

 嵌入式Linux系统设计及应用——基于国产龙芯SoC

 	
 基础篇入门

 	
 第1章　实验平台及背景知识

 	
 第2章　虚拟机安装Linux操作系统

 	
 第3章　安装工具链、编译内核、制作文件系统

 	
 第4章　使用buildroot构建根文件系统

 	
 第5章　简单应用编程Hello World

 	
 第6章　简单驱动程序编写

 	
 中级篇应用

 	
 第7章　Linux应用编程

 	
 第8章　开发板硬件接口编程

 	
 高级篇驱动

 	
 第9章　NFS文件系统搭建

 	
 第10章　配置Eclipse编程

 	
 第11章　一个简单的字符设备驱动

 	
 第12章　misc杂项设备驱动

 	
 第13章　PWM控制输出

 	
 第14章　l2C总线和设备驱动

 	
 第15章　SPl总线和设备驱动

 	
 第16章　CAN总线和设备驱动

 	
 第17章　嵌入式GUl编程

 	
 第18章　ADC驱动及应用

 	
 第19章　内核访问外设l/O资源

 	
 第20章　PMON源码编译、烧写、启动及裸机编程

 	
 第21章　在Windows环境下搭建龙芯1C开发环境及龙芯1C库

 	
 第22章　智龙开发板应用及其他龙芯开发板

 	
 第23章　Linux内核的配置和编译

 	
 参考文献

 	
 附录1　常用Linux命令

 	
 附录2　VlM图例及常用操作

 	
 附录3　BusyBox的下载及配置

 	
 附录4　PMON常用命令

 	
 附录5　创建与驱动程序对应的设备节点

 	
 附录6　Linux文件结构

 	
 附录7　git命令

 	
 附录8　在PMON中使用命令devcp进行坏块处理和支持yaffs2烧写

 	
 附录9　智龙开发板V2电路原理图

 	
 附录10　智龙开发板V3电路原理图

 	
 附录11　LCD扩展板（外部控制器）原理图

 	
 附录12　LCD扩展板（内部控制器）原理图

 	
 附录13　机器人控制器电路原理图

 	
 附录14　第一届全国大学生嵌入式芯片设计与应用竞赛龙芯平台获奖名单及作品

 基础篇入门

 第1章　实验平台及背景知识

本章针对编程人员进行嵌入式系统的入门基本培训，着重于入门开发环境搭建、工具使用、各种必需的过程介绍，对于编程本身不做深入研究。

文中所有代码均已在智龙V2.0或V3.0开发板上运行实践验证，所有截图均为实例运行结果。所有引用他人的文章，均标注有出处，并在智龙开发板上运行成功且整理后发布。

1.1　本书使用的开发板及操作系统

开源龙芯创客主板“智龙”是由龙芯爱好者社区开发的一款基于国产龙芯设计并以全开源方式推广的嵌入式最小系统主板，具有完全开源、可手工焊接、接口丰富、本土化服务等特点，适合物联网、智能硬件、机器人等应用和创客开发。智龙创客主板上集成了龙芯1CSoC、网口、USB口、电源、SD卡插槽和RTC时钟等主要部件，并提供排针接口，可通过扩展板实现更多的功能。智龙创客主板可以运行嵌入式Linux系统和RT-Thread实时操作系统，方便用户开发，实现各种创意。开源智龙创客主板目前已经制作发行3个版本，分别为V1.0、V2.0和V3.0。

开源智龙创客主板（以下称智龙开发板）V2.0与V1.0及其差异如图1.1所示。

 [image:]
 图1.1　智龙开发板V2.0和V1.0

智龙开发板V3.0细节展示如图1.2所示。

智龙开发板V3.0具体模块分布如图1.3所示。

 [image:]
 图1.2　智龙开发板V3.0细节展示

 [image:]
 图1.3　智龙开发板V3.0具体模块分布图

智龙开发板V2.0与V3.0的差异如表1.1所示，二者外形相似。

 表1.1　智龙开发板V2.0与V3.0的差异

 [image:]

智龙开发板的硬件电路和内核软件源码均开源，以吸引更多的爱好者加入龙芯的队伍。由于智龙开发板V2.0与V3.0差异不大，同时兼容以前版本硬件，本书以智龙开发板V2.0和V3.0为平台进行设计开发。智龙开发板V2.0的内核版本号为3.0.082，源码包为linux-3.0.82-openloongson.tar.gz，平台文件为ls1c300a_openloongson_v2.0_platform.c，配置文件为ls1c300a_openloongson_v2.0_defconfig。智龙开发板V3.0的内核版本号为3.0.101，源码包为openloongsonV3.tar.gz，平台文件为ls1c300b_cbiiv0a.c，配置文件为ls1c300b_defconfig。书中出现了这两个版本的内容时注意替换。

1.1.1　龙芯系列芯片

龙芯系列微处理器是中国拥有自主知识产权的中央处理器，由中国科学院计算技术研究所研制，并与国际上同类主流微处理器兼容。龙芯微处理器采用了许多先进的微处理器体系结构设计技术，在动态流水线的实现技术和硬件对系统安全性的支持方面有独特的创新，可广泛应用于工业控制、信息通信、网络设备、PDA、存储服务器、安全服务器等产品上。

龙芯微处理器主要包括3个系列：龙芯1号系列为32位低功耗、低成本处理器，主要面向低端嵌入式和专用应用领域；龙芯2号系列为64位低功耗单核系列处理器，主要面向工控和终端等领域；龙芯3号系列为64位多核系列处理器，主要面向桌面和服务器等领域。根据应用的具体需要，龙芯2号也可以用于高端嵌入式应用，部分低端龙芯3号也可以用于工控领域，3个系列并行发展。

龙芯1号微处理器于2002年6月研制成功，标志着我国在现代通用微处理器设计方面实现了“零”的突破，打破了我国长期依赖国外CPU产品的无“芯”历史，也标志着国产安全服务器CPU和通用的嵌入式微处理器产业化的开始。它由龙芯中科技术有限公司（以后简称为龙芯中科）推出，是兼顾通用及嵌入式CPU特点的一代32位CPU，是我国第一款通用CPU，采用180nm工艺制作，平均功耗为0.5W，最大不超过1W，主频率为200~266MHz，支持最新版本Linux、VxWorks、Windows CE等操作系统。

龙芯2号微处理器于2005年2月面世，它是国内首款64位高性能通用CPU，是龙芯1号微处理器实测性能的8~10倍，是1.3GHz威盛处理器的2倍，完全可以媲美Pentium 3。龙芯2号微处理器采用130nm的CMOS工艺制造，片上集成了1350万个晶体管，硅片面积为6.2mm×6.7mm，最高频率为500MHz，功率为3~5W。龙芯2号微处理器实现了先进的超标量、超流水线结构，片内一级指令和数据高速缓存各64KB，片外二级高速缓存最多可达8MB，基于龙芯2号微处理器的Linux-PC系统可以满足绝大多数的桌面应用。随后问世的龙芯2B、龙芯2C、龙芯2E、龙芯2F等型号产品，每个芯片的性能都大约是前一个芯片的3倍，其中最新改进型号龙芯2F已达到中档Pentium 4的水平。

龙芯3号微处理器是64位单片多核高性能微处理器芯片，其研制目标是满足我国信息化建设基本需求，尤其满足国家安全需求，面向服务器和高性能机的高性能、低成本、低功耗的多核CPU芯片和与之配套的套片及基础软件，并作为主CPU用于国产千万亿次高性能机及国产服务器。龙芯3号微处理器采用65nm或更先进工艺，在片内集成16个改进后的龙芯2号处理器核。

1.1.2　龙芯1号微处理器

智龙开发板V3.0使用龙芯1号微处理器loongson1c300A（龙芯IC）为主CPU。龙芯1C是基于GS232处理器核的高性价比单芯片系统，可应用于工业控制及物联网等领域。龙芯1C包含浮点处理单元，支持多种类型的内存，支持高容量的MLC NAND Flash。

龙芯1C为开发者提供了丰富的外设接口及片上模块，包括Camera控制器、USB OTG及USB HOST接口、AC97/I2S控制器、LCD控制器、SPI接口、UART接口等，提供足够的计算能力和多应用的连接能力。龙芯1C芯片规格如表1.2所示。

 表1.2　龙芯1C芯片规格

 [image:]

1.1.3　智龙开发板资源

智龙开发板硬件接口如图1.4所示。

 [image:]
 图1.4　智龙开发板V3.0硬件接口

智龙开发板电路原理图见附录15、16。智龙扩展板电路原理图见附录17、18。

1.1.4　智龙开发板使用的操作系统

目前在智龙开发板上已经适配成功并可进行相关扩展开发的操作系统一共有3种：Linux、RT-Thread和SylixOS。

1．Linux操作系统

Linux是一套免费使用和自由传播的类UNIX操作系统，是一个基于POSIX和UNIX的多用户、多任务、支持多线程和多CPU的操作系统。它能运行主要的UNIX工具软件、应用程序和网络协议，支持32位和64位硬件。Linux继承了UNIX以网络为核心的设计思想，是一个性能稳定的多用户网络操作系统。本书后续部分均基于Linux操作系统进行设计。

2．RT-Thread操作系统及RT-Studio

RT-Thread是我国的一款开源嵌入式实时操作系统，由国内一些专业开发人员从2006年开始开发、维护，除了类似FreeRTOS和UCOS的实时操作系统内核外，也包括一系列应用组件和驱动框架，如TCP/IP协议栈、虚拟文件系统、POSIX接口、图形用户界面、FreeModbus主从协议栈、CAN框架、动态模块等。因为系统稳定、功能丰富的特性被广泛用于新能源、电网、风机等高可靠性行业和设备上，已经被验证是一款高可靠的实时操作系统。其官方网址是http://www.rt-thread.org/。

RT-Thread实时操作系统遵循GPLv2+许可证，实时操作系统内核及所有开源组件可以在商业产品中免费使用，不需要公布应用源码，没有任何潜在商业风险。

RT-Thread实时操作系统发布了RT-Studio集成开发环境，使用方便。RT-Studio运行需要两个文件：rtthread_studio-win32-20170511.zip和loongson1c-20170511.zip。第一个是IDE，第二个是Loongson1C的程序，相当于RT-Thread源码中bsp里的内容。

运行rtthread_studio-win32-20170511.zip下的env.exe，提示输入Workspace位置，如图1.5所示。此时输入文件loongson1c-20170511.zip解压后的位置。

 [image:]
 图1.5　RT-Studio打开后提示输入Workspace位置

IDE打开后导入工程并进行编译，如图1.6所示。

 [image:]
 图1.6　导入工程并编译

编译成功如图1.7所示。

 [image:]
 图1.7　编译成功界面

在loongson1c目录下会生成rtthread.bin和rtthread.elf文件。后将此文件在PMON中下载至开发板的mtd0，具体步骤请参考3.3节。

加载成功后，控制台的显示如图1.8所示。

 [image:]
 图1.8　控制台显示加载运行RT-Thread

3．SylixOS操作系统

SylixOS是一款由中国人自主设计开发的大型嵌入式硬实时操作系统（RTOS），支持SMP多核，具有丰富的文件系统、网络系统以及众多设备驱动支持，并提供完善的集成开发环境。

SylixOS作为一款嵌入式硬实时操作系统，于2006年开始开发工作。后来经过多年的持续开发与改进，SylixOS已经不只是一个实时操作系统，而成为一个可靠稳定、功能全面、易于开发调试的嵌入式实时系统开发平台。

SylixOS作为抢占式多任务硬实时操作系统，具有如下功能与特点。

[image:]　兼容IEEE 1003（ISO/IEC 9945）操作系统接口规范。

[image:]　兼容POSIX 1003.1b（ISO/IEC 9945-1）编程标准。

[image:]　优秀的实时性能（任务度与切换、中断响应算法都是0(1)时间复杂度算法）。

[image:]　支持无限多任务。

[image:]　抢占式中断支持256个优先级。

[image:]　支持协程（Windows中称为线程）。

[image:]　支持虚拟进程。

[image:]　支持优先级继承，防止优先级翻转。

[image:]　极其稳定的内核（很多基于SylixOS开发的产品都需要24小时不间断运行）。

[image:]　内核CPU占用率低。

[image:]　柔性体系（Scalable）。

[image:]　核心代码使用C语言编写，可移植性好。

[image:]　支持紧耦合同构多处理器（SMP），如ARM、Cortex-A9和SMP Core。

SylixOS IDE集成了仿真、编译、调试环境，使用方便，如图1.9所示。

 [image:]
 图1.9　SylixOS的IDE界面

1.1.5　龙芯派一代开发板资源

龙芯派2K是龙芯中科推出的一款为学习计算机编程教育而设计的一种微型计算机平台，如图1.10所示，其只有信用卡大小，硬件基于龙芯2K1000处理器，操作系统基于Linux。自问世以来，受众多龙芯爱好者和创客的追捧。其外表“娇小”，内“芯”却很强大，视频、音频等功能都有，可谓是“麻雀虽小，五脏俱全”。

 [image:]
 图1.10　龙芯派2K（一代计算机）

要使用龙芯派2K，最基本的配件为5V 2A Micro USB电源；兼容至少16GB的Micro SD卡；在初次使用时还需要一条USB转TTL线，用于配置网卡或联网等。

龙芯派提供一路HDMI视频输出接口，也可用于转换为VGA或DVI接口使用。还提供一路DVO接口（也可复用为LIO），供使用者自由使用。同时，还有一路四线电阻屏控制接口，用于触摸屏的使用与开发。

龙芯2K1000处理器是面向网络安全领域及移动智能终端领域的双核处理器芯片。龙芯2K1000处理器集成两个GS264处理器核，芯片外围接口包括两路PCI-E 2.0、一路SATA 2.0、4路USB 2.0、两路DVO、64位DDR2/3及其他多种接口，可以满足中低端网络安全应用领域需求，并为其扩展应用提供相应接口。

龙芯派2K硬件规格如表1.3所示。

 表1.3　龙芯派2K硬件规格

 [image:]

龙芯派是一个迷你计算机，集成在一块电路板上，是一个能做很多嵌入式开发的智能硬件，能帮助开发者学习编程并了解计算机是如何工作的。它整合了开源硬件易用性和MPU的强大功能，非常适合嵌入式开发学习入门，且其软件资源丰富，能够进行机器视觉、视频解码、3D游戏等快速开发。

1.1.6　龙芯派一代与智龙开发板的差异

龙芯派一代与智龙开发板主要有以下差异。

（1）系统安装的区别

龙芯派硬件不含Nand Flash，因此内核都必须从SD卡、U盘或者网络加载，文件系统也存放于这些介质上。

智龙开发板的内核和文件系统存放在板上的Flash芯片上，当然智龙开发板的内核也可以与龙芯派一样从SD卡、U盘或者网络加载。

（2）程序的编译与执行

龙芯派运行内存有2GB，且有HDMI标准显示输出，等同于一台微型卡片计算机，因此完全可以在龙芯派上编辑、编译并运行程序。

智龙开发板Flash为1GB，内存为256MB，无法安装编译工具链，因此智龙开发板的程序都是在宿主机上编译后再通过网络或其他存储介质将目标文件下载到开发板执行。

1.1.7　龙芯派一代开发板操作与启动盘制作

启动前先装好SD卡、散热片、USB设备、网线、视频线等外设，最后将电源线插入龙芯派的5V Micro USB接口上，进行通电操作。正常通电的情况下，电源指示灯常亮，若此灯熄灭或闪烁，则表明电源供给不正常，需要检查电源供给电路的异常情况。

复位状态指示灯点亮表明系统处于复位状态。正常情况下，系统正常启动后此灯处于熄灭状态。如果没有按下复位按键，但此灯常亮或闪烁，则表明系统处于不正常复位状态，这样会导致系统无法正常启动，需要检查复位电路和电源供给电路是否存在异常。

默认情况下，黄、绿两网口灯同时亮起表明无网络连接；绿灯常亮、黄灯闪烁表明10Mbit/s网络连接且在使用状态；绿灯常亮、黄灯熄灭表明10Mbit/s网络接入且无活动；两灯闪烁表明当前状态为100Mbit/s接入且处于使用状态；两灯熄灭表明100Mbit/s网络接入且无活动；绿灯闪烁且黄灯常亮表示现在有1000Mbit/s网络连接并处于使用状态；绿灯熄灭、黄灯常亮表明1000Mbit/s网络连接正常但无数据活动。

在没有网线连接的情况下，如果板卡已经上电启动，默认RJ45网口的两个指示灯都会点亮。

默认UART0用于程序打印及查看调试信息，使用一个USB转LVTTL串口线即可在串口终端上进行查看，并作为控制台操作使用。

龙芯派目前提供3种系统的安装，分别为Loongnix、CentOS和SylixOS。其中，Loongnix与CentOS类似，安装时需要复制两部分内容：内核与文件系统，且这两种系统使用的内核相同。SylixOS采用官方提供的一键安装工具制作启动盘直接完成。

龙芯派采用启动盘启动。启动盘可使用U盘或者SD卡。下面以使用U盘（插入USB读卡器的SD卡等同于U盘）为例制作启动盘。启动盘上必须存放必要的内核及系统。

（1）内核和文件系统下载

内核和文件系统都是从龙芯派的官网下载，网址为：ftp://ftp.loongnix.org/loongsonpi/。

其中，acoinfo目录下为翼辉SylixOS操作系统手册、开发环境及启动盘制作方法；OS目录下为Linux内核及系统。Loongnix和CentOS系统使用相同的内核。

[image:]　Linux内核下载网址为ftp://ftp.loongnix.org/loongsonpi/os/new_fedora21/vmlinux。

[image:]　Loongnix系统下载网址为ftp://ftp.loongnix.org/loongsonpi/os/new_fedora21/fedora21.tar。

[image:]　CentOS系统下载网址为ftp://ftp.loongnix.org/loongsonpi/os/CentOS6.4-Multilibs-mips64-RC2-Build009-20150701.iso。

（2）启动盘制作方法

翼辉SylixOS操作系统的启动盘制作使用专用的一键安装工具，使用方便。

基于Linux内核和Loongnix、CentOS系统的启动盘必须自行制作，制作环境必须是Linux操作系统。可在虚拟机开启Linux操作系统制作启动盘，也可以使用安装Linux操作系统的机器制作。这里采用虚拟机的方法。

1．龙芯派开发板Loongnix系统安装及程序编译执行

（1）启动盘分区格式化

开启虚拟机，插入启动盘。这时Windows系统（主机）提示有USB设备插入，如图1.11所示。

 [image:]
 图1.11　主机插入USB设备后提示

此时要在主机将此USB设备弹出，虚拟机才能连接USB设备。接着在虚拟机的可移动设备中连接此USB设备，如图1.12所示。

 [image:]
 图1.12　虚拟机连接USB设备

在终端使用命令查看连接的USB设备。

 [image:]

最后一行即为已经连接的USB设备，此USB设备已经分区为1个，文件系统为FAT32。

下面进行重新分区、格式化、挂载，并复制内核和文件系统。

①分区具体操作如下。

 [image:]

使用的命令总结如下，其他处均按Enter键。

 [image:]

②格式化。

使用mkfs命令格式化分区为ext3类型。

root@ubuntu:~# mkfs.ext3 /dev/sdb1
mke2fs 1.42.13 (17-May-2015)
/dev/sdb1 contains a vfat file system
Proceed anyway? (y,n) y
/dev/sdb1 is mounted; will not make a filesystem here!
root@ubuntu:~#

提示/dev/sdb1已经挂载，不能格式化。使用命令卸载USB设备后格式化。

 [image:]

使用的命令总结如下，其他处均按Enter键。

 [image:]

（2）复制、解压内核及系统

将1.1.7节中下载的Linux内核/loongsonpi/os/new_fedora21/vmlinux复制到分区1根目录下。解压并复制后的分区1如图1.13所示。

将1.1.7节中下载的Loongnix系统/loongsonpi/os/new_fedora21/fedora21.tar解压并复制到分区2的根目录下（解压的时间会很长，为30分钟以上）。解压并复制后的分区2的文件系统如图1.14所示。

 [image:]
 图1.13　Loongnix系统分区1

 [image:]
 图1.14　Loongnix系统分区2

启动盘的分区1和分区2制作好后，不能立刻从USB接口拔下。首先，需要执行语句进行回写，这条命令可多执行几次。

 [image:]

然后，使用命令umount卸载启动盘。

root@ubuntu:~# umount /dev/sdb1
root@ubuntu:~# umount /dev/sdb2

最后，在虚拟机的可移动设备中操作断开连接后拔出USB设备，如图1.15所示。

（3）在PMON中设置启动位置

龙芯派依靠PMON引导内核。在PMON的界面下可进行系统启动运行的配置。PMON为引导内核启动的代码，存放在板载芯片SST25VF0332B上，系统上电后首先运行PMON。

龙芯派的串口与USB-TTL转接线连接。USB-TTL转接线的USB接口接入主机，TTL接口接上龙芯派的串口0（具体参考《2K龙芯派入门手册》）。在主机上打开PuTTY软件，连接控制台。龙芯派接上电源后，按开机键。在PuTTY控制台开机后出现提示符的3秒内，按键盘上除了Enter键之外的任何键，都可进入PMON，如图1.16所示。

 [image:]
 图1.15　在虚拟机中断开启动盘连接

 [image:]
 图1.16　按任意键进入PMON

首先，查看当前的环境。在PuTTY控制台中输入“env”命令后按Enter键，如图1.17所示。

 [image:]
 图1.17　查看当前环境

其次，输入命令，配置启动内核的位置。龙芯派可使用USB接口连接启动盘（U盘或者USB读卡器），也可以使用SD卡座连接启动盘（SD卡），或使用TFTP网络启动。

使用USB接口的U盘（或者插入USB读卡器的SD）上的内核和系统时，输入命令：

set al1 /dev/fs/ext2@usb0/vmlinux
set append "console=ttyS0,115200 console=tty root=/dev/sda2 rootdelay=10 video=ls2k-fb:800x600-16@60"

使用SD卡上的内核和系统时，输入命令：

set al1 /dev/fs/ext2@sdcard0/vmlinux
set append "console=ttyS0,115200 console=tty root=/dev/mmcblk0p2 rootdelay=10 video=ls2k-fb:800x600-16@60"

使用TFTP网络启动时，输入命令：

set al tftp://193.169.2.215/vmlinux
g

（4）系统启动和程序编译执行

①系统启动。

配置好启动内核的位置后，输入reboot命令重启龙芯派。成功重启后，大约经历3分钟，控制台显示要求输入用户名和密码。这里输入用户名root，密码为loongson，如图1.18所示。

 [image:]
 图1.18　Loongnix启动控制台界面

Loongnix中查看编译器，如图1.19所示。

 [image:]
 图1.19　Loongnix中查看编译器

如果插上了HDMI显示器，则同时从显示器输出。

由于启动过慢，按照龙芯社区爱好者brep的建议，可改成控制台登录，登录命令如下：

systemctl set-default multi-user.target

注意：修改参考龙芯俱乐部开源社区中文档《龙芯派loongnix系统的一些后续设置》，文档网址为http://www.openloongson.org/forum.php?mod=viewthread&tid=22689&extra=page%3D1。

②应用程序编译和运行。

编写helloworld.c文件：

 [image:]

复制到U盘，插到龙芯派上，如图1.20所示。

 [image:]
 图1.20　简单应用程序复制、编译和运行

简单应用程序复制、编译和运行的步骤如下。

①挂载U盘：

[root@localhost apps]# mount /dev/sda1 ~/mnt/sd1

②将文件helloworld.c复制到~/apps：

[root@localhost apps]# cp ~/mnt/sd1/helloworld.c ~/apps

③编译文件：

[root@localhost apps]# gcc helloworld.c -o helloworld

④运行目标文件：

[root@localhost apps]# ./helloworld
Hello World! This is Loongnix!

2．龙芯派开发板翼辉SylixOS操作系统安装及程序编译执行

（1）启动盘制作

下载官方网站的一键安装工具来制作启动盘，下载地址为ftp://ftp.loongnix.org/loongsonpi/acoinfo/RealEvo-SylixOS-Installer/RealEvo-SylixOS-Installer V3.8.1.zip。

制作方法参考文档《2K龙芯派翼辉SylixOS操作系统使用手册》，下载地址为ftp://ftp.loongnix.org/loongsonpi/acoinfo/2K龙芯派翼辉SylixOS操作系统使用手册v1.0.1.pdf。

（2）在PMON中设置启动位置

使用SD卡上的内核和系统时，输入命令：

set al1 /dev/fs/fat@sdcard0/bspls2klspi.elf

使用USB接口的U盘（或者插入USB读卡器的SD）上的内核和系统时，输入命令：

set al1 /dev/fs/fat@usb0/bspls2klspi.elf

使用TFTP网络启动时，输入命令：

set al tftp://193.169.2.215/bspls2klspi.elf
g

（3）程序编译执行

①下载SylixOS的IDE，下载地址为ftp://ftp.loongnix.org/loongsonpi/acoinfo/RealEvo-IDE/SylixOS IDE 3.7.3 EXP.iso。

下载完成后进行安装。安装过程中要求输入注册码，用手机扫描龙芯派上的二维码，可得到一个体验版本的license，输入即可。如果龙芯派上没有二维码，则可通过翼辉信息官方网站http://www.acoinfo.com/html/experience.php填写申请信息，申请试用RealEvo-IDE龙芯翼辉集成开发套件。

IDE的运行和程序编译执行可参考《2K龙芯派翼辉SylixOS操作系统使用手册》。

启动后控制台界面如图1.21所示。

 [image:]
 图1.21　翼辉SylixOS控制台启动界面

②编程、下载和运行。

在IDE中编写程序，然后上传。如图1.22所示，提示上传成功，且上传文件的目录为/apps/helloworld/helloworld。

 [image:]
 图1.22　翼辉SylixOS操作系统IDE编辑、上传程序

到控制台查看文件并运行，如图1.23所示。

 [image:]
 图1.23　翼辉SylixOS操作系统控制台运行程序

3．总结

龙芯派一代开发板可安装3种系统，每个系统都有其优点。

从安装和使用角度，翼辉SylixOS操作系统安装及程序编译执行是最方便和快速的，尤其对于新手和没有安装过Linux系统（虚拟机或者专门的Linux机器）的用户来说，入门极其简单。同时，《2K龙芯派翼辉SylixOS操作系统使用手册》所提供的支持和帮助也是其他操作系统开发不能够比的。

当然，如果需要学习Linux或者希望在Linux系统下进行应用开发，可安装Loongnix或CentOS。

1.1.8　龙芯派二代开发板操作

1．龙芯派二代开发板介绍

龙芯派二代开发板搭载最新一代的嵌入式处理器2K1000，提供了包括USB、GMAC、SATA、PCIE的主流接口，与龙芯派一代开发板相比，差异如表1.4所示。

 表1.4　龙芯派一代与龙芯派二代接口、功能对比表

 [image:]

2．龙芯派二代开发板Loongnix系统安装及程序编译执行

龙芯派二代开发板不仅提供了常规的4个UART接口，还有SPI、I2C、CAN接口，可方便地运行接口的实验。其硬件结构和安装请参考用户手册。龙芯派二代开发板如图1.24所示。

 [image:]
 图1.24　龙芯派二代开发板

（1）PMON启动

下面讲解安装过程。首先正常上电，电源指示灯会常亮；按开机键（丝印为start按键）后，蜂鸣器发出“嘀”短音，表示系统开始启动。

启动后进入PMON，其源码和编译工具链开源在ftp://ftp.loongnix.org/loongsonpi/pi_2/中，以方便用户开发。在虚拟机中编译PMON的步骤具体如下。

①进入zloader.ls2k目录。

②执行编译脚本cmd.sh里的命令，具体代码如下：

#/!bin/bash
export PATH=/opt/gcc-4.4-gnu/bin/:$PATH
make cfg all tgt=rom CROSS_COMPILE=mipsel-linux- DEBUG=-g

③在zloader.ls2k目录下生成二进制的PMON文件gzrom.bin，采用编程器或者仿真器将文件下载到SPI Flash中即可。

龙芯派二代开发板的PMON已经预先烧写到了SPI Flash中，按空格键可进入PMON设置界面。在PMON的命令行可以输入命令设置启动参数，参数修改后可存储在Flash中，重启后生效。关于PMON的命令详解，可参考附录4。

PMON的启动界面如图1.25所示。

 [image:]
 图1.25　龙芯派二代开发板PMON启动界面

（2）内核编译

龙芯派二代开发板在硬盘中已经预装了Loongnix系统，可以直接使用。如果需要修改内核，可基于官方提供的源码进行编译后再下载到龙芯派二代开发板中。

内核源码和编译工具链也开源在ftp://ftp.loongnix.org/loongsonpi/pi_2/中。在虚拟机中编译内核的步骤具体如下。

①在虚拟机中复制内核源码配置文件：

cp arch/mips/configs/loongson2k_defconfig .config

②在虚拟机中内核顶层目录下执行命令，对内核进行图形化配置：

./mymake menuconfig

③在虚拟机中编译内核：

./mymake vmlinux

④在PMON中烧写内核。首先将龙芯派二代开发板上电，进入PMON状态后按空格键，进行参数配置，内核分为两种，下面是带ramdisk的内核烧写命令：

set al "/dev/mtd1" # 设置启动分区为mtd1
set append "console=ttyS0,115200 rdinit/sbin/init" # 带ramdisk的内核使用这条语句配置启动参数串口0，速
率115200
mtd_rease /dev/mtd1 # 擦除分区1
devcp tftp://192.168.1.249/vmlinux /dev/mtd1 #复制内核到分区1，注意这里要配置PMON中网段与主机一致

重启后即完成烧写。

不带ramdisk的内核烧写命令为：

set al "/dev/mtd1" # 设置启动分区为mtd1
set append "root = /dev/mtdblock2 console=ttyS0,115200 rdinit/sbin/init noinitrd init=/linuxrc rw rootfstype=
yaffs2" # 不带ramdisk的内核使用这条语句配置启动参数串口0，速率115200
mtd_ erase /dev/mtd1 # 擦除分区1
devcp tftp://192.168.1.249/vmlinux /dev/mtd1 # 复制内核到分区1，注意这里要配置PMON中网段与主机一致
mtd_erase /dev/mtd2 # 擦除分区2
devcp tftp://192.168.1.249/yaffs2.img /dev/mtd2y # 复制根文件系统到分区2， 注意这里要配置PMON中网段与
主机一致

重启后即完成烧写。

（3）安装Loongnix系统

到官网下载安装文件longnix-2018630.iso，在虚拟机中用命令制作U盘启动盘：

dd if = longnix-2018630.iso of=/dev/sdb bs=8M # 注意这里/dev/sdb为实际盘符，可参考1.1.7节

将制作好的U盘连接到龙芯派二代开发板USB接口，重启开发板，选择2K USB安装模式。当启动到桌面后，双击安装系统图标，进入安装界面，按照提示操作完成系统安装。

（4）程序编译执行

开机后加载内核，然后启动系统。显示器显示登录界面，提示输入loongson用户的密码，这里输入密码为loongson。启动后界面如图1.26所示。

 [image:]
 图1.26　启动后界面

在文档目录中，建立文件hello.c，在当前文件夹中右击，选择Open in Terminal命令，打开终端，在终端输入编译和运行命令：

gcc hello.c -o hello
./hello

运行结果如图1.27所示。

 [image:]
 图1.27　龙芯派中编译和运行第一个简单应用程序

1.2　全龙芯的交叉编译平台

在集成的IDE中编辑、修改、编译、下载，要清楚CPU里运行的程序与实际编写的代码之间的关系，首先必须从CPU结构开始慢慢地熟悉构造和原理。

开发板里运行的操作系统是一个框架，加上对应的驱动才能操作线路板。操作系统加驱动构成了全部的源码；源码要经过编译后变成机器码，才能在芯片中运行。源码到机器码的过程就是编译，不同架构的芯片要使用不同编译器。51架构的用C51，ContexM3和ContexM4用ARM，这两种编译器都在IAR、MDK或Keil中集成，且在Windows中运行。

在ARM或者MIPS架构芯片中运行的基于Linux操作系统程序，必须在Linux系统下用相关的编译器进行编译。在Windows下进行编译几乎是不可能的，即使可以编译，在Linux下也不能使用，所以就有了安装Linux系统的必要。

目前，主流国产操作系统都是基于Linux内核的。下面介绍其中3种：中标麒麟操作系统、深度操作系统和普华操作系统，并以简单应用“Hello World!”为例，介绍这3种操作系统下安装工具链、编译程序和生成目标文件的方法。

1.2.1　在龙芯3A3000主机Loongnix系统中搭建龙芯1C开发环境

Loongnix是龙芯中科研发的龙芯基础软硬件标准以及社区版操作系统。Loongnix系统起源于2009年，历经Fedora13、Fedora19和Fedora21等多个版本的开发和优化，2015年正式发布为Loongnix系统。

Loongnix系统搭载在龙芯3A3000开发板上，安装在龙芯3A3000计算机上，如图1.28和图1.29所示。

 [image:]
 图1.28　龙芯3A3000开发板

 [image:]
 图1.29　南京龙众创芯电子科技有限公司提供的龙芯3A3000计算机

龙芯3A3000开发板配置如下。

[image:]　中央处理器：龙芯3A3000处理器

[image:]　南桥：AMD SB710

[image:]　北桥：AMD RS780E

[image:]　内存：2×DDR3 U-DIMM内存插槽

[image:]　显示：支持显示输出DVI-D/VGA接口

[image:]　扩展槽：1×PCIe 2.0×16扩展卡插槽或者2×PCIe 2.0×1扩展卡插槽

[image:]　存储：4×SATA 3.0Gb/s接口

[image:]　网络功能：RTL8111GN千兆网卡

[image:]　音频：Realtek® ALC 662 5.1声道高清晰音频编码解码器

[image:]　USB接口：4×USB 3.0/2.0连接端口或者6×USB 2.0/1.1连接端口

[image:]　背板I/O接口：1×RS232 COM接口

1×VGA接口

1×DVI-D接口

2×USB 3.0接口（蓝色）

1×LAN（RJ45）接口

2×USB 2.0接口

3×音频插孔

[image:]　内部I/O接口：1×前面板音频接口

1×USB 3.0接口，可扩展2组外接式USB 3.0接口

2×USB 2.0接口，可扩展4组外接式USB 2.0接口

1×系统控制面板接口

1×MINIPCIE接口

4×SATA 3Gbps连接接口

1×中央处理器风扇电源插槽（1×4 –pin）

1×机箱风扇接口（1×4 –pin）

1×24-pin EATX主板电源插槽

1×4-pin ATX 12V主板电源插槽

[image:]　尺寸规格：MicroATX 244mm×244mm

[image:]　操作系统：可安装Loongnix、中标麒麟、深度、普华等

在Loongnix系统中搭建龙芯1C开发环境类似于在Linux系统中搭建开发环境。

首先复制编译工具链gcc-4.3-ls232-on-loongnix.tar.gz（来自网盘或者官网服务器ftp://ftp.loongnix.org/embed/ls1b/toolchain/）到当前用户（root）下的opt目录中。解压缩后，在当前用户目录下的.bashrc中添加环境变量，如图1.30所示。

修改~/.bashrc文件后，重新加载路径：

source ~/.bashrc

安装完成后，可在任何目录下执行mipsel-linux-gcc-v，出现如图1.31所示指示，则安装成功。

 [image:]
 图1.30　Loongnix终端显示修改当前用户下的环境变量

 [image:]
 图1.31　Loongnix系统终端显示编译工具解压的交叉编译工具链

接着进行程序的编译（具体参见第5章）。编译程序（helloworld.c）命令如下：

[root@localhost helloworld] #mipsel-linux-gcc helloworld.c -o helloworld

编译前文件结构如图1.32所示。编译后文件结构如图1.33所示。

最后将编译生成的helloworld下载到开发板，修改权限后运行正常。

 [image:]
 图1.32　编译前文件结构

 [image:]
 图1.33　编译后文件结构

1.2.2　中标麒麟操作系统

中标麒麟操作系统为中标软件有限公司（以下简称中标软件）的产品。中标软件是国产操作系统产品专业化研发与推广企业，以操作系统技术为核心，重点打造自主可控、安全可靠等差异化特性产品。作为国家规划布局内重点软件企业，中标软件获得了军、民两方面的相关企业与产品资质，是国产操作系统旗舰企业。

中标软件的前身是中国软件的操作系统研发部门，在国产操作系统研发领域有着近三十年的历史积累，2003年脱离母公司后成立中标软件有限公司并发布中标普华Linux系列产品。2010年，中标普华与银河麒麟品牌合并，中标普华Linux淡出历史舞台，中标麒麟操作系统正式诞生。如今的中标麒麟操作系统在国内Linux市场占有率连年第一，已经在政府、国防、金融、教育、财税、公安、审计、交通、医疗、制造等行业得到深入应用，应用领域涉及我国信息化和民生各个方面，众多领域已经进入核心应用部分。

 [image:]
 图1.34　在中标麒麟桌面操作系统复制交叉编译工具

中标麒麟桌面和服务器操作系统都率先实现了对龙芯等国产CPU平台的支持，提供性能最优的操作系统产品。中标麒麟操作系统全面支持各类打印机、扫描仪、刻录机、投影仪、摄像头等国产外设；支持各类国产软件，包括多款国产办公软件、国产数据库以及国产中间件等。中标麒麟操作系统在完善自身的同时，结合国产芯片的特性，发挥国产平台的优势，在性能、安全等方面均有很大提高。目前，中标麒麟操作系统已成为国产芯片平台的首选操作系统。中标麒麟桌面操作系统V7.0（龙芯版）已经适配龙芯3A3000计算机。

在中标麒麟桌面操作系统复制交叉编译工具如图1.34所示。

添加编译工具环境变量如图1.35所示。

最后在中标麒麟桌面操作系统中编译源代码生成智龙开发板能够运行的目标文件，如图1.36所示。

 [image:]
 图1.35　在中标麒麟桌面操作系统添加编译工具环境变量

 [image:]
 图1.36　在中标麒麟桌面操作系统编译源代码

1.2.3　深度操作系统

深度操作系统是武汉深之度科技有限公司（以下简称深度科技）的产品。深度科技成立于2011年，是专注国产操作系统研发与服务的高科技企业。深度操作系统作为深度科技的核心产品，在国产操作系统产品中取得了众多突出的成绩，并在全球获得了广泛的认可。

深度科技致力于研发基于Linux内核的操作系统，并以其为核心为用户提供方案、管理、维护、咨询、定制、开发等相关服务，产品包括适配龙芯等硬件平台的深度操作系统桌面版和深度操作系统服务器版。深度操作系统龙芯桌面版和深度操作系统龙芯服务器版提供了基于安全可靠环境的操作系统替换方案，适用于在信息安全方面有特殊需求，但仍需向用户提供易用性、可靠性以及与国产软件和硬件的兼容性的场合。

深度操作系统龙芯桌面版能够安装在3A系列CPU的笔记本和台式机中，深度操作系统龙芯服务器版能够安装在3B系列的服务器中，通过产品设计和技术实现，在稳定、高效的前提下，带来前所未见的易用性。简洁的使用体验，可以帮助用户减少浏览和查找的时间，将更多精力投入工作。

在深度操作系统龙芯桌面版添加编译工具环境变量如图1.37所示。

 [image:]
 图1.37　在深度操作系统龙芯桌面版添加编译工具环境变量

在深度操作系统龙芯桌面版复制交叉编译工具如图1.38所示。

 [image:]
 图1.38　在深度操作系统龙芯桌面版复制交叉编译工具

最后，在深度操作系统龙芯桌面版中编译源代码生成智龙开发板能够运行的目标文件，如图1.39所示。

 [image:]
 图1.39　在深度操作系统龙芯桌面版编译源代码

1.2.4　普华操作系统

普华操作系统是普华基础软件股份有限公司开发的基础软件，以开源Linux为基础，结合普华公司技术团队多年在企业级关键业务应用的技术积累，对系统的性能、安全性、可靠性以及易用性进行优化和改进，针对不同的市场需求推出了服务器操作系统产品和桌面操作系统产品，支持国产龙芯等架构，满足电子政务、智慧城市、生产作业系统以及自主可控、安全可靠等多个领域的应用需求。

在其主办的“2017年全国大学生开源软件技术创意大赛”中，采用了山西百信的龙芯3B1500计算机和普华操作系统作为比赛开发平台，并发起了开源人才培养高峰论坛，呼吁更多的力量共同关注开源技术普及和人才培养。

在普华桌面操作系统复制交叉编译工具如图1.40所示。

 [image:]
 图1.40　在普华桌面操作系统复制交叉编译工具

在普华桌面操作系统添加编译工具环境变量如图1.41所示。

 [image:]
 图1.41　在普华桌面操作系统添加编译工具环境变量

最后，在普华桌面操作系统中编译源代码生成智龙开发板能够运行的目标文件，如图1.42所示。

 [image:]
 图1.42　在普华桌面操作系统编译源代码

1.3　安装Ubuntu/Fedora及其他程序

如果没有基于Linux内核的系统，想在Windows下进行Linux操作系统的操作，只能用虚拟机，Linux内核使用大量的GCC拓展，而且整个工程用Makefile来控制，在Windows下虽然有对应的GCC和make工具，但配置起来都比较麻烦。现在桌面版的Linux系统已经很人性化，如Fedora、Ubuntu都不需要繁杂的配置。本书后面将介绍利用虚拟机安装Ubuntu/Fedora的操作系统，及其后续的相关工作和方法。

必要程序的安装包括：

[image:]　安装交叉编译工具。

[image:]　编译生成BIOS/uboot/pmon、内核。

[image:]　使用buildroot或者BusyBox构建根文件系统。

[image:]　编写应用程序。

[image:]　编写驱动程序。

1.4　虚拟机常用目录

本书使用的虚拟机目录和IP地址如下。

[image:]　内核源码的目录：/Workstation/tools/kernel/linux-3.0.101。

[image:]　交叉编译工具链目录：/opt/gcc-4.3-ls232。

[image:]　制作的根文件系统目录：/Workstation/tools/makefs/rootfs。

[image:]　桌面机系统使用的IP：193.169.2.215，用于TFTP传送文件。

1.5　Windows下需要安装的其他软件

1．TFTP

Tftpd32是一个集成DHCP、TFTP、SNTP和Syslog多种服务的袖珍网络服务器包，同时提供TFTP客户端应用、tsize、blocksize和timeout支持等。这里主要用于文件的传递。

TFTP应用于主机（Windows操作系统）。首先将Tftpd32下载到PC机上，双击tftpd32.exe，出现如图1.43所示的配置界面。

 [image:]
 图1.43　Windows下配置TFTP过程示意图

TFTP可在虚拟机（Linux操作系统）中使用，网络上有很多方法，具体方法参考2.9节。

配置好TFTP后，紧接着要配置控制台软件PuTTY。

2．PuTTY

PuTTY是一个telnet、SSH、rlogin、纯TCP以及串行接口连接软件。较早的版本仅支持Windows平台，在最近的版本中开始支持各类UNIX平台，并打算移植至Mac OS X上。除了官方版本外，有许多第三方的团体或个人将PuTTY移植到其他平台上，如以Symbian为基础的移动电话。PuTTY为开放源代码软件，主要由Simon Tatham维护，使用MIT licence授权。随着Linux在服务器端应用的普及，Linux系统管理越来越依赖于远程。在各种远程登录工具中，PuTTY是出色的工具之一。PuTTY虽然是一个免费的、Windows平台下的telnet、rlogin和SSH客户端，但是功能丝毫不逊色于商业的telnet类工具。

把PuTTY下载到主机（Windows操作系统）上，双击putty.exe，出现如图1.44所示的配置界面。

 [image:]
 图1.44　Windows下配置PuTTY过程示意图

配置完成后，可打开如图1.45所示的界面。

 [image:]
 图1.45　控制台界面

通过PuTTY可进行PMON配置和操作智龙开发板。

[image:]　进入PMON的方法为：加电后按空格键。

[image:]　PMON中配置IP的命令行代码：

 [image:]

[image:]　PMON下载内核操作命令行代码：

 [image:]

[image:]　PMON中运行tftp远程系统（如RT-Thread内核）的命令行代码：

 [image:]

[image:]　下载并运行一个程序（ledtest）的命令行代码：

 [image:]

[image:]　几个不常用的命令行代码：

 [image:]

1.6　一点常识

开发板从贴片厂下线时，里面是没有任何程序的，这时一般通过JTAG接口烧写第一个程序，即PMON，借助PMON可以使用网口或者SD卡下载更加复杂的系统程序等，这在后面的章节中可以看到。除此之外，JTAG接口在开发中最常见的用途是单步调试，不管是市面上常见的JLINK还是ULINK，以及其他的仿真调试器，最终都是通过JTAG接口连接的。标准的JTAG接口是4线：TMS、TCK、TDI、TDO，分别为模式选择、时钟、数据输入和数据输出线，加上电源和地线，总共6条线。为了方便调试，大部分仿真器还提供了一个复位信号。因此，标准的JTAG接口是指是否具有上面所说的JTAG信号线，并不是20Pin或者10Pin等这些形式上的定义表现。只要这些接口中包含完整的JTAG信号线，都可以称为标准的JTAG接口，如图1.46所示为20 Pin的JTAG接口。

智龙开发板提供了包含完整JTAG标准信号的4 Pin JTAG接口。说明一下，对于打算致力于Linux或者RT-Thread开发的初学者而言，JTAG接口基本是没有任何意义和用途的，因为大部分开发板提供了完善的BSP，包括最常用的串口、网络和USB通信口，当系统装载了可以运行的Linux或者RT-Thread系统，用户完全可以通过这些高级操作系统本身所具备的功能进行各种调试，这时是不需要JTAG接口的；即使可以进行跟踪，但鉴于操作系统本身结构复杂，接口繁多，单步调试犹如大海捞针，毫无意义。

