

 嵌入式Linux编程

 	
 第1章 概述

 	
 1.1 选择合适的操作系统

 	
 1.2 参与者

 	
 1.3 项目生命周期

 	
 1.4 开放源码

 	
 1.5 嵌入式Linux系统硬件

 	
 1.6 本书使用的硬件

 	
 1.7 本书使用的软件

 	
 1.8 总结

 	
 第2章 学习工具链

 	
 2.1 工具链是什么

 	
 2.2 工具链类型：本地工具链和交叉工具链

 	
 2.3 选择C库

 	
 2.4 寻找工具链

 	
 2.5 工具链解析

 	
 2.6 工具链中的其他工具

 	
 2.7 查看C库的组件

 	
 2.8 链接库：静态和动态链接

 	
 2.9 交叉编译艺术

 	
 2.10 交叉编译的问题

 	
 2.11 总结

 	
 第3章 引导加载程序

 	
 3.1 引导加载程序都做了些什么

 	
 3.2 引导序列

 	
 3.3 使用UEFI固件引导

 	
 3.4 从引导加载程序到内核

 	
 3.5 设备树介绍

 	
 3.6 选择引导加载程序

 	
 3.7 U-Boot

 	
 3.8 Barebox

 	
 3.9 总结

 	
 第4章 移植与配置内核

 	
 4.1 内核做了什么

 	
 4.2 选择内核

 	
 4.3 内核构建

 	
 4.4 编译

 	
 4.5 清理内核源

 	
 4.6 启动你的内核

 	
 4.7 将Linux移植到新板上

 	
 4.8 延伸阅读

 	
 4.9 总结

 	
 第5章 构建根文件系统

 	
 5.1 根文件系统是什么

 	
 5.2 根文件系统的程序

 	
 5.3 根文件系统库

 	
 5.4 设备节点

 	
 5.5 proc与sysfs文件系统

 	
 5.6 内核模块

 	
 5.7 把根文件系统转移到目标

 	
 5.8 创建启动内存磁盘

 	
 5.9 init程序

 	
 5.10 配置用户账号

 	
 5.11 启动守护进程

 	
 5.12 管理设备节点的更好方法

 	
 5.13 配置网络

 	
 5.14 借助设备表创建文件系统映像

 	
 5.15 使用NFS挂载根文件系统

 	
 5.16 使用TFTP加载内核

 	
 5.17 延伸阅读

 	
 5.18 总结

 	
 第6章 选择构建系统

 	
 6.1 不再手动创建嵌入式Linux

 	
 6.2 构建系统

 	
 6.3 包格式和包管理器

 	
 6.4 Buildroot

 	
 6.5 Yocto项目

 	
 6.6 延伸阅读

 	
 6.7 总结

 	
 第7章 创建存储策略

 	
 7.1 存储器选择

 	
 7.2 从引导加载程序访问闪存

 	
 7.3 从Linux中访问闪存

 	
 7.4 闪存文件系统

 	
 7.5 NOR和NAND闪存的文件系统

 	
 7.6 托管闪存的文件系统

 	
 7.7 只读压缩文件系统

 	
 7.8 临时文件系统

 	
 7.9 使根文件系统为只读

 	
 7.10 文件系统选择

 	
 7.11 现场更新

 	
 7.12 延伸阅读

 	
 7.13 总结

 	
 第8章 设备驱动程序介绍

 	
 8.1 设备驱动程序的作用

 	
 8.2 字符设备

 	
 8.3 块设备

 	
 8.4 网络设备

 	
 8.5 在运行时寻找驱动程序

 	
 8.6 找到正确的设备驱动程序

 	
 8.7 用户空间中的设备驱动程序

 	
 8.8 编写内核设备驱动程序

 	
 8.9 加载内核模块

 	
 8.10 查找硬件配置

 	
 8.11 延伸阅读

 	
 8.12 总结

 	
 第9章 启动初始化程序

 	
 9.1 在内核启动后

 	
 9.2 初始化程序简介

 	
 9.3 BusyBox init

 	
 9.4 System V init

 	
 9.5 systemd

 	
 9.6 延伸阅读

 	
 9.7 总结

 	
 第10章 学习进程和线程

 	
 10.1 进程还是线程

 	
 10.2 进程

 	
 10.3 线程

 	
 10.4 调度

 	
 10.5 延伸阅读

 	
 10.6 总结

 	
 第11章 内存管理

 	
 11.1 虚拟内存基础

 	
 11.2 内核空间内存布局

 	
 11.3 用户空间内存布局

 	
 11.4 进程内存映射

 	
 11.5 交换

 	
 11.6 用mmap映射内存

 	
 11.7 我的应用程序使用了多少内存

 	
 11.8 每个进程的内存使用情况

 	
 11.9 识别内存泄漏

 	
 11.10 内存耗尽

 	
 11.11 延伸阅读

 	
 11.12 总结

 	
 第12章 使用GDB调试

 	
 12.1 GNU调试器：GDB

 	
 12.2 准备调试

 	
 12.3 使用GDB调试应用程序

 	
 12.4 使用gdbserver远程调试

 	
 12.5 开始调试

 	
 12.6 调试共享库

 	
 12.7 即时调试

 	
 12.8 调试分叉和线程

 	
 12.9 核心文件

 	
 12.10 GDB用户界面

 	
 12.11 调试内核代码

 	
 12.12 延伸阅读

 	
 12.13 总结

 	
 第13章 剖析和跟踪

 	
 13.1 观察者效应

 	
 13.2 开始剖析

 	
 13.3 使用top进行剖析

 	
 13.4 介绍perf

 	
 13.5 其他剖析器：OProfile和gprof

 	
 13.6 跟踪事件

 	
 13.7 介绍Ftrace

 	
 13.8 使用LTTng

 	
 13.9 使用Valgrind剖析应用程序

 	
 13.10 Callgrind

 	
 13.11 Helgrind

 	
 13.12 使用strace显示系统调用

 	
 13.13 总结

 	
 第14章 实时编程

 	
 14.1 什么是实时性

 	
 14.2 确认非确定性的来源

 	
 14.3 理解调度延迟

 	
 14.4 内核抢占

 	
 14.5 实时Linux内核（PREEMPT_RT）

 	
 14.6 线程化中断处理程序

 	
 14.7 可抢占的内核锁

 	
 14.8 获得PREEMPT_RT补丁

 	
 14.9 高精度定时器

 	
 14.10 在实时应用中避免页面错误

 	
 14.11 中断屏蔽

 	
 14.12 测量调度延迟

 	
 14.13 延伸阅读

 	
 14.14 总结

 第1章　概述

如果你即将开始从事你的下一个项目，而这次它将运行在Linux之上。那么在你将手指放在键盘上之前应该思考些什么？让我们首先从高层观察嵌入式Linux并且分析它为何如此流行，开源许可证的含义是什么，以及你需要何种类型的硬件以运行Linux。

Linux最早大约在1999年成为嵌入式设备的一个可行选择。当时，Axis（www.axis.com）发布了它们第一款基于Linux的网络相机，TiVo（www.tivo.com）发布了它们第一款数字摄像机（DVR）。自1999年以来，Linux变得越来越流行，直到今天它已成为许多类型产品所选择的操作系统。就在写作本书的2015年，大约有20亿台设备运行Linux。这包括大量的运行安卓系统（使用Linux内核）的智能手机，以及数以亿计的机顶盒、智能电视和Wi-Fi路由器，更别提各种各样装在更小体积中的设备，如车辆诊断、称重秤、工业设备和医疗监测单元。

那么，为什么你的电视机会运行Linux？乍看起来，电视机的功能很简单：它只是在屏幕上显示视频流。为什么需要一个像Linux这样的复杂的UNIX类操作系统呢？

简单的答案是摩尔定律：戈登摩尔，英特尔公司的联合创始人，他在1965年发现芯片的器件密度大约每两年翻一番。与其适用于台式机、笔记本电脑和服务器一样，这一定律也适用于我们设计的和日常生活中使用的各类设备。大多数嵌入式设备的核心是一个高度集成的芯片，它包含一个或多个处理器内核以及主存、大容量存储器和众多类型外设的接口。通常将其称为片上系统（System on Chip，SoC），它们的复杂性按照摩尔定律增加。一个典型SoC的技术参考手册通常洋洋洒洒上千页。你的电视不同于旧的模拟电视，它并不只是简单地显示视频流。

视频流是数字编码的并且可能被加密，它需要进行处理以创建图像。你的电视已经（或者即将）连接到互联网。它可以从智能手机、平板电脑和家庭媒体服务器接收内容，可以用它来玩游戏，不一而足。你需要一个完整的操作系统来管理这种程度的复杂性。

以下几点促使了Linux的流行：

·Linux具有必要的功能。它具有一个很好的调度程序，一个很好的网络协议栈，支持USB、Wi-Fi、蓝牙以及多种存储介质，很好地支持多媒体设备等等功能。它为所有功能的选项框都打上了钩。

·Linux已经被移植到各种处理器架构，包括一些在SoC设计中很常见的架构，如ARM、MIPS、x86和PowerPC。

·Linux是开源的，你可以自由地获取源代码并修改它以满足需要。你可以为特定SoC板或设备创建板级支持包。你可以增加主源代码中缺失的协议、功能和技术。你可以删除不需要的功能以减少内存和存储需求。Linux是十分灵活的。

·Linux具有活跃的社区，尤其是对于Linux内核来说。每10至12周就有一个新版本的内核，每个版本包含大约来自1000名开发人员提交的代码。活跃的社区意味着Linux是与时俱进的，能够支持当前的硬件、协议和标准。

·开源许可证保证你可以访问源代码。没有与厂商捆绑在一起。

基于这些原因，Linux是复杂设备的理想选择。但是我应该在这里提出一些忠告。复杂性使得Linux更难以理解。再加上快速变化的开发过程和开放源码的分散结构，你必须投入一些精力来学习如何使用它，并在它变化时重新学习。我希望这本书能在该过程中对你有所帮助。
1.1　选择合适的操作系统

Linux适合你的项目吗？Linux能够很好地工作，而目前正在解决的问题证明了Linux的复杂性。它尤其擅长需要连接性、健壮性以及复杂用户界面的场合。但是，它并不能解决所有问题，因此在你投入学习之前需要考虑一些事情：

·你的硬件能胜任工作吗？相比传统的实时操作系统（RTOS）如VxWorks，Linux需要更多的资源。它至少需要一个32位处理器以及更多的内存。在1.5节，我将更详细地介绍相关内容。

·你有正确的技能组合吗？在项目的早期，bring-up板需要关于Linux以及它如何与你的硬件相关联的详细知识。同样，在调试和调优应用程序时，你需要能够解释结果。如果你自身不具备这些技能，你可能需要将某些工作外包出去。当然，阅读本书将对你有所帮助！

·你的系统是实时的吗？只要你留意某些特定细节，Linux可以处理许多实时活动。在第14章中，我将详细介绍相关内容。

仔细考虑这些要点。或许，成功的最佳指导就是寻找运行Linux的类似产品，并且观察它们是如何运行的。然后遵循最佳的实践方式。
1.2　参与者

开放源码软件是从哪里来的？是谁编写的？特别是，它与嵌入式开发的关键组件，如工具链、引导加载程序、内核以及根文件系统中的基本工具等有何联系？

主要的参与者是：

·开源社区。毕竟，这是生成你将要使用软件的引擎。社区是一个开发人员的松散联盟，其中许多人是通过某些方式得到资助的——可能是非盈利组织、学术机构或者商业公司。他们共同工作以推动各种项目的目标。有许多这样的项目，有些项目比较小，而有些项目则比较大。我们在本书中将要使用的一些项目包括：Linux自身、U-Boot、BusyBox、Buildroot、Yocto项目，以及GNU下的许多项目。

·CPU体系结构。有多个组织设计我们所使用的CPU。这里重要的组织包括ARM/Linaro（基于ARM的SoC）、英特尔（x86和x86_64）、Imagination Technologies（MIPS），以及Freescale/IBM（PowerPC），它们实现基本CPU体系结构，或者至少对其支持具有重要影响。

·SoC厂商（Atmel、Broadcom、Freescale、Intel、Qualcomm、TI以及许多其他厂商）。他们从CPU体系结构中获得并修改内核和工具链以支持他们的芯片。他们还创建参考板：下一级别厂商可以使用该设计创建开发板和工作产品。

·板供应商和OEM。这些人从SoC厂商获得参考板并且将它们构造成特定产品，例如机顶盒、相机或者创建更通用的开发板，例如Avantech和Kontron所提供的产品。一个重要的种类是廉价开发板，例如BeagleBoard/BeagleBone和Raspberry Pi，它们已经创建了自己的包括软件和硬件插件的生态系统。

这些形成一个链条，而你的项目通常是在链条的尾部，这意味着你不能自由地选择组件。你不能简单地从kernel.org下载最新的内核，除了一些极少数的情况，因为它并不支持你正在使用的芯片或板。

这是嵌入式开发领域长期存在的一个问题。理想情况下，在链条中每个环节的开发人员都会向上游推送他们改变的内容，但是他们并不这样做。因此，发现一个内核有众多的补丁没有合并到上游也并非不寻常。而且SoC厂商往往只是为它们的最新芯片积极地开发开源组件，这意味着对于任何超过几年的旧芯片的支持将被冻结，得不到任何更新。

现实是，大多数嵌入式设计都是基于软件的旧版本。它们没有获得安全修复、性能增强或者较新版本中的特性。诸如Heartbleed（OpenSSL库中的缺陷）和Shellshock（bash shell中的缺陷）等问题继续存在而没有得到修复。在本章后面的部分将更多地讨论安全主题。

对于这个问题，你能做些什么呢？首先，询问你的供应商：他们的更新策略是什么？他们多长时间更新一次内核版本？当前的内核版本是什么？在这之前的版本是什么？他们向上游合并变化的策略是什么？一些厂商正在以这种方式取得巨大进步，你应该更喜欢他们的芯片。

其次，你可以采取措施使自己更加自给自足。本书的目的是以更详细的方式解释依赖关系，同时说明在哪些方面可以帮助自己。不要只是拿着SoC或者板厂商提供给你的包并且盲目地使用它，而不考虑其他替代方案。
1.3　项目生命周期

本书分为四个部分，分别反映一个项目的不同阶段。这些阶段不一定是按次序的。它们通常是重叠的，并且你可能需要跳转回去以重新审视以前做过的事情。然而，它们代表的是项目进展过程中开发人员的关注点。

·嵌入式Linux基本要素（第1～6章）将有助于你建立开发环境，为以后的阶段创建一个工作平台。它通常被称为“板bring-up板”阶段。

·系统架构和设计选择（第7～9章）将有助于你考查一些你不得不做出的设计选择，如关于程序和数据存储，如何在内核设备驱动程序和应用程序之间划分工作，以及如何对系统进行初始化。

·编写嵌入式应用程序（第10章和第11章）说明如何有效利用Linux进程和线程模型，以及如何在资源受限的设备中管理内存。

·调试和优化性能（第12章和第13章）描述如何在应用程序和内核中跟踪、剖析以及调试你的代码。

关于第五部分实时性（第14章），在某种程度上是一个单独的部分，因为它是一个很小但是很重要的嵌入式系统类型，实时行为的设计对于四个主要阶段的每个阶段都有影响。

嵌入式操作系统的四个要素

每个项目都是从获取、定制和部署这四个要素开始的：工具链、引导加载程序、内核和根文件系统。这是本书第一部分的主题：

·工具链：包括编译器和其他工具，为你的目标设备创建代码。其他一切都取决于工具链。

·引导加载程序：对于初始化板以及装载和引导Linux内核来说，引导加载程序是必需的。

·内核：这是系统的核心，用于管理系统资源以及与硬件交互。

·根文件系统：包含若干库和程序，一旦内核完成初始化将运行这些库和程序。

当然，还有第五个要素，这里没有提到。它是专门针对于你的嵌入式应用的程序集合，使得设备做任何它应该做的事情，包括货物称重、显示电影、控制机器人或者驾驶无人机。

通常，当你购买SoC或开发板时，将会以包的形式向你提供一些或所有这些要素。但是，由于前面章节提到的原因，对你来说它们可能不是最好的选择。我将在前6章提供背景知识让你能够做出正确的选择，并且介绍两个用于自动化整个过程的工具：Buildroot和Yocto项目。
1.4　开放源码

嵌入式Linux的组件是开放源码的，因此现在是很好的时机来考虑这意味着什么，为什么开放源码的工作如此有效，以及它如何影响你将要基于开放源码创建的、通常是专有的嵌入式设备。

许可证

当谈到开放源码时，“免费”（free）一词经常被使用。初学者通常以为这意味着不用支付，开源软件许可证确实能够保证你可以免费的使用软件开发和部署系统。然而，这里更重要的含义是“自由”（freedom），因为你可以任意获得源代码，以认为合适的方式修改它并且重新部署到其他系统中。这些许可证给予你这些权利。相比之下，共享软件许可证允许你免费复制二进制文件但是不提供源代码，或者其他许可证允许你在某些特定条件下免费使用软件，例如个人使用而不是商业用途。这些都不是开放源码。

我将提供以下建议帮助你理解与开源软件许可证一起工作的含义，但是我想指出的是，我是一名工程师而不是律师。以下是我对许可证的理解和解释它们的方式。

开放源码许可证大致可分为两类：自由软件基金会的GPL（General Public License）和来自BSD（Berkeley Software Distribution）的许可证，Apache基金会以及其他。

本质上，许可证表示你可以修改源代码并且可以在你自己选择的系统中使用它，只要你不要以任何方式修改许可证条款。换句话说，只要遵循这一条限制，你可以用它做任何你想要做的事情，包括将它构造成为可能的专有系统。

GPL许可证是类似的，但是它有条款强制你将获取和修改软件的权利传递给你的最终用户。换句话说，要共享你的源代码。一种选择是通过将它放在公共服务器上，使得它完全公开。另一种方式是，只有在需要时才通过书面提供方式向你的最终用户提供代码。GPL进一步要求你不能将GPL代码混合进专有程序中。对于任何这样做的企图将会使GPL适用于整个软件。换句话说，你不能在一个程序中结合GPL和专有代码。

那么，关于软件库怎么样呢？如果它们是通过GPL许可的，任何与之链接的程序也会是GPL的。然而，大多数库都是由LGPL（Lesser General Public License）许可的。如果是那样的话，你将可以从专有程序链接它们。

前面的所有描述具体涉及GPL v2和LGPL v2.1。下面我要说的是最新版本的GPL v3和LGPL v3。这版许可证是有争议的，并且我承认自己并不完全理解其含义。然而，我的意图是确保在任何系统中的GPL v3和LGPL v3组件可以被最终用户替换掉，对于每个人来说这是开源软件的精神。但是它确实会引发某些问题。一些Linux设备根据订阅级别或者其他限制获取信息，而替换软件的关键部分可能造成损害。机顶盒就属于这种类型。这里还有安全方面的问题。如果设备的拥有者可以访问代码，那么一个不受欢迎的入侵者也可能这么做。通常的防御措施是由厂商作为权威机构对内核映像签名，从而禁止未授权的更新。如果我对自己的设备进行修改，这是否侵权呢？对此看法不一。

TiVo机顶盒是这场争论的重要组成部分。它使用在GPL v2许可下的Linux内核。TiVo发布其内核版本的源代码，因此符合该许可证。TiVo还提供一个引导加载程序，该程序只能装载由他们签名的内核二进制文件。因此，你可以为TiVo机顶盒构造一个已修改的内核，但是不能将其装载到硬件上。自由软件基金会（FSF）认为这不符合开源软件的精神，并且将该过程称为“tivoization”。GPL v3和LGPL v3在书面中明确阻止这种情况发生。一些项目，特别是Linux内核一直不愿意采取第三版许可证，就是因为它对于设备制造商的限制。
1.5　嵌入式Linux系统硬件

如果你正在为一个嵌入式Linux项目设计或选择硬件，那么应该注意些什么呢？

第一，需要一个由内核支持的CPU体系架构，除非你自己打算增加一个新的架构！查看Linux 4.1的源代码，那里有30个架构，每个架构由arch/目录中的一个子目录表示。它们都是32位或64位架构，大多数具有一个内存管理单元（MMU），但是一些没有。嵌入式设备中最常见的是ARM、MIPS、PowerPC和X86，每个都有32位和64位的变体，并且它们都有内存管理单元。

本书的大部分内容是针对这类处理器编写的。还有另外一组处理器没有MMU，它们运行Linux的一个子集，称为微控制器Linux或者uClinux。这些处理器架构包括ARC、Blackfin、Microblaze和Nios。我将会不时地提到uClinux，但是我不会详述细节，因为这是一个相当专业的话题。

第二，你将需要合理的RAM空间。16 MB是一个比较合适的最小大小，尽管运行Linux很可能就会使用其一半的空间。如果你不怕麻烦，准备优化系统的每个部分，那么利用4 MB运行Linux也是可能的。RAM的大小甚至有可能降得更低，但是达到某一个点它就不再是Linux了。

第三，非易失性存储，通常是闪存。对于简单的设备如网络摄像头或者简单路由器，8 MB就足够了。和内存一样，如果你希望的话，可以用更少的存储创建一个可工作的Linux系统，但是你降得越低，就会变得越困难。Linux广泛支持各种闪存存储设备，包括raw NOR和NAND闪存芯片，以及各种形式的托管闪存，如SD卡、eMMC芯片、USB闪存等等。

第四，调试端口是非常有用的，最常用的是RS-232串行端口。它不需要安装在生产板上，但是能够使bring-up板、调试和开发更加容易。

第五，从头开始时需要一些加载软件的方法。几年前，板上已经安装了JTAG接口用于该目的，但是现在SoC具有直接从可移动介质特别是SD、Micro SD卡或者诸如RS-232或USB串行接口加载启动代码的能力。

除了这些基础事项之外，还有一些特定的硬件接口可以帮助你的设备完成工作。主流Linux为成千上万个不同设备提供开源驱动程序，而在设计中可能会有包括来自SoC厂商的（不同质量的）驱动程序以及OEM提供的第三方芯片的驱动程序，但是请记住我在前文中做出的评论以及一些厂商的能力。作为一名嵌入式设备的开发人员，你将发现在评价和适配第三方代码上会花费很多时间，或者联系厂商让他们来处理。不论如何，你将需要为那些对于设备来说是唯一的接口编写设备支持代码，或者找人为你做这项工作。
1.6　本书使用的硬件

本书中的工作实例会尽量通用，但是为了使得它们相互关联并且易于学习，不得不选择一个特定设备作为例子。这里使用两个样例设备：BeagleBone Black和QEMU。前者是一个广泛使用的廉价开发板，可用于正式的嵌入式硬件。后者是一个机器模拟器，可用来创建嵌入式系统特有的范围广泛的系统。完全使用QEMU是很有吸引力的，但是正如所有的模拟器，它和真实的东西并不完全相同。使用BeagleBone，你可以在和真实的硬件交互中获得满足并且能够看到真实的LED闪光。选择一个比BeagleBone Black更时新的板也是很有吸引力的，因为BeagleBone Black毕竟已经有好几年了，但是我相信它的流行给它提供了一定的生命力，这意味着它还将继续使用若干年。

在任何情况下，我鼓励你使用这两个平台尝试尽可能多的实例，或者你可能获得的任何嵌入式硬件。

1.6.1　BeagleBone Black

BeagleBone和后来的BeagleBone Black是Circuitco LLC公司生产的具有开放硬件设计的开发板，它的尺寸非常小，只有信用卡大小。主要信息库见网站：www.beagleboard.org。其规格的要点是：

·TI AM335x 1GHz ARM Cortex-A8 Sitara SoC

·512 MB DDR3 RAM

·2或4 GB 8位eMMC板载闪存

·调试和开发用串行端口

·MicroSD连接器，可用作引导设备

·Mini USB OTG客户/主机端口，也可用于开发板供电

·全尺寸的USB 2.0主机端口

·10/100以太网端口

·视频和音频输出用HDMI

此外，板上还有两个46引脚的扩展头，因为有各种各样的子板，称为配套板（cape），它们能让你调整开发板来完成许多不同的事情。然而，在本书的实例中，你不需要安装任何配套板。

除了板本身，你还需要：

·用于供电的Mini USB至全尺寸USB的电缆（由板提供），除非你具有该列表的最后一项。

·可以与板提供的6针3.3伏TTL电平信号接口对接的RS-232电缆。Beagleboard网站提供兼容电缆的链接。

·MicroSD卡以及从你的开发PC或笔记本电脑写至该卡的手段，需要用它将软件加载至板上。

·以太网电缆，因为有些例子需要网络连接。

·可选的，但是推荐提供一个5V电源，能够传送1A或更大的电流。

1.6.2　QEMU

QEMU是一个机器模拟器。它会有许多不同的风格，其中每个都可以模拟一个处理器体系架构，以及若干使用该架构的板。以下是一些实例：

·qemu-system-arm：ARM

·qemu-system-mips：MIPS

·qemu-system-ppc：PowerPC

·qemu-system-x86：x86和x86_64

对于每个体系架构，QEMU模拟一系列硬件，可以使用-machine help选项查看。每个机器模拟通常在板上找到的大多数硬件。存在将硬件链接至本地资源的选项，例如使用本地文件来模拟硬盘驱动器。下面是一个具体实例：

 [image:]

在上面的命令行中，使用的选项是：

·-machine vexpress-a9：创建一个具有Cortex A-9处理器的ARM Versatile Express开发板仿真

·-m 256M：组装256 MB内存

·-drive file=rootfs.ext4，sd：连接sd接口至本地文件rootfs.ext4（包含一个文件系统映像）

·-kernel zImage：从名为zImage的本地文件加载Linux内核

·-dtb vexpress-v2p-ca9.dtb：从本地文件vexpress-v2p-ca9.dtb加载设备树

·-append"..."：提供该字符串作为内核命令行

·-serial stdio：连接串口至已启动QEMU的终端，这样你就可以通过串行控制台登录到模拟的机器上

·-net nic，model=lan9118：创建一个网络接口

·-net tap，ifname=tap0：连接网络接口至虚拟网络接口tap0

为了配置网络的主机端，你需要来自用户模式Linux（UML）项目的tunctl命令，在Debian和Ubuntu中，该软件包命名为uml-utilities。通过使用以下命令，你可以使用它创建一个虚拟网络：

 [image:]

该命令创建一个名为tap0的网络接口，它连接至模拟的QEMU机器中的网络控制器。配置tap0的方式与任何其他接口完全相同。

所有这些选项将在下面的章节中进行详细描述。在大多数例子中，我将使用Versatile Express，但是使用不同的机器或体系架构应该也很容易。
1.7　本书使用的软件

对于开发工具以及目标操作系统和应用程序，我只使用开源软件。我假设你在开发的系统中使用Linux。我使用Ubuntu 14.04测试了所有主机命令，因此稍微偏向该特定版本，但是任何现代Linux发行版本都应该可以正常工作。
1.8　总结

遵循摩尔定律设定的轨迹，嵌入式硬件将继续变得更为复杂。Linux具有高效使用硬件的能力和灵活性。

在创建一个工作产品时，Linux只是你所需要的众多开源软件中的一个组件。代码免费自由可用的事实，意味着位于许多层次的人员和组织都可以做出贡献。然而，由于嵌入式平台的种类繁杂以及快速发展，导致隔离的软件池并没有实现应有的充分共享。在许多情况下，你会变得依赖于该软件，特别是你的SoC或板厂商提供的Linux内核，其次是工具链。一些SoC制造商在将它们的变化推送至上游方面做得越来越好，并且维护这些变化也变得越来越容易。

幸运的是，有一些功能强大的工具可以帮助创建和维护设备软件。例如，Buildroot对于小型系统来说十分理想，而Yocto项目主要用于较大的系统。

在描述这些构建工具之前，我将描述嵌入式Linux的四个要素，你可以将其用于所有已创建的嵌入式Linux项目中。下一章是关于这些要素中的第一个，即工具链，你需要它为目标平台编译代码。
第2章　学习工具链

工具链是嵌入式Linux的第一个要素，也是你的项目起点。你在该早期阶段所做的选择将对最终成果产生深远的影响。通过使用处理器的优化指令集、浮点单元（如果有的话）等，你的工具链应该能够高效使用硬件。它应该支持你所需要的语言，并且具有POSIX和其他系统接口的可靠实现。不仅如此，它还应该在发现安全缺陷或错误时及时更新。最后，它应该在整个项目中保持不变。换句话说，一旦你选择了工具链，坚持使用它就显得非常重要。在项目期间，以不一致的方式改变编译器和开发库将会导致细微的错误。

获取工具链就像下载安装包一样简单。但是工具链本身十分复杂，在本章中我会将这一点细致展示给你。
2.1　工具链是什么

工具链是一个工具集，用于将源代码编译成可以在你的目标设备中运行的可执行文件，主要包括编译器、链接器和运行时库。最初，你需要一个工具链构造嵌入式系统的其他三个要素：引导程序、内核和根文件系统。它能够编译以汇编语言、C或C++语言编写的代码，因为这些都是在基础的开源软件包中使用的语言。

通常，Linux工具链是基于GNU项目的组件（http://www.gnu.org），在写作本书的时候大多数情况下仍然如此。然而，在过去的几年中，Clang编译器以及相关的LLVM项目（http://llvm.org）已经取得了重要进展，并且它现在成为GNU工具链的一个可行的替代方案。LLVM和基于GNU的工具链之间的一个主要区别在于授权许可，LLVM具有BSD许可证，而GNU则是GPL许可证。Clang也有一些技术上的优势，例如更快的编译和更好的诊断，但是GNU GCC在已有代码库的兼容性以及体系架构和操作系统的广泛支持方面具有优势。事实上，还有一些Clang无法取代GNU C编译器的领域，特别是当它用来编译一个主流Linux内核时。很有可能的情况是，在未来一年左右的时间里，Clang将能够编译嵌入式Linux需要的所有组件，从而成为GNU的一个替代选择。关于如何使用Clang进行交叉编译的详细描述，请参见http://clang.llvm.org/docs/CrossCompilation.html。如果你希望将它作为嵌入式Linux构造系统的一部分，那么EmbToolkit是一个很好的选择，EmbToolkit（https://www.embtoolkit.org）完全支持GNU和LLVM/Clang工具链，并且许多人正在通过Buildroot和Yocto Project使用Clang。第6章将讨论嵌入式构造系统。同时，本章重点介绍GNU工具链，因为它是目前来说唯一完整的选项。

一个标准的GNU工具链包括以下三个组件：

·Binutils：二进制工具集合，包括汇编器和链接器ld。可通过以下链接获取：http：//www.gnu.org/software/binutils/。

·GNU编译器集合（GCC）：主要是C和其他语言的编译器，取决于GCC的版本，包括C++、Objective-C、Objective-C++、Java、Fortran、Ada和Go。它们都使用一个公共的后端生成汇编代码，并且提交给GNU汇编器。可通过以下链接获取：http://gcc.gnu.org/。

·C库：基于POSIX规范的标准化API，这是从应用程序到操作系统内核的主要接口。除此之外，还有几个库需要考虑，这部分内容后面会讲到。

除了这些，你还需要一份Linux内核头文件的副本，其中包含了直接访问内核时所需的定义和常量。现在，你不仅需要它们才能够编译C库，而且以后在编写与特定Linux设备交互的程序或编译相关的库时还需要它们，例如通过Linux帧缓冲驱动程序显示图形。这不仅仅是简单地在内核源代码的include目录中创建一个头文件副本。这些头文件仅适用于内核，其包括的定义如果以原始状态用于编译正常的Linux应用程序将会导致冲突。

你将需要生成一个已净化的内核头文件集合，我将在第5章中详细阐述。

通常，内核头文件是否从你将要使用的Linux确切版本中生成并不重要。因为内核接口总是向后兼容的，唯一必要的是，内核头文件的版本与你在目标中使用的版本相同或者更老。

大多数人认为GNU调试器GDB也是工具链的一部分，通常它是在这个时候构建的。我将在第12章中讨论GDB。
2.2　工具链类型：本地工具链和交叉工具链

对于我们而言，有两种类型的工具链：

·本地：该工具链运行在相同类型的系统上，有时就和它生成的程序运行在同一个系统上。这对于台式机和服务器来说是常见的情况，而在特定类型的嵌入式设备上这种情况也变得越来越普遍。例如，运行ARM Debian的Raspberry Pi具有自托管的本地编译器。

·交叉：该工具链运行在与目标不同类型的系统上，允许在快速的桌面PC上完成开发，然后加载到嵌入式目标上用于测试。

几乎所有的嵌入式Linux开发都使用交叉开发工具链，部分原因是大多数嵌入式设备缺乏计算能力、内存和存储，并不适合于程序开发，更多的是因为它能保持主机和目标环境分离。当主机和目标使用相同的体系架构如X86_64时，后面一点尤为重要。在这种情况下，在主机上本地编译并且简单地复制二进制文件到目标是很有吸引力的。这在一定程度上是有效果的，但是主机发行版接收更新比目标更为频繁，导致不同的工程师在为目标构造代码时，将会具有稍微不同的主机开发库版本，从而你会违反工具链应该在整个项目生命周期中保持不变的原则。如果能够确保主机和目标构建环境相互保持一致，该方法也能够正常工作，但是更好的方法是保持主机和目标分离，而交叉工具链就提供了这样一种方式。

然而，也有相反的观点支持本地开发。交叉开发需要为目标交叉编译所有的库和工具，因而造成了负担。稍后在本章我们将看到，交叉编译并不总是简单的，因为大多数开源包都不是设计成这种构建方式。集成构建工具，包括Buildroot和Yocto Project，通过封装规则来交叉编译在典型嵌入式系统中需要的一系列包，从而提供帮助，但是如果你希望编译大量额外的包，那么最好还是本地编译它们。例如，要想为Debian发行版提供Raspberry Pi或者BeagleBone，使用交叉编译器是不可能的，它们必须通过本地编译。从零开始创建一个本地编译环境并不容易，包括首先创建一个交叉编译器，从而在目标上引导一个本地构建环境，然后使用它构建包。你将需要为配置良好的目标板提供构建环境，或者可以使用QEMU模拟目标。如果你想进一步探讨该问题，你可能希望查看Scratchbox项目，现在它发展至第二版Scratchbox2（https://maemo.gitorious.org/scratchbox2）。它是由诺基亚开发的，用于构建其Maemo Linux操作系统，如今在Mer项目、Tizen项目以及其他项目中使用。

与此同时，在本章中我将重点放在更为主流的交叉编译器环境，它相对容易安装和管理。

CPU体系架构

工具链必须根据目标CPU的功能进行构建，主要包括：

·CPU体系架构：arm、mips、x86_64等。

·高或低字节序操作：有些CPU可以在两种模式下运行，但是每种模式下的机器代码是不同的。

·浮点支持：并非所有版本的嵌入式处理器都实现硬件浮点单元，在这种情况下，工具链可以通过调用软件浮点库来代替硬件浮点单元。

·应用二进制接口（ABI）：用于在函数调用之间传递参数的调用约定。

对于许多体系架构来说，ABI在整个处理器家族中是保持不变的。一个显著的例外是ARM。在2000年后期，ARM体系架构转换到扩展应用二进制接口（EABI），导致以前的ABI被命名为旧的应用二进制接口（OABI）。虽然OABI已经过时，但你可以继续查看EABI的参考资料。从那时起，根据浮点参数传递的方式，EABI已经分裂为两种。最初的EABI使用通用（整数）寄存器，而新的EABIHF使用浮点寄存器。在浮点操作方面，EABIHF明显更快，因为它无需在整数和浮点寄存器之间复制数据，但是它不兼容那些没有浮点单元的CPU。那么，你只能在两个互不兼容的ABI之间选择：既然不能混合和匹配两者，你不得不在这个阶段做出决定。

GNU使用一个工具前缀来识别可能产生的不同组合，包括由三个或四个组件构成的多元组，组件名之间通过折线分开，描述如下：

·CPU：CPU体系架构，如arm、mips或x86_64。如果CPU具有两种字节序模式，它们可以通过增加el（代表低字节序）或者eb（代表高字节序）来加以区别。比较好的例子是，低字节序MIPS表示为mipsel，而高字节序ARM表示为armeb。

·厂商：标识工具链的提供商。例子包括buildroot、poky或是未知。有时它完全被忽略。

·内核：对于我们来说，它永远是“Linux”。

·操作系统：用户空间组件的名称，可能是gnu或者uclibcgnu。ABI也可能附加在这里，因此，对于ARM工具链，你可能看到gnueabi、gnueabihf、uclibcgnueabi或uclibcgnueabihf。

通过使用gcc的-dumpmachine选项，你可以找到在构建工具链时使用的多元组。例如，你可以在主机计算机上看到以下信息：

 [image:]

当本地编译器安装在机器上时，对于创建的到工具链中每个工具的链接，没有前缀是很正常的。因此，你可以通过gcc命令调用编译器。

下面是使用交叉编译器的一个例子：

 [image:]

2.3　选择C库

UNIX操作系统的编程接口是用C语言定义的，现在它是通过POSIX标准定义的。该接口是用C库实现的，对于Linux程序来说，它是到内核的入口，如图2-1所示。即使你用其他语言编写程序，可能是Java或者Python，相应的时支持库最终将会调用C库：

每当C库需要内核的服务时，它就会使用内核system call接口在用户空间和内核空间切换。直接通过内核系统调用，是有可能绕过C库的，但这非常麻烦并且几乎从不需要这样做。

 [image:]

图2-1　C库是应用程序到内核的入口

有几个C库可供选择。主要的选项如下：

·glibc：可通过以下网站获取：http://www.gnu.org/software/libc。这是标准GNU C库。它体积较大，并且直到现在仍然不容易配置，但它是POSIX API的最完整实现。

·eglibc：可通过以下网站获取：http://www.eglibc.org/home。这是嵌入式的GLIBC。它是glibc的一系列补丁，增加配置选项以及glibc没有覆盖的体系架构支持（特别是PowerPC e500）。eglibc和glibc之间的划分总是人为的，幸运的是，自从2.20版本，eglibc的代码库已经合并回glibc中，留给我们一个改进的库。eglibc已经不再维护。

·uClibc：可通过以下网站获取：http://www.uclibc.org。字母‘u’实际上是希腊语‘mu’字符，说明这是微控制器C库。它首先被开发用来与uClinux（针对没有内存管理单元的CPU提供的Linux）一起工作，但是后来已被调整为与完整的Linux一起使用。通过一个配置实用程序，可以微调它的特性以满足需要。即使完整配置的uClibc也小于glibc，但它并不作为POSIX标准的一个完整实现。

·musl libc：可通过以下网站获取：http://www.musl-libc.org。这是一个用于嵌入式系统C库的新设计。

那么，应该选择哪一个呢？我的建议是，只有在使用uClinux或者存储或内存空间非常有限的情况下才使用uClibc，这种情况下小尺寸将会是一种优势。否则，我更愿意使用最新的glibc或eglibc。我并没有musl libc的使用经验，但是如果你发现glibc/eglibc并不合适的话，无论如何要去试一试它。该过程概括为如图2-2所示：

 [image:]

图2-2　选择一个C库
2.4　寻找工具链

对于交叉开发工具链，你有三个选择：寻找一个已构建好的能够满足需求的工具链；使用一个由嵌入式构建工具生成的工具链，在第6章中将介绍这一点；或者按照本章后面的描述创建属于你自己的工具链。

预先构建的交叉工具链是一个有吸引力的选项，你只需要下载和安装它，但是你被局限于特定的工具链配置，并且依赖于向你提供该工具链的人员或者组织。最有可能是以下一种情况：

·SoC或开发板供应商。大多数厂商提供一个Linux工具链。

·专门为指定体系架构提供系统级支持的联盟。例如，Linaro（https://www.linaro.org）为ARM体系架构提供预先构建的工具链。

·第三方Linux工具厂商，例如Mentor Graphics、TimeSys或者MontaVista。

·用于Linux桌面发行版的交叉工具包。例如，基于Debian的发行版提供针对ARM、MIPS和PowerPC目标的交叉编译包。

·由某个集成的嵌入式构建工具生成的二进制SDK。Yocto Project在http://autobuilder.yoctoproject.org/pub/releases/CURRENT/toolchain提供了一些实例，另外还有位于ftp://ftp.denx.de/pub/eldk/的Denx嵌入式Linux开发工具包。

·来自论坛的链接，内容有限。

在所有这些情况中，你必须判断已提供的预先构建工具链是否符合需求。它使用的是你喜欢的C库吗？供应商向你提供安全补丁和错误更新吗？牢记我在第1章中关于支持和更新的说明。如果你对以上问题的答案都是否，那么应该考虑创建你自己的工具链。

不幸的是，构建工具链不是简单的任务。如果你确实希望自己做全部的事情，可以查看“从零开始交叉编译Linux”（http://trac.clfs.org）。在那里，你可以找到关于如何创建每个组件的步骤说明。

一个更简单的替代方法是使用crosstool-NG，它将该过程封装为一组脚本，并且具有一个菜单驱动的前端。但是，你仍然需要相当程度的知识以做出正确的选择。

使用构建系统仍然是更为简单的方式，例如Buildroot或者Yocto Project，因为它们将生成工具链作为构建过程的一部分。正如我在第6章中所展示的那样，这是我的首选解决方案。

2.4.1　使用crosstool-NG构建工具链

我将要开始介绍crosstool-NG，它会让你理解创建（多个不同类型）工具链的过程。

几年前，Dan Kegel编写了一组脚本和makefile文件，用于生成交叉开发工具链，并且称其为crosstool（kegel.com/crosstool）。2007年，Yann E.Morin以此为基础创建了下一代的crosstool，即crosstool-NG（crosstool-ng.org）。这是到目前为止最为便利的从源代码创建独立的交叉工具链的方法。

2.4.2　安装crosstool-NG

在开始之前，需要在你的主机PC上安装一个有效的本地工具链和构建工具。为了在Ubuntu主机上使用crosstool-NG，你将需要使用下列命令安装包：

 [image:]

其次，从下载区http://crosstool-ng.org/download/crosstool-ng获取croostool-NG的当前版本。在我的例子中，我使用的是1.20.0版本。提取它并创建前端菜单系统，命令显示如下：

 [image:]

--enable-local选项意味着程序将被安装在当前目录，这将避免需要root权限，而如果你将它安装在默认位置/usr/local/bin将需要root权限。从当前目录键入./ct-ng以启动crosstool菜单。

2.4.3　选择工具链

Crosstool-NG可以构建许多不同的工具链组合。为了使初始配置更容易，它带有一组样例，其中涵盖了许多常见用例。使用./ct-ng list-samples生成该列表。

举例来说，假设你的目标是具有ARM Cortex A8核心和VFPv3浮点单元的BeagleBone Black，并且希望使用glibc的当前版本。最接近的样例是arm-cortex_a8-linux-gnueabi。通过在名称前面添加前缀show-，你可以查看到默认的配置：

 [image:]

为了选择其作为目标配置，键入：

 [image:]

此时，通过使用配置菜单命令menuconffig，可以检查和修改配置：

 [image:]

菜单系统基于Linux内核menuconffig，因此对于任何配置过内核的人来说，其用户界面的导航是非常熟悉的。如果不熟悉的话，请参考第4章获得关于menuconffig的描述。

此时，我建议你修改以下一些配置：

·在Paths and misc选项中，禁用Render the toolchain read-only（CT_INSTALL_DIR_RO）

·在Target options|Floating point中，选择hardware（FPU）（CT_ARCH_FLOAT_HW）

·在C-library|extra config中，增加--enable-obsolete-rpc（CT_LIBC_GLIBC_EXTRA_CONfig_ARRAY）

如果你希望在工具链安装完成后增加库到工具链中，第一个配置是必需的，我将在本章的后面描述。第二个配置是为一个具有硬件浮点单元的处理器选择最优浮点实现。最后一个配置强制生成带有一个过时头文件rpc.h的工具链，该头文件仍然被多个包所使用（注意，只有在你选择glibc时，才会出现这个问题）。括号中的名称是存储在配置文件中的配置标签。当你完成这些修改时，退出menuconffig，并且像往常一样保存配置。

配置数据保存在一个名为.conffig的文件中。通过查看该文件，你将看到第一行文本显示“自动生成的make配置：不要编辑”，通常这是好的建议，但是我建议你在这种情况下忽略它。你还记得从有关工具链ABI的讨论中得知ARM有两个变种吗？其中一个在整数寄存器中传递浮点参数，而另一个使用VFP寄存器。你刚才选择的浮点配置是属于后一种类型，因此多元组的ABI部分应该显示为eabihf。有一种配置参数确实就是你想要的，但是它默认不启用，也没有出现在菜单中，至少在这个版本的crosstool中是这样。因此，必须编辑.conffig并且增加下列以黑体字显示的行：

 [image:]

现在，通过键入以下命令，根据你的指定可以使用crosstool-NG获取、配置和构建组件：

 [image:]

该构建过程大约需要半个小时，随后，你会发现工具链出现在~/x-tools/arm-cortex_a8-linux-gnueabihf/。
2.5　工具链解析

为了获得一个对典型工具链的直观印象，请仔细察看你刚才创建的crosstool-NG工具链。

该工具链在目录~/x-tools/arm-cortex_a8-linux-gnueabihf/bin中。在那里，你会发现交叉编译器arm-cortex_a8-linux-gnueabihf-gcc。要使用它，需要使用以下命令将该目录添加到你的路径中：

 [image:]

 [image:]

并且这样编译它：

 [image:]

通过使用file命令打印该文件的类型，你可以确认它已经完成交叉编译：

 [image:]

2.5.1　了解你的交叉编译器

假设你刚接收到一个工具链，并且你想了解更多关于如何配置的信息。通过查询gcc，你可以找到很多信息。例如，要查找版本号，你可以使用--version：

 [image:]

要查找它是如何配置的，使用-v：

 [image:]

 [image:]

这里有很多的输出，但是需要注意的有意思的事情是：

·--with-sysroot=/home/chris/x-tools/arm-cortex_a8-linux-gnueabihf/arm-cortex_a8-linux-gnueabihf/sysroot：这是默认的sysroot目录，详细解释见下节。

·--enable-languages=c，c++：使用该选项，我们将启动C和C++语言。

·--with-arch=armv7-a：该代码是使用ARM v7a指令集生成的。

·--with-cpu=cortex-a8 and--with-tune=cortex-a8：进一步调整该代码以适用于Cortex A8核心。

·--with-float=hard：为浮点单元生成操作码，以及为参数指定VFP寄存器。

·--enable-threads=posix：启用POSIX线程。

这些是编译器的默认设置。你可以在gcc命令行上重写其中的大部分选项，因此，如果你想要为一个不同的CPU编译代码，通过添加-mcpu到命令行，你可以重写已配置的设置--with-cpu，如下所示：

 [image:]

使用--target-help，可以打印出特定体系架构选项的范围，如下所示：

 [image:]

你可能想知道，生成工具链时就得到准确的配置是否至关紧要，以后是否可以修改配置，答案取决于你预期使用配置的方式。如果你计划为每个目标创建一个新的工具链，那么在一开始就将一切都设置好是有意义的，因为这会减少后面出错的风险。在第6章中，我称之为Buildroot哲学。另一方面，如果你希望构建一个通用的工具链，并且准备为特定目标的构建提供正确的设置，那么你应该使基础工具链更为通用，这就是Yocto Project处理事情的方式。前面的例子遵循Buildroot哲学。

2.5.2　sysroot、库和头文件

工具链sysroot是一个目录，它包括若干用于库、头文件和其他配置文件的子目录。当配置工具链时可通过选项--with-sysroot=设置该目录，或者可以在命令行使用--sysroot=进行设置。通过使用-print-sysroot，你可以查看默认的sysroot位置。

 [image:]

你会在sysroot发现以下内容：

·lib：包含C库的共享对象，以及动态链接器/加载器ld-linux。

·usr/lib：C库的静态库存档，以及随后可安装的其他库。

·usr/include：包含所有库的头文件。

·usr/bin：包含运行在目标上的实用程序，如ldd命令。

·/usr/share：用于本地化和国际化。

·sbin：提供ldconffig实用工具，用于优化库加载路径。

很显然，其中一些是在开发主机上编译程序时需要的，而其他，如共享库和ld-linux，是目标在运行时需要的。
2.6　工具链中的其他工具

表2-1是在工具链中的其他各种命令及其简要描述：

表2-1　工具链中的其他各种命令以及简要描述

 [image:]

2.7　查看C库的组件

C库不是一个单一的库文件。它由四个主要部分组成，共同实现POSIX API函数：

·libc：主要的C库，包含熟悉的POSIX函数如printf、open、close、read、write等。

·libm：数学函数如cos、exp和log。

·libpthread：所有名字以pthread_开头的POSIX线程函数。

·librt：POSIX的实时扩展，包括共享内存和异步I/O。

第一个组件libc总是被链接入程序，但是其他组件需要明确地通过-l选项链接。链接-l的参数名即为去掉lib字符的对应库名。因此，例如一个通过sin（）调用计算正弦函数的程序，将通过使用-lm命令链接libm。

 [image:]

通过使用readelf命令，你可以验证哪个库已经被链接入该程序或任何其他程序：

 [image:]

共享库需要一个运行时链接程序，你可以使用以下命令显示：

 [image:]

这是非常有用的，因此我编写了一个脚本文件，将这些命令转换成一个shell脚本：

 [image:]

2.8　链接库：静态和动态链接

你为Linux编写的任何应用程序，无论是以C或C++语言编写，都将与C库libc相链接。这是非常基本的，你甚至不必告诉gcc或g++这样做，因为它总是链接libc。你可能想要链接的其他库，必须通过-l选项来明确命名。

库代码可以通过两种不同的方式进行链接：静态方式，意味着应用程序调用的所有库函数及其依赖关系都从库归档文件中提取出来，并且绑定到可执行文件中；动态方式，意味着对于库文件以及这些文件中函数的引用是在代码中生成的，但是实际的链接是在运行时动态进行的。

2.8.1　静态库

在一些情况下，静态链接是有用的。例如，如果你正在构建一个小的系统，它仅由BusyBox和一些脚本文件组成，那么静态链接BusyBox同时避免复制运行时库文件和链接程序就变得更为简单。它也会变得更小，因为你只是链接应用程序使用的代码而不是提供完整的C库。如果需要在文件系统包含运行时库之前运行程序的话，静态链接也是有用的。

通过将-static添加至命令行，gcc命令会静态链接所有库：

 [image:]

你会注意到，二进制文件的大小急剧增加：

 [image:]

静态链接通过名为lib[name].a的命令从库归档文件中获取代码。在前面的实例中是libc.a，该文件位于[sysroot]/usr/lib：

 [image:]

注意，语法$（arm-cortex_a8-linux-gnueabihf-gcc-print-sysroot）放在命令行的程序输出位置。我使用它作为引用sysroot中文件的一般方式。

通过使用ar命令，创建一个静态库与创建目标文件的一个归档文件同样简单。如果我具有两个名为test1.c和test2.c的源文件，想要创建一个名为libtest.a的目标文件，那么我会这样做：

 [image:]

然后，使用以下命令可以将libtest链接至helloworld程序：

 [image:]

2.8.2　共享库

一个更为常见的方式是作为共享对象部署库，这些共享对象是在运行时被链接的，因为只需要加载一个代码副本，这使得存储和系统内存能够更有效地被利用。它还可以方便地更新库文件，而不用重新链接所有使用它们的程序。

共享库的目标代码必须是位置无关的，以便运行时链接程序可以在内存中的下一个空闲地址随意地定位该代码。要做到这一点，将-fPIC参数添加至gcc，然后使用-shared选项链接该代码。

 [image:]

为了将该库链接至一个应用程序，可以添加-ltest命令，正如前面章节提到的静态情况。但是这一次并没有将该代码添加在可执行文件中，取而代之是一个运行时链接器要解析的库引用。

 [image:]

该程序的运行时链接器是/lib/ld-linux-armhf.so.3，它必须出现在目标的文件系统中。链接器将在默认的搜索路径/lib和/usr/lib中查找libtest.so。如果还想在其他目录中查找库，可以在shell变量LD_LIBRARY_PATH中放置一个以冒号分隔的路径列表：

 [image:]

理解共享库版本号

共享库的好处之一是可以单独更新，而与使用它们的程序无关。库更新有两种类型：一种是以向后兼容的方式修复错误或增加新的功能，一种是中断与现有应用程序的兼容性。GNU/Linux有相应的版本控制方案以应对这两种情况。

每个库具有发行版本和接口号。发行版本只是一个附加在库名字后的字符串，例如对于JPEG图像库libjpeg，当前的版本是8.0.2，因此库被命名为libjpeg.so.8.0.2。到libjpeg.so.8.0.2有一个名为libjpeg.so的符号链接，因此当你通过-ljpeg编译一个程序时，会链接至当前版本。如果你安装8.0.3版本，链接将会更新并且将改为链接该版本。

现在，假设9.0.0版本已经出来并且打破了向后兼容性。来自libjpeg.so的链接现在指向libjpeg.so.9.0.0，从而任何新的程序将链接至该新版本，当到libjpeg的接口发生变化时可能抛出编译器错误，开发人员可以修改该错误。在目标上的任何没有重新编译的程序都有可能以某种方式失败，因为它们仍然在使用旧的接口。这就需要soname提供帮助。在构建库时soname对接口号进行编码，并在加载库时由运行时链接器使用。它被格式化为<library name>.so.<interface number>。对于libjpeg.so.8.0.2，soname会是libjpeg.so.8：

 [image:]

任何用它编译的程序将会在运行时请求libjpeg.so.8，这是从目标到libjpeg.so.8.0.2的符号链接。当9.0.0版本的libjpeg被安装时，它会有一个libjpeg.so.9的soname，因此有可能会有相同库的两个不兼容版本安装在相同的系统上。与libjpeg.so.8.*.*链接的程序将加载libjpeg.so.8，而那些与libjpeg.so.9.*.*链接的程序将加载libjpeg.so.9。

这就是为什么当你查看<sysroot>/usr/lib/libjpeg*目录列表时，会发现这四个文件：

·libjpeg.a：这是用于静态链接的库归档文件。

·libjpeg.so->libjpeg.so.8.0.2：这是一个符号链接，用于动态链接。

·libjpeg.so.8->libjpeg.so.8.0.2：这是一个符号链接，用于在运行时加载库。

·libjpeg.so.8.0.2：这是实际的共享库，用于编译时和运行时。

对于前面两个文件，只有在主机计算机上构建时才需要使用；而对于后面两个文件，在目标上运行时需要使用。
2.9　交叉编译艺术

具有一个可以工作的交叉工具链只是一段旅程的起点，而不是结束。在某些时候，你会希望交叉编译各种需要在目标上运行的工具、应用程序和库。它们中很多是开源软件包，每个都有其自己的编译方法，并且每个都有自身的特点。有一些共同的构建系统，包括：

·纯makefile文件，其中工具链通过make变量CROSS_COMPILE控制。

·GNU构建工具，称为Autotool。

·CMake（https://cmake.org）。

在这里我将主要介绍前面两个，因为即使对于一个基本的嵌入式Linux系统，它们也是必要的。对于CMake，在上面引用的CMake网站上有一些优质资源。

2.9.1　简单makefile文件

一些重要的软件包非常易于交叉编译，包括Linux内核、U-Boot引导加载程序和Busybox。对于每个软件包，你只需要将工具链前缀放在make变量CROSS_COMPILE中，例如arm-cortex_a8-linux-gnueabi-。注意结尾的“-”符号。

因此，要编译BusyBox，需要键入：

 [image:]

或者，可以将它设置为一个shell变量：

 [image:]

对于U-Boot和Linux的情况，还需要将make变量ARCH设置为它们支持的某个机器体系架构，我将在第3章和第4章中介绍这方面的内容。

2.9.2　Autotools

Autotools的名字是指一组工具，它们在许多开源项目中用作构建系统。这些组件以及相应的项目网页是：

·GNU Autoconf（http://www.gnu.org/software/autoconf/autoconf.html）

·GNU Automake（http://www.gnu.org/savannah-checkouts/gnu/automake）

·GNU Libtool（http://www.gnu.org/software/libtool/libtool.html）

·Gnulib（https://www.gnu.org/software/gnulib）

Autotools的作用是消除因软件包编译而造成的许多不同类型系统之间的差异，包括不同的编译器版本、不同的库版本、不同的头文件位置以及与其他软件包的依赖关系。使用Autotools的软件包会附带一个名为conffigure的脚本，它用于检查依赖关系并且根据检查结果生成makefile文件。配置脚本还可以给你提供启用或禁用某些特性的机会。通过运行./conffigure--help，可以发现提供的选项。

为本地操作系统配置、构建和安装包，通常需要运行以下三个命令：

 [image:]

Autotools也能够处理交叉开发。通过设置以下shell变量，你可以影响配置脚本的行为：

·CC：C编译器命令。

·CFLAGS：附加的C编译器标记。

·LDFLAGS：附加的链接器标记，例如，如果有库在非标准目录<lib dir>中，通过增加-L<lib dir>可以将其添加到库搜索路径中。

·LIBS：包含一个附加的传递给链接器的库列表，例如数学库-lm。

·CPPFLAGS：包含C/C++预处理器标记，例如，可以添加-I<include dir>以在非标准库<include dir>中搜索头文件。

·CPP：需要使用的C预处理器。

有时，只需要设置CC变量就已足够了，如下所示：

 [image:]

其他时候，这将会导致这样的一个错误：

 [image:]

失败的原因是，conffigure往往试图通过编译和运行代码片段来观察发生的情况，从而发现工具链的功能，但如果程序已经被交叉编译过就不能这样做。即便如此，在错误消息中也有关于如何解决问题的提示。Autotools理解三种不同类型的机器，在编译软件包时可能会涉及：

·构建平台（build）：用于构建软件包的计算机。它默认为当前机器。

·主机平台（host）：运行程序的计算机。对于本地编译，它保留为空白并且默认为与构建相同的计算机。对于交叉编译，它将被设置为你的工具链元组。

·目标平台（target）：运行程序生成代码的计算机。例如，当构建交叉编译器时需要设置它。

因此，如果要交叉编译，你只需要覆盖主机，如下所示：

 [image:]

最后一点需要注意的是，默认安装目录是<sysroot>/usr/local/*。通常你会将它安装在<sysroot>/usr/*，这样头文件和库就会从它们的默认位置中选取。配置一个典型Autotools包的完整命令是：

 [image:]

实例：SQLite

SQLite库实现了一个简单的关系数据库，它在嵌入式设备上非常流行。首先，获得一个SQLite副本：

 [image:]

下一步，运行配置脚本：

 [image:]

这似乎能够正常工作！如果失败的话，将会有错误消息打印到终端并且记录在conffig.log中。注意，多个makefile文件已经被创建，因此现在可以构建它：

 [image:]

最后，通过设置make变量DESTDIR，可以将它安装在工具链目录中。如果不这样做，它会尝试安装在主机计算机的/usr目录中，而这并不是你所想要的。

 [image:]

你可能会发现，最终命令会因为一个文件权限错误而发生失败。默认情况下，crosstool-NG工具链是只读的，这就是为什么在构建时将CT_INSTALL_DIR_RO设置为y有用处的原因。另一个常见的问题是工具链安装在一个系统目录中，如/opt或/usr/local，在这种情况下，当运行安装程序时你将需要root权限。

在安装之后，你会发现各种文件已经添加到你的工具链中：

·<sysroot>/usr/bin：sqlite3。这是SQLite的命令行接口，可以将它安装和运行在目标上。

·<sysroot>/usr/lib：libsqlite3.so.0.8.6、libsqlite3.so.0、libsqlite3.so libsqlite3.la libsqlite3.a。这些是共享和静态库。

·<sysroot>/usr/lib/pkgconffig：sqlite3.pc：这是包配置文件，在以下章节描述。

·<sysroot>/usr/lib/include：sqlite3.h，sqlite3ext.h：这些是头文件。

·<sysroot>/usr/share/man/man1：sqlite3.1。这是手册页面。

现在，通过在链接阶段添加-lsqlite3，你可以使用sqlite3编译程序：

 [image:]

