

 生成对抗网络入门指南

 	
 第1章 人工智能入门

 	
 1.1.1 人工智能的诞生

 	
 1.1.2 人工智能的两起两落

 	
 1.1.3 新时代的人工智能

 	
 1.2 机器学习与深度学习

 	
 1.2.1 机器学习分类

 	
 1.2.2 神经网络与深度学习

 	
 1.2.3 深度学习的应用

 	
 1.3 了解生成对抗网络

 	
 1.3.2 什么是生成对抗网络

 	
 1.4 本章小结

 	
 第2章 预备知识与开发工具

 	
 2.1 Python语言与开发框架

 	
 2.1.2 常用工具简介

 	
 2.1.3 第三方框架简介

 	
 2.2 TensorFlow基础入门

 	
 2.2.2 TensorFlow使用入门

 	
 2.2.3 Tensorflow实例：图像分类

 	
 2.3 Keras基础入门

 	
 2.3.2 Keras使用入门

 	
 2.3.3 Keras实例：文本情感分析

 	
 2.4 Floyd：使用深度学习云平台运行程序

 	
 2.4.2 Floyd使用入门

 	
 2.4.3 Floyd实例：神经网络风格转换

 	
 2.5 本章小结

 	
 第3章 理解生成对抗网络

 	
 3.1 生成模型

 	
 3.1.2 自动编码器

 	
 3.1.3 变分自动编码器

 	
 3.2 GAN的数学原理

 	
 3.2.2 生成对抗网络的数学推导

 	
 3.3 GAN的可视化理解

 	
 3.4 GAN的工程实践

 	
 3.5 本章小结

 	
 第4章 深度卷积生成对抗网络

 	
 4.1 DCGAN的框架

 	
 4.1.2 DCGAN框架结构

 	
 4.2 DCGAN的工程实践

 	
 4.3 DCGAN的实验性应用

 	
 4.3.2 生成图像的算术运算

 	
 4.3.3 残缺图像的补全

 	
 4.4 本章小结

 	
 第5章 Wasserstein GAN

 	
 5.2 WGAN的理论研究

 	
 5.3 WGAN的工程实践

 	
 5.4 WGAN的实验效果分析

 	
 5.4.2 生成网络的稳定性

 	
 5.4.3 模式崩溃问题

 	
 5.5 WGAN的改进方案：WGAN-GP

 	
 5.6 本章小结

 	
 第6章 不同结构的GAN

 	
 6.1 GAN与监督式学习

 	
 6.1.2 cGAN在图像上的应用

 	
 6.2 GAN与半监督式学习

 	
 6.2.2 辅助分类生成：ACGAN

 	
 6.3 GAN与无监督式学习

 	
 6.3.2 理解InfoGAN

 	
 6.4 本章小结

 	
 第7章 文本到图像的生成

 	
 7.1 文本条件式生成对抗网络

 	
 7.2 文本生成图像进阶：GAWWN

 	
 7.3 文本到高质量图像的生成

 	
 7.3.1 层级式图像生成：StackGAN

 	
 7.3.2 层级式图像生成的优化：StackGAN-v2

 	
 7.4 本章小结

 	
 第8章 图像到图像的生成

 	
 8.1 可交互图像转换：iGAN

 	
 8.1.2 iGAN的实现方法

 	
 8.1.3 iGAN软件简介与使用方法

 	
 8.2 匹配数据图像转换：Pix2Pix

 	
 8.2.2 Pix2Pix的理论基础

 	
 8.2.3 Pix2Pix的应用实践

 	
 8.3 非匹配数据图像转换：CycleGAN

 	
 8.3.2 CycleGAN的理论基础

 	
 8.3.3 CycleGAN的应用实践

 	
 8.4 多领域图像转换：StarGAN

 	
 8.4.2 StarGAN的理论基础

 	
 8.4.3 StarGAN的应用实践

 	
 8.5 本章小结

 	
 第9章 GAN的应用：从多媒体到艺术设计

 	
 9.1.1 图像去模糊

 	
 9.1.2 人脸生成

 	
 9.1.3 音频合成

 	
 9.2 GAN与AI艺术

 	
 9.2.1 AI能否创造艺术

 	
 9.2.2 AI与计算机艺术的发展

 	
 9.2.3 艺术生成网络：从艺术模仿到创意生成

 	
 9.3 GAN与AI设计

 	
 9.3.2 AI辅助式设计的研究

 	
 9.4 本章小结

 	
 第10章 GAN研究热点

 	
 10.2 对抗攻击

 	
 10.3 发展中的GAN

 	
 参考文献

 第1章　人工智能入门

1.1　人工智能的历史与发展

2017年被称为“人工智能元年”，这一年，被称为“人类最后的希望”的围棋天才柯洁与AlphaGo的进阶版Master鏖战三轮，最终以总比分0∶3败于AlphaGo（见图1-1）。这是谷歌DeepMind团队的AlphaGo深度学习的第二次亮相。也是这一年，据PitchBook统计，全球人工智能和机器学习领域共获得风险投资超过108亿美元，而2010年才不足5亿美元。也是这一年，“得AI人才者得天下”，在美国，深度学习领域的人工智能博士生都已被Google、Facebook、亚马逊、微软、英特尔席卷一空，AI人才的起步年薪达到百万。一时间，仿佛身边的人都开始习惯性地讨论几句“人和机器谁更厉害”的话题。

 [image:]

图1-1　柯洁惜败Master，泪洒现场

人工智能的热浪乘风而上，技术圈和投资界欢欣鼓舞，似乎一个可以媲美100年前的电力、20年前的互联网的机会正在到来（见图1-2）。但真正了解这个领域的学术圈却保持镇定，因为这个蛰伏了大半个世纪的复杂学科，早已经历了一次又一次的繁荣与低谷，2017年也许是新一轮的波峰。

 [image:]

图1-2　2017年美国人工智能投资爆发

古希腊诗人荷马在公元前8世纪曾描述过“锻造之神”赫菲斯托斯[1]，《伊利亚特》史诗中写到他曾经设计并制作了一组金制的女机器人，这些机器人可以帮助他在铁匠铺做事，甚至能开口说话，并完成很多高难度工作。这可能是能够追溯到的最早的人工智能诞生的传说，人们开始想着不再仅仅把创造力放在静物上，而是有自我意识的个体，这是思维的突破，是最本质的变化。

稍微对人工智能有所了解的人都知道图灵（见图1-3）。艾伦·麦席森·图灵（Alan Mathison Turing），距离我们大半个世纪前的英国数学家，被称为“计算机科学之父”，又被称为“人工智能之父”。至今，图灵奖（A.M.Turing award）作为“计算机界的诺贝尔奖”，依旧是最负盛名、最崇高的奖项。“如果一台机器能够与人类展开对话（通过电传设备）而不能被辨别出其机器身份，那么称这台机器具有智能。”这就是里程碑式的人工智能图灵测试。

 [image:]

图1-3　图灵

其实在图灵测试提出前，其他学科上伟大的突围同样为人工智能学科的建立奠定了坚实的理论基础。人工智能简而言之是打造“人工大脑”，那么有三个问题需要解答。

·大脑是如何运转的？

·大脑的运行机制是否可以拆分成差异性极低的可衡量单元？

·是否有其他人工产物可以等价体现这一单元粒度的价值或功能？

其中，第二个问题由神经学家揭开谜团，第三个问题由信息学家给出答案，第一个问题至今仍在探索。

[1] https://baike.baidu.com/item/赫菲斯托斯/2604787
1.1.1　人工智能的诞生

1872年在意大利的阿比亚泰格拉索疗养院里，29岁的卡米洛·高尔基（Camillo Golgi）在一次意外中创建了铬酸盐-硝酸银染色法。在相隔1300公里的西班牙，一位同样年轻的神经学家圣地亚哥·拉蒙-卡哈尔（Santiago Ramón Y Cajal）借助这种技术，在1888年发表了单个神经细胞存在的证据，由此创建了神经元理论，被后世认为是现代神经科学的起源。这两位在1906年获得了诺贝尔生理学或医学奖。[1]

神经系统由神经元（见图1-4）这样的基本单位构成，其激励电平只存在“有”和“无”两种状态，不存在中间状态。神经元二元论的观察和电子信号的0和1之间竟有如此美妙的契合度，当然这个时候数字信号的二进制还没有提出。另一个观察是神经信号的传导大多是单向的，由树突到神经元细胞体再到轴突。基于简单的两个规律，神经网络的雏形已经跃然纸上，如果我们现在乘坐“时光机”回去，肯定会站在上帝视角疯狂吼叫：“结合起来！这就是神经网络！我们可以做人造大脑了！”但科学研究的步伐何其艰难，这临门一脚的突破蛰伏了50多年。

 [image:]

图1-4　神经元

在50多年后的1940年，受神经学科奠基理论影响的42岁的沃伦·麦卡洛克（Warren McCulloch）和刚满18岁的“罗素信徒”沃尔特·皮茨（Walter Pitts）相遇，3年后他们提出将数学和算法结合，建立了神经网络和数学模型（见图1-5），模仿人类的思维活动，从此划开现代深度学习的序章。

 [image:]

图1-5　神经元模型

至此，神经元作为可拆分的差异性极低的可衡量单元出现，并通过麦卡洛克和皮茨的努力，可以用数理化的方式进行描述。但存在于纸面算法的逻辑如何变成真正可执行的工程产物？克劳德·艾尔伍德·香农（Claude Elwood Shannon，信息论创始人）对继电器的全新解读登场了（见图1-6）。

 [image:]

图1-6　香农利用继电器完成老鼠自助走迷宫实验

继电器是一种电子控制器件，通过电磁铁来吸引一块铁片，以控制线路的开关。如果电源没有接通，信息的流通量为0，如果电源接通，绝对理想情况下信息全部输送。香农在《继电器与开关电路的符号分析》中将逻辑代数的思想运用到了电路的设计上，用电子开关模拟布尔逻辑运算，解决了实际问题。

至此，“是否有其他人工产物可以等价体现这一单元粒度的价值或功能”这一问题也有了答案：继电器或者晶体管，或者任何能够输出0和1这两个信息符号的组件，都可以成为承载人工大脑信息传输的载体。

1943年，图灵拜访贝尔实验室，与香农共进午餐，讨论人造思维机器的设想，大有英雄所见略同之感。1950年，图灵提出一个关于判断机器是否能够思考的著名试验：“如果一台机器能够与人类展开对话（通过电传设备）而不能被辨别出其机器身份，那么称这台机器具有智能。”

图灵测试至今也很少完整地应用于辨别人类和机器，原因很简单：机器还无法蒙混过关。但在一些影视作品里面可以看到完整的应用。1982年上映的《银翼杀手》被视为有史以来最佳科幻电影之一，里面有一段经典的测试，叫作维特甘测试（Voight-Kampff test）。为了区分人类和复制人，会进行类似于“图灵测试”的检验——被试者会被询问几十个不同的问题，检测机器会通过查看他们的眼球运动等生理活动判断是否符合人类的正常反应，或者通过观测他们的回答方式、身体动作和即时反应来区分是否是真实人类。大部分复制人在这样的测试下很快就会露出马脚[2]。感兴趣的读者可以去看看这部电影，见图1-7。

 [image:]

图1-7　《银翼杀手》中的维特甘测试

1956年Dartmouth会议历经两个月的激烈讨论，提出“人工智能”这一名称，以及对应的学科任务。此会议也被称为人工智能正式诞生的一大标志。至此，人工智能作为一个令人痴迷的科学学科正式登上历史舞台。

[1] http://daixiaoyu.com/ai-3.html

[2] 巴塞君的文章，见知乎，https://zhuanlan.zhihu.com/p/30574732
1.1.2　人工智能的两起两落

从1956年开始，人工智能的研究进入全盛时代，至此开始的十年也称为“黄金十年”。这十年有很多成功的AI程序和新的研究方向出现，包括推理搜索的算法研究、自然语言处理、微世界研究等。AI学者构造出了一系列计算机程序。当时，人工智能研究者甚至认为：“二十年内，机器将能完成人能做到的一切工作”；“在三到八年的时间里我们将得到一台具有人类平均智能的机器”。[1]

然而好景不长，很快到了20世纪70年代，盛极一时的学术圈“宠儿”人工智能开始遭受如潮的质疑和批评。人们渐渐发现仅仅具有逻辑推理能力远远不能实现人工智能，许多难题并没有随着时间推移而被解决，很多AI系统一直停留在“玩具”阶段。1974～1980年是人工智能研究的第一个“寒冬”，研究者的理论方向漫无目的是因素之一，更大的原因在于当时落后的计算机运算能力和数据收集能力。当时上限48KB内存的第四代计算机只能允许用一个含二十个单词的词汇表来演示在自然语言方面的研究结果，计算机离智能的要求还差上百万倍。

很快，对AI提供资助的机构（如英国政府、DARPA和NRC）开始逐渐停止了资助，AI研究者也遭到了学术圈的冷遇。在此阶段，学者内部也对人工智能的研究本质产生了争执，并逐渐划分为认为人工智能应该是解题机器的简约派和坚持AI应具有与人类一样的非逻辑性联想能力的芜杂派（the scruffies）。

1980年，简约派的研究成果之一“专家系统”面市，这是人工智能的一个研究分支，它具有一种仿真决策能力。卡内基·梅隆大学为DEC（一家数字设备公司）设计并制造出一个专家系统，命名为XCON。DEC的VAX型计算机可以根据用户的需求组装不同的组件，有很多销售人员并不是技术专家，所以难免出现配件购买错误的问题。XCON支持自动选择组件，从1980年到1986年，每年为公司省下四千万美元。一直被称为研究玩具的人工智能因此扫除颓势，进而获得了1980年到1987年的第二个繁荣发展期。

许多公司纷纷效仿，开始研发和应用专家系统。知识工程作为专家系统的基础，也成为当时AI研究的热门方向。紧接着，日本提出第五代计算机计划，注入大量的人才和财力，旨在创造出能够与人交流、翻译各国语言、识别图像、具有一定推理逻辑能力的机器系统。也在同样的时期，David Rumelhart提出著名的反向传播算法（BP算法），解决了多层神经网络学习过程中遇到的诸多问题。由于这个算法的提出，神经网络开始作为主流算法广泛应用于机器学习的各大领域，比如模式识别、预测和智能控制等[2]。AI迎来了又一轮高潮。

然而泡沫的破灭就在顷刻之间，人工智能研究的第二个寒冬伴随着个人消费电脑的快速崛起而到来[3]。从1987年到1993年，短短6年时间，苹果和IBM在PC市场的发力为人们带来便捷计算工具的同时，却为高昂的Lisp电脑带来巨大的生存压力。而后者作为人工智能硬件的基础，它的破灭也阻挡了人工智能本身的发展。墙倒众人推，研发节奏的缓慢导致质疑声卷土重来，应用狭窄、知识系统建立困难、维护成本高昂等诟病压得研究人员喘不过气来。十年前日本提出的第五代计算机计划也宣布失败。AI遭遇了一系列财政问题，进入第二次低谷。

至此人工智能经历两起两落，从初见雏形至此已经经过了快60年，“二十年内，机器将能完成人能做到的一切工作”的豪言壮语并没有变成现实。然而中国有句古话叫“甲子一轮回”，跌跌撞撞的60年走来，人工智能在不断的起伏中艰难前行。柳暗花明，人工智能的下一个60年开始变得豁然开朗。

[1] https://sites.google.com/site/lessonofartificialintelligence/

[2] https://zhuanlan.zhihu.com/p/25774614

[3] http://intl.ce.cn/specials/zxgjzh/201610/31/t20161031_17368008.shtml
1.1.3　新时代的人工智能

1965年，英特尔创始人之一戈登·摩尔（Gordon Moore）提出著名的摩尔定律——“当价格不变时，集成电路上可容纳的元器件的数目约每隔18～24个月便会增加一倍，性能也将提升一倍”。这一定律揭示了信息技术进步的速度。关于人工智能第一次低谷的原因，其中之一便是当时落后的计算机运算能力，但在1990年后，算力已不再是阻挡人工智能腾飞的障碍。20世纪90年代开始，计算机处理器的性能更新程度越来越快，伴随而至的人工智能也开始出现令人惊叹的成就，掀起新一轮高潮，直到今时今日。其中有四次著名的人机大战，从每一次比拼的变化中可以看到人工智能发展之迅猛让人瞠目结舌。

第一场：1997年，美国IBM公司的“深蓝”超级计算机挑战博弈树复杂度为10的123次方的国际象棋，以2胜1负3平战胜了当时世界排名第一的国际象棋大师卡斯帕罗夫，引起世界范围内的轰动（见图1-8）。相较于卡斯帕罗夫可以预判10步，“深蓝”依靠每秒可运算2亿步的强大的计算能力，穷举所有路数来选择最佳策略，高下立判。

 [image:]

图1-8　“深蓝”大战卡斯帕罗夫

第二场：2006年，浪潮天梭挑战博弈树复杂度为10的123次方的中国象棋，在比赛中，同时迎战柳大华、张强、汪洋、徐天红、朴风波5位大师。比赛按照2局制的规则进行，反复博弈后，浪潮天梭最终凭借每步66万亿次的棋位分析与检索能力，发挥出平均每步棋27秒的速度，以11∶9的总比分取得胜利。从那场比赛开始，象棋软件蓬勃发展，人类棋手逐渐难以与之抗衡。

第三场：2011年，“深蓝”的同门师弟“沃森”在美国老牌智力问答节目《危险边缘》中挑战两位人类冠军[1]。比赛过程中，“沃森”展现出惊人的自然语言理解能力，不但能够准确识别题目内容，还能够分析线索的微妙含义，并理解讽刺反语等深层次的表达方式，再加上它3秒内检索数百万条信息的运算速度，最终轻松战胜两位人类冠军。

第四场：2016年，谷歌Deep Mind公司的深度学习AlphaGo挑战世界冠军韩国职业棋手李世石九段。这场比赛举世瞩目，博弈树复杂度为10的360次方的围棋一直被认为是人类最后的智力竞技高地。据估算，围棋的可能下法数量超越了可观测宇宙范围内的原子总数，显然1997年的“深蓝”式硬算在围棋上行不通。正因如此，人们长久以来一直认为只有人类擅长下围棋。但AlphaGo最终以4∶1战胜李世石（见图1-9）。更可怕的是，2016年到2017这个跨年夜，AlphaGo进阶版Master在某围棋网络对战平台上挑战中韩世界冠军，留下超过60盘连胜零负的成绩后绝尘而去，包括对当今世界围旗第一人柯洁连胜三局。

 [image:]

图1-9　AlphaGo对战李世石

四场比赛，20年的时间，体现人类智慧的竞技游戏，已被人工智能彻底占领高地，甚至有人戏称李世石将是最后一个可以战胜AI的棋手。与此相伴的是，人工智能在多个领域的全面繁荣成长。