 [image:]
 图1.46　20Pin JTAG接口

想一想正在使用的PC就知道了，或许从没有见过甚至听过有谁会在PC主板上插一个仿真器，来调试PCI这样接口的Windows7或者Linux驱动。这就是为什么经常见到或者听到那么多人在讲驱动“移植”，因为大部分人都是参考前辈的实现来做驱动的。JTAG仅对那些不打算采用操作系统或者采用简易操作系统（如uCOS等）的用户有用。大部分开发板所提供的Bootloader或者PMON已经是一个基本完好的系统，因此并不需要单步调试。

1.7　本书使用的网络资源

本书使用的分散网络资源分别在章节中给出。其他没有给出具体出处的资源均可在笔者提供的GitHub、百度网盘及龙芯的官方网站下载。

GitHub（https://github.com/sundm75/Loongson-Smartloong-V2.0）中提供了开源例程和网盘链接，如图1.47所示。

 [image:]
 图1.47　GitHub资源

网盘提供开源例程、常用工具及软件、学习视频、智龙开发板电路图，如图1.48所示。

 [image:]
 图1.48　网盘资源

由于笔者水平有限，有时未能跟上龙芯官方的更新，读者也应熟练使用以下官方的资源。

[image:]　龙芯开源社区loongnix系统提供了所有龙芯芯片的资料、编译工具链、PMON源码和内核源码：http://www.loongnix.org/index.php/。

[image:]　龙芯开源社区的ftp，是上述龙芯资源的ftp服务器：ftp://ftp.loongnix.org/。

[image:]　龙芯俱乐部的开源社区，提供智龙开发板的所有开源项目资料：http://www.openloongson.org/forum.php。

另外，龙芯爱好者们也对龙芯提供了大量的支持，他们的博客或者GitHub如下。

[image:]　龙芯爱好者刘世伟的GitHub，提供了智龙开发板的Debian移植：https://gitHub.com/lshw/。

[image:]　龙芯爱好者勤为本的专栏，提供了龙芯1C库：http://blog.csdn.net/caogos。

[image:]　龙芯爱好者佐须之男的博客，进行了PMON引导的分析：http://forgotfun.org/blog.html。
第2章　虚拟机安装Linux操作系统

2.1　下载VMware Player并安装

VMware Player是官方免费精简版的虚拟机软件，可访问https://www.vmware.com/cn.html进行下载，与本书同期较新的版本是VMware Workstation 15.5.2。

下载后常规安装即可。

2.2　下载Ubuntu桌面系统

Ubuntu系统基于Debian发行版和GNOME桌面环境。Ubuntu的目标在于为一般用户提供一个最新的，同时又相当稳定的、主要由自由软件构建而成的操作系统。它可免费使用，并带有社团及专业的支持。读者可以在以下网址选择合适的版本：http://www.ubuntu.com/download/desktop。

2.3　安装Ubuntu

新建虚拟机，导入Ubuntu桌面系统光盘映像，如图2.1所示。

单击“自定义硬件”按钮进行设置，如图2.2所示。

 [image:]
 图2.1　安装Ubuntu界面

 [image:]
 图2.2　进行硬件设置

在“显示器”设置界面中取消选中“加速3D图形”复选框，如图2.3所示。

在“网络适配器”设置界面中将网络连接设置为“桥接模式”，如图2.4所示。

 [image:]
 图2.3　虚拟机中显示器设置

 [image:]
 图2.4　虚拟机中网络适配器设置

单击“配置适配器”按钮，如果有两个网卡，则都选中，如图2.5所示。

 [image:]
 图2.5　虚拟机中桥接设置

不要更新，否则速度太慢，如图2.6所示。

 [image:]
 图2.6　虚拟机中软件更新设置

接着开始进行自动安装，直至安装完成。

2.4　进入终端的方法

打开Ubuntu终端，有3种方法。

[image:]　桌面虚拟终端

执行菜单命令，也可以直接运行gnome-terminal或xterm等。

[image:]　控制台终端

取消gdm服务，按Ctrl+Alt+F2组合键。

恢复桌面系统，按Ctrl+Alt+F7组合键。

[image:]　远程登录

在物理机中运行相应工具，远程登录。

2.5　建立root用户并自动登录

（1）建立root用户：

 [image:]

（2）设置root用户自动登录：

gedit /usr/share/lightdm/lightdm.conf.d/50-ubuntu.conf

添加以下代码：

 [image:]

在修改root权限自动登录后，发现开机出现以下提示：

Error found when loading /root/.profile
stdin:is not a tty

需要修改profile文件：

gedit/root/.profile

打开文件后找到mesg n，将其更改为tty -s && mesg n。

2.6　安装VMware Tools

VMware Tools是VMware虚拟机中自带的一种增强工具，只有在VMware虚拟机中安装好VMware Tools，才能实现主机与虚拟机之间的文件共享，以及文件在虚拟机之间的复制、粘贴，并可以根据自身需要自由切换显示屏幕的尺寸。

安装VMware Tools需使用linux.iso映像文件。在VMware的安装目录下找到linux.iso文件。打开VMware，单击虚拟机设置，导入linux.iso文件，该步骤相当于把光盘插入光驱中，如图2.7所示。

 [image:]
 图2.7　虚拟机安装VMware Tools

运行虚拟机，单击Player，选择“可移动设备”→CD/DVD→“连接”命令，如图2.8所示。

 [image:]
 图2.8　选择虚拟光盘

弹出显示光盘内容的界面，然后将VMwareTools-9.6.5-2700074.tar.gz解压到/opt/下，如图2.9所示。

 [image:]
 图2.9　VMware Tools解压过程

依次执行以下指令，安装VMware Tools，安装过程中选择默认设置，按Enter键。

 [image:]

在终端输入vm，然后按两次Tab键（自动补齐），若系统把VMware Tools的命令补齐，则安装成功。

 [image:]

如果无法实现文件在虚拟机之间的复制、粘贴，则必须手动启动WMware用户进程，即在虚拟机的终端输入vmware-user start命令。

2.7　安装必要的软件

1．更新源

安装软件基本使用apt-get install命令，但是要先使用以下命令更新源：

apt-get update

如果出现以下提示，就必须执行更新源的操作。后面安装所有的程序就都能用apt-get install命令（网络安装比较方便）。

 [image:]

如果出现以下提示，表示在Ubuntu中没有设置软件源。

Some packages could not be authenticated

设置软件源的具体操作为：打开Ubuntu软件中心，依次单击“Software & Updates”“Ubuntu Software”，再选择“Download from Other…”，最后单击Choose a Download Server界面中的“Select Best Server”，根据网络状况选择最好的服务器，最后确认，如图2.10所示。

 [image:]
 图2.10　设置软件源

2．安装以下软件（非必要，可选）

辅助编译rtthread的工具：

apt-getinstall python
apt-getinstall scons

利用tftp传输文件的工具：

apt-get install xinetd
apt-get install tftp-hpa
apt-get install tftpd-hpa

其中，tftp-hpa是client，tftpd-hpa是server。

完整的vim编辑器：

apt-get install vim

下载内核源码：

apt-get install Linux-source

安装git工具：

apt-get install git

通过apt-get install命令安装软件后，可以使用dpkg-L <软件名>命令查看这些软件的源码以及安装后文件的存放位置。例如，查看VIM的安装位置：

root@ubuntu:/Workstation# dpkg -L vim
/.
/usr
/usr/share
/usr/share/doc
/usr/share/lintian
/usr/share/lintian/overrides
/usr/share/lintian/overrides/vim
/usr/share/bug
/usr/share/bug/vim
/usr/share/bug/vim/script
/usr/share/bug/vim/presubj
/usr/bin
/usr/bin/vim.basic
/usr/share/doc/vim

2.8　查看相关版本和信息

（1）查看Linux版本：

cat /etc/issue

或者

uname -a

或者

cat /proc/version
Linux version 4.2.0-16-generic (buildd@lgw01-22) (gcc version 5.2.1 20151003 (Ubuntu 5.2.1-21ubuntu2))
#19-Ubuntu SMP Thu Oct 8 14:46:51 UTC 2015

或者

uname -r
4.2.0-16-generic

说明：/proc文件系统不是普通的文件系统，而是系统内核的映像，也就是说，该目录中的文件是存放在系统内存之中的，它以文件系统的方式为访问系统内核数据的操作提供接口。而使用命令uname -a的信息就是从该文件获取的，当然用命令直接查看它的内容也可以达到同等效果。另外，加上参数a是获得详细信息；如果不加参数，为查看系统名称。

（2）查看gcc版本

gcc -version
gcc -v
man gcc
gcc -dumpversion

（3）查看系统位数：

getconf WORD_BIT

（4）查看文件属性：

file *

在Linux内核的根目录下的Makefile文件中关于Linux版本号的内容为：

VERSION = 3
PATCHLEVEL = 0
SUBLEVEL = 82
EXTRAVERSION =
NAME = Sneaky Weasel

以上的版本号是3.082。

2.9　虚拟机Linux系统中TFTP服务搭建

（1）获取root权限。本文在初期安装虚拟机时，已经是root用户。

（2）安装tftp。如2.7节中介绍，使用以下命令安装：

apt-get install xinetd
apt-get install tftp-hpa
apt-get install tftpd-hpa

（3）建立传输目录并获取权限，如图2.11所示：

mkdir /tftproot
chmod 777 /tftpboot

 [image:]
 图2.11　虚拟机中创建tftp目录及修改权限

（4）创建测试文件，如图2.12所示：

touch text

 [image:]
 图2.12　虚拟机中根目录创建测试文件

进入/tftproot/下再建立测试文件texttftp，如图2.13所示。

 [image:]
 图2.13　虚拟机中tftp目录创建测试文件

（5）修改配置文件：

vi /etc/default/tftpd-hpa3

修改内容为：

/etc/default/tftpd-hpa

TFTP_USERNAME="tftp"
TFTP_DIRECTORY="/tftproot"
TFTP_ADDRESS="0.0.0.0:69"
TFTP_OPTIONS="-l -c -s"

（6）重启tftp使配置生效：

service tftpd-hpa restart

（7）进行本地测试：

 [image:]

以上命令将根目录下的text复制到/tftproot/，将/tftproot/下的texttftp复制到根目录。

（8）检测是否开启了tftp服务，如图2.14所示。

 [image:]

 [image:]
 图2.14　虚拟机中检测是否开启tftp服务

第3章　安装工具链、编译内核、制作文件系统

3.1　安装交叉编译工具gcc-4.3-ls232

解压缩交叉编译工具到/opt下：

tar zxvf gcc-4.3-ls232.tar.gz -C /opt

指定编译路径，添加环境变量（类似Windows系统中的PATH），打开当前用户下的.bashrc文件：

vi ~/.bashrc

在其末尾添加以下语句：

export PATH=/opt/gcc-4.3-ls232/bin:$PATH

改变完~/.bashrc文件后，重新加载路径：

source ~/.bashrc

安装完成后，可在任何目录下执行mipsel-linux-gcc-v，出现以下指示，则安装成功。

root@ubuntu:/# mipsel-linux-gcc -v
Using built-in specs.
Target: mipsel-linux
Configured with: ../gcc-4.3.0/configure --prefix=/opt/gcc-4.3-ls232 --host=i486-pc-linux-gnu
--build=i486-pc-linux-gnu --target=mipsel-linux --host=i486-pc-linux-gnu
--with-sysroot=/opt/gcc-4.3-ls232/sysroot --with-abi=32 --disable-nls --enable-shared --disable-multilib
--enable-__cxa_atexit --enable-c99 --enable-long-long --enable-threads=posix
--enable-languages=c,c++,fortran --enable-poison-system-directories
Thread model: posix
gcc version 4.3.0 (GCC)

如果提示No such file or directory，使用which命令可以找到，环境变量没有问题。原因是计算机上安装的是64位的操作系统，但是交叉工具链是32位的，出现兼容问题，安装32位共享库之后，能解决绝大部分兼容性问题。which及库安装命令如下：

 [image:]

3.2　编译和烧写PMON

安装编译工具pmoncfg需要依赖的库：

apt-get install bison
apt-get install flex

编译PMON还依赖于工具makedepend：

apt-get install xutils-dev

将源码包pmon-ls1x-openloongson.tar.gz复制到/Workstation/tools/，并解压到该目录下，然后进入pmoncfg目录（后面所有的工作文件都放在/Workstation目录下）：

cd /Workstation/tools/pmon/pmon-ls1x-openloongson/tools/pmoncfg

执行编译命令，将生成的可执行文件复制到交叉编译工具链的bin目录下：

make
cp pmoncfg /opt/gcc-4.3-ls232/bin

进入相应的目录，执行编译命令：

cd /Workstation/tools/pmon/pmon-ls1x-openloongson/zloader.ls1c
make cfg all tgt=rom CROSS_COMPILE=mipsel-linux-

最后生成gzrom.bin。

采用编程器，将gzrom.bin文件烧写进Winboard 25X40芯片。

（1）配置文件。

/Workstation/tools/pmon/pmon-ls1x-openloongson/Targets/LS1X/conf/ls1c

该配置文件内容与ls1c_300a_openloongson相同，ls1c_300a_openloongson是该开发板的备份配置文件。

（2）NAND Flash分区。在/Workstation/tools/pmon-ls1x-openloongson/Targets/LS1X/dev/ls1x_nand.c文件中设置分区，如图3.1所示。

代码如下：

 [image:]

 [image:]
 图3.1　虚拟机中ls1x_nand.c文件显示分区的相关配置

分区说明：

[image:]　kernel 14MB：用于烧录内核。

[image:]　rootfs 100MB：用于烧录根文件系统。

[image:]　data 14MB：可以用作其他。

注意：分区大小要与Linux内核中的一致。

bootloader分区保留给NAND启动用，所以PMON中烧录内核和根文件系统的命令为：

devcp tftp://193.169.2.215/vmlinux /dev/mtd0
devcp tftp://193.169.2.215/rootfs-yaffs2.img /dev/mtd1 yaf nw

使用SPI Flash启动。若使用NAND Flash启动，可以根据自己使用的情况修改分区，注意Linux内核中也要修改。

3.3　编译和烧写内核

详细过程参考23章，这里简要讲解。

首先安装图形化配置工具Ncurses：

apt-get install libncurses5-dev

复制内核源码包linux-3.0.101.tar.gz，并解压到内核源码包根目录/Workstation/Loongson_1C/BSP/Linux_Kernel下：

tar zxvf linux-3.0.101.tar.gz
cd linux-3.0.101

运行图形化配置命令：

make ARCH=mips CROSS_COMPILE=mipsel-linux- menuconfig

执行后进入内核配置主菜单界面，由于源码中已经全部配置好，这里不需要进行任何改动，直接保存退出，如图3.2所示。

 [image:]
 图3.2　虚拟机中配置内核界面

查看平台文件arch/mips/loongson/ls1x/ls1c/ls1c300b_cbiiv0a.c：

 [image:]

在PMON的启动中创建的3个MTD如下：

Creat MTD partitions on "ls1x-nand": name="kernel" size=14680064Byte
Creat MTD partitions on "ls1x-nand": name="os" size=104857600Byte
Creat MTD partitions on "ls1x-nand": name="data" size=14680064Byte

将平台文件的ls1x_nand_partitions改成PMON的启动中创建的3个MTD，否则内核不能启动：

 [image:]

配置完内核后，执行编译命令：

make ARCH=mips CROSS_COMPILE=mipsel-linux-

编译完成后，在当前目录下生成内核镜像文件vmlinux（未压缩）和vmlinuz（压缩后），将开发板进入PMON（在终端按空格键，开机），先擦除数据，再烧写其中一个。

mtd_erase /dev/mtd0
devcp tftp://193.169.2.215/vmlinuz /dev/mtd0

3.4　制作根文件系统

3.4.1　配置和编译BusyBox

从网址http://www.busybox.net/downloads/下载BusyBox。

BusyBox是一个集成了一百多个最常用Linux命令和工具的软件，甚至还集成了一个http服务器和一个telnet服务器，而包含这一系列功能的BusyBox工具包却只有1MB左右。BusyBox的完全可定制性，提供了非常灵活且宜于扩展的结构。

因为最新版本的BusyBox要依赖更新版的内核头文件，这里使用的是Linux 3.0.101的内核，而其中不具备新版的BusyBox的某些功能，所以编译过程中很可能会出错，这里下载并使用BusyBox 1.23.0版本。

BusyBox的配置方法类似于Linux内核的配置。下载并解压busybox-1.23.0.tar.bz2工具包后，进入busybox-1.23.0目录，运行make menuconfig，根据需要选择需使用的模块，保存退出后会在本地生成一个.config文件，它指定BusyBox在编译的过程中需要包含哪些功能。

将工具包复制到虚拟机/Workstation/tools/makefs下解压BusyBox源码包，然后进入目录。

tar jxvf busybox1.23.0.tar.bz2
cd busybox-1.23.0

运行图形化配置命令：

make menuconfig

配置选项简述，其他按默认配置：

Busybox Settings --->
Build Options --->(以下为二选一)
[*] Build BusyBox as a static binary (no shared libs)（静态编译）
[*] Build shared libbusybox（动态编译）

指定交叉编译器，交叉编译器的绝对路径前缀，可根据自己情况修改：

(/opt/gcc-4.3-ls232/bin/mipsel-linux-) Cross Compiler prefix

定制库：

Busybox Library Tuning --->
[*] vi-style line editing commands
[*] Username completion(文件系统识别PS1，以命令行提示符)
[*] Fancy shell prompts

其他组件：

Miscellaneous Utilities --->
[] ubiattach
[] ubidetach
[] ubimkvol
[] ubirmvol
[] ubirsvol
[] ubiupdatevol
[] ionice

配置完成后清除：

make clean all

编译安装：

make install

在Busybox-1.23.0目录下有_install目录，正是所需要的。

另外，也可以使用命令：

make CONFIG_PREFIX=/Workstation/tools/makefs/rootfs/ install

将生成的install安装到指定的目录下。

本代码安装到/Workstation/tools/makefs/rootfs/目录下。

3.4.2　创建文件系统目录

在3.4.1节配置和编译BusyBox中创建的…/rootfs/目录下，创建文件系统目录：

cd /Workstation/tools/makefs/rootfs/
mkdir dev home proc tmp var etc lib mnt sys opt root etc/init.d var/log

3.4.3　创建系统配置文件

进入刚创建的rootfs目录中，创建根文件系统必要的文件：

cd /Workstation/tools/makefs/rootfs/

（1）etc/inittab文件

inittab文件是init进程的配置文件，是系统启动后所访问的第一个脚本文件，后续启动的文件都由它指定。

用Vi编辑器来编辑inittab文件：

vi etc/inittab

添加如下内容：

 [image:]

上面ttyS2::respawn:-/bin/sh中的ttyS3是指终端的控制台输出口，如想使用ttyS1或其他口，则需修改此配置，同时在文件系统启动参数也要相应修改对应的串口（参考3.5.3节）。

（2）etc/ init.d/rc.sysinit文件

rc.sysinit文件是一个脚本文件，可以在里面添加想自动执行的命令。以下命令配置环境变量、主机名、dev目录环境，挂接/etc/fstab指定的文件系统，建立设备节点与设置IP。

打开文件rc.sysinit：

vi etc/init.d/rc.sysinit

添加如下内容：

 [image:]

在这个启动脚本中，使用了mdev。在应用启动后，使用medv -s命令自动创建设备节点。

（3）etc/fstab文件

执行mount -a命令时挂接/etc/fstab指定的文件系统。

打开文件fstab：

vi etc/fstab

添加如下内容：

 [image:]

（4）etc/profile文件

inittab中执行了respawn:-/bin/sh语句。启动/bin/sh程序时会启动ash的配置信息，即/etc/profile，sh会把profile的所有配置全部运行一遍，因此用户可以把自己的启动程序放在这里。

打开文件profile：

vi etc/profile

添加如下内容：

#!/bin/sh
#/etc/profile:system-wide .profile file for the Bourne shells
echo "Processing /etc/profile..."

#set search library path
export LD_LIBRARY_PATH=/lib:/usr/lib

#set user path
export PATH=/bin:/sbin:/usr/bin:/usr/sbin

#Set PS1 modify command prompt
export PS1='[\u@\h:\w]\$'

#Set hostname
/bin/hostname "Loongson"
HOSTNAM=/bin/hostname

export PS1 HOSTNAME

#Set ll aliae
alias ll="ls -l"
echo "Done!"

修改系统配置文件权限

chmod 755 /Workstation/tools/makefs/rootfs/etc/*
chmod 755 /Workstation/tools/makefs/rootfs/etc/init.d/rc.sysinit

复制BusyBox文件

将3.4.1节编译安装好的BusyBox文件复制到rootfs目录中：

cp /Workstation/tools/makefs//busybox-1.23.0/_install/* . -ra

如果是使用以下命令创建的rootfs目录，则可以省去以上复制的过程。

make CONFIG_PREFIX=/Workstation/tools/makefs/rootfs/ install

除了以上文件之外，还制作文件mdev.conf、resolv.conf、group passwd和文件夹hotplug放在etc目录下。

目录hotplug下也有一些文件，如图3.3所示。

 [image:]
 图3.3　hotplug文件夹内容复制

3.4.4　复制库文件

动态编译BusyBox制作文件系统，需将交叉编译工具里的加载器和动态库文件复制到根文件系统里。若选择静态编译，则省略该步骤。

交叉编译工具的加载器在目录/opt/gcc-4.3-ls232/sysroot/lib/中：librt.so.1、ld.so.1、libc.so.6、libcrypt.so.1、libm.so.6、libdl.so.2、libpthread.so.0、libresolv.so.2。

动态库文件在目录/opt/gcc-4.3-ls232/mipsel-linux/lib/中：libgcc_s.so.1、libstdc++.so.6。

将以上文件复制到根文件系统下的lib目录。

这些库文件中，除了libgcc_s.so.1之外都是链接文件，因此复制这些库文件也要复制被链接的文件。在相应的目录中执行ll命令可查看这些库文件的链接关系。在执行复制命令时需要在命令后加-L参数，即随符号链接复制原文件。

使用脚本快速复制所需的基本动态库：

vi cplib.sh

添加如下内容：

 [image:]

运行脚本：

chmod +x cplib.sh
./cplib.sh

可以看到，libgcc_s.so.1大小约为3MB，如图3.4所示。

 [image:]
 图3.4　压缩前libgcc_s.so.1文件属性

为了减小根文件系统的库，使用交叉编译工具即mipsel-linux-strip的strip工具来处理库文件，把二进制文件中包含的符号表和调试信息删除，可有效减少库文件大小。

mipsel-linux-strip rootfs/lib/*so*

压缩后libgcc_s.so.1大小约为246KB，如图3.5所示。

 [image:]
 图3.5　压缩后libgcc_s.so.1文件属性

至此，根文件系统（目录/Workstation/tools/makefs/rootfs）制作完成。

3.5　制作根文件系统镜像

3.5.1　安装镜像文件制作工具

所使用的工具如下。

[image:]　zlib-1.2.8.tar.gz：依赖工具。

[image:]　cramfs-1.1.tar.gz：制作cramfs文件系统工具。

[image:]　yaffs2-d43e901.tar.gz：制作yaffs2文件系统工具。

[image:]　lzo-2.09.tar.gz：依赖工具。

[image:]　e2fsprogs-1.42.13.tar.gz：依赖工具。

[image:]　mtd-utils-1.5.1.tar.bz2：制作ubifs文件系统工具。

将以上工具复制至Workstaion/tools/makefs下，并解压。

（1）安装依赖工具zlib。zlib的下载地址是http://www.zlib.net/，也可以从网盘中复制。

tar zxvf 1.zlib-1.2.8.tar.gz
cd zlib-1.2.8
./configure
make
make install
cd ...

（2）安装cramfs文件系统镜像文件制作工具mkcramfs。

提示：也可使用Ubuntu系统自带的制作cramfs文件系统工具mkfs.cramfs。

tar zxvf 2.cramfs-1.1.tar.gz
cd cramfs-1.1
make

在当前目录下生成mkcramfs，将其复制到/usr/bin目录下。

cp mkcramfs /usr/bin
 cd ...

（3）安装yaffs2文件系统镜像文件制作工具mkyaffs2image。

tarzxvf 3.yaffs2-d43e901.tar.gz
cd yaffs2-d43e901/utils
make

在当前目录下生成mkyaffs2image，将其复制到/usr/bin目录下。

cp mkyaffs2image /usr/bin
cd .../...

（4）安装依赖工具lzo。lzo的下载地址是http://www.oberhumer.com/opensource/lzo/download/。

tar zxvf 4.lzo-2.09.tar.gz
cd lzo-2.09
./configure --build= i686-linux-gnu --prefix=/Workstation/tools/makefs/install
make
make install
cd ...

（5）安装依赖工具e2fsprogs（也可以用apt-get installe2fsprogs安装）。e2fsprogs的下载地址是http://sourceforge.net/projects/e2fsprogs/files/e2fsprogs/。

tar zxvf 5.e2fsprogs-1.42.13.tar.gz
cd e2fsprogs-1.42.13
./configure --build= i686-linux-gnu --prefix=/Workstation/tools/makefs/install
make
make install
cd lib/uuid
make install
cd .../.../...

（6）安装ubifs文件系统镜像文件制作工具mtd-utils。安装过程请参考网址http://blog.chinaunix.net/xmlrpc.php?r=blog/article&uid=23089249&id=4385560。

mtd-utils依赖于zlib、lzo、e2fsprogs提供的库，所以编译mtd-utils之前，需要先编译zlib、lzo、e2fsprogs，并安装到编译工具相应目录下。

mtd-utils的下载地址是ftp://ftp.infradead.org/pub/mtd-utils/。

方法1：用命令安装ubifs文件系统镜像文件制作工具mkfs.ubifs和ubinize。

apt-get install mtd-utils

方法2：用安装包来安装ubifs文件系统镜像文件制作工具。

tar jxvf 6.mtd-utils-1.5.2.tar.bz2
cd mtd-utils-1.5.2

修改Makefile：

vi Makefile

在版本说明VERSION = 1.5.2行后面添加如下内容：

PREFIX = /Workstation/tools/makefs/install/mtd
DEPEND = /Workstation/tools/makefs/install
ZLIBCPPFLAGS = -I/usr/local/include
ZLIBLDFLAGS = -L/usr/local/lib
LZOCPPFLAGS = -I$(DEPEND)/include
LZOLDFLAGS = -L$(DEPEND)/lib
LDFLAGS += $(ZLIBLDFLAGS) $(LZOLDFLAGS)
CFLAGS ?= -O2 -g $(ZLIBCPPFLAGS) $(LZOCPPFLAGS)

修改common.mk：

vi common.mk

找到并注释掉PREFIX=/usr行：

#PREFIX=/usr

编译安装：

WITHOUT_XATTR=1 make
make install
cd ...

将在安装目录install/mtd/sbin下生成的可执行文件mkfs.ubifs和ubinize复制到/usr/bin目录下：

cp install/mtd/sbin/mkfs.ubifs /usr/bin
cp install/mtd/sbin/ubinize /usr/bin

3.5.2　制作根文件系统镜像文件

使用安装好的镜像文件制作工具来制作在3.4节中完成构建的根文件系统目录rootfs的镜像文件。

1．cramfs文件系统

使用mkcramfs工具：

 [image:]

或使用系统自带的工具：

 [image:]

2．yaffs2文件系统

使用mkyaffs2image工具：

 [image:]

3．ubifs文件系统

（1）使用mkfs.ubifs命令将rootfs文件夹制作为UBIFS镜像，具体命令为：

mkfs.ubifs -r rootfs -m 2048 -e 129024 -c 370 -o ubifs.img

以上命令的含义为将rootfs文件夹制作为UBIFS文件系统镜像，输出的镜像名为ubifs.img，-m参数指定了最小的I/O操作的大小，也就是NANDFlash一个page的大小，-e参数指定了逻辑擦除块的大小，-c参数指定了最大的逻辑块号。

通过此命令制作出的UBIFS文件系统镜像可在u-boot下使用ubiwrite命令烧写到NANDFlash上。

（2）新建配置文件ubinize.cfg。

ubinize.cfg为一些配置参数：

[ubifs]
mode=ubi
image=ubifs.img
vol_id=0
vol_size=45MiB
vol_type=dynamic
vol_alignment=1
vol_name=rootfs
vol_flags=autoresize

提示：智龙开发板使用2KB页大小的NAND Flash芯片，文件系统分区大小为50MB。配置文件中vol_size的大小不能大于文件系统分区，vol_size的值约等于-e参数（逻辑擦除块大小）乘以-c参数（最大逻辑擦除块数）。

使用ubinize命令可将使用mkfs.ubifs命令制作的UBIFS文件系统镜像转换成可直接在Flash上烧写的格式（带有UBI文件系统镜像卷标）：

ubinize -o ubi.img -m 2048 -p 128KiB -s 2048 -O 2048 ubinize.cfg

通过此命令生成的ubi.img可直接使用NANDFlash的烧写命令烧写到Flash上。

提示：内核配置UBIFS的支持请参考3.4.1节。

3.5.3　烧写根文件系统

将开发板进入PMON（在终端按空格键开机）。在PMON中，先擦除数据，再烧写*.img文件。

mtd_erase /dev/mtd1
devcp tftp://193.169.2.215/rootfs-yaffs2.img /dev/mtd1 yaf nw

设置文件系统启动参数：

 [image:]

第4章　使用buildroot构建根文件系统

本章与3.4节中的功能是完全一致的。根据本章buildroot构建出来的根文件系统，必须配合刘世伟工程师发布并维护的3.18版本的内核才能启动，网盘中也存放着该版本内核文件。

4.1　获取buildroot

在嵌入式系统中，buildroot是一个从源码构建根文件系统和开发用工具链的自动化工具，类似的工具还有OpenEmbedded/Yocto，但buildroot的使用相对简单直接，使用命令make menuconfig配置用户界面，可以很方便地进行各种系统软件包、编译等方面的参数配置。可以从buildroot官网（http://buildroot.uclibc.org/download.html）获取buildroot源码包。buildroot基本上3个月更新一次，这里使用LTS版本2018.02.4，源码包是buildroot-2018.02.4.tar.bz2。

4.2　系统构建

为了编译出智龙开发板可用的镜像格式，Ubuntu要先安装相关包，才可以使用buildroot进行编译。使用以下命令安装相关包：

apt-get update
apt-get upgrade
apt-get install build-essential gzip bzip2 perl tar cpio unzip rsync bc libncurses5-dev git texinfo python

解压源码包：

tar xvf buildroot-2018.02.4.tar.bz2

buildroot的配置是在shell里面的类图形化配置。这里已经编写好了最小的根文件系统的配置文件，复制配置文件ls1c-SmartLoong-config至buildroot的根目录下进行构建：

cd buildroot
cp ls1c-SmartLoong-config .config
make

上述命令与Linux内核的配置工具和使用方法完全相同，只是buildroot将会从网络上下载自己所需要的基础软件包以及构建工具链，在首次构建时，软件包的下载和构建将会需要比较长的时间。

在系统构建过程中，如果下载软件时间过长，可以将本书提供的已经下载好的软件dl.tar.bz2解压到自己的dl目录下，以减少下载时间。

4.3　烧写根文件系统镜像

根据4.4节配置，在make命令执行完成之后，会在output/images/文件夹下生成所需要文件，即为可以烧录到智龙开发板中的根文件系统镜像。

与3.5.3节将根文件系统镜像rootfs.cramfs或者rootfs.jffs2烧录到智龙开发板中类似，烧写cramsf格式文件系统镜像的命令如下：

PMON> mtd_erase /dev/mtd1
PMON> devcp tftp://193.169.2.215/rootfs.cramfs /dev/mtd1
PMON> set append 'root=/dev/mtdblock1 console=ttyS2,115200 rootfstype=cramfs'

烧写jffs2格式文件系统镜像的命令如下：

PMON> mtd_erase /dev/mtd1
PMON> devcp tftp://193.169.2.215/rootfs. jffs2 /dev/mtd1
PMON> set append 'root=/dev/mtdblock1 console=ttyS2,115200 rootfstype= jffs2'

烧写ext4格式文件系统镜像的命令如下：

PMON > mtd_erase /dev/mtd1
PMON > devcp tftp://193.169.2.215/rootfs.ext2 /dev/mtd1
PMON > set append "root=/dev/mtdblock1 console=ttyS2,115200 rootfstype=ext4 noinitrd rw"

烧写yaffs2格式文件系统镜像的命令如下：

PMON > mtd_erase /dev/mtd1
PMON > devcp tftp://193.169.2.215/rootfs.yaffs2 /dev/mtd1 yaf nw
PMON > set append "root=/dev/mtdblock1 console=ttyS2,115200 rootfstype=yaffs2 noinitrd rw"

4.4　根文件系统软件包的定制

使用buildroot可构建一个基础系统，这里重点讲述CPU设置、构建设置、工具链配置、系统配置、内核、基础系统软件包及文件系统镜像，其余部分可以默认，如图4.1所示。执行如下命令进行根文件系统软件包的定制：

make menuconfig

 [image:]
 图4.1　buildroot构建基础系统需要配置项

1．CPU设置

针对龙芯1C，因为其mips32r2的实现不算标准，只能选择mips32作为目标来构建一个工具链。处理器的架构配置如下：

 [image:]

2．构建设置

配置构建过程中从哪里下载源码，下载后放在哪里。这里以GentooLinux（一个完全从源码构建和定制系统的PC上的Linux发行版）源码镜像站为主要下载站点，网址为http://mirrors.163.com/gentoo/distfiles/。有些包，如Gentoo、distfile等可能没有，buildroot可自动切换到后备站点。下载软件的存放位置为顶层目录的上一级dl目录下。

 [image:]

3．工具链配置

buildroot的其中一个主要功能就是构建工具链，在大多数自定义系统的情况下，可以配置buildroot来构建针对开发板CPU的特性并极度优化的工具链，从而提升系统整体性能。配置交叉工具链：

 [image:]

4．系统配置

系统配置设置root用户的密码、主机名和欢迎信息等，可根据需要自行设置。设备节点的配置表，选择system/device_table_dev.txt，否则后面在dev目录下将不会生成各种设备节点。系统配置如下：

 [image:]

5．内核

该设置可以跳过，因为自己做开发，不编译内核。

6．基础系统软件包

配置目标应用及相关库，根据需要进行选择。选择多，意味着根文件系统的大小和内容均增加，可自行根据需要进行配置。因为buildroot使用了BusyBox的工具，可直接添加相关开发库。

音视频应用配置mplayer：

 [image:]

开发工具选择git、make：

 [image:]

语言包选择lua、micropython：

 [image:]

开发库设置：

 [image:]

7．文件系统镜像

最终生成的根文件系统的类型设置：

 [image:]

内核的api发生了变化，但yaffs2的支持并没有跟上，只支持3.x的内核，因此这里无法生成可用的yaffs2格式的系统。打包yaffs2文件系统镜像所使用的命令为mkyaffs2image，而不是buildroot中默认打包yaffs2的mkyaffs2指令。可以先解压rootfs.tar文件，再使用3.5.2节中的方法自行制作所需要的根文件系统。如需要制作yaffs2的系统，在/buildroot-2018.2.4/output/images目录下使用如下命令：

 [image:]

将内核与根文件系统下载到开发板，启动后在控制台上的显示如图4.2所示。

 [image:]
 图4.2　使用buildroot生成jffs2格式的根文件系统启动显示界面

4.5　buildroot构建交叉编译工具链

buildroot构建的输出目录是其源码目录下面的output目录，里面共有4个文件夹。其中host文件夹是buildroot构建过程中产生的工具链和SDK包，不仅包括编译器，还有在buildroot menuconfig中选择的所有包涉及的头文件。

文件夹output/host/mipsel-mips32-linux-gnu/sysroot中，针对每个交叉编译工具链（一般针对其目标target)，比如这里的mipsel-mips32-linux-gnu，有在交叉编译过程中产生的一切头文件和库文件，放到一个与根文件系统差不多的目录结构里。例如，在使用mipsel-linux-gcc编译时，需要链接sqlite数据库的库文件libsqlite3.so，此文件如果在buildroot里配置（sqlite3是默认配置构建的），就能在mipsel-mips32-linux-gnu/sysroot/usr/lib/下面找到该文件。如果给交叉编译工具链传递一个-lxx库链接参数，交叉编译工具链找不到某个库，则此库在buildroot构建过程中是没有构建出来的，需要执行make menuconfig命令重新配置并编译。

buildroot构建输出目录output/host是工具链和SDK，如果想把这个sdk独立出来，在另一个地方部署使用，则可以使用buildroot的导出sdk功能后再打包。

 [image:]

文件mipsel-ls1c-gcc7-sdk.tar.bz2就是利用buildroot构建出来的交叉编译工具链，可发布并在其他机器上解包，添加至环境变量后使用，使用之前先运行命令更新路径：

root@ubuntu:/opt/mipsel-ls1c-gcc7-sdk# ./relocate-sdk.sh
Relocating the buildroot SDK from /media/root/fd626b44-0998-4c6d-91f4-bcc580d9d5df/buildroot/ls1c-
build-root-minimal-gcc7/buildroot-2018.02.4-gcc7/output/host to /opt/mipsel-ls1c-gcc7-sdk ...
root@ubuntu:/opt/mipsel-ls1c-gcc7-sdk#

sdk下面除了bin，还有sbin，最好也加入PATH变量里面，因为这里面有如下工具：

 [image:]

这些工具很多涉及系统image打包，可能有用，加入PATH变量后，如图4.3所示，就不用去虚拟机中安装对应工具了。另外，图中所示的工具链一共有3种，可根据需要更换。

 [image:]
 图4.3　添加系统工具和更换工具链

第5章　简单应用编程Hello World

5.1　智龙开发板上运行程序

在虚拟机终端输入：

vi helloworld.c

添加如下内容：

 [image:]

编译程序：

mipsel-linux-gcc helloworld.c -o helloworld

有时可能会出现错误：

root@ubuntu:/Workstation/examples/AppProg/1.helloworld# mipsel-linux-gcc helloworld.c -o helloworld
helloworld.c: In function 'main':
helloworld.c:5: error: stray '\342' in program
helloworld.c:5: error: stray '\200' in program
helloworld.c:5: error: stray '\234' in program

出现此问题的原因是，源代码中存在中文状态下的字符，如“”和，等，将其改过来即可。

将helloworld从虚拟机复制到主机，在PuTTY中执行命令：

 [image:]

刚开始运行helloworld命令，权限不够，采用语句chmod u+x helloworld加权限后，能够正常运行。

5.2　友善之臂开发板mini2440上运行程序

本书在内核原理及应用程序的编写、编译和下载过程方面的相关内容，与常见ARM架构芯片的使用过程是相同的。下面采用市场上比较流行的友善之臂开发板mini2440示例简单应用程序的编写、编译和下载。

首先在虚拟机上安装友善之臂开发板所使用的工具链arm-linux-gcc-4.4.3-20100728。工具链安装过程同3.1节，安装目录为/opt/FriendlyARM/toolschain/4.4.3/bin，如图5.1所示。解压缩交叉编译工具到/opt下，然后指定编译路径，添加环境变量（类似Windows系统中的PATH），打开当前用户下的.bashrc文件：

vi ~/.bashrc

在其末尾添加语句：

export PATH=/opt/FriendlyARM/toolschain/4.4.3/bin:$PATH

改变完~/.bashrc文件后，重新加载路径：

source ~/.bashrc

安装完成后，可在任何目录下执行arm-linux-gcc。

 [image:]
 图5.1　友善之臂开发板所使用的工具链

编译5.1节中helloworld.c代码，生成hello目标文件，如图5.2所示。编译命令为：

arm-linux-gcc helloworld.c -o hello

将hello目标文件从虚拟机复制到主机，在友善之臂开发板控制台中执行命令，如图5.3所示。采用语句chmod u+x helloworld加权限后，运行hello目标文件，运行结果与5.1节中的结果一致。

 [image:]
 图5.2　采用arm-linux-gcc工具链编译helloworld.c

 [image:]
 图5.3　在友善之臂开发板控制台中下载并运行hello目标文件

5.3　ARM架构应用程序的移植

ARM架构芯片的基于Linux的应用程序与本书的应用程序类似，如文件系统操作、网络系统操作。5.2节展示了文件系统应用程序的通用性，下面说明网络系统应用程序的通用性。

采用友善之臂开发板配套的例程，实现功能为采用UDP协议建立客户端，先接收服务器数据，再将从键盘接收到的数据发送到服务器。

例程在友善之臂开发板配套光盘目录/opt/FriendlyARM/mini2440/examples/udptalk下。

 [image:]

PC的IP地址为193.169.2.215，开发板的IP地址为193.169.2.230。在虚拟机上编译后下载到开发板上运行。在开发板的终端输入：

udptalk 193.169.2.215 8888 193.169.2.230 8888

开发板等待PC发出消息。PC上建立服务器监听端口8888，发送消息“Hello,Loongson!”；开发板收到后，等待键盘输入；输入“Hello, PC!”后按Enter键；PC收到后打印显示。运行结果如图5.4所示，其中左图为PC的服务器，右图为智龙开发板的控制台。

 [image:]
 图5.4　友善之臂开发板例程在智龙开发板上移植后运行结果

第6章　简单驱动程序编写

6.1　驱动的原理及编写流程

从上到下，一个软件系统可以分为应用程序、库、操作系统（内核）、驱动程序。其中，Linux内核就是由各种驱动组成的，内核源码中大约85%是各种驱动程序的代码。内核中驱动程序种类齐全，可以在同类型驱动的基础上进行修改，以符合不同的单板。

驱动程序与APP的关系如图6.1所示。

 [image:]
 图6.1　驱动程序与APP的关系

驱动程序编写的流程如下。

（1）查看原理图、数据手册，了解设备的操作方法。

（2）在内核中找到相近的驱动程序，以之为模板进行开发。

（3）实现驱动程序的初始化：注册、传入文件名。

（4）设计所要实现的操作：open、close、read、write等函数。

（5）实现中断服务（不是每个设备驱动必需）。

（6）编译驱动程序到内核，或者用insmod加载。

（7）编写应用程序，用来测试驱动。

6.2　驱动模块的加载与卸载

可以将驱动程序静态编译进内核，也可以将其作为模块在使用时加载，使用方法如下。

方法1：手工加载和挂载。模块的扩展名为*.ko，使用insmod命令或者modprobe命令加载到内核，使用rmmod命令卸载，使用lsmod命令查看内核中已经加载了哪些模块。

方法2：配置某个目录下的Kconfig和Makefile，然后使用make menuconfig来配置。配置内核时，如果某个配置项设为[m]，表示它将会被编译成一个模块；如果某个配置项设为[*]，表示它将会被编译进内核。

一般来说，开发过程中经常使用的是方法1，方法2主要在出厂时使用。

6.3　最简单的Linux驱动

Linux驱动必须限制在内核规定的某个架构下。

模块的入口函数也称模块加载函数，当执行insmod或modprobe命令加载驱动模块到内核时，驱动模块的入口函数就会自动被内核执行。至于模块入口函数需要完成什么工作，则由编程决定。

模块出口函数也称为模块卸载函数，当执行rmmod命令卸载驱动模块时，驱动模块的出口函数就会自动执行。至于模块出口函数需要完成什么工作，也由编程决定。

许可证（LICENSE）声明该模块的许可权限，如果不声明，就会收到内核的警告。

模块参数、模块作者、模块导出符号、模块描述是可选的。

最简单的hello驱动源码：

 [image:]

6.4　驱动的编译和执行

编写Makefile：

 [image:]

以上代码需注意：

[image:]　Workstation/tools/kernel/linux-3.0.101是虚拟机的内核源码的目录，要根据自己内核位置进行相应修改，而内核源码一定要编译过，而且开发板上下载的vmlinuz版本也是这个编译过的版本，否则会出现编译错误或者编译正确后无法加载错误。

[image:]　make -C…这一行代码，行首要使用Tab键进行缩进，而不是空格。Rm-rf…这一行代码，行首也是缩进。

[image:]　make -C $(KDIR) M=$(PWD)：命令是make modules命令的扩展，-C选项的作用是指将当前的工作目录转移到指定的目录，即（KDIR）目录，程序到（shellpwd）当前目录查找模块源码，将其编译、生成.ko文件。

[image:]　$(PWD)：指当前目录的全路径名称。

以下是模块加载不成功错误，提示version版本问题。

[root@Loongson:/]#insmod hello.ko
hello: disagrees about version of symbol module_layout
insmod: can't insert 'hello.ko': invalid module format

Makefile代码说明如下。

（1）定义生成目标。

如果模块源码目录中的Kbuild或Makefile中没有定义编译目标，则编译无法生成目标文件。

下面一行代码定义了要生成的目标：

obj-m: = <module_name>.o

obj-m变量是指外部模块，其后面的<module_name>.o指定最终生成<module_name>.ko模块。在默认情况下，内核源码编译系统会将<module_name>.c编译成<module_name>.o，并最终链接生成<module_name>.ko。如果<module_name>.ko需要多个源文件，Makefile要按以下形式编写：

obj-m: = <module_name>.o
<module_name>-objs: = src1.o src2.o ….