其中，sqlite-test.c是假设的调用SQLite函数的程序。由于sqlite3已经安装在sysroot中，编译器可以毫无障碍地找到头文件和库文件。如果你已经安装在其他地方，就会需要添加-L<lib dir>和-I<include dir>。

当然，也会有运行时的依赖关系，并且需要将适当的文件安装到目标目录中，这将在第5章中进行描述。

2.9.3　软件包配置

跟踪软件包依赖关系相当复杂。软件包配置实用工具pkg-conffig（http://www.freedesktop.org/wiki/software/pkg-conffig）通过在[sysroot]/usr/lib/pkgconffig中保持一个关于Autotools包的数据库，帮助跟踪安装了哪些软件包以及需要哪些编译标记。例如，用于SQLite3的配置文件被命名为sqlite3.pc，它包含其他软件包使用SQLite3所需要的基本信息：

 [image:]

你可以使用pkg-conffig工具提取信息，并且该信息的格式可以直接提交给gcc。在类似libsqlite3库的情况下，想要知道库的名字（--libs）和任何特定的C标记（--cflags）：

 [image:]

该错误的发生是因为它在主机的sysroot中查找，而libsqlite3的开发包还没有安装在主机上。你需要通过设置shell变量PKG_CONfig_LIBDIR，将它指向目标工具链的sysroot：

 [image:]

现在，输出是-lsqlite3。在本例中，你是事前知道结果的，但是一般情况下却并不知道，因此这是一个很有用的技术。最后需要编译的命令是：

 [image:]

2.10　交叉编译的问题

Sqlite3是一个表现良好的软件包，能够很好地交叉编译，但是并不是所有的软件包都是如此“温顺”。典型的痛点包括：

·自带的构建系统。例如zlib，它具有一个配置脚本，但是其运转不同于前面章节描述的Autotools配置

·配置脚本读取pkg-conffig信息、头文件以及其他来自主机的文件，而不管--host是否重写。

·坚持尝试运行交叉编译代码的脚本。

每种情况都需要仔细地分析错误和额外的配置脚本参数，以提供正确的信息或者代码补丁，从而完全避免问题。务必记住，一个软件包可能具有许多依赖关系，尤其是那些具有图形接口并且使用GTK或者QT或者要处理多媒体内容的程序。作为一个例子，mplayer是一个播放多媒体内容的流行工具，与超过100个库具有依赖关系。要完全构建它们需要花费数周的工作时间。

因此，除非没有其他替代方案，或者需要构建的软件包数量较小，否则我不会建议以这种方式手动为目标交叉编译组件。一个更好的方法是使用诸如Buildroot或者Yocto Project等构建工具，或者通过为目标体系结构设置一个本地构建环境，从而完全避免问题。现在，你可能明白了为什么诸如Debian等发行版总是本地编译的。
2.11　总结

工具链始终是你的出发点：在这之后的所有事情都依赖于一个可行并且可靠的工具链。

大多数嵌入式构建环境都基于一个交叉开发工具链，它在强大的用于构建代码的主机计算机和运行代码的目标计算机之间创造了一个清晰的隔离。工具链自身包括GNU binutils、来自GNU编译器集合的C编译器，很可能也包括C++编译器——我所描述的C库组件之外，另一个附加的组件。通常GNU调试器gdb将会在这个时候生成，我将在第12章详细描述。同时，保持对Clang编译器的关注，因为它将会在以后的几年里得到发展。

在开始时，你可能除了工具链之外什么都没有，工具链可能通过使用crosstool-NG构建或者从Linaro下载，并且使用它编译目标需要的所有软件包，同时要接受因此而带来的繁重工作量。或者你可以从一个发行版中获取工具链，它作为发行版的一部分，通常包括一系列软件包。通过使用Buildroot或者Yocto项目等构建系统，可以从源代码生成一个发行版，或者它可以是一个来自第三方机构的二进制发行版，可能是一个类似Mentor Graphics的商业企业或者是一个诸如Denx ELDK的开源项目。需要注意那些作为硬件包一部分而免费提供给你的工具链或者发行版：它们通常配置很差或者没有维护。在任何情况下，你都应该根据自己的情况作出选择，然后在整个项目期间工具链的使用上应保持一致。

一旦拥有了一个工具链，就可以使用它来构建嵌入式Linux系统的其他组件。在下一章中，将学习引导加载程序，它将给设备带来生命并且开始引导过程。
第3章　引导加载程序

引导加载程序（bootloader）是嵌入式Linux的第二部分，是启动系统和载入操作系统内核的组成部分之一。在本章中，我们将关注引导加载程序的作用，特别是关注它如何通过一种称为设备树的数据结构在自身和内核间传递控制信息。设备树也被称为扁平设备树（FDT）。本章中将涉及设备树的基础知识来帮助读者理解设备树中所涉及的连接并将其与实际硬件关联。

我们将关注一个流行的开源引导加载程序工具：U-Boot，并展示如何使用它来引导目标设备以及如何对其自定义以用于新设备。最后我们来看看Barebox，一种借鉴U-Boot但更为简洁的设计。
3.1　引导加载程序都做了些什么

在嵌入式Linux操作系统中，引导加载程序有两个主要工作：基本系统的初始化和内核载入。实际上，前者在一定程度上为后者提供支持，为了更好地加载内核，就必须尽可能多地初始化系统工作。

在开机或重启之后，引导加载程序开始执行第一行代码。由于DRAM控制器还未设置，因此主内存不可访问，同时其他接口也未配置，因此通过NAND闪存控制器、MMC控制器等访问的存储器均不可使用。通常在最初阶段唯一可操作的资源是单个CPU核和芯片静态存储。因此系统引导程序包括几个编码阶段，每个阶段将引入更多的系统操作。

一旦用于载入内核的接口启用，引导阶段的前半部分就结束了。该过程包括主存和外设访问内核和其他映像，无论是来自存储还是网络。引导加载程序的最终行为是将内核载入RAM并创建内核的执行环境。引导加载程序和内核之间的接口实现与架构相关，但在所有情况下，这些接口都相当于传递一个指向引导加载程序已知硬件信息的指针和一条内核命令行。内核命令行是包含Linux所需基本信息的ASCII码构成的字符串。一旦内核开始执行，引导加载程序就不再需要了，此时与它相关的所有内存都可以回收利用。

引导加载程序的另一个辅助功能是提供维护模式，该模式用于更新引导配置、在内存中载入新映像或诊断运行。这个模式往往通过一个简单的命令行用户界面控制，通常是一个串行接口。
3.2　引导序列

几年前，引导加载程序的操作还比较简单，唯一需要做的就是在处理器复位向量存储中导入引导加载程序。在当时，NOR闪存较为常用，而且由于可以直接映射到地址空间，因此它也是最理想的存储方式。下图展示了一种配置方案，复位向量地址在0xfffffffc，即闪存区域顶端。引导加载程序链接到这里，因此在指向引导加载程序代码起始处的位置有一个跳转指令（见图3-1）：

 [image:]

图3-1　以前的引导方式

此时，引导加载程序开始初始化内存管理器，DRAM主存变为可用资源，并且内存管理器会将自身复制到DRAM中。该步一旦完成，引导加载程序可将内核从闪存载入到DRAM中，并将控制权转移给内核。

然而，一旦不再使用简单的线性可寻址存储介质，如NOR闪存，引导序列将变为一个复杂多阶段的过程。对于每个片上系统而言，细节各不相同，但它们通常还是遵循以下几个阶段。

3.2.1　第1阶段：只读存储器代码

在没有外部存储器的情况下，每次复位或启动后需要立即执行的代码往往存储在片上系统的芯片里，也就是我们通常所知的ROM代码。ROM代码在芯片制造时就会被写入芯片中，因此ROM代码是芯片专有的且不能被任何开源设备替代。ROM代码对不在芯片上的硬件几乎不做假设，因为不同芯片的设计区别很大，甚至与用于主存的DRAM芯片也有关。因此，ROM代码访问的RAM仅仅是在大多数SoC设计中使用的静态RAM（SRAM）很小的一部分。SRAM的大小从4KB到几百KB不等（见图3-2）：

 [image:]

图3-2　引导加载程序的阶段1

ROM代码可以从几个不同的预编程地址依次加载入SRAM中。例如，TI OMAP和Sitara芯片会加载NAND闪存最初的几页，或是用串行外围接口（SPI）连接的闪存还是MMC设备第一个名为MLO分区中的文件中载入。如果这些存储设备的读取都失败了，则会试图从以太网、USB或UART读取字节流。后者主要用于生产制造时向闪存载入代码，而不是通常使用时的一般操作。大多数的嵌入式SoC使用的ROM代码工作方式相似。在SoC中SRAM并不足以载入整个引导加载程序，例如U-Boot，所以存在一种称为辅助程序加载器（或者SPL）的中间加载器。

第1阶段的最后，引导加载程序将载入芯片上的存储设备，ROM代码跳转到下一阶段代码的执行起始点处。

3.2.2　第2阶段：SPL

在SPL中必须要设置好存储控制器并准备将其他用于第3阶段的必要部分载入主存DRAM中。SPL的功能受其大小的限制。如同ROM代码一样，它可以从存储设备列表中读入程序，从一个闪存设备的起始处或是名为诸如u-boot.bin等的文件处，重新使用预设偏移量。SPL往往不允许任何用户与之交互，但它可以将版本和进度信息等打印到控制台上以供用户查看。图3-3描述了阶段2的架构：

 [image:]

图3-3　引导的第二阶段

有些SPL是开源的，例如TI x-loader和Atmel AT91 Boot-strap。但由制造商提供的专有代码则更为常见，他们往往仅提供二进制文件而非源代码。

在本阶段结束时，第三阶段的加载器会出现在DRAM中，SPL将执行一个跳转语句至相应区域。

3.2.3　第3阶段：TPL

现在，我们将运行一个完整的引导加载程序，如U-Boot或Barebox。通常情况下，我们将使用一个简单的命令行用户接口，使用户可以执行一些维护任务，如将新的引导和内核映像载入闪存、载入和引导内核，并且存在一种自动的无需人为操作的载入内核的方法。图3-4描述了第3阶段的架构：

 [image:]

图3-4　第三阶段引导

在本阶段结束时，内核被完全载入内存并等待启动。一旦内核开始运作，引导加载程序通常会从内存中消失，不再对系统进行任何操作。
3.3　使用UEFI固件引导

大多数嵌入式PC和部分ARM的设计都采用基于通用可扩展固件接口（UEFI）标准的固件，更多具体信息可查看UEFI的官网http://www.uefi.org。它的引导序列大多与如下几个步骤相同：

第一阶段：处理器从闪存中载入UEFI引导管理器。某些设计直接从NOR闪存中载入，其他设计则使用芯片上的ROM代码从SPI闪存中载入。引导管理器与SPI类似，不同的是它允许用户通过文本或图像接口进行一些用户交互操作。

第二阶段：引导管理器从EFI系统分区（简称ESP）、硬盘或SSD中载入，也可能通过PXE从网络服务器载入引导。若是从本地磁盘载入，EXP会被GUID识别为C12A7328-F81F-11D2-BA4B-00A0C93EC93B的值。分区需要使用FAT32格式进行格式化操作。第三阶段的引导加载程序应放入文件名为<efi_system_partition>/boot/boot<machine_type_short_name>.efi的文件中。

例如，在x86_64系统中加载器的文件路径为：/efi/boot/bootx64.efi。

第三阶段：此时TPL成为一个能加载Linux内核并将一个可选的RAM载入内存的引导加载程序，常见的选择有：

·GRUB 2：GRUB 2是GNU引导加载程序（GNU Grand Unified Bootloader）的第2版，也是在PC平台上Linux系统中最为常见的引导加载程序。然而对于GRUB 2需要GPL v3的授权行为还存在一些争议，因为启动密钥需要和代码一同提供，这将导致安全启动的不兼容性。网址为https://www.gnu.org/software/grub/。

·gummiboot：这是一个简单的UEFI兼容的引导加载程序，且已被集成到系统中，遵守LGPL v2.1协议。网址为https://wiki.archlinux.org/index.php/systemd-boot。
3.4　从引导加载程序到内核

当引导加载程序将控制权传递给内核时，它必须同时将一些基本信息也传递给内核：

·对于PowerPC和ARM架构：需要传递一个唯一表示SoC类型的数值。

·到目前为止硬件检测到的基本细节，包括物理RAM内存的大小、位置以及处理器的时钟速度。

·内核命令行。

·设备树的二进制位置和大小（可选项）。

·初始内存磁盘的位置和大小（可选项）。

内核命令行通过一个普通的ASCII字符串来控制Linux。比如，设置根文件系统设备，下一章将详细介绍这一点。将一块RAM磁盘用作一个根文件系统是较为常见的做法，这种情况下，引导加载程序就必须将RAM磁盘映像载入到内存中。在第5章将介绍创建初始化RAM磁盘的方法。

传递信息的方式依赖于体系结构，并随着时间而变化。例如对于PowerPC架构，引导加载程序仅仅将一个指针传递给开发板上的数据结构，而ARM架构中则是将指针传递给一个“A tags”列表。内核源代码中的Documentation/arm/Booting对此有较好的描述。

这个平台的数据传递都非常有限。多数信息可以在运行时找到，或是在硬编码到内核的“平台数据”中发现。广泛使用的“平台数据”意味着每台设备都必须有针对平台的内核配置和修改信息。考虑到要更好地支持跨平台操作，于是设备树应运而生。ARM世界中，直到2013年2月份初发布的Linux 3.8版本中才开始放弃使用A tags，但还有很多设备（包括开发中的）依旧使用着A tags。
3.5　设备树介绍

我敢肯定你以后会接触设备树。这一节的目标就是快速了解什么是设备树，以及设备树是如何工作的。但是很多细节内容将不在本书中做过多介绍。

设备树是一种以灵活的方式来定义计算机系统的硬件组件。通常，设备树通过引导加载程序载入并传递给内核，有时候又会将设备树包含到内核映像中来满足无法分别处理两者的情况。

设备树的格式是源于Sun公司的OpenBoot，一个微系统级别的引导加载程序。而且OpenBoot已经规范化为开源固件并归入IEEE标准，标准号为IEEE275-1994。它被用于基于PowerPC架构的苹果电脑，也是PowerPC架构的Linux系统端口的一个理想选择。从此以后，它被大规模用于ARM架构的各类Linux版本，并在一定程度上扩展到MIPS、MicroBlaze、ARC等的其他架构中。

在http://devicetree.org官网上可以浏览到更多相关信息。

3.5.1　设备树基础

Linux内核包含大量的设备树源文件，存储在目录arch/$ARCH/boot/dts下，这个目录是学习设备树较好的起点。同时，在U-Boot源代码中也包含少量的源文件，存储在arch/$ARCH/dts目录中。获取第三方硬件时，dts文件组成了板级支持包的一部分，因此除了源文件外也能从中获取相应的dts文件。

设备树作为计算机系统的一种表示，将计算机的各个组件集合在一个树状的层级结构中。设备树的起点称为根节点，表示成一个正斜杠"/"，根节点的后继节点表示系统的硬件。每个节点都有自己的名字并包含一个形式如name=“value”的属性值。下面是一个简单的设备树的例子：

 [image:]

 [image:]

这里，我们有一个包含了一个cpus节点和一个存储节点的根节点。cpus节点包含了名为CPU@0的单个CPU节点。通常节点的命名后包含一个@字符并跟上一个地址值，这样就方便地把不同节点区分开来。

根节点和CPU节点都具有兼容属性。Linux内核使用该属性匹配名字并与设备驱动程序通过struct of_device_id输出的字符串对照（更多的内容见第8章）。这个属性值往往由制造商及组件的名字组成，便于区别不同厂家生产的类似设备，例如ti、am33xx和arm、cortex-a8。兼容属性往往会包含多个值，这样就便于不同的驱动程序处理这个设备，而且这些值往往按照匹配程度从高到低排序。

CPU节点和存储节点包含一个device_type属性，这个属性描述了设备的类型。节点的名字通常从device_type属性中获得。

3.5.2　reg属性

内存和CPU节点具有一个reg属性，表示了寄存器空间的范围。reg属性包含两个值，一个表示起始地址，另一个表示寄存器空间的范围大小（长度）。两个数值由从0到32位的整型数字组成，称为单元。因此内存节点表示内存上的单个存储单元，起点为0x80000000，长度为0x20000000个字节。

当32位不足以表示地址或长度，reg属性就会变得更为复杂。例如，对于一个64位的设备来说，每个值都需要两个单位表示：

 [image:]

祖先节点的声明中，字段#address-cells和#size-cells要求指明所需的单位数。换言之，要理解reg属性就必须要回溯节点层级直到找到#address-cells和#size-cells声明才行。如果直到根节点都没有找到这两个声明，则两个值默认赋值为1——但这种依靠默认值的方法对于设备树编写人员来说是不可取的做法。

现在，回到cpu节点。CPU同样也有地址：在四核设备中地址可能为0、1、2和3，可以将地址看成没有任何深度的一维数组，因此大小为0。在cpu节点中可以看到#address-cells=<1>和#size-cells=<0>的声明，而且在子节点，例如cpu@0中，有reg属性：节点reg=<0>。

3.5.3　中断和phandle

到目前为止，我们一直假设设备树是一个单一组件的层级结构，然而实际上设备树是由多个组件层级结构组成的。正如一个组件和系统其他部分存在明显的数据联系一样，它也会与终端控制器、时钟源和电压调节器相联系。我们用phandle来描述这些联系。

以一个包含可生成中断的串行端口和中断控制器的系统为例：

 [image:]

有一个中断控制器节点，包含一个特殊的属性#interrupt-cells，它指明了需要多少4个字节的值来表示一个中断行。在本例中只需要赋予IRQ一个4字节的值。此外通常还会有一个附加值来描述中断类型，例如1=low-to-hfigh edge trfiggered（高电平触发），2=hfigh-to-low edge trfiggered（低电平触发）等等。

观察serial节点，它包含一个interrupt-parent属性，该属性使用标签引用所连接的中断控制器。这个标签就是phandle。实际的IRQ所在行包含了interrupts属性，这里的值为72。

serial节点还有一些未谈到的属性：clock-frequency、ti和hwmods。这些属性用于绑定部分特定类型的设备。换句话说，内核设备驱动程序会通过读取这些属性来管理设备。这些绑定信息可以在Linux内核资源中找到，其目录为Documentation/devicetree/bindings/。

3.5.4　设备树include文件

在同一系列的SoC或使用同一SoC的主板上很多硬件是共有的。这在设备树中的体现就是将一些常见组件分离出来放入include文件中，通常这些文件的扩展名都为.dtsi。Open Firmware标准将/include/定义为所使用的包含机制，例如下面这个在vexpress-v2p-ca9.dts中的代码片段：

 [image:]

在内核中的.dts文件中浏览还可以找到一个C语言的include语句，例如下面从am335x-boneblack.dts中找到的代码片段：

 [image:]

这里是从am33xx.dtsi收集的另一个例子：

 [image:]

最后，include/dt-bindings/pinctrl/am33xx.h中包含正常的C语言的宏定义：

 [image:]

如果设备树是使用内核kbuild构建的，那么上述几种情况都可以处理成功，因为使用kbuild构建设备树，首先将运行C语言的预处理器cpp，因此所有的#include和#define语句都会被处理成适合于dtc（设备树编译器）的纯文本。而展示上述示例的目的是为了说明设备树源文件可以使用与内核代码相同的常量定义。

当我们用这样的方法包含文件的时候，节点覆盖于其他节点之上并构成一个复合树，外层节点会扩展或修改内层节点。例如，用于生成所有的am33xx SoC系统的am33xx.dtsi文件，用如下方式定义第一个MMC控制器接口：

 [image:]

注意：当前状态是已禁用，意味着不应该有设备驱动程序与它绑定，此外它还有mmc1标签。

BeagleBone和BeagleBone Black都包含了am335x-bone-common.dtsi文件，在该文件中相同的phandle引用同一节点：

 [image:]

这里的mmc1为启用状态（status="okay"），因为两种情况都包含一个物理MMC1设备，而且pinctrl已被设定。在am335x-boneblack.dts中，存在另一个mmc1的引用并且关联到一个电压调节器：

 [image:]

因此，源文件的分层提高了编码的灵活性，减少了代码重复。

3.5.5　编译设备树

引导加载程序和内存都需要设备树的二进制表示，因此必须使用dtc进行编译。编译器将生成一个扩展名为.dtb的文件，即设备树二进制文件或设备树blob文件。

在Linux源代码的目录scripts/dtc/dtc下，有一个dtc的副本，在许多Linux发行版中都提供为一个包的形式。使用它可以编译出一个简单的设备树（不需要#include），例如：

 [image:]

但要注意的是，dtc无法提供有用的错误信息，因为它除了一些基本的语法错误之外不做任何检查，这意味着在源文件中的一个打印错误都需要很长的时间来调试。

为了构建更为复杂的例子，就可能需要使用内核kbuild工具，也就是下一章将要介绍的内容。
3.6　选择引导加载程序

引导加载程序有各种类型和大小。理想的引导加载程序是简单的、可定制的且对常见的开发板和设备有很多的配置示例。表3-1展示了一些常用的引导加载程序：

表3-1　常用的引导加载程序

 [image:]

我们将重点关注U-Boot，因为它支持大量的处理器架构和大部分主板和设备，并且已经存在了很长一段时间，有着良好的社区支持。

你或许会从SoC或者主板中获取一个引导加载程序。绝大多数情况下，仔细检查你手头已有的资源，并问问你自己可以从哪些地方得到源代码，当决定修改时它们又有着怎样的更新/支持政策等，你或许会考虑放弃供应商提供的引导加载程序，而使用一个开源的引导加载程序作为现有版本的替代。
3.7　U-Boot

U-Boot的全称为Das U-Boot，最初是作为一个开源的引导加载程序，用在嵌入式Power PC的单片机中。之后又扩展到基于ARM架构的单片机以及其他架构，包括MIPS、SH和x86。它是由Denx Software Engineering主持和维护的开源项目。在www.denx.de/wiki/U-Boot上有很多相关信息，并且以该网站作为学习U-Boot的起点是个不错的选择。该项目的邮件列表为u-boot@lists.denx.de。

3.7.1　构建U-Boot

一切从获取源代码开始。与绝大多数项目一样，获取源代码的推荐方式是拷贝git存档并勾选您想要的标签。这里的标签是在时下对应的版本号。

 [image:]

或者，可以从ftp://ftp.denx.de/pub/u-boot上下载压缩文件。

在conffig/目录下有常用开发板和设备的近1000多个配置文件。在大多数情况下，根据文件名你就可以大致猜出哪些文件是你所需要的，但浏览board/目录下的README文件可以获取更多的详细信息，你也可以在相关的网站用户手册或论坛上找到想要的信息。注意，自2014年10月发行以来，U-Boot的配置方法经历了许多改变。所以一定要检查手头的操作指南是否合适。

以BeagleBone Black为例，我们可以在conffigs/目录下找到一个文件名类似于am335x_boneblack_defconffig的配置文件，在am335x芯片的board README文件中找到“The binary produced by this board supports...Beaglebone Black”的内容，文件的目录是board/ti/am335x/README。根据这一信息，为BeagleBone Black构建U-Boot就变得较为容易。交叉编译前，你需要通知前缀的U-Boot，可以通过设置make变量CROSS_COMPILE，然后使用make[board]_defconffig命令选择配置文件来实现：

 [image:]

编译的结果是：

·u-boot：ELF格式的u-boot，适用于调试器。

·u-boot.map：符号表。

·u-boot.bin：：原始的二进制格式的u-boot，适合在你的设备上运行。

·u-boot.img：带一个U-Boot header的u-boot.bin，用作上传正在运行的U-Boot副本。

·u-boot.srec：摩托罗拉SREC格式的U-boot，适合通过串行连接传输。

根据之前的描述，BeagleBone Black还需要一个辅助程序加载器（SPL）。它被同时构建且命名为MLO：

 [image:]

对于其他目标来说，这个过程也是相似的。

3.7.2　安装U-Boot

第一次在主板上安装引导加载程序需要一些外部辅助。如果主板上有一个硬件调试接口，如JTAG，通常是将U-Boot的一个副本直接加载到RAM上并运行。之后，就可以使用U-Boot命令将它复制到闪存中。该步骤的具体操作针对不同的主板会有所区别，因此不在本书的讨论范围之内。

有一些SoC的设计包含一个内置的引导ROM。可以通过内置引导ROM从各种外部源读取启动代码，外部源可以是SD卡、串行接口或是USB。BeagleBone Black中的AM335x芯片正是这种情况。下面将说明如何通过micro-SD卡加载U-Boot。

首先，格式化SD卡，使其第一个分区是FAT32格式，并将其标记为可引导。如果有一个直接可以使用的SD卡插槽，该卡将出现在目录/dev/mmcblk0，否则，如果你用的是内存读卡器，则该卡将出现在目录/dev/sdb或/dev/sdc等。现在，假设目录为/dev/mmcblk0，输入以下命令对SD卡进行分区：

 [image:]

将第一个分区格式化为FAT16格式：

 [image:]

现在，我们挂载刚刚格式化的分区。某些系统上可以简单地通过拔出该micro-SD卡，然后再次插入它来实现，但在其他系统中可能要点击图标来实现。在Ubuntu的当前版本中，它需要挂载在目录/media/[user]/boot下，这样就可以通过以下命令复制U-Boot和SPL：

 [image:]

最后，卸载它。

在BeagleBone板未接通电源的情况下，插入micro-SD卡。

接着插入串行电缆，一个串行端口应该在PC的/dev/ttyusb0或类似目录中出现。

启动一个合适的终端程序，比如gtkterm、minicom或者picocom，在没有流量控制的条件下连接到速率为115 200bps的端口。

 [image:]

按住Beaglebone上的Boot Switch按钮，使用5v外部电源连接器启动主板，约5秒后释放。你应该在串行控制台上看到如下的U-Boot提示：

 [image:]

3.7.3　使用U-Boot

在这一部分，我将介绍一些U-Boot可执行的常见任务。

U-Boot通常会提供一个串口命令行界面，这些命令根据不同主板而定制。比如使用U-Boot#时，输入help命令会打印出该版本U-Boot的所有命令，输入help<command>会打印与该命令相关的详细信息。

命令解释器的默认支持很简单。按左右方向键没有任何对应的行编辑；按tab键没有命令补全的功能；按上方向键也没有命令历史记录。按下上述的任意键都会影响你当前的命令输入，你必须再按Ctrl+C重新启动命令行界面。唯一可以安全使用的就是退格键。您可以配置另一个可供选择的命令外壳，称为“Hush”。它支持更复杂的交互。

默认的数字格式为十六进制。例如：

 [image:]

这条命令的作用是：将NAND闪存中从偏移量为0x400000的地址开始共0x200000字节长度的内容存入RAM中偏移地址0x82000000的存储空间中去。

环境变量

U-Boot使用环境变量来存储和传递函数间的信息，甚至用于创建脚本。环境变量是一些简单的name=value键值对，它们都存储在内存中。最初的环境变量可以被编码在主板配置的头文件中，例如：

 [image:]

使用U-Boot命令行命令setenv可以创建和修改环境变量。例如命令setenv foo bar创建了一个变量名为foo、变量值为bar的环境变量。请注意，变量名和值之间没有等号连接。可以通过将变量设置为空字符串来删除它，如setenv Foo。还可以使用printenv命令将所有变量打印到命令控制台，或使用printenv foo命令单独打印一个变量foo。

通常使用saveenv命令将整个环境以某种格式永远保存下来。如果有一个未被使用的NAND或NOR闪存，则通常用于保留擦写块，一般还需要另一个用作冗余副本的闪存来防止坏块情况。如果是用eMMC或者SD卡存储，则可以将一个磁盘分区的文件存储其中。备选方案还有包括连接了I2C、SPI接口或非易失RAM的串行EERPOM。

引导映像格式

U-Boot没有文件系统。相反的，它标记了一个64字节的头信息块用于跟踪存储内容。为U-Boot创建引导映像文件时往往使用mkimage命令。以下是对其使用情况的简要概述：

 [image:]

例如，为ARM处理器创建一个内核映像，该命令是：

 [image:]

加载映像

通常情况下，你会选择从可移除存储设备（如SD卡）或网络来加载映像。U-Boot使用mmc驱动处理SD卡。向内存中加载映像的典型过程如下：

 [image:]

mmc rescan命令用于重启mmc驱动器，也可用于检查最近是否有SD卡插入。下一步的fatload命令可用于从SD卡的FAT格式分区读取文件，该命令的一般格式是：

 [image:]

此例中，<interface>是mmc，<dev：part>是mmc接口从0开始计数的设备编号，分区编号从1开始计数。因此，<0：1>是第一设备的第一个分区。内存位置0x82000000是从当前未被使用的RAM空间中选出的一个区域。如果我们打算启动内核，则要确保这一区域0x80008000的内存在内核映像解压缩和位于运行位置时不被覆盖。

通过网络加载映像文件可以使用简单文件传送协议（TFTP）。这需要在我们的开发系统上安装一个TFTP的守护进程，名为tftpd。同时还必须在PC和目标板之间配置防火墙以允许通过UDP 69号端口传递TFTP协议。tftpd的默认配置仅允许访问/var/lib/tftpboot目录。下一步是将我们所需的文件传输到目标板的该目录下。然后假设使用的是一对静态IP地址，即不需要进一步的网络管理，加载一组内核映像文件的命令顺序如下所示：

 [image:]

 [image:]

最后，让我们来看一下如何通过nand命令将映像加载到NAND闪存中并读取回来。此示例通过TFTP加载一个内核映像并将映像编写到flash中去：

 [image:]

然后就可以使用nand read命令从闪存加载内核：

 [image:]

3.7.4　引导Linux系统

bootm命令用于启动内核映像的运行。它的语法是：

 [image:]

其中内核映像的地址是必须提供的。如果内核配置不需要ramdisk和dtb，则它们的地址可以省略。如果内核配置需要dtb但不需要randisk，则第二个地址可以使用一个短横线（-）代替，即如下命令所示：

 [image:]

使用U-Boot脚本自动引导

显然，每次都输入一长串命令来启动目标板十分不方便，也不易被接受。为了将这一过程自动化，U-Boot支持在环境变量中存储一系列命令。如在名为bootcmd的变量中包含一脚本，在电源启动后延迟bootdelay秒，该变量中的脚本则会自动运行。如果通过一个串行控制台观察这一过程，就可以看到延迟逐渐倒数至0。在这一过程中可以通过任意键来打断倒计时并与U-Boot进行交互式会话。

创建脚本的方法很简单，但脚本的可读性并不好。您可以简单地通过一个分号分隔添加的命令，分号前必须加一个反斜杠转义字符。例如，如果你要从闪存的某一偏移位置载入一个内核映像并启动它，使用命令如下所示：

 [image:]

3.7.5　将U-Boot移植到新板上

现在假设我们是硬件开发部门的一员，正在开发一个新的基于BeagleBone Black的主板，叫做“Nova”，然后需要将U-Boot移植到这块新板上。此时我们就必须要理解U-Boot的代码层次以及在主板上的配置机制是如何工作的。在2014年10月发布的U-Boot新版本中，U-Boot采用了和Linux内核的Kconffig相同的配置机制。在之后发布的几个版本中，使用的配置设置都将从现在的include/conffigs的头文件中移动到Kconffig文件里去。在2014年10月发布的版本中，每个主板都有一个Kconffig文件，其中包含了从旧的board.cfg文件中继承的部分信息。

你将要处理的目录主要有：

·arch目录：包含了支持特定架构的代码，分别放在对应的目录下，如arm、mips、powerpc等。在每个架构下都有对应于该族成员的子目录，例如arch/arm/cpu。还有一些目录存放一些架构的变体，如amt926ejs、armv7和armv8等。

·board目录：包含对应主板的特定代码。当几个主板是由同一个供应商提供时，则他们可以一起收集到同一个子目录中。例如am335x evm系列主板都是基于BeagelBone的，则对它的支持文件都存放在board/ti/am335x子目录中。

·common目录：包含核心函数，包括命令行shell和相关命令，每个都以cmd_[command name].c的格式命名。

·doc目录：包含描述U-Boot不同方面的一些README文件。如果想了解如何使用U-Boot的端口，最好先浏览这些文件。

·include目录：除了许多共享头文件之外，该目录下还包含了一个十分重要的子目录include/conffigs。在该子目录下，你将找到大部分主板配置设置。但随着这些功能向Kconffig转移，这些信息可能都会被移动到Kconffig文件中。但在本书写作时，这个过程才刚刚开始。

3.7.6　Kconfig和U-Boot

Kconfig从对应文件中提取配置信息，然后将整个系统的配置信息存储在名为.conffig的文件中，具体细节将在第4章中作详细介绍。U-Boot采用了稍作修改的Kconffig和Kbuild。一个U-Boot创建过程可生产三个二进制文件，一个常规u-boot.bin文件，一个SPL和一个TPL，每个都可能有些不同的配置选项。因此，.conffig文件中的每一行和默认配置文件可以使用表3-2列出的字符前缀来设置相应的配置选项：

表3-2　字符前缀

 [image:]

各类主板在conffigs/[board name]_defconffig目录下都有其相关默认配置。例如，对于一个新的Nova主板，我们需要创建一个文件名为nova_defonffig.的文件，并将这些行添加到该文件中：

 [image:]

第一行的conffig_spl=Y表明将生成SPL的二进制文件MLO，conffig_arm=Y表明arch/arm/Kconffig中的内容将在第三行被包含进来。在四行，conffig_target_nova=Y说明选择了新的主板Nova。这里我们注意到，第三行和第四行有一个+S的前缀，因此他们将同时应用到SPL和正常的二进制文件。

我们还需要添加一个ARM架构的Kconffig菜单选项，允许用户可以选择Nova作为目标板：

 [image:]

特定主板文件

每个主板都有一个board/[board name]或board/[vendor]/[board name]的子目录，其中应包含：

·Kconffig：包含与主板相关的配置选项。

·MAINTAINERS：包含一个记录，记录当前主板是否需要维护，如果需要的话由谁来维护等信息。

·Makefile：用于构建主板的特定代码。

·README：包含与移植该U-Boot相关的有用信息，例如可以用于哪些DIY硬件等。

此外还可能包含一些主板特定功能的源文件。

你的Nova主板是基于BeagleBone的，而BeagleBone是基于TI AM335X EVM的，所以可以从复制AM335x主板文件开始：

 [image:]

下一步是修改Kconffig文件，将它和Nova主板关联起来：

 [image:]

将SYS_CPU设置为armv7会将arch/arm/cpu/armv7中的代码进行编译和链接，将SYS_SOC设置为am33xx会将arch/arm/arnv7am33xx中的代码包含进来，将SYS_BOARD设置为nova会引入board/nova，将SYS_CONfig_NAME设为nova则意味着头文件include/conffigs/nova.h将用作进一步的配置选项。

在board/nova中还有另一个需要修改的文件，是存放链接器脚本的board/ova/u-boot.lds文件，该文件有一个对board/ti/am335x/built-in.o文件的硬代码引用，需要将其修改成使用nova的本地副本：

 [image:]

配置头文件

每类主板都在include/conffigs目录下有相关头文件，该头文件包含了配置的主体内容。该文件由SYS_CONfig_NAME标识符通过主板的Kconffig文件命名。该文件的具体格式在U-Boot资源树顶层的README文件中有详细描述。

为了我们创建的Nova主板，需要复制am335x_evm.h到nova.h并做一些修改：

 [image:]

3.7.7　构建与测试

为了构建Nova主板，需要选择我们刚刚创建的配置：

 [image:]

将MLO和u-boot.img复制到micro-SD卡上的刚刚创建的FAT分区中，然后启动主板。

3.7.8　“猎鹰”模式

我们曾用过这样一种引导现代嵌入式处理器的方法，即通过CPU引导ROM加载一个SPL，利用SPL来加载u-boot.bin文件并通过运行该文件装载Linux内核。还有一种方法可以减少引导步数，简化和加速引导过程。该方法就是U-Boot的“猎鹰”（Faleon）模式，该模式的名称是以据说是飞得最快的鸟的名字命名的。

该方法的理念很简单：使用SPL直接加载一个内核映像，忽略加载u-boot.bin的步骤。其中不需要与任何用户交互也不需要任何脚本，只需要将内核从闪存或eMMc中的已知位置加载到内存中，并将映像传到预先准备好的参数块中启动它即可。“猎鹰”模式的具体配置细节不在本书做过多描述，如果想要了解详细信息，可以浏览doc/README.falcon文件。
3.8　Barebox

在结束本章之前，我们再来了解一个和U-Boot类似但思路不同的引导程序Barebox。它是从U-Boot派生的并在早期被称为U-Boot v2。Bearbox的开发人员的主要目标是将U-Boot和Linux的优秀部分结合起来，包括一个类POSIX的API和可挂载文件系统。

Barebox项目的网站是www.barebox.org，开发者邮箱地址是barebox@lists.infradead.org。

3.8.1　获取Barebox

为了获取barebox，可以从Git仓库克隆代码并检查我们想要使用的版本：

 [image:]

代码布局与U-Boot类似：

·arch目录：包含了支持特定架构的代码，包括所有主流的嵌入式架构。SoC的支持放在arch/[architecture]/mach-[SoC]目录下。单独主板的支持都放在arch/[architecture]/boards目录下。

·common目录：包含核心函数和shell。

·commands目录：包含所有shell.c调用的命令。

·documentation目录：包含文档文件的模板，输入make docs命令可以构建文档，生成的文件都放在Documentation/html目录下。

·drivers目录：包含设备驱动程序的代码。

·include目录：包含头文件。

3.8.2　构建Barebox

Barebox一直使用kconffig和kbuild，在arch/[architecture]/conffigs目录下存放着默认的配置文件。例如，如果我们想为BeagleBoard C4构建Barebox，则需要两个配置，一个用于SPL，一个用于主要的二进制文件。首先要构建MLO：

 [image:]

其结果是获得第二阶段的程序加载器，MLO。

之后是构建barebox：

 [image:]

将两者都复制到SD卡中：

 [image:]

然后启动板卡，能在控制台上看到如下信息：

 [image:]

 [image:]

Barebox一直在不断进化。在写作本书的时候，它还没有像U-Boot那样的广受硬件支持，但在构建新项目时也值得考虑。
3.9　总结

每个系统都需要一个引导程序来加载内核，给予硬件活力。U-Boot因为支持较为广泛的硬件并很容易扩展到新设备上而受众多开发人员喜爱。在过去的几年里，嵌入式硬件复杂度的提升和种类的激增导致了一种叫做设备树的描述硬件的新方法引入。设备树仅仅是系统的文本表示，它被编译为设备树二进制文件（dtb），该二进制文件将在内核加载的时候传递到内核中去。设备树由内核解释，并负责加载和设备驱动初始化。

U-Boot的使用非常灵活，它允许映像从大型存储器、闪存或网络中加载并启动。同样，Barebox能实现相同的功能，只是硬件的支持不如U-Boot多。尽管它有着更为简洁的设计和类似POSIX的内部API。在本书写作的时候，它似乎还没有被除了自身专有社区外的人或组织接受。

在介绍了关于Linux引导的复杂内容之后，下一章将是系统的下一个阶段，也是嵌入式项目的第三块，即内核的出场。
第4章　移植与配置内核

内核是嵌入式系统的第三个组成部分。它是负责管理资源以及与硬件接口的组件，所以几乎会影响到最终软件版本的方方面面。正如我们在第3章中看到的那样，虽然内核通常针对特定的硬件配置，但是设备树允许你根据其内容为特定硬件创建一个通用的内核。

本章将讨论如何获得一个针对开发板的内核，以及如何配置和编译它。我们将再次聚焦引导，这次重点放在内核所扮演的角色上。同时，我们也会看到设备驱动程序，以及它们如何从设备树中提取信息。
4.1　内核做了什么

Linux在1991年诞生。那时Linus Torvalds开始为英特尔386和486型个人电脑写操作系统。他受到Minix操作系统的启发，该操作系统是Andrew S.Tanenbaum于四年前写的。Linux与Minix在很多方面都不同，主要差异在于，Linux是一个采用32位虚拟内存的内核并且代码是开源的，后来在GPL2许可证下发布。

1991年8月25日，Linus Torvalds在comp.os.minix新闻组里宣布了Linux，他在邮件中说，“我正在为386（486）AT clones写一个（自由的）操作系统（只是爱好而已，不会像GNU一样成为广泛且专业的操作系统），这个计划从4月份开始酝酿，现在已做好准备。我希望得到人们关于Minix优缺点的任何反馈意见，因为我的操作系统从某种程度上与Minix有点类似（其中一点是文件系统的物理布局一样（由于实际原因））”

 [image:]

图4-1　内核的主要功能

为了严格准确，Linus没有写操作系统，而是写了一个内核，这是操作系统的一个组成部分。为了创建一个能够工作的系统，他使用了GNU项目的组件，尤其是工具链、C库和基本命令行工具。这些特征至今仍然存在，并且为使用Linux的方式提供了很多的灵活性。它可以结合一个GNU用户空间创建一个完整的Linux发行版，运行在台式机和服务器上，这有时称为GNU/Linux；它可以结合Android用户空间创建众所周知的手机操作系统，也可以结合一个基于Busybox的小型用户空间创建一个紧凑的嵌入式系统。与BSD操作系统不同，FreeBSD、OpenBSD和NetBSD中的内核、工具链和用户空间被组合成单个代码库。

内核有三个主要工作：管理资源，通过接口接合硬件，并为用户空间程序提供一个抽象化的接口，如图4-1所示。

运行在用户空间中的应用程序处在低CPU特权级别。除了可以调用库以外，它们基本做不了其他的事情。用户空间和内核空间的主要接口是C库，它将用户级函数，如那些由POSIX定义的函数转换成内核系统调用。系统调用接口使用一个特定的结构化方法，如一个陷阱或软中断，将CPU从低特权用户模式切换到高级特权内核模式，它允许访问所有的内存地址和CPU寄存器。

系统调用处理程序将调用分发到相应的内核子系统：如调度程序、文件系统调用的调度，文件系统代码的调度等。一些调用需要底层硬件的输入，因而将被传递给设备驱动程序。在某些情况下，硬件本身通过产生一个中断来调用内核函数。中断只能在设备驱动程序中处理，而不可能通过一个用户空间应用程序处理。

换句话说，应用程序做的所有事情，都通过内核完成。因而内核是系统中最重要的组成部分。
4.2　选择内核

下一步是为你的项目选择内核，平衡你对坚持使用最新版本的期望与厂商增加特性的需要。

4.2.1　内核开发周期

Linux开发已经进入一个快速更迭的时代，每8～12周就会发布一个新版本。近年来版本号的构成方式发生了一点变化。在2011年7月前，版本号由三个数字构成，版本号看起来像是2.6.39这样的形式。中间的数字表示它是一个开发人员版还是稳定版，奇数（2.1.x，2.3.x，2.5.x）是为开发人员准备的，偶数是为终端用户准备的。从2.6版开始，开发人员版本（奇数版本）长期存在的想法（奇数版本）被取消了，因为它降低了为用户提供新功能的速度。2011年7月编号从2.6.39变更到3.0仅仅是因为Linus觉得编号变得过大：这两个版本的Linux在功能和架构方面并没有巨大的飞跃。他也趁机把中间的数字去掉。此后，在2015年4月，他把版本号从3跳到4，还是仅仅因为简洁，并不是因为有任何结构方面大的变动。

Linus本人管理内核树。可以克隆他的git树，如下：

 [image:]

这将检查到子目录linux。可以通过不时地在该目录下运行git pull命令进行更新。

目前，一个完整的内核开发周期开始于持续2周的合并窗口。在此期间，Linus将接受新功能的补丁。在合并窗口结束后，另一个稳定的阶段开始，期间Linus将产生发布版的候选版本，版本号以-rc1、-rc2等结尾，通常最大到-rc7或-rc8。在此期间，人们测试候选版本，并提交错误报告和修正。当所有重大的错误全部被解决时，内核才发布。

在合并窗口期间，代码已经相当成熟了。通常，它来源于大量子系统和架构内核维护人员的丰富资源。为了保持相对较短的开发周期，当某个特性准备就绪时才会合并。如果一个特性被认为是不稳定的或没有被内核维护人员完全开发，它可能被推迟到下一个版本。

掌握每个发行版本发生的变化并不容易。可以阅读在Linus的git库中提交的日志，但是每个发行版有大约10 000甚至更多的条目，因此很难有一个整体的把握。值得庆幸的是，有一个面向Linux新手的网站，http://kernelnewbies.org，在http://kernelnewbies.org/linux-versions页面你会找到每个版本的简洁概述。

4.2.2　稳定版和长期支持版

Linux变化速度快是件好事。它为主线代码库带来新功能，但它并不适合生命周期较长的嵌入式项目。内核开发人员以两种方式来解决这个问题。首先，它承认发布的版本可能包含错误，需要在下一个内核发布之前进行修复。这是Linux内核稳定版所扮演的角色，是由Greg Kroah-Hartman维护的。发布后，内核从主线版（由Linus支持）转变到稳定版（由Greg支持）。稳定版内核的bug修复版本是由三个数字表示的，如3.18.1，3.18.2等。在版本3之前，版本号为四个数字，如2.6.29.1，2.6.39.2等。

可以使用下面的命令来获得稳定树：

 [image:]

可以用git checkout命令获取一个特定版本，比如版本4.1.10：

 [image:]

通常，稳定版内核只维护到下一主线版发布，一般是8～12周，因此你会发现在kernel.org上只有一个或两个稳定版内核可供下载。为了满足那些喜欢较长的更新周期并确保任何bug都将被发现和修复的用户，一些内核被列为长期支持版，提供两年或更长时间的维护。每年至少有一个长期支持版内核。在撰写本书时，在kernel.org网站中共有8个长期支持版内核可供下载：4.1、3.18、3.14、3.12、3.10、3.4、3.2和2.6.32。最后一个版本一直保持了五年，并达到2.6.32.68版。如果你正在构建一个产品并且需要持续如此长的时间，最新的长期支持版内核可能是个很好的选择。

4.2.3　供应商支持

理想情况下，你将能够从kernel.org下载内核并把它配置到任何声称支持Linux的设备上。然而，这不总是行得通的：事实上，主流Linux只为众多运行Linux的设备中的一小部分提供可靠的支持。你可能从独立的开源项目中找到对主板或SoC的支持，如Linaro或Yocto Project，或从提供嵌入式Linux第三方支持的公司获得这些支持，但在许多情况下，你将不得不指望SoC或主板的开发商提供可工作的内核。正如我们所知道的，有些比其他的还好。

眼下我唯一的建议是选择提供良好支持的供应商，或者更好的选择是，那些不厌其烦地把他们的内核变化合并进主线版的供应商。

4.2.4　授权

Linux源代码由GPL v2授权，这意味着你必须以许可证所指定的某种方式使你的内核源代码变得可用。

内核许可证的实际文本在文件COPYING中。它始于由Linus编写的一个附录，声明通过系统调用接口从用户空间调用内核的代码不被认为是内核的派生工作，于是不涉及许可证。因此，不会影响运行在Linux顶层运行的专有软件。

然而，有一个领域的Linux许可存在无休止的混乱和争议：内核模块。内核模块只是一个代码段，在运行时动态链接内核，从而扩展内核的功能。GPL没有区分静态和动态链接，所以这样看来，内核模块源使用GPL授权。但是，在Linux早期，有关于此规则例外情况的争论，例如，连接Andrew文件系统。此代码早于Linux，因此（它被认为）不是一个派生工作，所以许可证不适用。类似的讨论在其他代码块中多年来一直发生，结果现在公认的做法是GPL不一定适用于内核模块。这是由内核MODULE_LICENSE宏决定的，它可以通过Proprietary的值表示该内核模块并非是在GPL下发布的。如果你计划使用相同参数，可以阅读一个经常被引用的邮件，标题为“Linux GPL and binary module exception clause？”（http://yarchive.net/comp/Linux/gpl_modules。HTML）。

GPL应被视为一件好事，因为它保证了当你参与嵌入式项目时，我们可以随时获取内核源代码。如果没有它，嵌入式Linux将更分散、更难使用。
4.3　内核构建

在决定了你要在哪个内核的基础上来构建后，下一步就是构建它。

4.3.1　获取源码

假设你有一个能够由主线支持的主板。可以通过git或下载tarball得到源代码。推荐使用git，因为可以看到提交历史，并轻易地看出所做的变动，切换不同的分支和版本。在这个例子中，我们克隆稳定树并检查4.1.10的版本标签：

 [image:]

或者，可以从https://https://cdn.kernel.org/pub/linux/kernel/v4.x/linux-4.1.10.tar.xz.下载tarball。

这里有很多代码。4.1的内核中有超过38000个文件，其中包含C源代码、头文件和汇编代码，总计超过1250万行代码（由cloc实用程序衡量）。尽管这样，但是知道代码的基本布局并了解大约要从哪里寻找一个特定的组件是值得的。感兴趣的主要目录是：

·arch：包含特定架构文件。每个架构都有一个子目录。

·Documentation：包含内核文档。如果你想找到更多关于Linux某个方面的信息，请先看这里。

·drivers：包含数千个设备驱动程序。每个类型的驱动程序有一个子目录。

·fs：包含文件系统代码。

·include：包含内核头文件，包括构建工具链时需要的那些头文件。

·init：包含内核启动代码。

·kernel：包含核心功能，包括调度、锁定、定时器、电源管理和调试/跟踪代码。

·mm：包含内存管理。

·net：包含网络协议。

·scripts：包含许多有用的脚本，包括设备树的编译器、dtc，这在第3章中描述过。

·tools：包含许多有用的工具，包括Linux性能计数器工具perf，这将在第13章中描述。

在一段时间后，你会熟悉这个结构，并意识到，如果你正在寻找一个特定SoC上串口的代码，你会在drivers/tty/serial而不是arch/$ARCH/mach-foo中找到它，因为它是一个设备驱动程序，而不是在SoC上的运行Linux至关重要的东西。

4.3.2　理解内核配置

Linux其中的一个优点是可以针对不同的需求配置内核，从小型专用设备（如智能温控器）到移动电话。在当前版本中有成千上万个配置选项。获得配置权是它本身的一项任务，在此之前，我想告诉你它是如何工作的，以便能更好地理解接下来发生的事。

配置机制叫做Kconffig，与它集成的构建系统叫做Kbuild。它们都记录在Documen-tation/kbuild/中。Kconffig/Kbuild不仅用于内核还用于许多其他项目，包括crosstool-NG、U-Boot、Barebox和BusyBox。

使用Documentation/kbuild/kconffig-language.txt中描述的语法，在一个命名为Kconffig的文件层次结构中声明配置选项。在Linux中，顶层Kconffig如下所示：

 [image:]

最后一行包含与体系结构相关的配置文件，这是其他Kconffig文件的源，其他配置文件取决于对应选项是否启用。知道了架构扮演这样的角色有两点启示：首先，你必须在配置时通过设置ARCH=[architecture]，指定一个架构，否则将默认为本地机器的架构；其次，每个架构的顶层菜单的布局是不同的。

你设置的ARCH值是目录arch的一个子目录，有两个例外是ARCH=i386和ARCH=x86_64，它们的源都是arch/x86/Kconffig。

Kconffig文件主要由菜单和菜单项构成菜单关键词menu、menu title和endmenu描述，菜单项由conffig标记。这里是在drivers/char/Kconffig目录中的一个例子：

 [image:]

conffig后面的参数是一个变量名，在本例中是DEVMEM。因为这个选项是一个布尔值，所以它只有两个值：如果有效则被分配给y，如果无效则没有定义。屏幕上显示的菜单项的名称放在关键词bool后面。

配置项存储在名为.conffig的文件中（注意：前面的点“.”意味着它是一个隐藏的文件，不能通过使用ls命令显示出来，除非你键入ls-a来显示所有文件）。存储在.conffig中的变量名称以CONfig_开头，所以如果DEVMEM启用，意思就是：

 [image:]

除了bool类型之外，还有一些其他的数据类型。下面是列表：

·bool：它要么是y要么未定义。

·tristate：表示特性是否组建成内核模块或内置到内核映像。取值m表示模块，y表示内置到映像，该特性不启用时未定义。

·int：这是一个用十进制符号表示的整型值。

·hex：这是一个用十六进制表示的无符号整数值。

·string：这是一个字符串值。

不同项之间可能存在依赖关系，由depends on词组表示，例如：

 [image:]

如果CONfig_MTD尚未在其他地方启用，这个菜单选项是不显示的，于是也不能选择。

也有反向依赖关系：如果启用此选项，则select关键词会启用其他选项。arch/$ARCH中的Kconffig文件有大量select语句来启用架构中相应的特性：

 [image:]

有几个配置实用程序能够读取Kconffig文件并产生一个.conffig文件。它们中的一些用来显示屏幕上的菜单，以交互方式让你选择。menuconffig可能是最为人所熟悉的一个，另外还有xconffig和gconffig。

通过make启用每一个配置，记住，在配置内核的情况下，你必须提供一个架构，如下：

 [image:]

在这里，你可以看到menuconffig，其中DEVMEM conffig选项被突出标记（见图4-2）。

 [image:]

图4-2　使用menuconf ig配置内核

项目左边的星号（*）意味着它被选中（="y"），如果是M，则表示已选定它作为内核模块构建。

你经常看到类似enable CONfig_BLK_DEV_INITRD这样的命令，但因为有这么多菜单要浏览，找到某个配置设置的地方可能需要一点时间。所有配置编辑器都具有搜索功能。可以按下斜杠键“/”使用它。在xconffig中，则位于编辑菜单部分，但在这种情况下，你错过了寻找变量的CONfig_部分。

有很多东西需要配置，每次构建内核都从头开始是不合理的，所以在arch/$ARCH/conffigs中有一套已知的工作配置文件，每个都包含适合单个或一组SoC的配置值。可以通过make［配置文件名］选择一个配置文件。例如，要配置Linux使其运行在一系列使用armv7-a架构的SoC上，其中包括BeagleBone Black AM335x开发板，你可以输入：

 [image:]

这是一个通用的内核，它运行在各式各样的主板上。对于一个更专业的应用程序，例如，当使用供应商提供的内核时，则默认配置文件是板级支持包的一部分。在你构建内核前，需要找出应该使用哪一个。

还有一种有用的配置目标叫做oldconffig。这需要一个已有的.conffig文件，并要求你提供配置文件中尚未配置的选项。当把一个配置移动到一个新的内核版本时，你就会用到它：从旧内核中复制.conffig配置到新的源目录，并运行make ARCH=arm oldconffig来更新它。它也可以用来验证你自己编辑的一个.conffig文件（忽略出现在顶部的文本Automatically generated file；DO NOT EDIT：有时是可以忽略警告的）。

如果你对配置做了修改，修改后的.conffig文件就变成了你的设备的一部分，需要放置在源代码中。

当你开始构建内核时，就会生成头文件include/generated/autoconf.h，它使用#define包含每一个配置值，因此它可以包含进内核源码，恰好与U-Boot一起。

4.3.3　使用LOCALVERSION识别你的内核

可以使用make kernelversion来查找你构建的内核版本：

 [image:]

命令uname在运行时可以显示版本号，还用来命名内核模块的存储目录。

如果你更改了默认配置，建议添加自己的版本信息，可以通过设置CONfig_LOCALV-ERSION来配置，该配置文件可以在General setup configuration菜单中找到。也可以通过编辑顶层makefile并把它添加到以EXTRAVERSION开头的那一行（但不建议这样做）。例如，如果我想使用标识符melp和版本1.0标记我正在构建的内核，我会在.conffig文件中这样定义本地版本：

 [image:]

运行make kernelversion，会产生与之前一样的结果。但现在如果运行make kernelrelease你会看到：

 [image:]

在内核日志的开头会输出：

 [image:]

现在可以识别和跟踪自定义内核了。

4.3.4　内核模块

我已经提到内核模块好几次了。Linux桌面发行版广泛使用着它们，以便在运行时根据检测到的硬件和所需的特性加载正确的设备和内核函数。没有它们，每一个驱动程序和特性将静态链接到内核，从而导致其过于臃肿。

另一方面，借助嵌入式设备，硬件和内核配置通常在内核构建时确定，所以模块不是那么有用。事实上，它会导致一个问题，因为它在内核和根文件系统之间创建了一个版本依赖关系，如果一个被更新，而另一个没有更新，它会导致启动失败。因此，构建嵌入式内核时不使用任何模块是相当普遍的。这里有几个推荐使用内核模块的情况：

·拥有专有模块，如前面提到的授权理由。

·通过推迟非必要的驱动程序加载，减少开机时间。

·存在若干可加载的驱动程序，它们占用太多内存来进行静态编译。例如，你有一个支持多种设备的USB接口。该接口本质上使用相同参数，因为都用于桌面发行版。
4.4　编译

内核构建系统kbuild是一系列的make脚本。它从.conffig文件中获取配置信息，处理依赖关系和编译用来产生内核映像的一切，包括所有静态链接的组件。还可能包含二进制设备树、一个或多个内核模块等。依赖关系以每个具有可构建组件的目录下的makefile中表示。例如，在目录drivers/char/Makefile中有：

 [image:]

obj-y规则无条件编译源文件，然后生成目标文件，所以mem.c和random.c始终是内核的一部分。第二行的ttyprintk.c依赖于一个配置参数。如果CONfig_TTY_PRINTK是y，编译为内置集成；如果是m，则构建成一个模块；如果参数未定义，则它不编译。

对于大多数的目标而言，只输入make（用适当的ARCH和CROSS_COMPILE词组）就可以了，但一步一步来也有好处。

4.4.1　编译内核映像

为了建立一个内核映像，你需要知道你的引导加载程序需要什么。这是一个粗略的指南：

·U-Boot：传统上，U-Boot要求uImage，但新版本可以使用bootz命令加载zImage文件。

·x86目标：它需要一个bzImage文件。

·大多数其他引导加载程序：它需要一个zImage文件。

这里是构建zImage文件的一个实例：

 [image:]

-j 4选项告诉make可以并行运行的作业数，从而减少了构建的时间。一般作业数应与你的CPU核数一样。

构建bzImage和uImage目标时方法相同。

构建支持多平台的ARM的uImage文件存在一个问题，这是ARM SoC内核的现状。在Linux 3.7中介绍了对ARM的多平台支持。它允许单个内核以二进制形式运行在多个平台，并向拥有少量内核即可支持所有ARM设备的方向迈进了一步。内核通过由引导加载程序传递给它的机器号或设备树选择正确的平台。问题是因为每个平台物理内存的位置可能不同，所以内核重定位（通常是从物理内存开始的0x8000字节）也可能是不同的。重定位地址在构建内核时由mkimage命令编码到头文件uImage中，但是如果出现多个重定位地址选项则会失败。换句话说，这个uImage格式不兼容多平台的映像。只要你给出你打算启动该内核的特定SoC的LOADADDR，你仍然可以从一个多平台版本中创建一个二进制文件uImage。可以通过查看mach-[your SoC]/Makefile.boot看到加载地址并注意zreladdr-y.的值。

在BeagleBone Black中，完整的命令如下所示：

 [image:]

构建内核时会在顶层目录生成两个文件：vmlinux和System.map。vmlinux是一个ELF格式的二进制内核。如果在编译内核时启用了调试（CONfig_DEBUG_INFO=y），它将包含调试符号，调试符号可以和kgdb这样的调试器一起使用。也可以使用其他ELF二进制工具，如size：

 [image:]

System.map包含人类可读形式的符号表。

大多数引导加载程序无法直接处理ELF代码。一个进一步的处理阶段是把vmlinux中的二进制文件放到适合于各种引导加载程序的arch/$ARCH/boot中：

·Image：vmlinux转换为二进制后未加工的文件。

·zImage：对于PowerPC体系结构，这只是一个压缩版本的Image，这意味着引导加载程序必须解压缩。对于所有其他架构，就是把Image压缩文件捎带到能对其解压缩和重定位的存根代码中。