[1] http://www.xinhuanet.com/science/2016-07/09/c_135171112.htm
1.2　机器学习与深度学习

2012年以后，随着信息爆炸带来的数据量猛增、计算机算力的高速提升和深度学习的出现以及运用，人工智能的研究领域不断扩展，迎来大爆发。除了传统的专家系统、机器学习等，进化计算、模糊逻辑、计算机视觉、自然语言处理、推荐系统也接二连三有了里程碑式的成果[1]，见图1-10。

 [image:]

图1-10　人工智能的分支

机器学习属于人工智能的分支之一，且处于核心地位。顾名思义，机器学习的研究旨在让计算机学会学习，能够模拟人类的学习行为，建立学习能力，实现识别和判断。机器学习使用算法来解析海量数据，从中找出规律，并完成学习，用学习出来的思维模型对真实事件做出决策和预测。这种方式也被称为“训练”。深度学习是机器学习的一种实现技术，在2006年被Hinton等人首次提出。深度学习遵循仿生学，源自于神经元以及神经网络的研究，能够模仿人类神经网络传输和接收信号的方式，进而达到学习人类的思维方式的目的。[2]

简而言之，机器学习是一种实现人工智能的方法，深度学习是一种实现机器学习的技术，而本书的主角生成对抗网络则是深度学习中的一种分类。它们之间的关系可以通过图1-11清晰地表示。

 [image:]

图1-11　人工智能、机器学习、深度学习与生成对抗网络四者的关系

[1] https://www.msra.cn/zh-cn/news/features/ai-hot-words-20171010

[2] https://blog.csdn.net/Michaelwubo/article/details/79625212
1.2.1　机器学习分类

在机器学习或者人工智能领域，有几种主要的学习方式，分为监督式学习、无监督式学习、强化学习。监督式学习主要用于回归和分类，无监督式学习主要用于聚类。

监督式学习[1]是从有标签训练集中学到或建立一个模式，并根据此模式推断新的实例。训练集是由输入数据（通常是向量）和预期输出标签所组成。当函数的输出是一个连续的值的时候称为回归分析，而当预测的内容是一个离散标签的时候，我们称它为分类。

无监督式学习[2]是另外一种比较常用的学习方法，与监督式学习不同的是，它没有准确的样本数据进行训练。举个例子，比如我们去看画展，如果我们对艺术一无所知，是很难直接区分出艺术品的流派的。但当我们浏览完所有的画作后，可以有一个大概的分类，哪怕不知道这些分类对应的准确的绘画风格是什么，但是却可以把观看过的两个作品归为一个类型。这就是无监督式学习的流程，即并不需要人力来输入标签，适用于聚类，把相似的东西聚在一起，而无所谓这一类到底是什么。

强化学习[3]是另外一种重要的机器学习方法，强调如何基于环境而行动，以取得最大化的预期利益。在这种模式下，输入的样本数据也会对模型进行反馈，不过不像监督式学习里面那样直接告诉正确的分类，强化学习的反馈仅仅检查模型的对错，模型会接收到类似于奖励或者惩罚的刺激后，逐步做出调整。相比于监督式学习，强化学习更加专注于规划，需要在探索未知领域和遵从现有知识之间找到一个合理的平衡点。监督式学习、无监督式学习和强化学习的区别见图1-12。

 [image:]

图1-12　监督学习、无监督学习和强化学习的区别

[1] https://zh.wikipedia.org/wiki/监督式学习

[2] https://zh.wikipedia.org/wiki/非监督式学习

[3] https://zh.wikipedia.org/wiki/强化学习
1.2.2　神经网络与深度学习

神经网络是一种实现机器学习的技术，旨在模拟人脑神经网络的运作机制。1943年，抽象的神经元模型被首次提出。1949年心理学家Hebb提出了“学习率”这一概念，即信息在人脑神经细胞的突触上传递时，强度是可以变化的。于是研究人员们开始用调整权值的方法进化机器学习算法。1958年，计算科学家Rosenblatt提出了由两层神经元组成的单层神经网络，可以完成线性分类任务。

1986年，BP算法的提出解决了两层神经网络所需要的复杂计算量问题，这个算法在两层神经网络（输入层和输出层）中增加了一个中间层。但尽管使用了BP算法，一次神经网络的训练仍然耗时太久，局部最优解问题作为困扰训练优化的一大问题使得神经网络的优化较为困难。

2006年，Hinton在《Science》和相关期刊上发表了论文，首次提出了“深度学习”的概念，并增加了两个优化技术——“预训练”（pre-training）和“微调”（fine-tuning）。这两个技术的运用可以让神经网络的权值找到一个接近最优解的值，并使得对整个网络进行优化训练的学习时间大幅度减少。[1]

深度学习实际上指的是深度神经网络学习，普通神经网络由于训练代价较高，一般只有3～4层，而深度神经网络由于采用了特殊的训练方法加上一些技术算法，可以达到8～10层。深度神经网络能够捕捉到数据中的深层联系，从而能够得到更精准的模型，而这些联系不容易被普通的机器学习方法所发觉。见图1-13。

 [image:]

图1-13　从单层、两层到多层神经网络

[1] 计算机的潜意识，https://www.cnblogs.com/subconscious/p/5058741.html
1.2.3　深度学习的应用

目前，深度学习神经网络（见图1-14）在人工智能界占据统治地位，但凡有关人工智能的产业报道必然离不开深度学习。深度学习的引入也确实让使用传统机器学习方法的各个领域都取得了突破性进展。

 [image:]

图1-14　深度学习神经网络

2000年开始，人们开始用机器学习解决计算机视觉问题，可以很好地实现车牌识别、安防、人脸识别等技术。在深度学习出现以前，大多数识别任务要经过手工特征提取和分类器判断两个基本步骤，而深度学习可以自动地从训练样本中学习特征。深度学习扩大了其应用场景，如无人车、电商等领域。Mobileye及NVIDIA公司把基于深度卷积神经网络的方法用于汽车的视觉系统中，率先将深度学习应用于无人驾驶领域，为无人驾驶提供了硬件基础。2018年2月2日，谷歌宣布将于2018年启动无人驾驶出租车服务，无人驾驶首次开启商业运营（见图1-15）。除此之外，通用、特斯拉、百度、Uber、苹果等公司也进入无人驾驶赛道。[1]

 [image:]

图1-15　Google无人驾驶车

在语音技术上，2010年后深度学习的广泛应用使语音识别的准确率大幅提升，成熟产品如苹果的Siri、亚马逊的Echo（见图1-16）等，可以很轻松地识别出用户说出的一段话，并可以协助完成一些任务，比如开关应用、搜索甚至帮助预定晚餐座位。与图像相比，语音的识别更加复杂，不同语言有不同口音，甚至充满暗喻，对机器的理解能力提出很高的要求。[2]

 [image:]

图1-16　亚马逊智能音箱Echo

在自然语言处理上，目前取得最大突破的成熟产品就是机器翻译。Google的翻译系统可以理解原文的连贯语义，给出完整的翻译结果，这是人工智能的一个标杆性事件。2016年，谷歌翻译升级为谷歌神经网络翻译系统（Google neural machine translation），谷歌的翻译系统又一次完成了与人工智能的联合提升。

[1] http://www.sohu.com/a/226424941_465591

[2] https://blog.csdn.net/qq_41020134/article/details/80612872
1.3　了解生成对抗网络

1.3.1　从机器感知到机器创造

机器学习与深度学习在过去几年取得了重大的突破，尤其是深度学习的发展让计算机具备了非常强大的感知能力，计算机可以感知物体、识别内容，甚至理解人们说的话。从机器学习到深度学习的不断发展过程中，机器一直在不停模仿人类的思维方式，希望能像人一样思考。但仅仅具备感知能力似乎是不够的，人类思维能力的迷人之处更在于它的创造能力，我们希望计算机能够自己写诗、谱曲、作画、创作艺术作品等。

越来越多的研究者将自己的研究方向从机器感知转向了机器创造，希望通过生成技术能够让计算机具备生成新事物的能力。在生成技术的研究中，本书的主角“生成对抗网络”应运而生，它不仅打破了人们对传统生成模型的理解，同时也具备了非常令人满意的效果。

要了解生成对抗网络[1]，不得不首先认识一下“生成对抗网络之父”Ian Goodfellow（见图1-17，以下简称Ian）。Ian本科与研究生在斯坦福大学计算机科学专业就读，博士时期在蒙特利尔大学研究机器学习，师承深度学习的顶级大师Yoshua Benjo（业界公认他与Geoffrey Hinton、Yann LeCun并列为深度学习领域的“三驾马车”），而生成对抗网络正是Ian在蒙特利尔大学博士期间提出的想法。Ian在毕业后先后在Google和OpenAI进行深度学习相关的研究，在此期间对GAN的持续发展做出了非常大的贡献。

 [image:]

图1-17　GAN发明者：Ian Goodfellow

Ian发明生成对抗网络是出于一个偶然的灵感，当时他正在蒙特利尔大学和其他博士一起进行生成模型的研究，他们想通过该生成模型让计算机自动生成照片。当时他们的想法还是希望使用传统的神经网络方法，希望通过模拟人的大脑思考方式来进行图片的生成。但是事实是生成的图像质量始终不理想，出现了图片模糊的情况，如果需要继续对现在的模型进行优化，需要大量的训练数据集，而且最终的可行性也是不得而知。

当时的Ian对使用传统神经网络的方式本身产生了怀疑，他认为也许这并非最理想的解决方案。一天晚上，他突然想到一种全新的思路，如果不是只用一个神经网络，而是同时使用两个神经网络会不会有更好的效果呢？

这一想法为他打开了一种全新的思路，在Ian的构思中两个神经网络并非是合作关系而是一种博弈与对抗的关系（见图1-18），这也就是生成对抗网络最初的思想。就如同人类自身在发展过程中经历的那样，只有在与同类的竞争环境下对于某项技能的学习才会更加快速，比如各类比赛尤其是体育类竞赛，每年的成绩都在不断逼近人类极限，这其中有很大一部分原因在于比赛选手之间的比拼与较劲。

 [image:]

图1-18　图片来自《麻省理工科技评论》的2018十大技术突破

如果从仿生学的角度来看，在生物的发展过程中也有着类似的状态，在与其他物种尤其是天敌的对抗中自身会不断进化，从而向着一个更完善的状态转变。这一理论是由进化生物学家Leigh Van Valen在1973年的时候总结提出的，称为“红皇后假说”，是一种关于生物协同进化的假说，物种间为了争夺有限的资源，不得不持续优化自身以对抗自身种族的捕食者与竞争者。同样地，对于该物种的捕食者与竞争者来说，也同样需要不断进化来获取相应的资源。

Ian Goodfellow是一个非常果敢的执行派，同时也是一个代码高手，在基础理论大致清晰了之后他立刻就开始了实践，并且在最初的几次实践过程中，这种对抗的思想就在实验数据的图像生成上取得了非常理想的效果。

生成对抗网络这种全新的技术在生成方向上带给了人工智能领域全新的突破。在之后的几年中生成对抗网络成为深度学习领域中的研究热点，近几年与GAN有关的论文数量也急速上升（见图1-19），网络上有人整理了近年来的GAN模型，截至2018年2月份已经有了350多个，数量仍然在持续增加中。[1]

 [image:]

图1-19　GAN论文数量趋势图

“深度学习三驾马车”的另外一位顶级专家Yann LeCun（纽约大学教授，前Facebook首席人工智能科学家）称赞生成对抗网络是“过去20年中深度学习领域最酷的思想”，而在国内被大家熟知的前百度首席科学家Andrew Ng也把生成对抗网络看作“深度学习领域中一项非常重大的进步”。在机器学习顶级会议NIPS2016上，为Ian Goodfellow专门开设了关于GAN的教程演讲（见图1-20）。在2018年，这一对抗式神经网络的思想被《麻省理工科技评论》评选为2018年“全球十大突破性技术”（10 Breakthrough Technologies）之一。

 [image:]

图1-20　Ian在NIPS2016的分享

[1] https://deephunt.in/the-gan-zoo-79597dc8c347
1.3.2　什么是生成对抗网络

让我们先用一个小例子来认识一下生成对抗网络。首先我们来认识一下生成对抗网络的双方——生成器与判别器，在训练过程中两者的配合非常重要。我们可以把生成器想象成一个古董赝品制作者（虽然比喻可能并不太合适），他的成长过程是从一个零基础的“小白”慢慢成长为一个“仿制品艺术家”。而判别器则担任的是一个古董鉴别专家的角色，当然一开始也许他也仅仅是一个普通等级的鉴别师，在与赝品制作者的博弈中逐渐成长为一个技术超群的鉴别专家（见图1-21）。

 [image:]

图1-21　生成对抗网络：创作者与鉴别师

生成对抗网络的内部比赛现在就开始了。让我们来看一下最初的情况是怎样的：赝品制作者还是一个什么都不懂的“小白”，也不懂得真实的古董到底应该是什么样子，完全凭借自己的心意随意制作产品。

面对如此简单可分辨的仿制品，虽然自身功力也不深，但是此时的初级鉴别者却还是能够一眼就能分辨孰真孰假。在分辨完成的同时，鉴别者会将自己的判断结果写成报告：比如做工不精细、颜色不协调等。

最初的第一次对抗就这么完成了，似乎离我们期待的目标还非常远，但是没关系，这才刚刚开始。现在进入第二阶段，仿造者通过一些渠道，拿到了鉴别者的判断报告，他认真研读了里面的每一条信息，根据这些信息重新制作赝品，虽然他依然不知道真实古董到底是什么样子，但他希望能够通过这份报告的信息来“骗过”鉴别者。

这一次创作的赝品比起之前的来说确实要成熟不少。到了鉴别者这边，当他再次拿到赝品和真品时，要重新判断作品的真假，这一次他也发现了赝品制造者的能力有所提升了，为了区分真假作品，他需要花时间去寻找一些更深入的区别点。当然，在一番努力过后，鉴别师顺利完成了任务，同时他也如第一次一样，将他区分真假的理由写成报告（之后依然会流出到赝品制造者手里）。第二次对抗到这里也完成了。

当然对抗远远没有结束，如同上述的故事一直持续了很多很多次……

在经历了N次的互相博弈以后，两者在整个训练过程中都变得非常强，其中的造假者一方几乎能制作出以假乱真的作品，而鉴别者一方也早已是“火眼金睛”的鉴别专家了。最后一次博弈是这样的：赝品制作者已经完全摸透了鉴别师的心理，虽然他还是没有见过真的古董是什么样子，但是对古董应该具备什么样的特性已经十拿九稳，对于鉴别师可能的分辨过程也全都了然于心。对于如此以假乱真的赝品，虽然鉴别者拥有“火眼金睛”，但已然是无能为力了，他可以做的只能是凭运气猜测是真是假，而无法用确定的理由进行判断。

这也就是生成对抗网络最终的目的，而我们所需要的就是培养出这个能够以假乱真的生成器。在之后的第3章开始，本书会详细介绍生成对抗网络的技术细节。
1.4　本章小结

本章为入门章节，介绍了人工智能领域目前的发展状况，以及生成对抗网络的基本概念和它在整个研究领域中的状况。本章介绍了机器学习与深度学习的发展过程，但不会涉及机器学习与深度学习的理论与实践相关知识。生成对抗网络是深度学习的一个分支领域，在之后的该领域学习中，会默认用到机器学习与深度学习中的概念，希望读者可以有机会自己补全这些基础知识。在后面的学习过程中，我们会慢慢认识到生成对抗网络的价值，尤其是大量在图像生成方向的贡献，让我们一步一步慢慢体会它的魅力所在。
第2章　预备知识与开发工具

本书后续内容中涉及的项目和示例大多是基于本章提到的工具完成的，对这些编程语言或者框架已经非常熟悉的读者可以直接跳过，但如果你是第一次接触深度学习，那么请跟随本章的入门介绍为后续内容打好基础。
2.1　Python语言与开发框架

2.1.1　Python语言

Python是一门在科学与工程领域都非常流行的高级编程语言，属于解释性编程语言，在可读性和易用性方面优势非常明显。在数据科学和机器学习技术发展的推动下，Python已经当之无愧地变成了目前最流行的编程语言之一。

Python的第一个版本由荷兰程序员Guido van Rossum（见图2-1）在1991年发布，他对于Python语言的设计宗旨是“优雅、明确、简单”。Guido van Rossum毕业于阿姆斯特丹大学，2005年至2012年于谷歌公司担任软件工程师，2012年之后加入了Dropbox担任首席工程师。同时，他一直在维护Python项目。

 [image:]

图2-1　Python发明人：Guido van Rossum

在官网[1]上可以下载最新版的Python。目前Python分为两个大版本，分别为Python 2和Python 3。前者为历史版本，在2010年更新至2.7之后就宣布不再更新了；后者为新版本，仍在持续维护中。目前这两个版本都被广泛使用，读者在使用互联网上的开源项目时务必看清项目使用的Python版本号。

如果Python已经成功安装完毕，可以直接在终端命令行中输入“python”来打开交互解释器，如图2-2所示。

 [image:]

图2-2　Python交互解释器

此时可以直接在交互解释器中输入Python代码执行命令。如果尝试输入“import this”，可以看到Python的设计之道，如图2-3所示。

 [image:]

图2-3　隐藏的Python设计之道

[1] https://www.python.org
2.1.2　常用工具简介

pip

Python的开发者社区非常活跃，开源项目的开发者会将他们研发的框架和代码库开源出来供其他人使用。pip工具是Python官方推荐的第三方Python包安装工具，它的使用非常便捷，仅需几行命令即可管理你的所有第三方库。

如果你的Python版本在2.7或是3.4以上的话，已经自带了pip可以直接使用。如果你不小心删除了工具包，或者发生其他意外情况的话，可以按照下面的步骤重新安装。

首先使用curl下载官方的get-pip.py文件。

$ curl https://bootstrap.pypa.io/get-pip.py-o get-pip.py

接着直接运行get-pip.py文件，即可完成安装。

$ python get-pip.py

当需要更新pip时，只需运行下面的命令进行升级。

$ pip install-U pip

我们可以使用关键词来搜索需要的第三方库。

$ pip search"query"

使用pip安装第三方库非常简单，只需使用install命令，可以根据自己的需要添加相应的版本号信息。下面三条命令分别为安装最新版本号、安装固定版本号与安装最小版本号。