（2）Kbuild文件：

make -C $(KDIR) M=$(PWD) modules ARCH=mips CROSS_COMPILE=mipsel-linux-

make -C $(KDIR)指明跳转到内核源码目录下，读取那里的Makefile；M=$(PWD)表明返回到当前的目录继续读入，执行当前的Makefile。

（3）头文件。

在内核源码树中，头文件的存放规则如下：

①如果头文件定义的是模块内部的接口，则头文件放在模块所在的目录下。

②如果头文件中内容在内核其他子系统中使用，则放在include/linux目录下。

将hello.c和Makefile放在虚拟机某一文件夹下，运行make：

 [image:]

以上代码：首先进入内核源码目录，编译出hello.o的文件，运行MODPOST生成临时的hello.mod.c文件，而后根据此文件编译出hello.mod.o，之后连接hello.o和hello.mod.o文件，得到模块目标文件hello.ko，最后离开Linux内核所在的目录回到当前目录。运行ls命令查看当前目录下文件：

 [image:]

Module.symvers文件包含了内核以及编译后的模块导出的所有符号。对于每一个符号，相应的CRC校验值也被保存，Module.symvers每一行数据格式如下：

 [image:]

Module.symvers文件主要有以下用途：

[image:]　列出vmlinux和所有模块的导出函数。

[image:]　列出所有符号的CRC校验值。

modules.order文件记录了Makefile中模块出现的顺序，modprobe通过该文件来确定解决多个模块匹配的别名（指定模块的绝对路径）。modules.order文件内容如下：

kernel//root/Downloads/developdrivers/1th_hello/hello.ko

hello.mod.c文件产生了ELF（Linux所采用的可执行／可连接的文件格式）的2个节：_module和.modinfo。hello.mod.c文件内容如下：

 [image:]

将生成的hello.ko用tftp传入开发板：

tftp -r hello.ko -g 193.169.2.215

在开发板上运行：

[root@Loongson:/]#insmod hello.ko
Hello_init!
Hello,world!

再卸载模块：

[root@Loongson:/]#rmmod hello.ko
rmmod: can't change directory to '/lib/modules': No such file or directory

运行错误，没有找到该目录。查找原因为BusyBox的配置，在3.4.1节中，采用如下配置，其中Module Utilities为简化配置，没有rmmod等选项。

--- Applets
Linux Module Utilities --->
[*] Simplified modutils
[*] Accept module options on modprobe command line (NEW)
[*] Skip loading of already loaded modules (NEW)
--- Options common to multiple modutils
[] Try to load module from a mmap'ed area
(/lib/modules) Default directory containing modules
(modules.dep) Default name of modules.dep

现在采用如下配置选项：

[*] modinfo
[] Simplified modutils
[*] insmod
[*] rmmod
[*] lsmod
[*] Pretty output
[*] modprobe
[*] Blacklist support
[*] depmod
--- Options common to multiple modutils
[] Support version 2.2/2.4 Linux kernels
[] Try to load module from a mmap'ed area
[*] Support tainted module checking with new kernels
[*] Support for module.aliases file
[*] Support for module.symbols file
(/lib/modules) Default directory containing modules
(modules.dep) Default name of modules.dep

配置后重新编译BusyBox，制作根文件系统并下载至开发板，如3.4.1节进行操作。

现在运行加载、显示、卸载命令及结果如下：

 [image:]

模块能够正常地加载与卸载。

6.5　内核配置驱动

内核有很多文件，但不是每个文件都是必须编译的，这就是内核裁剪。内核裁剪是通过配置内核编译选项来进行的。在源码根目录下使用以下命令进行配置：

make ARCH=mips CROSS_COMPILE=mipsel-linux- menuconfig

其中，驱动模块也能像配置菜单那样，将驱动配置到内核中。配置步骤如下。

（1）复制hello.c到源码目录的drivers/char目录下。

（2）修改drivers/char目录下的Konfig，添加代码：

 [image:]

依赖定义depends on或requires指此菜单的出现是否依赖于另一个定义。

这样当执行make menuconfig时，将会出现Hello test module选项。该HELLO_MODULE配置项只对LS1C_MACH处理器有效，即只有在选择了LS1C_MACH时，该菜单才可见（可配置）。LS1C_MACH处理器的选择在内核目录下/Arch/Mips/Loongson/Kconfig文件中定义。

 [image:]

如图6.2所示，LS1C_MACH依赖于Loongson 1C board选项。

（3）修改driver/char目录下的Makefile，添加内容：

obj-$(CONFIG_HELLO_MODULE) += hello.o

当运行make menucofig时，会发现Hello test module选项，假如选择了此项，该选择就会保存在.config文档中。当编译内核时，将会读取.config文档，若发现HELLO_MODULE选项为yes，系统在调用/driver/char/下的makefile时，将会把hello.o加入内核中，即可达到编译内核的目的。

（4）回到Linux源码的根目录，使用make menuconfig命令进行配置。

进入Device Driver-->Character devices-->后可以看到如图6.3所示的配置。

 [image:]
 图6.2　虚拟机中驱动配置选项

 [image:]
 图6.3　虚拟机中新出现模块选项

保存配置，若保存为<M>，即以模块方式加载进内核；若保存为<*>，表示编译进内核。此时输入make modules命令，可以编译模块。

 [image:]

然后输入make modules_install，把编译好的模块复制到系统目录（一般是/lib/modules/）下。

 [image:]

最后生成的模块文件（.ko）就在/lib/modules/***/下，如图6.4所示。找到需要添加的模块文件，如果是开发板，就将此文件下载到开发板。最后insmod模块名，就可以动态加载模块。

在使用make modules命令之后，即可编译内核模块。复制到系统目录下的目的是方便使用。一般加载驱动使用modprobe ***命令，该命令从系统目录下查找名为***的模块。其实也可以不做make modules_install，但是这样就需要每次手动从编译目录里运行insmod。运行modules_install的另一个作用是会运行depmod生成modules.dep文件，该文件记录了模块之间的依赖关系。这样当运行modprobe***命令（自动处理可载入模块）时就能够把***所依赖的模块一并加载。

 [image:]
 图6.4　虚拟机中编译成功ko模块

写好驱动程序之后会生成.ko文件，此.ko文件就是编译之后生成的模块文件，也就是Makefile文件中obj-m所生成的文件，然后需要将此文件加载到模块，即使用insmod或者modprobe命令将生成的模块文件（.ko文件）加载进内核，但是此时所写好的应用程序还是不能运行，需要在/dev下创建设备节点。手动创建设备节点的方法是：mknod设备节点名称　设备类型　主设备号　次设备号，如mknod memdev c 260　0，创建好之后会在/dev目录下看到一个字符设备名字为memdev的类型，此时应用程序才能正常运行。

下面讲解在源文件中添加代码使之加载模块时自动创建设备节点，从而达到高效的作用。

在源程序中添加头文件#include <linux/device.h>，需要使用头文件里面的struct class结构，以及class_create、device_create、device_destroy、class_destroy函数，具体使用方法参见头文件，在此不再赘述。

在chr_dev_init(void)函数中可以看到，所有字符设备的初始化函数（IDE_INT_init之类）都要添加在这里。

自动创建设备节点见附录6。

6.6　LED子系统剖析

下面透过LED驱动研究驱动编写及使用的过程。首先在menuconfig中定义：

 [image:]

平台文件ls1c300b_cbiiv0a.c添加对LED驱动的支持：

 [image:]

Makefile中：

 [image:]

如图6.5所示，显示了LED类下的目录。

 [image:]
 图6.5　开发板控制台显示LED平台设备界面

Linux自身携带了LED子系统，其核心文件包括driver/leds/led-class.c、driver/leds/led-core.c、driver/leds/led-triggers.c和include/linux/leds.h。其中最重要的是led-class.c文件和led-core.c文件。

带有class的文件为类，具有一组设备共有的特性。led-class.c实现了该类设备公共函数的功能。首先由函数leds_init(void)建立一个leds类，再建立设备节点，最后在设备节点下建立可读写的属性文件。

LED的初始化函数leds_init(void)如下：

 [image:]

函数class_create()创建了类leds_class结构体变量，因此会在/sys/class目录下多了类leds。所属的模块为THIS_MODULE，设备的名字为leds。指针leds_class->suspend指向函数led_suspend()，用于设备休眠调用。led_suspend()函数代码如下：

 [image:]

结构体led_classdev定义如下：

 [image:]

led_suspend()函数是数据结构体led_classdev中的成员，其中brightness_set是指向函数的指针，在leds-gpio.c文件的函数create_gpio_led()中，定义了brightness_set指向gpio_led_set函数。

 [image:]

gpio_led_probe()函数调用了create_gpio_led()函数，这样在平台驱动注册时，就能创建leds类。

 [image:]

平台驱动注册定义如下：

 [image:]

平台驱动注册时，在结构体定义了gpio_led_probe：

 [image:]

这样在注册时，会先运行gpio_led_probe函数，从而实现leds类的创建。

最后调用subsys_initcall(leds_init)，从而在系统启动后立即运行leds_init函数。

subsys_initcall(leds_init); //定义MODULE的情况下对subsys_initcall的定义，等价于使用module_init，见附录5)
module_exit(leds_exit);

gpio_led_set()函数实现了设置led的亮度功能：

 [image:]

建立leds类后，要建立设备节点，这在函数led_classdev_register()中完成，代码如下：

 [image:]

先建立设备：

led_cdev->dev = device_create(leds_class, parent, 0, led_cdev, "%s", led_cdev->name)；

函数原型为：

device_create(struct class *class, struct device *parent,dev_t devt, void *drvdata, const char *fmt, ...)，

基于函数device_create_vargs，实现在/sys/class/leds目录下产生设备节点，从而产生对应的设备。

最后使用device_create_file函数创建属性文件，并在/sys/class/leds目录下创建一系列属性文件，如brightness max_brightness trigger等。

图6.5展示了在class下建立了5个设备节点，包括led_blue、led_green等，每个设备节点下建立属性文件，其中有一个brigtness，往这个文件执行命令，cat是读出，echo是写入，如在板子上执行echo 1 >brightness时，灯亮；执行echo 0 >brightness时，灯灭。对于为什么会亮，为什么又会灭，将在8.1节讲解。

leds-gpio.c文件是基于platform模型，使用硬件资源内核进行调度和操作。

6.7　led_trigger接口分析

led_trigger_register()函数代码如下（源码位置：/driver/leds/led-triggers.c）：

 [image:]

先初始读写保护锁，初始化链表led_cdevs，再注册触发器，遍历trigger_list链表中是否有同名的trigger，如果名字跟led_cdev->default_trigger一样，则调用led_trigger_set()函数，把当前trigger加入led_cdev->trigger_list链表后激活，从而为led灯对象指定触发器对象。

led_classdev是leds类下的设备，led_trigger是led_classdev下的一个算法，led_trigger_set()函数定义了这个算法的实现方式，可以用来指示系统中某个设备的状态。

 中级篇应用

 第7章　Linux应用编程

7.1　Linux应用编程的基础知识

Linux应用编程需要学习的基础知识有C语言和数据结构，其中重点学习数据结构中的链表，至于树、图这些稍微复杂的数据结构可以稍作了解。

有了上篇的基础，再来学习Linux应用编程，对编写应用程序能起到事半功倍的效果。Linux应用编程需要学习的内容如下。

[image:]　库函数的使用，如memcpy、memset、strstr、strcpy等。

[image:]　Shell编程，很多游戏行业必须熟悉Shell编程。

[image:]　文件I/O编程，这是最常用的应用编程。

[image:]　进程编程和进程间通信。

[image:]　多线程编程。

[image:]　网络编程。

7.2　文件I/O编程

在Linux操作系统中，几乎一切都可以看作是文件。串口、打印机、硬盘等设备都可以看作是文件，学过驱动的读者应该知道/dev/xxx都是设备文件。大多数情况下，这些文件所涉及的函数接口有open、read、write、ioctl和close。目录在Linux环境下确实也是一个文件，只不过打开目录文件，用的函数不再是open或read，而是使用opendir或readdir接口来读取目录。另外，应用程序工程师不必了解上面提到的系统接口函数是如何实现的。总结一下，Linux中的文件主要分为4种：普通文件、目录文件、链接文件和设备文件。

在Linux环境下，所有的设备和文件的操作都是使用文件描述符来进行的。文件描述符是一个非负整数，它是一个索引值，并指向内核中每个进程打开的记录表。当打开一个显存或创建一个新文件时，内核就向进程返回一个文件描述符，当需要读写文件时，也需要把文件描述符作为参数传递给相应函数。一般来说，一个进程的启动，都会打开3个文件：标准输入、标准输出和标准出错。这3个文件分别对应文件描述为0、1和2（也就是宏替换STDIN_FILENO、STDOUT_FILENO和STDERR_FILENO）。基于文件描述符的I/O操作是Linux中最常用的操作之一。

不带缓存的I/O操作又称底层I/O操作。文件底层I/O操作的系统调用主要用到5个函数：open、read、write、lseek和close。这些函数的特点是不带缓存，直接对文件进行操作。函数说明如表7.1所示。

 表7.1　文件底层I/O操作函数

 [image:]

在Linux系统中，拥有非常多的API接口，这些函数接口有非常多的参数，参数中又有很多选择，如何记住这些参数？那就要常用、多用。

例如，要查询open函数的参数以及参数的用法，最常用的方法如下：

方法1：在Linux命令行中，使用man open（有些API函数使用man 2 xxx）。

方法2：使用搜索引擎直接搜索想要查询的函数。

方法3：查阅书籍，查看API函数用法，或者直接查看书籍上的源码。

实例源码：fileio.c，熟练运用文件I/O中open、close、write、read、lseek函数的操作。首先打开当前目录下的hello.c文件，如果此文件不存在则先创建，然后写入“hello,I'm Loongson,This is file io test!”，此时文件指针位于文件尾部，接着使用lseek函数将文件指针移到文件开始处，并读出15个字节，将其打印出来。

 [image:]

编写Makefile文件（在虚拟机上）：

 [image:]

上述6行字必须存为Makefile文件，注意第2、4、6行必须以Tab键缩进，不能以空格键缩进。放入与fileio.c相同目录下，然后执行make命令即可编译程序，执行make clean可清除编译出来的结果。

将生成的fileio通过tftp传入开发板，修改权限后运行（在开发板上）。

 [image:]

文件描述符为3，是因为通常每一个进程都首先打开0、1、2文件，也就是标准输入、标准输出和标准出错处理，所以这里打开的fd为3。

7.3　进程和线程

进程是系统中程序执行和资源分配的基本单位。相应的，线程是一个进程内的基本调度单位，也可以成为轻量级进程。线程是在共享内存中并发的多道执行路径，它们共享一个进程的资源，如文件描述符和信号处理。因此，大大减少了上下文的切换开销。一个进程内的多线程共享一个用户地址空间。由于线程共享了进程的资源和地址空间，因此任何线程对系统资源的操作都会给其他线程带来影响，这样一来就要实现多线程之间的同步。

在多线程系统中，线程与进程的关系如图7.1所示。

 [image:]
 图7.1　线程和进程关系示意图

7.4　多进程操作

进程是一个程序一次执行的过程。它和程序的本质区别是，程序是静态的，是一些保存在磁盘上的指令的有序集合，没有任何执行的概念；而进程是一个动态的概念，是指程序执行的过程，包含动态创建、调度和消亡的整个过程，是程序执行和资源管理的最小单位。因此，对系统而言，当用户在系统中输入命令执行一个程序时，它将启动一个进程。

进程也是用一系列数字来代表进程号的，该进程号称为PID可唯一地标识一个进程。父进程号就是PPID，它们都是非零的正整数。

在Linux中获得当前进程PID和PPID的系统调用函数为getpid和getppid，下面以getpid.c为例进行说明（后面举例便不再编写Makefile文件，可采用第5章中的命令）。

#include<sys/types.h>
#include<unistd.h>
#include<stdio.h>
int main(void)
{
printf("The PID of the process is:%d\n",getpid());
printf("The PPID of the process is:%d\n",getppid());
return 0;
}

虚拟机中编译：

mipsel-linux-gcc getpid.c -o getpid

开发板中运行结果如下：

[root@Loongson:/]#./getpid
The PID of the process is:70
The PPID of the process is:50

进程是程序的执行过程，根据它的声明期可以划分为3种状态。

（1）执行态：该进程正在执行，即进程正在占用CPU。

（2）就绪态：进程已经具备执行的一切条件，正在等待分配CPU的处理时间片。

（3）阻塞态：进程还不具备占用CPU的权力，若等待时间发生可将其唤醒。

这3种状态之间有4种可能的转换关系。

（1）执行态→就绪态。

（2）执行态→阻塞态。

（3）就绪态→执行态。

（4）阻塞态→就绪态。

3种状态之间的转换关系如图7.2所示。

注意：阻塞态是不能直接跳跃到执行态的。

 [image:]
 图7.2　进程3种状态转换关系示意图

在进程中使用fork函数，会创建一个新进程，新的进程称为子进程，原来的进程则称为父进程。fork函数的特别之处在于函数执行一次却返回两个值。重点是，父进程返回的是子进程的进程号，而子进程返回0。因此，可以通过返回值来判定该进程是父进程还是子进程。以下为实例源码fork.c：

 [image:]

虚拟机中编译：

mipsel-linux-gcc fork.c -o fork

运行结果如下：

[root@Loongson:/]#./fork
Current value is 76. In father process, father PID = 50
[root@Loongson:/]#Current value is 0. In child process, child PID = 76

从实例中可以看出，使用fork函数新建了一个子进程，其中父进程返回子进程的PID（即76），而子进程的返回值为0。

7.5　进程间的通信

进程是一个程序一次执行的过程。这里所说的进程一般是指运行在用户态的进程，而处于用户态的不同进程之间是彼此通信的。例如，一个进程把数据写到通信媒介（如管道）上，另一个进程就可以从媒介（如管道）中取出数据。经常听到的管道、消息队列、共享内存、信号量、套接字等都是常见的进程间的通信方式。本节主要讲解前3种通信方式。

7.5.1　管道

管道是Linux系统中最古老的进程间通信方式，其作用是把一个程序的输出直接连接到另一个程序的输入。例如，在Shell中输入命令ls | more，这条命令的作用是列出当前目录下的所有文件和子目录，如果内容超过一页，则自动进行分页。符号“|”就是Shell为ls和more命令建立的一条管道，它将ls的输出直接送进了more的输入，如图7.3所示。

管道可分为无名管道和有名管道，介绍如下。

1．无名管道

无名管道具有如下特点：

（1）它只能用于具有亲缘关系的进程之间通信，如父子进程或者兄弟进程之间。

（2）它是一个半双工的通信模式，具有固定的读端口和写端口。

管道也可以看成是一种特殊的文件，对于它的读写也可以使用普通的read和write函数。但它不是普通的文件，并不属于其他任何文件系统，并且只存在于内存中。在Linux的文件属性中带有p（pipe）的文件就是管道文件。一个进程向管道中写的内容被管道另一端的进程读出。写入的内容每次都添加在管道缓冲区的末尾，并且每次都是从缓冲区的头部读出数据。

实例源码：pipe.c，通过pipe函数创建无名管道，如果创建成功，则打开两个文件描述符，分别是fd[0]和fd[1]，其中fd[0]固定用于管道读端，fd[1]固定用于管道写端。

要关闭无名管道，只需要将这两个文件描述符关闭即可，就像关闭普通文件描述符那样，通过close函数分别关闭各个文件描述符。

 [image:]
 图7.3　进程与管道关系示意图

 [image:]

虚拟机中编译：

mipsel-linux-gcc pipe.c -o pipe

程序使用pipe函数创建一个无名管道，之后再将其关闭，执行结果如下：

[root@Loongson:/]#./pipe
Pipe creat success
[root@Loongson:/]#

实例源码：pipe_rw.c，用于无名管道读写。首先创建无名管道，然后使用fork函数创建子进程，通过关闭父进程的读描述符和子进程的写描述符，建立起它们之间的管道通信，最终达到父进程写入数据，子进程读出数据的效果。

 [image:]

虚拟机中编译：

mipsel-linux-gcc pipe_rw.c -o pipe_rw

执行结果如下：

[root@Loongson:/]#./pipe_rw
Pipe write1 success.
Pipe write2 success.
10 numbers read from pipe is Hello pipe

2．有名管道

有名管道可以使互不相关的两个进程实现彼此通信。有名管道又称FIFO（First In First Out），即先进先出，对有名管道的读总是从开始处读数据，对它的写则把数据添加至末尾，它不支持lseek等文件定位操作。

有名管道的创建使用mkfifo函数，在创建管道成功之后，就可以使用open、read、write等函数。需要注意的是，对于普通文件进行读写时，不会出现阻塞问题，而读写有名管道就有阻塞的可能。如果需要读写非阻塞，那么应在open函数中设定为O_NONBLOCK。

为了证明有名管道能够让任意两个进程之间进行通信，要编写两个程序。一个用于读取管道中的数据（读进程），另一个用于写数据到管道（写进程）。

实例源码：fifo_read.c，用于读取管道中数据。

 [image:]

实例源码：fifo_write.c，用于写数据到管道。

 [image:]

虚拟机中编译：

mipsel-linux-gcc fifo_read.c -o fifo_read
mipsel-linux-gcc fifo_write.c -o fifo_write

为了能够较好地观察实验结果，需要将读进程在后台运行。首先启动读管道，由于这是非阻塞的，并且启动读进程时还没有启动写进程，所以没有数据给读进程读取。一旦写进程运行，并将数据写入管道中，读进程马上将数据从管道中读取出来。执行结果如下：

 [image:]

7.5.2　消息队列

消息队列就是一个消息的列表。用户可以从消息队列中添加消息、读取消息等。消息队列具有一定的FIFO特性，但它可以实现消息的随机查询，比FIFO具有更大的优势。同时，这些消息又是存在于内核中的，由“队列ID”来标识。消息队列的实现包括创建或打开消息队列、添加消息、读取消息队列和控制消息队列这4种操作，如表7.2所示。

 表7.2　消息操作函数及其作用

 [image:]

相关函数原型：

/* 所需头文件 */
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>
/* 函数原型 */
int msgget(key_t key, int msgflg);
int msgsnd(int msqid, const void *msgp, size_t msgsz, int msgflg);
ssize_t msgrcv(int msqid, void *msgp, size_t msgsz, long msgtyp, int msgflg);
int msgctl(int msqid, int cmd, struct msqid_ds *buf);

实例源码：msg.c，使用消息队列进行进程间通信，包括消息队列的创建、消息的发送／读取和消息的撤销等操作。其中使用了ftok函数，该函数是系统IPC键值的格式转换函数，它根据pathname指定的文件（或目录）名称，以及proj_id参数指定的数字，为IPC对象生成一个唯一性的键值。

 [image:]

执行结果如下：

[root@Loongson:/]#./msg
Open queue 98304
Please enter the message to the queue:
I'm Loongson,I love Linux.
Message is I'm Loongson,I love Linux.

7.5.3　共享内存

内核专门留出了一块内存，可以由需要访问的进程将其映射到自己的私有地址空间，不同进程可以及时看到某进程对共享内存的数据进行更新。采用内存共享通信机制的好处是效率非常高，因为进程可以直接读写内存，不再需要进行数据的复制，如图7.4所示。由于多个进程都可以对共享内存进行读写数据，因此要引进某种同步机制，如互斥锁和信号量等。

 [image:]
 图7.4　共享内存操作示意图

共享内存分为两个步骤，第一步是创建共享内存，使用函数shmget，也从内存中获得一段共享内存区域。第二步是映射共享内存，把这段刚创建的共享内存映射到具体的进程空间去，使用函数shmat。完成这两步后，就可以使用不带缓存的I/O读写命令对其进行操作。如果要撤销映射，使用函数shmdt实现。

函数原型：

/* 所需头文件 */
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>
/* 函数原型 */
int shmget(key_t key, size_t size, int shmflg);
void *shmat(int shmid, const void *shmaddr, int shmflg);
int shmdt(const void *shmaddr);

实例源码：shmadd.c，首先创建一个共享内存区，大小为2KB，然后将其映射到本进程中，最后解除映射。注意，本实例中使用了ipcs命令，其作用是报告进程间通信机制状态，一般用于查看共享内存、消息队列等各种进程间通信机制的情况，这里巧妙地利用system函数调用Shell命令ipcs，打印出使用共享内存进行进程间通信的信息。

 [image:]

运行结果如下：

 [image:]

从运行结果可知，nattch栏中列出连接在关联的共享内存段的进程数，nattch的值随着共享内存状态的变化而变化，共享内存的值根据不同的系统可能不同。

7.6　多线程操作

pthread线程库是由POSIX提供的一套通用的线程库，具有很好的移植性。pthread线程库使用了内核级线程来完成，目的是提高线程的并发性。

7.6.1　线程控制

创建线程，使用pthread_create函数；退出线程，一般使用pthread_exit函数。而退出进程则使用exit函数。如果使用exit函数使进程结束，那么此时进程中的所有线程都会因进程的结束而结束。pthread_join函数用于将当前线程挂起，等待线程的结束，它是一个线程阻塞函数，调用它的函数将一直到被等待的线程结束。

/* 所需头文件 */
#include <pthread.h>
/* 函数原型 */
int pthread_create(pthread_t *restrict thread,
const pthread_attr_t *restrict attr,
void *(*start_routine)(void*), void *restrict arg);
void pthread_exit(void *value_ptr);
int pthread_join(pthread_t thread, void **value_ptr);

实例源码：thread.c，创建两个线程，第一个线程是在程序运行到中途时调用pthread_exit主动退出，然后睡眠2s；第二个线程正常运行后退出。在主进程中收集这两个线程的退出信息，并释放资源。从这个实例可以看出，这两个线程是并发运行的。

 [image:]

编译时出现错误：

root@ubuntu:/Workstation/examples/AppProg/5.threadapp# mipsel-linux-gcc thread.c -o thread
/tmp/cckPNR18.o: In function `main':
thread.c:(.text+0x178): undefined reference to `pthread_create'
thread.c:(.text+0x1ec): undefined reference to `pthread_create'
thread.c:(.text+0x254): undefined reference to `pthread_join'
thread.c:(.text+0x278): undefined reference to `pthread_join'
collect2: ld returned 1 exit status
root@ubuntu:/Workstation/examples/AppProg/5.threadapp# mipsel-linux-gcc thread.c -o thread
/tmp/ccCEUZGf.o: In function `main':
pthread.c:(.text+0x1ec): undefined reference to `pthread_create'
pthread.c:(.text+0x260): undefined reference to `pthread_create'
pthread.c:(.text+0x2c8): undefined reference to `pthread_join'
pthread.c:(.text+0x2ec): undefined reference to `pthread_join'
collect2: ld returned 1 exit status

错误报告显示没有声明以上函数，这是因为Linux系统中本身并不包含线程库。解决方法是在编译的后面添加上线程库的参数项-pthread，如下所示：

root@ubuntu:/Workstation/examples/AppProg/5.threadapp# mipsel-linux-gcc thread.c -o thread -pthread
root@ubuntu:/Workstation/examples/AppProg/5.threadapp#

运行结果如下：

[root@Loongson:/]#./thread
This is pthread1.
This is pthread2.
This is pthread2.
This is pthread2.
This is pthread1.

7.6.2　线程属性

在7.6.1节实例中，pthread_create函数的第2个参数就是线程的属性，被设置为NULL表示采用默认的属性。线程的多数属性都是可以修改的，主要包括绑定属性、分离属性、堆栈地址、堆栈大小和优先级。其中系统默认的属性为非绑定、非分离、默认1MB大小的堆栈，与父进程同样级别的优先级。关于属性的相关概念，可以查阅相关资料。

下面重点讲解如何对这些属性进行设置。这些设置有固定的步骤。通常，首先调用pthread_attr_init函数进行初始化，然后调用相应的属性，设置函数。如果要设置绑定属性，则使用pthread_attr_setscope，如果要设置分离属性则使用pthread_attr_setdetachstate，设置线程优先级，则使用pthread_attr_getscheparam和pthread_attr_setchedparam。完成这些属性的设置后，就可以调用pthread_create函数来创建线程。

实例源码：pthread.c，创建两个线程，第一个线程的属性设置为绑定、分离属性；第二个线程设置为默认的属性，即非绑定、非分离属性。

 [image:]

执行结果如下：

[root@Loongson:/]#./pthread
This is pthread2.
This is pthread2.
This is pthread2.
This is pthread1.

使用free命令查看运行前后的内存使用情况，发现程序运行完后，系统就回收了内存。

 [image:]

7.6.3　互斥锁

1．互斥锁的来源

一提到线程，一般首先想到的是多线程。由于线程共享进程的资源和地址空间，因此在对这些资源进行操作时，必须考虑资源访问的唯一性。简单地说，就是对资源的访问每次只能有一个线程，这时就需要引入同步与互斥机制。在POSIX中，线程同步的方法主要有互斥锁（mutex）和信号量。

2．互斥锁的操作

互斥锁的操作主要包括以下几个步骤。

（1）互斥锁初始化：pthread_mutex_init。

（2）互斥锁上锁：pthread_mutex_lock。

（3）互斥锁判断上锁：pthread_mutex_trylock。

（4）互斥锁解锁：pthread_mutex_unlock。

（5）消除互斥锁：pthread_mutex_destroy。

其中，互斥锁可以分为快速互斥锁、递归互斥锁和检错互斥锁。这3种互斥锁的区别主要在于其他未占有互斥锁的现场在希望得到互斥锁时，是否需要阻塞等待。快速互斥锁是指调用线程会阻塞，直到拥有互斥锁的线程解锁为止；递归互斥锁能够成功返回并且增加调用线程在互斥上加锁的次数；而检错互斥锁则为快速互斥锁的非阻塞版本，它会立刻返回一个错误信息。

实例源码：mutex.c，使用快速互斥锁来实现对计数变量lock_var的加1、打印操作，从而进一步认识互斥锁，并理解上锁、解锁的实质。

 [image:]

 [image:]

 [image:]

执行结果如下：

[root@Loongson:/]#./mutex
pthread2:pthread2 got lock. The variable is 0
pthread2:pthread2 unlock the variable
pthread1:pthread1 lock the variable
pthread1:pthread1 unlock the variable
pthread2:pthread2 got lock. The variable is 2
pthread2:pthread2 unlock the variable
pthread1:pthread1 lock the variable
pthread1:pthread1 unlock the variable
pthread2:pthread2 got lock. The variable is 4
pthread2:pthread2 unlock the variable
pthread1:pthread1 lock the variable
pthread1:pthread1 unlock the variable
pthread2:pthread2 got lock. The variable is 6
pthread2:pthread2 unlock the variable
pthread1:pthread1 lock the variable
pthread1:pthread1 unlock the variable

从结果可以看出，快速互斥锁如上面所述，如果已经有线程上锁了，就会一直等待该线程解锁，才能对互斥锁进行上锁操作。

7.6.4　信号量

信号量其实就是一个非负的整数计数器，是操作系统中所用的PV原语，主要应用于进程或线程间的同步与互斥。其工作原理也很简单，PV原语就是对整数计数器信号量sem进行操作，一次P操作使sem减1，而一次V操作使sem加1。当信号量sem的值大于等于0时，该线程具有访问公共资源的权限；相反，当信号量sem的值小于0时，该线程就阻塞，直到信号量sem的值大于等于0为止。

信号量的操作函数及其作用如表7.3所示。

 表7.3　信号量操作函数及其作用

 [image:]

实例源码：sem.c，将7.6.3节互斥锁的实例简单地变换一下，使用信号量的机制来对lock_var操作，使信号量的值为1，其实相当于互斥锁。

 [image:]

执行结果如下：

[root@Loongson:/]#./sem
pthread2:pthread2 got lock;lock_var = 0
lock_var = 1
lock_var = 2
pthread1:lock_var = 2
pthread2:pthread2 got lock;lock_var = 2
lock_var = 3
lock_var = 4
pthread1:lock_var = 4
pthread2:pthread2 got lock;lock_var = 4
lock_var = 5
lock_var = 6
pthread1:lock_var = 6
pthread2:pthread2 got lock;lock_var = 6
lock_var = 7
lock_var = 8
pthread1:lock_var = 8

这里使用的是一个信号量的机制，当然也可以使用多个信号量来实现线程间的同步，限于篇幅，这里不再介绍。

7.7　网络编程

7.7.1　网络编程基础概念

1．TCP/IP基本概念

TCP/IP（Transmission Control Protocol / Internet Protocol）叫作传输控制／互联网协议，又叫作网络通信协议。实际上，它包含了上百个功能的协议，如ICMP（互联网控制投文协议）、FTP（文件传输协议）、UDP（用户数据报协议）、ARP（地址解析协议）等。TCP负责发现传输的问题，一旦有问题就会发出重传的信号，直到所有数据安全、正确地传输到目的地；而IP就是给因特网的每一台计算机规定一个地址。

2．IP地址、端口与域名

IP地址的作用是标识计算机的网卡地址，每一台计算机都有唯一的IP地址。在程序中是通过IP地址来访问一台计算机的。IP地址具有统一的格式，其长度是32位的二进制数值，4个字节。为了便于记忆，通常化为十进制的整数来表示，如192.168.1.100。在Linux虚拟机终端输入命令，可查看本机的IP地址和MAC（介质访问控制）地址。

 [image:]

端口是指为了标识同一计算机中不同程序访问网络而设置的编号。每个程序在访问网络时都会分配一个标识符，程序在访问网络或接受访问时，会用这个标识符表示这一网络数据属于这个程序。端口号其实是一个16位的无符号整数（unsigned short），也就是范围为0~65535。不同编号范围的端口号有不同的作用。低于256的端口是系统保留端口号，主要用于系统进程通信，如WWW服务使用的是80号端口，FTP服务使用的是21号端口。不在这一范围内的端口号是自由端口号，在编程时可以调用这些端口号。

域名是用来代替IP地址来标识计算机的一种直观名称，如百度IP地址是180.97.33.108，没有任何逻辑含义，不便于记忆。一般选择www.baidu.com这个域名来代替IP地址。可以使用命令ping www.baidu.com来查看该域名对应的IP地址，如图7.5所示。

3．套接字

套接字（socket）也叫套接口，在网络中用来描述计算机中不同程序与其他计算机程序的通信方式。人们常说的套接字其实是一种特殊的I/O接口，也是一种文件描述符。

套接字分为以下3种类型。

（1）流式套接字（SoCK_STREAM）

流式套接字提供可靠的、面向连接的通信流。它使用TCP，从而保证了数据传输的正确性和顺序性。

（2）数据报套接字（SoCK_DGRAM）

数据报套接字定义了一种无连接的服务，数据通过相互独立的报文进行传输，是无序的，并且不保证是可靠、无差错的。它使用UDP协议。

（3）原始套接字

原始套接字允许对底层协议（如IP或ICMP）进行直接访问，其功能强大但使用较为不便，主要用于一些协议的开发。

由3个参数构成：IP地址、端口号和传输层协议，以区分不同应用程序进程间的网络通信与连接。套接字也有一个类似于打开文件的函数调用，该函数返回一个整型的套接字描述符，随后建立的连接、数据传输等操作都是通过描述符来实现的。

 [image:]
 图7.5　Windows中查看IP地址

4．套接字数据结构

C程序进行套接字编程时，常会使用sockaddr和sockaddr_in数据类型，用于保存套接字信息。

 [image:]

上面两个数据类型是等效的，可以相互转化，但一般都使用sockaddr_in这种形式。sa_family的常见值如下。

[image:]　AF_INET：IPv4协议。

[image:]　AF_INET6：IPv6协议。

[image:]　AF_LOCAL：UNIX域协议。

5．域名、主机名与IP地址转换

通常，使用过程中都不愿意记忆一连串的IP地址，因此，使用主机名是一个很好的选择。在Linux中，有一些函数可以实现主机名和地址间的转换。其中，gethostbyname是将主机名转换为IP地址，而gethostbyaddr是将IP地址转换为主机名。这两个函数都涉及一个hostent结构体，先来认识一下这个结构体。

 [image:]

6．数据存储优先级顺序

计算机数据存储分高字节优先和低字节优先，即大端、小端的问题。而Internet上数据是以高位字节优先顺序在网络上传输的，但是ARM等一些CPU，除了摩托罗拉公司的CPU是大端的，常见的CPU都是小端格式存储数据的。所以，有必要对这两个字节存储优先顺序进行互相转化。htons、ntohs、htonl和ntohl 4个函数可实现网络字节序和主机字节序的转化，其中h代表host，n代表network，s代表short，l代表long。通常16位的IP端口号用s代表，而IP地址用l来代表。函数原型如下：

uint16_t htons(uint16_t host16bit)
uint32_t htonl(uint32_t host32bit)
uint16_t ntohs(uint16_t net16bit)
uint32_t ntohl(uint32_t net32bit)

7.7.2　网络编程实例

网络基础编程主要介绍传输层中的TCP和UDP，TCP和UDP是两种不同的网络传输方式。

1．TCP

通常应用程序通过打开一个socket来使用TCP服务，TCP管理到其他socket的数据传递。可以说，通过IP源／目的可以唯一地区分网络中两个设备的关联，通过socket的源／目的可以唯一地区分网络中两个应用程序的关联。

（1）TCP三次握手协议

TCP对话通过三次握手来初始化，三次握手的目的是使数据段的发送和接收同步；告诉其他主机其一次可接收的数据量，并建立虚连接。下面简单描述三次握手的过程。

①初始化主机通过一个同步标志位置的数据段发出会话请求。

②接收主机通过发回具有以下项目的数据段表示回复：同步标志位置、即将发生的数据段的起始字节的顺序号、应答并带有将收到的下一个数据段的字节顺序号。

③请求主机再回送一个数据段，并带有确认顺序号和确认号。TCP实体所采用的基本协议是滑动窗口协议。当发送方传送一个数据报时，它将启动计时器。当该数据报到达目的地后，接收方的TCP实体将回送一个数据报，其中包含一个确认序号，它的意思是希望收到下一个数据报的顺序号。如果发送方的定时器在确认信息到达之前超时，那么发送方重发该数据报。

（2）TCP协议编程相关函数

网络上绝大多数的通信服务采用服务器机制（client/server），TCP提供的是一种可靠的、面向连接的服务。相关函数说明如表7.4所示。

 表7.4　网络操作函数

 [image:]

TCP编程实例分为服务器端（server）和客户端（client），其中服务器端首先建立起socket，接着绑定本地端口，建立与客户端的联系，并接收客户端发送的消息。而客户端则在建立socket之后，调用connect函数来与服务器端建立连接，连接后，调用send函数发送数据到服务器端。

实例源码：server.c，实现服务器端的功能。

 [image:]

实例源码：client，实现客户端的功能。

 [image:]

 [image:]

（3）服务器端执行步骤

先在开发板运行以下程序：

[root@Loongson:/]#./server
Socket id = 3
Bind success!
Listening...

在上位机用TCP/UDP工具建立连接，连接到IP地址为193.169.2.230（开发板）、端口号为4321的服务器（开发板），并发送数据（Hello!Loongson,socket.）到开发板，如图7.6所示。

 [image:]
 图7.6　服务器调试窗口发送网络数据

开发板运行结果如下：

Have client ready for connecting
Received a message: Hello!Loongson,socket.
[root@Loongson:/]#

开发板作为服务器打开4321端口监听，当PC建立连接发送数据后，开发板接收、打印并关闭连接。

（4）客户端执行步骤

先在上位机上用TCP/UDP工具建立服务器IP地址为193.169.2.215、端口号为4321，并打开监听，如图7.7所示。开发板运行程序执行结果如下：

[root@Loongson:/]# ./client 193.169.2.215 HelloLoongson,socket!
Socket id = 3
Connect server success!

 [image:]
 图7.7　服务器调试窗口接收网络数据

开发板作为客户端，与（193.169.2.215）建立连接并发送数据（HelloLoongson,socket!）后关闭连接。需要注意的是，发送的数据中间不能留有空格，否则不能正常运行。

2．UDP

UDP即用户数据报协议，它是一种无连接协议，因此不需要像TCP那样通过三次握手来建立一个连接。同时，一个UDP应用可以同时作为应用的客户或服务器方。由于UDP并不需要建立一个明确的连接，因此建立UDP应用要比建立TCP应用简单得多。UDP比TCP能更好地解决实时性问题，如今，包括网络视频会议系统在内的众多客户／服务器模式的网络应用都使用UDP。

（1）UDP协议编程

所谓无连接的套接字通信，指的是使用UDP进行信息传输。使用这种协议进行通信时，两个计算机之间没有建立连接的过程，需要处理的内容只是把信息发送到另外一台计算机。这种通信方式比较简单，涉及的函数也比较少，相关函数如表7.5所示。

 表7.5　UDP编程函数

 [image:]

UDP编程实例同样分为服务器端（server）和客户端（client），其中服务器端首先建立socket，接着绑定本地端口，随后并没有listen监听客户端，也没有accept等待连接，只是在死循环里，直接等待接收数据。而客户端就更加简单，在建立socket后，直接调用sendto发送数据到服务器。这样就省去了很多TCP必需的步骤，而UDP正因为不是面向连接的，所以显得简单方便。值得注意的是，UDP并不是可靠的通信方式。

实例源码udp_server.c，实现UDP编程服务器端的功能。

 [image:]

实例源码：udp_client，实现UDP编程客户端的功能。

 [image:]

（2）服务器端执行步骤

先在开发板运行以下程序：

[root@Loongson:/]#./udp_server
Socket id = 3
Bind success!

在上位机上用TCP/UDP工具建立UDP连接，连接到IP地址为193.169.2.230、端口号为8888的服务器（开发板），并发送数据（Hello! Loongson, socket.），如图7.8所示。

 [image:]
 图7.8　UDP调试工具发送UDP数据

开发板运行结果如下：

The message is Hello! Loongson，socket.