·uImage：zImage加上64字节的U-Boot头。

构建运行时，你会看到一个正在执行的命令摘要：

 [image:]

 [image:]

有时，如果构建内核失败，可以看看实际被执行的命令。像这样把V=1添加到命令行：

 [image:]

4.4.2　编译设备树

下一步是构建设备树。dtbs目标根据arch/$ARCH/boot/dts/Makefile中的规则使用该目录中设备树源文件构建：

 [image:]

.dtb文件产生于与源文件相同的目录中。

4.4.3　编译模块

如果你已经配置好了部分用于模块的特性，可以使用modules分别构建它们：

 [image:]

编译模块有一个.ko后缀，并与源代码在同一个目录中生成，这意味着它们分布在内核源树的各个角落。找到它们有点棘手，但可以使用modules_install使目标安装在正确位置。在开发系统中的默认安装位置是/lib/modules，可以肯定这不是你想要的。借助INSTALL_MOD_PATH，可以把它们安装到根文件系统（我们将在下一章讨论根文件系统）中的暂存区域：

 [image:]

内核模块被放置到目录/lib/modules/[kernel version]，该目录与文件系统的根目录有关。
4.5　清理内核源

有三个make命令可以清理内核源树：

·clean：删除对象文件和大多数中间文件。

·mrproper：删除所有中间文件，包括.conffig文件。借此将源码树返回到源代码克隆或提取后的状态。如果你对这个名字感到好奇，Mr Proper是在世界某些地区常见的一个清理产品。make mrproper的意思是很好地清理内核源代码。

·distclean：与mrproper相同，但是也删除备份文件、补丁遗留文件和软件开发的其他工件。
4.6　启动你的内核

内核启动十分依赖于设备，这里是一个在BeagleBone Black开发板和QEMU模拟器上使用U-Boot的例子：

4.6.1　BeagleBone Black

以下U-Boot命令显示如何在BeagleBone Black上启动Linux：

 [image:]

 [image:]

注意，我们设置了内核命令行为console=ttyO0，115200，这告诉Linux使用哪个设备进行控制台输出。本例中是表示使用板上第一个UART的设备ttyO0，以每秒115 200比特的速率输出。否则我们在Starting the kernel...后面看不到任何消息，也不知道它是否在工作。

4.6.2　QEMU

假设你已经安装了qemu-system-arm，你可以随multi_v7内核和ARM Versatile Express的.dtb文件一起启动它：

 [image:]

设置QEMU_AUDIO_DRV为none只是为了不显示QEMU中关于缺少音频驱动程序配置的错误信息，因为我们用不到它。

按Ctrl-A组合键然后再按x键（两个按键独立），可以从QEMU退出。

4.6.3　内核崩溃

事情开始不好的时候，结局就会很糟糕：

 [image:]

这是个关于内核崩溃的很好的例子。当内核遇到不可恢复的错误时会发生崩溃。默认情况下，它会输出一个消息到控制台，然后停机。可以设置panic命令行参数允许崩溃后几秒钟才重新启动。

本例中，不可恢复的错误是因为没有根文件系统，说明如果没有用户空间的控制，内核就是无用的。可以通过提供一个根文件系统作为一个虚拟内存盘或把它挂载到大容量存储设备来提供一个用户空间。我们将在下一章讨论如何创建一个根文件系统，但是为了弄清原委，假设我们在uRamdisk文件中有一个虚拟内存盘，然后可以把这些命令输入到U-Boot以启动一个shell提示符：

 [image:]

这里我在命令行添加了rdinit=/bin/sh使内核运行shell并给我们一个shell提示符。现在，控制台上的输出如下所示：

 [image:]

最后，我们有了一个提示符，供我们与设备进行交互。

4.6.4　早期用户空间

为了从内核初始化过渡到用户空间，内核必须挂载根文件系统，并在该根文件系统中执行一个程序。这可以通过一个虚拟内存盘（如上一节所示）或在一个块设备上安装真正的文件系统。这一切的代码在init/main.c中：从函数rest_init（）开始创建第一个线程（PID为1）然后运行kernel_init（）中的代码。如果有一个虚拟内存盘，它会尝试执行program/init，这将承担建立用户空间的任务。

如果没有找到且无法运行/init，它将试图调用init/do_mounts.c中的函数prepare_names-pace（）以挂载文件系统。这需要root=命令行给出要被挂载的块设备的名称，通常形式如下：

·root=/dev/<disk name><partition number>

·root=/dev/<disk name>p<partition number>

例如，对于SD卡上的第一个分区，它是root=/dev/mmcblk0p1。如果挂载成功，它将尝试执行/sbin/init，然后是/etc/init、/bin/init，再然后是/bin/sh，，试到能工作为止。

init程序可以在命令行中重写。对于一个虚拟内存盘，使用rdinit=（我早期用rdinit=/bin/sh执行一个shell），对于一个文件系统，使用init=。

4.6.5　内核消息

内核开发者喜欢使用printk（）或类似函数输出有用的信息。消息根据重要性分类，0是最高的（见表4-1）：

表4-1　内核消息级别

 [image:]

它们首先写入缓冲区__log_buf，其大小是2的CONfig_LOG_BUF_SHIFT次幂。例如，如果是16，那么__log_buf是64 KB。可以使用dmesg命令清空整个缓冲区。

如果一个消息的级别低于控制台日志级别，它显示在控制台上并被放置在__log_buf中。默认的控制台日志级别是7，这意味着信息级别为6或者更小的将被显示，过滤掉级别为7的KERN_DEBUG。可以通过一些方式改变控制台日志级别，包括利用内核参数loglevel=<级别>或dmesg-n<级别>命令。

4.6.6　内核命令行

内核命令行是一个字符串，由引导加载程序传递给内核，在U-Boot中是通过bootargs变量，它也可以在设备树中定义，或在CONfig_CMDLINE中设置为内核的配置部分。

我们已经看到部分用于内核命令行的例子了。在文档Documentation/kernel-parameters.txt中有完整列表。表4-2列出了那些最有用的命令。

表4-2　内核命令列表

 [image:]

参数lpj通常是和减少内核启动时间联系起来的。在初始化过程中，约有250毫秒的内核循环来校准延时循环。它的值存储在变量loops_per_jiffy中，报告如下：

 [image:]

如果内核始终运行在同一个硬件上，它将始终计算出相同的值。可以把lpj=4980736加到命令行上来减少250毫秒的启动时间。
4.7　将Linux移植到新板上

任务范围取决于你的板与现有开发板的相似程度。在第3章中，我们把U-Boot移植到一个名为Nova的新板，这个新板基于BeagleBone Black（我说基于，但实际上就是）。在这种情况下，内核代码需要改变的很少。如果你是移植到完全新的硬件上，将需要更多的工作。本书只考虑简单的情况。

不同系统中对于arch/$ARCH中特定架构的代码组织各不相同。x86架构是非常简洁的，因为硬件细节是在运行时才检测的。PowerPC体系结构把SoC和板特定的文件放入了子目录平台中。ARM架构有大量特定于板和SoC的文件，因为有大量ARM板和SoC。平台依赖代码在arch/arm的mach-*目录中，平均每个SoC中大约有1个。plat-*目录中包含在SoC上常见几个版本的代码。在Nova板中，相关目录为mach-omap2。尽管它包含对OMAP2、3、4芯片的支持但是别被名字迷惑了。

接下来的几节中，我将以两种不同的方式移植到Nova板。首先我要向你展现如何使用设备树来做这件事，因为该类别中有很多的设备。然后不用设备树再做一遍。你会发现使用设备树的方法更简单。

4.7.1　使用设备树

首先要做的是为主板创建一个设备树，并修改针对板上附加或变更的硬件描述。在这个简单的例子中，我们只复制am335x-boneblack.dts到nova.dts中，然后改变板的名字：

 [image:]

我们可以显式编译nova.dtb：

 [image:]

或者，如果我们想要借助make ARCH=arm dtbs，对于OMAP2平台默认生成nova.dtb，那么可以将以下代码添加到arch/arm/boot/dts/Makefile中：

 [image:]

现在我们可以像之前一样启动相同的zImage文件，使用multi_v7_defconffig配置，但是像下面这样加载nova.dtb：

 [image:]

 [image:]

可以通过复制multi_Ⅵ_defconffig创建自定义配置，增加我们需要的特性，删除我们不需要的代码。

4.7.2　不用设备树

首先，需要为主板创建配置名称。本例中为NOVABOARD。我们需要把它添加到SoC的mach-目录下的Kconffig文件中，并且需要为SoC支持本身添加一个依赖，这就是OMA-PAM33XX。

把以下内容添加到arch/arm/mach-omap2/Kconffig中：

 [image:]

每个主板都有一个名为board-*.c的文件，其中包含特定于目标的代码和配置。在该例子中，它是board-nova.c——基于board-am335xevm.c的副本。必须有一个规则来编译它，由CONfig_MACH_NOVABOARD指定，然后添加到arch/arm/mach-omap2/Makefile中，完成编译：

 [image:]

既然不使用设备树来识别主板，我们就必须使用早期的机器号机制。这是每个主板独有的数字，该数字由引导加载程序通过寄存器r1传递，而ARM启动代码将使用该数字选择正确的板级支持。ARM机器号的确定列表在www.arm.linux.org.uk/developer/machines/download.php中。可以从www.arm.linux.org.uk/developer/machines/action=new#申请一个新的机器号。

如果我们获取了机器号4242，可以将它添加到arch/arm/tools/mach-types中，如下所示：

 [image:]

当我们构建内核时，它将用来创建include/generated/中的头文件mach-types.h。

机器号和板级支持由一个结构体联系在一起，定义类似这样：

 [image:]

 [image:]

请注意，在板文件中可能存在多个机器结构，允许我们创建一个可以在不同主板上运行的内核。由引导加载程序传递的机器号选择正确的那个。

最后，我们需要为主板创建一个新的默认配置，它选择CONfig_MACH_NOVA-BOARD和其他相关选项。在下面的例子中，它位于arch/arm/conffigs/novaboard_defconffig。现在可以像往常一样构建内核映像：

 [image:]

在完成工作之前还有一步，修改引导加载程序来传递正确的机器号。假设使用的是U-Boot，你需要复制arch/arm/include/asm/mach-types.h中Linux产生的机器号到U-Boot的arch/arm/include/asm/mach-types.h文件中。然后为Nova更新配置头文件include/conffigs/nova.h，并添加下面一行：

 [image:]

现在，就可以构建U-Boot然后使用它来启动Nova板上的新内核了：

 [image:]

4.8　延伸阅读

以下资源有本章介绍的主题的更多信息：

·《Linux Kernel Newbies》，kernelnewbies.org。

·《Linux Weekly News》，www.lwn.net。
4.9　总结

Linux是一个非常强大和复杂的操作系统内核，可以嫁接到各种类型的用户空间，从简单的嵌入式设备，到使用安卓系统的越来越复杂的移动终端，再到完整的服务器操作系统。其优势之一是可配置的程度。可以从www.kernel.org获得源代码，但是你可能也需要从设备厂商或第三方支持处得到一个特定的SoC或板的源码。为特定目标定制内核可能还包括修改内核代码、额外的设备驱动程序、默认内核配置文件和设备树源文件。

通常，你从目标板的默认配置开始，然后运行其中一个配置工具进行调整，如menuconffig。在这一点上，你应该考虑的事情之一是内核的功能和驱动程序是否应该被编译为模块或被内置。对于嵌入式系统，内核模块通常没有很大的优势，嵌入式的功能集和硬件通常已很好地定义。然而，模块通常用来作为一种导入专有代码到内核的方式，也可以通过在启动后再加载那些非必要的驱动程序来减少启动时间。构建内核产生一个压缩的内核映像文件zImage、bzImage或uImage，这取决于你将使用的引导加载程序和目标架构。一个内核的构建将产生你配置好的任何内核模块（如.ko文件），以及所需的设备树的二进制文件（如.dtb文件）。

把Linux移植到一个新的目标板可以相当简单，也可以很难，完全取决于主线或供应商提供内核中的硬件。如果你的硬件基于一个众所周知的参考设计，那么它可能只是一个对设备树或平台数据进行修改的问题。你很可能需要添加设备驱动程序，这会在第8章讨论。然而，如果硬件是完全不同于参考设计的，你可能需要额外的核心支持，这不在本书的讨论范围。

内核是基于Linux的系统的核心，但它单独存在时不能工作。它需要一个包含用户空间的根文件系统。根文件系统可以是一个虚拟内存盘或一个通过块设备访问的文件系统，这将是下一章的主题。正如我们所看到的，在没有根文件系统的情况下启动内核会导致内核崩溃。
第5章　构建根文件系统

根文件系统是嵌入式系统的第四个和最后一个元素。一旦你读完这一章，将能够构建、引导并运行一个简单的嵌入式系统。

本章从零开始，探讨根文件系统背后的基本概念。主要目的是提供给读者一些背景信息，以便能够理解并充分使用某些构建系统（如Buildroot和Yocto Project，我将在第6章谈到）。

这里描述的技术被公认为自行构建技术（roll your oun，RYO[1]）。在嵌入式系统的早期，这是创建根文件系统的唯一途径。还有一些情况可适用于RYO，例如，当内存或外存存储容量十分有限时，或是系统不必要求涵盖所有标准构建工具。然而这些情况相对少见。我要强调的是，本章的目的是教学，而不是提供构建日常嵌入式系统的“处方”。所使用的工具将在下一章描述。

首要目标是创建一个最小化根文件系统，仅提供命令行支持。然后以此作为基础，我们将添加脚本启动程序、网络配置接口以及用户权限管理。知道如何从头开始建立根文件系统是一项有用的技能，它将帮助你了解后续章节中更为复杂的例子。

[1] RYO原意是在没有现成雪茄时，手工自行卷制。此处意为自行仿制。
5.1　根文件系统是什么

内核从引导加载程序的指针传递，或是通过内核命令行root=参数来指定根文件块设备，由此获得一个根文件系统。一旦拥有一个根文件系统，内核将执行第一个程序，默认名为init（见第4章）。此后内核的使命也就完成了。然后由init程序调用C标准库中的系统调用函数（最终被转换为内核系统调用），开始处理脚本和启动其他程序等。

为构建一个有用的系统，你至少需要如下这些组件：

·init：通常借助运行一系列的脚本，启动其他程序。

·shell：提供必要的命令行交互，由它执行init和其他程序。

·daemon：由init启动的各种服务程序。

·librarie：几乎目前提到的所有程序都必须与共享库链接，而共享库必须在根文件系统中出现。

·Configuration file：文本文件，存储init和其他守护进程的配置，通常在/etc目录下。

·Device node：特殊文件，用于访问各种设备驱动程序。

·/proc and/sys：两个伪文件系统，以层级展示内核数据结构。许多程序和库函数读取这些文件。

·kernel module：如果你已配置了一些内核模块，它们将安装到这里，通常是/lib/modules/[kernel version]目录。

此外，还有系统应用或普通应用，它们借助设备进行正常工作，以及收集运行时的用户数据。

此外，确实可以将上述所有程序浓缩成一个单独程序。你可以创建一个静态链接程序，在启动时代替init。这样的配置我只见过一次。例如，如果你的程序命名为/myprog，将会使用如下的内核命令行命令：

 [image:]

或者，如果根文件系统是以虚拟磁盘的形式进行加载的，则使用如下命令：

 [image:]

这种方法的缺点是，你不能使用正常进入嵌入式系统的许多工具，必须自己完成所有事情。

5.1.1　目录布局

有趣的是，除了用init和rdinit参数指定的启动程序位置以外，Linux并不关心文件和目录的布局，所以你可以把东西放到任意位置。你可以比较一个运行Android的设备和某个Linux桌面发行版的文件布局，两者几乎完全不一样。

然而，许多程序期望文件被安置在某些地方。如果设备使用相似的布局，可以更好地帮助开发人员，Android除外。Linux系统的基本布局是由文件系统层次标准（Filesystem Hierarchy Standard，FHS）定义的，请阅读本章最后的参考资料。该系统涵盖了所有的Linux操作系统。嵌入式设备根据需要实现某个子集，但它通常包括以下部分：

·/bin：对所有用户必要的程序

·/dev：设备节点和其他特殊文件

·/etc：系统配置

·/lib：必要共享库，如C标准库

·/proc：proc文件系统

·/sbin：系统管理员程序

·/sys：sysfs文件系统

·/tmp：存储临时或易失性文件

·/usr：至少应包含目录/usr/bin、/usr/lib和/usr/sbin，存储额外的程序、共享库和系统管理员工具

·/var：可以在运行时修改的文件和目录的层次结构，例如一些在启动后必要保留的日志消息

这里有一点微妙的差别：/bin、/sbin之间的区别可以简单理解为/sbin不需要包含在非root用户的搜索路径下，Red Hat发行版的用户可能对此比较熟悉。/usr的意义在于，它可以作为根文件系统外的一个单独分区，所以不能包含任何启动系统时需要的东西。而/bin将包含启动时需要的文件，因此必须是根文件系统的一部分。

虽然一个程序有四个目录可以存放的做法有点小题大做，但是这未必没有好处，好处之一是它允许你把程序存储在/usr，即另一个文件系统下。

5.1.2　分级目录

你可以通过在主机上创建一个临时目录，将最终文件汇编并转移到目标中。下面的例子使用~/rootfs目录。例如，你需要创建一个目录结构：

 [image:]

为了更清楚地看到目录层次结构，你可以使用方便的tree命令。下面的示例中使用了可显示目录的选项-d：

 [image:]

 [image:]

POSIX文件的访问权限

本书所讨论的每一个进程，即意味着一个运行中的程序，属于一个用户同时也属于一个或多个组。用户是以一个32位数字进行表示，称为user ID或UID。用户信息，包括从UID到名称的映射，保存在/etc/passwd目录下。同样，组用group ID或GID表示，信息保存在/etc/group下。总有一个根用户，UID为0；一个根组，GID也为0。根用户也称为超级用户，因为在默认配置中，它允许绕过大多数权限检查，因此可以访问系统中的所有资源。系统安全性主要是限制访问根账户。

每一个文件和目录也有一个所有者，属于某个组。进程的访问级别为一个文件或一个目录，通过一组访问权限标志控制，称为文件模式。有三组三个比特位：第一组适用于文件的所有者，第二组适用于所有者的所在组，最后一组针对余下用户。位分别代表读（r）、写（w）、执行（x）的权限。由于三位正好装得进一个八进制数字，整体通常表示为八进制，如图5-1所示：

 [image:]

图5-1　文件目录权限示意图

还有一组具有特殊意义的位：

·SUID（4）：如果文件是可执行文件，将进程的有效UID变为文件的所有者。

·SGID（2）：如果文件是可执行文件，将进程的有效GID变为文件所属的组。

·Sticky（1）：当目录中存在其他用户拥有的文件时，用户不能删除这个目录。这个设置通常作用于/tmp和/var/tmp。

可能SUID位最经常使用，它给普通用户提供了临时升级到超级用户的特权。一个很好的例子是ping程序：ping打开一个原始套接字，这是一个特权操作。为了让用户正常使用ping，它通常由根用户所有，并设置SUID位。当运行ping时，它忽略用户的UID，以UID 0执行任务。

要修改这些比特位，用chmod命令以及八进制数字4、2、1。例如，在分级目录下要设置/bin/ping的SUID位，你可以使用下面的命令：

 [image:]

注意到在最后一行显示中的s位，代表SUID已被打开。

分级目录文件的拥有权限

出于安全和稳定的原因，要多注意目标设备上的文件所有权和访问权限。一般而言，要限制敏感资源只可由根用户访问，并以非根用户来运行程序。如果系统受到外部攻击的损害，仅会暴露最少的资源给攻击者。例如，节点设备/dev/mem提供了内存的访问，对某些程序是必要的。但是，如果它对每个人都是可读可写，显然没有安全性，因为人人都可以访问一切内存数据。所以/dev/mem应归根用户所有，属于根组并设置为600模式，即除了拥有者外均没有读写访问权限。

分级目录还有一个问题，就是你创建的文件由你所有，但当它们被安装到设备上时，它们显然应该属于特定的拥有者和群体，一般是根用户。一个明显的解决办法是在这个阶段改变所有权，命令如下：

 [image:]

问题是，你需要根权限来运行该命令。从此时开始，你将需要根用户来修改临时目录中的任何文件。你的所有开发日志都记录在根用户账户下，这不是一个好做法。我们之后再探讨解决方案。
5.2　根文件系统的程序

现在，是时候开始在根文件系统上添加基本程序、库文件、配置和数据文件。你需要根据大致需求来构建。

5.2.1　init程序

你已经在前面的章节中看到，init是第一个运行的程序，拥有的PID为1。它以根用户的权限运行，因此具有最大的系统资源访问权限。通常，它运行shell脚本，启动守护进程。守护进程是一个运行在后台没有连接到终端的进程，也被称为服务器程序。

5.2.2　Shell

我们需要借助Shell来运行脚本，并提供命令行提示，以便我们可以与系统进行交互。生产设备本身可能不需要交互型Shell，但它有助于开发、调试和维护。嵌入式系统下常用的Shell种类有：

·bash：是Linux系统下大家都知道和喜爱的巨无霸。它是UNIX的Bourne Shell的超集，附带许多扩展。

·ash：同样基于Bourne shell，与Unix BSD的各个变种有相同的悠久历史。BusyBox中有一个对ash进行扩展的版本，它与bash更兼容，但比bash小得多，因此是嵌入式系统下普遍受欢迎的选择。

·hush：迷你型Shell，在引导程序一章曾简要介绍过。它在小内存设备上很有用，存在BusyBox版本。

如果你是在目标设备上使用ash或hush，请确保在目标设备上测试过你的Shell脚本。显然大多数人可能只在主机上使用bash进行测试，然后惊讶地发现复制到目标设备上运行时完全不是那么一回事。

5.2.3　实用程序

Shell只是一种启动其他程序的方式，而Shell脚本更倾向于运行程序的一组列表，作为流控制和程序间传递信息的手段。为了使Shell有用，你需要基于UNIX的命令行实用程序。即使是最基本的根文件系统，也有大约50个实用程序。这出现了2个问题，首先，跟踪源代码并进行交叉编译，这是一个相当大的工作量；其次，所收集的程序将占据几十兆，这是嵌入式Linux早期只有几兆存储时遇到的真正问题。BusyBox为此应运而生。

5.2.4　BusyBox来救援

BusyBox的诞生无关嵌入式Linux。该项目是在1996年由Bruce Perens在进行Debian安装时想到，以便他能从1.44 MB的磁盘引导Linux。碰巧这事关手存储设备的大小，因此嵌入式系统很快就把它借用过来。BusyBox在嵌入式Linux从此扎根。

BusyBox对必要的Linux基本工具进行了从头开始编写。开发人员利用二八法则：一个程序的最有用的80%部分是在20%的代码实现。因此，Busybox工具箱只是桌面版等价物的功能实现的一个子集，但在大多数情况下却足以胜任。

BusyBox所采用的另一个技巧是将所有的工具整合成一个二进制文件，便于他们之间共享代码。它的工作原理是这样的：BusyBox是一系列小程序的集合，每一个小程序以[applet]_main的形式导出main函数。例如，cat命令由coreutils/cat.c实现，导出函数cat_main。BusyBox本身的主要功能是调用基于命令行参数的对应程序。

因此，要读取特定文件，你可以用想要运行的程序名称启动busybox，如下所示：

 [image:]

你也可以不带参数运行busybox，得到一个列表中的所有已编译的程序。

以这种方式使用BusyBox实在笨手笨脚。一个运行BusyBox的cat程序的更好方式是创建从/bin/cat到/bin/busybox的符号链接：

 [image:]

当你在命令行输入cat时，BusyBox就变成了实际运行的程序。BusyBox只检查argv[0]，从/bin/cat提取应用的名字，从列表中查找与cat匹配的cat_main。可以从libbb/appletlib.c中找到这段代码（略微简化）：

 [image:]

BusyBox有超过三百个小程序，包括init程序，不同复杂度的Shell程序，和几乎所有管理员使用的工具。甚至有一个简易版的编辑器vi，这样你可以在设备上修改文本文件。

综上所述，BusyBox的典型安装包括为每个程序创建一个符号链接，使其运行的行为表现为一组应用程序的集合。

构建BusyBox

BusyBox使用与内核相同的Kconffig和Kbuild系统，所以交叉编译很简单。你可以通过Git检索并获取想要的版本（本书写作时的最新版本为1_24_1）：

 [image:]

你也可以借助tarball命令从http://busybox.net/downloads下载相应的压缩包文件，然后使用BusyBox的默认配置。默认配置几乎囊括所有BusyBox的特点：

 [image:]

此刻你可能想运行menuconffig进行微调配置，你肯定想在Busybox Settings|Installation Options（CONfig_PREFIX）中设置安装路径来指定分级目录，这样你就可以进行交叉编译了：

 [image:]

这将生成busybox的可执行文件。对ARM v7a平台使用defconffig进行构建时，结果大约占据900 KB。如果实在太大，你可以通过配置剔除不想要的程序。

要安装BusyBox，执行如下命令：

 [image:]

这将把所有的二进制文件复制到CONfig_PREFIX配置的目录当中，并创建所有符号链接。

5.2.5　ToyBox——BusyBox的替代品

BusyBox不是唯一的选择。例如，Android有一个类似的系统文件——Toolbox，其更适合Android自身的需要，而不是嵌入式环境。另一个有用的工具是ToyBox，它是由Rob Landley发起的一个项目，此人曾维护过Busybox。ToyBox与BusyBox的诞生目的相同，但更强调标准的遵守，特别是POSIX-2008和LSB 4.1，不过其较少考虑与GNU扩展标准的兼容性。ToyBox体积上小于Busybox，因为它实现了较少的程序。

最主要的区别还是在于许可证本身，ToyBox使用BSD而不是GPL v2。这使得它与拥有BSD授权用户空间的操作系统相兼容，譬如Android本身。
5.3　根文件系统库

程序可以与共享库链接。你可以将所有程序都进行静态链接，在这种情况下，目标设备上没有共享库。但是，如果你有超过2到3个程序，这就产生了不必要的存储消耗。所以，你需要把共享库从工具链复制到分级目录当中。可是，怎么知道是哪个共享库呢？

一种选择是复制所有的库，因为它们要么有用，要么就不存在！这当然是合理的，如果你正在创建一个提供给他人使用的满足一系列应用的平台，这是一种正确的方式。不过要留意，整个glibc相当巨大。在交叉编译glibc 2.19的情况下，/lib和/usr/lib目录占用了33 MB的空间。当然，您可以使用uClibc或Musel libc库来减小空间使用。

另一种选择是仅挑选那些你需要的库，为此你需要找到一种发现库依赖关系的方法。借助我们第2章学习的知识，你可以使用readelf完成任务：

 [image:]

现在你需要在工具链上找到这些文件并将其复制到分级目录下。你可以这样找到sysroot：

 [image:]

为了减少输入的数量，我先在一个Shell变量中保存一个副本：

 [image:]

查看sysroot下的/lib/ld-linux-armhf.so.3，你会发现这其实是一个符号链接：

 [image:]

对libc.so.6和libm.so.6进行重复练习，最终你会得到3个文件和3个符号链接。用cp-a命令进行复制，将保留这些符号链接：

 [image:]

为每个程序重复此过程。

只有在构建足够小的嵌入式系统时才值得这么做。存在一种风险，即通过dlopen（3）调用的插件所需的库文件可能没有被导入进来。稍后在本章我们介绍网络接口配置时将看一个与NSS库有关的例子。

裁剪尺寸

共享库和程序经常借助一个符号表来完成编译，如果你已经用了调试开关-g进行编译则更是如此。很少需要在目标设备上使用这些信息，节省空间的一个快速简便的方法是将它们剥离。这个例子显示剥离之前和之后的libc：

 [image:]

借此我们节省了321347个字节，占原大小的约20%。

在剥离内核模块时，请使用以下命令：

 [image:]

否则，你将去掉重定位时所需的符号信息，导致无法正常加载。
5.4　设备节点

Linux中的大多数设备是以设备节点来表示的。按照UNIX的哲学，“一切皆是文件”（除了网络接口，表示为套接字）。设备节点可以是指一个块设备或一个字符设备。块设备是大容量存储设备，如SD卡或硬盘。字符设备包含除此以外的非常多设备，再一次把网络接口排除在外。设备节点通常位于/dev，串口可以由设备节点/dev/ttyS0表示。

设备节点使用mknod（make node的简写）创建：

 [image:]

名称（name）是你要创建的设备节点的名称，类型（type）c为字符设备，b为块设备。它们各有一个主设备号（major）和一个次设备号（minor），内核借此将文件请求路由到对应的设备驱动程序。在文件Documentation/devices.txt可以找到标准主设备号和次设备号的列表。

你需要为可以访问的所有设备创建设备节点。可以通过mknod命令手动操作，或者使用一个稍后介绍的设备管理器自动创建。

你只需要两个设备节点来启动Busybox：console和null。console只由根用户访问（作为该设备节点的所有者），访问权限设为600。null设备人人可读可写，所以模式为666。在使用mknod时你可以通过-m选项同时设置节点权限。创建设备节点时需要root权限：

 [image:]

删除设备节点时使用标准的rm命令：没有rmnod命令，因为一旦创建，它们只是文件。
5.5　proc与sysfs文件系统

proc和sysfs为两个伪文件系统，提供了一个透视内核内部运行方式的窗口。它们都代表在一个目录层次结构中的内核数据：当你读取其中的文件时，你看到的内容并不来自于磁盘存储，打印时已由内核函数进行了格式化。部分文件是可修改的，即使用新数据执行内核函数，如果它们格式正确，而且你拥有足够权限，便可以修改在内核空间的内存值。在其他系统中，proc和sysfs提供了另一种与设备驱动程序和其他内核代码交互的方式。

proc和sysfs分别挂载在目录/proc和/sys下：

 [image:]

尽管它们的概念非常相似，但它们的执行功能不同。proc在Linux早期便已存在。其最初目的是向用户空间提供进程信息。为此，每个进程均有/proc/<PID>目录，该目录包含进程的状态信息。ps命令可以读取进程列表，它实际就是读取了这些文件并进行了格式化输出。此外，proc文件还提供了内核的其他信息，如/proc/cpuinfo包含CPU的基本信息，/proc/interrupts包含系统中断的基本信息等等。/proc/sys文件还支持显示和控制内核子系统的状态和行为，特别是调度器、内存管理和网络。最好的参考文档是proc中man手册的proc（5）。

随着时间推移，proc的文件布局已变得相当混乱。在Linux 2.6时，sysfs的引入便是为了将proc的部分文件导成有序的结构。

构成对比的是，sysfs以一个有序的层次结构将相关设备文件导出，同时保存了它们相互连接的方式。

挂载文件系统

mount命令允许我们将一个文件系统挂载到另一个目录中，形成一个有层次结构的文件系统。在结构的最顶部，内核启动时将从这里挂载，我们称为根文件系统。mount命令的格式如下：

 [image:]

你需要用vfstype字段指定某个文件系统，可以是块设备节点，也可以是挂载目录。-o选项有各种各样的选择，请参考手册查阅更多信息。例如，如果你想把一张ext4文件格式的SD卡的第一分区挂载到目录/mnt下，可以输入以下命令：

 [image:]

如果挂载成功，你将能在目录/mnt下看到存储在SD卡的文件。在某些情况下，你可以忽略文件系统类型，让内核来负责探测设备，找出存储的数据。

挂载proc文件系统的例子可能有一点儿奇怪：没有叫做/dev/proc的设备节点，理由是它是一个虚拟的文件系统。但mount命令需要一个参数，因此我们必须给定一个字符串，但其实字符串的内容不太重要。这2个命令的结果完全相同：

 [image:]

在安装伪文件系统时，该做法相当普遍。
5.6　内核模块

正如我们在上一章里看到的，如果你想把内核模块安装到根文件系统，可以使用make modules_install。这将把内核模块连同modprobe所需要的配置文件复制到目录/lib/modules/<kernel version>下。

请注意，你刚刚创建了内核和根文件系统之间的依赖关系。如果你更新其中一个，就不得不更新另一个。
5.7　把根文件系统转移到目标

在分级目录中创建了一个根文件系统，下一个任务是转移到目标上。在后续篇幅中，我将描述三种可能性：

·内存磁盘：由引导加载程序加载到内存的文件系统映像。内存磁盘易于创建，与大容量存储不存在依赖关系。在根文件系统需要更新时它们可在还原维护模式下使用，甚至可以作为小型嵌入式设备的根文件系统（当然是作为主流Linux发行版的早期用户空间）。压缩化的内存磁盘使用较少存储，但仍消耗内存。由于内容易失，因此你需要另一个存储类型来存储诸如配置参数等永久性数据。

·磁盘映像：根文件系统格式化后的副本，可用于目标上加载的大容量存储设备。例如，它可以是准备复制到EXT4格式的SD卡中的图像，也可以是借助引导加载程序待装入闪存的jffs2格式文件。创建磁盘映像是十分普遍的做法。在第7章中，有更多关于不同类型的大容量存储创建的有关内容。

·网络文件系统：分级目录可以由NFS服务器导出到网络中，并在启动时由目标挂载。在开发阶段中经常考虑到要重复创建磁盘映像并不断挂载到存储设备中来，该过程相对耗时。

我将首先通过内存磁盘来说明它对根文件系统的一些改进，如添加用户名称和自动创建设备节点的设备管理器。然后，我将向你展示如何创建一个磁盘映像。最后谈谈如何在一个网络中使用NFS挂载根文件系统。
5.8　创建启动内存磁盘

负责Linux启动的内存磁盘，或者严格来说，一个初始内存文件系统（initramfs），是一个压缩过的cpio归档文件。cpio是一种古老的UNIX文件格式，类似TAR或ZIP那样容易解码，因此不需要耗费内核多少代码。你只需要借助conffig_blk_dev_initrd选项来支持内核的initramfs配置。

实际上，有三种不同的方法来创建一个启动盘：作为一个独立的cpio归档文件、作为一个嵌入在内核映像中的cpio归档文件，或是作为内核构建过程一部分的设备表。第一个做法提供了最大的灵活性，我们可以将内核和内存磁盘混合打包到我们的核心内容，然而这意味着你有两个文件要处理，而不是一个，而且不是所有的引导程序都可以单独加载内存磁盘。我会在之后告诉您怎么在内核中构建。

5.8.1　独立内存

以下命令创建一个归档，将其压缩并将U-Boot头文件装载到目标：

 [image:]

注意到我们以选项--owner root：root运行cpio。这就把之前谈到的所有文件拥有权的问题一笔勾销，即所有cpio创建的文件的UID和GID均为0。

最终生成的uRamdisk文件的大小约为2.9 MB，没有内核模块。加上4.4 MB的zImage内核文件和440 KB的U-Boot一共需要7.7MB的数据空间。我们和最早使用的1.44 MB大小启动软盘还有点距离。如果实在关心大小，你可以尝试如下这些方式：

·去掉不需要的驱动程序和功能，让内核变小；

·剔除无用的工具，给Busybox瘦身；

·用uClibc或musl libc替代glibc；

·静态编译Busybox。

5.8.2　启动内存磁盘

我们当前可以做的最简单的事情，就是在控制台上运行一个Shell，这样我们就可以与设备进行交互了。我们可以通过添加rdinit=/bin/sh到内核命令行来实现。现在你可以启动设备了。

用QEMU启动

QEMU有选项-initrd，将initframfs装载到内存当中，可得完整命令如下：

 [image:]

启动BeagleBone Black

为引导BeagleBone Black，在启动U-Boot时输入以下命令：

 [image:]

如果一切顺利，你将会在控制台上的得到Shell提示符。

挂载proc

注意，ps命令此时无法工作，因为proc文件系统尚未挂载。尝试挂载它并再次运行。

一个改进思路是写一个脚本，包含启动完成时所需要的所有东西，然后交给参数rdinit。脚本可能会包含下面的代码片段：

 [image:]

像这样使用Shell是非常方便快捷的技巧。然而，在大多数情况下，你还可以使用init程序，这点我们将在后续谈到。

5.8.3　在内核映像中搭建内存磁盘cpio

某些情况下，最好是在内核映像中创建内存磁盘，比如当引导加载程序无法处理一个内存磁盘文件时。为此，修改内核配置，将conffig_initramfs_source设置为之前创建的cpio归档文件的完整路径。如果你正在使用menuconffig，请找到General setup|Initramfs source file（s）。请注意，必须是未经压缩的cpio文件，后缀名为cpio，而不是gzip文件。然后构建内核，结果应该比以前更大。

启动方式与之前一模一样，只不过这次没有内存磁盘文件。对于QEMU，命令就像这样：

 [image:]

对于BeagleBone Black，在U-Boot中输入以下命令：

 [image:]

当然，你必须记住每次改动ramdisk都要重建内核，并再次生成cpio文件。

用内存磁盘构建内核的另一种方法

另一种有趣的方法是用一个设备表生成一个cpio归档。设备表是一个文本文件，该文件列出了文件、目录、设备节点和链接到归档文件中的所有文件。压倒性优势是能让你在没有root权限时在cpio文件中创建属于root或其他任何UID的条目，你甚至可以创建设备节点。cpio文件只是一个数据文件，只有当启动时，真正的文件和目录才会被创建。

这里是一个简单的rootfs的设备表，但缺少大部分的BusyBox符号链接：

 [image:]

语法规则大致如下：

·dir<name><mode><uid><gid>

·file<name><location><mode><uid><gid>

·nod<name><mode><uid><gid><dev_type><maj><min>

·slink<name><target><mode><uid><gid>

内核提供了读取文件和创建cpio归档的工具。源代码位于usr/gen_init_cpio.c。scripts/gen_initramfs_list.Sh提供了方便的运行脚本，该脚本从给定目录中创建设备表，可节省大量输入的时间。

为达成目的，你需要让CONfig_INITRAMFS_SOURCE指向设备表文件，然后构建内核。其余照旧。

5.8.4　旧的initrd格式

Linux有一个旧的内存磁盘格式，称为initrd。这是在Linux 2.6版本之前唯一可用的格式，或者在使用Linux的变异版uClinux时。我不会在这里讲解这部分内容。在Documentation/initrd.txt文档有内核源代码的更多信息。
5.9　init程序

运行Shell或脚本文件，在启动时应对简单情况还算可以。但有时你需要更加灵活的东西。通常情况下，Unix系统上有一个称为init的启动程序。多年来，已经有许多的init初始化程序，其中一部分我会在第9章进行描述。现在，我将简要介绍Busybox的init。

它首先读取配置文件/etc/inittab。这里有一个简单的例子：

 [image:]

第一行在init启动时运行shell脚本rcS，第二行在控制台打印消息：Please press Enter to activate this console，然后按回车键启动程序。/bin/ash的前缀意味着它是一个登录shell，环境变量来自/etc/profile和$HOME/.profile。以该方式启动shell的优点之一就是启用了作业控制。最直接的影响是，你可以使用Ctrl+C终止当前程序。或许你以前没有注意到它，但是等到运行ping程序时，居然发现你不能终止它！

假如根文件系统中不存在相关配置，Busybox的init则提供并使用一个默认的inittab配置。该配置比之前的开销相对大些。

脚本/etc/init.d/rcS用于放置启动时所需的初始化命令，例如安装proc和sysfs文件系统：

 [image:]

确保你的RCS文件可执行：

 [image:]

你可以这样修改QEMU的-append参数：

 [image:]

要在BeagelBone Black上实现相同效果，则需要在U-Boot修改bootargs变量：

 [image:]

5.10　　配置用户账号

我已经提到过，对所有程序赋予root权限不是好的尝试。如果黑客实现入侵，那么整个系统十分危险，错误程序可以通过root运行造成更大灾难。最好是创建非特权用户，在root不必要时使用他们。

用户名的配置文件位于/etc/passwd。每个用户对应一行信息，每行信息由七个被冒号分隔的字段组成：

·登录名

·用于验证密码的散列码，或更通常用x表示保存在/etc/shadow的密码

·UID

·GID

·注释字段，常为空白

·用户主目录

·用户使用的shell（可选）

例如，以下代码将创建根用户UID 0和守护程序UID 1：

 [image:]

将用户shell设置为/bin/false可确保该用户的任何登录企图失败。

各种程序利用/etc/passwd查找uid和用户名，为此/etc/passwd必须是可读的。这存在一个问题，如果密码散列值可以被恶意程序发现并复制，便可以借助各种手段和黑客程序找出实际的密码。为了减少敏感信息的泄露，密码被存储在/etc/shadow文件中，并在密码栏放置一个x以作替代。/etc/shadow只能被root访问，为此密码是安全的。

“影子密码”文件的每个用户项由九个字段组成。这里有一个例子，展示了前段提到的passwd文件：

 [image:]

头两个字段是用户名和密码散列，其余七个都涉及密码历史，通常在嵌入式设备上不成问题。如果你对全部细节感到好奇，参考手册的shadow（5）页。

例如，root的密码是空的，这意味着root可以不提供密码而登录。这在开发过程中是有用的，但不是用于实际工作！你可以在目标上使用mkpasswd或passwd生成密码散列，也可以把/etc/shadow的数据直接复制粘贴到目标的对应目录下。

守护程序的密码为*，因为没有匹配任何登录密码。请再次确保守护进程不能被普通的用户所使用。

组名称以类似的方式存储在/etc/group中。其格式如下：

·组名称。

·组密码，通常为一个字符x，表示没有组密码。

·GID。

·属于这个组的用户可选列表，以逗号分隔。

这里有一个例子：

 [image:]

添加账户到根文件系统

首先，如前面所示，你必须添加etc/passwd、etc/shadow和etc/group。确保影子权限为0600。

登录过程由程序getty启动，这是Busybox的一部分。你可以使用关键字respawn在inittab调用getty，由此可以在shell登录停止时重新启动getty，inittab读起来应该这样：

 [image:]

然后重建内存磁盘并在QEMU或BeagelBone Black上重新试一次。
5.11　　启动守护进程

通常，你会想在启动时运行特定的守护进程。以日志守护进程syslogd为例，syslogd的目的是从其他程序积累日志信息，基本上也是些守护进程。当然，Busybox有这么一个用途的小程序！

要想启动守护进程，只须要在etc/inittab加入这么一行：

 [image:]

respawn意味着如果程序终止则会自动重启，-n意味着作为一个前台程序运行。日志写到/var/log/messages。

你可能要以同样的方式启动klogd：klogd发送内核日志消息给syslogd，这样就把日志写到永久存储中。

值得一提的是，在典型的嵌入式系统中，把日志文件写到闪存不是一个好主意，因为可能耗光所有资源。我将在第7章中讨论日志记录的选项问题。
5.12　　管理设备节点的更好方法

用mknod静态创建设备节点难度较大且不灵活。还有其他方法可以根据需求自动创建设备节点：

·devtmpfs：这是一个开机时安装在/dev下的伪文件系统。它包含了所有的内核运行时检测到和创造了的设备节点。该节点由root用户拥有，拥有0600的默认权限。一些为人熟知的设备节点，如/dev/null和/dev/random，将默认值重写为0666（见drivers/char/mem.c的struct memdev定义）。

·mdev：这是一个Busybox小程序，根据需要在目录中填充或创建设备节点。配置文件/etc/mdev.conf包括节点所有权与模式的规则。

·udev：作为systemd的一部分，当前可以在桌面Linux和嵌入式设备中找到。该解决方案非常灵活，可作为高端嵌入式设备的一个很好选择。

虽然mdev和udev本身可以创建设备节点，但更普遍的做法是让devtmpfs来做这项工作，然后使用mdev/udev在此基础上设定所有权和权限。

5.12.1　使用devtmpfs的例子

如果你已经启动了一个较早的虚拟内存盘，输入如下简单命令便可以尝试devtmpfs：

 [image:]

你可以看到/dev充斥了设备节点。为了一劳永逸，把这些添加到/etc/init.d/rcs中：

 [image:]

事实上，内核初始化已经自动执行了这些命令，除非你像我们一样做了一个initramfs虚拟内存盘！可以在init/do_mounts.c下的prepare_namespace（）函数找到代码的具体实现。

5.12.2　使用mdev的例子

尽管mdev的设置复杂一点，但它允许你修改设备节点的权限。首先有一个启动阶段，由-s选项选中，mdev扫描/sys目录并寻找当前设备的信息，将信息填充到/dev对应目录下。

如果你想立即跟踪新设备，并为他们创造节点，你需要用mdev把相关数据写到/proc/sys/kernel/hotplug中，由此创建支持热插拔的客户端。添加如下代码到/etc/init.d/rcS即可实现这一切：

 [image:]

默认模式为660，所有权为root：root。你可以在/etc/mdev.conf增加规则修改这些。例如，给null、random及urandom设备设置正确模式，需要对/etc/mdev.conf进行如下添加：

 [image:]

BusyBox源代码中的文档docs/mdev.txt说明了格式记录，目录下的examples文件包含了更多的例子。

5.12.3　静态设备节点好不好

静态创建设备节点有一个优势：他们从引导到创建的过程并不消耗任何时间，而其他方法不然。如果需要最大限度地减少启动时间，使用静态创建方式节省的时间将十分可观。
5.13　　配置网络

接下来，让我们看看一些基本的网络配置，以便我们可以与外界沟通。假设有一个以太网接口eth0，而我们只需要一个简单的IPv4配置。

这些例子使用的是BusyBox的部分网络工具，并有足够的简单样例，如使用古老而可靠的ifup和ifdown程序。你可以在文档上读到更多细节。主要的网络配置是存储在/etc/network/interfaces。你需要在文件系统中创建这些目录：

 [image:]

对于静态的IP地址，/etc/network/interfaces会像这样：

 [image:]

对于使用动态主机配置协议（DHCP）的一个动态分配的IP地址，/etc/network/interfaces则像这样：

 [image:]

你还必须配置DHCP客户端程序。有一个名为udchpcd的Busybox程序，它需要一个/usr/share/udhcpc/default.script的shell脚本。可以在BusyBox的源代码中找到一个合适的默认脚本：examples//udhcp/simple.script。

用于glibc的网络组件

glibc使用名称服务切换机制（NSS），将名称映射为数字来解决网络和用户问题。例如，用户名可以转换成/etc/passwd的UID，网络服务如HTTP可以转换成/etc/services的服务端口号等等。所有的配置都在/etc/nsswitch.conf文件中，请参阅手册页nss（5）了解全部细节。下面是一个简单例子，可以满足大多数嵌入式Linux系统实现的需求：

 [image:]

一切都可以在/etc对应文件名下找到并解决，除了host名，它可以由DNS查找解决。

为完成该项工作，你需要用这些文件填充/etc。网络协议和服务在所有的Linux系统都是相同的，所以可以从你开发用的个人计算机上直接复制。/etc/hosts应至少包含loopback地址：

 [image:]

我们之后再涉及其他的配置，包括passwd、group和shadow。

作为拼图的最后一块，要考虑那些执行该名称解析的库。根据nsswitch.conf文件的内容，库文件以插件的形式进行加载，这意味着你使用readelf或类似工具无法显示出依赖关系。你只需要借助工具链的sysroot复制他们即可：

 [image:]

5.14　　借助设备表创建文件系统映像

内核有一个工具，gen_init_cpio，它基于一个称为设备表（device table）的文本文件中的格式指令创建cpio文件，该设备表允许非root用户创建设备节点和分配任意的UID值和GID值给任何文件或目录。

同样的概念已经被应用于创建其他文件系统映像格式的工具：

·jffs2：mkfs.jffs2

·ubifs：mkfs.ubifs

·ext2：genext2fs

当谈到闪存文件系统时，我们将在第7章看到jffs2和ubifs。第三行的ext2是相当古老的文件格式。

它们以如下格式<name><type><mode><uid><gid><major><minor><start><inc><count>存在于设备表的文件当中：

·name：文件名

·type：以下之一

·f：普通文件

·d：目录

·c：特殊字符设备文件

·b：特殊块设备文件

·p：FIFO（命名管道）

·uid：文件UID

·gid：文件GID

·major和minor：设备号（仅对设备节点）

·start、inc和count：允许你在start中创建一组从次设备号开始的设备节点（仅对设备节点）

你不需要指定每个文件，如gen_init_cpio：只需要为它们指定目录，即分级目录，并且列出你需要在最终的文件系统中作出的变化。

一个简单的静态设备节点的例子如下：

 [image:]

然后，使用genext2fs生成4 MB文件系统映像（即4096块默认大小，1024字节）：

 [image:]

现在，你可以将得到的rootfs.ext映像复制到SD卡或类似设备中去。

把根文件系统烧写到SD卡中

下面是一个给正常的块设备（如SD卡）安装文件系统的例子。同样的原则适用于其他的文件系统类型，我们将在第7章中更详细地介绍它们。

假设你有一张SD卡，并且将第一个分区用于启动文件，比如BeagleBone Black上的MLO和u-boot.img。同样假设你用genext2fs创建了一个文件系统映像。把它复制到SD卡，插入该卡，确认它已被分配：通常是/dev/sd或者是/dev/mmcblk0。如果是后者，将文件系统映像复制到第二分区：

 [image:]

然后，将SD卡插入设备，并将内核命令行设置为root=/dev/mmcblk0p2。完整的启动顺序如下：

 [image:]

5.15　　使用NFS挂载根文件系统

如果你的设备具有网络接口，最好在开发过程中借助网络来安装根文件系统。它让你获得几乎无限的存储，你可以添加具有大量符号表的调试工具和可执行文件。除此之外，在主机上更新的数据立马就作用到目标上。你甚至还拥有一个日志文件的副本。

对于这项工作，你必须配置内核选项conffig_root_nfs。然后，你可以在内核命令行中添加下面的命令来配置其在启动时进行挂载：

 [image:]

对NFS的导出详情如下：

 [image:]

对连接到NFS服务器的网络接口进行配置，从而在启动时init程序运行前可用：

 [image:]

更多关于NFS根文件系统挂载的内容，可以在内核源代码Documentation/filesystems/nfs/nfsroot.txt中找到。

你还需要在主机上安装和配置NFS服务器，在Ubuntu上可以使用如下命令：

 [image:]

需要告诉NFS服务器哪些目录通过网络导出，这个由/etc/exports控制。添加类似如下的一行到文件中：

 [image:]

然后重新启动服务器以令修改生效，Ubuntu使用的是：

 [image:]

5.15.1　QEMU测试

下面的脚本将在主机上的网络设备tap0和目标上的eth0之间创建一个虚拟网络，并且使用一对静态IPv4地址，然后使用tap0作为仿真接口参数启动QEMU。你需要将根文件系统路径更改为分级目录的完整路径，或改为IP地址，如果它们与你的网络配置冲突：

 [image:]

脚本是run-qemu-nfs.sh。

启动与之前类似，只是现在使用的是NFS导出的分级目录而已。你在该目录中创建的任何文件，将在目标设备上立即可见，同时，在设备上创建的任何文件也都可以在开发用PC上看到。

5.15.2　BeagleBone Black测试

以类似的方式，你可以在BeagleBone Black的U-Boot提示符下输入这些命令：

 [image:]

然后和之前一样，从闪存卡加载内核和dtb来启动它：

 [image:]

5.15.3　文件权限的问题

在分级目录中的创建的文件都归你所有。当通过你的UID（通常为1000）运行ls-l时，这些文件将显示在目标设备上。目标设备创建的任何文件则都被root所拥有。整个事情真是一团糟。

可惜没有好的解决方案。最好的建议是做一份分级目录的拷贝，将所有权修改为root：root（使用sudo chown-R 0：0*）并像使用NFS挂载时一样导出该目录。它减少了在开发主机和目标系统之间共享文件系统副本时带来的不便。
5.16　　使用TFTP加载内核

使用真实硬件如BeagleBone Black时，最好通过网络加载内核，特别是当根文件系统是通过NFS挂载的时候。此时你不需要使用任何本地存储设备。由于不需要不断刷新内存，它可以节省时间，这也意味着你可以在存储驱动程序尚未完成时继续工作。

U-Boot已经支持文件传输协议（TFTP）多年。首先，你需要在开发机器上安装一个tftp程序。Ubuntu上需要安装tftpd-hpa包，从而授予TFTP客户端对目录/var/lib/tftpboot的读取权限。

假设你已经把zImage和am335x-boneblack.dtb复制到了/var/lib/tftpboot，对U-Boot输入以下命令以实现装载和启动：

 [image:]

Tftpboot的响应通常会是这样：

 [image:]

T字母所在的最后一行表示发生了错误，TFTP请求超时。最常见的原因如下：

·服务器IP地址不正确。

·TFTP程序在服务器上没有运行。

·防火墙服务器阻断TFTP协议。大多数防火墙确实阻挡tftp端口，默认为69。

在TFTP守护进程没有运行的情况下，使用如下的命令启动：

 [image:]

5.17　　延伸阅读

·文件系统层次结构标准，目前提供3.0版本http://refspecs.linuxfoundation.org/fhs.shtml。

·《ramfs，rootfs and initramfs》，Rob Landley，October 17，2005，Linux源代码文件的一部分，位于文档Documentation/filesystems/ramfs-rootfs-initramfs.txt。
5.18　　总结

Linux的优点之一是它可以支持各类根文件系统，并允许根据用户需求进行个性化定制。我们已经可以手动构建一个简单的包含少量目录的根文件系统，在这方面最有用的是Busybox。通过循序渐进的过程，我们已经深入了解了一些基本的运作方式，包括网络配置和用户帐户。然而，这项任务很快就会因为设备的复杂性而变得难以管理。而且还有一个长期存在的隐患，即我们没有谈到的安全漏洞问题。下一章我们将使用嵌入式构建系统来摆脱困境。
第6章　选择构建系统

前面几章涵盖了嵌入式Linux的四要素，并且一步步地向你展示了如何构建工具链、引导加载程序、内核和根文件系统，然后把它们整合成一个基本的嵌入式Linux系统。不过这太复杂了！现在我们希望简化这一过程，尽可能地自动化完成它。我将着眼于嵌入式构建系统的功能，并特别研究Buildroot和Yocto项目。这两个系统复杂而灵活，需要一整本书来充分描述它们的工作原理。在本章，你会了解构建系统的工作原理。我将向你展示如何去构建一个简单的设备映像来获得对系统的整体感知，以及如何在前面章节中提到的Nova开发板上做一些有意义的改进。
6.1　不再手动创建嵌入式Linux

正如第5章中所描述的，手动创建一个系统被称作自行构建（Roll Your Own，RYO），它的优点是你对系统拥有完全的控制并能随心所欲地操作它。如果你想让它做非常古怪而新颖的事，或者你想把内存占用降至最低，RYO是一个好的选择。但是，在绝大多数情况下，手动创建系统浪费时间，且容易构建出质量差、不可维护的系统。

这样的系统通常在数月内逐步建成，一般缺少正式文档，很少从零开始重新创建，因为没有人清楚各部分都是从何而来的。
6.2　构建系统

构建系统的思想是将此前描述过的所有步骤进行自动化。一个构建系统应该能够从上游源代码构建出以下的部分或全部内容：

·工具链

·引导加载程序

·内核

·根文件系统

从上游源代码构建非常重要，原因不一而足。这意味着你内心平和，知道自己能够在任何时候重构，而不需依赖外界条件；这也意味着你拥有可调试的源代码，并且在必要时可以将它分发给用户而不违背许可证要求。

因此，若要实现其功能，一个构建系统必须能够具备以下能力：

·从上游下载源代码，包括从源代码控制系统中直接下载，或作为存档并在本地缓存。

·应用补丁以实现交叉编译，修复架构相关的错误，应用本地配置策略等。

·构建各种组件。

·创建一个暂存区，并组织一个根文件系统。

·创建可以被加载到目标上的不同格式的映像文件。

其他有用的功能如下：

·添加你自己的包，以包括诸如应用程序或内核变化。

·选择不同的根文件系统配置：大或小，有和无图形界面或者其他功能。

·创建一个独立的SDK，你可以将之分发给其他开发者，这样他们就不必安装整个构建系统。

·跟踪你选择的各种包应用了哪些开源许可证。

·允许你创建更新。

·具有友好的用户界面。

无论如何，它们将系统的各个组件封装成包，一些包用于主机，一些包用于目标设备。每一个包都由一组规则定义，以获取源代码、构建源代码并将结果安装在正确的位置。包与包之间存在依赖关系，有一种构建机制用来解决这种依赖关系，它也能构建出所需包的集合。

开源构建系统在过去几年中已发展得相当成熟。有很多相关的项目，包括：

·Buildroot：使用GNU make和Kconffig的易用系统（http://buildroot.org）

·EmbToolkit：生成根文件系统的简单系统；是本书写作时唯一支持LLVM/Clang的工具（https://www.embtoolkit.org）

·OpenEmbedded：一个强大的系统，也是Yocto和其他项目的一个核心组成部分（http://openembedded.org）

·OpenWrt：面向无线路由器固件的构建工具（https://openwrt.org）

·PTXdist：一个由Pengutronix发起的开源的构建系统（http://www.pengutronix.de/software/ptxdist/index_en.html）

·Tizen：一个全面的系统，侧重于移动设备、媒体和车载设备（https://www.tizen.org）

·The Yocto Project：它扩展了OpenEmbedded内核的配置、层级、工具和文档，可能是当下最流行的系统（http://www.yoctoproject.org）

我将集中介绍以下两种系统：Buildroot和Yocto Project。它们用不同的方式来解决问题，并且具有不同的目标。

顾名思义，Buildroot的基本目标是构造根文件系统映像，然而它也可以构建引导程序和内核映像。它易于安装和配置，并且可以快速生成目标映像。

另一方面，Yocto Project定义目标系统的方法更为通用，因此它可以构建相当复杂的嵌入式设备。每一个组件以RPM包的形式生成，格式为.dpkg或.ipk（见下一节），接着这些包组合在一起构成文件系统映像。此外，你还可以在文件系统映像中安装包管理器，这允许你在运行时更新包。换句话说，当采用Yocto Project来构建系统时，你实际上是在构建定制的Linux发行版。
6.3　包格式和包管理器

在多数情况下，主流的Linux发行版是由RPM或deb格式的二进制（预编译）包集合构成。RPM指Red Hat软件包管理器，被用在Red Hat，Suse，Fedora和其他衍生版本。Debian的衍生版本，包括Ubuntu和Mint，使用Debian包管理格式deb。此外，针对嵌入式设备，还有一个基于deb的轻量级格式，称为Itsy包或ipk。

不同构建系统的一大差异是能否在设备上容纳包管理器。当目标设备上具备包管理器时，你将有一条捷径来部署新的包和更新已有的包。我将在下一章中讨论这一点。
6.4　Buildroot

Buildroot项目的网站为http://buildroot.org。

当前版本的Buildroot能够构建工具链、引导加载程序（U-Boot、Barebox、GRUB2或Gummiboot）、内核和根文件系统。它使用GNU make作为主体构建工具。

在http://buildroot.org/docs.html有不错的在线文档，包括Buildroot用户手册。

6.4.1　背景

Buildroot是最早的构建系统之一。最初它作为uClinux和uClibc项目的一部分，用于生成测试用的小型根文件系统。2001年底，Buildroot成为一个单独的项目并持续发展到2006年，在此之后其发展进入停滞。然而，自2009年以来，Peter Korsgaard接手管理之后，Buildroot得到了迅速发展，增加了对基础工具链glibc的支持，增强了构建引导程序与内核的能力。

OpenWrt（http://wiki.openwrt.org）以Buildroot为基础，大约在2004年从Buildroot中分离出来，也是一个流行的构建系统。OpenWrt的目标主要集中在无线路由器的软件生产上，因此其软件包组合是面向网络基础设施的。它也具备一个使用.ipk格式的运行时包管理器，使设备不必完全刷新映像就能完成更新或升级。

6.4.2　稳定发行版和支持

Buildroot开发者每年发布四次稳定发行版，分别在二月、五月、八月和十一月。它们以<year>.02、<year>.05、<year>.08、和<year>.11形式的git标签进行标记。通常，当你开始项目时会使用最新的版本。然而，稳定发行版在发布后很少更新。为了获得安全补丁和其他漏洞修复补丁，你必须不断更新，直到在下一个稳定版发行；或将补丁移植到你的版本中来。

