悉的配置了，这里不多讲解，下面用ulimit来演示如何限制内存申请。

前面的章节讲到了虚拟内存，虚拟内存是进程向操作系统申请的内存。虚拟内存的申请也是可以用ulimit来限制的。

首先，使用ulimit-a查看现在系统中ulimit的设置情况，如下：

[root@systemtap ~]# ulimit -a

core file size (blocks, -c) 0

data seg size (kbytes, -d) unlimited

scheduling priority (-e) 0

file size (blocks, -f) unlimited

pending signals (-i) 14720

max locked memory (kbytes, -l) 64

max memory size (kbytes, -m) unlimited

open files (-n) 1024

pipe size (512 bytes, -p) 8

POSIX message queues (bytes, -q) 819200

real-time priority (-r) 0

stack size (kbytes, -s) 10240

cpu time (seconds, -t) unlimited

max user processes (-u) 14720

virtual memory (kbytes, -v) unlimited

file locks (-x) unlimited

可以看到，virtual memory一行是unlimited，即无限的。

此时将virtual memory设置成0，看看会发生什么。

[root@systemtap ~]# ulimit -v 0

[root@systemtap ~]# ulimit -a

core file size (blocks, -c) 0

data seg size (kbytes, -d) unlimited

scheduling priority (-e) 0

file size (blocks, -f) unlimited

pending signals (-i) 14720

max locked memory (kbytes, -l) 64

max memory size (kbytes, -m) unlimited

open files (-n) 1024

pipe size (512 bytes, -p) 8

POSIX message queues (bytes, -q) 819200

real-time priority (-r) 0

stack size (kbytes, -s) 10240

cpu time (seconds, -t) unlimited

max user processes (-u) 14720

virtual memory (kbytes, -v) 0

file locks (-x) unlimited

在执行ls命令的时候可以发现不会正确执行，而是提示Killed！甚至连reboot都无法正确执行。如下：

[root@systemtap ~]# ls

Killed

[root@systemtap ~]# ls

Killed

[root@systemtap ~]# reboot

Killed

这是因为系统虚拟内存为0，ls、reboot无法申请到虚拟内存空间，故而这个命令无法执行，只能被系统杀掉！
2.6.2　Cgroup

ulimit限制资源的方式显得比较粗旷，也无法限制磁盘I/O，所以从kernel 2.6.24开始，引入了一个新的资源限制的方式——Cgroup。

Cgroup中控制资源的系统成为controller，Cgroup提供了如下的controller来控制CPU、内存、块设备、进程资源等。

·CPU/cpuacct/cpuset

·memory

·blkio

·device

·freezer

·net_cls

当Cgroup进程启动时，它会在系统中产生一个挂载点，在这个挂载点里含有Cgroup一切的配置，这些配置可以通过echo<value>的方式直接修改，也可以通过编译配置文件/etc/cgconfig.conf和/etc/cgrules.conf来让配置持久化。

Cgroup的配置选项也颇多，下面使用实战的方式来理解Cgroup的原理，并且了解如何使用Cgroup。

1.安装Cgroup

安装libcgroup包，启动cgconfig服务。会发现根目录中出现了/cgroup这个目录，同时里面还有一些子目录，如下：

[root@systemtap ~]# yum -y install libcgroup

[root@systemtap ~]# /etc/init.d/cgconfig start

[root@systemtap ~]# ls /cgroup/

blkio cpu cpuacct cpuset devices freezer memory net_cls

2.限制Apache内存使用

Cgroup有两个主要的配置文件：/etc/cgconfig.conf和/etc/cgrules.conf，cgconfig.conf用来定义资源限制的规则，比如可以使用多少内存、磁盘I/O等，cgrules.conf用来定义哪些程序，或者哪些用户使用哪一种限制规则的。这里以限制Apache内存为例讲解基础配置。

在/etc/cgconfig.conf中，默认有一个mount规则，mount规则的意义在于默认情况下需要对哪些资源做限制，比如不需要对磁盘I/O做限制，就可以去掉blkio这行。示例如下：

mount {

 cpuset = /cgroup/cpuset;

 cpu = /cgroup/cpu;

 cpuacct = /cgroup/cpuacct;

 memory = /cgroup/memory;

 devices = /cgroup/devices;

 freezer = /cgroup/freezer;

 net_cls = /cgroup/net_cls;

 blkio = /cgroup/blkio;

}

规则的语法是group<name>{<controller>{<param name>=<param value>；}}，这里要限制Apache可以使用的内存为1MB，因此可在/etc/cgconfig.conf里写上如下代码：

group httpd {

 memory {

 memory.limit_in_bytes=102400;

 memory.swappiness=0;

 }

}

在cgrules.conf中加入如下一行，语义为所有用户执行apachectl这个命令时应用cgroup memory这个controller，规则是cgconfig.conf中的httpd。

*:/usr/sbin/apachectl memory httpd

然后，重启服务让配置生效。

[root@systemtap ~]# /etc/init.d/cgconfig restart

[root@systemtap ~]# /etc/init.d/cgred restart

理论上来说，1MB内存是无法运行Apache服务的，我们看看Apache究竟能不能启动。

使用apachectl命令启动Apache的时候，就发现这个进程被kill掉了，因为Apache申请的虚拟内存超过了1MB的大小，触发了系统的OOM！

[root@systemtap ~]# apachectl restart

Killed

在日志中，可以很明确地看到apachectl被kill掉的全部行为。

Jun 14 15:56:12 systemtap kernel: apachectl invoked oom-killer: gfp_mask=0xd0, order=0, oom_adj=0, oom_score_adj=0

Jun 14 15:56:12 systemtap kernel: [<ffffffff81127782>] ? oom_kill_process+0x82/ 0x2a0

Jun 14 15:56:12 systemtap kernel: Task in /httpd killed as a result of limit of /httpd

Jun 14 15:56:12 systemtap kernel: Memory cgroup out of memory: Kill process 2070 (apachectl) score 1000 or sacrifice child

Jun 14 15:56:12 systemtap kernel: Killed process 2070, UID 0, (apachectl) total-vm:106072kB, anon-rss:116kB, file-rss:640kB

尝试将内存扩大到10MB，看看Apache能不能启动。

将memory.limit的值设置为10485760，然后重启cgconfig服务。

group httpd {

 memory {

 memory.limit_in_bytes=10485760;

 memory.swappiness=0;

 }

}

此时可以看到Apache服务启动了，80端口在正常的监听中。

[root@systemtap ~]# /etc/init.d/cgconfig restart

Stopping cgconfig service: [OK]

Starting cgconfig service: [OK]

[root@systemtap ~]# apachectl start

[root@systemtap ~]# netstat -nltp | grep 80

tcp 0 0 :::80 :::* LISTEN 2110/httpd

现在使用ps命令查看在cgroup中httpd进程的状态，可以看到httpd进程应用到了memory这个controller上。

[root@systemtap ~]# ps -eo pid,cgroup,cmd | grep httpd

 2110 blkio:/;net_cls:/;freezer:/;devices:/;memory:/httpd;cpuacct:/;cpu:/;cpuset:/ /usr/sbin/httpd -k start

 2111 blkio:/;net_cls:/;freezer:/;devices:/;memory:/httpd;cpuacct:/;cpu:/;cpuset:/ /usr/sbin/httpd -k start

 2112 blkio:/;net_cls:/;freezer:/;devices:/;memory:/httpd;cpuacct:/;cpu:/;cpuset:/ /usr/sbin/httpd -k start

 2113 blkio:/;net_cls:/;freezer:/;devices:/;memory:/httpd;cpuacct:/;cpu:/;cpuset:/ /usr/sbin/httpd -k start

 2114 blkio:/;net_cls:/;freezer:/;devices:/;memory:/httpd;cpuacct:/;cpu:/;cpuset:/ /usr/sbin/httpd -k start

 2115 blkio:/;net_cls:/;freezer:/;devices:/;memory:/httpd;cpuacct:/;cpu:/;cpuset:/ /usr/sbin/httpd -k start

 2116 blkio:/;net_cls:/;freezer:/;devices:/;memory:/httpd;cpuacct:/;cpu:/;cpuset:/ /usr/sbin/httpd -k start

 2117 blkio:/;net_cls:/;freezer:/;devices:/;memory:/httpd;cpuacct:/;cpu:/;cpuset:/ /usr/sbin/httpd -k start

 2118 blkio:/;net_cls:/;freezer:/;devices:/;memory:/httpd;cpuacct:/;cpu:/;cpuset:/ /usr/sbin/httpd -k start

 2122 blkio:/;net_cls:/;freezer:/;devices:/;memory:/;cpuacct:/;cpu:/;cpuset:/ grep httpd

3.限制磁盘I/O

在现实环境中，可能需要对一些写入优先级不高的进程做I/O限制，比如一些级别很低的文件备份时，这里用dd命令来演示如何限制磁盘读写。

首先在/etc/cgconfig.conf中添加如下规则：

group diskio {

 blkio {

 blkio.throttle.read_bps_device="8:0 1048576";

 blkio.throttle.write_bps_device="8:0 20480";

 }

}

在diskio这个规则中，使用blkio.throttle.read/write_bps_device来控制磁盘I/O速率，这里还可以使用blkio.throttle.read_iops_device来控制IOPS，以达到同样的目的。

blkio.throttle.read/write_bps_device后面的参数分别是磁盘号和限制的值。8：0是/dev/sda这个块设备号，用ls-l命令查看，可知1048576是最大读取速率，这里则是1MB。

[root@systemtap ~]# ll /dev/sda

brw-rw---- 1 root disk 8, 0 Jun 14 21:04 /dev/sda

然后在/etc/cgrules.conf中添加一个应用规则：

*:/bin/dd blkio diskio

一切配置完成，重启cgconfig和cgred两个服务，准备开始测试。

首先，测试磁盘读I/O的限制。打开两个终端，一个终端中开启iotop，另外一个终端中运行如下命令：

[root@systemtap ~]# dd if=/dev/sda of=/dev/null

此时可在iotop上看到，DISK READ被精确地限制在了1000KB左右，测试成功。

Total DISK READ: 1001.87 K/s | Total DISK WRITE: 0.00 B/s

 TID PRIO USER DISK READ DISK WRITE SWAPIN IO> COMMAND

 1664 be/4 root 1001.87 K/s 0.00 B/s 0.00 % 97.97 % dd if=/de~=/dev/null

 1 be/4 root 0.00 B/s 0.00 B/s 0.00 % 0.00 % init

终止dd命令之后，也可以看到dd命令显示出每秒只能读取1MB。

[root@systemtap ~]# dd if=/dev/sda of=/dev/null

^C252473+0 records in

252472+0 records out

129265664 bytes (129 MB) copied, 123.968 s, 1.0 MB/s

成功测试了磁盘读I/O之后，再来测试磁盘写I/O。因为CentOS 6内核中的blkio只支持磁盘I/O的sync和direct两种方式，不支持buffer方式。所以这里将使用dd的direct I/O方式来测试。因为direct I/O速率较慢，所以这里将写速率限制到20KB，以便能看到明显的效果。

运行如下命令：

[root@systemtap ~]# dd if=/dev/zero of=/tmp/file oflag=direct

从iotop上，几乎可以看到DISK WRITE被控制在了20KB，说明采用的方式成功了。

Total DISK READ: 0.00 B/s | Total DISK WRITE: 21.67 K/s

 TID PRIO USER DISK READ DISK WRITE SWAPIN IO> COMMAND

 1702 be/4 root 0.00 B/s 21.67 K/s 0.00 % 99.99 % dd if=/de~

终止dd命令之后，发现平均写约为10KB，低于设置的20K。主要原因在于磁盘写I/O机制比读I/O要复杂很多，在2.6.32这个内核中blkio还不能非常精确地控制好写I/O。

[root@systemtap ~]# dd if=/dev/zero of=/tmp/file oflag=direct

^C577+0 records in

577+0 records out

295424 bytes (295 kB) copied, 27.5842 s, 10.7 kB/s

4.限制虚拟机CPU

虚拟机的VCPU一般来说是由libvirtd自动分配的，但是有时候为了减少虚拟化环境中的CPU切换，会将VCPU绑定在某一个物理CPU的核上。

首先，查看虚拟机VCPU现在的信息，如下：

[root@kvm ~]# virsh vcpuinfo guest

VCPU: 0

CPU: 5

State: running

CPU time: 19927.5s

CPU Affinity: yyyyyyyyyyyyyyyy

VCPU: 1

CPU: 8

State: running

CPU time: 17281.8s

CPU Affinity: yyyyyyyyyyyyyyyy

可以看到，两个VCPU分别在物理CPU的第5个和第8个核心上。

此时，重启cgconfig服务，然后重启libvirtd服务及虚拟机，保证cgconfig载入了虚拟机配置。

[root@kvm ~]# /etc/init.d/cgconfig restart

Stopping cgconfig service: [OK]

Starting cgconfig service: [OK]

[root@kvm ~]# /etc/init.d/libvirtd restart

Stopping libvirtd daemon: [OK]

Starting libvirtd daemon: [OK]

[root@kvm ~]# virsh destroy guest

[root@kvm ~]# virsh start guest

此时会看到Cgroup目录中产生了虚拟机的相应配置文件：

[root@kvm ~]# ls -l /cgroup/cpuset/libvirt/qemu/guest/

total 0

--w--w--w- 1 root root 0 Jun 15 15:45 cgroup.event_control

-r--r--r-- 1 root root 0 Jun 15 15:45 cgroup.procs

-rw-r--r-- 1 root root 0 Jun 15 15:45 cpuset.cpu_exclusive

-rw-r--r-- 1 root root 0 Jun 15 15:45 cpuset.cpus

-rw-r--r-- 1 root root 0 Jun 15 15:45 cpuset.mem_exclusive

-rw-r--r-- 1 root root 0 Jun 15 15:45 cpuset.mem_hardwall

-rw-r--r-- 1 root root 0 Jun 15 15:45 cpuset.memory_migrate

-r--r--r-- 1 root root 0 Jun 15 15:45 cpuset.memory_pressure

-rw-r--r-- 1 root root 0 Jun 15 15:45 cpuset.memory_spread_page

-rw-r--r-- 1 root root 0 Jun 15 15:45 cpuset.memory_spread_slab

-rw-r--r-- 1 root root 0 Jun 15 15:45 cpuset.mems

-rw-r--r-- 1 root root 0 Jun 15 15:45 cpuset.sched_load_balance

-rw-r--r-- 1 root root 0 Jun 15 15:45 cpuset.sched_relax_domain_level

drwxr-xr-x 2 root root 0 Jun 15 15:45 emulator

-rw-r--r-- 1 root root 0 Jun 15 15:45 notify_on_release

-rw-r--r-- 1 root root 0 Jun 15 15:45 tasks

drwxr-xr-x 2 root root 0 Jun 15 15:45 vcpu0

drwxr-xr-x 2 root root 0 Jun 15 15:45 vcpu1

这里的重点是vcpu0和vcpu1两个文件，可以看到里面的内容是0~15，意思就是这两个VCPU可以绑定在物理CPU的0～15个核的任意一个上。

[root@kvm ~]# cat /cgroup/cpuset/libvirt/qemu/guest/vcpu0/cpuset.cpus

0-15

[root@kvm ~]# cat /cgroup/cpuset/libvirt/qemu/guest/vcpu1/cpuset.cpus

0-15

下面使用echo的方式向文件中直接写入想绑定的物理CPU的核心上。

[root@kvm ~]# echo 9 > /cgroup/cpuset/libvirt/qemu/guest/vcpu0/cpuset.cpus

[root@kvm ~]# cat /cgroup/cpuset/libvirt/qemu/guest/vcpu0/cpuset.cpus 9

[root@kvm ~]# echo 10 > /cgroup/cpuset/libvirt/qemu/guest/vcpu1/cpuset.cpu

[root@kvm ~]# cat /cgroup/cpuset/libvirt/qemu/guest/vcpu1/cpuset.cpus 10

此时就可以看到VCPU已经被绑定到相应的CPU上了，如下：

[root@kvm ~]# virsh vcpuinfo guest

VCPU: 0

CPU: 9

State: running

CPU time: 35.5s

CPU Affinity: ---------y------

VCPU: 1

CPU: 10

State: running

CPU time: 12.6s

CPU Affinity: ----------y-----

这是使用echo方式直接使虚拟机生效的方式，如果希望系统重启之后依然生效，那必须要写入cgconfig.conf配置文件中，控制CPU的controller是cpuset，整个配置的写法如下：

group libvirt {

 cpuset {

 cpuset.cpus=0-15;

 cpuset.mems=0;

 }

}

group libvirt/qemu {

 cpuset {

 cpuset.cpus=0-15;

 cpuset.mems=0;

 }

}

group libvirt/qemu/guest {

 cpuset {

 cpuset.cpus=8-13;

 }

}

group libvirt/qemu/guest/vcpu0 {

 cpuset {

 cpuset.cpus=9;

 }

}

group libvirt/qemu/guest/vcpu1 {

 cpuset {

 cpuset.cpus=10;

 }

}

第3章　用户集中认证

3.1　openLDAP简介

第1章讲解了Linux下的用户管理，而单机上的账号管理的弊端是显而易见的：当需要管理的主机越来越多的时候，用户不得不在每个主机上将同样的账号和密码再设置一遍，而当相关的人员离职时，又不得不将对应的账号做一次全部删除——也许有更好的办法来解决这个问题，但是这时候没有比使用一套用户集中认证的系统更好的办法。本章将从什么是LDAP入手，讲清LDAP的原理，演示Linux下常用openLDAP的安装配置。

什么是LDAP

LDAP是lightweight directory access protocol的缩写，即轻量级目录访问协议，用于快速查询用户记录。LDAP使用树状的结构来存取记录，“树”又称为OU，最上面的一层（根部）叫做“基准DN”，DN可以理解为树叶，而树叶还可以有更小的树叶，但是根据协议，LDAP最大分为4层，读者可以把LDAP想象成一颗倒置的树。
3.2　openLDAP的安装

顾名思义，openLDAP是LDAP的开源实现，目前默认安装在众多流行的Linux发行版中，openLDAP主要包含4个部分：

·独立LDAP守护进程slapd

·独立LDAP更新复制进程slurpd

·LDAP协议库

·工具软件和客户端

它的安装非常简单，只需一条命令即可：

[root@localhost ~]# yum install openldap-*

Is this ok [y/N]: y

Downloading Packages:

......(省略安装输出)

Complete!

3.3　openLDAP的配置

准备LDAP相关配置文件：

cd /etc/openldap/

cp /usr/share/openldap-servers/slapd.conf.obsolete?slapd.conf

cp /usr/share/openldap-servers/DB_CONFIG.example /var/lib/ldap/DB_CONFIG

创建LDAP管理密码：

[root@localhost openldap]# slappasswd

New password：#这里输入的是openldap，下同，读者请自行修改。

Re-enter new password:

{SSHA}1xw6C6/lRm7lmOu8Gmi4fq1xrTrTgyyq

打开slapd.conf，找到rootpw，并作相关修改：

Cleartext passwords, especially for the rootdn, should

be avoided. See slappasswd(8) and slapd.conf(5) for details.

Use of strong authentication encouraged.

rootpw secret

rootpw {SSHA}1xw6C6/lRm7lmOu8Gmi4fq1xrTrTgyyq

测试生成配置文件：

[root@localhost openldap]# slaptest -f slapd.conf -F /etc/openldap/slapd.d/

config file testing succeeded #看到这个输出，就是成功的

启动sldap服务：

[root@localhost ~]# chkconfig slapd on

[root@localhost ~]# /etc/init.d/slapd start

Starting slapd: [OK]

[root@localhost ~]# netstat -lntp | grep 389

tcp 0 0 0.0.0.0:389 0.0.0.0:* LISTEN 1288/slapd

tcp 0 0 :::389 :::* LISTEN 1288/slapd

至此，openLDAP的安装就完成了，但是openLDAP并不能直接读取系统用户信息（openLDAP需要从自己的数据文件中读取用户数据），所以这时需要安装migrationtools，用这个工具协助将系统用户导出为openLDAP可以读取的文件，示例如下：

[root@localhost openldap]# yum install migrationtools

修改/usr/share/migrationtools/migrate_common.ph，找到如下两行配置，并对其值进行相应的修改，如下所示：

Default DNS domain

$DEFAULT_MAIL_DOMAIN = "my-domain.com";

Default base

$DEFAULT_BASE = "dc=my-domain,dc=com";

添加一个用户用于测试：

[root@localhost migrationtools]# useradd ldaptest

[root@localhost migrationtools]# passwd ldaptest

Changing password for user ldaptest.

New password:

Retype new password:

passwd: all authentication tokens updated successfully.

将系统用户导出为ldif文件，并将生成的文件导入到openLDAP数据库中：

[root@localhost migrationtools]# cd /usr/share/migrationtools

./migrate_base.pl > /tmp/base.ldif

./migrate_passwd.pl /etc/passwd > /tmp/passwd.ldif

./migrate_group.pl /etc/group > /tmp/group.ldif

#使用ldapadd添加记录时，这里输入的密码是openldap，读者可根据自己实际设置的密码调整。

[root@localhost ~]# ldapadd -D "cn=Manager,dc=my-domain,dc=com" -W -f /tmp/base.ldif

Enter LDAP Password:

adding new entry "dc=my-domain,dc=com"

adding new entry "ou=Hosts,dc=my-domain,dc=com"

adding new entry "ou=Rpc,dc=my-domain,dc=com"

adding new entry "ou=Services,dc=my-domain,dc=com"

adding new entry "nisMapName=netgroup.byuser,dc=my-domain,dc=com"

adding new entry "ou=Mounts,dc=my-domain,dc=com"

adding new entry "ou=Networks,dc=my-domain,dc=com"

adding new entry "ou=People,dc=my-domain,dc=com"

adding new entry "ou=Group,dc=my-domain,dc=com"

adding new entry "ou=Netgroup,dc=my-domain,dc=com"

adding new entry "ou=Protocols,dc=my-domain,dc=com"

adding new entry "ou=Aliases,dc=my-domain,dc=com"

adding new entry "nisMapName=netgroup.byhost,dc=my-domain,dc=com"

[root@localhost ~]# ldapadd -D "cn=Manager,dc=my-domain,dc=com" -W -f /tmp/passwd.ldif

Enter LDAP Password:

adding new entry "uid=root,ou=People,dc=my-domain,dc=com"

adding new entry "uid=bin,ou=People,dc=my-domain,dc=com"

adding new entry "uid=daemon,ou=People,dc=my-domain,dc=com"

adding new entry "uid=adm,ou=People,dc=my-domain,dc=com"

adding new entry "uid=lp,ou=People,dc=my-domain,dc=com"

adding new entry "uid=sync,ou=People,dc=my-domain,dc=com"

adding new entry "uid=shutdown,ou=People,dc=my-domain,dc=com"

adding new entry "uid=halt,ou=People,dc=my-domain,dc=com"

adding new entry "uid=mail,ou=People,dc=my-domain,dc=com"

adding new entry "uid=uucp,ou=People,dc=my-domain,dc=com"

adding new entry "uid=operator,ou=People,dc=my-domain,dc=com"

adding new entry "uid=games,ou=People,dc=my-domain,dc=com"

adding new entry "uid=gopher,ou=People,dc=my-domain,dc=com"

adding new entry "uid=ftp,ou=People,dc=my-domain,dc=com"

adding new entry "uid=nobody,ou=People,dc=my-domain,dc=com"

adding new entry "uid=vcsa,ou=People,dc=my-domain,dc=com"

adding new entry "uid=saslauth,ou=People,dc=my-domain,dc=com"

adding new entry "uid=postfix,ou=People,dc=my-domain,dc=com"

adding new entry "uid=sshd,ou=People,dc=my-domain,dc=com"

adding new entry "uid=ldap,ou=People,dc=my-domain,dc=com"

adding new entry "uid=ldaptest,ou=People,dc=my-domain,dc=com"

[root@localhost migrationtools]# ldapadd -D "cn=Manager,dc=my-domain,dc=com" -W -f /tmp/group.ldif

Enter LDAP Password:

adding new entry "cn=root,ou=Group,dc=my-domain,dc=com"

adding new entry "cn=bin,ou=Group,dc=my-domain,dc=com"

adding new entry "cn=daemon,ou=Group,dc=my-domain,dc=com"

adding new entry "cn=sys,ou=Group,dc=my-domain,dc=com"

adding new entry "cn=adm,ou=Group,dc=my-domain,dc=com"

adding new entry "cn=tty,ou=Group,dc=my-domain,dc=com"

adding new entry "cn=disk,ou=Group,dc=my-domain,dc=com"

adding new entry "cn=lp,ou=Group,dc=my-domain,dc=com"

adding new entry "cn=mem,ou=Group,dc=my-domain,dc=com"

adding new entry "cn=kmem,ou=Group,dc=my-domain,dc=com"

adding new entry "cn=wheel,ou=Group,dc=my-domain,dc=com"

adding new entry "cn=mail,ou=Group,dc=my-domain,dc=com"

adding new entry "cn=uucp,ou=Group,dc=my-domain,dc=com"

adding new entry "cn=man,ou=Group,dc=my-domain,dc=com"

adding new entry "cn=games,ou=Group,dc=my-domain,dc=com"

adding new entry "cn=gopher,ou=Group,dc=my-domain,dc=com"

adding new entry "cn=video,ou=Group,dc=my-domain,dc=com"

adding new entry "cn=dip,ou=Group,dc=my-domain,dc=com"

adding new entry "cn=ftp,ou=Group,dc=my-domain,dc=com"

adding new entry "cn=lock,ou=Group,dc=my-domain,dc=com"

adding new entry "cn=audio,ou=Group,dc=my-domain,dc=com"

adding new entry "cn=nobody,ou=Group,dc=my-domain,dc=com"

adding new entry "cn=users,ou=Group,dc=my-domain,dc=com"

adding new entry "cn=utmp,ou=Group,dc=my-domain,dc=com"

adding new entry "cn=utempter,ou=Group,dc=my-domain,dc=com"

adding new entry "cn=floppy,ou=Group,dc=my-domain,dc=com"

adding new entry "cn=vcsa,ou=Group,dc=my-domain,dc=com"

adding new entry "cn=cdrom,ou=Group,dc=my-domain,dc=com"

adding new entry "cn=tape,ou=Group,dc=my-domain,dc=com"

adding new entry "cn=dialout,ou=Group,dc=my-domain,dc=com"

adding new entry "cn=saslauth,ou=Group,dc=my-domain,dc=com"

adding new entry "cn=postdrop,ou=Group,dc=my-domain,dc=com"

adding new entry "cn=postfix,ou=Group,dc=my-domain,dc=com"

adding new entry "cn=sshd,ou=Group,dc=my-domain,dc=com"

adding new entry "cn=ldap,ou=Group,dc=my-domain,dc=com"

adding new entry "cn=ldaptest,ou=Group,dc=my-domain,dc=com"

最后重启sldapd，服务端的配置就完成了。

[root@localhost migrationtools]# /etc/init.d/slapd restart

3.4　利用openLDAP集中认证

在客户机上安装client工具：

[root@localhost ~]# yum install nss-pam-ldapd pam_ldap openldap-clients authconfig sssd-*

编辑/etc/openldap/ldap.conf：

BASE dc=my-domail,dc=com

URI ldap://192.168.188.128 #openLDAP服务器的IP地址

编辑/etc/nsswitch.conf：

passwd: files ldap

shadow: files ldap

group: files ldap

运行以下命令，这会自动配置/etc/sssd/sssd.conf、/etc/sysconfig/authconfig，并启动sssd服务：

[root@localhost ~]# authconfig --enableldap --enableldapauth --ldapserver= 192.168.188.128 --ldapbasedn="ou=People,dc=my-domail,dc=com" --enablemk- homedir --update

Starting sssd: [OK]

编辑/etc/pam.d/system-auth，添加相关配置，见粗体字部分：

#%PAM-1.0

This file is auto-generated.

User changes will be destroyed the next time authconfig is run.

auth required pam_env.so

auth sufficient pam_unix.so try_first_pass nullok

auth sufficient pam_ldap.so

auth required pam_deny.so

account required pam_unix.so

account [default=bad success=ok user_unknown=ignore] pam_ldap.so

password requisite pam_cracklib.so try_first_pass retry=3 type=

password sufficient pam_unix.so try_first_pass use_authtok nullok sha512 shadow

password sufficient pam_ldap.souseauthtok

password required pam_deny.so

session optional pam_keyinit.so revoke

session required pam_limits.so

session [success=1 default=ignore] pam_succeed_if.so service in crond quiet use_uid

session required pam_unix.so

session optional pam_ldap.so

最后重启sshd服务：

[root@localhost ~]# service sshd restart

Stopping sshd: [OK]

Starting sshd: [OK]

至此客户端的配置就完成了，只需退出当前登录，然后尝试使用之前创建的ldaptest用户登录到系统中。
第4章　域名服务器DNS

4.1　DNS服务简介

每台联网服务器都需要一个IP地址唯一标识，在互联网成立之初，全球的计算机数量屈指可数，所以为了方便互相通信，当时人们使用类似于早期的电话号码本来记录每台主机的IP地址——这在当时是可以接受的。然而，随着时代的发展，主机的数量越来越多，这时候再使用这样的方法就行不通了，于是人们发明了一种更为方便的方式，这就是DNS服务。拿我们日常生活中访问某个网站为例，我们在浏览器的地址栏中输入www.xyz.com，浏览器其实并不知道这个域名对应的主机IP是什么，所以它必须首先解析出该域名的IP地址——通过向域名服务器请求解析；域名服务器回应给浏览器对应的IP后，浏览器才能真正地向该域名发起请求。

一个典型的域名是由顶级域名、二级域名和主机名构成。例如www.zzz.com，它的顶级域名是com，二级域名是zzz，主机名是www。

如图4-1所示，域名服务至少由根域（也是一个点）、顶级域（常见的com、net、org等都在此列）、二级域、主机名组成。所以域名系统是一个分层的树形结构。

当主机需要解析某个域名时，它会向其配置的域名服务器发起查询，依然以使用浏览器访问www.zzz.com为例：首先浏览器会检查其自身是否有缓存（假设之前访问过这个域名，那么在该域名最大缓存时间过期之前，浏览器可以记住这个域名对应的IP），如果缓存中没有查询到或是缓存已过期，浏览器则将检查本地（具体便是/etc/hosts文件）是否存有该记录，如果没有就向配置的DNS服务器发起域名解析请求，接到请求的DNS服务器首先也会查询自己的缓存，如果也没有则检查客户端想要查询的域名是否自己可以解析，如果不能解析，则将会向其他DNS服务器发起请求——这是一个递归查询的过程。

 [image:]

图4-1　域名服务结构
4.2　DNS安装配置

4.2.1　DNS安装过程

DNS的安装过程比较简单，方式如下：

[root@localhost ~]# yum install bind bind-chroot bind-utils

Loaded plugins: fastestmirror

Setting up Install Process

Loading mirror speeds from cached hostfile

 * base: mirrors.pubyun.com

 * extras: mirrors.pubyun.com

 * updates: centos.ustc.edu.cn

Package 32:bind-utils-9.8.2-0.37.rc1.el6_7.5.x86_64 already installed and latest version

Resolving Dependencies

--> Running transaction check

---> Package bind.x86_64 32:9.8.2-0.37.rc1.el6_7.5 will be installed

---> Package bind-chroot.x86_64 32:9.8.2-0.37.rc1.el6_7.5 will be installed

--> Finished Dependency Resolution

Dependencies Resolved

==

 Package Arch Version Repository Size

==

Installing:

 bind x86_64 32:9.8.2-0.37.rc1.el6_7.5 updates 4.0 M

 bind-chroot x86_64 32:9.8.2-0.37.rc1.el6_7.5 updates 74 k

Transaction Summary

==

Install 2 Package(s)

Total download size: 4.1 M

Installed size: 7.3 M

Is this ok [y/N]:y

4.2.2　关于chroot的解释

有必要解释一下为什么需要安装bind-chroot这个包：DNS服务会在操作系统运行后由系统用户root启动，如果DNS存在漏洞就可能会被黑客加以利用。而bind-choot会将bind进程严格限制在特定的目录中，一旦进程试图脱离该目录，就会立即失去所有权限，所以如果黑客试图通过DNS进程的漏洞攻击系统，即便获得了某些权限，也只能在有限范围内破坏。安装了bind-chroot后，DNS的配置将使用/var/named/chroot目录，配置文件放置于/var/named/chroot/etc中，数据文件放在/var/named/chroot/var/named中。在CentOS 5以及更老的版本中，所有的配置文件和数据文件都必须在/var/named/chroot中，在CentOS 6之后，可以直接使用默认的目录和配置，但是DNS是在chroot环境中运行的——关于这点，感兴趣的读者可以研读一下/etc/init.d/named启动脚本。
4.2.3　配置主配置文件

按如下方式修改两处主配置文件/etc/named.conf，保存退出即可。

options {

 listen-on port 53 { any; }; #修改为any

 listen-on-v6 port 53 { ::1; };

 directory "/var/named";

 dump-file "/var/named/data/cache_dump.db";

 statistics-file "/var/named/data/named_stats.txt";

 memstatistics-file "/var/named/data/named_mem_stats.txt";

 allow-query { any; }; #修改为any

 recursion yes;

 dnssec-enable yes;

 dnssec-validation yes;

 dnssec-lookaside auto;

 /* Path to ISC DLV key */

 bindkeys-file "/etc/named.iscdlv.key";

 managed-keys-directory "/var/named/dynamic";

};

logging {

 channel default_debug {

 file "data/named.run";

 severity dynamic;

 };

};

zone "." IN {

 type hint;

 file "named.ca";

};

include "/etc/named.rfc1912.zones";

include "/etc/named.root.key";

4.2.4　DNS的正向解析配置

所谓正向解析，即查询域名所对应的IP，正向解析配置写在/etc/named.rfc1912.zones中。这里假设要解析一个域test.com，则修改该配置文件为：

[root@localhost ~]# cat /etc/named.rfc1912.zones

// named.rfc1912.zones:

//

// Provided by Red Hat caching-nameserver package

//

// ISC BIND named zone configuration for zones recommended by

// RFC 1912 section 4.1 : localhost TLDs and address zones

// and http://www.ietf.org/internet-drafts/draft-ietf-dnsop-default-local-zones-02.txt

// (c)2007 R W Franks

//

// See /usr/share/doc/bind*/sample/ for example named configuration files.

//

zone "test.com" IN {

 type master;

 file "test.com.zone";

};

该配置文件的意思是，要查询test.com的IP记录，请参照文件test.com.zone，所以还需准备好这个配置文件。具体方法如下：

cd /var/named/

[root@localhost named]# cp named.localhost test.com.zone

[root@localhost named]# chown root.named test.com.zone

然后针对test.com.zone做如下修改：

[root@localhost named]# cat test.com.zone

$TTL 1D

@ IN SOA test.com. admin.test.com. (

 0 ; serial

 1D ; refresh

 1H ; retry

 1W ; expire

 3H) ; minimum

@ IN NS dns.test.com.

dns IN A 10.50.63.185

www IN A 10.50.63.185

该文件的意思是，www.test.com域名和dns.test.com的IP应该是10.50.63.185，读者可根据实际情形自行修改。

启动named，并使用dig命令测试，可以看到dig命令查询到的结果和配置的IP是一致的，说明配置生效了。

[root@localhost named]# /etc/init.d/named start

Starting named: 　　　　　　　 [OK]

[root@localhost named]# dig @localhost www.test.com

; <<>> DiG 9.8.2rc1-RedHat-9.8.2-0.37.rc1.el6_7.5 <<>> @localhost www.test.com

; (2 servers found)

;; global options: +cmd

;; Got answer:

;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 63123

;; flags: qr aa rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 1, ADDITIONAL: 1

;; QUESTION SECTION:

;www.test.com. IN A

;; ANSWER SECTION:

www.test.com. 86400 IN A 10.50.63.185

;; AUTHORITY SECTION:

test.com. 86400 IN NS dns.test.com.

;; ADDITIONAL SECTION:

dns.test.com. 86400 IN A 10.50.63.185

;; Query time: 0 msec

;; SERVER: 127.0.0.1#53(127.0.0.1)

;; WHEN: Sun Jan 17 19:10:40 2016

;; MSG SIZE rcvd: 80

请注意配置文件的所有者必须是named，否则可能出现的情况是：服务重启成功但解析不到，同样DNS反解也是如此。
4.2.5　DNS的反向解析配置

通过域名查找IP的方式称为正向解析，反之，通过IP查询其对应的域名则称为反向解析。这里可能有读者会有疑问：如果说DNS正解是可以理解的，那么DNS反解到底是为什么呢？作为一个用户来说，是不太可能在意IP到底对应什么域名的。实际上，DNS反解更多的是为了满足某些应用的需求，特别是邮件服务。在垃圾邮件当道的时代，邮件服务器在收到邮件发送请求之前，会反向解析一下其IP地址的域名，如果该域名不在其允许列表之内，则会拒绝该请求。所以说，DNS反解更多的是应用程序从安全角度考虑的需求。

编辑/etc/named.rfc1912.zones，在最后添加以下内容：

zone "63.50.10.in-addr.arpa" IN {

 type master;

 file "10.50.63.zone";

 allow-update { none; };

};

这里需要注意的是，zone"63.50.10.in-addr.arpa"是IP地址的反写，假设需要反解的区域IP地址是A.B.C.D，则zone应该写为："C.B.A.in-addr.arpa"。

编辑文件10.50.63.zone，如下所示：

[root@i-lgc0hf6i named]# cat 10.50.63.zone

$TTL 1D

@ IN SOA test.com. admin.test.com. (

 0 ; serial

 1D ; refresh

 1H ; retry

 1W ; expire

 3H) ; minimum

@ IN NS dns.test.com.

185 IN PTR dns.test.com. #第一列的数字为该主机IP末位

185 IN PTR www.test.com.

重启服务，并进行反向解析测试，可以看到ANSWER SECTION部分反解正确。

[root@i-lgc0hf6i named]# /etc/init.d/named restart

Stopping named: 　　　　　　　　 [OK]

Starting named: 　　　　　　　　 [OK]

[root@i-lgc0hf6i named]# dig @localhost -x 10.50.63.185

; <<>> DiG 9.8.2rc1-RedHat-9.8.2-0.37.rc1.el6_7.5 <<>> @localhost -x 10.50.63.185

; (2 servers found)

;; global options: +cmd

;; Got answer:

;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 15408

;; flags: qr aa rd ra; QUERY: 1, ANSWER: 2, AUTHORITY: 1, ADDITIONAL: 1

;; QUESTION SECTION:

;185.63.50.10.in-addr.arpa. IN PTR

;; ANSWER SECTION:

185.63.50.10.in-addr.arpa. 86400 IN PTR www.test.com.

185.63.50.10.in-addr.arpa. 86400 IN PTR dns.test.com.

;; AUTHORITY SECTION:

63.50.10.in-addr.arpa. 86400 IN NS dns.test.com.

;; ADDITIONAL SECTION:

dns.test.com. 86400 IN A 10.50.63.185

;; Query time: 0 msec

;; SERVER: 127.0.0.1#53(127.0.0.1)

;; WHEN: Sat Feb 6 16:06:24 2016

;; MSG SIZE rcvd: 117

4.2.6　利用DNS实现负载均衡

以Web应用为例，在公司发展初期，也许一台服务器就已经足够，但随着业务的发展，单台服务器的负载越来越高，平行地添加更多服务器就成为最简单的扩容方法。当DNS中配置的一个域名对应多个IP时，DNS将会依次返回客户端不同的IP，这样就达到了负载均衡的效果。

将test.com.zone中www的记录添加多条，重启named服务后再多次使用dig测试，可以看到DNS每次都会返回三条记录，每次返回记录的第一条将会轮询出现，而每次浏览器只会使用第一条记录的IP去访问该域名。示例代码如下：

[root@localhost named]# cat test.com.zone

$TTL 1D

@ IN SOA test.com. admin.test.com. (

 0 ; serial

 1D ; refresh

 1H ; retry

 1W ; expire

 3H) ; minimum

@ IN NS dns.test.com.

dns IN A 10.50.63.185

www IN A 10.50.63.185

www IN A 10.50.63.186

www IN A 10.50.63.187

[root@i-lgc0hf6i ~]# /etc/init.d/named restart

Stopping named: . 　 　　　　　　 [OK]

Starting named: 　　　　　　　 [OK]

[root@i-lgc0hf6i ~]# dig @localhost www.test.com

; <<>> DiG 9.8.2rc1-RedHat-9.8.2-0.37.rc1.el6_7.5 <<>> @localhost www.test.com

; (2 servers found)

;; global options: +cmd

;; Got answer:

;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 17273

;; flags: qr aa rd ra; QUERY: 1, ANSWER: 3, AUTHORITY: 1, ADDITIONAL: 1

;; QUESTION SECTION:

;www.test.com. IN A

;; ANSWER SECTION:

www.test.com. 86400 IN A 10.50.63.185

www.test.com. 86400 IN A 10.50.63.186

www.test.com. 86400 IN A 10.50.63.187

;; AUTHORITY SECTION:

test.com. 86400 IN NS dns.test.com.

;; ADDITIONAL SECTION:

dns.test.com. 86400 IN A 10.50.63.185

;; Query time: 0 msec

;; SERVER: 127.0.0.1#53(127.0.0.1)

;; WHEN: Sat Feb 6 18:03:02 2016

;; MSG SIZE rcvd: 112

4.3　DNS的主从复制

使用DNS的主从复制功能可以实现的功能非常明显：

·提供冗余，避免单点故障；

·均衡负载查询需求，从而提高系统可用性。

本节将演示DNS主从复制的配置方式，假设另一台DNS服务器的IP地址为：10.50.82.44，首先同样请按照4.2.1节中的方式安装相关软件包，此处不再演示。

在主服务器上，修改配置如下：

[root@i-lgc0hf6i ~]# cat /etc/named.rfc1912.zones

// named.rfc1912.zones:

//

// Provided by Red Hat caching-nameserver package

//

// ISC BIND named zone configuration for zones recommended by

// RFC 1912 section 4.1 : localhost TLDs and address zones

// and http://www.ietf.org/internet-drafts/draft-ietf-dnsop-default-local-zones-02.txt

// (c)2007 R W Franks

//

// See /usr/share/doc/bind*/sample/ for example named configuration files.

//

zone "test.com" IN {

 type master;

 file "test.com.zone";

 allow-update { none; };

 allow-transfer { 10.50.82.44; };

};

zone "63.50.10.in-addr.arpa" IN {

 type master;

 file "10.50.63.zone";

 allow-update { none; };

 allow-transfer { 10.50.82.44; };

};

在从DNS上，配置文件如下：

[root@i-caccddmh ~]# cat /etc/named.rfc1912.zones

// named.rfc1912.zones:

//

// Provided by Red Hat caching-nameserver package

//

// ISC BIND named zone configuration for zones recommended by

// RFC 1912 section 4.1 : localhost TLDs and address zones

// and http://www.ietf.org/internet-drafts/draft-ietf-dnsop-default-local-zones-02.txt

// (c)2007 R W Franks

//

// See /usr/share/doc/bind*/sample/ for example named configuration files.

//

zone "test.com" IN {

 type slave;

 file "slaves/test.com.zone";

 masters { 10.50.63.185; };

};

zone "63.50.10.in-addr.arpa" IN {

 type slave;

 file "slaves/10.50.63.zone";

 masters { 10.50.63.185; };

};

注意从DNS在启动之前，/var/named/slaves/目录下为空，但是只需启动服务，该目录下的文件立刻从主DNS上同步了。查看这两个文件的内容，若和主DNS是一致的，说明同步成功了。

[root@i-caccddmh ~]# ll /var/named/slaves/

total 0

[root@i-caccddmh ~]# /etc/init.d/named start

Generating /etc/rndc.key: [OK]

Starting named: [OK]

[root@i-caccddmh ~]# ll /var/named/slaves/

total 8

-rw-r--r-- 1 named named 345 Feb 7 13:32 10.50.63.zone

-rw-r--r-- 1 named named 353 Feb 7 13:32 test.com.zone

在从DNS上使用dig命令进行测试，查询结果一致，说明主从同步配置成功了。

[root@i-caccddmh ~]# dig @localhost -x 10.50.63.185

; <<>> DiG 9.8.2rc1-RedHat-9.8.2-0.37.rc1.el6_7.6 <<>> @localhost -x 10.50.63.185

; (2 servers found)

;; global options: +cmd

;; Got answer:

;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 39884

;; flags: qr aa rd ra; QUERY: 1, ANSWER: 2, AUTHORITY: 1, ADDITIONAL: 1

;; QUESTION SECTION:

;185.63.50.10.in-addr.arpa. IN PTR

;; ANSWER SECTION:

185.63.50.10.in-addr.arpa. 86400 IN PTR www.test.com.

185.63.50.10.in-addr.arpa. 86400 IN PTR dns.test.com.

;; AUTHORITY SECTION:

63.50.10.in-addr.arpa. 86400 IN NS dns.test.com.

;; ADDITIONAL SECTION:

dns.test.com. 86400 IN A 10.50.63.185

;; Query time: 1 msec

;; SERVER: ::1#53(::1)

;; WHEN: Sun Feb 7 14:01:38 2016

;; MSG SIZE rcvd: 117

4.4　配置纯缓存的DNS服务

纯缓存的DNS服务器就是本身并不维护zone文件，而只是简单地将DNS请求转发给制定的DNS服务，并将返回结果再返回给客户端，同时将该结果记录在系统缓存中，等待下次有同样的请求时，直接将该记录返回给客户端。纯缓存的DNS服务配置非常简单，按下面的配置完成后，重启named服务即可。

[root@i-lgc0hf6i ~]# cat /etc/named.conf

//

// named.conf

//

// Provided by Red Hat bind package to configure the ISC BIND named(8) DNS

// server as a caching only nameserver (as a localhost DNS resolver only).

//

// See /usr/share/doc/bind*/sample/ for example named configuration files.

//

options {

 listen-on port 53 { any; };

 directory "/var/named";

 dump-file "/var/named/data/cache_dump.db";

 statistics-file "/var/named/data/named_stats.txt";

 memstatistics-file "/var/named/data/named_mem_stats.txt";

 allow-query { any; };

 recursion yes;

 forward only;

 forwarders { 8.8.8.8; }; #将DNS请求转发给谷歌域名服务器

};

logging {

 channel default_debug {

 file "data/named.run";

 severity dynamic;

 };

};

使用dig查询域名，并得到了返回，如下：

[root@i-lgc0hf6i ~]# dig @localhost www.baidu.com

; <<>> DiG 9.8.2rc1-RedHat-9.8.2-0.37.rc1.el6_7.6 <<>> @localhost www.baidu.com

; (2 servers found)

;; global options: +cmd

;; Got answer:

;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 42386

;; flags: qr rd ra; QUERY: 1, ANSWER: 3, AUTHORITY: 0, ADDITIONAL: 0

;; QUESTION SECTION:

;www.baidu.com. IN A

;; ANSWER SECTION:

www.baidu.com. 436 IN CNAME www.a.shifen.com.

www.a.shifen.com. 299 IN A 220.181.111.188

www.a.shifen.com. 299 IN A 220.181.112.244

;; Query time: 1488 msec

;; SERVER: 127.0.0.1#53(127.0.0.1)

;; WHEN: Sun Feb 7 14:27:20 2016

;; MSG SIZE rcvd: 90

4.5　DNS的客户端配置

4.5.1　Linux中的配置

在Linux系统中，配置系统使用制定的DNS服务器只需要简单地修改/etc/resolv.conf（修改nameserver行）即可，例如想要使用10.50.63.185作为系统的DNS服务器，只需将/etc/resolv.conf修改为以下内容即可：

[root@i-lgc0hf6i ~]# cat /etc/resolv.conf

Generated by NetworkManager

nameserver 10.16.10.3

4.5.2　Windows中的配置

以Windows7为例，打开“控制面板\网络和Internet\网络连接”，在网卡上右键，选择属性，在“网络”标签中，选择“Internet协议版本4”，点击“属性”打开“常规”标签，点选“使用下面的DNS服务器地址”，输入DNS的IP地址后，按“确定”即可。
第5章　系统备份

5.1　为什么要备份

在管理一个Linux集群的工作中，最为重要却又最容易被人忽视的一点就是备份。一些初级的系统管理员往往没有意识到，维护系统里的信息比维护计算机硬件资源更加重要，硬件资源可以重新购置，可信息数据一旦丢失，就轻易无法弥补了。与此同时，虽然大部分资深的系统管理员能够认识到备份的必要性，但是由于资源备份很不幸是比较乏味的一个任务，而且有的时候，备份处于一个尴尬的地位——假设备份完成了，但是没有系统故障，也没有发生数据丢失，那么备份的作用永远都无法体现，于是许多系统管理员就会想，暂时就这样吧，下次再做，从而简单地跳过了这一任务。

但是，在一个Linux集群的建设中，需要重点指出备份的重要性。数据丢失的方式有千万种，我们永远无法预测下一次事故发生的原因是什么。有可能是经典的硬件故障、软件bug，也有可能是无法避免的人为错误，毕竟我们永远不能保证“rm–rf/”这样的事情不会发生，就像我们不能避免极端的自然灾害一样，它们有可能会对业务、对数据造成巨大损害。显然备份不可能完美地解决所有问题，但是当这些事情发生的时候，我们希望至少有一种方法或者可能性，将数据尽可能恢复到最近的某一个时间点的状态，从而使其对业务的影响降到最低。

在备份的时候，系统管理员还需要精心地选择备份什么内容，大而全的备份往往是不切实际的，而且会消耗不必要的资源。应该根据数据业务来决定备份的内容，若是发生了影响实际业务的数据丢失事故，备份的内容应该能够保证业务受最小的影响。因此对于一个管理员来说，了解备份应该做什么，比备份能做什么更加重要。
5.2　常见的备份机制

现在假设我们的Linux系统上有/data这个文件目录，这个目录包含了所有与当前业务有关的用户数据。现在要备份这个目录。

这里马上就有两个问题需要考虑：

1）什么时候做备份？备份频率是多少，每天一次？每周一次？

2）怎么备份？每次备份是将所有的数据都直接全部保存成一个副本，还是有其他更好的方法？

显然这个问题没有什么标准答案，这里简单地介绍一下不同的备份机制，对于不同的数据，选用正确的备份机制是非常重要的。
5.2.1　完全备份

完全备份（full backup）是指将所有需要备份的文件和目录全部备份起来的一种方法。完全备份一般是增量备份（incremental backup）和差异备份（differential backup）的基础。一次完全备份后面一般跟有多次增量或差异备份，之后会重新做一次完全备份。

比如我们认为/data目录必须每周的工作日都做完全备份，那么意味着从周一到周五，/data下面所有的内容每天都会被重复拷贝一次，即使当天其内容没有任何改变，数据也会被重新备份。

完全备份的优点是：

·所有的文件都被备份，管理方便，恢复迅速。

·不同历史备份版本的管理也比较简单。

它的缺点是：

·由于需要备份所有文件，创建备份所需要的时间比较长。

·完全备份需要消耗的存储空间比较大。
5.2.2　增量备份

增量备份是指针对上次备份以来的所有更改而做备份。上一次的备份可以是完全备份，也可以是增量备份。一般来说增量备份会以一次完全备份开始，接下来只备份那些改变了或新增的文件。

比如我们的备份任务是每周工作日的增量备份，那么周一第一天应该做一次完全备份，因为此时还没有备份过任何文件，此后每天都只备份和前一天相比更改过或新增的文件。

增量备份的优点有：

·备份的速度比完全备份快。

·备份所需存储空间比完全备份、差异备份都小。

增量备份的缺点有：

·文件恢复比完全备份和差异备份慢。

·文件恢复的方法比较复杂，必须用到所有的增量备份。

以之前的工作日备份方案为例，如果我们要恢复周五的备份文件，那么需要基于周一的完全备份，将之后周一至周五的所有增量备份合并起来，最终得到最新的备份文件。这个过程比较复杂，也比较耗时。
5.2.3　差异备份

差异备份只备份从上一次完全备份到当前时间为止改变过或者增减过的文件。差异备份的前一次备份基础一定是一次完全备份。因此如果需要恢复文件，一份完全备份和一份差异备份就足够了。

比如，备份任务是每周工作日进行差异备份。那么周一我们需要创建一份完全备份，因为此时的文件数据还没有被备份过。此后的每一天，我们都基于这一份完全备份，备份从周一到当天改变过或者增减过的文件。也就是说周三的差异备份也会包括周二的差异备份，而对于增量备份来说，周三的备份不包括周二的差异备份。

差异备份的优点有：

·差异备份速度比完全备份块。

·需要的存储空间比完全备份少。

·文件恢复速度比增量备份快。

差异备份的缺点有：

·备份速度比增量备份慢。

·备份所需存储空间比增量备份多。

文件恢复比增量备份简单，但是比完全备份复杂，因为我们需要在完全或者增量备份中定位文件，因此速度也比完全备份慢。
5.3　Bacula简介

5.3.1　什么是Bacula

创建数据备份的方法有许多种，直接将文件拷贝到其他地方并保存起来也可以称之为文件备份。显然这样的备份方案过于人工，我们需要通过一些工具将备份这件工作变得简单且自动化起来。

Bacula就是这么一款优秀的备份软件。它是一款开源的、企业级的计算机备份开源软件，分别有社区版和企业版。Bacula使用服务器/客户端模式，其服务端几乎可以运行在所有的类Unix操作系统上面，当然也包括Linux以及其对应的各种发行版，其客户端支持更加广泛的操作系统，包括Linux、OS X、Windows、Unix等。

Bacula的特色为：

·多平台支持。

·有标准的服务器/客户端模式。

·有可配置的服务器/客户端验证方法。

·支持数据备份的加密。

·支持数据备份的一致性验证。

·有丰富的后端数据库支持，包括MySQL、SQLite、PostgreSQL。

·有丰富的配置管理接口，可以通过命令行、GUI和Web接口来管理配置和备份。

·备份工作前后可以自定义执行脚本或者命令。
5.3.2　Bacula的基本组件

Bacula由5个基本组件构成：控制器（Director）、控制台（Console）、文件管理器（File）、存储管理器（Storage）和监控平台。其基本的体系结构如图5-1所示。

Bacula控制器是监管所有备份、恢复和验证工作的守护进程。系统管理员使用Bacula控制台向控制器安排备份和恢复工作。

Bacula控制台是用户与Bacula控制器交互的终端，它可以是命令行模式，也可以是GUI的方式。用户可以在任何地方启动控制台，不需要和控制器运行在同一台计算机上面。

Bacula文件服务，即Bacula的客户端，是一个安装在被备份的机器上的守护进程。备份进行时，它负责将客户机上文件的信息和数据发送给Bacula存储守护进程；在恢复备份的时候，它还负责将正确的备份文件写入正确的系统位置。

Bacula存储守护进程负责管理备份的存储介质，其主要工作是从存储上读取和写入正确的备份文件。

Bacula目录（catalog）是Bacula控制器用来保存和维护备份任务和备份文件的服务。区别于使用基本的tar、zip来创建备份，Bacula的一大特色就是能够对保存的文件和备份任务进行自动化管理。Catalog使得系统管理员能够迅速地定位和恢复文件。Catalog保存在控制器的后端数据库中，当前支持MySQL、PostgreSQL以及SQLite。
5.4　Bacula的安装和配置

本章会详细地介绍Bacula相关各个组件的安装和配置。在介绍配置之前，先来介绍一下Bacula系统中进行备份的一些基本概念。

·作业（Job）和计划（Schedule）。Bacula将一次备份操作称为Job。备份作业一般包含FileSet、Client和Schedule。FileSet可以理解为需要备份的文件集，Client理解为需要备份的客户机，Schedule表示备份计划，也就是何时进行备份操作。

·Pool、Volume和Label。如果读者是第一次接触Bacula，可能会觉得这些概念比较难理解。Volume是单一的一个备份介质，比如一块磁盘，或者一个文件，Bacula会将数据写入到Volume中；一组Volume的集合称之为Pool，Pool保证了当一个Volume满了之后，Bacula可以自动找到下一个Volume，并写入备份数据；Volume在被使用之前，必须被Bacula打标，从而保证被正确的读写。

 [image:]

图5-1　Bacula的基本组件
5.4.1　Bacula控制器

1.安装Bacula控制器

下面来安装Bacula的控制器服务。在本书中，用到了两台CentOS 6的虚拟机，分别为bacdir01和bacdir02。在CentOS下面，Bacula可以通过yum直接安装已经打包好的rpm。但在这之前必须选定保存Catalog的数据库，在这里使用MySQL。在console上运行：

[root@bacdir01 ~]# yum install -y bacula-director-mysql.x86_64 mysql-server

[root@bacdir01 ~]# /etc/init.d/mysqld start

这样就安装好了Bacula控制器和数据库。接下来要初始化MySQL数据库。Bacula-director-mysql提供了相关的工具来做这件事。通过下面的命令可以查看这个rpm包所包含的安装文件：

[root@bacdir01 ~]# rpm -ql bacula-director-mysql

/usr/libexec/bacula/create_bacula_database.mysql

/usr/libexec/bacula/create_mysql_database

/usr/libexec/bacula/drop_bacula_database.mysql

/usr/libexec/bacula/drop_bacula_tables.mysql

/usr/libexec/bacula/drop_mysql_database

/usr/libexec/bacula/drop_mysql_tables

/usr/libexec/bacula/grant_bacula_privileges.mysql

/usr/libexec/bacula/grant_mysql_privileges

/usr/libexec/bacula/make_bacula_tables.mysql

/usr/libexec/bacula/make_catalog_backup.mysql

/usr/libexec/bacula/make_mysql_tables

/usr/libexec/bacula/update_bacula_tables.mysql

/usr/libexec/bacula/update_mysql_tables

/usr/sbin/bacula-dir.mysql

/usr/sbin/dbcheck.mysql

为了初始化数据库，我们依次运行如下命令：

·/usr/libexec/bacula/grant_mysql_privileges：分配数据库权限。

·/usr/libexec/bacula/create_mysql_database：创建数据库。

·/usr/libexec/bacula/make_mysql_tables：创建数据表。

这样MySQL就初始化结束了，所创建的数据库叫做bacula，用户名也是bacula，密码初始设置为空，为了安全起见，在这里使用MySQL终端设置一个密码。

mysql> GRANT ALL PRIVILEGES ON `bacula`.* TO 'bacula'@'localhost' identified by 'baculadb';

Query OK, 0 rows affected (0.00 sec)

2.配置Bacula控制器

Bacula控制器的主要配置文件是/etc/bacula/bacula-dir.conf。这是一个非常复杂的配置文件，由Director、Catalog、Messages、Console、Storage、Pool、Counter、Fileset、Schedule、JobDefs、Job等资源组成。

下面分别来介绍这些资源，首先要介绍的是Director，其配置代码如下：

Director {

 Name = "bacdir01:director"

 Query File = "/etc/bacula/scripts/query.sql"

 Working Directory = "/var/lib/bacula"

 PID Directory = "/var/run/bacula"

 Maximum Concurrent Jobs = 5

 Password = "baculadir"

 Messages = "bacdir01:messages:standard"

}

Director资源首先定义了控制器的名称（Name），随后定义了一些控制器运行时候的属性，最大并行作业的个数为5。

其中的Password字段用于定义客户端连接控制器的密码。这里的客户端可以是Bacula控制台（Console），也可以是Bacula文件服务。密码必须配置在这些客户端的配置文件中，这样才能正确地连接到控制器。比如控制台安装在本机，那么就需要将其配置到控制台的配置文件里面。

为了创建配置的工作目录和PID目录，键入如下命令：

[root@bacdir01 ~]# mkdir -p /var/run/bacula

[root@bacdir01 ~]# mkdir -p /var/lib/bacula

[root@bacdir01 ~]# chown -R bacula:bacula /var/run/bacula /var/lib/bacula/

Messages字段定义的是使用的消息格式。对于控制器参数的日志，使用定义好的“bacdir01：messages：standard”格式发送，消息配置的详细讲述稍后见本章。

然后来介绍Catalog相关的配置代码，如下：

Catalog {

 Name = "bacdir01:mysql"

 dbname = "bacula"; dbdriver = dbi:mysql

 dbaddress = bacdir01; dbport = 3306; user = bacula; password = baculadb

}

目录信息配置了控制器所用的数据库类型以及如何连接数据库，这里使用dbdriver=dbi.mysql告诉控制器后端数据库为MySQL，接下来设置了数据库的地址、端口、连接所需用户名和密码，将密码设置为之前初始化数据库的时候使用的密码。

Messages资源的配置代码如下：

Messages {

 Name = "bacdir01:messages:standard"

 Mail Command = "/usr/sbin/bsmtp -h localhost -f bacula@your.host.com -s \"Bacula Notice (from Director %d)\" %r"

 Mail = alerts@your.host.com = all, !skipped

 Console = all, !skipped, !saved

 Append = "/var/log/bacula/bacdir01:director.log" = all, !skipped

}

Messages资源定义的是消息的格式以及发送消息的方法。在这里定义了上文所需要的“bacdir01：messages：standard”。Mail Command配置发送邮件使用的系统命令，Mail Comand支持基本的宏操作，用来自定义发送邮件的标题和内容。比如%d表示Bacula控制台的名称、%r表示收件人等。除此之外，还有一个配置参数Operator Command，当Bacula的工作需要人工干预的时候，其消息用Operator Command发送。

接下来所配置的是消息发送的目的地，以及发送哪些消息。配置的一般格式有两种，如下：

destination = message-type1, message-type2, ...

destination = address = message-type1, message-type2, ...