$ pip install SomePackage

$ pip install SomePackage==1.0.4

$ pip install SomePackage>=1.0.4

有些情况下可能希望直接从源代码进行安装。下面的命令是从GitHub上的源码进行pip安装。

$ pip install https://github.com/user/repo.git@sometag

如果需要批量安装几种库，可以直接将这些库的名字写在一个requirements.txt文件里，然后统一进行安装。

$ pip install-r requirements.txt

卸载第三方库时使用pip也是非常简单的。

$ pip uninstall SomePackage

使用list命令可以列出当前环境下的所有第三方库。

$ pip list

如需列出所有需要更新的库，可以加上“--outdated”。

$ pip list--outdated

Virtualenv

Virtualenv是一个Python虚拟环境工具，它可以为你建立独立的虚拟化Python运行环境。当你的电脑上包含不止一个Python项目的时候，可能每一个项目所依赖的库是不同的，甚至有些项目使用了相同的库但是却要求不一样的版本。这个时候建立独立的虚拟环境就变得非常重要。

Virtualenv让Python虚拟环境的搭建变得非常简便，在实际开发中一定会用到，我的习惯是对每个项目都建立一个独立的环境，确保每个项目的第三方库之间不存在依赖关系。

可以通过pip来安装Virtualenv。

$ pip install virtualenv

如果希望直接安装最新的开发者版本，可以选择源码安装。

$ pip install https://github.com/pypa/virtualenv/tarball/master

在你的项目文件夹中，通过以下命令可以创建名为ENV的虚拟环境。

$ virtualenv ENV

安装完毕后，你并没有进入该虚拟环境，需要使用下面的命令激活环境。

$ source ENV/bin/activate

此时，你已经进入新创建的Python虚拟环境，可以按照自己项目的需要进行环境的配置或安装第三方依赖包等。如需退出该环境，仅需运行反激活命令即可。

$ deactivate

Jupyter Notebook

Jupyter Notebook是一个交互式编程的笔记本，用户可以很快地基于它来进行代码的调试，并快速得到反馈。

官方推荐使用Python 3的pip进行安装。

$ pip3 install--upgrade pip

$ pip3 install jupyter

安装完成后可以在你的文件夹中使用jupyter命令开启交互式编程笔记本。

$ jupyter notebook

开启后程序会自动跳转至浏览器，界面如图2-4所示。

 [image:]

图2-4　Jupyter Notebook：浏览器界面

点击右侧的New，选中Python 3，可以在当前目录新建一个笔记本（见图2-5）。

 [image:]

图2-5　Jupyter Notebook：创建新笔记

建立后的笔记本如图2-6所示，界面分为菜单栏、工具栏和编辑栏。可以在编辑栏的单元格里编辑代码，按“Shift+回车”可以执行程序。

 [image:]

图2-6　Jupyter Notebook：界面组件
2.1.3　第三方框架简介

Python包含了大量实用的第三方框架，下面我们列举几个在数据处理和机器学习中常用的Python框架。

NumPy

NumPy是一个在科学计算领域非常流行的第三方库，对于数组运算、向量运算以及矩阵运算的支持非常好，底层代码由C语言完成，所以执行效率非常高。

Pandas

Pandas是基于NumPy的数据分析框架，内部包含了很多标准化的数据结构以及处理方法，是为了“高效进行数据分析”而生的一种工具。

Matplotlib与Seaborn

Python有很多实用的第三方可视化工具，比如Matplotlib、Seaborn、Bokeh等。Matplotlib是一个非常流行的2D图像绘制框架，可以满足机器学习中大部分数据可视化的需求，可以被用于Python脚本、Jupyter Notebook甚至是Web端的应用。而Seaborn是一款基于Matplotlib的高级可视化框架，是用于数据统计分析以及探索的可视化工具，支持NumPy与Pandas的高级数据结构，见图2-7。

 [image:]

图2-7　Seaborn的展示效果图

Scikit-Learn

Scikit-Learn是一款在学术领域非常流行的机器学习开源框架，对于常用的分类、回归、聚类等机器学习算法均提供了非常简便的高级API，以供用户使用，简单的几步就可以完成大部分机器学习模型的训练和测试。之后要介绍的TensorFlow框架虽然也包含了大部分Scikit-Learn的机器学习功能，但更偏向于深度学习的研究，如果只是做一些机器学习的应用，Scikit-Learn是更便捷的选择。
2.2　TensorFlow基础入门

2.2.1　TensorFlow简介与安装

TensorFlow（见图2-8）是目前行业中最著名的机器学习框架之一，由谷歌大脑团队研发并在2015年开源，开发团队具备很强的机器学习能力，项目一直处于稳定的更新中。TensorFlow的开发者社区也非常活跃，目前网络上大量的机器学习开源项目均是由TensorFlow开发完成的，大量的企业也开始把TensorFlow作为标准化的机器学习工具。

 [image:]

图2-8　TensorFlow Logo

在硬件层面上，谷歌在2016年推出了专门面向TensorFlow深度学习的专用处理芯片TPU（见图2-9）。相比于传统的图像处理器GPU，TPU的功耗更低、速度更快。著名的围棋软件AlphaGo也采用了TPU，目前TPU已经整合在谷歌云上，可供用户使用。

 [image:]

图2-9　谷歌公司推出的TPU芯片

2017年，谷歌针对移动端设备推出了TensorFlow Lite，可以让开发者在移动设备上部署人工智能软件。基于TensorFlow Lite的架构如图2-10所示，开发者可以让自己的模型在不同的移动端设备上运行，实现诸如计算机视觉、自然语言处理等各类机器学习应用。

 [image:]

图2-10　面向移动端的TensorFlow Lite架构图

为了方便开发者，TensorFlow除提供了大量相关的配套教学材料以外，还集成了很多辅助工具。比如TensorFlow内部集成了可视化工具TensorBoard，可以方便开发者对TensorFlow程序的理解、调试与优化。图2-11为TensorBoard设置完成后的显示。

本书以Macbook Pro为例介绍如何在电脑上安装TensorFlow框架，其他系统可采用类似方式或在TensorFlow官网指导下安装。

使用pip安装

使用pip工具安装TensorFlow是最简便的方法，首先需确保电脑上的Python为2.7或是3.3以上的版本。

按照下列命令安装pip工具。

$ sudo easy_install--upgrade pip

 [image:]

图2-11　TensorBoard界面示意图

查看对应的pip是否安装完毕。

$ pip-V#for Python 2.7

$ pip3-V#for Python 3.n

使用pip安装TensorFlow。要注意的是，由于TensorFlow的主服务器在国外，这里设置了清华大学的数据源以使安装过程更顺畅。

$ pip install-i https://pypi.tuna.tsinghua.edu.cn/simple tensorflow

$ pip3 install-i https://pypi.tuna.tsinghua.edu.cn/simple tensorflow

如果希望卸载TensorFlow，可执行下面对应的命令。

$ pip uninstall tensorflow

$ pip3 uninstall tensorflow

使用Docker安装

Docker是一项主流的容器技术，可以对系统、软件、环境加以封装，比传统的虚拟机技术更为方便快捷。可以在Docker的官网上直接下载与计算机对应的Docker版本。

在Docker的资源库里已经有了TensorFlow的容器版本[1]。如果希望在终端直接运行CPU版本的TensorFlow，可以直接执行下面的命令。

$ docker run-it gcr.io/tensorflow/tensorflow bash

如果想在Jupyter Notebook里运行TensorFlow，可以执行下面的命令，并在“http://localhost:8888/”中开启网页。

$ docker run-it-p 8888:8888 gcr.io/tensorflow/tensorflow

验证安装是否成功

我们可以使用一小段代码来验证TensorFlow是否安装完毕。在已经安装了TensorFlow的终端环境下输入Python命令，进入对应的Python环境并输入以下代码。

import tensorflow as tf

hello=tf.constant('Hello,TensorFlow!')

sess=tf.Session()

print(sess.run(hello))

如果此时终端能够正确输出“Hello,TensorFlow!”，则说明TensorFlow已经正确安装。

[1] https://hub.docker.com/r/tensorflow/tensorflow/
2.2.2　TensorFlow使用入门

这里初步带大家看一下TensorFlow是如何使用的，不会涉及很完整的内容，具体的教程可以查看官方文档。

首先写一个最简单的Hello World，由于TensorFlow中所有的数据都记为Tensor，所以这里需要使用tf的常数变量。使用Session来提供运行环境以用于TensorFlow的图计算，否则程序不会执行运算。

import tensorflow as tf

hello=tf.constant('Hello,TensorFlow!')

sess=tf.Session()

print(sess.run(hello))

接着我们来看一下TensorFlow如何处理数值类数据的计算操作，与上面一样，这里的加法和乘法都需要在Session中进行计算。

import tensorflow as tf

a=tf.constant(2)

b=tf.constant(3)

with tf.Session()as sess:

 print sess.run(a)

 print sess.run(b)

 print sess.run(a+b)

 print sess.run(a*b)

也可以使用TensorFlow中的placeholder设置变量来进行计算，如下所示。最后在Session中运行时使用feed参数来进行赋值运算。

import tensorflow as tf

a=tf.placeholder(tf.int16)

b=tf.placeholder(tf.int16)

add=tf.add(a,b)

mul=tf.multiply(a,b)

with tf.Session()as sess:

 print sess.run(add,feed_dict={a:2,b:3})

 print sess.run(mul,feed_dict={a:2,b:3})

TensorFlow可以很方便地进行矩阵计算，下面的代码是计算矩阵的乘法。

import tensorflow as tf

matrix1=tf.constant([[3.,3.]])

matrix2=tf.constant([[2.],[2.]])

with tf.Session()as sess:

 result=sess.run(product)

 print result

2.2.3　Tensorflow实例：图像分类

图像分类是机器学习任务中非常常见的问题，这里我们查看一个TensorFlow的官方案例[1]：如何使用TensorFlow的高级接口Estimator来实现鸢尾花的图像分类。

鸢尾花有多种类型，可以通过花萼和花瓣的不同特征来加以区分（见图2-12）。TensorFlow提供的数据集中包含了下面四个植物学特征。

·花萼长度

·花萼宽度

·花瓣长度

·花瓣宽度

每一条数据也对应了一种鸢尾花分类的标签，如下所示。

·山鸢尾（0）

·变色鸢尾（1）

·维吉尼亚鸢尾（2）

 [image:]

图2-12　不同类型的鸢尾花

我们可以根据此数据集来设置输入函数，以提供用于训练、评估和预测的数据。

definput_evaluation_set():

 features = {'SepalLength': np.array([6.4, 5.0]),

 'SepalWidth': np.array([2.8, 2.3]),

 'PetalLength': np.array([5.6, 3.3]),

 'PetalWidth': np.array([2.2, 1.0])}

 labels = np.array([2, 1])

 return features, labels

接着对于数据的特征需要设置特征列。

FEATURE_KEYS = ['sepal_length', 'sepal_width', 'petal_length', 'petal_width']

feature_columns = [

 tf.feature_column.numeric_column(key, shape=1) for key in FEATURE_KEYS]

这里使用深度神经网络模型来作为分类器进行训练，其包含一个输入层、三个隐含层以及一个输出层。其中输入层为四个节点，分别对应四种特征，隐含层分别为10、20、10个单元，最后的输出层为三个节点，分别对应三个分类。TensorFlow的代码实现如下。

classifier = tf.estimator.DNNClassifier(

 feature_columns=feature_columns, hidden_units=[10, 20, 10], n_classes=3)

模型搭建完毕就可以基于数据集进行训练了。

classifier.train(

 input_fn=lambda:iris_data.train_input_fn(train_x, train_y, args.batch_size),

 steps=args.train_steps)

最终对训练完毕的模型使用测试数据进行准确性评估，这样一整套基于深度模型的图像分类模型就搭建完毕了。

eval_result = classifier.evaluate(

 input_fn=lambda:iris_data.eval_input_fn(test_x, test_y, args.batch_size))

[1] https://www.tensorflow.org/guide/premade_estimators
2.3　Keras基础入门

2.3.1　Keras简介与安装

Keras（见图2-13）是目前世界上深度学习研究领域非常流行的框架，相比于之前介绍的TensorFlow，Keras是一种更高层次的深度学习API。Keras使用Python编写而成，包含了大量模块化接口，有很多常用模型仅需几行代码即可完成，大大提高了深度学习的科研效率。它是一个高级接口，后端可支持TensorFlow、Theano、CNTK多种深度学习基础框架，默认为TensorFlow，其他需要单独设置。2017年年初，Google将Keras整合到了TensorFlow中，目前它已经成为TensorFlow中的高级API模块。

 [image:]

图2-13　Keras项目Logo

Keras具备以下三个核心特点：

·允许研究人员快速搭建原型设计。

·支持深度学习中流行的卷积神经网络与循环神经网络，以及它们两者的组合。

·可以在CPU与GPU上无缝运行。

Keras的口号是“为人类服务的深度学习”，在整体的设计上坚持开发者友好，在API的设计上简单可读，将用户体验放在首位，希望研发人员可以以尽可能低的学习成本投入到深度学习的开发中。Keras的API设计是模块化的，用户可以基于自己设想的模型对已有模块进行组装，其中如神经网络层、损失函数、优化器、激活函数等都可以作为模块而组合成新的模型。与此同时，Keras的扩展性非常强大，用户可以轻松创建新模块以用于科学研究。

除了直接使用TensorFlow已经包含的Keras模块外，我们可以通过Python的pip工具来下载Keras。

$ sudo pip install keras

当然，如果想直接使用源码安装也是可以的，按照下面的命令下载GitHub上的源码，直接安装即可。

$ git clone https://github.com/keras-team/keras.git

$ cd keras

$ sudo python setup.py install

此外，Keras具有一个非常活跃的开发者社区，每天都会有大量的开源代码贡献者为Keras提供各种各样的功能。其中Keras-contrib是一个官方的Keras社区扩展版本，它包含了很多社区开发者提供的新功能，为Keras的用户提供了更多选择。

Keras-contrib的新功能通过审核都会整合到Keras核心项目中，如果项目现在就想使用的话需要单独安装，同样可以使用pip工具直接安装。

$ sudo pip install git+https://www.github.com/keras-team/keras-contrib.git

也可以使用源码安装的方法。

$ git clone https://www.github.com/keras-team/keras-contrib.git

$ cd keras-contrib

$ python setup.py install

2.3.2　Keras使用入门

Keras包含两种模型类型，第一种是序列模型，第二种是函数式模型。其中后者属于Keras的进阶型模型结构，适用于多入多出、有向无环图或具备共享层的模型，具体可参看Keras官方文档。本小节中主要以序列模型为例来带领读者学习Keras的使用方法。

所谓序列模型是指多个网络层线性堆叠的模型，结构如下列代码所示。该序列模型包含了一个784×32的全连接层、ReLU激活函数、32×10的全连接层以及softmax激活函数。

from keras.models import Sequential

from keras.layers import Dense, Activation

model = Sequential([

 Dense(32, input_shape=(784,)),

 Activation('relu'),

 Dense(10),

 Activation('softmax'),

])

也可以使用add()方法进行序列模型中网络层的添加。

model=Sequential()

model.add(Dense(32,input_dim=784))

model.add(Activation('relu'))

下面我们来看一个Keras实现的神经网络二分类示例，其网络结构非常简单，由两个全连接层构成。示例中包含了网络模型的搭建、模型的编译以及训练，读者可以在自己的设备上尝试运行此代码以熟悉Keras的使用。

import numpy as np

from keras.models import Sequential

from keras.layers import Dense

data=np.random.random((1000,100))

labels=np.random.randint(2,size=(1000,1))

model=Sequential()

model.add(Dense(32,activation='relu',input_dim=100))

model.add(Dense(1,activation='sigmoid'))

model.compile(optimizer='rmsprop',loss='binary_crossentropy',metrics=['accuracy'])

model.fit(data,labels,epochs=10,batch_size=32)

predictions=model.predict(data)

下面我们来尝试搭建一些序列模型。首先使用序列模型来搭建卷积神经网络（CNN），代码如下。

from keras.models import Sequential

from keras.layers import Activation,Conv2D,MaxPooling2D,Flatten

model=Sequential()

model.add(Conv2D(32,(3,3),padding='same',input_shape=x_train.shape[1:]))

model.add(Activation('relu'))

model.add(Conv2D(32,(3,3)))

model.add(Activation('relu'))

model.add(MaxPooling2D(pool_size=(2,2)))

model.add(Dropout(0.25))

model.add(Conv2D(64,(3,3),padding='same'))

model.add(Activation('relu'))

model.add(Conv2D(64,(3,3)))

model.add(Activation('relu'))

model.add(MaxPooling2D(pool_size=(2,2)))

model.add(Dropout(0.25))

model.add(Flatten())

model.add(Dense(512))

model.add(Activation('relu'))

model.add(Dropout(0.5))

model.add(Dense(num_classes))

model.add(Activation('softmax'))

同样，也可以使用Keras的序列模型实现循环神经网络（RNN），代码如下。

from keras.models import Sequential

from keras.klayers import Dense,Embedding,LSTM

model=Sequential()

model.add(Embedding(20000,128))

model.add(LSTM(128,dropout=0.2,recurrent_dropout=0.2))

model.add(Dense(1,activation='sigmoid'))

可以发现使用Keras来实现那些复杂的深度学习网络其实是一件非常简单的事情，在模型搭建完毕后可以设置模型的编译，下面分别是CNN与RNN的编译。

CNN模型的优化与编译：

from keras.optimizers import RMSprop

opt=keras.optimizers.rmsprop(lr=0.0001,decay=1e-6)

model.compile(loss='categorical_crossentropy',optimizer=opt,metrics=['accuracy'])

RNN模型的编译：

model.compile(loss='binary_crossentropy',optimizer='adam',metrics=['accuracy'])

在完成模型的编译后就可以对模型进行训练了，这里的代码是对RNN模型进行训练与评估。

model.fit(x_train,y_train,batch_size=32,epochs=15,verbose=1,validation_

data=(x_test,y_test))

score=model.evaluate(x_test,y_test,batch_size=32)

最终可以将模型保存到本地。

from keras.models import load_model

model.save('model_file.h5')

my_model=load_model('my_model.h5')

在下一小节中会通过一个简明的案例让大家了解如何使用Keras解决实际的应用问题。
2.3.3　Keras实例：文本情感分析

本小节中我们通过学习Keras官方的一个实例[1]来熟悉一下Keras的使用方法。

情感分析是自然语言处理领域的研究热点，也是一项非常实用的技术，可以利用这项技术来分析用户在互联网上的观点和态度，同时也可以分析企业或商品在互联网上的口碑。

在深度学习中，循环神经网络（RNN）是处理像文本这样的序列模型的最好方式，但传统的RNN存在的问题是，当序列变长后RNN无法记住之前的重要信息，并且会存在梯度消失的问题。为了解决上述问题，研究者提出了一种长短期记忆网络（LSTM），这也是目前业内处理文本序列非常流行的一种模型（见图2-14）。

 [image:]