开发板作为UDP服务器打开8888端口监听，当PC机建立连接发送数据后，开发板接收、打印并关闭连接。

（3）客户端执行步骤

先在上位机上用TCP/UDP工具建立UDP服务器，IP地址为193.169.2.215（即为PC机的IP地址），端口号为8888，然后打开监听，如图7.9所示。开发板运行程序执行结果如下：

 [root@Loongson:/]#./udp_client 193.169.2.215 HelloLoongson,UDP!
Socket id = 3
[root@Loongson:/]#./udp_client 193.169.2.215 HelloLoongson,UDP!
Socket id = 3
[root@Loongson:/]#

 [image:]
 图7.9　UDP服务器与开发板通信

开发板作为UDP客户端，建立连接后发送数据（HelloLoongson,UDP!）后关闭连接。需要注意的是，发送的数据中间不能留有空格，否则不能正常运行。

7.7.3　网络编程小结

本节首先讲述了网络基础的概念，如TCP/IP协议、IP地址、域名、端口、网络套接字等概念，接着介绍了socket的类型和定义，最后重点讲解了面向连接的套接字通信和无连接的套接字通信。通过两个实例，详细地分析了TCP、UDP两种截然不同的编程。通过学习本节内容，读者应该能够熟练掌握TCP、UDP的简单编程。

7.8　OpenVPN使用

7.8.1　OpenVPN简介

VPN（Virtual Private Network）是用于创建虚拟专用网络加密通道的免费开源软件。而OpenVPN是Linux下的开源VPN，使用了OpenSSL加密库中的SSLv3/TLSv1协议函数库，是一个基于OpenSSL库的应用层VPN实现。使用OpenVPN可以方便地在各种网络访问场所之间搭建专用网络通道。

OpenVPN的客户端与服务器端的安全连接支持TCP和UDP两种连接方式，只需要在服务器端和客户端预先定义好使用的连接方式（TCP或UDP）和端口号，服务器端和客户端在这个连接的基础上进行SSL握手。SSL安全连接成功后，两端的数据都流入虚拟网卡做SSL的处理，最后基于TCP或UDP的连接在物理网卡发送和接收。

OpenVPN提供了基于Tun/Tap驱动的两种虚拟网络接口，为三层IP隧道或者虚拟二层以太网；传送的数据也可通过LZO算法压缩。

7.8.2　OpenVPN在智龙上的移植

因为OpenVPN使用LZO进行压缩处理，使用OpenSSL加密数据和控制信息，并且对Server和Client的时间同步较为敏感，所以在交叉编译OpenVPN之前，需要先交叉编译LZO。这里必须下载和交叉编译3个软件：OpenVPN、OpenSSL和LZO。

运行系统的内核还需要支持TUN模块，所以内核必须重新配置和编译。进入内核配置主界面，选择Device Drivers --->选项并进入；再选择[*] Networking support --->选项并进入，选择<*> Universal TUN/TAP device driver support选项后，保存退出，如图7.10所示。

 [image:]
 图7.10　内核加入TUN/TAP模块选项

将新编译的内核烧录到开发板。将交叉编译生成的相关文件复制到开发板：复制lzo库文件lzo/lib/liblzo到开发板的/lib/目录下。复制OpenSSL文件openssl/bin/到开发板的/bin/目录下。复制OpenVPN的相关文件openvlan/sbin/openvpn到开发板的/sbin/目录下。

具体的移植过程网络上有很多参考资料，这里不再详述。下载网址为：https://www.anheng.com.cn/loongson/loongson1c_bsp/debian/。

7.8.3　生成证书和私钥

虚拟机中安装OpenVPN和easy-rsa，采用如下命令：

apt-get install OpenVPN
apt-get install easy-rsa

如图7.11所示。

 [image:]
 图7.11　虚拟机中安装OpenVPN和easy-rsa

安装完成后，进入目录/usr/share/easy-rsa，修改vars文件，将以下内容更换成自己需要的。

export KEY_COUNTRY="***"
export KEY_PROVINCE="***"
export KEY_CITY="***"
export KEY_ORG="***"
export KEY_EMAIL="***@***.***"

运行命令生成证书：

 [image:]

最终在目录keys下生成文件：

 [image:]

在服务器端需要使用的文件有ca.crt、dh2048.pem、server.crt、ta.key、ca.key、server.key。在客户端需要使用的文件有ca.crt、client.crt、client.key、ta.key。

7.8.4　服务器端启动VPN服务

将文件ca.crt、dh2048.pem、server.crt、ta.key、ca.key、server.key复制到/etc/openvpn/目录下。在该目录下新建文件server.conf，内容如下：

 [image:]

使用命令开启VPN服务：

openvpn server.conf

VPN服务启动成功后，查看网络增加了虚拟网卡tun0和10网段，如图7.12所示。

 [image:]
 图7.12　虚拟机中网络增加了tun0虚拟网卡和10网段

7.8.5　客户端连接VPN服务器

将文件ca.crt、client.crt、client.key和ta.key复制到开发板/etc/openvpn/目录下。在该目录下新建文件client.conf，内容如下：

 [image:]

使用命令连接VPN服务：

openvpn client.conf

开发板中启动VPN客户端成功，查看网络，增加了虚拟网卡tun0的连接，并且分配了IP地址10.0.0.6，如图7.13所示。

 [image:]
 图7.13　智龙开发板连接VPN服务器成功并获得虚拟网卡和IP地址

7.8.6　在虚拟机中测试连接

在虚拟机的服务器端ping客户端（10.0.0.6）成功，如图7.14所示。

 [image:]
 图7.14　VPN服务器端ping客户端成功

在开发板的客户端ping服务器（10.0.0.1）成功，如图7.15所示。

 [image:]
 图7.15　开发板客户端pingVPN服务器成功

需要注意的是关于时间的配置。如果在开发板的客户端出现类似以下的错误，则说明生成的ca证书的有效开始日期（时间）比当前客户机晚。

Sun Jan 1 01:35:23 2017 TLS: Initial packet from [AF_INET]192.168.1.3:1234, sid=2ade41f9 340835b8
Sun Jan 1 01:35:24 2017 VERIFY ERROR: depth=1, error=certificate is not yet valid: /C=CN/ST= JS/L=
NanJing/O=NJTECH/OU=Automatic/CN=NJTECH_CA/name=EasyRSA/emailAddress=sundm75@163.com
Sun Jan 1 01:35:24 2017 TLS ERROR: BIO read tls_read_plaintext error: error:14090086:SSL
routines:SSL3_GET_SERVER_CERTIFICATE:certificate verify failed
Sun Jan 1 01:35:24 2017 TLS Error: TLS object -> incoming plaintext read error
Sun Jan 1 01:35:24 2017 TLS Error: TLS handshake failed
Sun Jan 1 01:35:24 2017 Fatal TLS error (check_tls_errors_co), restarting

注意到证书是在PC机上按照正常时间生成的，而开发板的日期不是正常日期，可按照8.5节方法修改开发板系统时钟，之后就能够正常连接。

7.8.7　在普华桌面操作系统中测试连接

普华桌面操作系统的IP地址为192.168.1.10；智龙开发板的IP地址为192.168.1.3。

硬件上将装有普华桌面操作系统的桌面机的网络接口与智龙开发板的网口连接。

将7.8.3节中生成的文件ca.crt、dh2048.pem、server.crt、ta.key、ca.key、server.key、server.conf复制到普华桌面操作系统/etc/openvpn/目录下。

查看IP地址，使用命令openvpn server.conf启动VPN的服务，如图7.16所示。

 [image:]
 图7.16　普华桌面操作系统启动VPN服务

与7.8.5节相同，在智龙开发板上启动VPN客户端去连接VPN服务。

root@openloongson:/etc/openvpn# openvpn client.conf &
[1] 1471
root@openloongson:/etc/openvpn# Mon Jul 9 09:16:26 2018 OpenVPN 2.2.1 mipsel-linux-gnu [SSL] [LZO2]
[EPOLL] [PKCS11] [eurephia] [MH] [PF_INET6] [IPv6 payload 20110424-2 (2.2RC2)] built on Dec 1 2014
Mon Jul 9 09:16:26 2018 WARNING: No server certificate verification method has been enabled. See
http://openvpn.net/howto.html#mitm for more info.
Mon Jul 9 09:16:26 2018 NOTE: OpenVPN 2.1 requires '--script-security 2' or higher to call user-defined
scripts or executables
Mon Jul 9 09:16:26 2018 WARNING: file 'client.key' is group or others accessible
Mon Jul 9 09:16:26 2018 LZO compression initialized
Mon Jul 9 09:16:26 2018 Control Channel MTU parms [L:1544 D:140 EF:40 EB:0 ET:0 EL:0]
Mon Jul 9 09:16:26 2018 Socket Buffers: R=[87380->131072] S=[16384->131072]
Mon Jul 9 09:16:26 2018 Data Channel MTU parms [L:1544 D:1450 EF:44 EB:135 ET:0 EL:0 AF:3/1]
Mon Jul 9 09:16:26 2018 Local Options hash (VER=V4): '69109d17'
Mon Jul 9 09:16:26 2018 Expected Remote Options hash (VER=V4): 'c0103fa8'
Mon Jul 9 09:16:26 2018 Attempting to establish TCP connection with [AF_INET]192.168.1.10:1234
[nonblock]
Mon Jul 9 09:16:27 2018 TCP connection established with [AF_INET]192.168.1.10:1234
Mon Jul 9 09:16:27 2018 TCPv4_CLIENT link local: [undef]
Mon Jul 9 09:16:27 2018 TCPv4_CLIENT link remote: [AF_INET]192.168.1.10:1234
Mon Jul 9 09:16:27 2018 TLS: Initial packet from [AF_INET]192.168.1.10:1234, sid=66c9a09a d231cab6
Mon Jul 9 09:16:27 2018 VERIFY OK: depth=1, /C=CN/ST=JS/L=NanJing/O=NJTECH/OU=Automatic/CN=
NJTECH_CA/name=EasyRSA/emailAddress=sundm75@163.com
Mon Jul 9 09:16:27 2018 VERIFY OK: depth=0, /C=CN/ST=JS/L=NanJing/O=NJTECH/OU=Automatic/CN=
server/name=EasyRSA/emailAddress=sundm75@163.com
Mon Jul 9 09:16:30 2018 Data Channel Encrypt: Cipher 'BF-CBC' initialized with 128 bit key
Mon Jul 9 09:16:30 2018 Data Channel Encrypt: Using 160 bit message hash 'SHA1' for HMAC authentication
Mon Jul 9 09:16:30 2018 Data Channel Decrypt: Cipher 'BF-CBC' initialized with 128 bit key
Mon Jul 9 09:16:30 2018 Data Channel Decrypt: Using 160 bit message hash 'SHA1' for HMAC authentication
Mon Jul 9 09:16:30 2018 Control Channel: TLSv1, cipher TLSv1/SSLv3 DHE-RSA-AES256-SHA, 2048 bit
RSA
Mon Jul 9 09:16:30 2018 [server] Peer Connection Initiated with [AF_INET]192.168.1.10:1234
Mon Jul 9 09:16:32 2018 SENT CONTROL [server]: 'PUSH_REQUEST' (status=1)
Mon Jul 9 09:16:32 2018 PUSH: Received control message: 'PUSH_REPLY,route 10.0.0.0
255.255.255.0,topology net30,ping 10,ping-restart 120,ifconfig 10.0.0.6 10.0.0.5'
Mon Jul 9 09:16:32 2018 OPTIONS IMPORT: timers and/or timeouts modified
Mon Jul 9 09:16:32 2018 OPTIONS IMPORT: --ifconfig/up options modified
Mon Jul 9 09:16:32 2018 OPTIONS IMPORT: route options modified
Mon Jul 9 09:16:32 2018 ROUTE default_gateway=192.168.1.1
Mon Jul 9 09:16:32 2018 TUN/TAP device tun0 opened
Mon Jul 9 09:16:32 2018 TUN/TAP TX queue length set to 100
Mon Jul 9 09:16:32 2018 do_ifconfig, tt->ipv6=0, tt->did_ifconfig_ipv6_setup=0
Mon Jul 9 09:16:32 2018 /sbin/ifconfig tun0 10.0.0.6 pointopoint 10.0.0.5 mtu 1500
Mon Jul 9 09:16:32 2018 /sbin/route add -net 10.0.0.0 netmask 255.255.255.0 gw 10.0.0.5
Mon Jul 9 09:16:32 2018 Initialization Sequence Completed

上述代码表示已经成功连接VPN服务器，且分配的地址为10.0.0.6。查看智龙开发板的IP地址，如图7.17所示。

普华桌面操作系统的服务器端显示已经有客户端连接，如图7.18所示。

 [image:]
 图7.17　智龙开发板控制台显示当前的IP地址

 [image:]
 图7.18　普华桌面操作系统显示有客户端连接本机VPN

查看普华桌面操作系统的网络，已经获得虚拟网卡tun0和IP地址，如图7.19所示。

在智龙开发板的控制台连接普华桌面操作系统网络的信息如图7.20所示。表明已经能够成功地ping通192.168.1.10和10.0.0.1这两个网址，其中10.0.0.1是VPN服务。

 [image:]
 图7.19　普华桌面操作系统获得虚拟网卡和10网段

 [image:]
 图7.20　智龙开发板控制台显示ping通普华桌面操作系统

7.9　应用编程总结

到这里，Linux应用编程就基本完成，如果能够熟练地掌握这些内容，应用编程能力基本合格，后面要多去阅读更多的开源应用程序，甚至尝试着自己去编写更复杂的应用程序。读者一定要亲自输入代码，动手操作一遍，不能取巧偷懒。
第8章　开发板硬件接口编程

8.1　点亮一个LED灯

所有程序编程都是从点灯开始的，俗称“点灯大法”。开发板上的可控LED灯通常都是一端接高电平或GND，另一端接GPIO。通过操作GPIO来控制LED灯点亮和熄灭。

如图8.1所示，LED即发光二极管，一端接高电平，另一端若接入高电平，则二极管不导通，LED不会发光；若另一端若接入低电平，则二极管导通，LED发光。高低电平由GPIO输出。

 [image:]
 图8.1　LED发光二极管点亮示意图

8.1.1　LED的操作接口

LED操作接口位于/sys/class/leds目录下。此目录下包含了关于LED操作的目录：

 [image:]

以led_blue为例，进入led_blue目录，该目录的内容如下：

 [image:]

各个文件作用介绍如表8.1所示。

 表8.1　LED设备属性文件说明

 [image:]

8.1.2　LED控制

在控制台中操作LED的命令如下：

 [image:]

8.1.3　在程序中操作LED灯

使用C程序操作LED，首先需要设置trigger属性，然后操作brightness属性，设置LED点亮或熄灭。

实例源码：led.c。首先设置LED的trigger属性为none，然后设置brightness属性交替为0和1。实现了LED每隔1s点亮一次。

 [image:]

在虚拟机中编译，然后下载到开发板上运行，发现开发板上的蓝灯每隔1s闪烁一次。

[root@Loongson:/]#./led led_blue

8.2　GPIO硬件编程

相比于Linux 2.4，Linux 2.6及以上的内核可以使用系统中的GPIOLIB模块在用户空间提供的sysfs接口，实现应用层对GPIO的独立控制。

8.2.1　GPIO和sysfs操作接口

Linux开发平台实现了通用GPIO的驱动，用户通过Shell命令或系统调用即能控制GPIO的输出和读取其输入值。其属性文件均在/sys/class/gpio目录下，例如：

 [image:]

其中，属性文件有export和unexport，其余4个文件为符号链接（gpiochip0、gpiochip32、gpiochip64和gpiochip96），指向管理对应设备的目录。以gpiochip0为例，此目录下有以下文件：

 [image:]

以上属性文件用途如表8.2所示。

 表8.2　GPIO属性文件说明

 [image:]

向export文件写入需要操作的GPIO排列序号N，就可以导出对应的GPIO设备目录。操作命令如下：

echo N > /sys/class/gpio/export

例如，导出序号为50的GPIO的操作接口，在Shell下，可以用如下命令：

[root@Loongson:/]#echo 50 > /sys/class/gpio/export
sh: write error: Device or resource busy
[root@Loongson:/]#echo 49 > /sys/class/gpio/export

通过以上操作，在/sys/class/gpio目录下生成gpioN目录，通过读写该设备目录下的属性文件（位于gpioN下），就可以操作该GPIO的输入和输出。以此类推，可以导出其他GPIO设备目录。如果GPIO50已经被系统占用，导出时会提示资源占用。

以排列序号为49的GPIO为例，设备目录下有如下属性文件：

 [image:]

各文件路径及作用如表8.3所示。

 表8.3　GPIO属性文件

 [image:]

8.2.2　GPIO基本操作

在应用层可以通过Shell命令操作GPIO。通过以下步骤，可以控制GPIO输入／输出。

1．输入／输出设置

GPIO导出后默认为输入功能。向direction文件写入in字符串，表示设置为输入功能；向direction文件写入out字符串，表示设置为输出功能。读direction文件，会返回in/out字符串，in表示当前GPIO作为输入，out表示当前GPIO作为输出。方向查看和设置命令如下：

 [image:]

2．输入读取

当GPIO被设为输入时，value文件记录GPIO引脚的输入电平状态：1表示输入的是高电平；0表示输入的是低电平。通过查看value文件可以读取GPIO的电平，查看命令如下：

 [image:]

3．输出控制

当GPIO被设为输出时，通过向value文件写入0或1（0表示输出低电平；1表示输出高电平），可以设置输出电平的状态。例如，设置排列序号为49的GPIO的电平状态：

 [image:]

8.2.3　在C程序中操作GPIO

使用系统调用实现GPIO输入／输出操作时，首先需要使用export属性文件导出GPIO：

 [image:]

可以调用write函数向direction设备写入方向in/out字符串，将GPIO设置为输入／输出，例如：

 [image:]

设置GPIO为输入时，使用read系统调用读取value属性文件，就可以读取GPIO电平值。设置GPIO为输出时，使用write系统调用向value属性文件写入0或1字符串，就可以设置GPIO电平值。例如：

 [image:]

实例源码：gpio.c。以GPIO49为例，实现GPIO的输入读取。首先通过open()和write()系统调用导出GPIO，然后设置GPIO为输入，读取GPIO的输入值。操作范例如下所示。

 [image:]

程序执行结果如下：

[root@Loongson:/]#./gpio
default directions:in
now directions:in
input level:1

8.3　按键应用层编程

8.3.1　按键操作接口

开发板上有两个独立的按键，内核中已经加载了按键的驱动程序，如图8.2所示。

配置内核的信息如图8.3~图8.7所示。

 [image:]
 图8.2　按键接口硬件原理图

 [image:]
 图8.3　虚拟机中内核配置按键操作1

 [image:]
 图8.4　虚拟机中内核配置按键操作2

 [image:]
 图8.5　虚拟机中内核配置按键操作3

 [image:]
 图8.6　虚拟机中内核配置按键操作4

 [image:]
 图8.7　虚拟机中内核配置按键操作5

驱动模块已经加载入内核，启动完成后，在/dev/input目录下生成设备文件，生成的设备文件为/dev/input/event0，应用程序可以读取按键事件，应用程序代码中必须包含<Linux/input.h>头文件。可以用以下命令查看设备信息：

[root@Loongson:/dev/input]#cat /proc/bus/input/devices
I: Bus=0019 Vendor=0001 Product=0001 Version=0100
N: Name="gpio-keys"
P: Phys=gpio-keys/input0
S: Sysfs=/devices/platform/gpio-keys/input/input0
U: Uniq=
H: Handlers=kbd event0
B: PROP=0
B: EV=100003
B: KEY=80c

[image:]　I：该行包含身份信息，显示了Bus、Vendor、Product和Version信息。

[image:]　N：该行包含名字信息。

[image:]　P：该行包含物理设备信息。

[image:]　H：该行包含与设备关联的handler drivers。

[image:]　B：这些行包含显示设备能力的一些位域（bitfield）。

本机键盘对应的事件类型是event0。

使用cat /proc/interrupts命令查看中断信息：

 [image:]

可用命令cat /dev/input/event0查看按键的事件信息，以下是按键按下时，控制台打印的十六进制码：

[接收]3B A2 00 00 06 AD 0D 00 01 00 0B 00 01 00 00 00 3B A2 00 00 17 AD 0D 00 00 00 00 00 00 00 00 00
[接收]3C A2 00 00 D3 AC 00 00 01 00 0B 00 00 00 00 00 3C A2 00 00 DC AC 00 00 00 00 00 00 00 00 00 00
[接收]3C A2 00 00 7B 7A 0B 00 01 00 02 00 01 00 00 00 3C A2 00 00 8C 7A 0B 00 00 00 00 00 00 00 00 00
[接收]3C A2 00 00 D4 DB 0D 00 01 00 02 00 00 00 00 00 3C A2 00 00 E0 DB 0D 00 00 00 00 00 00 00 00 00

以上为KEY1按下、KEY1抬起、KEY2按下、KEY2抬起调试串口接收到的十六进制数据。

8.3.2　在程序中操作按键

实例程序：key.c。操作按键时，首先打开设备event，然后读取设备，如果其属性为EV_KEY，则有按键按下。再读取属性value，相应的值与对应的按键关系如表8.4所示。

 表8.4　按键键值表

 [image:]

 [image:]

观察结果，当有按键按下时，控制台打印如下信息：

 [root@Loongson:/]#./key
key 2 Pressed
key 2 Released
key 1 Pressed
key 1 Released
key 1 Pressed
key 1 Released
key 2 Pressed
key 2 Released

8.4　U盘和SD卡

8.4.1　U盘

进入Linux系统后，在PuTTY中输入命令fdisk-l，再执行U盘挂载命令mount -t vfat /dev/sda1/mnt，即把该设备节点/dev/sda1挂载到/mnt目录下，就可以看到U盘内容；执行U盘卸载命令umount /mnt，就可以安全卸载U盘。

 [image:]

8.4.2　SD卡

开发板进入Linux系统后，在终端中输入命令ls /dev | grep mmc -l，可查看是否存在SD卡的设备文件节点/dev/mmc0。

 [image:]

要创建SD卡临时挂载目录，可执行以下命令：

[root@Loongson:/]#mkdir /mnt/sd
[root@Loongson:/]#ls /mnt/
Sd

挂载SD卡文件系统的命令如下：

mount /dev/mmcblk0p1 /mnt/sd

即把SD的设备节点（mmcblk0p1为SD卡的设备文件名，实际情况可能有变化）挂载到/mnt/sd目录下，这样在此目录下读写文件。

输入df -m命令可以查看TF卡各分区的挂载情况和分区的使用，挂载前：

 [image:]

挂载之后输入命令显示：

 [image:]

若要取消挂载，以下3条命令选择其一即可。

[root@Loongson:/]#umount /dev/mmcblk0p1 /mnt/sd
[root@Loongson:/]#umount /mnt/sd
[root@Loongson:/]#umount /dev/mmcblk0p1

现在就可以像操作U盘一样操作SD卡。

8.5　RTC时钟

Linux中更改时间一般使用date命令，为了把龙芯1C内部带的时钟与Linux系统时钟同步，一般使用hwclock命令，下面是具体使用方法。

（1）设置时间为2017-01-01 01:01

[root@Loongson:/]#date -s "2017-01-01 00:00"
Sun Jan 1 00:00:00 UTC 2017
[root@Loongson:/]#

（2）把刚刚设置的时间存入龙芯1C内部的RTC。

[root@Loongson:/]#hwclock -w

（3）开机时使用hwclock -s命令可以恢复Linux系统时钟为RTC，一般把该语句放入/etc/init.d/rcS文件自动执行。

[root@Loongson:/]#hwclock -s

（4）读取RTC的时间。

 [image:]

注意：hwclock命令需要读取/dev/rtc设备节点，龙芯1C的RTC驱动注册后会在/dev目录下建立/dev/rtc0节点，可以使用命令ln -s rtc0 rtc建立一个rtc的设备节点，这样hwclock命令就可以读取RTC的时间。

在控制台中操作恢复Linux系统时钟和读取RTC的时间如图8.8所示。

 [image:]
 图8.8　控制台操作RTC时钟

8.6　串口读写

8.6.1　串口硬件说明

开发板的串口如表8.5所示。

 表8.5　UART硬件接口复用表

 [image:]

如果需要启用串口1，必须在平台文件中恢复以下代码，打开串口1的第四复用：

/* UART1 */
__raw_writel(__raw_readl(LS1X_CBUS_FIRST0) & (~0x00060000), LS1X_CBUS_FIRST0);
__raw_writel(__raw_readl(LS1X_CBUS_FIRST3) & (~0x00000060), LS1X_CBUS_FIRST3);
__raw_writel(__raw_readl(LS1X_CBUS_SECOND1) & (~0x00000300), LS1X_CBUS_SECOND1);
__raw_writel(__raw_readl(LS1X_CBUS_SECOND2) & (~0x00003000), LS1X_CBUS_SECOND2);
__raw_writel(__raw_readl(LS1X_CBUS_FOURTHT0) | 0x0000000c, LS1X_CBUS_FOURTHT0);

使用以下命令查询当前控制台使用串口情况：

[root@Loongson:/]#tty
/dev/ttyS2

表明当前控制台使用的是UART2。

8.6.2　用minicom操作串口

在Linux下设置pl2303串口，在Ubuntu下，接入接口则自动安装。插上USB转TTL小板下，可自动识别，如图8.9所示。

 [image:]

 [image:]
 图8.9　虚拟机中查看PL2303安装情况

以下进入minicom安装设置。

在虚拟机中安装minicom：

root@ubuntu:~# apt-get install minicom
…
Setting up minicom (2.7-1) ...

打开终端，在命令行中输入minicom -s，进行设置。将串口号改为ttyUSB0，如图8.10所示。

 [image:]
 图8.10　虚拟机中minicom界面

在Modem and dialing parameter setup中进行配置，将A、B、K的配置字符改为空。

 [image:]

将串口线一端连接到开发板上，另一端连接到主机虚拟机上。打开开发板电源开关，主机也进入虚拟机系统后，运行minicom，就将开发板与主机进行相互通信。其他串口也类似。在Linux系统中实现了与Windows中类似的PuTTY的界面，如图8.11所示。

 [image:]
 图8.11　虚拟机中实现控制台

在minicom中，按Ctrl+A快捷键后再按Q键，可退出系统；按Ctrl+A快捷键后再按Z键，可查看快捷键帮助。

8.6.3　用接口操作串口

由于在控制台已经配置好串口2，下面在命令行启用以下命令操作串口1：

stty -F /dev/ttyS1115200 //配置串口1，设置波特率为115200

用另外一根串口线连接到串口1（GPIO3、2），在Windows中打开一个串口助手。在开发板上运行以下命令：

 [image:]

控制台执行结果如图8.12所示。

 [image:]
 图8.12　开发板控制台与串口助手合作操作串口

8.6.4　在程序中操作串口

实例源码：uart.c，程序中操作按键，首先打开设备/dev/ttyS1，并进行配置，然后向设备写字符串“Hello! I am Loongson!”，最后打印出从设备中读取的字符串。

 [image:]

运行程序，观察结果，PC机串口助手打印出信息“Hello! I am Loongson!”，在PC串口助手中输入“Hello,I am sundm75”，则此字符通过uart1传入开发板，如图8.13所示。

 [image:]
 图8.13　控制台中应用程序操作串口

 高级篇驱动

 第9章　NFS文件系统搭建

应用程序的移植方式目前主要有4种：

（1）复制到介质（以U盘为例）。

（2）通过网络（tftp）传输文件到开发板（文件较小，推荐使用）。

（3）置于根文件系统目录下制作文件系统镜像，再烧进开发板（文件很大，可以使用）。

（4）通过NFS（网络文件系统）直接运行。

目前使用的都是第2种，下面主要介绍第4种。

NFS（Network File System，网络文件系统）不是传统意义上的文件系统，而是访问远程文件系统的协议。是Linux、UNIX系统的分布式文件系统的一个组成部分，可实现在不同网络上共享远程文件系统。NFS由Sun公司开发，目前已经成为文件服务的标准之一（RFC1904和RFC1813），其最大的功能就是可以通过网络，让不同操作系统的计算机共享数据。可以把NFS看作一个文件服务器，将远端所分享出来的档案系统挂载（mount）在本地端的系统上，就可以很方便地使用远端的档案，操作起来就像在本地操作一样。NFS的缺点是其读写性能比本地硬盘要差一些。

NFS主要通过两个daemon来进行控制：

[image:]　rpc.nfsd用来控制客户端是否可以连接到NFS server。

[image:]　rpc.mountd用来控制客户端连接后是否有权限对文件进行操作，主要是依据/etc/exports文件的设置。

9.1　在虚拟机端安装NFS

使用apt-get命令可实现虚拟机端安装NFS。

apt-get install nfs-common
apt-get install nfs-kernel-server

9.2　配置虚拟机NFS

配置虚拟机NFS的步骤如下。

（1）修改配置文件。

vim /etc/exports

添加内容为：

/home/nfs/nfsrootfs 193.169.2.*(rw,no_root_squash,sync,no_subtree_check)

各参数含义如下。

[image:]　/home/nfs/nfsrootfs：要共享的目录，需要先创建再改变权限。

[image:]　*：网段内所有值。

[image:]　rw：读写权限。

[image:]　sync：资料同步写入内存和硬盘。

[image:]　no_root_squash：NFS客户端共享目录使用者权限。

[image:]　no_subtree_check：即使输出目录是一个子目录，NFS服务器也不检查其父目录的权限，这样可以提高效率。修改后保存退出。

（2）创建服务文件目录，更改权限。

mkdir /home/nfs/nfsrootfs
chmod 777 /home/nfs/nfsrootfs

（3）启动端口转发；启动NFS服务。

/etc/init.d/rpcbind restart
/etc/init.d/nfs-kernel-server restart

显示如下：

 [image:]

（4）显示共享目录。

 [image:]

显示如下：

Export list for ubuntu:
/home/nfs/nfsrootfs 193.169.2.*

（5）关闭服务器端。

/etc/init.d/nfs-kernel-server stop

显示如下：

 [image:]

9.3　配置开发板NFS

开发板一端的配置，主要是重新编译1C开发板的内核，再把此内核更新到开发板。

（1）编译1C开发板内核，添加NFS功能，使用命令make menuconfig配置界面。

 [image:]

（2）在虚拟机中编译内核。

make ARCH=mips CROSS_COMPILE=mipsel-linux-

在PMON中将内核下载到1C开发板上的/dev/mtd0分区。

mtd_erase /dev/mtd0
devcp tftp://193.169.2.215/vmlinuz /dev/mtd0

9.4　使用NFS

9.4.1　在开发板上挂载NFS服务

（1）在虚拟机上，把交叉编译后的需要共享的程序或者文件置于共享目录。

/home/nfs/nfsrootfs

（2）在开发板中，挂载虚拟机的NFS共享目录。

mount -t nfs -o nolock 193.169.2.104:/home/nfs/nfsrootfs /mnt

其中，193.169.2.104为虚拟机的IP地址，可用ifconfig命令查看IP地址。

这样就把共享目录挂到了开发板的/mnt目录。

（3）使用NFS运行程序。

cd /mnt

可以直接运行当前目录已经交叉编译的程序。

（4）取消挂载。

umount /mnt

9.4.2　建立网络文件系统

（1）在虚拟机上，把当前做好的根文件系统rootfs（参见3.4节）移至nfsrootfs目录下，同时需要确保相关文件的链接路径正确（当作真实环境的rootfs使用）。注意，这里复制的是整个目录，不是单个根文件系统镜像。

cp rootfs /home/nfs/nfsrootfs -rf

（2）重启开发板，按空格键进入PMON中，设置启动参数。

set al /dev/mtd0
set append "g root=/dev/nfs rw"
set append "$append nfsroot=193.169.2.104:/home/nfs/nfsrootfs/rootfs noinitrd init=/linuxrc "
set append "$append ip=193.169.2.230:193.169.2.104:193.169.2.1:255.255.255.0::eth0:off"
set append "$append console=ttyS2,115200"

程序说明如下。

[image:]　root=/dev/nfs：指定根文件系统为/dev/nfs，即NFS。

[image:]　rw：根文件系统挂载为可读写。也可以设置为ro，即只读。

[image:]　nfsroot=193.169.2.104:/home/nfs/nfsrootfs/rootfs:设置网络启动时的NFS根名字（虚拟机上根文件系统的位置），如果该字符串不是以“/”“,”“.”开始，默认指向/tftp-boot。

[image:]　noinitrd：代表没有使用ramdisk。

[image:]　init=/linuxrc：设置内核执行的初始化进程名，如果该项没有设置，内核会按顺序尝试/etc/init/bin/init、/sbin/init和/bin/sh，如果所有的都没找到，内核会抛出kernel panic的错误。

[image:]　“ip=”后面：设置本机的IP。目的是连接刚才设置的IP。这里是一个静态的配置，配置的格式为“ip=本机的IP地址:虚拟机的IP:网关地址:网络掩码:本机的主机名:网络接口名:off”。如果是DHCP获取IP，那很简单，直接设置ip=dhcp即可。这里配置说明如下。

[image:]　193.169.2.230是开发板的IP（注意不要和局域网内其他IP冲突）。

[image:]　193.169.2.104是虚拟机的IP。

[image:]　193.169.2.1是开发板上网关的地址。

[image:]　255.255.255.0是子网掩码。

[image:]　开发主机的名字省略（一般无关紧要，可随便填写）。

[image:]　eth0是网卡设备的名称。

[image:]　console=ttyS2,115200：设置串口2，115200波特率。

（3）重启，进入网络文件系统。

在开发板上挂载NFS网络文件系统（Linux中最常用的方法）就是采用NFS来执行各种程序，这样可以不必花费很多时间下载程序。
第10章　配置Eclipse编程

10.1　用Eclipse开发应用程序

首先安装程序：

$sudo apt-get install eclipse-platform
$sudo apt-get install eclipse-cdt

运行Eclipse启动程序eclipse：

$eclipse

启动后选择工程目录，如图10.1所示。

经过启动界面后，新建C工程，如图10.2所示。

 [image:]
 图10.1　选择工程目录

 [image:]
 图10.2　新建C工程

新建工程，采用Cross GCC，重设交叉编译器，如图10.3和图10.4所示。

 [image:]
 图10.3　重设交叉编译器

 [image:]
 图10.4　新建工程

单击Next按钮后，选择工程配置，如图10.5所示。

单击Advanced settings按钮，选择“Project”→“Properties”命令，在弹出的工程属性界面，单击C/C++ Build节点下的Tool Chain Editor选项，设置Cross GCC，如图10.6所示。

 [image:]
 图10.5　进行工程配置

 [image:]
 图10.6　配置交叉编译器1

选择C/C++ Build节点下的Settings选项，在Prefix文本框中输入交叉编译器的前缀mipsel-linux-，在Path文本框中输入交叉编译器的实际路径/opt/gcc-4.3-ls232/bin，如图10.7所示。

 [image:]
 图10.7　使用Eclipse-配置交叉编译器2

如果使用Eclipse交叉编译和远程调试，要安装gdbserver。

下载gdb-7.11.tar.gz的地址是ftp://ftp.gnu.org/gnu/gdb。

10.2　用Eclipse开发内核模块

首先新建工程，如图10.8所示。

单击Next按钮，直到出现图10.9所示界面，填好自己的arm-linux-gcc路径。

 [image:]
 图10.8　新建C工程

 [image:]
 图10.9　设置交叉编译工具链

交叉编译环境下的4个头文件已经出现在includes文件夹中，如图10.10所示。

下面添加路径和符号。首先要生成符号表文件（xml）。在内核目录（/Workstation/tools/kernel/linux-3.0.82/include/generated）下运行以下命令，将autoconf.h文件中定义的宏转换成xml文件，如图10.11所示。

 [image:]
 图10.10　Eclipse配置头文件

cat autoconf.h |grep define |awk '{print "<macro><name>" $2 "</name><value>" $3 "</value></macro>"}' >
symbol.xml

 [image:]
 图10.11　虚拟机中宏定义转换成xml文件

生成宏定义文件symbol.xml，如图10.12所示。

 [image:]
 图10.12　生成symbol.xml文件

导出符号表LS1C_ECLIPSE_CONFIG.xml配置如图10.13所示，单击OK按钮后，即能导出对应符号表，如图10.13所示。

 [image:]
 图10.13　导出符号表

在导出的文件中添加刚才生成的symbo.xml文件中的所有内容。

<language name="C Source File">
<macro>
<name>__KERNEL__</name><value>1${ArchType}</value>
</macro>
/*添加的宏定义*/
<macro><name>CONFIG_SCSI_DMA</name><value>1</value></macro>
<macro><name>CONFIG_KERNEL_GZIP</name><value>1</value></macro>
<macro><name>CONFIG_INPUT_KEYBOARD</name><value>1</value></macro>
<macro><name>CONFIG_CRC32</name><value>1</value></macro>
…
</language>

保存后，将此符号表导入工程，如图10.14所示。

 [image:]
 图10.14　导入工程

再添加两个目标：all和clean，如图10.15所示。

 [image:]
 图10.15　添加编译目标

在Debug文件夹下添加两个文件：hello_drivernod.c和Makefile，如图10.16所示。

 [image:]
 图10.16　在Debug文件夹下添加文件

取消选中自动生成Makefile文件的复选框，如图10.17所示。

 [image:]
 图10.17　设置不自动生成Makefile文件

将Build过程中的all和clean选项选中，如图10.18所示。

 [image:]
 图10.18　选中build过程中的all和clean选项

按Ctrl+B快捷键或者单击Build All按钮，如图10.19所示。

 [image:]
 图10.19　虚拟机中编译

最后，在右下角的Build Console中出现以下内容：

 [image:]

表示已经生成了驱动模块。
第11章　一个简单的字符设备驱动

Linux是UNIX操作系统的一种变种，在Linux下编写驱动程序的原理和思想完全类似于其他的UNIX系统，但与DOS或Window环境下的驱动程序有很大的区别。

Linux驱动类型主要包括字符设备驱动、块设备驱动、网络驱动，具体有LED驱动、按键驱动、鼠标驱动、ADC驱动、RTC驱动、PCI驱动、触摸屏驱动、LCD驱动、Flash驱动、SD卡驱动、网卡驱动、I2C驱动、音频驱动、USB设备驱动、WiFi驱动等。

学习Linux驱动需要掌握以下基本功。

[image:]　必须懂得底层的硬件原理，如内存、Flash、串口通信、中断、DMA、I2C等原理，看懂每种设备的参考手册，懂得一些必备的通信协议。

[image:]　要具备非常好的C语言基础，能够灵活运用结构体、指针、函数等；要有比较好的数据结构基础，因为内核里面有大量的结构体、指针。

[image:]　对Linux内核有一定的了解和认识，因为驱动里面利用了大量的内核接口。

Linux的两类设备文件类型（即字符设备和块设备）的主要区别是：在对字符设备发出读／写请求时，字符设备能实现即刻的读取和写入。块设备则不然，它利用一块系统内存作缓冲区，当用户进程对设备请求能满足用户的要求时，就返回请求的数据，如果不能，就调用请求函数来进行实际的I/O操作。块设备是主要针对磁盘等慢速设备设计的，以免耗费过多的CPU时间来等待。

本章简单介绍如何编写一个简单的字符设备驱动，实现一个与硬件设备无关的字符设备驱动，仅仅操作从内核中分配的一些内存。

11.1　主设备号和次设备号

用户进程是通过设备文件来与实际的硬件打交道的。每个设备文件都有其文件属性（c/b），表示是字符设备还是块设备。另外，每个文件都有两个设备号，第一个是主设备号，标识驱动程序；第二个是从设备号，标识使用同一个设备驱动程序的不同的硬件设备，如有两个软盘，就可以用从设备号来区分它们，也就是多个驱动程序共享主设备号的情况。而次设备号由内核使用，用于确定/dev下的设备文件对应的具体设备。设备文件的主设备号必须与设备驱动程序在登记时申请的主设备号一致，否则用户进程将无法访问驱动程序。

对于字符设备的访问是通过文件系统中的设备名称进行的，它们通常位于/dev目录下。

 [image:]

其中，首字母b代表块设备，c代表字符设备。对于普通文件来说，ls -l会列出文件的长度，而对于设备文件来说，上面的251等代表的是对应设备的主设备号，而后面的0、1、2、61等则是对应设备的次设备号。例如，虚拟控制台和串口终端由驱动程序管理，而不同的终端分别有不同的次设备号。

11.1.1　设备编号的表达

在内核中，dev_t用来保存设备编号，包括主设备号和次设备号。dev_t是一个32位的数，其中12位用来表示主设备号，其余20位用来表示次设备号。

通过dev_t获取主设备号和次设备号使用下面的宏：

MAJOR(dev_t dev);
MINOR(dev_t dev);

相反，将主设备号和次设备号转换为dev_t类型则使用MKDEV：

MKDEV(int major, int minor);

11.1.2　分配和释放设备编号

在构建一个字符设备之前，驱动程序首先要获得一个或者多个设备编号，这样才能在内核中正常运行。完成此工作的函数如下：

int register_chrdev_region(dev_t first, unsigned int count, constchar *name);

其中，first是要分配的设备编号范围的起始值；count是连续设备的编号的个数；name是和该设备编号范围关联的设备名称，它将出现在/proc/devices和sysfs中。此函数执行成功则返回0，失败则返回负的错误码。/proc/devices存放着系统中所有的设备编号。如果加载成功，就会在/proc/devices中看到该设备。

 [image:]

register_chrdev_region函数在已知主设备号的情况下使用，在未知主设备号的情况下，则使用下面的函数：

int alloc_chrdev_region(dev_t *dev, unsigned int firstminor, unsigned int count, constchar *name);

其中，dev用于输出申请到的设备编号；firstminor为要使用的第一个此设备编号。最好不要随机选择一个当前未使用的设备编号，而应该用动态分配机制去获取主设备号。

在不使用时需要释放这些设备编号，以供其他设备程序使用：

void unregister_chrdev_region(dev_t dev, unsigned int count);

此函数多在模块的清除函数中调用，分配到设备编号之后，应用程序并不能对此设备做任何事情，还需要一个简单的函数来把设备编号和此设备能实现的功能连接起来，这样模块才能提供具体的功能。这个操作很简单，在此之前先介绍几个重要的数据结构。

11.2　重要的数据结构

注册设备编号仅仅是完成一个字符设备驱动的第一步。下面介绍大部分驱动都会包含的3个重要的内核的数据结构。

Linux系统中，设备驱动程序是操作系统内核的重要组成部分，它与硬件设备之间建立了标准的抽象接口。通过这个接口，用户可以像处理普通文件一样，对硬件设备进行打开（open）、关闭（close）、读写（read/write）、控制（ioctl）等操作。

1．文件操作file_operations

file_operations是第一个重要的结构，定义在<linux/fs.h>中，它是一个函数指针的集合，设备所能提供的功能大部分都由此结构提供。这些操作也是设备相关的系统调用的具体实现。此结构的具体实现如下所示：

 [image:]

需要说明的是，这里面的函数在驱动中不用全部实现，不支持的操作填充为NULL。

打开（open）、关闭（close）、读写（read/write）和控制（ioctl）这几个主要的入口函数，编写驱动时需要填充。

（1）open函数：负责打开设备、准备I/O。任何时候对设备文件进行打开操作，都会调用设备的open入口点。所以，open函数必须对将要进行的I/O操作做好必要的准备工作，如清除缓冲区等。如果设备是独占的，则open函数必须将设备标记成忙状态。

（2）close函数：负责关闭设备的操作，当最后一次使用设备完成后，调用close函数，关闭设备文件。独占设备必须标记为可再次使用。

（3）read函数：负责从设备上读数据和命令。对于有缓冲区的I/O设备操作，是从缓冲区中读数据。

（4）write函数：负责往设备上写数据。对于有缓冲区的I/O设备操作，是把数据写入缓冲区中。对字符设备文件进行写操作将调用write函数。

（5）ioctl函数：执行读、写之外的操作，主要实现对设备的控制。

2．文件结构struct file

struct file定义于<linux/fs.h>，是设备驱动中第二个重要的数据结构。文件结构代表一个打开的文件（它不特定给设备驱动，系统中每个打开的文件有一个关联的struct file在内核空间）。它由内核在open时创建，并传递给在文件上操作的任何函数，直到最后关闭。在文件的所有实例都关闭后，内核释放这个数据结构。file结构的详细内容可参考fs.h，这里列出来几个重要的成员。

（1）struct file_operations *f_op：就是上面刚刚介绍的文件操作的集合结构。

（2）mode_t f_mode：文件模式用来确定文件是可读的或者是可写的（或者都是），可通过位FMODE_READ和FMODE_WRITE设置。因为内核在调用方法之前会检查读写许可，所在open或者ioctl函数中不需要检查这个成员的读写许可。

（3）loff_t f_pos：如果需要知道文件中的当前位置，当前读写位置loff_t在所有平台都是64位驱动可以读这个值，但是正常地不应该改变它。

（4）unsigned int f_flags：这些是文件标志，如O_RDONLY、O_NONBLOCK和O_SYNC。驱动应当检查O_NONBLOCK标志来看是否是请求非阻塞操作。

（5）void *private_data：open系统调用设置这个指针为NULL，在为驱动调用open方法之前，可自由使用这个成员或者忽略它；可以使用这个成员来指向分配的数据，但是必须记住在内核销毁文件结构之前，要在release方法中释放那个内存。private_data是一个有用的资源，在系统调用间保留状态信息，大部分例子模块都使用它。

3．inode结构

inode结构由内核在内部用来表示文件。因此，它和代表打开文件描述符的文件结构是不同的。可能有代表单个文件的多个打开描述符的许多文件结构，但是它们都指向单个inode结构。

inode结构包含大量关于文件的信息，如文件的创建者、文件的创建日期、文件的大小等。中文译名为“索引节点”。

inode包含文件的元信息，具体来说有以下内容。

[image:]　文件的字节数。

[image:]　文件拥有者的User ID。

[image:]　文件的Group ID。

[image:]　文件的读、写、执行权限。

[image:]　文件的时间戳，共有3个：ctime指inode上一次变动的时间；mtime指文件内容上一次变动的时间；atime指文件上一次打开的时间。

[image:]　链接数，即有多少文件名指向这个inode。

[image:]　文件数据block的位置。

可以用stat命令，查看某个文件的inode信息。

 [image:]

查看每个硬盘分区的inode总数和已经使用的数量，可以使用df命令。

 [image:]

由于每个文件都必须有一个inode，因此有可能发生inode已经用完，但是硬盘还未存满的情况。这时，就无法在硬盘上创建新文件。

每个inode都有一个号码，操作系统用inode号码来识别不同的文件。

这里值得重复一遍，UNIX/Linux系统内部不使用文件名，而使用inode号码来识别文件。对于系统来说，文件名只是inode号码便于识别的别称或者绰号。表面上用户通过文件名打开文件。实际上，系统内部这个过程分成3步：首先，系统找到这个文件名对应的inode号码；其次，通过inode号码，获取inode信息；最后，根据inode信息，找到文件数据所在的block，读出数据。

使用ls -i命令，可以看到文件名对应的inode号码。

 [image:]

在一台配置较低（内存、硬盘比较小）的Linux服务器的/data分区内创建文件时，系统提示磁盘空间不足，用df -h命令查看磁盘使用情况，发现/data分区只使用了66%，还有12GB的剩余空间，按理说不会出现这种问题。此时用df -i查看/data分区的索引节点（inode），发现是分区空间已满（IUsed=100%），导致系统无法创建新目录和文件。

这是因为/data/cache目录中存在数量非常多的小字节缓存文件，占用的block不多，但是占用了大量的inode。

解决此问题有以下两种解决方案。

[image:]　删除/data/cache目录中的部分文件，释放出/data分区的一部分inode。

[image:]　用软连接将空闲分区/opt中的newcache目录连接到/data/cache，使用/opt分区的inode来缓解/data分区inode不足的问题，如下所示：

ln -s /opt/newcache /data/cache

11.3　字符设备的注册

内核在内部使用类型struct cdev的结构来代表字符设备。在内核调用设备操作前，编写分配并注册一个或几个这种结构。

有两种方法来分配和初始化这些结构，如果想在运行时获得一个独立的cdev结构，可使用以下代码：

struct cdev *my_cdev = cdev_alloc();
my_cdev->ops = &my_fops;

更多的情况是把cdev结构嵌入自己封装的设备结构中，这时需要使用下面的方法来分配和初始化：

void cdev_init(struct cdev *cdev, struct file_operations *fops);

后面的实例程序就是这么做的。一旦cdev结构建立，最后的步骤是把它告诉内核：

int cdev_add(struct cdev *dev, dev_t num, unsigned int count)

这里的dev是cdev结构；num是这个设备响应的第一个设备号；count是应当关联到设备的设备号的数目，通常是1。

从系统去除一个字符设备调用使用以下命令：

void cdev_del(struct cdev *dev);

11.4　具体实例

前面大致介绍了实现一个字符设备所要做的工作，下面就以一个真实的例子来总结上面介绍的内容。设备驱动程序是I/O进程与设备控制器之间的通信程序。

本驱动程序的功能如下。

（1）接收由设备性软件发来的命令和参数，并将命令中的抽象要求转换为具体的要求。

（2）检查用户I/O请求的合法性，了解I/O设备的状态，传递有关参数，设置设备的工作方式。

（3）输出I/O命令。

（4）实时响应由控制器或通道发来的中断请求，并根据其中断类型调用相应的中断处理程序进行处理。

（5）对于设置有通道的计算机系统，驱动程序还应能够根据用户的I/O请求，自动地构建通道程序。

设备驱动程序的处理过程如下。

（1）将抽象要求转换为具体要求。

（2）检查I/O设备请求的合法性。

（3）读出和检查设备的状态。

（4）传送必要的参数。

（5）设置工作方式。

（6）启动I/O设备。

在源码中的关键地方做了注释。

 [image:]

 [image:]

 [image:]

11.4.1　file_operations结构体设计

file_operations结构体即文件操作结构体，其设计如下：

 [image:]

11.4.2　模块初始化、模块卸载函数实现

1．注册设备号

分配设备编号，注册设备与注销设备的函数均在fs.h中声明，如下所示：

 [image:]

在Linux2.6中，register_chrdev_region是register_chrdev的升级版。

使用register_chrdev_region函数时，首先要定义一个dev_t变量来作为一个设备号：

dev_t dev_num；

如果想静态申请，那么：

 [image:]

然后便可以使用

 [image:]

如果要动态地注册设备号，则使用alloc_chrdev_region(&dev_num, 0,2, "memdev")，表示次设备号从0开始，注册两个设备，设备名为memdev。

2．添加设备

前面只是注册了设备号，后面要向内核添加设备。

 [image:]

如果已经知道了主设备号，就用：

 [image:]