这里的destination可以是Mail，表示Mail Command的收件人地址；Operator，表示Operator Command的收件人地址；Console，表示Bacula控制台；File（文件）此文件会被覆盖；Append，表示追加到某个文件；Syslog，log服务器；Catalog，表示发送到Catalog数据库等。

常见的Message-type包括：all，表示所有消息；skipped，表示文件在备份时被跳过的情况下产生的消息；saved，文件备份时产生的消息；fatal/error/warning/info，对应各种日志级别的消息。

消息的维护是一个值得关注的问题。在一个繁忙的备份系统中，产生的消息量可能非常大。如果将所有的消息都发送到Console，Console在启动的时候就会被消息刷屏；如果将消息都保存到Catalog，则会对数据库的性能造成极大的影响。笔者推荐对消息进行有效的过滤，将不同消息发送到不同的目的地。

下面再来介绍Storage资源，配置代码如下：

Storage {

 Name = "bacsd01:storage:default"

 Address = bacsd01

 Password = "baculasd"

 Device = "FileStorage"

 Media Type = File

}

Storage资源定义了Bacula控制器如何连接和使用存储守护进程。Address字段配置存储守护进程的地址为bacdir01，这是笔者内网的一台虚拟机；Password字段配置了连接到bacsd01的密码。

其中的Device字段用于配置设备的名字，这个设备必须定义在存储守护进程的配置中。Media Type可以是任意的值，表示存储的类型，一般建议设置成为有意义的字符串，比如File，表示保存在磁盘文件中。

现在介绍Pool资源，配置代码如下：

Pool {

 Name = "bacsd01:pool:default"

 Label Format = "default.${JobId}.${Year}${Month:p/2/0/r}${Day:p/2/0/r}. ${Hour:p/2/0/r}${Minute:p/2/0/r}"

 Pool Type = Backup

 Recycle = No

 Auto Prune = Yes

 Volume Retention = 5 Week

 # Don't allow re-use of volumes; one volume per job only

 Maximum Volume Jobs = 1

}

Pool定义了一组Volume的集合；Label字段设置如何替Volume打标，这一选项一般在设置自动打标的时候用到，它也支持一些基本的变量替换，比如${JobID}表示备份作业的Id号。

Volume Retention表示Catalog中Volume信息的过期时间，待Volume过期后，如果设置了Auto Prune，Bacula会在Catalog数据库中自动将相关的数据清除，此时如果设置了Recycle为Yes，这个Volume可以在下次被其他的备份作业使用。注意Auto Prune并不会自动清除备份文件，它只会清除在Catalog中的信息。Maximun Volume Jobs表示最大的作业数量，这里设置为1，表示一个Volume只保存一份备份文件，结合文件备份的方法，那么就表示一个备份文件中只包含一次备份数据。

FileSet相关的配置代码如下：

FileSet {

 Name = "config:etc"

 Include {

 Options {

 Signature = MD5

 Compression = GZIP

 }

 File = /etc

 }

 Exclude {

File = /etc/puppet/modules

 }

}

FileSet定义了需要备份的文件集。Name表示此FileSet的名字，它可以被Job资源所引用；Include首先定义了一系列备份的选项，使用Gzip进行压缩，同时为了保证安全性，使用MD5进行hash验证。接下来File选项设置了需要备份的文件或者目录，这个选项可以重复设置多次。Bacula会递归备份目录，但是不会跨分区，因此如果一个目录下有多个分区的话，需要显式地将所有的挂载点配置进来。Exclude表示在Include的目录中需要排除的文件和目录。

Schedule资源相关的配置代码如下：

Schedule {

 Name = "Monthly:onMonday"

 Run = Level=Full First Mon at 16:30

 Run = Level=Differential Second-Fifth Mon at 16:30

 Run = Level=Incremental Tue-Sun at 18:40

}

Schedule资源用来定义备份的时间和频率，以及备份的方式。用户可以定义多个Schedule，用不同的名字来区分它们。比如这里定义了一个名为Monthly：onMonday的备份计划，每个月的第一个周一在16：30的时候做一次完全备份，第二个到第五个周一做一次差异备份，其他的日期里，每天在18：40的时候做一次增量备份。

Run字段的语法为：

Run = Job-overrides Date-time-specification

其中，Job-overrides为一系列的键值对，比如Level=Full，用于定义一次全备；还可以设置Pool、Storage、Messages等，这些参数可以被Job作业中设置的参数覆盖。Date-time-specification的语法比较复杂，一般需要设置月、日、时和分四个参数，比如2nd-5th sun at 2：05，表示每个月的第二到第五个周日的2点05分，建议读者参阅相关文档了解Date-time-specification的详细写法。

Run字段可以定义多次，所有定义的时段都会运行备份任务。如果两个run字段时间重复，备份作业会在同一时间运行两次。

Client资源相关的配置代码如下：

Client {

 Name = "bacsd01"

 Address = "bacsd01"

 Password = "baculafd"

 Catalog = "bacdir01:mysql"

 File Retention = 6 Weeks

 Job Retention = 3 Months

 Auto Prune = Yes

}

Client资源用于定义控制器的客户端，也就是需要备份的机器。每一个客户机都必须在控制器的配置文件中被定义。

Address字段定义了客户机的链接地址，可以是DNS主机名，也可以是IP地址；Password字段配置的是连接客户机文件服务使用的密码，必须和客户机配置的密码一致；Catalog定义了此客户端信息保存到的Catalog目录。

File Retention字段用于设置Catalog保存客户端备份文件信息的时间。从备份作业结束时计算，如果时间超过了设置的File Retention值，且AutoPrune设置为Yes，Bacula会在Catalog数据库中将这些文件的信息删除。同理Job Retention设置的是备份作业保存的时间长短，如果超过了Job Retention配置值，相关备份作业在数据库中的信息将会被删除。当一个备份的Job被删除时，其备份文件的相关信息也会在Catalog中被删除，因此一般建议File Retention的值小于Job Retention的值。注意Bacula并不会删除实际的备份文件，只是将数据库中关于这次备份的信息清除。

AutoPrune为Yes时，Bacula会在每次备份作业结束之后清除超过Retention的文件和作业信息。如果AutoPrune设置为No，每一次作业结束后，保存在Catalog数据库中的信息都会增长。为了方便维护Catalog，笔者建议在设置好Retention的前提下开启AutoPrune。

下面轮到Job资源了，配置代码如下：

Job {

 Name = "bacsd01:default:etc"

 Type = Backup

 Schedule = "Monthly:onMonday"

 client = bacsd01

 FileSet = "config:etc"

 Storage = "bacsd01:storage:bacsd01:etc"

 Pool = "bacsd01:pool:default"

 Messages = "bacdir01:messages:standard"

 Full Max Run Time = 12 Hours

 Differential Max Run Time = 4 Hours

 Incremental Max Run Time = 2 Hours

}

Job资源定义的是一次Bacula的作业，它可以是备份，也可以是恢复，由字段Type决定——Backup或Restore。这里配置了作业的客户机是bacsd01，类型是备份作业，计划是之前定义的Monthly：onMonday，Bacula会按照定义好的时间自动执行备份任务。备份的文件集是前文中的bacsd01：etc，使用标准消息机制，同时还配置好了Storage和Pool。

对于一个作业，可以通过Max Run Time定义其运行的最长时间，超过这个时间的作业会被杀死。默认的Max Run Time是6个小时。同时对于不同的备份类型，也可以设置不同的时间，在这里我们对完全备份、差异备份和增量备份配置了不同的运行超时时间。

作业还可以配置在其运行之前执行系统命令，响应的配置选项有Run Before Job、Run After Job、Run After Failed Job、Client Run Before Job、Client Run After Job等。Run Before Job表示在作业运行之前执行的命令，比如：

Run Before Job = "echo test"

如果命令返回值非0，Bacula会取消此备份作业。Run After Job如果返回非0，Bacula会打印一条告警消息。Client Run Before Job的不同之处是命令是在客户机上执行的。

为了执行备份恢复，还需要定义一个恢复作业：

Job {

 name = bacdir01:restore:default

 Enabled = No

 Type = Restore

 level = Incremental

 Client = bacsd01

 FileSet = "config:etc"

 Storage = "bacsd01:storage:default"

 Pool = "bacsd01:pool:default"

 Messages = "bacdir01:messages:standard"

 Where = '/tmp/restore'

}

Restore Job里面的许多选项都没有实际作用，只是出于配置文件语法需要而写在里面。实际需要设置的参数有：Where，表示恢复到哪个目录；Storage，表示从哪个存储守护进程获得备份文件。数据的恢复作业需要手工唤起，它不会自动运行。
5.4.2　Bacula存储守护进程

1.安装Bacula Storage

本书中安装存储守护进程的机器名叫做bacsd01。CentOS下可以用yum直接安装Bacula Storage：

[root@bacdir01 ~]# yum install -y bacula-storage-common

2.配置Bacula Storage

存储守护进程的工作是：根据控制器的指令，接受从文件守护进程发送过来的数据并传递给存储进行备份；或者从存储中找到相关备份文件，发送给文件守护进程进行备份恢复。

Bacula存储守护进程的默认配置文件是/etc/bacula/bacula-sd.conf。相比于bacula-dir.conf，这个文件的配置简单了许多，只需要配置Storage、Director、Device和Message这四种资源。

示例如下：

Director {

 Name = "bacdir01:director"

 Password = "baculadir"

}

Messages {

 Name = "bacsd01:messages:standard"

 Director = "bacdir01:director" = all

}

Storage {

 Name = "bacsd01:storage"

 Working Directory = "/var/lib/bacula"

 PID Directory = "/var/run/bacula"

 Maximum Concurrent Jobs = 32

}

Device {

 Name = "FileStorage"

 Media Type = File

 Device Type = File

 Archive Device = /opt/bacula/default

 Label Media = Yes

 Random Access = Yes

 Automatic Mount = Yes

 Removable Media = No

 Always Open = No

}

存储守护进程必须配置唯一的Storage资源，其配置选项都很直观。Director资源用来配置允许访问存储守护进程的控制器，Name和Password字段必须和bacula-dir.conf中Director资源配置一致。Message资源定义将消息发送到什么地方，这里配置将所有的消息都发送给控制器。

Device资源配置存储守护进程使用的存储设备，存储设备可以配置多个。Device Type用来配置设备的类型，可以是File，表示文件设备，也可以是Tape，表示磁带机，还可以是FiFO。Archive Device是必须配置的选项，对于Tape设备，这里应该设置设备的路径，如果是保存在磁盘中的文件，这里配置目录的绝对路径。

LabelMedia选项表示自动给Device打标签，设备加入的Pool必须设置Label参数才能自动生成标签。对于磁带机，Random Access必须设置为no，其他情况下设置为yes。
5.4.3　Bacula客户端文件守护进程

将File Daemon安装在bacsd01上，作为控制器的一个客户机。在CentOS上可以通过yum直接安装，命令如下：

[root@bacsd01 ~]# yum install -y bacula-client

文件守护进程的配置文件是/etc/bacula/bacula-fd.conf，它的配置相对比较简单，笔者使用的配置如下：

Director {

 Name = "bacdir01:director"

 Password = "baculafd"

}

FileDaemon {

 Name = "bacsd01"

 Working Directory = /var/lib/bacula

 PID Directory = /var/run/bacula

 Maximum Concurrent Jobs = 3

}

Messages {

 Name = "bacdir01:messages:standard"

 Director = "bacdir01:director" = all, !skipped, !restored

}

Director资源配置可以连接本客户端的控制器，可以配置多个实例，从而允许多个控制器连接客户端，Password字段必须和控制器里Client资源配置的密码一致。FileDaemon资源配置了客户端相关的属性。Message资源配置消息发送到何处。
5.4.4　Bacula控制台

Bacula提供一个基于Console界面的控制台bconsole，rpm包为bacula-console：

[root@bacdir01 ~]# yum install -y bacula-console

其配置文件是/etc/bacula/bconsole.conf：

Director {

 Name = "bacdir01:monitor:director"

 Address = bacdir01.example.com

 Password = "baculadir"

}

这里只需配置控制器的相关信息，包括控制器服务器的地址和连接密码。

大多数系统管理员会发现使用bconsole来管理Bacula已经足够了，如果喜欢图形客户端，Bacula还提供了bat这个GUI工具。在CentOS下面，它的包名字叫做bacula-console-bat，读者可以自行使用。
5.4.5　启动服务

Bacula的各个组件都配置好之后，分别在bacdir01上启动控制器，在bacsd01上启动存储服务和文件服务：

[root@bacdir01 ~]# /etc/init.d/bacula-dir start

[root@bacsd01 ~]# /etc/init.d/bacula-sd start

[root@bacsd01 ~]# /etc/init.d/bacula-fd start

Bacula的日志保存在/var/log/bacula，如果发现启动有问题，可以查看相关日志。还可以在前台启动Bacula并打开调试模式：

[root@bacdir01 ~]# bacula-dir -f -d 99 -v

bacula-dir: dird.c:184-0 Debug level = 99

bacula-dir: mysql.c:167-0 mysql_init done

bacula-dir: mysql.c:188-0 mysql_real_connect done

bacula-dir: mysql.c:190-0 db_user=bacula db_name=bacula db_password=baculadb

5.4.6　Bacula配置综述

Bacula的各个组件，特别是控制器的配置文件比较复杂。当客户机和定义的备份作业比较多时，配置文件会变得非常冗长。此时可以将配置打散，将不同的资源分配到不同的配置文件中。笔者在生产环境中使用了Linux下通用的.d目录bacula-dir.d，目录里面包含如下文件和子目录：

[root@backupserver bacula]# ls -l bacula-dir.d/

总用量 68

-rw-r--r-- 1 root root 13448 11月 6 2014 clients.conf

-rw-r--r-- 1 420 420 228 7月 2 2013 fileset.conf

drwxr-xr-x 30 bacula bacula 4096 10月 21 2014 jobs

-rw-r--r-- 1 root root 329 6月 20 2013 restore.job.conf

-rw-r--r-- 1 root root 12941 11月 6 2014 storages.conf

此时需要在bacula-dir.conf里面将这些文件包含进来，加入如下配置：

@|"sh -c 'for in in `find /etc/bacula/bacula-dir.d/ -type f -name \"*.conf\"`; do echo @$in; done'"

如果只是添加几个文件，@后面跟上文件名即可。这里使用find命令将bacula-dir.d目录下所有的.conf文件添加到主配置文件中。

Bacula中各个组件之间的联系也需要通过配置文件里面的Name字段和Password字段来实现，因此要对其进行正确设置。Director、Console、FileDaemon和Storage之间的联系如图5-2所示。

 [image:]

图5-2　Bacula各组件的验证关系
5.5　使用Bacula进行备份和恢复

5.5.1　执行备份

Bacula所有的服务都启动之后，就可以进行一次手工备份了。启动bconsole，执行run命令就可以启动备份作业，如下：

root@centos6 ~]# bconsole

Connecting to Director bacdir01:9101

1000 OK: bacdir01:director Version: 5.0.0 (26 January 2010)

Enter a period to cancel a command.

*run

A job name must be specified.

The defined Job resources are:

 1: bacsd01:default:etc

 2: bacdir01:restore:default

Select Job resource (1-2): 1

Run Backup job

JobName: bacsd01:default:etc

Level: Incremental

Client: bacsd01

FileSet: config:etc

Pool: bacsd01:pool:default (From Job resource)

Storage: bacsd01:storage:default (From Job resource)

When: 2015-05-23 06:31:15

Priority: 10

OK to run? (yes/mod/no): yes

Job queued. JobId=6

You have messages.

在bconsole中执行run之后，会让用户输入或者选择一个作业，输入作业的ID 1，bconsole会打印作业相关信息。注意，这里的备份策略是增量备份，那是因为之前定义备份计划的时候，周二到周日都是增量备份。bconsole还会让用户确认是否运行，键入yes确认，此时控制器会返回一个JobId。

作业在运行的时候有输出都会发送到bconsole，当有消息到达时，bconsole会提示“you have messages”，此时执行messages命令就可以看到所有的消息：

*messages

23-May 06:31 bacdir01:director JobId 6: No prior Full backup Job record found.

23-May 06:31 bacdir01:director JobId 6: No prior or suitable Full backup found in catalog. Doing FULL backup.

23-May 06:31 bacdir01:director JobId 6: Start Backup JobId 6, Job=bacsd01:default:etc.2015-05-23_06.31.16_24

23-May 06:31 bacdir01:director JobId 6: Created new Volume "default.6.20150523.0631" in catalog.

23-May 06:31 bacdir01:director JobId 6: Using Device "FileStorage"

23-May 06:31 bacsd01:storage JobId 6: Labeled new Volume "default.6.20150523.0631" on device "FileStorage" (/opt/bacula/default).

23-May 06:31 bacsd01:storage JobId 6: Wrote label to prelabeled Volume "default.6.20150523.0631" on device "FileStorage" (/opt/bacula/default)

23-May 06:31 bacdir01:director JobId 6: Max Volume jobs exceeded. Marking Volume "default.6.20150523.0631" as Used.

23-May 06:31 bacsd01:storage JobId 6: Job write elapsed time = 00:00:02, Transfer rate = 4.678 M Bytes/second

23-May 06:31 bacdir01:director JobId 6: Bacula bacdir01:director 5.0.0 (26Jan10): 23-May-2015 06:31:21

 Build OS: x86_64-redhat-linux-gnu redhat

 JobId: 6

 Job: bacsd01:default:etc.2015-05-23_06.31.16_24

 Backup Level: Full (upgraded from Incremental)

 Client: "bacsd01" 5.0.0 (26Jan10) x86_64-redhat-linux-gnu,redhat,

 FileSet: "config:etc" 2015-05-21 20:27:11

 Pool: "bacsd01:pool:default" (From Job resource)

 Catalog: "bacdir01:mysql" (From Client resource)

 Storage: "bacsd01:storage:default" (From Job resource)

 Scheduled time: 23-May-2015 06:31:15

 Start time: 23-May-2015 06:31:19

 End time: 23-May-2015 06:31:21

 Elapsed time: 2 secs

 Priority: 10

 FD Files Written: 1,270

 SD Files Written: 1,270

 FD Bytes Written: 9,214,998 (9.214 MB)

 SD Bytes Written: 9,357,269 (9.357 MB)

 Rate: 4607.5 KB/s

 Software Compression: 64.2 %

 VSS: no

 Encryption: no

 Accurate: no

 Volume name(s): default.6.20150523.0631

 Volume Session Id: 5

 Volume Session Time: 1432254154

 Last Volume Bytes: 9,400,938 (9.400 MB)

 Non-fatal FD errors: 0

 SD Errors: 0

 FD termination status: OK

 SD termination status: OK

 Termination: Backup OK

23-May 06:31 bacdir01:director JobId 6: Begin pruning Jobs older than 45 years 2 months 2 days 22 hours 31 mins 21 secs.

23-May 06:31 bacdir01:director JobId 6: No Jobs found to prune.

23-May 06:31 bacdir01:director JobId 6: Begin pruning Jobs.

23-May 06:31 bacdir01:director JobId 6: No Files found to prune.

23-May 06:31 bacdir01:director JobId 6: End auto prune.

从消息输出可以看到，此时进行的已经是一次全部备份，因为这是用户第一次运行这个作业，Bacula从数据库Catalog中查找增量备份之前需要的全备份，发现信息不存在，所以自动将增量升级为全备。

笔者设置了自动打标，这里Bacula自动为Volume打上了default.6.20150523.0631的标签，如果没有设置，Bacula会要求手动对Volume进行打标并加入到Pool之中。

同时，由于我们设置了一个Volume能够使用的最大备份作业为1，因此Bacula会在将此Volume使用之后将其标志为“已使用”，这样其他的备份作业就不会再使用这个文件了。对于基于磁盘和文件的备份，一个Volume对应一个备份文件的设置使得备份目录条理清晰，是值得推荐的做法。

在备份工作完成之后，由于设置了Auto Prune，Bacula会尝试将过期的作业和文件清除。

查看/opt/bacula/default，可以看到备份文件已经生成：

[root@bacsd01 ~]# ls /opt/bacula/default/default.6.20150523.0631

/opt/bacula/default/default.6.20150523.0631

此时再运行一次run命令，通过status命令查看是否进行了增量备份，如下：

*run

Automatically selected Catalog: bacdir01:mysql

Using Catalog "bacdir01:mysql"

A job name must be specified.

The defined Job resources are:

 1: bacsd01:default:etc

 2: bacdir01:restore:default

Select Job resource (1-2): 1

Run Backup job

JobName: bacsd01:default:etc

Level: Incremental

Client: bacsd01

FileSet: config:etc

Pool: bacsd01:pool:default (From Job resource)

Storage: bacsd01:storage:default (From Job resource)

When: 2015-05-23 10:51:24

Priority: 10

OK to run? (yes/mod/no): yes

Job queued. JobId=7

*status

Status available for:

 1: Director

 2: Storage

 3: Client

 4: All

Select daemon type for status (1-4): 3

… …

Terminated Jobs:

 JobId Level Files Bytes Status Finished Name

==

 6 Full 1,270 9.214 M OK 23-May-15 06:31 bacsd01:default:etc

 7 Incr 2 903 OK 23-May-15 10:54 bacsd01:default:etc

可以看到增量备份被正确地执行了。
5.5.2　文件恢复

恢复文件的命令是restore，可启动bconsole来进行文件恢复，如下：

[root@bacdir01 ~]# bconsole

Connecting to Director bacdir01:9101

1000 OK: bacdir01:director Version: 5.0.0 (26 January 2010)

Enter a period to cancel a command.

*restore

Automatically selected Catalog: bacdir01:mysql

Using Catalog "bacdir01:mysql"

First you select one or more JobIds that contain files

to be restored. You will be presented several methods

of specifying the JobIds. Then you will be allowed to

select which files from those JobIds are to be restored.

To select the JobIds, you have the following choices:

 1: List last 20 Jobs run

 2: List Jobs where a given File is saved

 3: Enter list of comma separated JobIds to select

 4: Enter SQL list command

 5: Select the most recent backup for a client

 6: Select backup for a client before a specified time

 7: Enter a list of files to restore

 8: Enter a list of files to restore before a specified time

 9: Find the JobIds of the most recent backup for a client

 10: Find the JobIds for a backup for a client before a specified time

 11: Enter a list of directories to restore for found JobIds

 12: Select full restore to a specified Job date

 13: Cancel

Select item: (1-13):

恢复文件的流程是先选取一个JobID，然后从对应的作业中选择恢复哪些文件。Restore命令列出了一些选择JobID的方法，“Select the most recent backup for a client”应该是最方便的，它会选择一个客户单最近时间内进行的备份任务；也可以通过“List Jobs where a given File is saved”根据需要恢复的文件来查找JobID。这里选择2：

Select item: (1-13): 2

Automatically selected Client: bacsd01

Enter Filename (no path):issue

| JobId | Name | StartTime | JobType | JobStatus | JobFiles | JobBytes

| 6 | /etc/issue | 2015-05-23 06:31:19 | B | T | 1270 | 9214998

注意，输入文件的时候只需要输入文件名即可，不需要输入全路径。Bacula顺利地查找到了备份作业，其JobID为6。然后选择3，通过JobID来恢复文件：

Select item: (1-13): 3

Enter JobId(s), comma separated, to restore: 6

You have selected the following JobId: 6

Building directory tree for JobId(s) 6 ++

1,162 files inserted into the tree.

……

cwd is: /

$

此时进入了文件选择模式，当前目录是/，可以用cd、ls、find等命令来查找文件（输入help可以查看此模式下支持的所有命令）。使用mark和unmark来标记需要恢复的文件，当标记结束之后使用done命令，表示标记完成。

$ ls

etc/

$ cd etc

cwd is: /etc/

$ mark issue

1 file marked.

$ done

在这里，尝试标记并恢复/etc/issue这个文件。输入done命令之后，与备份作业类似，Bacula会创建一个恢复作业，需要键入yes予以确认，如下：

JobName: bacdir01:restore:default

Bootstrap: /var/lib/bacula/bacdir01:director.restore.1.bsr

Where: /tmp/restore

Replace: always

FileSet: config:etc

Backup Client: bacsd01

Restore Client: bacsd01

… …

OK to run? (yes/mod/no): yes

Job queued. JobId=8

在输入yes确认的时候也可以输入mod命令，表示修改备份任务，一般可以用这个方法来修改文件恢复目录，也就是where参数。同样，也可以使用messages查看作业进度。待作业完成之后，可以在其恢复目录/tmp/restore查看恢复的文件：

[root@centos6 ~]# cat /tmp/restore/etc/issue

CentOS release 6.6 (Final)

Kernel \r on an \m

可以看到/etc/issue这个文件已经被成功地恢复了。

在某个作业的文件由于过期而被自动清除的时候，Bacula还是能够进行restore操作，只是此时不能够选择某个文件，只能恢复全部文件：

Enter JobId(s), comma separated, to restore: 8

You have selected the following JobId: 8

Building directory tree for JobId(s) 8 ...

For one or more of the JobIds selected, no files were found,

so file selection is not possible.

Most likely your retention policy pruned the files.

Do you want to restore all the files? (yes|no):

……

5.6　Bacula的使用和维护

5.6.1　Bconsole的用法

除了运行run和restore进行备份和恢复之外，Bconsole还有许多其他用法，可以用来监视和调试Bacula控制器。

比如已经演示过的status命令，它可以用来查看Bacula各个组件的状况。Status dir命令能够打印当前运行的作业以及24小时内将要运行的作业，如下：

*status dir

Daemon started 23-May-15 16:55, 2 Jobs run since started.

Heap: heap=135,168 smbytes=61,872 max_bytes=190,325 bufs=176 max_bufs=206

Scheduled Jobs:

Level Type Pri Scheduled Name Volume

==

Incremental Backup 10 23-May-15 18:40 bacsd01:default:etc *unknown*

Running Jobs:

Console connected at 23-May-15 18:08

No Jobs running.

====

如果不加参数地运行status，它会让用户选择需要查看的对象。

list命令可以列出对象的基本情况，如list jobs，用于查看所有已运行的备份作业；list files jobid=nn则可以查看某个作业所备份的文件：

*list files jobid=7

+-----------------------------+

| Filename |

| /etc/bacula/ |

| /etc/bacula/bacula-dir.conf |

+-----------------------------+

|JobId|Name|StartTime|Type|Level|JobFiles|JobBytes|JobStatus|

|7|bacsd01:default:etc|2015-05-23 10:54:03|B|I|2|903|T|

此外，cancel可以取消一个作业；delete可以用来删除作业、Volume和Pool；help命令可以看到所有支持的console命令。
5.6.2　使用Bacula进行文件验证

Bacula会将文件的信息，如文件属性和md5签名值等保存在数据库当中，这使得Bacula能够用来验证系统文件。其基本的原理是首先对系统文件进行一次初始化的扫描，将文件信息保存到Catalog里面，然后再运行类型为Verify的作业进行对比：

FileSet {

 Name = "verify:etc"

 Include {

 Options {

 Verify=pins5

 Signature = MD5

 }

 File = /etc

 }

}

Job {

 Name = "Verify"

 Type = Verify

 Level = Catalog

 Client = bacsd01

 FileSet = "verify:etc"

 Messages = "bacdir01:messages:standard"

 Storage = "bacsd01:storage:default"

 Pool = "bacsd01:pool:default"

 Schedule = "Monthly:onMonday"

}

此时FileSet的定义需要加入Verify选项，如Signature使用MD5；Verify设置为pins5；也可以Signature使用SHA1，Verify设置pins1。将上述配置加入bacula-dir.conf中，重启Bacula控制器，然后使用bconsole运行此作业：

*run

……

Run Verify job

JobName: Verify

Level: Catalog

… …

OK to run? (yes/mod/no): mod

Parameters to modify:

 1: Level

 2: Storage

… …

Select parameter to modify (1-9): 1

Levels:

1: Initialize Catalog

… …

Select level (1-5): 1

Run Verify job

JobName: Verify

Level: InitCatalog

… …

OK to run? (yes/mod/no): yes

Job queued. JobId=14

第一次运行此作业需要使用mod命令将作业的level调整为InitCatalog，在这个level下，作业只是获得文件信息并保存到Catalog，不进行任何文件比较。

初始化数据库结束之后，再在/etc/issue文件中添加如下一行数据：

[root@bacsd01 ~]# echo "test" >>/etc/issue

再次运行作业：

*run

……

*messages

23-May 23:05 bacdir01:director JobId 20: File: /etc/issue

23-May 23:05 bacdir01:director JobId 20: st_size differ. Cat: 75 File: 80

23-May 23:05 bacdir01:director JobId 20: MD5 digest differs. File= Pem+yL2oesucRXWEGGibAA Cat=4xJQdgLdLLX0g9buGQlMWg

23-May 23:05 bacdir01:director JobId 20: Bacula bacdir01:director 5.0.0 (26Jan10): 23-May-2015 23:05:08

 Build: x86_64-redhat-linux-gnu redhat

 JobId: 20

 Job: Verify.2015-05-23_23.05.03_06

 FileSet: verify:etc

……

 FD termination status: OK

 Termination: Verify Differences

可以看到消息显示/etc/issue文件MD5值发生了变化，Verify的结果为“verify difference”。
5.6.3　Catalog的维护和备份

如果没有合适地使用和维护，随着作业的增加，Catalog数据库保存的数据将越来越多，比如对应一个备份工作，其保存的所有文件信息都会记录到数据库里面，其运行的效率和速度都会大幅下降。此时需要有一种机制，持续地删除老的数据，保证数据库不会过载。

Bacula中的自动删除机制是通过设置Retention来实现的，它使用了三种Retention设置：File Retension、Job Retention和Volume Retention，这在之前都有介绍。

对于MySQL来说，删除数据库记录并不能有效地释放磁盘空间，一些空白的磁盘还会被其使用，我们可以将其数据dump一份，然后再导入到数据库，从而释放空白空间：

mysqldump -f --opt bacula > bacula.sql

mysql bacula < bacula.sql

rm -f bacula.sql

除此之外，还推荐对Catalog进行备份。Bacula提供了一个备份数据库的脚本/usr/libexec/bacula/make_catalog_backup.pl，这个脚本接受一个参数Catalog的名字，将Catalog数据库转存到/var/log/spool/bacula/catalog.sql。在Bacula中，可以为Catalog创建自动备份作业，笔者的Catalog备份作业配置如下：

Job {

 Name = "bacdir01:Catalog"

 Type = Backup

 Schedule = "WeeklyCycleAfterBackup"

 Client = bacdir01

 RunBeforeJob = "/usr/libexec/bacula/make_catalog_backup.pl bacdir01:mysql"

 RunAfterJob = "/usr/libexec/bacula/delete_catalog_backup"

 RunAfterFailedJob = "/usr/libexec/bacula/delete_catalog_backup"

 FileSet = "Catalog"

 Storage = "bacsd01:storage:bacdir01:Catalog"

 Pool = "bacsd01:pool:catalog"

 Max Wait Time = 60

 Messages = "bacdir01:messages:standard"

}

这里使用的备份计划是WeeklyCycleAfterBackup，这个计划设置备份的运行时间是在所有其他备份作业完成之后，避免数据库在更新的时候进行备份。RunBeforeJob则设置成为make_catalog_back.pl，在作业运行之前生成SQL文件，同时配置RunAfterJob，将SQL文件删除。

Catalog数据库中还有一个表有可能占用巨大空间，那就是Log表，它里面保存的是作业运行的日志。Bacula在作业运行出错的时候，可能会产生巨量的错误日记，这些日志对Catalog本身的运行和维护都会造成一定影响，用户应该定期清理这个表，删除过期的日志。
5.7　备份的策略

使用Bacula，用户可以轻松地备份一系列系统文件，但是对于一整套生产环境来说，备份工作不仅仅是使用好一套备份软件。用户不能恢复没有被备份的数据，但是怎么确认业务所需要的重要数据已经备份且备份成功了？备份的成功需要有一系列的措施和策略来保证。
5.7.1　备份什么

制定备份计划的第一步是找出生产环境中需要备份的数据。一般来说，这一步的解决方案就是回答问题：丢失哪些数据是我们所不能承受的？问题的答案就是需要备份的数据。与此同时，需要充分了解生产环境，了解重要的数据保存的位置，在哪一台服务器上，哪些文件之中，这样才能有效而准确地进行备份。
5.7.2　备份到哪里

按照备份数据保存位置的不同可以分为本地备份和异地备份。两种备份的区别同字面上的意思一样。好的备份策略应该考虑同时包括本地备份和异地备份。本地备份容易，恢复方便，同时比异地备份节省成本，是备份的首选方案；其缺点是由于备份和原始数据集中在一起，容灾性较弱，当大的自然灾害发生的时候，备份和原始数据容易一起丢失。异地备份就是为了解决这一问题而出现的，它将数据备份到远离原始数据的异地机房，保证了地域上的分离性。异地备份的成本一般比较高，因此相对来说频率较本地备份低，是备份“备份数据”的最佳方案。
5.7.3　备份的时间

备份的时间和频率根据备份对象的不同而不同。不怎么改变的静态文件一般不需要太高的备份频率，而那些经常发生变化的文件则需要频繁地进行备份。

备份作业的开始时间也必须精心挑选。备份工作本身会消耗系统资源，影响系统系能，所以备份作业应该在系统负载比较小，机器比较空闲的时候进行，同时备份作业应该尽量不影响生产业务。一般推荐将备份作业设置在晚上运行，此时业务量比较小，机器的负载也较低。
5.7.4　测试和监控备份

只有数据能够被正确恢复，备份才有意义。为了保证备份数据的可用性，必须持续地对备份进行测试，以确保备份数据能够正常使用。测试的频率可以是一周一次，也可以是一个月一次，取决于备份作业的频率，一般来说备份越频繁，对其测试也应该越多。除此之外，对备份进行实时监控也是值得推荐的做法。Bacula在备份失败的时候能够发送消息到相关人员，用户也可以通过监控系统，对失败的备份进行实时告警。
第6章　集群与存储

集群与存储几乎是所有业务稍有规模的公司都会用到的技术。本章会讲述高可用集群与负载均衡集群的搭建，以及存储的基本概念与配置。由于存储设备是一个高可用集群的基础，因此在本章，先从存储入手，然后进入高可用集群，最后讲解负载均衡。
6.1　存储的基本概念

对系统管理员来说，存储设备已经不再陌生，不少公司都购买了硬件存储设备，比如NetApp、EMC等，这些硬件存储设备一般分为NAS和SAN两种。NAS的全称为Network Attached Storage，是用于连接计算机的文件系统级别的存储，它支持多种协议，如NFS、CIFS等。SAN的全称是Storage Area Network，SAN通过网络连接，将存储以块设备形式连接到计算机上，早期SAN需要使用FC光纤网络将存储挂接到服务器上，光纤设备价格高昂，使用成本较高，IP-SAN iSCSI的出现，使得SAN可以通过以太网络实现相同的功能，从而降低了SAN的使用成本。

现在的硬件存储，一些存储硬件厂商提供的产品可以同时拥有NAS和SAN功能，比如笔者之前使用的NetApp FAS3140，但是一般来说，并不推荐使用这样的设备，因为多出来的功能可能一直到设备退役都用不上，而这些功能价格不菲。
6.2　SAN

这里不打算讲解NAS的搭建，因为NFS、Samba这些Services已经是系统管理员的基本功。本节将讲解SAN的选择，以及iSCSI的配置。
6.2.1　SAN的选择

当用户决定引入硬件存储设备的时候，首先需要决定是使用FC-SAN还是IP-SAN，光纤通道通常的带宽为4Gbit/s、8Gbit/s、16Gbit/s，可以提供很高的I/O吞吐量，而iSCSI是基于以太网的，现有商用产业中普遍的网络设备带宽为1Gbit/s，而10Gbit/s价格较高，普及度较低，所以在性能表现上弱于光纤通道。但是FC-SAN需要光纤交换机的支持，且服务器上需要额外的FC HBA卡，相对来说，成本较高。而IP-SAN相对简单，只需要以太网即可。从现有的硬件能力来说，依然是FC-SAN的性能强于IP-SAN，但是在未来万兆以太网普及的时候，IP-SAN的性能会赶上FC-SAN，不分伯仲。

所以在选择FC-SAN还是IP-SAN的时候，要根据现有的业务吞吐量，以及未来业务增长的趋势来评估选择。
6.2.2　iSCSI的配置

iSCSI的原理非常简单，就是将SCSI命令和SCSI数据包封装，加上IP报头通过IP协议层进行传输。

iSCSI的配置分为两个部分：一个部分是iSCSI Target，这就相当于IP-SAN，是iSCSI的存储服务器，另一个部分是iSCSI initiator，这是服务器用来挂接IP-SAN设备的软件。

iSCSI有两种命名格式：一种是iqn，一种是EUI，后者使用较少，因为EUI命令不如iqn来得直观。iqn的基本格式是iqn.<YYYY-MM>.<reversed domain name>：<extra-name>，例如可以这样命名：iqn.2015-08.com.example：disk0。

1.准备存储服务器

在这一步需要准备一个有大于5GB未分区的磁盘空间的虚拟机，然后在此之上创建一个lvm group，过程如下：

[root@iscsi ~]# fdisk -l /dev/sda5

Disk /dev/sda5: 10.7 GB, 10740120064 bytes

255 heads, 63 sectors/track, 1305 cylinders

Units = cylinders of 16065 * 512 = 8225280 bytes

Sector size (logical/physical): 512 bytes / 512 bytes

I/O size (minimum/optimal): 512 bytes / 512 bytes

Disk identifier: 0x00000000

[root@iscsi ~]# pvcreate /dev/sda5

 Physical volume "/dev/sda5" successfully created

[root@iscsi ~]# vgcreate vg00 /dev/sda5

 Volume group "vg00" successfully created

[root@iscsi ~]# vgs

 VG #PV #LV #SN Attr VSize VFree

 vg00 1 0 0 wz--n- 10.00g 10.00g

[root@iscsi ~]# lvcreate -L 5G -n example vg00

 Logical volume "example" created

[root@iscsi ~]# lvs

 LV VG Attr LSize Pool Origin Data% Meta% Move Log Cpy%Sync Convert

 example vg00 -wi-a----- 5.00g

[root@iscsi ~]# ll /dev/vg00/example

lrwxrwxrwx 1 root root 7 Jun 24 12:00 /dev/vg00/example -> ../dm-0

2.配置iSCSI target

iSCSI target配置并不复杂，在配置文件中也有一些注释的样例可以参考，这里配置一个基本的iSCSI。

首先安装iscsi-target-utils包，然后在配置文件中配置iqn和打算作为iSCSI的卷，示例如下：

[root@iscsi ~]# yum install scsi-target-utils

[root@iscsi ~]# cat /etc/tgt/targets.conf | grep -v ^# | grep -v ^$

<target iqn.2015-06.com.example:iscsi-disk1>

 backing-store /dev/vg00/example

</target>

配置完成之后，重启tgtd服务，并将tgtd服务设为开机启动。

[root@iscsi ~]# /etc/init.d/tgtd start

Starting SCSI target daemon: [OK]

[root@iscsi ~]# chkconfig tgtd on

此时使用tgt-admin命令查看当前iSCSI卷的状态，可以看到online一项显示yes，一切正常，可以进入下一步了，即为客户端挂接配置。

[root@iscsi ~]# tgt-admin --show

Target 1: iqn.2015-06.com.example:iscsi-disk1

 System information:

 Driver: iscsi

 State: ready

 I_T nexus information:

 LUN information:

 LUN: 0

 Type: controller

 SCSI ID: IET 00010000

 SCSI SN: beaf10

 Size: 0 MB, Block size: 1

 Online: Yes

 Removable media: No

 Prevent removal: No

 Readonly: No

 Backing store type: null

 Backing store path: None

 Backing store flags:

 LUN: 1

 Type: disk

 SCSI ID: IET 00010001

 SCSI SN: beaf11

 Size: 5369 MB, Block size: 512

 Online: Yes

 Removable media: No

 Prevent removal: No

 Readonly: No

 Backing store type: rdwr

 Backing store path: /dev/vg00/example

 Backing store flags:

 Account information:

 ACL information:

 ALL

3.配置iSCSI initiator

客户端配置也比较简单，大致分为三步：安装iscsi-initiator-utils包；通过iscsiadm命令发现iSCSI卷；挂接iSCSI卷。步骤如下：

[root@node1 ~]# yum install iscsi-initiator-utils 杫

[root@node1 ~]# iscsiadm -m discovery -t sendtargets -p iscsi.example.com:3260

Starting iscsid: [OK]

192.168.0.7:3260,1 iqn.2015-06.com.example:iscsi-disk1

[root@node1 ~]# iscsiadm -m node -T iqn.2015-06.com.example:iscsi-disk1 -l

Logging in to [iface: default, target: iqn.2015-06.com.example:iscsi-disk1, portal: 192.168.0.7,3260] (multiple)

Login to [iface: default, target: iqn.2015-06.com.example:iscsi-disk1, portal: 192.168.0.7,3260] successful.

从命令的输出可以看到iqn.2015-06.com.example：iscsi-disk1卷已经成功挂接，在系统中，用户可以使用fdisk命令，或者查看/dev/disk/，或者使用iscsiadm命令查看iSCSI卷的挂接情况。

在系统中，这个iSCSI卷表现得就像一个本地磁盘，此时可以使用fdisk、parted等分区工具操作这个本地磁盘。这也就是常说的SAN是一种基于块设备的存储。

[root@node1 ~]# fdisk -l /dev/sdb

Disk /dev/sdb: 5368 MB, 5368709120 bytes

166 heads, 62 sectors/track, 1018 cylinders

Units = cylinders of 10292 * 512 = 5269504 bytes

Sector size (logical/physical): 512 bytes / 512 bytes

I/O size (minimum/optimal): 512 bytes / 512 bytes

Disk identifier: 0x00000000

[root@node1 ~]# ll /dev/disk/by-path/

total 0

lrwxrwxrwx 1 root root 9 Jun 25 22:47 ip-192.168.0.7:3260-iscsi-iqn.2015-06.com.example:iscsi-disk1-lun-1 -> ../../sdb

lrwxrwxrwx 1 root root 9 Jun 25 22:44 pci-0000:00:10.0-scsi-0:0:0:0 -> ../../sda

lrwxrwxrwx 1 root root 10 Jun 25 22:44 pci-0000:00:10.0-scsi-0:0:0:0-part1 -> ../../sda1

lrwxrwxrwx 1 root root 10 Jun 25 22:44 pci-0000:00:10.0-scsi-0:0:0:0-part2 -> ../../sda2

lrwxrwxrwx 1 root root 10 Jun 25 22:44 pci-0000:00:10.0-scsi-0:0:0:0-part3 -> ../../sda3

[root@node1 ~]# iscsiadm -m session -P1

Target: iqn.2015-06.com.example:iscsi-disk1 (non-flash)

 Current Portal: 192.168.0.7:3260,1

 Persistent Portal: 192.168.0.7:3260,1

 Interface:

 Iface Name: default

 Iface Transport: tcp

 Iface Initiatorname: iqn.1994-05.com.redhat:b9558e2dc7fd

 Iface IPaddress: 192.168.0.217

 Iface HWaddress: <empty>

 Iface Netdev: <empty>

 SID: 1

 iSCSI Connection State: LOGGED IN

 iSCSI Session State: LOGGED_IN

 Internal iscsid Session State: NO CHANGE

至此，一个IP-SAN的搭建完成了。你是否已经体验到一个IP-SAN的搭建与维护是如此的简单和轻松？
6.3　分布式文件系统与集群文件系统

6.3.1　分布式文件系统

尽管通过上一节了解到搭建一个基于软件的IP-SAN是如此简单，但是依然会有人想念NFS，因为NFS的使用与搭建更为简单直观。但是NFS可扩展性低，且性能不高的缺陷使得它只能成为低端存储。试想一下，如果有10台服务器，要是都能像LVM一样将这10台服务器的存储在逻辑上组合成一个卷，在提升存储性能和空间的同时，又能以类似传统NFS网络挂接的方式使用，这该有多好啊！其实这就是分布式文件系统。

RedHat官方提供了一套简单易用的分布式存储解决方案，即GlusterFS。这是一种可扩展的分布式文件系统。下面来讲解如何配置使用GlusterFS。
6.3.2　GlusterFS的配置

1.准备节点服务器

这里准备了node1、node2、node3三台虚拟机，每台机器划分出一个5GB的lvm逻辑卷作为glusterfs的后端存储。

在/etc/yum.repo.d/中建立一个以.repo为结尾的文件，内容如下，同时安装glusterfs软件包。

[root@node1 ~]# cat /etc/yum.repos.d/glusterfs.repo

Place this file in your /etc/yum.repos.d/ directory

[glusterfs-epel]

name=GlusterFS is a clustered file-system capable of scaling to several petabytes.

baseurl=http://download.gluster.org/pub/gluster/glusterfs/3.4/LATEST/EPEL.repo/epel-$releasever/$basearch/

enabled=1

skip_if_unavailable=1

gpgcheck=0

[glusterfs-noarch-epel]

name=GlusterFS is a clustered file-system capable of scaling to several petabytes.

baseurl=http://download.gluster.org/pub/gluster/glusterfs/3.4/LATEST/EPEL.repo/epel-$releasever/noarch

enabled=1

skip_if_unavailable=1

gpgcheck=0

[glusterfs-source-epel]

name=GlusterFS is a clustered file-system capable of scaling to several petabytes. - Source

baseurl=http://download.gluster.org/pub/gluster/glusterfs/3.4/LATEST/EPEL.repo/epel-$releasever/SRPMS

enabled=0

skip_if_unavailable=1

gpgcheck=0

[root@node1 ~]# yum -y install xfsprogs.x86_64 glusterfs-server.x86_64

安装glusterfs时，使用了一个LVM卷作为存储方式，同时将其格式化为xfs格式，并将其挂在到某个目录下。示例如下：

[root@node1 ~]# mkfs.xfs /dev/mapper/vg00-lv00

meta-data=/dev/mapper/vg00-lv00 isize=256 agcount=4, agsize=327936 blks

 = sectsz=512 attr=2, projid32bit=0

data = bsize=4096 blocks=1311744, imaxpct=25

 = sunit=0 swidth=0 blks

naming =version 2 bsize=4096 ascii-ci=0

log =internal log bsize=4096 blocks=2560, version=2

 = sectsz=512 sunit=0 blks, lazy-count=1

realtime =none extsz=4096 blocks=0, rtextents=0

[root@node1 ~]# mkdir /node1-data

[root@node1 ~]# mount /dev/mapper/vg00-lv00 /node1-data/

以上步骤在node2和node3上重复。

2.配置节点服务器

在node1、node2、node3上启动glusterd进程，命令如下：

[root@node1 ~]# /etc/init.d/glusterd start

[root@node2 ~]# /etc/init.d/glusterd start

[root@node3 ~]# /etc/init.d/glusterd start

在glusterfs中没有中心节点的概念，所以可以在任意的一个节点配置GlusterFS信息，这里选择node1。

[root@node1 ~]# gluster peer probe node2.example.com

peer probe: success

[root@node1 ~]# gluster peer probe node3.example.com

peer probe: success

当node2/node3被加入cluster之后，可以看到集群中node的状态，如下：

[root@node1 ~]# gluster peer status

Number of Peers: 2

Hostname: node3.example.com

Uuid: 19ce3196-706d-4c25-93c0-f012758a6125

State: Peer in Cluster (Connected)

Hostname: node2.example.com

Uuid: 4f5dc30c-ebb5-4419-b08b-034c7c393db1

State: Peer in Cluster (Connected)

此时就可以创建一个分布式的卷了，GlusterFS默认提供分布式卷。创建卷的步骤是先创建出卷，然后启用之，最后在其他机器上挂载此卷。

待卷创建完成之后，使用volume info命令可以看到这个卷的类型是分布式，节点之间的传输方式是TCP。

[root@node1 ~]# gluster volume create example-vol node1.example.com:/node1-data/export node2.example.com:/node2-data/export node3.example.com:/node3-data/export

[root@node1 ~]# gluster volume info example-vol

Volume Name: example-vol

Type: Distribute

Volume ID: b5b2042f-a0e7-4aee-8376-51b40a313236

Status: Created

Number of Bricks: 3

Transport-type: tcp

Bricks:

Brick1: node1.example.com:/node1-data/export

Brick2: node2.example.com:/node2-data/export

Brick3: node3.example.com:/node3-data/export

[root@node1 ~]# gluster volume start example-vol

volume start: example-vol: success

3.使用和测试

下面在一台空闲vm上装上glusterfs-fuse来测试使用这个卷。因为GlusterFS是一个无中心化的分布式存储，所以可以挂接node1/node2/node3中的任意节点，这里挂接的是node2。

[root@localhost ~]# yum -y install glusterfs-fuse.x86_64

[root@localhost ~]# mount.glusterfs node2:/example-vol /mnt/

[root@localhost ~]# df -h

Filesystem Size Used Avail Use% Mounted on

/dev/sda2 20G 1.4G 18G 8% /

tmpfs 931M 0 931M 0% /dev/shm

/dev/sda1 93M 32M 57M 36% /boot

node2:/example-vol 15G 97M 15G 1% /mnt

在这个目录里创建了10000个文件，然后去node1、node2、node3上查看，就会发现在三个节点中，存储了近似相等的文件，至此GlusterFS的卷配置成功了。

[root@localhost ~]# touch /mnt/file{1..10000}

[root@node1 ~]# ls -l /node1-data/export/ | wc -l

3441

[root@node2 ~]# ls -l /node2-data/export/ | wc -l

3238

[root@node3 ~]# ls -l /node3-data/export/ | wc –l

3324

6.4　高可用集群

集群分为两种：高可用集群和负载均衡集群，尽管负载均衡集群可以达到高可用的目的，但是两者面对的业务类型不一样，负载均衡集群多数情况下用于Web前端，高可用集群多数用于数据库这种后端类型的服务。这里以RedHat提供的HA Cluster为例，讲解高可用集群的组成与配置。
6.4.1　Red Hat HA Cluster简介

图6-1是Red Hat HA物理架构，简单来说，分为Cluster Nodes、Shared storage、Network power switch、Ethernet switch等几个部分。除了Red Hat，大部分的HA软件架构（比如Veritas的VCS）也是类似的结构。在高可用集群中，节点通常以一主一备或一主多备的方式出现，有时候也会出现多机互备的情况，提高资源利用率。

 [image:]

图6-1　Red Hat HA的物理架构

Red Hat HA cluster中包含如下的一些软件。

·Corosync：用于节点间的心跳检测。

·Cman：集群管理器。

·Fenced：栅设备，用来判断不可用节点，同时将其剔出cluster，防止出现脑裂的情况。

·Luci：用来配置集群的Web页面。

·Modclusterdricci：与luci之间通信的代理程序。

·Rgmanager：控制集群资源。

·Ricci：接受Luci配置文件。

·DLM rgmanager：通信进程。

·clvmd：集群逻辑卷管理。

但是注意，Red Hat HA最大支持16节点，同时要尽量避免双机HA，因为使用了投票仲裁机制，所以如果需在生产环境中使用，建议使用三台机器以上做HA Cluster。
6.4.2　配置一个高可用的Apache集群

这里依然用三个节点作为集群基础环境，下面以配置一个高可用的Apache集群为例，讲解高可用集群的配置与使用。

1.安装HA软件包

首先，依然是安装相关软件包，确保所有节点机器上的NetworkManager服务被关闭且没有被设置为自动启动，并确保iptables规则清空。然后在node1、node2、node3上安装High Availablility软件包组和Apache软件包，同时开启cman和rgmanager服务。示例如下：

[root@node1 ~]# /etc/init.d/NetworkManager stop;chkconfig NetworkManager off

[root@node1 ~]# yum -y groupinstall 'High Availability'

[root@node1 ~]# chkconfig cman on;/etc/init.d/cman start

[root@node1 ~]# chkconfig rgmanager on;/etc/init.d/rgmanager start

[root@node1 ~]# yum -y install httpd

在node2、node3上重复上述步骤。

这里选择使用Web界面配置整个HA集群，所以需要安装管理工具Luci。Luci可以安装在任意一个node上或其他网络中能够和这个集群通信的机器上。这里选择在node1上安装Luci，命令如下：

[root@node1 ~]#yum -y groupinstall 'High Availability Management'

2.配置Web管理工具Luci

Luci与节点上的ricci服务进行通信，以实现配置文件的下发和同步，所以这里首先在node1、node2、node3上将ricci服务启动起来，然后再进行Luci服务的配置。

在node1、node2、node3上启动ricci服务，基本过程就是给ricci用户设置密码，然后启动服务。nodel上的示例如下：

[root@node1 ~]# echo redhat | passwd --stdin ricci

[root@node1 ~]# chkconfig ricci on

[root@node1 ~]# /etc/init.d/ricci start

在node2、node3上重复上述步骤。

Luci服务的配置很简单，只需要将服务启动，然后在浏览器中访问http://node1.example.com：8084就可以进行配置了。示例如下：

[root@node1 ~]# /etc/init.d/luci start

[root@node1 ~]# chkconfig luci on

Luci采用的是系统用户的认证方式，所以这里可以使用root用户登录。在生产环境中，建议单独建立一个用户专门负责Luci服务的登录认证，以确保系统安全。Luci的登录界面如图6-2所示。

3.配置共享存储

共享存储是整个集群的基石，这里选择iSCSI作为后端共享存储，如何构建一个iSCSI存储请参考6.2.2节，这里只讲述存储的挂接步骤。

在node1、node2、node3上先挂接测试iSCSI存储，步骤如下，请在node2、node3上重复下列步骤。

 [image:]

图6-2　Luci登录界面

[root@node1 ~]# yum install iscsi-initiator-utils –y

[root@node1 ~]# iscsiadm -m discovery -t sendtargets -p iscsi.example.com:3260

Starting iscsid: [OK]

192.168.0.7:3260,1 iqn.2015-06.com.example:iscsi-disk1

[root@node1 ~]# iscsiadm -m node -T iqn.2015-06.com.example:iscsi-disk1 -l

Logging in to [iface: default, target: iqn.2015-06.com.example:iscsi-disk1, portal: 192.168.0.7,3260] (multiple)

Login to [iface: default, target: iqn.2015-06.com.example:iscsi-disk1, portal: 192.168.0.7,3260] successful.

待在三个节点上存储挂接都没有问题以后，在node1上对这块挂接的iSCSI盘进行分区操作，并转换成LVM分区，最后将分区挂到/var/www/html上，这是Apache的默认页面存储目录，具体分区和转换成LVM的操作这里不再重复。

[root@node1 ~]# fdisk /dev/mapper/clusterstorage

[root@node1 ~]# partprobe

[root@node1 ~]# mkfs.ext4 /dev/mapper/clusterstorage1

[root@node1 ~]# mount -t ext4 /dev/mapper/clusterstoragep1 /var/www/html/

分区完成之后，在node2、node3上运行命令partprobe就可以看到新分区/dev/mapper/clusterstoragep1了。

4.测试资源

资源是高可用集群的基本组成部分，其中包括httpd服务、IP、共享存储等。在使用这些资源之前，需要在所有节点上先进行测试，确保它们在所有的节点上都可用，这样才能使得资源在节点间切换正常。

首先测试在节点上加上一个IP是否能正常工作。这个IP也就是浮动IP，它会跟随集群切换而出现在活动的节点上。比如：使用ip add命令在eth1上加上一个IP 172.16.10.50，然后从其他节点上ping这个IP，看是否能通，能通则说明IP添加没有问题，在node1、node2、node3上全部测试通过之后进入下一步资源测试。注意，待测试完成之后要将加入的IP删掉，否则会造成后面的资源配置冲突。

[root@node1 ~]# ip addr add dev eth1 172.16.10.50/24

[root@node1 ~]# ip add show eth1

[root@node1 ~]# ip addr show eth1 | grep 172

 inet 172.16.26.1/24 brd 172.16.26.255 scope global eth1

inet 172.16.26.50/24 scope global secondary eth1

[root@node1 ~]#ip addr del 172.16.10.50/24 dev eth1

其次测试httpd服务是否正常。在node1上启动httpd，可能会发现如下错误，这是SELinux的问题，可以选择关闭SELinux，或者配置SELinux的上下文。

[root@node1 ~]# service httpd start

Starting httpd: Syntax error on line 292 of /etc/httpd/conf/httpd.conf:

DocumentRoot must be a directory

 [FAILED]

[root@node1 ~]# chcon -R -t httpd_sys_content_t /var/www/html/

[root@node1 ~]# service httpd restart

Stopping httpd: [FAILED]

Starting httpd: [OK]

然后在/var/www/html里放入一个非常简单的页面“Hello World”，同样，在测试完成之后要将httpd服务停止，卸载磁盘以防止后面产生配置冲突。

[root@node1 ~]# echo "Hello World" > /var/www/html/index.html

[root@node1 ~]# ls -Z /var/www/html/index.html

-rw-r--r--. root root unconfined_u:object_r:httpd_sys_content_t:s0 /var/www/html/index.html

[root@node1 ~]# elinks -dump http://172.16.10.50

 Hello World

[root@node1 ~]# /etc/init.d/httpd stop

Stopping httpd: [OK]

[root@node1 ~]# umount /var/www/html/

资源测试完成以后，可以进入下一步配置了。

5.配置集群组

打开Luci，首先建立一个cluster，这里是点击create，不是点击add，add是添加一个已经存在的cluster（如图6-3所示）。

然后在cluster name中填写名字，这里没有特别需求，最后填入node1、node2、node3的信息即可（如图6-4所示）。

配置好cluster之后开始配置资源，顺序是先添加浮动IP，然后添加文件系统，最后添加服务。

首先，点击Add Resource，选择IP Address，具体配置如图6-5所示。

 [image:]

图6-3　集群控制面板

 [image:]

图6-4　集群节点基本配置选项

 [image:]

图6-5　集群浮动IP配置

然后重复Add resource，选择Filesystem，具体配置如图6-6所示。

 [image:]

图6-6　集群共享磁盘配置

加入httpd资源，配置如图6-7所示。

 [image:]

图6-7　集群应用配置

所有的resource配置完成之后的界面如图6-8所示。

 [image:]

图6-8　集群资源控制面板

资源配置完成之后，再对Failover Domains进行配置，配置非常简单，如图6-9所示。注意这里的priority决定了资源组在哪个机器上率先启动。

 [image:]

图6-9　集群Failover规则配置

最后配置Service Group，将前面配置的resource逐一加入Service Group，注意这里的资源顺序，需要先启动filesystem资源，然后再启动httpd资源（如图6-10至图6-12所示）。

 [image:]

图6-10　集群服务组配置

 [image:]

图6-11　集群服务组资源类型

 [image:]

图6-12　集群服务器配置面板

至此整个集群组配置完成，可以进行集群切换测试了。

6.切换集群组测试

先使用clustat命令查看整个集群状态，代码如下，可以看到此时一切正常。

[root@node1 ~]# clustat

Cluster Status for cluster1 @ Fri Oct 23 15:02:02 2015

Member Status: Quorate

 Member Name ID Status

 ------ ---- ---- ------

 node1.private.cluster26.example.com 1 Online, Local, rgmanager

 node2.private.cluster26.example.com 2 Online, rgmanager

 node3.private.cluster26.example.com 3 Online, rgmanager

 Service Name Owner (Last) State

 ------- ---- ----- ------ -----

 service:webby

 node2.private.cluster26.example.com started

切换webfs资源组到node3上，大约在10秒后，再用clustat命令查看集群状态。此时webby切换到了node3上，同时我们始终可以访问http://172.16.10.50。

[root@node1 ~]# clusvcadm -r web -m node3.private.cluster10.example.com

[root@node1 ~]# clustat

Cluster Status for cluster1 @ Fri Oct 23 15:20:22 2015

Member Status: Quorate

 Member Name ID Status

 ------ ---- ---- ------

 node1.private.cluster26.example.com 1 Online, Local, rgmanager

 node2.private.cluster26.example.com 2 Online, rgmanager

 node3.private.cluster26.example.com 3 Online, rgmanager

 Service Name Owner (Last)State

 ------- ---- ----- -----------

 service:webby

 node3.private.cluster26.example.com started

[root@node1 ~]# elinks -dump http://172.16.10.50

 Hello World

这样就完成了一个Apache的高可用集群组。一般来说，这种高可用集群组多数出现在数据库服务上，而对于Apache这样的Web应用，多采用负载均衡集群，下一节将讲解如何配置负载均衡集群。
6.5　负载均衡集群

6.5.1　HAProxy负载均衡

HAProxy是一款开源的负载均衡软件，可用于4层和7层转发，从主流应用来看，使用HAProxy作为7层HTTP转发的场景非常多，因为它支持session、header rewrite、双机热备、虚拟主机等功能。在性能方面，官方宣称其可支持10GB并发量，所以HAProxy非常适合用于大并发、大流量的使用场景。本节将使用一台HAProxy作为前端，两台Apache作为后端来演示如何安装配置，并假设两台Apache服务器的IP地址分别为192.168.10.18/19。

两台Apache服务器使用yum安装后，分别在/var/www/html目录下创建index.html，文件内容分别为“Server1”和“Server2”，用于后面使用HAProxy进行负载均衡后区分实际访问到的不同主机，该步骤完成后，启动httpd服务。

使用yum安装HAProxy非常简便，但是目前CentOS默认源中提供的版本为1.5，如果想要安装更新的版本可使用源码包编译安装。示例如下：

[root@192 ~]# yum install haproxy

Loaded plugins: fastestmirror

Setting up Install Process

Loading mirror speeds from cached hostfile

 * base: ftp.sjtu.edu.cn

 * extras: ftp.sjtu.edu.cn

 * updates: ftp.sjtu.edu.cn

Resolving Dependencies

--> Running transaction check

---> Package haproxy.x86_64 0:1.5.4-2.el6_7.1 will be installed

--> Finished Dependency Resolution

Dependencies Resolved

===

 Package Arch Version Repository Size

===

Installing:

 haproxy x86_64 1.5.4-2.el6_7.1 updates 792 k

Transaction Summary

===

Install 1 Package(s)

Total download size: 792 k

Installed size: 2.4 M

Is this ok [y/N]: y

Downloading Packages:

haproxy-1.5.4-2.el6_7.1.x86_64.rpm | 792 kB 00:00

Running rpm_check_debug

Running Transaction Test

Transaction Test Succeeded

Running Transaction

 Installing : haproxy-1.5.4-2.el6_7.1.x86_64 1/1

 Verifying : haproxy-1.5.4-2.el6_7.1.x86_64 1/1

Installed:

 haproxy.x86_64 0:1.5.4-2.el6_7.1

Complete!

安装完成后，修改配置文件/etc/haproxy/haproxy.cfg，添加下面配置中加粗的部分。该部分配置的作用是：

·让HAProxy监听8080端口，当使用http://IP：8080/stats访问时，输入用户名admin、密码admin，从而进入HAProxy状态统计页面。

·让HAProxy监听80端口，当使用http://IP：8080访问时，负载均衡地将请求发送到后端192.168.10.18/19服务器上。通过刷新浏览器可以看出，随着每次的刷新，页面上依次显示为“Server1”和“Server2”，这说明HAProxy工作正常。

修改完成后，使用/etc/init.d/haproxy start启动HAProxy，并访问stats页面，该状态页可以显示HAProxy的当前性能数据，如下：

defaults

 mode http

 log global

 option httplog

 option dontlognull

 option http-server-close

 option forwardfor except 127.0.0.0/8

 option redispatch

 retries 3

 timeout http-request 10s

 timeout queue 1m

 timeout connect 10s

 timeout client 1m

 timeout server 1m

 timeout http-keep-alive 10s

 timeout check 10s

 maxconn 3000

listen status *:8080

 mode http

 stats uri /stats

 stats auth admin:admin

#---

main frontend which proxys to the backends

#---

frontend main *:80

 default_backend app

#---

round robin balancing between the various backends

#---

backend app

 balance roundrobin

 server app1 192.168.10.18:80 check

 server app2 192.168.10.19:80 check

HAProxy的运行状态如图6-13所示。

通过以上的配置，我们成功地使用HAProxy作为负载均衡器将需求分流给了后端的服务器。但是这里的演示中，HAProxy是一个单点，这对于很多应用来说是不可接受的。不过，读者可以通过引入keepalived来解决这个问题。
6.5.2　Nginx负载均衡

与HAProxy有所不同，Nginx本身是一个HTTP服务器，同时也提供了负载均衡的功能。本节将演示Nginx的安装方式并使用Nginx作为负载均衡设备代替上一节中的HAProxy。Nginx的安装过程稍微复杂一点，因为CentOS官方并没有提供可供yum安装的包，而编译安装过程中的依赖关系又比较复杂，每个人在实际编译安装过程中遇到的依赖关系可能不完全一样。

 [image:]

图6-13　HAProxy的运行状态

读者可通过http://nginx.org/en/download.html下载到最新版本的Nginx，截至笔者撰写本章时，最新版本为1.8.1。示例如下：

yum remove haproxy #如果使用Nginx替代HAProxy，则删除HAProxy包

#下载Nginx源码包并解压进入目录

wget http://nginx.org/download/nginx-1.8.1.tar.gz

tar zxvf nginx-1.8.1.tar.gz

cd nginx-1.8.1

#安装必要的依赖包

yum install gcc pcre-devel zlib-devel openssl-devel

#编译并安装到/usr/local/nginx

./configure --prefix=/usr/local/nginx && make && make install

修改配置文件conf/nginx.conf，并启动Nginx 服务：

cat conf/nginx.conf

worker_processes 1;

events {

 worker_connections 1024;

}

http {

 include mime.types;

 default_type application/octet-stream;

 sendfile on;

 keepalive_timeout 65;

 upstream app_pool {

 server 192.168.10.18:80;

 server 192.168.10.19:80;

 }

 server {

 listen 80;

 server_name localhost;

 location / {

 root html;

 index index.html index.htm;

 proxy_pass http://app_pool;

 }

 error_page 500 502 503 504 /50x.html;

 location = /50x.html {

 root html;

 }

 }

}

#启动Nginx

./sbin/nginx

使用http://IP访问Nginx，并不断刷新浏览器，若页面上依次显示为“Server1”和“Server2”，则说明Nginx工作正常。
6.5.3　LVS负载均衡

LVS负载均衡是国人的贡献，它工作在网络4层，最大的优点是转发效率极高，大多数情况下性能仅受限于硬件上的网卡性能。

LVS目前有4种工作模式：NAT、DR、TUNNEL和Full-NAT，其中最常用的是NAT和DR模式，TUNNEL模式使用场景极少，而Full-NAT模式用于跨网段（或是跨机房），所以使用场景并不典型。本节将从实用出发，演示NAT模式和DR模式。

NAT模式和之前的HAProxy、Nginx类似，该模式就是“代理模式”，即：所有的访问流量和返回流量都通过负载均衡设备，LVS的NAT工作模式是所有模式中最简单、最易配置的。这里将使用三台服务器做演示，一台为LVS负载均衡器，另外两台运行httpd服务。

在一台服务器上安装ipvsadm，作为LVS负载均衡器，该服务器有两块网卡，IP分别为192.168.109.131和192.168.1.5，其中192.168.1.5用于对外提供负载均衡服务。

[root@192 ~]# yum install ipvsadm

Loaded plugins: fastestmirror

Setting up Install Process

Loading mirror speeds from cached hostfile

 * base: mirrors.aliyun.com

 * extras: mirrors.aliyun.com

 * updates: mirrors.aliyun.com

Resolving Dependencies

--> Running transaction check

---> Package ipvsadm.x86_64 0:1.26-4.el6 will be installed

--> Finished Dependency Resolution

Dependencies Resolved

===

 Package Arch Version Repository Size

===

Installing:

 ipvsadm x86_64 1.26-4.el6 base 42 k

Transaction Summary

===

Install 1 Package(s)

Total download size: 42 k

Installed size: 78 k

Is this ok [y/N]: y

Downloading Packages:

ipvsadm-1.26-4.el6.x86_64.rpm | 42 kB 00:00

Running rpm_check_debug

Running Transaction Test

Transaction Test Succeeded

Running Transaction

 Installing : ipvsadm-1.26-4.el6.x86_64 1/1

 Verifying : ipvsadm-1.26-4.el6.x86_64 1/1

Installed:

 ipvsadm.x86_64 0:1.26-4.el6

Complete!