6.4.3　安装

像往常一样，你可以通过复制repository或下载存档安装Buildroot。这里是获取2015.08.1版本的例子，这是在本书写作时最新的稳定版：

 [image:]

等效的TAR归档文件可从http://buildroot.org/downloads获取。

接下来，你应该阅读“The Buildroot User Manual”中“System Requirement”这一章节，可在http://buildroot.org/downloads/manual/manual.html获取。要确保已经安装了手册中列出的所有的软件包。

6.4.4　配置

如第4章中提到的，Buildroot以Kconffig和kbuild机制为核心。你可以从零开始直接使用make menuconffig（或xconffig或gconffig）来配置，或者你可以选择为各种开发板配置的90项左右配置的其中一种外加QEMU仿真器仿真，你可以在目录conffigs/下找到它。输入make help，所有的配置将被列出，包括默认配置。

让我们开始构建一个可以在ARM QEMU仿真器上使用的默认配置：

 [image:]

注意，不要通过-j选项告诉make指令要运行多少并行作业：Buildroot自身将对CPU的使用作出最优化。如果你想限制作业数量，可以运行make menuconffig，在Build选项下查看。

构建过程将花费半小时到一小时的时间，这取决于主机系统的性能和连接到互联网的速度。构建完成时，你会发现有2个新目录已经被创建了：

·dl/：其中包含Buildroot构建了的上游项目归档。

·output/：其中包含所有的中间文件资源和最终编译资源。

在output/目录中，你将看到：

·build/：这是每个组件的构建目录。

·host/：其中包含主机上运行的Buildroot所需的各种工具，包括工具链的可执行文件（在output/host/usr/bin目录下）。

·images/：最重要的目录，其中包含构建结果，包含一个引导程序、内核以及一个或多个根文件系统映像，这取决于你在配置时的选择。

·staging/：这是一个指向工具链sysroot的符号链接。此链接的名称有些令人迷惑，按照第5章中的定义，它应当指向暂存区，然而实际上没有。

·target/：这是根目录的位置。注意，不能就这样直接将此作为根文件系统，因为文件所有权和权限没有被正确设置。如前文中提到的，当文件系统映像创建时，Buildroot使用设备状态表来设置文件所有权和权限。

6.4.5　运行

一些样本配置在boards/目录下有相应的条目，其中包含了自定义配置文件和把结果安装到目标上的信息。就你刚刚构建的系统而言，相关的文件是board/qemu/arm-vexpress/readme.txt，它告诉你如何在这个目标上启动QEMU。

假设你已按第1章的描述安装了qemu-system-arm，可以使用这个指令运行它：

 [image:]

你应该看到内核启动信息出现在你启动QEMU的同一个终端窗口，在登录提示之后出现：

 [image:]

 [image:]

用root账户登陆，无需密码。

除了内核启动信息窗口之外，QEMU又启动了另一个黑色窗口，这个窗口显示目标的图形帧缓冲区。在这种情况下，目标不向帧缓冲区写入，因此窗口看起来是黑色的。要关闭QEMU，只要在根提示下输入poweroff，或直接关闭帧缓冲区窗口即可。由于SCSI仿真问题，这个方法对QEMU 2.0（Ubuntu 14.04的默认版本）有效，对包括QEMU 1.0.50（Ubuntu 12.04的默认版本）在内的老版本无效。

6.4.6　创建自定义BSP

接下来，让我们使用和前面章节中相同版本的U-Boot和Linux，通过Buildroot来为我们的Nova开发板创建一个BSP。推荐在如下目录中保存你的更改：

·board/<organization>/<device>：包含所有补丁、二进制数据、附加的构建步骤以及Linux、U-Boot和其他组件的配置文件

·configs/<device>_defconfig：包含开发板的默认配置

·packages/<organization>/<package_name>：开发板的所有附加包的存放位置

我们可以以BeagleBone的配置文件为基础，因为它与Nova开发板非常相似：

 [image:]

现在，.conffig文件被选取为BeagleBone的配置。下一步，为开发板的配置创建一个目录：

 [image:]

U-Boot

在第3章中，我们为Nova开发板创建了一个基于2015.07版本U-Boot的自定义启动引导，并为之创建了一个补丁文件。我们可以配置Buildroot，选择相同的版本，并应用我们的补丁。首先将补丁文件复制到board/melp/nova，然后用make menuconffig指令将U-Boot版本设置为2015.07，补丁文件夹设置为board/melp/nova，开发板的名称设置为Nova，如这张屏幕截图所示（见图6-1）：

 [image:]

图6-1　Nova设置界面截图

Linux

在第4章中，我们给Linux 4.1.10修改了内核并提供了名为nova.dts的新设备树。将这个设备树复制到board/melp/nova，并将Buildroot的内核配置改为适用于该版本的内核和nova设备树，如图6-2所示：

 [image:]

图6-2　Nova设置界面截图

构建

现在，你可以直接输入make指令来为Nova构建系统，这将在output/images目录建立文件：

 [image:]

最后一步是保存配置的副本，以便你和其他人可以再次使用它：

 [image:]

现在，你的Nova开发板有了Buildroot配置。

6.4.7　添加你自己的代码

假设你开发了一些程序，并想把它们包含在构建中。你有两个选择：一是使用它们自身的构建系统进行分别构建，然后将最终构建导入二进制文件作为覆盖。二是你可以创建一个Buildroot包，它可以从菜单中选择，并像任何其他包一样进行构建。

覆盖

覆盖仅是一个目录结构，在构建后期被复制到Buildroot根文件系统的顶端。它包含可执行文件、库文件和任何你想包含的文件。注意任何已编译的代码必须与运行时部署的库文件兼容，这意味着它必须使用与Buildroot相同的工具链。使用Buildroot的工具链相当简单：把它添加到path中就可以了：

 [image:]

工具的前缀为<ARCH>-linux-。

覆盖目录通过BR2_ROOTFS_OVERLAY设置，其中包含一个由空格隔开的目录清单，这些目录应该被覆盖到Buildroot的根文件系统。这项设置位于menuconffig中的System configuration|Root filesystem overlay directories选项。

例如，如果你添加一个HelloWorld程序到bin目录，并添加一个脚本使之在启动时开始运行，就会创建一个包含以下内容的覆盖目录（见图6-3）：

 [image:]

图6-3　创建的覆盖目录

然后将board/melp/nova/overlay添加到覆盖选项。

根文件系统的布局由system/skeleton目录控制，权限在device_table_dev.txt和device_table.txt中设置。

添加一个包

Buildroot的包存储在package目录下，其中超过1000个包存储在各自的子目录下。一个包至少包含2个文件：一是Conffig.in，含有使包在configuration菜单下可见所需的Kconffig代码片段，二是名为<package_name>.mk的makefile。注意，包中并没有代码，只是含有一些指令，来下载压缩包、完成git pull等。

makefile以Buildroot预期的格式写成，包括了允许Buildroot下载、配置、编译和安装程序的指令。写一个新的makefile非常复杂，Buildroot用户手册中对此有详细的介绍。这里有一个例子来说明如何为本地的简单程序创建程序包，比如helloworld程序。

首先通过配置文件Conffig.in创建子目录package/helloworld，像这样：

 [image:]

第一行必须写成这种格式：BR2_PACKAGE_<uppercase package name>。接下来是布尔值和包的名称，包的名称会出现在配置菜单中，使用户能够选择此包。Help部分是可选的（可能有用）。

接着，编辑package/Conffig.in，将新的包链接到Target Packages菜单下，并如前文提到的那样提供配置文件。你可以将它附加到一个现有的子菜单下，但在这种情况下，创建一个仅包含此包的子菜单似乎更加简洁：

 [image:]

然后，创建一个makefile文件package/helloworld/helloworld.mk，为Buildroot提供所需数据：

 [image:]

路径的位置被固定写为本地路径名。在现实中，你会从一个源代码系统或某类中央服务器获取代码：Buildroot用户指南中有详细介绍，其他包也有很多示例。

6.4.8　检查许可证合规性

Buildroot基于开源的软件包编译。在项目的某些节点，你应当检查一下许可证，运行这条指令：

 [image:]

信息被收集到output/legal-info中。host-manifest.csv里存放着用来编译主机工具的许可证概要，在目标设备中这些概要存放在manifest.csv。README文件和Buildroot用户手册中有更多相关信息。
6.5　Yocto项目

Yocto项目比Buildroot复杂得多。它不仅可以像Buildroot一样构建工具链、引导加载程序、内核和根文件系统，还可以为你生成一个完整的Linux发行版，包含可以在运行时安装的二进制文件包。

Yocto项目主要是一系列项目方案的集合，类似Buildroot的包，但由Python、shell脚本以及名为BitBake的任务调度程序混合编写而成，BitBake能从方案中生成任意配置。

https://www.yoctoproject.org/中有大量的在线文档。

6.5.1　背景

如果你看过Yocto项目的背景介绍，那就会对它的结构有更深刻的理解。它源于Open-Embedded（网址是http://openembedded.org/），OpenEmbedded衍生出许多项目，使Linux可以移植到各种手提电脑上，包括夏普Zaurus系列和康柏iPaq系列。Openembedded于2003年诞生，最初作为手提电脑的构建系统，但很快就扩展到其他类型的嵌入式开发板。它被一群热情高涨的程序员们不断开发着。

Openembedded项目创建了一套使用紧凑的.ipk格式的二进制包，这些包可以用不同的方式结合起来创建一个目标系统，并在运行时安装在目标上。为了实现这一点，它为每个软件创建方案并把BitBake作为任务调度程序使用。这个过程一直都非常灵活。通过提供合适的元数据，你可以按自己的规范创建一个完整的Linux发行版。其中众所周知的是[image:]发行版（http://www.angstrom-distribution.org），当然也有许多其他的版本。

在2005年，Richard Purdie（他后来成为了OpenedHand开发者）创建了一个对包的选择更为保守的Openembedded分支，并创建了耐用的稳定版。他把这个稳定版命名为Poky，本意是一种日本零食（如果你对此并不了解，只需知道它与hockey押韵）。虽然Poky只是一个分支，Openembedded和Poky仍保持着同时独立开发、共享更新并或多或少地保持架构同步。英特尔在2008年推出了OpenedHand并于2010年组建Yocto Project时将Poky Linux转入Linux基金会。

自2010年以来，Openembedded和Poky的常见组件已被合并成一个单独的项目，叫做openembedded核心，或oe-core。

因此，Yocto项目聚集了几个组件，其中最重要的是以下几个：

·Poky：参考发行版。

·oe-core：核心元数据，与Openembedded共享。

·BitBake：任务调度程序，与Openembedded和其他项目共享。

·Documentation：每个组件的用户手册和开发者指导。

·Hob：openembedded和Bitbake的图形化用户接口。

·Toaster：基于Web的Openembedded和Bitbake接口。

·ADT Eclipse：Eclipse插件，使通过Yocto Project的SDK构建项目更加容易。

严格来说，Yocto Project是这些子项目的汇总。它采用Openembedded作为构建系统，Poky作为其默认配置和参考环境。然而，人们经常使用“Yocto项目”一词来单独指代构建系统。我觉得要想逆转这一潮流已不现实，所以为简短起见，我也会这样指代。我提前向Openembedded的开发者致歉。

Yocto项目提供了一个稳定的基础，既可以发挥自身功能，也可以通过使用元层来扩展，这一点将在本章后续内容中探讨。许多SoC供应商通过这种方式为他们的设备提供开发板支持包。元层也可以用来创建或扩展不同的构建系统。有些构建系统是开源的，例如Angstrom项目；其他是商业的，如MontaVista Carrier Grade Edition、Mentor Embedded Linux和Wind River Linux。Yocto项目具有品牌和兼容性测试方案以确保各组件能协同运行。你也会在不同的网站上看到类似于Yocto Project Compatible 1.7这样的声明。

因此，你应该将Yocto项目视作整个嵌入式Linux领域的基础，同时它本身也是完整的构建系统。你可能想知道Yocto这个名字的含义。yocto是国际单位制中代表10-24的词冠，正如micro代表10-6一样。为什么要这样命名一个项目呢？原因有可能是为了表明这个项目可以构建出非常微小的Linux系统（虽然事实上别的构建系统也可以），但也可能是为了在与[image:]发行版的竞争中抢先一步。[image:]发行版基于OpenEmbedded项目，[image:]一词代表10-10，与yocto相比这就是一个非常大的数字了！

6.5.2　稳定发行版与支持

每六个月会有一个Yocto项目新版本发布，通常在四月和十月。它们主要通过版本代号来区分，但了解Yocto项目和Poky的版本号也是有用的。表6-1列出了本书写作时的四个最新版本：

表6-1　Yocto项目版本信息

 [image:]

在当前发布周期和下一个发布周期（总共约持续12个月），稳定版会在安全性方面与关键漏洞修复上获得支持。这些更新不允许变更工具链或内核版本。对于Buildroot来说，如果想持续得到支持，你可以更新到下一个稳定版本，或者将变更移植到你的当前版本。此外，也可以选择Mentor Graphics、Wind River等操作系统厂商对Yocto项目的商业支持，这种支持会持续几年时间。

6.5.3　安装Yocto项目

要获取Yocto项目，你可以复制软件库，选择代号名作为分支——在本例中为fido：

 [image:]

你也可以从http://downloads.yoctoproject.org/releases/yocto/yocto-1.8/poky-fido-13.0.0.tar.bz2下载文件。

在第一种情况下，你会在poky目录中找到所需的一切；在第二种情况下，则是位于poky-fido-13.0.0/中。

此外，你应该阅读《Yocto Project Reference Manual》（http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros）中的“系统需求”章节，特别地，你应该确保手册中列出的包都已被安装在主机上。

6.5.4　配置

对Buildroot而言，让我们从构建ARM QEMU仿真器开始。首先，提供建立环境的脚本：

 [image:]

这将为你创建一个叫做build的工作目录，并将其作为当前目录。所有的配置、中间文件和部署文件将被放置在这个目录下。每次在这个项目上工作时都必须提供这个脚本。

若想选择一个不同的工作目录，你可以将目录作为参数添加到oe-init-build-env，例如：

 [image:]

这将使你进入build-qemuarm目录。然后你可以同时运行多个项目：通过参数oe-init-build-env选择一个你想操作的。

最初，build目录中只包含子目录conf，其中包含本项目的配置文件：

·local.conf：包含一个你对即将构建的设备和构建环境的说明。

·bblayers.conf：包含一个目录清单，包含你即将使用的层。此后会添加更多的和层有关内容。

·templateconf.cfg：包含一个存放各种conf文件的目录名称。默认情况下指向meta-yocto/conf。

现在，我们只需要在local.conf中将MACHINE变量设置为qemuarm，将这行指令前的注释符号删除即可：

 [image:]

6.5.5　构建

在实际构建过程中，你需要运行bitbake，以创建根文件系统映像。一些常见的映像如下：

·core-image-minimal：小型的基于控制台的系统，用于测试和作为定制映像的基础。

·core-image-minimal-initramfs：和core-image-minimal类似，但构建为虚拟内存盘。

·core-image-x11：基本映像，通过X11服务器和xterminal终端应用提供图形化支持。

·core-image-sato：基于Sato的全图形化系统，建立在X11和GNOME上的移动图形化环境。该映像包括终端、编辑器和文件管理器等多个应用程序。

给BitBake设定最终目标，它将进行逆向操作，首先从工具链开始建立所有的依赖关系。现在，我们只构建一个最小的映像，看看它是否行得通：

 [image:]

构建过程可能需要花费一段时间，也许会超过一个小时。当它完成时，你会在构建目录中发现一些新的目录，包括build/downloads，这个目录包含在构建中下载的所有源代码；还包括build/tmp，这个目录包含了大部分的构建构件。你应该在tmp中看到如下内容：

·work：包含所有组件的构建目录和层级结构，包括根文件系统

·deploy：包含最终要部署在目标上的二进制文件：

·deploy/images/[machine name]：包括准备要在目标设备上运行的引导加载程序、内核和根文件系统映像

·deploy/rpm：包含构成映像的RPM包

·deploy/licenses：包含从每个包中提取的许可证文件

6.5.6　运行

当你构建一个QEMU目标时，会生成一个QEMU的内部版本，这样就无需再为你的软件安装QEMU包，从而避免了版本依赖。这个内部QEMU包含一个叫做runqemu的包装器脚本。

要运行QEMU仿真，必须确保已经获取了oe-init-build-env，接着只要输入：

 [image:]

在这种情况下，QEMU已经通过一个图形控制台被配置，这样启动信息和登录提示就会出现在黑色的帧缓冲屏幕上（见图6-4）：

 [image:]

图6-4　QEMU启动过程截图

你可以以root身份登录而无需密码。通过直接关闭帧缓存窗口可以关闭QEMU。将nographic添加到命令行，就可以启动QEMU而不使用图形窗口：

 [image:]

在这种情况下，关闭QEMU需要使用组合键Ctrl+A+X。

runqemu脚本有很多其他的选项，输入runqemu help可以获取更多信息。

6.5.7　层

Yocto项目的元数据被组织为层结构，按照惯例，每一层的名字以meta开头。Yocto项目的核心层如下：

·meta：这是OpenEmbedded的核心

·meta-yocto：针对Yocto项目的元数据，包括Poky发行版

·meta-yocto-bsp：包含Yocto项目支持的相关机器的开发板支持包

<your build directory>/conf/bblayers.conf中存储了层清单，BitBake在其中搜索方案，在默认情况下，它包括前面列表中提到的全部三个层。

用这种方式构建方案和其他配置数据，使得通过添加新层来扩展Yocto项目变得容易。附加层可从SoC制造商、Yocto项目本身以及许多想为Yocto项目和OpenEmbedded贡献力量的人那里获取。在http://layers.openembedded.org有一个实用的层清单。以下是一些例子：

·meta-angstrom：[image:]发布版

·meta-qt5：Qt5库和工具

·meta-fsl-arm：基于ARM的FreescaleSoC的BSP

·meta-fsl-ppc：基于PowerPC的FreescaleSoC的BSP

·meta-intel：Intel CPU和SoC的BSP

·meta-ti：基于ARM的TISoC的BSP

添加一个层非常简单，只需将元目录复制到一个合适的位置——通常与默认元层相邻，并将它添加到bblayers.conf中。要确保它与你使用的Yocto Project版本相兼容。

为了说明层的工作方式，我们为Nova开发板创建一个层，这可以让我们在添加特性时回想起这一章节。每一层都至少有一个配置文件conf/layer.conf，以及README文件和许可证。这里有一个便利的助手脚本作为基础：

 [image:]

如果你想创建样本方案，脚本将请求优先级。在这里，我们接受默认值：

 [image:]

上述指令将创建一个层，名为meta-nova，具有一个conf/layer.conf文件、一个README文件大纲和COPYING.MIT中的MIT许可证。layer.conf文件看起来是这样的：

 [image:]

它将自身添加到BBPATH，其包含的方案则被添加到BBFILES。从代码来看，你可以看到方案可以在以recipes-开头的目录中找到，此目录下的文件以.bb结尾（对普通BitBake方案而言），或以.bbappend结尾（对扩展方案而言，它们向现有的普通方案添加和重载指令）。这个层的名字叫做nova，将被添加到BBFILE_COLLECTIONS的层清单中，其优先级是6。如果在几层中出现相同的方案，层优先级最高的那个能够创建成功。

既然要创建一个新的配置，那么最好是一开始就创建一个新的构建目录，名为build-nova：

 [image:]

现在你需要将这个层添加到构建配置conf/bblayers.conf中：

 [image:]

你可以使用另一个助手脚本来确认它是否被正确设置：

 [image:]

这里你可以看到新的层。它的优先级为6，这意味着我们可以覆盖其他层上低优先级的方案。

这时使用这个空层来运行构建是一个好主意。最终的目标是Nova开发板，但现在，删除conf/local.conf中MACHINE？="beaglebone"前的注释符，在BeagleBone Black上构建。然后，像之前一样用bitbake core-image-minimal构建一个小型映像。

与方案一样，一个层可能包含BitBake类、机器的配置文件以及其他。接下来，我们来看一看方案，我将展示如何创建一个自定义映像以及如何创建一个包。

Bitbake和方案

BitBake能处理以下几类元数据：

·recipes：文件名以.bb结尾。这些文件包含了构建软件单元的信息，包括如何获取源代码的副本、其他组件的依赖关系以及如何构建和安装。

·append：文件名以.bbappend结尾。这些文件让方案的一些细节被重写或扩展。一个.bbappend文件将它的指令添加到同一根目录下方案（.bb）文件的结尾。

·include：文件名以.inc结尾。这些文件包含几个方案的通用信息，让信息在方案之间共享。这些文件通过include或require关键字被包含。这两个关键字的区别在于，如果该文件不存在，require会产生一个错误，而include则不会。

·classes：文件名以.bbclass结尾。这些文件包含通用构建信息，例如如何构建内核，或如何建立autotools项目。通过inherit关键字，可以在方案和其他类中继承和扩展一个类。类classes/base.bbclass在每一个方案中被隐式继承。

·configuration：文件名以.conf结尾。这些文件定义了管理项目构建过程的多种配置变量。

方案是由Python和shell代码混合写成的任务的集合。任务都有名字，比如do_fetch、do_unpack、do_patch、do_conffigure、do_compile、do_install等。使用BitBake来执行这些任务。

默认的任务是do_build，以便于为方案运行构建任务。你可以使用bitbake core-image-minimal列出方案中可用的的任务，像这样：

 [image:]

-c选项允许你在指定任务时省略do_前缀。常用的方法是通过-c fetch来获取一个方案所需要的代码：

 [image:]

你也可以使用fetchall为目标和所有的依赖方案获取代码：

 [image:]

方案文件通常命名为<package-name>_version.bb。方案文件可能依赖其他方案，这会允许BitBake执行一些子任务以完成顶层工作。不过，我在本书中没有足够的篇幅来描述这种依赖机制，你可以在Yocto项目文档中找到完整描述。

例如，要想在meta-nova中为我们的helloworld程序创建一个方案，你可以创建一个这样的目录结构：

 [image:]

方案文件是helloworld_1.0.bb，位于本地方案目录中的子目录下。方案中包含这些指令：

 [image:]

源代码的位置由SRC_URI设置：在本例中，它会在方案目录下搜索目录、文件、helloworld和helloworld-1.0。只有do_compile任务和do_install任务需要定义，do_compile编译一个源文件，do_install把它安装到目标根文件系统中：${D}扩展到目标设备的暂存区，${bindir}扩展到默认的二进制文件目录/usr/bin。

每个方案有一个许可证，由LICENSE定义，在这里被设置为GPLv2。含许可证文本和校验和的文本文件由LIC_FILES_CHKSUM定义。如果校验和不匹配，这说明许可证已在某种程度上发生了变更，BitBake将终止构建。许可文件可能是该包的一部分，也可能是指向meta/files/common-licenses中标准许可证文本之一，正如当前的例子一样。

默认情况下，商业许可证是不允许的，但使他们变得可行也很容易。你需要在方案中指定许可证，如下所示：

 [image:]

然后，在你的conf/local.conf中明确允许这种许可证，像这样：

 [image:]

为确保它正确编译，你可以用BitBake构建它，像这样：

 [image:]

如果一切顺利，你应该看到tmp/work/cortexa8hf-vfp-neon-poky-linux-gnueabi/helloworld/中已经创建了一个工作目录。

你也应该在tmp/deploy/rpm/cortexa8hf_vfp_neon/helloworld-1.0-r0.cortexa8hf_vfp_neon.rpm看到一个对应的RPM包。

不过它不是目标映像的一部分。即将安装的包的清单保留在名为IMAGE_INSTALL的变量中，要想在清单末尾附加内容，可以把下面这行加入conf/local.conf：

 [image:]

注意，在第一个双引号和第一个包名称之间必须有一个空格。现在，包将被添加到任何bitbake的映像中：

 [image:]

如果你查看tmp/deploy/images/beaglebone/core-image-minimal-beaglebone.tar.bz2，你会发现/usr/bin/helloworld已经安装。

6.5.8　通过local.conf定制映像

你可能经常想在开发过程中向映像中添加一个包或以其他方式调整它。如前所示，你可以简单地在要安装的包的清单中追加声明如下：

 [image:]

当然，你也可以反其道而行：使用这种语法移除一个包：

 [image:]

你可以通过EXTRA_IMAGE_FEATURES做更彻底的改变。可列出的内容非常多，我建议你看看《Yocto Project参考手册》的Image Features部分以及meta/classes/core-image.bbclass的代码。下面是一个简短的清单，会告诉你可以应用哪些特性：

·dbg-pkgs；为所有安装在映像中的包安装调试符号包。

·debug-tweaks：允许无密码登陆root和其他使开发更容易的变更。

·package-management：安装包管理工具并保存包管理器数据库。

·read-only-rootfs：使根文件系统只读。我们将在7章中详细介绍这一部分。

·x11：安装X服务器。

·x11-base：用最小环境安装X服务器。

·x11-sato：安装OpenedHand Sato环境。

6.5.9　编写一个映像方案

改变local.conf的问题在于它是本地的。如果你想创建一个与其他开发人员共享的映像，或把映像加载到一个生产系统中，那么你就应该在映像方案中做出一些改动。

一个映像方案包含如何为目标创建映像文件的指令，包括引导加载程序、内核、根文件系统的映像。你可以用这个指令得到可用映像的清单：

 [image:]

core-image-minimal的方案位于meta/recipes-core/images/core-image-minimal.bb。

一个简单的方法是将现有的映像方案用与在local.conf中类似的声明做出修改。

例如，假设你想要一个与core-image-minimal相同的映像，但其中还包括你的hello-world程序和strace实用程序。你可以通过一个两行的方案文件实现，这个文件包含（使用require关键字）基本映像，并且添加了你想要的包。通常把映像放入名为images的目录，所以把meta-nova/recipes-local/images中的这些内容添加到方案nova-image.bb中：

 [image:]

现在你可以从local.conf中去除IMAGE_INSTALL_append这一行，并用下面的指令构建：

 [image:]

如果你想进一步完全掌控根文件系统的内容，你可以从零开始，用一个空的IMAGE_INSTALL变量并这样填充它：

 [image:]

IMAGE_LINGUAS包含要安装在目标映像上的glibc环境清单。它们会占用大量的空间，因此在这种情况下，我们将列表设置为空，只要没有依赖环境的库函数就不会有问题。IMAGE_ROOTFS_SIZE是产生的磁盘映像的大小，单位是KB。大部分的工作是由core-image类完成的，我们最后要继承这个类。

6.5.10　创建一个SDK

能够创建一个可以被其他开发者安装的独立工具链非常有用，这避免了团队中的每一个成员都需要安装完整的Yocto项目。理想情况下，工具链能包含开发库文件和目标上已经安装的所有库的头文件。你可以通过populate_sdk任务为任意映像实现这一点，如下所示：

 [image:]

其结果是一个在tmp/deploy/sdk目录下自我安装的shell脚本，名为：

 [image:]

这是一个例子：

 [image:]

注意，默认情况下工具链不包括静态库。你可以通过在local.conf或映像方案中添加类似下面的声明使这些文件可用：

 [image:]

你还可以让它们在全局中起作用，声明如下：

 [image:]

如果只需要一个带有C和C++交叉编译器、C库和头文件的基本工具链，你可以改为运行：

 [image:]

要安装SDK，只需运行shell脚本。默认的安装目录是/opt/poky，但安装脚本允许你改变它：

 [image:]

要利用这个工具链，首先要获取环境设置脚本：

 [image:]

这样生成的工具链没有配置有效的sysroot：

 [image:]

因此，如果你尝试像我之前章节中展示的交叉编译，将会出现以下错误：

 [image:]

这是因为编译器被配置为大多数ARM处理器可以通用的模式，当你使用正确的gcc标识启动了编译器时，就不需要微调了。只要你用$CC来编译就可正常运行：

 [image:]

6.5.11　许可证审核

Yocto项目要求每个包都有一个许可证。在每个包被构建时，它的许可证的副本存放在tmp/deploy/licenses/[packagenam.e]。此外，内核映像中使用的包和许可证的摘要存放在<image name>-<machine name>-<date stamp>目录。下面是一个例子：

 [image:]

第一个文件列出了每一个包所使用的许可证，第二个文件只列出了包的名字。
6.6　延伸阅读

你可以查看以下文档以了解更多信息：

·《The Buildroot User Manual》，http://buildroot.org/downloads/manual/manual.html。

·《Yocto Project》文档：有9份参考指南，还有一份是其他指南的综合（所谓的“超级手册”），https://www.yoctoproject.org/documentation。

·《Instant Buildroot，by Daniel Manchón Vizuete》，Packt Publishing，2013。

·《Embedded Linux Development with Yocto Project》，by Otavio Salvador and Daianne Angolini，Packt Publishing，2014。
6.7　总结

使用一个构建系统创建嵌入式Linux系统并不困难，而且几乎总是比手工创建系统效果更佳。现在有一系列可用的开源构建系统：Buildroot和Yocto项目代表了两种不同的方法。Buildroot简单快捷，尤其针对于单一目标的简单设备——我喜欢把这样的设备称为传统嵌入式Linux设备。

Yocto项目更为复杂和灵活。它是基于包的，这意味着你可以安装包管理器，并单独地更新一些包。元层结构使得扩展元数据非常容易，社区和行业对Yocto项目有充分支持。缺点在于学习曲线非常陡峭：要想精通它需要花费几个月的时间，然而之后仍可能发生你没有想到的事情——至少这是我的经验。

别忘了使用这些工具创建的任何设备都需要在一段时间内具备可维护性，这段时间通常长达数年。Yocto项目会在一个版本发行后的一年提供更新来修复漏洞，Buildroot通常不提供这样的更新。不论如何，你总会需要自行维护你的版本或者付费寻求商业支持。还有第三种可能性，那便是忽略维护——但最好不要这么做！

下一章我会着眼于文件存储和文件系统，你在这些部分做出的选择会对你的嵌入式Linux的稳定性和可维护性产生影响。
第7章　创建存储策略

为嵌入式设备选择不同的大容量存储器将影响系统其他部分的健壮性、速度和实时更新策略。

大多数设备以这样或那样的方式使用闪存。随着存储容量从几十兆字节增加到几十吉字节，闪存与过去相比变得更加便宜。

在这一章中，我将从闪存技术和内存组织开始，详细讲述闪存背后用到的技术以及不同的内存组织方式，包括Linux的内存技术设备层（MTD），是如何影响用来管理闪存的底层驱动软件的。

对于每一种闪存技术，可以选择不同的文件系统。我将讲述在嵌入式设备上最常见的那些文件系统，并通过专门的一节总结出每种类型的闪存对应什么样的文件系统。

最后一部分讲述如何充分利用闪存，如何现场更新设备，以及如何把所有这些组织成一个统一的存储策略的技术。
7.1　存储器选择

为了保证嵌入式设备在生命周期（可能长达几十年）中的物理紧凑性、健壮性及可靠性，需要使用低功耗的存储设备。基本上，这意味着固态存储，就是许多年前推出的只读存储器（ROM），但在过去的20年中，也开始使用一些闪存。在那段时间里出现了很多代闪存，从NOR到NAND再到托管闪存如eMMC。

NOR闪存虽然价格昂贵，但是可靠并且可以映射到CPU的地址空间，这使得你可以在闪存中直接执行代码。NOR闪存芯片容量低，大小从几兆字节到千兆字节左右。

NAND闪存比NOR闪存便宜得多，容量从几十兆字节到几十吉字节，适用于大容量存储。然而，用它做存储介质需要大量的硬件和软件的支持。

托管闪存由一个或多个NAND闪存芯片以及一个控制器集成，控制器用来处理闪存的复杂情况并提供一个类似硬盘接口的硬件接口。它吸引人的地方在于消除了驱动软件的复杂性，使得闪存技术的频繁变化对系统设计者是透明的。SD卡、eMMC芯片和USB闪存驱动器都属于这一类。几乎现在所有的智能手机和平板电脑都有eMMC存储器，并且这一趋势可能向其他类别的嵌入式设备扩展。

在嵌入式系统中很少使用硬盘驱动器。数字视频是一个例外，它被记录在机顶盒和智能电视中，需要容量大且写入速度快的存储。

在所有的情况下，健壮性是最重要的：你希望设备启动并且处于工作状态而不是断电或意外重置。那么，你应该选择在这种环境中表现良好的文件系统。

7.1.1　NOR闪存

NOR闪存芯片中的存储单元被组织成不同大小的擦除块，例如，128KB。擦除一个块就是把所有的位置1。它可以一次编程一个字（8、16或32位，取决于数据总线宽度）。每个擦除周期会轻微损害存储单元，经过若干周期后，擦除块变得不可靠，不能再继续使用。最大擦除周期数应该在芯片的数据手册中给出，通常是在100K到1M之间。

芯片中的数据可以按字读取。该芯片通常被映射到CPU的地址空间，这意味着你可以直接在NOR闪存中执行代码。这使得NOR闪存可以很方便地存储引导程序，因为它除了硬连线地址映射外不需要进行初始化。SoC就是以这种方式支持NOR闪存的，它有提供默认的内存映射的配置，因此它拥有CPU的复位向量。

内核，甚至是根文件系统，也可以在闪存中存储，而不需要复制到RAM，从而减少了创建设备的内存占用。该技术被称为芯片内执行（eXecute In Place，XIP）。它是非常专业的知识，这里不做详细介绍。在本章结尾部分有关于它的参考资料。

NOR闪存芯片有一个标准的寄存器级接口，称为通用闪存接口或CFI，现在所有芯片都支持该接口。

7.1.2　NAND闪存

NAND闪存比NOR闪存便宜得多并且容量大。第一代NAND闪存芯片在1个存储单元中存储1位，现在被称作SLC或单层单元。后来出现了每个存储单元存储2位的多层单元（MLC）以及现在每个单元存储3位的三层单元（TLC）。随着每个存储单元存储比特数的增加，存储的可靠性下降，因此需要更复杂的硬件和软件控制器来弥补可靠性。

与NOR闪存类似，NAND闪存也组织成擦除块，每个擦除块大小在16 KB到512 KB之间，同样，擦除一个块就是将所有位置1。然而，确保块可靠性的擦除周期数会降低，通常TLC芯片为1K周期而SLC的擦除周期高达100K。NAND闪存只能按页读写，每页通常为2KB或4 KB。因为它们不能按字节访问，所以不能映射到地址空间，访问前需要将代码和数据复制到RAM中。

数据从芯片传入或传出容易发生位翻转，这种情况可以使用错误检查和纠正（ECC）技术。SLC芯片通常使用汉明码，它可以由软件高效地实现并能够在读取页时更正1个出错位。MLC和TLC芯片需要更复杂的编码，如每页可以纠正8个出错位的BCH（Bose-Chaudhuri-Hocquenghem）。这些复杂的编码需要硬件的支持。

纠错码需要存储起来，所以每页有额外的存储空间，称为带外（out of band，OOB）区域或者称为空闲区域。MLC的设计通常每32字节额外有1字节的OOB区域，对于2KB大小的页面OOB是64字节每页，4 KB大小的页面对应128字节OOB。MLC和TLC芯片中OOB所占的比例更大，以此来容纳更复杂的纠错码。图7-1显示了一个擦除块大小为128KB，页大小为2KB的芯片组织结构：

 [image:]

图7-1　擦除块芯片组织结构

在生产过程中，制造商测试所有的块并且通过设置块中每页OOB区域的标志来标记坏块。在全新的芯片中，有高达2%的块使用这种方式标记为坏块的现象并不少见。此外，类似比例的块在擦除周期到达前出现擦除错误也是在规定范围内的。NAND闪存驱动程序应检测到并把它标记为坏块。

除了检查坏块的OOB区域以及错误检查和纠正字节占用的一部分空间，还有一些其他冗余的字节。有些闪存文件系统利用这些空闲的字节来存储元数据。因此，很多人都对OOB区域的布局感兴趣：SoC的ROM启动代码、引导加载程序、内核MTD驱动程序、文件系统代码以及创建文件系统映像的工具。对于OOB没有太多的标准，因此很容易陷入这样一个境地：引导加载程序使用OOB格式写入的数据不能被内核MTD驱动程序读取。所以它们是否统一取决于你的决定。

要想访问NAND闪存芯片需要一个NAND闪存控制器，该控制器通常在SoC上。你需要在引导程序和内核中有相应的驱动程序。NAND闪存控制器处理芯片的硬件接口，这些接口与内存页之间传输数据，控制器也可能包括用来校正错误的硬件。

对于NAND闪存芯片，有一个标准的寄存器级接口，称为开放式NAND闪存接口（open NAND flash interface，ONFi），现在大多数芯片都有此接口。详见http://www.onfi.org。

7.1.3　托管闪存

如果有一个明确的硬件接口和可以隐藏内存复杂情况的标准闪存控制器，那么就减少了很多通过操作系统支持闪存尤其是NAND闪存的工作量。这就是托管闪存，它正变得越来越普遍。在本质上，它是集成一个或多个闪存芯片及一个微控制器，并提供能与传统的文件系统兼容的理想的小扇区存储设备。对于嵌入式来说，最重要的托管闪存类型是安全数字（Secure Dfigital，SD）卡以及嵌入式变体eMMC。

多媒体卡和安全数字卡

1997年闪迪（SanDisk）公司和西门子（Siemens）公司联合推出了一种用闪存封装的被称作多媒体卡（MMC）的存储器。不久之后，闪迪、松下、东芝于1999年研制出了SD卡，它以MMC为基础但增加了加密部分和DRM（即安全部分）。两者都是为消费者的电子设备准备的，如数码相机、音乐播放器及类似的设备。目前，消费者和嵌入式电子设备主要用到的托管闪存的形式是SD卡，虽然很少用到它的加密功能。较新版本的SD卡标准提供了更小的封装（mini SD和micro SD，通常被记为uSD）和更大的容量：SDHC（Hfigh Capacity）容量高达32 GB，SDXC（eXtended Capacity）容量高达2 TB。

MMC和SD卡的硬件接口是非常相似的，甚至全尺寸的MMC可以用在全尺寸的SD卡插槽（反之则不行）。早期的卡使用1位串行外设接口（SPI）；现在更多的卡使用4位接口。这些闪存有用于读写内存中512字节扇区的指令集。如图7-2所示：里面封装了一个微控制器和一个或多个NAND闪存芯片。

 [image:]

图7-2　SD卡示意图

微控制器实现了指令集并且管理闪存，像本章后面将提到的，它扮演了闪存转换层的角色。它被FAT文件系统预格式化：在SDSC卡上是FAT16，在SDHC卡上是FAT32，在SDXC卡上是exFAT。不同卡上NAND闪存芯片的质量及微控制器上的软件差别很大。所以，要怀疑的是，它们在深度嵌入式应用时可靠性是否充分以及是否因为缺少FAT文件系统而易出现文件缺失或损坏。记住，MMC和SD卡主要用在相机、平板电脑、手机的移动存储中。

eMMC

eMMC或嵌入式MMC就是简单封装了的MMC存储器，因此它能被焊接在主板上，它使用4位或8位接口传输数据。然而，它是用来存储操作系统的，所以这些组件能够执行该任务。芯片通常不预先用任何文件系统格式化。

其他类型的托管闪存

小型快闪卡（CompactFlash，CF）是最早的托管闪存技术之一，采用PCMCIA（PC内存卡国际联合会）接口的子集。CF通过并行ATA接口提供存储访问，操作系统把它作为一个标准的硬盘。它们常用于基于x86的单片机、专业视频仪及摄像设备中。

另一种形式是我们每天使用的USB闪存驱动器。在这种情况下，我们通过USB接口访问存储器，控制器实现USB海量存储规范以及闪存转换层和闪存芯片或芯片的接口。而USB海量存储协议是基于SCSI磁盘指令集的。与MMC和SD卡类似，它们通常是被FAT文件系统预格式化。它们在嵌入式系统中的主要用途是与个人电脑交换数据。

通用闪存（universal flash storage，UFS）是最近新加的一种托管闪存存储。像eMMC一样，它封装在一个挂载在主板上的芯片中。它有一个高速串口，可以实现比eMMC更大的数据传输率。它支持SCSI磁盘指令集。
7.2　从引导加载程序访问闪存

在第3章，我提到了需要引导加载程序来加载内核二进制代码和不同闪存设备中的其他映像，以及执行系统维护任务如闪存的擦除及再编程。因此引导加载程序必须具有可以支持你的存储器（无论是NOR、NAND还是托管闪存）读写及擦除操作的驱动程序及基本配置。在下面的例子中，我将使用U-Boot。其他引导加载程序遵循类似的模式。

7.2.1　U-Boot和NOR闪存

U-Boot在drivers/mtd目录中有NOR CFI芯片的驱动程序，它的erase命令可以用来擦除存储器，cp.b命令用来按字节复制数据并对闪存编程。假设你有一个映射从0x40000000到0x48000000地址空间的NOR闪存，其中从0x40040000开始的4MB是内核映像，你可以用这些U-Boot命令把一个新的内核加载到闪存中：

 [image:]

上述例子中的变量filesize的值是由tftpboot命令设置的，即刚刚下载的文件的大小。

7.2.2　U-Boot和NAND闪存

对于NAND闪存，需要在你的SoC上加一个NAND闪存控制器的驱动程序，该驱动程序可以在drivers/mtd/nand中找到。你可以使用nand命令来管理存储器，使用其子命令read、write和erase来读写及擦除闪存。这个例子展示了一个内核映像被加载到RAM 0x82000000中，然后放到起始位置是偏移量为0x280000的闪存中：

 [image:]

U-Boot也可以读取存储在JFFS2、YAFFS2和UBIFS文件系统中的文件。

7.2.3　U-Boot与MMC、SD和eMMC

U-Boot在drivers/mmc中有几种MMC控制器的驱动程序。你可以在用户接口层用mmc read和mmc write命令访问原始数据，这样你可以处理原始内核和文件系统映像。

U-Boot也可以从存储在MMC存储器中的FAT32和EXT4文件系统中读取文件。
7.3　从Linux中访问闪存

原始NOR和NAND闪存是由内存技术设备（MTD）子系统处理的，该系统提供读取、擦除、写入闪存中的块的基本接口。NAND闪存中有用来处理OOB区和识别坏块的函数。

对于托管闪存，你需要处理特定的硬件接口的驱动程序。MMC/SD卡和eMMC使用mmcblk驱动程序；小型快闪卡和硬盘驱动器使用SCSI磁盘驱动程序sd。USB闪存驱动器同时使用usb_storage驱动程序以及sd驱动程序。

7.3.1　内存技术设备

内存技术设备（memory technology devices，MTD），其子系统由David Woodhouse于1999年研制并在之后几年中得到广泛发展。在这一部分中，我将着重介绍它处理NOR闪存和NAND闪存两种主要技术的方式。

MTD由三层组成：核心函数集、各类芯片的驱动程序集，以及将闪存看作一个字符设备或块设备的用户级别的驱动程序，如图7-3所示：

 [image:]

图7-3　MTD体系结构

芯片的驱动程序位于最底层，是与闪存芯片的接口。NOR闪存芯片只需少量驱动程序加上一些大多数现在已经过时的非标准芯片的驱动程序，就足以覆盖CFI标准和变化。对于NAND闪存，你需要有正在用的NAND闪存控制器的驱动程序，这通常是作为板级支持包的一部分提供的。在目录drivers/mtd/nand中有大约40个当前主流内核的驱动程序。

MTD分区

在大多数情况下，你希望将闪存分成若干个分区，例如，为引导加载程序、内核映像或根文件系统提供空间。在MTD中有多种方法指定分区的大小和位置，主要是：

·通过内核命令行：CONfig_MTD_CMDLINE_PARTS

·通过设备树：CONfig_MTD_OF_PARTS

·通过平台映射驱动程序

在第一种情况下，内核命令行使用的是mtdparts，在Linux源代码的drivers/mtd/cmdline-part.c文件中定义如下：

 [image:]

通过一个例子有助于理解。假设你有一个128MB的闪存芯片要分为五个分区。一个典型的命令如下：

 [image:]

冒号前的第一个元素是mtd-id，它是通过板级支持包给出的编号或名字来区分闪存芯片的。如果只有一个芯片，正如这里的情况，它可以为空。如果有一个以上的芯片，则每个芯片的信息由分号隔开。对于每一个芯片，用逗号隔开分区列表，每个列表包含用字节byte、千字节K，或者兆字节M标记的大小以及用括号括起的名称。ro后缀使分区对MTD来说是只读分区，并且经常用来防止意外覆盖引导加载程序。芯片的最后一个分区大小用短线（-）代替，这表示它的大小是剩下的所有空间。

你可以在/proc/mtd看到运行时配置览：

 [image:]

在/sys/class/mtd中有每个分区更详细的信息，包括擦除块的大小和页大小，并且可以用mtdinfo命令很好地总结：

 [image:]

等效的分区信息可以作为设备树的一部分而被写入，如：

 [image:]

 [image:]

第三种可选方式是将分区信息以mtd_partition结构体编码作为平台数据，从arch/arm/mach-omap2/board-omap3beagle.c中举个例子（NAND_BLOCK_SIZE在其他地方定义大小是128K）：

 [image:]

MTD设备驱动程序

MTD子系统的上层是一对设备驱动程序：

·一个主设备号为90的字符设备，对于每个分区数为N的MTD分区有2个设备节点：/dev/mtdN（次设备号=N×2）和/dev/mtdNro（次设备号=（N×2+1））。后者只是前者的只读版本。

·一个主设备号为31次设备号为N的块设备，它的设备节点形式是/dev/mtdblockN。

MTD字符设备mtd

字符设备是最重要的：它允许你以一个字节数组的方式访问底层闪存，这样你就可以对闪存进行读、写（编程）。它还实现了一些ioctl函数，以允许你擦除块和管理NAND芯片的OOB区。表7-1包含在include/uapi/mtd/mtd-abi.h中。

表7-1　字符设备函数表

 [image:]

Mtd-utils是一组实用程序，它们利用这些ioctl函数来操作闪存。源代码可以在http://git.infradead.org/mtd-utils.git找到，也可以在Yocto项目和Buildroot的软件包中找到。在下面的分项中显示了基本工具。该软件包还包含了JFFS2和UBI/UBIFS文件系统的实用工具，之后我将会介绍到这两个文件系统。对于这些工具，MTD字符设备是其中的一个参数：

·flash_erase：擦除一部分块。

·flash_lock：锁定一部分块。

·flash_unlock：解锁一部分块。

·nanddump：对NAND闪存进行内存转储，选择包括OOB区。跳过坏块。

·nandtest：NAND闪存的测试和诊断。

·nandwrite：把数据文件中的数据写入（编程）至NAND闪存，跳过坏块。

在向闪存中写入新内容前必须先擦除闪存：用flash_erase命令完成。

对NOR闪存进行编程，你只需使用cp或类似的命令把字节复制到MTD设备节点中。

然而，在NAND内存中同样的方法并不可行，因为在第一个坏块中将会出现复制失败的情况。作为替代，可以使用nandwrite命令，它能够跳过任何坏块。若需要回读NAND内存，你应该使用nanddump命令，它也能够跳过坏块。

MTD块设备mtdblock

Mtdblock驱动程序很少用到。它的目的是将闪存作为块设备，这样可以把它作为一个文件系统格式化及挂载。然而，它有严重的局限性，因为它不处理NAND Flash的坏块，不均衡损耗，不处理文件系统块大小与闪存擦除块大小不匹配的问题。换句话说，它没有一个闪存转换层，而这是保证文件存储可靠性不可缺少的。Mtdblock设备唯一有用的情形是把只读文件系统如Squashfs挂载到可靠闪存的顶部，如NOR闪存。

如果你想在NAND Flash上有只读文件系统，应该使用UBI驱动程序，在本章的后面将介绍到。

记录内核oops到MTD

内核错误或oops，通常通过klogd和syslogd守护进程记录到循环内存缓冲区或文件中。重新启动后，存储在环形缓冲区的日志会丢失，即使是存储在文件中也可能丢失，因为它可能在系统崩溃之前还没有被正确写入。

一个更可靠的方法是把opps和内核错误写到作为循环日志缓冲区的MTD分区中。你可以用CONfig_MTD_OOPS完成该操作，并且把console=ttyMTDN添加到内核命令行，N为要写入信息的MTD的设备号。

模拟NAND内存

NAND模拟器使用系统RAM模拟NAND芯片。它主要用于测试代码，这些代码可以识别NAND闪存，而不需要访问真正的物理NAND内存。特别是它能够模拟坏块、位翻转以及其他错误，让你测试那些很难用真实的闪存执行的代码路径。想要了解更多的信息，最好的渠道是代码本身，它给出了关于配置驱动的方式的全面描述。代码在drivers/mtd/nand/nandsim.c中，用内核配置CONfig_MTD_NAND_NANDSIM来启动它。

7.3.2　MMC块设备驱动程序

MMC/SD卡和eMMC芯片是使用mmcblk块驱动程序来访问的。你需要一个主控制器与所使用的MMC适配器匹配，而这是板级支持包的一部分。驱动程序的Linux源代码位于drivers/mmc/host目录下。

MMC存储用分区表进行分区，其方式与用fdisk或其他类似工具为硬盘分区完全一样。
7.4　闪存文件系统

使用闪存作为大容量存储时会产生几个问题：擦除块的大小和磁盘扇区大小不匹配，每个擦除块的擦除周期有限，以及NAND芯片需要处理坏块。这些差异是通过闪存转换层（Flash Translation Layer，FTL）整体解决的。

闪存转换层

一个闪存转换层具有以下特点：

·子分配：文件系统用小的分配单元工作最佳，通常是一个512字节的扇区。这远小于一个128KB甚至更大的闪存擦除块。因此擦除块必须分为更小的单元，以避免浪费大量的空间。

·垃圾回收：子分配的一个结果就是在文件系统使用一段时间后一个擦除块中会有大量有用数据和陈旧数据。因为我们只能一次性释放整个擦除块，因此释放空间的唯一方式就是把有用的数据集合到一个空间，然后把现在的空擦除块放入释放链表：这就是垃圾回收，它通常作为一个后台线程来实现。

·损耗均衡：每个块的擦除周期数目是有限的。为了最大限度地提高芯片的寿命，应在多个块之间移动数据，这样每个块的擦除次数大致相同。

·坏块处理：使用NAND闪存芯片，应该尽量避免使用标记为坏的块，并且应该将不能被擦除的块标记为坏块。

·健壮性：嵌入式设备可能在没有警告前掉电或重启，因此所有文件系统都应该能够处理这些情况而不出错，通常是通过结合这些事务的日记或日志来恢复。

·闪存转换层可以用于以下几个地方：

·在文件系统中：用于JFFS2、YAFFS2和UBIFS

·在块设备驱动程序中：UBI驱动，UBIFS依赖它来实现一部分闪存转换层

·在设备管理器中：用于托管闪存设备

当闪存转换层位于文件系统或块驱动程序中时，代码是内核的一部分，所以它是开源的，这意味着我们可以看到它是如何工作的，我们可以认为它会随着时间的推移而得到改善。另一方面，FTL位于一个托管闪存设备中，它被隐藏起来，我们无法验证它是否按照我们设想的方式工作。除此之外，把FTL放在设备控制器中意味着将会丢失很多文件系统层的信息，例如：哪些分区属于这个文件的信息就会被删除，因此不再包含什么有用的信息。上面提到的这个问题可以通过添加命令在文件系统和设备间传递这个信息，我将在后面讲TRIM命令时提到，但是代码的灵活性仍然存在问题。如果你使用托管内存，那么只需要找一个你可以信任的生产厂商。
7.5　NOR和NAND闪存的文件系统

要使用原始的闪存芯片进行大规模存储，你必须使用一个能够了解底层技术特性的文件系统。有三个这样的文件系统：

·闪存日志型文件系统第二版，JFFS2（Journaling Flash File System 2）：这是Linux的第一个闪存文件系统，至今然被使用。它可以支持NOR和NAND内存，但是挂载速度非常慢。

·YAFFS2（Yet Another Flash File System 2）：它与JFFS2方式类似，但是只适用于NAND闪存。它是Google通常在安卓设备上使用的原始闪存文件系统。

·无序区块镜像文件系统，UBIFS（Unsorted Block Image File System）：这是最新的闪存文件系统，支持NOR和NAND内存，它与UBI块驱动程序联合使用。通常它的性能比JFFS2和YAFFS2好，所以对于新的设计推荐使用它。

所有这些文件系统都使用MTD作为闪存的通用接口。

7.5.1　JFFS2

闪存日志型文件系统率先于1999年使用在Axis 2100网络摄像软件上。多年来，它是Linux唯一的闪存文件系统，现在已经被应用于几千种不同的设备中。现在，它不是闪存文件系统的最好选择，但我要先讲它，因为闪存文件系统的演化路径是从它开始的。

JFFS2是日志结构的文件系统，使用MTD访问闪存。在一个日志结构的文件系统中，变化以节点的形式按顺序写入闪存。一个节点可能包含对目录的更改，如创建和删除的文件名称，或者它可能包含对文件数据的更改。一段时间后，一个节点可能被包含它的信息的后续节点取代，成为一个无效节点。

擦除块分为三种类型：

·free：它不包含节点

·clean：它只包含有用节点

·dirty：它至少包含一个无效节点

在任意时间，只有一个块接收更新，它就是open块。如果掉电或系统被重置，唯一可能丢失的数据就是最后写入到open块的那部分。此外，节点在写入后将被压缩，这样增加了闪存芯片有效的存储空间，如果你使用的是非常昂贵的NOR闪存，这点很重要。

当free块的数目低于阈值时，垃圾回收内核线程就会启动，它会扫描dirty块并将有效节点复制到open块，然后释放dirty块。

同时，垃圾回收提供了一种原始的损耗均衡方式，因为它持续不断地将有效数据从一个块移动到另一个块。open块的选择方式意味着只要每个块所包含的数据不断变化，那么每个块的擦除次数大致相同。有时clean块会被选作垃圾回收的块，以此来确保很少被写入的包含静态数据的块也能被均衡损耗。

JFFS2文件系统具有一个直写缓存（write through cache），这意味着写操作与写入闪存是同步的，就像挂载时用到-o sync选项一样。在提高可靠性的同时，也增加了写数据的时间。对于微量的写入有一个问题：如果一个写入的长度与节点头（40字节）的大小近似，开销会变得很高。一个著名的小例子是由syslogd产生的日志文件。

summary节点

JFFS2还有一个最重要的缺点：由于它没有内置索引，目录结构是在挂载时通过读取全部日志来推断产生的。在扫描结束时，你有一个完整的关于有效节点的目录结构图，但所用时间与分区大小成比例。每1MB的挂载时间为1秒的情况并不少见，这使得总的挂载时间达到几十或者几百秒。

为了减少在挂载时的扫描时间，在Linux 2.6.15中可以选择使用summary节点。summary节点在open擦除块刚要关闭前在它的末尾开始写入。summary节点包含了挂载扫描时所需的所有信息，从而减少了扫描过程中的数据量。Summary节点以大约5%的存储空间为开销，减少了2到5倍的挂载时间。它可以通过内核的配置CONfig_JFFS2_SUMMARY启动。

clean标志

无法区分一个擦除块是把所有位都置1还是把所有位都写入1，但是后者没有刷新它的存储单元并且在擦除前不能被再次编程。JFFS2采用一个称为clean标志的机制来区分这两种情况。一个块被成功擦除后，将会写入一个clean标志到块的起始位置，或者块的第一个页面的OOB区。如果存在clean标志，那一定是一个干净块。

创建JFFS2文件系统

运行时创建一个空的JFFS2文件系统，与用clean标志擦除一个MTD分区并将它挂载同样简单。因为JFFS2文件系统全是由空闲块组成，所以没有格式化步骤。例如，为了格式化MTD分区6，你需要在设备上输入这些命令：

 [image:]

flash_erase的-j选项表示添加clean标记，挂载类型为jffs2表示分区作为一个空的文件系统。注意：要挂载的设备应写为mtd6而不是/dev/mtd6。你也可以给出块设备节点/dev/mtdblock6。这是JFFS2所独有的。一旦挂载上，你可以把它看作任何一个文件系统，当你下一次启动和挂载它后，所有的文件将还在那里。

你可以直接从使用的系统暂存区直接创建一个文件系统映像，用mkfs.jffs2以JFFS2格式复制出文件，用sumtool添加summary节点。这两个命令都是mtd-utils包的一部分。

例如，为了在rootfs中为一个NAND闪存设备创建文件映像，该设备有大小为128KB（0x20000）的擦除块及summary节点，你可以使用这两个命令：

 [image:]

-p选项表示在映像文件的后面填充，使它是整数个擦除块的大小。-n选项表示禁止在映像中创建clean标志，这对于NAND设备来说很常见，因为clean标志在OOB区域。对于NOR设备，你要去掉-n。你可以通过mkfs.jffs2使用设备表，通过添加-D[device table]设置文件的权限和所有权。当然，Buildroot和Yocto项目会为你完成这一切。

你可以把映像从你的引导加载程序中写入闪存中。例如，如果你把一个文件系统映像加载到RAM中地址为0x82000000处，你想把它加载到闪存分区，这个分区从距闪存芯片起始处0x163000个字节的地方开始，大小为0x7a9d000字节，U-Boot命令如下：

 [image:]

你也可以在Linux中用mtd驱动做同样的事情，命令如下：

 [image:]

为了通过JFFS2根文件系统启动，你需要在内核命令行为分区传递mtdblock设备以及一个根fstype，因为JFFS2不能自动检测：

 [image:]

7.5.2　YAFFS2

YAFFS文件系统是Charles Manning于2001年开始编写的，专门处理NAND闪存芯片，而JFFS2不是。随后处理较大（2KB）页面的变化导致出现了YAFFS2。YAFFS的网站是http://www.yaffs.net。

YAFFS也是日志结构的文件系统，遵循了与JFFS2相同的设计准则。不同的设计在于它有更快的挂载扫描时间，简单和快速的垃圾回收，并且没有压缩，这是以牺牲存储空间的有效利用率为代价，加快了读写速度。

YAFFS不限于Linux；它已经被移植到多种操作系统。它有两个许可证：兼容Linux的GPLv2和用于其他操作系统的商业许可证。不幸的是，YAFFS代码从未被合并到Linux主线中，所以你要给你的内核打补丁，如下面的代码所示。

要想得到YAFFS2并为内核打补丁，你可以：

 [image:]

然后，用CONfig_YAFFS_YAFFS2配置内核。

创建一个YAFFS2文件系统

与JFFS2类似，在运行时创建YAFFS2文件系统，你只需要擦除分区并挂载，但注意在这种情况下你没有启用clean标志：

 [image:]

创建一个文件系统映像，最简单的办法就是使用https://code.google.com/p/yaffs2utils上的mkyaffs2工具，并使用下面的命令：

 [image:]

这里-c选项是页面的大小，-s选项是OOB的大小。mkyaffs2image工具是YAFFS代码的一部分，但它有几个缺点。首先，页面和OOB大小在源码中是硬编码的：如果你的内存与默认值2048和64不匹配，你需要编辑和重新编译。其次，OOB布局与MTD不兼容，MTD使用前两个字节作为坏块标记，而mkyaffs2image使用这些字节存储YAFFS元数据的一部分。

从Linux的shell提示符复制映像到MTD分区，遵循这些步骤：

 [image:]

为了用YAFFS2根文件系统启动，请将以下内容添加到内核命令行：

 [image:]

7.5.3　UBI和UBIFS

未排序块映像（unsorted block image，UBI）驱动程序，是一个关注闪存坏块处理及均衡损耗的卷管理器。它是由Artem Bityutskiy实现的并在Linux 2.6.22版本中第一次出现。同期，诺基亚的工程师们正在研发一个被称为UBIFS的文件系统，该文件系统将利用UBI的特性，它出现在Linux 2.6.27中。通过这种方式分割闪存转换层使得代码更加模块化，也允许其他文件系统利用UBI驱动程序，我们会在之后看到。