如果是动态申请的设备号，就用：

cdev_add(&devno,MKDEV(mem_major,0),MEMDEV_NR_DEVS);

由此可见，使用register_chrdev_region()比使用register_chrdev()多了一步，就是向内核注册添加cdev设备的步骤。

3．添加设备节点

（1）自动添加、删除设备节点

以下创建了一个总线类型，在/sys/class下生成cdevdemo目录后，执行device_create会在/dev/下自动生成cdevdemo设备节点。如果不调用此函数，若想通过设备节点访问设备，需要手动mknod来创建设备节点后再访问。

cdevdemo_class = class_create(THIS_MODULE, "cdevdemo");
device_create(cdevdemo_class, NULL, MKDEV(cdevdemo_major, 0), NULL, "cdevdemo");

本实例使用的是这种方法。

（2）手动添加、删除设备节点

创建设备文件：

 [image:]

其中，c是指字符设备；major是主设备号，就是在/proc/devices里看到的。

使用shell命令就可以获得主设备号：

$ cat /proc/devices

minor是从设备号，设置成0即可。

mknod命令创建的设备节点，可以使用“rm -f设备文件名称（注意，这个地方不是跟全路径，就是一个名字）”删除，重启计算机或者删除对应的文件都是无效的。

11.4.3　读写函数的实现

读写函数的实现如下。

 [image:]

11.4.4　驱动程序编译

编写Makefile后在虚拟机中编译。

 [image:]

11.4.5　驱动程序编译和加载

在用insmod命令将编译好的模块调入内存时，init_module函数被调用。编写Makefile文件编译该设备驱动程序，编译结束后产生devdemo.ko文件。

驱动程序已经编译好，现在将其安装到系统中：

 [image:]

如果安装成功，在/proc/devices文件中就可以看到设备devdemo，并可以看到它的主设备号。

[root@Loongson:/]#cat /proc/devices | grep demo
255 cdevdemo

如果要卸载，可运行以下命令：

[root@Loongson:/]#rmmod devdemo

End cdevdemo

11.4.6　驱动程序测试

现在可以通过设备文件来访问驱动程序。可以写一个小小的测试程序：

 [image:]

编译运行，运行结果如下：

[root@Loongson:/]#insmod devdemo.ko
======== cdevdemo_init
======== cdevdemo_init 1
======== cdevdemo_init 3
======== cdevdemo_setup_cdev 1
======== cdevdemo_setup_cdev 2
======== cdevdemo_setup_cdev 3
======== cdevdemo_setup_cdev 4
======== cdevdemo_setup_cdev 5
======== cdevdemo_init 4[root@Loongson:/]#test_devdemo
-/bin/sh: test_devdemo: not found
[root@Loongson:/]#chmod u+x test_devdemo
[root@Loongson:/]#./test_devdemo

======== cdevdemo_open
======== cdevdemo_read the string is :
======== cdevdemo_release hello

以上只是一个简单的演示。真正实用的驱动程序要复杂得多，要处理如中断、DMA、I/O接口等问题。

11.5　一些有用的资料

下面列出一些资料，供读者参考。

[image:]　Linux驱动之模块化编程（一）：http://blog.chinaunix.net/uid-26833883-id-4366882.html。

[image:]　Linux驱动之模块化编程（二）：http://blog.chinaunix.net/uid-26833883-id-4366909.html。

[image:]　Linux设备驱动之字符设备（一）：http://blog.chinaunix.net/uid-26833883-id-4369060.html。

[image:]　Linux设备驱动之字符设备（二）：http://blog.chinaunix.net/uid-26833883-id-4369117.html。

[image:]　Linux设备驱动之字符设备（三）：http://blog.chinaunix.net/uid-26833883-id-4371047.html。

11.6　修改为模块注销自动删除设备节点

实例文件：devdemo.c。

device_create函数在创建设备节点类后，创建cdevdemo设备节点，同时会自动调用新添加的设备节点函数chardev_devnode，从而设置类属性为666。

将以下两句：

 [image:]

修改成：

 [image:]

同时添加两个定义：

 [image:]

在模块注销卸载中添加以下两句：

 [image:]

第12章　misc杂项设备驱动

在Linux驱动中，把无法归类的各种设备定义为混杂设备（用miscdevice结构体表述）。misc设备其实就是特殊的字符设备。miscdevice共享一个主设备号MISC_MAJOR（10），但次设备号不同。所有的miscdevice设备形成了一个链表，对设备访问时，内核根据次设备号查找对应的miscdevice设备，然后调用其file_operations结构中注册的文件操作接口进行操作，如图12.1所示。miscdevice的API实现在drivers/char/misc.c中。

 [image:]
 图12.1　Linux设备类结构图

12.1　misc使用的结构体和函数

misc设备其实也是字符设备，只不过misc设备驱动在字符设备的基础上又进行了一次封装，使用户可以更方便地使用。

 [image:]

用户在注册misc设备时只需要初始化file_operations结构体，然后初始化miscdevice结构体，再调用misc_register将miscdevice注册到系统中即可。

 [image:]

到了这里就会有疑问，为什么Linux费劲地又造了一个misc设备？为什么不直接使用字符设备驱动呢？

12.2　misc设备的优点

使用misc设备具有以下优点。

[image:]　节省主设备号：使用普通字符设备驱动框架，不管该设备的主设备号是静态的还是动态分布的，都会使用一个主设备号。而miscdevice结构体的主设备号是固定的，MISC_MAJOR定义为10。在Linux内核中，大概可以找到200多处使用miscdevice框架结构的驱动。

[image:]　使用方便：misc驱动不再直接采用registe_chrdev_region或者alloc_chrdev_region、cdev_add之类的原始方法申请设备号和注册，而是采用miscdevice的注册方法misc_register(struct miscdevice *misc)。因为它已经封装和优化得很好，能简化工作量。

[image:]　利于Linux驱动的分层设计思想：由于Linux驱动倾向于分层设计，各个具体的设备都可以找到它归属的类型并嵌套在相应的架构上面，只需要实现最底层的那一部分。可是有些设备不知道它属于什么类型，misc驱动的引入，很好地解决了这个问题，使用也更加方便。

总地来讲，如果使用misc驱动可以满足要求，那么可以为开发人员省下不少麻烦。使用的函数主要有：

 [image:]

12.3　内核源码

（1）miscdevice结构体：

 [image:]

（2）misc_register函数：

 [image:]

（3）misc_deregister函数：

 [image:]

12.4　具体实例

实例源码：miscdemo.c，杂项设备的驱动。

 [image:]

 [image:]

编写测试函数test_miscdemo.c。

 [image:]

运行过程为载入模块和显示模块，运行测试程序，结果如下：

 [image:]

第13章　PWM控制输出

13.1　利用LED_PWM

1．PWM0、PWM1说明

原始功能没有复用GPIO06和GPIO92引脚。开发板上引出的PWM引脚及复用关系如表13.1所示。

 表13.1　开发板上引出的PWM引脚及复用关系

 [image:]

在寄存器定义中，LS1X_PWM0_BASE定义为0x1fe5c000，是物理地址；如图13.1所示。

 [image:]
 图13.1　头文件中PWM寄存器定义

使用的平台文件在Makefile中，定义了pwm.o的目标文件，如图13.2所示。与内核的关联配置如图13.3所示。

 [image:]
 图13.2　PWM的目标文件定义

 [image:]
 图13.3　内核关联的配置

需要在内核配置时添加选项，如图13.4所示。

 [image:]
 图13.4　内核配置PWM的选项

添加HAVE_PWM后，就有设备pwm_device的定义ls1x_pwm_list，如图13.5所示。

2．内核中配置CPU

内核中配置选择Loongson 1C board的CPU，如图13.6所示。对应的Kconfig文件的配置如图13.7所示。

 [image:]
 图13.5　平台文件中配置PWM相关内容

 [image:]
 图13.6　内核配置时CPU选项

 [image:]
 图13.7　内核配置的config文件中CPU相关内容

在pwm.c中定义了外部的ls1x_pwm_list，分析驱动pwm.c，如图13.8所示。

 [image:]
 图13.8　pwm.c文件中定义的结构体

这个变量在平台文件中定义，分析平台文件ls1c300b_cbiiv0a.c，如图13.9所示。

 [image:]
 图13.9　平台文件中定义的结构体

在driver、leds文件下的Makefile，leds_pwm的编译依赖于CONFIG_LEDS_PWM，如图13.10所示。

 [image:]
 图13.10　内核led目录下的Makefile文件中的目标文件

CONFIG_LEDS_PWM在内核配置中如图13.11所示。

 [image:]
 图13.11　内核配置时LED-PWM选项

该配置选项的出现依赖于HAVE_PWM配置项，如图13.12所示。

 [image:]
 图13.12　LED-PWM选项的配置项

其中，struct pwm_device在文件ls1x_pwm.h中，如图13.13所示。

 [image:]
 图13.13　ls1x_pwm.h文件在内核文件中的位置

pwm_device设备的结构体定义如下，包含了三个变量：

 [image:]

3．Linux内核配置选中PWM驱动

在Linux内核配置时需要选中PWM驱动如下：

 [image:]

在LED类中配置PWM：

Device Drivers --->
[*] LED Support --->
<*> PWM driven LED Support

在平台文件ls1c300b_cbiiv0a.c中添加：

 [image:]

上一个平台文件中，在函数static struct platform_device *ls1b_platform_devices[] __initdata中添加：

 [image:]

平台文件增加设备成功：leds_pwm，控制台中运行结果如图13.14所示。

将PWM0占比调到最大（高电平占100%）：

echo 255 > brightness

将PWM0占比调到最小（低电平占100%）：

echo 0 > brightness

 [image:]
 图13.14　控制台中查看增加的设备

13.2　自己编写驱动文件

首先在平台文件中添加资源。

在平台文件\arch\mips\loongson\ls1x\ls1c\ls1c300b_cbiiv0a.c中添加：

 [image:]

在函数static struct platform_device *ls1b_platform_devices[] __initdata中添加：

 [image:]

在\drivers\char\Kconfig中添加：

 [image:]

在\drivers\char\下的Makefile文件中添加语句：

 [image:]

平台设备增加成功：ls1c-pwm，如图13.15所示。

 [image:]
 图13.15　控制台中查看平台设备

编写驱动文件ls1c_pwm.c，放到内核代码driver/char下，如图13.16所示。

 [image:]
 图13.16　驱动文件在内核中位置

修改Makefile文件，添加语句obj-$(CONFIG_LS1C_PWM_DRIVER) += ls1c-pwm.o，如图13.17所示。

 [image:]
 图13.17　内核中Makefile生成目标文件

设备驱动ls1c_pwm.c代码如下：

 [image:]

 [image:]

 [image:]

 [image:]

 [image:]

编译成功后，编写文件pwm.c，包含测试PWM设备的操作函数：

 [image:]

使用方法示例：调用函数pwmset(0,50,10000)，意思是在PWM0引脚产生占空比为50%、周期为10000的方波。

另外，GPIO92与其中一个KEY冲突，需要在平台文件中注释掉KEY_2的定义，如图13.18所示。

 [image:]
 图13.18　在平台文件中注释掉KEY_2的定义

第14章　l2C总线和设备驱动

14.1　I2C总线概述

I2C总线是由Philips公司开发的一种简单、双向二线制同步串行总线。它只需要两根线即可在连接于总线上的器件之间传送信息。

I2C总线支持任何IC生产过程（NMOS、CMOS、双极性），通过两线（串行数据线SDA和串行时钟线SCL）在连接到总线的器件间传递信息。每个器件都有一个唯一的地址识别（无论是微控制器、LCD驱动器、存储器还是键盘接口），而且都可以作为一个发送器或接收器（由器件的功能决定）。很明显，LCD驱动器只是一个接收器，而存储器则既可以接收又可以发送数据。除了发送器和接收器外，器件在执行数据传输时也可以被看作是主机或从机。主机是初始化总线的数据传输并产生允许传输的时钟信号的器件。此时，任何被寻址的器件都被认为是从机。

I2C总线具有以下特征。

[image:]　只要求两条总线线路：一条串行数据线SDA；一条串行时钟线SCL。

[image:]　每个连接到总线的器件都可以通过唯一的地址和一直存在的简单的主机、从机关系软件设定地址；主机可以作为主机发送器或主机接收器。

[image:]　它是一个真正的多主机总线，如果两个或更多主机同时初始化数据传输，可以通过冲突检测和仲裁防止数据被破坏。

[image:]　串行的8位双向数据传输位速率在标准模式下可达100Kbps，快速模式下可达400 Kbps，高速模式下可达3.4Kbps。

[image:]　片上的滤波器可以滤去总线数据线上的毛刺波，保证数据完整。

[image:]　连接到相同总线的IC数量只受到总线的最大电容400pF限制。

14.2　Linux I2C设备驱动

I2C的设备结构和驱动结构如图14.1和图14.2所示。

 [image:]
 图14.1 I2C设备结构

 [image:]
 图14.2　I2C驱动结构

14.2.1　I2C adapter

I2C adapter是MCU里的I2C控制模块，也叫作适配器，可控制I2C从设备。I2C adapter结构体描述如下：

 [image:]

i2c_algorithm结构体包含了I2C控制器的数据传输具体实现方法和所支持的功能类型。

i2c_algorithm结构体如下：

 [image:]

如果master_xfer配置为NULL，则表示I2C adapter不支持I2C通道。如果配置了smbus_xfer，则表示I2C adapter支持SMBUS协议。functionality则描述了I2C adapter所支持的所有功能。

1．I2C与SMBus的区别

一般I2C和SMBus是互相兼容的，但也有速度上的差异，如表14.1所示。

 表14.1　I2C总线与SMBus在速度上的对比

 [image:]

电气特性上，I2C和SMBus在逻辑电平定义、限流、相关限制等方面也有差异。

2．I2C driver

很多I2C设备，如传感器、触摸屏、背光控制器、OLED显示器等都是通过I2C协议与主机进行数据传输、控制的。I2C驱动的结构体如下：

 [image:]

I2C driver可驱动多个I2C client。以加速度传感器MPU6050为例，实现的I2C驱动为：

 [image:]

宏定义module_i2c_driver和i2c_add_driver在内核文件i2c.h中定义为：

 [image:]

宏定义module_drive为：

 [image:]

将module_i2c_driver(mpu6050_driver)代入以上宏定义中：

 [image:]

这样就巧妙地实现了注册和删除模块，开发人员只需要填充i2c_driver结构体就能实现I2C的驱动，不用兼顾设备的注册和删除。

3．I2C client

I2C client对应于MCU外围的I2C设备，每一个I2C设备都由一个唯一的client来描述。I2C设备注册在bsp中实现，i2c_client结构体定义为：

 [image:]

包含I2C设备mpu6050的i2c_board_info结构体为：

 [image:]

通过以上语句，I2C设备mpu6050可在系统中注册，当名称与i2c_driver中id列表中的成员相同时，就运行probe函数进行初始化。

14.2.2　I2C子系统驱动模块的API

Linux内核的I2C子系统驱动模块的API分类如表14.2所示。

 表14.2　I2C的API分类

 [image:]

14.2.3　I2C client的注册

i2c_client即I2C从设备，注册I2C从设备的接口函数为i2c_register_board_info、i2c_new_device和i2c_new_dummy。i2c_new_dummy是将client的name指定为dummy后，执行i2c_new_device。其他两个函数为：

i2c_register_board_info(int busnum, struct i2c_board_info const *info, unsigned len)
//busnum ：通过总线号指定这个设备属于哪个总线
//info i2c：设备的数组集合， i2c_board_info格式
//len：数组个数ARRAY_SIZE(info)
i2c_new_device(struct i2c_adapter *adap, struct i2c_board_info const *info)
//adap ：设备所依附的I2C适配器指针
//info：设备描述，i2c_board_info格式，bus_num成员是被忽略的

1．使用总线号声明设备（i2c_register_board_info）

当已知I2C设备和地址，以及连接总线的编号，可在内核的初始化中定义设备的信息。

 [image:]

该函数将信息加入__i2c_board_list链表尾部，这样在注册适配器I2C adapter时，扫描该链表，调用i2c_new_device或i2c_new_probed_device函数可静态注册I2C设备。

2．注册设备（i2c_new_device或i2c_new_probed_device）

i2c_new_device函数使用info提供的信息建立i2c_client从设备，并绑定第一个参数指向的i2c_adapter适配器，返回指向i2c_client的指针。

 [image:]

i2d_new_device函数中说明了i2c_client与i2c_board_info的对应关系，I2C设备的注册方法为：

（1）使用总线号调用i2c_register_board_info函数。

（2）使用适配器的指针调用i2c_new_device函数。

（3）多个I2C从设备可通过i2c_register_board_info函数同时注册。

（4）使用i2c_new_device函数一次只能注册一个I2C从设备。

如果I2C设备地址不固定，可提供地址列表，使用函数i2c_new_probe_device供系统探测：

 [image:]

使用以下函数获得i2c_adapter指针：

 [image:]

然后注册I2C设备，使用结束后释放函数为：

void i2c_put_adapter(struct i2c_adapter *adap)；

3．从用户空间初始化I2C设备

从用户空间初始化I2C设备又称为I2C设备的实例化。通常I2C设备地址是已知的，然而有时是未知的，这时可使用sysfs属性接口进行信息补充，即在每一个I2C总线上创建只写文件new_device和delete_device。创建文件new_device需要I2C设备的名称和I2C器件的地址。创建文件delete_device需要I2C设备的地址。

创建I2C总线设备文件代码为：

#echo at24c08 0x50 > /sys/bus/i2c/devices/i2c-2/new_device

删除I2C总线设备文件代码为：

echo 0x50 > /sys/bus/i2c/devices/i2c-2/delete_device

该属性的使用非常灵活有效。

添加I2C设备的方法很灵活。根据Linux的官方文档，添加I2C设备的方法有以下4种。

（1）i2c_register_board_info：根据总线编号、设备名字、设备地址注册驱动。

（2）i2c_new_device：根据I2C总线的编号，声明一个I2C设备。这种方法就是使用总线号声明设备用的方法，需要知道器件挂接的总线和设备地址。

（3）i2c_new_probed_device：根据地址列表，通过系统探测出设备地址。

（4）从用户空间实例化一个器件：该方法相当灵活有效，输入指令new_device，可增加I2C设备和对应的设备文件。

14.2.4　I2C driver

1．I2C设备驱动

Linux内核设备驱动对于设备的常用接口是注册和卸载。

I2C子系统中adapter已经完成用户空间的打开、关闭、读写等接口。I2C驱动中i2c_driver结构体为：

 [image:]

以MPU6050为例，I2C驱动在drivers中完成的接口为：

 [image:]

这里定义了宏UNIVERSAL_DEV_PM_OPS行电源管理，所以在i2c_driver的driver成员中，实现了电源管理，结合MPU6050的驱动可以扩展为：

 [image:]

在MPU6050的驱动注册中实现了probe探查与电源管理。在MPU6050的probe探查中实现了I2C设备的上电、初始化、注册子系统接口、挂载中断处理程序等功能。

2．总结

I2C设备是挂载在I2C总线上的，I2C子系统仅是设备驱动基础，而I2C设备的核心是其他子系统。I2C总线是为了让CPU使用尽可能少的I/O口控制更多的外部模块。

14.2.5　I2C adapter的注册

1．注册方法

I2C adapter注册有两个函数原型：

 [image:]

使用i2c_add_numberd_adapter函数必须定义指针adap->nr，如果定义为-1，则总线号由系统自动分配。

2．使用场景

I2C adapter的注册使用情况不同。i2c_add_adapter用来注册可插拔设备，与其他模块没有直接联系。而可插拔设备需要使用注册成功的适配器指针。I2C设备与适配器的资源利用关系为：

（1）i2c_register_board_info需要i2c_add_numbered_adapter注册前指定的总线号。

（2）i2c_new_device需要i2c_add_adapter注册成功后产生adapter指针。

（3）i2c_add_numbered_adapter注册时需要I2C适配器的总线号。

i2c_add_adapter代码如下：

 [image:]

最终通过i2c_register_adapter注册适配器，代码如下：

 [image:]

i2c_add_numbered_adapter函数使用i2c_scan_static_board_info进行注册，代码如下：

 [image:]

这里使用i2c_add_numbered_adapter或者i2c_add_adapter函数注册i2c_adapter驱动。i2c_client与i2c_board_info的关系在i2c_new_device函数中实现，代码如下：

i2c_client->dev.platform_data = i2c_board_info->platform_data;
i2c_client->dev.archdata = i2c_board_info->archdata;
i2c_client->flags = i2c_board_info->flags;
i2c_client->addr = i2c_board_info->addr;
i2c_client->irq = i2c_board_info->irq;

3．物理I2C总线的编号查询

在控制台中，查询物理I2C总线编号的命令如下：

[root@Loongson:/]#cat /sys/class/i2c-adapter/i2c-1/name
loongson1
[root@Loongson:/]#cat /sys/class/i2c-adapter/i2c-0/name
loongson1
[root@Loongson:/]#cat /sys/class/i2c-adapter/i2c-2/name
loongson1

14.2.6　I2C tools的使用

I2C tools是一个用于调试I2C总线的工具。

1．下载安装

I2C以tools的下载地址为http://packages.debian.org/search?keywords=i2c-tools。

首先，在虚拟机中解压源码包：

tar -xvf i2c-tools-3.1.0.tar.bz2

解压后，修改Makefile文件中编译工具链，如图14.3所示。

 [image:]
 图14.3　修改I2C tools工具包中Makefile文件中编译工具链

最后，在tools下生成i2cdetect、i2cbusses、i2cdump、i2cset和i2cget：

root@ubuntu:/Workstation/tools/i2c-tools-3.1.1# make
mipsel-linux-gcc -O2 -Wall -Wstrict-prototypes -Wshadow -Wpointer-arith -Wcast-qual -Wcast-align
-Wwrite-strings -Wnested-externs -Winline -W -Wundef -Wmissing-prototypes -Iinclude -c tools/i2cdetect.c -o
tools/i2cdetect.o
mipsel-linux-gcc -O2 -Wall -Wstrict-prototypes -Wshadow -Wpointer-arith -Wcast-qual -Wcast-align -Wwrite-
strings -Wnested-externs -Winline -W -Wundef -Wmissing-prototypes -Iinclude -c tools/i2cbusses.c -o
tools/i2cbusses.o
mipsel-linux-gcc -o tools/i2cdetect tools/i2cdetect.o tools/i2cbusses.o
mipsel-linux-gcc -O2 -Wall -Wstrict-prototypes -Wshadow -Wpointer-arith -Wcast-qual -Wcast-align -Wwrite-
strings -Wnested-externs -Winline -W -Wundef -Wmissing-prototypes -Iinclude -c tools/i2cdump.c -o tools/
i2cdump.o
mipsel-linux-gcc -O2 -Wall -Wstrict-prototypes -Wshadow -Wpointer-arith -Wcast-qual -Wcast-align -Wwrite-
strings -Wnested-externs -Winline -W -Wundef -Wmissing-prototypes -Iinclude -c tools/util.c -o tools/util.o
mipsel-linux-gcc -o tools/i2cdump tools/i2cdump.o tools/i2cbusses.o tools/util.o
mipsel-linux-gcc -O2 -Wall -Wstrict-prototypes -Wshadow -Wpointer-arith -Wcast-qual -Wcast-align -Wwrite-
strings -Wnested-externs -Winline -W -Wundef -Wmissing-prototypes -Iinclude -c tools/i2cset.c -o tools/i2cset.o
mipsel-linux-gcc -o tools/i2cset tools/i2cset.o tools/i2cbusses.o tools/util.o
mipsel-linux-gcc -O2 -Wall -Wstrict-prototypes -Wshadow -Wpointer-arith -Wcast-qual -Wcast-align -Wwrite-
strings -Wnested-externs -Winline -W -Wundef -Wmissing-prototypes -Iinclude -c tools/i2cget.c -o tools/i2cget.o
mipsel-linux-gcc -o tools/i2cget tools/i2cget.o tools/i2cbusses.o tools/util.o
root@ubuntu:/Workstation/tools/i2c-tools-3.1.1#

2．I2C总线扫描

将上面编译好的i2cdetect、i2cdump、i2cget和i2cset复制到开发板上新建的一个目录下：

 [image:]

通过i2cdetect -l指令查看设备上的I2C总线：

 [image:]

3．I2C设备查询

将设备的SDA连接到GPIO50，SCL连接到GPIO51，若总线上挂载I2C从设备，可通过i2cdetect扫描某个I2C总线上的所有设备。可在控制台输入i2cdetect -y 2，结果如下：

 [image:]

其中-y为一个可选参数，如果有-y参数，则会有一个用户交互过程z，意思是希望用户停止使用该I2C总线。如果写入该参数，则没有这个交互过程，一般该参数在脚本中使用。

此处I2C总线共挂载两个设备——DS3231和AT24C02，从机地址0x68为DS3231，从机地址0x50为AT24C02。

4．寄存器内容导出

通过i2cdump指令可导出I2C设备中的所有寄存器内容。例如，输入i2cdump -y 2 0x68，可获得以下内容：

 [image:]

5．寄存器内容写入

如果向I2C设备中写入某字节，可输入指令/i2cset -y 2 0x50 0x01 0x15，其中：

[image:]　-y代表取消用户交互过程，直接执行指令。

[image:]　2代表I2C总线编号。

[image:]　0x50代表I2C设备地址，此处选择AT24C02。

[image:]　0x01代表存储器地址。

[image:]　0x15代表存储器地址中的具体内容。

 [image:]

6．寄存器内容读出

如果从I2C从设备中读出某字节，可输入指令i2cget -y 1 0x50 0x00，其中：

[image:]　-y代表取消用户交互过程，直接执行指令。

[image:]　1代表I2C总线编号。

[image:]　0x50代表I2C设备地址，此处选择AT24C04的低256字节内容。

[image:]　0x00代表存储器地址。

可得到以下反馈结果：

[root@Loongson:/i2ctools]#./i2cget -y 2 0x50 0x01
0x15

I2C tools是一个简单好用的工具，该工具使得I2C设备的调试更加方便。

14.2.7　内核模块分析

内核中配置相关I2C的选项已经打开，如图14.4~图14.7所示。

配置后进行编译一共得到了3个驱动文件：i2c-core.ko、i2c-dev.ko和i2c_LS1X.ko，这3个模块已经编译到内核中，会自动创建/dev/i2c-0设备节点，然后就可以直接调用/dev/i2c-0文件节点访问设备。后面应用程序员可以利用ioctl(fd, I2C_RDWR, (unsigned long) &work_queue)和octl (file,I2C_SMBUS,&args)函数与I2C设备进行通信。

platform设备是针对硬件资源的分配，platform驱动是软件对已分配的硬件资源的使用。

 [image:]
 图14.4　内核中配置相关I2C的选项1

 [image:]
 图14.5　内核中配置相关I2C的选项2

 [image:]
 图14.6　内核中配置相关I2C的选项3

 [image:]
 图14.7　内核中配置相关I2C的选项4

14.3　实例分析at24cxx

开发板上硬件连接使用I2C2，SDA接GPIO51，SCL接GPIO50，如表14.3所示。

 表14.3　开发板上I2C管脚复用

 [image:]

可用于I2C0的引脚GPIO85、GPIO86用在按键上。

可用于I2C1的引脚GPIO55、GPIO54在本开发板上用在了CAN上，如表14.4所示。

 表14.4　开发板上CAN总线管脚复用

 [image:]

驱动编写步骤如下。

（1）注册一个设备，其中要有设备名和该设备id，并挂载到I2C总线设备链表。

（2）注册一个驱动，该设备驱动需要有设备名、probe函数、id_table设备地址，然后挂载到驱动链表。

（3）比较两条链表上的设备名是否相同，如果相同，则调用相关的驱动设备上的probe函数。

（4）probe函数内就是正常的驱动程序，主入口、出口、file_operation结构体的构造等操作。最终，应用程序会进入这里操作硬件对象。

1．注册新设备

例程中关于at24cxx设备的操作共有两个，说明如下。

[image:]　文件at24cxx_dev.c：注册新设备，采用方法i2c_new _device。

[image:]　文件at24cxx_dev1.c：注册新设备，采用方法i2c_new_probed_device。

2．注册新驱动

例程中关于at24cxx驱动的操作代码为at24cxx_drv.c，作用是注册一个新驱动。

3．对I2C驱动的操作

完成设备的打开、读、写、关闭等，填充at24cxx_drv.c中的函数。

4．编译用的Makefile

 [image:]

5．测试应用编程test_at24cxx.c

 [image:]

14.4　实例分析DS3231

参考《智龙V2通过I2C连接DS3231时钟模块》，网址为http://www.openloongson.org/ forum.php?mod=viewthread&tid=149&extra=page%3D1。

本例程做了改动，将静态注册修改成了动态注册，这样就不需要重新编译内核，原程序为：

 [image:]

修改为：

 [image:]

第15章　SPl总线和设备驱动

15.1　SPI总线概述

SPI是由摩托罗拉公司开发的全双工同步串行总线，是微处理控制单元（MCU）和外围设备之间进行通信的同步串行端口，主要应用在EEPROM、Flash、实时时钟（RTC）、数模转换器（ADC）、网络控制器、MCU、数字信号处理器（DSP）以及数字信号解码器之间。SPI系统可直接与各个厂家生产的多种标准外围器件直接接口，一般使用4条线：串行时钟线SCK、主机输入／从机输出数据线MISO、主机输出／从机输入数据线MOSI和低电平有效的从机选择线SSEL。

在讨论SPI数据传输时，必须明确以下两个位的特点及功能。

[image:]　CPOL：时钟极性控制位。该位决定了SPI总线空闲时SCK时钟线的电平状态。

CPOL=0，当SPI总线空闲时，SCK时钟线为低电平。

CPOL=1，当SPI总线空闲时，SCK时钟线为高电平。

[image:]　CPHA：时钟相位控制位。该位决定了SPI总线上数据的采样位置。

CPHA=0，SPI总线在时钟线的第1个跳变边沿处采样数据。

CPHA= 1，SPI总线在时钟线的第2个跳变边沿处采样数据。

15.1.1　硬件结构

SPI总线通信的最大特点是由主机设备完全控制时钟信号，并决定主从设备的通信。通常，负责产生时钟信号的设备为主设备，另一方则作为从设备。主设备为SoC中的SPI控制器，每个控制器连接多个SPI从设备，每个从设备根据CS引脚来确定自身是否有效。从设备之间、从设备与主设备共用3个信号引脚：SCK、MISO、MOSI，如图15.1所示。任何时刻，当某个CS引脚为低电平时，与该CS引脚连接的从设备能与主设备（SPI控制器）通信，其他从设备数据引脚为高阻态，与主设备断开。

 [image:]
 图15.1　多个控制器的SPI总线硬件结构

15.1.2　工作时序

按照时钟信号和数据信号之间的相位关系，SPI有4种工作时序模式，如图15.2所示。CPOL表示SCK信号线初始的电平，为0则初始电平为0，为1则初始电平为1。CPHA表示在SCK信号的第几个边沿输出数据有效，为0则SCK的第1边沿输出数据有效，为1则SCK的第2边沿输出数据有效。

 [image:]
 图15.2　SPI总线4种工作时序模式

4种工作时序模式说明如表15.1所示。

 表15.1　SPI总线4种工作时序模式说明

 [image:]

15.2　Linux SPI设备驱动软件架构

Linux内核从Linux 2.6开始，引入了总线设备驱动模型，对SPI驱动进行了分层，如图15.3所示。

 [image:]
 图15.3　Linux内核SPI驱动分层示意图

SPI控制器驱动直接与SPI硬件设备通信，具体控制SPI硬件设备。SPI通用设备的驱动基于设备功能和协议格式，根据设备具体的功能与内核其他子系统通过SPI通用接口层进行交互，提供了具体的SPI服务。

Linux系统下SPI设备驱动参考Droid Phone在CSDN中的博客，网址为https://me.csdn.net/DroidPhone。

15.3　SPI通用接口层

SPI通用接口层为协议驱动和控制器驱动提供一系列的标准接口API，并为这些接口API定义了相应的数据结构。SPI通用接口层在/drivers/spi/spi.c中实现，管理控制器和外设之间的交互。

15.3.1　SPI总线和类

SPI设备挂在SPI总线上，遵循Linux的设备模型的规则，代码如下：

 [image:]

在初始化spi_init函数中，使用bus_register函数注册spi的总线类型，使用class_register函数注册spi_master的设备类。这样在系统文件系统中就增加了文件节点：

sys/bus/spi
sys/class/spi_master

15.3.2　spi_master结构

SPI控制器按照一定的格式在主设备和SPI从设备之间进行数据传输。SPI通用接口层中，spi_master结构体主要字段如表15.2所示。

 表15.2　spi_master结构体字段意义

 [image:]

15.3.3　spi_device结构

SPI通用接口层中，spi_device结构体主要字段如表15.3所示。

 表15.3　spi_device结构体字段意义

 [image:]

在spi.h文件中，定义了SPI设备的结构spi_board_info：

 [image:]

bus_num成员指定控制器编号。注册和增加SPI设备有两种方式，第一种方式是在SPI控制器驱动已经被加载后，使用标准接口API函数spi_new_device实现。

第二种方式是在板级平台文件中实现，平台文件即ls1c300b_cbiiv0a_board.c，定义spi_board_info数组，通过spi_register_board_info函数注册SPI设备。开发板中实现板级SPI设备注册，代码如下：

 [image:]

spi_register_board_info函数在文件spi.c中，代码如下：

 [image:]

15.3.4　spi_driver结构

在Linux的设备驱动模型中，设备与驱动对应，驱动程序的spi_driver结构在spi.h文件中，代码如下：

 [image:]

id_table字段用于指定该驱动可以驱动的设备名称，与设备匹配成功时调用匹配函数spidev_probe，最后采用spi_register_driver函数实现spi_driver的注册：

 [image:]

15.3.5　spi_message和spi_transfer结构

spi_message是SPI设备数据传输的最小单位，由多个spi_transfer链表结构组成。spi_message数据结构的定义为：

 [image:]

spi_transfer结构定义为：

 [image:]

spi_message结构中有成员transfers，spi_transfer结构包含一个链表头成员transfer_list。SPI设备的数据传输通过spi_messages的方法transfers实现。可以通过spi_message_add_tail向spi_message结构中添加一个新的transfers成员，再调用spi_async异步或者spi_sync同步来实现传输。spi_master、spi_message和spi_transfer数据结构的关系如图15.4所示。

 [image:]
 图15.4　SPI数据结构的关系

15.4　SPI控制器驱动

SPI控制器负责最底层的数据收发工作，完成以下功能：

[image:]　申请硬件资源。

[image:]　配置SPI控制器的工作模式和参数。

[image:]　配置通用接口层，使上层协议驱动通过可通用接口层访问底层。

[image:]　完成数据消息队列的传输。

15.4.1　定义控制器设备

根据Linux的设备模型框架，SPI控制器在代码中对应有device结构，嵌入式系统的SPI控制器通常是平台设备，必须在板级的代码中为SPI控制器定义platform_device结构。下面以LS1C300B的S oC芯片为例，平台文件/arch/mips/loongson/ls1x/ls1c/ls1c300b_cbiiv0a_board.c中关于SPI设备的定义代码如下：

 [image:]

在平台设备文件中，定义了控制器SPI总线号、寄存器地址和IRQ编号，一共有两个设备：mmc_spi和m25p80，该名字用于后续和相应的控制器驱动相匹配。在平台的初始化代码中，需要注册这个平台设备，注册代码如下：

 [image:]

上述代码指定了SPI控制器使用到的端口配置、片选信号的引脚和时钟配置等信息。

15.4.2　注册SPI控制器的platform_driver

在平台中，SPI控制器注册为一个平台设备，使用对应的平台驱动——platform_driver，通过SPI总线进行匹配。具体的驱动代码为：

 [image:]

系统在模块初始化阶段通过ls1x_spi_init注册了一个平台驱动，使用名称spi_ls1x，与平台设备对应，当匹配成员id_table时，触发回调函数probe进行注册：

 [image:]

15.4.3　注册spi_master

Linux设备模型中，控制器使用spi_master结构。当设备与驱动匹配成功后，驱动的probe回调函数就会被调用，代码如下：

 [image:]

 [image:]

以上代码首先进行端口初始化，其次分配了spi_master结构，最后注册控制器。

15.5　SPI数据传输

SPI数据传输是基于message完成的。一个spi_message是一次数据交换的最小单位，spi_message由多个链表结构spi_transfer组成。SPI数据传输基于spi_message请求，spi_message是以链表的形式包含在控制器的spi_master结构体的queue成员中，代码如下：

 [image:]

message异步传输操作函数原型为：

extern int spi_async(struct spi_device *spi, struct spi_message *message)

该函数是SPI数据异步传输API，将spi_message结构挂在spi_master的queue成员下，然后启动SPI传输内核工作线程，从而实现spi_message的队列化。

SPI控制器驱动在初始化时，通过函数spi_register_master注册和初始化SPI控制器和工作线程。函数spi_register_master的调用序列如图15.5所示。

 [image:]
 图15.5　函数spi_register_master的调用序列

函数spi_async生成了spi_message请求，启动SPI传输内核工作线程，最终完成spi_message的传输，其调用序列如图15.6所示。

 [image:]
 图15.6　函数spi_async的调用序列

综上所述，文件spi.c实现了通用设备的驱动，该文件由内核提供；文件ls1c_spi.c实现了SPI设备驱动，该文件由专门开发人员根据平台设备编写，智龙开发板的SoC相关SPI驱动已经完备；平台文件ls1c300b_cbiiv0a_board.c则实现了平台设备的注册，通过该文件，用户可定义SPI设备使用哪个SPI总线，以及所使用的片选信号，并进行相关端口的初始化。

15.6　实例分析：驱动编写之SPI设备静态注册spidev.c

CPU中SPI0的CS0控制芯片W25X40上的CS引脚，芯片W25X40内装载的是PMON启动代码，如图15.7所示，不能使用CS0再进行其他操作。

 [image:]
 图15.7　开发板SPI总线CS0控制的芯片

CPU中SPI0的CS2操作SD卡上的CS引脚，如图15.8所示，也不能再使用CS2进行其他操作。

 [image:]
 图15.8　开发板SPI总线CS2控制的SD卡

CPU中SPI0的CS1和CS3引脚是空余的，可进行SPI设备操作，如表15.4所示。

 表15.4　开发板SPI总线CS1复用

 [image:]

如果不想为自己的SPI设备写驱动，那么可以用Linux自带的spidev.c提供的驱动程序。要使用spidev.c的驱动，只要在登记设备时，把设备名设置成spidev即可。spidev.c会在device目录下自动为每一个匹配的SPI设备创建设备节点，节点名为spi%d。之后，用户程序可以通过字符型设备的通用接口控制SPI设备。

需要注意的是，spidev创建的设备在设备模型中属于虚拟设备，其class是spidev_class，父设备是在boardinfo中定义的SPI设备。下面就采用这种方法。先创建一个spi_board_info结构描述SPI设备信息，再调用spi_register_board_info将这个结构添加到board_list中。以上操作一定要在注册SPI控制器驱动（即spi master）前进行。

平台文件添加spidev，使用CS3，如图15.9所示。

 [image:]

调用注册函数，把上面一个设备spidev登记到/sys/bus/spi下，如图15.10所示。

 [image:]
 图15.9　内核平台文件修改第1处

 [image:]
 图15.10　内核平台文件修改第2处

spi_register_master注册SPI控制器驱动，此时会调用scan_boardinfo扫描board_list，根据spi_board_info调用spi_new_device生成spi_device结构，用spi_add_device添加设备。

重启后下载到开发板上，在ls /sys/class中能看到新加的类：

 [image:]

登记的设备：

[root@Loongson:/]#ls /sys/bus/spi/devices
spi0.2 spi0.3
[root@Loongson:/]#

其中，spi0.2是SD卡，spi0.3是spidev。

查询设备节点：

[root@Loongson:/]#ls /dev |grep spi
spidev0.3
[root@Loongson:/]#

如果没有设备节点，内核选择自动添加驱动：user mode spi device driver support。

Devices Drivers --->
[*] SPI support --->
<*>user mode spi device driver support

15.7　实例分析：驱动编写之SPI设备动态注册spike.c

动态注册SPI设备的步骤如下。

（1）得到管理总线的spi_master控制器指针（句柄）。

（2）为总线分配spi_device结构。

（3）验证没有其他的设备在这条总线bus.cs上注册过。

（4）使用设备特定的值（speed，datasize和etc）来填充spi_device。

（5）将新的spi_device添加到总线。

实例源码：spike.c。

 [image:]

 [image:]

 [image:]

 [image:]

 [image:]

 [image:]

安装spike模块后，出现了spi0.1新的device。spi0.2是SD卡，spi0.3是15.6节建立的spidev。

 [image:]

查看设备，存在以下节点。

 [image:]

15.8　编写测试程序

在内核目录/Documentation/spi下，有spidev_test.c可以参考。以下程序做了修改，不停地发送字符0x55：

 [image:]

 [image:]

 [image:]

 [image:]

在虚拟机中用以下命令编译，出现错误。

 [image:]

说明在int-ll64.h中找不到asm/bitsperlong.h。

下面把内核目录/linux-3.0.101/include/asm-generic/int-ll64.h中的

#include <asm/bitsperlong.h>

改成：

#include <asm-generic/bitsperlong.h>

重新编译后，生成spidev_test。复制入开发板，运行正常。
第16章　CAN总线和设备驱动

16.1　智龙开发板硬件CAN接口

开发板的扩展板上电路使用GPIO57、GPIO56接CAN1，GPIO55、GPIO54接CAN0，如表16.1和图16.1所示。

 表16.1　开发板上CAN接口复用

 [image:]

 [image:]
 图16.1　扩展板CAN接口电路原理

采用GPIO55、GPIO54，第三复用。复用成功后，LED5灯（orange）熄灭，不再动作。

GPIO56用作SD卡探测，也不能用作CAN1。

内核配置中，启用CAN控制器，如图16.2所示。

 [image:]

 [image:]
 图16.2　内核配置CAN控制器

在平台文件ls1c300b_cbiiv0a.c中删除以下内容：

 [image:]

在平台文件static void ls1x_can_setup(void)函数中添加以下内容：

 [image:]

16.2　Socket CAN

本节内容来自内核源码\linux-3.0.101\Documentation\networking\can.txt文件，这里仅列出目录。can.txt文件目录列表如表16.2所示。

 表16.2　can.txt文件目录列表

 [image:]

16.3　测试工具

测试CAN需要ip、can-utils和libsocketcan库。通过ip工具配置CAN，如速率、启用和禁用CAN等。

16.4　Socket CAN在智龙上的测试：使用工具iproute2

使用命令ifconfig -a能看到CAN节点：

 [image:]

1．下载编译

（1）下载源码。下载地址是http://pkgs.fedoraproject.org/repo/pkgs/iproute/。这里下载的是iproute2-3.1.0.tar.bz2。

或者在虚拟机上运行以下命令：

git clone git://git.kernel.org/pub/scm/linux/kernel/git/shemminger/iproute2.git

（2）在Makefile中修改交叉编译工具链：

CC = mipsel-linux-gcc
HOSTCC = mipsel-linux-gcc
SUBDIRS=lib ip

编译后有错，如图16.3所示。

 [image:]
 图16.3　虚拟机中编译CAN工具

根据需要修改ip文件夹下的ipnetns.c文件，屏蔽调用SETNS的函数，如图16.4所示。

 [image:]
 图16.4　修改文件ipnetns.c

（3）再次编译后成功，生成IP目录，如图16.5~图16.7所示。

 [image:]
 图16.5　虚拟机中编译CAN工具成功

 [image:]
 图16.6　虚拟机中编译生成目标文件

 [image:]
 图16.7　虚拟机中编译生成ip文件

（4）将ip工具复制到开发板的文件系统下，这里复制到/can_tools/下：

 [image:]

（5）在开发板上应用ip link命令查看设备：

 [image:]

2．配置运行命令

配置CAN接口需要在down状态下进行：

 [image:]

down下的状态查看：

 [image:]

启动：

 [image:]

loopback状态，使用loopback模式可测试本机的CAN驱动是否正常工作：

 [image:]

以上提示信息显示不支持回环模式。

16.5　Socket CAN在智龙上的测试：使用工具canutils

can-utils和libsocketcan可以使用buildroot编译，配置选项如下：

 [image:]

由于本系统采用的是BusyBox，这里重新下载canutils-4.0.6.tar.bz2编译。

1．安装libsocketcan

（1）下载libsocketcan。canutils编译需要libsocketcan库的支持，因此需要下载libsocketcan。下载地址是http://www.pengutronix.de/software/libsocketcan/download/。这里下载的是libsocketcan 0.0.10。

（2）配置编译工具链：

./configure --host=mipsel-linux

--host是指定交叉工具链。

2．编译libsocketcan – make：

 [image:]

在/Workstation/tools/SocketCAN/libsocketcan-0.0.10/下生成了文件libsocketcan.lo和libsocketcan.la。这两个文件在安装canutils时使用。

3．安装canutils

（1）下载并配置canutils-4.0.6。下载地址是http://public.pengutronix.de/software/socket-can/canutils/。这里下载的是canutils-4.0.6.tar.bz2。解压canutils-4.0.6.tar.bz2后，配置canutils，执行configure命令：

./configure --host=mipsel-linux libsocketcan_LIBS=-lsocketcan LDFLAGS="L/Workstation/tools/SocketCAN/
libsocketcan-0.0.10/src/.libs"
libsocketcan_CFLAGS="-I/Workstation/tools/SocketCAN/libsocketcan-0.0.10/include"
CFLAGS="-I/Workstation/tools/SocketCAN/libsocketcan-0.0.10/include"

其中-host是指定交叉工具链，libsocketcan_LIBS是指定canconfig需要链接的库，LDFLAGS是指定外部库的路径，CFLAGS是指定外部头文件的路径。