图2-14　LSTM网络结构示意图

Keras官方已经为大家准备好了LSTM模型的API，并且提供了IMDB影评数据集，其中包含了评论内容和打分。下面我们来看看如何使用Keras解决情感分析的问题。

首先我们需要准备好数据，选择最常用的20000个词作为特征数据，并将数据分为训练集和测试集。对于文本数据这里需要做一下长度统一，设置最大长度为80个词，如果超过则截断，小于则补零。

from keras.preprocessing import sequence

from keras.datasets import imdb

max_features = 20000

maxlen = 80

(x_train, y_train), (x_test, y_test) = imdb.load_data(num_words=max_features)

x_train = sequence.pad_sequences(x_train, maxlen=maxlen)

x_test = sequence.pad_sequences(x_test, maxlen=maxlen)

数据处理完成后就可以搭建模型了。首先使用嵌入层作为模型的第一层，将输入的20000维的文字向量转换为128维的稠密向量。接着就需要利用LSTM模型对文本序列进行深度学习训练。最终使用全连接层加上Sigmoid激活函数作为最终的判断输出。搭建完毕还需要为模型设置编译的损失函数和优化器。

model = Sequential()

model.add(Embedding(max_features, 128))

model.add(LSTM(128, dropout=0.2, recurrent_dropout=0.2))

model.add(Dense(1, activation='sigmoid'))

model.compile(loss='binary_crossentropy',

 optimizer='adam',

 metrics=['accuracy'])

然后就可以训练和评估情感分析的模型了。在Keras的帮助下，通过简单的几步就可以完成基于深度学习的文本情感分析任务。

model.fit(x_train, y_train,

 batch_size=batch_size,

 epochs=15,

 validation_data=(x_test, y_test))

score, acc = model.evaluate(x_test, y_test,

 batch_size=batch_size)

print('Test score:', score)

print('Test accuracy:', acc)

在使用Keras框架训练完成模型以后，可以通过Keras的save方法将模型保存下来。如果想将其投入到生产环境中为互联网用户提供即时的网页服务，可以使用Flask等Python的Web工具将模型用于搭建Web应用。

[1] https://github.com/keras-team/keras/blob/master/examples/imdb_lstm.py
2.4　Floyd：使用深度学习云平台运行程序

2.4.1　深度学习云平台简介

在深度学习的研究中通常会涉及大量的复杂神经网络结构，比如卷积神经网络（CNN）、循环神经网络（RNN）等。生成对抗网络的训练中也会涉及大量深度学习的神经网络运算，我使用的电脑为Macbook Pro，本书会尽可能保证使用的示例代码可以在读者的笔记本电脑上运行，但是有些情况下单靠笔记本电脑的CPU运算起来会比较费劲，运算时间也非常长。尤其是卷积神经网络（CNN），其包含了大量的矩阵运算，本质上非常适合通过GPU进行训练，而对CPU来说简直是一种灾难。

在深度学习的学习和实践中，可以选择配置一台GPU性能较强的台式电脑或者直接租用一些网络服务商的GPU服务器，以用于网络模型的训练，但对于大部分入门者来说，成本相对较高，而且在配置设备的过程中可能会碰到很多问题。本书推荐的一种解决方案是使用以Floyd为代表的深度学习云平台。Floyd是一种PaaS服务，用户可以不用关注硬件设备的细节配置方法，只需关注模型本身的实现即可。本节以Floyd为例介绍如何使用它来作为训练模型工具。

Floyd是一个便捷高效的深度学习云平台（见图2-15），它的整体用户交互非常友好，可以很快地接入到本地的深度学习项目中。在本地项目代码调试完毕后，可以使用Floyd的命令行工具来对接GPU服务器以直接训练模型。

 [image:]

图2-15　Floyd网站页面

硬件运维是研发过程中最令人头疼的部分，往往一个硬件配置上的问题会消耗大量时间。Floyd这类深度学习云平台推崇的就是无运维的深度学习研究，可以“解放”研究人员，以便其将时间和精力专注于研究模型与算法本身。

Floyd配套了一系列工具，包括对于可交互编程的Jupyter Notebook的支持、端到端的版本控制等，甚至还支持直接将模型部署为网络API。此外，Floyd还有一套团队版服务，用于多人研究团队基于一个集中化的GPU环境共同开发深度学习项目。
2.4.2　Floyd使用入门

Floyd的基本使用非常简单，在注册账号之后就可以免费使用了，如果用量不大的话其实无须付费。

在完成网页上的登录后，我们需要在自己的笔记本电脑终端下载Floyd的命令行工具floyd-cli。

$ pip install-U floyd-cli

通过该命令行工具进行终端内部的登录，输入下列命令后按照提示输入用户名与密码即可。

$ floyd login-u<username>

一切准备就绪后，需要在Floyd的网页端新建一个项目。点击网站右上角的加号，添加项目，然后按照图2-16所示进行创建。具体的项目信息可以按照个人情况进行设置，免费账号目前仅可开启公开项目。

 [image:]

图2-16　Floyd：网页创建新项目

点击创建后，就完成了Floyd平台上的项目创建，此时需要将其与你本地的项目相互绑定。如果手头上暂时没有项目，可以按照下面的命令下载FloydHub提供的测试项目。

$ git clone https://github.com/floydhub/quick-start-pytorch.git

$ cd quick-start-pytorch

然后在项目中进行Floyd的初始化，注意填写的项目名必须与之前平台上创建的项目名保持一致。此外，如果项目添加了其他第三方库，记得新建一个floyd_requirements.txt文件并将它们写入。

$ floyd init<project_name>

项目完成后，可以直接通过Floyd工具运行代码，具体的命令行参数可以查阅Floyd官网来进行配置。下面的命令行是指在GPU环境下指定版本为1.3的TensorFlow来运行“python train.py”这段命令，此外该命令还开启了TensorBoard服务。在执行命令后，Floyd工具会将本地代码上传至云端，在GPU服务器上进行项目的运行。

$ floyd run --gpu --env tensorflow-1.3 --tensorboard "python train.py"

在任务执行过程中，用户可以使用状态命令来查看实时运行状态。

$ floyd status

JOB NAME CREATED STATUS DURATION(s) INSTANCE DESCRIPTION

------------------- --------- -------- ----------- --------- -----------

alice/quick-start:1 just now running 15 gpu

或者也可以直接到网站的项目状态页进行查询，如图2-17所示。

 [image:]

图2-17　Floyd：项目状态查询

如果希望能够在终端实时查阅任务的日志信息，可以使用下面的日志命令。

$ floyd logs -t

...

2017-07-12 16:00:07,446 INFO - Starting attempt 1 at 2017-07-12 16:00:07.436349

2017-07-12 16:00:09,088 INFO - Starting container...

2017-07-12 16:00:09,297 INFO -

...

2017-07-12 16:00:09,297 INFO - Run Output:

2017-07-12 16:01:46,154 INFO - Successfully downloaded train-images-idx3-ubyte.gz

 9912422 bytes.

2017-07-12 16:01:46,158 INFO - Iter 1280, Minibatch Loss= 39855.289062, Training

 Accuracy= 0.17969

2017-07-12 16:01:46,159 INFO - Iter 2560, Minibatch Loss= 14964.132812, Training

 Accuracy= 0.42969

...

在科研过程中，可交互的开发模式一直受到广大研发人员的喜爱，他们可以即刻得到代码的反馈并及时进行修正，我们也可在Floyd上使用可交互的Jupyter Notebook，仅需在之前的项目终端中运行如下命令行即可。

$ floyd run --gpu --mode jupyter

当项目中涉及的数据量非常大的时候，比如大规模的图库等，就需要先将数据集上传到Floyd平台上。首先在Floyd网站上创建数据集，如图2-18所示。

 [image:]

图2-18　Floyd：网页端创建数据集

从终端进入本地的数据集目录中，进行数据集初始化，并执行上传命令。

$ floyd data init <dataset_name>

Dataset "<dataset_name>" initialized in current directory

...

$ floyd data upload

Compressing data...

2.4.3　Floyd实例：神经网络风格转换

神经网络风格转换是一种通过卷积神经网络将一张图片转换成另一张图片风格的技术。如图2-19所示，可以将一张普通的夜景照片与梵高的画作《星夜》相结合，产生一幅梵高风格的夜景照片。在后续的章节中我们也会看到，使用生成对抗网络的技术同样可以实现风格转换。本节不会涉及任何算法相关的项目代码，仅通过Floyd官方提供的神经网络风格转换范例来介绍如何使用Floyd来真正运行一个项目。

 [image:]

图2-19　风格转换示例

首先，按照上一节中介绍的操作在网页端新建一个名为fast-style-transfer的项目。官方已经将风格转换的源代码上传至GitHub，可以通过下列命令进行下载并在终端初始化项目。

$ git clone https://github.com/floydhub/fast-style-transfer

$ cd fast-style-transfer

$ floyd init fast-style-transfer

Project"fast-style-transfer"initialized in the current directory

为了加快示例的操作，这里的训练过程中使用了一个预先训练过的模型，可执行以下命令进行模型训练。

$ floyd run --gpu --env tensorflow-0.12:py2 --data narenst/datasets/coco-

 train-2014/1:images --data narenst/datasets/neural-style-transfer-pre-

 trained-models/1:models --data floydhub/datasets/imagenet-vgg-verydeep-

 19/3:vgg "python style.py --vgg-path /vgg/imagenet-vgg-verydeep-19.mat --

 train-path /images/train2014 --style examples/style/la_muse.jpg --base-

 model-path /models/la_muse.ckpt --epoch 1 --total-iterations 10 --checkpoint-

 dir /output"

训练过程中可以使用下面的命令查看日志，可以看到在经过了10次迭代之后训练完成。如果希望模型的表现更优秀，可以调节迭代次数，但可能会花费更多的时间，大约训练时间在8小时的情况下模型训练效果最佳。

$ floyd logs <JOB_NAME> -t

最后我们需要通过info命令查看任务的详细信息，以获取模型输出的位置。

$ floyd info <JOB_NAME>

项目中已经包含了评估模型的代码evaluate.py，可以将任何你想进行风格转换的照片放到项目的images文件夹中，再执行模型评估代码。

$ floyd run --env tensorflow-0.12:py2 --data <REPLACE_WITH_OUTPUT_NAME>:input

 "python evaluate.py --allow-different-dimensions --checkpoint /input/fns.

 ckpt --in-path ./images/ --out-path /output/"

执行成功后使用output命令来输出评估结果。

$ floyd output<JOB_NAME>

如图2-20所示是我们测试的图片，左图为原图，右图为风格转换后的图片。

 [image:]

图2-20　使用Floyd运行完成的风格转换示例

接着我们尝试基于该模型通过Floyd搭建线上API服务。在项目的app.py文件中已经整合了Flask框架，我们仅需使用run命令的serve模式即可开启API服务。它的整个机制是通过Flask框架来处理请求信息，然后通过之前的evaluate.py来将输入的图片进行处理并返回。

$ floyd run --env tensorflow-0.12:py2 --data narenst/datasets/neural-style-

 transfer-pre-trained-models/1:input --mode serve

Syncing code ...

JOB NAME

narenst/projects/fast-style-transfer/5

URL to job: https://www.floydhub.com/narenst/projects/fast-style-transfer/5

URL to service endpoint: <your_api_url>

API搭建完成后使用curl命令可以测试。

curl -o output.jpg -F "file=@./images/input.jpg" <your_api_url>

2.5　本章小结

本章为大家梳理了学习生成对抗网络知识必备的编程工具，介绍了进入机器学习领域必须具备的Python语言编程知识以及常用的工具和框架；重点介绍了深度学习领域的TensorFlow框架与Keras框架，并对每个框架给出了具体的实例。读者在阅读和实践后应该可以初步上手这两个框架，如果需要更进一步地掌握相关知识，需前往它们的官网了解详细信息。最后介绍了深度学习云平台Floyd的使用，以便让读者能够在笔记本电脑上使用云端GPU来运行自己的深度学习算法。
第3章　理解生成对抗网络

“What I cannot create,I do not understand.”

——理查德·费曼,美国理论物理学家
3.1　生成模型

3.1.1　生成模型简介

什么是生成模型？

在开始讲生成对抗网络之前，我们先看一下什么是生成模型。在概率统计理论中，生成模型是指能够在给定某些隐含参数的条件下，随机生成观测数据的模型，它给观测值和标注数据序列指定一个联合概率分布。在机器学习中，生成模型可以用来直接对数据建模，如根据某个变量的概率密度函数进行数据采样，也可以用来建立变量间的条件概率分布，条件概率分布可以由生成模型根据贝叶斯定理形成。

如图3-1所示的生成模型概念示意图，对于输入的随机样本能够产生我们所期望数据分布的生成数据。举一个例子，一个生成模型可以通过视频的某一帧预测出下一帧的输出。另一个例子是搜索引擎，在你输入的同时，搜索引擎已经在推断你可能搜索的内容了。可以发现，生成模型的特点在于学习训练数据，并根据训练数据的特点来产生特定分布的输出数据。

对于生成模型来说，可以分为两个类型，第一种类型的生成模型可以完全表示出数据确切的分布函数。第二种类型的生成模型只能做到新数据的生成，而数据分布函数则是模糊的。本书讨论的生成对抗网络属于第二种，第二种类型生成新数据的功能也通常是大部分生成模型的主要核心目标。

 [image:]

图3-1　生成模型概念图

生成模型的作用是什么？

生成模型似乎干的事情就是为了产生那些不真实的数据，那么我们究竟为何要研究生成模型呢？

虽说生成模型的功能在于生成“假”数据，但在科学界和工业界确实可以起到各种各样的作用。Ian Goodfellow在NIPS2016的演讲中给出了很多生成模型的研究意义所在[2]。

首先，生成模型具备了表现和处理高维度概率分布的能力，而这种能力可以有效运用在数学或工程领域。其次，生成模型尤其是生成对抗网络可以与强化学习领域相结合，形成更多有趣的研究。此外，生成模型亦可通过提供生成数据，从而能够优化完善半监督式学习。

当然生成模型也已经在业内有了非常多的应用点，比如使用生成模型用于超高解析度成像，可以将低分辨率的照片还原成高分辨率，此类应用非常有用，对于大量不清晰的老照片，我们可以采用这项技术加以还原，或者对于各类低分辨率的摄像头等，也可以在不更换硬件的情况下提升其成像能力。

使用生成模型进行艺术创作也是非常流行的一种应用方式，可以通过用户交互的方式，输入简单的内容从而产生艺术作品的创作。

此外还有图像到图像的转换、文字到图像的转换等。这些内容都非常有趣，不仅可以应用于工业与学术领域，也可应用于消费级市场。关于更多应用方面的详细介绍会在本书的后半部分中展开详述。
3.1.2　自动编码器

我们已经了解生成模型其实要做的事情就是让机器学习大量的训练数据，从而具备能够产生同类型新数据的能力。那么现在我们来看一下，究竟有哪些方法可以实现上述功能呢？从本小节开始，我们来看一下实际可用的生成模型。

首先在这里介绍一个叫作自动编码器（auto-encoder）的方法。自动编码器是一种神经网络模型，该模型的最初意义是为了能够对数据进行压缩。如图3-2所示是一个标准的自动编码器，它的基本结构是一个多层感知器的神经网络，从输入层到输出层之间有多个隐层，它的结构特点在于输入层与输出层拥有相同的节点数量，中间编码层的节点数量需要小于输入层与输出层的节点数。

 [image:]

图3-2　自动编码器示意图

该网络结构希望能够在输出层产生的数据X′良好地还原出输入层的数据X，由于中间的编码层数据z拥有的维度数量低于输入层与输出层的维度，所以如果输出层可以还原输入层的话相当于对输入数据进行了降维，也就是前面所说的数据压缩。

在自动编码器中，我们把输入层到编码层的网络部分（也就是整个神经网络的前半部分）称为编码器，把编码层到输出层的网络部分（图3-2中后半部分）称为解码器。编码器的作用是可以实现数据的压缩，将高维度数据压缩成低维度数据，解码器则可以将压缩数据还原成原始数据，当然由于对数据进行了降维处理，所以在还原的过程中数据会有一些损失。

自动编码器的训练过程需要将编码器与解码器绑定在一起进行训练，训练数据一般是无标签数据，因为我们会把数据本身作为它自身的标签。大致训练过程的伪代码如下。

伪代码1　自动编码器训练过程

while循环输入数据X do

　前向传输通过所有隐层，得到输出层数据X′;

　计算X′与X的偏差程度;

　反向传输误差值，从而更新网络参数;

end while

除了数据压缩的功能以外，研究人员也使用自动编码器来实现生成模型的功能。当我们使用如上训练过程对自动编码器进行了某类型数据的训练后，编码器与解码器分别具备了此类型数据的编码/解码能力。在训练之后，我们可以单独使用解码器作为生成模型，在编码层输入任意数据，解码器都可以产生对应的生成数据。

图3-3展示的是自动编码器在手写数字数据集上的应用，可以看到原始输入数据的手写数字“2”在经过编码器后形成了一组压缩形式的编码，而这项编码经过解码器之后输出了一个与原始数据非常接近的输出图像，虽然有些许模糊，但是基本还原了手写数字“2”的形态。

 [image:]

图3-3　自动编码器在手写数据集上的应用

如图3-3所示，在生成模型的应用中我们仅使用模型的后半部分，当我们对解码器输入任意编码时，解码器会给出相应的输出数据。由于受到训练数据集的限制，生成的数据往往也是与输入数据相关的内容。

我们可以在网络上找到自动编码器的具体实现方法，比如Keras的官方博客[1]给出了自动编码器在Keras上的实现，在这里本书不做过多介绍。

自动编码器看起来似乎是生成模型的一个不错的实现方案，但是在实际使用中存在很多问题，导致自动编码器其实并不太适合用来做数据生成，现在的自动编码器网络结构仅仅能够记录数据，除了通过编码器以外我们无法产生任何隐含编码（latent code）用来生成数据，如图3-4所示。

 [image:]

图3-4　生成模型的应用

还是以手写数字数据集作为例子，对于每一个手写数字我们会产生一个相应的编码，当我们对解码器输入相应的编码的时候往往能够很好还原出当时的手写数字，然而当我们对解码器输入一个训练集中未出现过的编码时，我们可能会发现输出的内容居然是噪声，也就是说与手写数字数据集完全没有关系。这不是我们想要的结果，我们希望生成模型能够对任意的输入编码产生有相关意义的数据。针对这个问题，研究人员提出了自动编码器的升级版本——变分自动编码器（Variational Auto-Encoder，VAE）。