在另外两台服务器上安装httpd服务，并启动（可以沿用前两节的httpd环境）。假设这两台服务器的IP地址分别为192.168.109.129和192.168.109.130，现在要将这两台服务器的默认网关设置为LVS的IP：192.168.109.131，如下：

route delete default #删除原先的默认路由

route add default gw 192.168.109.131 #添加新的默认路由

在LVS节点上继续做以下配置，可以将其写为脚本，方便每次使用，执行该脚本后，就会在LVS服务器上创建一个以192.168.1.5：80为入口的负载均衡服务。

[root@192 ~]# cat lvs-nat.sh

#!/bin/bash

echo 1 > /proc/sys/net/ipv4/ip_forward

echo 0 > /proc/sys/net/ipv4/conf/all/send_redirects

echo 0 > /proc/sys/net/ipv4/conf/default/send_redirects

echo 0 > /proc/sys/net/ipv4/conf/eth0/send_redirects

IPVSADM='/sbin/ipvsadm'

$IPVSADM -C

$IPVSADM -A -t 192.168.1.5:80 -s rr

$IPVSADM -a -t 192.168.1.5:80 -r 192.168.109.129:80 -m -w 1

$IPVSADM -a -t 192.168.1.5:80 -r 192.168.109.130:80 -m -w 1

最后在浏览器里访问192.168.1.5，并不断刷新网页，就可以依次看到“Server1”和“Server2”了，这表明LVS在正常地进行负载均衡服务。

从上面的例子也可以看出，在NAT模式下，所有真实服务器的默认网关改为了LVS负载均衡器，这让LVS成为了一个潜在的瓶颈，当网络流量达到LVS服务器的物理限制时，整个系统就无法承接更多的请求了，这种情况下DR模式就能很好地解决这个问题。依然使用之前的三台服务器做演示，但是这时候三台服务器的网络将调整到同一个网段下，这里笔者所使用三台服务器的IP分别为192.168.1.5、192.168.1.6、192.168.1.7，虚拟访问IP为192.168.1.10。

在LVS服务器上，运行如下脚本：

#!/bin/bash

echo 1 > /proc/sys/net/ipv4/ip_forward

echo 0 > /proc/sys/net/ipv4/conf/all/send_redirects

echo 0 > /proc/sys/net/ipv4/conf/default/send_redirects

echo 0 > /proc/sys/net/ipv4/conf/eth0/send_redirects

/sbin/ifconfig eth0:0 192.168.1.10 broadcast 192.168.1.10 netmask 255.255.255.255 up

/sbin/route add -host 192.168.1.10 dev eth0:0

IPVSADM='/sbin/ipvsadm'

$IPVSADM -C

$IPVSADM -A -t 192.168.1.10:80 -s rr

$IPVSADM -a -t 192.168.1.10:80 -r 192.168.1.6:80 -g -w 1

$IPVSADM -a -t 192.168.1.10:80 -r 192.168.1.7:80 -g -w 1

在真实服务器上，运行如下脚本：

#!/bin/bash

echo "1" > /proc/sys/net/ipv4/conf/lo/arp_ignore

echo "2" > /proc/sys/net/ipv4/conf/lo/arp_announce

echo "1" >/proc/sys/net/ipv4/conf/all/arp_ignore

echo "2" >/proc/sys/net/ipv4/conf/all/arp_announce

sysctl -p > /dev/null 2>&1

ifconfig lo:0 192.168.1.10 netmask 255.255.255.255 broadcast 192.168.1.10

route add -host 192.168.1.10 dev lo:0

在浏览器里访问192.168.1.10，并不断刷新，若依次显示为“Server1”和“Server2”，则配置成功。
第7章　Graphite

7.1　Graphite是什么

7.1.1　Graphite不是一个告警系统

提到监控，大部分系统管理员想到的都是像Nagios、Zabbix这样的告警系统，它们会在系统或软件发生异常的时候实时地为系统管理员提供告警信息。事实上，实时的告警只是监控的一个部分，除此之外，为管理员和开发人员提供软件实时的性能指标（metrics）查询、提供历史数据对照等都属于监控的重要组成部分。

Graphite就是这样一个存储和展现性能指标的优秀开源软件。Graphite项目于2006年由Orbitz.com创建，并于2008年开源，在https:/github.com/graphite-project上可以找到它的源代码。
7.1.2　Graphite的功能和特色

Graphite的基本功能是接收性能数据，并将其展现成为随时间演化的图像，比如图7-1展示的是12小时内服务器负载均值（load average）的监控数据。

图7-1中的横轴为时间，纵轴为数值，下方的字符串代表3个不同的性能指标，在Graphite中称之为metrics，图片展示的便是对应metrics在12小时内的变化。

注意，Graphite自己本身并不收集各种性能指标，而是需要我们先将性能指标发送给它，不过，给Graphite发送数据其实是非常简单的，只是需要把metrics名、时间戳和对应数据值发送给服务即可（后面可以看到）。

 [image:]

图7-1　12小时内负载均衡指标

能画图并不能说明Graphite为何深受系统管理员和开发人员的欢迎，毕竟像Zabbix、Nagios、Cacti这样的软件其自身或者插件也都提供了类似功能。那么，我们就来看看Graphite还有哪些特色：

·数据实时展现。这是Graphite最大的亮点之一，发送给Graphite的数据可以实时地在它的Web页面上展现出来。从服务器发送到展现在Graphite Web页面的延时基本可以忽略不计。

·高度可扩展。通过添加物理硬件，Graphite可以很好地实现性能上的平行扩充。

·丰富的作图功能。Graphite提供了丰富作图函数，可以对数据进行各种绘制操作，比如对数据进行求和、求差值、合并图像等操作。

·简单易用的API。向Graphite请求数据的API非常简单，通过在HTTP url中提供各种参数，便可以轻松获得我们想要的数据。
7.2　Graphite的基本组件

Graphite软件由Graphite WebUI、Carbon和Whisper三个组件组成，其中，Graphite WebUI用来展现数据；Carbon用来接收数据；Whisper用来存储数据。下面分别简单介绍这三个组件的功能。
7.2.1　Whisper

Whisper是Graphite用来存放数据的组件，它是一个大小固定的数据库，类似于RRD文件，一个metrics存放在一个Whisper文件中，一般文件名以.wsp结尾。每个metrics都有它对应的精度（precision）和保留期（retention），当这两个参数设定好了之后，whisper文件大小也就随之确定了。

精度和保留期主要用于设置对应数据需要保留多长时间，以及多长时间保存一个数据点。whisper文件支持灵活的数据保存设置，比如：

1m:7d,5m:30d,15m:1y

表示最近7天内，每分钟保存一个数据点；一个月内，每5分钟保存一个数据点；一年内，每15分钟保存一个数据点；最多保存一年的数据。这种稀疏化的保存方式，既保证了近期数据精确性，还保证在尽量少使用磁盘的情况下，保留最长时间的数据。

数据保存的时间标志有：

·s：表示秒

·m：表示分钟

·h：表示小时

·d：表示天

·y：表示年

数据是否需要稀疏化保存可以随意设置，比如只设置1m：7d也是可以的。除了使用时间来设置精度和保留期之外，还可以通过“每个数据点的秒数：数据点个数”的形式来设置，比如：

60:1440

表示每个数据点为一分钟，也就是一分钟保存一个数据，一共保存1440个数据点，也就是一天的数据。

具体设置precision和retention的配置文件叫做storage-schema.conf，在后续章节里会介绍到。数据的稀疏化过程都是Graphite自动处理的，并不需任何的人为干预。
7.2.2　Carbon

Carbon是Graphite中接收数据的组件，Carbon根据功能的不同有三个不同的守护进程，具体如下。

1.Carbon Cache

Carbon Cache用来接受发送过来的metrics，它将收到的数据缓存在内存中，同时批量写入Whisper数据库。数据发送可以使用多种metrics发送协议，比如明文发送和使用python pickle格式。

2.Carbon Relay

Carbon Relay主要用来做两件事情：数据复制和数据分片。数据复制是指将同一个数据发送到不同的目的地，保证数据的高可用性；数据分片是指将不同的数据发送到不同的目的地，保证数据接收端的可扩展性，这样一来，就不会由于大量的数据而造成性能问题了。

一般来说，Carbon Relay配置在Carbon Cache之前。脚本在将数据发送给Carbon Relay后，Relay会将数据转发给Carbon Cache，Carbon Cache则将数据保存到磁盘。

3.Carbon Aggregate

主要用来对metrics进行聚合，它将metrics缓存起来，在一段时间之后对其进行聚合操作，比如求和或者求平均值，再将其发送给Carbon Cache。
7.2.3　Graphite Web

Graphite Web是用来展现metrics的一个Web界面，使用Python Web框架Django写成。其数据来源是Whisper数据库文件和保存在Carbon Cache内存里的metrics。Graphite的实时性就来源于此，数据不需要写入到磁盘就可以被Web页面读取，从而避免了由于数据写入磁盘而产生的延迟，数据从产生到显示在Web界面之间的延时基本上就是数据在网络上传输所需要的时间。图7-2是一个Graphite Web的截图。

 [image:]

图7-2　Graphite WebUI示意图
7.3　Graphite的安装

下面分开讲述Graphite各个组件的安装配置过程，这里涉及的所有源代码都是从GitHub上拉取的。关于GitHub的使用，请读者自行参考相关文档。
7.3.1　安装Whisper数据库

在安装Whisper数据库之前，要从GitHub获取Whisper数据库的源代码：

git clone git@github.com:graphite-project/whisper.git

然后就可以使用Python从源代码安装Whisper了，安装代码如下：

cd whisper && sudo python setup.py install

以上命令会在服务器上安装以下文件。Whisper数据库不需要特殊的配置，它是Carbon和Graphite-web需要调用的Python库。

/usr/bin/rrd2whisper.py

/usr/bin/whisper-create.py

/usr/bin/whisper-dump.py

/usr/bin/whisper-fetch.py

/usr/bin/whisper-info.py

/usr/bin/whisper-merge.py

/usr/bin/whisper-resize.py

/usr/bin/whisper-set-aggregation-method.py

/usr/bin/whisper-update.py

/usr/lib/python2.6/site-packages/whisper-0.9.12-py2.6.egg-info

/usr/lib/python2.6/site-packages/whisper.py

/usr/lib/python2.6/site-packages/whisper.pyc

7.3.2　安装Carbon守护进程

安装Carbon守护进程的步骤如下。

1）从GitHub获取Carbon源代码，如下：

git clone git@github.com:graphite-project/carbon.git

2）在Python上根据源代码安装Carbon，命令如下：

cd carbon && sudo python setup.py install

3）Carbon需要用到Python的twisted库，一般发行版都自带了twisted的包，在CentOS中，可以通过yum安装，命令如下：

yum install –y python-twisted

经过上述步骤，Carbon的文件被安装到了/opt/graphite目录，它的守护进程文件包括：

/opt/graphite/bin/carbon-aggregator.py

/opt/graphite/bin/carbon-cache.py

/opt/graphite/bin/carbon-client.py

/opt/graphite/bin/carbon-relay.py

7.3.3　安装graphite-web

安装graphite-web的步骤如下。

1）从github获取源代码，如下：

git clone git@github.com:graphite-project/graphite-web.git

2）从源代码安装Graphite，命令如下：

cd graphite && sudo python setup.py install

3）安装依赖包。Graphite依赖于一系列的Python库，这些库基本上CentOS都自带了，可以通过yum直接安装。可通过下面命令来检查所有的依赖关系是否都已经满足：

[root@graphite01 graphite]# yum install –y Django django-tagging pycairo python-ldap python-memcached python-twisted python-simplejson python-txamqp python-cairocffi pyparsing pytz bitmap-fonts

[root@graphite01 graphite]# python check-dependencies.py

[OPTIONAL] Unable to import the 'python-rrdtool' module, this is required for reading RRD.

1 optional dependencies not met. Please consider the optional items before proceeding.

All necessary dependencies are met.

7.4　Graphite的配置（单点）

本节将讲述如何配置一个单点的Graphite服务。在该节中，是将分析数据由一个简单的脚本发送给Carbon-Cache守护进程，写到本机的Whisper数据库，然后graphite-web读取并显示数据的过程。
7.4.1　配置Carbon守护进程

启动Carbon守护进程，需要先读取它的配置文件，配置文件位于/opt/graphite/conf/carbon.conf下。笔者使用的配置文件如下：

[cache:1]

LINE_RECEIVER_INTERFACE = 0.0.0.0

LINE_RECEIVER_PORT = 2003

PICKLE_RECEIVER_INTERFACE = 0.0.0.0

PICKLE_RECEIVER_PORT = 2004

CACHE_QUERY_INTERFACE = 0.0.0.0

CACHE_QUERY_PORT = 7201

MAX_CACHE_SIZE = inf

MAX_UPDATES_PER_SECOND = 250

MAX_UPDATES_PER_SECOND_ON_SHUTDOWN = 500

WHISPER_AUTOFLUSH = False

LOG_UPDATES = True

注意，在安装了Carbon之后，会有个配置文件样例/opt/graphite/conf/carbon.conf.example，其中有对每个选项的详细解释，读者也可以将这个文件直接拷贝为carbon.conf。这里建议使用本书中的样例。

对于上面的配置文件，各个选项的具体解释如下：

·LINE_RECEIVER_INTERFACE、LINE_RECEIVER_PORT、PICKLE_RECEIVER_INTERFACE、PICKLE_RECEIVER_PORT：这些选项用于配置不同数据接收协议监听的网卡和端口。之前也提到过，Carbon可以接受两种数据格式：一种是明文的字符串，一种是Python的PICKLE数据格式，分别对应这里的LINE_RECEVIER和PICKLE_RECEIVER。INTERFACE一般配置为0.0.0.0，表示监听所有的网卡，端口在这里分别配置为2003和2004，使用的是TCP协议。

·CACHE_QUERY_INTERFACE、CACHE_QUERY_PORT：Graphite Web除了从Whisper数据库里读取数据外，还可以从Carbon Cache进程读取缓存在内存里面的数据，这时候需要配置一个服务端口给Graphite Web，这就是CACHE_QUERY这两个选项的作用，用于配置监听网卡和端口。

·MAX_CACHE_SIZE：这个选项来控制Carbon Cache守护进程可以缓存在内存中的数据大小。一般设置为inf，表示无限制。如果缓存的数据过大，会导致服务器使用swap，并且Carbon Cache需要对缓存的数据进行排序等操作，可能会对CPU的使用造成瓶颈。但是缓存数据过大一般是由于内存写入到磁盘不够快而造成的，所以从优化的角度来讲，还是需要解决写入的速度问题。

·MAX_UPDATES_PER_SECOND、MAX_UPDATES_PER_SECOND_ON_SHUTDOWN：这两个选项设置在平时和关闭Carbon Cache的时候，每分钟写入到Whisper数据库操作的次数。主要用来防止写入磁盘过快而导致磁盘问题。MAX_UPDATES_PER_SECOND_ON_SHUTDOWN主要是考虑到关闭Carbon Cache的时候，必须将内存里面的数据迅速写入到磁盘，这样Carbon Cache才能尽快地关闭，所以一般这个值的设置都比MAX_UPDATES_PER_SECOND稍大。

·WHISPER_AUTOFLUSH：这个选项表示跳过kenerl buffer而直接写入硬盘。一般来说不要这么做，通常设置为False。

·LOG_UPDATES：默认情况下，Carbon Cache将每次Whisper的更新操作都写入log文件里面，当metrics很多的时候，更新操作是非常频繁的，如果log文件和Whisper是同时保存在同一个磁盘卷下面的，那么这些操作将有可能影响Whisper的写入性能，所以一般将这个选项设置为False。但是对于本书的演示来说，没有太高的性能要求，在这里设置为True，方便通过查看log监控whisper操作。

可能有读者已注意到配置文件里有个[cache：1]，而carbon.conf.example文档里面的是[carbon]。这是因为carbon-cache可以启动多个进程，对不同的进程，需要有不同的配置，比如监听端口等。而这里正好配置了一个carbon-cache实例1的进程，因此在配置文件里的为[cache：1]。通过下面的命令：

python /opt/graphite/bin/carbon-cache.py --instance 1 start

可将Carbon Cache守护进程启动起来。默认的情况下，如果不加instance参数，Carbon会启动一个名叫a的进程。

通过netstat命令可以看到所有配置的端口都已经被监听了，如下：

[root@graphite01 graphite]# netstat -ntlp |grep python

tcp 0 0 0.0.0.0:2003 0.0.0.0:* LISTEN 1927/python

tcp 0 0 0.0.0.0:2004 0.0.0.0:* LISTEN 1927/python

tcp 0 0 0.0.0.0:7201 0.0.0.0:* LISTEN 1927/python

配置完Carbon Cache之后，需要配置/opt/graphite/conf/storage-schemas.conf，告诉Whisper将以什么频率来发送metrics，以及希望数据保留多长时间。配置命令如下：

cat /opt/graphite/conf/storage-schemas.conf

[carbon]

pattern = ^carbon\.

retentions = 60:90d

[default]

pattern = .*

retentions = 60s:7d,5m:30d,15m,1y

这个文件将不同的metrics保留期设置为了不同的部分，这里是[carbon]和[default]两个部分，这两个名字可以随意设置，一般使用一个具有代表意义的名字即可。其中所包含的两个配置又分别为：

·Pattern：用正则表达式设置一个模式匹配的规则，metrics的名字如果匹配这个正则，就使用此部分设置的保留期。

·Retention：设置保留期，Retention的设置格式在前文已经有详细讲述。这里的意思是7天内的数据，60秒保存一个数据点；30天内的数据，5分钟保存一个数据点；一年内的数据，15分钟保存一个数据点；多于一年的数据丢弃。
7.4.2　给Carbon Cache发送数据

首先使用一个脚本产生一些简单的数据，脚本代码如下：

#!/usr/bin/env bash

for i in `seq 1 20`;

do

 echo server.host${i}.LoadAverage.15min $(($RANDOM%20)) $(date +%s)

 echo server.host${i}.LoadAverage.5min $(($RANDOM%20)) $(date +%s)

 echo server.host${i}.LoadAverage.1min $(($RANDOM%20)) $(date +%s)

done

然后，将以上代码保存为/root/metrics_gen.sh。运行bash/root/metrics_gen.sh，可以看到类似如下输出：

server.host20.LoadAverage.5min 16 1421330774

server.host20.LoadAverage.1min 0 1421330774

这就是Carbon接受的明文数据格式。上面一行数据根据空格可以分割为3个部分，第一个部分server.host20.LoadAverage.5min，这是metrics的名字。Carbon会在Whisper的根目录（一般为/opt/graphite/storage/whisper/）下，按照Whisper的名字，以点号作为分隔符，自动生成server/host20/LoadAverage这个目录，并把数据保存到5min.wsp这个文件中。其中，16是这个metrics的值，而1421330774是对应数据生产的时间戳。

现在使用下面这个命令向Carbon Cache发送数据：

bash metrics_gen.sh | nc localhost 2003

这里只是简单地将产生的字符串通过nc命令发送给了Carbon Cache监听的2003端口。此时查看/opt/graphite/storage/whisper/server/，便可以看到自动生成的host目录以及里面的whisper文件。

[root@graphite01 server]# ls -lh /opt/graphite/storage/whisper/server/host7/LoadAverage/*

-rw-r--r--. 1 root root 631K Jan 15 22:17 /opt/graphite/storage/whisper/server/host7/LoadAverage/15min.wsp

-rw-r--r--. 1 root root 631K Jan 15 22:17 /opt/graphite/storage/whisper/server/host7/LoadAverage/1min.wsp

-rw-r--r--. 1 root root 631K Jan 15 22:17 /opt/graphite/storage/whisper/server/host7/LoadAverage/5min.wsp

而且可以看到这些文件的大小都是一样的，对于一个Whisper文件，如果保留期确定之后，它的大小也就确定了，不会随时间的变化而增长。

接下来配置一个cronjob，保证数据能够持续地发送到Carbon Cache。命令如下：

[root@graphite01 ~]# cat /etc/cron.d/metrics_sender

* * * * * root bash /root/metrics_gen.sh | nc localhost 2003

这里设置了每分钟运行一次这个脚本，并将metrics发送给Carbon Cache。

Carbon Cache的日志保存在/opt/graphite/storage/log/carbon-cache下面，每一个instance有一个目录来保存它们的日志。进入carbon-cache-1目录，可以看到有如下日志文件产生：

[root@graphite01 carbon-cache-1]# ls

console.log creates.log listener.log query.log updates.log

7.4.3　配置Graphite-web

现在来配置Graphite-web。首先要在服务器上安装好MySQL，MySQL主要用来保存配置好的Graphite Dashbord数据。其次还需安装Apache和mod_wsgi，用它来运行Graphite的Web服务。此外，还需使用到Python的MySQL库，Graphite会用它来连接MySQL。安装MySQL的命令如下：

yum install –y mysql mysql-server httpd MySQL-python mod_wsgi

启动MySQL和Apache的命令如下：

/etc/init.d/mysqld start && /etc/init.d/httpd start

现在，打开MySQL shell，创建Graphite的数据库用户，命令如下：

[root@graphite01 graphite]# mysql

Welcome to the MySQL monitor. Commands end with ; or \g.

mysql> grant all on graphite.* to 'graphite'@'localhost' identified by "graphite";

Query OK, 0 rows affected (0.00 sec)

此时需要配置Graphite-web本身的一些参数，配置文件在/opt/graphite/webapp/graphite/settings.py下，一般不改动这个文件，而是创建一个local_settings.py，Graphite的安装里面自带了一个local_settings.py.example文件，里面有各个选项的详细解释，笔者使用的local_settings.py内容如下：

[root@graphite01 graphite]# cat local_settings.py

DATABASES = {

 'default': {

 'NAME': 'graphite',

 'ENGINE': 'django.db.backends.mysql',

 'USER': 'graphite',

 'PASSWORD': 'graphite',

 'HOST': 'localhost',

 'PORT': '3306'

 }

}

CARBONLINK_HOSTS = ['localhost:7201:1']

TIME_ZONE = 'UTC'

其中，Database选项表示我们使用MySQL作为后端数据库，并且还配置了连接数据库的各个参数，比如用户名、密码、主机、端口等。

此外，CARBONLINK_HOSTS也是一个比较重要的参数，graphite-web可以读取Carbon Cache保存在内存里还没写到磁盘中的metrics，但是必须告知graphite-web从哪里读取这些数据，即通过指定CARBONLINK_HOST来设置。之前Carbon Cache里设置过CACHE_QUERY_INTERFACE和CACHE_QUERY_PORT，在这里，需要将CARBONLINK_HOST设置为相对应的主机和端口。若出现不匹配的情况，Graphite WebUI将无法正确地从Carbon Cache中读取数据。因为这里将graphite-web和Carbon Cache安装在同一个服务器上面，所以这里设置为localhost即可，端口是对应的CACHE_QUEYR_PORT，结尾的“：1”必须和前面Carbon Cache的命名一致。CARBONLINK_HOSTS可以设置多个值，从多个Carbon Cache读取保存在内存里面的metrics。

接下来初始化数据库，运行下面的命令即可完成：

python /opt/graphite/webapp/graphite/manage.py syncdb

最后配置Graphite运行在Apache下。首先，要创建/opt/graphite/conf/graphite.wsgi文件，文件内容如下：

import os, sys

sys.path.append('/opt/graphite/webapp')

os.environ['DJANGO_SETTINGS_MODULE'] = 'graphite.settings'

import django.core.handlers.wsgi

application = django.core.handlers.wsgi.WSGIHandler()

READ THIS

Initializing the search index can be very expensive, please include

the WSGIScriptImport directive pointing to this script in your vhost

config to ensure the index is preloaded before any requests are handed

to the process.

from graphite.logger import log

log.info("graphite.wsgi - pid %d - reloading search index" % os.getpid())

import graphite.metrics.search

然后，配置Apache下的Graphite，编辑配置文件/etc/httpd/conf.d/graphite.conf，其内容如下：

WSGISocketPrefix run/wsgi

WSGIDaemonProcess graphite processes=5 threads=5 display-name='%{GROUP}' inactivity-timeout=120

WSGIProcessGroup graphite

WSGIApplicationGroup %{GLOBAL}

WSGIImportScript /opt/graphite/conf/graphite.wsgi process-group=graphite application-group=%{GLOBAL}

WSGIScriptAlias / /opt/graphite/conf/graphite.wsgi

更改graphite-web文件的权限，保证Apache能够访问，如果开启了SELinux，还需要先关闭SELinux，命令如下：

chown -R apache.apache /opt/graphite/{storage,webapp}

重启httpd，命令如下：

/etc/init.d/httpd restart

这样Graphite就启动起来了，访问本机http://localhost/，就能看到Graphite的Web界面。
7.5　Graphite的配置（集群配置）

根据前一节的讲解，相信读者对Graphite的基础组件有了一定的了解。前面使用了一个Carbon Cache进程来接收数据并写入磁盘，现在来考虑Graphite的扩容问题。假设随着业务数据量的增多，单进程的Carbon Cache成为了服务的瓶颈，它无法迅速地处理海量的metrics请求，也无法迅速地将数据写入到磁盘中。值得注意的一点是，虽然在磁盘无故障的情况下，无法迅速地写入磁盘并不是很大的问题，因为graphite-web可以将数据从内存里读取出来，但是大量的数据，会导致graphite-web从Carbon Cache中读取数据的速度变慢。

面对这样的情况，该如何处理呢？此时很自然的解决方法是添加额外的Carbon Cache进程，让它们监听不同的端口，在这些进程前面放置一个VIP，数据先发送到这个VIP，然后转发到不同的进程端口。这时候必须要保证对应一个metrics，它永远只能发送到同一个Carbon Cache进程，因为如果发送到不同的Carbon Cache，那么会产生一种“不同的Cache进程在同一时刻写同一个Whisper文件”的可能性，这有可能会造成文件写入冲突，产生不可预料的文件损坏，或者会使进程在等待其他进程时释放写入锁，从而导致写入的性能大大下降。

添加多个Carbon Cache进程的同时，需要将这些进程的信息配置到graphite-web的CARBONLINK_HOSTS选项中，以便graphite-web能够读取所有的缓存数据。graphite-web读取某一个metrics的数据的时候，它最好能够知道这个metrics能从哪个Carbon Cache进程中读取，这样它就没有必要轮询所有的Cache进程了。

因此要做到Graphite的集群化，主要有两点需求：

·同一metrics必须发送到同一个Carbon Cache实例。

·对于一个metrics，Graphite WebUI必须知道从哪个Carbon Cache中读取其数据。

这样的需求是通用的负载均衡软件或者硬件不能提供的，幸运的是Graphite的开发人员开发出了Carbon Relay，可以完美地解决这些问题。
7.5.1　配置Carbon Relay

首先要在前面案例的基础上再启用一个Carbon Cache进程。可在/opt/graphite/conf/carbon.conf下添加如下配置，启动第二个Cache进程。

[cache:2]

LINE_RECEIVER_INTERFACE = 0.0.0.0

LINE_RECEIVER_PORT = 2103

PICKLE_RECEIVER_INTERFACE = 0.0.0.0

PICKLE_RECEIVER_PORT = 2104

CACHE_QUERY_INTERFACE = 0.0.0.0

CACHE_QUERY_PORT = 7202

MAX_CACHE_SIZE = inf

MAX_UPDATES_PER_SECOND = 250

MAX_UPDATES_PER_SECOND_ON_SHUTDOWN = 500

WHISPER_AUTOFLUSH = False

LOG_UPDATES = True

/opt/graphite/bin/carbon-cache.py --instance 2 start

然后在/opt/graphite/conf/carbon.conf中为Carbon Relay添加如下配置：

[relay:1]

RELAY_METHOD = consistent-hashing

LINE_RECEIVER_INTERFACE = 0.0.0.0

LINE_RECEIVER_PORT = 2013

PICKLE_RECEIVER_INTERFACE = 0.0.0.0

PICKLE_RECEIVER_PORT = 2014

MAX_QUEUE_SIZE = 10000

MAX_DATAPOINTS_PER_MESSAGE = 500

USE_FLOW_CONTROL = True

DESTINATIONS = localhost:2004:1,localhost:2104:2

对于上面的配置文件，各个选项的具体解释如下。

·RELAY_METHOD：这个选项用于设置Carbon Relay转发metrics的方式。转发方式分别有如下几种。

·rules：表示在relay-rules.conf里面配置匹配模式，不同的匹配发送到不同的目的地，Relay的目的地可以是Cache，也可以是Relay，还可以是Aggregator。

·consistent-hash：指metrics平均地转发到不同的目的地。Carbon Relay使用一套内部机制，保证同一metrics永远发送到特定的目的地。

·aggregated-consistent-hashing：当Carbon Relay的转发数据的后端是Carbon Aggregator的时候使用。

·LINE_RECEIVER_INTERFACE、LINE_RECEIVER_PORT、PICKLE_RECEIVER_INTERFACE和PICKLE_RECEIVER_PORT：这几个选项和Carbon Cache中的对应选项意思相同，即配置不同数据格式的监听地址。

·MAX_QUEUE_SIZE：Carbon Relay中保持metrics队列的长度。

·USE_FLOW_CONTROL：如果设置为False，Carbon Relay的任意发送队列超过MAX_QUEUE_SIZE的时候，Relay会开始丢弃保存的数据；如果设置为True（默认值），接收metrics的那个socket会停止接收新数据，直到发送队列小于MAX_QUEUE_SIZE*0.8。

·MAX_DATAPOINTS_PER_MESSAGE：每次发送到后端Message的最大数据量。

·DESTINATIONS：发送的目的地，每一个目的地是一个Carbon守护进程的实例。注意Carbon守护进程之间发送数据使用PICKLE格式，因此在这里需要使用PICKLE_RECEIVER_PORT。

除此之外，还需要更新一个非常重要的参数，即webapp local_settings.py里的CARBONLINK_HOSTS。打开这个文件，将新的Carbon Cache添加进去。

CARBONLINK_HOSTS = ['localhost:7201:1', 'localhost:7202:1']

这个选项需要更加详细的解释。Carbon Relay使用一套内部算法来计算某个metrics应该发送到哪个目的地，而Graphite Web在读取这个metrics的时候使用的是同一算法，它从Web界面上获得用户需要查询的metrics，从对应的CARBONLINK_HOST中读取缓存在内存里的数据，但它并不会轮询所有的CARBONLINK_HOST。因此在这里这个选项里面的值需要与Relay的DESTINATIONS一一对应，顺序也必须完全一致，不然Graphite Web会读取错误的Carbon Cache但是取不到任何数据，从而造成缓存在内存中的metrics无法及时显示，那么就不是一个real-time的Graphite服务了。

现在可以启动Relay进程了，命令如下：

python /opt/graphite/bin/carbon-relay.py --instance 1 start

然后修改Cron，将metrics发送到Carbon Relay：

cat /etc/cron.d/metrics_sender

* * * * * root bash /root/metrics_gen.sh | nc localhost 2013

此时，查看Relay的日志，可以看到守护进程接收metrics的记录，如下：

tail -2 /opt/graphite/storage/log/carbon-relay/carbon-relay-1/listener.log

19/01/2015 21:55:01 :: MetricLineReceiver connection with 127.0.0.1:56882 established

19/01/2015 21:55:01 :: MetricLineReceiver connection with 127.0.0.1:56882 closed cleanly

再次查看Graphite Web界面，metrics应该仍然会在Web上正常显示。
7.5.2　Relay中的数据复制

Relay将不同的metrics发送到不同的目的端，这个功能叫做数据的分片（shading），除此之外它还有一个功能，叫做数据复制（replication），即将同一数据发送到不同的目的端，从而防止数据丢失。

Relay也支持数据复制功能，它通过选项carbon.conf中的REPLICATION_FACTOR来制定复制功能。REPLICATION_FACTOR指的是数据发送的份数，默认值为1，表示只发送一份，如果将REPLICATION_FACTOR改成2，那么Relay会将同一份数据发送到两个不同的目的端。这里有一个有趣的技巧，我们可以创建两个目的地，然后将REPLICATION_FACTOR设置成2，这样就有了一个数据的完全备份，两边都有全部数据。笔者在生产环境中就使用了这个技巧，除了正常的Graphite服务器之外，还使用replication将数据发送到一个Graphite缓存服务器，它配备有SSD磁盘，只用来存放最近一周的数据，由于保存数据少，这台服务器的响应非常快，数据量上也满足绝大部分的日常需求。
7.5.3　数据聚合

什么是数据聚合呢（aggregation）？数据聚合典型的应用场景就是统计平均值和计数器。比如服务a需要时常访问另外一个服务b，我们想统计一分钟内访问b的次数，或者想要计算访问b服务的平均响应时间，那么就需要将每一次从a访问b的响应时间数据发送出去，而metrics接收端需要将这些数据暂时缓存起来，对时间计算一个累计值，或者平均值，然后再进行数据上报。这样一个过程叫做数据聚合。

Carbon Aggregator就是一个用来聚合数据的服务，它支持两种聚合方式：求和（sum）和求平均（avg）。在/opt/graphite/conf/carbon.conf里添加如下聚合配置：

[aggregator:1]

LINE_RECEIVER_INTERFACE = 0.0.0.0

LINE_RECEIVER_PORT = 2023

PICKLE_RECEIVER_INTERFACE = 0.0.0.0

PICKLE_RECEIVER_PORT = 2024

DESTINATION_HOST = 127.0.0.1

DESTINATION_PORT = 2004

MAX_QUEUE_SIZE = 10000

MAX_DATAPOINTS_PER_MESSAGE = 500

DESTINATIONS = localhost:2004:1, localhost:2104:2

这些选项和之前Relay选项的意思基本一致，这里不再详述。启动aggregator，命令如下：

python /opt/graphite/bin/carbon-aggregator.py --instance 1 start

下面配置/opt/graphite/conf/aggregation-rules.conf，这个文件的任何改动都能够被自动读取到。

service.http.get.item.all.requests (60) = sum service.http.get.item.*.requests

service.http.get.item.all.time (60) = avg service.http.get.item.*.time

aggregation-rules.conf里的配置格式为output_template（frequency）=method input_pattern。output_template为输出的metrics格式，input_pattern表示用来匹配metrics的表达式，frequency和method表示多长时间将metrics用何种聚合方式求值并发送出去。

现在用一个脚本发送一些metrics，编辑/root/aggregated_metrics.sh，命令如下：

#!/usr/bin/env bash

count=10

while [$count -gt 0]

do

 for i in $(seq 11 20); do

 echo service.http.get.item.${i}.requests 1 $(date +%s) | nc localhost 2023

 echo service.http.get.item.${i}.time $(($RANDOM % 20)) $(date +%s) | nc localhost 2023

 done

 sleep $(($RANDOM % 4))

 count=$(($count-1))

done

把这个脚本安装成为cron，命令如下：

[root@graphite01 ~]# cat /etc/cron.d/metrics_sender

* * * * * root bash /root/metrics_gen.sh | nc localhost 2013

* * * * * root bash /root/aggregated_metrics.sh

等待一段时间后，就可以在Web界面上看到新的metrics了（如图7-3所示）。

 [image:]

图7-3　Graphite聚合metrics的示意图
7.5.4　Graphite Cluster

一直到现在，我们的Graphite服务都是搭建在一台机器上的。在大型的生产环境中，一台服务器的性能往往不足以支撑接收海量的metrics，这时就需要增加更多的服务器，搭建一个Graphite Cluster。

综合前文所述，可以在不同机器上启动多个Carbon Relay和Carbon Cache，然后使用Carbon Relay的consistent-hashing功能，将metrics平均地发送到不同的Carbon Cache，并保存在不同服务器的磁盘上，从而到达增加性能（capacity）的目的。在Carbon Relay之上，需要有一个VIP，用来做Relay的负载均衡，客户机的metrics都会发送到此VIP。

对于Graphite-web的配置，需要注意两点：

·CARBONLINK_HOSTS必须和carbon.conf中Relay部分的destination完全保持对应，顺序也必须完全一样，这些在前文中已经有相关解释。

·由于metrics数据保存在不同的服务器中，因此Graphite Web需要从其他服务器上读取数据，此时必须配置CLUSTER_SERVERS为除本机之外的其他Graphite服务器，其值为[“hostname1：port1，hostname2：port2，…”]。Port是访问graphite-web的http端口。有了这个配置，Graphite-web就能从其他服务器上读取其保存的数据了，这个数据包括硬盘上的whisper数据和内存里面的Carbon Cache数据。注意，它如果在hostname1上找到了需要的数据，就不会再去hostname2上找，知道这点对metrics的迁移工作很有必要。也可以将一个存储放置在所有服务器的后端，挂载到Carbon Cache服务器上，这样就不需要配置ClUSTER_SERVERS了。
7.6　使用Graphite Web

Graphite的Web界面使用起来非常简单。它的首页可以分为两个部分：左边的metrics树和右边的图片生成框（Graphite Composer）。metrics树是一个可点击的层级结构，包含了所有在Whisper目录里能找到的metrics，如果是一个新的metrics，刚发送到Carbon Cache，还没来得及保存到磁盘，那么在metrics树里面是不会显示的。点击metrics树便可以展开并找到自己想要的metrics，同时在右方的图片生成框中生成相应的图片。

Graphite的首页上有一些使用技巧，这里简单地提及一下。

·点击不同的metrics，所有数据可以显示在同一图片上。再点击同一metrics，便可以取消在图片上数据的显示。

·图片生成框的右上方可以简单地选择数据显示时间，包括相对时间（前一天，一周等）和绝对时间范围。

·右下角的Graph Options可以对图片进行各种特殊处理，这是Graphite Web深受用户喜爱的一个重要原因，本章会详细讲述Graphite作图的一些特殊函数，从而帮助了解其强大的作图功能。
7.6.1　Graphite的Render API

在介绍Graphite作图函数之前，先来介绍Graphite的Render API，这是Graphite Web和其后端数据交换的基础。

首先右键点击Graphite Composer上的图片，复制图片的URL，然后粘贴在浏览器中，应该是下面这种形式的URL：

http://localhost/render？width=932&height=564&_salt=1422965430.331&target=carbon.agents.graphite01-2.metricsReceived&from=-2hours

这个URL就是Graphite的Render API，它通过向http URL传递不同的参数，控制和调整显示在页面上的图片。

Render的基本URL是http://GRAPHITE_HOST：PORT/render，打开这个链接，默认应该是一张显示为no data的图片。这个URL接受的一些基本URL参数，如下。

·target参数：向图片中添加数据的参数即为target，target的值是任意metrics路径，比如target=server.host1.LoadAverage.1min。

·target支持通配符，比如target=server.*.LoadAverage.1min。

·target支持基本的扩展，比如target=server.host[1-9].LoadAverage.1min，或者target=serer.{host1，host2}.LoadAverage.1min。

·target值可以设置多次，比如target=server.host1.LoadAverage.1min&target=server.host2.LoadAverage.1min。

·from/until参数：用来设置显示metrics的时间范围，支持from/until=-相对时间或者from/until=绝对时间两种方式。默认的情况下，from为-24小时，而until为当前时间，表示显示一天内的数据。

相对时间的单位可以为s/min/h/d/w/mon/y，分别表示秒、分、时、天、周、月和年，而绝对时间除相对时间支持的单位之外，还可以是HH：MM_YYMMDD、YYYYMMDD、MM/DD/YY格式。示例如下：

from=-10d&until=-1d

from=20140314&until=20150101

from=Monday

·width/height参数：这两个参数用来设置图片的大小，单位为像素。比如width=932&height=564。

·title参数：设置图片的标题。

·format数：设置显示数据的格式，默认为PNG图片。其值可以为PNG、CSV、SVG和JSON等。

通过调整这些参数，可以获得我们想要的内容，比如图片或者纯数据。大部分Graphite的第三方Dashboard都是基于Render的API来编写的。了解和熟悉Render的用法对我们灵活使用Graphite有很大的帮助。
7.6.2　Graphite作图函数

针对Graphite Web取得的metrics数据，还可以通过一些特殊函数进行处理，从而将图片用我们想要的方式展示出来。下面是一些经常会用到的函数。

1.命名函数

默认的情况下，Graphite显示在图像上的metrics名字为metrics的路径，可以通过一系列的函数来进行重命名。

·Alias函数：对metrics进行重命名，比如&target=alias（Sales.widgets.largeBlue，”Large Blue Widgets”）

·aliasByMetric函数：用metrics最后一个字段进行重命名。如&target=alias（Sales.widgets.largeBlue），此时表示重命名为largeBlue。

·aliasByNode函数：用metrics的第几个字段来重命名。如&target=aliasByNode（server.host[1-9].LoadAverage.1min，1），表示用host名来重命名metrics。字段的序号以0开始。

·aliasSub函数：用正则表达式进行替换，比如&target=aliasSub（server.host[1-9].Load-Average.1min，"^.*？（host[0-9]*）.*$"，"\1"）。表示对匹配正则表达式^.*？（host[0-9]*）.*$的metrics，使用第一个匹配字段进行替换。

2.计算函数

可以通过一系列的计算函数来对metrics的值进行数值计算。

·sumSeries：对一系列的metrics值做加法。如target=sum（server.host[1-9].LoadAverage.1min）。

·sumSeriesWithWildcards：在某个位置插入通配符之后再使用sumSeries。如&target=sumSeriesWithWildcards（host.cpu-[0-7].cpu-{user，system}.value，1），相当于target=sumSeries（host.*.cpu-user.value）&target=sumSeries（host.*.cpu-system.value）。

·diffSeries：对两个metrics做减法，如&target=diffSeries（server.host{1，2}.LoadAverage.1min）。

·averageSeries：计算所有metrics的平均值，如target=averageSeries（server.*.LoadAverage.1min）。

·integral：对一个metrics的值进行时间上的积分。这个函数主要用于在过去一段时间内对metrics所有的值进行求和。如target=integral（service.http.get.item.all.requests）。

·derivative：对时间求导，这个函数和integral相对应，用来获得metric随时间的变化值。

·maxSeries：对所有metrics，提取它们在同一时刻的最大值，合并成一组新的数据。比如maxSeries（server.*.LoadAverage.1min）。

·minSeries：与maxSeries类似，提取最小值。

3.显示函数

·averageAbove/averageBelow：显示平均值在设定值之上/下的metrics。如target=averageAbove（server.*.LoadAverage.1min，5）。

·grep/exclude：显示或者排除匹配对应表达式的metrics。如&target=exclude（server.host[1-9].LoadAverage.1min，“host9”）。

·highestAverage/highestCurrent/highestMax：显示平均值、当前值、最大值最高的几个metrics。比如target=highestMax（server.*.LoadAverage.1min，5）。

·lowestCurrent/lowestAverage：和highestCurrent/highestAverage相反。

·sortByName：通过metrics名字排序。

·sortByMaxima：通过最大值排序。

·sortByMinma：通过最小值排序。

4.其他函数

·cactiStyle：像cacti一样，图例中显示metrics的最大值、最小值和当前值。

·consolidateBy：当图片的像素点少于数据点的个数时，Graphite默认使用这段时间里的数据平均值，consolidateBy函数可以指定其他的方法，可选的方法有sum、min、average和max。比如target=consolidateBy（Sales.widgets.largeBlue，'sum'）。

·stacked：用堆叠的方式显示数据。

·dashed：用虚线的方式显示数据。
7.6.3　Graphite Dashboard和Grafana

Graphite Web的Dashboard应该是Graphite中最经常使用的功能之一，它可以用来保存经常访问的一个或多个图像，并且可在同一个页面访问它们。图7-4是一个Dashboard的截屏。

 [image:]

图7-4　Graphite Dashboard

访问Dashboard的URL是http://Graphite-host/dashboard/。可以从Web上方的metrics选择器向Dashboard中添加metrics，之后通过点击dashboard→save as来保存Dashboard。之前我们在配置graphite-web的时候已经配置了MySQL数据库，Dashboard的配置就是保存在数据库里面的。Graphite Dashboard的使用非常简单，这里不再详述。

总的来说，Graphite自带的Dashboard使用起来其实不是特别方便，主要原因是Graphite作图是通过服务器产生图像的，任何更新操作，都需要通过服务器来进行，这样就限制了客户端操作的灵活性。比如想隐藏Dashboard中任意的一个metrics，这样一个简单的操作，应该是一次点击就能够完成的事情，但是对Dashboard来说就需要很多次的编辑。

好在Graphite有非常多的第三方Dashboard实现，在这些软件中，Grafana（http://grafana.org/）是最优秀的实现之一。

Grafana是一个完全由JavaScript写成的Dashboard软件（Grafana 2.0以后的版本已经不完全是JavaScript了），它的后端可以是Graphite、openTSDB等类似的服务。其所有的代码逻辑都是运行在用户的浏览器上面，作图也是通过JavaScript在浏览器上进行的，Graphite后端只用来提供需要查询的数据。正是由于这一点，Grafana对在浏览器上的点击、拖曵等操作支持得非常好，因此使用起来非常方便。下面从安装开始，简单讲解Grafana的使用。

1）首先从http://grafana.org/download/下载最新的源代码，当前版本是grafana-1.9.1.zip，解压到/var/www/html/mv grafana-1.9.1.zip/var/www/html&&unzip grafana-1.9.1.zip&&mv grafana-1.9.1 grafana。

由于Grafana是静态的js文件，此时如果没有安装其他的http服务，通过http://hostname/grafana就可以访问了。这里因为之前在本机上安装了Graphite，所以还需要配置http。将以下代码保存为/etc/httpd/conf.d/grafana.conf并重启http服务。

Alias /grafana "/var/www/html/grafana"

<Directory "/var/www/html/grafana">

 Options +Indexes

 AllowOverride All

</Directory>

2）修改config.js。Grafana安装包自带一个config.sample.js，将它重命名为config.js，并将Graphite部分的配置文件改为：

// Graphite & Elasticsearch example setup

 datasources: {

 graphite: {

 type: 'graphite',

 url: "http://GRAPHITE_HOST",

 },

 elasticsearch: {

 type: 'elasticsearch',

 url: "http://my.elastic.server.com:9200",

 index: 'grafana-dash',

 grafanaDB: true,

 }

},

在这里需要解释一下相应配置。Grafana是通过Graphite的render API获取metrics数据并画图的，因此首先要必须告诉它Graphite的服务安装在哪里；另外，Grafana也像Graphite一样，可以保存Dashboard，不过，它是使用Elasticsearch作为后端的，关于Elasticsearch的相关内容，可以在本书的其他章节中找到，这里不加讲述。

此时打开http://GRAFANA_HOST/grafana/，就可以看到Grafana的首页。图7-5是一个默认首页的截图。

 [image:]

图7-5　Grafana首页

Grafana默认生成了一张图片First Graph，点击这张图片的标题，然后点击edit，就可以将这张图片放大并编辑它，如图7-6所示。

 [image:]

图7-6　Grafana图形示例

在这个页面上，因为强大的JavaScript和HTML5，使得我们可以灵活地对这张图像进行编辑操作，比如添加新的metrics、改变显示方式，等等。在http://grafana.org/features/可以看到Grafana更多有趣的特性，留给读者自行参考。
7.7　Graphite的性能监控和调整

在理想的情况下，Graphite的运行状况应该是这样的：metrics发送到Relay，Relay将数据转发给Carbon，Carbon迅速将数据写入到Whisper，供Graphite Web读取。这个流程中主要会出现性能问题的地方有如下几个：

·metrics无法将尽快地将数据写入到Whisper文件，导致Carbon服务器过载。

·Relay无法将metrics尽快地发送到Carbon，从而出现丢弃数据的情况。

第一个问题主要是磁盘性能的问题，当我们的服务有海量数据时，Whisper的工作方式决定了它需要磁盘能够支持大规模的小文件读写，此时SSD磁盘是支持和解决小文件读写性能问题的最好方案。如果没有SSD，那么带RAID电池的硬盘也是不错的选择。

Carbon本身有几个配置选项，用来限制Carbon Cache过量的使用系统资源，在前文中都有提及。比如MAX_CACHE_SIZE、MAX_UPDATES_PER_SECOND、MAX_CREATES_PER_MINUTE和MAX_UPDATES_PER_SECOND_ON_SHUTDOWN等。根据笔者的经验，很少会出现需要限制Carbon Cache对磁盘操作的情况，大部分性能问题都是磁盘本身性能不足而导致的。比如限制MAX_UPDATES_PER_SECOND，但是一般出现的问题都是磁盘写入太慢，实际每秒写入磁盘的数量还没有达到MAX_UPDATES_PER_SECOND。所以从优化的角度来讲，仍需要优化磁盘的读写性能。

第二种情况是Relay本身的性能问题，当Relay的发送队列数据超过MAX_QUEUE_SIZE，它就会停止接收metrics或者丢弃数据。对此，可采用如下解决方法：第一是增加MAX_QUEUE_SIZE值，使其能够缓存更多的数据；第二是增加Relay后端的Cache或者Relay数量，这样前段的Relay能够将数据发送到更多的后端，避免数据堆积过多。

Carbon Cache、Carbon Relay与Aggregator在转发数据的同时，也会将自身的一些系能指标发送出去。通过监控这些metrics，就能实时地获得当前Graphite Cluster的性能和工作情况。这些数据在metrics层级树下的Carbon目录中。

relays目录下是每个Relay实例的数据，其中比较重要的metrics有：

·metricsReceived：代表这个Relay实例收到的metrics数目。

·cpuUsage/memUsage：此Relay的CPU和内存使用状况。

·destinations.DESTINATION_NAME.relayMaxQueueLengh/fullQueueDrops：这里的DESTINATION_NAME是Relay转发的目的地。这两个metrics可以看出Relay是否由于发送队列满而丢弃metrics，一般情况下fullQueueDrops数值为零或者没有值，当有metrics有丢弃数据的时候，fullQueueDrops会显示丢弃了多少数据，此时relayMaxQueueLength对应数值为carbon.conf中配置的MAX_QUEUE_SIZE。

agents目录下是每个Carbon Cache实例的数据，比较重要的有：

·updateOperations/pointsPerUpdate/avgUpdateTime：这几个metrics能够看出Carbon Cache写到Whisper数据库中的效率。updateOperations是每分钟写入Whisper文件的次数；avgUpdateTime表示平均写入时间；显然，updateOperations越多，表示写入性能越好；avgUpdateTime越小，写入速度越快。pointsPerUpdate表示每次将一个metrics写入Whisper文件时，写入metrics数据点的数目，这个数值最能反映当前磁盘接收大量数据写入的性能，其值应该是越小越好，因为值越小，表示在内存中保存的数据点越少，即数据会越快地写入磁盘。根据这个数值，还可简单地估算内存中保存了最近多长时间的metrics。比如我们的metrics 1分钟发送一次，而此时pointsPerUpdate为60，那么意味着内存中保存了最近1个小时的数据没有写到磁盘，如果Carbon Cache此时由于未知原因崩溃，那么大约会丢失最近一个小时的数据。

·metricsReceived：此Carbon Cache实例接收到的metrics数目。

·cpuUsage/memUsage：CPU和内存的使用情况。

强烈建议用户在自己的生产环境中为Graphite自己的性能指标建立一个Dashboard，以便对Graphite的性能进行方便的调试和监控。
7.8　其他

7.8.1　Whisper文件操作

我们安装的Whisper数据库中自带了一些可以用来操作Whisper文件的Python脚本。它们对了解和调试Graphite的数据源有重要的作用。

·whisper-info.py

这个脚本用来查看Whisper数据文件的基本信息。比如文件大小、数据保存期等。示例如下：

[root@graphite01 LoadAverage]# whisper-info.py 15min.wsp |head -10

maxRetention: 31536000

xFilesFactor: 0.5

aggregationMethod: average

fileSize: 645172

Archive 0

retention: 604800

secondsPerPoint: 60

points: 10080

size: 120960

·whisper-dump.py

这个脚本用来显示所有保存在Whisper文件中的数据点。比如：

[root@graphite01 LoadAverage]# whisper-dump.py 5min.wsp |less

… …

Archive 2 info:

 offset: 224692

 seconds per point: 900

 points: 35040

 retention: 31536000

 size: 420480

Archive 0 data:

0: 1423145820, 11

1: 1423145880, 0

2: 1423145940, 8

3: 1423146000, 1

4: 1423146060, 2

5: 1423146120, 5

·whisper-create.py

这个脚本用来创建一个Whisper数据文件。比如：

[root@graphite01 LoadAverage]# whisper-create.py ./t.wsp 15m:8

Created: ./t.wsp (124 bytes)

·whisper-merge.py

这个脚本用来合并两个Whisper文件。

·whisper-resize.py

这个脚本用来调整Whisper文件的精度和保存期。比如一个metrics原来设置为每5分钟发送一次，但是后来发现需要改成每分钟发送一次，此时需要做两件事情。首先是更改storage-schema.conf中对应的配置，其次是需要调用这个脚本，对Whisper文件做一次修改，Graphite没有办法自动调整Whisper文件参数。这个命令的使用方法为：whisper-resize.py filename timePerPoint：timeToStore，比如：

[root@graphite01 LoadAverage]# whisper-resize.py 5min.wsp 1m:1d

Retrieving all data from the archives

Creating new whisper database: 5min.wsp.tmp

Created: 5min.wsp.tmp (17308 bytes)

Migrating data without aggregation...

Renaming old database to: 5min.wsp.bak

Renaming new database to: 5min.wsp

7.8.2　压力测试

一般来说如果构建了一个Graphite Cluster，会建议对其进行一个简单的压力测试，用以获得系统可以承受的最大压力，找出系统的瓶颈，再基于当前的硬件资源数据，获得系统以后扩容所需要的硬件数量。

一个简单的测试Graphite压力的方法是对Graphite系统发送大量的metrics。可以使用以下脚本：

#!/usr/bin/env python",

import sys

import time

metrics =[

 "Disk.sda.BytesWritten 4083914240 ", "Memory.Cached 1269728 ", "Disk.sda2.Writes 14076569 ",

 "Memory.FreeSwap 4183572 ", "Disk.sda1.BytesWritten 270848 ", "Disk.sda1.Reads 190 ",

 "Memory.Swap 4192956 ", "Disk.sda5.Writes 57256269 ", "Cpu.System 831556819 ",

 "Cpu.Nice 777 ", "Disk.sda3.Writes 73216247 ", "Network.eth0.UnicastPktsIn 4163959471 ",

 "Cpu.Idle 3829019252 ", "Cpu.SoftInterrupts 20313884 ", "Disk.sda5.BytesWritten 1512787968 ",

 "Disk.sda1.Writes 51 ", "Cpu.Idle_Percent 87 ", "Cpu.User_Percent 11 ",

 "Disk.sda.Writes 144549136 ", "Cpu.User 2337308794 ", "Network.eth0.NonUnicastPktsIn 30 ",

 "Disk.sda3.BytesWritten 569655296 ", "Disk.sda3.Reads 121411674 ", "LoadAverage. 5min 4.75 ",

 "Disk.sda4.BytesRead 4096 ", "Memory.Buffered 302588 ", "Disk.sda.Reads 122941876 ",

 "Disk.sda5.Reads 1504640 ", "Cpu.Kernel 809181260 ", "Cpu.HWInterrupts 2061675 ",

 "Disk.sda2.Reads 25346 ", "LoadAverage.1min 3.88 ", "Cpu.IOWait_Percent 2 ",

 "Disk.sda4.Reads 4 ", "Cpu.IOWait 151701631 ", "LoadAverage.15min 5.18 ",

 "Network.eth0.UnicastPktsOut 3986710449 ", "Cpu.SwapOut 78782276 ", "Memory.Ram 24626356 ",

 "Disk.sda2.BytesRead 174424576 ", "Disk.sda5.BytesRead 154915840 ", "Disk.sda3.BytesRead 1062800384 ",

 "Disk.sda2.BytesWritten 2001200128 ", "Disk.sda.BytesRead 1394321408 ", "Cpu.IOReceived 2790474728 ",

 "Disk.sda1.BytesRead 1955328 ", "Network.eth0.OctetsIn 1886501829 ", "Memory.FreeRam 26861932 ",

 "Network.eth0.OctetsOut 3030423715 ", "Cpu.ContextSwitches 1515325785 "]

metrics = ["testing.servers.server%%d.%s %%s" % i for i in metrics]

if len(sys.argv) != 2:

 print "Usage: %s metrics_number_to_generate" % sys.argv[0]

 exit(0)

for i in range(0, int(sys.argv[1])/len(metrics)):

 t = int(time.time())

 for j in metrics:

 print j % (i, t)

比如要产生200万个metrics，将其发送给Graphite，使用方法为：

python metrics.py 2000000 | nc graphite_host graphite_port

也可以将这个脚本设置成为cron，定时重复地给Graphite发送数据。根据之前章节所述，可以关注诸如pointsPerUpdate、metricsReceived等Graphite本身的数据指标，此外还需要关注Graphite物理服务器本身的I/O、CPU、内存等性能数据，找出系统的瓶颈。
7.8.3　其他工具

得益于Graphite的简单易用，Graphite的生态系统非常繁荣，除了之前提到的Grafana之外，还有许多工具可以和Graphite结合到一起，提供更强大的功能，如下。

·collectd：一个安装在客户机上，通过一个额外的plugin向Graphite发送metrics的工具。

·statsd：基于Node.js的数据聚合工具。

·graphite-to-zabbix：将Graphite数据发送给Zabbix的工具。

·graphite-beacon：一个检查Graphite数据并产生告警的工具。

在https:/graphite.readthedocs.org/en/latest/tools.html可以查找到更多和Graphite结合在一起的工具，请读者自行查阅。
第8章　系统大规模部署

8.1　概述

系统就像细胞，是组成庞大功能集群的一个基础单元。系统的安装与调试便是系统管理员日常工作之一。从以前的光盘引导和网络启动，到现在的Docker集群应用，系统部署也在朝着自动化飞速奔跑。
8.2　与PXE不得不说的故事

8.2.1　PXE简介

Preboot eXecution Environment（PXE），是由Intel公司开发的，基于C/S网络模式下的网络系统安装技术。正是PXE的出现让系统管理员彻底摆脱了使用光驱、软驱、USB移动设备进行操作系统安装的方式，同时提高了批量服务器安装的速度，简化了系统管理员的工作步骤。

下面介绍PXE的启动流程。

首先是Client BIOS启动，加载带有PXE支持的网卡。

然后Client网卡发送DHCP请求，请求IP地址信息及Bootstrap信息。Bootstrap pro-tocol详解请参看http://en.wikipedia.org/wiki/Bootstrap_Protocol。这时，DHCP服务器会返回Client的IP以及Bootstrap文件存放地址。

之后Client通过TFTP服务获取Bootstrap文件，并在本地加载Bootstrap文件。

在通过TFTP服务加载Bootstrap文件中制定的内核和文件系统后，就开始系统安装了。
8.2.2　PXE实战

实战环境：CentOS 6.264bit

准备工作：VirtualBox、已安装好CentOS 6操作系统的虚拟机一台。

1.配置测试客户端

打开VirtualBox，单击创建按钮来创建一个新的Client测试虚拟机，如图8-1所示。

 [image:]

图8-1　测试机创建图1

然后在图8-2所示的界面输入虚拟电脑名称，配置类型为Linux，版本为Red Hat（64bit）。

 [image:]

图8-2　测试机创建图2

在图8-3所示的界面配置TestClient的内存大小、硬盘大小、硬盘文件存放位置。此处可使用VirutalBox提供的默认值。最后点击创建，一个虚拟机就创建完成了。

在修改TestClient的配置时，可点击图8-3所示的按钮。

然后修改虚拟网卡连接方式为：桥接网卡，并生成虚拟网卡MAC地址。该地址会在后面服务端配置时使用（如图8-4所示）。

 [image:]

图8-3　测试机创建图3

 [image:]

图8-4　生成虚拟网卡MAC地址

最后，修改虚拟机启动顺序，如图8-5所示。

 [image:]

图8-5　修改虚拟机启动顺序

至此TestClient配置完成。

2.配置服务端DHCP服务

Client为从网络启动的全新硬件，没有任何操作系统支持。所以在网络启动的时候需要配置相应的DHCP服务来接管Client的启动流程以及后续步骤。

可通过以下命令安装DHCP服务包。

[root@localhost ~]# yum install dhcp –y

查看网络状态的命令如下：

[root@localhost ~]# ifconfig

图8-6为该命令执行状态截图。

 [image:]

图8-6　命令执行图

通过以下命令可指定运行DHCP服务的网络接口名称。

[root@localhost ~]# vim /etc/sysconfig/dhcpd

Command line options here

 DHCPDARGS=eth0

以下命令用来配置DHCP配置文件。

[root@localhost ~]# vim /etc/dhcp/dhcpd.conf

Use this to enble / disable dynamic dns updates globally.

allow booting;

allow bootp;

option option-128 code 128 = string;

option option-129 code 129 = text;

filename "pxelinux.0";

next-server 10.1.1.22;

ddns-update-style none;

option domain-name "test.com";

option domain-name-servers ns1.test.com;

default-lease-time 600;

max-lease-time 7200;

subnet 10.1.1.0 netmask 255.255.255.0 {

 range 10.1.1.100 10.1.1.150;

 option domain-name-servers ns1.test.com;

 option domain-name "test.com";

 option routers 10.1.1.1;

 option broadcast-address 10.1.1.255;

 default-lease-time 600;

 max-lease-time 7200;

 filename "pxelinux.0";

 next-server 10.1.1.22;

}

host testclient {

 hardware ethernet 08:00:27:91:C2:B2;

 fixed-address 10.1.1.105;

 filename "pxelinux.0";

 next-server 10.1.1.22;

}

3.配置PXE服务端

第一步，安装相关服务，包括httpd、xinetd、tftp等，命令如下：

[root@localhost ~]# yum install httpd xinetd tftp-server syslinux -y

第二步，拷贝相关tftp文件到tftp目录/var/lib/tftpboot/下，命令如下：

[root@localhost ~]# cd /usr/share/syslinux/

[root@localhost syslinux]# cp -r pxelinux.0 menu.c32 memdisk mboot.c32 chain.c32 / var/lib/tftpboot/

第三步，修改Xinetd服务，启用tftp。将配置文件中disable的值修改为no，命令如下：

[root@localhost syslinux]# vim /etc/xinetd.d/tftp

service tftp

{

 socket_type = dgram

 protocol = udp

 wait = yes

 user = root

 server = /usr/sbin/in.tftpd

 server_args = -s /var/lib/tftpboot

 disable = no

 per_source = 11

 cps = 100 2

 flags = IPv4

}

第四步，创建用于启动的镜像目录，假定镜像存放位置为/mnt/目录下。

[root@localhost ~]# cd /var/lib/tftpboot/

[root@localhost tftpboot]# mkdir centos6

[root@localhost mnt]# mount -o loop /mnt/CentOS-6.2-x86_64-bin-DVD1.iso /var/lib/tftpboot/centos6

[root@localhost mnt]# ll /var/lib/tftpboot/centos6/

total 658

-rw-r--r-- 2 root root 14 Dec 16 2011 CentOS_BuildTag

drwxr-xr-x 3 root root 2048 Dec 11 2011 EFI

-rw-r--r-- 2 root root 212 Dec 15 2011 EULA

-rw-r--r-- 2 root root 18009 Dec 15 2011 GPL

drwxr-xr-x 3 root root 2048 Dec 11 2011 images

drwxr-xr-x 2 root root 2048 Dec 11 2011 isolinux

drwxrwxr-x 2 500 500 630784 Dec 16 2011 Packages

-rw-r--r-- 2 root root 1354 Dec 9 2011 RELEASE-NOTES-en-US.html

drwxr-xr-x 2 root root 4096 Dec 16 2011 repodata

-rw-r--r-- 2 root root 1706 Dec 9 2011 RPM-GPG-KEY-CentOS-6

-rw-r--r-- 2 root root 1730 Dec 9 2011 RPM-GPG-KEY-CentOS-Debug-6

-rw-r--r-- 2 root root 1730 Dec 9 2011 RPM-GPG-KEY-CentOS-Security-6

-rw-r--r-- 2 root root 1734 Dec 9 2011 RPM-GPG-KEY-CentOS-Testing-6

-r--r--r-- 1 root root 3380 Dec 16 2011 TRANS.TBL

[root@localhost mnt]#

第五步，配置供PXE服务使用的Apache服务，命令如下：

[root@localhost ~]# vim /etc/httpd/conf.d/pxeboot.conf

文件内容如下：

Alias /centos6 /var/lib/tftpboot/centos6

<Directory /var/lib/tftpboot/centos6>

Options Indexes FollowSymLinks

Allow from all

</Directory>

第六步，创建存放PXE配置文件的目录，并且创建默认的配置文件。

[root@localhost ~]# mkdir /var/lib/tftpboot/pxelinux.cfg

[root@localhost ~]# vim /var/lib/tftpboot/pxelinux.cfg/default

default menu.c32

prompt 0

timeout 60

menu title ### PXE Booting ###

label 1

menu label Install CentOS 6 64 bit system

kernel centos6/images/pxeboot/vmlinuz

append initrd=centos6/images/pxeboot/initrd.img method=http://10.1.1.22/centos6 devfs=nomount

最后，重启PXE相关服务，命令如下：

[root@localhost ~]# /etc/init.d/dhcpd restart

[root@localhost ~]# /etc/init.d/xinetd restart

[root@localhost ~]# /etc/init.d/httpd restart

现在，可以启动TestClient进行测试了。TestClient可以通过DHCP获得相应IP地址，并且通过PXE服务提供的网络安装进行系统安装。

是否已经对上述繁琐的配置感到厌烦？特别是当被管理的服务器数目达到一定的数量时，服务器信息修改的时间成本将大幅增加。下一节介绍的Cobbler将解决上述问题。
8.3　系统部署工具Cobbler

8.3.1　Cobbler简介

Cobbler是由Python语言开发的系统部署工具。它提供了对PXE网络启动、DHCP、DNS、TFTP的自动化管理，它支持对不同操作系统的快速安装，支持批量的kickstart分类管理，连接不同种类的服务器电源管理，yum仓库管理、简单的CMS结构，并且也支持KVM上虚拟机的快速安装。系统安装过程中只要想得到的，基本都可以在Cobbler中找到相关功能。

Cobbler的基础结构如图8-7所示[1]。

 [image:]

图8-7　Cobbler的基础结构

[1] 摘自Cobbler官网：https://cobbler.github.io/manuals/2.6.0/1_-_About_Cobbler.html
8.3.2　Cobbler安装

1.EPEL安装

CentOS 6的官方yum仓库里不包含Cobbler的安装包，需要自行安装Fedroa EPEL支持。

首先找到最新的epel-release包，下载并安装到CentOS上，下载地址如下：

http://download.fedoraproject.org/pub/epel/6/x86_64/epel-release-X-X.noarch.rpm

请注意使用最新的epel版本进行替换，本书以epel-release-6-8.noarch.rpm作为示例，代码如下：

[root@localhost ~]# wget http://download.fedoraproject.org/pub/epel/6/x86_64/epel-release-6-8.noarch.rpm

[root@localhost ~]# rpm -ivh epel-release-6-8.noarch.rpm

warning: epel-release-6-8.noarch.rpm: Header V3 RSA/SHA256 Signature, key ID 0608b895: NOKEY

Preparing... ### [100%]

 1:epel-release ### [100%]

[root@localhost ~]# yum update

Loaded plugins: fastestmirror

Setting up Update Process

Loading mirror speeds from cached hostfile

epel/metalink | 2.8 kB 00:00

* base: mirrors.aliyun.com

* epel: mirrors.neusoft.edu.cn

* extras: mirrors.163.com

* updates: mirrors.163.com

epel | 4.4 kB 00:00

epel/primary_db | 6.6 MB 01:12

No Packages marked for Update

[root@localhost ~]# yum

2.Cobbler安装

在安装EPEL支持以后，Cobbler就可以使用yum进行安装配置了，命令如下：

[root@localhost ~]# yum search cobbler

cobbler-web.noarch : Web interface for Cobbler

cobbler.noarch : Boot server configurator

koan.noarch : Helper tool that performs cobbler orders on remote machines

[root@localhost ~]# yum install -y cobbler cobbler-web

最新的Cobbler版本是存放在updates-testing仓库中的，所以我们需要对Cobbler进行版本升级，升级命令如下：

[root@localhost ~]# yum update --enablerepo=updates-testing cobbler cobbler-web

至此，Cobbler已经安装完毕。
8.3.3　Cobbler配置

1.Cobbler的基础配置

启动Cobbler以后，服务是不可以直接使用的，下面开始进行Cobbler的配置工作。

首先启动Cobbler服务，命令如下：

 [root@localhost ~]# /etc/init.d/cobblerd start

Starting cobbler daemon: [OK]

这时候的Cobbler是无法正常工作的，它提供了自带的check命令来进行运行监测，将已存在的问题标记出来，如下所示：

[root@localhost ~]# cobbler check

The following are potential configuration items that you may want to fix:

1 : The 'server' field in /etc/cobbler/settings must be set to something other than localhost, or kickstarting features will not work. This should be a resolvable hostname or IP for the boot server as reachable by all machines that will use it.

2 : For PXE to be functional, the 'next_server' field in /etc/cobbler/settings must be set to something other than 127.0.0.1, and should match the IP of the boot server on the PXE network.

3 : some network boot-loaders are missing from /var/lib/cobbler/loaders, you may run 'cobbler get-loaders' to download them, or, if you only want to handle x86/x86_64 netbooting, you may ensure that you have installed a *recent* version of the syslinux package installed and can ignore this message entirely. Files in this directory, should you want to support all architectures, should include pxelinux.0, menu.c32, elilo.efi, and yaboot. The 'cobbler get-loaders' command is the easiest way to resolve these requirements.