（2）编译make：

make
Making all in include
make[1]: Entering directory '/Workstation/tools/SocketCAN/canutils-4.0.6/include'
make all-am
make[2]: Entering directory '/Workstation/tools/SocketCAN/canutils-4.0.6/include'
make[2]: Leaving directory '/Workstation/tools/SocketCAN/canutils-4.0.6/include'
make[1]: Leaving directory '/Workstation/tools/SocketCAN/canutils-4.0.6/include'
Making all in config
make[1]: Entering directory '/Workstation/tools/SocketCAN/canutils-4.0.6/config'
make[1]: Nothing to be done for 'all'.
make[1]: Leaving directory '/Workstation/tools/SocketCAN/canutils-4.0.6/config'
Making all in src
make[1]: Entering directory '/Workstation/tools/SocketCAN/canutils-4.0.6/src'
mipsel-linux-gcc -DHAVE_CONFIG_H -I. -I../include -I../include -I../include -DPF_CAN=29
-DAF_CAN=PF_CAN -I/Workstation/tools/SocketCAN/libsocketcan-0.0.10/include -Wall -g -O2 -MT
candump.o -MD -MP -MF .deps/candump.Tpo -c -o candump.o candump.c
mv -f .deps/candump.Tpo .deps/candump.Po
/bin/bash ../libtool --tag=CC --mode=link mipsel-linux-gcc -I/Workstation/tools/SocketCAN/ libsocketcan-0.0.10/
include -Wall -g -O2 -o candump candump.o
libtool: link: mipsel-linux-gcc -I/Workstation/tools/SocketCAN/libsocketcan-0.0.10/include -Wall -g -O2 -o
candump candump.o
mipsel-linux-gcc -DHAVE_CONFIG_H -I. -I../include -I../include -I../include -DPF_CAN=29
-DAF_CAN=PF_CAN -I/Workstation/tools/SocketCAN/libsocketcan-0.0.10/include -Wall -g -O2 -MT
cansend.o -MD -MP -MF .deps/cansend.Tpo -c -o cansend.o cansend.c
mv -f .deps/cansend.Tpo .deps/cansend.Po
/bin/bash ../libtool --tag=CC --mode=link mipsel-linux-gcc
-I/Workstation/tools/SocketCAN/libsocketcan-0.0.10/include -Wall -g -O2 -o cansend cansend.o
libtool: link: mipsel-linux-gcc -I/Workstation/tools/SocketCAN/libsocketcan-0.0.10/include -Wall -g -O2 -o
cansend cansend.o
mipsel-linux-gcc -DHAVE_CONFIG_H -I. -I../include -I../include -I../include -DPF_CAN=29
-DAF_CAN=PF_CAN -I/Workstation/tools/SocketCAN/libsocketcan-0.0.10/include -Wall -g -O2 -MT
canecho.o -MD -MP -MF .deps/canecho.Tpo -c -o canecho.o canecho.c
mv -f .deps/canecho.Tpo .deps/canecho.Po
/bin/bash ../libtool --tag=CC --mode=link mipsel-linux-gcc
-I/Workstation/tools/SocketCAN/libsocketcan-0.0.10/include -Wall -g -O2 -o canecho canecho.o
libtool: link: mipsel-linux-gcc -I/Workstation/tools/SocketCAN/libsocketcan-0.0.10/include -Wall -g -O2 -o
canecho canecho.o
mipsel-linux-gcc -DHAVE_CONFIG_H -I. -I../include -I../include -I../include -DPF_CAN=29
-DAF_CAN=PF_CAN -I/Workstation/tools/SocketCAN/libsocketcan-0.0.10/include -Wall -g -O2 -MT
cansequence.o -MD -MP -MF .deps/cansequence.Tpo -c -o cansequence.o cansequence.c
mv -f .deps/cansequence.Tpo .deps/cansequence.Po
/bin/bash ../libtool --tag=CC --mode=link mipsel-linux-gcc
-I/Workstation/tools/SocketCAN/libsocketcan-0.0.10/include -Wall -g -O2 -o cansequence cansequence.o
libtool: link: mipsel-linux-gcc -I/Workstation/tools/SocketCAN/libsocketcan-0.0.10/include -Wall -g -O2 -o
cansequence cansequence.o
mipsel-linux-gcc -DHAVE_CONFIG_H -I. -I../include -I../include -I../include -DPF_CAN=29
-DAF_CAN=PF_CAN -I/Workstation/tools/SocketCAN/libsocketcan-0.0.10/include -Wall -g -O2 -MT
canconfig.o -MD -MP -MF .deps/canconfig.Tpo -c -o canconfig.o canconfig.c
mv -f .deps/canconfig.Tpo .deps/canconfig.Po
/bin/bash ../libtool --tag=CC --mode=link mipsel-linux-gcc
-I/Workstation/tools/SocketCAN/libsocketcan-0.0.10/include -Wall -g -O2 -o canconfig canconfig.o
-L/Workstation/tools/SocketCAN/libsocketcan-0.0.10/src/.libs -lsocketcan
libtool: link: mipsel-linux-gcc -I/Workstation/tools/SocketCAN/libsocketcan-0.0.10/include -Wall -g -O2
-o .libs/canconfig canconfig.o -L/Workstation/tools/SocketCAN/libsocketcan-0.0.10/src/.libs
/Workstation/tools/SocketCAN/libsocketcan-0.0.10/src/.libs/libsocketcan.so -Wl,-rpath
-Wl,/usr/local/libsocketcan/lib
make[1]: Leaving directory '/Workstation/tools/SocketCAN/canutils-4.0.6/src'
Making all in man
make[1]: Entering directory '/Workstation/tools/SocketCAN/canutils-4.0.6/man'
make[1]: Nothing to be done for 'all'.
make[1]: Leaving directory '/Workstation/tools/SocketCAN/canutils-4.0.6/man'
make[1]: Entering directory '/Workstation/tools/SocketCAN/canutils-4.0.6'
make[1]: Nothing to be done for 'all-am'.
make[1]: Leaving directory '/Workstation/tools/SocketCAN/canutils-4.0.6'

在SRC目录下生成candump、cansend、canecho和cansequence四个文件；在./lib目录下生成canconfig文件。

（3）将编译好的以上5个文件复制到对应开发板/can_tools下。

运行canconfig时出错：

[root@Loongson:/can_tools]#./canconfig can0 up
./canconfig: error while loading shared libraries: libsocketcan.so.2: cannot open shared object file: No such file
or directory

需将libsocketcan.so.2.2.1复制到开发板的/lib文件夹下，由于libsocketcan.so.2是链接文件，需要建立libsocketcan.so.2.2.1的快捷方式libsocketcan.so.2：

[root@Loongson:/lib]#tftp -r libsocketcan.so.2.2.1 -g 193.169.2.215
[root@Loongson:/lib]#ln -s libsocketcan.so.2.2.1 libsocketcan.so.2

虽然程序编译时优先使用指定的库link，但是运行时，动态库还是从系统的位置寻找。如果想避免安装这个库，需要将工程中动态库的地址手动加入系统中。主要有以下3种方法。

[image:]　用ln将需要的so文件链接到/usr/lib或者/lib这两个默认的目录下：

ln -s /where/you/install/lib/*.so /usr/lib
sudo ldconfig

[image:]　修改LD_LIBRARY_PATH：

export LD_LIBRARY_PATH=/where/you/install/lib:$LD_LIBRARY_PATH
sudo ldconfig

[image:]　修改/etc/ld.so.conf，然后刷新：

vim /etc/ld.so.conf
add /where/you/install/lib

sudo ldconfig

4．使用canutils

（1）配置can0：

 [root@Loongson:/can_tools]#./canconfig can0 bitrate 250000
sja1000_platform sja1000_platform.0: setting BTR0=0x23 BTR1=0x04

（2）开启、重启、关闭CAN总线：

[root@Loongson:/can_tools]#./canconfig can0 start
can0 state: ERROR-ACTIVE
[root@Loongson:/can_tools]#./canconfig can0 restart
Device is not in BUS_OFF, no use to restart
can0: failed to restart
[root@Loongson:/can_tools]#./canconfig can0 stop
can0 state: STOPPED
[root@Loongson:/can_tools]#

（3）查看CAN总线状态：

[root@Loongson:/can_tools]#./canecho can0
interface-in = can0, interface-out = can0, family = 29, type = 3, proto = 1
read: Network is down

（4）发送信息。格式为：cansend canX --identifier=ID +数据。

[root@Loongson:/can_tools]#./cansend can0 --identifier=0x123 0x11 0x22 0x33 0x44 0x55 0x66 0x77 0x88
interface = can0, family = 29, type = 3, proto = 1
write: Network is down

（5）接收数据。格式为：candump canX。

[root@Loongson:/can_tools]#./candump can0
interface = can0, family = 29, type = 3, proto = 1
<0x001> [8] 00 01 02 03 04 05 06 07
<0x002> [8] 00 01 02 03 04 05 06 076)

（6）使用滤波器接收ID匹配的数据。格式为：candump canX --filter=ID:mask。

[root@Loongson:/can_tools]#./candump can0 --filter=0x123:0x7ff
id: 0x00000123 mask: 0x000007ff
interface = can0, family = 29, type = 3, proto = 1

至此，使用Socket方式的CAN总线驱动设计介绍完毕，读者可以使用Socket套接字的方式，参照canutils的源码设计自己的应用程序。

16.6　编写CAN的socket收发测试程序canapp

16.6.1　程序设计说明

下面具体介绍使用SocketCAN实现通信时使用的应用程序开发接口。

1．初始化

SocketCAN中大部分的数据结构和函数在头文件linux/can.h中进行了定义。CAN总线套接字的创建采用标准的网络套接字操作来完成。网络套接字在头文件sys/socket.h中定义。套接字的初始化方法如下：

 [image:]

2．数据发送

在数据收发的内容方面，CAN总线与标准套接字通信稍有不同，每一次通信都采用can_ frame结构体将数据封装成帧。结构体定义如下：

 [image:]

其中，can_id为帧的标识符，如果发出的是标准帧，就使用can_id的低11位；如果为扩展帧，就使用0~28位。can_id的第29、30、31位是帧的标志位，用来定义帧的类型，定义如下：

 [image:]

数据发送使用write函数来实现。如果发送的数据帧（标识符为0x123）包含单个字节（0xAB）的数据，可采用如下方法进行发送：

 [image:]

如果要发送远程帧（标识符为0x123），可采用如下方法进行发送：

struct can_frame frame;
frame.can_id = CAN_RTR_FLAG | 0x123;
write(s, &frame, sizeof(frame));

3．数据接收

数据接收使用read函数来完成，实现如下：

struct can_frame frame;
int nbytes = read(s, &frame, sizeof(frame));

当然，套接字数据收发时常用的send、sendto、sendmsg以及对应的recv函数也都可以用于CAN总线数据的收发。

4．错误处理

当接收帧后，可以通过判断can_id中的CAN_ERR_FLAG位来判断接收的帧是否为错误帧。如果为错误帧，可以通过can_id的其他符号位来判断错误的具体原因。

错误帧的符号位在头文件linux/can/error.h中定义。

5．设置过滤规则

在数据接收时，系统可以根据预先设置的过滤规则，实现对报文的过滤。过滤规则使用can_filter结构体来实现，定义如下：

 [image:]

过滤的规则为：

can_id & mask == can_id & mask

通过这条规则可以在系统中过滤掉所有不符合规则的报文，使得应用程序不需要对无关的报文进行处理。在can_filter结构的can_id中，符号位CAN_INV_FILTER在置位时可以实现can_id在执行过滤前的位反转。

用户可以为每个打开的套接字设置多条独立的过滤规则，使用方法如下：

 [image:]

在极端情况下，如果应用程序不需要接收报文，可以禁用过滤规则。这样的话，原始套接字就会忽略所有接收到的报文。在这种仅仅发送数据的应用中，可以在内核中省略接收队列，以减少CPU资源的消耗。禁用方法如下：

 [image:]

通过错误掩码可以实现对错误帧的过滤，例如：

can_err_mask_t err_mask = (CAN_ERR_TX_TIMEOUT | CAN_ERR_BUSOFF);
setsockopt(s, SOL_CAN_RAW, CAN_RAW_ERR_FILTER, err_mask, sizeof(err_mask));

6．设置回环功能

在默认情况下，本地回环功能是开启的，可以使用下面的方法关闭回环功能：

int loopback = 0; //0 表示关闭，1 表示开启（默认）
setsockopt(s, SOL_CAN_RAW, CAN_RAW_LOOPBACK, &loopback, sizeof(loopback));

在本地回环功能开启的情况下，所有的发送帧都会被回环到与CAN总线接口对应的套接字上。默认情况下，发送CAN报文的套接字不想接收自己发送的报文，因此发送套接字上的回环功能是关闭的。可以在需要时改变这一默认行为：

 [image:]

16.6.2　程序发送示例

以下为程序发送示例（参考网址http://blog.csdn.net/reille/article/details/49949651）。

 [image:]

16.6.3　程序接收示例

以下为程序接收示例。

 [image:]

16.6.4　发送和接收测试

1．发送

以下用iproute2在开发板上进行操作，打开CAN设备。

配置并启动设备：

[root@Loongson:/can_tools]#./ip link set can0 up type can bitrate 250000
sja1000_platform sja1000_platform.0: setting BTR0=0x23 BTR1=0x04

或者用canutils打开CAN设备：

[root@Loongson:/can_tools]#./canconfig can0 bitrate 250000
sja1000_platform sja1000_platform.0: setting BTR0=0x23 BTR1=0x04
can0 bitrate: 250000, sample-point: 0.857
[root@Loongson:/can_tools]#./canconfig can0 start
can0 state: ERROR-ACTIVE

将两个开发板的CANH和CANL连接在一起，将16.6.2节编译好的canappsend修改权限后运行：

[root@Loongson:/app]#chmod u+x canappsend
[root@Loongson:/app]#./canappsend

2．接收

接收程序canappreceive修改权限后，过滤接收ID=0x11的报文：

[root@Loongson:/app]#chmod u+x canappreceive
[root@Loongson:/app]#./canappreceive
ID=0x11 DLC=1 data[0]=0x59

结果只收到以下报文：'Y'。内部帧结构为：

frame[0].can_id = 0x11;
frame[0]. can_dlc = 1;
frame[0].data[0] = 'Y'。

以下报文收不到，内部帧结构为：

frame[1].can_id = 0x22;
frame[1]. can_dlc = 1;
frame[1].data[0] = 'N'。

第17章　嵌入式GUl编程

17.1　使用外部LCD控制器的LCD编程

17.1.1　硬件接口

本节使用附录17中带LCD控制器（ili9341）的LCD扩展板，部分电路如图17.1所示。

 [image:]
 图17.1　智龙开发板的LCD扩展板部分电路

17.1.2　GPIO口操作函数

LCD模块操作实际上是GPIO口的操作。以前在单片机中，可以简单置位、复位，在Linux系统中，操作GPIO的方法有很多，具体可参考8.2节，但最直接的方法是寄存器操作。

操作寄存器主要是对GPIO的相关寄存器进行操作。GPIO的相关寄存器地址和功能如表17.1所示。在应用编程中，需要使用mmap系统调用。使用mmap映射文件到进程后，就可以直接操作这段虚拟地址进行文件的读写等操作，不必再调用read、write等系统调用。相关操作请参考19.4节。

 表17.1　GPIO相关寄存器地址和功能

 [image:]

实例源码gpio_fun.c，GPIO操作程序。

 [image:]

 [image:]

 [image:]

 [image:]

 [image:]

 [image:]

 [image:]

 [image:]

代码中，main函数为测试用，测试成功后，将main改成其他名字即可。

17.1.3　LCD操作

这里LCD使用控制器NT35310，屏幕大小为480×320。

直接在驱动例程上进行修改，基于驱动例程，使用17.1.2节的GPIO口操作函数，并替换延时函数。代码太长，这里不再列出，只说明初始化过程。

首先从0x00处读取ID，如果读不到，则再从0xD3处读判断是否为9341；如果不是9341，则再从0xBF处读判断是否为6804；如果不是6804，则再从0xD4处读判断是否为NT35310；如果不是NT35310，则再从0XDA00处读判断是否为NT35510；如果不是NT35510，则再从0XA1处读判断是否为SSD1963。

 [image:]

最终运行结果为：LCD控制器为NT35310。

 [image:]

17.1.4　编写Makefile

本应用程序中使用的文件目录如图17.2所示。其中文件夹gpio_fun中为GPIO口的操作函数，文件夹lcd中为LCD的驱动。

 [image:]
 图17.2　LCD使用的相关文件目录

下面编写通用的Makefile，指明头文件的位置和目标文件，并指定输出文件testlcd。

 [image:]

17.1.5　代码及运行结果

1．显示字符

调用LCD相关函数代码如下：

 [image:]

2．显示图片

用Image2Lcd转换图片，如图17.3所示。

（1）设置“输出数据类型”为“C语言数组”。

（2）设置“输出灰度”为“16位真彩色”。

（3）设置最大宽度和高度不得大于LCD的宽、高（320、480）。

（4）输出数据头文件picture.h。

 [image:]
 图17.3　图片到数据转换操作界面

显示图片代码如下：

 [image:]

3．显示汉字

用字模III增强版，生成字模的汉字库，操作步骤如图17.4所示。

 [image:]
 图17.4　生成字模汉字库

显示汉字代码如下：

 [image:]

4．画线和写字符

画线和写字符代码如下：

 [image:]

5．主程序

程序源码：主程序testlcd.c。

 [image:]

 [image:]

程序运行结果为显示字符和图片，如图17.5和图17.6所示。

 [image:]
 图17.5　LCD显示不同大小字符

 [image:]
 图17.6　LCD显示图片

17.2　基于Qt使用内部LCD控制器的GUI编程

本节使用附录18中不带LCD控制器的LCD扩展板。

17.2.1　关于Qt

Qt是一个跨平台应用程序和UI开发框架。使用Qt只需一次性开发应用程序，无须重新编写源代码，便可跨不同桌面和嵌入式操作系统部署这些应用程序。

嵌入式Linux发行版上的Qt属于Qt的Embedded Linux分支平台（简称为Qt/E）。Qt/E在原始Qt的基础上，做了许多出色的调整以适合嵌入式环境。同桌面版的Qt/X11相比，嵌入式的Qt/E很节省内存，因为它不需要X server或是Xlib库，它在底层摒弃了Xlib，采用Framebuffer（帧缓冲）作为底层图形接口。Qt/E的应用程序可以直接写内核帧缓冲，这让开发者避免使用烦琐的Xlib/Server系统。

Qt/E所面对的硬件平台较多，当开发人员需要在某硬件平台上移植Qt/E时，需要下载Qt源代码，利用交叉编译器编译出Qt库，接着需要将Qt库复制两份，一份放置在开发主机上，供编译使用；一份放在目标板上，供运行时动态加载使用。具体流程如图17.7所示。

 [image:]
 图17.7　编译Qt库流程

17.2.2　Qt的移植过程

Qt的移植步骤介绍如下。

（1）下载Qt的开发工具，相关网址如下：

[image:]　http://download.qt.io/official_releases/

[image:]　http://doc.qt.nokia.com/

[image:]　http://www.qtcn.org/bbs/home.php

（2）编译Qt源码和根文件系统。

① Qt所使用的编译器不能再用gcc-4.3-ls232.tar.gz，必须使用支持C++的编译工具链。Qt添加了C++代码必须使用高版本支持C++的编译工具链。而龙芯官方未发支持C++的针对龙芯IC的编译器。这里使用buildroot构建的交叉编译工具链。

②使用新的交叉编译工具链重新编译根文件系统，并下载到开发板。

③编译Qt

在Qt根目录/qtbase/mkspec中新建文件夹linux-mips-g++，将目录qtbase/mkspec/linux-arm-gnueabi-g++下的2个文件复制到linux-mips-g++中，修改qmake.conf文件指定交叉编译工具链，并更换交叉编译工具链。

进行编译参数的配置。到Qt根目录下执行配置命令：

./configure -prefix /home/loongson/tools/qt/install -xplatform linux-mips-g++ -confirm-license -opensource
-release -shared -optimized-qmake -qt-sql-sqlite -linuxfb -make libs -make examples -pch -no-dbus -no-iconv
-no-qml-debug -tslib -I/home/loongson/tools/qt/install-tslib/include -L/home/loongson/tools/qt/install-tslib/lib

执行编译，并安装到目录/home/loongson/tools/qt/install下：

make
…
make install

（3）Qt编译完成后复制。

在开发板的根文件系统下建立/home/qt-5.4.2目录，把/home/loongson/tools/qt/install目录下的lib、examples、plugins和fonts目录复制到开发板文件系统/home/qt-5.4.2目录下。lib的库文件和examples文件很大，可以把没用的删除，以进行精简。

在搭好的文件系统里面设置Qt相关的环境变量，修改/etc/profile文件，添加以下代码：

 [image:]

开发板运行时需要C++和atomic的库，交叉编译工具链的C++库在编译器根目录/ /usr/lib下，把这个目录下的库文件复制到开发板根文件系统的usr/lib目录下。

这里需要注意以下几点。

[image:]　内核的编译可使用低版本的交叉编译工具链，但是根文件系统和Qt必须使用高版本的编译工具，因为Qt是使用C++语言写的，必须包含C++库，Qt运行时也要对应的库支持，必须到根文件系统中去找。

[image:]　若内核的源码版本较低，而使用了高版本的根文件系统，则会不匹配，启动后出现“内核版本过低”的提示。这时可以修改内核源码根目录下Makefile文件中的前3行版本号为：

VERSION = 3
PATCHLEVEL = 2
SUBLEVEL = 101

这样在配合高版本的文件系统时就不会提示错误。

[image:]　交叉编译工具链的版本不能太高，否则根文件系统无法重新编译成功。

对以上内容进行总结：传统方式编译过程和步骤太过复杂；编译的内核版本、交叉编译工具链版本、根文件系统版本的匹配也是一个大问题；编译结束后的移植不仅包含Qt库的移植，还有文件系统的C++库移植，以及文件系统的环境变量修改。综上，下面参考第4章使用buildroot制作根文件系统，并在buildroot配置Qt。

17.2.3　配置buildroot

基于4.4节的配置，添加Qt包的配置。

 [image:]

编译后，在output/images文件夹中生成根文件系统，如图17.8所示。

 [image:]
 图17.8　在output/images文件夹中生成根文件系统

17.2.4　下载并运行例程

1．下载文件系统

这里可使用以下两种方法。

主法1：下载文件系统镜像至开发板。

参考4.3节，将编译生成的压缩文件（rootfs.cramfs、rootfs.jffs2、rootfs.ext、rootfs.yaffs2其中任选一个，注意打包yaffs2文件系统镜像所使用的命令为mkyaffs2image而不是buildroot中默认打包yaffs2的mkyaffs2指令）直接烧写到开发板上运行。rootfs.tar为文件系统的打包文件，可再压缩成所需要的其他文件。

方法2：使用网络文件系统。

参考第9章NFS文件系统搭建，将rootfs.tar解包到网络文件系统目录下，如图17.9所示。

 [image:]
 图17.9　基于buildroot构建的文件系统

配置虚拟机和开发板的NFS文件系统。注意，在执行9.4.2节命令中的PMON设置开发板启动参数时，添加对video的输出支持：

set al /dev/mtd0
set append "g root=/dev/nfs rw"
set append "$append nfsroot=193.169.2.104:/home/nfs/nfsrootfs/rootfsnoinitrd init=/linuxrc "
set append "$append ip=193.169.2.230:193.169.2.104:193.169.2.1:255.255.255.0::eth0:off"
set append "$append console=ttyS2,115200"
set append " $append video=ls1bfb:480x272-16@60 fbcon=rotate:1 consoleblank=0" //添加的内容

2．运行demo示例程序

使用网络文件系统NFS，复制完成文件系统后，虚拟机启动并配置好NFS服务，连接好网线，将开发板上电。开发板的终端显示如图17.10所示，登录用户名为root，无密码。

 [image:]
 图17.10　基于buildroot构建的文件系统（带Qt包）的开发板NFS启动界面

本文件系统已经添加了Qt包及其对应的demos，可直接进入对应的文件夹/usr/share/qt/demos下运行示例程序。下面运行mainwindow示例，如图17.11所示。首先进入demos的文件夹，查看当前已有的示例；其次进行PWM配置，将LCD的背光亮度调整到250（参考13.1节）；最后进入示例demos中的mainwindow文件夹，运行显示主窗口的demo程序。在开发板上的运行结果如图17.12所示。

 [image:]
 图17.11　在开发板终端运行Qt中的demo示例

 [image:]
 图17.12　开发板LCD屏显示demo示例mainwindow结果

3．运行Qt自带的示例程序

在虚拟机中编译Qt的示例，使用qmake命令后再使用make命令即可生成Qt可执行文件。qmake命令在buildroot-2018.02.4/output/build/qt-4.8.7/bin/qmake目录下。在虚拟机中执行以下命令，则在当前目录生成可执行文件analogclock.h，如图17.13所示。

#cd /buildroot-2018.02.4-gcc7/output/build/qt-4.8.7/examples/widgets/analogclock
#../../../bin/qmake
#make
linking analogclock
#

把生成的analogclock.h复制到开发板的文件系统后，执行./analogclock –qws命令，运行结果如图17.14所示。

 [image:]
 图17.13　虚拟机中编译Qt示例生成可执行文件

 [image:]
 图17.14　开发板LCD屏显示Analog Clock示例运行结果

17.2.5　搭建Qt环境及编写应用程序

下载qt-opensource-linux-x86-5.4.0.run后，运行安装Qt Creator。

安装完成后，进入Qt Creator安装目录即可运行程序。

#cd /opt/Qt/Tools/QtCreator/bin
#./qtcreator

打开Qt后，新建工程。这里选择基于Widgets模块，建立Application工程，然后单击Choose按钮，如图17.15所示。

 [image:]
 图17.15　新建Qt工程

选择存储路径后，单击Next按钮。这里存储在Workstation目录下的examples文件夹中，如图17.16所示。

 [image:]
 图17.16　设置Qt工程存储路径

选择构建包。第一个是桌面版本的包，正常安装后会自动生成。第二个是手动生成的包，用于生成嵌入式系统的可执行文件。选择两个包后，单击Next按钮，如图17.17所示。

 [image:]
 图17.17　选择构建包

配置生成的文件名称，这里采用默认的名称，单击Next按钮，如图17.18所示。

 [image:]
 图17.18　配置类信息

最终工程的信息如图17.19所示。

 [image:]
 图17.19　最终工程的信息

打开hello工程，在左侧工程栏中双击mainwindow.ui文件，如图17.20所示。

 [image:]
 图17.20　打开hello工程

出现Widgets编辑面板，将TextLabel拖移至中间上方处，如图17.21所示。

 [image:]
 图17.21　在Widgets面板中添加Text Label

修改TextLabel为“Hello,Qt,this is SmartLoong!”，如图17.22所示。

 [image:]
 图17.22　在Widgets编辑面板修改Text Label

保存后，单击左下角绿色按钮[image:]编译、运行，结果如图17.23所示。

 [image:]
 图17.23　应用程序在虚拟机运行结果

虚拟机中/Workstations/examples/Qt/hello目录下文件信息如图17.24所示。

 [image:]
 图17.24　Qt文件夹相关信息

build-hello-Desktop_Qt_5_4_0_GCC_32bit-Debug文件夹中是桌面版本的编译目标文件，其中的hello为可执行文件，双击该文件可直接运行，运行结果同图17.23是一致的。

将/Workstations/examples/Qt/hello/hello目录下所有的文件复制到buildroot根目录下的/buildroot-2018.02.4-gcc7/output/build/qt-4.8.7/examples/widgets文件夹下，如图17.25所示。

 [image:]
 图17.25　将文件夹hello复制到buildroot文件夹中

进入hello文件夹，打开虚拟机终端，运行命令../../../bin/qmake和make。运行结果如图17.26所示，在当前文件夹下生成了开发板的可执行文件。

 [image:]
 图17.26　在文件夹hello下生成了开发板的可执行文件

将文件hello复制到开发板/home/文件夹，在开发板终端执行以下命令：

 [image:]

运行结果如图17.27所示。

 [image:]
 图17.27　开发板运行hello程序结果

17.2.6　PMON及内核源码的修改

1．PMON源码的修改

在Targets/LS1C/ls1c/tgt_machdep.c的tgt_devconfig函数中加上以下代码：

*(volatile unsigned int *)0xbfd010c0 |= (1 << 6);
*(volatile unsigned int *)0xbfd010d0 &= ~(1 << 6);
*(volatile unsigned int *)0xbfd010f0 |= (1 << 6);

修改Targets/LS1C/conf/ls1c文件的分辨率：

 [image:]

在PMON启动的过程将同时显示在终端和LCD屏上，如图17.28所示。

 [image:]
 图17.28　PMON启动的过程显示在LCD屏

修改后的PMON依然采用原来的gcc-4.3-ls232编译器进行编译。

2．内核源码的修改

基于内核源码linux-3.0.101进行修改。

参考13.1节，添加PWM输出的支持，可以利用PWM输出控制LCD屏幕的亮度，这里使用PWM0，即GPIO6。

注意，在平台文件/linux-3.0.101/arch/mips/loongson1/ls1cls1c300b_cbiiv0a_board.c中添加对应PWM的头文件：

#if defined(CONFIG_PWM_LS1X)
#include <ls1x_pwm.h> //添加的代码

另外，要修改内核源码根目录下Makefile文件前3行的版本号，否则编译出来的根文件系统挂载时会提示内核版本过低，而无法使用。

VERSION = 3
PATCHLEVEL = 2
SUBLEVEL = 101

修改后的内核依然采用原来的gcc-4.3-ls232编译器进行编译。

17.2.7　支持键盘输入和串口、LCD同时输出

在PMON中添加键盘和LCD支持，修改PMON源码中的文件targets/LS1X/conf/ls1c，选中以下语句：

select mod_usb_kbd

进入内核后，修改以下文件。

[image:]　修改文件/etc/inittab

执行命令vi /etc/inittab，修改代码如下：

在串行端口加一个getty
ttyS2::respawn:/sbin/getty -L ttyS2 115200 vt100 //GENERIC_SERIAL
//下面添加一行
tty1::respawn:/sbin/getty 38400 tty1
保存退出。

[image:]　修改文件/etc/init.d/S50sshd

执行命令vi /etc/init.d/S50sshd，修改代码如下：

 [image:]

重启后在PMON中进行如下配置：

set append "root=/dev/mtdblock1 console=ttyS2 console=tty1, 115200 rootfstype=jffs2 rw"
set append "$append video=ls1xfb:480x272-16@60 fbcon=rotate:0 consoleblank=0"

至此，串口控制台和LCD屏同时输出信息，且可从串口控制台和USB键盘同时输入。
第18章　ADC驱动及应用

本章内容仅用于智龙开发板V2.0。

18.1　配置ADC驱动

Config中配置的选项如下：

 [image:]

最终配置选项如图18.1所示。

 [image:]
 图18.1　内核配置ADC

18.2　硬件管脚分配

所使用开发板的ADC引脚如表18.1所示。

 表18.1　开发板ADC引脚复用

 [image:]

18.3　应用测试

重启系统后，进入ADC目录。一共有4个adcN_raw（N=0~3），分别对应ADC_D0、ADC_D1、ADC_XP和ADC_YP。

 [image:]

读取ADC_D0(GPIO85)输入的值，D0悬空。

[root@Loongson:/sys/devices/platform/ls1x-hwmon]#cat adc0_raw
977

将开发板上D0脚接入GND，再执行命令：

 [image:]

将开发板上D0脚接入3V3，再执行命令：

 [image:]

其他ADCN可同样操作。

18.4　应用层编程

应用层使用系统调用即可控制。

 [image:]

编译后，下载到开发板，运行命令./testadc 0，后面的0表示使用ADC_D0。

 [image:]

第19章　内核访问外设l/O资源

19.1　MIPS的内存映射

在32位MIPS体系结构下，最多可寻址4GB地址空间，这4GB空间的分配如图19.1所示。

 [image:]
 图19.1　MIPS体系结构逻辑寻址空间分布

图19.1是MIPS处理器的逻辑寻址空间分布图。2GB以下的地址空间，也就是从0x00000000到0x7FFFFFFF的这一段空间为用户空间，可以在用户模式下访问，当然，也可以在内核模式下访问。程序在访问用户空间的内存时，会通过MMU的TLB，映射到实际的物理地址上。也就是说，这一段逻辑地址空间和物理地址空间的对应关系，是由MMU中的TLB表项决定的。

从0x80000000到0xFFFFFFFF的一段为内核空间，仅限于内核模式访问。如果在用户模式下试图访问这一段内存，将会引发系统的一个异常。MIPS的内核空间又可以划分为3部分。首先是通过MMU映射到物理地址的1GB空间，地址范围从0xC0000000到0xFFFFFFFF。这1GB空间可以用来访问实际的DRAM内存，可以为操作系统的内核所用。

MIPS的内核空间中，还有两段特殊的地址空间，分别是从0x80000000到0x9FFFFFFF的内核空间非映射缓存和从0xA0000000到0xBFFFFFFF的内核空间非映射非缓存。之所以说它们特殊，是因为这两段逻辑地址到物理地址的映射关系是硬件直接确定的，不通过MMU，而且两段实际上是重叠的，均对应0x00000000到0x20000000的物理地址。那么，为什么一段同样的物理地址有两个逻辑地址对应呢？它们的区别又在哪里呢？

原来，这是MIPS的设计特色之一。软件在访问内核空间非映射非缓存这段地址空间时，不经过MIPS的Cache。这样，虽然速度会比较慢，但是对于硬件I/O寄存器来说，就不存在所谓的Cache一致性问题。Cache一致性问题，是指硬件将某个地址的内容跳过软件而改变，Cache中的内容尚未同步。这样，如果软件读取该地址，有可能从Cache中获取错误的内容。将硬件I/O寄存器设定在这段地址空间，就可以避免Cache一致性带来的问题。MIPS的程序上电启动地址0xBFC00000也落在这段地址空间内。上电时，MMU和Cache均未初始化，因此，只有这段地址空间可以正常读取并处理。

另一段特殊的地址内核空间非映射缓存，与前者类似，直接映射到0x00000000到0x20000000，与内核空间非映射非缓存重叠。因为通过Cache，这段地址空间的访问速度比前者快。一般地，这段内存空间用于内核代码段，或者内核中的堆栈。

当换算内核空间中这两段的物理地址和逻辑地址时，只需要改变地址的高3位即可。

那么什么时候需要使用物理地址，什么时候需要使用逻辑地址呢？由于逻辑地址是程序中访问的内存地址，如下面的这条指令：

lw a0, 128(t2)

这条指令的内容是从t2寄存器内的地址＋偏移128字节处，读取一个字（4Byte）到寄存器a0内。如果t2的值为0x88200100，则最终访问的物理地址为0x88200180。

而物理地址，从工程上可以理解为，将逻辑分析仪连接到内存总线（Memory Bus）上，逻辑分析仪指示的地址就是物理地址。在上一个例子中，把逻辑分析仪连接到处理器的前端内存总线，可以看到，在执行该指令时，系统访问的物理地址为0x08200180。物理地址和逻辑地址的换算，不仅限于电子工程师在设计硬件线路时需要。在内核工程师编写支持DMA的外部设备驱动时，同样需要将从操作系统申请到的数据缓冲区地址（当然，这是一个逻辑地址）转换为物理地址，并“告诉”相关外设。这样外设就可以在收到数据后，使用DMA模式储存在系统的主存中，并向系统发起一个IRQ。操作系统在IRQ的处理程序中，从外设的相应I/O寄存器读取到这段内存的地址（物理地址），将其转换为逻辑地址并处理。这个过程中，如果没有正确使用与分辨物理地址和逻辑地址，驱动程序便会导致内核出现一个panic错误。

物理地址到逻辑地址的映射关系是由什么决定的呢？除了上面提到的两段非映射的地址空间外，其余都是由TLB确定的，由MMU来执行。

默认外设I/O资源是不在Linux内核空间中的（如sram或硬件接口寄存器等），若需要访问该外设I/O资源，必须先将其地址映射到内核空间中，然后才能在内核空间中对其进行访问。

Linux内核访问外设I/O内存资源的方式有两种：动态映射（ioremap）和静态映射（map_desc）。

19.2　动态映射方式

动态映射方式即直接通过内核提供的ioremap函数动态创建一段外设I/O内存资源到内核虚拟地址的映射表，从而可以在内核空间中访问这段I/O资源。

ioremap宏定义在asm/io.h内：

#define ioremap(cookie,size) __ioremap(cookie,size,0)

__ioremap函数原型在文件arm/mm/ioremap.c中：

void __iomem * __ioremap(unsigned long phys_addr, size_t size, unsigned long flags);

参数说明如下。

[image:]　phys_addr：要映射的起始的I/O地址。

[image:]　size：要映射的空间的大小。

[image:]　flags：要映射的I/O空间和权限有关的标志。

该函数返回映射后的内核虚拟地址（3~4GB）。接着便可以通过读写该返回的内核虚拟地址去访问这段I/O内存资源。

实例源码：regeditor_drv.c。

 [image:]

 [image:]

 [image:]

编写Makefile。

 [image:]

驱动编译后，在开发板中加载regeditor_drv.ko，然后运行测试程序regeditor。

 [image:]

 [image:]

 [image:]

运行结果如下：

[root@Loongson:/loongson_tools]#./regeditor r32 0x1fd011e4
00. [1fd011e4] = 00c00000

19.3　静态映射方式

静态映射方式即通过map_desc结构体静态创建I/O资源映射表。

内核提供了在系统启动时通过map_desc结构体静态创建I/O资源到内核地址空间的线性映射表（即page table）的方式，这种映射表是一种一一映射的关系。程序员可以自己定义该I/O内存资源映射后的虚拟地址。创建好了静态映射表，在内核或驱动中访问该I/O资源时则无须再进行ioreamp动态映射，可以直接通过映射后的I/O虚拟地址进行访问。

内核提供了一个重要的结构体——machine_desc，这个结构体在内核移植中起到相当重要的作用，内核通过该结构体来控制系统体系架构相关部分的初始化。

machine_desc结构体的成员包含了体系架构相关部分的几个最重要的初始化函数，包括map_io、init_irq、init_machine以及phys_io、timer成员等。

machine_desc结构体定义如下：

 [image:]

1．常见问题

（1）用户空间（进程）是否有高端内存概念？

用户进程没有高端内存概念，只有在内核空间才存在高端内存。用户进程最多只可以访问3GB物理内存，而内核进程可以访问所有物理内存。

（2）64位内核中有高端内存吗？

目前现实中，64位Linux内核不存在高端内存，因为64位内核可以支持超过512GB内存。若机器安装的物理内存超过内核地址空间范围，就会存在高端内存。

（3）用户进程能访问多少物理内存？内核代码能访问多少物理内存？

32位系统用户进程最大可以访问3GB，内核代码可以访问所有物理内存。64位系统用户进程最大可以访问超过512GB，内核代码可以访问所有物理内存。

（4）高端内存和物理地址、逻辑地址、线性地址有什么关系？

高端内存只和物理地址有关系，和逻辑地址、线性地址没有直接关系。

（5）为什么不把所有的地址空间都分配给内核？

若把所有地址空间都给内核，那么用户进程怎么使用内存？怎么保证内核使用内存和用户进程不起冲突？

忽略Linux对段式内存映射的支持。在保护模式下，无论CPU运行于用户态还是核心态，CPU执行程序所访问的地址都是虚拟地址，MMU必须通过读取控制寄存器CR3中的值作为当前页面目录的指针，进而根据分页内存映射机制将该虚拟地址转换为真正的物理地址，才能让CPU真正地访问到物理地址。

对于32位的Linux，其每一个进程都有4GB的寻址空间，但当一个进程访问其虚拟内存空间中的某个地址时，又是怎样实现不与其他进程的虚拟空间混淆呢？每个进程都有其自身的页面目录PGD，Linux将该目录的指针存放在与进程对应的内存结构task_struct.(struct mm_struct)mm->pgd中。每当一个进程被调度（schedule）即将进入运行态时，Linux内核都要用该进程的PGD指针设置CR3（switch_mm）。

当创建一个新的进程时，都要为新进程创建一个新的页面目录PGD，并从内核的页面目录swapper_pg_dir中复制内核区间页面目录项至新建进程页面目录PGD的相应位置，具体过程如下：

do_fork() --> copy_mm() --> mm_init() --> pgd_alloc() --> set_pgd_fast() --> get_pgd_slow() --> memcpy(&PGD
+ USER_PTRS_PER_PGD, swapper_pg_dir + USER_PTRS_PER_PGD, (PTRS_PER_PGD -
USER_PTRS_PER_PGD) * sizeof(pgd_t))

这样一来，每个进程的页面目录就分成了两部分，第一部分为“用户空间”，用来映射其整个进程空间（从0x00000000到0xBFFFFFFF），即3GB的虚拟地址；第二部分为“系统空间”，用来映射（从0xC0000000到0xFFFFFFFF），即1GB字节的虚拟地址。可以看出，Linux系统中每个进程的页面目录的第二部分是相同的，所以从进程的角度来看，每个进程有4GB字节的虚拟空间，较低的3GB字节是自己的用户空间，最高的1GB字节则为与所有进程和内核共享的系统空间。

2．小结

[image:]　进程寻址空间0~4GB。

[image:]　进程在用户态只能访问0~3GB，只有进入内核态才能访问3~4GB。

[image:]　进程通过系统调用进入内核态。

[image:]　每个进程虚拟空间的3~4GB部分是相同的。

[image:]　进程从用户态进入内核态不会引起CR3的改变，但会引起堆栈的改变。

19.4　mmap内存映射

19.4.1　mmap系统调用

mmap将一个文件或者其他对象映射进内存。文件被映射到多个页上，如果文件的大小不是所有页的大小之和，最后一页不被使用的空间将会清零。munmap执行相反的操作，即删除特定地址区域的对象映射。

当使用mmap映射文件到进程后，就可以直接操作这段虚拟地址进行文件的读写等操作，不必再调用read、write等系统调用。但需要注意，直接对该段内存写时不会写入超过当前文件大小的内容。

采用共享内存通信的一个显而易见的好处是效率高，因为进程可以直接读写内存，而不需要任何数据的复制。对于像管道和消息队列等通信方式，则需要在内核和用户空间进行4次数据复制，而共享内存则只复制两次数据：一次从输入文件到共享内存区，另一次从共享内存区到输出文件。实际上，进程之间在共享内存时，并不总是读写少量数据后就解除映射，有新的通信时，再重新建立共享内存区域，而是保持共享区域，直到通信完毕为止，这样，数据内容一直保存在共享内存中，并没有写回文件。共享内存中的内容往往是在解除映射时才写回文件的。因此，采用共享内存的通信方式效率是非常高的。

用法：

#include <sys/mman.h>
#include <unistd.h>
void *mmap(void *start, size_t length, int prot, int flags,int fd, off_t offset);
int munmap(void *start, size_t length);

返回说明：

成功执行时，mmap返回被映射区的指针，munmap返回0；失败时，mmap返回MAP_FAILED，munmap返回-1。

参数说明：

[image:]　fd：有效的文件描述词。如果MAP_ANONYMOUS被设定，为了兼容问题，其值应为-1。

[image:]　offset：被映射对象内容的起点。

系统调用munmap用法：

#include <unistd.h>
#include <sys/mman.h>
int munmap(void * addr, size_t len)

该调用在进程地址空间中解除一个映射关系，addr是调用mmap时返回的地址，len是映射区的大小。当映射关系解除后，对原来映射地址的访问将导致段错误发生。

系统调用msync用法：

#include <sys/mman.h>
#include <unistd.h>
int msync (void * addr , size_t len, int flags)

一般说来，进程在映射空间的对共享内容的改变并不直接写回磁盘文件中，往往在调用munmap后才执行该操作。可以通过调用msync实现磁盘上文件内容与共享内存区的内容一致。

19.4.2　系统调用mmap用于共享内存的两种方式

1．使用普通文件提供的内存映射

这种方式适用于任何进程之间。此时，需要打开或创建一个文件，然后调用mmap，典型调用代码如下：

 [image:]

2．使用特殊文件提供的匿名内存映射

这种方式适用于具有亲缘关系的进程之间。由于父子进程特殊的亲缘关系，在父进程中先调用mmap，然后调用fork。那么在调用fork之后，子进程继承父进程匿名映射后的地址空间，同样也继承mmap返回的地址，这样，父子进程就可以通过映射区域进行通信。需要注意的是，这里不是一般的继承关系。一般来说，子进程单独维护从父进程继承下来的一些变量。而mmap返回的地址，却由父子进程共同维护。

对于具有亲缘关系的进程，实现共享内存最好的方式应该是采用匿名内存映射的方式。此时，不必指定具体的文件，只要设置相应的标志即可。

19.4.3　mmap进行内存映射的原理

mmap系统调用的最终目的是将设备或文件映射到用户进程的虚拟地址空间，实现用户进程对文件的直接读写，这个任务可以分为3步。

（1）在用户虚拟地址空间中寻找空闲的、满足要求的一段连续的虚拟地址空间，为映射做准备（由内核mmap系统调用完成）。

 [image:]
 图19.2　进程虚拟空间的划分

每个进程拥有3GB字节的用户虚存空间，这并不意味着用户进程在这3GB的范围内可以任意使用，因为虚存空间最终要映射到某个物理存储空间（内存或磁盘空间），才可以真正使用。

内核怎样管理每个进程3GB的虚存空间呢？概括地说，用户进程经过编译、链接后形成的映像文件有一个代码段和数据段（包括data段和bss段），其中代码段在下，数据段在上。数据段中包括了所有静态分配的数据空间，即全局变量和所有声明为static的局部变量。这些空间是进程所必需的基本要求，是在建立一个进程的运行映像时就分配好的。除此之外，堆栈使用的空间也属于基本要求，也是在建立进程时就分配好的，如图19.2所示。