UBI

UBI通过将物理擦除块（physical erase Blocks，PEB）映射到逻辑擦除块（logical erase blocks，LEB），提供了一个理想可靠的闪存芯片视图。坏块不会映射到LEB上，所以永远不会被使用到。如果一个块不能被擦除，它会被标记为坏块，并从映射中删除。UBI把每个PEB被擦除的次数记录在LEB的头上并且改变映射，来确保每个PEB被擦除的次数是相同的。

UBI通过MTD层访问闪存。还有一个额外功能，它可以将一个MTD分区成多个UBI卷，以下面的方式提高了损耗均衡。设想你有两个文件系统，一个包含静态的数据，例如，一个根文件系统，另一个包含的数据是不断变化的。如果它们被存储在单独的MTD分区，损耗平衡只影响第二个，如果你选择将其存放在一个MTD分区的两个UBI卷中，磨损在两个存储区域都会发生，因而提高了闪存寿命。图7-4说明了这种情况：

 [image:]

图7-4　UBI内存使用示意图

通过这种方式，UBI实现了闪存转换层的两个要求：均衡损耗和坏块处理。

为UBI准备MTD分区，与JFFS2和YAFFS2不同，你不使用flash_erase，而是用ubiformat实用程序，它将擦除数保存在了PED头部。ubiformat需要知道最小的IO单位，对于大多数的NAND闪存芯片，是页面大小，但一些芯片允许对一半或四分之一大小的子页面进行读写。请参考芯片数据表，如果不确定，就使用页面大小。这个例子用2048字节的页面大小划分mtd6：

 [image:]

用ubiformat命令加载UBI驱动程序到以这种方式准备好的MTD分区：

 [image:]

这条命令创建了设备节点/dev/ubi0，通过它可以访问UBI卷。你可以为其他的MTD分区多次使用ubiattach，在这种情况下，他们可以通过/dev/ubi1、/dev/ubi2等进行访问。

PEB到LEB映射是在连接阶段加载到内存中的，这一过程需要的时间与PEB的数目成比例，通常为几秒。在Linux 3.7增加了一项被称为UBI快速映射的新特点，它不断检查到闪存的映射，从而减少了连接时间。内核配置选项为CONfig_MTD_UBI_FASTMAP。

你在第一次使用ubiformat后连接到MTD分区时可能并没有卷。你可以使用ubimkvol创建卷。例如，假设你有一个128MB的MTD分区，并且你想使用擦除块大小为128 KB，页大小为2 KB的芯片把它分为大小为32 MB和96 MB的两个卷：

 [image:]

现在，你有设备节点/dev/ubi0_0和/dev/ubi0_1。你可以使用ubinfo进行确认：

 [image:]

 [image:]

需要注意的是，由于每个LEB有一个头文件用来存储UBI使用的元信息，LEB比PEB小一页。例如，一个芯片的PEB大小为128 KB，页面大小为2 KB，将会有一个126 KB大小的LEB。当你创建一个映像时，这是你需要知道的重要信息。

UBIFS

UBIFS使用UBI卷创建一个强大的文件系统。它增加了子分配和垃圾回收来创建一个完整的闪存转换层。与JFFS2和YAFFS2不同，它在芯片内存储索引信息，所以挂载速度快，但不要忘了事先附加UBI卷可能需要大量的时间。它还允许像一个普通的磁盘文件系统一样写回缓存，这意味着写的速度要快得多，但通常有一个问题：在掉电时，那些还没有从缓存中刷新到闪存的数据可能会丢失。你可以通过小心使用fsync（2）和fdatasync（2）函数来解决这个问题，它们能在关键的地方强制刷新文件数据。

UBIFS可以利用日志在掉电时快速恢复。该日志占据了一定的空间，通常为4 MB或更多，所以UBIFS不适合容量非常小的闪存设备。

一旦你已经创建了UBI卷，就可以使用卷设备节点/dev/ubi0_0挂载它们，或使用整个分区的设备节点加上卷的名称，如下所示：

 [image:]

为UBIFS创建文件系统映像有两个步骤：首先使用mkfs.ubifs创建一个UBIFS映像，然后使用ubinize把映像嵌入到一个UBI卷中。

在第一阶段，mkfs.ubifs需要通过-m选项知道页面大小，通过-e选项得知UBI LEB大小，记住LEB通常比PEB小一页，以及通过-c选项得知卷的最大擦除块个数。如果第一卷大小是32 MB且一个擦除块大小是128 KB，那么擦除块个数是256。那么，为了获取目录根文件系统的内容并创建一个名为rootfs.ubi的UBIFS映像，你可以输入以下代码：

 [image:]

第二阶段要求你为ubinize创建一个配置文件，它描述了映像中每个卷的特性。帮助页面（ubinize-h）给出了格式的细节。此示例创建了两个卷，vol_1和vol_2：

 [image:]

 [image:]

第二个卷具有自动调整大小的标志，将会通过扩充来填满MTD分区的剩余空间。只有一个卷可以有这个标志。从这些信息中，ubinize将创建一个由-o参数命名的映像文件，其中-p参数指定PEB大小，-m参数指定页面大小，-s参数指定子页面大小：

 [image:]

要在目标上安装该映像，你要在目标上输入以下命令：

 [image:]

如果你想启动一个UBIFS根文件系统，需要给出如下内核命令行参数：

 [image:]

7.6　托管闪存的文件系统

随着托管闪存技术的持续发展，尤其是eMMC，我们需要考虑如何高效地使用它。尽管它们似乎与硬盘驱动器有相同的特性，但是一些NAND闪存芯片存在大容量擦除块擦除周期数有限和坏块处理的限制。当然，我们还需要在掉电情况下的健壮性。

我们可以使用任何正常的磁盘文件系统，但是应该尽量选择一个磁盘写入操作少，并且在意外停机后可以快速启动的文件系统，通常这由日志提供。

7.6.1　Flashbench

为了充分利用底层闪存，你需要知道擦除块大小和页面大小。作为一种惯例，制造商不公布这些数字，但可以通过观察芯片或卡的表现来推断它们。

Flashbench就是这样的一个工具。它最初是由与Arnd Bergman编写的，就像在LWN文章中描述的，可以在http://lwn.net/Articles/428584中找到。你可以从https://github.com/bradfa/flashbench获取代码。

这是一个在闪迪GB SDHC卡上的一个典型运行情况：

 [image:]

在这个例子中，Flashbench读取1024字节大小的块，这恰好是2的幂次方的边界。当你越过一页或擦除块的边界时，边界的读取时间更长。最右边的一栏显示的是差异，也是最有意义的一项。从底部看，在4KB的时候有一个大的跳跃，这最有可能是页面的大小。在8KB是出现了第二次跳跃，从52.4μs到349μs。这是相当普遍的，表明该卡可以使用多平面访问来同时读两个4 KB页面。除此之外，差异并不显著，但在512 KB时有一个从485μs到805μs的明显跳跃，这大概是擦除块大小。鉴于正在测试的卡是比较老的，这些都是对你所期望的数字的分类。

7.6.2　Discard与TRIM

通常，当你删除一个文件时，只有修改后的目录节点被写入存储，而包含该文件内容的扇区保持不变。当闪存转换层在磁盘控制器中时，由于使用托管闪存，它不知道这组磁盘扇区不再包含有用数据，所以它最后复制了无效数据。

在过去的几年中，增加了信息传输事务，它把被删除扇区的信息传递到磁盘控制器，改善了这种情况。SCSI和SATA规格有TRIM命令，而MMC具有类似作用的ERASE命令。在Linux中，这个功能被称为discard。

为了使用discard，你需要一个支持它的存储设备，目前大多数eMMC芯片能够做到，以及一个可以匹配的Linux设备驱动程序。你可以通过查看/sys/block/<block device>/queue/下的块系统队列参数来检查。关键点如下：

·discard_granularity：设备内部分配单元的大小。

·discard_max_bytes：可以丢弃的最大字节数。

·discard_zeroes_data：如果是1，丢弃的数据将被设置为零。

如果设备或设备驱动程序不支持discard，这些值都将被设置为零。你可以在eMMC芯片的BeagleBone Black上看到这些参数：

 [image:]

在内核文档文件Documentation/block/queue-sysfs.txt中有更多的信息。

你可以在挂载文件系统时为mount命令增加-o discard选项来启动discard功能。ext4和F2FS都支持该功能。

在使用-o discard mount选项前确保存储设备支持discard，否则可能发生数据丢失。

也可以通过使用util-linux包中的fstrim命令，在命令行中强制使用discard，它独立于分区挂载方式。通常，你会定期运行这个命令，可能每周一次，以释放未使用的空间。fstrim在挂载的文件系统上执行，为了修剪根文件系统/，你可以输入以下命令：

 [image:]

上面的示例使用冗余的选项，-v使其输出可能释放的字节数。在本例中，2 061 000 704是文件系统中的空闲空间的近似量，所以它是可以释放的最大存储空间。

7.6.3　Ext4

自1992年开始，扩展文件系统ext成为Linux桌面的主要文件系统。目前的版本是ext4，非常稳定，经过了充分测试，它带有的日志可以在意外掉电的情况下快速恢复，而且基本不用付出什么代价。这是托管闪存的一个很好的选择，并且你会发现它是Android设备首选的文件系统，还带有eMMC存储。如果设备支持discard，你应该在挂载时使用-o discard选项。

在运行时格式化并创建一个ext4文件系统，你可以输入以下代码：

 [image:]

为了创建一个文件系统映像，你可以使用genext2fs实用程序，这个程序可从http://genext2fs.sourceforge.net找到。在这个例子中，我已经用-B指定了块大小，用-b指定了映像中的块的数量：

 [image:]

如第5章所述，genext2fs可以使用-D[file table]参数，利用设备表设置文件权限和所有权。

顾名思义，这实际上会产生.ext2格式的映像。你可以使用tune2fs进行升级，如下所示（该命令选项的细节都在tune2fs的主页上）：

 [image:]

无论是Yocto项目还是Buildroot，都恰好使用这些步骤创建.ext4格式的映像。

尽管日志是设备意外掉电时的福音，但是每次也需要额外的写入操作，这样会损坏闪存。如果设备使用电池供电，尤其是电池不可拆卸的情况，那么意外断电的概率很小，所以你可以去掉日志。

7.6.4　F2FS

F2FS（Flash-Friendly File System）是日志结构的文件系统，它是为托管闪存设备而设计的，尤其是eMMC和SD。它由三星研制并且在Linux 3.8版本合并到Linux主线。它被标记为实验性的，表明目前还没有被广泛发展，但似乎一些Android设备正在使用它。

F2FS考虑页面大小及擦除块大小，并试图将数据与这些边界对齐。日志格式使得它对于掉电有弹性空间，并且有很好的写入性能，在一些测试中显示，它比起ext4来说有双重改进。在内核文档Documentation/filesystems/f2fs.txt中有关于F2FS设计的很好的描述。在本章的最后也有关于它的一些参考资料。

mfs2.fs2实用程序创建了一个空的带有标签-l的F2FS文件系统：

 [image:]

目前，还没有可以离线创建F2FS文件系统映像的工具。

7.6.5　FAT16/32

微软以前的文件系统FAT16和FAT32，仍旧作为一种重要的公共格式，被大多数操作系统所识别。当你购买一个SD卡或USB闪存驱动器，它几乎肯定会被格式化为FAT32，在某些情况下，卡上微控制器为FAT32的访问模式做了优化。另外，一些引导ROM在第二阶段引导加载程序时需要FAT分区，例如基于TI OMAP的芯片。然而，FAT格式绝对不适合存储重要的文件，因为它们容易损坏，存储空间利用率也很低。

Linux通过msdos文件系统支持FAT16，通过vfat文件系统支持FAT16和FAT32。在大多数情况下，需要包含vfat驱动程序。然后，为了挂载设备，假设是在mmc硬件适配器上的SD卡，你需要键入：

 [image:]

在过去，vfat驱动程序有许可证问题，可能会（或者不会）侵犯微软持有的专利权。

FAT32对设备的规模限制是32GB。一个大容量的设备可能会使用微软exFAT格式化，SDXC卡要求用exFAT。虽然没有exFAT的内核驱动程序，但它可以通过一个用户空间FUSE驱动程序来提供支持。由于exFAT的所有权是微软的，如果想在你的设备上支持这种格式，必须要有证书许可提示。
7.7　只读压缩文件系统

如果你没有足够的存储空间放入所有东西，那么压缩数据是非常有用的。JFFS2和UBIFS都默认进行临近数据压缩。然而，如果文件永远不被写入，通常是根文件系统，你可以通过使用只读压缩文件系统实现更好的压缩比。Linux支持多种：romfs、cramfs和squashfs。前面两个现在已经过时，所以我只描述squashfs。

squashfs

squashfs是由Phillip Lougher于2002年编写的，用来替代cramfs。在很长一段时间内，它作为内核补丁存在，最终在2009年在Linux 2.6.29版本被合并到主线。它很容易使用：使用mksquashfs创建一个文件系统映像并把它安装到闪存中：

 [image:]

由此产生的文件系统是只读的，所以在运行时没有机制来修改任何文件。更新squashfs文件系统的唯一方法是擦除整个分区并写入新的映像。

squashfs不识别坏块，所以必须使用可靠的闪存，如NOR闪存。只要使用UBI创建一个模拟的、可靠的、在UBI顶部的MTD卷，squashfs就可以用在NAND闪存上。必须启动内核配置CONfig_MTD_UBI_BLOCK，这将为每个UBI卷创建一个只读的MTD块设备。下面的关系图（图7-5）显示了两个MTD分区，每个都有mtdblock设备。第二个分区也用来创建一个UBI卷作为第三个可靠的mtdblock设备，你可以把它用于任何不识别坏块的只读文件系统中。

 [image:]

图7-5　squashfs结构图
7.8　临时文件系统

总有一些文件的生命周期很短，或者在重新启动后变得没有意义。很多这样的文件放在/tmp中，因此避免这些文件成为永久性存储是很重要的。

临时文件系统tmpfs，就是用于此目的的理想文件系统。你可以通过简单地挂载tmpfs，创建一个临时的基于RAM的文件系统。

 [image:]

与procfs和sysfs类似，没有与tmpfs关联的设备节点，所以你要提供用于保存位置的字符串，就像前面的例子中的tmp_files。

随着文件的创建和删除，内存的使用量将增长和缩小。它的默认的最大值是物理内存的一半。在大多数情况下，如果tmpfs达到那么大，将会是一种灾难。所以用-o size参数来获取它是一个很好的主意。该参数可以以字节、KB（k）、MB（m）、GB（g）给出，例如：

 [image:]

除了/tmp之外，/var的一些子目录也含有易变的数据，对于它们来说使用tmpfs也是很好的办法，通过为每个子目录创建单独的文件系统，或者更省事地通过使用符号链接。Buildroot就是这样做的：

 [image:]

在Yocto项目中，/run和/var/volatile就是tmpfs通过指向它们的符号链接进行挂载，如下所示：

 [image:]

7.9　使根文件系统为只读

你需要使目标设备能够在意外的事件（包括文件损坏）后运行，并仍然能够引导和完成至少最低水平的功能。使根文件系统只读是实现这个目标的一个关键部分，因为它消除了写覆盖的意外。把它变为只读是很容易的：在内核命令行用ro代替rw或者使用一个可继承的只读文件系统如squashfs。然而，你会发现有一些文件和目录，通常是可写的：

·/etc/resolv.conf：这个文件是由网络配置脚本编辑并用来记录DNS命名服务器地址。这些信息是不稳定的，所以你只需要将它链接到一个临时目录，例如/etc/resolv.conf->/var/run/resolv.conf。

·/etc/passwd：这个文件与/etc/group、/etc/shadow和/etc/gshadow文件一起存储用户名、组名和密码。与resolv.conf的方式相同，他们需要符号链接到持久性存储区中。

·/var/lib：许多应用程序希望能够写入此目录，并在这里保持永久性数据。一个办法是在启动时复制文件的基本集合到tmpfs文件系统中，再通过把一个命令序列（如下面的命令）放到一个引导脚本中，然后绑定挂载/var/lib到新的位置。

 [image:]

·/var/log：这是系统日志和其他守护进程保存日志的地方。一般情况下，记录到闪存是不可取的，因为它会生成很多小的写入周期。一个简单的解决方案是用tmpfs挂载/var/log，使所有日志消息变成可变的。至于syslogd，BusyBox有一个版本，可以记录日志到环形缓冲区。

如果你使用Yocto项目，可以通过向conf/local.conf或在你的映像中添加IMAGE_FEATURES="read-only-rootfs"来创建一个只读文件系统。
7.10　　文件系统选择

到目前为止，我们已经看到了固态内存背后的技术以及不同类型的文件系统。现在是总结每种选项的时候了。

在大多数情况下，你可以将存储需求分为这三类：

·持久的可读可写数据：运行时配置、网络参数、密码、数据记录和用户数据。

·持久的只读数据：程序、库和持久的配置文件，例如根文件系统。

·可变数据：临时存储，例如/tmp。

读写存储器的选择如下：

·NOR：UBIFS或JFFS2。

·NAND：UBIFS，JFFS2或YAFFS2。

·eMMC：ext4或F2FS。

对于只读存储器，你可以使用上面提到的所有文件系统，并通过ro属性挂载。另外，如果你想节省空间，可以使用squashfs，在使用NAND闪存的情况下，使用UBI mtdblock设备模拟来为你处理坏块的情况。

最后，对于可变存储，只有一个选择，即tmpfs。
7.11　　现场更新

有一些广为人知的安全漏洞，包括Heartbleed（OpenSSL库中的漏洞）和Shellshock（bash shell的漏洞），两者都可以对目前部署的嵌入式Linux设备造成严重的后果。仅此原因，部署现场更新设备的机制是非常可取的，因此你可以在问题发生时修补安全漏洞。还存在一些其他原因：部署其他漏洞修补及特性更新。

更新机制的指导原则是，它们应该无害，请记住墨菲定律：如果事情可能出错，它最终就一定会出错。任何更新机制必须满足：

·健壮性：它不能使设备无法使用。我将讨论原子性的更新，系统或者更新成功，或者根本没有更新，并且能够继续像之前一样运行。

·失败保护：它必须能够优雅地处理被中断的更新。

·安全性：它不允许未经授权的更新，否则它将成为攻击机制。

原子性可以通过以下方式获得：复制你想更新的东西，创建副本，并且在安全的情况下切换到新的副本运行。

失败保护需要有一个机制来检测失败的更新，如硬件看门狗，还需要一个已知的完好的软件副本，以便失败时可以回滚。

安全性可以在本地更新的情况下，通过密码认证或者PIN码认证来实现。但是，如果更新是远程和自动的，则需要通过网络进行某一级别的认证。最终，你可能想添加一个安全的引导加载程序和已签名的更新二进制文件。

一些组件比其他组件更容易更新。引导加载程序非常难以更新，因为通常有硬件的限制，这意味着只能有一个引导加载程序，所以如果更新失败，就没有备份用来恢复。另一方面，引导加载程序一般不会引起运行时漏洞。最好的建议是不要实时更新引导加载程序。

7.11.1　粒度：文件、包或者映像

这是一个很大的问题，取决于你的系统总体设计和你期望的健壮性水平。

文件更新可以是原子性的：它的技术是将新的内容写到同一文件系统的临时文件中，然后使用POSIX rename（2）函数覆盖旧文件。这之所以能有效，是因为重命名能保证是原子性的。然而，这只是问题的一部分，因为还需要考虑文件之间的依赖关系。

假设你有一个运行时软件包管理器，在包级别（RPM、dpkg或ipk）进行更新是更好的选择。毕竟，这是桌面发行版已经做了很多年的方法。软件包管理器有一个更新数据库可以跟踪已更新的和未更新的软件包。每个软件包都有一个更新脚本，以确保软件包更新是原子性的。最大的优点是，你可以很容易地更新现有的软件包、安装新的软件包和删除过时的软件包。如果你使用的根文件系统挂载为只读，在更新的时候你将不得不暂时重新挂载为读写，这开启了一个小的损坏窗口。

软件包管理器也有缺点。它们不能够更新原始闪存的内核和映像。在设备已经部署和更新多次之后，你可能会有大量的包组合和包版本，这将使每个新的更新周期的QA变得复杂。在更新过程中，软件包管理器不能应对电源故障。

第三种方法是更新整个系统映像：内核、根文件系统、用户应用等。

7.11.2　原子性映像更新

为了使更新是原子性的，我们需要两件东西：该操作系统的二次复制，这会在更新过程中使用到，以及在引导加载程序中选择加载哪个系统副本的机制。二次复制可能和第一次是完全一样的，这就导致了操作系统的完全冗余，或者也可能是专注于更新主系统的一个小的操作系统。

在第一个方案中，有两个操作系统副本，每个包括Linux内核、根文件系统和系统应用程序，如图7-6所示：

 [image:]

图7-6　原子性映像更新方案

最初，不设置引导标识，所以引导加载程序加载副本1。为了安装一个更新，更新程序（它是操作系统的一部分）将覆盖副本2。当完成后，它设置引导标识并且重启。现在，引导加载程序将加载新的操作系统。当进一步更新被安装后，副本2中的更新程序会覆盖副本1，并清空引导标识，所以你在这两者之间来回复制。

如果一个更新失败，引导标识是不变的，并且使用最后一个完好的操作系统。即使更新由几个部分组成，包括内核映像、DTB、根文件系统以及系统应用文件系统，整个更新仍然是原子性的，因为引导标识只有在所有更新完成时才更新。

此方案的主要缺点是它需要存储操作系统的两个副本。

通过保留一个只用来更新主系统的最小操作系统，可以减少存储的需求，如图7-7所示：

 [image:]

图7-7　原子性映像更新方案

当你要安装更新时，设置引导标识，并重新启动。一旦恢复操作系统在运行时，它开启更新程序，覆盖主操作系统映像。当完成时，它清除引导标识并再次重启，这次加载新的主操作系统。

恢复操作系统通常比主操作系统要小很多，也许只有几兆字节，所以存储开销不是很大。事实上，这是Android系统所采用的方案。主操作系统的大小有几百兆字节，但恢复模式操作系统是一个简单的只占几兆内存磁盘空间的副本。
7.12　　延伸阅读

以下资源提供本章所介绍主题的进一步信息：

·《XIP：The past，the present...the future？》，Vitaly Wool于2007年FODSEM会议上发表：https://archive.fosdem.org/2007/slides/devrooms/embedded/Vitaly_Wool_XIP.pdf。

·General MTD documentation，http://www.linux-mtd.infradead.org/doc/general.html。

·《Optimizing Linux with cheap flash drives》，Arnd Bergmann：http://lwn.net/Articles/428584/。

·Flash memory card desfign：https://wiki.linaro.org/WorkingGroups/KernelArchived/Projects/FlashCardSurvey。

·《eMMC/SSD File System Tuning Methodology》：http://elinux.org/images/b/b6/EMMC-SSD_File_System_Tuning_Methodology_v1.0.pdf。

·《Flash-Friendly File System（F2FS）》：http://elinux.org/images/1/12/Elc2013_Hwang.pdf。

·《An f2fS teardown》：http://lwn.net/Articles/518988/。

·《Building Murphy-compatible embedded Linux systems》，Gilad Ben-Yossef：https://www.kernel.org/doc/ols/2005/ols2005v1-pages-21-36.pdf。
7.13　　总结

从一开始，闪存就已经成为嵌入式Linux存储技术的选择，这些年来，从底层驱动程序到Flash文件系统，Linux已经取得了很好的支持，包括最新的UBIFS。

然而，随着新闪存技术出现速度的增加，跟上高端的变化正变得越来越难。系统设计人员越来越多地转向开发eMMC形式的托管闪存，提供稳定的、独立于内部存储芯片的硬件和软件接口。嵌入式Linux开发人员开始掌握这些新的芯片。在ext4和F2FS中支持TRIM是很好的设计，它正慢慢寻找到自己的芯片解决方案。另外，新的文件系统的出现支持管理闪存的优化，如F2FS，这是向前迈出的可喜的一步。

然而，事实上闪存与硬盘驱动器不完全一样。你需要注意尽量减少文件系统的写入，特别是高密度TLC芯片可能只支持1000个擦除周期数。

最后，拥有一个用于实时更新存储在设备中的文件和映像的策略是至关重要的。这部分的关键在于是否使用软件包管理器。软件包管理器提供了灵活性，但不能给你一个完全墨菲证明的更新解决方案。你需要在便利性和健壮性之间进行权衡并作出选择。

下一章将介绍如何使用设备驱动程序来控制系统的硬件组件，它和传统意义上的驱动程序一样，都是内核的一部分，并且在一定程度上可以从用户空间控制硬件。
第8章　设备驱动程序介绍

内核设备驱动程序是操作系统把底层硬件提供给系统其余部分的机制。作为嵌入式系统的开发人员，你需要了解驱动程序如何嵌入整体架构以及用户空间程序如何访问它们。你的系统可能会有一些新的硬件，需要找到一种方式来使用它们。在多数情况下，你会发现大量现有的设备驱动程序，可以完成任何你想做的事而无需编写任何内核代码。例如，可以使用sysfs中的文件操作GPIO引脚和LED，还有用于访问串行总线的库，如SPI和I2C。

有许多地方可以找到如何编写一个设备驱动程序，但很少告诉你为什么要去编写以及在实现时要做出什么样的选择。而这恰恰是我想在这里所涉及的。但请记住，这不是一本专注于编写内核设备驱动程序的书，这里给出的信息可以帮助你在该领域顺利航行，而非建造家园。有很多好的书籍和文章有助于你编写设备驱动程序，其中一部分在本章的结尾列出。
8.1　设备驱动程序的作用

正如在第4章中提到的，内核的功能之一是封装了许多计算机系统的硬件接口，并以一致的方式呈现给用户空间程序。系统框架的设计目的是使得编写设备的内核接口逻辑更为简单，并且你可以把它集成到内核中去：这是一个设备驱动程序，介于内核和硬件之间的代码段。设备驱动程序是控制物理设备的软件，例如UART或MMC控制器，或者虚拟设备，如空设备（/dev/null）或虚拟磁盘。一个驱动程序可以控制相同类型的多个设备。

内核设备驱动程序代码运行在一个很高的权限级别。它可以完全访问处理器地址空间和硬件寄存器。它可以处理中断和DMA传输。它可以利用复杂的内核机制实现同步和内存管理。但是它有一个缺点，就是如果驱动程序内部出错，那么可能会出现严重错误从而导致系统停机。因此，其原则就是设备驱动程序应尽可能地简单，只给应用程序提供真正需要的信息。你应该经常听到“内核无策略”（no policy in the kernel）的说法。

在Linux中，主要有三类的设备驱动程序：

·字符（character）：给非缓冲I/O提供了一系列丰富功能，在应用程序代码和驱动程序之间提供一个薄层。它是实现自定义设备驱动程序时的首选。

·块（block）：为块I/O提供一个读写大容量存储设备的定制接口。通过厚缓冲层设计使得磁盘读取和写入尽可能地快，这也使得它并不适合于任何其他设备。

·网络（network）：类似于块设备，但用于发送和接收网络数据包而不是磁盘块。

还有第四种类型，表现为伪文件系统的一组文件。例如，你可能通过/sys/class/gpio中的一组文件访问GPIO驱动程序，稍后我将在本章描述。让我们先深入分析三个基本设备类型的细节。
8.2　字符设备

字符设备由用户空间的一个文件名所标识：如果你想读取UART，你会打开某个设备节点，比如ARM Versatile Express的第一个通用串口一般是/dev/ttyAMA0。内核中的驱动程序标识方式则不同，它使用了主设备号，在本例中是204。由于UART驱动程序可以处理多个UART，还使用了一个称为次设备号的第二个数字，它标识一个特定的接口，在该实例中是64：

 [image:]

内核文档Documentation/devices.txt中可以找到标准的主设备号和次设备号列表。列表不常更新，也不包括前面一段所说的ttyAMA设备。然而，如果你查看drivers/tty/serial/amba-pl011.c的源代码，就会看到源码中声明了主设备号和次设备号：

 [image:]

对于一个设备存在多个实例的情况，设备节点的命名规则是<base name><interface number>，比如ttyAMA0，ttyAMA1等等。

正如在第5章中提到的，可以用多种方式创建设备节点：

·devtmpfs：该节点是在设备驱动程序注册一个新的设备接口时创建的，使用驱动程序（ttyama）提供的一个基本名称和一个实例数字。

·udev或mdev（没有devtmpfs）：与devtmpfs基本一致，除了需要借助一个用户空间守护程序从sysfs提取设备名称并且创建节点。我将在后面讨论sysfs。

·mknod：如果你使用的是静态设备节点，这些节点是使用mknod手动创建的。

你可能对我所使用的设备号有印象，主次设备号都是在0～255范围内的8比特数字。从Linux 2.6开始，主设备号改为12位长，使得有效数字为1～4095，次设备号改为20位，从0～1 048 575。

当你打开一个设备节点，内核检查主设备号和次设备号是否属于特定范围，判断到底是字符设备还是块设备。如果没问题，它会调用驱动程序，否则打开调用失败。设备驱动程序可以提取次设备号以找出使用的硬件接口。如果次设备号超出范围，它会返回一个错误。

如果编写一个访问设备驱动程序的程序，你必须了解它是如何工作的。换句话说，一个设备驱动程序不同于一个文件：你所做的事情改变了设备的状态。一个简单的例子是伪随机数发生器urandom，每次读取时返回字节的随机数据。这有一个类似的例子：

 [image:]

UNIX驱动程序模型的好处是：一旦我们知道了有一个名为urandom的设备，它可以在每次读取时返回一个新的伪随机数据，我们就不需要知道它是如何实现的。我们只需使用它的正常功能，比如open（2）、read（2）和close（2）。

我们还可以使用流I/O函数fopen（3）、fread（3）以及fclose（3），但这些函数的隐式缓冲往往会导致意料之外的行为。例如，fwrite（3）通常只把数据写到用户空间的缓冲区，而不是写到设备里。我们需要调用fflush（3）强制刷新缓冲区。

当调用设备驱动程序时不要使用流I/O函数，如fread（3）和fwrite（3）。
8.3　块设备

块设备也与一个设备节点相连，也有主设备号和次设备号。

尽管字符设备和块设备都使用主设备号和次设备号，但它们分属于不同的命名空间。主设备号为4的字符驱动程序与主设备号为4的块驱动程序没有任何关联。

块设备的主设备号用来识别设备驱动程序，次设备号被用来识别分区。以下是MMC驱动程序的一个具体例子：

 [image:]

主设备号为179（在devices.txt中查看）。次设备号被用来识别不同的MMC设备和该设备上的存储介质分区。对于mmcblk驱动程序，每个设备使用8位次设备号：从0到7代表第一个设备，从8到15代表第二个，以此类推。在每一个范围内，第一个次设备号代表整个设备的原始扇区，其他最多代表七个分区。

你大概听过SCSI磁盘驱动程序，称为sd，它使用SCSI命令集来控制一系列的磁盘，包括SCSI、SATA、USB大容量存储和UFS（通用闪存）。针对每个接口（或磁盘），它有8位主设备号和16位次设备号。从0到15的次设备号代表第一个接口，设备节点命名为sda直至sda15；从16到31的数字对应第二块磁盘，设备节点命名为sdb直至sdb15，依此类推。这一直持续到第十六块磁盘，对应数字为240到255，节点名称为sdp。由于SCSI磁盘广受欢迎，因此还保留有其他的主设备号，但在这里我们不考虑该问题。

分区的创建使用如fdisk、sfidsk或parted等实用工具。原始闪存是个例外：MTD驱动程序的分区信息是内核命令行的一部分或在设备树中，或者是在第7章中描述的其他方法之一。

一个用户空间程序可以通过设备节点直接打开块设备进行交互。这本身并不简单，通常用于执行诸如分区、格式化文件系统和挂载等管理操作。一旦安装了文件系统，你就可以通过文件系统中的文件间接与块设备进行交互了。
8.4　网络设备

网络设备不能通过设备节点访问，它们没有主设备号和次设备号。相反，基于字符串和实例数，每个网络设备被内核分配了一个名字。下面是一个网络驱动程序注册接口的例子：

 [image:]

在第一次被调用时，将会创建一个命名为net0网络设备，第二次调用时创建net1。更常见的名字是lo、eth0和wlan0。

请注意，这只是初始化命名；在后面，诸如udev的设备管理工具可能会对名字进行修改。

通常，网络接口名称仅在配置网络时会用到，使用诸如ip和ifconffig等实用工具建立网络地址和路由。此后，通过打开套接字间接与网络驱动程序进行交互，并让网络层决定如何将它们路由到正确的接口。

然而，通过创建套接字，并且使用include/linux/sockios.h中列举的ioctl命令，还是可以直接从用户空间直接访问网络设备。例如，以下程序使用SIOCGIFHWADDR查询驱动程序以获取硬件（MAC）地址：

 [image:]

这是一个标准设备ioctl，它是由网络层代表驱动程序来处理的，但你可以定义自己的ioctl号并通过定制的网络驱动程序进行处理。
8.5　在运行时寻找驱动程序

当你有一个正在运行的linux系统时，知道哪个设备驱动程序已经加载、处于什么状态是十分有益的。你可以通过读取/proc和/sys中的文件获得不少信息。

首先，你可以通过读取/proc/devices列举出当前加载的字符和块设备驱动程序：

 [image:]

 [image:]

对于每个驱动程序，你可以看到主设备号和基本名称。然而这并不会告诉你每个驱动程序都连接了多少设备。它只显示ttyAMA，但没有告诉你任何有关它连接四个UART的线索。在后面讲到sysfs时我会再进行说明。如果你正在使用一个设备管理器，例如mdev、udev或devtmpfs，你可以通过查看/dev列出字符设备接口和块设备接口。

你也可以使用ifconffig或ip来列出网络接口：

 [image:]

使用有名的lspci和lsusb命令，你也可以找到关于连接到USB或PCI总线的设备。关于这两个命令的信息，已有相关的手册和大量的在线指南可供参考，因此在这里不再赘述。

真正令人感兴趣的信息是在sysfs中，这是下一个主题。

8.5.1　从sysfs获取信息

学院派会把sysfs定义成内核对象、属性和关系。内核对象是一个目录，属性是一个文件，而关系是对象之间的一个符号链接。

从一个更实用的角度来看，由于在2.6版本中引入Linux设备驱动程序模型，它把所有的设备和驱动程序都当作内核对象。你可以通过查看/sys，从内核的视角审视系统，如下所示：

 [image:]

在发现关于设备和驱动程序的信息时，我将查看这三个目录：设备、类和块。

8.5.2　设备：/sys/devices

这是从内核的视角观察系统启动后的设备以及它们是如何相互连接的。它是在顶层通过系统总线组织的，因此你所看到的情况因不同系统而异。以下是Versatile Express的QEMU仿真：

 [image:]

以下三个目录存在于所有的系统中：

·system：包含系统的核心设备，包括CPU和时钟。

·virtual：包含基于内存的设备。你会在发现内存设备在virtual/mem中显示为/dev/null、/dev/random和/dev/zero。你也可以在virtual/net中发现环回设备lo。

·platform：这里包含了所有没有通过常规硬件总线连接的设备。这包括了一个嵌入式设备上几乎所有的东西。

其他的设备显示在目录中，对应于实际的系统总线。例如，如果有一个PCI根总线，则其表示为pci0000：00。

浏览该层次结构非常困难，因为它需要你对系统的拓扑有所了解，并且路径名称变得很长从而难以记住。出于方便考虑，/sys/class和/sys/block提供了两种不同的设备视图。

8.5.3　驱动程序：/sys/class

这是以类型展示的设备驱动程序视图，换句话说，这是一个软件视图而非硬件视图。每个子目录代表一类驱动程序，由一个驱动程序框架组件实现。例如，UART设备由tty层管理，你会在/sys/class/tty找到。同样，网络设备位于/sys/class/net，输入设备，如键盘、触摸屏和鼠标在/sys/class/input中，等等。

在每个子目录中，都有针对该类型设备每个实例的符号链接，该符号链接指向其在/sys/device中的对应表示。

举个具体的例子，让我们看下/sys/class/tty/ttyAMA0：

 [image:]

链接device引用设备的硬件节点，而subsystem则指回/sys/class/tty。其他则是设备的属性。有些是UART所特有的，例如xmit_fifo_size，其他则适用于各种类型的设备，如中断号irq和设备号dev。一些属性文件是可写的，允许你在运行时调整驱动程序中的参数。

dev属性特别有趣。如果你查看它的值，将会发现：

 [image:]

这些是该设备的主设备号和次设备号。该属性是在驱动程序注册该接口时创建的，如果没有使用devtmpfs的话，udev和mdev会从该文件读取信息。

8.5.4　块驱动程序：/sys/block

还有一个重要的设备模型视图：块驱动程序视图，可以在/sys/block中找到它。在这里每个块设备都有子目录。这个例子取自BeagleBone Black：

 [image:]

如果你查看mmcblk1，它是板卡上的eMMC芯片，在其中可以看到接口和分区的属性：

 [image:]

结论就是，通过读取sysfs，你可以获取很多关于设备（硬件）和驱动程序（软件）的详细信息。
8.6　找到正确的设备驱动程序

一个典型的嵌入式主板是基于制造商的一个参考设计，通过逐步修改，最终使其适合于特定的应用程序。它可能有一个通过I2C连接的温度传感器，通过GPIO引脚相连的灯和按钮，一个外部的以太网MAC，一个通过MIPI接口的显示面板，以及其他诸多部件。你的任务是创建一个自定义内核来控制所有设备，那么你该从哪里开始呢？

有些事情非常简单，你可以编写用户空间代码来处理它们。通过I2C或SPI连接的GPIO和简单外设很容易从用户空间进行控制，我在后面将会解释。

其他的设备需要一个内核驱动程序，所以你需要知道怎样找到驱动程序，并把它纳入到你的构造之中。该问题没有简单的答案，但还是有些地方值得关注。

最显而易见的地方就是制造商网站上的驱动程序支持页面，或者你可以直接询问他们。在我的经验中，这很少能得到你想要的结果。硬件制造商并不特别了解Linux操作系统，他们经常提供误导性的信息。他们可能有专门的二进制代码或源代码，但不同于你的内核版本。因此，无论如何请尝试这条路线。我将会努力寻找一个开源的驱动程序以应对手头的任务。

有可能在你的内核中已有支持：在主流Linux中有数以千计的驱动程序，并且在供应商内核中有许多供应商定制的驱动程序。可以通过运行make menuconffig（或xconffig）搜索产品名称或编号。如果没有找到精准匹配，可以尝试泛化搜索，事实上，大多数驱动程序支持来自同一家族的一系列产品。接着，尝试在驱动程序目录中搜索代码（这里，grep是你的助手）。确保为你的主板运行最新版本的内核：较新的内核通常包含更多的设备驱动程序。

如果你还是没有找到合适的驱动程序，可以试着在线搜索并且在相关的论坛上询问，看看是否有不同Linux版本的驱动程序。如果你找到了一个，必须设法移植回你的内核中。如果内核版本相似，可能相对容易，但如果两者之间的发行间隔超过了12到18个月，接口可能会有所改变，你将不得不重写一大块的驱动程序，并将它集成到内核中去。或者你可能希望将该工作外包出去。如果上述措施均失败，你只能自己寻找解决方案。
8.7　用户空间中的设备驱动程序

在你开始编写一个设备驱动程序之前，先停下来认真考虑下是否真的有必要。有许多常见的设备驱动程序，允许你直接从用户空间与硬件交互，而不用写一行内核代码。用户空间代码当然更容易编写和调试。也不受GPL限制，尽管从它自身来说我不认为这是一个好的理由。

用户空间的设备驱动程序大致分为两大类：借助sysfs控制的设备，包括GPIO、LED，以及通过设备节点来表示通用接口的串行总线，如I2C。

8.7.1　GPIO

通用输入/输出（GPIO）是最简单的数字接口形式，因为它给你提供单个硬件引脚的直接访问，每个引脚可配置为输入或输出。通过一个称为位触发（bit banging）的技术操作软件中的每个比特，GPIO甚至可以用来创建更高层次的接口，如I2C或SPI。它的主要限制是软件循环的速度和精度，以及你希望提供给它们的处理器周期数量。一般来说，对于开启CONfig_PREEMPT编译的内核很难实现优于1毫秒的定时器精度，而对于开启rt_preempt编译的内核很难实现优于100微秒的定时器精度，这些我们将在第14章中具体讲解。GPIO更常见的用例是读取按钮和数字传感器，以及控制LED、发动机和继电器。

大多数SoC有很多的GPIO位，它们被分组为GPIO寄存器，通常每个寄存器有32位。芯片的GPIO位通过多路复用器引向GPIO引脚，称为引脚复用，稍后会作进一步解释。在电源管理芯片或者专用GPIO扩展上可能会有额外的GPIO位可用，它们通过I2C或SPI总线进行连接。所有这类多样性是由名为gpiolib的内核子系统进行处理，它实际上不是一个库，而是作为基础的GPIO驱动程序，使用一致的方式来展示IO接口。

在Documentation/gpio中有关于gpiolib内核源码实现的细节，而驱动程序自身是在drivers/gpio中。

应用程序可以借助/sys/class/gpio目录中的文件与gpiolib交互。下面这个例子，是你会在一块典型的嵌入式开发板（BeagleBone Black）上看到的：

 [image:]

gpiochip0到gpiochip96代表四个GPIO寄存器，各自都有32位GPIO比特。下面是某个gpiochip目录中的内容：

 [image:]

文件base包含的是寄存器中首个GPIO的引脚数目，ngpio包含的是寄存器中的比特位数。因此本例中gpiochip96/base是96，gpiochip96/ngpio是32，这意味着该寄存器包含的GPIO位是从96到127。可能存在的情况是，在某个寄存器的最后一个GPIO和下一个寄存器的第一个GPIO之间存在距离。

为了从用户空间控制一个GPIO位，你首先要从内核空间导出它，这可以通过向/sys/class/gpio/export中写入GPIO数实现。下面的例子展示了GPIO 48的进程：

 [image:]

现在有了一个新的目录，gpio48，其中包含你需要的控制引脚的文件。需要注意的是，如果该GPIO比特已经被内核占用，你将无法以这种方式导出。

gpio48目录包含这些文件：

 [image:]

该引脚初始化为输入。要将其更改为输出，需要将out写入direction文件。value文件包含该引脚的当前状态，0代表低，1代表高。如果是输出，你可以通过写0或1来改变这个状态。有时，低和高的意思在硬件中是相反的（硬件工程师喜欢做这种事），所以把1写到active_low会使含义反转，一个低电平被视为1而高电平为0。

通过在/sys/class/gpio/unexport写入GPIO数字，你可以在用户空间中控制删除该GPIO。

从GPIO处理中断

在多数情况下，一个GPIO输入可配置为当状态发生改变时产生一个中断，你可以等待中断而不是低效的软件轮询。如果GPIO位可以产生中断，edge文件就会存在。它的初值为none，这意味着它不会产生中断。为了开启中断，你可以将它设置为如下的某个值：

·rising：上升沿中断

·falling：下降沿中断

·both：上升和下降沿都中断

·none：没有中断（默认）

你可以使用poll（）函数等待一个中断，并且将POLLPRI作为一个事件。如果你想等待GPIO 48上的一个上升沿，首先启用中断：

 [image:]

然后，使用poll（）等待变化，如代码示例所示：

 [image:]

 [image:]

8.7.2　LED

LED常常通过GPIO引脚控制，但有另外一个内核子系统能够对LED进行更多的特定控制。leds内核子系统增加了设置亮度的功能，LED应该具有该功能，并且能处理除GPIO引脚以外的其他LED连接方式。它可以配置为通过一个事件，如块设备访问来触发LED，或只是一个心跳以表明该设备正在工作。更多信息请参阅Documentation/leds/，驱动程序位于drivers/leds/。

正如GPIO，LED也是通过sysfs中的一个接口控制的，位于/sys/class/leds。LED的命名形式为设备名：颜色：功能，如下所示：

 [image:]

下面显示的是一个单独的LED：

 [image:]

brfightness文件控制LED的亮度，可以是数字0（关闭）和max_brfightness（最亮）之间的数字。如果LED不支持中间亮度，任何非零的值会把它点亮，而零值会把它关闭。trfigger文件列出了触发LED开启的事件。触发器列表是实现相关的。下面是一个例子：

 [image:]

当前选定的触发器显示在方括号中。你可以通过将另一个触发器写入文件来改变它。如果你想完全通过brfightness来控制LED，就选择none。如果你将触发器设置为timer，则会出现另外两个文件，允许你设置毫秒级别的开关时间：

 [image:]

如果LED有芯片内的定时器硬件，发生闪烁时不会中断CPU。

8.7.3　I2C

I2C是一种在嵌入板上常见的简单的低速双线总线，通常用于访问不在SoC主板上的外围设备，例如显示控制器、摄像头传感器、GPIO扩展等等。在PC上有一个称为SMBus（系统管理总线）的相关标准，用于访问温度和电压传感器。SMBus是I2C的一个子集。

I2C是一个主从协议，其中主设备是SoC上的一个或多个主机控制器，从设备拥有一个制造商分配的7位地址，用于读取数据表，每条总线允许多达128个节点，其中16个是保留节点，所以实际上只有112个节点可以使用。在标准模式下，总线速度为100 kHz，而在快速模式下，速度高达400 KHz。该协议允许主从设备之间最多32字节的读写操作。通常，第一个字节用来指定外设上的某个寄存器，其余字节是读取或写入该寄存器的数据。

每个主机控制器都有一个设备节点，例如，该SoC有四个节点：

 [image:]

设备接口提供了一系列的ioctl命令来查询主机控制器并发送读写命令给I2C从设备。有一个名为i2c-tools的工具包，它使用该设备接口来提供与I2C设备交互的基本命令行工具。这些工具如下：

·i2cdetect：列举I2C适配器和探测总线

·i2cdump：导出一个I2C外设的所有寄存器数据

·i2cget：从一个I2C从设备读取数据

·i2cset：向一个I2C从设备写入数据

i2c-tools工具包可以在buildroot和Yocto项目，以及大多数主流的发行版中找到。只要你知道从设备的地址和协议，在用户空间编写与设备交互的程序是相对简单的：

 [image:]

 [image:]

请注意头文件i2c-dev.h是i2c-tools包的一部分，不是来自Linux的内核头文件。i2c_smbus_read_word_data（）函数在i2c-dev.h中显示为内联函数。

关于I2C的Linux实现的更多信息可以在Documentation/i2c/dev-interface上找到。主机控制器的驱动程序在drivers/i2c/busses中。

8.7.4　SPI

串行外设接口总线与I2C相似，但速度快了很多，达到了MHz量级。该接口使用四条线，其中发送线和接收线互相独立，因而允许全双工操作。总线上的每个芯片都选择专用的片选线。它通常被用来连接触摸屏传感器、显示控制器和串行闪存设备。

与I2C相同，它也是一个主从协议，并且大部分的SoC都实现了一个或多个主设备主机控制器。这是一个通用的SPI驱动程序，你可以通过内核配置CONfig_SPI_SPIDEV开启。它为每个SPI控制器创建一个设备节点，允许你从用户空间访问SPI芯片。设备节点命名格式为spidev[bus].[chip select]：

 [image:]

对于使用spidev接口的例子，请参阅Documentation/spi中的示例代码。
8.8　编写内核设备驱动程序

最终，当你最后用尽了所有用户空间选项，你会发现自己必须写一个设备驱动程序来访问连接到你设备的硬件。虽然还未到深入探讨该问题细节的时机，但这个选择是值得考虑的。字符驱动程序是最灵活的，足以应对90%的需求。网络设备是针对网络接口需求的，而块设备是应对大容量存储问题的。编写一个内核驱动程序的任务十分复杂，超出了本书探讨的范围。本章最后有一些参考资料将会给你提供帮助。在本节中，我希望列举出可用于驱动程序交互的选项——这是通常不会探讨的主题——并且展示驱动程序的基本框架。

8.8.1　设计字符设备接口

主要的字符设备接口是基于字节流的，正如一个串行端口所具有的。然而，许多设备并不符合这个描述：比如，一个机器人的手臂控制器需要具有移动和旋转每个关节的功能。幸好我们只通过read（2）和write（2）命令就可以借助其他方式与设备驱动程序通信：

·ioctl：ioctl函数允许你传递两个参数给驱动程序，具体含义由需求而定。按照惯例，第一个参数是一个命令，它选择了你的驱动程序中的几个函数之一，第二个参数是一个指向结构体的指针，该结构体用作输入和输出参数的容器。容器可供你设计任何你喜欢的程序接口，当驱动程序和应用程序紧密联系，并且是同一个团队编写时，该做法相当普遍。然而，ioctl已被内核抛弃，在向上游提交时你会发现任何新使用ioctl的驱动程序很难被认证。内核维护者不喜欢它，因为它使内核代码和应用程序代码彼此之间太过依赖，很难让它们在内核版本和架构上保持一致。

·sysfs：这是目前首选的方法，一个好的例子就是前面描述的GPIO接口。优点是，它是自文档化的，只要你给文件选择描述性的名称。它还是可脚本化的，因为文件内容可以为ASCII字符串。另一方面，当一次需要修改多个值时，每个文件包含一个值的要求使得它很难保证原子性。例如，如果你想设置2个值，然后初始化1个动作，你将需要写3个文件：两个用于输入，第三个用于触发动作。即使这样，也不能保证其他两个文件不会被别人改变。相反，ioctl在单一函数调用中的一个结构体中传递它的所有参数。

·mmap：通过映射内核内存到用户空间，你可以绕过内核直接访问内核缓冲区和硬件寄存器。你可能还需要一些内核代码来处理中断和DMA。有一个称为uio（用户I/O的简称）的子系统实现了这个功能。在Documentation/DocBook/uio-howto有更多信息，而在drivers/uio中有驱动程序示例。

·sfigio：通过使用内核函数kill_fasync（），你可以从一个驱动程序发送信号，通知应用程序诸如准备输入或接收中断等事件。通常，使用信号SfigIO，但也可以是其他任何信号。你可以在UIO驱动程序drivers/uio/uio.c和RTC驱动程序drivers/char/rtc.c中看到一些例子。主要问题是很难写好一个可靠的信号处理程序，因此它保留了一些很少使用的功能。

·debugfs：这是另一个伪文件系统，将内核数据表示为文件和目录，类似proc和sysfs。主要区别在于，debugfs并不一定包含系统正常操作所需的信息，它只包含调试和跟踪信息。它可以用mount-t debugfs debug/sys/kernel/debug进行挂载。在内核文档Documentation/filesystems/debugfs.txt中有关于debugfs的很好描述。

·proc：对于所有的新代码而言，proc文件系统是不推荐使用的，除非它涉及进程，因为这是该文件系统的初衷。但是，你也可以使用proc发布你选择的任何信息。而且，不像sysfs和debugfs，它对于非GPL模块也可用的。

·netlink：这是一个套接字协议族。AF_NETLINK创建一个连接内核空间到用户空间的套接字。最初的创建目的是方便网络工具与Linux网络代码通信以访问路由表和其他网络细节。它也被udev用于将事件从内核传递给udev守护进程。在通用设备驱动程序中很少使用它。

在内核源代码中，有很多之前提到的文件系统例子，你可以给你的驱动程序代码设计非常有趣的接口。唯一通用的规则是“最小惊奇原则”（principle of least astonishment）。换句话说，使用你的驱动程序的应用程序开发人员应该觉得一切都符合逻辑，没有怪异或不正常的地方。

8.8.2　设备驱动程序剖析

现在，我们通过查看一个简单的设备驱动程序代码，将一些线索连接在一起。

该源代码是为一个名为dummy的设备驱动程序提供的，它创建了四个设备，可以通过/dev/dummy0到/dev/dummy3来访问。下面是该驱动程序的完整代码：

 [image:]

 [image:]

在代码末尾，宏module_init和module_exit指定了模块加载和卸载时要调用的函数。其他三个添加关于模块的一些基本信息，可使用modinfo命令从已编译的内核模块中提取出来。

当模块被加载后，dummy_init（）函数被调用。

你可以看到，变成字符设备驱动程序需要调用register_chrdev，向struct file_operations结构体传递一个指针，该结构体包含驱动程序实现的四个函数。虽然register_chrdev告诉内核，存在一个主设备号为42的设备，但并没有给出类型信息，所以它不会在/sys/class创建入口。没有入口，设备管理器就不能创建设备节点。所以，接下来几行代码创建了一个设备类dummy以及该类的名为dummy0到dummy3的四个设备。结果是/sys/class/dummy目录，包含名为dummy0到dummy3的子目录，每个子目录包含一个文件dev，并具有主次设备号。借助这些信息，设备管理器可以创建从/dev/dummy0到/dev/dummy3的设备节点。

exit函数释放被init函数所占有的资源，这意味着释放了设备类和主设备号。

针对该驱动程序的文件操作为dummy_open（）、dummy_read（）、dummy_write（）和dummy_release（），这些函数在用户空间程序调用open（2），read（2），write（2）和close（2）时被分别调用。它们只是打印一个内核消息，因此你可以看到它们被调用的情况。你可以使用echo命令从命令行进行演示：

 [image:]

在本例中，由于我是登录到控制台上的，因此内核消息默认被打印到控制台。

该驱动程序的全部源代码不到100行，但它足以说明设备节点和驱动程序代码之间的连接是如何工作，如何创建设备类，以允许设备管理器在加载驱动程序时自动创建设备节点，以及如何在用户和内核空间之间移动数据。下一步，你需要构建它。

编译和加载

此时，你已经有一些驱动程序代码，希望在目标系统上编译和测试。你可以把它复制到内核源码树，并且修改makefile来构建它，或者你可以把它编译为源码树外部的一个模块。让我们从构建树开始。

你需要一个简单的makefile，它使用内核构建系统来完成复杂工作：

 [image:]

将LINUXDIR设置为你目标设备的内核目录，你将在该目标设备上运行模块。代码obj-m：=dummy.o将激活内核构建规则，它使用源文件dummy.c并创建内核模块dummy.ko。请注意，内核模块在内核发布和配置之间并不是二进制兼容的，该模块只加载在一起被编译的内核上。

构建的最终结果为dummy.ko，你可以将它复制并加载到目标设备上，正如下节所示。

如果你希望在内核源码树中构建一个驱动程序，那过程就很简单。选择一个适合你的驱动程序目录。驱动程序是一个基本的字符设备，因此我将把dummy.c放在drivers/char目录下。然后，编辑该目录中的makefile并且增加一行，将驱动程序无条件地构建为一个模块，如下所示：

 [image:]

或者添加下面的行，将它无条件地构建为一个内置：

 [image:]

如果你希望把驱动程序设为可选项，可以在Kconffig文件中添加一个菜单选项，并且在配置选项上设置为条件编译，正如我在第4章中描述的内核配置。
8.9　加载内核模块

你可以使用简单的insmod、lsmod和rmmod命令加载、卸载和列举模块。这里，显示加载dummy驱动程序：

 [image:]

如果模块放置在/lib/modules/<kernel release>的一个子目录中，恰如该例所示，你可以使用命令depmod创建一个模块依赖数据库：

 [image:]

在module.*文件中的信息可以通过命令modprobe使用，该命令使用名字而不是完整路径来定位一个模块。modprobe还有许多其他的特性，在手册中有详细描述。

模块依赖信息也被设备管理器使用，特别是udev。当检测到新硬件时，例如一个新的USB设备，udevd守护进程被激活，并从硬件中读取供应商和产品ID。udevd扫描模块依赖文件，查找注册过该ID的模块。如果找到一个的话，它将通过modprobe加载。
8.10　　查找硬件配置

dummy驱动程序显示了一个设备驱动程序的结构，但它缺乏与真实硬件的交互，因为它只能操作内存结构。设备驱动程序通常被编写为用来与硬件交互，其中一些在一开始就能够发现硬件，记住它在不同配置中可能位于不同的地址。

在某些情况下，硬件提供了自身信息。在可见总线如PCI或USB上的设备有一个查询模式，它返回所需资源和唯一的标识符。内核将设备驱动程序同标识符和其他可能的特性进行匹配，并将它们结合起来。

然而，在SoC上的大多数硬件并没有这样的标识符。你必须自己以设备树的形式提供信息，或者通过被称为平台数据的C结构来提供。

在标准的Linux驱动程序模型下，设备驱动程序将自身注册为适当的子系统：PCI、USB、开放固件（设备树）、平台设备等等。该注册包括一个标识符和一个称为探针函数的回调函数，该函数在硬件标识和驱动程序标识进行匹配时被调用。对于PCI和USB设备，ID基于设备的供应商和产品ID；对于设备树和平台设备，它是一个名字（一个ASCII字符串）。

8.10.1　设备树

我在第3章中介绍了设备树。在这里，我想展示一下Linux设备驱动程序是如何获得这些信息。

作为一个例子，我将使用ARM Versatile板，文件位于arch/arm/boot/dts/versatile-ab.dts，其中定义了以太网适配器：

 [image:]

8.10.2　平台数据

在缺少设备树支持的情况下，有一个使用C结构体描述硬件的折衷的办法，该结构体称为平台数据。

每一块硬件通过结构体struct platform_device描述，结构体的成员包括一个名字和一个指向资源数组的指针。资源的类型是由标志位来决定的，包括如下：

·IORESOURCE_MEM：一段内存的物理地址

·IORESOURCE_IO：IO寄存器的物理地址或端口号

·IORESOURCE_IRQ：中断号

下面是平台数据的一个例子，是从arch/arm/mach-versatile/core.c得到的一个以太网控制器，为了清晰起见，已进行重新编辑：

 [image:]

它包含一个64 KB的内存区域和一个中断。该平台数据必须被内核注册，通常是在主板初始化的时候：

 [image:]

8.10.3　连接硬件与设备驱动程序

在前面的章节中，你已经看到如何使用设备树和平台数据描述以太网适配器。相应的驱动程序代码在drivers/net/ethernet/smsc/smc91x.c中，并且它对设备树和平台数据均适用。这里是初始化代码，为了清晰进行了重新编辑：

 [image:]

当驱动程序被初始化时，它调用platform_driver_register（），指向struct platform_driver，其中有到一个探针函数的回调函数，一个驱动器名称：smc91x，以及一个指向struct of_device_id的指针。

如果该驱动程序已通过设备树被配置，则内核将在设备树节点的compatible属性和兼容结构体成员所指向的字符串之间寻求匹配。每次匹配都将调用probe函数。

另一方面，如果它是通过平台数据进行配置的，则对于每个由driver.name所指向的字符串匹配，都将调用probe函数。

probe函数提取关于接口的数据：

 [image:]

platform_get_resource（）函数的调用功能可以从设备树或平台数据抽取内存和irq信息。由驱动程序来决定如何映射内存和安装中断处理程序。第三个参数，在上面例子中均为0，如果有超过一个特定类型的资源则不为0。

然而，设备树允许你配置除基本内存范围和中断以外的更多属性。在probe函数中有一段代码，可以从设备树中提取可选参数。在这个片段中，得到了register-io-width属性：

 [image:]

对于大多数驱动程序而言，具体的绑定在Documentation/devicetree/bindings中描述。对于该特定的驱动程序，其信息在Documentation/devicetree/bindings/net/smsc911x.txt中。

这里需要记住的主要事情是，驱动程序应该向内核注册一个probe函数并提供足够的信息，以便调用probe函数找到与硬件有关的匹配。由设备树描述的硬件和驱动程序之间的连接是通过compatible属性来实现的。平台数据和驱动程序之间的连接则是通过名称实现。
8.11　　延伸阅读

以下资料对本章主题提供更多的信息：

·《Linux Device Drivers》，4th edition，by Jessica McKellar，Alessandro Rubini，Jonathan Corbet，and Greg Kroah-Hartman。它和前版一样，是一个很好的选择，但是第三版太过时了，不推荐阅读。

·《Linux Kernel Development》，3rd edition by Robert Love，Addison-Wesley Professional；（July 2，2010）ISBN-10：0672329468。