4 : change 'disable' to 'no' in /etc/xinetd.d/rsync

5 : debmirror package is not installed, it will be required to manage debian deployments and repositories

6 : ksvalidator was not found, install pykickstart

7 : The default password used by the sample templates for newly installed machines (default_password_crypted in /etc/cobbler/settings) is still set to 'cobbler' and should be changed, try: "openssl passwd -1 -salt 'random-phrase-here' 'your-password-here'" to generate new one

8 : fencing tools were not found, and are required to use the (optional) power management features. install cman or fence-agents to use them

Restart cobblerd and then run 'cobbler sync' to apply changes.

按照上面的提示，进行Cobbler配置的修复。

1）修改配置文件中“server”项目的配置，将默认的127.0.0.1替换为本机的IP地址。

[root@localhost ~]# vim /etc/cobbler/settings

……

this is the address of the cobbler server -- as it is used

by systems during the install process, it must be the address

or hostname of the system as those systems can see the server.

if you have a server that appears differently to different subnets

(dual homed, etc), you need to read the --server-override section

of the manpage for how that works.

server: 127.0.0.1

server: 10.1.1.55

……

2）修改配置文件中“next_server”项目配置，将默认的127.0.0.1替换为本机IP地址。

if using cobbler with manage_dhcp, put the IP address

of the cobbler server here so that PXE booting guests can find it

if you do not set this correctly, this will be manifested in TFTP open timeouts.

#next_server: 127.0.0.1

next_server: 10.1.1.55

3）使用Cobbler提供的命令来初始化boot-loader。这是Cobbler为了方便用户提供的一个特性，此特性需要将Cobbler版本升级到最新的稳定版，否则不能使用。

[root@localhost ~]# cobbler get-loaders

task started: 2015-06-28_150427_get_loaders

task started (id=Download Bootloader Content, time=Sun Jun 28 15:04:27 2015)

path /var/lib/cobbler/loaders/README already exists, not overwriting existing content, use --force if you wish to update

path /var/lib/cobbler/loaders/COPYING.elilo already exists, not overwriting existing content, use --force if you wish to update

4）在xinetd中启用rsync服务。

[root@localhost ~]# vim /etc/xinetd.d/rsync

……

disable = no

……

[root@localhost ~]# /etc/init.d/xinetd restart

Stopping xinetd: [OK]

Starting xinetd: [OK]

5）安装debmirror包来管理Deb包类型。

[root@localhost ~]# yum install -y debmirror

[root@localhost ~]# vim /etc/debmirror.conf

然后修改debmirror.conf中的dists和arches配置。

……

#@dists="sid";

#@arches="i386";

……

安装pykickstart包的命令如下：

[root@localhost ~]# yum install -y pykickstart

6）修改Cobbler默认安装系统的admin密码。

首先使用openssl生成加密后的密码，下面以cobblerpassword为例进行说明。

[root@localhost ~]# openssl passwd -1 -salt 'random-phrase-here' 'cobblerpassword'

1random-p$XrhVlY7gRlJ/apYC2AMwq.

[root@localhost ~]# vim /etc/cobbler/settings

#default_password_crypted: "1mF86/UHC$WvcIcX2t6crBz2onWxyac."

default_password_crypted: "1random-p$XrhVlY7gRlJ/apYC2AMwq."

7）安装cman来进行电源管理。

[root@localhost ~]# yum install -y cman

重启Cobbler服务，再次运行Cobbler的check命令来检查Cobbler服务的状态。

[root@localhost ~]# /etc/init.d/cobblerd restart

Stopping cobbler daemon: [OK]

Starting cobbler daemon: [OK]

[root@localhost ~]# cobbler check

No configuration problems found. All systems go.

2.Cobbler的高级配置

1）检查并禁用SELinux功能。

[root@localhost ~]# getsebool

getsebool: SELinux is disabled

2）关闭IPtables（对网络有专业知识的人可保留、添加相应规则）。

[root@localhost ~]# /etc/init.d/iptables stop

iptables: Setting chains to policy ACCEPT: filter [OK]

iptables: Flushing firewall rules: [OK]

iptables: Unloading modules: [OK]

[root@localhost ~]# chkconfig iptables off

3）配置Cobbler来管理DHCP功能。

先修改/etc/cobbler/settings配置文件，启用DHCP管理。

……

manage_dhcp: 1

……

然后修改Cobbler用来管理DHCP的模版文件/etc/cobbler/dhcp.template。该模板主要是Cobbler用来生成dhcpd.conf文件的，所以需要修改相应的子网信息、网关信息、DNS信息，以及DHCP地址池信息。如果要管理多个子网，只需再添加subnet字典部分即可，如下所示：

subnet 10.1.1.0 netmask 255.255.255.0 {

 option routers 10.1.1.1;

 option domain-name-servers 10.1.1.55;

 option subnet-mask 255.255.255.0;

 range dynamic-bootp 10.1.1.100 10.1.1.110;

 default-lease-time 21600;

 max-lease-time 43200;

 next-server $next_server;

 class "pxeclients" {

 match if substring (option vendor-class-identifier, 0, 9) = "PXEClient";

 if option pxe-system-type = 00:02 {

 filename "ia64/elilo.efi";

 } else if option pxe-system-type = 00:06 {

 filename "grub/grub-x86.efi";

 } else if option pxe-system-type = 00:07 {

 filename "grub/grub-x86_64.efi";

 } else {

 filename "pxelinux.0";

 }

 }

}

4）配置Cobbler来管理tftp功能。

首先修改/etc/cobbler/settings配置文件，启用tftp管理。

……

manage_tftpd: 1

……

然后调整tftp的配置文件模板。cps参数可根据需要同时安装的服务器数目来进行适当的增加。cps两个参数的含义：第一个参数为1秒内可以同时处理的tftp请求数目，如果超过该数目，tftp服务会被临时暂停服务。第二个参数用于确定在tftp被临时暂停服务后多长时间可以重新启用。

[root@localhost ~]# vim /etc/cobbler/tftpd.template

service tftp

{

 disable = no

 socket_type = dgram

 protocol = udp

 wait = yes

 user = $user

 server = $binary

 server_args = -B 1380 -v -s $args

 per_source = 11

 cps = 100 2

 flags = IPv4

}

5）使用Cobbler可以管理DNS，但是通常用户已经搭建自己的DNS服务器，所以在本章中Cobbler不启用DNS管理功能。
8.3.4　Cobbler应用

经过一番努力，Cobbler服务已经基本配置完成。但是在导入需要的系统镜像以及待安装客户端信息之前，Cobbler还不能提供系统的自动化安装服务。本节将展示如何使Cobbler开始提供系统安装服务。

1.导入待安装的系统镜像

这里以CentOS 6为例进行讲解，首先将镜像挂载到本地文件系统，命令如下：

[root@localhost ~]# mount -t iso9660 -o loop,ro /root/CentOS-6.2-x86_64-bin-DVD1.iso /mnt

然后使用cobbler命令将镜像导入Cobbler系统。

[root@localhost ~]# cobbler import --name=CentOS6.2 --arch=x86_64 --path=/mnt

task started: 2015-06-29_021350_import

task started (id=Media import, time=Mon Jun 29 02:13:50 2015)

Found a candidate signature: breed=redhat, version=rhel6

Found a matching signature: breed=redhat, version=rhel6

Adding distros from path /var/www/cobbler/ks_mirror/CentOS6.2-x86_64:

creating new distro: CentOS6.2-x86_64

trying symlink: /var/www/cobbler/ks_mirror/CentOS6.2-x86_64 -> /var/www/cobbler/links/CentOS6.2-x86_64

creating new profile: CentOS6.2-x86_64

associating repos

checking for rsync repo(s)

checking for rhn repo(s)

checking for yum repo(s)

starting descent into /var/www/cobbler/ks_mirror/CentOS6.2-x86_64 for CentOS6.2-x86_64

processing repo at : /var/www/cobbler/ks_mirror/CentOS6.2-x86_64

need to process repo/comps: /var/www/cobbler/ks_mirror/CentOS6.2-x86_64

looking for /var/www/cobbler/ks_mirror/CentOS6.2-x86_64/repodata/*comps*.xml

Keeping repodata as-is :/var/www/cobbler/ks_mirror/CentOS6.2-x86_64/repodata

*** TASK COMPLETE ***

导入完成后，可以查看Cobbler状态，发现Cobbler自动添加了distro和profile项目。

[root@localhost ~]# cobbler list

distros:

 CentOS6.2-x86_64

profiles:

 CentOS6.2-x86_64

……

2.创建本地仓库（可选）

在具有特殊安全策略的机房中，不是所有的服务器都有公网访问权限。这种情况下需要在本地创建软件仓库。前提条件是，Cobbler服务器需要有公网访问来进行软件仓库的下载。

可运行如下命令来添加软件仓库：

[root@localhost ~]# cobbler repo add --name=CentOS-updates --mirror=http://mirror.centos.org/centos-6/6/updates/x86_64/

然后运行如下命令来进行同步远程仓库：

[root@localhost ~]# cobbler reposync

task started: 2015-07-19_220832_reposync

task started (id=Reposync, time=Sun Jul 19 22:08:32 2015)

hello, reposync

run, reposync, run!

creating: /var/www/cobbler/repo_mirror/CentOS-updates/config.repo

creating: /var/www/cobbler/repo_mirror/CentOS-updates/.origin/CentOS-updates.repo

running: /usr/bin/reposync -l -n -d --config=/var/www/cobbler/repo_mirror/CentOS-updates/.origin/CentOS-updates.repo --repoid=CentOS-updates --download_path=/var/www/cobbler/repo_mirror -a x86_64

……

Saving Primary metadata

Saving file lists metadata

Saving other metadata

Saving delta metadata

Generating sqlite DBs

Sqlite DBs complete

received on stderr:

running: chown -R root:apache /var/www/cobbler/repo_mirror/CentOS-updates

received on stdout:

received on stderr:

running: chmod -R 755 /var/www/cobbler/repo_mirror/CentOS-updates

received on stdout:

received on stderr:

*** TASK COMPLETE ***

完成后，更新的软件包将会存放在/var/www/cobbler/repo_mirror/<REPO-NAME>下。

在Cobbler的配置文件中，修改下面的参数，可使系统安装完成后自动使用Cobbler作为软件更新仓库。

yum_post_install_mirror: 1

3.创建系统

创建系统之前，需要准备如下内容。

·安装服务器的网卡名称和Mac地址。

·安装服务器的IP地址。

·安装服务器的操作系统信息。

准备完成后即可在Cobbler中创建系统了，命令如下：

[root@localhost ~]# cobbler system add --name=test-server --profile=CentOS6.2- x86_64 --interface=eth0 --mac=08:00:27:A6:5D:A5 --ip-address=10.1.1.56 --netmask=255.255.255.0 --gateway=10.1.1.1

通过如下命令查看已经创建的系统信息：

[root@localhost ~]# cobbler system report --name test-server

Name: test-server

TFTP Boot Files: {}

Comment:

Enable gPXE?: <<inherit>>

Fetchable Files: {}

Gateway: 10.1.1.1

……

将客户端服务器test-server的网络连接好，开机。熟悉的安装界面就映入眼帘了。

如果在创建的时候忘记了某些参数的设置也没有关系，可使用相应的命令来修改。比如可以使用下面的命令来关闭系统的网络安装。

[root@localhost ~]# cobbler system edit --name test-server --netboot=n

变更之后，系统的Netboot Enabled参数变为False，这样即使系统服务器重启，也不会再次进行系统安装。

[root@localhost ~]#cobbler system report --name test-server

……

Netboot Enabled : False

……

4.小结

（1）Distro Profile System在Cobbler中的关系

完成Cobbler的安装配置以后，相信大家对Cobbler已经有了一定的了解，但这里还是要介绍Cobbler的一些结构和概念。

可以将distro比作一个学校，里面定义了如下参数：

[root@localhost ~]# cobbler distro report --name CentOS6_Test

Name: CentOS6_Test

Architecture: x86_64

TFTP Boot Files: {}

Breed: redhat

Comment:

Fetchable Files: {}

Initrd: /var/www/cobbler/ks_mirror/CentOS6_Test/initrd

Kernel: /var/www/cobbler/ks_mirror/CentOS6_Test/vmlinuz

Kernel Options: {}

Kernel Options (Post Install): {}

Kickstart Metadata: {}

Management Classes: []

OS Version: rhel6

Owners: ['admin']

Red Hat Management Key: <<inherit>>

Red Hat Management Server: <<inherit>>

Template Files: {}

porfile则可以比作学校中的班级，里面包含下面参数：

[root@stnd0001 ~]# cobbler profile report --name CentOS6_Diskless_development

Name: CentOS6_Test

TFTP Boot Files: {}

Comment:

DHCP Tag: default

Distribution: CentOS6_Test

Enable gPXE?: 0

Enable PXE Menu?: 0

Fetchable Files: {}

Kernel Options: {}

Kernel Options (Post Install): {}

Kickstart:

Kickstart Metadata: {}

Management Classes: []

Management Parameters: <<inherit>>

Name Servers: []

Name Servers Search Path: []

Owners: ['admin']

Parent Profile:

Proxy:

Red Hat Management Key: <<inherit>>

Red Hat Management Server: <<inherit>>

Repos: []

Server Override: <<inherit>>

Template Files: {}

Virt Auto Boot: 1

Virt Bridge: virbr0

Virt CPUs: 1

Virt Disk Driver Type: raw

Virt File Size(GB): 5

Virt Path:

Virt RAM (MB): 512

Virt Type: kvm

system就是班级中的学生，包含的参数如下：

[root@stnd0001 ~]# cobbler system report --name stnd0001

Name: stnd0001

TFTP Boot Files: {}

Comment:

Enable gPXE?: 0

Fetchable Files: {}

Gateway: 10.1.1.1

Hostname: test-client

Image:

……（省略部分）

Interface Type:

IP Address: 10.1.1.56

IPv6 Address:

IPv6 Default Gateway:

IPv6 MTU:

IPv6 Prefix:

IPv6 Secondaries: []

IPv6 Static Routes: []

MAC Address: 08:00:27:A6:5D:A5

Management Interface: False

MTU:

Subnet Mask: 255.255.255.0

Static: False

Static Routes: []

Virt Bridge:

所有的system、profile和distro都是继承关系。所有在distro中的参数都会被profile继承，再被system继承。但是当distro中的参数值和profile中不同时，distro中的值会被重写。同样，system中的值也会重写profile和distro中的值。

（2）重要的配置文件目录

下面再介绍一下Cobbler的配置文件目录结构和内容。

Cobbler的配置文件主要存放在/var/lib/cobbler/目录下（默认安装情况）。其中，每个文件夹中主要包括如下内容。

·config/：主要存放生成后的system、profile、distro、repo等配置文件。

·kickstarts/：就像名字一样，这个目录主要存放被Cobbler引用的ks相关的文件。

·snippets/：存放相关snippet脚本的文件夹。

·triggers/：存放自动化脚本的文件夹。

这里主要介绍trigger目录的作用。add、change、delete、install、sync表示在Cobbler执行某个行动的时候来调用目录下的脚本。每个目录下包含了操作所对应的对象，比如常用的distro、profile和system。在这个目录下，还有post和pre分别表示在动作之后还是之前运行目录下的脚本。install和sync是Cobbler直接执行的行动，所以目录下直接是post和pre目录。

下面举个例子：如果在/var/lib/cobbler/trigger/sync/post/目录下放一个shell脚本，echo'date'>/tmp/cobbler_sync_time.txt。那么，在每次运行cobbler sync命令后，就会将命令运行的时间写到/tmp/cobbler_sync_time.txt文件中。
8.3.5　Cobbler API

Cobbler推荐使用xmlrpclib调用API。下面直接使用一个例子来简单讲述如何使用Cobbler API进行管理。

将如下脚本放在刚安装完成的Cobbler服务器上，修改好用户名和密码就可以运行测试了。

#!/usr/bin/python2.7

import xmlrpclib

USERNAME = 'admin'

PASSWORD = ‘cobblerpassword’

server = xmlrpclib.Server(“http://localhost/cobbler_api”)

print “Get remote data from Cobbler Server.”

print “Distros in Cobbler”

print server.get_distros()

print “Profile in Cobbler”

print server.get_profiles()

print “Systems in Cobbler”

print server.get_systems()

print “Search distro in Cobbler”

print server.find_distro({“name”:”Cent*”})

print “Get the token for modify cobbler information”

token = server.login(USERNAME,PASSWORD)

print token

print “Change distro comment”

handle = server.get_distro_handle(‘CentOS6.2-x86_64’,token)

server.modify_distro(handle, ‘comment’, ‘Testing modification’, token)

server.save_distro(handle, token)

运行完成后，再使用cobbler distro report–name CentOS6.2-x86_64来查看comment是否已经变更为“Testing modification”。

如果你得到如下报错信息，则说明Cobbler的用户名和密码没有正确配置。

Traceback (most recent call last):

 File "./a.py", line 8, in <module>

 token = server.login(USERNAME, PASSWORD)

 File "/usr/lib64/python2.7/xmlrpclib.py", line 1224, in __call__

 return self.__send(self.__name, args)

 File "/usr/lib64/python2.7/xmlrpclib.py", line 1578, in __request

 verbose=self.__verbose

 File "/usr/lib64/python2.7/xmlrpclib.py", line 1264, in request

 return self.single_request(host, handler, request_body, verbose)

 File "/usr/lib64/python2.7/xmlrpclib.py", line 1297, in single_request

 return self.parse_response(response)

 File "/usr/lib64/python2.7/xmlrpclib.py", line 1473, in parse_response

 return u.close()

 File "/usr/lib64/python2.7/xmlrpclib.py", line 793, in close

 raise Fault(**self._stack[0])

xmlrpclib.Fault: <Fault 1: "<class 'cobbler.cexceptions.CX'>:'login failed (admin)'">

这时，请按照前面的步骤重设admin密码。
8.3.6　Cobbler Replication

在主从流行的今天，Cobbler也参与到高可用的阵营中来了。Slave不仅可以提供高可用支持，还可以在批量服务器部署的时候降低Master的网络压力，提高服务器部署速度。如果单台Cobbler在进行服务器部署时达到了TFTP上限，那么需要添加一个或多个Slave来进行网络带宽分流。

下面介绍如何配置一台Slave服务器。

首先，按照本章前面的方法安装一台全新的带有Cobbler服务的服务器。

然后，使用Cobbler自带的replicate命令在Slave运行拉取Master上的所有数据，即可完成配置。

Replication在如今产品化的服务中创建就是这么简单。

下面简单介绍下Cobbler的replicate命令。

[root@localhost ~]# cobbler replicate -h

Usage: cobbler [options]

Options:

 -h, --help show this help message and exit

 --master=MASTER Cobbler server to replicate from.

 --distros=DISTRO_PATTERNS

 patterns of distros to replicate

 --profiles=PROFILE_PATTERNS

 patterns of profiles to replicate

 --systems=SYSTEM_PATTERNS

 patterns of systems to replicate

 --repos=REPO_PATTERNS

 patterns of repos to replicate

 --image=IMAGE_PATTERNS

 patterns of images to replicate

 --mgmtclasses=MGMTCLASS_PATTERNS

 patterns of mgmtclasses to replicate

 --packages=PACKAGE_PATTERNS

 patterns of packages to replicate

 --files=FILE_PATTERNS

 patterns of files to replicate

 --omit-data do not rsync data

 --sync-all sync all data

 --prune remove objects (of all types) not found on the master

 --use-ssl use ssl to access the Cobbler master server api

常用的几个参数主要有--master、--sync-all和--prune。--master用来指定cobbler master的IP地址。--sync-all用来同步所有master上的信息，包括了distro、profile、system等。

--prune用在slave上删除cobbler master上已经被删除的配置信息。

综上，我们在Slave上运行的命令如下：

cobbler replicate --master=COBBLER_MASTER_IP --sync-all --prune

8.3.7　Cobbler实战

下面通过实战方式来配置一个N＋1的Cobbler集群，用来支持大批量的服务器部署需求，N可以根据实际情况来进行设置。其基本结构如图8-8所示。

搭建步骤如下：

1）网络设备在跨VLAN进行DHCP广播的时候，需要开启dhcp-relay以便接收到DHCP请求。

 [image:]

图8-8　Cobbler集群基本结构

2）所有Slave服务器需要开启到Master服务器HTTP和RSYNC的网络策略。

3）创建和配置Master服务器。包括镜像导入、系统导入等。

4）创建和配置Slave服务器。测试Replicate命令是否成功。

5）配置从Master服务器到所有Slave服务器的root免密码ssh登录。

6）放置自动化脚本。

在Master上放置的自动化脚本路径和内容如下：

/var/lib/cobbler/cobbler_scripts/replicate.sh

#!/bin/bash

SLAVE_SERVERS=”slave01 slave02”

for i in $SLAVE_SERVERS

do

 ssh root@$i /var/lib/cobbler/cobbler_scripts/run_replicate.sh

done

/var/lib/cobbler/triggers/sync/post/replicate_wrapper.sh

#!/bin/bash

bash /var/lib/cobbler/cobbler_scripts/replicate.sh

在Slave上放置的自动化脚本路径和内容如下：

/var/lib/cobbler/cobbler_scripts/replicate.sh

#!/bin/bash

echo “Run replicate script” > /tmp/cobbler_replicate.log

echo `date` >> /tmp/cobbler_replicate.log

/var/lib/cobbler/triggers/sync/post/replicate_wrapper.sh

#!/bin/bash

bash /var/lib/cobbler/cobbler_scripts/replicate.sh

/var/lib/cobbler/triggers/cobbler_scripts/run_replicate.sh

#!/bin/bash

/usr/bin/cobbler replicate --master=MASTER_IP --sync-all --prune

/usr/bin/cobbler sync

如此每当在Master上有系统更新时，只要运行cobbler sync命令，Master就会ssh到所有Slave上来进行Cobbler更新。

这是主动模式，如果对于系统更新及时性要求不高，可以在所有的Cobbler Slave上添加cronjob的模式来进行。
8.4　操作系统无盘技术

8.4.1　定义

本节中所提到的操作系统无盘技术实际使用的是自定义大小的内存作为操作系统根分区的挂载点，使用剩余部分作为系统内存，通过网络启动方式来完成系统镜像的传输和安装的一种技术。

优点：

·节约成本。省去了购买硬盘的费用。

·速度快。内存的读写速度是硬盘暂时无法比拟的。

·安全性好。相对于使用硬盘，无盘系统在发生特殊情况下，可以降低数据外泄的概率。在已经断电的内存中恢复数据是非常难以实现的。

·部署速度快。在完成无盘镜像的配置以后，批量部署速度较普通系统安装方式较快，而且可以保证配置的高度一致。

·日常维护简单。在完成无盘镜像的配置以后，日常维护或者故障处理相对简单，只需重启服务器即可。

缺点：

非持久化存储。在使用内存作为操作系统存储介质时，服务器无法应用在有持久化存储需求的服务中，例如数据库（只读缓存除外）等。
8.4.2　制作无盘镜像

介绍完无盘系统的特点以后，下面来创建一个无盘操作系统。

1.准备阶段

首先，定义需要使用的目录信息。

·/root/diskless-image：主目录，所有文件都将放在这个目录下。

·/root/diskless-image/rootfs-mnt：挂载镜像文件的临时目录。

·/root/diskless-image/dracut-tmp：Dracut工具使用的临时目录。

其次，准备Dracut工具。

2.制作无盘镜像

创建无盘镜像文件，大小为2GB=2048MB，命令如下：

[root@localhost diskless-image]# dd if=/dev/zero of=/root/diskless-image/rootfs.img bs=1k count=$((2048 * 1024))

2097152+0 records in

2097152+0 records out

2147483648 bytes (2.1 GB) copied, 6.73247 s, 319 MB/s

[root@localhost diskless-image]#

格式化镜像文件并创建文件系统，命令如下：

[root@localhost ~]# cd /root/diskless-image/

[root@localhost diskless-image]# mke2fs -v -F -L ROOT rootfs.img

mke2fs 1.41.12 (17-May-2010)

fs_types for mke2fs.conf resolution: 'ext2', 'default'

Filesystem label=ROOT

OS type: Linux

Block size=4096 (log=2)

Fragment size=4096 (log=2)

Stride=0 blocks, Stripe width=0 blocks

131072 inodes, 524288 blocks

26214 blocks (5.00%) reserved for the super user

First data block=0

Maximum filesystem blocks=536870912

16 block groups

32768 blocks per group, 32768 fragments per group

8192 inodes per group

Superblock backups stored on blocks:

 32768, 98304, 163840, 229376, 294912

Writing inode tables: done

Writing superblocks and filesystem accounting information: done

This filesystem will be automatically checked every 29 mounts or

180 days, whichever comes first. Use tune2fs -c or -i to override.

[root@localhost diskless-image]#

以下是安装Dracut的步骤。

系统自带的Dracut版本较为落后，无法正常引导。所以需要去官网重新下载源码包进行编译安装。

官方文档以及需要的安装包参见：https:/www.kernel.org/pub/linux/utils/boot/dracut/dracut.html

安装命令如下：

[root@localhost diskless-image]# wget https://www.kernel.org/pub/linux/utils/boot/dracut/dracut-044.tar.gz

[root@localhost diskless-image]# tar -zxvf dracut-044.tar.gz

[root@localhost diskless-image]# cd dracut-044

[root@localhost dracut-044]# make -f Makefile

[root@localhost dracut-044]# make install

[root@localhost dracut-044]# cd

[root@localhost ~]#

可通过以下命令检查Dracut版本。

[root@localhost ~]# dracut -h

Usage: /usr/bin/dracut [OPTION]... [<initramfs> [<kernel-version>]]

Version: 044

下面使用Dracut创建启动时所需要的initrd文件。

[root@localhost diskless-image]# /usr/bin/dracut -a livenet -o 'i18n lvm dmraid plymouth dropbear-sshd' -f initrd

dracut: Executing: /usr/bin/dracut -a livenet -o "i18n lvm dmraid plymouth dropbear-sshd" -f initrd

dracut: dracut module 'bootchart' will not be installed, because command '/sbin/bootchartd' could not be found!

dracut: dracut module 'systemd' will not be installed, because command '/systemd' could not be found!

dracut: dracut module 'systemd-bootchart' will not be installed, because command '/systemd-bootchart' could not be found!

dracut: systemd-initrd needs systemd in the initramfs

dracut: systemd-networkd needs systemd in the initramfs

dracut: dracut module 'i18n' will not be installed, because it's in the list to be omitted!

dracut: dracut module 'plymouth' will not be installed, because it's in the list to be omitted!

dracut: dracut module 'btrfs' will not be installed, because command 'btrfs' could not be found!

dracut: dracut module 'dmraid' will not be installed, because it's in the list to be omitted!

dracut: dracut module 'lvm' will not be installed, because it's in the list to be omitted!

dracut: dracut module 'nbd' will not be installed, because command 'nbd-client' could not be found!

dracut: dracut-systemd needs systemd-initrd in the initramfs

dracut: *** Including module: bash ***

dracut: *** Including module: dash ***

dracut: *** Including module: caps ***

dracut: *** Including module: modsign ***

dracut: *** Including module: network ***

dracut: *** Including module: ifcfg ***

dracut: *** Including module: url-lib ***

dracut: *** Including module: crypt ***

dracut: *** Including module: dm ***

dracut: Skipping udev rule: 60-persistent-storage-dm.rules

dracut: Skipping udev rule: 55-dm.rules

dracut: *** Including module: dmsquash-live ***

dracut: *** Including module: kernel-modules ***

dracut: *** Including module: kernel-network-modules ***

dracut: *** Including module: livenet ***

dracut: *** Including module: mdraid ***

dracut: Skipping udev rule: 63-md-raid-arrays.rules

dracut: Skipping udev rule: 64-md-raid-assembly.rules

dracut: *** Including module: multipath ***

dracut: Skipping program socket:/org/kernel/dm/multipath_event using in udev rule 40-multipath.rules as it cannot be found

dracut: *** Including module: cifs ***

dracut: *** Including module: fcoe ***

dracut: *** Including module: fcoe-uefi ***

dracut: *** Including module: iscsi ***

dracut: *** Including module: nfs ***

dracut: *** Including module: resume ***

dracut: *** Including module: rootfs-block ***

dracut: *** Including module: terminfo ***

dracut: *** Including module: udev-rules ***

dracut: Skipping udev rule: 91-permissions.rules

dracut: Skipping udev rule: 80-drivers-modprobe.rules

dracut: *** Including module: biosdevname ***

dracut: *** Including module: usrmount ***

dracut: *** Including module: base ***

/usr/lib/dracut/modules.d/99base/module-setup.sh: line 15: /var/tmp/dracut.WGbXIo/initramfs/usr/lib/initrd-release: No such file or directory

ln: creating symbolic link `/var/tmp/dracut.WGbXIo/initramfs/usr/lib/os-release': No such file or directory

dracut: *** Including module: fs-lib ***

dracut: *** Including module: img-lib ***

dracut: *** Including module: shutdown ***

dracut: *** Including module: uefi-lib ***

dracut: *** Including modules done ***

dracut: *** Installing kernel module dependencies and firmware ***

dracut: *** Installing kernel module dependencies and firmware done ***

dracut: *** Resolving executable dependencies ***

dracut: *** Resolving executable dependencies done***

dracut: *** Pre-linking files ***

dracut: *** Pre-linking files done ***

dracut: *** Stripping files ***

dracut: *** Stripping files done ***

dracut: *** Store current command line parameters ***

dracut: *** Creating image file '/root/diskless-image/initrd' ***

dracut: *** Creating initramfs image file '/root/diskless-image/initrd' done ***

[root@localhost diskless-image]#

然后将后面使用的Kernel也一起复制到该目录下。

[root@localhost diskless-image]# cp /boot/vmlinuz-2.6.32-573.22.1.el6.x86_64 vmlinuz

[root@localhost diskless-image]#

接着，创建镜像文件的挂载目录并挂载镜像文件。

[root@localhost diskless-image]# mkdir rootfs-mnt

[root@localhost diskless-image]# mount -o loop rootfs.img rootfs-mnt

[root@localhost diskless-image]# mkdir rootfs-mnt/{proc,dev}

[root@localhost diskless-image]# mount --bind /proc rootfs-mnt/proc

[root@localhost diskless-image]# mount --bind /dev rootfs-mnt/dev

[root@localhost diskless-image]#

下载并安装centos-release包。

[root@localhost diskless-image]# yum install -y --installroot=/root/diskless-image/rootfs-mnt/ --releasever=6 centos-release

指定目录安装系统基本包以及相关基础包，命令如下：

[root@localhost rootfs-mnt]# yum --installroot=/root/diskless-image/rootfs-mnt/ --releasever=6 install findutils filesystem bash kernel passwd dhclient yum openssh-server openssh-clients vim ntp rootfiles

下面使用chroot切换到无盘镜像的系统中。

[root@localhost diskless-image]# chroot /root/diskless-image/rootfs-mnt/

通过以下命令查看并检查passwd文件是否正常。

[root@localhost /]# cat /etc/passwd

root:x:0:0:root:/root:/bin/bash

bin:x:1:1:bin:/bin:/sbin/nologin

daemon:x:2:2:daemon:/sbin:/sbin/nologin

adm:x:3:4:adm:/var/adm:/sbin/nologin

lp:x:4:7:lp:/var/spool/lpd:/sbin/nologin

sync:x:5:0:sync:/sbin:/bin/sync

shutdown:x:6:0:shutdown:/sbin:/sbin/shutdown

halt:x:7:0:halt:/sbin:/sbin/halt

mail:x:8:12:mail:/var/spool/mail:/sbin/nologin

uucp:x:10:14:uucp:/var/spool/uucp:/sbin/nologin

operator:x:11:0:operator:/root:/sbin/nologin

games:x:12:100:games:/usr/games:/sbin/nologin

gopher:x:13:30:gopher:/var/gopher:/sbin/nologin

ftp:x:14:50:FTP User:/var/ftp:/sbin/nologin

nobody:x:99:99:Nobody:/:/sbin/nologin

vcsa:x:69:69:virtual console memory owner:/dev:/sbin/nologin

sshd:x:74:74:Privilege-separated SSH:/var/empty/sshd:/sbin/nologin

[root@localhost /]#

以下是为root用户配置密码的步骤，密码与制作镜像的服务器root密码相同。

首先，切换到当前系统并获取root密码的加密字符串。

[root@localhost /]# exit

exit

[root@localhost diskless-image]# cat /etc/shadow | grep root

root:6F2.LmNz/WbCyrWvu$kxtbWFKXAG1j9TigyNacmYcywWYD9fn7pjX7qOavSCTQVpPFBBmsyNozrWgUjc/WN352dxE3U9bksBZWxdVQJ0:16911:0:99999:7:::

[root@localhost diskless-image]#

然后切换到无盘系统，修改shadow文件中的root密码加密字符串。

[root@localhost diskless-image]# chroot /root/diskless-image/rootfs-mnt/

[root@localhost /]# vim /etc/shadow

[root@localhost /]# cat /etc/shadow | grep root

root:6F2.LmNz/WbCyrWvu$kxtbWFKXAG1j9TigyNacmYcywWYD9fn7pjX7qOavSCTQVpPFBBmsyNozrWgUjc/WN352dxE3U9bksBZWxdVQJ0:15980:0:99999:7:::

[root@localhost /]#

接着，创建网卡相关的配置文件。

[root@localhost /]# vim /etc/sysconfig/network-scripts/ifcfg-eth0

DEVICE=eth0

BOOTPROTO=dhcp

ONBOOT=yes

之后，配置dns解析服务器。

[root@localhost /]# vim /etc/resolv.conf

nameserver [YOUR NAMESERVER IP]

配置mtab文件。

[root@localhost /]# vim /etc/mtab

proc /proc proc rw 0 0

sysfs /sys sysfs rw 0 0

devpts /dev/pts devpts rw,gid=5,mode=620 0 0

tmpfs /dev/shm tmpfs rw 0 0

none /proc/sys/fs/binfmt_misc binfmt_misc rw 0 0

配置fstab文件。

[root@localhost /]# vim /etc/fstab

tmpfs /dev/shm tmpfs defaults 0 0

devpts /dev/pts devpts gid=5,mode=620 0 0

sysfs /sys sysfs defaults 0 0

proc /proc proc defaults 0 0

通过如下命令安装一些常用库或者工具等。

[root@localhost /]# yum install libusb pciutils zlib libtomcrypt bind-utils createrepo curl lsof

现在退出chroot模式，命令如下：

[root@localhost /]# exit

exit

[root@localhost diskless-image]#

卸载已经挂载的无盘镜像系统。

[root@localhost diskless-image]# umount rootfs-mnt/proc

[root@localhost diskless-image]# umount rootfs-mnt/dev

[root@localhost diskless-image]# umount rootfs-mnt

[root@localhost diskless-image]# df -h

Filesystem Size Used Avail Use% Mounted on

/dev/mapper/vg_livedvd-lv_root

 18G 9.5G 7.5G 56% /

tmpfs 751M 0 751M 0% /dev/shm

/dev/sda1 477M 78M 374M 18% /boot

[root@localhost diskless-image]#

上述步骤就完成了镜像文件的制作，为了减少在启动过程中镜像传输的时间，可对镜像进行压缩，命令如下：

[root@localhost diskless-image]# tar zcvf rootfs.tgz rootfs.img

rootfs.img

[root@localhost diskless-image]#

8.4.3　测试无盘镜像

1）将文件移动到相应Cobbler的文件夹中，命令如下：

[root@localhost diskless-image]# mkdir -p /var/www/cobbler/ks_mirror/diskless-centos6

[root@localhost diskless-image]# cp -r initrd vmlinuz rootfs.tgz /var/www/cobbler/ks_mirror/diskless-centos6/

2）在Cobbler中添加distro、profile以及system信息。

以下命令用于添加distro。

[root@localhost diskless-image]# cobbler distro add --name diskless-centos6 --kernel=/var/www/cobbler/ks_mirror/diskless-centos6/vmlinuz --initrd=/var/www/cobbler/ks_mirror/diskless-centos6/initrd

 --kopts='ksdevice=bootif lang rw ip=dhcp root=live:http://192.168.88.110[注意替换为自己的IP]/cobbler/ks_mirror/diskless-centos6/rootfs.tgz nousb text ramdisk_size=2097152 kssendmac rd.writable.fsimg=1 rd.live.ram=1 rd.live.debug=1'

以下命令用于添加profile。

[root@localhost diskless-image]# cobbler profile add --name diskless-centos6 --distro diskless-centos6

以下命令用于添加system。

[root@localhost diskless-image]# cobbler system add --name centos6 --mac-address=08:00:27:F1:8C:CD[注意替换为自己的MAC] --interface=eth0 --ip-address=192.168.88.119[注意替换为自己的IP] --gateway=192.168.88.1[注意替换为自己的网关] --netmask=255.255.255.0[注意替换为自己的掩码]

可运行Cobbler的sync命令来使所有配置生效。

[root@localhost diskless-image]# cobbler sync

注意检查rootfs.tgz的文件权限，确保所有用户可读，命令如下：

[root@localhost diskless-image]# ll /var/www/cobbler/ks_mirror/diskless-centos6/

total 391292

-rwxr-xr-x 3 root root 29159963 Apr 20 14:56 initrd

-rw-r--r-- 1 root root 367296010 Apr 20 14:56 rootfs.tgz

-rwxr-xr-x 3 root root 4222448 Apr 20 14:56 vmlinuz

[root@localhost diskless-image]#

启动测试虚拟机，enjoy！

8.5　本章小结

本章主要介绍了系统的网络部署流程。运用Cobbler工具来实现网络部署的自动化及批量化，减少了系统管理员的重复工作量。在本章最后，简单地配置了一个基础的无盘系统，通过Cobbler来进行批量的部署。在今后日常工作中，无论是常用的有盘系统的安装部署，还是定制化的无盘系统的安装部署，都能通过使用自动化工具快速无误的完成。
第9章　Puppet配置管理

本章将迎来DevOps的重头戏——Puppet，如果说自动化是运维效率的根本，那么Puppet就是自动化运维的神器，本章将通过一些简单明了的例子展开讲解，使大家快速入门。此外，本章还提供了大量深入的代码，方便大家高屋建瓴地了解Puppet的精华部分。诚然，我们经常听到一些运维抱怨自动化工具难学，还是批量脚本简单的说法，可是要知道，脚本是前期爽快，后期不仅容易出错，而且还不易于维护，谁用谁知道！所以，本章要打破自动化工具与运维之间的隔阂，让大家都可以看着显示器，悠闲地喝着咖啡。
9.1　什么是Puppet

维基百科上说，Puppet是一款开源的自动化配置管理工具，它可以运行在unix-like系统中，也可以运行在Windows中，并且使用了简单的声明式语言来抽象系统资源，来进行自动化管理。

通俗点讲，如果用户之前是使用一大堆script来进行服务器自动化运维的话，Puppet就是一个已经定义好各种标准模块，只要声明并调用已有模块里的函数就可以完成自动化运维的工具。

再形象点讲，Puppet，英文意思“木偶”，作为系统管理员，只需要动动手里的小木棒，系统就像木偶一样，随意舞动，风姿摇曳。
9.1.1　Puppet对于系统运维意味着什么

Puppet也如其他自动化配置管理工具的信念一样，即一次投资，终生收益。它会把用户在部署和配置服务时所修改的对象都抽象成一个资源，如下：

·File：配置文件的拷贝

·Cron：定期任务的部署

·Package：安装包的管理

·Service：服务的运行

·Exec：执行的shell命令

用户所要做的就是在Puppet master上定义这些资源，完成后，在Puppet agent上就会定期自动做所有的事情，是的，从此以后安装服务再也不用登录机器了。

但是这是理想状态，现实情况是随着项目的发展，需要在Puppet master上作相应的调整，如更新配置文件、添加新的cron job等。用户会慢慢发现多数时间都是开着Puppet master的terminal在改Puppet代码。那么恭喜你，你已经迈入DevOps的大堂了。
9.1.2　为什么选择Puppet

1.比较

提到Puppet，肯定有人会想到其他类似工具，老牌一点的如cfengine、bladelogic（商业），新潮点的如chef、ansible、salt。这些工具各有特点，如果对这些技术感兴趣，可以使用google trends查看各工具的流行指数，github的指标（星级、commit和folk数，等等）查看该工具的社区活跃度，当然也可以参考百度指数。

本章讲解Puppet，这也说明了笔者的选择。笔者属于比较懒的一类“攻城狮”，不仅不愿意尝试新鲜事物，而且懒得为了生产服务频繁地线上维护，尤其像自动化配置管理工具这样的关键性应用，不得不谨慎小心，维护之前必须要写好详尽的plan和roll back plan，真是费力伤神的事情，因此笔者在关键服务上更倾向于选择不太陈旧的成熟方案，在开放环境和非关键服务上选择新潮点的方案。Puppet从2005年成立至今，不仅有活跃的社区，数千成熟的模块，而且还获得了上亿美金的投资，建立了商业support，整个生态圈是相当健康的。

2.Puppet的起源

笔者选择它的另外一个重要的原因是Puppet的作者Luke Kanies的有趣故事。Luke是Puppet的作者、创始人以及CEO，三重光环加身，经历确实丰富多彩，老牌点的说法是“故天将降大任于斯人也，必先苦其心志，劳其筋骨，饿其体肤，空乏其身”，新潮点的说法是一个“X丝的打怪升级之路”。

Luke的童年时光是在田纳西的一个农场上度过的，用他创业时接受采访的原话来说，“我的童年是在一个有1600人的嬉皮士公社渡过的，”他笑了笑，“现在我有一个几百万美金的公司，而当时我直到8岁还没有一个厕所。”这造就了Luke斗士精神，以及后来他为人处事的态度。

到了1992年，Luke屁颠屁颠地跑到威斯康辛州的一所名不见经传的Northland College学起了化学，过了一年Luke同学发奋图强去了全美排名前50的Reed college，和乔布斯（乔帮主）成为了校友。可是这条路并不平坦，该大学课程犹如国内大学一样，不仅要学习希腊及罗马的古典文化，还要在四个拓展领域选课：文学、哲学、宗教、艺术等领域；历史、社科、心理学等领域；自然科学等领域；数学、逻辑、语言学或外语等领域，可谓德智体美劳全面发展（事实证明，国内模式也能出乔布斯这样的大拿）。到了大四，Luke终于交出了满意答卷“Site-directed Mutagenesis in Soy Cytosolic Ascorbate Peroxidase”，这论文题目，有兴趣的同学可以自己翻译，他终于要踏入社会了。

到了1997年，Luke带着化学天赋懵懂地踏入社会，做了一年不到的mac sysadmin和两年不到的call center装机工，终于跑到一家叫bluestar的公司正儿八经当起了system engineer，用他的话来说“didn抰want to fix computers forever！”（我再也不要修电脑啦！），多么质朴的话语，道出了我们众多“攻城狮”的心声。在两年的磨砺中，他终于成了脚本小子，实现了脚本化自动化运维。

2001年，不安分的Luke又觉得什么都要用脚本写实在太麻烦了，他开始研究配置管理工具的鼻祖cfengine，并且跑到一家叫Caterpillar的融资公司担任顾问，同年又成立了Reductive Consulting的咨询公司（其实和大多数有经验的“攻城狮”接私活是一个性质）。在接下来三年里，Luke深入研究了cfengine，并积极地改进并贡献代码。但是随着时间的推移，他发现cfengine的生态圈并不好，大家都不愿意分享模块代码，他感到非常失望，并开始需求其他解决方案。

到了2004年，斗士Luke来到了大名鼎鼎的商业软件bladelogic担任产品设计，虽然只待了7个月，虽然他曾抱怨bladelogic对初创项目并不友好，但是正是bladelogic，促使他萌发了做一个开源解决方案的想法。

于是，到了2005年，他和老婆商量再三后，准备正式单飞，把咨询公司变成一个真正的软件公司，也就是后来的Puppetlabs。关于Puppet是如何发展的，社区运作是否健康，网上随便一搜都有，这里不再赘述。只想提一句，成功的男人背后必定有一个默默支持他的女人，Luke在他老婆怀孕的那一年，飞行里程是9万英里（赤道上大约绕三圈半），就连他老婆生孩子的那一刻他还在飞机上，最后顺利产下一对双胞胎，真是人生赢家。

好了，说了这么多，其实想表达的观点是，Luke的经历很对笔者的口味，当然有可能有人还能从中找到自己的影子，但这些并不是当初我们的项目选择Puppet的原因，接下来我们就一起走入Puppet的世界，欣赏Puppet之美。
9.2　安装Puppet

9.2.1　准备工作

第一步当然是选择系统，最常见的是选择CentOS 6作为环境来安装。不过接下来要说的并不是常规的准备工作，而是有关Puppet的准备工作。

1.选择Puppet模式

Puppet具有2种模式：master和masterless。顾名思义，master是以传统的C/S模式运行，每台机器都会跑一个的Puppet agent，而masterless就是预先把Puppet代码拷贝到每台机器上，像一个脚本一样独立运行，接下来进行具体分析。

（1）Agent/Master模式

大多数情况下，推荐用户选择这种模式，集中化管理Puppet代码，并可以根据一些现成的工具，通过读取每台agent传到master的report，来了解Puppet整体运行状态，如Puppet dashboard。可以这么说，如果你的项目是以下情景：

·是一个agent半小时同步一次master就足够的环境。

·agent少于1000台。

·有一台不是很差的空闲服务器，8GB，4核，带RAID卡与电池的一台Dell入门级server。

那么恭喜你，只需要所写的Puppet的代码不是太烂，你就可以毫不犹豫地选择agent/master模式。

[image:]默认的master是通过独立的daemon运行的（官方称WEBrick方式，是Ruby自带的简易http库），性能不是特别好，胜在简单且足以应对测试环境和数十台agent，如果正式投入运营，推荐使用Apache＋Passenger的方式，以获得更好的性能。

此外，官方还有一个更新的架构叫Puppetserver，目前是1.0.8版本，用JRuby（一个采用纯Java实现的Ruby解释器）编写，虽然笔者不喜欢Java，但是官方推崇Java的原因是遇到了性能瓶颈，靠Ruby是无法简单解决的，于2014年圣诞节前夕刚进入1.0.0版本，建议继续观望。

（2）Masterless模式

Puppet官方称standalone模式，使用Puppet apply来执行本地Puppet代码，这种模式是一种极端模式，如果项目是以下几种情景那么可以试用。

·只有两三台服务器（其实两三台机器更适合用纯shell脚本）。

·10000台服务器。

·1000台机器需要在1分钟内全部跑一遍agent到server的同步。

当然后面两种情况还是可以靠适当的调优和堆机器来解决的，只要将master之间的同步做好即可，相信这么大的项目10台左右服务器还是值得投入的。事实上，在进行一定的后期调整后，master可以做得和masterless一样好，并且节省了硬件开销，加快了agent的运行速度，笔者的项目就曾经评估和实验过这个方案，后来比较了维护成本和新人学习成本，还是选择了master模式，相应的投入还是值得的。

[image:]本地masterless Puppet的运行其实可以试用于新机房中第一台master服务的搭建，一般2个机房之间的网络打通要在项目中后期才会实现，提早完成第一台master服务的搭建，可以加快项目交付的进度。

2.选择Ruby环境

官方建议以下三个版本：

·Ruby 2.0.x

·Ruby 1.9.3

·Ruby 1.8.7

原因很简单，官方是基于这三个Ruby版本做测试的。而Centos 6上默认就是Ruby 1.8.7，如果用户使用的是CentOS 5，那么很不幸，需要到网上找一个非官方Ruby 1.8.7的el5 rpm包，或者自己编译安装。笔者的项目中有部分CentOS 5的机器，碰到过坑，即Ruby 1.8.5跑Puppet agent daemon的时候会有内存持续溢出，虽然可以靠cron定期跑service Puppet restart解决，但最终还是自行编了一个Ruby 1.8.7的rpm包来解决。

3.检查网络配置

（1）防火墙

Puppet master默认使用8140端口，所以建议检查硬件防火墙以及本地iptables，如果对iptables不熟悉，可以使用service iptables stop来关闭它。

（2）域名解析

Puppet master和agent之间的交互是通过域名实现的，保证两者之间的域名解析正常是非常重要的。

master的配置

在有DNS Server的时候，只需为Puppet master ip预先加一条DNS A记录解析即可（解析域名为puppet，有FQDN，即是puppet.your_domain.com）。如果没有DNS Server，需要在每台agent中的hosts里加入master ip，用于解析。在搭建工作中，这将为第一次接触Puppet的读者，大大减少可能会碰到的麻烦。

agent的配置

由于Puppet master与agent是用SSL来进行签名加密传输的，所以要满足：

·每台agent必须要有独立的hostname。

·每台agent都可以正常解析Puppet master的IP为域名“puppet”。

因此，如果你有DNS，需要保证每个agent的正向和反向解析都正常，即有A记录，也要有PTR记录，如果没有DNS，则不仅需要在Puppet master的hosts里加入每个agent的IP，也要在每台agent的hosts里加入agent的本机IP和hostname作为解析。

[image:]本文将不再展开如何搭建DNS，同时，强烈建议读者使用DNS，管理成百甚至上千台服务器，如果没有用DNS的这样一个好习惯，平时的运维可能会遇到无数的烦恼和陷阱。

4.检查时间同步

通常NTP最容易导致的问题是SSL证书不合法，该证书会被认为是过期或者是未来的证书，之前已提到Puppet master与agent是用SSL来进行签名加密传输的，所以时间同步是用户应该预先检查的问题。

5.选择Puppet版本

最后，也是最重要的，选择Puppet版本。

目前最新版本是4.*.*系列，是用JRuby写的Puppetserver，开源项目当然最欢迎小白鼠，不过对于新手来说，还是推荐稳定版本，即3.*.*系列，本书使用的是Puppet 3.8.*，因为它有如下特性：

·性能更好

·入手更简单

当然目前还有2.*.*系列的版本，很多国内的文档都是基于此版本，不过笔者认为该版本实在跟不上时代，建议用户丢掉手中如何撰写第一模块的其他资料吧，把奇怪的import，用genmanifest来产生第一个天书一般的site.pp，还有新手完全看不懂的默认变量，这些统统卸掉。然后，根据本书中的site.pp章节来开始你轻松愉快的Puppet之旅吧！
9.2.2　安装一个服务端

1）导入官方repo，命令如下：

[root@puppet /]# rpm -ivh https://yum.puppetlabs.com/puppetlabs-release-el-6.noarch.rpm

2）安装puppet-server，命令如下：

[root@puppet /]# yum install puppet-server

3）删除默认证书，命令如下：

[root@puppet /]# puppet cert clean --all

4）产生dns name为“puppet”的证书，命令如下：

[root@puppet /]# puppet cert generate puppet --dns_alt_names puppet

9.2.3　安装一个客户端

第一步，导入官方repo，命令如下：

[root@agent /]# rpm -ivh https://yum.puppetlabs.com/puppetlabs-release-el-6.noarch.rpm

第二步，安装Puppet agent，命令如下：

[root@agent /]# yum install puppet

9.2.4　连接第一个客户端

首先，检查Puppet server是否可达客户端，命令如下：

[root@agent /]# ping puppet

[root@agent /]# telnet puppet 8140

如果上述命令失败，需要排错后，再执行后续步骤。

首次请求Puppet server的命令如下：

[root@agent /]# puppet agent -t

Info: Creating a new SSL key for agent.example.com

Info: Caching certificate for ca

Info: csr_attributes file loading from /etc/puppet/csr_attributes.yaml

Info: Creating a new SSL certificate request for agent.example.com

Info: Certificate Request fingerprint (SHA256): 4A:6B:B9:83:F1:83:B7:18:09:96:8A:73:9A:62:65:C4:BE:E7:EF:C6:31:EF:91:85:62:93:73:75:66:F8:4C:8F

Info: Caching certificate for ca

Exiting; no certificate found and waitforcert is disabled

可以看出，第一次agent已自生成证书，并发送给master等待认证。

然后在Puppet server上查看认证请求并接受签名，命令如下：

[root@puppet /]# puppet cert list

 "agent.example.com" (SHA256) 4A:6B:B9:83:F1:83:B7:18:09:96:8A:73:9A:62:65:C4:BE:E7:EF:C6:31:EF:91:85:62:93:73:75:66:F8:4C:8F

[root@puppet /]# puppet cert sign agent.example.com

如果失败请再次检查准备工作的网络配置部分。

之后返回agent，再次执行上面的命令：

[root@agent /]# puppet agent -t

Info: Caching certificate for agent.example.com

Info: Caching certificate_revocation_list for ca

Info: Caching certificate for agent.example.com

Info: Retrieving pluginfacts

Info: Retrieving plugin

Info: Caching catalog for f1d7e51bf943.example.com

Info: Applying configuration version '1428845851'

Info: Creating state file /var/lib/puppet/state/state.yaml

Notice: Finished catalog run in 0.23 seconds

最终，agent与master成功互联，运行成功！
9.2.5　Puppet master上的site.pp

site.pp，正如大多数文章所说，它就是Puppet agent运行时首先要执行的第一段Puppet代码。其默认路径为：

[root@puppet /]# puppet master --configprint all | grep '^manifest '

manifest = /etc/puppet/manifests/site.pp

它具有如下功能。

1）能直接写Puppet代码，全局管理resources。

在master上加入如下代码：

[root@puppet /]# vim /etc/puppet/manifests/site.pp

file { '/tmp/ooxx':

 content => 'test23',

 owner => root,

 group => root,

 mode => 0440,

}

在agent上执行如下命令：

[root@agent /]# puppet agent -t

Info: Retrieving pluginfacts

Info: Retrieving plugin

Info: Loading facts

Info: Caching catalog for 98876ed2a207.example.com

Info: Applying configuration version '1429452948'

Notice: /Stage[main]/Main/File[/tmp/ooxx]/ensure: defined content as '{md5}b48cca5aebb82a328227b78d899506f5'

Notice: Finished catalog run in 0.46 seconds

此时会发现，agent上自动创建了一个/tmp/ooxx的文件，文件内容、属性和所定义的一致。

[image:]这里暂不展开讲Puppet语法，先尽量给出一些浅显易懂的例子，让大家对Puppet语法有感观上的良好体验后，再在后文具体展开，相信会更加直观，类似于小孩学习语言都是从依样画葫芦开始的。

2）能定义node，使用不同的Puppet代码，管理resources。

在master上加入如下代码：

[root@puppet /]# vim /etc/puppet/manifests/site.pp

node agent.example.com {

 file { '/tmp/ooxx':

 content => 'test23',

 owner => root,

 group => root,

 mode => 0440,

 }

}

会发现该file的resource，只能在agent.example.com上应用。

[image:]node default是默认规则，所有agent都会主动应用代码里的resources，也就是大括号（{}）里的资源，推荐以这种方式来定义全局resources。

3）能定义class，在class里面定义resources，让不同的node使用不同的class中的resources。

在master上加入如下代码：

[root@puppet /]# vim /etc/puppet/manifests/site.pp

node agent.example.com {

 include example

}

class example {

 file { '/tmp/ooxx':

 content => 'test23',

 owner => root,

 group => root,

 mode => 0440,

 }

}

会发现这样写的好处是，class可以重复利用，另外一个node如果也想要应用example class，只需要写一个include example即可。

4）还可以import其他pp文件。

很多文章都会这么写，在/etc/puppet/manifests/site.pp加入如下内容。

单独放一大堆pp到当前nodes这个目录下，让site.pp读取并应用其中的代码。

import "nodes/*.pp"

在modules.pp里定义各个模块的路径。

import “modules.pp”

如果用户之前用过，或者准备这么用，请立刻停止，因为新版的Puppet已经把import默认为deprecated，也就是弃用的状态，理由就是不需要。

对于import"nodes/*.pp"，官方认为，nodes由于可以支持正则，所以不需要大量的pp文件来支持，正如文章前面说过的，如果真想管好成百上千台机器，使用DNS吧，因为可以使用如下几种代码方式定义node。

 node 'www1.example.com', 'www2.example.com', 'www3.example.com' ｛

 ...

 }

node /^www\d+$/ {

...

}

node /^(foo|bar)\.example\.com$/ ｛

...

}

[image:]由于Puppet的regex来源于Ruby，更多语法请参考http://ruby-doc.org/core-2.1.1/Regexp.html。

如果以上方式还无法满足用户需求，那么请参考后文ENC的管理方式。

对于import"modules.pp"，官方认为，modules就应该放在标准路径，建议就放在/etc/puppet/modules里，这更符合Linux的习惯。代码如下：

[root@puppet /]# puppet master --configprint all | grep '^modulepath '

modulepath = /etc/puppet/modules:/usr/share/puppet/modules

综上所述，只要学习了如何使用site.pp，就能进行agent的resources管理，然而还是建议采用以下方式来进行最干净的管理。

·site.pp就应该只包含node的定义和include中的class，不包括resources管理代码。

·resources只定义在class里，而class的完整定义应该放在/etc/puppet/modules中。

·停止使用import，已经不需要了。

理由很简单，你应该避免上千行代码在一个文件里面，就如Linux不会建议把所有开机启动程序放在/etc/rc.local里，而是每个程序都有相应的/etc/init.d脚本一样，用runlevel来控制它们，在site.pp中，尽量只定义不同机器（node）应该运行哪个Puppet模块即可，具体逻辑放在相应的Puppet模块中。

[image:]如果后续学习并使用了enc（External Node Classifiers），完全可以扔掉site.pp。
9.2.6　制作第一个模块

上节讲了如何用最佳方式干净地管理Puppet，现在来着手制作第一个模块。

1.语法

在制作模块之前，大家要问的第一个问题肯定是：Puppet是什么语法？虽然笔者之前提到过多读代码产生的感觉比语法更重要，但是为了做一个参考，方便后文快速展开，这里还是提一提。

还是以上文的一个文件管理为例。单一resources的代码如下：

file { '/tmp/ooxx':

 content => 'test23',

 owner => root,

 group => root,

 mode => 0440,

}

这里要先说明一下关于资源的几个概念。

·resource type：资源种类，这里使用了“file”，这个Puppet内置的一个最常见的种类。

·resource title：资源的标题，这里命名为“/tmp/ooxx”，在“file”这种type里为文件的绝对路径。

·resource attribute：资源的属性，这里有四个属性，分别是content、owner、group、mode，相信属性名已经清楚明了地说明了它们的含义，不需要过多的解释。

代码中标点符号的用法如下：

·冒号（：），是紧挨着title之后的。

·单引号（''），要对所有自定义的string使用。

·箭头号（=>），左边为attribute的名字，右边为该attribute所要赋予的值。

·逗号（，），每个attribute定义好之后需要加上逗号，这里最后一个attribute建议也加上，因为实际操作过程中，用户都喜欢复制上一行来写一个新的attribute，而往往都会忘记补上这个逗号。

·大括号（{}），包裹了一个resource type里的所有定义。

最后一点，以上都是英文标点。

所以，提炼后的语法形式如下：

type {'title':

 attribute1 => value1,

 attribute2 => value2,

}

对于多个resources组成一个类的代码，形式如下：

class ntp_client {

 file { '/tmp/ooxx':

 content => 'test23',

 owner => root,

 group => root,

 mode => 0440,

 }

 package { 'ntp':

 ensure => installed,

 }

 service { 'ntp':

 name => 'ntpd',

 ensure => running,

 }

}

同样解释一下其中的几个概念和标点符号的用法。

·class：类的定义，ntp_client是类名。

·resources：该类中包括了file/package/service三个resources，分别以空行相隔。

·{}：大括号来包裹所有三个resources的定义。

最后在site.pp中include即可。

2.构思模块

现在就从一个简单的需求出发来制作一个简单的模块，比如想要在登录系统后，使用motd告诉来访者一些基础的信息。假设有如下需求：

·显示系统基础信息。

·安装dstat来抓取各种stat。

·显示Puppet相关信息。

·把以上需求做成一个脚本。

·需要有cron来定期执行这个脚本，去更新/etc/motd。

将这些需求转义成Puppet，则为：

·用一个package resource type来安装dstat。

·用一个file resource type来放抓取脚本，该脚本会自动更新/etc/motd。

·用一个file resource type来放cron的配置。

·用一个service resource type来保证crond的运行。

3.撰写模块

这里不展开完整的模块目录结构，就从最这个最简单的例子开始。

第一个motd模块的目录结构如下：

 [root@puppet /]# find /etc/puppet/modules/motd/

/etc/puppet/modules/motd/

/etc/puppet/modules/motd/fact.d

/etc/puppet/modules/motd/lib

/etc/puppet/modules/motd/files

/etc/puppet/modules/motd/files/generate_motd.sh

/etc/puppet/modules/motd/files/motd_cron_config

/etc/puppet/modules/motd/manifests

/etc/puppet/modules/motd/manifests/init.pp

可以看到，在/etc/puppet/modules/下创建了manifests目录来存放init.pp清单文件，并且创建了files目录来存放motd_cron_config、generate_motd.sh这两个文件。

[image:]在目前的版本，modules里至少有一个module要包含fact.d和lib目录，即使没有custom的fact和lib。

第一个motd模块的manifests/init.pp如下：

class motd {

 file { '/usr/local/bin/generate_motd.sh':

 source => puppet:///modules/motd/generate_motd.sh,

 owner => root,

 group => root,

 mode => 0775,

 }

 file { '/etc/cron.d/motd_cron':

 source => puppet:///modules/motd/motd_cron,

 owner => root,

 group => root,

 mode => 0644,

 require => Package['cronie'],

 }

 package { ['dstat', 'cronie']:

 ensure => installed,

 }

 service { 'cron':

 name => 'crond',

 ensure => running,

 require => Package['cronie'],

 }

}

在上述代码中，新resources、package和service的具体用法后文有详解，现在一笔带过。对于['dstat'，'cronie']，这里用了个小技巧，resources中的title可以使用array形式声明。

source=>puppet：///modules/motd/generate_motd.sh是file中最常见的一种用法，该条attribute的意思是，到Puppet服务器上：///modules目录下/motd这个模块下/从files下中找generate_motd.sh为源文件。要说明的是，source的定义中特地省略了files的显式定义。

此外，require的意思是应用这个resource之前，需要依赖resource Package['cronie']的安装。在require语句中，所依赖的resource的type首字母要大写。

第一个motd模块的files/generate_motd.sh如下：

#!/bin/bash

if [-f '/var/lib/puppet/state/state.yaml']; then

 PUPPET_LAST_RUN="Last Run date - `stat /var/lib/puppet/state/state.yaml | awk '/Modify/ {print $2,$3}'`"

else

 PUPPET_LAST_RUN="Never Run on this server"

fi

MOTD="

+++++++++++++++++: System Data :+++++++++++++++++++

+ Hostname = `hostname`

+ Address = `ifconfig eth0 | awk -F':| *' '/inet addr/ {print $4}'`

+ Kernel = `uname -r`

+ Uptime = `uptime | sed 's/.*up ([^,]*), .*/1/'`

+ CPU = `cat /proc/cpuinfo | awk -F: '/model name/{print $2}' | head -1`

+ Memory = `cat /proc/meminfo | awk '/MemTotal/ {print $2}'` kB

++++++++++++++++++: Dstat :++++++++++++++++++++

 `dstat -a 1 3`

++++++++++++++++++: Puppet :+++++++++++++++++++++

`puppet agent --configprint all | grep '^server '`

`facter | grep -E '^rubyversion |^puppetversion '`

$PUPPET_LAST_RUN

"

echo "$MOTD" >/etc/motd

第一个motd模块的files/motd_cron如下：

*/5 * * * * root bash /usr/local/bin/generate_motd.sh

第一个motd模块在site.pp中定义了哪个agent会应用它，代码如下：

node agent.example.com {

 include motd

}

接下来可以在agent上执行puppet agent-t看结果了。
9.3　深入Puppet

9.3.1　深入resources type

本节用于深入了解各种常用的内建resource type，因为定义各种type是Puppet的灵魂，任何module都是由多个resources组成的，所以这里有必要展开来了解。

一般而言，内建的resource type都包含如下三个方面。

·attributes：属性，比如file type里的owner、group、mode等。

·providers：提供者，比如package type里的yum、apt、pip等。

·features：提供者所具有的特性，比如package type里，yum和apt的ensure attribute都有purge的功能，而rpm却没有。

这里主要是讲述resources的attribute的用法和使用场景，至于provider和feautres，Puppet会根据系统选择默认的provider，所以一般情况下，只需要关心如何个性化属性（attribute）即可。

1.package资源的配置管理

（1）name

name为包名，默认值为resource title，与定义的标题一致。使用频率中等。以下是两个场景中的使用。

场景一，在不同机器有不同变量来定义包版本的时候使用。

在site.pp中，不同node定义不同的变量，然后name使用变量来实现，site.pp中的代码如下：

node agent1.example.com {

 $dstat_pkg = dstat-0.7.0-1.noarch

 include motd

}

node agent2.example.com {

 $dstat_pkg = dstat-0.6.9-2.noarch

 include motd

}

motd/manifests/init.pp中的代码如下：

package { 'dstat':

 name => $dstat_pkg

 ensure => installed,

}

场景二，用于package替换，但无需改Puppet代码。比如在实际应用当中，想在一些环境内测试一些package的替代品，但又不想更改Puppet，这时候就可以做如下tricks。

site.pp中的代码如下：

node agent1.example.com {

 $dstat_pkg = atop # 我们发现atop是一款相当有趣的带有history的top like工具，可以完美替换dstat

 include motd

}

node agent2.example.com {

 $dstat_pkg = dstat-0.6.9-2.noarch

 include motd

}

motd/manifests/init.pp中的代码如下：

package { 'dstat':

 name => $dstat_pkg

 ensure => installed,

}

（2）ensure

ensure用于确保package在操作系统上的状态，默认值为installed状态，即确保package是已安装的状态。以下是其他可选值。

·present：等同于installed。

·absent：卸载状态，在CentOS中，如果有别的package依赖的话，报错。

·purged：卸载状态，在CentOS中，如果有别的package依赖的话，一并卸载。

·latest：一直保持安装为最新版本。

（3）install_options

install_options是安装参数。顾名思义，在CentOS中，就是指定yum install的参数，使用场景较少。

（4）provider

provider是安装的来源工具。之前提过，在CentOS中，默认provider是yum，其实还可以使用rpm，甚至是pip、gem来管理Python和Ruby模块包，这里不具体展开。有兴趣的可以结合install_options，做出适用于production的代码语言环境。

2.file配置管理

上文讲了比较简单的package资源，现在来讲一下另外一个常见resource的重头戏，file。

（1）path

path为file路径，默认为title中指定的路径，使用场景少。因为title中已具备使用路径的功能，所以一般不用该attribute，下面针对一个特殊场景给出正反两种示例。