在内核中，这样的每个区域用一个结构vm_area_struct来表示。它描述的是一段连续的并具有相同访问属性的虚拟存储空间，该虚存空间的大小为物理内存页面的整数倍。可以使用cat /proc//maps来查看一个进程的内存使用情况，pid是进程号。其中显示的每一行对应进程的一个vm_area_struct结构。

下面是vm_area_struct结构体的定义：

#include <linux/mm_types.h>

/*这个结构体定义了VMM 内存空间 */

struct vm_area_struct {
struct mm_struct * vm_mm; /* VM area parameters */
unsigned long vm_start;
unsigned long vm_end;

/*每个任务的VM区域链接表，根据地址排序*/
struct vm_area_struct *vm_next;
pgprot_t vm_page_prot;
unsigned long vm_flags;

/*每个任务的VM 区域AVL树，根据地址排序*/
short vm_avl_height;
struct vm_area_struct * vm_avl_left;
struct vm_area_struct * vm_avl_right;

/*地址空间的备份存储
*链接到地址空间
*/
vm_area_struct *vm_next_share;
struct vm_area_struct **vm_pprev_share;
struct vm_operations_struct * vm_ops;
unsigned long vm_pgoff; /*PAGE_SIZE中的偏移量*/
struct file * vm_file;
unsigned long vm_raend;
void * vm_private_data;
};

通常，进程所使用的虚存空间不连续，且各部分虚存空间的访问属性也可能不同。所以一个进程的虚存空间需要多个vm_area_struct结构来描述。在vm_area_struct结构的数目较少时，各个vm_area_struct按照升序排列，以单链表的形式组织数据（通过vm_next指针指向下一个vm_area_struct结构），如图19.3所示。但是当vm_area_struct结构的数据较多时，如果采用链表组织，就会影响搜索速度。针对这个问题，vm_area_struct添加了vm_avl_hight（树高）、vm_avl_left（左子节点）、vm_avl_right（右子节点）3个成员来实现AVL树，以提高vm_area_struct的搜索速度。

假如该vm_area_struct描述的是一个文件映射的虚存空间，成员vm_file便指向被映射的文件的file结构，vm_pgoff是该虚存空间起始地址在vm_file文件中的文件偏移，单位为物理页面。

 [image:]
 图19.3　进程虚拟地址示意图

因此，mmap系统调用所完成的工作就是准备这样一段虚存空间，并建立vm_area_struct结构体，将其传给具体的设备驱动程序。

（2）建立虚拟地址空间和文件或设备的物理地址之间的映射（由设备驱动完成）。

建立文件映射的第二步就是建立虚拟地址和具体的物理地址之间的映射，这是通过修改进程页表来实现的。mmap方法是file_opeartions结构的成员：

int (*mmap)(struct file *,struct vm_area_struct *);

Linux有两个方法建立页表。

①使用remap_pfn_range一次建立所有页表。

用法：

 [image:]

返回值：

成功，返回0；失败，返回一个负的错误值。

参数说明：

[image:]　vma：用户进程创建一个vma区域。

[image:]　virt_addr：重新映射应当开始的用户虚拟地址。函数建立页表从虚拟地址virt_addr开始，长度为virt_addr_size。

[image:]　pfn：页帧号，对应虚拟地址被映射的物理地址，物理地址右移PAGE_SHIFT位。

remap_pfn_range有使用方面的限制。它不能映射常规内存，只存取保留页和在物理内存顶之上的物理地址。因为内存管理系统的各个子模块管理不到保留页和在物理内存顶之上的物理地址。640 KB和1MB是保留页，可以映射并且设备I/O内存也可以映射。如果想把kmalloc申请的内存映射到用户空间，则可以通过mem_map_reserve把相应的内存设置为保留页即可。

②使用nopage VMA方法每次建立一个页表项。

用法：

struct page *(*nopage)(struct vm_area_struct *vma, unsigned long address, int *type);

返回值：

成功，返回一个有效映射页；失败，返回NULL。

参数address代表从用户空间传过来的用户空间虚拟地址。

（3）访问新映射的页面（由缺页中断完成）。

关键步骤的说明如下：

① page cache及swap cache中页面的区分：一个被访问文件的物理页面都驻留在page cache或swap cache中，一个页面的所有信息由struct page来描述。struct page中有一个域为指针mapping，它指向一个address_space类型结构。page cache或swap cache中的所有页面就是根据address_space结构以及一个偏移量来区分的。

②文件与address_space结构的对应：一个具体的文件在打开后，内核会在内存中为其建立一个struct inode结构，其中的i_mapping域指向一个address_space结构。这样，一个文件就对应一个address_space结构，一个address_space与一个偏移量能够确定一个page cache或swap cache中的一个页面。因此，当要寻址某个数据时，很容易根据给定的文件及数据在文件内的偏移量而找到相应的页面。

③进程调用mmap时，只是在进程空间内新增了一块相应大小的缓冲区，并设置了相应的访问标识，但并没有建立进程空间到物理页面的映射。因此，第一次访问该空间时，会引发一个缺页异常。

④对于共享内存映射情况，缺页异常处理程序首先在swap cache中寻找目标页（符合address_space以及偏移量的物理页），如果找到，则直接返回地址；如果没有找到，则判断该页是否在交换区（swap area），若在交换区则执行一个换入操作；如果上述两种情况都不满足，处理程序将分配新的物理页面，并把它插入page cache中。进程最终将更新进程页表。

⑤所有进程在映射同一个共享内存区域时，情况都一样，在建立线性地址与物理地址之间的映射之后，不论进程各自的返回地址如何，实际访问的必然是同一个共享内存区域对应的物理页面。

19.4.4　内存映射的步骤

内存映射的步骤如下。

（1）用open系统调用打开文件，并返回描述符fd。

（2）用mmap建立内存映射，并返回映射首地址指针start。

（3）对映射（文件）进行各种操作，显示（printf）和修改（sprintf）。

（4）用munmap(void *start，size_t lenght)关闭内存映射。

（5）用close系统调用关闭文件fd。

19.5　mmap编程示例

编程示例参见网址https://github.com/lshw/loongson_tools。

实例源码：cbus_dump.c，功能为读取GPIO的复用寄存器。

 [image:]

其他的工具：

[image:]　读取GPIO的复用配置：gpio_func.c。

[image:]　清除寄存器中的某一位：regs_bit_clr.c。

[image:]　读取寄存器中的某一位：regs_bit_get.c。

[image:]　设置寄存器中的某一位：regs_bit_set.c。

[image:]　读取某一个寄存器：regs_read.c。

写入某一个寄存器：regs_write.c。
第20章　PMON源码编译、烧写、启动及裸机编程

本章源码来自龙芯广州分公司为龙芯俱乐部提供的龙芯1C开龙主板的pmon源码，公布在https://github.com/lshw/loongson1-pmon中。

20.1　PMON源码分析

PMON是一个兼有BIOS和bootloader部分功能的开放源码软件，多用于嵌入式系统。与BIOS相比功能不足，与常见的bootloader相比，功能要丰富得多。基于龙芯的系统采用PMON作为类BIOS兼bootloader，并做了很多完善工作。

芯片W25X40是8MB串行闪存，用作存储PMON。

PMON的编译参见3.2节。PMON配置文件在pmon-ls1x-openloongson/Targets/LS1X/conf/ls1c中。

首先在系统中定义了LS1CSoC。

然后定义了SDIO模块，支持SD卡的操作，使用SPI控制器0，CS2。

 [image:]

再定义了USB存储模块，支持USB存储器的操作，使用USB的OHCI。

 [image:]

最后在pmon-ls1x-openloongson/Targets/LS1X/dev/ls1x_nand.c文件中设置分区。

 [image:]

由于工程中定义了LS1CSoC，没有定义LS1BSoC，所以将Flash分成了3个区。

20.2　PMON烧写

20.2.1　采用编程器更新PMON到SPI Flash

采用CH341A编程器，将开发板上的芯片W25X40拆下后，按照图20.1装入编程器。

打开编程软件主界面，如图20.2所示。打开编译好的gzrom.bin文件，单击编程图标，则将程序自动下载到芯片W25X40中。

 [image:]
 图20.1　将W25X40装入编程器

 [image:]
 图20.2　烧写界面

20.2.2　网络更新PMON到SPI Flash

把交叉编译得到的PMON复制到服务目录tftp下。

在控制台中，启动PMON后使用以下命令更新PMON，更新的地址根据CPU芯片手册上的参数，SPI Flash的只读memory空间分配在0xbfc00000。

PMON> load -r -f bfc00000 tftp://193.169.2.215/gzrom.bin

更新过程如下：

 [image:]

完成后重启：

PMON> reboot

20.2.3　网络更新PMON到NAND Flash

由于开发板硬件上已经固定了boot的启动方式，即只能从SPI的Flash启动，所以本节内容不能够在开发板上实验，请读者注意。

PMON保存在NAND Flash中，所以PMON必须分为4个区，如表20.1所示。

 表20.1　4个分区的NAND Flash分区表

 [image:]

把交叉编译得到的PMON复制到服务目录tftp下。

在控制台中更新PMON：

PMON> devcp tftp://193.169.2.215/gzrom.bin /dev/mtd0

更新完成后重启：

PMON> reboot

20.3　NAND Flash存储器分区

智龙开发板采用三星的NAND Flash，型号为K9F1G08U0E，容量为128MB，页面大小为2KB。

NAND Flash的分区如表20.2所示。

 表20.2　3个分区的NAND Flash分区

 [image:]

PMON编译烧写后，启动成功后打印的NAND Flash分区信息如下：

Scanning device for bad blocks
Creat MTD partitions on "ls1x-nand": name="kernel" size=14680064Byte
Creat MTD partitions on "ls1x-nand": name=" rootfs " size=104857600Byte
Creat MTD partitions on "ls1x-nand": name="data" size=14680064Byte

CPU芯片的手册上说明：SPI Flash的只读memory空间如果分配在0xbfc00000，复位后不需要软件干预就可以直接访问，从而支持处理器从SPI Flash启动。

开发板的硬件电路的连接决定了启动方式。boot_sel的连接值为01，表示从SPI Flash启动。

系统启动首先从SPI Flash加载PMON，然后根据PMON设置的相关信息启动内核。

20.4　内核启动过程

系统首先从SPI Flash加载PMON，PMON支持SD卡和USB接口存储器。加载过程提示的相关信息如下：

 [image:]

使用命令devls查看有哪些设备可以使用，主要设备有硬盘、U盘、网卡。如果没有提示U盘（usb0），则U盘不会被识别。

 [image:]

控制台显示已经加载设备为SD卡、USB存储器和网卡。

20.4.1　内核从NAND Flash中加载

将内核文件vmlinuz复制到服务目录tftp下，再将内核下载到NAND Flash MTD0中，根文件系统下载到MTD1，并设置启动参数。

 [image:]

从MTD0启动内核控制台打印信息如下：

 [image:]

20.4.2　内核从SD Card中加载

将内核vmlinuz下载到SD卡中，此操作可在Windows系统进行。

使用软件Win32 Disk Imager将内核编译后程序vmlinuz写入SD卡，如图20.3所示。注意不能复制，必须使用专用软件写入。

 [image:]
 图20.3　将内核写入SD卡界面

将SD卡插入卡座，并将根文件系统下载到MTD1，设置启动参数从SD卡启动。

 [image:]

从SD卡启动内核控制台打印信息如下：

 [image:]

20.4.3　内核从tftp中加载

如果内核经常编译调试，可在调试时通过PMON从tftp远程加载进入内存，而不是将内核下载到Flash。待程序调试通过后，再下载到Flash。先将内核文件vmlinuz复制到服务目录tftp下。

 [image:]

从远程tftp启动内核控制台打印信息如下：

 [image:]

20.4.4　设置PMON的IP地址

开发板上电后按空格键进入PMON。

设置IP地址：

 [image:]

或者：

 [image:]

网络测试：

 [image:]

注意：开发板与PC机的IP地址的前3个段需要相同。

20.5　PMON的内置命令

PMON中内置了很多命令，表20.3说明了部分命令。

 表20.3　PMON部分内置命令

 [image:]

提示：更多的内容，可在PMON中输入h，浏览帮助信息。

20.6　PMON龙芯官方参考

参考网址为http://www.loongnix.org/index.php/PMON。

20.7　PMON裸机编程

PMON可以引导elf程序。如20.3节中介绍，龙芯启动后运行的代码位置是0xbfc00000（SPI引导模式），系统上电后，从0xbfc00000处开始运行PMON，随后PMON会完成初始化CPU、内存、总线等设备及对串口、键盘、鼠标等外设进行基础测试等一系列工作，进入PMON的字符界面。而PMON引导的地址是0x80200000。GCC编译好的程序不能直接运行，因为内存映射不同，所以需要用ld工具重新映射地址空间。

裸机编程来自龙芯爱好者佐须之男的博客：龙芯裸机编程之helloworld-PMON引导篇，参考网址为http://forgotfun.org/category/loongson/。

（1）在虚拟机中如2.9节建立tftp服务器并开启。用命令lsof检查服务是否成功，如图20.4所示。

 [image:]
 图20.4　虚拟机中检测tftp服务

（2）下载hello的代码，在虚拟机中执行make，Makefile会自动复制编译好的a.out到tftproot的根目录。

（3）在开发板的PMON中配置。

设置开发板的IP地址，此IP地址要与虚拟机中的tftp在一个网段。

set syn0.ipaddr 193.169.2.230

配置启动后加载的文件为tftp上的a.out。

set al tftp://193.169.2.104/a.out

（4）重启后控制台显示如图20.5所示。

 [image:]
 图20.5　开发板运行PMON裸机程序控制台界面

出现以下字样表示运行成功：

Hello! This is the 'hello' program!
第21章　在Windows环境下搭建龙芯1C开发环境及龙芯1C库

本章内容参考网址http://blog.csdn.net/caogos/article/details/72621417。

21.1　交叉编译工具链的下载和安装

官方的GCC只适合在Linux系统下编译，这里选择勤为本（龙芯爱好者）提供的GCC，下载地址为http://pan.baidu.com/s/1i4YFrCT。下载的交叉编译工具链解压后放在C:\mips-mingw32\bin下，如图21.1所示。

 [image:]
 图21.1　下载的交叉编译工具链的安装位置

将路径添加到环境变量path，如图21.2所示。

重启后，用命令mips-linux-gnu-gcc –v进行测试，如图21.3所示，显示成功。

 [image:]
 图21.2　将mips-mingw32\bin添加到环境变量path中

 [image:]
 图21.3　测试mips-linux-gnu-gcc程序

21.2　MinGW的下载和安装

MinGW（Minimalist GNU on Windows）是指只用自由软件来生成纯粹的Win32可执行文件的编译环境。实际上，MinGW并不是一个C/C++编译器，而是一套GNU工具集合。除GCC（GNU编译器集合）外，MinGW还包含一些其他的GNU程序开发工具（如gawk bison等）。

先到官网http://www.mingw.org/下载mingw-get-setup.exe。

双击安装程序，打开如图21.4所示界面。

单击Continue按钮进行安装。安装完成后单击Continue按钮，如图21.5所示。

 [image:]
 图21.4　安装mingw32第1步

 [image:]
 图21.5　安装mingw32第2步

在列表中第2行mingw32-base处右击，在弹出的快捷菜单中选择Mark for installation命令。然后选择Installation菜单中的Apply Changes命令，如图21.6所示。

 [image:]
 图21.6　安装mingw32中的基本包选择

单击Apply按钮，如图21.7所示。

安装基础包的过程如图21.8所示。

 [image:]
 图21.7　安装mingw32基本包

 [image:]
 图21.8　安装mingw32基本包的过程

安装完成后，出现如图21.9所示的界面。

 [image:]
 图21.9　安装mingw32基本包完成

安装目录下，生成文件mingw32-make.exe，如图21.10所示。

 [image:]
 图21.10　mingw32安装目录

接下来是配置系统环境变量。将安装目录的bin目录追加到环境变量path里，如图21.11所示。

重启后，运行测试命令mingw32-make -v，出现如图21.12所示的界面，说明安装成功。

 [image:]
 图21.11　将MinGW\bin添加到环境变量path中

 [image:]
 图21.12　测试mingw32-make命令

21.3　编译

进入下载好的源码目录（来自http://git.oschina.net/caogos/OpenLoongsonLib1c下的src目录），按Shift键的同时右击，在弹出的快捷菜单中选择“在此处打开命令窗口”命令，然后执行命令mingw32-make。这样就开始按照Makefile文件来编译。

执行命令mingw32-make，编译成功后，在当前目录下生成文件OpenLoongsonLib1c，如图21.13所示。

 [image:]
 图21.13　执行命令mingw32-make编译程序

21.4　调试和运行

工作环境搭建好后，就要进行程序调试。首先连接好硬件，插上USB转TTL的线和网线，设置好IP地址（主机与开发板在一个网段内）。打开PuTTY控制台软件。

搭建tftp服务，指定服务目录为OpenLoongsonLib1c所在的目录和服务器IP地址，如图21.14所示。

 [image:]
 图21.14　搭建tftp服务

启动开发板，进入PMON环境。加电后，按空格键后执行命令，设置启动参数，自动从tftp上的OpenLoongsonLib1c启动运行，然后重启，出现如图21.15所示的控制台界同则表示成功。

PMON>set al tftp://193.169.2.150/OpenLoongsonLib1c
PMON>reboot

 [image:]
 图21.15　开发板加载OpenLoongsonLib1c成功

21.5　运行点灯程序

这里运行一个点灯程序。修改main.c中的main函数：

 [image:]

修改test_gpio.c中的test_gpio_output函数，将LED端口修改为50：

 [image:]

编译后，重启开发板，开发板上的LED1绿灯定时1s闪烁。

21.6　龙芯1C库

目前龙芯1C能运行Linux和RT-Thread，很多读者还是熟悉类似于stm32库函数的编程方法，所以裸机程序是最合适的。龙芯爱好者勤为本不仅封装了龙芯1C各种外设操作的库，还基于另一龙芯爱好者设计的白菜板（裸机编程用的龙芯1C最小系统板）详述了龙芯1C库移植的方法。具体内容及使用方法请参考网址https://gitee.com/caogos/OpenLoongsonLib1c。
第22章　智龙开发板应用及其他龙芯开发板

22.1　智龙开发板应用例程

22.1.1　WiFi小车应用

龙芯爱好者赵利龙使用智龙开发板V1.0和V3.0分别设计了WiFi小车，如图22.1所示。具体设计资料请参考网址http://www.openloongson.org/forum.php?mod=viewthread&tid=104。

 [image:]
 图22.1　基于智龙V1.0和V3.0的WiFi小车

WiFi小车基于Loongson 1C芯片，开发板为智龙开发板；内核引导使用PMON；使用mjpeg-stream搭建获取视频流；使用WiFi并制定通信协议控制小车。

22.1.2　北斗导航应用

北斗模块扩展板通过双排排母的方式与智龙开发板V3.0进行连接。北斗模块扩展板上集成了电源模块，整个扩展板既可以通过核心板采用“自下往上”的方式给扩展板供电，也可以独自供电。北斗模块扩展板如图22.2所示。

扩展板集成了北斗模块，是整个扩展板的核心。北斗定位及通信模块采用博纳雨田通信电子有限公司的TM0558芯片。TM0558芯片集成了博纳雨田通信电子有限公司自主研制的北斗一代射频收发芯片BN662，5W的功放芯片BN161P，以及基带芯片和LNA电路，通过外接的SIM卡和无源天线即可实现短报文的通信与定位功能。

北斗模块扩展板包含两路传感器模块，可以外接温湿度传感器、压力传感器等。对传感器进行数据采集时采用了嵌入式行业普遍使用的AD7705芯片，采用LM285D-2.5芯片对外挂的ADC提供基准电压。

 [image:]
 图22.2　北斗模块扩展板

22.1.3　龙印3D打印机

龙芯爱好者在三角洲3D打印机框架结构的基础上开发了龙印3D打印机。主控制器采用龙芯1C智龙开发板，在开发板的基础上设计针对龙印3D打印机的专用扩展板，最终实现龙印3D打印机。龙印3D打印机的框架结构如图22.3所示。

与3D打印机的主控制器智龙开发板接插的龙印3D打印机专用扩展板如图22.4所示。

 [image:]
 图22.3　龙印3D打印机框架结构

 [image:]
 图22.4　龙印3D打印机专用扩展板

龙印3D打印机专用扩展板通过排母的方式与智龙开发板的排针进行连接，整个3D打印机通过上、下直插的方式构成3D打印机的硬件平台。扩展板通过4片A4988芯片以实现对舵机的控制，采用AD7705ADC芯片实现热风头温度的采集，同时设计了冷却风扇、限位开关等对应的接口。

整个3D打印机在硬件平台的基础上，裁剪对应的Linux内核和文件系统、编写各个模块的驱动以及整体应用程序，经过各个模块的调试以及系统的整体调试，已经能够成功打印出3D作品。

具体设计请参考网址https://gitee.com/caogos/marlin_ls1c。

22.1.4　LCD扩展板

LCD扩展板（见图22.5）可与智龙开发板连接。

二者连接后运行Linux系统，如图22.6所示。

 [image:]
 图22.5　LCD扩展板

 [image:]
 图22.6　运行Linux的智龙开发板及LCD扩展板

运行RT-Thread系统中的RT-GUI，如图22.7所示。

 [image:]
 图22.7　运行RT-GUI的智龙开发板及LCD扩展板

22.1.5　其他应用开发例程

[image:]　开龙V3安装Debian系统：https://www.anheng.com.cn/loongson/loongson1c_bsp/debian/。

[image:]　开龙V3安装mplayer实现音乐播放：http://www.openloongson.org/forum.php?mod= viewthread&tid= 4056&extra=page%3D1。

[image:]　移植live555流媒体服务器：http://www.openloongson.org/forum.php?mod=viewthread&tid=223&extra=page%3D1。

[image:]　基于Web的龙芯开发板远程数据获取实现：http://www.openloongson.org/forum.php?mod=viewthread& tid= 227&extra=page%3D2。

[image:]　初中生版“爱因斯坦谜语”C语言智能分析源码：http://www.openloongson.org/forum.php?mod=viewthread&tid=148&extra=page%3D3。

[image:]　使用开源龙芯1C（智龙主板）的温湿度控制系统：https://gitee.com/caogos/loongson_1C_temp_humidity_control_system。

22.2　龙芯机器人控制器

22.2.1　硬件结构

 [image:]
 图22.8　龙芯机器人控制器

龙芯机器人控制器采用龙芯1C300SoC处理器，最大支持扩展32路舵机控制，与同等价位的单片机类机器人控制器相比，主频提高3倍以上，存储容量也大大提升，可运行Linux、RT-Thread等操作系统，其外形如图22.8所示。

该控制器面向龙芯小型机器人原型的研究开发，可运用在教育机器人、家庭机器人、高级玩具机器人等领域。目前，龙芯机器人控制器样机已经通过了对多路DS3115MG数字舵机控制的测试，实现了对龙芯1C300 PWM信号接口数量的扩展，可满足各类机器人对多路电机控制的需求。

龙芯机器人控制器的硬件原理图见附录19。机器人控制器通过两片PWM扩展芯片（PCA9685PW）扩展出32路PWM，其中一路最多可扩展16路PWM信号。

22.2.2　烧录内核与根文件系统

龙芯机器人控制器采用U-boot作为启动bootloader。U-boot已经用专用编程器烧录入板载SPI总线的Flash芯片W25X40。

龙芯机器人控制器主板内核及根文件系统通过TF卡方式下载。下载内核的步骤如下。

（1）打开存放编译好的内核的文件夹，将内核文件uImage存入TF卡。

（2）插上USB转串口的调试小板，打开串口调试助手。

（3）控制器主板上电，按空格键，进入U-boot。

（4）将存有内核文件的TF卡插入龙芯机器人主板。

（5）在串口调试助手（console）中操作。

以下内容均在console中显示。输入相关命令进行内核下载：

U-BOOT Initializing...
OK...

U-Boot 2013.10-g58862fa (Mar 10 2016 - 09:39:11)

checkboard
Board: openloongson board (CPU Speed 252 MHz/ Mem @ 126 MHz/ Bus @ 126 MHz)
DRAM: 32 MiB
NAND: 128 MiB
MMC:
SF: Detected W25X40 with page size 256 Bytes, erase size 4 KiB, total 512 KiB
*** Warning - bad CRC, using default environment

In: serial
Out: serial
Err: serial
SPI: ready
Net: Phy not found
PHY reset timed out
 error: synopGMAC_reset DmaBusMode: 0x00020101
dwmac.bfe10000
Hit any key to stop autoboot: 0
uboot# nand erase.part kernel
NAND erase.part: device 0 offset 0x100000, size 0xd00000
Erasing at 0xde0000 -- 100% complete.
OK
uboot# mmc_spi 0:2
MMC_SPI: 0 at 0:2 hz 25000000 mode 0
uboot# mmcinfo
Device: MMC_SPI
Manufacturer ID: 2
OEM: 544d
Name: SA08G
Tran Speed: 25000000
Rd Block Len: 512
SD version 2.0
High Capacity: Yes
Capacity: 7.2 GiB
Bus Width: 1-bit
uboot# fatload mmc 0:1 a0100000 uImage
reading uImage
2095441 (1ff951 hex) bytes read in 0 ms
uboot# nand write 80100000 kernel 1ff951

NAND write: device 0 offset 0x100000, size 0x1ff951
2095441 bytes written: OK

注意：输入命令uboot# nand write 80100000 kernel 1ff951时，1ff951为上一行命令2095441 (1ff951 hex) bytes read in 0 ms中括号内字符。最后显示2095441 bytes written: OK，表示下载内核成功。

在console中下载根文件系统：

uboot# nand erase.part root

NAND erase.part: device 0 offset 0xe00000, size 0x3200000
Erasing at 0x3fe0000 -- 100% complete.
OK
uboot# mmc_spi 0:2
MMC_SPI: 0 at 0:2 hz 25000000 mode 0
uboot# mmcinfo
Device: MMC_SPI
Manufacturer ID: 2
OEM: 544d
Name: SA08G
Tran Speed: 25000000
Rd Block Len: 512
SD version 2.0
High Capacity: Yes
Capacity: 7.2 GiB
Bus Width: 1-bit
uboot# fatload mmc 0:1 a0100000 rootfs-yaffs2.img
reading rootfs-yaffs2.img
6082560 (5cd000 hex) bytes read in 0 ms
uboot# nand write.yaffs 80100000 root 5cd000

NAND write: device 0 offset 0xe00000, size 0x5cd000
6082560 bytes written: OK

注意：输入命令uboot# nand write.yaffs 80100000 root 5cd000时，5cd000为上一行命令6082560(5cd000 hex) bytes read in 0 ms中括号内字符。最后显示6082560 bytes written: OK，表示下载根文件系统成功。

在console中配置启动参数：

setenv bootargs console=ttyS2,115200 root=/dev/mtdblock2 noinitrd init=/linuxrc rootfstype=yaffs2 rw
setenv bootcmd nboot kernel\;bootm 81000000

22.2.3　机器人控制器的PWM输出操作

拔掉TF卡后重启系统，可以看到PWM设备在/sys/class/pwm下。进入该目录，可以看到设备pwmchip0和pwmchip17。其中每个pwmchip都有16个pwm，为0~15。下面演示pwmchip0和pwm0的操作（采用console中的控制台命令）。如果想使用C程序操作，可参考8.2.3节内容。

 [image:]

其中，echo 0 > export表示开放对应的PWM端口；echo 1 > enable表示打开对应的pwm0；echo 20000000 > period设置周期为20000000μs；echo 15000000 > duty_cycle设置pwm波形中的高电平时间为15000000μs，这里的时间单位都是μs。以上命令为设置在pwm0输出周期20ms、占空比为75%的PWM波。

22.2.4　机器人控制器的应用

目前，机器人控制器已经成功用于龙芯机械手和表情机器人的控制，如图22.9所示。

 [image:]
 图22.9　龙芯机械手和表情机器人

22.3　智龙开发板在高校和社区中的推广应用

22.3.1　高校应用

南京航空航天大学计算机科学与技术学院施慧彬老师在2017年上半年，指导四名本科生使用智龙开发板并基于RT-Thread操作系统完成了本科毕业设计，分别是邓健清同学的《高可靠数据采集器的研究与实现》、李江川同学的《面向智能控制的Modbus协议转换器的设计与实现》、刘明艳同学的《基于GPS的定位与预警系统设计与实现》、夏菱那同学的《嵌入式实时操作系统研究及其在测控系统中的应用实现》，如图22.10所示。论文可通过南京航空航天大学官网（http://ded.nuaa.ede.cn/netean/jsyh/bysjcx/index.asp）查询。

 [image:]
 图22.10　施慧彬老师指导学生使用智龙开发板完成的本科毕业设计

施慧彬老师还和其他老师一起指导多名学生使用智龙开发板基于RT-Thread操作系统进行学院级及国家级的科创实践活动。

东南大学信息科学与工程学院和吴健雄学院于2016年年底立项的《基于国产龙芯支持数字信号传输的FM广播收发系统》为东南大学大学生创新创业训练计划校级重点项目，由孔令峥和陈哲恒同学带领团队，于2017年5月以优秀成绩通过中期检查，申报作为国家级创新实验项目，相关资料见网址http://radio.seu.edu.cn/xueban/info/12078。项目基于智龙主板和Linux系统，以QN8027为核心，搭建外围电路，并设计相应软件程序，在实现音频信号收发的基础上，进一步应用RDS技术，利用负载波完成简单数字信号传递。

南昌大学的陈悦老师带领学生刘绍涛、李润、耿甲、李天雨、彭海萍和鲁家南申请并完成了大学生创新实践项目——人脸情绪智能广告机。项目基于人脸情绪分析算法，实现对人脸表情进行一定连续的分析，检测出观看者对广告内容的喜爱程度，并根据观看者对当前观看广告情绪进行连续变化。基于识别算法，计算出观看者的感受程度，进行后台的切换或更新；将每一个观看者面对每一个广告的人脸情绪进行量化分析和大数据分析，生成图表，便于分析总结。项目产品的广告设备端内置智龙开发板，使用TCP/IP通信协议，通过nodo.js平台实现硬件设备与云端的通信，将摄像头采集的数据上传至服务器。

22.3.2　龙芯CPU高校开源计划

在2016年中国计算机大会期间，由教育部高等学校计算机类专业教学指导委员会和中国计算机学会教育专委会主办，由龙芯中科、机械工业出版社华章公司等单位承办的“面向计算机系统能力培养的龙芯CPU高校开源计划”在太原湖滨国际酒店举行。在活动中，龙芯中科宣布将GS132和GS232两款CPU核向高校开源。

将知识融会贯通，就离不开具体实践，在龙芯将GS132和GS232两款CPU核向高校和学术界开源后，大学老师可以基于龙芯平台设计实验课程，使学生可以在真实的CPU上运行真实的操作系统，在龙芯实验平台上启动操作系统并进行性能分析。龙芯还研发了CPU实验平台、操作系统实验平台、并行处理实验平台等数款龙芯教学平台，通过为高校提供完整的线上、线下实验环境，助力教学改革和计算机专业学生的系统能力培养，实现“设计真实处理器，运行真实操作系统”。

22.3.3　“龙芯杯”全国大学生计算机系统能力培养大赛

“龙芯杯”全国大学生计算机系统能力培养大赛是以学科竞赛推动专业建设、以培养大学生创新能力为目标，面向高校大学生举办的全国性大赛。大赛旨在选拔未来我国计算机系统的设计、分析、优化与应用人才，激发学生的创新实践能力并培养其团队协作精神，进一步推动计算机等相关专业教学改革，为高质量专业人才搭建交流、展示、合作的平台，助力我国高校与企业产学研合作的健康快速发展。由教育部高等学校计算机类专业教学指导委员会主办，由教指委主任单位北京航空航天大学承办，龙芯中科技术有限公司、赛灵思（Xilinx）公司、进想科技（Imagination Technologies）公司、中国计算机学会体系结构专委会、安全可靠技术和产业联盟、机械工业出版社华章公司联合举办了第一届“龙芯杯”全国大学生计算机系统能力培养大赛，本次大赛共有40多所高校近70支队伍参赛，参赛学生近280人，指导老师近140人。本次大赛通过初赛评选出20支队伍参加了2017年9月23日在北京航空航天大学举办的全国总决赛。清华大学代表队获得本次大赛的一等奖，如图22.11所示。在颁奖典礼上，龙芯中科总裁胡伟武还为同学和老师做了《自主CPU发展道路》的精彩报告。

 [image:]
 图22.11　龙芯中科总裁胡伟武（左一）和获得一等奖的清华大学代表队合影

22.3.4　龙芯俱乐部开源社区

龙芯俱乐部开源社区也对龙芯开发板进行了大量的推广应用，网址为http://www.openloongson.org/。

22.3.5　基于龙芯平台的嵌入式系统设计竞赛等高校比赛活动

[image:]　全国大学生嵌入式芯片与系统设计竞赛

龙芯中科赞助了由教育部高等学校电子信息类专业教学指导委员会与中国电子教育学会联合主办，由东南大学与南京集成电路产业服务中心（ICisC）承办的全国大学生嵌入式芯片与系统设计竞赛（参赛网址为http://www.socchina.net/）。

2018年首届竞赛中，龙芯中科和南京龙众创芯电子科技提供1C智龙开发板、1C机器人控制器和2K1000龙芯派。大赛中基于龙芯的图像识别、无人车、无人机控制等应用展现了龙芯平台强大的能量，基于2K龙芯派的无人机集群控制台更是斩获大赛特等奖。第一届全国大学生嵌入式芯片与系统设计竞赛龙芯平台获奖名单和部分获奖作品简介参见附录21。

第二届全国大学生嵌入式芯片与系统设计竞赛采用龙芯平台的团队获得了三项一等奖和一项最佳工程奖，如图22.12所示，其中获奖最多的作品为江苏科技大学的杨忠凯团队，指导老师是仲伟波，来自中南大学王恒宇团队的基于2K龙芯派的移动图书定位系统和南京师范大学李心果团队的1C智龙小车路线识别系统也获得了一等奖。

 [image:]
 图22.12　采用1C智龙主板的无人艇作品获得第二届大赛的一等奖和最佳工程奖

[image:]　大学生网络安全尖锋训练营“精英百强”选拔活动

全国大学生网络安全尖锋训练营由教育部高等学校网络空间安全教学指导委员会和中国网络安全审查技术与认证中心指导，大学生网络安全尖峰训练营主办。通过选拔的学生被授予大学生网络安全尖锋训练营“精英百强”称号。

2018年首届选拔活动，共有来自全国100多支战队，逾500名大学生参加。其中来自南京航空航天大学金城学院的戴翊斌团队采用龙芯1C机器人控制器开发的机械手臂作品获得了团队一等奖，如图22.13所示。来自南京工业大学的赵航、刘飞龙团队采用智龙主板开发的智能灯作品获得了团队二等奖。

 [image:]
 图22.13　2018年大学生网络安全尖锋训练营“精英百强”选拔活动团队一等奖

[image:]　开源空间黑客马拉松

“开源空间黑客马拉松（Hackathon）”大赛是赛迪开源空间系列品牌活动之一，是聚集众多开发者于指定地点连续几十个小时内进行集中开发并创造出作品的比赛活动。赛迪于2017、2018、2019年先后成功举办三届，已打造成为具有国际影响力的品牌赛事，龙芯俱乐部提供龙芯平台支持。南京工业大学孙冬梅老师指导的董清卿、吴萧灿、赵航、毕家钦团队，武昌首义学院徐斌老师指导的孟非凡团队等参加了2018年江苏如皋、2019年浙江宁波的两届赛事，均取得了奖项。2018年获奖团队合影如图22.14所示。

[image:]　华梦全国大学生开源软件技术创意大赛

2018年华梦大赛由中国软件行业协会教育与培训委员会和中国电科·普华基础软件股份有限公司共同主办，武汉尚软科技有限公司承办，以“可信物联，谁主沉浮。隧道飞鸿，开源卫士”为主题。龙芯俱乐部提供了智龙主板作为龙芯物联网比赛平台，其参赛作品获得了奖项，大赛启动仪式如图22.15所示。

 [image:]
 图22.14　2018年如皋“开源空间黑客马拉松”龙芯平台获奖团队

 [image:]
 图22.15　2018年华梦全国大学生开源软件技术创意大赛启动仪式

第23章　Linux内核的配置和编译

Linux内核庞大，初学者以及致力于Linux应用软件开发的技术人员，熟悉内核的最好开端就是对内核进行配置，得到符合自己需求的经过裁剪的内核，并将编译后的内核下载到开发板中运行使用。

本章内容不涉及代码编写，学习Linux不必一切从零开始，可从学会配置、编译和下载运行开始。

Linux内核的编译分为两个步骤，一是内核配置；二是内核编译。开发包默认提供一个配置文件，用户可以根据此配置文件对内核进行裁剪或者增加新的功能。

本章以Linux-3.0.101内核为例，描述整个Linux内核的配置和编译过程。

内核源码包名称为linux-3.0.101.tar.gz。首先将该源码包复制到Ubuntu虚拟机用户目录下，然后解压。

23.1　安装图形化配置工具Ncurses

使用以下命令安装图形化配置工具Ncurses。

apt-get install libncurses5-dev

23.2　运行图形化配置界面

使用以下命令运行图形化配置界面。

make ARCH=mips CROSS_COMPILE=mipsel-linux- menuconfig

执行后进入内核配置主菜单界面，由于源码中已经全部配置好，这里不需要进行任何改动，直接保存退出。

23.3　编译、烧写Linux内核

配置完内核后，执行编译命令：

make ARCH=mips CROSS_COMPILE=mipsel-linux-

编译完成后，在当前目录下生成内核镜像文件vmlinux（未压缩）和vmlinuz（压缩后），将开发板进入PMON（在终端按空格键开机），先擦除数据，再烧写其中一个即可。

mtd_erase /dev/mtd0
devcp tftp://193.169.2.215/vmlinuz /dev/mtd0

23.4　开发板各模块驱动源码

[image:]　1C300B开发板平台文件：/linux-3.0.101/arch/mips/loongson/ls1x/ls1c/platform.c。

[image:]　网卡驱动：/linux-3.0.101/drivers/net/loongson/gmac。

[image:]　音频驱动。

OSS：/linux-3.0.101/sound/oss/ls1x_iis.c。
ALSA：/linux-3.0.101/sound/soc/loongson/。

[image:]　串口驱动：/linux-3.0.101/drivers/tty/serial/8250.c。

[image:]　实时时钟驱动：/linux-3.0.101/drivers/rtc/rtc-ls1x.c。

[image:]　触摸屏驱动：/linux-3.0.101/drivers/input/touchscreen/xpt2046.c。

[image:]　LCD驱动：/linux-3.0.101/drivers/video/ls1xfb.c。

[image:]　按键驱动：/linux-3.0.101/drivers/input/keyboard/gpio_keys.c。

[image:]　NAND Flash控制器驱动：/linux-3.0.101/drivers/mtd/nand/ls1x-nand.c。

[image:]　USB控制器驱动：/linux-3.0.101/drivers/usb/host/ehci-ls1x.c与ohci-ls1x.c。

[image:]　SPI控制器驱动：/linux-3.0.101/drivers/spi/spi_ls1x.c。

[image:]　I2C控制器驱动：/linux-3.0.101/drivers/i2c/busses/i2c-ls1x.c。

[image:]　SD卡驱动：/linux-3.0.101/drivers/mmc/host/ls1x_mci.c。

[image:]　PWM驱动：/linux-3.0.101/arch/mips/loongson/ls1x/pwm.c。

[image:]　CAN总线驱动：/linux-3.0.101/drivers/net/can/sja1000/。

[image:]　红外驱动：/linux-3.0.101/drivers/char/ls1b_ir.c。

[image:]　ADC驱动：/linux-3.0.101/drivers/hwmon/ls1x-hwmon.c。

[image:]　GPIO驱动：/linux-3.0.101/drivers/gpio/gpio-ls1x.c。

[image:]　看门狗驱动：/linux-3.0.101/drivers/watchdog/ls1x_wdt.c。

23.5　配置内核各模块驱动

23.5.1　配置网卡驱动

进入内核配置主界面，选择“[*] Networking support --->”选项并进入，如图23.1所示。

 [image:]
 图23.1　内核配置主界面

选择“Networking options --->”选项并进入，如图23.2所示。

 [image:]
 图23.2　内核配置网络选项

在网络选项配置界面中采用默认选项设置即可，如图23.3~图23.5所示。

 [image:]
 图23.3　内核配置之网络选项配置1

 [image:]
 图23.4　内核配置之网络选项配置2

 [image:]
 图23.5　内核配置之网络选项配置3

回到内核配置主界面中，选择“Device Drivers --->”选项并进入，如图23.6所示。

 [image:]
 图23.6　内核配置之设备驱动

然后选择“[*] Network device support --->”选项并进入，如图23.7所示。

 [image:]
 图23.7　内核配置之网络驱动支持

选择相应的网络设备选项，这里配置“[*] Ethernet (1000 Mbit) --->”选项，如图23.8所示。

 [image:]
 图23.8　内核配置之网络驱动网卡配置

网络设置具体配置如图23.9所示。

 [image:]
 图23.9　内核配置之网卡配置选项

23.5.2　配置NFS支持

先配置网络协议的支持，在主菜单界面中，选择“[*] Networking support --->”选项，按Enter键进入，如图23.10所示。

 [image:]
 图23.10　内核配置之网络协议支持

选择“Networking options --->”选项并进入，如图23.11所示。

 [image:]
 图23.11　内核配置之网络信息

确保网络协议支持的配置已选择“[*] IP：kernel level autoconfiguration”及其3个子项，如图23.12所示。

 [image:]
 图23.12　内核配置之IP内核自动配置

完成NFS的网络协议支持配置，然后退回主界面。接着配置文件系统支持，在主菜单界面中，选择设备驱动“File systems --->”选项，按Enter键进入，如图23.13所示。

 [image:]
 图23.13　内核配置之文件系统

选择网络文件系统“[*] Network File Systems --->”选项并进入，如图23.14所示。

 [image:]
 图23.14　内核配置之网络文件系统

这里配置客户端支持“<*>NFS client support”选项，如图23.15所示。

 [image:]
 图23.15　内核配置之NFS选项

23.5.3　配置串口驱动

在内核配置主界面中，选择“Device Drivers --->”选项，按Enter键进入，如图23.16所示。

 [image:]
 图23.16　内核配置之设备驱动

找到字符设备“Character devices --->”选项并进入，如图23.17所示。

 [image:]
 图23.17　内核配置之字符设备

选择串口驱动“Serial drivers --->”选项并进入，如图23.18所示。

 [image:]
 图23.18　内核配置之串口驱动

按照图23.19所示进行配置。

 [image:]
 图23.19　内核配置之控制台配置

23.5.4　配置LCD驱动

在内核配置主界面中，选择“Device Drivers --->”选项，按Enter键进入，如图23.20所示。

 [image:]
 图23.20　内核配置之设备驱动

选择图形支持“Graphics support --->”选项并进入，如图23.21所示。

 [image:]
 图23.21　内核配置之图形支持

选择“<*> Support for frame buffer devices --->”选项并进入，如图23.22所示。

 [image:]
 图23.22　内核配置之帧缓冲设备支持

选择“<*> Loongson1 framebuffer support”选项及其子项，如图23.23所示。

 [image:]
 图23.23　内核配置之龙芯帧缓冲支持

进入系统后，修改以下两个文件。

[image:]　在根文件系统/etc/init.d/rc.sysinit中添加脚本。

使用命令vi /etc/init.d/rc.sysinit在最后一行添加脚本：

echo 250 > /sys/class/leds/ls1x_pwm_led0/brightness //打开背光

[image:]　在初始化文件/etc/inittab中添加屏幕终端显示代码。

使用命令vi /etc/inittab添加代码：

ttyS2::respawn:-/bin/sh //下面添加一行
tty1::respawn:-/bin/sh

重启后进入PMON，修改启动参数：

set append "root=/dev/mtdblock1 console=ttyS2,115200 console=tty1 rootfstype=yaffs2 rw"
set append "$append video=ls1xfb:480x272-16@60 fbcon=rotate:0 consoleblank=0"

至此，串口控制台和LCD屏同时输出信息，如果进行了23.5.8节的配置，可从串口控制台和USB键盘同时输入。

23.5.5　配置按键驱动

在Linux内核配置主界面中选择“Device Drivers --->”选项并进入，如图23.24所示。

 [image:]
 图23.24　内核配置之设备驱动

选择“Input device support --->”选项，如图23.25所示。

选择“[*] Keyboards --->”选项，如图23.26所示。

 [image:]
 图23.25　内核配置之输入设备支持

 [image:]
 图23.26　内核配置之键盘支持

按键驱动选择“<*> GPIO Buttons”选项，如图23.27所示。

 [image:]
 图23.27　内核配置之GPIO按键

产生的设备节点为/dev/input/event0。

23.5.6　配置SD卡驱动

在Linux内核配置主界面中选择“Device Drivers --->”选项并进入，如图23.28所示。

 [image:]
 图23.28　内核配置之设备驱动

取消选择“[] SPI support --->”选项，如图23.29所示。

 [image:]
 图23.29　内核配置之SPI支持

然后往下找到并选择“<*> MMC/SD/SDIO card support --->”，进入该选项，如图23.30所示。

 [image:]
 图23.30　内核配置之SDIO支持

选择“<*>MMC/SD/SDIO over SPI”和“<*> Loongson LS1C SD/MMC Card Interface support”两个选项，如图23.31所示。