·《Linux Weekly News》，lwn.net.
8.12　　总结

设备驱动程序的工作是处理设备，通常是物理硬件，但有时是虚拟接口，并以一致和有用的方式向更高层次呈现。Linux设备驱动程序分为三大类：字符、块和网络。三者中字符驱动程序接口最为灵活，因此也最为常见。Linux驱动程序符合一个称为驱动程序模型的框架，它是通过sysfs实现的。相当多的设备和驱动程序的状态在/sys下是可见的。

每个嵌入式系统都有自己独特的硬件接口集合和要求。Linux为大多数标准接口提供驱动程序，而且通过选择合适的内核配置，你很快就可以使得该设备可运行。这将使你远离非标准组件，以免不得不添加你自己的设备支持。

在某些情况下，你可以使用针对GPIO、I2C等的通用驱动程序来忽略该问题，并且编写用户空间代码来完成工作。我建议将其作为起点，因为它让你有机会熟悉硬件而不用编写内核代码。编写内核驱动程序并不是特别困难，但是当你编写时需要万分小心，以防危害系统的稳定性。

我已经谈过了内核驱动程序代码的写法：如果你沿着该路线，将不可避免地想知道如何检查它是否正确运行，并测试任何错误。我将在第12章讲解这部分内容。

下一章是关于用户空间初始化和针对init程序的不同选项，从简单的Busybox讲起，直到复杂的systemd。
第9章　启动初始化程序

在第4章、第5章、第6章中，我们已经知道了内核如何启动第一个程序init（初始化），也了解了如何创建不同复杂度的根文件系统，init程序就包含在这些根文件系统中。现在让我们进一步看看init程序的具体细节，以此可以明白init程序对于系统的其他部分为何如此重要。

init程序有许多种可能的实现方式。本章描述三种主要的实现：BusyBox init、System V init和systemd。对于每一种实现方式，我会给出一个概述，说明它是如何工作的及其最适合的系统类型。做出这些决策，部分是对复杂度和灵活性开销进行权衡的结果。
9.1　在内核启动后

我们在第4章中看到，内核引导代码如何在initramfs中或通过内核命令行中root=指定的文件系统中去寻找根系统文件，并执行一个相应程序。在默认情况下，对于initramfs这个程序是/init，对于常规文件系统，是/sbin/init程序。init程序具有root权限，且因为它是第一个运行的进程，所以其进程ID（PID）是1。如果出于某种原因，init未能启动，则内核将会崩溃。

init程序是所有其他进程的祖先。在这里，通过pstree命令可以看出，在大部分版本中，init通常是psmisc包中的一部分：

 [image:]

init程序的任务是接管系统并使之运行。它可能和运行shell脚本的shell命令一样简单——在第5章的开始有一个这样的例子，但是，在大多数情况下，你将使用一个专用的init守护进程。它应该要完成以下的任务：

·在启动阶段，它启动守护程序，配置系统参数，以及负责让系统进入工作状态所需要做的配置操作。

·作为可选项，它可以启动其他守护进程，如在终端上的getty守护进程，该进程允许登录shell。

·接收那些因为直接父进程被终止，以及线程组中没有其他进程而形成的孤儿进程。

·它通过捕捉信号SfigCHLD并收集其返回值以防止它们成为僵尸进程，对init的直接子进程的终止进行响应。第10章会讨论僵尸进程。

·作为可选项，它重新启动那些已经终止的守护进程。

·它处理系统关机。

换句话说，init管理着系统从开机到关机的整个生命周期。目前的观点是，init可以很好地处理其他的运行时事件，如添加新的硬件以及模块的加载和卸载。这都是systemd要做的事情。
9.2　初始化程序简介

在嵌入式设备中，你最有可能遇到的三个初始化程序是BusyBox init、System V init和systemd。Buildroot默认只构建BusyBox init，你也可以选择构建所有的三个初始化程序。Yocto项目默认构建SystemV init，你也可以在System V Init和systemd中进行选择。

表9-1对三个初始化程序的指标进行比较：

表9-1　三类初始化程序指标对比

 [image:]

①基于系统的Buildroot配置。

一般来说，从BusyBox init到systemd，灵活性和复杂性都会逐渐增加。
9.3　BusyBox init

BusyBox的init程序最小，它使用配置文件/etc/inittab来定义规则，在系统启动阶段控制程序启动，在关机阶段控制程序终止。通常情况下，实际工作是由shell脚本来完成的，而按惯例，脚本会放置在/etc/init.d目录下。

init首先会读取配置文件/etc/inittab。配置文件包含了一个需要运行的程序列表，一行一个，格式如下：

 [image:]

这些参数的作用如下：

·id：指令所针对的控制终端。

·action：运行该指令的条件，将在下面的段落展示。

·program：待运行的程序。

运行操作如下：

·sysinit：在其他所有类型的操作之前，当初始化开始时，运行程序。

·respawn：运行指定程序，如果程序终止则重新启动。该程序会被当作一个守护进程来运行。

·askfirst：与respawn相同，但是其会向控制台输出“Please press Enter to activate this console”，并在按下Enter键时运行该程序。它用于在终端上启动一个交互式shell，且不提示输入用户名或密码。

·once：运行指定程序，如果该程序终止，不会尝试重新启动它。

·wait：运行指定程序，并等待其完成。

·restart：当init接收到信号SfigHUP时，这表明其应该重新载入inittab文件，此时运行指定程序。

·ctrlaltdel：当init接收到信号SfigINT时运行指定程序，这通常是由于用户在控制台按下了Ctrl+Alt+Del组合键。

·shutdown：当init关闭时运行指定程序。

下面是一个小例子，包括挂载proc和sysfs，以及在串行接口运行shell：

 [image:]

对于简单的项目，比如你只想启动少量的守护进程，或者是在串口终端启动一个登录shell，手写一个脚本也很容易。这种情况下，如果你创建一个RYO嵌入式Linux是很合适的。然而，你会发现随着需要配置的事情不断增加，手写的init脚本很快就会变得非常难以维护。它们往往不是高度模块化的，所以每增加一个新的组件，都需要进行更新。

Buildroot init脚本

多年以来，Buildroot有效使用了BusyBox的init。Buildroot在/etc/init.d目录中有两个脚本，名为rcS和rcK。第一个脚本在开机时运行，并从一个大写S加两位数字开始遍历所有的脚本，并按数字顺序运行，这就是开始脚本。rcK脚本在关机时运行，从一个大写K加两位数字开始遍历所有的脚本，并按数字顺序运行，这就是结束脚本。

这个完成后，Buildroot包能够很容易地提供自己的开始脚本和结束脚本，并利用两个数字标号影响这些脚本的运行顺序，使其按照应有顺序执行，从而使系统成为可扩展的。如果你正在使用Buildroot，这是显而易见的。如果没有，你应该把它作为自己写BusyBox init脚本的模板。
9.4　System V init

这个初始化程序的灵感来自UNIX System V，所以可以追溯到20世纪80年代中期。Linux发行版中最常用的版本最初是由Miquel van Smoorenburg写的。直到最近，它还被当作启动Linux（包括嵌入式系统）的方式。BusyBox init是System V init的精简版本。

与BusyBox init相比，System V init具有两个优势。第一，引导脚本是用一个众所周知的模块化格式写的，可以很容易地在构建或运行时添加新的包；第二，它具有运行级别的概念，通过从一个运行级别切换到另一个，可以一下子开始或结束一个程序集合。

一共有8个运行级别，包括数字级别0～6，以及字母级别S：

·S：单用户模式

·0：停止系统

·1～5：一般用途

·6：重新启动系统

可以随意使用级别1～5。在Linux桌面发行版上，它们通常的分配如下：

·1：单用户

·2：无网络配置的多用户

·3：有网络配置的多用户

·4：不使用

·5：以图形登录的多用户

init程序启动的默认运行级别由/etc/inittab中的initdefault行给出。运行时，可以使用telinit[runlevel]命令给init发送一个消息，来改变运行级别。也可以用runlevel命令，查询当前和之前的运行级别。举例如下：

 [image:]

在第一行，runlevel的输出是N 5，表明没有先前的运行级别，因为自从启动后，运行级别没有改动过，当前的运行级别是5。改变运行级别后，输出是5 3，表明运行级别从5变为3。halt命令和reboot命令分别把运行级别切换到0和6。可以通过在内核命令行给出从0到6的一个不同数字，来改变runlevel默认的运行级别，或通过输入S改为单用户模式。例如，在内核命令行后面加上S，可以使runlevel对应单用户模式，具体为：

 [image:]

每个运行级别有若干使操作停止的脚本，称为kill脚本；以及若干使操作开始的脚本，称为start脚本。当输入一个新的运行级别时，init首先运行kill脚本，然后运行start脚本。那些正在运行且在新的运行级别中既不含kill脚本又不含start脚本的守护进程，会收到一个SfigTERM信号。换句话说，切换运行级别时的默认动作是终止守护进程，除非被告知执行其他操作。

实际上，在嵌入式Linux中，运行级别并不经常用到：大多数设备只是在开机时设为默认的运行级别并保持该级别。我认为部分原因是大多数人并没有意识到这个问题。

可以用运行级别来方便地切换不同的模式，例如，从生产模式切换为维护模式。

在Buildroot和Yocto项目中，System V init是一个选项。在这两种情况下，init脚本去掉了所有的bash特性，因此它们与BusyBox ash shell一起使用。然而，Buildroot用System V init来替换BusyBox init程序，以及增加inittab来模仿BusyBox的行为。Buildroot并不实现不同的运行级别，只能切换到级别0或6从而终止或重启系统。

下面，让我们来查看一些细节。下面的例子取自Yocto项目的fido版本。其他发行版在实现init脚本时可能略有不同。

9.4.1　inittab

init程序以读取/etc/inttab开始，其中包含定义每个运行级别发生什么操作的条目。它的格式是上节描述过的BusyBox inittab的扩展版，这并不奇怪，因为BusyBox原先就是从System V借用过来的！

在inittab中，每一行的格式如下：

 [image:]

字段定义为：

·id：最多为四个字符的唯一标识符。

·runlevels：指定系统的运行级别（在BusyBox inittab中为空白）。

·action：为如下给定的关键词之一。

·process：运行的命令。

这里的action字段行为与BusyBox init中的action字段是一样的，包括sysinit、respawn、once、wait、restart、ctrlaltdel和shutdown。不过，System V init没有askfirst，它是BusyBox特有的。

作为一个例子，这是为Yocto项目中最小目标核心映像所提供的完整的inttab。

 [image:]

第一个条目id：5：initdefault设置默认的运行级别为5。下一个条目si：：sysinit：/etc/init.d/rcS在启动时运行rcS脚本。这一点后面还会详细介绍。接下来，是一组以l0：0：wait：/etc/init.d/rc0开始的六个条目。在每次运行级别发生变化的时候，运行脚本/etc/init.d/rc，它负责运行start和kill脚本。还有一个针对运行级别S的条目，它运行单用户登录程序。

在inittab的最后，是运行getty守护进程的两个条目，当输入运行级别为1～5时，在设备/dev/ttyAMA0和/dev/tty1上产生登录提示，从而允许你登录并得到一个交互式shell。

 [image:]

设备ttyAMA0是ARM Versatile板上的串行控制台，它利用QEMU进行仿真，这跟其他的开发板不同。如果你用CONfig_FRAMEBUFFER_CONSOLE或VGA_CONSOLE来构建你的内核，那么tty1就是一个经常被映射到图形屏幕的虚拟控制台。桌面Linux经常会在虚拟终端1～6上产生6个getty进程，可以通过按从Ctrl+Alt+F1到Ctrl+Alt+F6的组合键来进行选择。虚拟终端7保留给图形屏幕。虚拟终端很少用于嵌入式设备。

由sysinit条目运行的脚本/etc/init.d/rcs，完成的操作同运行级别S差不多：

 [image:]

因此，第一个输入的运行级别是S，随后是默认的runlevel——5。注意，runlevel S并不会被记录，也不能通过runlevel命令显示为以前的一个运行级别。

9.4.2　init.d脚本

每个需要对运行级别变化进行响应的组件在/etc/init.d下都有一个脚本，它可以完成这些改变。这些脚本需要两个参数：start和stop。稍后会举一个例子。

Runlevel（处理的脚本是/etc/init.d/rc）将所要切换到的runlevel作为参数。对于每个runlevel，都有一个名为rc<runlevel>.d：的目录：

 [image:]

在这里，你会发现有一组以大写字母S加两位数字开头的脚本，也可能会发现一些以大写字母K开头的脚本。这些都是start和kill脚本：Buildroot使用的相同想法就是从这里借鉴的：

 [image:]

这些其实都是符号链接，指回init.d中的相应脚本。rc脚本首先运行所有以K开头的脚本，并加入参数stop，然后运行那些加入了参数start且以S开头的脚本。再一次，这里的两位数字编码用于标示这些脚本的运行顺序。

9.4.3　添加一个新的守护进程

让我们设想一下，假如你有一个叫simpleserver的程序，它被当作一个传统的UNIX守护进程，换句话说，它产生子进程并在后台运行。你将需要一个如下所示的init.d脚本：

 [image:]

start-stop-daemon是一个辅助函数，使得守护进程能更容易操纵后台进程。其最初来自于Debian的dpkg安装包，但大多数嵌入式系统使用的是来自于BusyBox的辅助函数。它用-S参数启动守护进程，以确保在任何一个时间点都只有一个实例在运行，它会找到名字中有-K的守护进程，并在默认情况下发送信号SfigTERM。把这个脚本放在/etc/init.d/simpleserver中并使其可执行。

然后，为每个运行级别添加符号链接，从而使这个程序从这些运行级别开始运行。在本例中，只有默认的runlevel 5：

 [image:]

数字99的含义是，这将是最后一个开始的程序。需要记住的是，有可能会有其他的以S99开头的链接，在这种情况下，rc脚本将只按词典顺序来运行它们。

在嵌入式设备中，一般不需要过于担心关机操作，但如果真的需要这样做的话，向级别0和6加入kill符号链接即可：

 [image:]

9.4.4　启动和停止服务

可以通过直接调用/etc/init.d下的脚本进行交互操作。例如：syslog脚本就是一个控制syslogd和klogd守护进程的脚本：

 [image:]

 [image:]

所有的脚本都实现start和stop，并且应该实现help。一些脚本也实现status，它会告诉你该服务是否正在运行。那些仍然使用System V init的主流版本，有一个名为service的命令，用于启动和停止服务，以及隐藏直接调用脚本的细节信息。
9.5　systemd

systemd将自己定义为系统和服务管理器。该项目是由Lennart Poettering和Kay Sievers在2010年首次提出的，目的是创建一个包含init守护进程的管理Linux系统的集成工具集合。这个项目还包括设备管理（udev）和日志记录以及其他的事项。有人会说，这不仅仅是一个init程序，它更是一种生活方式。它是最先进的解决方案，并且仍在快速发展。systemd在桌面和服务器的Linux发行版中很普遍，且在嵌入式Linux系统中，特别是在较为复杂的设备中也越来越常见。那么，对于嵌入式系统，它是如何优于System V init的呢？

·配置更简单、更符合逻辑（一旦你理解了它），与System V init有时令人费解的shell脚本不同，systemd有单元配置文件来设置参数。

·在不同的服务之间有明确的依赖关系，而不是仅设置脚本运行序列的两位数字编码。

·很容易为每个服务设置权限和资源限制，这对安全很重要。

·Systemd可以监控服务并在需要的时候重启服务。

·每个服务和systemd本身都有看门狗。

·服务是并行开始的，以减少启动时间。

在这里对systemd做完整的描述，既不可能也不恰当。和System V init一样，我将以Yocto Fido（包括systemd版本219）所产生的配置为例，集中讨论嵌入式用例。我会给出一个快速的概述，然后给出一些具体的例子。

9.5.1　用Yocto项目和Buildroot构建systemd

Yocto Fido的默认init是System V。在配置文件（如conf/local.conf）中，加入以下命令行，来选择systemd：

 [image:]

请注意，前面的空格很重要！然后进行重新构建。

Buildroot的第三个init选项是systemd。它需要glibc作为C库，以及开启一组特定配置选项的内核，内核版本在3.7或以上。在systemd顶层源代码的README文件里，给出了完整的依赖关系列表。

介绍目标、服务和单元

在描述systemd init如何工作之前，首先介绍下面三个关键概念。

首先，目标（target）是一组服务，与System V的runlevel类似，但比它更通用。有一个默认的目标，即在启动时开始的那组服务。

其次，服务（service）是一个可以启动和停止的守护进程，很像System V的service。

最后，单元（unit）是描述一个target、一个service和一些其他事项的配置文件。单元是包含属性和值的文本文件。

可以用systemctl命令来改变状态，并了解正在发生的事情。

单元

配置的基本项是单元文件。单元文件出现在三个不同的地方：

·/etc/systemd/system：本地配置

·/run/systemd/system：运行时配置

·/lib/systemd/system：发行版范围配置

当寻找一个单元时，systemd按顺序搜索目录，当找到一个匹配时立即停止搜索，并允许用户在/etc/systemd/system中用一个同样名字的单元覆盖这个发行版范围单元的行为。可以通过创建一个空的或链接到/dev/null的本地文件，来完全禁用一个单元。

所有单元文件都以一个标记为[unit]的部分开始，它包含基本信息和依赖关系，例如：

 [image:]

单元依赖关系用Requires、Wants和Conflicts来表达，如：

·Requires：该单元所需依赖的单元列表，即当该单元启动时，也需要启动这些单元。

·Wants：Requires的弱形式，即该单元启动时，这些单元也启动，但其中任何一个失败，当前单元也不会停止。

·Conflicts：负依赖关系：该单元启动时，所列出的单元停止运行；相反地，所列出的单元中任何一个启动，则该单元停止。

处理这些依赖关系产生一个应该启动（或停止）的单元列表。关键词Before和After决定它们启动（或停止）的顺序。停止顺序正好与启动顺序相反：

·Before：该单元在这些所列出单元之前启动。

·After：该单元在这些所列出单元之后启动。

在下面的例子中，After指令确保Web服务器是在网络之后启动的：

 [image:]

在缺少Before或After指令时，这些单元会并行启动或停止，没有特定的顺序。

服务

服务是一个守护进程，可以启动和停止，相当于System V的一个service。服务是一种以后缀.service命名的单元文件，如lfighttpd.service.

服务单元有一个[Service]部分，描述它应该如何运行。这是lfighttpd.service的相关部分：

 [image:]

这些是启动和重启服务时运行的命令。在这里可以添加更多的配置点，请参考systemd.service手册。

目标

目标是另一种类型的单元，它将服务（或其他类型的单元）分组。它是一种只有依赖的单元。目标以后缀.target命名，如：multi-user.target。目标是一个希望达到的状态，与System V中的运行级别扮演同样的角色。

9.5.2　systemd如何启动系统

现在我们来看systemd如何实现引导程序。作为/sbin/init用符号链接到/lib/systemd/systemd的结果，systemd由内核执行。它运行默认的目标default.target，通常链接到一个期望的目标（如multi-user.target）用于文本登录，或链接到graphical.target用于图形化环境。例如，若默认目标是multi-user.target，你将会发现这个符号链接：

 [image:]

默认目标可以通过在内核命令行传递system.unit=<new target>进行重写。可以通过systemctl来找出默认目标，如下所示：

 [image:]

启动一个如multi-user.target的目标，将会产生一个将系统带入工作状态的依赖树。在一个典型的系统中，multi-user.target依赖于basic.target，basic.target依赖于sysinit.target，而sysinit.target则依赖于需要早期启动的服务。可以用systemctl list-dependencies输出一个依赖图。

可以使用systemctl list-units--type service列出所有的服务和它们当前的状态。同样地，用systemctl list-units--type target列出所有的目标和它们当前的状态。

9.5.3　添加自己的服务

以前面提到过的simpleserver为例，下面是一个服务单元：

 [image:]

[Unit]部分仅包含一个描述，因此当执行systemctl和其他命令时会正确显示。但是它没有任何依赖，正如我所说的，它非常简单。

[Service]部分指向可执行的文件，用一个标志来表明它产生子进程。如果它更简单并在前台运行，systemd将为我们执行守护进程，从而不需要Type=forking。

[Install]部分使服务单元依赖于multi-user.target，因此当系统进入多用户模式时，服务器将会启动。

一旦单元保存在/etc/systemd/system/simpleserver.service中，就可以执行systemctl start simpleserver命令来启动它，或者执行systemctl stop simpleserver命令来停止它。可以执行下面的命令来查找它的当前状态：

 [image:]

此时，它只有在接到指令后才会启动或停止，如下所示。要使它变得持久，需要在目标上加上一个永久的依赖关系。这就是单元中[Install]部分的目的，这意味着，当这个服务激活后，它会依赖于multi-user.target，因此会在启动时开始执行。你可以执行systemctl enable指令激活它，如：

 [image:]

现在，你可以看到在运行时如何添加依赖关系，而不需要编辑任何单元文件。一个目标可以有一个名为<target_name>.target.wants的目录，它包含对服务的链接。这与在目标中的[Wants]列表中添加依赖单元是一样的。在这种情况下，你会发现这个链接已经被创建了：

 [image:]

如果这是一个重要的服务，那么在它失败时，你可能要重新启动。你可以通过将此标志添加到[Service]部分来实现这一功能：

 [image:]

Restart的其他选项为：on-success、on-failure、on-abnormal、on-watchdog、on-abort或always。

9.5.4　增加看门狗

看门狗是对嵌入式设备的一种常见要求：如果一个关键的服务停止运行，你需要采取行动，通常是重新启动系统。在大多数嵌入式SoC中，有一个可通过设备节点/dev/watchdog访问的硬件看门狗。如果在启动时看门狗初始化超时，那么在该周期内看门狗必须被重置，否则看门狗会被触发并且系统会重新启动。在Documentation/watchdog的内核源代码中，有关于看门狗驱动程序接口的描述，驱动程序代码在drivers/watchdog中。

如果有两个或更多的关键服务需要被一个看门狗保护，那么问题就出现了。systemd有一个非常有用的功能，即在多个服务之间分配看门狗。

systemd可配置成需要从服务中定期收到一个keepalive呼叫，如果没有收到该呼叫，就会采取行动，换句话说，就是配置一个前置服务的软件看门狗。要实现这一功能，需要在守护进程中添加代码，以发送keepalive消息。这需要在环境变量WATCHDOG_USEC中检查一个非零的值，然后在一个时间段内（建议取看门狗超时时间的一半）调用sd_notify（false，"WATCHDOG=1"）。在system源代码中有相关的例子。

为了在服务单元中启用看门狗，在[Service]部分添加如下的代码：

 [image:]

在这个例子中，服务需要每30秒收到一个keepalive消息。如果没有收到，服务会重新开始，但是，如果在5分钟内它重新开始的次数大于4，systemd会强制立即重启。在systemd手册中有对这些设置的完整描述。

这样的看门狗负责管理独立的服务，但是如果systemd自己出现故障，或者内核崩溃，或者硬件锁死怎么办？在这些情况下，我们需要告诉systemd使用看门狗驱动程序：只需要在/etc/systemd/system.conf.systemd中增加RuntimeWatchdogSec=NN，将会在该周期内重启看门狗，这样即便systemd因为某些原因出现故障，系统也会重新启动。

9.5.5　关于嵌入式Linux的提示

systemd有很多特性，这些特性在嵌入式Linux中都非常有用，有很多这样的特性，我在上面的简要描述中并没有提到，例如：使用slices进行资源控制（见systemd.slice（5）手册和systemd.resource-control（5）手册），设备管理（udev（7）手册）和系统日志功能（journald（5）手册）。

你必须权衡系统的大小与功能：即使是使用核心部件systemd、udevd和journald来做最轻量级的构建，加上共享库，就已经接近10 MB的存储量了。

你也要记住，systemd开发跟内核密切相关，所以它不会在比当前systemd发布日期早一年或两年以上的系统上正常运行。
9.6　延伸阅读

以下资源可以提供与本章主题相关的更多信息：

·《systemd system and Service Manager》：http://www.freedesktop.org/wiki/Software/systemd/（在页面底部有很多有用的链接）。
9.7　总结

每个Linux设备都需要一个某种类型的init程序。如果你正在设计一个系统，它只需要在启动阶段开始少量的守护进程，并在启动后保持一个相对的稳定状态，那么BusyBox的init就足够你使用了。使用Buildroot作为你的构建系统，通常是一个不错的选择。

另一方面，如果你有一个系统，在启动期间或运行时，服务之间存在复杂的依赖关系，而且你有足够的存储空间，那么systemd将是最好的选择。即使不存在复杂的依赖关系，systemd在处理看门狗、远程登录等方面也有很多有用的功能，所以在做选择时不妨认真考虑下。

对于System V init，就其自身的优点来看，要给出一个例子来说明还是比较难的。因为，相对于简单的BusyBox init，它基本上没有太多的优点。System V init存在的时间已经很长，但这也仅仅是因为它就在那里。例如，如果你使用Yocto项目来构建系统，在权衡之下你通常会采用systemd，而把System V init作为候选。

对于减少启动时间方面，在相同负载量的情况下systemd要比System V init快很多。然而，如果你想要获得一个非常快速的启动，那么busybox init将是你的不二选择，因为它不但简单，而且启动脚本也少。

本章讨论的是地位非常重要的init进程。在接下来的章节中，我将描述进程究竟是什么，进程与线程的关系，他们之间如何合作，以及如何进行调度。如果你想创建一个可靠的、可维护的嵌入式系统，理解这些东西非常重要。
第10章　学习进程和线程

在前面的章节中，我们已经考虑了如何创建一个嵌入式Linux平台的各个方面。现在开始探讨如何使用这个平台创建一个可工作设备。本章将讨论Linux进程模型的意义，以及它是怎样包含多线程程序的。我会探讨使用单线程和多线程进程的优缺点，也会讨论调度问题，以及分时和实时调度策略的区别。

虽然这些主题并非嵌入式计算所特有，但对于嵌入式设备的设计师而言，对这些主题有个总体的了解是非常重要的。关于这个主题有很多好的参考资料，其中一些会在本章的结尾部分列出，但总的来说，它们并未考虑嵌入式用例。因此，我将着重于概念和设计决策，而非函数调用和代码。
10.1　进程还是线程

很多熟悉实时操作系统（RTOS）的嵌入式开发者认为UNIX进程模型很繁琐。另一方面，他们看到了RTOS任务和Linux线程的相似性，因此他们倾向于改变现有设计，对RTOS任务和线程使用一对一映射。我已经在好几个场合看到，整个应用程序是由一个包含40个或更多线程的进程来实现的。我想花些时间来探讨这是否是一个好主意。让我们从一些定义开始。

进程包含一个内存地址空间和一个执行的线程，如图10-1所示。地址空间是进程私有的，因此在其他进程中运行的线程不能访问它。这种内存分隔是由内核中的内存管理子系统创建的，它为每个进程保留一个内存页面的映射，并在每一个上下文切换中重新规划内存管理单元。第11章将详细介绍它是如何工作的。地址空间的一部分映射到一个文件，其中包含程序正在运行的代码和静态数据。

当程序运行时，进程会为其分配资源，如栈空间、堆内存、文件引用等。当进程结束时，这些资源被系统回收：释放所有的内存，关闭所有的文件描述符。

进程之间可以使用进程间通信（IPC）来进行交互，如本地套接字。我将在后面讨论IPC。

线程是进程中的一条执行路径。所有的进程都从一个运行main（）函数的线程开始，这个线程称为主线程。可以使用POSIX线程函数pthread_create（3）创建额外的线程，这些额外的线程在同一地址空间中执行，如图10-2所示。由于处在同一个进程中，它们彼此共享资源。这些线程可以读写同一块内存，使用相同的文件描述符，因此，你只要注意同步和死锁的问题，线程之间的通信是很容易的。

 [image:]

图10-1　进程示意图

 [image:]

图10-2　线程示意图

那么基于这些简要的信息，假设有一个包含40个RTOS任务的系统被移植到Linux上，你可以想象有两种极端的设计。

可以将任务映射到进程，有40个独立的程序通过IPC进行通信，比如通过套接字发送消息。由于每个进程运行的主线程是相对独立的并受到保护，因此可以大大减少内存损坏问题，而由于每个进程退出后，其使用的资源会被清理，从而会减少资源泄漏。然而，进程之间的消息接口是相当复杂的，如果一组进程之间具有紧密的合作关系，消息的数量可能十分巨大，从而成为一个制约系统性能的因素。此外，40个进程中的任何一个都可能会终止，比如因为一个程序错误导致的崩溃，而其他39个进程则仍在运行。每个进程都必须妥善处理其邻居进程不再运行或恢复正常这样的情况。

另一种极端设计是，可以将任务映射到线程，并用一个包含40个线程的进程来实现系统。这些线程共享相同的地址空间和文件描述符，因此它们之间的协作就变得容易多了。发送消息的开销减少甚至被消除，线程之间的上下文切换也要快于进程之间的切换。但缺点是，你可能引入了新的问题，一个任务可能破坏另一个任务的堆或栈。如果任何一个线程遇到一个致命的bug，整个进程将终止，并导致其包含的所有线程都终止。最后，调试复杂的多线程进程可能是一个噩梦。

你应该得出的结论是，以上两种设计均非理想的设计，还有更好的方式。但在此之前，我将更深入地探究一下进程和线程的API及其行为。
10.2　进程

一个进程包含线程可以运行的环境：包括内存映射、文件描述符、用户ID和组ID等。第一个进程是init进程，它是由内核在启动时创建的，并且其进程标识符（PID）总是1。而后，进程采用复制方式创建，这一操作称为fork。

10.2.1　创建新的进程

创建一个进程的POSIX函数是fork（2）。这是一个奇怪的函数，因为对于每个成功的调用有两个返回：一个在发起调用的进程中，该进程称为父进程；另一个在新创建的进程中，该进程称为子进程，如图10-3所示。

 [image:]

图10-3　子进程示意图

在调用fork函数后，子进程就是父进程的一个副本，二者具有相同的栈、相同的堆和相同的文件描述符，并且执行相同的代码行，即紧随fork（2）之后的代码行。程序员可以区分它们的唯一途径是通过查看fork函数的返回值：返回值为0的是子进程，返回值大于0的是父进程。实际上，在父进程中的返回值就是新创建的子进程的PID。还有第三种可能，即返回值为负，意味着fork调用失败，那么仍然只有一个进程。

虽然两个进程最初是相同的，但它们在不同的地址空间中。若其中一个进程的变量发生改变，则另一进程是看不到的。在底层，内核不会复制父进程的物理内存，因为这是一个很花时间的操作并且消耗不必要的内存。替代的方法是，内存是共享的，但标记为写时复制（copy-on-write，CoW）。如果父进程或子进程修改此内存，内核将首先进行复制操作，然后将其写入副本。这对于提高fork函数的效率是有好处的，同时保持进程的地址空间在逻辑上是分离的。第11章将讨论CoW。

10.2.2　终止进程

一个进程可以通过调用exit（3）函数自动退出，或通过接收无需处理的特定信号强制退出。特别是SfigKILL信号，该信号无法被处理，会立即结束一个进程。任何情况下，终止一个进程将停止其包含的所有线程，关闭所有文件描述符，并释放所有的内存。系统向父进程发送SfigCHLD信号，通知父进程子进程已终止。

进程终止时会有一个返回值，当进程正常终止时，返回值就是exit（3）的参数，当进程是以kill方式终止时，返回值就是接收到信号的编号。其主要用途是在shell脚本中：允许你检测程序的返回值。通常，0表示成功，而其他取值则表示某种形式的失败。

父进程可以通过wait（2）或waitpid（2）函数来收集返回值。这会导致一个问题：子进程的终止和父进程收到返回值之间会有一个延迟。在此期间，返回值必须存放在某个地方，而当前死亡进程PID不能被重复使用。处于这种状态的进程是一个僵尸进程（zombie），通过ps命令或top命令显示状态为Z。只要父进程调用wait（2）或waitpid（2）函数，子进程终止时它将被告知（借助于SfigCHLD信号。参见Robert Love所著、O'Reilly Media出版的《Linux System Proqramming》，或Michael Kerrisk所著、No Starch Press出版的《Linux Proqramming Interface》，了解关于处理信号的细节），僵尸进程出现在进程列表中的时间极短。但如果父进程未能收集到返回值，这将成为一个问题，因为你无法创建更多的进程。

下面是一个简单的例子，显示了进程的创建和终止：

 [image:]

wait（2）函数阻塞，直到一个子进程退出，并存储退出状态。当你运行这个程序时，将会看到这样的结果：

 [image:]

子进程继承了父进程的大多数属性，包括用户ID和组ID（UID和GID）、所有打开的文件描述符、信号处理以及调度特性。

10.2.3　运行不同的程序

fork函数创建一个运行程序的副本，但它没有运行不同的程序。为此，需要一个exec函数：

 [image:]

每个程序都需要一个路径来加载和运行程序文件。如果函数成功，内核丢弃当前进程的所有资源，包括内存和文件描述符，并将内存分配给正在加载的新程序。当调用exec*的线程返回时，它不是返回调用后的代码行，而是返回新程序的main（）函数。这里是一个命令启动器的例子：它会提示输入一个命令，例如/bin/ls，然后分叉并执行你输入的字符串：

 [image:]

一个函数复制现有的进程，另一个函数丢弃其资源，并向内存加载一个不同的程序，这听起来可能有些奇怪，尤其是因为通常fork之后紧接着exec。大多数操作系统将两者组合成单个调用。

但是，这具有明显的优势。例如，它可以很容易在shell中实现重定向和管道。假设你想获得一个目录列表，其事件序列为：

1）在shell提示符后面键入ls。

2）shell分叉出自己的一个副本。

3）子进程执行/bin/ls。

4）ls程序输出目录列表至stdout（文件描述符1），它连接至终端。你可以看到目录列表。

5）ls程序终止，shell重新获得控制权。

现在想象一下，通过使用>字符重定向输出，你想要的目录列表被写入至一个文件。现在，事件序列如下：

1）键入ls>listing.txt。

2）shell分叉自己的一个副本。

3）子进程打开并截取文件listing.txt，用dup2（2）将此文件的文件描述符复制到文件描述符1（stdout）。

4）子进程执行/bin/ls。

5）该程序像前述例子一样输出目录清单，但这一次是将其写入listing.txt文件。

6）ls程序终止，shell重新获得控制权。

注意，在步骤3中有一个机会，能够在执行程序之前修改子进程的环境。ls程序不需要知道它是写入文件而不是写入终端。与文件不同，stdout能够连接到管道，而ls程序仍保持不变，可将输出发送到另一个程序。这是UNIX哲学的一部分，将许多小部件结合到一起，每个小部件都能出色地完成任务，正如《The Art of Unix Programming》一书所描述的，特别是书中关于管道、重定向和过滤器的章节，该书由Eric Steven Raymond编写，Addison Wesley出版，ISBN 978-0131429017，于2003年9月23日出版。

10.2.4　守护进程

我们已经在一些地方遇到了守护进程。守护进程是一个在后台运行的进程，从属于PID为1的init进程，并且没有连接到任何一个控制终端。创建一个守护进程的步骤如下：

1）调用fork（）创建一个新的过程，随后父进程应该退出，从而创建一个孤儿进程并重新使init成为其父进程。

2）子进程调用setsid（2），创建一个新的会话和进程组，而它是唯一成员。确切的细节在这里并不重要，你可以简单地认为这是一种将进程与任何控制终端隔离开的方法。

3）将工作目录更改为根目录。

4）关闭所有文件描述符，重定向stdin、stdout，以及sterr（描述符为0、1和2）到/dev/null，这样没有输入和输出是隐藏的。

值得庆幸的是，上述所有步骤都可以用一个单独的函数调用来实现，即daemon（3）。

10.2.5　进程间通信

每一个进程都是一个内存孤岛。可以通过两种方式在两个进程之间传递消息。其一，可以将其从一个地址空间复制到另一个地址空间。其二，可以创建一个内存区域，两个进程都可以访问，从而实现数据共享。

第一种方式通常与队列或缓冲区相结合，因此有一个进程间传递的消息序列。这意味着需要复制消息两次：先复制到等候区，然后再复制到目的地。这方面的例子是套接字、管道，以及POSIX消息队列。

第二种方式不仅需要一个创建内存并同时映射到两个（或更多个）地址空间的方法，还需要一个同步访问内存区域的机制，例如，通过使用信号或互斥。POSIX为这些提供了相应的函数。

有一个名为System V IPC的旧版API集合，它提供了消息队列、共享内存和信号量，但它不像POSIX那样灵活，所以不会在这里描述它。svipc（7）手册页给出了功能概述，在《Linux Programming Interface》（Michael Kerrisk著，No Starch Press出版），以及《UNIX Network Programming，Volume 2》（W.Richard Stevens著）这两本书中有更多的细节。

基于消息的协议通常比共享内存的方式更容易编程和调试，但如果消息量大则速度较慢。

基于消息的进程间通信

这里有几种选项，我将其总结如下。区分它们的属性是：

·消息流是单向还是双向的。

·数据流是没有消息边界的字节流，还是保留有边界的离散消息。在后一种情况下，消息的最大长度是很重要的。

·消息是否标记了优先级。

表10-1对FIFO、套接字和消息队列等几种方法的属性进行总结。

表10-1　FIFO、套接字和消息队列的属性

 [image:]

UNIX（或本地）套接字

UNIX套接字能够满足大部分需求，再加上人们对套接字API很熟悉，这些原因使之成为最常用的机制。

创建UNIX套接字使用地址族AF_UNIX并绑定到一个路径名。访问套接字取决于套接字文件的访问权限。与互联网套接字类似，套接字类型可以是SOCK_STREAM或SOCK_DGRAM，前者提供一种双向的字节流，后者提供保留边界的离散消息。UNIX数据报套接字是可靠的，这意味着它们不会丢弃或重新排序。一个数据报的最大长度依赖于系统，并可通过/proc/sys/net/core/wmem_max得到。通常是100 KB或更大一点。

UNIX套接字没有用于说明消息优先级的机制。

FIFO和命名管道

FIFO和命名管道是同一事物的不同名称。它们是匿名管道的扩展，用于父进程和子进程之间的通信，并用于在shell中实现管道。

FIFO是一种特殊的文件，通过命令mkfifo（1）创建。与UNIX套接字一样，文件访问权限决定了谁能进行读写。它们是单向的，即只有一个读用户并且通常也只有一个写用户，虽然也有可能是几个。数据是一段纯粹的字节流，但只要消息小于与管道关联的缓冲区，就能够保证其原子性。换句话说，只要写的内容不超过缓冲区大小，就不会被拆分成几个小的写操作，只要读用户端的缓冲区是足够大的，就可以一次性读取整段消息。在时下内核中，FIFO缓冲区的默认大小为64 KB，可以通过使用fcntl（2）将F_SETPIPE_SZ设置为/proc/sys/fs/pipe-max-size中的值来增加FIFO缓冲区的大小，通常为1 MB。

在这种方式下，没有优先级的概念。

POSIX消息队列

消息队列由一个名称标识，该名称必须以斜杠“/”开头，并且只能包含一个“/”字符。消息队列实际上保存在一个类型为mqueue的伪文件系统中。可以创建一个队列，并通过使用mq_open（3）函数获得现有队列的引用，其返回的是一个文件。每个消息都有一个优先级，从队列中读取消息，然后按其产生的时间排顺。消息的最大长度是/proc/sys/kernel/msgmax字节。默认值是8 KB，但是通过修改/proc/sys/kernel/msgmax的数值，可以将其设置为128B～1 MB的任何值。由于队列的引用是一个文件描述符，因此可以使用select（2）、poll（2）或者其他类似的函数来等待队列上的活动。

参见mq_overview（7）的Linux手册页。

基于消息的IPC总结

UNIX套接字是最常用的，因为它提供了所需要的一切，除了消息优先级之外。它在大多数操作系统上都已经实现，因而具有最好的可移植性。

FIFO使用得相对较少，主要是因为它缺乏类似数据报的机制。另一方面，其API非常简单，通常只有open（2）、close（2）、read（2）以及write（2）等函数调用。

消息队列是这组IPC方法中最不常用的。其在内核中的代码路径并未像调用套接字（网络）和FIFO（文件系统）那样得到优化。

还有更高层次的抽象概念，特别是对于dbus，它是从主流Linux迁移到嵌入式设备中的。dbus在底层使用的是UNIX套接字和共享内存。

基于共享内存的IPC

共享内存的方式无需在地址空间之间复制数据，但引入了同步访问的问题。进程间的同步通常通过使用信号量实现。

POSIX共享内存

在进程间共享内存，首先要创建一个新的内存区域，然后将其映射到每个需要对其进行访问的进程地址空间中，如图10-4所示。

 [image:]

图10-4　共享内存示意图

POSIX共享内存遵循我们前面提到过的消息队列模式。该分段用名称标识，该名称以“/”字符开始，并只包含一个/字符。shm_open（3）函数使用该名称并返回一个文件描述符。如果该存储区域已不存在，并设置了O_CREAT标志，那么会创建一个新的分段。初始时其大小为0。使用ftruncate（2）（命名具有误导性）可以将其扩展到所需的大小。

一旦共享内存有了一个描述符，你就可以使用mmap（2）将其映射到进程的地址空间，这样不同进程中的线程就可以访问该内存了。

这里有一个例子：

 [image:]

 [image:]

Linux的内存来自于挂载在/dev/shm或/run/shm下的tmpfs文件系统。
10.3　线程

现在，是时候开始探讨多线程程序了。线程的编程接口是POSIX线程API，最早是在IEEE POSIX 1003.1c标准（1995）中定义的，通常称为Pthreads。它是作为C函数库的一个附加部分来实现的，即libpthread.so。在过去的15年有两个版本的Pthreads，Linux线程和本地POSIX线程库（NPTL）。后者更符合标准规范，特别是在处理信号和进程ID方面。该版本目前占主导地位，但你仍可能碰到一些使用Linux线程的老版本uClibc。

10.3.1　创建新的线程

创建一个线程的函数是pthread_create（3）：

 [image:]

它创建了一个新的执行线程，以函数start_routine开始，并在被线程指向的pthread_t中放置一个描述符。它继承了调用线程的调度参数，但这些可以通过传递指针到线程属性attr来重写。线程将立即开始执行。

pthread_t是在程序内引用线程的主要方式，但是也可以通过使用类似ps-eLf这样的命令，从外部看到线程：

 [image:]

程序thread-demo有2个线程。PID、PPID列表明它们都属于同一个进程，有同样的父进程，正如预期的那样。标记为LWP的列很有意思，尽管LWP表示轻量进程，但在这个上下文背景下，它表示的是线程。该列中的数字被称为线程标识（Thread ID或TID）。在主线程中，TID和PID是相同的，但对其他线程来说则是不同的（更高的）值。有一些函数，在其声明为必须给出一个PID参数的地方也可以接受TID，但是要注意这种情况是Linux特有的并且不可移植。下面是thread-demo的代码：

 [image:]

 [image:]

getttid（2）的手册页说明了你必须直接使用Linux的syscall，因为没有C库函数对其进行封装。

一个给定的内核可以调度的线程总数是有限制的。限制范围取决于系统规模，在小的设备上大约为1000个，在更大的嵌入式设备上可多达数万个。实际数量可在/proc/sys/kernel/threads-max中得到。一旦达到这个极限，调用fork（）和pthread_create（）都将会失败。

10.3.2　终止线程

满足下列情况时线程会终止：

·达到其start_routine的结尾。

·调用pthread_exit（3）。

·被另一个线程调用pthread_cancel（3）而取消。

·包含该线程的进程终止，例如，由于一个进程调用了exit（3），或该进程接收到了一个无法处理、屏蔽或忽略的信号。

请注意，如果一个多线程程序调用fork（2），只有发出该调用的线程会出现在新的子进程中。分叉不复制所有线程。

线程具有返回值，是一个空指针。一个线程可以通过调用pthread_join（2）等待另一个线程终止它并收集其返回值。在前面的章节中给出的thread-demo代码中有相应的例子。但这会产生一个问题，这个问题与进程中的僵尸问题非常类似：线程的资源，如堆栈，不能被释放，直到另一个线程加入。如果线程一直没有调用pthread_join，那么程序将出现资源泄漏。

10.3.3　用线程编译程序

为POSIX线程提供支持的是C函数库的一部分，在库libpthread.so中。然而，除了链接到库，关于建立多线程程序还有很多要注意的地方：必须改变编译器生成代码的方式，以确保特定的全局变量，如errno，在每一个线程中都有一个实例，而不是整个进程只有一个实例。

建立一个多线程程序的时候，你必须在编译和链接阶段添加链接选项-pthread。

10.3.4　线程间通信

线程的最大优势在于它们共享地址空间，所以可以共享内存变量。但这也是一个很大的缺点，因为它需要同步机制，以保持数据的一致性，这有点类似于进程间共享内存段的方式，但不同的是，在线程中所有内存都是共享的。线程可以使用线程本地存储（thread local storage，TLS）来创建私有内存。

pthreads接口为实现同步提供了必要的基础：互斥和条件变量。如果你想要更复杂的结构，就必须自己构建它们。

值得注意的是，前面描述的所有IPC方法，在同一进程的多个线程之间也同样能够很好的工作。

10.3.5　互斥

要编写健壮的程序，你需要互斥锁来保护每个共享资源，并确保每一个用于读/写资源的代码路径已经锁定为互斥。如果你坚持了这一规则，那么大多数问题应该都得以解决。一些与互斥锁基本行为相关联的问题，我会在这里简要列出它们，但不会详细说明：

·死锁：当互斥成为永久锁定时就会发生死锁。一个典型的情况是抱死现象，即有两个线程，每个线程需要两个互斥锁，一个线程想先锁定其中某个互斥锁，另一个线程则先锁定另一个。每个线程都阻塞，等待锁定另一个互斥锁，但该锁已被另一个线程锁定，这就导致它们始终保持阻塞状态。有一个可以避免抱死问题的简单规则，就是确保互斥总是以相同的顺序锁定。其他解决方案还有超时机制和回退机制。

·优先级反转：因为等待互斥造成的延迟，可能导致实时线程错过最后时限。优先级反转发生的具体情况是，一个高优先级的线程进入阻塞状态，等待一个低优先级线程锁定互斥锁。如果低优先级的线程被其他中等优先级的线程抢先，则高优先级的线程将被迫等待长度不定的时间。有一些互斥协议，如优先级继承协议和优先级置顶协议，用于解决由于锁定和解锁调用造成内核开销过大的问题。

·性能不佳：互斥锁为代码引入了极少的开销，因为线程大部分时间都不必阻塞他们。如果你的设计中有许多线程都需要使用某个资源，那么，竞争比就变得非常重要。这通常是一个设计问题，可以通过使用更细粒度的锁定或不同的算法来解决。

10.3.6　变化条件

合作的线程需要一个互相告警的方法，因为某些事物的变化需要引起注意。这些事物就是所谓的条件，而警报信息则通过条件变量condvar发送。

条件就是某种你可以测试并返回一个true或false结果的东西。一个简单的例子就是缓冲区，它可能不包含或包含一些条目。一个线程从缓冲区中读取条目并在缓冲区为空时休眠。另一个线程将条目放入缓冲区，并通过信号告知另一个线程已经完成，因为另一个线程等待的条件已经发生改变。如果处于休眠状态，那么它需要被唤醒并执行其功能。唯一复杂的是，根据定义，条件是一个共享资源，必须由一个互斥锁保护。下面是一个简单的例子，遵循前面章节中描述的生产者-消费者的关系：

 [image:]

需要注意的是，当消费者线程因条件变量condvar阻塞时，它同时持有一个锁定的互斥锁，在生产者线程下一次试图更新条件时有可能会导致死锁。为了避免这种情况，pthread_condwait（3）函数在线程被阻塞后解锁互斥，并且在唤醒线程从等待状态中返回前再次锁定它。

10.3.7　分割问题

现在，讲述已经涵盖了进程、线程，以及它们之间通信方式的基本知识，现在我们来看看能用它们做些什么。

这里有一些我在构建系统时使用的规则：

·规则1：保持有很多交互的任务。

通过在一个进程内保持线程间的紧密互操作，来实现开销的最小化。

·规则2：不要把所有的线程都放在一个篮子里。

另一方面，尝试使处于独立进程中的不同组件保持有限的互操作，以获得弹性和模块化等好处。

·规则3：不要在同一个进程中混合关键和非关键的线程。

这是对规则2的一种增强：系统的关键部分（比如机器控制程序）应尽可能简单，并以一种比其他部分更严密的方式编写。即使其他进程失败，它也必须能够继续工作。如果你有实时线程，根据定义它们必须是关键的，应该自己处于一个进程中。

·规则4：线程之间不应过于密切。

编写多线程程序时，诱惑之一是将各线程间的代码和变量混在一起，由于它们都在一个程序中，很容易会这样做。不要利用明确定义的交互保持线程的模块化。

·规则5：不要认为线程是无成本的。

创建额外的线程很容易，但也有成本，不仅仅是用于协调线程活动所必须的额外同步机制。

·规则6：线程可以并行工作。

在多核处理器中线程可以同时运行，提供更高的吞吐量。如果你有一个大的运算任务，可以为每个核创建一个线程，最大限度地利用硬件。有函数库可帮助实现这一点，如OpenMP。你可能不需要从头开始编写并行程序算法。

Android的设计是一个很好的例子。每个应用程序都是一个独立的Linux进程，这有利于模块化存储管理，特别是确保一个应用程序的崩溃不会影响整个系统。进程模型也用于访问控制：一个进程只能访问其UID和GID允许访问的文件和资源。每个进程中都有一组线程。其中一个用于管理和更新用户界面，一个用于处理来自操作系统的信号，几个用于管理动态内存分配和释放Java对象，以及一个包含至少两个线程的工作线程池，它使用Binder协议接收来自系统其他部分的消息。

总之，进程提供了弹性，因为每个进程有一个受保护的内存空间，当这个进程结束时，所有的资源，包括内存和文件描述符被释放，减少了资源泄漏。另一方面，线程共享资源，因此可以很容易地通过共享变量进行通信，并可以通过共享对文件和其他资源的访问来进行合作。通过工作线程池或其他抽象概念，线程提供了并行机制，这对于多核心处理器十分有用。
10.4　调度

本章的第二大主题是调度。Linux的调度程序有一个待运行线程的队列，它的任务是为线程调度可用的CPU。每个线程都有一个调度策略，可能是分时的或实时的。分时线程有一个niceness值，用以增加或减少它们使用CPU的权值。实时线程有一个优先级，高优先级的线程将抢占低优先级线程。调度程序与线程一起工作，而不是与进程一起工作。每一个线程都可以接受调度，无论其运行在哪个进程中。

当下列情况出现时，调度程序运行：

·调用sleep（）函数，或在一个阻塞I/O中线程被阻塞。

·一个分时线程耗尽了自己的时间片。

·一个中断导致线程解除阻塞，例如，由于I/O操作结束。

关于Linux调度程序的背景信息，我建议阅读Robert Love所著的《Linux Kernel Deve-lopment》（第三版）（Addison-Wesley Professional出版，2010年7月2日，ISBN-10：06723-29468）一书中关于进程调度的章节。

10.4.1　公平性与确定性

我将调度策略划分为分时和实时两类。分时策略基于公平原则，其设计确保每个线程都会公平地获得处理器时间，而且没有一个线程能独占系统。如果一个线程运行时间太长，它将会被放置到队列的后面，这样其他线程也可以运行。同时，一个公平的策略需要合理安排那些承担大量任务的线程，并给它们提供资源来完成这些任务。分时调度的好处在于它能够在很大范围内自动调整工作负载。

另一方面，如果你有一个实时程序，公平性是没有帮助的。相反，你需要一个确定性策略，这至少保证你的实时线程将被安排在正确的时间，这样它们就不会错过其最后时限。这意味着一个实时线程必须优先于分时线程。实时线程也有一个静态优先级，当几个实时线程同时运行时，调度程序可以据此在它们中进行选择。Linux实时调度程序实现了一个相当标准的算法，使最高优先级的实时线程运行。大多数RTOS的调度程序也都是这样写的。

这两种类型的线程可以共存。那些需要确定性的线程会优先安排，剩余时间分配给分时线程。

10.4.2　分时策略

分时策略是从公平性角度设计的。从Linux 2.6.23起，调度器采用了完全公平调度器（Completely Fair Scheduler，CFS）。它不是按照一般字面上的含义来使用时间片。相反，它计算出一个线程在公平使用CPU时间的情况下应授权的运行时间长度，并根据其实际运行时间进行平衡。如果超过其授权时间，而还有其他的分时线程等待运行，调度程序将挂起该线程，并运行另一个等待的线程。

分时策略主要有：

·SCHED_NORMAL（也称SCHED_OTHER）：这是默认策略。绝大多数的Linux线程使用此策略。

·SCHED_BATCH：类似于SCHED_NORMAL，除了线程的调度具有一个更大的粒度；即线程可以运行更长的时间，但等待时间也更长，直到调度再次安排其运行。其目的是减少用于后台处理（批处理作业）的上下文切换的数量，从而减少处理器高速缓存的流失。

·SCHED_IDLE：只有当没有任何其他策略的线程可以运行时，才会运行这些线程。这是可能的最低优先级。

有两对函数可以用来获取和设置线程的策略和优先级。第一对以PID为参数，并影响进程中的主线程：

 [image:]

 [image:]

第二对操作pthread_t，并可以改变一个进程中其他线程的参数：

 [image:]

niceness

一些分时线程比其他线程更重要。你可以使用niceness值来反映该情况，该值是将一个线程的CPU授权乘以一个缩放因子而得到的。该名字来源于函数调用nice（2），早期就已经成为UNIX的一部分。线程通过降低它对系统造成的负载来变得nice，反之则向相反方向变化。其值的范围是从非常好的19，到非常不好的-20。而默认值是0，处于平均状态或者一般水平。

对于SCHED_NORMAL和SCHED_BATCH线程，niceness的值可以变化。要减少niceness，即增加CPU的负载，你需要CAP_SYS_NICE功能，这只有根用户可获得。

几乎所有关于改变niceness值的函数和命令（函数nice（2），以及nice和renice命令）的文档讨论的都是进程。然而，它实际上涉及的是线程。正如在前一节提到的，你可以使用一个TID代替PID来改变一个线程的niceness值。另一个与niceness标准描述有差异的地方在于：niceness值被当作是线程的优先级（或有时被错误地认为是进程的），我认为这是误导和混淆实时优先级的概念，这是完全不同的事情。

10.4.3　实时策略

实时策略的目的是为了确定性。实时调度程序将始终运行具有最高优先级并准备运行的实时线程。实时线程总是抢占分时线程。在本质上，通过在分时策略之上选择一个实时策略，表明你已经预期调度该线程，并希望覆盖调度程序内置的设定。

有两种实时策略：

·SCHED_FIFO：这是一个运行直至完成的算法，这意味着，一旦线程开始运行，它将持续运行直到被一个更高优先级的实时线程抢占，或因系统调用而被阻塞，或者运行终止（完成）。

·SCHED_RR：这是一个循环算法，在具有相同优先级的线程之间周期循环，如果这些线程的运行时间超出它们的时间片，默认情况下是100毫秒。从Linux 3.9开始，可以通过/proc/sys/kernel/sched_rr_timeslice_ms来控制时间片的值。除此之外，它的运行模式和SCHED_FIFO相同。

每个实时线程的优先级范围从1到99，以99为最高。

为了给一个线程提供实时策略，你需要CAP_SYS_NICE功能，默认情况下只有root用户具有此权限。

无论是在Linux还是其他系统，实时调度的一个问题是，线程变成是计算绑定的，这通常是因为一个错误导致其无限循环，使具有较低优先级的实时线程和所有分时线程无法运行。系统变得不稳定，并可能完全锁死。有一组方法能防范这种可能的情况。

首先，从Linux 2.6.25开始，调度程序在默认情况下，对于非实时线程保留5%的CPU时间，这样即使出现一个失控的实时线程，也不能完全终止系统。它通过2个内核控件进行配置：

 [image:]

其默认值分别为1 000 000（1秒）和950 000（950毫秒），这意味着每秒钟有50ms是保留下来用于非实时处理的。如果你希望实时线程能够占据100%的CPU时间，可以将sched_rt_runtime_us设置为-1。

第二选择是使用一个看门狗，无论是硬件的还是软件的，用于监视关键线程的执行，当发现其超出时限时可采取行动。

10.4.4　选择策略

在实践中，分时策略能够满足主要的计算工作量。I/O绑定的线程有大量时间是阻塞的，所以总是有一些权限在手。当它们解除阻塞时，通常将立即调度执行。同时，CPU绑定的线程自然会占用剩下的处理器周期。正的niceness值可以应用于不太重要的线程，而负的niceness值则用于重要的线程。

当然，这只是一般的运行状态，不能保证情况总会是这样的。如果需要更确定性的行为，那么就需要采取实时策略。以下事件可标记出实时线程：

·在截止期限前必须产生一个输出

·错过截止期限将破坏系统的有效性

·它是事件驱动的

·它不是计算绑定的

实时任务的例子包括经典的机器人手臂伺服控制器、多媒体处理以及通信处理。

10.4.5　选择实时优先级

为所有预期的工作负载选择实时优先级是一个棘手的问题，这也是一个好的理由，避免从一开始就采用实时策略。

应用最为广泛的选择优先级过程称为速率单调性分析（Rate Monotonic Analysis，RMA），这是1973年由Liu和Layland在论文中提出的。它适用于周期性线程的实时系统，这是非常重要的一类。每一个线程都有周期和利用率，这将决定其执行周期的比例。目标是平衡负载，使所有线程能够在下一个周期前完成它们的执行阶段。如果满足以下条件则可实现RMA状态：

·周期最短的线程拥有最高优先级。

·总利用率低于69%。

总利用率是指所有个体的利用率之和。这里假设线程之间交互或用于互斥阻塞等所花费的时间可以忽略不计。
10.5　延伸阅读

关于本章介绍的主题，下列资源可以提供进一步的信息：

·《The Art of Unix Programming》，by Eric Steven Raymond，Addison Wesley；（23 Sept.2003）ISBN 978-0131429017。

·《Linux System Programming》，2nd edition，by Robert Love，O'Reilly Media；（8 Jun.2013）ISBN-10：1449339530。

·《Linux Kernel Development》，3rd edition by Robert Love，Addison-Wesley Professional；（July 2，2010）ISBN-10：0672329468。

·《The Linux Programming Interface》，by Michael Kerrisk，No Starch Press；（October 2010）ISBN 978-1-59327-220-3。

·《UNIX Network Programming：v.2：Interprocess Communications》，2nd Edition，by W.Richard Stevens，Prentice Hall；（25 Aug.1998）ISBN-10：0132974290。

·《Programming with POSIX Threads》，by Butenhof，David R，Addison-Wesley，Professional。

·《Scheduling Algorithm for multiprogramming in a Hard-Real-Time Environment》，by C.L.Liu and James W.Layland，Journal of ACM，1973，vol 20，no 1，pp.46-61。
10.6　总结

长期的Unix遗产已经植入Linux中，而伴随的C库提供了编写稳定而具有弹性的嵌入式应用所需要的几乎所有的东西。问题在于，对于每个任务，至少有2种方法可以实现你的要求。

在本章中，内容主要集中在系统设计的两个方面：一是划分独立的进程，每个进程有一个或多个线程来完成任务；二是对这些线程进行调度。希望我对该问题的阐述足够清楚，并为你进一步研究这些问题提供基础。

在下一章中，我将研究系统设计的另一个重要方面，内存管理。
第11章　内存管理

本章将介绍有关内存管理的问题，这对于任何Linux系统来说都是一个重要的课题，尤其是对嵌入式Linux系统，因为嵌入式系统的内存通常是有限的。在简短的回顾虚拟内存之后，我们将会介绍如何测量内存的使用情况，如何检测内存分配问题，包括内存泄漏，以及在内存空间用尽后会发生什么。你需要了解并学会使用一些工具，从简单的工具如free和top，到复杂的工具如mtrace和Valgrind。
11.1　虚拟内存基础