不够优雅的用法如下：

file { ['/usr/local/bin/jack_script1.sh', '/usr/local/bin/jack_script2.sh', '/usr/local/bin/jack_script3.sh']:

 mode => '755',

 user => 'jack',

 group => 'jack',

}

以下则是使用path后优雅的用法：

file { ['jack_script1.sh', 'jack_script2.sh', 'jack_script3.sh']:

 path => '/usr/local/bin/',

 mode => '755',

 user => 'jack',

 group => 'jack',

}

（2）ensure

ensure用于确保文件在系统上的状态。与package不同的是，ensure在file中没有默认值。file中ensure可以接受如下值。

·present：代表存在，即使后文并未指定该file的内容，Puppet也会为其创建一个空文件。

·absent：与present相反，即使原先存在，Puppet也会主动删除已存在的文件。

·file：这个值会确保目标文件是一个普通文件，不是link、block等其他文件类型。

·directory：这个值会确保目标是一个目录。

·link：即创建一个link，需要与target连用，指定要link到哪一目标文件。

使用示例如下：

file { '/tmp/ds1':

 ensure => link,

 owner => root,

 group => root,

 mode => 0644,

 target => '/etc/passwd'

}

（3）content

content用于确保文件的内容。它是第一种Puppet管理文件内容的模式，它接受string，也可以接受file和template的function的string返回值，又或者自定义function的string返回值。

以下是string的示例代码：

$hello_msg = "hello world"

file { '/tmp/ds1':

 ensure => present,

 owner => root,

 group => root,

 mode => 0644,

 content => "$hello_msg"

}

要说明的是：

·Puppet里面变量定义和声明都要加$，这个语言风格对于新手来说是很友好的。

·$hello_msg末尾是没有空行的，要么加入\n，要么定义的时候在最后一个"前空一行，这个空行对于某些配置文件来说是必须的，比如/etc/cron.d/里面的文件。

下面来看function返回的string值。

1）首先，是内建的function和file（），这是前文提到的另外一种文件内容管理方式，示例代码如下：

file { '/etc/cron.d/motd_cron':

 source => puppet:///modules/motd/motd_cron,

 owner => root,

 group => root,

 mode => 0644,

 require => Package['cronie'],

}

上面代码的效果等价于如下代码：

file { '/etc/cron.d/motd_cron':

 content => file("motd/motd_cron"),

 owner => root,

 group => root,

 mode => 0644,

 require => Package['cronie'],

}

注意，这里的路径：

source => puppet:///modules/motd/motd_cron,

content => file("motd/motd_cron"),

都会去找/etc/puppet/modules/motd/files/motd_cron。

肯定有读者会问，这两种到底有什么区别呢？file function似乎更简洁，而且可以用template和自定义function，标准统一多好啊。下面简单地说下source存在的理由。

·性能方面：file function其实是把文件内容都以catalog的形式传给了agent，它在agent上的执行相当高效，牺牲的是master compile所带来的开销。

·扩展性方面：source指定的方式是一个URI，可以通过fileserver的Puppet master参数来搭建多个file servers，以满足大型集群的需要。

·递归性方面：source可以指定一个目录，来递归的应用到目标机器上，详情见下文recurse的例子。

2）其次，是template的内建function（）。template也是file的核心内容，如果说在Puppet搭建好之后，80%的时间我们在维护的Puppet代码是file resource，那么这其中的80%又都是在维护template来让代码更具通用性、灵活性。

site.pp中的代码如下：

node agent1.example.com {

 $dstat_pkg = atop # atop是一款相当有趣的带有history的top like工具，可以完美替换dstat

 include motd

}

motd/manifests/init.pp中的代码如下：

 file { '/etc/cron.d/motd_cron':

 content => template("motd/motd_cron.erb"),

 owner => root,

 group => root,

 mode => 0644,

 require => Package['cronie'],

}

motd/templates/motd_cron.erb中的代码如下：

*/5 * * * * root bash /usr/local/bin/generate_motd.sh && echo "I installed <%= @apache_pkg -%>" >>/etc/motd

在agent中可以看到替换变量后的完整文件内容，内容如下：

 [root@agent1 /]# cat /etc/cron.d/motd_cron

*/5 * * * * root bash /usr/local/bin/generate_motd.sh && echo "I installed atop" >>/etc/motd

这里说明一下上述例子中template使用到的一些语法和概念。

·erb：在Puppet中称template文件为erb文件。其实，这也是Ruby中内建的tem-plate标准库。

·<%=-%>当中包含了变量，其实，这里也可以加入任何Ruby代码，后文会展开。

·@在template中用于引用变量。

·变量定义的位置，变量在Puppet中可以定义于许多位置，可以是site.pp，也可以是manifests/init.pp，还可以是enc、facter、自定义function等任何Puppet会运行到的地方。下面给出一个tricks可以知道到底Puppet在运行的时候会在每个agent端产生哪些变量供template里调用。

file { "/tmp/facts.yaml":

 content => inline_template("<%= scope.to_hash.reject { |k,v| !(k.is_a?(String) && v.is_a?(String)) }.to_yaml %>")

}

更多与template function和自定义function的相关知识会在后文中详解。

（4）group/owner/mode

group/owner/mode用于确保文件的属性。熟悉Linux文件属性的读者应该知道它的含义，这里不再赘述。

（5）replace

replace表示需不需要覆盖文件内容，默认是需要。设置成false可以让Puppet只会管理新文件的初始化。对于老文件，不覆盖其内容，只管理其他属性，如文件权限。例如想把SSH的authorized_keys推到所有机器上方便管理，但是又不确定是否有其他管理员已经在部分机器上做了这件事，且还有其他keys，比如中央备份服务器的keys，那么使用replace语法即可以实现该场景的需求。

（6）validate_cmd

validate_cmd用于覆盖前面的检查命令。通常是用来验证配置文件的正确性的，下面是一个简单的Apache配置文件的例子。

file { '/etc/httpd/conf/httpd.conf':

 content => 'I am a bad configuration',

 validate_cmd => '/usr/sbin/httpd -t -f %',

}

注意，这里的%代表了title的名字'/etc/httpd/conf/httpd.conf'，所以这里的title名字一定是绝对路径。

（7）source

source指源文件，即准备应用到agent的静态文件。关于source，前文讲过，应该遵循puppet：///modules/name_of_module/filename规范来指定路径，并且在/etc/puppet/modules/name_of_module/files/filename下存放源文件。而关于source另外一个重要特性递归，会在下文着重展开。

现在先来说说另外一个有趣的特性，多个source的定义，以及它的意义。

site.pp中的代码如下：

node agent1.example.com {

 $dstat_pkg = atop # atop是一款相当有趣的带有history的top like工具，可以完美替换dstat

 include motd

}

motd/manifests/init.pp中的代码如下：

file { '/etc/cron.d/motd_cron':

 source => [

 "puppet:///modules/motd/motd_cron.$host",

 "puppet:///modules/motd/motd_cron.$dstat_pkg",

 "puppet:///modules/motd/motd_cron",

]

 owner => root,

 group => root,

 mode => 0644,

 require => Package['cronie'],

}

定义一个array给source的含义是，从第一个开始尝试，应用第一个生效的source，由于使用了变量，可以做很多有意义的事情。比如：

·在modules/motd/files里加入motd_cron.agent1.example.com，以特殊化agent1的source文件。

·如果host分级实在太细致了，可以根据一个变量来分组，在modules/motd/files里加入motd_cron.atop，以特殊化$dstat_pkg设置为atop的hosts。

·如果有些agent在以上2个条件的file中都找不到，那么使用默认的motd_cron。

（8）recurse

recurse表示递归地执行，一般是用在一个文件目录下的属性。下面代码中的file attribute都是和recurse连用比较有意义的，后面慢慢展开。

（9）recurselimit

recurselimit指应用到第几层目录，1就是该目录下，2就是2层目录，和recurse连用。

（10）ignore

ignore指忽略哪些文件，可以使用正则和recurse连用。比如恼人的vim临时文件，总会有人编辑到一半，把这种文件推到服务器上，这时就可以用下面的例子。

file { '/usr/local/bin':

 recurse => true,

 ignore => "*.swp"

 owner => "root",

 group => "root",

 mode => "0755",

}

注意，这里使用的是Ruby通配符，与shell有点类似，像.*这样的正统regex是不接受的。可以接受？、[]、{}。有兴趣的读者可以用google搜索ruby glob来看具体区别。

（11）purge

purge指清空，一般和recurse以及force连用。

（12）force

force包含如下两种情况：

·子文件夹也一并清空，和recurse及purge连用。

·替换任何子文夹为源文件类型，甚至会替换成普通文件，和recurse连用。

（13）links

links指在递归管理时，碰到links该如何处理，和recurse连用意义比较大。

·follow会copy link的真实文件。

·manage会copy link自己。

·ignore会直接无视。

3.service配置管理

结束了file resource管理，相信读者已经入门，接下来趁热打铁，引出resource管理的另一重头戏service。毕竟虽然Linux上一切皆文件，文件从package来，但是真正对用户有意义的是，提供一个可靠service！

熟悉Linux的读者肯定曾有过这样的经历，这个程序怎么没有reload？这个程序怎么没有graceful restart？这个程序来自于开源项目init的命名有些特立独行，又或者这个程序是本公司Java攻城狮开发的，什么都没有……面对Linux如此精彩的service管理案例，下面通过三种情况来说明service的相关attribute的使用场景，当然本书是基于CentOS环境来展开的。

（1）标准的CentOS服务

特点：

·有init脚本。

·init脚本有status参数。

·init脚本有graceful restart或者reload参数。

·init脚本和binary命名符合规范。

相关attribute如下：

·ensure：确定service的状态。一般为running，极个别的情况会使用stopped。

·enable：开启自启，true或者false。

·hasrestart：是否有restart命令，默认是false，Puppet会运行stop、start命令。

·restart：指定restart的命令，如果hasrestart设置为true，Puppet默认会使用init的restart参数。由于有些优秀的service还提供了reload功能，可以在线更改配置，如Nginx和Haproxy，因此没必要使用restart，例如restart=>'/etc/init.d/nginx reload'。

（2）非标准的Centos服务

特点：

·有init脚本。

·init脚本有status参数。

·init脚本没有graceful restart和reload。这是硬伤，推荐采用搭多个节点的方式来实现HA。当然如果能承受几秒内的service不可达，那么也行。

·init脚本或binary不符合命名符合规范。

相关attribute只有一个，如下：

·name：表示init脚本名字。开源软件最常见的问题是，明明binary是ServiceA，init脚本为ServiceAd或init脚本完全是另外一个名字，比如ServiceAMaster，而init脚本的名字就只剩ServiceA，没有了Master这个后缀。笔者碰到的一个问题就是supervisor在CentOS 5里面是supervisor，在CentOS 6里面是supervisord，为了解决这个问题，用name结合if语句可以写出比较整洁的代码，如下：

$supervisor_name = $operatingsystemrelease ? {

 /^6/ => "supervisord",

 default => "supervisor"

}

service { "supervisord":

 name => $supervisor_name,

 ensure => running,

 enable => true,

 hasrestart => true,

 hasstatus => true,

 require => [File['/etc/supervisord.conf'], Package["supervisor"]],

}

（3）啥都没有的服务（Java程序）

特点：

·Java工程师会给你一个命令行去start一个Java程序。

·Java工程师告诉你可以用kill-9命令去stop一个Java程序。

·Java工程师会告诉你访问网页去看一个Java程序状态。

·Java工程师会告诉你他fork出来的子进程，可以靠grep一个关键字获得该Java程序的所有进程。

看到这里，读者心中肯定已经万马奔腾，以下attribute笔者不想说得太细。因为作为一个优秀的SA，应当做出合理的init脚本来填补这一神坑。当然还可以提出命令行检查status的需求。

·binary：指定binary路径。

·start：指定start命令。

·stop：指定stop命令。

·hasstatus：脚本是否有status参数，hasstatus默认为false，设为true时，不用设置status。

·status：指定status命令，如果设置这个值，hasstatus需设为false。

·pattern：如果懒得设置hasstatus和status，告诉Puppet grep什么关键字可以查到status。

示例代码如下：

$supervisor_name = $operatingsystemrelease ? {

 /^6/ => "supervisord",

 default => "supervisor"

}

service { "supervisord":

 name => $supervisor_name,

 ensure => running,

 enable => true,

 hasrestart => true,

 hasstatus => true,

 require => [File['/etc/supervisord.conf'], Package["supervisor"]],

}

4.exec配置管理

如果说package、file和service是resource管理的三板斧的话，exec就是玄铁重剑，虽然威力无穷，但是驾驭起来不易。照Puppet官方说法是，如果目前的趋势是官方已有的resource类型无法满足你的需求，那么可以用一系列exec resources来管理应用，但如果用了很复杂exec来管理应用，那就得认真仔细考虑清楚为什么要这么做，是否可以抽象出来并使用自定义的resources（自定义resources我们会在后文介绍），来让你的Puppet更易于维护。

要开始用exec前，先强调以下2点。

1）exec resource最好做到幂等性。

何为幂等性？也就是多次运行对系统产生的影响是相等的，不会对系统产生不好的影响，除非使用后文会介绍的refresh/refreshonly/onlyif/unless/creates来严格控制运行条件。

2）exec resource运行条件测试很重要。

根据笔者以往的经验来看，写exec要执行的command一点也不难，难的是定义运行条件，和创造测试条件并测试，所以建议在写exec的时候先写运行条件和测试计划，就好比好的开发是先写测试再写代码的情形一样。

接下来分为三部分来讲解exec的attribute。

（1）运行的方式管理

·command：要执行的完整命令行，默认为title名字。建议title名字用于描述该exec资源的作用，而单独使用command来指定要执行的完整命令。

·cwd：运行时的目录。

·environment：运行时的额外环境变量。Linux的env，如果在这里面设置path变量，会覆盖该resource的path attribute。多个environment用array来指定。

·user：运行时的用户，默认root。

·group：运行时的组，默认root。

·path：运行时的path变量。

学到这里，应该可以简单地写出如下代码了：

exec { 'how to run':

 user => 'puppet',

 group => 'puppet',

 cwd => '/tmp',

 command => '/usr/bin/id > /tmp/how_to_run; pwd >> /tmp/how_to_run; /usr/bin/env >> /tmp/how_to_run'

}

由于该exec resource是幂等的，对系统不会有任何不好的影响，因此可以放心地让其多次执行。

（2）运行的结果管理

·umask：Linux的umask，控制exec产生文件的mode。

·returns：期待的命令返回值，默认是0，如果与期待的不符，报错，或者依照tries attribute，多次执行。

·tries：因为返回值不符或者timeout，总共try的次数，默认为1，即不retry。

·try_sleep：try之间的间隔时间。

·timeout：一次try的timeout，默认为300秒。

·logoutput：何时输出日志，默认为on_failure，可以选true和false。

学到这里，即可优化上述代码：

exec { 'how to run':

 user => 'puppet',

 group => 'puppet',

 cwd => '/tmp',

 command => '/usr/bin/id > /tmp/how_to_run; pwd >> /tmp/how_to_run; /usr/bin/env >> /tmp/how_to_run

 tries => '3',

 try_sleep => '5',

 timeout => '10',

}

（3）运行的先决条件管理

·creates指如果一个文件不存在，那么运行。这个参数完全可以用unless和onlyif替换，只要熟练使用Linux的test命令。示例如下：

exec { 'how to run':

 command => '/usr/bin/id > /tmp/how_to_run; pwd >> /tmp/how_to_run; /usr/bin/env >> /tmp/how_to_run

 creates: "/tmp/how_to_run",

}

·onlyif表示如果满足该条件，那么运行。满足的定义是该命令返回值为0。示例如下：

exec{'how to run'：

command=>'/usr/bin/id>/tmp/how_to_run；pwd>>/tmp/how_to_run；/usr/bin/env>>/tmp/how_to_run

onlyif："test！-f/tmp/how_to_run"，

}

·unless表示如果不满足该条件，那么运行。不满足的定义是该命令返回值不为0。示例如下：

exec { 'how to run':

 command => '/usr/bin/id > /tmp/how_to_run; pwd >> /tmp/how_to_run; /usr/bin/env >> /tmp/how_to_run

 unless: "test -f /tmp/how_to_run",

}

细心的读者可以发现，上述这些控制条件都是希望在特定的情况下才执行exec resource的操作，因为Puppet agent默认间隔30分钟跑一次，如果真有每30分钟操作一次的需求，那么应该使用系统的cron任务更时适合。

除了上述这些控制条件外，另外还有两个控制条件“refreshonly”和“refresh”，这两个的使用场景是在exec resource收到refresh event的时候控制的，在Puppet的resource中，refresh event是一个非常重要的控制resources之间关系的一个机制。与refresh event相关的2个参数是notify和subscribe，也就是通知和订阅的意思，下面用一个简单例子来说明一下。

[image:]这2个参数notify和subscribe又叫metaparameter（元参数），metaparameter的具体内容后面讲解，目前所要知道的是，该参数可以在任何resource中当attribute用。

file { '/etc/ssh/sshd.conf':

 source: "puppet:///modules/ssh/sshd.conf",

 validate_cmd => '/usr/sbin/sshd -t -f %',

 notify => Service['sshd'],

}

service { 'sshd':

 ensure => "running",

}

当file resource'/etc/ssh/sshd.conf'发生改变时，会notify Service['sshd']，即发送一个refresh event的通知给Service sshd，注意在使用notify时，格式为resource type首字母大写和一个array的方式来引用我们要notify的resource。而service resource收到这个refresh event时（即被notify时），默认动作是restart该service。因此这个示例完成了一个典型的service维护操作，即发现有配置文件更新时，自动重启该service。

现在，换一种方式实现：

file { '/etc/ssh/sshd.conf':

 source: "puppet:///modules/ssh/sshd.conf",

 validate_cmd => '/usr/sbin/sshd -t -f %',

}

service { 'sshd':

 subscribe => File['/etc/ssh/sshd.conf'],

 ensure => "running",

}

这里的service resource'sshd'会主动订阅File['/etc/ssh/sshd.conf']，当File['/etc/ssh/sshd.conf']发生改变时，service resource'sshd'会触发restart动作。同样，subscribe时，使用resource type首字母大写和一个array的方式来引用subscribe的resource。

至此，关于refresh event和subscribe/notify的原理及用法，已经介绍完毕，最后，来介绍上文提到的exec resource最后两个控制条件“refresh”和“refreshonly”。

·refreshonly表示只有在收到refresh event时，且

·-该exec resource订阅（subscribe）的resource有变更的情况时

·-或者其他resource主动通知（notify）exec resource时

才会执行该exec resource。示例如下：

file { '/etc/nginx/nginx.conf':

 source: "puppet:///modules/nginx/nginx.conf",

}

exec { 'Nginx Reload':

 command => "/etc/init.d/nginx reload",

 subscribe => File['/etc/nginx/nginx.conf'],

 refreshonly => true,

}

上文在介绍service时，用nginx reload来替换service的restart attribute，这次保留了service nginx的原始restart，用exec来单独定义reload。refreshonly=>true，保证了只有在subscribe的File['/etc/nginx/nginx.conf']改变后，才执行reload命令（如上文中提到的，exec如果不加入控制条件的话，每30分钟跑Puppet agent的时候都会运行，对于Nginx reload来说，如果不用refreshonly控制，显然不合适）。

·refresh表示在接受到refresh event时，指定另外一个命令执行，否则运行两次exec resource中的命令。（如上文中提到，这相当于不控制exec resource，每30分钟跑puppet agent的时候都会运行，不如用一个系统的cron更适合，因此，这里不再对这一个畸形的控制条件展开说明。）

5.其他资源管理

之前本没有打算写这一部分内容，但是想分享笔者的见解，也算是对读者继续深入其他resource的一些建议。

Puppet目前对于内置resource的扩展不是特别热衷，从Puppet 2.x一直到Puppet 4.x，内置resource type基本还是那些，即上文提过的package、file和service三板斧加上exec玄铁重剑，使用它们基本可以应付一切Linux资源管理。更复杂的场景可以通过组合这四种内置resource来自定义resource，因此对于其他已有的resource，笔者建议奉行Linux一切皆文件的方式来管理。

具体分析如下：

·对于配置文件类，比如interface/cron/mount/vlan/router/host/yumrepo，熟悉Linux的读者肯定已经有相关配置文件的经验，没必要重新学习Puppet语法，而不是用配置文件的方式来管理这些资源。

·对于用户类，比如user/group/sshkey/ssh_authorized_key，强烈建议搭建ldap来解决。理由很简单，对于成百上千机器和种类繁多的Linux运维工具，集中化管理认证是相当重要的，ldap作为各大开源软件默认的认证集中化系统，搭建它真的物有所值，你绝对不会后悔花那么多时间去初始化它。因为后期维护成本几乎为0，省下的各个系统的认证管理成本是非常可观的。
9.3.2　深入metaparameter

前文提到了notify和subscribe，并且称它们为metaparameter（元参数），从字面上理解就是resource最基本的参数，可以作为任何resource的attribute，即便是以后会讲到的自定义的resource，也可以使用metaparameter。当然元参数的功能多种多样，接下来将根据功能分类来一一详解。

1.resources之间的运行控制

（1）require/before

require/before用于顺序控制，示例如下：

package { 'cronie':

 ensure => installed,

}

service { 'cron':

 name => 'crond',

 ensure => running,

 require => Package['cronie'],

}

上述示例在service'cron'中定义了require Package['cronie']，即在service'cron'资源执行之前，需要先安装package'cronie'。

逆向思维爱好者可以在资源package'cronie'中使用before Service['cron']，也能达到同样效果，但建议一个项目使用同一种风格，下文中的notify/subscribe也是同理。

（2）notify/subscribe

notify/subscribe属于refresh机制。前文提过，refresh机制是指针对resource A更改后，会触发一个事件给resource B。对于这些概念，说明如下：

·resource A：一般指的是file resource。

·resource B：一般指的是service和exec resource，其中service refresh就是触发restart动作；exec refresh就是再跑一遍该条命令，或者是在exec中特别指定了refresh的attribute作为刷新时要跑的命令。

·notify：相当于隐式地定义了before的顺序关系。

·subscribe：相当于隐式地定义了require的顺序关系。

2.resource运行控制

（1）noop

noop表示是否把该resource在noop的模式中运行，默认false。noop的全称是no operation，它的意思一目了然，就是不进行任何操作，只是测试。不过，建议直接用命令行全局noop运行一次，直观又不用改Puppet代码。示例代码如下：

 [root@agent1 /]# puppet agent -t --noop

.

.

Notice: /Stage[main]/Motd/File[/tmp/ds/1]/ensure: current_value directory, should be absent (noop)

Notice: Finished catalog run in 0.76 seconds

（2）loglevel

loglevel是日志级别。默认是notice，可以设置为debug、info、notice、warning、err、alert、emerg、crit，同样，通常需求是要看更多的日志来调试的，建议直接用命令行来查看，如下：

[root@agent1 /]# puppet agent -t --debug

（3）schedule

schedule即调度时间。说白了就是以cronjob方式定期执行Puppet某个resource。但笔者并不推崇，因为Linux管理员大多数还是用标准cron来统一管理定期比较透明，易于维护。示例如下：

schedule { 'everyday':

 period => daily,

 range => "2-4"

}

exec { "/usr/bin/apt-get update":

 schedule => 'everyday'

}

3.resource的元属性

（1）alias

alias是resource的别名。给resource起别名，可以方便其他resource用metaparameter引用它。笔者觉得更好的习惯是：

·使用file/service中的name attribute定义易用的title名字。

·使用exec中的command attribute定义易用的title名字。

（2）audit

audit用于审计resource的改变。审计指定的resource的attribute，即当这个resource的attribute发生变化时，会在日志中进行记录（日志格式都是以[audit]作为前缀），用处中规中矩，后文介绍的监控Puppet的工具可以完美替代它。示例代码如下：

file { '/etc/hosts':

 owner => "root",

 group => "root",

 mode => "0644",

 source => "puppet:///modules/network/hosts",

}

file { '/etc/hosts':

 audit => [owner, content],

}

（3）tag

tag用于给resource打tag。tag包含很多的内容，这里会花时间介绍下基本概念和简单应用，高级应用需要在学习其他高级概念后才可以得心应手。

tag是一个可以用来分类的属性。它包括如下两种生成方式。

第一种是自动生成。针对一个resource，它的tag自动产生的内容是：

·resource的type，通常是file、package、service、exec等。

·resource的title名字。

·resource的上层container的类别和title名字，通常是class。

·继承上层container的tag。

从master上获得一个agent，它所有resource所包含的tag如下：

 [root@puppet /]# puppet master --compile agent1.example.com | grep -E '"title"|"tags"' | tail -10

 "tags": ["class","cronie","node","motd","default","package"],

 "title": "cronie"

 "tags": ["epel-release","class","node","motd","default","package"],

 "title": "epel-release"

 "tags": ["class","node","motd","default","package","yum-plugin-downloadonly"],

 "title": "yum-plugin-downloadonly"

 "tags": ["class","node","motd","default","package","apache"],

 "title": "apache"

 "tags": ["service","class","cron","node","motd","default"],

 "title": "cron"

第二种是手工添加。可以用以下方式给resource手工添加tag。

class motd {

 tag(['hello1', 'hello2'])

 file { '/usr/local/bin/generate_motd.sh':

 source => "puppet:///modules/motd/generate_motd.sh",

 owner => root,

 group => root,

 mode => 0775,

 tag => "script_motd",

 }

 file { '/etc/cron.d/motd_cron':

 content => template("motd/motd_cron.erb"),

 owner => root,

 group => root,

 mode => 0644,

 require => Package['cronie'],

 }

.

.

}

在上述代码中，用tag（）function给class motd中所有的resource都加上了hello1和hello2的tag。此外，还用tag metaparameter给file'/usr/local/bin/generate_motd.sh'加了一个tag的attribute，为"script_motd"。

那么tag有哪些用途呢？

第一，它可限制Puppet agent应用于哪些resources。比如，从agent上指定要应用带有"script_motd"tag的resources，命令如下：

[root@agent1 /]# puppet agent -t --tags script_motd

这样一来，Puppet这次运行就只会复制file resource'/usr/local/bin/generate_motd.sh'了。

第二，可用于搜索出相应的resource collector（资源收集器）。

简单用一个例子说明，先看以下第一眼看上去像天书一样的Puppet代码：

 file { '/etc/httpd/conf/http.conf':

 ensure => file,

 owner => apache,

 group => apache,

 mode => 0644,

 source => "puppet:///modules/apache/http.conf",

 tag => "apache_config",

 }

 file { '/etc/httpd/conf.d/site1.conf':

 ensure => file,

 owner => apache,

 group => apache,

 mode => 0644,

 source => "puppet:///modules/apache/site1.conf",

 tag => "apache_config",

 }

Package['httpd'] -> File <| tag == 'apache_config' |>

这里重点讲解一下代码中的Package['httpd']->File<|tag=='apache_config'|>。

·<|和|>包裹的是一条search语句，搜索的条件为有apache_config的tag，然后结果集就成为了一个resource collector，类型是File。

·->是before metaparameter的另外一种表现形式，意思是Package的这个resource要在File的resource之前运行。

4.class的运行顺序控制

stage代表puppet运行阶段。这个stage是一个特殊的metaparameter，因为它只能用在class这一级，是来控制多个class之间的运行顺序的。看一下相关的示例。

site.pp的示例代码如下：

stage { 'pre':

 before => Stage['main'],

}

stage { 'post':

 require => Stage['main'],

}

modules/yum-update/manifests/init.pp的示例代码如下：

class { 'yum-update':

 stage => 'pre',

}

对于上述代码，说明如下：

·stage的定义是在site.pp中，因为它是控制所有class的运行顺序的。

·默认的stage是main，所以这里定义了2个新的stage，即pre和post，并定义了顺序。

·在class yum-update中定义了它是运行在stage pre中的，也就是在所有class之前运行。
9.3.3　深入fact

fact，在英文中是一个很常用的单词，老外都喜欢用这个单词来描述一个事物或人所具有的实际情况。比如I have three facts，tall，rich，handsome，翻译成中文就是：我有三个特征：高富帅。好了，言归正传，这节要讲的facter，是Puppet用来描述一个机器fact（实际情况）的工具。fact可以是这台机器的硬件情况，也可以是这台机器的系统情况、软件情况，甚至是用户自定义的情况。想要看一台agent上所具有的fact（实际情况），可以用facter这个命令查看，运行不加参数会得到默认fact，如果加上-p参数，则可以得到Puppet agent在运行的时候，Puppet master给予该Puppet agent的fact，比如用户在Puppet master模块中自定义的fact，这些fact都可以在Puppet的代码中运用，示例如下：

 [root@agent1 /]# facter | grep -i centos

operatingsystem => CentOS

[root@agent1 /]# vim manifests/init.pp

 file { '/tmp/ds1':

 ensure => file,

 owner => root,

 group => root,

 mode => 0644,

 content => "$operatingsystem"

 }

[root@agent1 /]# cat /tmp/ds1

CentOS

初看fact貌似没什么用，接下来会根据不同大类列出常用的fact和一些使用场景。

1.hardware类的fact

·blockdevices=>sda为块设备名字。

·blockdevice_sda_model=>ServeRAID M5110为块设备类型，有的RAID卡会显示RAID型号。

·blockdevice_sda_vendor=>IBM为块设备的供应商。

来看个示例，根据不同的RAID卡型号选择不同的安装包，代码如下：

if $blockdevice_sda_model =~ /.*RAID.*/ and $blockdevice_sda_vendor == "IBM" {

 package {"raidman":

 ensure => installed,

 }

}

这里用到if的条件语句，用{}来包含一个resource。关于流程控制，会在下文中详解。=~跟上/regex/，是Puppet中的正则匹配的格式。and表示要同时满足左右2个条件；满足IBM RAID的，安装raidman这个官方raid卡管理的rpm包。

·processorcount=>24和physicalprocessorcount=>2表示处理器的数量和核数。

下面的示例会根据不同的核数来定义配置php-fpm.conf。

[root@agent1 /]# vim manifests/templates/php-fpm.comf

pm.max_children = <%= @processorcount.to_i * 2 -%>

pm = static

php-fpm是笔者非常喜欢的php fastcgi进程管理器，它可以有slowlog、简单的debug日志、Apache风格的进程数量管理，而且支持reload，优化内存，简直就是PHP运维人员的福音。

max_children配合static模式是一种常见的运行模式，至于为什么要设置成和内核数的2倍，纯属笔者个人经验和喜好，这里不再展开。

2.kernel os类的fact

·architecture=>x86_64

·kernelrelease=>2.6.32-431.el6.x86_64

·operatingsystem=>CentOS

·operatingsystemrelease=>6.6

·osfamily=>RedHat

·is_virtual=>true

·virtual=>docker

上述fact，相信大家都看得懂，这里就不再赘述。提一点，笔者的虚拟环境是Docker，有兴趣的读者可以自行研究，绝对是做实验和配置开发环境的利器。

关于使用场景，对于管理了多种Linux发行版的读者，这些kernel os类的fact，可以灵活运用于流程控制语句。虚拟机的这2个参数，发挥的场景较多，下面给出一个例子，使用tuned来调优kvm guest机，manifests/init.pp中的代码如下。

if $virtual == "kvm" {

 package {"tuned":

 ensure => installed,

 }

 exec {"tune for kvm guest":

 command => "/usr/sbin/tuned-adm profile virtual-guest",

 unless => "/usr/sbin/tuned-adm active | grep -q virtual-guest",

 require => Package["tuned"],

 }

}

tuned工具的用途和使用方法，可以参阅redhat官方文档，地址为https:/access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html-single/Virtualization_Tuning_and_Optimization_Guide/index.html#chap-Virtualization_Tuning_Optimization_Guide-tuned。

exec"tune for kvm guest"只有在"/usr/sbin/tuned-adm active|grep-q virtual-guest"返回True的情况下才不会运行command/usr/sbin/tuned-adm profile virtual-guest。

3.system配置类的fact

·domain=>example.com

·fqdn=>agent1.example.com

·hostname=>agent1

·interfaces=>eth0，lo

·ipaddress=>172.17.0.22

·ipaddress_eth0=>172.17.0.22

·ipaddress_lo=>127.0.0.1

·macaddress=>02：42：AC：11：00：16

·macaddress_eth0=>02：42：AC：11：00：16

·netmask=>255.255.0.0

·netmask_eth0=>255.255.0.0

·netmask_lo=>255.0.0.0

·network_eth0=>172.17.0.0

·network_lo=>127.0.0.0

以上facter都容易理解，这里不再赘述。下面来讲使用场景，定义sshd的监听ip的示例代码如下：

sshd/templates/sshd.conf

ListenAddress <%= @ipaddress_eth0 -%>

上述代码的目的是为了监听ssh在内网中的地址，默认ssh监听的是0.0.0.0。

为什么一定要用ipaddress_eth这个fact呢？因为sshd不支持以interface作为监听地址（是的，比较无奈）。

4.动态系统资源类的fact

·memoryfree=>26.68 GB

·memorysize=>31.20 GB

·partitions=>{"sda1"=>{"size"=>"204800"}，"sda2"=>{"size"=>"1929379840"，"mount"=>"/etc/resolv.conf"}，"sda3"=>{"size"=>"2097152"}}

·swapfree=>1016.34 MB

·swapsize=>1023.99 MB

目前笔者暂未使用这些fact，因为笔者坚信好的监控系统才是关键，通过系统负载情况自动做一些magic的事情总归是不靠谱的。比如自动调整配置文件的内存使用，总会担心自己写的应变策略会不会被一种极端情况引起不可预期的情况，墨菲定律告诉我们，好的系统管理员还是要及时响应异常，仔细分析，才能使问题迎刃而解。
9.3.4　深入流程控制

1.条件语句

（1）if语句

if语句可以和elsif、else连用，判断句可以是如下形式。

第一种：Variables（变量）。

变量可以是如下种类。

·Strings：空值是false，非空值是true。如果值是"false"，判断下来也会是true。如果要更加智能地解析是true还是false，可以使用puppet stdlib（standard library）中的str2bool function，它可以把string为'1'、't'、'y'和'yes'解析成布尔型的true；把string为'0'、'f'、'n'和'no'解析成布尔的false。具体如何安装stdlib模块，会在后文详解。

·Numbers：任何数字都是true。类似的，如果要智能解析0为true，1为false，要用stdlib中的num2bool function。

·Undef：任何没有定义的变量都为false。

·Arrays and Hashes：任何array（数组，相当于Python中的list）和hash（哈希，相当于Python中的dict）都为true，即便是空array或者空hash。

第二种：Expressions（表达式，下节详解）。

第三种：Functions that return values（一个function的返回值，后文详解function）。

function的返回值可以是true和false这样的布尔型，也可以是任何其他数据类型，具体判断可参考variable的判断方法。

来看个示例，guest虚机不需要ntp。

modules/ntp/manifests/init.pp中的代码如下：

class ntp {

 file {'/etc/ntp.conf':

 ensure => file,

 content => template('ntp/ntp.conf'),

 }

 package {'ntp':

 ensure => installed,

 }

 service {'ntp':

 ensure => running,

 }

 Package['ntp'] -> File['/etc/ntp.conf'] -> Service['ntp']

}

modules/ntp/manifests/disabled.pp中的代码如下：

class ntp::disabled{

 package {'ntp':

 ensure => purge,

 }

}

modules/kvm-ntp/manifests/init.pp中的代码如下：

if str2bool($is_virtual) {

 include ntp::disabled

}

else {

 include ntp

}

在上述代码中：

·str2bool是上文提到的stdlib中的function。

·$is_virtual是上文提到的内置facter，value可为true和false。

·上文提到默认情况下，即使一个string的variable写着false，它也会被if当成布尔型的true，所以可借助str2bool function智能解析。

·在ntp::disabled中，::是访问不同namespace的符号，比如ntp::disabled是要访问modules/ntp/manifests/disabled.pp。

·namespace即命名空间，如果读者有一点编程知识应该不会陌生，它是用来解决人类词汇量太少而重复命名函数/变量/类等问题的。直白点说，在shell中查看service A配置listen ip和service B配置文件的listen ip时，虽然它们都叫listen ip，但是你不会混淆，因为是在不同路径下的不同文件里，互相不干扰，namespace即在编程领域的不同空间下用来存放各种有可能命名相同的variable/function/class。

（2）unless语句

和if相反，unless语句没有elseif和else子句，其他相同。笔者认为用处不大，可以用取反号代替。示例代码如下：

unless $blockdevice_sda_vendor == "IBM" {

 notify {"say": message => "I am not IBM"}

}

if ! ($blockdevice_sda_vendor == "IBM") {

 notify {"say": message => "I am not IBM"}

}

上述两段代码的实现结果一样。！后面要加上（）来包含表达式，由于！永远是优先级最高的，如果没有（）来定义顺序，它会先和$blockdevice_sda_vendor取反，而这不是我们想要的结果。

（3）case语句

case用于对一个变量或有返回值的function的各种可能匹配做后续的工作。示例代码如下：

case $operatingsystem {

 'Solaris': { include role::solaris } # apply the solaris class

 'RedHat', 'CentOS': { include role::redhat } # apply the redhat class

 /^(Debian|Ubuntu)$/:{ include role::debian } # apply the debian class

 default: { include role::generic } # apply the generic class

}

在上述代码中：

·operatingsystem是内置facter。

·逗号分隔可以使2种匹配合一。

·//正斜杠包含的是regex。

·default是一个特殊匹配。相当于shell case中的“*”。

·{}包含的是要后续做的工作。

（4）selectors选择器

就是用“？”这种形式的简写来实现不同variable的定义工作。笔者觉得正统的case比较易于读懂和维护。看两个对比示例。

使用selectors？的示例如下：

$rootgroup = $osfamily ? {

 'Solaris' => 'wheel',

 /(Darwin|FreeBSD)/ => 'wheel',

 default => 'root',

}

file { '/etc/passwd':

 ensure => file,

 owner => 'root',

 group => $rootgroup,

}

使用case的示例如下：

case $osfamily {

 'Solaris' => { $rootgroup = 'wheel'}

 /(Darwin|FreeBSD)/ => { $rootgroup = 'wheel'}

 default => { $rootgroup = 'wheel'}

}

file { '/etc/passwd':

 ensure => file,

 owner => 'root',

 group => $rootgroup,

}

2.表达式

（1）比较运算符

·==的含义是equality，即等于。

·！=的含义是non-equality，即不等于。

·<的含义是less than，即小于。

·>的含义是greater than，即大于。

·<=的含义是less than or equal to，即小于或等于。

·>=的含义是greater than or equal to，即大于或等于。

·=~的含义是regex match，即正则匹配。

·！~的含义是regex non-match，即正则不匹配。

·in。

对于上面的运算符号不做过多解释，这里in有些特殊，用例子讲解下，如下：

'eat' in 'eaten' # TRUE

'Eat' in 'eaten' # FALSE

'eat' in ['eat', 'ate', 'eating'] # TRUE

'eat' in { 'eat' => 'present tense', 'ate' => 'past tense'} # TRUE

'eat' in { 'present' => 'eat', 'past' => 'ate' } # FALSE

in后面跟string，代表了从左开始匹配，如果前者是后者的子集则为TRUE；in后面跟array，代表数组中任一元素匹配，即为TRUE；in后面跟hash，必须是hash的key匹配，才为TRUE，value不用作匹配。

（2）布尔运算符

·and

·or

·！（not）

前文曾提到要注意顺序，建议多用（）来显式地说明多个表达式的顺序。

（3）算术运算符

·+（加法）

·-（减法）

·/（除法）

·（乘法）

·%（取模）

有些string长得像数字，这时要用to_i的Ruby内置function来转换数据类型。mani-fests/templates/php-fpm.comf中的代码如下：

pm.max_children = <%= @processorcount.to_i * 2 -%>

pm = static

9.3.5　深入function

function在Puppet的世界里有2种类型，即有返回值的和无返回值的，官方的称呼是rvalues和statements。另外注意，所有function都是在master上执行后，编译成catalog再传给agent的。

1.function type：rvalue

（1）content生成的类型

·file（）：用于读取文件内容并返回string。可接受如下参数。

·相对路径，指定mysql/my.cnf映射到modules/mysql/files/my.cnf路径。

·绝对路径，可以指定任何在Puppet master上的文件。

·多个参数。和file resource里面的source attribute类似，会返回第一个找到的文件，跳过任何不存在的文件。

·template（）：用于读取erb的template文件并返回string。可以接受的参数和file一样，这里不再赘述，后文中会详解。

·inline_template（）：用于内联template，也就是不需要template文件，内容直接写在pp文件里。

来看个示例，以下是motd/manifests/init.pp中的代码：

file { '/etc/cron.d/motd_cron':

 content => inline_template("*/5 * * * * root bash /usr/local/bin/generate_motd.sh && echo "I installed <%= @apache_pkg -%>" >>/etc/motd\n"),

 owner => root,

 group => root,

 mode => 0644,

 require => Package['cronie'],

}

注意，如果内容太长，建议还是用单独的template文件；命令末尾的\n，对于某些配置文件来说是必须的，比如cron。

（2）content修整的类型

·regsubst（）：代表puppet里的sed，在下面的示例代码里，regsubst中的第一个参数是要处理的string，第二个参数是匹配式，第三个是替换式，第四个是标志位，比如G是global匹配替换，I是忽略大小写。这个例子是要取eth0 ip的网络段。

file { '/tmp/ds1':

 ensure => file,

 owner => root,

 group => root,

 mode => 0644,

 content => regsubst($ipaddress_eth0,'^(\d+)\.(\d+)\.(\d+)\.(\d+)$','\1.\2.\3'),

}

·split（）：用于把string按照匹配的分隔符转换成array。

$string = 'v1.v2:v3.v4'

$array_var1 = split($string, ':')

$array_var2 = split($string, '[.]')

$array_var3 = split($string, '[.:]')

·$array_var1-['v1.v2'，'v3.v4']，这个数组以"："作为分隔符，得到2个元素，'v1.v2'和'v3.v4'。

·$array_var2-['v1'，'v2：v3'，'v4']，这个数组以"."作为分隔符，得到3个元素，'v1'、'v2：v3'和'v4'。

·$array_var3-['v1'，'v2'，'v3'，'v4']，这个数以"："或者"."作为分隔符，得到4个元素，'v1'、'v2'、'v3'和'v4'，可以看出[.：]这个正则，和awk-F'：|/''{print$1，$NF}'/etc/passwd类似。

（3）判断返回布尔值的类型

·defined（）：用于判断一个resource type或者一个class是否已经定义，是则为true，否则为false。

·tagged（）：用于判断一个tag是否已定义，是则为true，否则为false。

（4）其他类型

要说明一下，这里的类型分类是笔者为方便知识梳理自己定义的，类型之间没有特殊区别。下面给出几个有意思的rvalue型的function。

·fqdn_rand（）：随机数。有些时候，想在多台机器上分时段跑一个cron，而不是多台机器同一时刻一起跑（这会对中央系统造成压力，比如远程备份工作），那么可以采用如下代码。在该代码中，$fqdn_rand（60）指定了在范围为0～60里为这个cron取随机数，从而在不同的时间执行该cron。

file { '/etc/cron.d/backup_cron':

 content => inline_template("$fqdn_rand(60) * * * * root bash /usr/local/bin/backup_transfer.sh\n"),

 owner => root,

 group => root,

 mode => 0644,

}

·generate（）：从shell command中生成内容。它的使用场景很多，这里举个简单的例子，假如Puppet master上有一个配置文件用来管理该机器是什么产品，比如是product01或product02，那么可以采用如下代码。

/etc/servers_allocation.conf中的代码如下：

product01: agent1, agent3

product02: agent2, agent4

motd/manifests/init.pp中的代码如下：

 file { '/tmp/ds1':

 ensure => file,

 owner => root,

 group => root,

 mode => 0644,

 content => generate("/usr/bin/awk", "-F:", "/$hostname/ {print \$1}", '/etc/server_allocation.conf')

}

[root@agent1 /]# cat /tmp/ds1

product01

2.function type：statement

（1）contain（）

在class依赖顺序中，contain（）用来替换include。如果读者是Puppet高手，且喜欢class之间互相依赖嵌套，那么肯定已经知道include并不像resource中的before和require一样好用，before和require可以确保resource之间的运行顺序，而include并不能保证class之间的运行顺序，它只是简单地告诉Puppet，在执行class A的时候class B也要一起执行，所以它们会并行，没法保证class中resource的依赖关系。

于是contain就横空出现了，可以愉快地用下个例子，指定class直接的依赖。

class wrapper {

 contain foo

 contain bar

 contain end

 Class['foo'] -> Class['bar'] -> Class['end']

}

上述代码会严格按照你定义的顺序执行，并且也包括每个class中包含的resource。

（2）include（）

include（）是最标准的声明class的函数。没有约束class之间的执行顺序，项目初期，一般不会有那么复杂的类嵌套和依赖，所以include即可。

（3）require（）

require（）是class间简单依赖。适用于简单的class之间的依赖，比如只有一层class的依赖，即class A依赖于class B，class B中没有依赖其他class。但如果被依赖的class B，还有另外一层class C的依赖，会让代码变得非常难读，不如上文的contain（）function加上Class['foo']->Class['bar']->Class['end']那么易懂。而且有些时候class之间会有些require/before/notify/subscribe的metaparameter，而require不会尊重它们，导致有时Puppet出错。因此在处理复杂依赖逻辑的时候，建议还是使用contain（）function。示例代码如下：

class bar {

 require foo

 notify { 'bar': }

}

class foo {

 notify { 'foo': }

}

include bar

（4）realize（）

realize（）用于声明virtual resource。在介绍realize之前，先介绍virtual resource存在的意义，在很多时候我们想在两个class中都定义一个resource，而且这两个class又会被同一个agent调用。比如一个class django要安装python-yaml package，另外一个class nagios也要装一个python-yaml来运行一个Python监控脚本，如果在2个class中都定义了Package["python-yaml"]，那么会产生重复声明的错误，dirty的一种方法示例如下。

django/manifests/init.pp中的代码如下：

package {"python-yaml":

 ensure => installed,

}

nagios/manifests/init.pp中的代码如下：

package {"python-yaml.x86_64":

 ensure => installed,

}

可以看到，仅仅是加了一个x86_64的后缀，就欺骗了Puppet，这确实一个很dirty的方法。

那么现在看如何用virtual resource和realize（）function完美地解决这个问题。

site.pp中的代码如下：

node default {

 include first_default

}

first_default/manifests/init.pp中的代码如下：

@package {"python-yaml":

 ensure => installed,

}

nagios/manifests/init.pp中的代码如下：

realize Package("python-yaml")

django/manifests/init.pp中的代码如下：

realize Package("python-yaml")

上述代码先创造了一个first_default的模块，并让所有的node都默认加载它（笔者相信这个default class是一般项目都需要的，比如控制一些全站都要加的配置service和tools，或者仅控制include其他class）。然后在first_default里定义了virtual resouce，@package"python-yaml"，注意@就是定义virtual resource的标识。最后，在各个class里使用realize virtual resource语句。

（5）tag（）

tag（）为打标记。上文提过，不赘述。

（6）versioncmp（）

versioncmp（）是version string的比较function。这个是一个很有用的小工具，它可以智能解析常用的版本标记方式并比较。versioncmp（$a，$b）会返回如下值：

·1：表示版本$a高于$b。

·0：表示版本$a等于$b。

·-1：表示版本$a低于$b。

示例代码如下：

if versioncmp('2.6-1', '2.4.5') > 0 {

 notice('2.6-1 is > than 2.4.5')

}

看，够智能吧！

（7）debug（）、info（）、notice（）、warning（）、err（）、alert（）、emerg（）、crit（）

以上为日志fucntion。也就是在Puppet日志中加入相应日志level的日志。

（8）fail（）

fail（）用于主动抛出个puppet fail，一般用得较少。
9.3.6　深入template

前文已提到过template，当然只是一笔带过，现在来详细分析下它。所谓template就是可以当作模版使用，可供file resource引用的特殊文件，里面可以用嵌入大量的变量，甚至ruby代码片段，也就是说任何会用到第二次的且仅需改动几行的文件，都应该使用template来管理它！

当然Puppet是基于Ruby的，这个template也是基于Ruby的erb template演变过来的，所以对于template文件，约定俗成都以.erb结尾。template（“my_module/mytemplate.erb”）会映射到/etc/puppet/modules/my_module/templates/mytemplate.erb。接下来会通过如下几个方面深入了解template。

1.template语法

其实，template语法就是纯文本加内嵌Ruby的语法。即便只是一个@operatingsystem，也是Ruby风格instance level的变量引用。instance就是class的一个实例，instance level的变量也就是一个Puppet agent拥有的变量，虽然template可以使用Ruby语法对这些变量做各种变换使用，但是Puppet的原则是尽量提供简单的声明式语言，避免大家写复杂的Ruby语言，这里也不会把重心放在解释Ruby语法上。

·<%=Ruby表达式%>：这个标签最后会被Ruby表达式的返回值所替换并嵌入template文本内容，最简单的就是用@来引用instance变量。

·<%Ruby code%>：这个标签不会有任何返回值，即不会替换嵌入template文本内容，通常是用作变量定义、嵌入条件和迭代等流程控制语句，后文会有详解。

·<%#comment%>：template的注释，是用户不想传给agent的注释，注意如果仅仅是#，该段文本也会一起被同步到agent的这个文件上，通常是conf所要的注释。

·<%-：与<%一样，但是会避免加入多余的左空格。在template嵌入Ruby语法的时候，为了读起来更优雅，难免会多加一个空格和空行，但是有些conf文件，并不喜欢这些多余的空格和空行，使用<%-可以自动去除。

·-%>：与上个标签用途一样。

2.template中的variable

variable是template的核心，它用来控制每台agent上配置的差异，它的来源多种多样，大致可以分为以下几种。

·facter

·class中定义

·site.pp的node中定义

·enc（后文会介绍）

·hiera（Puppet的一个官方工具，key/value+组织结构化的方式管理每个agent的差异配置）

以下命令用于查看该agent所有可用的variables。

 content => inline_template("<% scope.to_hash.each do |k,v| -%><%= '%s = %s\n' % [k, v] %><% end -%>"),

}

另外，关于variable，还有一个常见的情景是要判断外部系统里（enc/hiera）是否定义了该variable。没有的话，会用一个默认值。

下面是templates/task.erb中的代码。

I have external task <%- if @task -%>

<%- @task -%>

<%- else -%>

0

<%- end -%>

可以看到，使用了<%-和-%>后，代码看起来更清晰，虽然看上去分行了，但是结果还是一行字。

Puppet官方比较了@variable、scope.lookupvar（'variable'）、has_variable？（'variable'）这三种方式，推荐使用@variable，具体原因参考官方文档。

3.template中的迭代

（1）array迭代

下面直接给出示例代码。

init.pp中的代码如下：

$values = [val1, val2, otherval]

template中的代码如下：

<% @values.each do |val| -%>

Some stuff with <%= val %>

<% end -%>

template的输出文本内容为：

Some stuff with val1

Some stuff with val2

Some stuff with otherval

（2）hash迭代

以下为示例代码：

file { "/tmp/var.yaml":

 content => inline_template("<% scope.to_hash.each do |k,v| -%><%= '%s = %s\n' % [k, v] %><% end -%>"),

}

这个例子，是上文提到过的查看该agent所有可用的variables的示例，在此具体分析。对于|k，v|，由于hash有key有value，因此用2个变量名来迭代。'%s=%s\n'%[k，v]的意思是用k=v的形式表达出来，%s是一个联合变量和文本的一个tricks。

4.template中使用function

这里的function是指rvalue类型的function，如file（）、template（）、generate（），语法形式为：

·以function_作为前缀来引用function。

·参数必须是一个array，即使只有一个参数。

下面是示例代码。

files/default_conf中的代码如下：

LogLevel = Info

User = root

templates/full_conf.erb中的代码如下：

ListenIP = <%- @ipaddress_eth0 -%>

<%= scope.function_file(["my_module/default_conf"]) %>

这看上去有点画蛇添足，但当配置文件相当长，且需维护多个不同生产的文件时，分段的配置文件更易于管理。
9.3.7　深入define type

define type是一个在pp文件里可以定义的函数，可以避免撰写雷同的Puppet代码。同样来看示例。

modules/zabbix-proxy/manifests/init.pp中的代码如下：

define zabbix_proxy_directory_permission_ensure {

 file { "${title}":

 ensure => directory,

 owner => zabbixsrv,

 group => zabbix,

 mode => 0775,

 require => Package["zabbix-proxy"];

 }

}

zabbix_proxy_directory_permission_ensure {

 [

 "/var/lib/zabbixsrv",

 "/var/run/zabbixsrv",

 "/var/log/zabbixsrv",

]:

}

这里define定义了zabbix_proxy_directory_permission_ensure的type，${title}是默认的参数，不用显式定义，它代表了传进来参数的标题名，这里就是“/var/lib/zabbixsrv”“/var/run/zabbixsrv”“/var/log/zabbixsrv”。该段代码会调用zabbix_proxy_directory_permi-ssion_ensure的type，并且传给它一个列表，让其执行三遍。

当然也有高级用法，一起来看。

modules/user-manage/manifests/init.pp中的代码如下：

class user-manage {

 define planfile ($user = $title, $content) {

 file {"/home/${user}/.plan":

 ensure => file,

 content => $content,

 mode => 0644,

 owner => $user,

 require => User[$user],

 }

}

user {'canglaoshi':

 ensure => present,

 managehome => true,

 uid => 519,

 }

 user {'tangnvshen':

 ensure => present,

 managehome => true,

 uid => 518,

 }

 planfile {

 'canglaoshi':

 content => "Working on new movie";

 'tangnvshen':

 content => "Working on new film";

 }

}

这里定义了planfile的define type，和前一示例不同，它显式地定义了$user=$title（这样，下面使用的时候，可以使用$user这样比较有意义的变量名），$content。在调用planfile这个define type时，输入$user和$content这两个变量，功能是为两个用户创建了planfile。注意这里的格式，是以分号“；”分隔2个user的，并且是用puppet hash的格式“=>”来定义变量值的。
第10章　Puppet实战

本章承接上一章Puppet配置管理来讲解一些实战相关的知识点。本章将通过一些简单明了的例子展开，并结合笔者5年多Puppet实战的项目经验，让读者真正地在项目中运用Puppet，而不是简单的局限于写写小模块，做做实验。此外，笔者也在一些例子中分享一下这些年遇到的一些坑，希望能帮助读者在运维过程中尽量避免这些坑，或者提供思路，抛砖引玉，使读者可以悟出针对自身项目的解决之道！
10.1　扩展Puppet

相信读者通过学习上一章的各种例子，已经跃跃欲试了，那么别犹豫，尽情去自动化你的部署配置流程吧。不过，如果你还没有开始动手写Puppet的话，建议先别阅读这一节，因为这一节提到的一般是在大量运用Puppet后，会碰到的内置功能无法满足实际需求的情况，这种情况一般只会占到一个项目的10%～20%，甚至少于10%或根本没有，这取决于一个项目的复杂度，对于初学者来说，没有必要花费大量时间去研究10%的内容。

另外，对于已经入门的读者来说，建议不要重复发明轮子，能用公有模块便用，本节也会主力讲解如何获取更多的公有模块，如何快速入门，当然Ruby达人，且是“轮子大师”的请无视……
10.1.1　自定义模块

本节主要讲的是理念和最佳实践，并非是模块的手把手教学，目的是指导读者学会如何使用公有的良好模块来扩充自己的自动化任务，要知道，在Puppet module repo里有3000多的模块等你来探索！

1.模块的目录树

一个简单的目录树结构如下：

<MODULE NAME>

·manifests

·files

·templates

·lib

·facts.d

·tests

·spec

下面用一个my_module示例来详解目录树。

·my_module：是模块的主目录，默认放在/etc/puppet/modules。

·manifests/：manifests子目录是放所有.pp清单文件的。

·init.pp：这是一个模块必须要有的pp文件，而且必须要有一个class，名字和模块的名字一样，比如这里模块名是my_module，那么定义类的时候，一定要class my_module{}。

·install.pp：一个有关安装工作的pp文件，完整引用方法为my_module：：install。对于：：，前文说过和shell的目录分割符/类似。除了init.pp文件以外，其他pp文件都是optional的，在公有模块内，分割多个pp管理一个模块的现象很普遍。大多数情况下，一个init.pp已经够用，希望成为一个自定义模块大师的读者，可以参考公有模块学习一般的分割习惯。

·files/：包含静态file。

·service.conf：这个文件source=>URL应该为puppet：///modules/my_module/service.conf，同样也适用于file（'my_module/service.conf'）。

·lib/：包括所有自定义的resource/provider/function/facter。

·lib/puppet/type：自定义resource，比如my_module/lib/puppet/type/mysql_user.rb。

·lib/puppet/provider：自定义resource所需要的provider，比如my_module/lib/puppet/provider/mysql_user/my_module.rb。

·lib/puppet/parser/functions：自定义function，比如my_module/lib/puppet/parser/functions/str_to_mysql_password.rb。

·lib/facter：自定义facter，比如my_module/lib/facter/mysql_db_size.rb[1]。

·facts.d/：包含所有的external facts，可以完美替代lib/facter下的custom facts。它的好处是可执行任何类型的脚本文件，比如shell/python/ruby等，只要放在facts.d下，输出格式是下列三种之一即可。

第一种：

yaml

 key1: val1

 key2: val2

 key3: val3

第二种：

json

 {

 "key1": "val1",

 "key2": "val2",

 "key3": "val3"

 }

第三种：

txt, key=value

 key1=value1

 key2=value2

 key3=value3

·templates/：包含所有templates。引用方式为content=>template（'my_module/comp-onent.erb'）。

·tests/：包含该模块的使用范例，帮助他人理解和复用这个Puppet模块，因此包含的文件应该和manifests下的文件一一对应，认真撰写该目录是要贡献给开源社区的代码标准之一，Ruby达人和模块大师可以自行研究。

·init.pp，该文件是范例的主体，指导别人该如何调用这个模块

·install.pp，如果模块分割比较细致，有多个pp文件，那么也需要有相应的范例，比如install.pp应该表述了这个模块install部分的范例

·spec/：Puppet的unit test，主要使用开源项目rspec的框架所衍生出的rspec-Puppet，理念就是“Behaviour Driven Development for Ruby.Making TDD Productive and Fun”，翻译成中文就是要实现TDD（测试驱动开发）和BDD（行为驱动开发）。这其实也是很多公司在推行的开发模式，可以有效减少bug。同样，认真撰写该目录主要是要贡献给开源社区的代码标准之一，笔者自认没有达到如此高度，Ruby达人和模块大师可以自行研究。

2.模块的撰写流程

第一步：思考模块的用途。

在着手写模块之前，思考模块到底要做什么事情，最基本的是，一个模块不要做多件事情。这里所说的“多件事情”其定义又是什么呢？举个简单的例子，要装一个LAMP里面的Apache、MySQL、PHP，那么最好有三个模块，分别是Apache、MySQL、PHP。好处有以下三点。

·代码重用。比如一个MySQL模块，不仅在安装LAMP时可以用，以后如果要部署一个内部的管理工具，也需要依赖MySQL，那么就可以直接使用include mysql这样的语句进行调用，不需要重复先前的工作。

·业务架构的扩容。一般来说项目实施过程中一定会碰到all-in-one box到one-in-each box的架构变更，把每个service组件分开，有利于后期的维护工作。

·简洁。一个上千行的模块，会使后面的维护工作变得举步维艰，而且会使工程师之间各自为战，宁愿浪费时间自己重写，也不愿意读懂先前的代码。

为了达到这个最优实践，可以先从下面三个问题开始思考。

·你的模块会实现什么样的功能？

·它具体在做哪些工作？

·它做的工作是否有部分可以在以后的项目中使用？

如果针对第一个和第二个问题得出的回答是实现了A和B，或者在第三个问题中，明确地找出了日后能被重用的部分，那么就应该考虑分割模块了。Puppet官方建议，一个具有规模的项目中应该有近200个模块，在笔者的游戏项目有90多个模块，也算是初具规模了。

第二步：做好Module结构规划。

Puppet官方的最佳实践认为，任何一个class都应该只做单一的事情，这看起来会比较复杂，笔者的模块并非严格遵守这一最佳实践，但是，如同前文所说，这里的主要目的是让读者知晓最佳实践是什么，并鼓励大家使用公有的模块。

（1）class设计

模块的class设计奉行一个原则，一个pp文件包含一个class定义，一个class包含了一件事情，比如Puppetlabs-ntp模块里面包含了如下内容。

·ntp/manifests/init.pp：默认pp。

·ntp/manifests/config.pp：负责ntp config file的管理。

·ntp/manifests/service.pp：负责ntp service的管理。

·ntp/manifests/params.pp：负责配置ntp的Puppet模块，这是主要要改的配置文件，以实现个性化配置。

·ntp/manifests/install.pp：负责ntp package安装。

[image:]获取方式为在master上执行“puppet module install puppetlabs-ntp”命令，具体模块获取会在后文介绍。

下面来看几个示例。

init.pp中的代码如下：

class ntp (

 $autoupdate = $ntp::params::autoupdate,

 $config = $ntp::params::config,

 $config_template = $ntp::params::config_template,

 $driftfile = $ntp::params::driftfile,

 $keys_enable = $ntp::params::keys_enable,

 $keys_file = $ntp::params::keys_file,

 $keys_controlkey = $ntp::params::keys_controlkey,

 $keys_requestkey = $ntp::params::keys_requestkey,

 $keys_trusted = $ntp::params::keys_trusted,

 $package_ensure = $ntp::params::package_ensure,

 .

 .

 .

) inherits ntp::params {

 validate_absolute_path($config)

 validate_string($config_template)

 validate_bool($disable_monitor)

 validate_absolute_path($driftfile)

 .

 .

 .

 include ::ntp::install

 include ::ntp::config

 include ::ntp::service

 anchor { 'ntp::begin': } ->

 class { '::ntp::install': } ->

 class { '::ntp::config': } ~>

 class { '::ntp::service': } ->

 anchor { 'ntp::end': }

}

可以看出init.pp主要做了如下5件事：

1）继承class ntp：：params，使里面的所有变量都可访问。

2）定义local variable，把这些local variable变成class的parameter，允许将来有外部来源可以调用class的同时更改这些parameter，比如enc。

3）赋予上述这些parameter default值，值为ntp：：params里的变量值，如$autoupdate=$ntp：：params：：autoupdate。

4）用stdlib里的function、validate等变量。

5）用anchor和->定义class的依赖关系。

[image:]上述示例中提到了stdlib模块，这是一个大幅扩展了Puppet function的标准库（类似CentOS中的Epel源），安装stdlib的命令为puppet module install stdlib，anchor是一个stdlib的function。之前在介绍function时讲解过contain（），它也是帮助解决class之间依赖的一种方式，contain和anchor同时存在的理由很简单，anchor是社区力量先出现的解决方案，Puppet官方听取建议，做了相应function，只不过实现方式不一样。具体哪个好。真是见仁见智！

上述示例中，使用了Anchor实现的类依赖，contain（）方式如下：

contain ::ntp::install

contain ::ntp::config

contain ::ntp::service

Class['::ntp::install'] ->

Class['::ntp::config'] ->

Class['::ntp::service']

以下是关于module：：install的示例。

ntp/manifests/install.pp中的代码如下：

class ntp::install inherits ntp {

 package { 'ntp':

 ensure => $package_ensure,

 name => $package_name,

 }

}

class install继承了class ntp，因此可以使用$package_ensure这样的变量，这些变量也是ntp从ntp：：params继承过来并本地化的，且有了default值。此外，要说明的是，class install只包含了package的安装。

下面是关于module：：config的示例。

ntp/manifests/config.pp中的代码如下：

class ntp::config inherits ntp {

 if $keys_enable {

 $directory = ntp_dirname($keys_file)

 file { $directory:

 ensure => directory,

 owner => 0,

 group => 0,

 mode => '0755',

 recurse => true,

 }

 }

 file { $config:

 ensure => file,

 owner => 0,

 group => 0,

 mode => '0644',

 content => template($config_template),

 }

}

class config继承了class ntp，因此可以使用$config_template这样的变量，这些变量也是ntp从ntp：：params继承过来并本地化的，且有了default值。class config只包含了ntp的配置文件管理，ntp_dirname是一个自定义function，路径为ntp/lib/puppet/parser/functions/ntp_dirname.rb。

下面是关于module：：service的示例。

ntp/manifests/service.pp中的代码如下：

class ntp::service inherits ntp {

 if ! ($service_ensure in ['running', 'stopped']) {

 fail('service_ensure parameter must be running or stopped')

 }

 if $service_manage == true {

 service { 'ntp':

 ensure => $service_ensure,

 enable => $service_enable,

 name => $service_name,

 hasstatus => true,

 hasrestart => true,

 }

 }

}

class service继承了class ntp，因此可以使用$service_ensure这样的变量，这些变量也是ntp从ntp：：params继承过来并本地化的，且有了default值。class service只包含了ntp的service启停管理。

以下则是关于module：：params的示例。

ntp/manifests/params.pp中的代码如下：

 class ntp::params {

 $autoupdate = false

 $config_template = 'ntp/ntp.conf.erb'

 $disable_monitor = false

 $keys_enable = false

 $keys_controlkey = ''

 $keys_requestkey = ''

 $keys_trusted = []

 $logfile = undef

 $package_ensure = 'present'

 $preferred_servers = []

 $service_enable = true

 $service_ensure = 'running'

 $service_manage = true

 .

 .

 .

 $default_config = '/etc/ntp.conf'

 $default_keys_file = '/etc/ntp/keys'

 $default_driftfile = '/var/lib/ntp/drift'

 $default_package_name = ['ntp']

 $default_service_name = 'ntpd'

 case $::osfamily {

 .

 .

 .

 'RedHat': {

 $config = $default_config

 $keys_file = $default_keys_file

 $driftfile = $default_driftfile

 $package_name = $default_package_name

 $service_name = $default_service_name

 $restrict = [

 'default kod nomodify notrap nopeer noquery',

 '-6 default kod nomodify notrap nopeer noquery',

 '127.0.0.1',

 '-6 ::1',

]

 $iburst_enable = false

 $servers = [

 '0.centos.pool.ntp.org',

 '1.centos.pool.ntp.org',

 '2.centos.pool.ntp.org',

]

 }

 .

 .

 .