[1] https://blog.keras.io/building-autoencoders-in-keras.html
3.1.3　变分自动编码器

相比于普通的自动编码器，变分自动编码器（VAE）才算得上是真正的生成模型。

为了解决前文中叙述的自动编码器存在的不能通过新编码生成数据的问题，VAE在普通的自动编码器上加入了一些限制，要求产生的隐含向量能够遵循高斯分布，这个限制帮助自动编码器真正读懂训练数据的潜在规律，让自动编码器能够学习到输入数据的隐含变量模型。如果说普通自动编码器通过训练数据学习到的是某个确定的函数的话，那么VAE希望能够基于训练数据学习到参数的概率分布。

我们可以通过图3-5看一下VAE的具体实现方法，在编码阶段我们将编码器输出的结果从一个变成两个，两个向量分别对应均值向量和标准差向量。通过均值向量和标准差向量我们可以形成一个隐含变量模型，而隐含编码向量正是通过对于这个概率模型随机采样获得的。最终我们通过解码器将采样获得的隐含编码向量还原成原始图片。

 [image:]

图3-5　VAE实现方法

在实际的训练过程中，我们需要权衡两个问题，第一个是网络整体的准确程度，第二个是隐含变量是否可以很好地吻合高斯分布。对应这两个问题也就形成了两个损失函数：第一个是描述网络还原程度的损失函数，具体的方法是输出数据与输入数据之间的均方距离；第二个是隐含变量与高斯分布相近程度的损失函数。

在这里我们需要介绍一个概念，叫作KL散度（Kullback–Leibler divergence），也可以称作相对熵。KL散度的理论意义在于度量两个概率分布之间的差异程度，当KL散度越高的时候，说明两者的差异程度越大；而当KL散度低的时候，则说明两者的差异程度小。如果两者相同的话，则该KL散度应该为0。这里我们正是采用KL散度来计算隐含变量与高斯分布的接近程度的。

下面的公式代码将两个损失函数相加，由VAE网络在训练过程中决定如何调节这两个损失函数，通过优化这个整体损失函数来使得模型能够达到最优的结果。

generation_loss=mean(square(generated_image-real_image))　（3-1）

latent_loss=KL-Divergence(latent_variable,unit_gaussian)　（3-2）

loss=generation_loss+latent_loss　（3-3）

在使用了VAE以后，生成数据就显得非常简单，我们只需要从高斯分布中随机采样一个隐含编码向量，然后将其输入解码器后即可生成全新的数据。如果将手写数字数据集编码成二维数据，我们可以尝试将二维数据能够生成的数据在平面上展现出来，如图3-6所示是从二维数据（-15,-15）到（15,15）之间数据点生成的数据，可以看到随着隐含编码的变化，手写数字也会逐渐从左下角的手写数字0逐渐演变成右上角的手写数字1。

 [image:]

图3-6　隐含编码与对应生成之间的关系

当然VAE也存在缺陷，VAE的缺点在于训练过程中最终模型的目的是为了使得输出数据与输入数据的均方误差最小化，这使得VAE其实本质上并非学会了如何生成数据，而是更倾向于生成与真实数据更为接近的数据，甚至于为了数据越接近越好，模型基本会复制真实数据。

为了解决VAE的缺点，也为了让生成模型更加优秀，就让我们请出本书的主角——生成对抗网络（GAN）。让我们来看一下GAN究竟是什么，它是通过什么样的方法来实现生成模型的建立的。
3.2　GAN的数学原理

3.2.1　最大似然估计

为了理解生成对抗网络的基本原理，我们首先要讨论一下最大似然估计，看它是如何运用在生成模型上的。在最大似然估计中，我们首先会对真实训练数据集定义一个概率分布函数Pdata(x)，其中的x相当于真实数据集中的某个数据点。

同样地，为了逼近真实数据的概率分布，我们也会为生成模型定义一个概率分布函数Pmodel(x;θ)，这个分布函数也是通过参数变量θ定义的。在实际的计算过程中我们希望通过改变参数θ，从而使得生成模型概率分布Pmodel(x;θ)能够逼近真实数据概率分布Pdata(x)。

当然在实际运算中，我们是无法知道Pdata(x)的形式的，我们唯一可以做的是从真实数据集中采样大量的数据，也就是说从Pdata(x)中取出{x1,x2,…,xm}，通过这些真实的样本数据，我们计算对应的生成模型概率分布Pmodel(x(i);θ)。上述的{x1,x2,…,xm}也就是所谓的训练集，例如我们希望生成模型能够生成猫咪的图片，那么我们要做的就是先从互联网上找出大量的真实猫咪图片作为我们的训练集。

现在根据训练数据集可以写出概率函数，通过将所有的真实样本计算出在生成模型中的概率并全部进行相乘。

 [image:]

现在最大似然估计的目标是通过上面这个概率的式子，寻找出一个θ*使得L最大化。这样做的实际含义是指，在给出真实训练集的前提下，我们希望生成模型能够在这些数据上具备最大的概率，这样才说明我们的生成模型在给出的训练集上能够逼近真实数据的概率分布。

相比于连乘，这里使用求和运算更简单一些，所以我们对所有的pmodel(x(i);θ)取一个对数，把相乘转化为相加。

 [image:]

对于上述公式，我们可以把求和近似转化为求logpmodel(x;θ)的期望值，然后我们可以推导出积分的形式。

 [image:]

我们可以通过图3-7理解上面的推导过程，假设我们的训练数据是满足高斯分布的一维数据，最终我们训练后的生成模型概率分布应该能够满足尽可能多的训练样本点。

 [image:]

图3-7　生成模型概率分布

在推导出上述积分公式后，我们在不影响求解的情况下在上式的基础上减去一个与θ没有关系的常数项[image:]，如下面的推导所示我们需要找到一个θ*使得下面的推导结果最小。

 [image:]

 [image:]

之前我们在介绍VAE的时候提到了KL散度，它是一种计算概率分布之间相似程度的计算方法。现在我们来看一下KL散度的公式，我们设定两个概率分布分别为P和Q，在假定为连续随机变量的前提下，它们对应的概率密度函数分别为p(x)和q(x)，我们可以写出如下公式：

 [image:]

从上述公式可以看出，当且仅当P=Q时，KL(P||Q)=0。此外我们也可以发现KL散度具备非负的特性，即KL(P||Q)≥0。但是从公式中我们也可以发现，KL散度不具备对称性，也就是说P对于Q的KL散度并不等于Q对于P的KL散度。

在特定情况下，通常是P用以表示数据的真实分布，而Q表示数据的模型分布或近似分布。那么让我们来对比一下之前推导的公式与KL散度，可以发现它们是完全一致的，那么我们可以继续将公式推导成KL散度的形式：

 [image:]

我们希望最小化真实数据分布与生成模型分布之间的KL散度，从而使得生成模型尽可能接近真实数据的分布。在实际实践中，我们是几乎不可能知道真实数据分布Pdata(x)的，我们使用训练数据形成的经验分布在逼近Pdata(x)。

在实践中我们会发现使用最大似然估计方法的生成模型通常会比较模糊，原因是一般的简单模型无法使得pmodel(x;θ)真正逼近真实数据分布，因为真实数据是非常复杂的。为了模拟复杂分布，可以解决的方法是采用神经网络（例如GAN）实现pmodel(x;θ)，可以把简单分布映射成为几乎任何的复杂分布。

Ian在NIPS2016的文章中给出了基于似然估计的生成模型分类，如图3-8所示。

图3-8中说明了基于似然估计的生成模型可以被分为两个主要分支，一类是显式模型，另一类是隐式模型，两者的核心差别在于生成模型是否需要计算出一个明确的概率分布密度函数。在大部分情况下，研究生成模型的目的往往在于生成数据，我们对于分布密度函数是什么样，可能并没有太大的兴趣。本书的主角——生成对抗网络（GAN）属于后者，它解决了很多现有模型存在的问题，比如计算复杂度高、难以扩展到高维度等，当然它也引出了很多新的问题亟待研究者们解决。

 [image:]

图3-8　基于似然估计的生成模型分类
3.2.2　生成对抗网络的数学推导

从之前几节我们可以了解到，我们的生成模型会从一个输入空间将数据映射到我们的生成空间，写成公式的形式是x=G(z)。通常我们的输入z会满足一个简单形式的随机分布，比如高斯分布或者均匀分布等，为了使得我们生成空间的数据分布能够尽可能地逼近真实数据分布，生成函数G会是一个神经网络的形式，通过神经网络我们可以模拟出各种完全不同的分布类型。

虽然我们可以清楚地知道前置输入数据z的概率分布函数，但在经过一个神经网络的情况下我们难以计算最终的生成空间分布Pmodel(x)，这样就无法计算上一节中的概率函数L。

现在我们来看一下生成对抗网络是如何解决这个问题的。

我们首先看一下生成对抗网络中的代价函数，以判别器D为例，代价函数写作J(D)，形式如下所示，后面我们会解释使用这种形式的原因。

 [image:]

对于生成器来说它与判别器是紧密相关的，我们可以把两者看作一个零和博弈，它们的代价综合应该是零，所以生成器的代价函数应满足如下等式。

 [image:]

这样一来，我们可以设置一个价值函数V来表示J(G)和J(D)。

 [image:]

 [image:]

我们现在把问题变成了需要寻找一个合适的V(θ(D),θ(G))使得J(G)和J(D)都尽可能小，也就是说对于判别器而言V(θ(D),θ(G))越大越好，而对于生成器来说则是V(θ(D),θ(G))越小越好，从而形成了两者之间的博弈关系。

在博弈论中，博弈双方的决策组合会形成一个纳什平衡点（Nash equilibrium），在这个博弈平衡点下博弈中的任何一方将无法通过自身的行为而增加自己的收益。这里有一个经典的囚徒困境例子来进一步说明纳什平衡点。两名囚犯被警方分开单独审讯，他们被告知的信息如下：如果一个人招供而另一方不招供，则招供的一方将可以立即释放，而另一方会被判处10年监禁；如果双方都招供的话，每个人都被判处两年监禁；如果双方都不招供，则每个人都仅被判半年监禁。两名囚犯由于无法交流，必须做出对自己最有利的选择，从理性角度出发选择招供是个人的最优决策，对方做出任何决定对于招供方都会是一个相对较好的结果，我们称这样的平衡为纳什平衡点。

在生成对抗网络中，我们要计算的纳什平衡点正是要寻找一个生成器G与判别器D使得各自的代价函数最小，从上面的推导中也可以得出我们希望找到一个V(θ(D),θ(G))对于生成器来说最小而对判别器来说最大，我们可以把它定义成一个寻找极大极小值的问题，公式如下所示。

 [image:]

我们可以用图形化的方法理解一下这个极大极小值的概念，一个很好的例子就是鞍点（saddle point），如图3-9所示，即在一个方向是函数的极大值点，而在另一个方向是函数的极小值点。

在上面公式的基础上，我们可以分别求出理想的判别器D*和生成器G*。

 [image:]

下面我们先来看一下如何求出理想的判别器，对于上述的D*，我们假定生成器G是固定的，令式子中的G(z)=x。推导如下。

 [image:]

 [image:]

 [image:]

图3-9　鞍点

我们现在的目标是希望寻找一个D使得V最大，我们希望对于积分中的项f(x)=pdata(x)logD(x)+pg(x)log(1-D(x))，无论x取何值都能最大。其中，我们已知pdata是固定的，之前我们也假定生成器G固定，所以pg也是固定的，所以我们可以很容易地求出D以使得f(x)最大。我们假设x固定，f(x)对D(x)求导等于零，下面是求解D(x)的推导。

 [image:]

最终我们求得D*(x)的形式如下式所示。

 [image:]

可以看出它是一个范围在0到1的值，这也符合我们判别器的模式，理想的判别器在接收到真实数据时应该判断为1，而对于生成数据则应该判断为0，当生成数据分布与真实数据分布非常接近的时候，应该输出的结果为[image:]。

找到了D*之后，我们再来推导一下生成器G*。现在先把D*(x)代入前面的积分式子中重新表示[image:]。

 [image:]

 [image:]

到了这一步，我们需要先介绍一个定义——Jensen–Shannon散度，我们这里简称JS散度。在概率统计中，JS散度也与前面提到的KL散度一样具备了测量两个概率分布相似程度的能力，它的计算方法基于KL散度，继承了KL散度的非负性等，但有一点重要的不同，JS散度具备了对称性。JS散度的公式如下，我们还是以P和Q作为例子，另外我们设定[image:]，KL为KL散度公式。

 [image:]

如果我们把KL的公式代入展开的话，结果如下。

 [image:]

现在我们回到之前的式子[image:]，可以把它转化成JS散度的形式。

 [image:]

对于上面的[image:]，由于JS散度是非负的，当且仅当pdata=pg的时候，上式可以取得全局最小值-log(4)。所以我们要求的最优生成器G*，正是要使得G*的分布pg=pdata。

到这里为止我们已经看到了生成对抗网络在数学理论上是如何成立的，在第4章的开始部分会介绍实际操作中是如何实现上述构想的。
3.3　GAN的可视化理解

本节我们用一个可视化概率分布的例子来更深入地认识一下生成对抗网络。Ian Goodfellow的原文[1]中给出了这样一个GAN的可视化实现的例子：图3-10中的点线为真实数据分布，曲线为生成数据样本，生成对抗网络在这个例子中的目标在于，让曲线（也就是生成数据的分布）逐渐逼近点线（代表的真实数据分布）。

虚线为生成对抗网络中的判别器，在实验中我们赋予了它初步区分真实数据与生成数据的能力，并对于它的划分性能加上一定的白噪声，使得模拟环境更为真实。输入域为z（图3-10中下方的直线）在这个例子里默认为一个均匀分布的数据，生成域为x（图3-10中上方的直线）为不均匀分布数据，通过生成函数x=G(z)形成一个映射关系，正如图3-10中的那些箭头所示，将均匀分布的数据映射成非均匀数据。

 [image:]

图3-10　GAN可视化理解

从图3-10a到d的四张图可以展现整个生成对抗网络的运作过程。在a图中，可以说是一种初始的状态，生成数据与真实数据还有比较大的差距，判别器具备初步划分是否为真实数据的能力，但是由于存在噪声，效果仍有缺陷。b图中，通过使用两类标签数据对于判别器的训练，判别器D开始逐渐向一个比较完善的方向收敛，最终呈现出图中的结果，最终判别器的形式为[image:]。当判别器逐渐完美后，我们开始迭代生成器G，如图3-10c所示。通过判别器D的倒数梯度方向作为指导，我们让生成数据向真实数据的分布方向移动，让生成数据更容易被判别器判断为真实数据。在反复的一系列上述训练过程后，生成器与判别器会进入图d的最终状态，此时pg会非常逼近甚至完全等于pdata，当达到理想的pg=pdata的时候，D与G都已经无法再更进一步优化了，此时G生成的数据已经达到了我们期望的目的，能够完全模拟出真实数据的分布，而D在这个状态下已经无法分辨两种数据分布（因为它们完全相同），此时[image:]。
3.4　GAN的工程实践

之前几节我们了解了生成对抗网络（GAN）的设计原理。但是，实际它是如何实现的呢？在这一节中我们会详细介绍GAN的实践方法以及代码的编写[4]。

从之前的数学推导中我们知道，我们要做的是优化下面的式子。

 [image:]

计算公式中的期望值可以等价于计算真实数据分布与生成数据分布的积分，在实践中我们使用采样的方法来逼近期望值。

首先我们从前置的随机分布pg(z)中取出m个随机数{z(1),z(2),…,z(m)}，其次我们再从真实数据分布pdata(x)中取出m个真实样本{x(1),x(2),…,x(m)}我们使用平均数代替上式中的期望，公式改写如下。

 [image:]

在GAN的原始论文中给出了完整的伪代码，其中θd为判别器D的参数，θg为生成器G的参数。

该伪代码每次迭代过程中的前半部分为训练判别器的过程，后半部分为训练生成器。对于判别器，我们会训练k次来更新参数θd，在论文的实验中研究者把k设为1，使得实验成本最小。生成器在每次迭代中仅更新一次，如果更新多次可能无法使得生成数据分布与真实数据分布的JS散度距离下降。

下面我们尝试使用TensorFlow来实现上一节中GAN训练过程的可视化。

伪代码2　基础GAN的伪代码实现（其中对于判别器会迭代k次，k为超参数，大多数情况下可以使k=1）

 [image:]

首先需要设置真实数据样本的分布，这里设置均值为3、方差为0.5的高斯分布。

class DataDistribution(object):

 def __init__(self):

 self.mu = 3

 self.sigma = 0.5

 def sample(self, N):

 samples = np.random.normal(self.mu, self.sigma, N)

 samples.sort()

 return samples

接着设定生成器的初始化分布，这里设定的是平均分布。

class GeneratorDistribution(object):

 def __init__(self, range):

 self.range = range

 def sample(self, N):

 return np.linspace(-self.range, self.range, N) + \

 np.random.random(N) * 0.01

使用下面的代码设置一个最简单的线性运算函数，用于后面的生成器与判别器。

def linear(input, output_dim, scope=None, stddev=1.0):

 norm = tf.random_normal_initializer(stddev=stddev)

 const = tf.constant_initializer(0.0)

 with tf.variable_scope(scope or 'linear'):

 w = tf.get_variable('w', [input.get_shape()[1], output_dim], initializer=norm)

 b = tf.get_variable('b', [output_dim], initializer=const)

 return tf.matmul(input, w) + b

基于该线性运算函数，我们可以完成简单的生成器和判别器代码。

def generator(input, h_dim):

 h0 = tf.nn.softplus(linear(input, h_dim, 'g0'))

 h1 = linear(h0, 1, 'g1')

 return h1

def discriminator(input, h_dim):

 h0 = tf.tanh(linear(input, h_dim * 2, 'd0'))

 h1 = tf.tanh(linear(h0, h_dim * 2, 'd1'))

 h2 = tf.tanh(linear(h1, h_dim * 2, 'd2'))

 h3 = tf.sigmoid(linear(h2, 1, 'd3'))

 return h3

设置优化器，这里使用的是学习率衰减的梯度下降方法。

def optimizer(loss, var_list, initial_learning_rate):

 decay = 0.95

 num_decay_steps = 150

 batch = tf.Variable(0)

 learning_rate = tf.train.exponential_decay(

 initial_learning_rate,

 batch,

 num_decay_steps,

 decay,

 staircase=True

)

 optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(

 loss,

 global_step=batch,

 var_list=var_list

)

 return optimizer

下面来搭建GAN模型类的代码，除了初始化参数之外，其中核心的两个函数分别是模型的创建和模型的训练。

class GAN(object):

 def __init__(self, data, gen, num_steps, batch_size, log_every):

 self.data = data

 self.gen = gen

 self.num_steps = num_steps

 self.batch_size = batch_size

 self.log_every = log_every

 self.mlp_hidden_size = 4

 self.learning_rate = 0.03

 self._create_model()

 def _create_model(self):

 def train(self):