 [image:]
 图23.31　内核配置之通过SPI接口连接SD卡接口

23.5.7　配置U盘驱动

在Linux内核配置主界面中选择“Device Drivers --->”选项并进入，如图23.32所示。

 [image:]
 图23.32　内核配置之设备驱动

选择“SCSI device support --->”选项并进入，如图23.33所示。

 [image:]
 图23.33　内核配置之SCSI支持

选择如图23.34所示标有“*”选项。

 [image:]
 图23.34　内核配置之SCSI选项

返回上一界面，选择并进入“[*] USB support --->”选项，如图23.35所示。

 [image:]
 图23.35　内核配置之USB支持

选择“<*> USB Mass Storage support”选项，如图23.36所示。

 [image:]
 图23.36　内核配置之USB支持选项

目前，大多数U盘为USB 2.0设备，故需要选中EHCI控制器驱动支持，在USB support选项卡中选择如图23.37所示选项。

 [image:]
 图23.37　内核配置之EHCI控制器支持选项

编译并更新开发板内核后，插入U盘，生成设备节点/dev/sda。

23.5.8　配置USB鼠标和键盘驱动

在Linux内核配置主界面中选择“Device Drivers --->”选项并进入，如图23.38所示。

 [image:]
 图23.38　内核配置之设备驱动

选择“[*] USB support --->”选项，并进入，如图23.39所示。

 [image:]
 图23.39　内核配置之USB支持

配置USB support，选择图中所有标有“*”的选项，如图23.40所示。

 [image:]
 图23.40　内核配置之USB设备文件系统

因为键盘和鼠标属于USB低速设备，所以需要配置OHCI选项。在配置界面中找到OHCI选项并配置，如图23.41所示。

 [image:]
 图23.41　内核配置之配置OHCI选项

然后退出该界面，到Device Drivers配置界面，选择并进入“[*] HID Devices --->”选项，如图23.42所示。

 [image:]
 图23.42　内核配置之HID设备

按照图23.43所示进行配置。

 [image:]
 图23.43　内核配置之USB的HID支持选项

回到Device Drivers配置界面，选择“Input device support--->”选项并进入，如图23.44所示。

 [image:]
 图23.44　内核配置之输入设备支持

选择“<*> Mouse interface”选项，该选项用于配置鼠标驱动，如图23.45所示。

 [image:]
 图23.45　内核配置之鼠标驱动选项

23.5.9　配置USB OTG驱动

在Linux内核配置主界面中选择“Device Drivers --->”选项并进入，如图23.46所示。

 [image:]
 图23.46　内核配置之设备驱动

选择“[*] USB support --->”选项并进入，如图23.47所示。

 [image:]
 图23.47　内核配置之USB支持

选择“<*> USB Gadget Support --->”选项并进入，如图23.48所示。

 [image:]
 图23.48　内核配置之USB Gadget支持

按照图23.49进行配置。

 [image:]
 图23.49　内核配置之USB Gadget支持选项

23.5.10　配置音频驱动

在Linux内核配置主界面中选择“Device Drivers --->”选项并进入，如图23.50所示。

 [image:]
 图23.50　内核配置之设备驱动

选择“<*> Sound card support --->”选项，如图23.51所示。

 [image:]
 图23.51　内核配置之声卡支持

音频驱动默认配置OSS驱动，如图23.52所示。

 [image:]
 图23.52　内核配置之配置OSS驱动

其中Open Sound System具体配置如下，如图23.53所示。

 [image:]
 图23.53　内核配置之声卡选项

23.5.11　配置RTC驱动

在Linux内核配置主界面中选择“Device Drivers --->”选项并进入，如图23.54所示。

 [image:]
 图23.54　内核配置之设备驱动

选择“[*] Real Time Clock --->”选项，如图23.55所示。

 [image:]
 图23.55　内核配置之RTC时钟

默认采用图23.56和图23.57所示配置。

 [image:]
 图23.56　内核配置之RTC选项

 [image:]
 图23.57　内核配置之龙芯RTC支持

生成设备节点/dev/rtc0。

23.5.12　配置PWM驱动

在内核配置主界面中选择“Machine selection --->”选项并进入，如图23.58所示。

 [image:]
 图23.58　内核配置之选型

按照图23.59所示进行配置。

 [image:]
 图23.59　内核配置之PWM使能

回到内核配置主界面，选择“Device Drivers --->”选项并进入，如图23.60所示。

 [image:]
 图23.60　内核配置之设备驱动

选择图形支持“Graphics support--->”选项并进入，如图23.61所示。

 [image:]
 图23.61　内核配置之图形驱动

选择“[*] Backlight & LCD device support--->”选项并进入，如图23.62所示。

 [image:]
 图23.62　内核配置之背光与LCD设备支持

采用如图23.63所示配置。

 [image:]
 图23.63　内核配置之背光与LCD驱动支持

23.5.13　配置LED驱动

在内核配置主界面中，选择“Device Drivers --->”选项，按Enter键进入，如图23.64所示。

 [image:]
 图23.64　内核配置之设备驱动

选择字符设备“[*] LED Support --->”选项并进入，如图23.65所示。

 [image:]
 图23.65　内核配置之LED支持

按照以下选项进行配置，如图23.66和图23.67所示。

 [image:]
 图23.66　内核配置之支持GPIO连接LED

 [image:]
 图23.67　内核配置之LED驱动控制器

生成平台设备节点/sys/devices/platform/leds-gpio/leds。

23.5.14　配置红外驱动

在内核配置主界面中，选择“Device Drivers --->”选项，按Enter键进入，如图23.68所示。

 [image:]
 图23.68　内核配置之设备驱动

选择字符设备“Character devices --->”选项并进入，如图23.69所示。

 [image:]
 图23.69　内核配置之字符设备

选择红外驱动“[*] ls1b ir driver”选项，如图23.70所示。

 [image:]
 图23.70　内核配置之红外驱动

生成设备节点/dev/ls1b_ir。

23.5.15　配置CAN总线驱动

在内核配置主界面中选择“[*] Networking support --->”选项并进入，如图23.71所示。

 [image:]
 图23.71　内核配置之网络支持

在Networking support配置界面配置“<*> CAN bus subsystem support --->”选项并进入，如图23.72所示。

 [image:]
 图23.72　内核配置之CAN总线支持

在CAN bus subsystem support界面中配置如图23.73所示的两个选项。

 [image:]
 图23.73　内核配置之CAN总线支持选项

然后选择“CAN Device Drivers --->”选项并进入，如图23.74所示。

 [image:]
 图23.74　内核配置之CAN设备驱动

在CAN Device Drivers配置界面中进行配置，然后选择“<*> Philips/NXP SJA1000 devices --->”选项并进入，如图23.75所示。

 [image:]
 图23.75　内核配置之SJA1000驱动

在Philips/NXP SJA1000 devices配置界面中配置好如图23.76所示选项。

 [image:]
 图23.76　内核配置之SJA1000控制器选项

23.5.16　配置SPI控制器驱动

在Linux内核配置主界面中选择“Device Drivers --->”选项并进入，如图23.77所示。

 [image:]
 图23.77　内核配置之设备驱动

选择“[*] SPI support --->”选项，如图23.78所示。

 [image:]
 图23.78　内核配置之SPI支持

默认采用图23.79所示配置。

 [image:]
 图23.79　内核配置之SPI控制器

23.5.17　配置I2C控制器驱动

在Linux内核配置主界面中选择“Device Drivers --->”选项并进入，如图23.80所示。

 [image:]
 图23.80　内核配置之设备驱动

选择“<*> I2C support --->”选项并进入，如图23.81所示。

 [image:]
 图23.81　内核配置之I2C支持

在I2C support选项配置界面下，配置图23.82中带“*”的选项，然后选择“I2C Hardware Bus support--->”选项并进入下一个配置界面。

 [image:]
 图23.82　内核配置之I2C硬件总线支持

按照图23.83所示进行配置。

 [image:]
 图23.83　内核配置之I2C控制器

23.5.18　配置ADC驱动

本配置在V2版本使用。在内核配置主界面中，选择“Device Drivers --->”选项，按Enter键进入，如图23.84所示。

 [image:]
 图23.84　内核配置之设备驱动

选择“<*>Hardware Monitoring support --->”选项并进入，如图23.85所示。

 [image:]
 图23.85　内核配置之硬件管理支持

配置如图23.86所示选项。

 [image:]
 图23.86　内核配置之配置硬件管理选项

23.5.19　配置GPIO驱动

在内核配置主界面中，选择“Device Drivers --->”选项，按Enter键进入，如图23.87所示。

 [image:]
 图23.87　内核配置之设备驱动

选择GPIO支持“-*- GPIO Support --->”选项并进入，如图23.88所示。

 [image:]
 图23.88　内核配置之GPIO支持

配置GPIO的sysfs接口，如图23.89所示。

 [image:]
 图23.89　内核配置之GPIO的sysfs接口

23.5.20　配置看门狗驱动

在内核配置主界面中，选择“Device Drivers --->”选项，按Enter键进入，如图23.90所示。

 [image:]
 图23.90　内核配置之设备驱动

选择看门狗时钟支持“[*] Watchdog Timer Support --->”选项并进入，如图23.91所示。

 [image:]
 图23.91　内核配置之看门狗支持

选择“<*> Loongson1 watchdog timer”选项，如图23.92所示。

 [image:]
 图23.92　内核配置之看门狗选项

参考文献

［1］龙芯中科．龙芯1C300处理器数据手册1.3版［Z］．（2015-08-04）［2020-06-09］．http://www.loongson.cn/uploadfile/cpu/IC/Loongson_IC300_data.pdf．

［2］龙芯中科．龙芯1C300处理器用户手册1.4版［Z］．（2015-08-04）［2020-06-09］http://www.loongson.cn/uploadfile/cpu/IC/Loongson_IC300_user.pdf．

［3］龙芯中科．2K龙芯派用入手册入门手册1.3版［Z］．（2018-03-07）［2020-06-09］．http://www.loongson.cn/uploadfile/dersysmanual/2Kloongsonpai_user.pdf．

［4］The I2C-bus specification v2.1-2000[S]. Philips Semiconductors, 2000.

［5］张开生．嵌入式原理及接口技术［M］．北京：清华大学出版社，2015．

［6］张学武，江冰，张卓．嵌入式系统原理与接口技术［M］．北京：电子工业出版社，2013．

［7］SPI Block Guide V03.06 [S]. Motorola, 2003.
附录1　常用Linux命令

1．解压与压缩

tar zxvf xx.tar.gz -C tmp

其中，-C指将压缩包xx.tar.gz解压到当前目录下的tmp目录下，而不是当前目录下。

（1）tar格式

解压：tar xvf FileName.tar

压缩：tar cvf FileName.tar DirName

（2）gz格式

解压：gunzip FileName.gz

解压：gzip -d FileName.gz

压缩：gzip FileName

（3）tar.gz格式

解压：tar zxvf FileName.tar.gz

压缩：tar zcvf FileName.tar.gz DirName

（4）bz2格式

解压1：bzip2 -d FileName.bz2

解压2：bunzip2 FileName.bz2

压缩：bzip2 -z FileName

（5）tar.bz2格式

解压：tar jxvf FileName.tar.bz2

压缩：tar jcvf FileName.tar.bz2 DirName

（6）bz格式

解压：bzip2 -d FileName.bz

压缩：bzip2 -c FileName

（7）tar.bz格式

解压：tar jxvf FileName.tar.bz

压缩：tar jcvf FileName.tar.bz DirName

（8）Z格式

解压：uncompress FileName.Z

压缩：compress FileName

（9）tar.Z格式

解压：tar Zxvf FileName.tar.Z

压缩：tar Zcvf FileName.tar.Z DirName

（10）tgz格式

解压：tar zxvf FileName.tgz

（11）tar.tgz格式

解压：tar zxvf FileName.tar.tgz

压缩：tar zcvf FileName.tar.tgz FileName

（12）zip格式

解压：unzip FileName.zip

压缩：zip FileName.zip DirName

（13）lha格式

解压：lha -e FileName.lha

压缩：lha -a FileName.lha FileName

（14）rar格式

解压：rar a FileName.rar

压缩：rar e FileName.rar

rar安装包可到http://www.rarsoft.com/download.htm下载。

解压后将rar_static复制到/usr/bin目录（其他由$PATH环境变量指定的目录也行）：

cp rar_static /usr/bin/rar

2．用cat命令将字符串追加到文件中

命令语法：

cat [-AbeEnstTuv] [--help] [--version] fileName

该命令将文件内容在屏幕上显示出来：

cat filename.txt

或

cat < filename.txt

可以将内容在屏幕上分页显示：

cat filename.txt |more

该命令会把之后输入的文本重定向到filename.txt文件中，按Ctrl+C快捷键或Ctrl+D快捷键退出。

cat > filename.txt

把textfile1的档案内容加上行号后输入textfile2档案里，textfile2中原有内容会被覆盖：

cat -n textfile1 > textfile2

把textfile1的档案内容加上行号后附加到textfile2档案里，textfile2中原有内容不会被覆盖：

cat -n textfile1 >> textfile2

把textfile1和textfile2的档案内容加上行号（空白行不加）之后将内容附加到textfile3里：

cat -b textfile1 textfile2 >> textfile3

把textfile1和textfile2的档案内容加上行号（空白行也加）之后将内容附加到textfile3里：

cat -n textfile1 textfile2>> textfile3

清空文件内容：

cat '' > filename.txt

需要注意的是，上述命令中符号“>”会覆盖原有内容，如果是符号“>>”，则追加内容到原有内容的后面。

3．echo

覆盖型写法（文件里原来的内容被覆盖）：

echo "aaa"> a.txt
echo aaa > a.txt

添加型写法（新内容添加在原来内容的后面）：

echo "aaa">> a.txt
echo aaa >> a.txt

echo命令的功能是在显示器上显示一段文字，一般起到提示的作用。

该命令的一般格式为：

echo [-n]字符串

其中，选项n表示输出文字后不换行；字符串可以加引号，也能不加引号。用echo命令输出加引号的字符串时，将字符串原样输出；用echo命令输出不加引号的字符串时，将字符串中的各个单词作为字符串输出，各字符串之间用一个空格分隔。

4．tree显示目录结构

root@ubuntu:~# tree
.
├── Desktop
├── Documents
├── Downloads
├── minicom.log
├── Music
├── Pictures
├── Public
├── Templates
└── Videos

5．防火墙

卸载防火墙：

apt-get remove iptables

关闭防火墙：

service iptables stop

6．内核启动参数

Linux内核在启动时，能接收某些命令行选项或启动时参数。当内核不能识别某些硬件进而不能设置硬件参数，或者为了避免内核更改某些参数的值，可以通过这种方式手动将这些参数传递给内核。

如果不使用启动管理器，如直接从BIOS启动或者把内核文件用cp zImage /dev/fd0等方法直接从设备启动，就不能给内核传递参数或选项——这也许是使用引导管理器（如LILO）的好处之一。

Linux的内核参数是以空格分开的一个字符串列表，通常具有如下形式：

name[=value_1][,value_2]...[,value_10]

name是关键字，内核用它来识别应该把其后面的值传递给谁，也就是如何处理这个值，是传递给处理例程还是作为环境变量，或者抛给init。值的个数限制为10，可以通过再次使用该关键字使用超过10个的参数。

首先，内核检查关键字是不是''root=''、''nfsroot='''、''nfsaddrs=''、''ro''、''rw''、''debug''或''init''。然后，内核在bootsetups数组里搜索与该关键字相关联的已注册的处理函数，如果找到相关的已注册的处理函数，则调用这些函数并把关键字后面的值作为参数传递给这些函数。例如，js在启动时设置参数name=a,b,c,d，内核搜索bootsetups数组，如果发现name已注册，则调用name的设置函数（如name_setup），并把a，b，c，d传递给name_setup执行。

所有形如name=value的参数，如果没有被上面所述的设置函数接收，将被解释为系统启动后的环境变量，如TERM=vt100就会被作为一个启动时参数。

所有没有被内核设置函数接收也没有被设置成环境变量的参数都将留给init进程处理，如single。

常用的设备无关启动时参数介绍如下。

（1）init=...

设置内核执行的初始化进程名，如果该项没有设置，内核会按顺序尝试/etc/init、/bin/init、/sbin/init、/bin/sh，如果所有的都没找到，内核会抛出kernel panic错误。

（2）nfsaddrs=...

设置从网络启动时NFS的启动地址，以字符串的形式给出。

（3）nfsroot=...

设置网络启动时的NFS根名字，如果该字符串不是以/、,或.开始，默认指向/tftp-boot。

注意：第（2）（3）个参数在无盘站中很有用处。

（4）no387

该选项仅当定义了CONFIG_BUGi386时才能用，某些i387协处理器芯片使用32位的保护模式时会有BUG（漏洞），如一些浮点运算，使用该参数可以让内核忽略387协处理器。

（5）no-hlt

该选项仅当定义了CONFIG_BUGi386时才能用，一些早期的i486DX-100芯片在处理hlt指令后不能可靠地返回操作系统，使用该选项，可以让Linux系统在CPU空闲时不要挂起CPU。

（6）root=...

该参数告诉内核启动时使用哪个设备作为根文件系统，如可以指定根文件为hda8：root=/dev/hda8。

（7）ro和rw

ro参数告诉内核以只读方式加载根文件系统，以便进行文件系统完整性检查，如运行fsck；rw参数告诉内核以读写方式加载根文件系统，这是默认值。

（8）reserve=...

保留端口号。格式为reserve=iobase,extent[,iobase,extent]...，用来保护一定区域的I/O端口不被设备驱动程序自动探测。在某些机器上，自动探测会失败，如设备探测错误或者不想让内核初始化设备时会用到该参数。例如reserve=0x300,32 device=0x300，表示除device=0x300外，所有设备驱动不探测0x300~0x31f范围的I/O端口。

（9）mem=...

限制内核使用的内存数量。早期BIOS设计只能识别64MB以下的内存，如果内存数量大于64MB，可以指明，如果指明的数量超过了实际安装的内存数量，系统会崩溃。例如，mem=0x1000000意味着有16MB内存，如果是mem=0x6000000，就是96MB内存。

注意：很多机型把部分内存作为BIOS的映射，所以在指定内存大小时一定要预留空间。也可以在CPU上使用mem=nopentium关闭4MB的页表，这要在内核配置时声明。

（10）panic=N

默认情况下，内核崩溃——kernel panic后会宕机而不会重启，可以设置宕机多少秒之后重启机器；也可以在/proc/sys/kernel/panic文件中设置。

（11）reboot=[warm|cold][,[bios|hard]]

该选项仅当定义了CONFIG_BUGi386时才能用。2.0.22的内核重启默认为cool reboot，warm reboot更快，使用reboot=bios可以继承BIOS的设置。

内核开发和调试的启动时参数介绍如下。

这些参数主要用在内核的开发和调试上，如果不进行类似的工作，可以跳过本部分内容。

（1）debug

Linux的日志级别比较多（详细信息可以参看Linux/kernel.h），一般日志的守护进程klogd只把比DEBUG级别高的日志写进磁盘；如果使用该选项，klogd也把内核的DEBUG信息写进日志。

（2）profile=N

在做内核开发时，如果想清楚地知道内核在什么地方耗用了多少CPU的时钟周期，可以使用核心的分析函数设置变量prof_shift为非0值，有两种方式可以实现：一种是在编译时指定，另一种就是通过“profile=”来指定。

（3）swap=N1,N2,N3,N4,N5,N6,N7,N8

设置内核交换算法的8个参数：max_page_age、page_advance、page_decline、page_initial_age、age_cluster_fract、age_cluster_min、pageout_weight和bufferout_weight。

（4）buff=N1,N2,N3,N4,N5,N6

设置内核缓冲内存管理的6个参数：max_buff_age、buff_advance、buff_decline、buff_initial_age、bufferout_weight和buffermem_grace。

使用ramdisk的参数如下（仅当内核配置并编译了CONFIG_BLK_DEV_RAM）。

一般来说，使用ramdisk并不是一件好事，系统自己会更加有效地使用可用的内存；但是在启动或者制作启动盘时，使用ramdisk可以很方便地装载软盘等设备上的映像（尤其是安装程序、启动过程中），因为在真正使用物理磁盘之前，必须要加载一些必要的模块，如文件系统模块、scsi驱动等。

早期的ramdisk（如1.3.48的核心）是静态分配的，必须以ramdisk=N来指定ramdisk的大小；现在ramdisk可以动态增加，一共有4个参数，两个布尔型、两个整型。

（1）load_ramdisk=N

如果N=1，加载ramdisk；如果N=0，不加载ramdisk。默认值为0。

（2）prompt_ramdisk=N

如果N=1，提示插入软盘；如果N=0，不提示插入软盘。默认值为1。

（3）ramdisk_size=N或者ramdisk=N

设定ramdisk的最大值为N KB，默认为4096KB。

（4）ramdisk_start=N

设置ramdisk的开始块号为N，当ramdisk有内核的映像文件时需要这个参数。

（5）noinitrd

现在的内核都支持initrd，引导进程首先装载内核和一个初始化的ramdisk，然后内核将initrd转换成普通的ramdisk，也就是读写模式的根文件系统设备。然后Linuxrc执行，然后装载真正的根文件系统，之后ramdisk被卸载，最后执行启动序列，如/sbin/init。选项noinitrd告诉内核不执行上面的步骤，即使内核已经编译了initrd，但不执行相关操作，仅将initrd的数据写到/dev/initrd（一次性的设备）。

7．printk内核打印

Printk与printf相似，一个运行在用户态，另一个则在内核态被人们所熟知。但是根据不同的操作系统也会有不一样的效果，如编写一个hello world内核模块，使用这个函数不一定会将内容显示到终端上，但是一定在内核缓冲区中，可以使用dmesg.查看效果。

8．Linux下显示隐藏文件

在图形命令下，用文件浏览器打开文件夹，按Ctrl+H快捷键可显示隐藏文件和文件夹，再按一次取消显示。

也可以使用命令行显示。打开终端，输入ls -a即可显示所有的文件和文件夹，包括隐藏文件和文件夹。

9．linux cp说明

复制文件和目录是每一个操作系统的基本指令。备份行为基本上是创建文件和目录的副本。在Linux系统下，可以用cp命令来实现。

（1）不带任何参数运行cp

这是cp命令最基础的使用。将myfile.txt从一个位置复制到另一个位置，输入：

$ cp myfile.txt /home/pungki/office

如果没有输入绝对路径，意味着正在当前目录下复制一个文件。在上面的实例中，myfile.txt位于/home/pungki/Documents目录下。如果当前目录正是/home/pungki/Documets，那么没有必要输入/home/pungki/Documents/myfile.txt来复制文件。若/home/pungki/office是一个目录，则文件会复制到里面。

（2）同时复制多个文件

要同时复制多个文件，只需要将多个文件用空格隔开。

$ cp file_1.txt file_2.txt file_3.txt /home/pungki/office

（3）复制一个目录

复制一个目录可通过添加-r或者-R选项来实现。-r或-R选项表明递归操作。无论该目录是否为空目录，这个选项都是必要的。例如：

$ cp -r directory_1 /home/pungki/office

需要注意的是，需要移除在目录名尾部的斜杠，否则会收到类似cp: omitting directory 'directory_1/'的错误信息。如果收到错误信息，则目录不会被复制到目标文件夹。

（4）创建文件的硬链接，而不是复制它们

复制文件意味着必须使用一些存储空间来存储复制的文件。有时候出于某种原因，可能想要创建快捷方式或者链接到文件，而不是复制它们。要做到这一点，可以使用_1选项，如附图1.1所示。

$ cp -l file_4.txt /home/pungki/office/

 [image:]
 附图1.1　创建硬链接

从附图1.1看出，file_4.txt的硬链接已经复制到/home/pungki/office/file_4.txt。标记有同样的inode：835386。需要注意的是，硬链接不能用来创建目录。下面看一个例子。

原目录directory_1的inode值是279230，如附图1.2所示。

 [image:]
 附图1.2　硬链接与目录关系

原文件file_5.txt的inode值是279231，如附图1.3所示。

 [image:]
 附图1.3　硬链接与文件关系

对directory_1执行cp命令，如附图1.4所示。

 [image:]
 附图1.4　复制目录

复制的directory_1副本的inode值是274800，如附图1.5所示。

 [image:]
 附图1.5　查看目录节点值

复制的file_5.txt副本的inode值是279231，与它的原文件一样，如附图1.6所示。

 [image:]
 附图1.6　查看文件节点值

（5）创建文件的符号链接

有一种链接叫作软链接或符号链接，用-s选项来实现。例如：

$ cp -s /home/pungki/Documents/file_6.txt file_6.txt

创建符号链接只能在当前目录下进行。想要创建符号链接/home/pungki/ office/file6.txz，指向原文件/home/pungki/Documents/file6.txt。但是为了创建符号链接，必须再将/home/pungki/office作为目标目录。

现在列出文件详情，会看到/home/pungki/office/file_6.txt指向了原文件。在其文件名后标记了箭头符号，如附图1.7所示。

 [image:]
 附图1.7　创建文件的软链接

（6）不随符号链接复制原文件

不随符号链接复制原文件可以用-P选项来实现。当对符号链接使用cp命令时，它会照原样复制其自身，如附图1.8所示。

$ cp -P file_6.txt ./movie

 [image:]
 附图1.8　不随符号链接复制原文件

cp命令照原样复制file_6.txt自身，文件类型仍然是一个符号链接。

（7）随符号链接复制原文件

-L选项与-P选项相反，如附图1.9所示。

$ cp -L file_6.txt ./movie

使用-L选项，复制的文件将会和file_6.txt原文件一样。这可以从文件大小看出来：复制的文件有50字节，而当file_6.txt作为符号链接时文件大小只有33字节。

 [image:]
 附图1.9　随符号链接复制原文件

（8）文件归档

当复制一个目录时，可用-L-r或者-L-R选项。可以用-a选项来归档文件（-a会保留原文件或目录的属性）。这样会创建文件和目录的准确套录，如果有，也可以包括符号链接，如附图1.10所示。

$ cp -a directory_1/ /home/pungki/office

 [image:]
 附图1.10　归档文件复制

上面的命令会复制一个名为directory-1的目录到-L/home/pungki/office目录下。file-6.txt依然作为符号链接被复制。

（9）显示正在做什么

默认情况下，当复制成功时，仅仅会再次看到命令提示符。如果想了解在复制文件时都发生了什么，可以用-v选项，如附图1.11所示。

$ cp -v *.txt /home/pungki/office

 [image:]
 附图1.11　显示复制流程

当从当前目录下复制所有的.txt文件到/home/pungki/office目录时，-v选项会显示正在操作的过程。这些额外的信息会帮助了解更多复制过程。

（10）当原文件较目标文件新时复制

选择文件较新时复制用-u选项来实现，如附图1.12所示。

$ cp -vu *.txt /home/pungki/office

 [image:]
 附图1.12　选择文件较新时复制

起初看到file_1.txt是0字节大小。然后用vi编辑，加入一些内容并保存。接下来，发现文件大小已经变为36字节。与此同时，在/home/pungki/office目录中，已经包含了所有.txt文件。当用-u选项，结合-v选项来查看具体操作，cp命令会只复制比目标目录下新的文件。因此，只有file_1.txt复制到/home/pungki/office目录下。

（11）使用交互模式

交互模式下会询问是否覆盖目标目录下的文件。使用-i选项启用交互模式，如附图1.13所示。

$ cp -ir directory_1/ /home/pungki/office/

 [image:]
 附图1.13　启用交互模式复制

（12）创建备份文件

当目标目录已经含有同名文件，默认情况下cp命令会覆盖目标目录下的同名文件。使用--backup选项，cp命令会为每一个现有的目标文件做一个备份，如附图1.14所示。../office相对于/home/pungki/office。例如：

$ cp --backup=simple -v *.txt ../office

 [image:]
 附图1.14　复制时创建备份文件

--backup=simple选项会创建一个在文件名末尾用波浪符（~）标记的备份文件。

--backup选项也有一些其他控制，如下所示。

[image:]　none, off：从不备份（即使给出--backup）。

[image:]　numbered, t：用编号备份。

[image:]　existing, nil：如果编号备份存在，则使用编号备份；否则，使用简易备份。

[image:]　simple, never：总是使用简易备份。

（13）只复制文件属性

cp命令也提供--attributes-only选项，该选项只会复制文件名及其属性，不会复制任何数据，如附图1.15所示。

 [image:]
 附图1.15　只复制文件属性

$ cp --attributes-only file_6.txt -v ../office

从附图1.15看出，原文件file_6.txt有50字节大小，使用--attributes-only选项复制的文件只有0字节大小。这是因为文件内容并没有被复制。

（14）强制复制

使用-f选项会强制进行复制操作，如附图1.16所示。如果目标文件不能打开，可以用-f尝试一下：

$ cp -f *.txt -v ../office

 [image:]
 附图1.16　强制复制

（15）在复制之前先删除目标

在复制之前先删除目标可以用--remove-destination选项实现。该选项与上面的-f选项形成对照，如果cp命令在目标目录下发现同名文件，cp命令会先删除目标文件，然后再复制一份新的，如附图1.17所示。

$ cp --remove-destination *.txt -v ../office

 [image:]
 附图1.17　复制之前先删除目标

cp命令是Linux下最基础的命令之一，可以在终端输入man cp或者cp --help来显示更多帮助信息。

10．subsys_initcall说明

请参考网址http://my.oschina.net/u/572632/blog/305492。

11．rm删除目录

 [image:]

12．tar打包

tar命令支持exclude选项，可不对特定的文件和目录打包，这样就能避免.log、.o、.a、.svn等文件被打包进去的烦恼。

假设要将test目录打包，test目录下有log、src、bin、lib等目录，其中log里有很多日志文件，lib里有很多.o和.a文件，这些是不想打包的，可以使用以下命令。

tar -czv --exclude=*.log --exclude=*.o --exclude-vcs -f test.tgz test

（1）用tar打包文件时，对于以“.”开头命名的文件（如.htaccess文件），在打包时加一个-rf参数即可。

tar -rf htaccess.tar .htaccess

（2）直接将隐藏文件所在的目录打包。例如，.htaccess文件在public_html文件夹中，只需要使用以下命令：

tar zcf public_html.tar.gz public_html

（3）也可以用find+tar命令实现：

tar cf file.tar $(find /path（打包文件的路径） -type f)

（4）要打包public_html文件，但不想打包public_html文件中的cache文件，则使用以下命令：

tar cvf public_html --exclude cache

需要注意的是根目录的符号不加tar --exclude home/update/redhat --exclude lib --exclude usr/share。
附录2　VlM图例及常用操作

1．VIM的3种模式

VIM的3种模式及其常用操作如附图2.1所示。

 [image:]
 附图2.1　VIM的3种模式

2．具体的VIM功能键操作

VIM功能键操作如附图2.2所示。

 [image:]
 附图2.2　VIM功能键操作

附录3　BusyBox的下载及配置

制作微型Linux时要借助一个软件——BusyBox，它是一个含有多个最常用Linux命令和工具的软件，如ls、cp、echo、grep、mount等。

程序编译出来之后，要想运行还需要依赖很多库文件，要想移植一个命令，就要把它所依赖的库文件也一并复制过去，这样才能正常运行。前面制作Linux内核时要移植bash，先用ldd去查看它所依赖的库，这是因为它使用动态链接的方式编译的程序。事实上，也完全可以实现将它所依赖的库直接编译进程序，这样可能会使程序的体积变大，但是把它移动到哪里都能直接使用，因为所依赖的库都在里面了。编译BusyBox时，为了尽可能简化移植的过程，可编译成静态的方式，把所依赖的库直接编译进BusyBox。在网址http://www.busybox.net/可以查看BusyBox的版本，这里使用的都是稳定版。

首先要在原有的虚拟机上装一个IDE格式的硬盘，并且分两个区：/dev/hda1和/dev/hda2。还要创建目录/mnt/boot和/mnt/sysroot，然后把/dev/hda1、/dev /hda2分别挂载到/mnt/boot、/mnt/sysroot下面（这个过程在前面制作Linux时有详细介绍，相同的地方是运行到/dev /hda1和/dev/hda2时，在/etc/fstab文件中挂起，可用mount查看是否挂起）。到网上下载稳定版的BusyBox测试使用。

这个过程的演示请参考网址https://www.ibm.com/developerworks/cn/linux/l-busybox/。
附录4　PMON常用命令

龙芯CPU LS1C300A的BIOS是PMON，负责引导系统内核。龙芯指令集是MIPS32。MIPS是Microcomputer without Interlocked Pipeline Stages的缩写，另外一个通常的非正式的说法是Millions of Instructions Per Second。编译工具为mips-elf-gcc。

系统上电启动按空格键后即可进入PMON设置界面。在PMON的命令行上可以输入命令设置启动参数，参数被烧到Flash里面，重新启动后生效。

PMON中内置了很多命令，可参考网址http://www.loongnix.org/index.php/Pmon%E5%B8%B8%E7%94%A8%E5%91%BD%E4%BB%A4。

设置显示分辨率：相应内核启动参数加上video= ls1bfb : 480x272-16@60（以480×272分辨率为例）；如果使用vga接口的显示器，则启动参数为video= ls1bfb :vga80 0x600-16@60（以800×600分辨率为例）。由于开发板没有vga接口，所以不使用该参数。

配置网卡：

ifconfig syn0 10.0.0.2

用ping命令测试网卡：

ping 10.0.0.1

命令行设置从网卡启动：

ifconfig syn0 10.0.0.2
load tftp://10.0.0.1/vmlinux
g console=ttyS2,1152 00 rdinit=/sbin/init initcall_debug=1

命令行烧写NAND Flash（用于更新PMON）：

ifconfig syn0 10.0.0.2
devcp tftp://10.0.0.1/gzom.bin /dev/mtd0

load /dev/mtd0
g console=ttyS2,115200 rdinit=/sbin/init initcall_debug=1

命令行从NAND启动：设置自动启动时，环境变量ifconfig用来每次启动时自动设置网卡地址：

set ifconfig syn0:10.0.0.2:255.255.255.0

设置从不同介质启动内核（假设内核名称为vmlinux）：

 [image:]

设置引导分区：

 [image:]

设置内核启动参数，NAND的第二个分区作为根文件系统：

 [image:]

设置NFS作为根文件系统，NFS服务为192.168.1.1的/mnt/hdb1/nfs，网卡为eth0，ip为192.168.1.89，控制台为tty：

set append "root=/dev/nfs nfsroot=192.168.1.1:/mnt/hdb1/nfs ip=192.168.1.89:::::eth0 console=tty"

设置使用内核启动起来后进入系统中运行的第一个脚本：

 [image:]

设置PMON系统时间：

 [image:]

设置网卡：

 [image:]

用devls列出PMON设备：

devls

设置启动延迟：

 [image:]

以上是一些通用的设置，智龙开发板的默认参数设置如下：

 [image:]

附录5　创建与驱动程序对应的设备节点

设备节点被创建在/dev下，是连接内核与用户层的枢纽，作用是在类UNIX系统中基于文件形式对设备进行访问。在类UNIX系统中，要访问一个硬件设备，一般和访问一个普通文件类似。因此，/dev下的设备节点就作为这样一类特殊文件存在。在驱动程序中同样需要实现各种文件的操作调用，如open、release、read、write、ioctl等。应用程序通过open("/dev/xxx",O_RDWR)来打开设备。驱动程序通过这样的节点向应用程序提供各种服务，如read、write等，即应用程序通过read、write等函数读写设备文件，内核会调用驱动程序里的相应函数实现读写设备的功能。

如果有个设备永远只被一个应用程序使用，直接调用驱动里面的函数而不要节点也是不可以的。因为：（1）在一般情况下，驱动程序里面的函数应用程序是调用不到的，它们被隐藏在VFS（虚拟文件系统）的后面。（2）由于存在VFS，所以Linux下的文件（包括各种设备）都是可以被多个应用程序打开的，从而也可以被多个应用程序使用。（3）对于存在临界资源的设备，一般在驱动程序中需要对临界资源进行保护，从而使得多个应用程序或进程能安全地操作设备。（4）VFS架构的引入，使得在Linux下对设备的访问方法基本相同。例如，向屏幕画图可以用write函数调用，而向串口写入数据也可以用write函数调用。

参考网址http://zhidao.baidu.com/link?url=fXaOk5xopUA47H5AFm8dczMBOk9Qb6_-FK39RTKiFyO 4BO_Ffh1_F_wNGp61_S_ja--Z_dBDAFK5c-Xl0N2_XzIhFU3ufttI081A5N1BO-W。
附录6　Linux文件结构

Linux下的文件结构如附图6.1所示。

 [image:]
 附图6.1　Linux文件结构

常用目录具体介绍如下。

1．/bin目录

/bin目录包含引导启动所需的命令或普通用户可能用到的命令（可能在引导启动后）。这些命令都是二进制文件的可执行程序（bin是binary——二进制的简称），多是系统中重要的系统文件。

2．/sbin目录

/sbin目录类似于/bin，也用于存储二进制文件。其中的大部分文件是系统管理员使用的基本的系统程序，虽然普通用户必要且被允许时可以使用，但一般不给普通用户使用。

3．/etc目录

/etc目录存放着各种系统配置文件，其中包括用户信息文件/ etc /passwd、系统初始化文件/ etc/rc等。Linux正是由于这些文件才得以正常地运行。

4．/root目录

/root目录是超级用户的目录。

5．/lib目录

/lib目录是根文件系统上的程序所需的共享库，存放了根文件系统程序运行所需的共享文件。这些文件包含可被许多程序共享的代码，以避免每个程序都包含相同的子程序的副本，故可以使得可执行文件变得更小，从而节省空间。

6．/lib/modules目录

/lib/modules目录包含系统核心可加载各种模块，尤其是在恢复损坏的系统时重新引导系统所需的模块（如网络和文件系统驱动）。

7．/dev目录

/dev目录用于存放设备文件，即设备驱动程序，用户通过这些文件访问外部设备。例如，用户可以通过访问/dev/mouse来访问鼠标的输入，就像访问其他文件一样。

8．/tmp目录

/tmp目录用于存放程序在运行时产生的信息和数据。但在引导启动后，运行的程序最好使用/var/tmp来代替/tmp，因为前者可能拥有一个更大的磁盘空间。

9．/boot目录

/boot目录用于存放引导加载器（bootstrap loader）使用的文件，核心映像也经常存放在这里，而不放在根目录中。如果有许多核心映像，/boot目录就可能变得很大，这时使用单独的文件系统会更好。

10．/mnt目录

/mnt目录是系统管理员临时安装（mount）文件系统的安装点。程序并不自动支持安装到/mnt。/mnt下面可以分为许多子目录，如/mnt/dosa可能是使用msdos文件系统的软驱，而/mnt/exta可能是使用ext2文件系统的软驱，/mnt/cdrom是光驱等。

11．/proc、/usr、/var和/home目录

其他文件系统的安装点。
附录7　git命令

安装完成后对git进行配置，需要连接github.com的账号，命令如下：

git config --global user.name "XXX"
git config --global user.eamil "邮箱地址"

配置完成后，需要创建验证的公钥（与Windows下相同），每个用户需要独立的公钥来确定。使用命令ssh-keygen -C '你的邮箱地址' -t rsa，会在用户目录~/.ssh/下建立相应的密钥文件：

ssh-keygen -C '你的邮箱地址' -t rsa

之后使用命令cd ~/.ssh进入文件夹，使用gedit id_rsa.pub打开id_rsa.pub文件。文件里面的内容就是ssh公钥，如附图7.1所示。

 [image:]

 [image:]
 附图7.1　虚拟机中ssh公钥

打开github.com，选择SSH and GPG keys选项，Title的内容可随意输入，将复制的ssh公钥粘贴到Key文本框，如附图7.2所示。

 [image:]
 附图7.2　将虚拟机中ssh公钥复制到GitHub中

可以使用命令ssh-T git@github.com来测试是否成功：

root@ubuntu:~/.ssh# ssh -T git@github.com
The authenticity of host 'github.com (192.30.253.113)' can't be established.
RSA key fingerprint is SHA256:nThbg6kXUpJWGl7E1IGOCspRomTxdCARLviKw6E5SY8.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added 'github.com,192.30.253.113' (RSA) to the list of known hosts.
Hi sundm75! You've successfully authenticated, but GitHub does not provide shell access.

参考网址http://blog.csdn.net/five3/article/details/8904635。
附录8　在PMON中使用命令devcp进行坏块处理和支持yaffs2烧写

参考网址http://blog.chinaunix.net/ uid-9672747-id-3030891.html。

1．修改的文件

（1）复制目录文件sys/dev/nand/yaf-nand。

（2）修改conf/files，增加一行：file sys/dev/nand/yaf-nand/nand_util.c nand。

（3）替换pmon/fs/mtd.c文件。

（4）替换pmon/cmds/mycmd.c文件。

（5）增加头文件include/linux/mtd/compat.h。

2．修改说明

由于NAND Flash会有坏块的出现，所以当遇到坏块时要跳过，直到不是坏块为止，对应于前面的（1）~（3）点。

而yaffs2的文件系统镜像跟其他文件系统镜像的不同在于，它每2KB的数据之后会跟着64B的oob区数据。而devcp命令默认每次只会读2KB的数据就写入NAND Flash，这就导致64B的oob区数据也被当成正常数据烧到main区。解决方法是，每次读2KB+64B的数据出来，把2KB的数据写入相应的main区，多出的64B的oob数据也要写到NAND Flash相应的oob区，对应于前面的第（4）点。

3．使用命令

使用命令devcp tftp://192.168.1.xx/yaffs2.img /dev/mtd1 yaf nw，具体请参考广州龙芯用户手册。
附录9　智龙开发板V2电路原理图

 [image:]

附录10　智龙开发板V3电路原理图

 [image:]

附录11　LCD扩展板（外部控制器）原理图

 [image:]

附录12　LCD扩展板（内部控制器）原理图

 [image:]

附录13　机器人控制器电路原理图

 [image:]

附录14　第一届全国大学生嵌入式芯片设计与应用竞赛龙芯平台获奖名单及作品

第一届全国大学生嵌入式芯片设计与应用竞赛龙芯平台获奖名单及作品见附表14.1。

 附表14.1　第一届全国大学生嵌入式芯片设计与应用竞赛龙芯平台获奖名单及作品

 [image:]

附录21.1　基于龙芯2K1000的无人机编队系统

参赛学校：厦门大学　　　　团队名称：云满天厦

指导老师：林和志　　　　　项目成员：章绍晨、石青洲、王志川

作品简介：结合了2K龙芯派以及业界最高精度的UWB超宽带的室内定位技术、微型无人机控制技术及真彩LED灯光控制技术，先在指定的区域摆放好定位所需的六个锚点，实现锚点与锚点间、锚点与飞机间的正常通信，通过TDOA算法来获取飞机的准确位置；再通过龙芯派将事先编写好的飞机阵列表演的轨迹坐标通过天线发送给飞机；飞机解算当前位置坐标信息和龙芯派发来的预期坐标，并通过自身的惯性系统调整飞行方向和姿态，同时结合LED灯光控制系统，实现炫酷的无人机阵列灯光表演。

附录21.2　基于2k龙芯派的智能图像识别系统

参赛学校：东南大学　　　　团队名称：[A]mateur

指导老师：凌明　　　　　　项目成员：鲍威、潘任豪、薛文杰

作品简介：本系统采用国产龙芯派主板作为嵌入式开发平台，并通过Python编写算法及GUI，实现了对文字，物体及人脸的识别功能，外接HDMI显示器作为图形界面的显示。

附录21.3　基于RGBD的自动驾驶机器人

参赛学校：江苏科技大学　　　团队名称：奔跑的小烧杯

指导老师：刘利　　　　　　　项目成员：邵蕃光、卢雪怡、雷松泽

作品简介：本次设计的目的在于制作一个基于RGBD的自动驾驶机器人（Autonomously Driving Vehicle，简称ADV），验证基于龙芯派开发板构造自动驾驶系统的可行性与优势，实现基于RGBD深度视觉与算法的自主路径规划、基于ROS（Robot Operating System）的多设备互联通信和SLAM 3D地图绘制以及底盘控制系统。

附录21.4　基于龙芯2K1000龙芯派的图像识别分类

参赛学校：南京邮电大学　　　团队名称：小咸鱼

指导老师：赵静　　　　　　　项目成员：杨永光、王弦

作品简介：本作品利用轻量化的MobileNet网络模型，实现了在龙芯派平台Loongnix系统下，读取图像、对图像进行识别分类和识别结果显示一系列过程，该应用对各种品质、格式的图像皆有良好的识别效果，理论上可识别一千类对象，且识别时间在4s内。

附录21.5　基于网络的盲人辅助阅读设备

参赛学校：江苏科技大学　　　团队名称：小蜜蜂

指导老师：刘利　　　　　　　项目成员：杨帆

作品简介：本项目通过对盲人教育资源和盲文书籍严重不足的现状，自行研发了一种可以通过网络实现实时翻译并得到盲文制品的阅读辅助设备，力求帮助盲人实现便捷阅读。

附录21.6　自动控制环境监测小车

参赛学校：北京化工大学　　　团队名称：Big_old

指导老师：曹晰　　　　　　　项目成员：王琦刘鑫、吴国良

作品简介：采用龙芯1C机器人控制器作为核心控制器对小车整体进行控制；采用陀螺仪作为小车平衡算法的核心硬件传感器，将小车等效为倒立摆模型，通过陀螺仪采集的xyz三个方向的倾斜角度和测速码盘返回的速度信息，列写微分方程，代入PID算法，为程序外部留出P、I、D三个接口参数，通过对三个参数的不同赋值来调节小车的平衡，对于不同的小车只需要改变参数值就可以完成平衡模块。同时，参考普通小车的避障系统，通过超声波传感器为小车设计了独特的运输模式：跟踪运输和定点运输，分别通过调整超声波传感器的距离信息实现不同环境下的运输。
EPUB/cover.jpg
—HEFE=ESoC

WM M E

TEEHH
bi=ves O]
==z 0]
TEEAM
EEHH
HEEZ

EPUB/cover.xhtml
[image: Cover]