 }

}

class params没有任何继承，它是被ntp所继承的。可以看出，所有可定义的参数都在其中，而且还根据不同os进行了配置分类。因此，维护一个社区的模块其实是一个很费时的事情。所以再次感谢开源的力量！一般情况下不建议直接更改params里的值，而是用site.pp、enc或hiera更改默认parameter。

site.pp中更改parameter的示例如下：

node agent1 {

 class { 'ntp':

 autoupdate => true,

 }

}

（2）Parameters设计

一般来说参数设计奉行以下几个原则。

第一个原则，采用统一的命名规范。

·以事物_属性（thing_property）的方式来命名，比如package_ensure、service_enable。

·如果是一系列参数集合的控制参数，那么大多数情况它是一个布尔值true or false，可以用事物_manage（thing_manage）来命名，比如service_manage。

示例代码如下：

if $service_manage == true {

 service { 'ntp':

 ensure => $service_ensure,

 enable => $service_enable,

 name => $service_name,

 hasstatus => true,

 hasrestart => true,

 }

}

第二个原则，尽可能不hard coded。

笔者也写过很多hard coded，写的时候爽，到后面就发现一堆写死的东西藏在某个file或者template里面，最后整个代码变得非常不灵活，又容易给其他工程师带来很多坑。最后，陆陆续续花费了团队1个月的时间来整理这些hard coded的代码，以实现参数（parameter）化。

第三个原则，考虑site.pp/enc/hiera等中央配置管理。

中央配置管理的重要性不言而喻，比如需要重新在一个新的IDC搭建一个新的项目，就会发现有大量parameter要改，如果没有中央配置管理，就只能在模块文件里一个个地去找，说不定日后还发现不少坑。

当然有读者会说，如果那么多parameter都放在site.pp中，这个文件不是巨大无比啊？因此这时候需要一个enc或者hiera，后文会详解enc。

第三步，模块测试。

下面介绍几种测试过程。

（1）语法测试

针对pp文件的syntax测试如下：

puppet parser validate xx.pp

针对erb文件的syntax测试如下：

erb -x -T '-' xx.erb | ruby -c

（2）不同的environment测试

environment会在后文详解，这里介绍理念。一个项目最好有test、dev、production三个environment。test是自己的试验机所在的environment；dev是代码的开发环境所在的environment；production，顾名思义，即生产系统所在的运行环境。在模块测试过程中，至少可以在放入生产环境前跑2遍，自己试验机可以过滤掉大部分的bug或unexpect，dev environment可以捕捉漏网之鱼（比如开发帮忙验证网站功能），最后才能放心地投入到生产环境中去。

（3）rspec-puppet测试

上文说过rspec-puppet是Puppet的标准unit test，想成为module大师的可以自行研究。

[1] 如果自己写facter，建议用下文的facts.d来替换facter。
10.1.2　使用公有模块

上节分析了模块目录结构的最佳实践，有了一定的基础后就可以读懂社区的公有模块了，这节就来分析下如果获得更多的模块，以及选择模块的小技巧。

1.基本功能

Puppet公有模块管理就好比yum管理rpm包，也有install、uninstall、upgrade、list、search等，模块仓库地址为https:/forge.puppetlabs.com/。当然可以直接上forge网站上查询和下载，也可以通过puppet module子句直接用命令行来管理。

Puppet module有如下参数需要了解。

·build：打包一个符合forge规范的模块目录，太高端，笔者还未做深入研究。

·changes：显示已安装的模块中被人为修改过的文件，照理说所有普通文件应该是只读的（find ntp/-type f|xargs ls-l），Puppet官方希望大家都是通过site.pp/enc/hiera的方式中央管理，如果项目中还是有人乱改，用这个参数可以找出哪里被改了。

·generate：生产一个模块的样板，该样板符合forge的规范，但由于笔者还不是大师，所以基本没使用过。

·install：安装。

·list：列出已安装的模块。

·search：在forge上搜索模块。

·uninstall：卸载模块。

·upgrade：升级模块。

2.选择模块

（1）approved VS.supported

forge上的Puppet公有模块有2大类：第一类是supported模块；第二类是approved模块。

supported模块的特点如下：

·官方认证并维护。

·24*7的商业支持。

·强大的社区支持，可以通过多种渠道获得帮助，比如论坛发帖、opensource maillist和irc.freenode.net中的专属channel等。

·官方模块的命名前缀为puppetlabs。

·只有20多个。

approved模块的特点如下：

·官方认证。

·强大社区支持，也可以通过多种渠道获得帮助，比如forge的模块页面的'Report Issues'link、Puppet Users Google Group、ask.puppetlabs.com和irc.freenode.net中的专属channel等。

·非官方模块的前缀不是puppetlabs。

·有3000多个。

那么，如何选择好的approved模块呢？

根据上面的对比，读者肯定可以看出，很多常见模块其实还是要靠开源社区的力量。当然好的开源社区一定是活跃的社区，现在就来介绍，如何找到那些流行模块。

·用https:/forge.puppetlabs.com来查找模块。好处是直观，可以看出模块下载数来判断该模块的流行程度，还可以点击维护者查看该维护者所有的模块多不多，以及其他模块的下载数情况等。比如example42/nginx，可以点击example42看到他有很多其他很流行的模块。

·直接搜索自己熟悉的优秀的维护者看他有没有该模块。比如前文提到的example42，应该是最大的模块提供者了。还有其他的比如evenup/camptocamp/theforeman，较example42小，不过也初具规模了。

·还有一种是走精品不走量的模块。比如jfryman/nginx，下载数量远远超过其他著名维护者的Nginx模块。至于到底用哪一个就见仁见智了。

（2）管理模块

其实管理模块前文已陆陆续续提到，这里总结如下：

·尽量不更改模块内容。

·使用site.pp/enc/hiera等中央管理工具更改模块的parameter来实现个性化。

·优选官方puppetlabs模块，或优秀维护者的approved模块。如果还是不满足，比如软件太小众，那么写自己的模块。

除了这些，再介绍一下如何读懂模块，毕竟管理好的前提是完全了解该模块。

·直接读源代码。适合高级玩家。

·看模块下的README.markdown和tests目录下的example。适合中级玩家。

·看模块在forge上的主页。比如https:/forge.puppetlabs.com/example42/nginx。适合中初级玩家或html爱好者，笔者是“视觉动物”，如果doc不是五颜六色且要滚动3屏以上，真是没法看[image:]。
10.1.3　神奇的enc

1.什么是enc

enc全称external node classifier，翻译为“外部的节点分类器”，顾名思义就是一个在Puppet之外的node定义class，它是一个脚本可以告诉Puppet master这个node应该有哪些class，因此，它可以替换节点在site.pp的定义，这样即可扩展Puppet，使其连接其他外部系统（例如一个CMDB），还可以避免项目增长后，site.pp变成一个又臭又长、难以维护的超长文件。enc具有如下特点：

·enc是在Puppet master上可执行的脚本，而且不一定要用Ruby来写。

·该脚本只接受一个参数，node的fqdn。

·该脚本的output必须用一个YAML输出来描述这个node应该有的内容，并且要符合相关规范。

·可以和site.pp连用，node在enc和site.pp中的定义会进行有机合并（重复定义的部分会被enc覆盖）。

2.enc和site.pp的区别

enc和site.pp的区别见表10-1。

表10-1　enc和site.pp的区别

 [image:]

 [image:]

3.配置enc

配置命令如下：

[master]

 node_terminus = exec

 external_nodes = /usr/local/bin/my_enc.py

node_terminus是external_nodes的前置参数，默认是plain，改成exec是告诉Puppet master请执行external_nodes定义的脚本路径，以获得compile过程中node所需要的定义。external_nodes是脚本路径，上文提过，可以是任意语言写的可执行脚本，对于Puppet master必须要有可执行权限。

4.如何撰写自己的enc

上文提到过，enc的output必须包括classes、parameters、environment三个主key的YAML输出格式，以下是一个简单的output：

[root@puppet /]# /usr/local/bin/my_enc.py agent1.example.com

classes:

 common:

 ntp:

 ntpserver: 0.pool.ntp.org

parameters:

 zabbix_server: zabbix.example.com

 iburst: true

environment: production

在上述代码中，classes为该node声明了common和ntp两个class，并且给ntp class传参ntpserver，值为0.pool.ntp.org。

对于parameters，这里定义了两个global的parameter，即zabbix_server和iburst，前者common模块会用到，后者ntp会用到。其实在classes中定义相应参数是规范做法，在parameters中定义则是懒人做法，这样一来，就不用在class中定义需要传的参数了，在模块代码里可以直接使用已经在parameters中定义过的变量。

代码中还定义了这个节点所属的环境，environment的作用是分隔了不同环境的mani-fest（即site.pp）和modulepath，用于测试、隔离等，后文会详解使用方式。

至于my_enc.py应该长什么样，这里给出一个用zabbix inventory所做的例子。

[root@puppet /]# pip install PyYAML -i http://pypi.douban.com/simple/

[root@puppet /]# pip install pyzabbix -i http://pypi.douban.com/simple/

[root@puppet /]# cat /usr/local/bin/my_enc.py

from pyzabbix import ZabbixAPI

import sys

import re

import yaml

zapi = ZabbixAPI("http://zabbix.example.com/zabbix")

zapi.login("admin", "zabbix")

print "Connected to Zabbix API Version %s" % zapi.api_version()

outcome={"classes": {}, "parameters": {}, "environment": "test"}

host = sys.argv[1]

zbx_get_result = zapi.host.get(output="extend", withInventory="true", select-Inventory="extend", filter={"host": host})

if zbx_get_result:

 h = zbx_get_result[0]

 for i in h["inventory"]:

 if h["inventory"][i]:

 if i == "tag":

 outcome["environment"] = h["inventory"][i]

 elif re.match("software_app_[abcde]", i):

 outcome["classes"][h["inventory"][i]] = []

 else:

 outcome["parameters"][i] = h["inventory"][i]

print yaml.safe_dump(outcome, default_flow_style=False)

这里用到了开源的pyzabbix。Zabbix的api和inventory的使用方法不是本章的重点，请读者花时间研究。此外，这里使用了tag这个inventory属性作为Puppet中environment的映射，software_app_a~software_app_e作为Puppet中class的映射，最后以漂亮的yaml格式输出。

当然Zabbix的inventory特性的好处是可以映射为一个监控的item实时更新，而且有UI和search支持，不过使用的前提是对Zabbix有一定的了解。使用其他系统作为enc的来源其实也一样，需要规划每个属性所要映射到Puppet的定义，并且了解其API懂得如何去调用，这些功夫虽然花时间，然而一旦完成，后期的收益是无法估量的，也是迈向DevOps之路的重要一步。
10.1.4　自定义resource type/facter/function

自定义系列是Puppet提供给广大使用者最自由的功能，可以用在各种奇奇怪怪的场景，发挥出巨大的作用，但也是入门最难的功能，因为它需要使用者有一定的Ruby使用技巧和编程功底。本章主要专注于Puppet，并非深入Ruby，因此介绍些编写规范和给出一些代码示例，点到为止，主要是给读者一点自定义resource type/facter/function的概念和使用方法，因为这对于99%的场景来说已经足够。而且，Puppet官方也考虑到这一点，特地维护了Puppet forge这个非常好的社区模块分享站点，从而让不擅长编程的ops找到了福音，直接使用编程达人们分享模块里的已经做好的自定义resource type/facter/function。

1.自定义resource type

这里以一个例子直接来看resource type的结构，该结构包含2个文件：type和provider，代码如下：

 [root@puppet modules/]# find sysctl/lib/ -type f

sysctl/lib/puppet/provider/sysctl/sysctl.rb

sysctl/lib/puppet/type/sysctl.rb

type文件放在$module_name/lib/puppet/type/<TYPE NAME>.rb里。provider文件放在$module_name/lib/puppet/provider/<TYPE NAME>/<PROVIDER NAME>.rb里。该示例中provider name也是syctl，当然可以换个名字（比如linux_sysctl），但是使用起来不方便，如果只有一个provider，没必要给自己找麻烦，原因参考下文。

下面是使用示例：

 [root@puppet modules/]# vim sysctl/manifests/init.pp

sysctl { "fs.file-max": value => "100000" }

如果在上文已将provider name改成linux_sysctl，这里就要写sysctl{"fs.file-max"：value=>"100000"，provider=>"linux_sysctl"}。不过，放着好好的default值不用，是不是有点画蛇添足呢？

下面来揭晓代码的庐山真面目，读者看看就好，想研究Ruby的可以自行解读。

 [root@puppet modules/]# cat sysctl/lib/puppet/provider/sysctl/sysctl.rb

require 'puppet/provider/parsedfile'

Puppet::Type.type(:sysctl).provide(:sysctl,

 :parent => Puppet::Provider::ParsedFile,

 :default_target => "/etc/sysctl.conf",

 :filetype => :flat) do

 desc "Puppet provider for Linux sysctls"

 confine :exists => "/etc/sysctl.conf"

 text_line :comment, :match => /^#/

 text_line :blank, :match => /^\s*$/

 record_line :sysctl, :fields => %w{name value}, :separator => /\s*=\s*/, :block_eval => :instance do

 def post_parse(record)

 record

 end

 def to_line(record)

 return "%s = %s" % [record[:name], record[:value]]

 end

 end

end

[root@puppet modules/]# cat sysctl/lib/puppet/type/sysctl.rb

Puppet::Type.newtype(:sysctl) do

 @doc = "Linux sysctl Puppet type"

 ensurable

 newparam(:name) do

 desc "The name of the sysctl"

 isnamevar

 end

 newproperty(:value) do

 desc "The value for the sysctl"

 end

end

2.自定义facter

自定义facter的好处是，可以在每台机器上执行命令得出该机器特殊的属性。这里给出的示例是查出机器是无盘还是有盘，因为在项目中无盘和有盘是共存的，因此需要判断不同的情况下如何写Puppet。

先来看它的结构，这里只有1个文件，即一个facter文件，代码如下：

 [root@puppet modules/]# find site-default/lib/ | grep rootfs

site-default/lib/facter/rootfs_type.rb

由于facter是agent从server获得代码执行的结果，因此要在agent重新拉取master的配置，才可以看到结果，使用命令如下：

[root@diskless_agent /]# puppet agent -t

[root@diskless_agent /]# df /

Filesystem 1K-blocks Used Available Use% Mounted on

- 2460672 1461424 874248 63% /

[root@diskless_agent /]# facter -p | grep rootfs

rootfs_type => -

[root@normal_agent /]# puppet agent -t

[root@normal_agent /]# facter -p | grep rootfs

rootfs_type => ext4

[root@puppet modules/]# vim syslog-ng/manifests/init.pp

if $rootfs_type == '-'{

 $syslog_conf = not_local_copy.conf.erb

} else {

 $syslog_conf = local_copy.conf.erb

}

file { "/etc/syslog-ng.conf":

 content => template("syslog-ng/$syslog_conf"),

 require => Package["syslog-ng"],

 notify => Service["syslog-ng"]

}

可以看到diskless的rootfs_type是-，而普通agent的是ext4。rootfs_type可以用在任何Puppet模块里，这里用到了syslog里，无盘没有空间，因此syslog配置用一个不存本地的配置not_local_copy.conf.erb。

现在来揭晓代码的庐山真面目，这个比较简单，facter应该需要自定义的场景最多的情况，也算是福音。

[root@puppet modules/]# cat site-default/lib/facter/rootfs_type.rb

Facter.add("rootfs_type") do

 confine :kernel => "Linux"

 setcode do

 Facter::Util::Resolution.exec('df -PT / | awk \'/\// {print $2}\'')

 end

end

如果要使用上述代码，前半段可以照抄，因为大多数情况可以调用shell直接完成，因此较简单。注意转义符\的用法，这里分别转义了awk中的2个单引号，当然也转义了需要匹配的正斜杠'/'字符。

3.自定义function

这里给一个场景，Puppet代码中时不时会遇到要定义password的时候，但是如果直接明文写，以后要进行Puppet代码版本管理的时候，这些production的密码也会被传上git仓库，是非常不安全的，因此这些password最好存放于本地的另外一个地方，不在modules目录下，但是可以通过函数在Puppet代码中调用，这样就安全了。

先来看看它的结构，这里只包含了1个文件，即一个function文件。代码如下：

 [root@puppet modules/]# find site-default/lib/ | grep fetch_passwd

site-default/lib/puppet/parser/functions/fetch_passwd.rb

下面是使用方式：

 [root@puppet modules/]# vim mysql/manifests/init.pp

$monitor_db_password = fetch_passwd("monitor_pw")

$production_app_db_password = fetch_passwd("app_pw", "production")

[root@puppet modules/]# vim /etc/secret.json

{

 "site_wide" : {

 "monitor_pw": "password_for_monitor",

 },

 "production": {

 "app_pw": "very_complex_password_for_app",

 },

}

site_wide的tree下，是fetch_passwd不加参数的情况；production的tree下，是fetch_passwd加了参数"production"情况。

现在来揭晓代码的庐山真面目，这个稍微有点复杂，建议读者边学Ruby，边理解。

[root@puppet modules/]# cat site-default/lib/puppet/parser/functions/fetch_passwd.rb

require 'rubygems'

require 'json/pure'

module Puppet::Parser::Functions

 newfunction(:fetch_passwd, :type => :rvalue) do |args|

 if args.size < 1 or args.size > 2 then

 raise Puppet::ParseError, "This function takes either one or two arguments"

 end

 passwordName = args[0]

 envName = args[1]

 if envName == nil then

 # site wide is defaults

 envName = "site_wide"

 end

 passwordFile = File.open('/etc/secret.json', 'r')

 passwordJSON = passwordFile.read

 passwordFile.close

 passwords = JSON.parse(passwordJSON)

 if passwords.has_key?(envName) then

 if passwords[envName].has_key?(passwordName) then

 return passwords[envName][passwordName]

 else

 raise Puppet::ParseError,"\"#{envName}\" missing key for \"#{pass-wordName}\""

 end

 else

 raise Puppet::ParseError, "Panic, Even the default site wide ENV doesn't exist"

 end

 end

end

10.2　管理好一个Puppet集群

10.2.1　监控Puppet运行状况

监控是一个运维保证线上service运行状况的根本，通常，思考对于什么服务应当监控什么是一个运维的基本功，也是一个考量运维价值的重要因素，因为及时发现并处理，就意味着减少down time，对于业务来说就是避免更大的损失，体现了运维的价值。

下面将从两个方面来思考。

1.可用性

用通俗的话来说，可用性就是在不好用的时候能够及时探测出来，因此，我们要考虑以下问题：

·这个服务对于业务的意义是什么？

·对于服务的client来说，有哪些错误类型和症状？

·对于服务本身来说，出错的时候，有哪些症状？

可以进行错误类型的枚举来制定相应的监控项，现在就以上述的问题来对Puppet进行分析。

第一个问题，Puppet对于业务的意义是什么？

答：保证Puppet master上的代码可以及时应用到Puppet agent上，以达到中央管理的目的。

第二个问题，对于Puppet agent来说，有哪些错误类型和症状？

答：基于Puppet的对于业务的意义来说，以下错误都是不可接受的。

·从master上获得的catalog无法执行，有error/warning。

·根本无法和master进行通信，获取catalog都失败了。

·Puppet agent本身都没在运行，或者被人为地disable了。

那么这些错误的症状是什么呢？Puppet为我们准备了如下三个文件来指出上述错误。

/var/lib/puppet/state/last_run_summary.yaml中的代码如下：

 version:

 config: 1432993826

 puppet: "3.7.5"

 changes:

 total: 9

 time:

 last_run: 1432993930

 service: 11.178494

 package: 57.138766

 anchor: 0.00043

 config_retrieval: 25.1438100337982

 file: 5.738155

 total: 100.474168033798

 filebucket: 0.000259

 notify: 0.001315

 exec: 1.271416

 schedule: 0.001523

 resources:

 scheduled: 0

 restarted: 0

 changed: 9

 total: 31

 failed: 1

 failed_to_restart: 0

 skipped: 0

 out_of_sync: 10

 events:

 success: 9

 failure: 1

 total: 10

根据events里面的failure个数，可以看出从master上获得的catalog是否执行时有error/warning。根据time里的last_run，可以看出是否有长时间无法从master上获得catalog的情况。

/var/lib/puppet/state/last_run_report.yaml中的代码如下：

- !ruby/object:Puppet::Util::Log

 time: 2015-05-30 13:50:56.656213 +00:00

 source: /Stage[main]/Motd/File[/tmp/ds/2]

 level: !ruby/sym debug

 message: "The container /tmp/ds will propagate my refresh event"

 tags:

 - class

 - default

 - file

 - hell1

 - hell2

 - node

 - debug

 - motd

- !ruby/object:Puppet::Util::Log

 time: 2015-05-30 13:51:53.828871 +00:00

 source: Puppet

 level: !ruby/sym err

 message: "Execution of '/usr/bin/yum -d 0 -e 0 -y list dstat.x86_64' returned 1: Error: No matching Packages to list"

 tags:

 - err

在上述代码中，从level这个key可以分析出具体error的message。

/var/lib/puppet/state/agent_disabled.lock中的代码如下：

[root@agent1 /]# puppet agent --disable "for testing"

上述命令是disable puppet agent的命令，会产生相应的/var/lib/puppet/state/agent_disabled.lock。

 [root@agent1 /]# cat /var/lib/puppet/state/agent_disabled.lock

{"disabled_message":"for testing"}

知道症状以后，接下来就是实现监控了，这里不再展开，想必读者都有各自的监控软件，可以自己写相应的监控脚本。如果是用Nagios，可以去https:/exchange.nagios.org上查找别人写的一些脚本作为参考；如果是Zabbix，可以使用GitHub上一些分享，如https:/github.com/shamil/puppet-zabbix-reports。

这里再提一个比较好的aggregation工具来统一查看Puppet agent的运行状况——Puppet Dashboard。关于如何搭建Puppet Dashboard，后文会提及，这里主要介绍思路，比如对于Puppet，你的项目目前只是处于试水状态，并不想各种服务器Puppet报警充斥介绍监控面板的时候，可以使用Puppet Dashboard来得到一个聚合报告，并进行整体报警。当然笔者建议是以两者配合不同警报级别结合的方式去更好地展现Puppet agent的运行状况。这里给出一个使用Zabbix作为监控系统的例子：https:/github.com/simonswine/zabbix-puppetdashboard。

第三个问题，对于Puppet master来说，出错的时候有哪些症状？

上文提到了Puppet agent出错的症状，当然如果所有的Puppet agent都无法从Puppet master上拿到catalog，那也代表了Puppet master工作不正常。当然我们有更直接地从master上进行监控的方式，即使用Puppet master的status api。

下面代码用于添加api权限。

 [root@puppet /]# /etc/puppet/auth.conf

path /status

auth any

allow *

注意要在下面这条deny all之前定义权限

deny everything else; this ACL is not strictly necessary, but

illustrates the default policy.

path /

auth any

以下是访问status api的命令：

[root@puppet /]# curl --cacert /var/lib/puppet/ssl/certs/ca.pem --cert /var/lib/puppet/ssl/certs/`facter fqdn`.pem --key /var/lib/puppet/ssl/private_keys/`facter fqdn`.pem -H 'Accept: pson' https://puppet:8140//production/status/test

{"version":"3.7.5","is_alive":true}

2.性能

同样，对于性能监控这里也有三个相应的问题。

·对于服务的client来说，慢的症状是什么？

·对于服务本身来说，慢的症状是什么？

·对于服务本身来说，是否有将要变慢的症状？（预警）

针对第一个问题，对于Puppet agent来说，慢的症状是运行一次时间过长。来看个示例。

/var/lib/puppet/state/last_run_summary.yaml中的代码如下：

 changes:

 total: 4

 version:

 puppet: "3.7.5"

 config: 1433059415

 events:

 total: 8

 success: 4

 failure: 4

 time:

 total: 29.148274868927

 filebucket: 0.000151

 file: 0.703988

 notify: 0.001447

 last_run: 1433059970

 exec: 0.127579

 service: 0.080962

 schedule: 0.001158

 package: 25.01855

 config_retrieval: 3.214439868927

time下的total是总运行时长，当然也有一些各个部分基本耗时统计，比如file非常长的话，可以考虑Puppet的file service性能不够，对此，建议单独分一台的file server为所有agent服务。

/var/lib/puppet/state/last_run_report.yaml中的代码如下：

 [root@puppet /]# cat /usr/local/bin/analyze_puppet_slow.py

import yaml

def construct_ruby_object(loader, suffix, node):

 return loader.construct_yaml_map(node)

def construct_ruby_sym(loader, node):

 return loader.construct_yaml_str(node)

yaml.add_multi_constructor(u"!ruby/object:", construct_ruby_object)

yaml.add_constructor(u"!ruby/sym", construct_ruby_sym)

stream = file('/var/lib/puppet/state/last_run_report.yaml','r')

mydata = yaml.load(stream)['resource_statuses']

for i in mydata:

 if 'evaluation_time' in mydata[i]:

 print '%s - %s' % (mydata[i]['evaluation_time'], mydata[i]['resource'])

[root@puppet /]# python /usr/local/bin/analyze_puppet_slow.py | sort -n

.

.

.

0.500516 - Package[dstat2]

1.951594 - Package[mysql]

2.383181 - Package[nagios-plugins-all]

20.177932 - Package[puppetdashboard]

同样，可以通过这个详细的报告文件，来得出具体是哪个resource慢。

这里的/usr/local/bin/analyze_puppet_slow.py是笔者写的一个比较粗糙的分析脚本，不过可用。分析得出上次执行Puppet agent慢的原因是安装了Package[puppetdashboard]的包，用了20多秒，可以得出结论是Puppet官方repo的速度较慢，可以考虑搭内部的镜像repo。

针对第二个问题，对于Puppet master本身来说，慢的症状是单位agent执行时长太过分，即需要监控“总时长/总agent个数”的值是否在合理范围内。执行时长的获得的方法有2种。

（1）Puppet Dashboard

Puppet Dashboard是一个比较漂亮的Web版的Dashboard，可以让大家直观地查找每个节点的运行情况，包括每步的时间和结果，说白了就是收集了client所有的report，并对其进行了分析。想法很不错，可是不是官方项目，官方支持力度有限，Puppet Dashboard1.23放出来2年后，再也没出新版本了，而且master branch上最后一次GitHub提交也是近一年前，所以笔者不是很推荐，不过如果读者有兴趣或要给老板展示漂亮report，可以自行安装。由于官方在2年内已发展到Puppet 4，但是Puppet Dashboard却迟迟不更新，已经将原有相关文档的链接，又重定向回该项目的GitHub链接，下面给出两个传送门，方便读者安装。

·https:/downloads.puppetlabs.com/docs/dashboardmanual.pdf

·http://dev.tomatoengine.com/puppet/dashboard/manual/1.2/bootstrapping.html

（2）Apache日志

Apache日志的方法其实很简单，在Apache中设置日志格式的代码如下：

 [root@puppet /]# grep Log /etc/httpd/conf.d/puppetmaster.conf

LogFormat "%h %l %u %t \"%r\" %>s %b %D \"%{Referer}i\" \"%{User-Agent}i\"" puppet

CustomLog /var/log/httpd/puppet.log puppet

只要设置是%D，那么服务器处理本请求所用时间则以微为单位，也就是1/1000000秒。

下面是用脚本分析的方式[1]：

 [root@puppet /]# cat analyze.pl

#!/usr/bin/perl

use strict;

use warnings;

use Data::Dumper;

my $file = $ARGV[0] or die('Must pass an apache access logfile');

open IN, "<$file" or die("Can't open $file");

my %indirectors;

while(my $line=<IN>) {

 chomp($line);

 my @pieces = split(/\s+/, $line);

print Dumper(\@pieces);

 my $method = $pieces[5];

 $method=~s/"//g;

 my ($blah,$env, $indirector, $resource) = split(/\//, $pieces[6], 4);

 #print "$env|$indirector|$resource\n";

 my $ms = $pieces[10]/1000; # convert to milliseconds

 my $key = sprintf('%-4s %s', $method, $indirector);

 $indirectors{$key}{'count'}++;

 $indirectors{$key}{'sum'}+= $ms;

 push(@{$indirectors{$key}{'raw'}}, $ms);

 $indirectors{$key}{'min'} = $ms if(!defined($indirectors{$key}{'min'}) || $ms < $indirectors{$key}{'min'});

 $indirectors{$key}{'max'} = $ms if(!defined($indirectors{$key}{'max'}) || $ms > $indirectors{$key}{'max'});

}

print "Counts Per Indirector:\n";

foreach my $indirector(sort {$indirectors{$b}{'count'} <=> $indirectors{$a}{'count'}} keys %indirectors) {

 printf(" %7d %s\n", $indirectors{$indirector}{'count'}, $indirector);

}

print "\n\n";

print "Statistics by Indirector (milliseconds):\n";

printf(" %-25s %7s %7s %7s %7s\n", '', 'AVERAGE', 'STD_DEV','MIN', 'MAX');

foreach my $indirector(sort keys %indirectors) {

 $indirectors{$indirector}{'avg'} = $indirectors{$indirector}{'sum'}/$indirectors{$indirector}{'count'};

 my $sum_squares=0;

 foreach my $value(@{$indirectors{$indirector}{'raw'}}) {

 $sum_squares += ($value - $indirectors{$indirector}{'avg'})**2;

 }

 $indirectors{$indirector}{'stddev'} = ($indirectors{$indirector}{'count'} - 1) == 0

 ? 0

 : sqrt($sum_squares / ($indirectors{$indirector}{'count'} - 1));

 printf(" %-25s %7d %7d %7d %7d\n",

 $indirector,

 $indirectors{$indirector}{'avg'},

 $indirectors{$indirector}{'stddev'},

 $indirectors{$indirector}{'min'},

 $indirectors{$indirector}{'max'}

);

}

[root@puppet /]# perl analyze.pl /var/log/httpd/puppet.log

Counts Per Indirector:

 4166 GET file_content

 2934 GET file_metadatas

 1467 POST catalog

 1133 GET node

 1133 PUT report

 24 GET file_metadata

 21

 9 GET certificate

 1 GET certificate_request

 1 PUT certificate_request

 1 GET certificate_revocation_list

Statistics by Indirector (milliseconds):

 AVERAGE STD_DEV MIN MAX

 0 0 0 0

 GET certificate 1977 2610 2 6049

 GET certificate_request 27 0 27 27

 GET certificate_revocation_list 4 0 4 4

 GET file_content 7 7 2 70

 GET file_metadata 647 455 2 1044

 GET file_metadatas 57 81 2 1057

 GET node 872 1661 3 51658

 POST catalog 1446 789 48 9232

 PUT certificate_request 5048 0 5048 5048

 PUT report 1018 1299 42 7556

可以看出，该脚本帮忙分析了无误cert、passenger、report，还是Apache是拉取file的瓶颈，这台Puppet server的瓶颈主要在于cert和passenger compile catalog，可以考虑采用CA和水平扩容的方式来缓解，在后文Puppet server端优化会详解。

针对第三个问题，对于Puppet master本身来说，是否有将要变慢的症状。这要从三种模式的不同症状分别来分析。

一种是WEBRick模式，对此就不要纠结了，这种模式本身就非常低效的，放弃吧！

第二种是Passenger模式，下节会提到如何使用它，用户所要监控的就是Passenger的worker状况。

示例代码如下：

[root@puppet /]# passenger-status

----------- General information -----------

max = 36

count = 9

active = 2

inactive = 7

Waiting on global queue: 0

----------- Application groups -----------

/etc/puppet/rack:

 App root: /etc/puppet/rack

 * PID: 11105 Sessions: 0 Processed: 261 Uptime: 2m 23s

 * PID: 10856 Sessions: 0 Processed: 488 Uptime: 2m 49s

 * PID: 7518 Sessions: 0 Processed: 758 Uptime: 8m 28s

 * PID: 10556 Sessions: 0 Processed: 404 Uptime: 3m 45s

 * PID: 10461 Sessions: 0 Processed: 383 Uptime: 4m 13s

 * PID: 11102 Sessions: 0 Processed: 50 Uptime: 2m 23s

 * PID: 10978 Sessions: 0 Processed: 294 Uptime: 2m 35s

 * PID: 11108 Sessions: 1 Processed: 60 Uptime: 2m 23s

 * PID: 7687 Sessions: 1 Processed: 786 Uptime: 8m 17s

可以从看出，36个worker完全足够用，如果active长期处于30+的状态，且CPU使用率很高，那么可以考虑水平扩容了。其实worker也不是越多越好，还要结合上文apache log的分析脚本，毕竟单位时间内处理的请求才是衡量性能的标准。如果开了100个worker，1分钟内完成了3000个请求，平均每个请求平均耗时5秒钟，那么对比30个worker，1分钟内完成了4500个请求，每个请求平均耗时0.4秒钟，用户肯定会使用后者的worker配置，从而避免过多worker的contex switch和无效占用带来的系统开销。

第三种模式是Puppetserver。下节同样要提到如何使用它，用户所要监控的就是Puppetserver的worker和heapsize状况。

对Puppetserver的监控，熟悉Java的同学肯定会想jvm的监控，包括jps、jinfo、jstat、jmap、jconsole等一大堆。当然，这里需要用的只是监控heapsize状况，以下命令即可实现。

 [root@puppet /]# sudo -u puppet jps

25062 Jps

16838 main

[root@puppet /]# sudo -u puppet jinfo -flag MaxPermSize 16838

-XX:MaxPermSize=268435456

[root@puppet /]# sudo -u puppet jinfo -flag PermSize 16838

-XX:PermSize=21757952

这里可以看到，由于做实验的Puppet代码不多，Permsize只有21MB，但是Max-PermSize却配了256MB，内存使用率就会是256MB*max-active-instances，非常浪费，可以适当减小MaxPermSize。

和Passenger模式一样，用户必须分析log，Puppetserver的log定义在/etc/puppet-server/request-logging.xml，格式和Apache雷同，因此，可以使用相同脚本进行分析。

同样，Puppetserver的worker数名叫max-active-instances，下文会详解，调优思路和Passenger类似。

[1] 这个Perl脚本出自https://gist.github.com/jasonhancock/3439737，虽然可以用bash和Python重写，但是还是原文引用了，毕竟是该“大神”原创的思路。
10.2.2　做好Puppet的容量规划

1.Puppet工作流程

在讲解容量规划之前先来介绍Puppet的工作流程，如图10-1所示。

 [image:]

图10-1　Puppet的工作流程

第一步，Puppet agent去往Puppet master进行SSL CA认证，通告node name、environ-ment name和facts。

第二步，Puppet master根据Puppet agent提供的信息，根据Puppet代码，用ruby compile成catalog再传到client去执行。

第三步，Puppet agent根据Catalog获取相关File资源，并且在本地执行Catalog。

整个过程大体是这样的，因此，可以从下面将要讲的几个方面着手，进行性能优化和容量规划。

2.Puppet master端优化

Puppet master端的优化，其实有非常多的细节，尤其在代码优化这个领域，但是这不仅需要对每个项目所写的Puppet模块进行分析，还需要在Ruby上有比较深的造诣，不适合在此展开。因此，笔者将通过介绍“改变master运行方式”和“角色分离&负载均衡”这两个优化点，来引出Puppet master端的优化方向，而对于代码级别的优化，则需要靠读者平时不断的积累，才能体会。

（1）改变master运行方式

有三种master运行方式：一种是webrick方式，一种是passenger方式，还有一种是Puppet server方式，下面分别讲解。

第一种，webrick方式，webrick是Puppet默认的ruby内置的http服务，方便快捷，缺点是性能问题，当然如果只有几十台，且没有一起执行的需求（默认30分钟跑一次），那么可以继续使用这种方式。

第二种，passenger方式，passenger是一款有社区版和商业版之分的ruby/python/node.js解析器，社区版虽然功能有限，但应对Puppet这样的admin tool已经足够。下面给出一个相关示例。

安装mod_passenger的命令如下：

 [root@puppet /]# yum install epel-release

[root@puppet /]# yum install mod_passenger mod_ssl

通过以下命令准备Puppet master的rack。

 [root@puppet /]# mkdir /etc/puppet/rack/{tmp,public} -p

[root@puppet /]# cp `rpm -ql puppet | grep config.ru` /etc/puppet/rack/

[root@puppet /]# chown puppet.puppet -R /etc/puppet/rack/

然后添加配置文件/etc/httpd/conf.d/puppetmaster.conf。

Listen 8140

<VirtualHost *:8140>

 SSLEngine on

 SSLCipherSuite ALL:!ADH:!EXPORT:!SSLv2:RC4+RSA:+HIGH:+MEDIUM:-LOW

 SSLProtocol all -SSLv2

 SSLCertificateFile /var/lib/puppet/ssl/certs/puppet.example.com.pem

 SSLCertificateKeyFile /var/lib/puppet/ssl/private_keys/puppet.example.com.pem

 SSLCertificateChainFile /var/lib/puppet/ssl/certs/ca.pem

 SSLCACertificateFile /var/lib/puppet/ssl/certs/ca.pem

 # CRL checking should be enabled; if you have problems with Apache complain-ing about the CRL, disable the next line

 # SSLCARevocationFile /var/lib/puppet/ssl/ca/ca_crl.pem

 SSLVerifyClient optional

 SSLVerifyDepth 10

 SSLOptions +StdEnvVars

 # The following client headers allow the same configuration to work with Pound.

 RequestHeader set X-SSL-Subject %{SSL_CLIENT_S_DN}e

 RequestHeader set X-Client-DN %{SSL_CLIENT_S_DN}e

 RequestHeader set X-Client-Verify %{SSL_CLIENT_VERIFY}e

 LogFormat "%h %l %u %t \"%r\" %>s %b %D \"%{Referer}i\" \"%{User-Agent}i\"" puppet

 CustomLog /var/log/httpd/puppet.log puppet

 # Set this to about 1.5 times the number of CPU cores in your master:

 PassengerMaxPoolSize 36

 # Recycle master processes after they service 10000 requests

 PassengerMaxRequests 10000

 # On some systems where disk I/O is expensive, setting this option to a value of x means that the above list of filesystem

 # checks will be performed at most once every x seconds. Setting it to a value of 0 means that no throttling will take place,

 # or in other words, that the above list of filesystem checks will be performed on every request.

 PassengerStatThrottleRate 120

 # Since communication with the puppetmaster from puppetd is a long process (more than 20 seconds in most cases)

 # and will allow for processes to get recycled better

 PassengerUseGlobalQueue on

 # The additional Passenger features for apache compatibility are not needed with Puppet.

 PassengerHighPerformance on

 PassengerPoolIdleTime 150

 RackAutoDetect Off

 RailsAutoDetect Off

 RackBaseURI /

 <IfModule mod_mem_cache.c>

 CacheEnable mem /

 CacheDefaultExpire 300

 MCacheSize 1024000

 MCacheMaxObjectCount 10000

 MCacheMinObjectSize 1

 MCacheMaxObjectSize 2048000

 MCacheRemovalAlgorithm GDSF

 CacheIgnoreNoLastMod On

 </IfModule>

 DocumentRoot /etc/puppet/rack/public

 <Directory /etc/puppet/rack>

 Options None

 AllowOverride None

 Order allow,deny

 allow from all

 Options -MultiViews

 </Directory>

</VirtualHost>

这里给出的是笔者项目中一台16核物理机的调优状况，有兴趣的同学可参考https:/www.phusionpassenger.com/documentation/Users%20guide%20Apache.html。passenger调优这里不再展开。mod_mem_cache是Apache的一个简易内存cache系统，可以提高file resouce相关request的效率。

接下来启动Apache服务，相当于一个正常的Puppetmaster在用了，代码如下：

[root@puppet /]# /etc/init.d/httpd start

第三种，Puppet server运行方式，Puppet server是Puppet官方才引进的运行方式，用Java进行了重构，可用JRuby编译器来运行原有master的代码，它完全兼容原有的Puppet code，由于摒弃了基础版的passenger，性能有非常大的提升。

安装Puppetserver的命令如下：

[root@puppet /]# rpm -ivh https://yum.puppetlabs.com/puppetlabs-release-el-6.noarch.rpm

[root@puppet /]# yum install puppetserver

启动Puppet server的命令如下：

[root@puppet /]# /etc/init.d/puppetserver start

启动时间会比较长，半分钟左右，接下来就可以像用一个Puppet master一样使用它了。

接下去的问题就是如何调优和扩容Puppet server了。

调优主要涉及2个参数，即/etc/Puppetserver/conf.d/Puppetserver.conf里的max-active-instances和/etc/sysconfig/Puppet server里的Xms与Xmx，它们用来调节Java的使用内存，方法和传统开源软件Apache一样，也是根据每个instance内存使用量来调节Java内存分配，并根据测试下来的CPU占有率，得出最优的值，具体方法参见https:/docs.puppetlabs.com/puppetserver/1.0/tuning_guide.html。

扩容其实和passenger模式类似，公用一个SSL key，多机器支撑。

（2）角色分离&负载均衡

Puppet master的CA以及File服务器分离到不同机器上，就好比LAMP应用中Web和db分离的道理一样。

以下是分离CA的步骤。

1）完成环境搭建，准备如下三台机器。

serverA - puppetca

serverB - puppetmaster

serverC - puppetagent

这里要搭建好DNS，或者加入/etc/hosts，命令如下：

serverB_IP puppet

serverA_IP puppetca

2）安装puppetca，在该过程中，又分为如下一些步骤。

第一步，按照一般的Puppet master安装方式搭建puppetca。

第二步，配置产生SSL证书的方式，代码如下：

[root@puppetca /]# vim /etc/puppet/puppet.con

[main]

 .

 .

 .

 dns_alt_names = puppetca,puppetca.example.com

 certname = puppetca

[agent]

 .

 .

 .

 ca_server = puppetca

[master]

 .

 .

 .

 ca = true

第三步，产生证书。

[root@puppetca /]# rm -rf /var/lib/puppet/ssl/

[root@puppetca /]# puppet cert generate --dns_alt_names puppetca.example.com puppetca

[root@puppetca /]# openssl x509 -in /var/lib/puppet/ssl/certs/puppetca.pem -inform pem -noout -text | grep DNS

 DNS:puppetca, DNS:puppetca.example.com

删除老证书的原因是，老证书不是以puppetca作为DNS产生的。这里其实可以直接通过puppet cert generate命令产生基于新DNS的证书，因为puppet.conf里已经定义妥当，参数写全（--dns_alt_names puppetca.example.com puppetca）只是为了更清晰。此外，最后一条命令只是为了验证一下dns_alt_names参数产生的证书，包含所定义的DNS。

第四步，更改Apache配置。

 [root@puppetca /]# vim /etc/httpd/conf.d/puppetmaster.conf

 .

 .

 .

 SSLCertificateFile /var/lib/puppet/ssl/certs/puppetca.pem

 SSLCertificateKeyFile /var/lib/puppet/ssl/private_keys/puppetca.pem

 SSLCertificateChainFile /var/lib/puppet/ssl/certs/ca.pem

 SSLCACertificateFile /var/lib/puppet/ssl/certs/ca.pem

 .

 .

 .

第五步，重启Apache，使新证书生效。

 [root@puppetca /]# /etc/init.d/httpd restart

3）安装不认证SSL的Puppet master，这里面包含如下六个步骤。

第一步，按照一般的Puppet master安装方式搭建Puppet master。

第二步，配置产生SSL证书的方式，配置文件如下：

[root@puppet /]# vim /etc/puppet/puppet.conf

[main]

 .

 .

 .

 dns_alt_names = puppet,puppet.example.com

 certname = puppet

[agent]

 .

 .

 .

 ca_server = puppetca

[master]

 .

 .

 .

 ca = false

这里注意，ca是false。

第三步，向puppetca申请新证书。

[root@puppet /]# rm -rf /var/lib/puppet/ssl/

[root@puppet /]# puppet agent --test --ca_server=puppetca

这里删除旧的SSL是为了接受puppetca的新证书。

第四步，在puppetca上颁发证书，命令如下：

[root@puppetca /]# puppet cert --list --all

"puppet" (SHA256) E2:B5:CA:51:37:83:2C:85:E1:87:4D:D9:D0:04:01:AC:36:AC:3A:03:8A:91:2B:51:3E:76:2B:40:CF:F3:0B:B3 (alt names: "DNS:puppet", "DNS:puppet.example.com")

[root@puppetca /]# puppet cert --allow-dns-alt-names sign puppet

从output可以看出，正确的DNS已经被正确地加入申请。这里签名用了--allow-dns-alt-names，是为了允许Puppet master用自己的名字Puppet。

第五步，在Puppet master上签收证书。

 [root@puppet /]# puppet agent --test --ca_serve=puppetca

签收的命令和申请的相同，签收后会报错，因为Puppet master就是本身，还没被正确启动。

第六步，修改master的apache证书，并启动master。

[root@puppet /]# vim /etc/httpd/conf.d/puppetmaster.conf

 .

 .

 .

 SSLCertificateFile /var/lib/puppet/ssl/certs/puppet.pem

 SSLCertificateKeyFile /var/lib/puppet/ssl/private_keys/puppet.pem

 SSLCertificateChainFile /var/lib/puppet/ssl/certs/ca.pem

 SSLCACertificateFile /var/lib/puppet/ssl/certs/ca.pem

 .

 .

 .

[root@puppet /]# /etc/init.d/httpd start

4）Puppet agent进行CA和master的分离，这其中包括4个步骤，如下。

第一步，配置正确的puppetca地址。

 [root@agent1 /]# vim /etc/puppet/puppet.con

[agent]

 .

 .

 .

 ca_server = puppetca

第二步，申请证书。

[root@agent1 /]# puppet agent --test --server=puppet --ca_server=puppet

命令行参数可以不用写全，因为puppet.conf已经配置妥当，这里只是为了更清晰的表达。

第三步，puppetca颁发证书。

 [root@puppetca /]# puppet cert sign agent1.example.com

如果已经有相当数量的agent，本次操作是为了分离的架构，那么可以使用puppet cert sign--all来简化步骤。

第四步，再次运行，成功！

 [root@agent1 /]# puppet agent -t

讲完了分离CA的方法，现在来看看要如何分离File server。

对于File server笔者觉得如果有了Apache的<IfModule mod_mem_cache.c>，分离不是特别必要，而且可以以多master的形式水平扩容，因此，这里只是简单提下搭建思路，并不会详细列举步骤。

1）搭建另外一个Puppet master作为fileserver用，hostname为puppetfileserver。以下代码用于更改该server的/etc/puppet/fileserver.conf。

 [extra_files]

 path /etc/puppet/modules

 allow *

这里的/etc/puppet/modules要做好同步工作！

2）改写代码。例如之前是：

puppet:///modules/apache/ssl.conf

现在是：

puppet://puppetfileserver/apache/files/ssl.conf

10.2.3　使用版本控制来管理代码

1.搭建git

使用git应该是系统管理员的基本功，因为即使不使用Puppet，也应该为ops脚本和个性化工具进行版本控制，因此以下只是对git点到为止。

安装git的命令如下：

[root@agent1 /]# yum install git

这里使用了agent1作为git server，而不是Puppet master，因为git对于Puppet代码来说也是一个很好的备份，装在另外一台机器上较为保险。

初始化git的命令如下：

[root@agent1 /]# useradd git

[root@agent1 /]# passwd git

[root@agent1 /]# su - git

[git@agent1 /]$ mkdir ~/puppetmodule

[git@agent1 /]$ cd ~/puppetmodule/

[git@agent1 /]$ git --bare init

[root@puppet /]# cd /etc/puppet/modules

[root@puppet modules]# git clone ssh://git@agent1/home/git/puppetmodule/ modules

至此，一个简单的通过ssh控制的git已经完成，让ldap接入ssh，即可完成通过ldap认证的git源。注意使用--bare，这是作为git center repository的一个标准，建立的目录结构和一般local的repository都不一样。

下面是git的基本操作：

[root@puppet modules]# vim motd/manifests/init.pp

[root@puppet modules]# git add motd/*

[root@puppet modules]# git status

[root@puppet modules]# git diff motd/manifests/init.pp

[root@puppet modules]# git commit

[root@puppet modules]# git push origin master

用add再用commit，是一个好习惯，不仅可以add多个文件，而且可以避免commit不需要的文件。在commit之前，status要看commit的状态，也是一个好习惯，它可以清晰地告诉你如果要commit，将添加或修改哪些文件。此外，diff也是一个好习惯，它可以告诉你这次commit具体修改了该文件的哪些内容。更多的git例子请参考官方文档。

2.搭建不同environment

关于environment，前面enc章节已经介绍过，它定义了这个节点所属的环境，environ-ment的作用是分隔了不同环境的manifest（即site.pp）和modulepath，有测试、隔离等用途。

下面介绍environments的设置方法。

添加一行配置指定environment的path

[root@puppet]# vim /etc/puppet/puppet.conf

[main]

 environmentpath = /etc/puppet/environments

查看当前environment的一些默认值

[root@puppet]# puppet config print all | grep environment

environment_timeout = 0

manifest = /etc/puppet/environments/production/manifests

environment = production

modulepath = /etc/puppet/environments/production/modules:/etc/puppet/modules:/usr/share/puppet/modules

disable_per_environment_manifest = false

environmentpath = /etc/puppet/environments

可以看出environmentpath已被正确设置。默认的environment为production；默认produ-ction的modulepath为/etc/puppet/environments/production/modules加上puppet默认的两个；就连site.pp也已经开始读/etc/puppet/environments/production/manifests下的了。

因此，为了做到彻底隔离，要删除原有的路径下的site.pp和modules。

[root@puppet]# mv /etc/puppet/manifests/site.pp /etc/puppet/environments/production/manifests

[root@puppet]# mv /etc/puppet/modules/ * /etc/puppet/environments/production/modules

再次运行puppet agent -t，以测试迁移的完整性

[root@agent1]# puppet agent -t

下面说明如何创建一个新的environment。

创一个叫test的environment。创建如下结构，modules和site.pp可以拷贝原有production的内容以作初始化用

/etc/puppet/environments/test/

/etc/puppet/environments/test/enviroment.conf

/etc/puppet/environments/test/modules/

/etc/puppet/environments/test/manifests/site.pp

修改enviroment.conf

[root@puppet]# vim /etc/puppet/environments/test/enviroment.conf

[test]

manifest = /etc/puppet/environments/test/manifests/site.pp

modulepath = /etc/puppet/environments/test/modules

虽然上面都是默认值，但是完全可以指定其他不同的路径，不过建议就这样，保持标准。

现在可以测试新环境了，代码如下：

首先查看新配置是否生效

[root@puppet]# puppet config print all --environment test | grep environment

environment_timeout = 0

manifest = /etc/puppet/environments/test/manifests

environment = test

modulepath = /etc/puppet/environments/test/modules:/etc/puppet/modules:/usr/share/puppet/modules

disable_per_environment_manifest = false

environmentpath = /etc/puppet/environments

这里在cmd里使用了--environment，它可以临时修改本次运行的environment，还可以通过客户端的puppet.conf，以及上文提到的enc中的environment变量来永久修改。

下面安装新的模块到测试环境中并开始测试。

安装新模块到test环境

[root@puppet]# puppet module install --environment test puppetlabs/apache

Notice: Preparing to install into /etc/puppet/environments/test/modules ...

Notice: Downloading from https://forgeapi.puppetlabs.com ...

Notice: Installing -- do not interrupt ...

/etc/puppet/environments/test/modules

?..?.puppetlabs-apache (v1.4.1)

 ?..? puppetlabs-concat (v1.2.3)

 ?..? puppetlabs-stdlib (v4.6.0)

最后，在/etc/puppet/environments/test/manifests/site.pp中加入include apache，开始测试吧

[root@puppet]# vim /etc/puppet/environments/test/manifests/site.pp

node default {

 include apache

}

[root@agent1]# puppet agent -t --environment test

3.具有版本控制功能的Puppet撰写

本节将通过三种模式，来阐述具有版本控制功能的Puppet的撰写最佳实践。

（1）传统模式

传统模式中，多数读者肯定选择直接在/etc/puppet/modules里进行代码修改，这样做有以下两个风险。

第一，Puppet agent的service运行时，默认是30分钟执行一次，很有可能错误地执行了你正在修改的内容。示例如下：

[root@puppet]# vim /etc/puppet/modules/network/templates/resolv.conf.erb

search example.com

nameserver <%- example_nameserver -%>

[root@puppet]# vim /etc/puppet/manifests/site.pp

node default {

 include network

 $example_nameserver = "10.16.100.10"

}

以上2步看似很完美，可当你完成第一步的时候，很可能有些node已经开始执行了。此时，第二个文件编辑，$example_nameserver将会为空，服务器上的resolv.conf已经是空值了，即使你后来完成了第二个文件的编辑，但是已经晚了，连修补的机会都没有。因为Puppet也依赖DNS，你还得一台台找哪些错误执行了，而且如果有生产服务依赖于DNS去访问其他服务，那么就准备写事故报告了。

不过，别急，还好Puppet对付未定义是直接运行报错，不像bash那样赋予控制空值，是不是吓出一身冷汗？但下次有可能没那么幸运了，因为有些Puppet模块有默认值！

第二，如果团队里有其他人在修改，则很容易产生冲突，甚至会出现各种不可预期的结果。

这基本不需要用例子说明。一个人在改，另外一个人会碰到文件已经打开的错误，聪明点的人会ps aux，并且询问其他人是不是也在操作，碰到团队里的短板会直接把vim的.swp文件删掉！当然更容易产生上文中所描述的风险，因为2个人有可能在改同一个模块，因此互相影响在所难免。综上所述，传统模式，赶紧摒弃！

（2）进阶模式

在熟悉Puppet以后，渐渐可以开始使用environment来进行生产环境和测试环境的隔离，并且用git来进行代码管理了。因此，Puppet更改流程变为：

1）在test environment下起草Puppet代码。

2）Puppet草稿完成后，用Puppet agent-t--environment test的方式测试一台机器，或者直接设置业务开发site下的所有服务器为test environment。

3）测试没问题后，推到git上。

4）通过cd命令切换到production environment的Puppet module目录，手工触发git pull origin master，完成到生产环境的更新。

可以看出此流程已经相当具有可控性，风险也降到了极低，但是该模式有如下几个问题。

·虽说没有影响production environment，但也确实影响了test environment。这也是传统模式中的问题。

·需要团队内仔细使用git。

同样以示例说明，如下：

用户A在改站点example.com的文件

[root@puppet test]# vim /etc/puppet/environments/test/modules/apache/files/example.com.conf

[root@puppet test]# vim /etc/puppet/environments/test/modules/apache/files/example.com_drupal_cron.php

[root@puppet test]# vim /etc/puppet/environments/test/modules/apache/files/example.com_drupal_cron.d.conf

用户B在改站点example2.cn的文件

[root@puppet test]# vim /etc/puppet/environments/test/modules/apache/files/example2.cn.conf

[root@puppet test]# vim /etc/puppet/environments/test/modules/apache/files/example2.cn_drupal_cron.php

[root@puppet test]# vim /etc/puppet/environments/test/modules/apache/files/example2.cn_drupal_cron.d.conf

用户A首先完成，以为就他一个人在改这个模块，并执行“git add apache/files/*”，然后悲剧就发生了，有可能用户B，刚改好example2.cn.conf，还没来得及改另外两个需要一起修改的文件。好吧，就算用户A有这个意识了，他特地用git status查看了下是否有人更改，因为发现没有，于是很放心地修改这个模块，并执行了git add apache/files/*，但就在用户A敲这两条命令的这几秒钟内，用户B很凑巧地save了一个文件，悲剧依然发生。

以上悲剧其实就是为了阐述一个道理，git add XX/*虽然很方便，但是千万别在有任何与他人共享的代码目录里使用。虽然出错概率不高，不过，总有那么一次，要推十几个文件，非要选择git add XX/*的时候，巧合就发生了，请参考墨菲定律！

综上所述，进阶模式，虽然解决了一部分风险，但却又创建了另外一个风险，鉴于风险较低，依然还是很多团队的首选方式。

（3）高级模式

读者肯定要问，那有没有更好的解决方案呢？答案是有的。下面就来看下笔者实践中正在使用的一种方式。关键字“人人有份，知根知底”。

“人人有份”即每个人都有自己的environment，不仅完美解决在同一目录下冲突的问题，而且也解决潜在的git错误提交的问题。

“知根知底”即大家都知道团队里都在什么机器上测试什么模块，即使碰到不可预期的问题，也可以一眼看出应该抓谁对齐。

看上去是不是很丰满，其实实现方法也不难，只要完成如下几步。

第一步，统一配置文件/etc/puppet/myenv.conf，代码如下：

[root@puppet]# vim /etc/puppet/myenv.conf

laoshi_cang:

 hosts: ['sextest-ntp001', 'textest-ntp002']

 modules: ['ntp', 'motd']

nvsheng_tang:

 hosts: ['sexdev*']

 modules: ['all']

jieba_xiao:

 hosts: []

 modules: []

上面给出了一个简单的yaml格式的配置文件，总共涉及laoshi_cang、nvsheng_tang、jieba_xiao三位人员。每个人员的hosts和modules属性的value代表了该人员正在测试的hosts和模块；hosts可以是正则表达式，modules使用all代表所有模块。

laoshi_cang在系统上的用户名应该是laoshi.cang，但这里用下划线"_"替换了点"."，之所以这样替换，是因为puppet的environment命名不能接受"."。它正在占用hostname为sextest-ntp001和textest-ntp002的服务器上，测试ntp和motd模块。nvsheng_tang则比较贪婪，不仅拿了sex机房（Shanghai example）的所有dev机器，而且要测试所有modules。jieba_xiao就比较好了，本本分分，没有任何测试任务。

第二步，在puppet.conf中使用tags。示例如下：

[root@agent1]# puppet agent -t --tags apache --debug

Debug: Class[Ntp]: Not tagged with apache

Debug: Class[Ntp::Params]: Not tagged with apache

Debug: /Schedule[weekly]: Not tagged with apache

Debug: /Schedule[puppet]: Not tagged with apache

可以看出tags指定了puppet只运行相关模块，会跳过不匹配的模块。当然完全可以通过下面的puppet.conf的例子完成持久化配置。

[agent]

classfile = $vardir/classes.txt

localconfig = $vardir/localconfig

tags = apache

第三步，制作一个可以从/etc/puppet/myenv.conf中读取tags和environment的enc脚本。

这里直接以上文讲过的zabbix作为enc来源进行改写

[root@puppet /]# cat /usr/local/bin/my_enc.py

#!/usr/bin/python

from pyzabbix import ZabbixAPI

import sys

import re

import yaml

MYENV_CONF = "/etc/puppet/myenv.conf"

class GetParameters(object):

 def __init__(self, host, outcome):

 self.host = host

 self.outcome = outcome

 def get_zabbix(self):

 zapi = ZabbixAPI("http://zabbix.example.com/zabbix")

 zapi.login("admin", "zabbix")

 zbx_get_result = zapi.host.get(output="extend", withInventory="true", selectInventory="extend", filter={"host": self.host})

 if zbx_get_result:

 h = zbx_get_result[0]

 for i in h["inventory"]:

 if h["inventory"][i]:

 if i == "tag":

 self.outcome["environment"] = h["inventory"][i]

 elif re.match("software_app_[abcde]", i):

 self.outcome["classes"][h["inventory"][i]] = []

 else:

 self.outcome["parameters"][i] = h["inventory"][i]

 def get_myenv(self):

 with open(MYENV_CONF, "rb") as f:

 settings = yaml.load(f)

 f.close()

 if "puppet-master" in self.outcome["classes"]:

 self.outcome["parameters"]["user_env_list"] = {}

 for k in settings:

 ops = re.sub(r'_', r'.', k)

 self.outcome["parameters"]["user_env_list"][ops] = k

 for env in settings:

 for h in settings[env]["hosts"]:

 if re.match(r'%s' % (h), self.host):

 self.outcome["environment"] = env

 self.outcome["parameters"]["tags"] = settings[env]["modules"]

 if "all" in self.outcome["parameters"]["tags"]:

 self.outcome["parameters"]["tags"] = []

 if self.outcome["parameters"]["tags"]:

 self.outcome["parameters"]["tags"].append("puppet-agent")

 self.outcome["parameters"]["tags"].append("puppet-master")

 break

 def run(self):

 self.get_zabbix()

 self.get_myenv()

 return self.outcome

def main(host):

 default_outcome = {"classes": {"puppet-agent": {}, "puppet-master": {}}, "parameters": {}, "environment": "test"}

 final_outcome = GetParameters(host, default_outcome).run()

 print yaml.safe_dump(final_outcome, default_flow_style=False)

if __name__ == "__main__":

 try:

 host = sys.argv[1]

 except:

 print "I need a hostname as sys.argv[1]"

 main(host)

本脚本使用了Python的class概念，具体语法不再展开，有兴趣的读者可以自行学习Python相关书籍，由于Python是DevOps的基本技能，因此建议读者学习，毕竟很多ops相关工具都是用Python写的。

本脚本关键function是class GetParameters中的run（self），执行了get_zabbix（）和get_myenv（），并返回main函数final_outcome。get_myenv（）正确读取myenv.conf并赋予相应的environment和parameters里的tags变量，如果该机是Puppetmaster，则加上user_env_list的返回，以便在Puppetmaster上部署不同puppet environment的设定，输出见下面的代码。puppet_agent作为默认classes，方便控制agent的tags和environment。

[image:]agent和tags会在后文Puppet agent模块的代码中使用；master、user_env_list会在后文Puppet master模块的代码中使用。

 [root@puppet /]# /usr/local/bin/my_enc.py sextest-ntp001

classes:

 ntp: {}

environment: laoshi_cang

parameters:

 name: sextest-ntp001

 tags:

 - ntp

 - motd

[root@puppet /]# /usr/local/bin/my_enc.py puppet

classes:

 puppetmaster: {}

environment: production

parameters:

 name: puppet

 user_env_list:

 laoshi.cang: laoshi_cang

 nvsheng._tang: nvsheng_tang

 jieba._xiao: jieba_xiao

第四步，撰写Puppet agent的modules。

init.pp中的代码如下：

 [root@puppet /]# vim /etc/puppet/environments/production/modules/puppet-agent/manifests/init.pp

class puppet-agent {

 package { "puppet":

 ensure => installed,

 }

 file { "/etc/puppet/puppet.conf":

 content => template("puppet/puppet.conf.erb"),

 require => Package["puppet"],

 }

 service { "puppet":

 ensure => running,

 hasstatus => true,

 enable => true,

 require => [Package["puppet"], File["/etc/puppet/puppet.conf"]],

 }

}

puppet.conf.erb中的代码如下：

 [root@puppet/]# vim /etc/puppet/environments/production/modules/puppet-agent/templates/puppet.conf.erb

[main]

 # The Puppet log directory.

 # The default value is '$vardir/log'.

 logdir = /var/log/puppet

 # Where Puppet PID files are kept.

 # The default value is '$vardir/run'.

 rundir = /var/run/puppet

 # Where SSL certificates are kept.

 # The default value is '$confdir/ssl'.

 ssldir = $vardir/ssl

[agent]

 # The file in which puppetd stores a list of the classes

 # associated with the retrieved configuratiion. Can be loaded in

 # the separate ``puppet`` executable using the ``--loadclasses``

 # option.

 # The default value is '$confdir/classes.txt'.

 classfile = $vardir/classes.txt

 # Where puppetd caches the local configuration. An

 # extension indicating the cache format is added automatically.

 # The default value is '$confdir/localconfig'.

 localconfig = $vardir/localconfig

 tags = <% @tags.each do |each_tag| -%><%= each_tag + ',' -%><% end %>

第五步，撰写Puppet master的modules。以下为示例。

init.pp中的代码如下：

 [root@puppet /]# vim /etc/puppet/environments/production/modules/puppet-master/manifests/init.pp

class puppet-master {

 package { "epel-release":

 ensure => installed,

 }

 package { ["mod_passenger", "mod_ssl", "httpd"]:

 ensure => installed,

 require => Package["epel-release"],

 }

 package { "puppet-server":

 ensure => installed,

 require => Package["epel-release"],

 }

 file { "/usr/local/bin/my_enc.py":

 content => template("puppet-master/my_enc.py.erb"),

 mode => "0755",

 owner => "root",

 group => "root",

 }

 file { "/etc/puppet/rack/":

 ensure => directory,

 recurse => true,

 owner => "puppet",

 group => "puppet",

 require => Package["puppet-server"],

 }

 file { ["/etc/puppet/rack/tmp", "/etc/puppet/rack/public"]:

 ensure => directory,

 owner => "puppet",

 group => "puppet",

 recurse => true,

 require => File["/etc/puppet/rack/"],

 }

 exec { "copy_config_ru":

 command => "cp `rpm -ql puppet | grep config.ru` /etc/puppet/rack/",

 onlyif => "test ! -f /etc/puppet/rack/config.ru",

 path => "/usr/bin:/usr/sbin:/bin",

 require => File["/etc/puppet/rack/"],

 }

 file { "/etc/httpd/conf.d/puppetmaster.conf":

 content => template("puppet-master/puppetmaster.conf.erb"),

 require => File["/etc/puppet/rack/"],

 notify => Service["httpd"],

 }

 file { "/etc/puppet/puppet.conf":

 content => template("puppet-master/puppet.conf.erb"),

 require => Package["puppet-server"],

 notify => Service["httpd"],

 }

 file { "/etc/puppet/environments":

 ensure => directory,

 recurse => true,

 owner => "puppet",

 group => "puppet",

 require => Package["puppet-server"],

 }

 define setup_user_env($user = $title) {

 $user_name = $user_env_list[$user]

 file { "/etc/puppet/environments/$user_name":

 ensure => directory,

 recurse => true,

 owner => "puppet",

 group => "puppet",

 require => Package["puppet-server"],

 }

 file { ["/opt/$user", "/opt/$user/modules", "/opt/$user/manifests"]:

 ensure => directory,

 recurse => true,

 owner => "puppet",

 group => "puppet",

 require => File["/etc/puppet/environments/$user_name"],

 }

 file { "/etc/puppet/environments/$user_name/environment.conf":

 require => File["/etc/puppet/environments/$user_name"],

 content => inline_template("

manifest = /home/$user/manifests/site.pp

modulepath = /home/$user/modules

"),

 notify => Service["httpd"],

 }

 }

 $user_env_list_keys = keys($user_env_list)

 setup_user_env { $user_env_list_keys: }

 service { "httpd":

 require => [Package["puppet-server"], File["/etc/puppet/puppet.conf"]],

 ensure => running,

 }

}

puppet.conf.erb中的代码如下：

 [root@puppet /]# vim /etc/puppet/environments/production/modules/puppet-master/templates/puppet.conf.erb

[main]

 # The Puppet log directory.

 # The default value is '$vardir/log'.

 logdir = /var/log/puppet

 # Where Puppet PID files are kept.

 # The default value is '$vardir/run'.

 rundir = /var/run/puppet

 # Where SSL certificates are kept.

 # The default value is '$confdir/ssl'.

 ssldir = $vardir/ssl

 environmentpath = /etc/puppet/environments

[agent]

 # The file in which puppetd stores a list of the classes

 # associated with the retrieved configuratiion. Can be loaded in

 # the separate ``puppet`` executable using the ``--loadclasses``

 # option.

 # The default value is '$confdir/classes.txt'.

 classfile = $vardir/classes.txt

 # Where puppetd caches the local configuration. An

 # extension indicating the cache format is added automatically.

 # The default value is '$confdir/localconfig'.

 localconfig = $vardir/localconfig

 tags = <% @tags.each do |each_tag| -%><%= each_tag.capitalize + ',' -%><% end %>

[master]

 # Where Puppet looks for tempate files. Can be list of colon-seperated directories.

 # Defaults to '$vardir/templates'

 #templatedir = /var/lib/puppet/templates

 ssl_client_header = SSL_CLIENT_S_DN

 ssl_client_verify_header = SSL_CLIENT_VERIFY

 node_terminus = exec

 external_nodes = /usr/local/bin/my_enc.py

puppetmaster.conf.erb中的代码如下：

Listen 8140

<VirtualHost *:8140>

 SSLEngine on

 SSLCipherSuite ALL:!ADH:!EXPORT:!SSLv2:RC4+RSA:+HIGH:+MEDIUM:-LOW

 SSLProtocol all -SSLv2

 SSLCertificateFile /var/lib/puppet/ssl/certs/5eb5ba0b9eb0.example.com.pem

 SSLCertificateKeyFile /var/lib/puppet/ssl/private_keys/5eb5ba0b9eb0.exam-ple.com.pem

 SSLCertificateChainFile /var/lib/puppet/ssl/certs/ca.pem

 SSLCACertificateFile /var/lib/puppet/ssl/certs/ca.pem

 # CRL checking should be enabled; if you have problems with Apache complai-ning about the CRL, disable the next line

 #SSLCARevocationFile /var/lib/puppet/ssl/ca/ca_crl.pem

 SSLVerifyClient optional

 SSLVerifyDepth 10

 SSLOptions +StdEnvVars

 # The following client headers allow the same configuration to work with Pound.

 RequestHeader set X-SSL-Subject %{SSL_CLIENT_S_DN}e

 RequestHeader set X-Client-DN %{SSL_CLIENT_S_DN}e

 RequestHeader set X-Client-Verify %{SSL_CLIENT_VERIFY}e

 LogFormat "%h %l %u %t \"%r\" %>s %b %D \"%{Referer}i\" \"%{User-Agent}i\"" puppet

 CustomLog /var/log/httpd/puppet.log puppet

 # Set this to about 1.5 times the number of CPU cores in your master:

 PassengerMaxPoolSize 36

 # Recycle master processes after they service 10000 requests

 PassengerMaxRequests 10000

 # On some systems where disk I/O is expensive, setting this option to a value of x means that the above list of filesystem

 # checks will be performed at most once every x seconds. Setting it to a value of 0 means that no throttling will take place,

 # or in other words, that the above list of filesystem checks will be performed on every request.

 PassengerStatThrottleRate 120

 # Since communication with the puppetmaster from puppetd is a long process (more than 20 seconds in most cases)

 # and will allow for processes to get recycled better

 PassengerUseGlobalQueue on

 # The additional Passenger features for apache compatibility are not needed with Puppet.

 PassengerHighPerformance on

 PassengerPoolIdleTime 150

 RackAutoDetect Off

 RailsAutoDetect Off

 RackBaseURI /

 <IfModule mod_mem_cache.c>

 CacheEnable mem /

 CacheDefaultExpire 300

 MCacheSize 1024000

 MCacheMaxObjectCount 10000

 MCacheMinObjectSize 1

 MCacheMaxObjectSize 2048000

 MCacheRemovalAlgorithm GDSF

 CacheIgnoreNoLastMod On

 </IfModule>

 DocumentRoot /etc/puppet/rack/public

 <Directory /etc/puppet/rack>

 Options None

 AllowOverride None

 Order allow,deny

 allow from all

 Options -MultiViews

 </Directory>

</VirtualHost>

my_enc.py.erb中的代码如下：

#!/usr/bin/python

from pyzabbix import ZabbixAPI

import sys

import re

import yaml

MYENV_CONF = "/etc/puppet/myenv.conf"

class GetParameters(object):

 def __init__(self, host, outcome):

 self.host = host

 self.outcome = outcome

 def get_zabbix(self):

 zapi = ZabbixAPI("http://zabbix.example.com/zabbix")

 zapi.login("admin", "zabbix")

 zbx_get_result = zapi.host.get(output="extend", withInventory="true", selectInventory="extend", filter={"host": self.host})

 if zbx_get_result:

 h = zbx_get_result[0]

 for i in h["inventory"]:

 if h["inventory"][i]:

 if i == "tag":

 self.outcome["environment"] = h["inventory"][i]

 elif re.match("software_app_[abcde]", i):

 self.outcome["classes"][h["inventory"][i]] = []

 else:

 self.outcome["parameters"][i] = h["inventory"][i]

 def get_myenv(self):

 with open(MYENV_CONF, "rb") as f:

 settings = yaml.load(f)

 f.close()

 if "puppet-master" in self.outcome["classes"]:

 self.outcome["parameters"]["user_env_list"] = {}

 for k in settings:

 ops = re.sub(r'_', r'.', k)

 self.outcome["parameters"]["user_env_list"][ops] = k

 for env in settings:

 for h in settings[env]["hosts"]:

 if re.match(r'%s' % (h), self.host):

 self.outcome["environment"] = env

 self.outcome["parameters"]["tags"] = settings[env]["modules"]

 if "all" in self.outcome["parameters"]["tags"]:

 self.outcome["parameters"]["tags"] = []

 if self.outcome["parameters"]["tags"]:

 self.outcome["parameters"]["tags"].append("puppet-agent")

 self.outcome["parameters"]["tags"].append("puppet-master")

 break

 def run(self):

 self.get_zabbix()

 self.get_myenv()

 return self.outcome

def main(host):

 default_outcome = {"classes": {"puppet-agent": {}, "puppet-master": {}}, "parameters": {}, "environment": "test"}

 final_outcome = GetParameters(host, default_outcome).run()

 print yaml.safe_dump(final_outcome, default_flow_style=False)

if __name__ == "__main__":

 try:

 host = sys.argv[1]

 except:

 print "I need a hostname as sys.argv[1]"

 main(host)

经过漫长的modules撰写，现在来享受成果吧！

首先把当前Puppet代码推上去，代码如下：

 [root@puppet modules]# pwd

/etc/puppet/environments/production/modules

[root@puppet modules]# git add *

[root@puppet modules]# git commit

[root@puppet modules]# git push

假如开发人员nvsheng.tang想测试ntp模块。

 [nvsheng.tang@puppet]$ sudo vim /etc/puppet/myenv.yaml

nvsheng_tang:

 hosts: ['textest-ntp002']

 modules: ['ntp']

nvsheng.tang是第一次测试，他用git clone拿到最新代码（第二次可以git pull），代码如下：

[nvsheng.tang@puppet]$ git clone ssh://git@sexgitserver/home/git/puppetmodule/ modules

[nvsheng.tang@puppet]$ cd modules

[nvsheng.tang@puppet modules]$ ll

drwxr-xr-x 8 puppet puppet 4096 Apr 28 18:10 apache

drwxr-xr-x 7 puppet puppet 4096 Jun 2 19:58 concat

drwxr-xr-x 7 puppet puppet 4096 May 27 11:39 ntp

drwxr-xr-x 3 puppet puppet 4096 Jul 1 14:57 puppet-agent

drwxr-xr-x 4 puppet puppet 4096 Jul 3 13:23 puppet-master

drwxr-xr-x 6 puppet puppet 4096 Apr 15 20:11 stdlib

他修改了ntp/templates/ntp.conf.erb，如下：

 [nvsheng.tang@puppet modules]$ git status

On branch master

Changed but not updated:

(use "git add <file>..." to update what will be committed)

(use "git checkout -- <file>..." to discard changes in working directory)

#

modified: ntp/templates/ntp.conf.erb

#

no changes added to commit (use "git add" and/or "git commit -a")

然后就直接在textest-ntp002机器上运行，如下：

 [root@textest-ntp002]# puppet agent -t

Warning: Local environment: "production" doesn't match server specified node environment "nvsheng_tang", switching agent to "nvsheng_tang".