创建模型。这里需要创建预训练判别器D_pre、生成器Generator和判别器Discriminator，按照之前的公式定义生成器和判别器的损失函数loss_g与loss_d以及它们的优化器opt_g与opt_d，其中D1与D2分别代表真实数据与生成数据的判别。

def _create_model(self):

 with tf.variable_scope('D_pre'):

 self.pre_input = tf.placeholder(tf.float32, shape=(self.batch_size, 1))

 self.pre_labels = tf.placeholder(tf.float32, shape=(self.batch_size, 1))

 D_pre = discriminator(self.pre_input, self.mlp_hidden_size)

 self.pre_loss = tf.reduce_mean(tf.square(D_pre - self.pre_labels))

 self.pre_opt = optimizer(self.pre_loss, None, self.learning_rate)

 with tf.variable_scope('Generator'):

 self.z = tf.placeholder(tf.float32, shape=(self.batch_size, 1))

 self.G = generator(self.z, self.mlp_hidden_size)

 with tf.variable_scope('Discriminator') as scope:

 self.x = tf.placeholder(tf.float32, shape=(self.batch_size, 1))

 self.D1 = discriminator(self.x, self.mlp_hidden_size)

 scope.reuse_variables()

 self.D2 = discriminator(self.G, self.mlp_hidden_size)

 self.loss_d = tf.reduce_mean(-tf.log(self.D1) - tf.log(1 - self.D2))

 self.loss_g = tf.reduce_mean(-tf.log(self.D2))

 self.d_pre_params = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES,

 scope='D_pre')

 self.d_params = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope=

 'Discriminator')

 self.g_params = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope=

 'Generator')

 self.opt_d = optimizer(self.loss_d, self.d_params, self.learning_rate)

 self.opt_g = optimizer(self.loss_g, self.g_params, self.learning_rate)

训练模型的代码如下所示，首先需要预先训练判别器D_pre，然后将训练后的参数共享给判别器Discriminator。接着就可以正式训练生成器Generator与判别器Discriminator了。

def train(self):

 with tf.Session() as session:

 tf.global_variables_initializer().run()

 # pretraining discriminator

 num_pretrain_steps = 1000

 for step in range(num_pretrain_steps):

 d = (np.random.random(self.batch_size) - 0.5) * 10.0

 labels = norm.pdf(d, loc=self.data.mu, scale=self.data.sigma)

 pretrain_loss, _ = session.run([self.pre_loss, self.pre_opt], {

 self.pre_input: np.reshape(d, (self.batch_size, 1)),

 self.pre_labels: np.reshape(labels, (self.batch_size, 1))

 })

 self.weightsD = session.run(self.d_pre_params)

 for i, v in enumerate(self.d_params):

 session.run(v.assign(self.weightsD[i]))

 for step in range(self.num_steps):

 # update discriminator

 x = self.data.sample(self.batch_size)

 z = self.gen.sample(self.batch_size)

 loss_d, _ = session.run([self.loss_d, self.opt_d], {

 self.x: np.reshape(x, (self.batch_size, 1)),

 self.z: np.reshape(z, (self.batch_size, 1))

 })

 # update generator

 z = self.gen.sample(self.batch_size)

 loss_g, _ = session.run([self.loss_g, self.opt_g], {

 self.z: np.reshape(z, (self.batch_size, 1))

 })

 if step % self.log_every == 0:

 print('{}:{}\t{}'.format(step, loss_d, loss_g))

 if step % 100 == 0 or step==0 or step == self.num_steps -1 :

 self._plot_distributions(session)

可视化代码如下，使用对数据进行采样的方式来展示生成数据与真实数据的分布。

def _samples(self, session, num_points=10000, num_bins=100):

 xs = np.linspace(-self.gen.range, self.gen.range, num_points)

 bins = np.linspace(-self.gen.range, self.gen.range, num_bins)

 # data distribution

 d = self.data.sample(num_points)

 pd, _ = np.histogram(d, bins=bins, density=True)

 # generated samples

 zs = np.linspace(-self.gen.range, self.gen.range, num_points)

 g = np.zeros((num_points, 1))

 for i in range(num_points // self.batch_size):

 g[self.batch_size * i:self.batch_size * (i + 1)] = session.run(self.G, {

 self.z: np.reshape(

 zs[self.batch_size * i:self.batch_size * (i + 1)],

 (self.batch_size, 1)

)

 })

 pg, _ = np.histogram(g, bins=bins, density=True)

 return pd, pg

def _plot_distributions(self, session):

 pd, pg = self._samples(session)

 p_x = np.linspace(-self.gen.range, self.gen.range, len(pd))

 f, ax = plt.subplots(1)

 ax.set_ylim(0, 1)

 plt.plot(p_x, pd, label='Real Data')

 plt.plot(p_x, pg, label='Generated Data')

 plt.title('GAN Visualization')

 plt.xlabel('Value')

 plt.ylabel('Probability Density')

 plt.legend()

 plt.show()

最后设置主函数用于运行项目，分别设置迭代次数、批次数量以及希望展示可视化的间隔，这里的设置分别为1200、12和10。

def main(args):

 model = GAN(

 DataDistribution(),

 GeneratorDistribution(range=8),

 1200, #num_steps

 12, #batch_size

 10, #log_every

)

 model.train()

运行过程中我们会分别看到图3-11到图3-13的几个阶段，GAN的生成器从平均分布开始会逐渐逼近最终的高斯分布，实现生成数据与真实数据分布的重合。

 [image:]

图3-11　GAN可视化初始阶段状态

 [image:]

图3-12　GAN可视化训练中状态

 [image:]

图3-13　GAN可视化最终状态
3.5　本章小结

本章首先为大家介绍了生成模型的概念，并说明了两个比较基础的生成模型——自动编码器和变分自动编码器，从而也引出了本书的主角——生成对抗网络。在3.2节中用详细的数学原理与推导过程阐述了生成对抗网络的运行原理。在此基础上，通过可视化的方式更清晰地说明了生成对抗网络的工作过程，并在最后使用TensorFlow的项目代码实现了一个最简单的生成对抗网络并重现了上述的可视化过程。
第4章　深度卷积生成对抗网络

前面介绍了生成对抗网络的基本实现方法，但在实际运用中我们很少会直接使用最基础的版本。在本章中我们来看一下实际工程应用中广泛使用的架构——深度卷积生成对抗网络（DCGAN）。
4.1　DCGAN的框架

4.1.1　DCGAN设计规则

DCGAN的创始论文《Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks》[5]发表于2015年，文章在GAN的基础之上提出了全新的DCGAN架构，该网络在训练过程中状态稳定，并可以有效实现高质量的图片生成及相关的生成模型应用。由于其具有非常强的实用性，在它之后的大量GAN模型都是基于DCGAN进行的改良版本。

为了使得GAN能够很好地适应于卷积神经网络架构，DCGAN提出了四点架构设计规则，分别是：

·使用卷积层替代池化层。

·去除全连接层。

·使用批归一化（batch normalization）。

·使用恰当的激活函数。

下面我们详细说明一下这四点。

首先第一点是把传统卷积网络中的池化层全部去除，使用卷积层代替。对于判别器，我们使用步长卷积（strided convolution）来代替池化层；对于生成器，我们使用分数步长卷积（fractional-strided convolutions）来代替池化层。图4-1和图4-2分别是步长卷积与分数步长卷积的图形化解释。[6]

 [image:]

图4-1　步长卷积示意图

图4-1表示了卷积层如何在判别器中进行空间下采样（spatial downsampling），输入数据为5×5的矩阵，使用了3×3过滤器，步长为2×2，最终输出矩阵为3×3。

 [image:]

图4-2　分数步长卷积示意图

图4-2表示的是卷积层在生成器中进行上采样（spatial upsampling），输入为3×3矩阵，同样使用了3×3过滤器，反向步长为2×2，故在每个输入矩阵的点之间填充一个0，最终输出为5×5。

使用上述卷积层替代池化层的目的是为了能够让网络自身去学习空间上采样与下采样，使得判别器和生成器都能够有效具备相应的能力。

第二点设计规则是去除全连接层。目前的研究趋势中我们会发现非常多的研究都在试图去除全连接层，常规的卷积神经网络往往会在卷积层后添加全连接层用以输出最终向量，但我们知道全连接层的缺点在于参数过多，当神经网络层数深了以后运算速度会变得非常慢，此外全连接层也会使得网络容易过度拟合。有研究使用了全局平均池化（global average pooling）来替代全连接层，可以使得模型更稳定，但也影响了收敛速度。论文中说的一种折中方案是将生成器的随机输入直接与卷积层特征输入进行连接，同样地对于判别器的输出层也是与卷积层的输出特征连接，具体的操作会在后面的框架结构介绍中说明。

第三点设计规则是使用批归一化。由于深度学习的神经网络层数很多，每一层都会使得输出数据的分布发生变化，随着层数的增加网络的整体偏差会越来越大。批归一化的目标则是为了解决这一问题，通过对每一层的输入进行归一化处理，能够有效使得数据服从某个固定的数据分布。

下面是批归一化论文中给出的实现方法，输入的批次为B={x1…m}，其中需要学习的参数为γ,β，最终输出为{yi=BNγ,β(xi)}。其中最后一步的线性变换是希望网络能够在归一化的基础上还原原始输入。

 [image:]

最后一点是对于激活函数的设计。激活函数的作用是为了在神经网络中进行非线性变换，下面首先介绍几种神经网络中常用的激活函数。

Sigmoid函数是一种非常常用的激活函数，公式为[image:]。如图4-3所示，该函数的取值范围在0到1之间，当x大于零时输出结果会趋近于1，而当x小于零时输出结果趋向于0，由于函数的特性，经常被用作01二分类的输出端。但是Sigmoid函数有两个比较大的缺陷：其一是当输入数据很大或很小的时候，函数的梯度几乎接近于零，这对神经网络在反向传播中的学习非常不利；其二是Sigmoid函数的均值不是0，这使得神经网络的训练过程中只会产生全正或全负的反馈。

 [image:]

图4-3　Sigmoid函数

Tanh函数把数据压缩到-1到1的范围，解决了Sigmoid函数均值不为0的问题，所以在实践中通常Tanh函数都优于Sigmoid函数。在数学形式上其实Tanh只是对Sigmoid的一个缩放变形，公式为tanh(x)=2σ(2x)-1，图4-4为Tanh函数的展示图。

 [image:]

图4-4　Tanh函数

ReLU（Rectified Linear Unit）函数是最近几年非常流行的激活函数，它的计算公式非常简单f(x)=max(0,x)，如图4-5所示。它有几个明显的优点，首先是计算公式非常简单，不像上面介绍的两个激活函数那样计算复杂，其次是它被发现在随机梯度下降中比Sigmoid和Tanh更加容易使得网络收敛。但ReLU的问题在于，ReLU在训练中可能会导致出现某些神经元永远无法更新的情况。其中一种对ReLU的改进方式是LeakyReLU，该方法与ReLU不同的是，在x<0的时候取f(x)=αx，其中α是一个非常小的斜率（例如0.01）。这样的修改可以使得当x小于0的时候也不会导致反向传导时的梯度消失现象。

 [image:]

图4-5　ReLU函数

在DCGAN网络框架中，生成器和判别器使用了不同的激活函数来设计。生成器中使用ReLU函数，但对于输出层使用了Tanh激活函数，因为研究者们在实验中观察到使用有边界的激活函数可以让模型更快地进行学习，并能快速覆盖色彩空间。而在判别器中对所有层均使用LeakyReLU，在实际使用中尤其适用于高分辨率的图像判别模型。这些激活函数的选择是研究者在多次实验测试中得出的结论，可以有效使得DCGAN得到最优的结果。
4.1.2　DCGAN框架结构

图4-6是DCGAN生成器G的架构图，输入数据为100维的随机数据z，服从范围在[-1,1]的均匀分布，经过一系列分数步长卷积后，最后形成一幅64×64×3的RGB图片，与训练图片大小一致。

 [image:]

图4-6　DCGAN生成器架构图

对于判别器D的架构，基本是生成器G的反向操作，如图4-7所示。输入层为64×64×3的图像数据，经过一系列卷积层降低数据的维度，最终输出的是一个二分类数据。

 [image:]

图4-7　DCGAN判别器架构图

下面是训练过程中的一些细节设计：①对于用于训练的图像数据样本，仅将数据缩放到[-1,1]的范围内，这个也是tanh的取值范围，并不做任何其他处理。②模型均采用Mini-Batch大小为128的批量随机梯度下降方法进行训练。权重的初始化使用满足均值为0、方差为0.02的高斯分布的随机变量。③对于激活函数LeakyReLU，其中Leak的部分设置斜率为0.2。④训练过程中使用Adam优化器进行超参数调优。学习率使用0.0002，动量β1取0.5，使得训练更加稳定。
4.2　DCGAN的工程实践

本节中我们尝试使用Keras框架来实现最基本的生成对抗网络[7]。首先让我们来认识一下我们的基础数据集MNIST，在本书之后的内容中也会大量使用这个数据集。

之前我们大量提及手写数字数据集，在这里让我们来重点介绍一下这个MNIST数据集。MNIST数据集是英文Modified National Institute of Standards and Technology的英文首字母缩写，它的数据内容如图4-8所示，是手写的阿拉伯数字，范围从0到9。在大量的机器学习框架中，都会默认自带这样的一个数据库，用于对于开发模型的标签训练与测试。常规的MNIST测试集中包含了60000组训练图片与10000组测试图片。

我们希望生成对抗网络能够在MNIST数据集的基础上自动生成手写数字的图像，并且希望能够与手写的效果尽量保持一致。

 [image:]

图4-8　MNIST数据集

下面我们使用Keras来搭建一个DCGAN的类，首先定义基础的信息：

·由于是黑白图像，所以通道数为1，输入图片的尺寸为（28,28,1）。

·输入的隐含编码的维度是100维。

·定义生成器函数。

·定义判别器函数。

·定义训练函数。

from keras.datasets import mnist

from keras.layers import Input, Dense, Reshape, Flatten, Dropout

from keras.layers import BatchNormalization, Activation, ZeroPadding2D

from keras.layers.advanced_activations import LeakyReLU

from keras.layers.convolutional import UpSampling2D, Conv2D

from keras.models import Sequential, Model

from keras.optimizers import Adam

class DCGAN():

 def __init__(self):

 # Input shape

 self.img_rows = 28

 self.img_cols = 28

 self.channels = 1

 self.img_shape = (self.img_rows, self.img_cols, self.channels)

 self.latent_dim = 100

 ...

 def build_generator(self):

 ...

 def build_discriminator(self):

 ...

 def train(self, epochs, batch_size=128, save_interval=50):

 ...

根据DCGAN的设计搭建生成器：

·使用上采样加卷积层来代替池化层。

·中间不包含全连接层。

·加入批归一化。

·生成器中激活函数使用ReLU函数，输出层使用了Tanh。

def build_generator(self):

 model = Sequential()

 model.add(Dense(128 * 7 * 7, activation="relu", input_dim=self.latent_dim))

 model.add(Reshape((7, 7, 128)))

 model.add(UpSampling2D())

 model.add(Conv2D(128, kernel_size=3, padding="same"))

 model.add(BatchNormalization(momentum=0.8))

 model.add(Activation("relu"))

 model.add(UpSampling2D())

 model.add(Conv2D(64, kernel_size=3, padding="same"))

 model.add(BatchNormalization(momentum=0.8))

 model.add(Activation("relu"))

 model.add(Conv2D(self.channels, kernel_size=3, padding="same"))

 model.add(Activation("tanh"))

 model.summary()

 noise = Input(shape=(self.latent_dim,))

 img = model(noise)

 return Model(noise, img)

根据DCGAN的设计构建判别器：

·使用步长为2的卷积层来替代池化层。

·中间不包含全连接层。

·添加批归一化。

·激活函数使用LeakyReLU，斜率为0.2。

def build_discriminator(self):

 model = Sequential()

 model.add(Conv2D(32, kernel_size=3, strides=2, input_shape=self.img_

 shape, padding="same"))

 model.add(LeakyReLU(alpha=0.2))

 model.add(Dropout(0.25))

 model.add(Conv2D(64, kernel_size=3, strides=2, padding="same"))

 model.add(ZeroPadding2D(padding=((0,1),(0,1))))

 model.add(BatchNormalization(momentum=0.8))

 model.add(LeakyReLU(alpha=0.2))

 model.add(Dropout(0.25))

 model.add(Conv2D(128, kernel_size=3, strides=2, padding="same"))

 model.add(BatchNormalization(momentum=0.8))

 model.add(LeakyReLU(alpha=0.2))

 model.add(Dropout(0.25))

 model.add(Conv2D(256, kernel_size=3, strides=1, padding="same"))

 model.add(BatchNormalization(momentum=0.8))

 model.add(LeakyReLU(alpha=0.2))

 model.add(Dropout(0.25))

 model.add(Flatten())

 model.add(Dense(1, activation='sigmoid'))

 model.summary()

 img = Input(shape=self.img_shape)

 validity = model(img)

 return Model(img, validity)

完成其他设置：

·优化器使用的是Adam，根据之前的说明学习率使用0.0002，动量β1取值0.5。

·分别设置判别器与生成器的目标函数、优化器与评估标准，其中要注意的是训练生成器的时候需要将判别器与生成器相连，这个时候需要将判别器设置为不可训练模式，仅优化生成器的参数。

class DCGAN():

 def __init__(self):

 ...

 optimizer = Adam(0.0002, 0.5)

 # Build and compile the discriminator

 self.discriminator = self.build_discriminator()

 self.discriminator.compile(loss='binary_crossentropy',

 optimizer=optimizer,

 metrics=['accuracy'])

 self.generator = self.build_generator()

 z = Input(shape=(100,))

 img = self.generator(z)

 self.discriminator.trainable = False

 valid = self.discriminator(img)

 self.combined = Model(z, valid)

 self.combined.compile(loss='binary_crossentropy', optimizer=optimizer)

 def build_generator(self):

 ...

 def def build_discriminator(self):

 ...

 def train(self, epochs, batch_size=128, save_interval=50):

 ...

训练部分代码：

·从MNIST中载入数据。

·将输入数据缩放到[-1,1]的范围内。

·训练的过程与GAN一样，先用生成数据与真实数据训练判别器，而后用随机输入和训练好的判别器来训练生成器。

def train(self, epochs, batch_size=128):

 (X_train, _), (_, _) = mnist.load_data()

 X_train = X_train / 127.5 - 1.