总的来说，Linux通过配置CPU的内存管理单元提供的虚拟地址空间来运行程序，虚拟地址从0地址开始，以最高地址结束，在一个32位的处理器中最高地址是0xffffffff。该地址空间被划分为多个4 KB大小的页面（也存在极少数的系统会使用其他大小的页面）。

Linux将这个虚拟地址空间划分为用户空间（分配给应用使用的区域）和内核空间（分配给内核使用的区域）。两者由一个内核配置参数page_offset区分开。在一个典型的32位嵌入式系统中，PAGE_OFFSET设为0xc0000000，将底部的3 GB分配给用户空间，将顶部的1 GB分配给内核空间。每个进程分配一个用户地址空间，使得每个进程运行在相对独立的空间。内核地址空间对所有进程是相同的，因为只有一个内核。

在虚拟地址空间的页面通过内存管理单元（memory management unit，MMU）映射到物理地址，它使用页表来实现映射。

虚拟内存的每一页都可以：

·不进行映射，访问该虚拟内存页将导致SfigSEGV。

·映射到物理内存的一个页面，它对进程是私有的。

·映射到物理内存的一个页面，它与其他进程是共享的。

·设置写时复制（copy on write）标志进行映射和共享：在内核检测到对某页面有写操作申请时，在执行写操作前，内核会创建该页面的一个副本，用该副本代替源页映射到申请写操作的进程中。之后进程将在页面副本中执行写操作。

·映射到内核所使用的物理内存页。

内核可能会附加映射页面来保留内存区域，例如，在设备驱动程序中访问寄存器和缓冲区内存。

一个明显的问题是，为什么我们要这样做，而不是像典型RTOS那样简单地直接引用物理内存呢？

虚拟内存有很多优点，例如：

·无效的内存访问可以被限制住，并使用SfigSEGV警告应用。

·进程运行在自己的内存空间，与其他进程隔离。

·通过共享共同的代码和数据高效地使用内存，例如使用库。

·有通过增加交换文件明显增加物理内存数目的可能性，虽然在嵌入式目标上很少有交换。

这些都是有力的论据，但我们必须承认，虚拟内存也有一些缺点。要确定应用程序的实际内存占用是很困难的。这正是本章主要关注的问题之一。默认分配策略有一个致命缺点，就是会导致内存溢出的混乱情况，这将在后文中详细讨论。最后，由内存管理代码在处理例外情况——页面错误时，引入的延迟会导致系统存在不确定性，这对实时程序的影响很大，在第14章中将详细讨论这一问题。

内核空间和用户空间的内存管理是完全不同的。下面的章节将描述一些你需要知道的本质差异和事情。
11.2　内核空间内存布局

内核内存以一种相当直接的方式进行管理。它不需要内存分页，这意味着每次使用kmalloc（）或相似的函数分配内存时，将直接分配真正的物理内存。内核内存是不会被丢弃或被换出的。

有些架构在启动时，会在内核日志消息中显示内存映射的摘要。下文是从一个32位ARM架构设备（BeagleBone Black）中获取的摘要信息：

 [image:]

 [image:]

其中的505 980 KB可用是指，在内核开始运行但未进行动态内存分配时内核可见的空闲内存空间大小。

内核空间内存的消费者包括：

·内核自己，换句话说，是在启动时从内核映像文件加载的代码和数据。即上面显示的代码中的代码段.text、.init、.data和.bss。一旦内核完成初始化，.init段将被释放。

·通过slab分配器分配的内存。该动态分配的内存将被用于不同种类的内核数据结构，包括使用kmalloc（）分配的内存。它们来自标记为lowmem的区域。

·通过vmalloc（）分配的内存，通常用于分配比kmalloc（）分配的空间更大的内存块。它们在vmalloc区域。

·设备驱动器映射，用于访问寄存器和属于各类硬件的内存。你可以通过读取/proc/iomem看到。它们来自vmalloc区域，但由于它们被映射到在主系统内存之外的物理内存，因此不使用任何真实的内存。

·加载到被标记区域模块的内核模块。

·在任何其他地方都无法追踪的其他低级分配。

内核使用多少内存？

不幸的是，该问题还没有一个完整的答案，但下文描述的是我们可以得到的最接近的答案。

首先，你可以查看上文提及的内核日志，了解内核代码和数据所占用的内存，或者你可以使用size命令，如下：

 [image:]

通常，相比总的内存量，使用size命令获得的内存占用量是较小的一个值。如果不是这样的话，你需要观察内核配置，并删除那些你不需要的组件。有一个正在进行的项目，允许构建小的内核：搜索Linux-tiny或Linux Kernel Tinification。对于后者，在https://tiny.wiki.kernel.org/有项目的页面。

你可以通过阅读/proc/meminfo得到关于内存使用的更多信息：

 [image:]

 [image:]

在proc（5）的手册页中，有关于这些领域的每一部分的描述，内核内存使用量是下列几项的总和：

·Slab：通过slab分配器分配的总内存。

·KernelStack：执行内核代码时使用的堆栈空间。

·PageTables：用于存储页表的内存。

·VmallocUsed：由vmalloc（）分配的内存。

在使用slab分配内存的情况下，你可以通过阅读/proc/slabinfo获取更多的信息。同样的，对于vmalloc区域而言，在/proc/vmallocinfo中包含分配的明细。在这两种情况下，你需要详细的内核以及其子系统的知识，用于确定哪些子系统正在进行分配以及为什么这么做，不过这已超出了本书讨论的范围。

对于模块，你可以使用lsmod找出被代码和数据占用的内存空间：

 [image:]

这会留下没有记录的低层分配的内存，影响我们生成内核内存使用空间的准确值。当我们添加所知道的所有内核和用户空间时，就会出现内存丢失现象。
11.3　用户空间内存布局

Linux采用惰性分配策略分配用户空间，仅当程序访问时才映射到物理内存页。例如，分配一个1MB大小的缓冲区，使用malloc（3）返回一个指针指向一个内存地址的块，但并不是真正的物理内存。在页表的入口设置一个标志，以使任何读写访问都被内核限制。这被称为一个页面故障。只有到这时，内核才试图找到一个物理内存页，并将其添加到该进程的页表映射。这一过程可以通过下面的一个简单程序演示：

 [image:]

当运行它时，你会看到以下内容：

 [image:]

初始化程序时，会有172个小的页面错误发生，当调用getrusage（2）函数时又会发生14个错误（这些数字将取决于你使用的C库程序的结构和版本）。最重要的是当用数据填充内存时的增量：442-186=256。缓冲区是1MB，即256个页面。第二个调用memset（3）函数没有什么不同，因为所有的页面都已被映射。

正如你所看到的，当内核捕获一个未映射的页面时，会产生一个页面故障。事实上，有两种页面故障：次要故障和主要故障。当发生次要故障时，内核只需要找到一个物理内存页面并将其映射到进程地址空间，如前面代码所示。当虚拟内存被映射到一个文件时，会发生一个主要页面故障，例如使用mmap（2）命令，之后会有相应的简要描述。从这个内存中读取意味着内核不仅要找到一个内存页面并映射它，而且必须被来自文件的数据所填充。因此，主要故障带来的时间上和系统资源上的代价更为昂贵。
11.4　进程内存映射

你可以通过proc文件系统看到进程的内存映射情况。下面的示例是init进程PID 1的映射：

 [image:]

前三列显示开始和结束的虚拟地址以及每个映射的权限。该权限显示如下：

·r=读

·w=写

·x=执行

·s=共享

·p=私有（写时复制）

如果映射与文件有关，该文件名将出现在最后一列，第四、五、六列包含以文件开头为起始点的偏移量、块设备号和文件的inode。大部分的映射是程序本身和它的链接库。程序可以有两个区域分配内存，标记为[heap]和[stack]。使用malloc（3）函数分配的内存从前者获取（如果是非常大的空间分配则从后者获取）；从栈上分配的内存来自后者。两个区域的最大长度是由进程的ulimit控制的：

·堆（heap）：ulimit-d，默认无限制。

·栈（stack）：ulimit-s，默认8MB。

超过限制的分配通过SfigSEGV而被拒绝。

当超出内存运行时，内核可以决定抛弃映射到只读文件的页面。如果该页面再次被访问，它会导致一个主要页面故障，并从该文件中读回。
11.5　交换

交换的思想是保留一些内存空间，内核可以放置一些内存页面而不把它们映射到一个文件，以便于释放空间给其他文件使用。它用交换文件的大小增加物理内存的有效空间。但这不是一种万能药，从交换文件复制页面以及将页面复制到交换文件是需要代价的，显然，如果系统拥有的实际内存过少，那么交换将导致磁盘抖动（disk thrashing）。

交换在闪存中的性能并不是很好，因此它很少用于嵌入式设备，在闪存中持续写入将很快耗尽交换文件空间。但是，我们可以考虑在压缩内存（zram）中使用交换机制。

压缩内存（zram）交换

zram驱动程序创建基于RAM的块设备并命名为/dev/zram0、/dev/zram1等。在存储之前，写入这些设备的页面被压缩。在实现30%至50%的压缩比情况下，预计可用内存大小大约会有10%左右的增加，其代价是更多的处理操作以及相应的用电增加。压缩内存交换用在一些低速内存的Android设备上。

要启用zram，需用以下选项配置内核：

 [image:]

然后，通过将以下脚本添加到/etc/fstab，可以在启动时挂载zram：

 [image:]

你可以使用这些命令打开和关闭交换：

 [image:]

11.6　用mmap映射内存

一个进程的生命周期伴随着一定数量的内存，这些内存映射到文本（代码）和程序文件的数据段，以及被链接的共享库文件。在运行时使用malloc（3）在其堆上分配内存，在栈上通过局部作用域变量并且通过alloca（3）分配内存。它也可以使用dlopen（3）在运行时动态加载库。所有这些映射都是由内核完成的。但是，进程也可以使用mmap（2），以一种显式的方式操作其内存映射：

 [image:]

它利用文件描述符fd从文件映射length字节的内存，从文件的offset处开始，若成功则返回一个指向该映射的指针。底层硬件工作在页面中，长度length是向上取整至最接近的页面数。保护参数prot是一个读、写和执行权限的组合体，并且参数flags至少包含MAP_SHARED或MAP_PRIVATE。还有其他许多的标志，可以在手册页面中找到关于它们的描述。

你还可以利用mmap做很多事情，下面介绍其中的一些。

11.6.1　使用mmap分配私有内存

你可以通过设置MAP_ANONYMOUS标志，使用mmap分配一个私有内存区域，并将fd文件描述符设为-1。这类似于使用malloc（3）从堆中分配内存，除了内存是页面对齐的并且是页面的整数倍。分配的内存与库函数使用的内存是在相同的区域内。事实上，正因为如此，在有些地方称该区域为mmap区域。

匿名映射更适用于大块的分区，因为这样就无需将堆划分为不同的内存块，从而避免内存空间碎片化。有趣的是，你会发现malloc（3）（至少在glibc中）不会从堆中分配超过128KB字节的内存，这种情况下只能使用mmap进行分配。因此在大多数情况下，只使用malloc分配内存是不错的选择。系统将选择最佳的方式满足其要求。

11.6.2　使用mmap共享内存

正如在第10章中所看到的，POSIX共享内存需要使用mmap访问内存段。在这种情况下，你将设置map_shared标志位并使用从shm_open（）获取的文件描述符：

 [image:]

11.6.3　使用mmap访问设备内存

正如在第8章中提到的，驱动程序可能会允许mmap内存映射其设备节点，并与一个应用共享设备内存。具体实现则依赖于驱动程序。

以Linux帧缓冲/dev/fb0为例，接口在/usr/include/linux/fb.h中定义，包括一个用于获取显示大小和每个像素比特位的ioctl函数。然后，你可以使用mmap与视频驱动程序共享应用程序的帧缓存，并且可以进行像素读写操作：

 [image:]

再以流媒体视频接口为例，这里选用Video 4 Linux（版本2），即V4L2，它在/usr/include/linux/videodev2.h中定义。每个视频设备有一个命名为/dev/videoN的节点，从/dev/video0开始。用一个ioctl函数向驱动程序申请分配一些视频缓冲区，你可以将分配的缓冲区用mmap映射到用户空间。然后，就只剩下如何循环使用缓冲区和用视频数据来填充或清空缓冲区的问题了，这取决于你是否在回放或捕获视频流。
11.7　我的应用程序使用了多少内存

与内核空间一样，分配、映射和共享用户空间内存的不同方式，使这个看似简单的问题变得难以准确解答。

首先，你可以询问内核还有多少可以使用的内存，并通过free命令释放内存。下面是一个典型的输出示例：

 [image:]

初看起来，这就像是一个内存空间几乎耗尽的系统，509 016 KB中只有4704 KB是空闲的，比例少于1%。但是，请注意，26 456 KB是在缓冲区中，而363 860 KB是在高速缓存中Linux认为空闲内存是浪费的内存，所以内核使用空闲内存来缓存和高速缓存，而缓存和高速缓存在需求变化时空间是可以适当收缩的。在测量中删除缓冲区和高速缓存才能获得真正空闲的内存大小，共395 020 KB，占整个内存空间的77%。当使用空闲内存时，在第2行中标记为-/+buffers/cache的数字非常重要。

可以通过写一个在1～3之间的数字到/proc/sys/vm/drop_caches中，强制内核释放缓存：

 [image:]

这个数字实际上是一个位掩码，它决定释放两类缓存中的哪一种：1表示页面缓存，2表示是dentry和inode缓存的结合。这些高速缓存的确切作用不是特别重要，只有能在短时间内快速回收内核正在使用的内存才是重要的。
11.8　每个进程的内存使用情况

有几个指标可以用来衡量一个进程正在使用的内存量。首先介绍两个容易获取的指标：虚拟集合大小（virtual set size，Vss）和常驻内存大小（resident memory size，Rss），在多数的ps和top命令实现中都有这两个指标：

·Vss：在ps命令中称为VSZ，在top命令中称为VIRT，是由一个进程映射的内存总量。它是所有在/proc//map中显示的区域总和。这个数字是有限的，因为在任一时刻只有一部分虚拟内存被提交至物理内存。

·Rss：在ps命令中称为RSS，在top命令中称为RES，是映射到内存物理页面的内存总和。该数值更接近于进程占用的实际内存。但仍然存在一个问题，如果你把所有进程的Rss值全都加起来，你会得到一个高于实际占用内存大小的值，因为有些页面是共享的。

11.8.1　使用top和ps

BusyBox中的top和ps命令版本提供非常有限的信息。下面的例子使用来自procps包的完整版本。

ps命令显示具有选项-Aly的Vss（VSZ）和Rss（RSS），以及一个包含VSZ和RSS的定制格式，如下所示：

 [image:]

 [image:]

同样，top显示了关于空闲内存和每个进程的内存使用情况的摘要：

 [image:]

这些简单的命令可以用来观察内存的使用情况，当你看到一个进程的Rss一直在增加，则有可能是发生内存泄漏的迹象。然而，如果要衡量内存的实际使用情况，仅仅使用这些简单的命令所得到的结果不会非常准确。

11.8.2　使用smem

在2009年，Matt Mackall开始研究在进程的内存度量中计算共享页面数量的问题，并增加了两个新的指标，称为绝对值大小（unique set size，Uss）和百分比大小（proportional set size，Pss）：

·Uss：这是提交至物理内存的内存数量，并且对每个进程是都是唯一的，它不与任何其他进程共享。一旦进程终止，相应的内存就会被释放。

·Pss：在所有映射该内存的进程之间分割共享页的数量，这些共享页面被提交至物理内存。例如，如果库代码的一个区域长达12页并由六个进程共享，每个进程在Pss中增加两个页面。因此，如果你为所有的进程添加Pss编号，将会得到被那些进程使用内存的实际数量。换句话说，Pss就是我们一直在寻找的数值。

信息可在proc/<PID>/smaps中获取，其中还包含了在/proc/<PID>/maps中显示的每个映射的附加信息。下面是从提供有关libc代码段映射信息的文件中截取的一部分内容：

 [image:]

 [image:]

需要注意的是，Rss的值为264KB是因为它有许多其他的共享进程，Pss仅6 KB。

有一个名为smem的工具，它从smaps文件整理信息并可以以不同的方式展示，包括饼图或条形图。smem项目的页面地址是https://www.selenic.com/smem。在大多数桌面发行版中，这是作为一个包提供的。然而，由于它是用Python编写的，安装在嵌入式目标上需要提供Python环境，但这对于仅仅一个工具而言实在是过于麻烦。为此，有一个名为smemcap的小程序，它可以从目标的/proc捕获状态并将其保存为一个TAR文件，然后可以在主机上分析这些文件。该程序是BusyBox的一部分，但它也可以从smem源码编译。

在root权限下本地运行smem，你将看到下面的结果：

 [image:]

你可以观察输出的最后一行，在这种情况下，Pss的总和大约是Rss的一半。

如果你没有或不想在你的目标上安装Python，可以使用smemcap捕捉状态，同样也是在root权限下运行：

 [image:]

然后，将TAR文件复制到主机并使用smem-S命令读取文件，不过这次不需要在root权限下运行：

 [image:]

该输出与本地运行时得到的结果相同。

11.8.3　其他工具考虑

通过ps_mem显示Pss是另一种方式（https://github.com/pixelb/ps_mem），其打印的信息相同但格式更为简洁。它也是用Python编写的。

Android还有一个名为procrank的工具，它可以针对嵌入式Linux进行交叉编译且仅需要一些较小的变化。你可以从https://github.com/csimmonds/procrank_linux获得代码。
11.9　识别内存泄漏

内存泄漏是指内存被分配后，当它不再需要时没有及时释放。内存泄漏并不是嵌入式系统所特有的，一方面因为目标上并没有太多的内存空间，另一方面它们往往需要运行很长一段时间而无需重新启动，这些都使得内存泄漏成为一个大的问题。

正如前文所示，当你运行free或者top命令的时候，发现空闲内存持续不断地下降，即使你减少使用缓存，这时候你需要意识到可能有内存泄露发生。你可以通过观察每个进程中的Uss和Rss找到“罪魁祸首”。

有几个工具可用于识别程序中的内存泄漏。我将介绍其中的两个：mtrace和Valgrind。

11.9.1　mtrace

mtrace是glibc的一个组件，它可以追踪malloc（3）、free（3）以及相关函数的调用，并在程序退出时识别未释放的内存区域。你需要在程序中调用mtrace（）启动追踪，然后在运行时给环境变量MALLOC_TRACE赋予一个路径名，追踪信息将写入该路径名对应的文件中。如果MALLOC_TRACE不存在或无法打开该文件，mtrace钩子程序将不会安装。追踪信息使用ASCII码编写，通常可以使用mtrace命令查看它。

下面是一个例子：

 [image:]

下面是你在运行程序时可能查看到的追踪信息：

 [image:]

不幸的是，在程序运行时mtrace不会告诉你关于内存泄露的信息。程序必须先终止。

11.9.2　Valgrind

Valgrind是一个非常强大的工具，它可以发现包括内存泄露问题在内的许多程序问题。使用Valgrind的一个好处是，你不需要重新编译你想要检查的程序和库，不过如果它们已经使用-g选项编译，那么生成的二进制文件中将包含调试符号表，这将有利于Valgrind更好地完成工作。它的工作原理是在一个模拟的环境中运行程序，并在众多程序点中捕获执行。但这同时也导致Valgrind的一大缺点，即程序很少以正常速度运行，因此对于任何具有实时性约束的测试，它就没那么有用。

顺便说一句，这个名字经常被误读：在Valgrind的FAQ上有说明，“grind”中“i”的发音为短音，就像grinned（发音与tinned押韵）而不是grined（发音与find押韵）。FAQ、文档和下载可在http://valgrind.org中获得。

Valgrind包含几个诊断工具：

·memcheck：这是默认的工具，检测内存泄漏和内存的一般误用。

·cachegrind：计算处理器缓存命中率。

·callgrind：计算每个函数调用的成本。

·helgrind：强调Pthread API的误用，潜在的死锁和竞争条件。

·DRD：另一个Pthread分析工具。

·massif：剖析堆和栈的使用情况。

你可以使用-tool选项选择想要的工具。Valgrind运行在主要的嵌入式平台上：ARM（Cortex A）、PPC、MIPS和x86 32位和64位变种的操作系统。它在Yocto项目和Buildroot中作为包提供。

为了寻找内存泄漏，我们需要使用默认的Memcheck工具，并设置选项--leakcheck=full将发生泄露的代码行打印出来：

 [image:]

11.10　　内存耗尽

标准的内存分配策略会引起过度使用（over-commit），这意味着内核允许应用程序分配的空间将多于实际可分配的物理空间。大多数情况下这样的分配策略能正常工作，因为应用程序允许分配的内存空间远远超过了它们的真实需求。这样的策略也有助于fork（2）的实现：复制一个大型程序是安全的，因为内存页面与copy-on-write标志设置共享内存。在大多数情况下，fork后紧跟着一个exec函数调用，该调用不共享内存并加载一个新的程序。

然而，总有一个特定的工作负荷可能会导致一批进程试图在已获得分配空间的同时，继续申请更多空间，从而造成需求超过了实际可分配的内存空间大小。这将导致内存不足（out of memory，OOM）的状态。在这种情况下，除了杀死所有的进程直到该问题解决以外没有其他的方法。这是内存不足杀手程序的工作。

在此之前，在/proc/sys/vm/overcommit_memory中有一个用于内核分配的调节参数，你可以设置为：

·0：启发式过度提交（这是默认的）。

·1：总是允许过度提交且不做任何检查。

·2：总是检查内存使用情况，且不允许过度提交。

选项1仅可用于运行处理大型稀疏数组的程序，这样分配大块内存空间也只对小部分空间进行写操作。这样的程序在嵌入式系统中是很少出现的。

选项2要求永不允许过度使用。如果在一个关键的任务或安全应用中，你担心运行内存耗尽问题，这将是一个不错的选择。超过提交限制的内存分配请求将会失败，提交限制是交换空间的大小加上总内存再乘以过度提交比率。过度提交比率（over-commit ratio）由/proc/sys/vm/overcommit_ratio控制，默认值为50%。

例如，假设你有一个512MB的系统内存，并把比率设置为一个非常保守的数值25%：

 [image:]

由于没有交换空间，因此提交限制是MemTotal的25%，这和预期相符。

在/proc/meminfo中还有另一个重要的变量：Committed_AS。这是到目前为止需要完成所有分配需要的内存总量。我在一个系统中发现下列数据：

 [image:]

换句话说，内核承诺的内存分配空间已经超过了可用内存空间。因此，设置overcommit_memory为2意味着无论overcommit_ratio设为多少，所有分配都将失败。为了维护一个可运作的系统，我必须要安装双倍的内存量，或者大量减少运行进程的数量，其中总共有大约40个进程。

在所有的情况下，OOM杀手程序是最后的防线。它使用一个启发式方法计算每个进程的一个在0到1000之间取值的不良评分，然后在得到足够的可用内存前持续终止那些得分最高的进程。你可以在内核日志中看到如下的记录：

 [image:]

你可以使用echo f>/proc.sysrq-trfigger命令强制执行一个OOM事件。

你可以调整/proc/<PID>/oom_score_adj的值来影响一个进程的不良评分。值为-1000意味着不良评分永远不要大于零，所以它永远不会被杀死；值为+1000意味着不良评分将永远大于1000，所以将总是会被杀死。
11.11　　延伸阅读

以下资源对本章介绍的主题提供进一步的信息：

·《Linux Kernel Development》，3rd Edition，by Robert Love，Addison Wesley，O'Reilly Media；（Jun.2010）ISBN-10：0672329468。

·《Linux System Programming》，2nd Edition，by Robert Love，O'Reilly Media；（8 Jun.2013）ISBN-10：1449339530。

·《Understanding the Linux VMManager》by MelGorman：https://www.kernel.org/doc/gorman/pdf/understand.pdf。

·《Valgrind3.3-Advanced Debugging and Profiling for Gnu/Linux Applications》by J Seward，N.Nethercote，and J.Weidendorfer，Network Theory Ltd；（1 Mar.2008）ISBN978-0954612054。
11.12　　总结

在虚拟内存系统中计算到存储器中每一个字节是不可能的。然而，我们仍可以相当准确的计算出空闲的内存数目，其中不包括通过使用free命令释放的缓冲区和高速缓存。通过在一段时间内以及对不同工作负载的监测，应该可以确保它将保持在一个给定的限制内。

当你想调整内存使用或者识别意外分配的来源时，有资源可以提供更详细的信息。对于内核空间，最有用的信息是在/proc中：meminfo、slabinfo和vmallocinfo。

当开始精确测量用户空间的内存使用量时，最好的指标是Pss，它可以使用smem和其他工具显示。对于内存调试，通过mtrace可以实现简单的跟踪，也可以使用Valgrind内存检测工具进行更复杂地检查。

如果你担心由于内存不足情况带来的后果，可以通过/proc/sys/vm/overcommit_memory微调分配机制，并且可以用oom_score_adj参数控制杀死特定进程的可能性。

下一章介绍使用GNU调试器调试用户空间和内核代码的知识，你可以通过观察代码运行时的情况掌握更多信息，包括本章提到的内存管理功能。
第12章　使用GDB调试

错误一定是会发生的。识别和修复这些错误是程序开发过程中的一部分。当前有许多不同的技术用于发现和描述程序缺陷，包括静态和动态分析、代码审查、跟踪、分析和交互调试。下一章将重点说明代码的跟踪和分析，本章仅关注采用调试器来审查代码的传统方法，例如GNU调试器GDB。GDB是一个强大又灵活的工具，可用来调试应用程序、检查程序崩溃后创建的事后调试文件（core文件），甚至单步调试内核代码。

本章我们将具体说明如何使用GDB来调试应用程序，如何检查核心文件以及如何调试内核代码，这里重点关注与嵌入式Linux相关的内容。
12.1　GNU调试器：GDB

GDB是一个用于已编译语言的源代码级调试器，主要针对C和C++，还支持多种其他语言如Go和Objective。你应该阅读正在使用的GDB版本的注释，以发现对于各种语言的当前支持状态。项目网站http://www.gnu.org/software/gdb包含很多有用的信息，包括GDB手册。

此外，GDB有命令行用户界面，尽管一些用户会感到命令行操作不便，实际上，只要稍微实践下就很容易使用。如果你不喜欢命令行界面，还有很多GDB前端用户界面，后续会介绍其中的三种。
12.2　准备调试

对于需要进行调试的代码，你需要使用调试符号进行编译。GCC为此提供了两个选项：-g和-ggdb。后者是指增加特定的GDB调试信息，而前者是指产生的信息格式适应正在使用的操作系统，这使得它更容易移植。在特定的情况下，当目标操作系统是Linux时，不管使用-g或-ggdb都差异不大。更为有趣的是，这两个选项都允许指定调试信息的等级，从0到3：

·0：调试过程不产生调试信息，相当于没有使用-g或-ggdb开关。

·1：调试过程会产生少量信息，但它包括了函数名和外部变量，这些信息足以生成回溯。

·2：这是默认设置，包括本地变量和行号信息，这样就可以在代码中进行源代码级调试和单步执行。

·3：这里包括额外的信息，该信息意味着GDB可以正确处理宏展开。

大多数情况下，-g选项就够了，但如果单步执行代码存在问题时还需要保留-g3或-ggdb3，尤其是代码中有宏的情况下。

需要考虑的下一个问题是代码优化的等级。编译器优化往往会破坏源代码和机器代码之间的关系，这使源代码的单步调试变得不可预测。如果遇到这样的问题，你最有可能只需要编译而不需要优化，就更不用说-O编译开关，或至少使用编译开关-O1将调试等级降低至1级。

一个相关的问题是栈帧指针，它被GDB用来生成对当前函数调用的回溯。在某些架构中，GCC不会产生更高优化水平的栈帧指针（-O2）。如果确实需要使用-O2进行编译而且还不需要进行回溯，则可以使用-fno-omit-frame-pointer来对默认行为进行重新定义。在检查被优化过的代码时，通过增加-fomit-frame-pointer选项也可以忽略帧指针：调试时可能希望临时删除这些指针。
12.3　使用GDB调试应用程序

使用GDB调试应用程序可以采用两种方式。如果是开发运行在桌面和服务器上的代码，或者是在同一台机器上的任意环境中编译和运行代码，本质上都是运行GDB本身。然而，大多数嵌入式开发是采用交叉编译工具链，因此你需要调试运行在设备上的代码，但要在已有源代码和工具的交叉开发环境中控制调试代码。本章重点关注后一种情况，因为目前关于这方面的文档不够多，但这是嵌入式开发者最有可能遇到的情况。关于GDB的基本用法本书不再赘述，因为已有很多好的参考资料，包括GDB手册和在本章最后建议的延伸阅读资料。

本章将从使用gdbserver的一些细节入手，介绍如何配置远程Yocto项目和Buildroot以实现远程调试。
12.4　使用gdbserver远程调试

远程调试的关键部分是调试代理gdbserver，它运行在目标上并控制被调试程序的执行。gdbserver通过网络连接或RS-232串行接口，连接到运行在宿主机上GDB的一个副本。

通过gdbserver进行调试与本地调试几乎但不完全相同。这种差异主要集中在一个事实，即有两台计算机参与，并且在开始调试时它们必须处于正确的状态。这里有些事情需要注意：

·在调试会话开始时，需要使用gdbserver加载将在目标主机上调试的程序，然后从主机的交叉编译工具链中分别加载GDB。

·在调试会话开始之前，GDB和gdbserver需要互相连接。

·运行在主机的GDB，需要被告知去哪里找调试符号和源代码，特别是共享库。

·GDB运行命令没有像预期的那样工作。

·当调试会话完成时gdbserver将会终止，如果你还需要另一个调试会话，需要再重新启动它。

·当调试二进制文件时，这个文件可以在主机上而不是必须在目标嵌入式系统上，你需要调试符号和源代码。在目标系统上通常没有足够的空间存储它们，因此在将可执行代码部署到目标之前，需要把它们剥离出来。

·GDB/gdbserver组合没有本地运行GDB的所有特点。例如，gdbserver不能在fork（）调用之后跟踪子进程，而本地GDB可以。

·如果GDB和gdbserver的版本不同或者是同一版本不同配置，就会出现一些奇怪的情况。理想情况下，它们应该来自同一个源，并且是由你最喜欢的构建工具构建而成。

调试符号显著增加了可执行文件的大小，有时是10的整数倍。正如第5章中所述，不用重新编译任何源代码就能删除调试符号将是非常有效的。实现这个功能的工具来自于交叉编译工具链。可以通过如下开关控制这些功能：

·--strip-all：删除所有符号（默认情况）。

·--strip-unneeded：删除重定向处理不需要的符号。

·--strip-debug：仅仅删除调试符号。

对于应用程序和共享库，--strip-all（默认）选项是有效的，但是当涉及内核模块时，它将会停止模块加载。这时需要使用--strip-unneeded选项。我目前仍在使用-strip-debug的用例。

记住这些要点，下面看一下利用Yocto项目和Buildroot调试所涉及的具体细节。

12.4.1　建立Yocto项目

Yocto项目为主机建立了作为SDK一部分的交叉调试器GDB，但必须根据不同的目标配置进行修改以便在目标映像中能够包含gdbserver。你可以显式添加包，例如添加包到conf/local.conf，再次注意在如下字符串的开始处必须有一个前导空格：

 [image:]

或者，可以将tools-debug添加到EXTRA_IMAGE_FEATURES，该设置将在目标映像中添加gdbserver和strace（下一章将讨论strace）：

 [image:]

12.4.2　设置Buildroot

对于Buildroot，需要打开某些选项以便它能够既为主机构建交叉调试器GDB（假设使用Buildroot内部工具链），也为目标系统建立gdbserver。具体地说，需要启用如下选项：

·BR2_PACKAGE_HOST_GDB，在菜单Toolchain|Build cross gdb for the host中。

·BR2_PACKAGE_GDB，在菜单Target packages|Debugging，profiling and bench-mark|gdb中。

·BR2_PACKAGE_GDB_SERVER，在菜单Target packages|Debugging，profiling and benchmark|gdbserver中。
12.5　开始调试

现在，已经分别将gdbserver和交叉调试器GDB安装在目标系统和主机上，可以启动调试会话。

12.5.1　连接GDB和gdbserver

GDB和gdbserver可以通过网络或RS-232串行接口建立连接。在网络连接的情况下，采用TCP端口监听或从某个IP地址建立连接来启动gdbserver。大多数情况下，不需要关注建立连接的IP地址，所以通常只需设定端口号。下面这个例子中，gdbserver等待来自任意主机到端口10 000的连接：

 [image:]

接着，从工具链中启动GDB副本，使用同一个程序作为参数，以便GDB能够加载符号表：

 [image:]

在GDB中，在给定目标系统的IP地址或主机名及其监听端口的情况下，可使用target remote命令建立连接，如下所示：

 [image:]

当gdbserver检测到来自主机的连接后，打印如下信息：

 [image:]

该过程类似于串口连接。在目标系统上，告知gdbserver使用的串口：

 [image:]

这可能需要事先使用stty或类似的程序配置端口的波特。一个简单的例子如下：

 [image:]

stty还有很多其他选项，请阅读手册以获取更多细节。需要注意的是，stty使用的端口不能被占用，例如，不能使用一个被用作系统控制台的端口。在主机上，可以使用target remote命令加上位于电缆终端的串口设备实现与gdbserver的连接。在大多数情况下，可以使用GDB的set remotebaud命令来设置主机串口的波特：

 [image:]

12.5.2　设置sysroot

GDB需要知道在哪里查找共享库所需的调试符号和源代码。当进行本地调试时，对于GDB而言，查找路径非常清楚并且是在其内部构建的，但是在使用交叉编译工具链时，GDB则无法猜到目标文件系统的根路径，这就需要人工设置sysroot。Yocto项目和Buildroot处理库符号的方式不同，所以sysroot的位置是完全不同的。

Yocto项目在目标文件系统映像中包括了调试信息，所以你需要解压目标映像压缩文件，该文件的生成目录是build/tmp/deploy/images，这个解压过程需要如下操作：

 [image:]

根据BR2_ENABLE_DEBUG属性值，Buildroot会编译生成最小或完整的调试符号库，并将其放入分段目录，然后将其复制到目标映像并删除。所以，对于Buildroot来说，无论根文件系统是在哪里提取，sysroot总是在分段区域。

12.5.3　GDB命令文件

有一些事情是每次运行GDB时都需要做的，例如设置sysroot。把这样的命令写到一个命令文件中并且在每次GDB启动时执行它们是很方便的。GDB首先从$HOME/.gdbinit读取命令，然后是当前路径下的.gdbinit，再然后是命令行中通过-x参数指定的文件。然而，出于安全的原因GDB的新版本将拒绝从当前目录中加载.gdbinit。可以通过在$HOME/.gdbinit中添加如下内容，针对单个目录改写该行为：

 [image:]

也可以通过添加如下内容，禁用全局检查：

 [image:]

我的个人喜好是使用-x参数来指向命令文件，这就标明了该文件的位置而不容易被忘记。

为帮助建立GDB，Buildroot在output/staging/usr/share/buildroot/gdbinit中创建了一个包含正确sysroot命令的文件。它将包含类似于如下所示的命令：

 [image:]

12.5.4　GDB命令概述

GDB有很多命令，在在线手册和延伸阅读小节提到的资源中有详细的描述。为了帮助你尽可能快地熟悉这些命令，这里给出了一个常用命令列表。在大多数情况下，会在完整命令的下方给出命令的简写形式。

断点

表12-1列出了断点的相关命令：

表12-1　断点相关命令表

 [image:]

运行和步进

表12-2列出了运行和步进的命令：

表12-2　运行和步进相关命令表

 [image:]

信息命令

表12-3列出了获取信息的命令：

表12-3　获取信息相关命令表

 [image:]

 [image:]

12.5.5　运行到某个断点

gdbserver将程序载入内存并在第一个指令处设置断点，然后等待来自GDB的连接。当连接建立时，则进入调试会话。但是你会发现，如果你立即尝试单步调试就会得到如下消息：

 [image:]

这是因为程序在代码中被中止，这些代码用汇编语言编写，为C和C++程序创建运行时环境。C或C++代码的第一行是main（）函数。假如想在main（）函数处停止，则可以在那里设置断点，然后使用continue命令（简称c）以告知gdbserver从程序开始的断点处继续，并在main（）函数处停止：

 [image:]

如果在这里，你看到如下信息：

 [image:]

这意味着你忘记了设置sysroot！

这与运行程序本身是非常不同的，那种情况只需要输入run即可。事实上，如果尝试在远程调试会话中输入run，你会看到远程目标不支持运行的消息，或在GDB的旧版本中，它将会被挂起，并且没有任何解释。
12.6　调试共享库

在调试由工具编译的库时，需要对编译配置进行一些修改。对于在编译环境外编译的库，必须做一些额外的工作。

12.6.1　Yocto项目

Yocto项目构建二进制包的调试变量，并将它们放在build/tmp/deploy/<package manager>/<target architecture>中。这里有一个调试包的例子，本例中涉及的是C库：

 [image:]

通过在目标映像的条目中增加<package name-dbg>，可以有选择地在目标映像中添加调试包。对于glibc，包被命名为glibc-dbg。或者，也可以通过在EXTRA_IMAGE_FEATURES中增加dbg-pkgs，简单地告诉Yocto项目安装全部调试包。需要注意的是，这将显著增加目标映像的大小，也许是几百兆字节。

Yocto项目的调试符号存储在名为.debug的隐藏目录中，.debug在lib和usr/lib目录下。GDB知道应该在sysroot内部的这些位置查找符号信息。

调试包还包含一份源代码副本，它安装在目标映像的usr/src/debug/<package name>目录中，这也是目标映像大小增加的原因之一。可以通在条目中添加如下信息，以防止这种情况发生：

 [image:]

需要记住的是，当使用gdbserver进行远程调试时，只需要主机上的调试符号和源代码，而不是在目标上。这不能阻止你删除已经安装到目标上的映像副本中的lib/.debug、usr/lib/.debug和usr/src目录。

12.6.2　Buildroot

Buildroot非常简单直接。只需要重新编译代码行级的调试符号，为此需要启用如下内容：

·BR2_ENABLE_DEBUG，在菜单Build options|build packages with debugging symbols中。

这将使用output/host/usr/<arch>/sysroot中的调试符号创建库，但在目标映像中的副本仍将被剥离。如果还需要目标系统上的调试符号，也许是为了本地运行GDB，可以通过将编译选项Build options|strip command for binaries on target设置为none，从而禁止剥离。

12.6.3　其他库

除了使用调试符号编译，还需要告诉GDB在哪里可以找到源代码。GDB有一个源文件搜索路径，使用show directories命令就可以看到：

 [image:]

这是默认的搜索路径：$cdir是编译目录，是源代码编译的目录；$cwd是GDB的当前工作目录。

通常这些就足够了，但如果源代码已经被移动，就需要使用如下目录命令：

 [image:]

12.7　即时调试

有时，程序会在运行了一段时间后开始出现异常行为，这就需要知道它在做什么。GDB的attach特性正是这么做的，我们称之为即时调试。它在本地和远程调试会话中都可以使用。

在远程调试的情况下，需要找到待调试进程的PID并使用--attach选项把它传给gdb-server。例如，如果PID是109，需要输入：

 [image:]

这会使进程中止，就像在此处设置了断点一样，允许以正常的方式启动交叉GDB调试器并与gdbserver连接。

当操作完成后即可分离，允许程序继续运行，而无需调试器：

 [image:]

12.8　调试分叉和线程

当正在调试的程序分叉（fork）时会发生什么？调试会话是继续执行父进程还是执行子进程？结果由follow-fork-mode参数控制，可能是父进程（parent），也可能是子进程（child），默认情况下是父进程。不幸的是，gdbserver的当前版本不支持该选项，所以只能用于本地调试。如果真的需要在使用gdbserver时调试子进程，那么解决方法是修改代码使得子进程在被调用后立即以某个变量进入循环，这样该子进程就有机会与新的gdbserver会话相连，然后再通过设置变量以退出循环。

当多线程进程中的某个线程碰到一个断点时，默认的运行状态是所有线程都被中止。大多数时候，最好的情况是，允许该线程查看静态变量，而这些变量不会被其他线程所修改。当重新开始执行该线程时，即使是采用单步执行的方式，所有停止的线程也都会被启动，特别是对于最后一种情况则可能会导致出现问题。通过scheduler-locking参数可以修改GDB中止线程的处理方式。通常情况下该参数的值为off，如果将其设置为on，则在断点处被中止的线程将会被恢复，而其他线程则继续停止，这将有机会查看在没有干扰的情况下的线程运行状态。将参数的值设置为off，将中止这种情况。gdbserver支持该特性。
12.9　核心文件

核心文件能够捕捉到某个错误程序在终止时的状态。这个过程可以自动完成。所以当看到Segmentation fault（core dumped）错误时不用担心，只需要查看核心文件并提取相关信息即可。

首先，核心文件不是默认创建的，除非进程的核心文件大小被限制为非零。可以使用ulimit-c进行修改。要删除系统当前对核心文件大小的限制，可以输入以下命令：

 [image:]

默认情况下，核心文件被命名为core，并且放在某个进程的当前工作目录中，该进程由/proc/<PID>/cwd指定。不过这里会有许多问题。首先，当某个设备中包含多个命名为core的文件时，程序与核心文件的对应关系就不是很明确了。其次，进程的当前工作目录可能刚好在只读的文件系统中，或者是没有足够的空间来存储核心文件，或者该进程可能没有权限对当前工作目录进行写操作。

有两个文件控制着核心文件的命名和存储。首先是/proc/sys/kernel/core_uses_pid。在该文件中写入1会导致死亡进程的PID被附加到文件名中，这一点是有用的，只要你可以将日志文件中的程序名称与PID关联起来。

其次，文件/proc/sys/kernel/core_pattern会更有用，它会赋予针对核心文件更多的控制权。默认模式是core，但是也可以通过添加以下参数，更改模式：

·%p：PID。

·%u：已转储进程的真实UID。

·%g：已转储进程的真实GID。

·%s：导致产生转储的信号数量。

·%t：转储时间，表示为自1970-01-01 00：00：00+0000（UTC）纪元以来的秒数。

·%h：主机名。

·%e：可执行文件名。

·%E：可执行文件路径名，由叹号（！）代替斜杠（/）。

·%c：已转储进程的核心文件大小限制。

还可以使用一个以绝对路径名称开始的模式，这样可以把所有核心文件放在同一个位置。例如，下面的模式是将所有核心文件放到/corefiles目录中，并且使用程序的名称和崩溃的时间作为文件命名：

 [image:]

在一个核心转储之后，你会发现类似的内容：

 [image:]

如果需要更多信息，请参考core（5）手册页面。

对核心文件更加复杂的处理，是将它们通过管道传输到某个程序，然后再进行后期处理。这种核心模式是以管道符号“|”开始的，后面跟着程序名和参数。例如，我的Ubuntu 14.04也有这种核心模式，如下所示：

 [image:]

Canonical使用的崩溃报告工具是Apport。当进程仍然在内存中时，以这种方式运行的崩溃报告工具也在运行，并且内核会将核心映像数据以标准输入的方式传送给它。因此，该程序可以处理这个映像，可能剥离它的某一部分以减少文件系统的大小，或者只是在具体信息核心转储时才扫描它。该程序可以查看各种各样的系统数据，例如读取程序的/pro文件系统目录，并可以使用ptrace系统调用去操作程序并从中读取数据。然而，一旦核心映像数据从标准输入设备读取，那么内核将会进行各种清理，这会使进程信息不再可用。

使用GDB查看核心文件

下面是一个GDB会话查看核心文件的例子：

 [image:]

这说明程序在第43行终止了。list命令可以显示终止代码附近的代码：

 [image:]

backtrace命令（简称为bt）显示如何做到的：

 [image:]

一个明显的错误：addtree（）调用使用了一个空指针。
12.10　　GDB用户界面

GDB是通过GDB机器接口，即GDB/MI，在一个较低层次进行控制的，它将GDB封装在一个用户界面中或作为更大程序的一部分，并且大大扩展了可用的选项范围。

这里，我只提到了那些在嵌入式开发中有用的特性。

12.10.1　终端用户界面

终端用户界面（Terminal user interface，TUI）是标准GDB包中的可选部分。其主要特性是有一个代码窗口，它显示了即将执行的代码行号及任意断点。它是对命令行模式GDB中list命令的明显改进。

TUI属于文本模式，因此它的优点在于不需要任何额外的设置，而且当在目标系统上本地运行gdb时，也可以通过ssh终端会话来使用。大多数交叉工具链都使用TUI配置GDB。在命令行输入-tui，将会看到如下信息（见图12-1）：

 [image:]

图12-1　终端用户界面截图

12.10.2　数据显示调试器

数据显示调试器（Data display debugger，DDD）是一个简单的独立程序，它给出了一个尽量简约的GDB图形用户界面，虽然用户界面看起来有些过时，但是功能很齐全。

--debugger选项告诉DDD从工具链中使用GDB，并且可以为GDB命令文件使用-x参数：

 [image:]

下面的截图展示了最好的特性之一：数据窗口包含了网格中的项目，并可以根据需要重新安排。如果双击某个指针，它就扩展到一个新的数据项，并用箭头显示链接情况，如图12-2所示：

 [image:]

图12-2　数据显示调试器截图

12.10.3　Eclipse

Eclipse带有C开发工具包（C development toolkit，CDT）插件，支持使用GDB调试，包括远程调试。如果使用Eclipse完成所有代码的开发，对于不是经常使用Eclipse的用户而言，仅仅为了完成这项任务，可能不值得花费很大的努力去完成它的设置。要充分说明如何配置CDT以使用交叉工具链以及与远程设备建立连接，可能需要花费一整章的内容，因此建议参考章节末尾提供的资料以获得更多的信息。以下截图（见图12-3）显示了CDT的调试视图。在顶部左侧窗口中，能够看到进程中每一个线程的栈帧，而顶部右边是用于显示变量的观察窗口。中间是代码窗口，用于显示调试器已停止的程序代码行。

 [image:]

图12-3　Eclipse截图
12.11　　调试内核代码

调试应用程序代码有助于了解代码的工作方式，以及在其行为异常时发生了什么，人们可以对内核做同样的操作，不过具有某种限制。

可以使用kgdb进行源码级调试，类似于使用gdbserver的远程调试。还有一个自托管的内核调试器kdb，它对于轻量级的任务比较方便，例如，如果某个指令被执行并且需要回溯，用以发现它是如何执行到那里的。最后，还有内核oops消息和内核错误，这会包含很多关于内核异常的信息。

12.11.1　使用kgdb调试内核代码

当使用源码调试器查看内核代码时，必须记住内核是一个复杂的系统，它具有实时的行为。不要期望内核调试和应用程序调试一样简单。单步调试那些修改内存映射或切换上下文的代码可能会产生奇怪的结果。

kgdb是内核GDB存根的命名，它成为主流Linux的一部分已经很多年了。内核DocBook中有kgdb的用户手册，也可以在https://www.kernel.org/doc/htmldocs/kgdb/index.html找到其在线版本。

最广泛支持的kgdb连接方式是通过串口，通常是与串行控制台共享，因此这个实现通常被称为kgdboc，意思是基于控制台的kgdb。这里需要一个平台tty驱动程序，以便支持I/O轮询而不是中断，因为kgdb与GDB通信时需要禁用中断。一些平台支持通过USB连接kgdb，也有支持以太网的版本，但不幸的是，所有这些都没有进入到主线Linux中。

关于优化和栈帧的相同警告也都适用于内核，但是其限制是，内核的编写建立在假设至少在一个-O1的优化等级之上。可以通过在运行make前设置KCGLAGS来重写内核编译标志。

下面是在内核调试时需要用到的内核配置选项：

·CONfig_DEBUG_INFO是在Kernel hacking|Compile-time checks and compiler options|Compile the kernel with debug info菜单中。

·CONfig_FRAME_POINTER可能是针对你所使用架构的一个可选项，并且是在Kernel hacking|Compile-time checks and compiler options|Compile the kernel with frame pointers菜单中。

·CONfig_KGDB是在Kernel hacking|KGDB：kernel debugger菜单中。

·CONfig_KGDB_SERIAL_CONSOLE是在Kernel hacking|KGDB：kerneldebugger|KGDB：use kgdb over the serial console菜单中。

除了uImage或zImage压缩内核映像，还需要ELF目标格式的内核映像，这样GDB才能够将符号表加载到内存中。该文件被称为vmlinux，它被生成在Linux编译的目录中。在Yocto项目中，可以要求目标映像中包含一个副本，以便于执行调试任务。这些信息被编译进一个命名为kernel-vmlinux的包中，你可以像安装任何其他包一样完成安装，例如，通过把它加到IMAGE_INSTALL_append列表中。该文件被存放在启动目录中，名称如下：

 [image:]

在Buildroot中，你将会发现vmlinux所在的目录是构造内核的目录，也就是output/build/linux-<version string>/vmlinux。

12.11.2　调试会话实例

介绍调试会话如何工作的最好方式，就是举一个简单的例子。

无论是采用内核命令行的方式，或是在运行时通过sysfs，都需要告诉kgdb使用哪个串行端口进行通信。对于第一种方式，需要在命令行中输入kgdboc=<tty>，<baud rate>，如下所示：

 [image:]

对于第二种方式，启动设备并将终端的名字写入文件/sys/module/kgdboc/parameters/kgdboc中，如下所示：

 [image:]

请注意，不能用这种方式设置传输速率。如果将tty作为控制台，则已经设置完毕；如果不是，则需要使用stty或类似程序进行设置。

现在你可以在主机上启动GDB，选择与正在运行的内核相匹配的vmlinux文件：

 [image:]

GDB从vmlinux加载符号表，并等待进一步的输入。

下一步，关闭所有连接到控制台的终端模拟器。你打算为GDB使用控制台，并且如果终端模拟器和GDB同时都处于活跃状态，那么一些调试字符串可能会被损坏。

现在，可以返回到GDB并且尝试连接kgdb。然而，你会发现此时从target remote获取的响应是没有帮助的：

 [image:]

问题是，kgdb在此时没有监听连接。需要中断内核，才可以通过它进入交互的GDB会话。不幸的是，就像你对于一个应用程序所做的，只是在GDB中键入Ctrl+C是没有作用的。你必须通过在目标主机上启动另一个shell，例如ssh，强制执行内核陷阱指令，并且把g写入到目标板的/proc/sysrq-trfigger中：

 [image:]

目标在此时终止。现在你可以通过位于线缆主机端的串口设备连接到kgdb：

 [image:]

最后，GDB处于运行状态。你可以设置断点、检查变量和查看回朔等等。例如，在sys_sync中设置断点，如下所示：

 [image:]

现在目标重新启动。在目标中输入sync调用sys_sync，并且到达断点。

 [image:]

如果你已经完成了调试会话，并且想要禁用kgdboc，只须将kgdboc的终端设置为空：

 [image:]

12.11.3　调试早期代码

前面的例子在以下情况下有效，即当系统完全启动后你所关注的代码被执行。如果需要再早一点，则可以在启动阶段，通过在kgdboc的选项之后增加kgdbwait到命令行，从而告诉内核等待：

 [image:]

现在，启动时在控制台会看到如下信息：

 [image:]

此时，你可以关闭控制台并且通过常规方式与GDB建立连接。

12.11.4　调试模块

调试内核模块还有一个额外的挑战，因为代码是在运行时重定向的，所以需要找出它所在的位置。这个信息是由sysfs提供的。为模块的每个部分分配的地址都存储在/sys/module/<module name>/sections文件中。请注意，ELF部分开始于点“.”，因此它们是作为隐藏文件出现，而且如果你想将它们列出，将不得不使用ls-a命令。重要的文件是.text，.data和.bss。

例如，一个名为mbx的模块：

 [image:]

可以使用GDB中的数字在对应的地址载入模块的符号表：

 [image:]

现在，一切都应该可以正常工作。你可以设置断点，并检查模块中的全局变量和局部变量，这个过程与在vmlinux上的一样：

 [image:]

然后，强制设备驱动程序调用mbx_write，并且将会到达断点：

 [image:]

12.11.5　使用kdb调试内核代码

尽管kdb不具备kgdb和GDB的特点，但是它有自己的用途，而且它具备独立性，因此不必担心外部的依赖关系。kdb有一个简单的命令行界面，可以在串行控制台上使用。你可以用它来检查内存、寄存器、进程列表和dmesg，甚至在某个位置上设置断点使其停止。

通过串口控制台配置kgd实现接入，如前所示启用kgdb，然后启用该额外的选项：

·CONfig_KGDB_KDB，在KGDB：Kernel hacking|kerneldebugger|KGDB_KDB：include kdb frontend for kgdb菜单中。

现在，当你强制内核执行陷阱指令，而不是进入一个gdb会话时，将会在控制台上看到kdb shell：

 [image:]

在kdb shell中还可以做很多事情。使用help命令可以打印所有选项。下面是一个概述。

获取信息：

·ps：显示活跃进程。

·ps A：显示所有进程。

·lsmod：列举模块。

·dmesg：显示内核日志缓冲区。

断点：

·bp：设置一个断点。

·bl：列举断点。

·bc：清除一个断点。

·bt：打印一个回溯。

·go：继续执行。

检查内存和寄存器：

·md：显示内存。

·rd：显示寄存器。

下面是一个快速设置断点的例子：

 [image:]

内核重新启动，并且控制台显示正常的bash提示符。如果输入sync，它到达断点并再次进入kdb：

 [image:]

kdb不是一个源代码调试器，因此你看不到源代码，也不能单步执行。但是，可以使用bt命令显示回溯信息，了解程序流程和调用层次结构是很有用的。

当内核执行无效的内存访问或执行非法指令时，内核oops消息将被写入内核日志。这里最有用的是回溯，现在介绍如何使用这些信息查找引起故障的代码行。如果它们导致系统崩溃，这里也将解决如何保存oops消息的问题。

12.11.6　检查oops消息

一个oops消息看起来如下所示：

 [image:]

PC is at mbx_write+0x14/0x98[mbx]能够说明很多你希望知道的内容：最后的指令是在名为mbx的内核模块的mbx_write函数中。此外，它是在函数启动位置偏移0x14字节的位置，有0x98字节长。

下面，检查回溯信息：

 [image:]

 [image:]

在这种情况下，我们不了解更多信息，只是从虚拟文件系统代码中调用mbx_write。

能够找到与mbx_write+0x14相关的代码行是非常好的一件事，在这里我们可以使用objdump。从objdump-S可以看到，mbx_write在mbx.ko中的偏移量是0x8c，因此最后一条被执行的指令位于0x8c+0x14=0xa0。现在，我们只需要检查这个偏移量并查看那里有什么内容：

 [image:]

这显示了系统终止时的指令。最后一行代码如下所示：

 [image:]

你可以看到m的类型是struct mbx_data*。这里就是定义该结构的地方：

 [image:]

因此，m变量看起来是一个空指针，而这导致了oops。

12.11.7　保存oops

只有在一开始就捕获oops，才可能实现对它的解码。如果系统在启动过程中崩溃，在控制台启用前或者在挂起后，你将无法看到这个过程。这里有记录内核oops的机制，消息被保存到MTD分区或永久内存，但这里有一个在许多情况下都有效的简单技术，而且很少需要事先思考。

只要内存的内容在重启时没有损坏（通常不会），你就可以重新启动进入引导加载程序，并使用它来显示内存。你需要知道内核日志缓冲区的位置，记住它是一个简单的文本消息环形缓冲区。符号是__log_buf。在System.map中为内核查找该符号：

 [image:]

然后，将内核逻辑地址映射到物理地址，U-Boot可以通过减去PAGE_OFFSET，0xc00-00000并且在BeagleBone上增加内存的物理起始位置0x80000000来理解，所以有c0f72428-0xc0000000+0x80000000=80f72428。

然后，使用U-Boot md命令来显示日志：

 [image:]

从Linux 3.5开始，内核日志缓冲区中的每一行都有一个16字节的二进制头，它包含了时间戳、日志等级和其他信息。在Linux Weekly News中有一个名为《Toward more reliable logging》的讨论与该主题有关：https://lwn.net/Articles/492125/。
12.12　　延伸阅读

以下资源提供与本章主题相关的进一步信息：

·《The Art of Debugging with GDB，DDD，and Eclipse》，by Norman Matloff and Peter JaySalzman，No Starch Press；1 edition（28 Sept.2008），ISBN 978-1593271749。

·《GDBPocketReference by Arnold Robbins》，O'Reilly Media；1st edition（12 May 2005），ISBN978-0596100278。

·《Getting to grips with Eclipse：cross compiling》，http://2net.co.uk/tutorial/eclipse-cross-compile。

·《Getting to grips with Eclipse：remote access and debugging》，http://2net.co.uk/tutorial/eclipse-rse。
12.13　　总结

GDB交互式调试是嵌入式开发者的一个有用的工具。它非常稳定，具有良好的文档支持并且众所周知。通过将一个代理置于目标主机，它具有了远程调试能力，gdbserver用于调试应用程序而kgdb用于调试内核代码，并且还有许多可供选择的前端，尽管默认的命令行用户界面需要一段时间才能适应。我提到的三个工具TUI、DDD和Eclipse覆盖了大多数情况，但你也可以尝试其他的前端。

另一个同样重要的方法是收集崩溃报告并离线分析它们。对于这类问题，可以查看应用程序核心转储和内核oops消息。

然而，这只是一种识别程序缺陷的方法。在下一章中，我将讨论关于分析和优化程序的方法——剖析和跟踪。
第13章　剖析和跟踪

正如前面章节所述，使用源码级调试器进行交互式调试，你可以观察程序的运行方式，但它将你的视野限制在了一小部分代码中。在本章中，我将会从大处着眼，看看这个系统能否按照预想的那样执行。

通常，程序员和系统设计人员猜不出性能瓶颈在哪里。因此，如果你的系统性能有问题，最好先看一下整个系统，然后再使用复杂工具入手。在这一章中，我将从著名的top命令开始，将它作为认识系统整体性能的一种方法。针对单一程序，你可以使用Linux剖析器perf进行问题定位。如果问题不是那么局部，而你又想获得更宏观的图像，perf同样可以完成该任务。为了诊断与内核有关的问题，我将介绍两个跟踪工具：Ftrace和LTTng，作为收集详细信息的一种方式。

我还会讨论Valgrind，它可以提供沙箱化的执行环境，能够监控程序，并且在运行时报告代码的执行情况。最后，通过描述一个简单的跟踪工具strace结束本章的内容，该工具通过跟踪程序所产生的系统调用来揭示一个程序的执行情况。
13.1　观察者效应

在深入剖析这些工具之前，让我们先讨论一下这些工具将会带给你什么。正如在许多领域中的情况一样，测量一个特定的属性会影响到观察本身。测量线路中的电流要求测量经过一个小电阻的电压下降情况（电势差）。然而电阻本身会影响电流的大小。对于软件剖析来说也是这样：每次观察系统都会消耗一些CPU周期，并且这些资源不能被应用到程序上；测量工具也会搞乱缓存机制，消耗内存空间，并把数据写到磁盘中。这些都会让情况更加糟糕，所有的测量都是有开销的。

我常听工程师抱怨，剖析工作的结果完全是具有误导性的。这通常是因为他们正在对接近真实的情况进行测量。在测量目标板时，尽量使用发布版本的软件和有效的数据集，同时尽可能少地使用不必要的服务。

符号表和编译标志

我们马上就要遇到一个问题。尽管在其自然状态中观察系统是很重要的，但这些工具通常需要额外的信息来弄清楚事件的意义。

有些工具需要特殊的内核选项，特别是那些在介绍中列出来的工具perf、Ftrace和LTTng。因此，你可能需要为这些测试构建和部署一个新的内核。

调试符号有助于将原始的程序地址转换为函数名称和代码行。部署带调试符号的可执行文件不改变代码的执行，但是它需要你有二进制文件的副本，并且编译时带有debug选项的内核或者至少是那些你想要剖析的组件。如果把这些工具安装在目标系统中，一些工具的工作效果最好，例如perf工具。这些技术对于一般性调试来说是相同的，正如在第12章中所讨论的。