Info: Retrieving pluginfacts

Info: Retrieving plugin

Info: Loading facts

Info: Caching catalog for 5eb5ba0b9eb0.example.com

Info: Applying configuration version '1435936930'

他看见机器已经被自己接管，于是开始心满意足的测试。完成测试后推到gitserver。

[nvsheng.tang@puppet modules]$ git add ntp/templates/ntp.conf.erb

[nvsheng.tang@puppet modules]$ git commit

[nvsheng.tang@puppet modules]$ git push

nvsheng.tang最终推到所有生产服务上。

[root@puppet modules]# pwd

/etc/puppet/environments/production/modules

[root@puppet modules]# git pull

事后，他非常得体地清理了现场。

[nvsheng.tang@puppet]$ sudo vim /etc/puppet/myenv.yaml

nvsheng_tang:

 hosts: []

 modules: []

至此，高级模式最终完成，虽然历经艰辛，不过相信读者的收获也不小，以后测试会更舒服，投入到生产环境也更放心。
10.2.4　确保你的代码不是留给别人的坑

写了Puppet代码那么多年，看到现在所有生产服务器的角色都可以做到扩展后开机即用，笔者觉得对于团队来说，也是一种值得骄傲的成就，成就感丝毫不亚于性能调优、私有云等看上去高大上的项目。如果说性能调优是经验和理论知识的体现，私有云是对于潮流技术的快速学习能力肯定的话，那么Puppet撰写绝对是一个工程师思维缜密和做事态度的考验。对于一个团队来说，能够进行性能调优和私有云优秀人才是不可或缺的，但是也需要更多Puppet写得漂亮的人，因为这能带动团队良好的氛围和做事方式，线上业务也就会更稳定。

接下去，回到Puppet代码，列举一下在这上面常见的坑。

1.all git

第一个也是最基本的军规，任何代码请做好代码控制。代码控制的好处不仅是可以追溯历史，还可以做到备份和快速回滚，更重要的是，是大家对于彼此的一种信任，信任git的puppet code。

如果非要在/etc/puppet/environments/production/modules/下面直接dirty更改，而不是按照流程测完git push，再到/etc/puppet/environments/production/modules/git pull的话，那不是偷懒，是对于别人的不尊重，是对信任的一种践踏，这个坑在笔者团队中出现的次数不过3次，不过每次出现，“坑神”都会被骂得很惨。

2.代码中对于各种layer进行if else

第二个是非常常见的坑，挖这个坑的理由通常是懒得在hiera或者enc中顶一个变量，结果是所有Puppet模块中充斥着这种代码，用hiera或者enc集中管理的失去意义，原来遵守规则的人都变得随意，团队氛围开始变味。示例如下：

if $datacentre in ["sex", "tex"] and !($hostname in ["sexntp01", "texntp02"]) {

 service { "iptables":

 ensure => stopped,

 }

}

else {

 service { "iptables":

 ensure => running,

 }

}

hostname级别的dirty code，那是更加肆意妄为的表现。当集群中有一台配置出问题的时候，别人不得不用各种grep找所有模块中是否有datacentre、project、hostname等级别的坑，而不是通过enc/hiera中一个is_iptables_enable变量直接比较与另外一台的区别。

3.各种写死

第三个是一种Puppet新手常见的问题，就是以解决问题为目的，而不考虑可持续发展的代码，示例如下：

<% if datacentre== "sex" -%>

echo '##### fix route####'

IPADDR=`ip addr | grep "10\.[0-9]*\." | awk '{ print $2 }'|cut -d"." -f3`

if [$IPADDR -eq "43"]

then

 /sbin/ip ro add 10.123.41.0/25 via 10.123.43.1

 /sbin/ip ro add 172.16.0.0/12 via 10.123.43.1

 /sbin/ip ro add 10.16.0.0/14 via 10.123.43.254

fi

if [$IPADDR -eq "44"]

then

 /sbin/ip ro add 10.123.41.0/25 via 10.123.44.1

 /sbin/ip ro add 172.16.0.0/12 via 10.123.44.1

 /sbin/ip ro add 10.16.0.0/14 via 10.123.47.254

fi

<% end -%>

在上述代码中，第一，用了datacentre级别的if else。第二，这些不同网段的静态路由，肯定会在其他地方用到，如果写死在模块里，其他模块再写一遍的话，很容易出现不一致的现象。第三，不中央管理的写死，极易出现变更的时候，漏到这个代码，比如要改了一个网段的默认路由，这个模块就会是一个深坑。

4.不顾变化的临时代码

比如，对一个开源的监控软件Zabbix，进行一次个性化代码更改，如下：

file{"/usr/share/zabbix/include/defines.inc.php"：

ensure=>present，

mode=>644，

owner=>'apache'，

group=>'root'，

require=>Package["zabbix-web"]，

source=>"puppet：///modules/zabbix-server/defines.inc.php"，

}

这样的代码，就是以后一个“神坑”，升级Zabbix rpm的人，非常有可能会忘记这个改动，然后监控系统就出现了不可预期的问题。好的方式，是加上一个版本的限制，比如只有这个版本的zabbix-web才执行这段Puppet代码。

5.代码review

所谓智者千虑必有一失，一个人很容易走到思维定势里面，Puppet代码也是一样，写好之后感觉非常好，测了2台机器都没问题，兴冲冲地推到生产的时候，基本就要写事故报告的节奏。因此，代码review是相当重要的，这里推荐2个开源工具：Gerrirt和GitLab，具体如何搭建，这里不再展开，笔者项目正在用Gerrit，这是老牌的工具，但笔者更喜欢GitLab，很有GitHub的范。
第11章　CMDB配置中心管理

11.1　什么是DCIM

DCIM全称为Data Center Infrastructure Management，即数据中心基础设施管理。具体展开概念前，笔者想问几个问题，请问在贵公司：

·有多少个IDC？

·IDC内有多少个房间？

·有多少个机柜？

·有多少个交换机？

·有多少台机器？

·机器与机柜的位置关系是什么？

·机器与交换机端口的连线关系是什么？

·机器的角色是什么？

·一个机柜交换机的使用和剩余是多少？

·一个机柜电源插口的使用和剩余是多少？

·一个机柜的电力使用和剩余是多少？

·一个机柜的空间使用和剩余是多少？

·房间制冷是否正常，是否有局部过热或者个别机器过热现象？

也许很多人会回答：“我们有很多excel表格，应该还没过期吧！关于电力和房间我们依赖IDC供应商发报告通知我们。”如果说后者还可以忍受的话，那用excel表格简直是无法忍受（当然如果目前机器规模较少，只有几十台那还勉强可以接受，又或者读者在云端……），为什么这么说呢？来看下以下几个场景。

·项目快速增长，需要购置50台机器，但需要评估有哪些IDC相关资源需要扩容。

·项目运行两年多了，但有些设备或者组件会过保，需要续保或更新，如何找出它们？

·项目需要，需要迁移一些机器到其他机房，如何制定一个详细的计划，可以使实施小组快速准确。

相信有用过excel表格的读者，这时候肯定对手头的数据一百个不相信，于是一个费时费力又无聊的审计任务便开始了，一次两次三次，不仅严重拖累了团队效率，而且即使审计完成，也有很高的出错机率，因为没人能保证一个耗时的工作会没有人出错，尤其还是一个无聊的工作。

因此在这种因素下，就诞生了DCIM的概念和相关的工具，对于一个决策者来说，没有什么比一个可视化的、可信任的、具有相互关系的IDC数据更具有可操作性了，丢掉手头的excel表格吧，让我们像DevOps在server上管理App一样地智能化DCIM！
11.2　什么是CMDB

CMDB全称为Configuration management database，说白了就是配置管理的一个中心，每个配置称为一个CI（Configuration Item）。CI可以有多种分类。上节提到DCIM里面的相关的信息都可以转化成一个CI存到CMDB里，以供使用。CMDB最早是出现在IT管理领域的，是作为ITIL必要的基础而存在的，因此为了抽象现实情况到管理流程，往往会定义精细度非常高的CI，并定义各个CI的复杂关系映射，从而实现ITIL流程化管理。本书由于篇幅有限，且侧重点不同，并不会讲解ITIL的内容，而是专注于CMDB和互联网项目ops的相关内容。

再回到上节提到的DCIM，读者肯定会问，DCIM好像和CMDB有重复的内容嘛！确实，两者是会有重合，但却是相辅相成的，DCIM侧重于机房的基础设施管理，用于展现机房的现实情况和给IDC部门提供决策需要信息，而CMDB更侧重于提供业务逻辑的信息，比如该机柜有哪些机器，这些机器属于哪些项目、哪个环境、哪个角色组，甚至是该机器在负载均衡器上应该有的权重等。诚然，一个管理有序的大型互联网项目与一个井井有条的DCIM系统密不可分，它不仅需要有自动发现的功能，还需要有非常良好的UI来展现IDC基础设施的拓扑。而UI一直都是开源软件的弱项，在DCIM领域可谓是商业软件遍地开花，甚至有些软件做到了3D视图和全景俯瞰，还和IDC的供应商有合作，做到了温度、电力、网络状况等全覆盖，可谓是面面俱到，不得不叹服其强大！当然越好的软件，价格也越贵，这里就不再介绍了。因此，我们也不考虑DCIM的因素，后文直接切入CMDB。

[image:]以下链接来自一个DCIM商业软件2015年1月的分析报告：https:/www.baselayer.com/wp-content/uploads/2015/01/Gartner-2014-Magic-Quadrant-for-DCIM.pdf，可以看出竞争也颇为激烈，如果有需要商业软件的读者，可以自行研究。笔者公司在用device42，它是一个非常优雅的软件，虽然UI没那么酷炫，也没有详尽的温度、电力、网络报告，但2D的拓扑图已经够用，笔者所在团队看中了其CMDB的亮点，而且价格算是商业软件里非常公道的，1000台的价格才5000美元/年（其他酷炫的商业软件基本都是一两万美元/年），当然这里没有做广告的意思，后文关于CMDB的讲解，也会选取开源软件作为例子。
11.3　运维为什么需要CMDB

前文已提到CMDB对于ITIL的意义，可是除此以外，运维为什么还需要CMDB呢？下面将展开说明。
11.3.1　整合信息

所谓整合信息，是把零散的重要信息整合到一块，使团队内部可以方便地共享信息而不需要权限登录去翻箱倒柜地找寻信息。比如，网络运维可以把VLAN信息同步到CMDB，而不需要给其他组的同学开放权限，系统运维可以把Linux的系统资源信息同步到CMDB，同样不需要权限赋予和增重其他组的学习成本。
11.3.2　关系映射

关于配置项之间的关系，涉及从属、依赖、并行、互斥等各种关系，有些显而易见，有些对于不熟悉的读者来说有可能是一个深坑，很容易造成人为错误。比如：

·在从属关系中，对于VLAN和IP，IP中的netmask只能继承VLAN的netmask。

·在依赖关系中，dev环境需要一个Python模块的包，这个是一个隐藏非常深的坑，开发人员往往只跟一两个运维人员说过，其他运维人员绝对会一个个往坑里跳，如果在CMDB中定义2个配置项，并定义关系，事实上就可以有效地填平这个坑。

·在并行关系中，dev环境和staging环境的代号，这个也可以是配置项，而且是很明显的并行关系。

·在互斥关系中，在CentOS 6中装Puppet 2.7+默认的Ruby 1.8.5会产生内存溢出问题，需要安装Ruby 1.8.7或以上的安装包，这个也是一个运维常见的问题。而CMDB会让这种关系展现出来，即是一个知识库，也可作为自动安装Puppet的来源方法。
11.3.3　防止配置偏差

读者知道，运维中另一头疼的问题，是手头的资料和线上环境不符，比如明明是dev的机器，由于紧急情况被挪到production环境应急，如果是做容量规划还好，但如果是做dev部署，又碰到比较马虎的“攻城狮”，很容易就看也不看，直接把那台机器当dev环境了。所以CMDB里面另外一个重要的概念就是自动发现，它必须自动发现该机器的所属环境配置已经变为production，这样在批量操作dev环境的时候不会选取到该台机器。
11.3.4　自动化

自动化的传统意义这里就不展开了，无外乎效率和降低人为出错机率这两点。在CMDB中，自动化是核心，因为这是DevOps存在的意义之一，一个好的CMDB如果没有好的自动化工具使用它，是空有躯壳没有灵魂的。而自动化也是在使用CMDB的过程中，最耗时的一环。本章的主要内容也会涉及很多自动化的思路和代码示例。
11.3.5　中央管理

这里说的中央管理主要指可以在CMDB一个地方增删改配置，就直接作用于服务器上的配置，这和上一点自动化密不可分的。中央管理的好处不言而喻，这是运维上班喝咖啡看报纸的必要条件。

总而言之，对于一个大型项目而言，在一个好的运维团队中，CMDB是不可或缺的。
11.4　如何选择适合的CMDB

11.4.1　每个项目都会遇到的那些任务

如果通过一个实际任务来进行需求分析，那么分析的结果就可以水到渠成地告诉我们在选择CMDB的时候，需要考虑哪些因素。现在，一起来看一下这个实际的任务，即从服务器上架、分配角色，到安装操作系统和部署软件的整个过程。

这个任务应该是每个项目必须面对的问题，尤其是数量多的情况下。大致可以分为如下几步：

1）ops和dev一起评估所需新机器数量。

2）从电力、网络设备容量、机柜空闲率等方面来评估机房容量。

3）制定扩容方案，包括新机器放置位置、交换机连线和角色分配等。

4）服务器到位，根据方案实施上架和连线。

5）检查硬件和网络，并安装操作系统。

6）根据不同角色分配、部署不同的业务软件。

7）测试完成后上线，接入各系统（如LB、监控等）。

这7大步骤应该是读者在各自项目中都会遇到的基本流程。当然最原始的方法应该都是熟知的，其中痛苦的领悟，想必人人都有。因此，每个项目都会有人或多或少地进行着自动化的尝试，或者已经开始尝试使用CMDB。下面就结合CMDB和自动化，把每一步骤中可以优化的过程整理如下，抛砖引玉，如果读者有更优或更适用于自己项目的方案，欢迎交流。

第一步，ops和dev一起评估所需新机器数量。

使用CMDB查看已有相同角色机器的数量以及当前空闲机器的数量，节省规划和审计时间，这里在乎的是CMDB有整洁的UI或者有简单的API可以查看机器的角色和状态。

第二步，从电力、网络设备容量、机柜空闲率等方面评估机房容量。

使用CMDB查看机柜空闲和交换机空闲端口信息，加快审计和规划速度，这里在乎的是CMDB的DCIM信息有足够的颗粒度，如交换机端口占有信息。

第三步，制定扩容方案，包括新机器放置位置、交换机连线和角色分配等。

使用CMDB信息制定准确上线的操作计划，比如新机器放在哪个位置，哪个网卡，接交换机哪个端口，最好可以直观地让现场人员看到用户的计划。

第四步，服务器到位，根据方案实施上架和连线。

到达这步之后，后面的自动化工作也随之多了起来，在服务器到位并按照方案上架连线后，最重要的事情便是将部分基础信息录入CMDB，这里部分基础信息指的是服务器硬件基础信息。包括：

·类型，这边指的类型可以是内部对于一种型号的定义，比如DB_SPEC_1，型号是DELL R720（子信息是包括2个E5-2600的CPU，32GB的内存，PERC H810的RAID卡配SAS 15K*4做RAID 10）。

·eth0/eth1/drac0的mac地址。

·服务器标识，可以用主板的serial number，推荐用主板上可自定义的Asset Tag，用自己项目独有的命名规范来进行服务器唯一标识。

·服务器的rack位置。

·服务器的连线端口信息。

以上五个任务要录入CMDB并实现自动化的话，需要CMDB的自动发现功能做以下几件事情：

·利用ipmi工具自动发现类型、eth0/eth1/drac0的mac地址、服务器标识等，并录入。

·从CMDB中查到所有接入层交换机，并访问并通过端口arp信息，获得连线信息，并录入。

总结，此时CMDB中应该有新上架机器的类型，eth0/eth1/drac0的mac、rack位置和连线端口信息（由于rack和连线信息的父配置项是dc，所以host也继承了dc的配置项），以及刚设置好的Asset Tag。这些工作基本是靠一个自动发现结合自定义的ipmi工具实现并录入，另外需要设置一个服务器状态status，比如为racked，已上架，目的是追踪服务器的状态以便后续工作展开。当然，在多项目的情况下，CMDB中可以多加一个所属业务（project）的字段，并且设置关系映射，连接这批host的业务配置项。

第五步，检查硬件和网络，并安装操作系统。

在把服务器从IDC部门移交给系统部门之前，最重要的一环便是检查。比如网络连通性和硬件可用性，这项检查是相当重要的，如果把不正常的服务器移交给系统部门人工检查，不仅仅会影响服务质量，而且还会增加两个部门的交流成本，严重影响交付给业务的进度。那么怎么做到这个自动化呢？基本上，IDC部门自制的mini ISO就可以解决这个问题，具体实现步骤如下：

1）从CMDB中设置状态racked的机器，并设置eth0为pxe启动，重启这些机器。

2）通过pxe引导mini ISO，推荐以一个跑在内存里的小image作为该ISO。

3）mini ISO启动后，先检查网络，确认服务器各网卡的连通性，以及与交换机协商后端口速度是否正常。

4）然后它会用自带的工具进行硬件检查，比如内存、磁盘、CPU、网卡。

5）完成网络与硬件的检查后，mini ISO会判断结果，并反馈给CMDB，如果全部正常，则设置CMDB中的status字段为已检测tested，否则设为tested_fail，并在CMDB其中一个字段（比如tested_fail_reason）填写失败原因。

6）当然，任何程序都有失败的时候，检测程序也不例外，运行环境因素和自身bug，都会造成检测结果最终没有写回CMDB，由于此时硬件本身就是未验证的状态，因此，可以在第1步设置一个timeout，比如30分钟内依然无法完成test，便自动设置status为tested_fail，tested_fail_reason填为timeout。

7）查出状态为tested_fail的服务器，排错后重新从第1步开始。

可以看出，做这个mini ISO是有一定工作量和难度的，需要网络、硬件、pxe、devops等全面的知识，建议IDC部门和系统部门通力合作完成。

最后便是正式移交给系统部门了，安装正式的基础操作系统，安装需要的各种agent，比如，Puppet、监控、日志、ssh、rundeck等，或者DNS、ntp之类的基础服务。可以默认集成Puppet agent到正式的image中，并把后续初始化工作交给Puppet，Puppet可以从CMDB中读取host的已有配置项进行个性化设置。比如根据dc改log和监控的server指向；根据硬件类型配置不同raid卡监控。通过firstboot脚本发现Puppet初始化完成后，设置status为system_ready，或如果system_ready_fail初始化失败则由系统组进行排错，直至system_ready。

综上所述，CMDB中虽然只有status在变化，但是其实在初始化系统的时候，就可以根据dc level在CMDB上设置一些子配置项，比如该dc应该有监控server、log server、dns server等，以方便Puppet初次运行的自动化，也实现了通过CMDB进行真正的中央管理。

第六步，根据不同角色分配，部署不同的业务软件。

这时，系统部门真正可以移交已初始化系统的服务器给业务部门，业务部门可以根据之前的需求分析，在CMDB上用UI的批量修改功能进行角色分配，当然也可以导出所有system_ready的机器csv，并用excel表格规划角色，再用CMDB自带功能，或者写脚本调用API进行csv导入CMDB完成修改。

之前的需求分析可以包括如下信息：role（角色，apache/mysql/redis）、env（环境，dev/staging/prod）、app（应用，商城/门户/后台）等这些上层较为明显的配置项。

当然，光靠这些信息一般无法完成完整的部署，因为在示例中，这个host只是一个商城的Apache和PHP server，还需要有代码的版本号，对应的DB/redis server，建议这种level的配置项以env和app子项的方式配置，并通过继承传给相应的机器。

最后，最下面一层level便是host level的个性化配置，比如有些host就是不想遵循env＋app level的配置，希望CMDB中有个位置可以覆盖原先默认配置项。比如新的一批机器硬件条件比较好，需要在负载均衡器中有更高的权重等。

从这一步来看，CMDB中具有结构化从属关系的配置项，更能映射出项目的现实情况，再加上一些host level的项目可以更好地完成个性化的设置和管理，最后具有强大API和UI批量操作页面，可以让业务规划更从容。

第七步，测试完成后，上线，接入各系统（如LB、监控等）。

当然在最后一步里，便是一些无法嵌入的手工步骤，比如：

1）数据库同步，导入。

2）更改当前env＋app level配置项，让老机器添加新节点的应用连接，如让app使用新的db分片，或者让HAProxy添加新的redis节点。

3）运行业务相关自动测试脚本，验证新进节点的业务功能的正确性。

最后，设置status为live，完成上线，Puppet之类的工具会检查CMDB中的状态，完成相关周边系统的更改，比如在监控系统中，切换该机器的监控级别为24×7小时，在日志系统中，设置相应的filter，分析出该业务专属的log类型，又比如更改ssh的配置文件，限制访问权限，开发从此只有只读权限，开启审计，等等。

到这里，一个完整的通过CMDB加上一些自动化工具实现的部署上线任务就算完成了。可以看出，在每一个步骤都会涉及CMDB，比如：

·获取信息。

·中央UI的配置管理。

·通过CMDB API，开发适用于本项目自动化工具。

因此，可以得出以下选择CMDB的基本考虑因素：

·CMDB需要提供自动发现的功能，或者API方便自定义自动发现功能。

·CMDB需要有DCIM的相关管理功能，比如机架信息、交换机端口信息。

·CMDB需要有硬件基础信息，并能通过从属映射关系方便的管理。

·CMDB需要有批量操作的UI，或者API方便自定义批量更改操作。

·CMDB需要有结构化配置项和定义配置项之间关系的能力，最低要求是从属关系，并有继承和覆盖的功能。

·CMDB需要有良好的初始化配置项结构，以较少初期搭建成本，而且还有个性化配置项的功能，以方便根据不同业务进行定制。

·CMDB需要有强大的API以便其他工具脚本进行调用，需要满足性能好、友好、全面等特点。

·CMDB需要有比较好的UI展现，方便归类、过滤、统计，以完成审计、查找信息、容量规划等多种业务上的常见需求。

可以看出，一个好的CMDB要求其实还是很高的，不是一个简单的开源软件可以达到的，用户能做的就是，进行一些取舍，并且寻求对舍去功能的替代解决方法，接下来的一节，会剖析部分开源软件。
11.4.2　选择开源的CMDB

上文中的业务场景是一个完整的dc建设，包括服务器上线的生命周期，对于一个CMDB软件来说，具有非常大的挑战，不仅需要成熟的后端架构，有着详尽的API和满足高并发场景的能力，而且需要有友好的UI，有清晰展现和批量操作的能力。这些因素导致能满足此类需求的商业软件价格令人咋舌，笔者项目选择比较便宜且实用的device42，一年也要好几万美元，当然物有所值是肯定的，它可以省下相当多的人力成本。因此，想在开源解决方案中找到一款类似的软件，几乎不可能，因为维护这套软件的人力成本不是一个松散的开源组织可以支持的。特别是UI方面，一直是开源软件的软肋，而DCIM功能又是一个考验UI开发功底的特性。但是，CMDB是运维自动化的灵魂，对于大中型项目来说是不可或缺的环节，甚至有些大型公司开发了属于自己的CMDB，所以，笔者还是希望给读者做出一个由多个开源软件构成的搭积木方式的解决方案，来阐述实施CMDB的过程，以及一些鲜活的例子，让读者对于CMDB的使用方法更加直观。

接下来，将会列出一些重要的组成部分，根据每个部分选取开源解决方案，并给出笔者调研过软件的评估结果。

1.DCIM功能

表11-1给出了实现DCIM功能的一些开源方案，其中考虑了需要有dc、room、rack、patch panel等信息，还需要用UI直观展示，并且可以方便地批量操作等因素。

表11-1　比较具有DCIM功能的开源方案

 [image:]

 [image:]

2.服务器基本信息

表11-2列出了在服务器的基本信息时可选择的开源方案，这里的基本信息包括型号（不仅是服务器厂家的型号，还包括当前内存、CPU、硬盘）、网络配置信息（ip/mac/gw）、所属项目（游戏/商城/官网）、所属环境（prod/test）、角色（web/mysql/mail）等。

表11-2　比较具有服务器基本信息的开源方案

 [image:]

 [image:]

3.配置参数信息

要获取更加细致的配置信息，比如这个项目的Puppet master的IP、Zabbix server的IP、Logging server的IP等，还有商城业务的数据库配置信息，prod环境的storage地址和读写I/O限制。像这些颗粒度非常小的配置管理是大型项目的难点所在，虽然可以通过写死在每个Puppet模块内来实现，但是，这造成的问题就是，后期的维护成本巨大，且容易忽略某些特殊配置，碰上各种坑，因此，一个具有配置参数信息的集中化工具，也是需求的功能之一。表11-3同样给出了相应的开源项目供参考。

表11-3　比较具有配置参数信息的开源方案

 [image:]

根据上文针对各功能解决方案的评估，可以得出以下3个组合。

·Ralph only：笔者当初的第一选择，结果被迫走了很多弯路，目前搁置，日后可以继续观察。

·openDCIM＋Zabbix：该组合选取了各功能模块最容易实现的解决方案，实现起来应该是最快的。缺点是要维护两个系统的关系，同步以及界限划分，比如，哪些属性是绑定在openDCIM上的，哪些属性是绑定在Zabbix上的，这些信息系统维护人员需要用户对齐。

·openDCIM Only：好处是单一系统，管理方便，又可以定制，创造出无限的可能性。缺点是相比Zabbix，项目热度还差点，在实现非host level的配置参数录入功能方面，Zabbix要更好。

说实话，笔者在走过ralph的弯路后，已经不敢在交稿前研究不太热门的开源项目了，因此openDCIM only和openDCIM＋Zabbix两个方案就成为了笔者的首选，又鉴于本章目的是解决上文提到的“每个项目都会遇到的那些任务”，故而不考虑把CMBD架构弄得太复杂，以致偏离了主题。最终，笔者选择openDCIM only作为实现CMDB的基石。
11.5　自主搭建CMDB

本节将切入主题，搭建一个适用于项目的CMDB，当然选取的CMDB就是上文提到的开源解决方案openDCIM only。我们将从安装配置展开，然后结合项目需求进行私人订制，并赋予流程化管理，以达到与CMDB天人合一的境地。
11.5.1　openDCIM安装

openDCIM是一个典型LAMP应用，安装起来较为方便。下面介绍一下安装步骤。

安装rpm包的命令如下：

[root@opendcim /]# yum install mysql mysql-server httpd php php-common php-cli php-pdo php-mysql php-mbstring php-snmp php-xml

然后开启服务并设置开机启动，命令如下：

[root@opendcim /]# /etc/init.d/httpd start

[root@opendcim /]# /etc/init.d/mysqld start

[root@opendcim /]# chkconfig httpd on

[root@opendcim /]# chkconfig mysqld on

设置MySQL并创建openDCIM用户和数据库，命令如下：

[root@opendcim /]# mysql_secure_installation

在这一步需要实现如下功能：

·设置MySQL root密码。

·移除MySQL匿名账户。

·禁止root远程登录。

·删除test database。

[root@opendcim /]# mysql -u root -p

mysql> create database dcim;

mysql> grant all privileges on dcim. * to 'dcim' identified by 'dcimpassword';

接着，设置Apache并创建htpasswd认证，命令如下：

[root@opendcim /]# vim /etc/httpd/conf.d/opendcim.example.com.conf

<VirtualHost *:80>

 DocumentRoot /var/www/opendcim

 ServerName opendcim.example.com

 <Directory /var/www/opendcim>

 AllowOverride All

 AuthType Basic

 AuthName "openDCIM"

 AuthUserFile /var/www/.htpasswd

 Require valid-user

 </Directory>

</VirtualHost>

[root@opendcim /]# touch /var/www/.htpasswd

[root@opendcim /]# htpasswd /var/www/.htpasswd admin

下载并安装openDCIM。地址为http://www.opendcim.org/downloads.html，笔者下载的是4.0.1版本，安装命令如下：

[root@opendcim /]# wget http://www.opendcim.org/packages/openDCIM-4.0.1.tar.gz -P /var/www/

[root@opendcim /]# tar zxvf openDCIM-4.0.1.tar.gz -C /var/www/

[root@opendcim /]# ln -s /var/www/openDCIM-4.0.1 /var/www/opendcim

最后，配置db信息并重启Apache，命令如下：

[root@opendcim /]# cd /var/www/opendcim

[root@opendcim opendcim]# cp db.inc.php-dist db.inc.php

[root@opendcim opendcim]# vim db.inc.php

 $dbhost = 'localhost';

 $dbname = 'dcim';

 $dbuser = 'dcim';

 $dbpass = 'dcimpassword';

[root@opendcim opendcim]# service httpd restart

至此，命令行的安装步骤已经完成，接下来的初始化工作，都会在网页界面上进行。

第一个界面，创建Department，如图11-1所示。

第二个界面，创建Datacenter，如图11-2所示。

第三个界面，创建Cabinet（机柜），如图11-3所示。

 [image:]

图11-1　创建Department

 [image:]

图11-2　创建Datacenter

 [image:]

图11-3　创建Cabinet

第四个界面，完成创建，如图11-4所示。

 [image:]

图11-4　完成创建

第五步，重命名install.php为install-bak.php，完成初始化工作，命令如下：

[root@opendcim-server opendcim]# mv install.php install-bak.php

刷新首页，如图11-5所示。

 [image:]

图11-5　初始化首页

至此，openDCIM的初始化工作已完成，接下去立即进入配置阶段。
11.5.2　openDCIM配置

1.了解openDCIM的infrastructure各组件关系

在上文笔者创建了第一个Data Center（数据中心）和第一个Cabinet（机柜），但现实生活中，一旦管理的服务器多起来，往往需要更加细的颗粒度来描述一些infrastructure（基础设施），比如哪个机房、第几排，而openDCIM恰好能满足这个需求，它提供了相应的组件来描述它们。

如图11-6所示，openDCIM对于Infrastructure管理有5个组件：

·Container

·Data Center

·Zone

·Rows of Cabinet

·Cabinet

 [image:]

图11-6　Infrastructure管理组件

 [image:]

图11-7　Infrastructure管理组件关系图

图11-7展示了这5个组件的大致关系，具体说明如下：

·第一层Container，这里使用了国家作为分类，即China。

·第二层Data Center，这个没什么好说的，选择stad（shanghai telecome A data center）。

·第三层Zone，就是在什么房间，例如stad-rma（room a），这里保留前缀stad的意义在于简化API操作，直接使用Zone的API即可以知道Data Center的信息，又可以避免误操作，因为UI或者DB不会在哪里都标明是stad的rma，还是tuad的rma。

·第四层Row of Cabinet，即第几排机柜，这里选择stad-rma-rw01（row 01），保留前缀的意义同上。

·第五层Cabinet，即具体哪个机柜，这里选择stad-rma-rw01-rk01（上海电信A机房，房间a，第01排机柜的第01个rack），保留前缀的意义同上。

2.创建openDCIM的infrastructure各组件

（1）创建Container，如图11-8所示。

 [image:]

图11-8　创建Container

 [image:]

图11-9　设施效果图管理

Container可以配图，至于如何上传图片，参考图11-9，这里可以从网上选一个中国地图为样图，并在Draw URL里选择相应的图片名称即可。

此外，可以看到图11-8里有一个选项叫Parent Container，这个其实给更复杂的项目提供了可描述性，本文不会用到，置为None。

（2）创建Data Center，如图11-10所示。

可以看到，由于上一层Container使用了一张中国地图，因此在创建stad（Shanghai Telecom A Datacenter上海电信A机房）的时候，可以拖动图标，直接标识这一层Data Center在Container China效果图中的位置。

 [image:]

图11-10　创建Data Center

这里也上传了dcim_pic.png，并在Drawing URL中定义为这一层Data Center的效果图，同理，在下一层配置Zone的时候会看到效果图，以及Zone在其中的关系，如图11-11所示。

 [image:]

图11-11　Data Center效果图

（3）创建Zone，如图11-12所示。

 [image:]

图11-12　Zone效果图

Zone为Data Center中的一个区域，这里以stad-rma（即room a）的方式来表示。框选可代表stad-rma在Data Center所属的区域，可以看出，下面的stad-rmb是未框选的区域，当然它是属于Zone stad-rmb的。这里没有上一层的Drawing URL这个属性，同样在下面两层Rows of Cabinet和Cabinet里也没有这个属性，因为这张图其实就是用于标识Zone、Rows of Cabinet和Cabinet位置关系的主体。因此该图其实以excel表格的方式简洁地展现了Zone/Rows of Cabinet/Cabinet这三者的位置关系。

（4）创建Rows of Cabinet，如图11-13所示。

 [image:]

图11-13　创建Rows of Cabinet

这一层相当简洁，rw01就代表了Row 01。细心的读者可以发现，这一层没有描述位置关系的属性，因为上一层定义的excel表格和将在下一层Cabinet定义的位置，已使Row的位置信息非常清晰了。

（5）创建Cabinet，如图11-14所示。

 [image:]

图11-14　创建Cabinet

这一层有一些有趣的功能，值得细说，如下：

·Location：必填项，其实就是机柜名称（stad-rma-rw01-rk01），笔者也很好奇为什么是这个奇怪的属性名。

·Assigned To：必填项，属于哪个Department，当然对于未上生产的机柜，可以选择默认的OPS选项。

·Zone、Cabinet Row：必填项，这里属于Zone stad-rma，Cabinet Row stad-rma-rw01，笔者觉得这里是openDCIM可以改进的地方，虽然有约束（选取stad-rma的时候只针对相应的row选项），但不够自动化，只选择Cabinet Row即可，Zone应该自动填充。

·Cabinet Height：必填项，机柜高度，建议设置真实值，因为后面可以看到真实的效果图。

·Model：选填项，机柜的类型，一般没必要填。

·Key/Lock：选填项，一般机柜不带锁，忽略。

·Maximum kW、Maximum Weight：选填项，建议询问机房人员获得，毕竟电力管理只DCIM的重要任务。

·Notes：选填项，有趣的额外信息栏，有link和插图功能，比如可以link到DC相应的机柜管理界面。

·Map Coordinates：必填项，位置信息，在图11-15中，框选的小方块即stad-rma-rw01-rk01所处的位置。

 [image:]

图11-15　Cabinets位置信息

以上是五个组件Container、Data Center、Zone、Rows of Cabinet、Cabinet的相应设置，在配置server之前，下面先来看看酷炫的效果图吧（如图11-16所示）。

可以看出随着鼠标的移动，机柜的基本信息都显示出来了。当然目前的信息都是静态的，Space和Weight之类的问题不大，只要上架的server信息正确，这里会自动计算使用率，而Power和Temperature就需要通过自制监控脚本同步到openDCIM的数据库中，后文会有相应的例子。

3.在openDCIM中创建Device

（1）配置一个新的Device Template。

在图11-17所示的界面，有如下一些选项需要注意。

·Model：必填项，设备名称，可以是Server也可以是网络设置，这里是Dell R430服务器。

·Height：选填项，设备的高度，设置成1U，在后续配置中会有用。

·Weight：选填项，设备的重量，本章不涉及，感兴趣的读者可配置。

 [image:]

图11-16　效果图

 [image:]

图11-17　配置Device Template

·Wattage：选填项，设备的电功率即瓦数，本章不涉及，感兴趣的读者可配置。

·No.Power Connections：选填项，设备的电源接口数量，设置成2，在后续配置中会有用。

·No.Ports：选填项，设备的网口数量，设置成4，在后续配置中会有用。

·Front Picture File：选填项，设备的前方效果图，到官网上找到该设备截图即可，并如图11-18所示的方式上传效果图。

·Rear Picture File：选填项，设备的后方效果图，到官网上找到该设备截图即可，并如图11-18所示的方式上传效果图。

·env、puppet_role、status：为自定义属性，后续会有讲解。

 [image:]

图11-18　上传设备效果图

这里的R430_front.png和R430_near.png都是笔者从官网上截的图。使用真实缩略图的好处是可以在dc现场维护的时候更直观，降低犯错概率，毕竟在dc现场维护的时候真的很累。

（2）配置一个新的Device，如图11-19所示。

 [image:]

图11-19　添加Device

第一步，从树形结构中选取一个机柜，这里选取stad-rma-rw01-rk02。

第二步，点击Add Device。

第三步，编辑Device的详细属性，如图11-20所示。

 [image:]

图11-20　编辑Device详细信息

下面针对图11-20所示的内容进行说明。

·Asset Tracking

1）Label，必填项，标签名。笔者直接使用该机器的hostname，STAD0111（此处序列化了hostname，因为目前不知道会派什么用处，而且CMDB的精髓是在于机器的role信息应该存在CMDB中，而不是体现在hostname上）。

2）Serial Number，选填项，硬件序列号。建议填写成vendor提供的Serial Number，可以从ipmitool中提取。

3）Asset Tag，选填项，资产标签。建议填上，便于作为server唯一key来开展后续自动化工作，至于Asset Tag的命名格式，每个公司都应该有一套自己的标准。Asset Tag通常可以直接写入Bios信息，各厂商提供各自的工具，当然如果厂商遵守标准的话，可以用ipmitool的set_asset_tag参数来进行修改。

4）Primary IP/Hostname，选填项，主IP或者hostname。由于实际使用中，有些项目是先让DHCP分配IP，再绑定Mac的方式来固定Device IP的，因此此处也可以使用相应的步骤从DHCP里获得MAC，并且通过ipmitool来获得相应机器的MAC，从而查询获得Device IP，再回写到openDCIM的方式来填写。

5）Warranty Expiration，选填项，质保期限。建议填上，便于后续审计提醒。

·Physical Infrastructure

1）Device Class，必填项，设备类型，其实就是选择一个Device Template，上文已定义了R430，此处便使用它。这里要注意的是，选好template，发现其他相应属性依然可以修改成与template不同的值，比如port number，但不建议那么做，会急剧加大维护的成本，并且容易因不规范而导致的人为或自动化任务出错。

2）Position，必填项，机柜位置。用于告诉openDCIM，应在42U中的哪个位置。

·SNMP Configuration

据说可以获得温度和耗电量等硬件信息，作为demo，不再深入，读者可以进一步测试。

·Custom Attributes

自定义属性，这个是给予openDCIM进一步扩展的可能性，比如比较简单的业务，只要定义了envpuppet_rolestatus（如图11-21所示），就可以满足日常业务需求，其他工具可以根据这些属性进行自动化任务。上文提到的MAC地址，也是一个常用的信息，可以通过ipmitool录入。

 [image:]

图11-21　自定义Device属性

·More

更多Device属性，如图图11-22所示，包括notes、Connection Port、信息等，读者可以根据需要自行选择。

最终Device在机柜中效果图如图11-23所示，加上之前提到的Container/Data Center/Zone/Rows of Cabinet/Cabinet与Device的效果图，整个DCIM的展现都酷炫无比。至此，手工配置DCIM的工作已结束，关于批量添加的方法，会在后文具体阐述。

 [image:]

图11-22　更多Device属性

 [image:]

图11-23　Device机柜效果图
11.5.3　openDCIM API

上文在CMDB选型的时候曾提到过，API是CMDB的必要条件，因此本节将以一个现实例子为命题，通过介绍openDCIM的API，最后针对这个现实例子，举例说明openDCIM API的常见应用场景。

1.一个现实的例子

以下场景，是一个综合性互联网公司的典型案例。

3个业务如下：

·商城-Ecom

·游戏-Game

·视频-Video

每个业务有如下3种环境：

·env-Prod

·env-Test

·env-Dev

2个IDC如下：

·stad（Shanghai Telecom A Datacenter上海电信A机房）

·tuad（Tianjin Unicom B Datacenter天津网通A机房）

每个DC有2个server room（stad-rma，stad-rma），每个server room有20个rack，总计80 rack（stad-rma-rk01，stad-rma-rk02，…）。

以下是若干种设备类型。

一类是网络设备，包含如下三种设备。

·负载均衡器×8：Netscaler MPX10500（stad-rma-lb01，stad-rma-lb02，stad-rmb-lb01，stad-rmb-lb02，tuad-rma-lb01，…），每个server room配2个lb。

·核心层交换机×8：H3C S9804-12 port业务单板2（stad-rma-csw01，stad-rma-csw02，stad-rmb-csw01，stad-rmb-csw02，tuad-rma-csw01，…），每个server room配2个核心层交换机。

上述2个设备，放在每个server room的第一列和第二列rack group的第一个rack上，即***d-rm*-rw01-rk01和***d-rm*-rw02-rk01，这些rack不放服务器。由于这2个设置以room为单位，因此命名方式也以room为截止字段。总计8个rack是网络设备专属，72个rack上放服务器。

·接入层交换机×72：H3C S5120-28SC-HI-24 port（stad-rma-rw03-rk01-asw，stad-rma-rw04-rk01-asw，…）。

由于核心交换机在***d-rm*-rw01-rk01和***d-rm*-rw02-rk01上，因此这些rack的接入层交换机就省掉了。所以接入层交换机和rack是一一对应的关系，总计72台，命名方式也以rack为截止字段。

二是服务器。服务器的位置尽量做到分摊风险原则，平均分布在每个rack、每个rack group（机柜列，Cabinet Row）以及每个room里。

·存储型服务器×24：Dell R730XD（stad0001~stad0012，tuad0001~tuad0012），每个room 6个，每个rack group 1~2个，每个rack 0~1个。

·DB型服务器×64：Dell R630（stad0013~stad0044，tuad0013~tuad0044），每个room 16个，每个rack group 4个，每个rack 0~1个。

·虚拟化型服务器×96：Dell R530（stad0045~stad0092，tuad0045~tuad0092），每个room 24个，每个rack group 6个，每个rack 1~2个。

·app型服务器×316：Dell R430（stad0093~stad0250，tuad0093~tuad0250），每个room 79个，每个rack组列19~20个，每个rack 4~5个。

[image:]服务器不使用类似stad-rma-rw01-rk01-srv01命名规范的原因是，系统管理员操作服务器频繁，但不需要把机房的物理信息记得如此清楚，实在需要的情况可以到CMDB中提取，而使用物理层级命名规范的主要原因是为了网络管理员管理设备清晰可见。

下面是三种config录入level。

·dc level

·Zabbix URL：监控地址。

·DNS Server IP：DNS服务器IP。

·Project＋ENV Level

·App Version：APP版本信息。

·日志级别：比如各种project的dev环境都是debug，但prod环境以有些更新频繁的porject是info，有些稳定的project是warn。

·host level

·Rack：表示在哪个机柜上。

·设备类型：比如是DELL R430还是Netscaler MPX10500。

·每个interface的IP：gateway、network等基础属性。

·Project：所属的业务。

·Env：所属的环境，比如是dev还是prod。

·Role：服务器角色，比如可以在执行Puppet的时候映射到Puppet的module。

[image:]这里提到了Project＋ENV Level的这种组合，虽然用户可以Project/ENV/ENV＋Role/ENV＋DC/Project＋DC/Project＋Role/Role＋DC/Project＋ENV＋Role这些组合的level，但是在笔者的实践过程中，发觉在使用CMDB的过程中必须做到一定的平衡，不能一味地按照写程序的思路（任何出现2次的code要写成function/class）来进行，要考虑易用性和便于理解与交流。比如game_dev的db的mysql版本以及其os版本，没必要创造出Project＋Env＋Role Level专门录入这些配置，直接在Project＋Env Level上用变量前缀为db方式即可，比如db_mysql_version、db_os_version等。

上述现实的例子，乍一看，不少人都会头大，但是经过提炼后，就会得到需求列表，见表11-4。

表11-4　现实示例的需求分析

 [image:]

从表11-4可以看出，学习API后，对于批量操作的需求，可以从容应对。在工具中写入如何关联非host level conf的逻辑后，openDCIM可以称得上一个称职的CMDB工具。下文中，笔者将会从如何调用API入手，结合现实例子，来介绍openDCIM API的使用。

2.API认证：Authentication

在上文openDCIM的安装过程中，有一个htaccess的安装步骤，用来设置网站登录密码，事实上，默认的API登录密码也是它。示例命令如下：

 [root@opendcim /]# htpasswd /var/www/.htpasswd admin

但从4.2版本开始，openDCIM加入了ldap认证和user_key的认证方式，只要在UI界面openDCIM User Manager产生API Key，并且在访问的header里加入UserID和API Key即可，由于笔者手头实验环境没有ldap，因此没有实现，有兴趣的读者可以看官方文档实现。

本文就直接使用htpasswd以简化API调用，2种示例方法如下：

[root@opendcim /]# curl -s -u admin:adminpassword 127.0.0.1/api/v1/department

[root@opendcim /]# curl -s -H 'UserID:xxxx' -H 'APIKey:xxxx' 127.0.0.1/api/v1/department

3.API查询：GET

认证过后，第一个要关注的API就是GET，毕竟熟悉了GET后，才知道有哪些属性，规范是怎么样的，才可以从容地使用修改的API。

GET ALL的代码如下：

[root@opendcim /]# curl -s -u admin:admin 127.0.0.1/api/v1/department | python -m json.tool

{

 "department": [

 {

 "Classification": "Online",

 "DeptColor": "#C9C430",

 "DeptID": "3",

 "ExecSponsor": "",

 "Name": "Ecom",

 "SDM": ""

 },

 {

 "Classification": "Online",

 "DeptColor": "#007FF5",

 "DeptID": "2",

 "ExecSponsor": "",

 "Name": "Game",

 "SDM": ""

 },

 {

 "Classification": "Internal",

 "DeptColor": "#54DB33",

 "DeptID": "1",

 "ExecSponsor": "",

 "Name": "Ops",

 "SDM": ""

 },

 {

 "Classification": "Online",

 "DeptColor": "#50ACBA",

 "DeptID": "4",

 "ExecSponsor": "",

 "Name": "Video",

 "SDM": ""

 }

],

 "error": false,

 "errorcode": 200

}

上述代码的说明如下：

·api/v1/department，api/v1/固定的api URL，而department是要查询的对象类型。

·python-m json.tool是一个利用Python json模块，用bash管道，输出漂亮json格式的工具，在bash中，所有默认json输出都是挤在一块的，难以阅读。

·Output是一个hash，有3个key。error表示是否有错误，errorcode的返回值200代表运行是正常的；department表示请求的output的内容，是一个array，每个element是一个hash；Name为部门名字，在这个例子中，把这个属性影射为Project，如Video/Game/Ecom/Ops；DeptID为部门ID，也就是project ID，在device的API output中会使用到。

除了department：4.0.1版本还支持如下API入口。

·/datacenter：机房。

·/zone：区域，也就是server room。

·/cabrow：机柜行，也就是rack group。

·/cabinet：机柜。

·/device：设备，服务器或者网络设备。

·/devicetemplate：设备template，可以是DELL R430或者Netscaler MPX10500。

·/manufacturer：供应商。

使用GET方法时，openDCIM还提供一些预设的search，代码如下：

[root@opendcim /]# curl -s -u admin:adminpassword 127.0.0.1/api/v1/device/1 | python -m json.tool

[root@opendcim /]# curl -s -u admin:adminpassword 127.0.0.1/api/v1/device/bydatacenter/2 | python -m json.tool

上述代码的说明如下：

·第一个格式，就是加上了deviceid（/1）作为search条件。

·第二个格式，就是加上了datacenter的datacenterid（/bydatacenter/2）作为search条件。

这里的2个search条件都是id，如果要知道id和name的对应列表要再查一次data-center或者device，所以建议用Python进行json load，并且分析是最好的选择。

以下是4.0.1版本还支持的预设search。

·/cabinet/bydc/：datacenterid

·/cabinet/bydept/：deptid

·/cabinet/：cabinetid

·/cabinet/：cabinetid/sensor

·/datacenter/：id

·/device/bydatacenter/：datacenterid

·/device/：deviceid

·/device/：deviceid/getpicture

·/device/：deviceid/getsensorreadings

·/deviceport/：deviceid

·/deviceport/：deviceid/patchcandidates

·/devicetemplate/：templateid

·/devicetemplate/：templateid/dataport

·/devicetemplate/：templateid/dataport/：portnumber

·/devicetemplate/：templateid/powerport

·/devicetemplate/：templateid/slot

·/powerport/：deviceid

·/zone/：zoneid

从上述预设的search可以看的出来，设计是比较粗糙的，一些很通常的search条件都没有，比如想看所有属于game的服务器，这时，默认的search就无力了，必须要将所有的device读取到Python里，并进行分析才可以实现。那么有没有更好的办法呢？openDCIM的4.2版本之后给了我们答案。

使用GET方式时，openDCIM还提供了自定义search，代码如下：

 [root@opendcim /]# curl -s -u admin:adminpassword "127.0.0.1/api/v1/device?LABEL=STAD0250&Cabinet=40" | python -m json.tool

{

 "device": [

 {

 "AssetTag": "",

 "Cabinet": 40,

 "ChassisSlots": 0,

 "CustomValues": {

 "1": "[]",

 "2": "maintenance",

 "3": ""

 },

 "DeviceID": 225,

 "DeviceType": "Server",

 "ESX": 0,

 "EscalationID": 0,

 "EscalationTimeID": 0,

 "FirstPortNum": 0,

 "HalfDepth": 0,

 "Height": 1,

 "InstallDate": "2015-07-26",

 "Label": "STAD0250",

...

...

...

 }

],

 "error": false,

 "errorcode": 200

 }

以下是代码说明：

·？LABEL=STAD0250：问号是URL参数的开始符，LABEL=STAD0250是输入的参数。

·&Cabinet=40：&是参数之间的间隔符，本例是为了介绍才给出此条件，其实，要搜索STAD0250这台服务器，前一个条件已经足矣。

·其他属性同样可以作为搜索条件，查一台后仔细阅读output，就可以举一反三。

同样，很多属性都是以id方式存在，需要多查询一次相应属性，并依靠python分析出可读的name。

目前稳定版的openDCIM还缺少如下2个特性：

·wildcard：通配符搜索，类似MySQL的Like。

·filter：过滤器，只返回相应的字段，而不是现在select*。

笔者在写这章的时候，openDCIM正在开发4.3版本，有兴趣的读者可以查看他们的GitHub。应该会在2016年夏天推出，调用方法如下：

/api/v1/device?wildcards&Label=%%test%%

-

该方法的说明如下：

·wildcard：表示这个URL是为了通配符搜索。

·%%test%%：2个%是分界符，当中的test是search字段。

/api/v1/device?wildcards&Label=%%test%%&attributes=DeviceID,Label

该方法的说明如下：

·atrributes：表示这个URL期待有filter，过滤想要的字段。

·DeviceID，Label：以英文逗号分隔，为字段的array。

4.API的创建：PUT

在现实工作的需求分析中，有2个类型需要API导入：第一个是device，第二个是rack。很可惜openDCIM目前版本还不支持rack的POST API，好在它的数据库结构比较简单。关于rack，目前只能以SQL的方式批量导入，这里着重介绍device POST的API。

（1）Rack批量导入

Rack在openDCIM中的数据结构如下：

mysql> select * from fac_Cabinet limit 1 \G

**************************1. row ***************************

 CabinetID: 1

 DataCenterID: 1

 Location: stad-rma-rw01-rk01

 LocationSortable: stad-rma-rw01-rk01

 AssignedTo: 1

 ZoneID: 1

 CabRowID: 1

 CabinetHeight: 42

 Model:

 Keylock:

 MaxKW: 8.6

 MaxWeight: 2000

 InstallationDate: 2015-07-20

 MapX1: 103

 MapX2: 158

 FrontEdge: Top

 MapY1: 83

 MapY2: 105

 Notes:

 U1Position: Default

对上述代码的说明如下：

·大部分属性在上文UI创建rack的时候已经阐述过，可以参考上文说明。

·可以看到所有属性都是ID，脚本需要有mapping的工作。

·MapX1、MapX2、MapY1、MapY2代表了这个rack在图中的位置，如图11-24所示，其实代表了这个长方形在整个图中像素的位置，以下示例设为默认值0，因为如果要完全脚本化的话，要考虑rack与rack之间的间隙转换成像素，还要考虑位置的左右上下对齐，编写的代码为了满足这些需求还是有一定难度的，建议UI花时间搞定。

 [image:]

图11-24　MapX1、MapX2、MapY1的含义

来看看rack导入的需求定义。通常，当dc部门需要新加rack之前，会先查看现有情况，如图11-25所示的rack组里现有的rack数量，目前有5个rack，希望增加到8个。再说直白点，表示需要加入下述三个机柜：

·stad-rma-rw01-rk06

·stad-rma-rw01-rk07

·stad-rma-rw01-rk08

 [image:]

图11-25　rack组里现有rack数量

下面是rack的表结构分析。先来看看stad-rma-rw01-rk05的表结构，如下：

mysql> select * from fac_Cabinet where Location='stad-rma-rw01-rk05' \G

**************************1. row ***************************

 CabinetID: 5

 DataCenterID: 1

 Location: stad-rma-rw01-rk05

LocationSortable: stad-rma-rw01-rk05

 AssignedTo: 2

 ZoneID: 1

 CabRowID: 1

 CabinetHeight: 42

 Model:

 Keylock:

 MaxKW: 8.6

 MaxWeight: 2000

InstallationDate: 0000-00-00

 MapX1: 103

 MapX2: 157

 FrontEdge: Top

 MapY1: 167

 MapY2: 190

 Notes:

 U1Position: Default

1 row in set (0.00 sec)

-

最大CabinetID如下：

mysql> select max(CabinetID) from fac_Cabinet \G

***************************1. row ***************************

max(CabinetID): 80

1 row in set (0.00 sec)

在上述代码中，只需要改变CabinetID、Location、LocationSortable字段即可。Cabinet-ID是一个主键，所以选取最大值+1作为新rack的CabinetID。

下面的语句是创建rack的SQL。

insert into fac_Cabinet(U1Position,MapY2,LocationSortable,MapX2,MaxWeight,CabinetHeight,MaxKW,MapX1,ZoneID,DataCenterID,AssignedTo,Notes,InstallationDate,Location,MapY1,Model,Keylock,CabRowID,CabinetID,FrontEdge) values ('Default',0,'stad-rma-rw01-rk06',0,2000,42,8.6,0,'1','1',1,'','2016-05-22','stad-rma-rw01-rk06',0,'','','1',81,'Top')

insert into fac_Cabinet(U1Position,MapY2,LocationSortable,MapX2,MaxWeight,CabinetHeight,MaxKW,MapX1,ZoneID,DataCenterID,AssignedTo,Notes,InstallationDate,Location,MapY1,Model,Keylock,CabRowID,CabinetID,FrontEdge) values ('Default',0,'stad-rma-rw01-rk07',0,2000,42,8.6,0,'1','1',1,'','2016-05-22','stad-rma-rw01-rk07',0,'','','1',82,'Top')

insert into fac_Cabinet(U1Position,MapY2,LocationSortable,MapX2,MaxWeight,CabinetHeight,MaxKW,MapX1,ZoneID,DataCenterID,AssignedTo,Notes,InstallationDate,Location,MapY1,Model,Keylock,CabRowID,CabinetID,FrontEdge) values ('Default',0,'stad-rma-rw01-rk08',0,2000,42,8.6,0,'1','1',1,'','2016-05-22','stad-rma-rw01-rk08',0,'','','1',83,'Top')

-

当然，上述例子只是创建了3个rack，如果要批量导入rack信息的话，可以用bash或者Python进行循环，循环时CabinetID、Location的ID会进行自增迭代。

下面来看一个rack的简单导入脚本。

import MySQLdb

import time

TARGET_CABROW = "stad-rma-rw01"

ADD_COUNT = 3

conn = MySQLdb.connect(host='127.0.0.1',user='dcim',passwd='dcimpassword',db='dcim',port=3306)

cursor = conn.cursor(MySQLdb.cursors.DictCursor)

get max CabinetID in global

cursor.execute('select max(CabinetID) from fac_Cabinet')

max_CabinetID = cursor.fetchone()['max(CabinetID)']

select max CabinetID in TARGET_CABROW(stad-rma-rw01)

cursor.execute('select from fac_Cabinet where Location like "' + TARGET_CABROW + '%" ORDER BY CabinetID DESC LIMIT 1')

sample_data = cursor.fetchone()

for i in range(1, ADD_COUNT + 1):

 data = sample_data.copy()

 # define CabinetID by max

 data['CabinetID'] = max_CabinetID + i

 # generate next id in TARGET_CABROW(stad-rma-rw01), like stad-rma-rw01-rack06

 new_last_two = str(int(sample_data['Location'][-2:]) + i).zfill(2)

 remove_last_two = sample_data['Location'][:-2]

 data['Location'] = remove_last_two + new_last_two

 data['LocationSortable'] = remove_last_two + new_last_two

 data['InstallationDate'] = time.strftime("%Y-%m-%d")

 placeholders = ', '.join(['%s'] len(data))

 columns = ', '.join(data.keys())

 sql = "INSERT INTO %s (%s) VALUES (%s)" % ('fac_Cabinet', columns, placeholders)

 cursor.execute(sql, data.values())

 conn.commit()

 print cursor._last_executed

cursor.close()

这个是一个非常短平快的Python脚本，把error handler、logging、参数录入等功能都去掉了。通过select stad-rma-rw01中最大的CabinetID来产生一个sample_data。从这个sample_data中产生相应的data，之后insert到MySQL中。验证结果如下：

mysql> select CabinetID,Location from fac_Cabinet where Location like 'stad-rma-rw01%';

+-----------+--------------------+

| CabinetID | Location |

+-----------+--------------------+

| 1 | stad-rma-rw01-rk01 |

| 2 | stad-rma-rw01-rk02 |

| 3 | stad-rma-rw01-rk03 |

| 4 | stad-rma-rw01-rk04 |

| 5 | stad-rma-rw01-rk05 |

| 81 | stad-rma-rw01-rk06 |

| 82 | stad-rma-rw01-rk07 |

| 83 | stad-rma-rw01-rk08 |

+-----------+--------------------+

8 rows in set (0.00 sec)

（2）Device批量导入

导入代码如下：

 [root@opendcim /]# curl -s -u admin:adminpassword -X PUT -d Cabinet=1 '127.0.0.1/api/v1/device/stad9999' | python -m json.tool

{

 "device": {

 "AssetTag": "",

 "AuditStamp": "0000-00-00 00:00:00",

 "BackSide": 0,

 "Cabinet": 1,

 "ChassisSlots": 0,

 "CustomValues": [],

 "DeviceID": 603,

 "DeviceType": "Server",

 "ESX": 0,

 "EscalationID": 0,

 "EscalationTimeID": 0,

 "FirstPortNum": 0,

 "HalfDepth": 0,

 "Height": 0,

 "InstallDate": "1970-01-01",

 "Label": "STAD9999",

...