 X_train = np.expand_dims(X_train, axis=3)

 valid = np.ones((batch_size, 1))

 fake = np.zeros((batch_size, 1))

 for epoch in range(epochs):

 idx = np.random.randint(0, X_train.shape[0], batch_size)

 imgs = X_train[idx]

 noise = np.random.normal(0, 1, (batch_size, self.latent_dim))

 gen_imgs = self.generator.predict(noise)

 d_loss_real = self.discriminator.train_on_batch(imgs, valid)

 d_loss_fake = self.discriminator.train_on_batch(gen_imgs, fake)

 d_loss = 0.5 * np.add(d_loss_real, d_loss_fake)

 g_loss = self.combined.train_on_batch(noise, valid)

 # print d_loss and g_loss

在同样训练的3000个epoch之后，我们可以对比一下传统的GAN与DCGAN在MNIST上的生成效果，如图4-9所示。

 [image:]

图4-9　GAN与DCGAN在3000个epoch之后的生成效果比较

DCGAN的研究者也使用了三种数据集对网络进行测试，分别为LSUN室内数据集、人脸数据集、Imagenet-1K数据集。图4-10～图4-12分别是DCGAN在这三个数据集上的生成结果。

 [image:]

图4-10　LSUN室内数据集5个epoch后的生成结果

 [image:]

图4-11　人脸数据集生成结果

 [image:]

图4-12　Imagenet-1K数据集生成结果
4.3　DCGAN的实验性应用

4.3.1　生成图像的变换

研究者们除了对DCGAN做了基础的模型评估分析，还做了很多有意思的实验。首先研究者们发现了图像的隐含空间（latent space），随着输入Z的不断变换，输出的图像会平滑地转变成另一幅景象。可以参看图4-13的卧室室内图的变化，每一行从左面第一张平滑迁移到右边，第六行从一个没有窗的卧室逐步转变成一个有大窗的卧室，第十行我们可以看到卧室中的电视逐渐转变为窗户。

 [image:]

图4-13　DCGAN中卧室室内图的变化（见文前彩色图）

其次，研究者对DCGAN网络内部层进行了可视化。我们知道传统的有监督式的CNN网络通常在中间层中能够学习到某些事物的特征，而对于无监督式的DCGAN在基于大量图片数据的训练后同样能够学习到很多有趣的特征。如图4-14所示是GAN网络中判别器在训练后卷积层学习到的特征的可视化，其中可以隐约看出已经有了卧室中床和窗户的样子。

 [image:]

图4-14　DCGAN网络内部可视化

为了研究这些特征在生成器中的作用，研究者们故意把生成器中对应“窗户”的filter去除了，得到的结果非常有意思，在原来应该生成窗户的地方，最终生成的图像中都使用其他物品进行了替换。图4-15中第一行是未经修改的生成模型产出的图片，第二行是移除了“窗户”filter层生成的对应图片，可以发现被修改后的生成器在不影响整体卧室场景的情况下悄悄地把窗户从画面中抹去了。更多的实验表明，如果我们移除其他特征的filter，同样可以达到对应的效果。如图4-15所示。

 [image:]

图4-15　不同filter的生成效果比较
4.3.2　生成图像的算术运算

此外还有一个有趣的研究是对于图像的算术运算。这里要引出的一个类似概念是“词嵌入”，所谓的词嵌入是指将单词映射到一个低维度连续向量空间中的技术，用词嵌入技术构成的词向量在空间中具备了一定的语义关系，含义比较接近的词在词向量空间中距离会比较近一些。一个比较直观的例子是下面这个词向量计算式。

 [image:]

此外谷歌的TensorFlow网站中有一个Embedding Projector的项目[1]，可以实际感受词向量的可视化展示。

词向量计算一样的思路可否放到图像上呢？如果不使用GAN技术的话，最直觉的方案应该是直接使用像素作为向量进行计算，但从图4-16的实验结果中我们可以发现，最终的效果其实是不好的，最后的计算结果基本无法分辨。

 [image:]

图4-16　基于像素的图像算术运算

我们可以发现在生成对抗网络的生成器中其实已经有了输入向量和输出图像的对应关系，我们可以把这个向量作为图像的向量表示，如图4-17和图4-18的两个例子：一个是带笑脸女人减去普通表情女人，加上普通表情男人最后得到笑脸男人的图像；另一个是戴墨镜的男人减去不戴墨镜的男人，加上不戴墨镜的女人最后得到戴墨镜女人的图像。可以发现通过这样的图像算术计算，我们可以实现非常多有意思的功能。

 [image:]

图4-17　基于DCGAN的表情图像算术运算

 [image:]

图4-18　基于DCGAN的墨镜图像算术运算

此外基于上述方法，我们还可以进行图像演变的制作，当我们把某个图像的向量线性转换成另一个图像的向量的时候，对应的图像也会逐渐转移，如图4-19所示整体的转移过程也非常流畅。

 [image:]

图4-19　DCGAN中的图像线性转变

[1] http://projector.tensorflow.org/
4.3.3　残缺图像的补全

另一篇DCGAN的补充论文[8]里提出了图像的补全的概念，对于一张丢失某一部分的图像，人类可以依靠自己的想象能力知道完整的图像大概是什么样子，通过DCGAN的方法，机器也可以在一定程度上做到这一点。

研究者使用了名人头像数据库（CelebA），其中包含了202599张头像图片，最终的实验效果如图4-20所示，每行包含五张图片：第一列是数据库原始图片；第二列是随机去除80%像素点的图片；第三列是使用补全方法对第二列修复的结果；第四列是原始数据中间被扣掉一大块的图片；第五列是使用补全方法对第四列修复的结果。

 [image:]

图4-20　使用DCGAN进行图像补全

要使用生成网络补全图像需要满足两个条件：第一个条件是使用DCGAN在大量头像数据训练后能够生成“骗过”判别器的照片；第二个条件是生成图像与原图像未丢失部分的差值要尽量最小。

论文中给出了两个损失函数。第一个损失函数是与丢失信息图片相关的上下文损失（contextual loss），它的定义是生成图片与原始图片在未丢失区域的差距大小，下面的式子中M相当于一个遮罩，也就是说在这个损失函数中我们只考虑未丢失图片的区域。

 [image:]

第二个损失函数是DCGAN本身的感知损失（Perceptual Loss），这个是对于DCGAN本身在大量人脸数据集上训练的损失函数，与之前GAN中生成器的损失函数一致。

 [image:]

最终完整的损失函数与计算结果分别为

 [image:]

其中λ是超参数，用来调节两个损失函数的重要程度，[image:]是我们要求的生成器输入，图片补全公式如下。

 [image:]

论文对比了多种方案与DCGAN的补全方法，在效果展示中后者确实优于其他方法，图4-21是对比了随机丢失像素的图片补全。第一列为原始图片，第二列为随机丢失像素后的图片，第三列是使用DCGAN进行补全的结果，第四、第五列分别使用了TV minimization和low rank minimization。后面两种方法的结果是非常模糊的，远远不及DCGAN的效果。

 [image:]

图4-21　随机丢失像素的图像补全对比

图4-22是对于中间镂空图片补全的比较。第一列是原始图片，第二列是中间镂空的图片，第三列为DCGAN的补全结果，第四列是使用了数据库中最接近数据补全的方法。可以看出使用了DCGAN的结果更为自然，而其他结果则有明显的拼接痕迹。

 [image:]

图4-22　中间镂空的图像补全对比
4.4　本章小结

DCGAN是在生成对抗网络基础上建立的第一个被广泛使用的图像生成网络，本章从它的整体设计出发详细阐述了DCGAN的设计规则与框架结构。其次通过Keras代码实现了一整套DCGAN的模型，并在手写数字数据集上进行训练，最终取得了优于传统GAN的生成效果。在最后一节中，本书介绍了DCGAN论文中提出的一些实验性应用，这也使得生成对抗网络真正进入了应用领域。
第5章　Wasserstein GAN

5.1　GAN的优化问题

虽然之前提出的生成对抗网络在理论上似乎很不错，但研究者也发现在训练GAN的过程中会出现很多问题，其中最大的问题来源于训练的不稳定性。在理论上，我们应该优先尽可能地把判别器训练好，但实际操作上会发现，当判别器训练得越好，生成器反而越难优化。

研究者在研究过程中也提出了一系列问题[11]：

·究竟是什么原因导致了判别器越好而生成器更新越差呢？

·为何我们训练生成对抗网络的时候会这么不稳定？

·是否会有与JS散度类似的代价函数可以使用？是否效果会更好一些？

·有没有方法能够避免这些问题？

我们首先来了解一些理论知识。从理论和经验上来说，真实数据的分布通常是一个低维度流形。所谓流形（manifold），其实是指数据虽然分布在高维度空间里，但实际上数据并不具备高维度特性，而是存在于一个嵌入在高维度的低维度空间里。拿三维空间举例，如图5-1所示的三维空间上的数据点，本质上存在于一个二维平面，只是以卷曲的形式存在于三维空间中。

 [image:]

图5-1　三维中的流形（见文前彩色图）

现在让我们来看一下之前的生成器，生成器做的事情是把一个低维度的空间Z映射到与真实数据相同的高维度空间上，而我们希望做的事情是能够把我们生成的这个低维度流形尽可能地逼近真实数据的流形。

从理论上我们可以知道，如果真实数据与生成数据在空间上完全不相交的话，可以得到一个判别器来完美划分真实数据与生成数据。此外，如果生成数据分布与真实数据分布在低维度上没有一部分能够完美地全维度重合的话，或者换句话说它们的交集在高维度上测度为0，那么依然会存在完美的判别器以完美划分数据。

在实际实践中，生成数据和真实数据在空间中完美重合的概率是非常低的，所以几乎大部分情况下我们都可以找到一个完美的判别器将生成数据和真实数据加以划分。也就是说这会导致在网络训练的反向传播中，梯度更新几乎等于零，也就是说网络很难在这个过程中学到任何东西。

对于真实数据分布Pr和生成数据分布Pg，如果满足上述无法全维度重合的情况的话，则我们可以根据之前学习的KL散度公式和JS散度公式计算出以下结果。

 [image:]

从公式中我们可以发现，只要生成数据与真实数据没有交集，或者说低维度流形的重叠处在全维度上测度为零的话，无论两者在空间上非常接近或者非常遥远，它们的JS散度始终为一个常数log2，而它们之间的KL散度永远都为正无穷。有的时候可能我们的生成器表现已经非常好了，与真实数据非常逼近，但是上述的JS散度和KL散度依然是同样的结果。

从这些推导中我们得出了一个可能的结论，就是采用这些散度公式来计算两者的相似度似乎并不是一个非常好的主意，我们很难通过这些散度公式来优化我们的网络，也许我们需要寻找一个更合适的方法来计算相似度距离。

此外，如果上面情况成立的话，我们的判别器会训练得非常好，这也导致了生成器的梯度消失问题。也就是说当我们的判别器D在逼近完美判别器D*的时候，生成器优化的梯度会有一个非常小的上界，并且无限接近于0。公式形式如下。

 [image:]

图5-2是实验结果，研究者分别对DCGAN训练1个、10个和25个epoch，可以看出梯度快速下降，最好的情况在4000次迭代以后也下降了5个数量级。

 [image:]

图5-2　DCGAN的梯度消失问题（见文前彩色图）

为了避免上面的梯度消失问题，有一个方案是对生成器换一个不同的梯度函数，如下式所示。

 [image:]

通过修改梯度函数确实可以有效避免梯度消失的问题，但是在实际操作中会发现这个梯度函数会导致网络更新不稳定的情况。从图5-3中我们可以看到随着训练迭代次数的上升，梯度上升非常快，同时曲线的噪声也在变大，也就是说梯度的方差也在增加，这也会导致样本质量低的情况。

那么还有什么方法可以解决训练不稳定或者梯度消失问题呢？另一个方案是对判别器的输入人为地加入一个随机的噪声。在实践中我们会发现，当生成数据分布与真实数据分布很接近的时候，加入了随机噪声可以使得两者的低维度流形能够有更多的几率产生重合，使得JS散度的计算值下降，从而有效优化我们的网络参数。但是这样的方案存在的问题是，当生成数据与真实数据本身相似度距离较远的话，添加噪声的方案可能就无效了。

 [image:]

图5-3　DCGAN的网络更新不稳定示意图

在下一节中我们会看到一个更好的方案，其使用Wasserstein距离计算生成数据和真实数据的差别，以此代替JS散度和KL散度，从而有效解决前面所说的梯度消失以及训练不稳定的问题。
5.2　WGAN的理论研究

在本节中，我们会对比一下之前提到的几种不同的分布距离公式[12]，比如KL距离、JS距离，从而引出WGAN的Wasserstein距离以及它的优势。

对于真实数据分布Pr与生成数据分布Pg，我们可以给出以下几种分布距离公式，用来描述两个分布之间的相似程度。

首先是总变差距离（total variation distance），它的数学含义是Pr与Pg在区间范围内数值变化的差值的综合，公式如下所示。

 [image:]

其次是KL散度，公式如下。KL散度是非对称的，也就是说KL(Pr‖Pg)≠KL(Pg‖Pr)，同时当Pg(x)=0且Pr(x)>0的时候，KL散度的值会是无穷大。

 [image:]

然后是JS散度，其中Pm=(Pr+Pg)/2。与KL散度不同的是JS散度具有对称性。

 [image:]

最后是本节的主角Wasserstein距离[13]，也称作EM距离（Earth-Mover distance），公式如下。其中Π(Pr,Pg)是指真实数据与生成数据的联合概率分布。

 [image:]

我们可以用另一种更直观的方式来理解Wasserstein距离，它的另一个名字EM距离可以翻译为推土机距离，如果我们把生成数据分布和真实数据分布看作两个“土堆”的话，该距离相当于推土机把其中一堆土搬到另一堆的最小成本。

这里用一个例子来比较一下上面的四种距离公式。我们设想一个二维空间，假设真实数据Π0的分布是X轴为零、Y轴为随机变量的分布，而生成数据的分布为X轴为θ、Y轴也为随机变量的分布，其中θ为生成数据分布的一个变量。由此我们可以根据上面的四个公式很快得出下面的四个结果。

 [image:]

可以发现在θ逼近零的过程中，只有W距离公式在减小，而其他几种距离公式都是一个固定的值或者是无穷大。图5-4对比了W距离和生成对抗网络中使用的JS散度，左图为W距离的结果，右图为JS散度。可以发现在使用JS散度的情况下，根本无法产生有用的梯度从而优化整个网络，而EM距离则具备了一个连续可用的梯度。

此外，假如生成器g满足Lipschitz条件的话，那么可以推导出W(Pr,Pθ)处处连续且处处可导。Lipschitz条件是指函数的导数始终小于某个固定的常数K，如下式所示。当K=1时称为1-Lipschitz，也就是说导数始终小于1。

 [image:]

 [image:]

图5-4　W距离与JS散度

可以看出Wasserstein距离确实要优于其他方案。我们进一步计算Wasserstein距离，可以把上面的式子根据我们的实际情况改写成下式，含义是对于真实数据分布中的输入x与生成数据分布的输入x，求它们分别对于所有满足1-Lipschitz条件的函数f(x)的期望值差值的上确界。这里加入1-Lipschitz条件是为了保证f(x)的梯度变化不会过大，从而使得网络能够保持正常的梯度优化。

 [image:]

如果我们令函数f(x)满足参数化条件{fw}w∈W，使得所有函数在Lipschitz条件上成立。这样的话可以把公式继续改写。

 [image:]

为了实现公式中的参数化条件{fw}w∈W，在网络中使用的小技巧是权值裁剪（Weight Clippling），该方法是将权值的范围严格限制在[-c,c]之间，在网络更新权值且权值在范围外的时候，我们会将其裁剪为c或-c。这样可以保证剪裁后的网络可以使得函数f(x)满足Lipschitz条件。

最后我们用一个更直观的方式来比较一下原始的GAN与本章讨论的WGAN之间的差别。图5-5是对应GAN与WGAN的判别器曲线示意图，左右两边蓝色和绿色的曲线分别代表了真实数据与生成数据，中间垂直阶梯式的红色曲线对应的是原始GAN的判别器，而中间有一定斜率的浅蓝色曲线则是WGAN的判别曲线。

网络要做的事情是通过判别器的梯度来优化网络参数，让生成数据分布尽可能地靠近真实数据分布，而我们可以很明显地看到原始GAN在两个分布各自的区域所对应的梯度几乎是零，也就是所谓的梯度消失，非常难以对网络进行优化迭代，而WGAN对应的梯度则几乎是线性的，可以很好地达到真实数据分布与生成数据分布重合的目的。

 [image:]

图5-5　GAN与WGAN的判别器曲线示意图（见文前彩色图）
5.3　WGAN的工程实践

我们来看一下WGAN的伪代码，了解如何在工程上实现WGAN。

伪代码3　WGAN的伪代码实现（实验中使用的参数包括学习率α=0.00005，权值剪裁参数c=0.01，批次大小m=64，判别次数ncritic=5。初始的判别参数为w0，初始的生成器参数为θ0）

 [image:]

 [image:]

如果我们将这个伪代码与之前原始GAN进行比较，会发现其实改动并不大，核心的改动包含以下几点。

首先我们可以看到两者最大的差别在于WGAN经过推导得出的代价函数中并不存在log，但其他与原始GAN基本保持一致。而对于判别器D，由于WGAN的目标在于测量生成数据分布与真实数据分布之间的距离，而非原始GAN的是与否的二分类问题，故去除了判别器D最后输出层的Sigmoid激活函数。

此外，在更新权重的时候，我们需要加上权值剪裁使得网络参数能够保持在一定的范围内，从而满足之前推导所需的Lipschitz条件。

最后的一点改动是将Adam等梯度下降方法改为使用RMSProp方法，这个是WGAN的作者经过大量实验得出的经验，使用Adam等方法会导致训练的不稳定，而RMSProp可以有效避免不稳定问题的发生。

下面我们还是使用Keras来实现WGAN。首先来看判别器的修改，在WGAN的理论中判别器的本质已经是一个距离测量的评估者critic，而非二分类问题的判别者，故在DCGAN的判别器代码的基础上我们去除了最后的Sigmoid激活函数。

def build_critic(self):

 model = Sequential()

 model.add(Conv2D(16, kernel_size=3, strides=2, input_shape=self.img_

 shape, padding="same"))

 model.add(LeakyReLU(alpha=0.2))

 model.add(Dropout(0.25))

 model.add(Conv2D(32, kernel_size=3, strides=2, padding="same"))

 model.add(ZeroPadding2D(padding=((0,1),(0,1))))

 model.add(BatchNormalization(momentum=0.8))

 model.add(LeakyReLU(alpha=0.2))

 model.add(Dropout(0.25))

 model.add(Conv2D(64, kernel_size=3, strides=2, padding="same"))

 model.add(BatchNormalization(momentum=0.8))

 model.add(LeakyReLU(alpha=0.2))

 model.add(Dropout(0.25))

 model.add(Conv2D(128, kernel_size=3, strides=1, padding="same"))

 model.add(BatchNormalization(momentum=0.8))

 model.add(LeakyReLU(alpha=0.2))

 model.add(Dropout(0.25))

 model.add(Flatten())

 model.add(Dense(1))

 model.summary()

 img = Input(shape=self.img_shape)

 validity = model(img)

 return Model(img, validity)

在训练过程中使用权值剪裁的方法使得网络参数能够保持在一定的范围内。

def train(self, epochs, batch_size=128):

 (X_train, _), (_, _) = mnist.load_data()

 X_train = X_train / 127.5 - 1.