如果你希望一个工具生成调用图，可能需要通过启用栈帧选项进行编译。如果你希望该工具能够对地址精确定位至代码行，可能需要在编译时采用更低级别的优化。

最后，有些工具需要将程序插桩注入到程序中以此捕获样本，因此你将不得不重新编译这些组件。对于应用程序来说相应的测试工具是gprof，而对于内核则是Ftrace和LTTng。

记住，你越是改变所观察的系统，就越难把你所做的测量和实际生产的系统联系起来。

最好采取一种观望的方法，只有当需求清楚的时候才做出改变，并且要注意到你的每一次改变，都将改变你的测量结果。
13.2　开始剖析

当观察整个系统的时候，一个好的起点是从简单的工具（如top）开始，它会很快给你提供一个系统概况。它向你显示有多少内存正在被使用，哪些进程正在消耗处理器周期，以及进程在不同内核上的分布情况和使用时间。

如果top显示某个单独的应用程序正占据用户空间下的所有CPU周期，那么你就可以使用perf工具剖析该应用程序。

如果两个或两个以上的进程处于一个高的CPU使用率，它们可能存在某种耦合，如数据通信。如果系统调用或中断处理消耗了大量的周期，那么可能是内核配置或设备驱动程序出现问题。在任何情况下，首先需要你剖析整个系统，并再次使用perf。

如果你想了解有关内核以及其中事件序列的更多情况，则需要使用Ftrace或LTTng。

还有其他一些问题是top指令无法帮助你解决的。如果在多线程代码中出现死锁问题，或者是出现随机数据损坏，那么Valgrind和Helgrind插件可能会有所帮助。内存泄漏也属于此类：在第11章中已涉及内存相关的诊断。
13.3　使用top进行剖析

top是一个简单的工具，它不需要任何特殊的内核选项或符号表。在BusyBox中有一个它的基本版，而在procps包中包含一个具有更多功能的版本，该包在Yocto项目和Buildroot中是可用的。你可能还需要考虑使用htop，其功能类似于top但具有更为友好的用户界面（有些人这样认为）。

首先，重点关注top的概要行，如果你使用的是BusyBox，则它位于第二行；如果你使用procps top，则是第三行。这里有一个使用BusyBox top的例子：

 [image:]

概要行显示了在各种状态下运行时间所占的百分比，如表13-1所示。

表13-1　状态与运行时间对应表

 [image:]

在前面的例子中，几乎所有的时间（约占58%）都消耗在用户模式中，内核模式只占用了少量时间（占约4%），所以这是用户空间中的一个受CPU限制的系统。在概要之后的第一行表明只有一个应用程序对此开销负责，即ffmpeg。任何尝试减少CPU开销的努力都应被定向到这里。

下面是另一个例子：

 [image:]

该系统几乎将所有时间都花费在内核空间中，作为cat指令从/dev/urandom中读取的结果。这种人为的情况下，剖析cat指令本身并没有什么作用，而剖析cat所调用的内核函数则可能是有效的。

top的默认视图只显示进程，所以进程的CPU使用情况是其所有线程CPU使用情况的总和。按H键可以查看每个线程的信息。同样，它收集了所有的CPU时间。如果你使用的是procps top，可以通过按1键查看每个CPU的概要情况。

设想有某个用户空间进程占用了大部分CPU时间，然后考虑如何剖析这种情况。

“穷人”的剖析器

你可以仅使用GDB来剖析应用程序，在任意间隔停止运行并且查看应用程序的执行情况。这就是“穷人”的剖析器。它易于设置并且是收集剖析数据的一种方法。

该过程很简单，解释如下：

1）使用gdbserver（用于远程调试）或gbd（用于本地调试）连接至进程。该进程停止运行。

2）观察进程停止时所在的函数。你可以使用backtrace GDB命令来查看调用栈。

3）输入continue，恢复程序运行。

4）过一段时间，输入Ctrl+C再次停止运行，并回到步骤2。

如果你重复步骤2到步骤4若干次，很快就会知道程序是在循环还是在顺序进行，并且如果你重复的次数足够多，就会知道代码中的热点在哪里。

有一个完整的网页专注于该想法：http://poormansprofiler.org，并提供一些脚本使该过程变得更简易。这些年来，我已经在不同的操作系统和调试器上多次使用了该技术。

这是统计剖析的一个典型例子，其中你可以不断地取样程序的状态。在取到若干样本后，你开始了解被执行函数的统计概率。令人惊奇的是，你真正需要的几乎很少。其他的统计剖析器有perf record、OProfile和gprof。

使用一个调试器采样的干扰较大，因为在收集样本的时候，程序被挂起较长的时间。而其他工具能以低得多的开销完成剖析。

现在，开始考虑如何使用perf进行统计剖析。
13.4　介绍perf

perf是Linux性能事件计数器子系统（Linux performance event counter subsystem）的简称，即perf_events，同时还是与perf_events交互的命令行工具的名称。自Linux 2.6.31版本以后，这两者都已成为内核的一部分。在Linux源码树目录tools/perf/Documentation和网页https://perf.wiki.kernel.org上有大量的有用信息。

开发perf的最初动机是提供访问性能测量单元（performance measurement unit，PMU）寄存器的统一方式，这是大多数现代处理器核心的一部分。一旦定义了API并且集成进Linux中，那么对它进行扩展以覆盖其他类型的性能计数器就显得顺理成章了。

perf的核心是一组事件计数器的集合，并且带有它们何时自动收集数据的规则。通过设置规则，你可以针对整个系统收集数据，或者只是针对内核，或单个进程及其子进程，以及针对所有CPU或者只是单个CPU。它使用起来相当灵活。有了该工具，你就可以开始观察整个系统，然后定位到一个可能导致问题的设备驱动程序，或者是一个运行缓慢的应用程序，又或者是一个比预期执行时间更长的库函数中去。

perf的命令行工具的代码是内核的一部分，位于tools/perf目录中。这个工具和内核子系统的开发是密切相关的，这意味着它们必须来自同一版本的内核。perf可以做很多事情。在本章中，我将只把它视为一个剖析器。如果想要了解其他的功能，请阅读perf手册，并参照前面章节中提到的文档。

13.4.1　为perf配置内核

你需要为内核配置perf_events，还需要交叉编译perf命令以运行在目标板上。相关的内核配置是CONfig_PERF_EVENTS选项，并且显示在General setup|Kernel Performance Events And Counters菜单中。

如果你希望使用跟踪点进行剖析（关于该话题后面会有更多内容），还需要启用与Ftrace相关小节描述的选项。如果你打算这么做的话，建议同样启用CONfig_DEBUG_INFO选项。

perf命令有许多依赖，这使得对它交叉编译变得很复杂。然而，Yocto项目和Buildroot都为它提供了目标软件包。

对于你想剖析的二进制文件，还需要拥有目标平台上的调试符号，否则perf就不能将地址解析为有意义的符号。理想情况下，你希望提供整个系统包括内核的调试符号。对于后者，记住内核的调试符号在vmlinux文件中。

13.4.2　利用Yocto项目构建perf

如果你使用的是标准linux-yocto内核，并且已经启用perf_events，那么基本上不需要做更多的事情了。

为了构建perf工具，你可以显式地把它添加到目标映像的依赖当中，或者你可以添加tools-profile特性，这也是在gprof中提供的。正如我在前面提到的，在目标映像和内核vmlinux映像上，你都可能需要调试符号。总之，你需要在local.conf文件中编辑的内容如下：

 [image:]

13.4.3　用Buildroot构建perf

许多Buildroot内核配置不包括perf_events，因此，首先应该检查你的内核是否包括前面小节提到的选项。

为了交叉编译perf，需要运行Buildroot的menuconffig，并且选择以下选项：

·Kernel|Linux Kernel Tools菜单的BR2_LINUX_KERNEL_TOOL_PERF选项。如果希望构建带有调试信息的软件包，并在目标上完整安装，请选择如下两项设置。

·Build options|build packages with debugging symbols菜单的BR2_ENABLE_DEBUG选项。

·Build options|strip command for binaries on target菜单的BR2_STRIP=none选项。

然后，运行make clean命令，接着是make命令。

当你构建好这一切之后，必须手动复制vmlinux到目标映像中。

13.4.4　使用perf进行剖析

你可以使用perf中的某个计数器对程序的状态进行抽样，在一定时间内积累足够多的样本去创建一个剖析文件（profile）。这是统计剖析的另一个实例。默认的事件计数器称为循环，它是一个映射到PMU寄存器的通用硬件计数器，表示一个核心时钟频率的计数周期。

使用perf创建一个剖析文件分为两个阶段：perf record命令捕获样本并将其写入一个名为perf.data（默认）的文件，然后使用perf report分析结果。这两个命令都是在目标上运行的。对于一个你指定的命令，已收集的样本可针对进程及其子进程进行过滤。下面是一个实例，用于剖析一个搜索字符串“linux”的shell脚本：

 [image:]

现在，你可以使用perf report命令从perf.data文件中显示结果。在命令行上，你可以选择三种用户界面：

·--stdio：这是一个不带任何用户交互的纯文本界面。你必须启动perf report，并且为每个跟踪视图做标注。

·--tui：这是一个简单的基于文本的菜单界面，它可以在不同屏幕之间跨越。

·--gtk：这是一个图形化界面，在其他方面的行为与--tui相同。

默认的界面是TUI，正如图13-1所示。

 [image:]

图13-1　TUI界面截图

perf能够记录进程执行的内核函数，因为它在内核空间收集样本。

该列表是按照函数活跃度进行排序的。在该实例中，除了一个之外，其他都是在grep运行时被捕获的。有些调用是在库中，如libc-2.20，有些则在程序busybox.nosuid中，其他一些则在内核中。因为所有带调试信息的二进制文件都已安装到目标上，所以我们有程序和库函数的符号名称，而内核符号则是从/boot/vmlinux中进行读取。如果你在不同的位置拥有vmlinux，则在perf report命令上添加-k<path>参数进行指定。不同于在perf.data保存样本，你可以用perf record-o<file name>把它们保存到一个不同的文件，然后用perf report-i<file name>分析这些样本。

默认情况下，借助周期计数器，perf record以1000Hz的频率进行采样。

可能是由于观察者效应，1000Hz的采样频率可能比你真正需要的要高得多。可以尝试更低的频率：以我的经验，100Hz在大多数情况下已经足够。你可以使用-F选项设置采样频率。

13.4.5　调用图

到这里，仍然没有真正地使一切变得轻松。在列表顶部的函数大多是低层的内存操作，并且可以肯定它们已经被优化过了。这时，退回一步并且查看这些函数在哪里被调用是非常好的。你可以从每个样本中捕获回溯，即使用带有-g选项的perf record命令。

现在，perf report会显示加号（+），这里函数是调用链的一部分。你可以展开该跟踪，以沿着该链查看更低级的函数（见图13-2）。

 [image:]

图13-2　函数调用链截图

生成调用图依赖于从栈中提取调用帧的能力，类似于GDB中的回溯。解读栈所需要的信息，被编码在可执行文件的调试信息中。不过不是所有的架构和工具链组合都有能力这样做的。

13.4.6　perf annotate命令

现在，你知道应该要查看哪些函数，而且最好可以进入函数内部查看代码，并对每条指令的执行进行命中计数，这就是perf annotate所要做的事情，通过调用安装在目标上的objdump副本来实现。你只需要用perf annotate替换perf report即可。

perf annotate需要可执行文件和vmlinux的符号表。这里是一个带标注的函数实例（见图13-3）。

 [image:]

图13-3　带标注的函数截图

如果你想要同时查看源代码与汇编程序，可以将相关部分复制到目标设备上。如果你使用Yocto项目并在构建映像时使用了dbg-pkgs特性，或是安装了单独的dbg软件包，那么源代码将安装在/usr/src/debug目录下。否则，你可以通过检查调试信息，查看源代码的位置：

 [image:]

目标中的路径应该是和你在DW_AT_comp_dir中看到的路径完全一样。

下面一个同时带有源代码和汇编代码标记的例子（见图13-4）。

 [image:]

图13-4　同时带有源代码和汇编代码标记的实例截图
13.5　其他剖析器：OProfile和gprof

这两个统计型剖析器比perf出现得要早。它们都是perf功能的子集，但仍然很受欢迎。这里只会进行简要地介绍。

OProfile是一个内核剖析器，出现于2002年。最初，它有自己的内核采样代码，但在近期版本中它使用perf_events基础架构来实现采样代码。在http://oprofile.sourceforge.net有更多关于它的信息。OProfile由内核空间组件、用户空间守护进程以及分析命令组成。

OProfile要求启用下列两个内核选项：

·General setup|Profiling support中的CONfig_PROFILING。

·General setup|OProfile system profiling中的CONfig_OPROFILE。

如果你使用Yocto项目，用户空间组件将作为tools-profile映像特性的一部分而被安装。如果使用的是Buildroot，软件包会通过BR2_PACKAGE_OPROFILE而被启用。

你可以使用如下命令收集样本：

 [image:]

等待程序执行结束，或者直接按Ctrl+C停止剖析。剖析数据存储在<cur-dir>/oprofile_data/samples/current中。

使用opreport生成一个profile概要文件。各种选项信息可以参阅OProfile手册。

gprof是GNU工具链的一部分，是最早的开源剖析工具之一。它结合了编译时插桩和采样的技术，采用100Hz的采样率。它的优点是不需要内核支持。

为了使用gprof剖析程序，你需要添加-pg到编译和链接标志，这将在函数头部加入收集关于调用树信息的代码。当你运行程序时，样本被收集和存储在一个缓冲区中，在程序终止时写入一个名为gmon.out的文件中。

使用gprof命令从gmon.out读取结果，并从程序副本中读取调试信息。

举个例子，如果你想剖析BusyBox grep小程序，需要重新构建带-pg选项的BusyBox，运行命令并查看结果：

 [image:]

然后，你可以使用以下命令分析从目标或主机上捕获的样本：

 [image:]

 [image:]

注意，执行时间均显示为零，因为大部分时间都花在了系统调用上，这些都不能通过gprof追踪到。

在多线程的进程中，gprof不从主线程以外的其他线程收集数据，而且它无法在内核空间采样，这些都限制了它的作用。
13.6　跟踪事件

到目前为止，我们所看到的工具都使用统计抽样。通常，你还希望了解有关事件发生次序的信息，这样就可以看到它们相互调用的关系。函数跟踪可以做到这点，它涉及跟踪点代码的插桩，以捕获关于事件的信息，并且可能包括以下部分或全部内容：

·时间戳。

·上下文，如当前进程PID。

·函数参数和返回值。

·调用栈。

该方式比统计分析更具干扰性，并且还会产生大量数据。在样本捕获和后期的跟踪查看时，可以借助过滤器来减少数据量。

这里我将介绍两个跟踪工具：内核函数跟踪器Ftrace和LTTng。
13.7　介绍Ftrace

内核函数跟踪器Ftrace是从Steven Rostedt所做的工作以及许多其他成果演变而来，它们主要用于跟踪和查找高延迟的原因。Ftrace出现在Linux 2.6.27版本中，并且自此以后发展活跃。在内核源码Documentation/trace中有不少描述内核跟踪的文档。

Ftrace包含了很多跟踪器，这些跟踪器可以记录各种类型的内核活动。在这里，我将要讨论function和function_graph跟踪器以及事件跟踪点。在第14章，我将重新回顾Ftrace并用它来显示实时延迟。

function跟踪器对每个内核函数进行插桩，从而调用可以被记录并且加上时间戳。如果感兴趣，它可以在编译内核时打开-pg开关以便注入插桩，这点和gprof很像。function_graph跟踪器则走得更远，它同时记录了函数的入口和出口，以便于它创建调用图。事件跟踪点特性还会记录与调用相关的参数。

Ftrace的用户界面对于嵌入式开发非常友好，因为它完全在debugfs文件系统中通过虚拟文件实现，这意味着你不需要在目标上安装任何工具就可以使它工作。尽管如此，如果需要还有其他的用户界面可以选择：trace-cmd是一个命令行工具，它记录和查看跟踪，并且在Buildroot项目（BR2_PACKAGE_TRACE_CMD）和Yocto项目（trace-cmd）中可用。在Yocto项目中，还有一个名为KernelShark的图形化跟踪查看器，它是以软件包的形式提供的。

13.7.1　准备使用Ftrace

在内核配置菜单中，可以配置Ftrace和它的各种选项。你最少需要如下配置：

·CONfig_FUNCTION_TRACER，在菜单Kernel hacking|Tracers|Kernel Function Tracer中。

为了使后面的内容变得更加清楚，建议你同时打开以下这些选项：

·CONfig_FUNCTION_GRAPH_TRACER，在菜单Kernel hacking|Tracers|Kernel Function Graph Tracer中。

·CONfig_DYNAMIC_FTRACE，在菜单Kernel hacking|Tracers|enable/disable function tracing dynamically中。

由于所有的事情都驻留在内核中，因此用户空间不需要做任何配置。

在你能够使用Ftrace前，必须挂载debugfs文件系统，根据约定，通常是在/sys/kernel/debug目录下：

 [image:]

Ftrace的所有控制都位于/sys/kernel/debug/tracing目录；在README文件中甚至有一个迷你的HOWTO。

这是在内核中可供使用的跟踪器列表：

 [image:]

通过current_tracer，可以显示当前活跃的跟踪器，它在初始时是null跟踪器：nop。

为了捕获跟踪，通过将available_tracers中的一个跟踪器的名字写入current_tracer，以选择跟踪器，然后启用跟踪一段时间，如下面代码所示：

 [image:]

在这个1秒的时间内，跟踪缓冲区将被内核所调用的每个函数的细节填满。正如在Documentation/trace/ftrace.txt中所描述的那样，跟踪缓冲区的格式为纯文本格式。你可以从trace文件中读取缓冲区：

 [image:]

在这仅仅1秒钟的时间内，你就捕获到了大量的数据点。

在使用剖析器时，完全理解一个像这样的平坦函数列表是非常困难的。如果你选择function_graph跟踪器，Ftrace捕获调用图如下：

 [image:]

 [image:]

现在你可以看到函数的嵌套调用，用圆括号、“{”和“}”分隔。在终止括号处，是函数所运行时间的测量值，如果超过10μs，就会有加号“+”注解；如果超过100μs，还会有感叹号标志“！”。

通常，你只对由一个单独的进程或线程导致的内核活动感兴趣，在这种情况下，通过将线程ID写入set_ftrace_pid，可以将跟踪限制在一个线程。

13.7.2　动态Ftrace和trace过滤器

通过启用CONfig_DYNAMIC_FTRACE选项，可以允许Ftrace在运行时修改函数的trace点，这种做法有几个好处。首先，它会触发针对跟踪函数探针的额外的构建时处理，以允许Ftrace子系统在启动时定位它们并且将其重写为NOP指令，进而使跟踪代码的开销几乎降至0。此后，你可以在生产或接近生产环境的内核中启用Ftrace而对性能没有影响。

第二个优点是你可以有选择地启用函数trace sites，而不是跟踪所有东西。函数列表位于available_filter_functions中，这里有成千上万的函数。通过将名字从available_filter_functions复制到set_ftrace_filter，你可以在需要的时候有选择地启用函数跟踪，然后通过将名字写入到set_ftrace_notrace停止跟踪该函数。你也可以使用通配符并将函数名添加到列表。例如，假设你对tcp处理感兴趣：

 [image:]

运行测试，然后查看跟踪结果：

 [image:]

 [image:]

set_ftrace_filter也可以包含很多命令，例如，当特定函数执行时启动和停止跟踪。因篇幅有限，这里不再描述这些细节，如果你想了解更多，请阅读Documentation/trace/ftrace.txt中的Filter commands小节。

13.7.3　跟踪事件

前文所述的函数和function_graph跟踪器，只是在函数执行的时候记录。跟踪事件特性还记录与调用相关的参数，使跟踪更具可读性和信息量。例如，对于kmalloc函数，一个跟踪事件不是只记录函数kmalloc被调用，还将记录它请求的字节数和返回的指针。跟踪事件不仅在perf和LTTng中使用，也在Ftrace中使用，但是跟踪事件子系统的开发是由LTTng项目促进的。

创建跟踪事件需要内核开发人员的努力，因为每个事件都是不同的。他们是使用TRACE_EVENT宏在源代码中定义的：现在有超过一千个事件类型。你可以在运行时从/sys/kernel/debug/tracing/available_events中看到可用事件的列表。它们被命名为subsystem：function，例如，kmem：kmalloc。每个事件在tracing/events/[subsystem]/[function]中也是通过一个子目录表示的，如下所示：

 [image:]

这些文件如下：

·enable：将1写至该文件，以启用事件。

·filter：这是一个表达式，对于要被跟踪的事件必须评价为真。

·format：这是事件和参数的格式。

·id：这是一个数字标识符。

·trfigger：这是一个命令，当事件发生时该命令将会执行，该事件使用Documentation/trace/ftrace.txt的Filter commands小节所定义的语法。我会给你提供一个简单的例子，它涉及kmalloc和kfree。

事件跟踪并不依赖于函数跟踪器，因此开始时选择nop跟踪器：

 [image:]

下一步，通过单独地启用每个事件，选择要被跟踪的事件：

 [image:]

你也可以将事件名称写到set_event，如下所示：

 [image:]

现在，当你阅读跟踪时，可以看到这些函数和它们的参数：

 [image:]

完全相同的跟踪事件，在perf中是以跟踪点事件（tracepoint event）的形式可见的。
13.8　使用LTTng

Linux Trace Toolkit项目最早由Karim Yaghmour发起，该项目旨在提供跟踪内核活动的手段，这是Linux内核可用的最早的跟踪工具之一。后来，Mathieu Desnoyers吸纳了该思想，并且将其重新实现为下一代跟踪工具LTTng。从那时起，LTTng被扩展到覆盖用户空间以及内核。项目网站地址是http://lttng.org/，包含丰富的用户手册。

LTTng包括三个组件：

·核心会话管理器。

·作为一组内核模块实现的内核跟踪器。

·作为一个库实现的用户空间跟踪器。

除此之外，你还需要一个跟踪查看器，例如Babeltrace（http://www.efficios.com/babeltrace）或Eclipse Trace Compass插件，用于显示并且过滤主机或目标上的原始数据。

LTTng需要一个配置CONfig_TRACEPOINTS选项的内核，当你选择Kernel hacking|Tracers|Kernel Function Tracer时启用该选项。

接下来的描述适用于LTTng 2.5版本。其他的版本有可能不同。

13.8.1　LTTng和Yocto项目

例如，你需要在conf/local.conf文件中将这些软件包添加到目标依赖项：

 [image:]

如果你想在目标上运行Babeltrace，还需要附加babeltrace软件包。

13.8.2　LTTng和Buildroot

你需要启用以下选项：

·BR2_PACKAGE_LTTNG_MODULES，在菜单Target packages|Debugging，profiling and benchmark|lttng-modules中。

·BR2_PACKAGE_LTTNG_TOOLS，在菜单Target packages|Debugging，profiling and benchmark|lttng-tools中。

对于用户空间跟踪，启用以下选项：

·BR2_PACKAGE_LTTNG_LIBUST，在菜单Target packages|Libraries|Other中，启用lttng-libust。

对于目标来说，有一个称为lttng-babletrace的软件包。Buildroot会自动构建主机babeltrace并安装在output/host/usr/bin/babeltrace中。

13.8.3　使用LTTng跟踪内核

LTTng可以使用上面描述的ftrace事件集，作为潜在的跟踪点。初始状态下，它们是被禁用的。

LTTng的控制接口是lttng命令。你可以使用下列指令列出内核探针：

 [image:]

在这个例子中，跟踪是在一个称为test的会话上下文中被捕获的：

 [image:]

现在，在当前会话中启用一些事件。你可以使用--all选项启用所有的内核跟踪点，但要记住关于生成太多跟踪数据的警告。我们首先从调度器相关的跟踪事件开始：

 [image:]

检查所有事情都已准备就绪：

 [image:]

现在，开始跟踪：

 [image:]

运行负载测试，然后停止跟踪：

 [image:]

本次会话的跟踪都写入到会话目录lttng-traces/<session>/kernel中。

你可以使用Babeltrace查看器，将原始跟踪数据转储为文本格式，在这种情况下，我在主机上运行它：

 [image:]

输出的内容过于冗长，就不在这里显示了，因此，我将这个操作留给读者作为练习，以这种方式捕获和显示一个跟踪。来自eBabeltrace的文本输出也有优势，因为我们很容易使用grep和类似的命令来搜索字符串。

对于图形化的跟踪查看器，一个好的选择是Eclipse的Trace Compass插件，它现在是Eclipse IDE for C/C++Developer开发包的一部分。向Eclipse中导入跟踪数据特别繁琐。简单地说，你需要遵循以下这些步骤：

1）打开跟踪透视图。

2）选择File|New|Tracing project，创建一个新的项目。

3）输入项目名字，点击Finish。

4）右击Project Explorer菜单中的New Project选项，选择Import。

5）展开Tracing，然后选择Trace Import。

6）浏览至包含跟踪的目录（例如，test-20150824-140942），在复选框中打勾以表示你希望的子目录（它可能是内核），然后点击Finish。

7）现在，展开项目并且在这里面展开Traces[1]，在这里面双击kernel。

8）您会看到如下面截图（图13-5）所示的跟踪数据：

 [image:]

图13-5　跟踪数据截图

在上面的截图中，我已经放大了控制流视图以显示dropbear和shell之间的状态转换，还包括LTTng守护进程的一些活动。
13.9　使用Valgrind剖析应用程序

我在第11章中介绍了Valgrind，它使用memcheck工具识别内存问题。Valgrind还具有用于应用程序剖析的其他工具。在这里，我要关注的是Callgrind和Helgrind这两个工具。因为Valgrind是通过在沙箱中运行程序的方式工作的，它可以在运行过程中检查代码并报告特定的行为，这是本地跟踪器和剖析器所不能做的。
13.10　　Callgrind

Callgrind是一个调用图生成剖析器，它同时也收集处理器缓存命中率和分支预测的信息。只有当你的瓶颈是受CPU限制时，Callgrind才有用。如果涉及密集I/O或者多进程，它就没有作用了。

Valgrind不需要内核配置，但是它确实需要调试符号。在Yocto项目和Buildroot（BR2_PACKAGE_VALGRIND）中它都是作为一个目标软件包提供的。

你可以在目标的Valgrind中运行Callgrind，就像这样：

 [image:]

这将产生一个称为callgrind.out.<PID>的文件，你可以将这个文件复制到主机中，然后使用callgrind_annotate进行分析。

默认情况下，是在一个单独的文件中捕获所有线程的数据。如果你在捕获数据时增加选项--separate-threads=yes，每一个线程都会有自己的profile文件，文件命名为callgrind.out.<PID>-<thread id>。例如，callgrind.out.122-01，callgrind.out.122-02等等。

Callgrind可以模拟处理器的L1/L2缓存，并报告缓存未命中的情况。开启--simulate-cache=yes选项并捕捉跟踪。L2未命中比L1未命中的代价要高得多，所以重点关注标有高D2mr或D2mw计数的代码。
13.11　　Helgrind

Helgrind是一个线程错误检测工具，用于检测C、C++和Fortran程序下使用POSIX线程的同步错误。

Helgrind可以检测三类错误。首先，它可以检测API的错误使用，比如解锁已经解锁的互斥锁、解锁不同的线程加锁的互斥锁、使用时未检查Pthread函数的返回值等。其次，它监视线程获取锁的顺序，并检测潜在的死锁，这些死锁可能是由形成循环锁而引发的。最后，它可以检测数据竞态，它可能会发生在两个线程访问共享内存时，但访问时没有使用合适的锁或其他同步方式确保单线程访问。

使用Helgrind很简单，你只需要这个命令：

 [image:]

当发现到问题或潜在问题时，会将它们打印出来。你可以通过添加--log-file=<filename>选项将这些消息定向到文件中。
13.12　　使用strace显示系统调用

我是以简单而强大的top工具开始本章内容的，现在我将以另一个工具strace结束本章。这是一个非常简单的追踪程序，它捕获一个程序（也可以包含子进程）的系统调用。你可以用它做如下事情：

·知道一个程序做出的系统调用。

·找出失败的系统调用以及错误代码。我发现，当一个程序启动失败但不输出错误消息，或者错误信息过于概括，strace就很有效。Strace显示失败的系统调用。

·找出一个程序打开的文件。

·找出一个正在运行的程序正在进行哪些系统调用，以查看它例如是否陷入了一个循环。

在网络上有很多实例，只要搜索strace提示和技巧即可。每个人都有自己的心得，例如http://chadfowler.com/blog/2014/01/26/the-magic-of-strace。

strace使用ptrace（2）函数，钩住从用户空间到内核的调用。如果你想知道更多关于ptrace的工作机理，其手册非常详细而清晰。

获得一个跟踪的最简单方式是运行strace命令，如下所示（列表已被编辑以使其更为清晰）：

 [image:]

 [image:]

大部分跟踪显示了运行时环境的创建过程。特别是，你可以看到库加载器是如何搜索libc.so.6，并最终在/lib中找到它的。最后，它运行程序的main（）函数，打印信息并退出。

如果你希望strace跟踪由初始进程创建的任何子进程或线程，添加-f选项即可。

如果你正在使用strace来跟踪一个创建线程的程序，基本上就需要用到-f选项。最好是使用-ff和-o<file name>，以便让每个子进程或线程都输出一个单独的文件，文件名格式是：<filename>.<PID|TID>。

strace的一个常见用法是，发现一个程序在启动时试图打开哪些文件。你可以通过-e选项限制被跟踪的系统调用，并且通过使用-o选项将跟踪写入文件而不是stdout：

 [image:]

它会显示当ssh建立连接时打开的库和配置文件。

你甚至可以使用strace作为一个基本的剖析工具：如果你使用-c选项，它会计算花在系统调用中的时间，并打印出一个类似下面的总结：

 [image:]

 [image:]

13.13　　总结

没有人会抱怨说，Linux缺乏用于剖析和跟踪的工具。本章已给你提供最常见的工具概述。

当一个系统没有表现得像预想那样好时，可以从top命令开始，尝试找出问题所在。如果它确定是单个的应用程序，那么你可以使用perf record/report来剖析它，请记住必须要配置内核以启用perf，同时你还需要二进制文件和内核的调试符号。OProfile是perf record的替代方案，可以告诉你类似的事情。坦白说，gprof有点过时了，但它确实有自己的优势，即不需要内核支持。如果不能很好地定位问题，可以使用perf（或OProfile）获得一个系统级视图。

当你只关注特定的内核行为时，Ftrace就发挥作用了。function和function_graph跟踪器给出详细的函数调用关系视图和调用顺序。事件跟踪器可以让你提取更多的函数信息，包括参数和返回值。LTTng与之作用类似，它利用事件跟踪机制，增加高速环形缓冲区以便于从内核中提取大量数据。Valgrind具有得天独厚的优势，它在一个沙盒中运行代码，可以报告通过其他方式难以追查的错误。

使用Callgrind工具时，可以产生调用图和处理器缓存的使用报告，它利用Helgrind报告线程相关的问题。最后，别忘了strace，在寻找程序所发出的系统调用时，它是一个很好的备用手段，不仅可以跟踪文件打开调用以发现文件路径名，还能检查系统唤醒和传入的信号。

始终要注意并尽量避免“观察者效应”：确保你所做的测量对于运行系统是有效的。在下一章中，我将继续该主题并且深入到延迟跟踪器，以帮助我们量化一个目标系统的实时性能。
第14章　实时编程

许多计算机系统和真实世界间的交互是实时的，因此实时性对于嵌入式开发者来说是一个非常重要的主题。目前，我已经在几个地方涉及实时编程：在第10章中，关注了调度策略和优先级；在第11章中，描述了页面故障问题和对于内存锁的需求。现在，我们把这些主题结合起来并深入探究实时编程。

在本章中，首先在应用程序和内核级别讨论实时系统的特点，然后考虑它对系统设计的影响。我还将描述实时内核补丁PREEMPT_RT，并将展示如何获得它并将其应用到一个主线内核。在最后一节，将使用cyclictest和Ftrace这两个工具描述如何表征系统延迟。

在嵌入式Linux设备上，还有其他的方式获得实时运行状态，例如，使用专用的微控制器，或一个单独的实时内核，它与Linux内核并列，这与Xenomai和RTAI的方式一样。我不在这里讨论它们，因为本书的重点是使用Linux作为嵌入式系统的核心。
14.1　什么是实时性

实时编程的性质是软件工程师喜欢深入讨论的主题之一，但他们往往给出一系列相互矛盾的定义。我将按照自己的理解开始讲解实时性的重要部分。

如果一个任务必须在指定的时间点之前完成，那么它是一个实时任务，这个时间点被称为最后期限。要理解实时和非实时任务之间的区别，请考虑当你在计算机上编译Linux内核的同时播放音频流的情况。

播放音频流是实时任务，因为抵达音频驱动程序上的是一个持续不断的数据流，音频样本的块必须以播放速率被写入到音频接口中。相比之下，编译并不是实时的，因为没有最后期限。你只是想让它尽快完成，花费10秒或10分钟并不影响内核的质量。

另一个需要着重考虑的是错过最后期限的后果，它有时轻微，但也可严重至系统故障和死亡。下面是一些例子：

播放音频流：有一个大约几十毫秒时间的最后期限。如果音频缓冲区正在运行，你会听到一个喀哒声，这是令人讨厌的，但你能接受它。

移动和点击鼠标：最后期限也在大约几十毫秒时间。一旦错过，鼠标移动变得不规律，而按钮点击将失效。如果问题持续，系统将变得不可用。

打印一张纸：送纸的最后期限是在毫秒范围内，如果错过最后期限，可能会导致打印机堵塞，必须有人去解决和修理它。偶然的堵塞是可以接受的，但没有人会买一台总是堵塞的打印机。

在生产线上印刷瓶子的销售日期：如果有一瓶没被印刷，整个生产线就必须停止，瓶子被移除，然后生产线重新启动，这样代价很昂贵。

烘焙蛋糕：最后期限为30分钟左右。如果你错过了几分钟，蛋糕可能被毁了。如果你错过了一大段时间，房子可能被烧毁了。

电源浪涌检测系统：如果系统检测到一个浪涌，断路器必须在2毫秒内触发。如果未触发将会对设备造成损坏，甚至可能伤害或杀死人员。

换言之，错过最后期限会有很多结果。我们经常谈论这些不同的类别：

软实时：最后期限是可以超过的，但有时超过了，系统被认为失效。前两个例子都是这样。

硬实时：错过了最后期限会有严重的影响。我们可以进一步将硬实时细分为任务关键系统和安全关键系统。其中，对于硬实时任务关键系统，如果错过最后期限将会付出代价，例如第四个例子；对于安全关键系统，如果错过最后期限将会对生命造成威胁，例如最后两个例子。我给出烘焙的例子，表明并不是所有硬实时系统的最后期限都在微秒级。

为安全关键系统编写的软件必须符合各种标准，以确保它能够可靠地进行。对于复杂的操作系统来说，例如Linux，要满足这些要求是非常困难的。

当涉及任务关键系统时，将Linux应用于范围广泛的控制系统可能是非常普遍的。软件的需求取决于最后期限和信任等级的结合，一般情况下通过广泛测试就可以确定。

因此，如果说一个系统是实时的，必须在最大预期的负载下测量它的响应时间，并表明它在约定的时间范围内满足最后期限。作为一个经验法则，一个配置良好的、使用主线内核的Linux系统，对于那些最后期限低至几十毫秒的软实时任务能够很好的工作，而对于一个具有PREEMPT_RT补丁的内核来说，可以对软实时以及最后期限低至数百微秒的硬实时关键任务系统提供很好的支持。

创建一个实时系统的关键是减少响应时间的变化，从而你有更大的信心确保它们不会错过最后期限。换句话说，你需要使系统更具确定性。通常，这是通过牺牲性能而实现的。例如，通过缓存使访问一个数据项的平均时间更短，从而使系统的运行速度更快，但是当发生缓存未命中时，最大访问时间变得更长。缓存使得系统更快，但降低了确定性，这是与我们的需求相反。

快速对于实时计算来说，就是一个神话。其实不然，一个系统的确定性越大，其最大吞吐量就越低。

接下来，我们关注怎样确定延迟的原因，以及如何减少延迟。
14.2　确认非确定性的来源

从根本上来说，实时编程主要是确保控制实时输出的线程在需要时可以被调用，这样可以在最后期限前完成目标任务。任何对此产生阻碍的事情都会成为问题。下面是一些容易出现问题的地方：

·调度：实时线程必须在别的线程之前调度，因此它们必须有实时策略SCHED_FIFO或SCHED_RR。此外，实时线程应该有优先级，根据第10章中描述的速率单调分析理论，优先级应该从最后期限时间最短的进程开始按降序排列分配。

·调度延迟：一旦发生类似中断或定时器这样的事件，内核必须能够重新调度，且不会无限制延迟。减少调度延迟是本章的一个重要主题。

·优先级反转：这是一个基于优先级调度的结果，当一个高优先级线程被一个低优先级线程在互斥锁上阻塞时，优先级反转会造成无限延迟，正如在第十章中描述的那样。用户空间有优先级继承和优先级置顶互斥；在内核空间中，有实现优先级继承的实时互斥，我将在实时内核部分中探讨这部分的内容。

·精确定时器：如果你想在毫秒或微秒级上管理最后期限，需要与之相匹配的定时器。高精度定时器是至关重要的，并且它几乎是所有内核中的一个配置选项。

·页面错误：在执行关键代码段时发生页面错误，将会打乱所有时间预估。你可以通过锁定内存来避免这种情况，我将在后面描述这种方法。

·中断：它们的发生时间不可预测，如果突然遇到中断流，会导致意想不到的处理开销。有两种方法可以避免这种情况：一是像运行内核线程一样运行中断；二是在多核设备上，屏蔽一个或多个CPU的中断处理。我将在后面讨论两种方法的可行性。

·处理器高速缓存：在CPU和主存储器之间提供缓冲区，如各种高速缓存，是非确定性的一个来源，特别是在多核设备上。不过，这超出了本书的范围，本章的结尾部分给出了相关的参考资料。

·内存总线竞争：当外设直接通过DMA通道访问内存时，它们使用了一部分内存总线带宽，这减慢了来自CPU内核（或多核）的访问，并因此导致程序的非确定性执行。然而，这是一个硬件问题，也超出了本书的范围。

我将进一步阐述这些重要问题，并在下一节中研究如何解决这些问题。

列表里漏掉的一个术语是电源管理。实时性和电源管理的需求是对立的。在睡眠状态之间切换时，电源管理往往会导致高延迟，因为设置电源调节器和唤醒处理器都需要时间，改变内核时钟频率也是如此，因为设置时钟需要消耗时间。但是，你能确定不会期望设备从挂起状态立即响应中断？我知道我在早上开始做事之前至少会喝一杯咖啡。
14.3　理解调度延迟

当有工作要做时，实时线程需要立即被调度。但是，即使没有其他相同或更高优先级的线程，通常从唤醒事件发生（如中断或系统计时器）到线程开始运行之间也会有延迟。这就是调度延迟。它可以被分解成几个组成部分，如图14-1所示：

 [image:]

图14-1　调度延迟示意图

首先，在中断被声明到中断服务例程（ISR）开始运行之间存在硬件中断延迟。其中一小部分是中断硬件自身的延迟，但是最大的问题是软件的中断禁用。将IRQ off time关闭时间（IRQ off time）降至最小是很重要的。

其次是中断延迟，它的时长是截止到ISR已经处理了中断并唤醒在该事件上等待的所有线程。它主要依赖于ISR的编写方式。它占用的时间应该很短，通常以微秒级度量。

最后一个延迟是抢占延迟，它的时长开始于内核被通知有线程准备运行，截止到调度程序实际运行该线程。它取决于内核是否可以被抢占。如果是在代码关键段运行，那么重新调度需要等待。延迟的长度依赖于内核抢占的配置情况。
14.4　内核抢占

抢占延迟的发生，是因为抢占当前执行线程并调用调度程序并不总是安全的或理想的。Linux的主线版本为抢占提供三个设置，通过菜单Kernel Features|Preemption Model选择：

·CONfig_PREEMPT_NONE：无抢占。

·CONfig_PREEMPT_VOLUNTARY：对抢占请求启用额外的检查。

·CONfig_PREEMPT：允许内核被抢占。

如果抢占设置为none，内核代码将继续运行而不重新调度，直到它通过syscall返回到用户空间，在用户空间中抢占总是被允许的，或者它遇到一个阻止当前线程的睡眠等待。由于这减少了内核和用户空间之间的转换次数，并可能减少上下文切换的总次数，因此该选项以大的抢占延迟为代价获得了最大吞吐量。在服务器和一些吞吐量比响应更重要的桌面内核中，这是默认的设置。

第二个选项启用更为明确的抢占点，如果设置了need_resched标志，调度程序在该点上被调用，以降低少许吞吐量为代价减少最坏情况下的抢占延迟。在一些桌面发行版中设置了该选项。

第三个选项使内核可抢占，即只要内核没有在原子上下文中执行，中断可以立即导致重新调度，我会在后续部分描述。对于典型的嵌入式硬件来说，这将最坏情况下的内核抢占延迟和整体调度延迟降低了大约几毫秒。这通常被描述为一个软实时选项，大部分嵌入式内核就是以这种方式配置的。当然，整体吞吐量有稍有降低，但更重要的是，嵌入式设备的调度更具确定性。
14.5　实时Linux内核（PREEMPT_RT）

随着针对减少延迟这一特性的名为PREEMPT_RT的内核配置选项的提出，长久以来人们在这方面的努力得以更进一步。该项目是由Ingo Molnar、Thomas Gleixner和Steven Rostedt发起的，多年来已经得到许多开发者的贡献。内核补丁位于https://www.kernel.org/pub/linux/kernel/projects/rt，并且在维基网站：https://rt.wiki.kernel.org上有关于它的各种信息，其中包括FAQ（有点过时了）。

近年来，该项目的许多部分已经被纳入了Linux主线版本，包括高精度定时器、内核互斥和线程化中断处理程序。然而，由于其侵入性，以及（有些人声称）其仅对Linux用户群体中的少数有益，因此，核心补丁仍不在主线版本中。也许在未来的某一天，整个补丁集都会被合并至主线版本。

核心计划是减少内核在原子上下文中的运行时间，在原子上下文中调用调度程序和切换不同线程是不安全的。典型的原子上下文是当内核处于如下情形时：

·正在运行一个中断或陷阱处理程序。

·持有一个自旋锁或在RCU临界区里。自旋锁和RCU都是内核锁定原语，其细节与我们这里所说的内容无关。

·在preempt_disable（）和preempt_enable（）调用之间。

·硬件中断被禁用。

作为PREEMPT_RT的一部分，变化分为两个主要方面：一是通过将中断处理程序变成内核线程以降低其影响；二是使锁可被抢占，这样当线程持有一个锁时也可以睡眠。很明显，这些变化会造成很大的开销，使得平均情况下中断处理更慢但也更加具有确定性，这正是我们努力的方向。
14.6　线程化中断处理程序

并不是所有的中断都会触发实时任务，但是所有的中断都会从实时任务中窃取周期。线程化中断处理程序允许将中断与优先级相关联，并在适当的时间被调度，如图14-2所示：

 [image:]

图14-2　线程化中断处理程序示意图

如果中断处理程序代码是作为一个内核线程运行的，那么它就可以被具有更高优先级的用户空间线程所抢占，因此中断处理程序不会导致用户空间的线程调度延迟。线程化中断处理程序从2.6.30版本开始就是Linux主线版本的一个特性。你可以通过用request_threaded_irq（）代替正常的request_irq（）进行注册，以请求一个单独的中断处理程序。你可以通过用CONfig_IRQ_FORCED_THREADING=y来配置内核，使线程化IRQ成为默认选择，这将使所有处理程序成为线程，除非它们通过设置IRQF_NO_THREAD标志明确地阻止这个过程。当你应用PREEMPT_RT补丁时，在默认情况下中断将以这种方式被配置为线程。下面的例子展示了你可能看到的内容：

 [image:]

在这种情况下，BeagleBone运行linux-yocto-rt，只有gp_timer中断未被线程化。正常情况下，定时器中断处理器以内联方式运行。

注意，中断线程都被设置了默认策略SCHED_FIFO和优先级值50。但是，它们的默认值是没有意义的，现在你有机会根据与用户空间实时线程比较后得出的中断的重要性来安排优先级。

下面是一个按降序排列线程优先级的建议顺序：

POSIX定时器线程posixcputmr，它的优先级应该总是最高的。

·与最高优先级的实时线程相关的硬件中断。

·最高优先级的实时线程。

·关于逐步降低优先级的实时线程的硬件中断，其次是线程本身。

·关于非实时接口的硬件中断。

·软IRQ守护进程ksoftirqd，它在RT内核中负责运行延迟中断例程，而在Linux 3.6之前的版本，它负责运行网络协议栈、块I/O层以及其他事情。你可能需要试验不同的优先等级来获得平衡。

通过使用chrt指令作为启动脚本的一部分，你可以改变优先级，使用这样的命令：

 [image:]

pgrep指令是procps包的一部分。
14.7　可抢占的内核锁

使大部分内核锁可被抢占，是PREEMPT_RT做出的最激进的改变，而这部分代码仍然不在内核主线版本之内。

问题出在自旋锁，它被用于大多数内核锁。自旋锁是在竞争的条件下不需要上下文切换的忙等待互斥锁，所以只要持有锁的时间很短，忙等待锁就是有效的。理想的情况是，它们被锁定的时间，应该少于重新调度两次所需的时间。图14-3显示了运行在两个不同的CPU上的线程竞争同一个自旋锁的情况。CPU0首先得到自旋锁，从而迫使CPU1自旋并一直等待直到它被解锁：

 [image:]

图14-3　线程竞争自旋锁示意图

持有自旋锁的线程不能被抢占，因为当线程尝试锁定相同的自旋锁时，这样做可能使新线程进入同一代码段并且死锁。因此，在Linux主线版本，锁定一个自旋锁会禁用内核抢占，创造出一个原子上下文。这意味着持有自旋锁的低优先级线程可以阻止高优先级线程被调度。

PREEMPT_RT采用的解决方法是用实时互斥锁代替几乎所有的自旋锁。互斥锁比自旋锁慢，但它是完全可抢占的。不仅如此，实时互斥锁实现了优先级继承，因此它不易发生优先级反转。
14.8　获得PREEMPT_RT补丁

由于工作量巨大，RT开发人员不会为每一个内核版本创建补丁集。平均来说，他们为相隔的版本创建补丁。在本书写作时，最近获得支持的内核版本如下：

·4.1-rt

·4.0-rt

·3.18-rt

·3.14-rt

·3.12-rt

·3.10-rt

在https://www.kernel.org/pub/linux/kernel/projects/rt可以获得补丁。

如果你使用Yocto Project，现在已有一个rt版本的内核。或者，有可能你下载的内核已经使用了PREEMPT_RT补丁。否则，你需要自行应用这个补丁。首先，确保PREEMPT_RT补丁的版本和你的内核版本完全匹配，否则你将无法完整地应用补丁。然后，以正常的方式应用它，如下所示：

 [image:]

然后，你就可以用CONfig_PREEMPT_RT_FULL配置内核。

最后有一个问题。你只有使用兼容的主线版本内核，才能应用RT包。你用的可能并不是主线版本，因为嵌入式Linux内核是丰富多样的，因此你必须花费一些时间研究那些失败的补丁并修复它们，然后分析你的目标所支持的开发板，并添加所缺少的实时性支持。这些细节也不在本书的讨论范围内。如果你不知道该怎么做，可以询问相应的内核开发人员或者访问内核开发者的论坛。

Yocto项目和PREEMPT_RT

Yocto项目提供了两个标准内核方案：linux-yocto和linux-yoco-rt，后者已经应用了实时补丁。假设你的目标得到了这些内核的支持，那么只需要通过添加类似于下面的行到conf/local.conf中，选择linux-yocto-rt作为首选内核，并且声明你的机器是兼容的：

 [image:]

14.9　高精度定时器

如果你有精确的时序要求，定时精度是很重要的，这种情况对于实时应用来说是很典型的。Linux的默认定时器是一个运行速率可配置的时钟，在嵌入式系统中，其运行速率通常是100Hz，在服务器和桌面版中是250Hz。两个定时器刻度之间的间隔称为一个jiffy，在上面给出的例子中，jiffy在嵌入式SoC上为10毫秒，在服务器上为4毫秒。

从实时内核项目的2.6.18版本开始，Linux有了更精确的定时器，现在只要有一个高精度定时器源和设备驱动程序（情况几乎总是如此），这个定时器就可以在所有平台上使用。你需要通过利用conffig_hfigh_res_timers=y来配置内核。

随着该选项被启用，所有的内核和用户空间时钟将会精确到底层硬件的精度。要发现实际的时钟精度是十分困难的。显而易见的答案是由clock_getres（2）提供的值，但它总是会返回纳秒级的精度。我之后将要介绍cyclictest工具，它有一个选项分析定时器给出的时间，并由此推断精度：

 [image:]

两种方法给出了不同的数字，对此我给不出好的解释。但欣慰的是，两个数字都在在1毫秒以内。
14.10　　在实时应用中避免页面错误

当应用程序读取或写入的内存没有分配给物理内存时，就会发生页面错误。页面错误的发生是不可预测的（或很难预测的），因此它们是计算机中非确定性的另一个来源。

幸运的是，有一个函数允许你将所有的内存都提交给一个进程并将其锁定，从而避免页面错误的发生。它就是mlockall（2），下面是它的两个标志：

·MCL_CURRENT：锁定现在已映射的所有页。

·MCL_FUTURE：锁定后面将映射的页。

你可以在启动应用时调用mlockall（2），并设置这两个标志以锁定当前和未来的内存映射。

注意，MCL_FUTURE并不神奇，因为使用malloc（）/free（）或mmap（）分配或释放堆内存时，仍然会有不确定的延迟。这样的操作最好在启动时完成，且不要在主控制循环中。

栈上的内存分配是复杂的，因为它是自动完成的。如果调用的函数使栈的深度增加，你会遭遇更长的内存管理延迟。一个简单的解决办法是，将栈的长度增加到比你预期的启动时需求还要长。代码类似下面这样：

 [image:]

 [image:]

stack_grow（）函数在栈上分配一个很大的变量，然后将它设为0，以强制这些内存页面被提交到这个进程。
14.11　　中断屏蔽

通过运行一些优先级比那些不影响实时任务的中断处理程序高的线程，使用线程化中断处理程序能够有助于减少中断开销。如果你使用的是多核处理器，可以采取一种不同的方法：完全屏蔽一个或多个内核对中断的处理，使它们专注于实时任务。这在一般的Linux内核或PREEMPT_RT中都行之有效。

实现这一点的问题在于：把实时线程分配给一个CPU，而把中断处理程序分配给另一个CPU。你可以使用命令行工具taskset将CPU设置为与线程或进程不关联，也可以使用sched_setaffinity（2）和pthread_setaffinity_np（3）函数。

要设置对一个中断的关联，首先请注意，每一个中断号在/proc/irq/<IRQ number>都有一个子目录。中断的控制文件存放在那里，包括smp_affinity中的CPU掩码。将一个位掩码写入该文件，每个被允许处理该IRQ的CPU对应其中的一位。
14.12　　测量调度延迟

如果你的设备不能满足最后期限，所有的配置和调整都没有意义。为了最后的测试，你需要有自己的测量基准，但是我在这里也会介绍两个重要的测量工具：cyclictest和Ftrace。

14.12.1　cyclitest

cyclictest最初由Thomas Gleixner编写，目前在大多数含有rt-tests包的平台上可用。如果你正在使用Yocto项目，可以通过构建实时映像方案创建一个包含rt-tests的目标映像：

 [image:]

如果你正在使用Buildroot，需要在Target packages|Debugging，profiling and bench-mark|rt-tests菜单下添加包BR2_PACKAGE_RT_TESTS。

cyclictest通过比较实际的睡眠时间和请求时间来测量调度延迟。如果没有延迟，它们应该是相同的，报告得出的延迟是零。cyclictest假定定时器的分辨率低于1微秒。

它有大量的命令行选项。首先，你可以尝试用root账户在目标上运行该命令：

 [image:]

可选项如下：

·-l N：循环N次，默认是无限的。

·-m：用mlockall锁住内存。

·-n：使用clock_nanosleep（2）而不是nanosleep（2）。

·-p N：使用实时优先级N。

结果行显示以下内容，从左向右读分别是：

·T：0：这是0号线程，本次运行的唯一线程。可以用参数-t设置线程号。

·（320）：这是PID 320。

·P：99：优先级为99。

·I：1000：循环之间的间隔为1000微秒。你可以用参数-i N设置间隔。

·C：100000：该线程的最终循环数为100 000。

·Min：9：最小延迟为9微秒。

·Act：13：实际延迟为13微秒。实际延迟是最新的延迟测量，只有你观测在cyclictest运行时，这个数值才有意义。

·Avg：15：平均延迟时间为15微秒。

·Max：134：最大延迟为134微秒。

这是从一个闲置系统中获得的，该系统运行未修改的linux-yocto内核作为该工具的一个快速演示。要真正的使用，你需要在运行期望最大负载的同时，测试24小时或更长时间。

在cyclictest生成的数值中，延迟的最大值是最有趣的，但我们还想了解这些数值的传递情况。你可以通过增加-h<N>参数以获得样本的一个直方图来实现这一点，其中N代表最大跟踪时限，单位是毫秒。在相同的目标开发板承载来自ping洪泛的以太网流量时，使用这种技术获得对它的三次跟踪，分别运行无抢占内核、标准抢占内核和RT抢占内核。命令行如下图所示：

 [image:]

图14-4是无抢占情况下生成的输出：

在没有抢占的情况下，大多数样本的最后期限在100微秒以内，但也有高达500微秒的异常值，这比期望的高出很多。

图14-5是标准抢占情况下生成的输出：

 [image:]

图14-4　无抢占情况下生成的延迟输出

 [image:]

图14-5　标准抢占情况下生成的延迟输出

这种情况下，样本分散在数值较小的区域，没有超过120微秒的数值。

图14-6是RT抢占情况下生成的输出：

 [image:]

图14-6　RT抢占情况下生成的延迟输出

这种情况明显最优，所有数据都集中在20微秒附近，并且没有高出35微秒的数值。

因此，cyclictest是调度延迟的一个标准度量。然而，它不能识别和解决内核延迟的具体问题。要做到这一点，需要使用Ftrace。

14.12.2　使用Ftrace

内核函数跟踪器帮助跟踪内核延迟，毕竟这就是最初编写它的本意。跟踪器捕获在一次运行中检测到的最坏情况下的延迟跟踪，显示导致延迟的函数。跟踪器以及内核配置参数如下：

·irqsoff：CONfig_IRQSOFF_TRACER跟踪禁用中断的代码，并记录最差情况。

·preemptoff：CONfig_PREEMPT_TRACER类似于irqsoff，但跟踪内核抢占的最长时间是被禁用的（仅适用于可抢占内核）。

·preemptirqsoff：结合了前两个跟踪，以记录irqs和（或）抢占所禁用的最大时间。

·wakeup：跟踪并记录最高优先级任务被唤醒后得到调用的最长延迟。

·wakeup_rt：和wakeup一样，但只针对采用SCHED_FIFO，SCHED_RR，或者SCHED_DEADLINE策略的实时线程。

·wakeup_dl：和wakeup一样，但只针对采用SCHED_DEADLINE策略并被设置了最后调度期限的线程。

注意，运行Ftrace时，每当它捕捉到一个Ftrace自身可以忽略的新的最大值时，会增加了多达几十毫秒的延迟。然而，Ftrace将会曲解诸如cyclictest这样的用户空间跟踪器的结果。换句话说，如果在捕捉追踪时运行了它，请忽略cyclictest的结果。

选择跟踪器与在第13章中所讲的函数跟踪器相同。下面的例子是捕捉60秒内在抢占禁用的情况下对于最大时限的跟踪：

 [image:]

被编辑后的追踪结果看起来像这样：

 [image:]

在这里，你可以看到，运行跟踪时禁止内核抢占的最长时限是1160微秒。这个简单事实可以通过读取/sys/kernel/debug/tracing/tracing_max_latency获取，但上面的跟踪走的的更远，并且给你提供了导致该测量的内核系统调用的序列。标记了delay的列显示了轨迹上的点，函数在这些点上被调用，在1162us时通过调用trace_preempt_on（）结束，在这个时间点，内核抢占再次启用。有了这个信息，你可以通过调用链回头查找，并且（很有希望）判断出这是否存在问题。

其他提及的跟踪器以同样的方式工作。

14.12.3　结合cyclictest和Ftrace

如果cyclictest意外地报告延迟过长，你可以使用breaktrace选项中止程序并触发Ftrace，以获取更多的信息。

你可以使用-b<N>或--breaktrace=<N>调用breaktrace，其中N是延迟时间，单位是微秒，超过这个数值，跟踪将被触发。你可以使用-T[tracer name]或如下指令中的一条，以选择Ftrace跟踪器：

·-C：上下文切换

·-E：事件

·-f：函数

·-w：唤醒

·-W：实时唤醒

例如，当测量的等待时间大于100微秒，将触发Ftrace函数跟踪器：

 [image:]

14.13　　延伸阅读

以下资源提供与本章主题相关的进一步信息：

·《Hard Real-Time Computing Systems：Predictable Scheduling Algorithms andApplications》by Buttazzo，Giorgio，Springer，2011。

·《Multicore Application Programming》by Darryl Gove，Addison Wesley，2011。
14.14　　总结

只有把实时性限定在一个最后期限和一个可接受的缺失率的条件下时，它才是有意义的。当你可以决定Linux是否为合适的候选操作系统时，可以开始调整系统以满足要求。调整Linux和应用程序来处理实时事件意味着使它更具有确定性，以便它能够可靠地在最后期限内处理数据。确定性通常以总吞吐量为代价，所以实时系统处理的数据相比非实时系统较少。

用数学方法证明一个像Linux这样的复杂操作系统总能满足给定的最后期限是不可能的，所以唯一的方法是用cyclictest和Ftrace这样的工具做额外的测试，更重要的是，在你的应用程序上使用你自己的测试基准。

为了提高确定性，你需要考虑应用程序和内核。在编写实时应用程序时，应遵循本章中关于调度、锁定和内存的指导原则。

内核对系统确定性有很大的影响。庆幸的是，过去几年中在这方面的研究层出不穷。启用内核抢占是很好的第一步。如果仍然觉得它比设想的更容易错过最后期限，你可能需要考虑PREEMPT_RT内核补丁。它可以产生低延迟，但并不在主线版本上，这意味着当将它与你的定制开发板上的厂商内核集成到一起时可能会出现问题。取而代之的是，或者说额外要做的是，你可能需要着手用Ftrace和其他类似的工具寻找延迟的原因。

到此我已经结束对嵌入式系统的剖析。嵌入式系统工程师需要具备一系列技能，从底层的硬件知识，系统引导如何工作以及内核如何与之交互，到配置用户应用程序并调整使之高效工作。所有这一切都必须用硬件来实现，而硬件几乎总是能够完成任务。有一句名言很好地做出了总结：工程师可以用一美元做到别人需要用两美元做的事。通过我在本书中提供的信息，希望你可以实现这一点。
EPUB/cover.xhtml
[image: Cover]

EPUB/cover.jpg
£ [pacal

RAIL
Linux4miz

() TR P 5 ram o s

(Chris Simmonds)

Mastering Embedded Linux Programming

o YoctoliEZ&falifiRichard Purdie{FF#E , Amazon/ SZ4FiF

o BHEMFAKLnuxF=REKEE , £E. ZENMBRATLnuxi)
RIS