...

...

 }

],

 "error": false,

 "errorcode": 200

}

 -

上述代码的说明如下：

·/device/stad9999是必需值，device的Label。

·-d Cabinet=1，指定PUT方法的要传的参数，即rack id。

此外，细心的读者可能发现代码中少了以下几个值：

·CustomValues，这个版本没有API，只能像rack那样通过SQL导入，表结构比rack还简单，这里不再赘述。

·Position，位置，如果机器数量少的话，dcim的UI可以直接拖动位置，相当方便，如果机器数量多的话，则必须提前准备好安装的策略，比如靠容量、电力、HA等，也就是必须事先产生一个包括合理位置信息的csv，然后再写Python导入。

·TemplateID，这个可以直接加入，id和名字的影射关系，可以参考上文GET的例子。

可以看出，有API以后大大减少工作量，虽然CustomValues还不够完美，但是open-DCIM已经有github issue track这个问题，相信不久的将来会和rack没有API的问题一起解决。

5.API更新：POST

查询stad9999的DeviceID如下：

[root@opendcim /]# curl -s -u admin:adminpassword '127.0.0.1/api/v1/device?LABEL=stad9999' | python -m json.tool | grep DeviceID

 "DeviceID": 604,

查询当前stad9999（即DeviceID：604）的Owner如下：

[root@opendcim /]# curl -s -u admin:adminpassword '127.0.0.1/api/v1/device/604' | python -m json.tool | grep Owner

 "Owner": 0,

POST更改如下：

[root@opendcim /]# curl -s -u admin:adminpassword -X POST -d Owner=1 '127.0.0.1/api/v1/device/604' | python -m json.tool

{

 "error": false,

 "errorcode": 200

}

更改后：

[root@opendcim /]# curl -s -u admin:adminpassword '127.0.0.1/api/v1/device/604' | python -m json.tool | grep Owner

 "Owner": 1,

上述代码说明如下：

·1次API查询得到STAD9999的DeviceID 604。

·-d Owner=1用来指定要更改的参数。

·"error"：false，"errorcode"：200，代表更改成功。

更改的API也非常简单，同样的CustomValues和rack需要用SQL语句更改，期待新版本的改进。

6.API删除：DELETE

查询stad9999的DeviceID如下：

[root@opendcim /]# curl -s -u admin:adminpassword '127.0.0.1/api/v1/device?LABEL=stad9999' | python -m json.tool | grep DeviceID

 "DeviceID": 604,

删除代码如下：

[root@opendcim /]# curl -s -u admin:adminpassword -X DELETE '127.0.0.1/api/v1/device/604'

{"error":true,"errorcode":404,"message":"An unknown error has occured"}

通过以下代码确认删除：

[root@opendcim /]# curl -s -u admin:adminpassword '127.0.0.1/api/v1/device?LABEL=stad9999' | python -m json.tool

{

 "device": [],

 "error": false,

 "errorcode": 200

}

再删除一次，就会报错，如下：

sh-4.1# curl -s -u admin:admin -X DELETE '127.0.0.1/api/v1/device/604'

{"error":true,"errorcode":404,"message":"Device doesn't exist"}

对上述代码的说明如下：

·同样，先查要删除机器的DeviceID。

·在执行删除操作时，系统返回了404报错"An unknown error has occured"。

·通过查询确认，发现的确删除了。

·再执行一次删除操作，也有“404”的报错，但message是"Device doesn't exist"。

这是openDCIM当前不恰当的错误输出判断造成的，目前可以通过检查返回的message做判断。必须承认DELETE还是有改进的空间的，不过这次CustomValues被API连带删除了，仅仅rack还需要用SQL语句更改。

7.导入一个现实的例子

手工录入表11-5中所示的内容。

表11-5　使用OpenDCIM描述业务基础属性

 [image:]

API录入表11-6所示的内容。

rack和server的导入工作及host level的confg添加在上文已经提到，这里不再赘述，在现实情况中为了方便规划和导入，dc组常使用excel导出csv，再通过DevOps写的csv导入工具，从而方便地实现增改工作。

 [image:]

图11-26　Project录入

 [image:]

图11-27　env录入

 [image:]

图11-28　DC录入

 [image:]

图11-29　Server Room录入

 [image:]

图11-30　Device Type录入

表11-6　使用openDCIM描述设备属性

 [image:]

csv读取的Python代码如下：

#!/usr/bin/python2.7

import csv

def read_csv(dcim_csv):

 with open(dcim_csv, mode='r') as csvfile:

 reader = csv.DictReader(csvfile)

 dcim_dict = {}

 for row in reader:

 dcim_dict[row['Label']] = row

 return dcim_dict

csv的样式见图11-31。

 [image:]

图　11-31

图11-31中的csv文件以及读取该文件的Python代码说明如下：

·read_csv返回一个以label为key的字典，方便其他函数调用。

·env、status、puppet_role为Custom Attribute，需要等第一步device API导入后，再SQL关联相应设备后导入。

下面将着重介绍dc_level及Project＋Env_Level的Conf实现方法。

1）添加虚拟dc，“conf”，用作包装不同级别专属变量的上层容器，如“dc_level”、“project_evn_level”。

2）添加虚拟机柜，“dc_level”、“project_env_level”，用作包装不同dc和不同project专属变量的上层容器，如“STAD_CONF”、“ECOM_DEV_CONF”。

前两步效果如图11-32所示。

 [image:]

图11-32　虚拟dc/机柜创建

3）创建Customer Device Attributes，如图11-33所示。

 [image:]

图11-33　dc_level/project_env_level的自定义属性创建

4）创建dc的device template和project_env的device template，如图11-34和图11-35所示，注意勾选需要的自定义属性。

 [image:]

图11-34　创建dc的device template

 [image:]

图11-35　创建project_env的device template

5）dc_level中添加STAD_CONF，并赋予zabbix_url和dns_server相应的变量，同时也加上TUAD_CONF，效果如图11-36和图11-37所示。

6）project_env_level中添加ECOM_DEV_CONF，并赋予app_version和log_level相应的变量，同时也加上其他PROJECT_ENV的虚拟DEVICE，效果如图11-38和图11-39所示。

 [image:]

图11-36　创建device STAD_CONF

 [image:]

图11-37　dc_level整体效果

 [image:]

图11-38　创建device加ECOM_DEV_CONF

 [image:]

图11-39　project_env_level整体效果

细心的读者会发现，以上加的都是device资源，因此我们完全可以利用API进行增删改查操作，一个简单的shell范例如下：

[root@opendcim /]# for p in game video ecom; do for e in dev test prod; do curl -s -u admin:adminpassword -X PUT -d Cabinet=85 -d Owner=1 -d TemplateID=10 '127.0.0.1/api/v1/device/'"

$p"_"$e"_conf | python -m json.tool;done;done

上述代码说明如下：

·2层循环，迭代9次。

·相应的ID是从其他资源的API里查出的。

下面是查询的示例：

[root@opendcim /]# curl -s -u admin:adminpassword '127.0.0.1/api/v1/device?Label=stad_conf' | python -m json.tool| grep -E 'zabbix|dns'

 "dns_server": "1.1.1.11",

 "zabbix_url": "1.1.1.10"

[root@opendcim /]# curl -s -u admin:adminpassword '127.0.0.1/api/v1/device?Label=ecom_dev_conf' | python -m json.tool| grep -E 'app|log_level'

 "app_version": "ecom_v3",

 "log_level": "debug",

在上述代码中，Label就是Device名字的属性名，也就是刚才创建的那些虚拟资源名。

就是这样一个简单的API，是不是非常方便？接下去就可以完全接入Puppet变成真正意义上的CMDB中心。

综上所述，openDCIM的API，加上略微的定制，基本可以完全胜任CMDB的工作，API也将在未来版本趋于完美，下一节将结合11.4.1节，将openDCIM的运用进一步扩展开来。
11.5.4　解决每个项目都会遇到的那些任务

1.ops和dev一起评估所需新机器数量

上文提到过，空闲机器数/现有机器数及角色是这一步主要关心的2个CMDB信息，openDCIM完全可以从API满足这一需求，上文也有API的详解，这类不再赘述。而对于UI方式，下面给出一个更加便捷的查询方式。

通过图11-40中所示的DC信息和Export功能和图11-41所示的DC信息和Export表，可以直观地看到所有的信息，如哪些DC，包含哪些机柜，分别放置了哪些项目的服务器。

 [image:]

图11-40　DC信息Export功能

同时search的功能可以过滤出想查看的信息，这里用了tags的小技巧，原因是目前openDCIM对于custom attribute的value支持还不够完美，因此复制其key、value到tags是一个比较好的技巧，这样可以完全满足现实需要（如图11-42所示）。

2.评估机房容量，从电力，网络设备容量，机柜空闲等多个维度

容量评估是openDCIM做得比较出彩的地方，以下几张图可以让一个dc管理人员自上而下的观察到所有容量情况。

第一步，通过图11-43所示的图看dc level容量情况，目前因为都是虚拟出来的设备，所有没有电力数据，有兴趣的读者可以通过ipmitool取得机器的电力数据。

 [image:]

图11-41　DC信息Export表

 [image:]

图11-42　Tags小技巧

 [image:]

图11-43　dc level容量情况

第二步，通过图11-44所示的图看Server Room Level容量情况，和dc level视图一致。

第三步，通过图11-45所示的图看Rack Level容量情况，鼠标移到相应格子，即会弹出相应rack的数据，点击即可进入相应rack，看下一层的数据。

 [image:]

图11-44　Server Room Level容量情况

 [image:]

图11-45　Server Room Level容量情况

第四步，通过图11-46所示的图看rack可视图的前面和背面，点击该rack的交换机。

 [image:]

图11-46　Rack可视图

第五步，图11-47显示了交换机port的使用情况，从而得知交换机的port使用情况。

至此，DC管理人员完全可了解是否有足够的容量供新进一批机器的上架了。

3.制定扩容方案，包括新机器放置位置，交换机连线和角色分配

如果机器数量少的话，可以在UI上直接添加新的device，并把status设置为unrack。如果数量多的话，目前只能导出现有数据成csv，通过excel编辑，同样可把新机器status设置为unrack，然后通过API导入openDCIM。在这一步的需求中，笔者曾经提到，最好现场人员能直观地看到计划，openDCIM恰好在这一块有良好的用户体验。

图11-48展示的是rack现场，STAD 9999是制定计划的人员刚加上的，而Cabinet note是目前最新的现场照片，现场上架人员只需要按照该图操作，并上传最新的note即可。

要达到该效果，只需要按照图11-49所示的图片上传现场照片，并按照图11-50所示的图片设置机柜现场照片。

4.服务器到位，根据方案实施上线和连线

上一步中，其实大部分信息都已经录入openDCIM，还剩下eth0/eth1/drac0的MAC地址、serial number、自定义的Asset Tag没有录入。录入方法不再赘述，这里稍微介绍一下收集方法。

ipmitool想必都应该用过，这是一个远程管理服务器的好方法，设置好dhcp服务器后，drac卡应该都获得了相应的IP。接下去的步骤如下。

1）得到所有新上架的drac IP列表。这里主要讲下思路，在dhcpd server上的/var/lib/dhcpd/dhcpd.leases里包括了所有已分配的IP和MAC对应列表，只需要通过opendcim API剔除已在opendcim里面的IP即可。

2）得到eth0/eth1/drac0的MAC地址，serial number。

根据user id改vendor默认密码，代码如下：

[root@dhcpd_server /]# ipmitool -H <IPADDR> -U root -P changeme user list

ID Name Callin Link Auth IPMI Msg Channel Priv Limit

1 true true true NO ACCESS

2 root true true true ADMINISTRATOR

[root@dhcpd_server /]# ipmitool -H <IPADDR> -U root -P changeme user set password 2 newpass

 [image:]

图11-47　交换机port使用

获取eth0/eth1/drac0的MAC地址，代码如下：

[root@dhcpd_server /]# ipmitool -H <IPADDR> -U root -P newpass lan print

Set in Progress : Set Complete

IP Address Source : DHCP Address

IP Address : 10.191.40.13

Subnet Mask : 255.255.248.0

MAC Address : e0:24:7f:b7:a4:10

上述代码的说明如下：

·ipmi只能或者drac的MAC地址，但是Intel平台的板载网卡，基本都是：

eth0 mac address＋1＝eth1 mac address

eth1 mac address＋1＝drac mac address

而且在下一步中的mini ISO，会有一步验证工作。

·大部分vendor可在出厂时预先提供MAC地址，这样可以省去部分麻烦。

获取serial number的代码如下：

[root@dhcpd_server /]# ipmitool -H <IPADDR> -U root -P newpass fru

FRU Device Description : Builtin FRU Device (ID 0)

 Board Mfg Date : Sat May 12 10:42:00 2012

 Board Mfg : Huawei Technologies Co., Ltd.

 Board Product : XX21XXXX0

 Board Serial : 030XXX10X5000027

 Product Manufacturer: Huawei Technologies Co., Ltd.

 Product Serial : 2XXXXXXXXXXXXXXXX-3

 Product Asset Tag :

 [image:]

图11-48　rack现场

 [image:]

图11-49　上传现场照片

 [image:]

图11-50　设置机柜现场照片

上述代码的说明如下：

·Board Serial是主板的串号，整机串号是Product Serial。

·Product Asset Tag目前为空，但是大名鼎鼎的ipmitool居然不支持修改，于是笔者将介绍另外一款ipmi工具用于Asset Tag的修改。

3）修改Asset Tag

修改Asset Tag的代码如下：

[root@dhcpd_server /]# ipmiutil fru -a STAD9999 -U root -P newpass -N <IPADDR>

ipmiutil ver 2.99

ifru: version 2.99

ipmilan_open_session error, rv = -15

ipmilan BMC only supports lan v2

.

.

Writing new product data (,,STAD9999) ...

.

.

ipmiutil fru, completed successfully

上述代码的说明如下：

·ipmiutil的风格是需要sub command前置，如ipmiutil fru。

·为了方便，笔者直接用STAD9999作为资产编号，当然如果公司有规范，即按照公司规范填充。

4）录入以上信息至openDCIM，这一步就是openDCIM API导入，不再赘述。

5.检查硬件和网络，并安装操作系统

到了这一步，重点是在于如何制作mini ISO，其实非常简单，借助livecd-tools即可。

第一步，下载livecd-tools，要做什么样的os cd就用相同os server制作。

[root@centos6_vm /]# yum install livecd-tools syslinux anaconda-runtime

第二步，制作基本的ks，代码如下：

[root@centos6_vm /]# vim el6.ks

lang en_US.UTF-8

keyboard us

timezone US/Eastern

auth --useshadow --enablemd5

selinux --disabled

firewall --disabled

repo --name=a-base --baseurl=http://mirrors.163.com/centos/6/os/$basearch/

repo --name=a-updates --baseurl=http://mirrors.163.com/centos/6/updates/ $basearch/

repo --name=a-extras --baseurl=http://mirrors.163.com/centos/6/extras/ $basearch/

repo --name=a-live --baseurl=http://www.nanotechnologies.qc.ca/propos/linux/centos-live/$basearch/live

%packages

bash

kernel

syslinux

passwd

policycoreutils

perl

chkconfig

authconfig

rootfiles

comps-extras

xkeyboard-config

grub

coreutils

parted

%end

%post

echo testing >/opt/livecd.log

%end

上述代码使用了163 repo，这是为了更快的制作速度。%post就一条命令，是为了方便测试，这是定制化的关键，测试成功后，可以不断地加命令，比如硬件测试、网络配置验证、上传更多硬件信息，等等。

第三步，开始制作，命令如下：

[root@centos6_vm /]# livecd-creator --config=./el6.ks --fslabel=EL6-LiveCD --cache=/var/cache/live -v

速度取决于网络质量，等待10～15分钟左右，就会在当前目录产生EL6-LiveCD.iso文件。

第四步，启动ISO后，测试所需要执行的命令和脚本，比如硬件测试、网络配置验证，上传更多硬件信息到openDCIM。完成后把HISTORY打包到ks的%post部分，重新create livecd。

第五步，可以把ISO导入Cobbler，变成基于pxe boot的livecd，用于批量使用，status设置为tested，移交给SA组。

第六步，也是最后一步，SA组通过Cobbler安装好基础系统，将status设置为system_ready，移交给业务组。

6.根据不同角色分配，部署不同的业务软件

这一步和下一步都属于Puppet这样的配置管理软件结合CMDB使用的例子，在下一步中，将给出openDCIM结合Puppet的实例。

7.测试完成后，上线，接入各种系统，如LB、监控

在Puppet章节中，笔者介绍过enc的配置方法，以及enc脚本输出的正确格式（需满足Puppet的官方规范），那么openDCIM相关的enc脚本，只需要满足这个format，即可接入Puppet使用，代码如下：

[root@puppet_master /]# cat /usr/local/bin/opendcim_enc.py

#!/usr/bin/python

import requests

import sys

import re

import yaml

import ast

NO api in 4.2, will be fixed in 4.3

MAPPING_DEPT_ID = {

 "1": "ops",

 "2": "game",

 "3": "ecom",

 "4": "video",

}

class GetParameters(object):

 def __init__(self, outcome, host, url='http://127.0.0.1/api/v1', user-name='admin', password='admin'):

 self.host = host.lower()

 self.outcome = outcome

 self.url = url

 self.req = requests.Session()

 self.req.auth = (username, password)

 self.host_data = self.get('/device?label=%s' % self.host)

 self.host_data['Datacenter'] = re.sub('[0-9]*', '', self.host)

 def __check_return(self, ret, entry):

 if ret.status_code != 200:

 sys.exit("Error: %s" % ret.text)

 else:

 entry_r = re.sub('\?.*', '', entry)

 ret_key = entry_r.replace("/","")

 if re.search('\?', entry):

 if len(ret.json()[ret_key]) > 1:

 sys.exit('multiple entries with %s, fix inventory first' % entry)

 elif len(ret.json()[ret_key]) == 0:

 sys.exit('no entries with %s, check your inventory' % entry)

 else:

 return ret.json()[ret_key][0]

 else:

 return ret.json()[ret_key]

 def get(self, entry, filter=[]):

 url = self.url + entry

 r = self.req.get(url)

 checked_return = self.__check_return(r, entry)

 if filter:

 new_return = []

 for i in checked_return:

 # datacenter entry return a list

 if isinstance(checked_return, list):

 one_entry_attr = i

 # other entry return a dict

 elif isinstance(checked_return, dict):

 one_entry_attr = checked_return[i]

 new_element = { k: one_entry_attr[k] for k in filter }

 new_return.append(new_element)

 return new_return

 else:

 return checked_return

 def __get_dc_params(self):

 dc_data = self.get('/device?label=%s_conf' % self.host_data['Data-center'])

 dc_conf = dc_data.copy()

 for k in dc_data:

 if k in self.host_data:

 del dc_conf[k]

 self.outcome["parameters"].update(dc_conf)

 def __get_project_env_params(self):

 project_id = self.host_data['Owner']

 self.project = MAPPING_DEPT_ID[str(project_id)]

 self.host_data['project'] = self.project

 if self.project != 'ops' and 'env' in self.host_data:

 project_env_data = self.get('/device?label=%s_%s_conf' % (self.project, self.host_data['env']))

 project_env_conf = project_env_data.copy()

 for k in project_env_data:

 if k in self.host_data:

 del project_env_conf[k]

 self.outcome["parameters"].update(project_env_conf)

 def __get_host_params(self):

 self.outcome["parameters"].update(self.host_data)

 self.outcome["classes"].update({self.host_data['puppet_role']: {}})

 self.outcome["environment"] = self.host_data['env']

 def run(self):

 self.__get_dc_params()

 self.__get_project_env_params()

 self.__get_host_params()

 return self.outcome

def main(host):

 default_outcome = {"classes": {"puppet-agent": {}}, "parameters": {}, "envi-ronment": "test"}

 final_outcome = GetParameters(default_outcome, host).run()

 print yaml.safe_dump(final_outcome, default_flow_style=False)

if __name__ == "__main__":

 try:

 host = sys.argv[1]

 except:

 print "I need a hostname as sys.argv[1]"

 main(host)

这是一个非常粗糙的enc脚本，旨在实现说明，并不考虑timeout、log等情况。可以看出主体在用GetParameters这个类的run（），而run（）就三步：self.__get_dc_params（）、self.__get_project_env_params（）、self.__get_host_params（），依层次迭代self.outcome这个对象。

最终可以达到如下效果：

 [root@puppet_master /]# /usr/local/bin/opendcim_enc.py stad0001

classes:

 puppet-agent: {}

 zabbix_server: {}

environment: prod

parameters:

 AssetTag: 'xxx'

 Cabinet: 2

 Datacenter: stad

 .

 .

 .

 Label: STAD0001

 app_version: 1.1.22

 dns_server: 1.1.1.11

 env: prod

 project: game

 puppet_role: zabbix_server

 status: live

 zabbix_url: 1.1.1.10

 .

 .

 .

至此，一个“每个项目都会遇到的那些任务”已经基本实现，虽然由于篇幅和每个项目的特殊性，具体步骤无法在本书里详细给出，但是大体思路已经一一给出，读者可以根据自己项目实际，指定实施计划，毕竟真正在一个项目上CMDB，本身就是需要长期持续化地推动，不是一本书可以讲得完的。笔者项目也在不断地探索最佳实践，也希望能和行业里的攻城狮多多交流，一起探索这充满挑战的技术海洋！
11.6　如何管理好一个CMDB

11.6.1　制定相应流程管理

提到流程管理，不得不重申大名鼎鼎的ITIL，很多人对它懵懵懂懂，比如初露锋芒的技术少年，很多人对它深恶痛绝，比如大公司的螺丝钉们，也有很多人对它深信不疑，当然他们大多数是老板。无论哪种人，都应该认同ITIL的目标，做好change management，避免错误的更改，而CMDB作为Puppet这样的自动化配置工具的信息源，就更需要保证攻城狮在更改信息时的正确性，否则，后果便是线上服务器错误配置造成的直接事故。因此，流程管理对于管理CMDB来说，是一个必须正视的问题。

1.流程之前

笔者在过往的团队管理中，曾经发现这样一个有趣的现象，组员A向leader反应，最近团队中有一个非常不好的现象发生，会留下很多technical debt，leader听了之后勃然大怒，什么，这还得了，必须整治，于是一个新的流程产生了，各种动员大会，雄心勃勃，这下不稳定因素可以彻底杜绝了。但事实上，各组员破口大骂，什么玩意啊，架构不改进，搞啥流程啊，这下做事更麻烦，从而各种消极情绪导致了热情大大降低，反而直接影响团队氛围。

这就是典型的古代皇帝管理模式，而不是真实理解故事背后的起因和背景，直接搞个政策打压各种民间奇巧淫技，殊不知产生这种现象是对于现状的无奈之举。因此CMDB也是如此，在直接跳入流程这个漩涡之前，笔者希望团队完全明白流程产生的故事背景，甚至从工作实践中共同改进流程的方式来一起推动CMDB，并且得益于CMDB。

（1）宏观理解CMDB

CMDB的定义广为人知，即配置管理数据库（Configuration Management DataBase），可是真正的宏观理解是根据自己项目的实际，以及本项目的CMDB的实现方法，来理解当初该软件背后的设计理念和期待解决的问题。

以下是配置项（CI）分层。

·基础架构层，如rack位置信息，硬件型号。

·系统层，如os版本，安装的软件。

·业务层，如游戏还是商城，代码版本。

以下是CI来源。

·rack位置是手动收集，由DC组现场人员录入，硬件型号是mini ISO自动收集录入，由DC组负责。

·os版本和安装的软件是由系统管理员指定，cobbler和Puppet读取安装，由SA组负责。

·游戏还是商城，代码版本，是由业务运维人员指定，Puppet读取安装，由业务组负责。

当理解了分层和来源后，相当于整个团队都明确了，当信息缺失或者不准确的时候应该找谁，哪些环节是容易出错的，比如手动收集部分，如果要变更，谁可以帮忙进行审查，这样互相协作的时候更透明，团队氛围也更趋向于互相理解，而不是各种踢皮球抱怨。

（2）处处使用CMDB

花费大力气建设CMDB的原因就是最终在日常工作中得益于它，因此，各团队都要尊重其权威性，工作的展开以其为中心，比如上文提到的机房容量评估，在使用openDCIM后，DC组的工作简直是事半功倍，而上文Puppet的enc脚本接入，也进一步体现出SA组合业务组处处使用CMDB的真谛，让一切生产上的配置项都是通过CMDB的信息产生。

（3）积极反馈CMDB

笔者团队中，曾经有这样一个故事，那时候CMDB系统刚上线，是由一个北美团队实现的，由于项目初期，系统还不够完善，软件中的worker经常卡死，但是由于时区问题，交流只靠邮件，各种抱怨。事实证明，消极的情绪就像瘟疫一样蔓延的飞快，于是不高兴写自动化任务，用本地cache file来解决问题，甚至有人扬言要重起炉灶。后来笔者与上级经理直接介入，与远程团队电话会议，制定SLA，甚至飞到当地直接进行一些反馈以及设计改进的工作。最终，软件稳定性问题解决了，并且按照实际面临的问题进行改进，团队评价高了，相应的工作开展起来也顺利多了。

因此，积极反馈，还要加上实施团队的积极配合，才能做到一款用户体验友好的CMDB，毕竟当今互联网的一个重要理念就是用户体验至上，项目制造的产品如此，内部工具也理应如此，毕竟CMDB要赢得的所有的市场（所有攻城狮），而不是20%就是胜利。

（4）共同进化CMDB

共同进化意味着CMDB的使用者和设计者密不可分，比如使用者应该占据设计决策的重要位置，而设计者必须也是使用者，才能体会用户的真实感受。比如设计者就是DevOps，平时也不完全脱离ops，只是一半左右的时间在维护CMDB上，另外一半时间他化身为运维，在各个场景穿梭，尝试使用自己设计的CMDB。

（5）再次迭代

经过上述几步，肯定不断有新的版本产生，或者随着线上业务架构的不断进化，CMDB本身的设计或者已经过于陈旧需要重构，比如Cloud化、Docker化。但这些都不意味着，CMDB设计之初的失败，全体成员需要适应不停地迭代，重新学习，反馈，再进化的过程。就像业务的架构随着业务扩张演变一样，CMDB也是一个演变的过程，而每个演变历程，各个团队都是其主导者，因为CMDB的成功并不是一个DevOps组的成功，而是全团队对于规范化、集中化、自动化管理线上业务的成功实践。

2.制定流程

在上一节里，提到了CMDB的分层和信息来源，细心的读者肯定也会注意到，一个单一的流程并不能满足所有的场景，比如DC组的、SA组的、业务组的，而且每个组内部可能还会细分，比如DC组上架的CMDB使用流程，DC组维修的CMDB使用流程，因此，这里只是举一个例子，不同大小的公司肯定有不同的组织架构，不能一概而论，适合自己项目的才是最好的。比如，SA组升级Nginx软件的流程，可以分为如下步骤。

1）从CMDB中查询现有Nginx版本。

2）通过一台机器测试升级过程，以Puppet进行控制。

3）先只更改game_dev环境的Nginx版本，通过project_env level的CI项控制版本。

4）版本化管理CI项，git push的时候，指定peer review，比如game业务组。

5）peer review通过，验证game_dev升级是否顺利。

6）通知所有业务组，给出变更细节（一个git pull的request地址，可以用开源的gerrit或者gitlab，也可以自己买github私有repo），确认test环境和prod时间，每推进一个环境进行Peer review，git push到所有业务。

从这个流程可以看出，这个流程涉及到以下几个重点。

·利用git来管理CI的版本和review工作，中心化管理变更。

·团队协作以CMDB的变更为中心进行沟通确认，如pull request地址。

·全体团队都是依照dev→test→prod的最佳实践进行变更。

整个流程都穿插了技术准则，有非常强的可操作性，而不是纯粹管理人员订的不知所云的空话大话，这便是一个成功流程制定的范例，必定来自生活，还原于生活。
11.6.2　CMDB与自动化

说起自动化，很多人肯定会说自动化啊，交给DevOps，或者ops tooling吧，这是那个小组的事情。殊不知自动化和CMDB一样是一种相辅相成的理念，CMDB的主要应用场景就是自动化，而自动化成功的前提就是完善的CMDB，要想CMDB的成功，离不开团队里每一个人对于自动化和CMDB的信仰。而团队里不需要每个人都是Python高手，但是需要每个人都至少会shell来调用CMDB的接口，从而写一些简单的自动化脚本，哪怕只是一个监控相关，或者助力运维的一个小脚本。

举个简单的例子，新同事小A是一个新手运维，对于公司的CMDB也是停留在表面理解，没有真正调用过，他在平时的运维过程中有如下几个弱点。

·使用别的同事写的工具的时候，一定需要别人的协助，排错。

·很多时候，在完成任务的时候，使用了最原始的方法，不懂得写一些可以让事半功倍的小脚本，导致效率低下。

·特别容易抱怨这个工具不好用，那个系统（CMDB）不靠谱，其他团队（如DevOps团队）和他讨论问题，经常觉得在鸡同鸭讲，口碑非常不好。

这是一个典型的新手运维的样板，如果不进行一些改变的话，他就会成为传说中的团队毒瘤，自身职业发展也会受到限制。

在其team leader谆谆教导下，小A认识到自己的不足，开始从工作点滴中开始写一些自动化的小程序，由于程序需要，他仔细研究了CMDB的调用，以及其分层，了解了其中的理念，他深深感到之前由于自己的无知，不仅浪费同事们那么多时间帮助他，而且还对于之前因为不理解CMDB调用的复杂度，而乱喷其他小伙伴感到羞愧，后来他积极地回馈，参与改进CMDB以及各种自动化脚本的完善工作，也得到了团队的信任和认可，在年度绩效考核中也名列前茅。

这其实是一个很典型的团队故事，在CMDB的推行过程中，和时下推行DevOps的理念其实是一致，在一个团队中越多人理解并参与其中，这个团队就越能体会到CMDB和DevOps所带来的无与伦比的优势。
11.6.3　做好CMDB的架构设计

CMDB的重要性已经不言而喻了，而面对如此重要的一环，良好的架构设计是不可或缺的，否则用户体验将大打折扣，如同糟糕的项目会失去市场份额一样，非健壮的CMDB架构最终会失去内部的民心。

1.可扩展性

这一点，DevOps人员最深有体会，在写了一个自认为牛逼闪闪的脚本后，雄心勃勃要批量运行时，发现调用的CMDB各种不响应、超时，然后有不知情的同事抱怨你的脚本不好用时，那真的欲哭无泪。因此，性能的需求是CMDB架构设计中非常重要的一项，当然每种CMDB的实现方式不一样，因此扩展方式都不一样，比如openDCIM，是典型的PHP＋MySQL的应用。

前端PHP＋Apache（Nginx），完全可以靠加机器解决。后端MySQL，如果只有读的压力，可以用slave解决，并指定相应只读前端，如果写有压力的话，可以尝试percona-server-cluster。其他的CMDB，如是自建的可以尝试使用queue、异步、DB分片等高级扩展技术。

2.高可用性

这点想必所有人都深有体会，特别是负责搭建的人休长假的时候，那真是自上而下的抓狂，各种加班熬夜，最后通牒，务必在下个工作日前恢复上线，不然所有配套的系统都无法运行，所有部门效率直接减去80%。因此高可用性对于CMDB来说，是非常高的优先级的。同样，具体怎么实施，不是本节的重点，不做展开。

3.稳定性

其实稳定性是把双刃剑，如果CMDB的API只是时不时地会报错，但是可用率还是在90%以上，也是对写工具人的一种考验，比如引导其写好retry机制、error handler、timeout机制等，这些反而都是不错的导向，总比平时不出错，到关键时候发现一出错就彻底崩溃的客户端工具要可靠得多。在笔者的项目中，CMDB的作者甚至有一个配置选项是设定百分之多少的出错率，来强迫客户端工具在撰写的过程中就发现不稳定，从而写好各种retry机制、error handler、timeout机制，笔者在看到这个idea之后，深深拜服。

当然还有一种稳定性是致命的，比如给出错误的答案，曾经笔者项目有一次CMDB卡死，不知怎么返回空字典，写DNS自动化的同事也没有写判断，从而整个DNS A记录被清空，然后各种灾难产生。

因此，后者的那种稳定性是CMDB里最致命的，在CMDB的服务端和客户端都应该积极规避这样的情况发生。

4.可追溯性

CMDB的可追溯性分为2种：

·用户行为的追溯性，又称审计。审计的重要性，应该是众所周知的，不再赘述，就算再简陋的CMDB，也可以尝试嵌入git进行配置修改，从而得益于git本身的审计功能。

·系统行为的追溯性，又称可以traceback的log。系统行为，不仅仅是为了方便crash的troubleshooting，也为了上文给出错误答案稳定性的情况，提供一个可追溯的手段，否则到时候连原因都不明，从而不知道如何修复，时时刻刻都会是一颗定时炸弹。
11.6.4　那些年，我们碰过的坑

笔者在工作期间有幸看到初期CMDB的搭建一直到今天，其中的酸甜苦辣都尝了个遍，分享下那些年碰过的坑，与各位读者共勉，也希望各位读者能尽早跳出各种火坑，真正把CMDB由自己掌控，犹如手握绝世好剑，驰骋在运维的沙场。

坑一，开发者和使用者没有交集

当年刚做CMDB的时候，一群国外有志青年，兴致勃勃用Django做了一套CMDB的雏形，基础的信息都有，如hostname、dc、project、env、ip、puppet_role，全公司一致叫好，于是乎各种新的idea层出不穷，比如给开发一套DB管理程序，给GM一套游戏管理界面，还有接入metrics、整合log，等等，忙得不亦乐乎。但是随着时间的推移，DevOps用户发现API并不完善，只有按照hostname的search，没有其他search项，比如ip的API非常麻烦，由于有多ip的功能，因此需要解开一层列表的循环才能拿到主ip，但是生产上没人用这个功能，仅仅一些个人测试机才需要这个功能，只是开发者当初设计时的个人机需要，造就了无数复杂的自动化脚本。项目发展到最后，重点都在怎样和业务结合，做更多的开发需求，而忽视了简化ops工作这个初衷。最终，公司另外一群有志青年DevOps另起炉灶，做了一套满足需求的，把Django的那套inventory功能彻底替换掉了，当然用了月余，才把老的自动化工作全迁移到新CMDB上。

这个坑是典型的开发者和使用者没有交集，从而导致了：

·做出来的和想要的不一样。

·CMDB发展方向并不是痛点。

·没有反馈，也没有收集。

坑二，没有按照应用场景进行设计

第二套系统上架后，那些写自动化脚本的同事们一片叫好，各种舒心的search API、filter API一应俱全，于是乎，又是各种需求蜂拥而至，做LB status的接入，switch status的接入，以及puppet kick的集成。但是用户却觉得功能虽然非常多，却在一些常见场景中，有这样那样的问题，比如部署新版本的时候，从dev→test→prod，经常是dev迭代10个版本，test才迭代3个，而prod才1个，而所有配置内容都是以key value的形式零散地存在CMDB中，于是出现了在test和prod部署的时候漏掉conf change，需要人工的形式tag这些conf change到下次Puppet变更中的情况。最终，公司一位少年发怒了，做了一套基于git的conf management center，以CMDB为存储位置，做了这些key value的tagging到version的工作。

这个坑是典型的想当然开发，并没有按照实际应用场景进行设计。做出来的可以解决问题，但需要曲线救国。仅仅停留在最最基础的key value存储，对于写基于CMDB做自动化工作的人来说，不要像乐高玩具一样，给用户一堆零散的零件，让其自己一块一块地搭起来，耗时多，又容易出错，用户体验很差，只有耐心非常好又对CMDB有深刻理解的用户才能正确使用。所以设计者应该以场景为导向设计模块，比如用户要搭一个马里奥世界，与其提供颜色相近的积木，不如提供相应的怪兽、马里奥、公主以及一些道具的常用模块，会让用户更容易上手，用户体验自然大大加分。

坑三，忽略用户体验

conf management center做好后，为了有API，又为了结合git，做了一个所谓的json patch，旨在纯粹用json patch这个feature，把其他格式的配置文件全部转化为json，如yam->json、ini->json，想法不错，这样不同环境之间的迭代，只需要打patch即可。但是，由于格式之间的转化有损，需要加一系列Ruby的Puppet function来修正，比如value类型修复，再转回yaml要sort_yaml等，把Puppet代码搞得非常复杂，充斥着这些custom function。最终，笔者团队的一位组员发奋图强，做了一套UI，隐藏了这些复杂的逻辑。

这个坑是典型的geek开发的工具，没有像一个对外产品设计一样，做足用户体验的功课。

·导致用户体验极差，新用户失去学习使用的欲望

·排错的时候，设置了一定的障碍

·使用的时候，也增加了出错的可能性

从上述三个坑可以看出，笔者的CMDB项目也是在演变中，出现各式各样的问题，不同阶段有不同阶段所需要面对的挑战，这些经验教训是一笔宝贵的财富，目前笔者的项目在用无盘系统，可以做到重启后，在没有硬盘的情况下，通过Puppet＋CMDB，ramdisk里的新系统和老系统一模一样，这是项目初期无法想象的事情。

希望各位读者在各自的CMDB不要怕遇到坑，只要克服后停下脚步总结、自审、再演变，相信都可以做出一套适合自己项目的CMDB，make life eaiser！
第12章　日志管理

12.1　日志中的四个W

日志是系统管理员的排错利器，也是程序员调试分析程序的必要工具，一条规范的日志中总是会包含四个W，分别是When、Where、Who和What。

·When：事件是何时发生的。

·Where：日志是在哪里产生。

·Who：哪个程序触发了这条日志。

·What：发生了什么事件，以及事件的内容。

很多情况下，系统管理员会忽视对日志的管理，当需要追查问题的时候却发现因为对日志的管理不当，使得查找问题变得复杂且低效。本章将重点讲解如何管理与分析日志，让日志变得更有效，让分析排除更为高效。
12.2　首先要有一个日志服务器

通常来说，日志会记录在本地服务器上，或者是交换机、路由器等的网络设备的内部存储中，但是这样不够灵活，当需要排除时，系统管理员或网络管理员需要登录每台服务器、每个网络设备去查看日志，这在面对10多台设备时，管理员一般还能承受，但如果有几千台设备，这显然是非常低效的。所以我们需要一台日志服务器去集中化地收集存储日志，方便系统管理员、程序员查看日志，方便存储更久时间的日志做分析。

图12-1是一个日志收集系统的基本架构，网络设备、服务器通过syslog的协议将日志传送到日志服务器上，日志服务器定时地将日志归档，存储到后端存储设备中。

 [image:]

图12-1　日志收集系统

常用的日志管理程序为rsyslog和syslog-ng，这两个日志管理程序都支持下面三种日志传输方式：

·UDP传输：这是应用最广泛的日志传输方式，性能开销小，但是传输缺乏可靠性。

·TCP传输：确保日志传输的可靠性，但是性能开销大于UDP方式。

·TLS加密传输：确保日志传输的可靠性与安全性。
12.2.1　rsyslog

在CentOS 6中，rsyslog作为系统默认的日志管理程序，版本为v5-stable，在EPEL源中提供了v7-stable版本。在生产环境中如果没有特殊需求，推荐使用系统默认版本。如果对日志传输有性能的要求，推荐使用EPEL源中的v7-stable版本。当然，如果读者是版本追新者，也可以从rsyslog官网（www.rsyslog.com）上下载最新的v8-stable。

1.rsyslog服务端配置

服务端比较简单，只需要配置传输协议、端口、存储位置即可。

首先，打开/etc/rsyslog.conf中udp、tcp 514端口：

$ModLoad imudp

$UDPServerRun 514

$ModLoad imtcp

$InputTCPServerRun 514

然后，重启rsyslog服务，此时会看到udp、tcp 514端口都已被监听，代码如下：

[root@rsyslog ~]# /etc/init.d/rsyslog restart

Shutting down system logger: [OK]

Starting system logger: [OK]

[root@rsyslog ~]# netstat -nltp | grep 514

tcp 0 0 0.0.0.0:514 0.0.0.0:* LISTEN 　　1562/rsyslogd

tcp 0 0 :::514 :::* LISTEN 　　1562/rsyslogd

[root@rsyslog ~]# netstat -nlup | grep 514

udp 0 0 0.0.0.0:514 0.0.0.0:* 　　1562/rsyslogd

udp 0 0 :::514 :::* 　　1562/rsyslogd

配置日志存储路径、存储格式的方式为在/etc/rsyslog.conf中加入如下行，即可定义日志存储的位置以及方式。

$template Centrallog, "/var/log/central/%HOSTNAME%/%PROGRAMNAME%.log"

配置日志规则时，注释掉默认规则，将$template Centrallog应用在这条规则上。

#*.info;mail.none;authpriv.none;cron.none /var/log/messages

*.info;mail.none;authpriv.none;cron.none ?Centrallog

最后，重启rsyslog服务，此时rsyslog服务器配置完成，/var/log/central中就会自动出现本机log。

2.rsyslog客户端配置

在/etc/rsyslog.conf中加入下面两行，可以自行选择使用UDP方式传输log还是TCP方式。如果两者都打开，在rsyslog服务上会看到同一条log发送了两次。使用UDP传输log时用一个@，用tcp方式传输log时用两个@@，添加完成之后重启client端的rsyslog服务即可。

UDP方式传输log

*. *@rsyslog.example.com:514

TCP方式传输log

.*@@rsyslog.example.com:514

下面测试是否配置成功，在rsyslog客户端上用logger命令生成一条日志，如下：

[root@es01 ~]# logger "hello"

此时rsyslog服务器上就会存储下这条log，如下：

[root@rsyslog ~]# tail -f /var/log/central/es01/root.log

May 2 17:34:49 es01 root: hello

OK，基于rsyslog的集中化日志服务器配置成功。
12.2.2　syslog-ng

syslog-ng是另外一种流行的日志管理的解决方案，它是一个商业软件，包括收费版和开源版两种版本，EPEL源提供了syslog-ng开源版本的RPM安装包，官方网站中提供源码包，可以选择从官方网站下载源码编译安装，也可以使用EPEL中的RPM包，此处使用EPEL源安装syslog-ng。

1.启用EPEL源

如果服务器可以通外网，则可以将baseurl直接指向外网的EPEL镜像地址，比如sohu源地址http://mirrors.sohu.com/fedora-epel/6Server/x86_64，或者将EPEL源同步至内网，建立自己的yum源，这里采用了笔者自己建立的yum源，代码如下：

[root@syslog-ng ~]# cat /etc/yum.repos.d/epel.repo

[epel]

name=Extra Package For Enterprise Linux

baseurl=http://192.168.0.254/repo/6/epel

enable=1

2.安装syslog-ng

因为在CentOS 6中默认的日志程序是rsyslog，所以这里需要先删除rsyslog程序，然后再安装syslog-ng程序。

[root@syslog-ng ~]# yum remove rsyslog

[root@syslog-ng ~]# yum install syslog-ng

3.配置syslog-ng服务器端

相对来说，syslog-ng的配置文件看起来要比rsyslog复杂了许多，但是如果能够理解配置含义就会发现其实并不难配置，大致分为四步骤。

首先做全局配置，这里有几个参数需要注意。

·flush_lines：设置一次发送多少条日志，默认为0，也就是收到日志就发出。

·use_dns：是否使用DNS，其中有个一个参数是persist_only，这个参数是只从/etc/hosts中解析主机名，不依赖DNS服务器。

·log_msg_size（10240）：设置单条日志大小，超过括号内的数值就会被丢弃，如果不设置，默认值为8192 bytes。有的时候，程序员可能为了debug，会将应用程序的报错信息全部塞进一条日志的message部分，这可能会导致单条日志很大，所以这里需要根据实际情况去调整参数值。

·create_dirs：如果存储日志的位置是以层级目录的形式存在的，则需要打开这个参数，让syslog-ng自动创建需要的目录。

全局配置如下：

options {

 flush_lines (0);

 time_reopen (10);

 log_fifo_size (1000);

 long_hostnames (off);

 use_dns (no);

 use_fqdn (no);

 create_dirs (yes);

 keep_hostname (yes);

};

然后设置日志来源、端口、协议、最大连接数，以及存储的位置，如下：

source demo_source {

 tcp(ip(0.0.0.0) port(514) max-connections(1000));

};

destination d_central { file("/var/log/central/$HOST/$PROGRAM"); };

syslog-ng在这里给了很多的变量，以便设置存储方式，如$HOST日志来源主机、$PROGRAM生成日志的程序、$YEAR$MONTHDAYHOUR$SEC时间变量等。

完成前两步之后，就需要设置日志的过滤器了。一般来说，可以不用设置过滤器，但是遇到一些特殊情况，比如想把含义某些特殊字符的日志过滤出来，放入一些特定的位置，那么过滤器会是一个很好的帮手。

例如，要将负载均衡器日志中含有Deny字样的日志过滤出来，写法如下：

filter f_loadbalance { host(lb.example.com) and match(“Deny”value(“MESSAGE”));};

最后，设置规则，将来源demo_source中的日志存储到d_central中：

log { source(demo_source); destination(d_central); };

这样服务器端配置完成，重启syslog-ng服务让配置生效。

4.客户端配置

客户端的配置较为简单，只要加入目标位置与规则，重启syslog-ng让配置生效即可：

destination d_syslog { tcp("syslog-ng", port(514));};

log { source(s_sys); destination(d_syslog);};

此时就可以在服务器端看到客户端传送的日志了。
12.2.3　如何选择syslog程序

常见的syslog程序主要包括rsyslog和syslog-ng，但其实远不止这些软件，比如老牌的syslog、Windows系统上事件查看器、facebook开源的scribe等，但是相对来说，rsyslog和syslog-ng两者在性能、开发进度，以及各个平台的支持程度上最为突出。个人实际经验中，rsyslog的性能略好于syslog-ng，且rsyslog作为CentOS默认的日志程序，也免去了一些安装配置的工作，个人推荐尽量使用rsyslog。

同时推荐阅读syslog的RFC文档（http://www.ietf.org/rfc/rfc3164.txt），对理解syslog协议会有很大的帮助。
12.3　常见的日志分析处理工具

当用户拥有了一个集中日志服务器时，在存储上睡大觉的日志不会产生任何价值，只有对其进行分析才能进一步发挥日志的价值。例如公司的安全部门想知道在过去的一段时间内有多少次的ssh登录失败、来源是哪里，以及有哪些账户登录失败，这些需求就需要对日志进行分析统计，最终整理出报表交付给相关部门。

对日志的分析有很多种方式，可以采用自己写脚本提取日志内容，也可以采用一些开源或者商业工具来自动分析，现在有许多这样的工具可供选择。下面会介绍常见的日志分析程序。

1.Splunk

Splunk是一款极其强大的可视化日志分析软件，它号称是日志届的google，在大数据与云计算日趋流行的今天，Splunk被认为是监控体系中不可缺少的一个重要软件。通过快速分析日志来达到与传统监控软件不一样的报警。Splunk更为关注整体监控，更容易得到趋势分析。它的网址为http://www.splunk.com/。

Splunk可以高效地对日志进行索引、分析，并生成报表。它是一个商业软件，但同时也提供了免费试用版，试用版每天只能索引500MB日志。后面会讲述如何安装配置Splunk。

2.Loggly

Loggly是由前Splunk员工创立的，它是构建在Amazon AWS上的一个第三方的云日志处理平台，它将日志存储在云端，并提供分析处理能力。Loggly提供了更简单的日志管理分析方式。这对刚刚起步的小型企业是非常节省成本的，只需要将日志导入Loggly平台即可近乎实时地获取日志分析结果，快速高效。但是缺点也明显，在高流量高并发的日志环境中，Loggly做得还不够好。同时因为构建在AWS上，对网络带宽要求也较高。Loggly的网址为https:/www.loggly.com/。

3.Logstash

有商业软件就有开源软件，Logstash就是一个强大的开源日志分析软件，Logstash、Elasticsearch与Kibana组成目前最流行的开源日志处理平台。

Logstash可以说是一个日志处理的过程框架，由input、filter、output三个部分组成，在这个框架上，开源社区提供了100多个插件，几乎涵盖了所有能遇到的日志处理情况。

Logstash现在属于Elasticsearch公司（https:/www.elastic.co），网址为http://logstash.net。本章的后面会重点讲解如何配置Logstash＋Elasticsearch＋Kibana。

4.garylog2

garylog2也是一个非常优秀的日志聚合软件，它与Logstash几乎同时出现在日志处理的舞台上，早先garylog2的后端存储是基于MongoDB的，因为MongoDB在当时出现的一些问题，使得很多人望而退步，错过了与Logstash竞争的机会。它的网址为：https:/www.graylog.org/。
12.4　Splunk的安装配置

Splunk支持多种平台，包括Windows、Linux、Mac OS，以及Solaris，本节将讲述在CentOS 6上安装配置Splunk，使用splunk对日志进行分析。
12.4.1　下载Splunk安装程序包

打开Splunk的下载页面http://www.splunk.com/en_us/download.html，选择Splunk Enter-prise进入版本选择界面，然后选择需要的平台安装包，这里选择Linux。

从图12-2中可以看到，在Linux平台上，Splunk是以支持的内核版本形式下载的，而不是以某个发行版的形式发布，可见Splunk对平台兼容性考虑得很周到。

 [image:]

图12-2　Splunk支持形式

这里选择splunk-6.2.3-264376-linux-2.6-x86_64.rpm下载，随后进入下载界面，Splunk需要注册一个账户后才能获得下载地址，这里不再重复账户注册过程。
12.4.2　安装启动Splunk

下载完成之后将RPM包拷贝至服务器上，安装过程非常简单，一个命令就完成了。这里安装在syslog-ng服务器上，命令如下：

[root@syslog-ng ~]# rpm -ivh splunk-6.2.3-264376-linux-2.6-x86_64.rpm

warning: splunk-6.2.3-264376-linux-2.6-x86_64.rpm: Header V3 DSA/SHA1 Signature, key ID 653fb112: NOKEY

Preparing... ### [100%]

 1:splunk ### [100%]

 complete

启动Splunk的方式：

[root@syslog-ng ~]# /opt/splunk/bin/splunk start

Splunk首次启动时会有一个LICENSE AGREEMENT，将空格拉到底表示同意即可，图12-3是许可证的截图。

 [image:]

图12-3　Spunk LICENSE AGREEMENT

待Splunk启动完成之后，打开Web浏览器访问Splunk服务器的8000端口，图12-4是Splunk的启动过程。

 [image:]

图12-4　Splunk启动过程
12.4.3　配置Splunk

首次登录Splunk的时候，默认的用户名为Admin，密码为changeme，Splunk会提示用户更改为自己的密码。图12-5是Splunk首次登录的状态。

 [image:]

图12-5　Splunk初始登录

登录之后，就可以开始配置数据源了。选择添加数据，如图12-6所示。

 [image:]

图12-6　Splunk添加数据源

添加数据时有如下三种方式：

·上载：将本地的日志文件传到Splunk服务器上，这种方式合适一些非实时数据的离线分析。

·监视：这里有多种模式监控日志，可以从日志文件监控日志，也可以从syslog的端口直接获取日志。

·转发：从其他Splunk来的转发。

这里使用监视作为输入源，选择文件和目录形式，需要配置监控的目录，这里考虑监控/var/log这个目录，请看图12-7，然后点击下一步。

在输入设置这里，需要格外注意主机的配置。不同的日志里，Host这个字段可能处在不同的位置，正常情况下是第三段，这里选择使用“路径中的段”，段号是3，请看图12-8。然后点击“检查”进入下一步。

 [image:]

图12-7　设置Splunk监控目录

 [image:]

图12-8　主机字段设置

如果检查通过，就可以看到图12-9的界面，可以开始搜索了。

 [image:]

图12-9　Splunk输入源配置
12.4.4　搜索日志

Splunk搜索的语法很简单，只需输入想知道的关键字就可以，同时也支持正则表达式。图12-10是在Splunk里搜索ssh登录日志。
12.5　Elasticsearch＋Logstash＋Kiana

12.5.1　ELK简介

纵然Splunk简单方便，但因高昂的售价使得用户不得不转向廉价的解决方案，而开源的Elasticsearch、Logstash与Kibana组成了现在最流行的ELK日志分析系统。

在ELK体系中，log的处理流程如下。

log --------------> Logstash ----------> Elasticsearch ----------> Kibana

当一条log产生以后，发送给Logstash，Logstash对这条log进行字段解析，解析完成之后，它将其存入Elasticsearch中，最后用户使用kibana来查询这条log。

Logstash是日志解析工具，它处理日志分为三步：输入→解析→输出，而这每一步都是由众多插件组成的，所以Logstash可以做到“Ship logs from any source，parse them，get the right timestamp，index them，and search them”。具体插件可以查阅Logstash的官方文档来获取（http://logstash.net/docs/1.4.2/）。图12-11是Logstash支持的所有插件。

Elasticsearch是一个实时的全文检索和分析引擎，在行业内获得了非常高的认可度，GitHub、维基百科等网站都使用了Elasticsearch作为内部检索平台，优秀的检索能力也非常适合日志的查询分析。

 [image:]

图12-10　Splunk搜索ssh登录日志

Kibana是日志展示系统，通过Kibana可以搜索查询日志，Kibana的开发也非常活跃，从第一版到现在的第四版，每一版作者都对其进行了重构。但是也正是因为不断的重构，给用户带来了不小的不适应。
12.5.2　安装ELK软件包

1.下载软件包

Logstash与Kibana已经成为了Elasticsearch官方产品，只需要到Elasticsearch的官方网站（https:/www.elastic.co/）下载即可。其中Logstash需要下载Logstash与logstash-contrib两个包，它们分别是logstash的主程序与Logstash的插件。

 [image:]

图12-11　Logstash支持的插件

2.安装Logstash与Elasticsearch

Logstash和Elasticsearch都需要依赖Java，所以首先要安装Java，命令如下：

 [root@rsyslog ~]# yum install java-1.7.0-openjdk.x86_64

安装Logstash的命令如下：

[root@rsyslog ~]# rpm -ivh logstash-1.4.2-1_2c0f5a1.noarch.rpm

[root@rsyslog ~]# rpm -ivh logstash-contrib-1.4.2-1_efd53ef.noarch.rpm

安装Elasticsearch的命令如下：

[root@rsyslog ~]# rpm -ivh elasticsearch-1.5.2.noarch.rpm

安装完Logstash和Elasticsearch之后，先启动Elasticsearch，当看到9200端口被监听的时候，说明Elasticsearch已经正常启动，然后进入Logstash的配置阶段。

 [root@rsyslog ~]# /etc/init.d/elasticsearch start

Starting elasticsearch: [OK]

[root@rsyslog ~]# netstat -nltp | grep 9200

tcp 0 0 :::9200 :::* LISTEN 　1772/java

12.5.3　配置Logstash

前面部分已经说到，Logstash处理日志的流程是：输入→解析→输出，所以配置文件也就分为三段，分别是input{}、filter{}和output{}。Logstash的配置结构很清晰，大致如下：

[root@rsyslog ~]# cat /etc/logstash/conf.d/logstash.conf

Input {

……

}

filter {

……

}

output {

……

}

1.配置input{}

从Logstash官方文档上可以看到，Logstash支持多种输入源，在input{}中用户可以同时指定不同类型的输入源，且可以同时从文件中读取，也可以从syslog的端口读取，这里选择使用文件作为输入源。配置命令如下：

input {

 file {

 path => "/var/log/central/*/*"

 type => "syslog"

 start_position => "beginning"

 }

}

·path：定义日志文件路径，path在这里其实指的是一个列表，如果你需要指定多个路径，写法是path=>["/var/log/message"，"/var/log/mail"]。

·type：定义日志类型，这里是由用户自己决定类型名称，目的是为下一步解析配置中能够配置相对应的解析方式。

·start_position：指是从文件开头开始读取，还是从文件的末尾开始读取。

2.配置filter{}

相对来说，filter{}的配置略微复杂，尤其是其中的grok部分，需要使用辅助工具帮助调试，下面先看filter{}部分的配置：

filter {

 if [type] == "syslog" {

 grok {

 match => { "message" => "%{SYSLOGTIMESTAMP:syslog_timestamp} %{SYSLOG-HOST:syslog_hostname} %{DATA:syslog_program}(?:\[%{POSINT:syslog_pid}\])?: %{GREEDYDATA:syslog_message}" }

 add_field => ["received_at", "%{@timestamp}"]

 add_field => ["received_from", "%{host}"]

 }

 syslog_pri { }

 date {

 match => ["syslog_timestamp", "MMM d HH:mm:ss", "MMM dd HH:mm:ss"]

 }

 }

}

可以看到，filter的第一行是以if[type]开头的，这里的type就是在input{}中对log的定义，既然是if语句，那必然支持else。

grok可以说是整个Logstash的精华部分，通过grok这个插件可以帮助用户自定义日志格式解析，也就是说无论是多复杂的日志，grok都可以帮按照用户需求解析出来。这里以系统日志为例，系统日志由时间、hostname、program、信息四个部分组成，在grok中，每一个字段用%{}来定义，而有些日志在program部分带着pid，那就是用%{}（）的方式将program和pid分开。

grok的编写有时候会比较痛苦，因为不同的需求会有不同的写法，尤其在需要正则表达式匹配的地方，好在有grok debug这个在线工具可以帮助编写grok（https:/grokdebug.herokuapp.com/）。

3.配置output{}

output{}的配置比较简单，指定Elasticsearch的host和cluster即可。配置命令如下：

output {

 elasticsearch {

 host => localhost

 cluster => "example"

 }

}

12.5.4　配置Elasticsearch

在Elasticsearch中需要配置cluster.name，因为默认情况Elasticsearch集群是通过广播方式进行通信的，指定不同的cluster.name可防止干扰内网中其他Elasticsearch集群。配置命令如下：

[root@rsyslog ~]# cat /etc/elasticsearch/elasticsearch.yml | grep cluster.name

cluster.name: example

12.5.5　配置Kibana

修改kibana4配置文件中elasticsearch_url的地址就可以让Kibana连接上Elasticsearch。默认情况下Kibana端口是5601，这里为了实验方便，将port指向了80端口，生产环境中建议使用Apache proxy将80指向到5601的端口。相关命令如下：

[root@rsyslog kibana-4.0.2-linux-x64]# cat config/kibana.yml | grep -v ^#| grep -v ^$

port: 80

host: "0.0.0.0"

elasticsearch_url: "http://localhost:9200"

elasticsearch_preserve_host: true

kibana_index: ".kibana"

default_app_id: "discover"

request_timeout: 300000

shard_timeout: 0

verify_ssl: true

bundled_plugin_ids:

 - plugins/dashboard/index

 - plugins/discover/index

 - plugins/doc/index

 - plugins/kibana/index

 - plugins/markdown_vis/index

 - plugins/metric_vis/index

 - plugins/settings/index

 - plugins/table_vis/index

 - plugins/vis_types/index

 - plugins/visualize/index

然后手动启动kibana4，命令如下：

[root@rsyslog kibana-4.0.2-linux-x64]# bin/kibana

{"@timestamp":"2015-05-09T17:22:40.125Z","level":"info","message":"Found kibana index","node_env":"production"}

{"@timestamp":"2015-05-09T17:22:40.140Z","level":"info","message":"Listening on 0.0.0.0:80","node_env":"production"}

现在可以开始配置Kibana了。首次打开Kibana之后，会让用户配置默认的index pattern，只需要选择@timestamp之后点击create就完成了基础配置，如图12-12所示。

完成初始化配置之后，会看到Kibana已经获取到了Elasticsearch里的存储内容，如图12-13所示。

点击图12-14左上角的discover，选择需要查询的时间段，便可以查询到需要的日志内容。

 [image:]

图12-12　Kibana初始配置

 [image:]

图12-13　Kibana连接Elasticsearch

 [image:]

图12-14　Kibana查询日志
12.6　Elasticsearch入门

Elasticsearch是一个强大的全文检索分析引擎，在ELK体系中，Elasticsearch是非常重要的一个环节，本节会简单讲解Elasticsearch的基本配置、插件安装、API调用等内容。
12.6.1　基本配置

1.Elasticsearch服务配置

在/etc/elasticsearch中有两个配置文件，分别是elasticsearch.yml和logging.yml。elastic-search.yml文件用于负责Elasticsearch运行参数的配置，logging.yml的文件定义了Elastic-search服务本身的日志信息，如果需要获取更详细的Elasticsearch日志，就需要对logging.yml里的一些文件参数做修改。

在elasticsearch.yml里，有一部分参数是可以在运行的时候通过API来修改的，而有一部分参数则无法通过API修改，必须在配置文件中修改，尤其是两个重要的值cluster.name和node.name。

Cluster.name是一个Elasticsearch集群的名称，Elasticsearch启动的时候通过广播方式找到其他Elasticsearch节点，然后通过判断cluster.name来决定是不是属于同一个cluster，如果相同，则加入集群。

Node.name是Elasticsearch在加入集群时的标记，即自己的名字，默认可以不更改，Elasticsearch会自动为自己取一个唯一的名称。命令如下：

[root@es01 ~]# cat /etc/elasticsearch/elasticsearch.yml | grep -v ^# | grep -v ^$

cluster.name: example

node.name: es01

2.配置集群的master节点和data节点

Elasticsearch集群使用zen discovery方式形成集群，它提供了多播和单播两种发现方式，默认采用以多播方式组成集群。当Elasticsearch集群启动的时候，默认第一个启动的Elasticsearch是master节点，而Elasticsearch的默认配置既是master节点，同时也是data节点。

当Elasticsearch集群很大（有几十台）的时候，配置比较好的方式是指定某台Elastic-search成为固定的master节点，但这台master节点并不存储数据，只负责管理整个集群，其他Elasticsearch则成为固定的data节点，配置过程如下。

在master的节点的elasticsearch.yml中进行如下配置：

node.master: true

node.data: false

在data的节点elasticsearch.yml中进行如下配置：

node.master: false

node.data: true

同时注意，不同版本的Elasticsearch不要混用组成集群。

3.配置Elasticsearch JVM内存

Elasticsearch默认启动的JVM内存限制为1024MB，这个默认值在实际情况中毫无可用性，Elasticsearch官方建议将JVM的内存限制在主机内存的50%以内，最大不要超过32GB，给操作系统和其他程序留下足够的内存，以供使用。同时，建议将ES_MIN_MEM和ES_MAX_MEM两个设置为相等的值，以减少内存换入换出损失Elasticsearch性能。

JVM参数设置在/etc/sysconfig/elasticsearch中，如下：

Heap Size (defaults to 256m min, 1g max)

ES_HEAP_SIZE=2g

max direct memory

ES_DIRECT_SIZE=2g

12.6.2　安装插件

Elasticsearch拥有丰富的插件，作为运维人员，经常使用的是Elasticsearch的一些状态监控插件，比如bigdesk、kopf，这里重点介绍如何安装kopf。

kopf的安装非常简单，如果服务器能够访问外部网络，只需使用Elasticsearch的plugin程序安装即可。命令如下：

[root@es01 ~]# /usr/share/elasticsearch/bin/plugin --install lmenezes/elastic-search-kopf

-> Installing lmenezes/elasticsearch-kopf...

Trying https://github.com/lmenezes/elasticsearch-kopf/archive/master.zip...

Downloading ...DONE

Installed lmenezes/elasticsearch-kopf into /usr/share/elasticsearch/plugins/kopf

Identified as a _site plugin, moving to _site structure ...

如果服务器不能访问外部网络，可以将程序下载到本地，压缩成zip包，同样也要使用plugin程序安装，命令如下：

[root@es01 ~]# /usr/share/elasticsearch/bin/plugin --install kopf -u file:///tmp/elasticsearch-kopf.zip

然后用浏览器访问9200端口后的_plugin/kopf即可，图12-15是kopf的状态图。
12.6.3　API

Elasticsearch提供了基于HTTP协议的RESTful API，这样可以使用任意的编程语言与其交互，最简单的方式就是使用curl来和Elasticsearch进行交互。比如，想知道一共存了多少条日志，就可以使用下面的这种方式获取。

 [image:]

图12-15　kopf状态图

[root@es01 ~]# curl -XGET 'http://localhost:9200/_count?pretty' -d '

> {

> "query": {

> "match_all": {}

> }

> }

> '

{

 "count" : 12395,

 "_shards" : {

 "total" : 16,

 "successful" : 16,

 "failed" : 0

 }

}

对于系统管理员来说，常用的API莫过于health了，使用health API可以快速地看到Elasticsearch的状态。命令如下：

[root@es01 ~]# curl -XGET localhost:9200/_cluster/health?pretty

{

 "cluster_name" : "example",

 "status" : "yellow",

 "timed_out" : false,

 "number_of_nodes" : 1,

 "number_of_data_nodes" : 1,

 "active_primary_shards" : 16,

 "active_shards" : 16,

 "relocating_shards" : 0,

 "initializing_shards" : 0,

 "unassigned_shards" : 16,

 "number_of_pending_tasks" : 0

}

Elasticsearch有非常全面的API，更多的API请查阅Elasticsearch官方手册https:/www.elastic.co/guide/en/elasticsearch/reference/current/index.html。
EPUB/cover.xhtml
[image: Cover]

EPUB/cover.jpg
FRHE

KitELinux
EHRIURESE

MAIEE EFERSE
Rt B

Best Practice of Managing
Massive Linux Cluster

o BSAEREESIFLHIEHMLINEAERIES | BIIFEFEN
ERMNER , ABRESELHRERIEEES,

® NEREFRAMMALER , LIE4ENSR TERS hEXRILRE
=, 2751 ESERTAMELInUXEEEF IR FETIR.

BT W R i

China Machine Press