 X_train = np.expand_dims(X_train, axis=3)

 valid = -np.ones((batch_size, 1))

 fake = np.ones((batch_size, 1))

 for epoch in range(epochs):

 for _ in range(self.n_critic):

 idx = np.random.randint(0, X_train.shape[0], batch_size)

 imgs = X_train[idx]

 noise = np.random.normal(0, 1, (batch_size, self.latent_dim))

 gen_imgs = self.generator.predict(noise)

 d_loss_real = self.critic.train_on_batch(imgs, valid)

 d_loss_fake = self.critic.train_on_batch(gen_imgs, fake)

 d_loss = 0.5 * np.add(d_loss_fake, d_loss_real)

 for l in self.critic.layers:

 weights = l.get_weights()

 weights = [np.clip(w, -self.clip_value, self.clip_value) for w

 in weights]

 l.set_weights(weights)

 g_loss = self.combined.train_on_batch(noise, valid)

 # print d_loss and g_loss

工程中对DCGAN的其他修改如下所示：

·设置Wasserstein距离作为WGAN的损失函数。

·设置判别次数为5，权值剪裁的值为0.01。

·需将Adam等梯度下降方法改为使用RMSProp方法。

from keras.datasets import mnist

from keras.layers import Input, Dense, Reshape, Flatten, Dropout

from keras.layers import BatchNormalization, Activation, ZeroPadding2D

from keras.layers.advanced_activations import LeakyReLU

from keras.layers.convolutional import UpSampling2D, Conv2D

from keras.models import Sequential, Model

from keras.optimizers import RMSprop

import keras.backend as K

class WGAN():

 def __init__(self):

 ...

 self.n_critic = 5

 self.clip_value = 0.01

 optimizer = RMSprop(lr=0.00005)

 self.critic = self.build_critic()

 self.critic.compile(loss=self.wasserstein_loss,

 optimizer=optimizer,

 metrics=['accuracy'])

 self.generator = self.build_generator()

 z = Input(shape=(100,))

 img = self.generator(z)

 self.critic.trainable = False

 valid = self.critic(img)

 self.combined = Model(z, valid)

 self.combined.compile(loss=self.wasserstein_loss,

 optimizer=optimizer,

 metrics=['accuracy'])

 def wasserstein_loss(self, y_true, y_pred):

 return K.mean(y_true * y_pred)

 def build_generator(self):

 ...

 def build_discriminator(self):

 ...

 def train(self, epochs, batch_size=128, save_interval=50):

 ...

5.4　WGAN的实验效果分析

5.4.1　代价函数与生成质量的相关性

在这一节中我们来看一下WGAN究竟在实验中表现如何[13]。首先我们先来看一下W距离和生成图像之间的关系，如果能够保证距离越近，图像生成质量越高的话，可以说WGAN是有效的。

WGAN原始论文的实验中对三种架构的WGAN进行了实验：第一组实验的生成器采用普通的多层感知器（MLP），其中包含四层隐层，每一层都是512个单元；第二组实验的生成器使用的是标准的DCGAN，但是在输出层去除了sigmoid模块；最后一组的生成器和判别器都采用MLP。实验结果如图5-6所示。

 [image:]

图5-6　WGAN不同架构的实验结果比较（见文前彩色图）

从第一、二组实验可以很明显地看出，随着W距离的降低图像的生成质量也越来越好。此外，随着生成器的迭代次数上升，一开始W距离快速下降，然后慢慢地趋于稳定。最后一组的实验效果不佳，随着生成器迭代次数的上升，W距离并未下降，但也可以看到生成图像质量并没有变得更好，说明理论仍然是正确的。

把原始GAN的网络采用与上面同样的三组配置进行实验比较，实验结果如图5-7所示。可以看出JS散度的变化和生成图像的效果并没有一个正向的关联，从前两组的结果可以发现，JS散度趋于一个常数log2，约等于0.69。最后一组可以发现JS散度几乎与生成图像质量完全没有关联。

 [image:]

图5-7　原始GAN在三种配置下的实验结果比较（见文前彩色图）
5.4.2　生成网络的稳定性

WGAN的研究者们从生成图像的稳定性上继续做了一系列实验，首先他们比较了WGAN算法和原始GAN算法在DCGAN架构下的生成器效果，生成结果如图5-8和图5-9所示，我们从肉眼的判断来讲两者的生成效果差别并不大。

 [image:]

图5-8　WGAN生成结果（见文前彩色图）

 [image:]

图5-9　原始GAN生成结果

接着我们尝试减弱DCGAN的架构，首先去除了批归一化，并且使用固定数量的过滤器。这次的结果WGAN（图5-10）要明显优于使用原始GAN（图5-11）的方案，从下面的对比来看，原始GAN生成的图像基本是不可辨识的。

 [image:]

图5-10　去除批归一化的WGAN生成结果（见文前彩色图）

最后一个实验使用的是生成能力较弱的四层ReLU-MLP，每层使用512个隐层单元。可以看出使用了WGAN的生成器结果（图5-12）虽然没有之前第一组中的DCGAN方案那么优越，但是远远超越了同样网络结构中使用原始GAN的表现，后者生成的图形非常模糊且难以辨识（见图5-13）。

 [image:]

图5-11　去除批归一化的GAN生成结果

 [image:]

图5-12　ReLU-MLP的WGAN生成结果

 [image:]

图5-13　ReLU-MLP的GAN生成结果

通过这一系列实验我们可以得出的结论是：WGAN具有比原始GAN更稳定的生成能力，在最优架构的情况下也许还无法体现出优势，但一旦网络中存在问题的话，使用WGAN能够在一定程度上避免生成图像质量的急速下降。
5.4.3　模式崩溃问题

最后要谈一个生成网络的现象叫作模式崩溃（mode collapse），用通俗的话来说是指生成器不具备多样性，往往会不断重复同样的图像或者同类型的图像作为生成结果。

图5-14是在二维平面上对模式崩溃现象的一个很好的阐述。第一行中的Target图像指代我们希望生成器能够逼近的真实数据分布，即二维平面空间的八个点。但是随着网络的不断训练，我们发现生成器产生的结果是在各个点之间跳跃的，但是每次只能产生其中一个点的数据，如图5-14第二行所示。

 [image:]

图5-14　二维平面上的模式崩溃现象示意图

在实际的研究中发现，虽然彻底的模式崩溃不多见，但是部分模式崩溃其实是很普遍的。所谓的部分模式崩溃是指，生成网络只产生真实数据分布中的一部分数据，或者说会漏掉一小部分类型的数据。这在研究人员的实验验证中也很难被发现。

研究人员也发表了很多解决模式崩溃问题的方法，比如使用minibatch的方法[15]，还有一种尝试是unrolled GAN[16]。

在WGAN的论文中，研究者也通过实验表示WGAN可以解决模式崩溃的问题。虽然还没有明确的理论证明WGAN是如何避免模式崩溃问题的，但在WGAN的大量实验中我们几乎没有发现出现模式崩溃的现象。
5.5　WGAN的改进方案：WGAN-GP

WGAN理论中一个非常重要的条件是需要满足1-Lipschitz条件，而对应使用的方法是权值剪裁，希望把整个网络的权值能够框定在一个大小范围内。但是之后的研究者们发现，权值剪裁会产生很多问题，这也导致有人提出了一种改进方案WGAN-GP，使用一种叫作梯度惩罚（gradient penalty）的方法替代本来的权值剪裁，并且从实验结果来看确实比原来的方案更稳定，在图像生成方面成像质量也更高[17]。

这里先来看一下权值剪裁存在的两个比较严重的问题。第一个问题是权值剪裁限制了网络的表现能力。由于网络权值被限制在了固定的范围内，神经网络很难再模拟出那些复杂的函数，而只能产生一些比较简单的函数。WGAN-GP的研究者使用了一些模拟数据重现了这些问题，并对改进后的WGAN-GP做了对比，结果如图5-15所示，第一排是WGAN的结果，第二排为对应WGAN-GP的结果。可以很明显地看出WGAN已经丢失了很多数据分布的高阶矩特性，而WGAN-GP则能有效降低这个问题。

 [image:]

图5-15　WGAN与WGAN-GP表现能力比较

第二个问题是梯度爆炸和梯度消失。WGAN的权值剪裁需要我们自己设计权值限制的大小，也许不恰当的设计就会导致梯度爆炸或梯度消失。在下面的例子中，使用了Swiss Roll数据集，并分别将剪裁的权值大小设置为［10-1,10-2,10-3］，并与WGAN-GP的结果做比较，如图5-16左图所示。WGAN的三种选择均产生了梯度爆炸或消失的情况，而WGAN-GP则始终能够保持稳定的梯度。图5-16右图也表现了在权值剪裁的情况下，非常多的权值都会固定在边界上，这也是导致网络出现问题的原因，而WGAN-GP则能很好地让权值正常分布。

为了避免上述权值剪裁的问题，我们需要使用一种替代的方法实现Lipschitz条件。WGAN-GP给出的方案就是梯度惩罚，那么什么是梯度惩罚呢？

我们先来观察1-Lipschitz条件，所有满足该条件的函数在任意位置的梯度都小于1。既然如此，可以完全考虑直接根据网络的输入来限制对应判别器的输出。对此我们可以更新目标函数，如下式所示，在原有WGAN的基础上添加梯度惩罚项Lgp。

 [image:]

对于上述惩罚项中的采样分布[image:]，它的范围是真实数据分布与生成数据分布中间的分布，具体的实现方法是在真实数据分布Pr和生成数据分布Pg各进行一次采样，然后在这两个点的连线上再做一次随机采样，就是我们希望的惩罚项采样。上面的公式中还多了一个惩罚系数λ，在WGAN-GP的论文中默认取的是10，在实验中能够保证不错的效果。另外，在WGAN-GP中由于惩罚项的原因无法使用批归一化，此处的解决方案是干脆把批归一化去掉了，发现实验结果依然很好，论文也推荐在WGAN-GP中使用层归一化（layer normalization）来代替批归一化。

 [image:]

图5-16　WGAN与WGAN-GP梯度爆炸与梯度消失比较（见文前彩色图）

从伪代码4的WGAN-GP的实现方法中可以发现WGAN-GP重新使用了Adam方法，而不存在WGAN中使用Adam方法稳定性不高的问题。

伪代码4　WGAN-GP的伪代码实现（实验中使用的参数惩罚系数λ=10，判别次数ncritic=5，批次大小是m，Adam系数α=0.0001,β1=0,β2=0.9。初始的判别参数为w0，初始的生成器参数为θ0）

 [image:]

 [image:]

Keras的官方社区提供了WGAN-GP的实现源代码，读者可以到官方GitHub上找到他们的项目。[1]

如图5-17所示，WGAN-GP的研究者们对四种GAN在大量情况下进行实验对比，可以看到DCGAN和LSGAN（最小二乘GAN）在大多数条件限制下都已经无法很好地生成图像。WGAN虽然始终能够保持稳定的生成，但是在最后的几组实验中生成图像模糊，有些难以分辨，而WGAN-GP则在所有实验下都保证了高质量表现。

 [image:]

图5-17　WGAN-GP生成效果实验对比

[1] https://github.com/keras-team/keras-contrib/blob/master/examples/improved_wgan.py
5.6　本章小结

本章的开头部分说明了GAN存在的一些优化问题，并由此展开WGAN的理论研究。经过数学推导及理论实践，WGAN提出了几点对于DCGAN模型的修改意见。这里依然使用了Keras框架对上一章中的DCGAN进行改写，实现了WGAN的模型。5.4节中专门进行了WGAN的实验效果分析，从代价函数与生成质量相关性、生成网络的稳定性以及模式崩溃问题这三个点来分析WGAN的表现。最后介绍了WGAN的改进版本——WGAN-GP，并将其与WGAN进行了比较。
第6章　不同结构的GAN

之前我们重点介绍了生成对抗网络的基本结构以及各类优化，优化的方向都着重于生成效果，在本章中我们会看到研究者是如何从另一个角度来对GAN进行改造的，从而在优化生成效果的同时也让生成网络具备了更强的能力。
6.1　GAN与监督式学习

6.1.1　条件式生成：cGAN

在开始以前我们首先需要了解一下传统机器学习中的监督式学习。何为监督式学习？它指的是通过有标签数据集训练模型的一种机器学习方式，训练后的模型可以对未标签数据进行分类或回归分析。在机器学习的分类问题上，神经网络的监督式学习可以达到比较理想的效果。

我们把监督式学习的想法也放在生成模型上，我们期待的结果是希望可以根据网络输入的标签生成对应的输出。

对神经网络熟悉的读者可能马上会想到传统的神经网络模型似乎就可以实现这样的功能。我们可以将带标签数据集的标签项作为模型训练的输入，内容项作为模型训练的输出，训练后的结果就可以根据对应的标签输出相应的内容。

这样的设计似乎乍看之下没有问题，但是实际效果往往不理想。最核心的问题在于标签数据集存在标签一对多的情况，以文本生成图像作为例子，一句文本对应的图像可能会有很多个，标签虽然相同但是在内容本身上相差甚远。在这样的情况下，传统的神经网络模型会尽量让该标签的输出结果和每一个训练结果都尽量接近，这导致的问题就是生成图像会非常模糊，甚至有无法分辨的情况发生。其次，我们希望输出的内容是具有多样性的，而现有的神经网络在面对大规模输出类型的情况下还存在着很多挑战。

为了解决带标签数据的生成问题，研究者们在GAN的基础上提出了条件式生成对抗网络（cGAN）的概念[18]。在传统的生成模型上，包括之前章节说到的那些结构，都无法很好地控制数据生成的模式，而cGAN可以通过参数的控制来指导数据的生成。

我们先回顾一下传统GAN的目标函数，在生成器和判别器的训练过程中模型的目标是取得一个极小极大值。

 [image:]

条件式GAN其实非常好理解，它是对传统GAN的一个扩充，在原有的网络结构情况下，对判别器和生成器的输入都加上一个额外的辅助信息y，这个y可以是该数据的分类标签等。

下面的式子是条件GAN的目标函数，我们可以与传统GAN的目标函数公式进行对比。整体的目标函数并没有任何变化，只是判别器的输入x与生成器的随机输入z都加上了条件y。

 [image:]

在生成器中，我们从前置随机分布pz(z)中取出随机输入z，再与条件输入y进行拼接组合，形成一个全新的隐含表示。而在判别器中，真实数据x或生成数据G(z)都会和条件y共同输入以进行判别。图6-1是条件GAN的网络结构示意图。

 [image:]

图6-1　cGAN网络结构示意图
6.1.2　cGAN在图像上的应用

基于cGAN的思想，有很多新型的GAN模型试图解决一些应用层面的问题。这里首先要介绍的是拉普拉斯生成对抗网络（LAPGAN）[19]，它的核心目标是通过该网络能够在GAN基础上生成高质量的图片，解决目前传统GAN生成质量差的问题。

介绍LAPGAN之前首先要熟悉一些概念和定义。在图像处理过程中分别有下采样和上采样的概念，所谓下采样是对原始图像的模糊和压缩，举例来说如果下采样率为2的话，是让j×j的图像变成j/2×j/2的大小。而上采样是对原始图像的放大和扩展，上采样率为2的话新图像的大小为2j×2j。我们定义高斯金字塔G(I)=[I0,I1,…,IK]，其中I0为原始图像，之后的每一个Ik都是Ik-1的下采样，整个数组呈现一个从大到小的金字塔形状。由高斯金字塔可以引出拉普拉斯金字塔L(I)，它的每一项是高斯金字塔中相邻两项的差，公式如下所示，其中函数u(.)表示对图像的上采样。

 [image:]

式（6-3）中的最后一项其实是在像素不变的情况下对原始图像的模糊，拉普拉斯金字塔系数hk是图像在这一过程中的损失。我们也可以将上式改写为下面的样子，也就是说通过模糊图像和拉普拉斯金字塔的参数和不断地上采样和差值补充，可最终重建原始的高清图像。

 [image:]

LAPGAN正是基于上面的理论并应用了cGAN的思想，通过生成模型来产生拉普拉斯金字塔系数hk，如下式所示。

 [image:]

整个生成过程可以对应图6-2的网络结构图，最初的输入为一个随机变量zK，通过最初的生成器产生最初的图片数据[image:]，经过一系列基于条件的生成模型{G0,…,GK}，在每一层可以生成对应的拉普拉斯金字塔系数[image:]，而每一层的输出图像则由hk与IK相加而成。

 [image:]

图6-2　LAPGAN网络结构图

图6-3是网络的整体训练过程框架图，每一层其实可以看作单独训练的cGAN，其中每个网络的条件数据都是真实图片经过下采样和上采样后的模糊图片。这样独立训练带来的好处是网络很难产生“记忆”训练数据的情况，避免了重复输出训练集中图片的问题。

 [image:]

图6-3　LAPGAN训练过程框架图

LAPGAN在图像识别数据集STL上可以实现比较好的效果，图6-4中从右到左是网络过程中每一层的输出图像，可以达到从模糊到清晰的生成效果。

 [image:]

图6-4　LAPGAN逐层生成效果

研究者使用人眼评估的方式来对几种生成模型产生的数据进行比较，数据源为四类：真实数据、CC-LAPGAN、LAPGAN、普通GAN，由人眼观测该图像是否为电脑生成。其中CC-LAPGAN不仅将模糊图像作为网络的条件信息，还将图片本身的分类信息也作为条件输入，以此优化网络。

在CIFAR10数据库的情况下，图6-5评估的结果中可以看出原始GAN生成图像的质量很差，平均有效生成只有10%左右。CC-LAPGAN和LAPGAN的效果远高于普通GAN，大约在40%左右。

 [image:]

图6-5　几种生成模型的效果比较（见文前彩色图）

LAPGAN是从随机数据开始生成高清图片，类似的方案其实可以应用在图像的超分辨率上。超分辨率GAN（SRGAN）正是这样一种实现图片分辨率提升的生成对抗网络[20]。

所谓的超分辨率是指将原始图像的分辨率提高，我们首先通过图6-6来看一下SRGAN的效果，左边是原始的高清图片，而右边是4倍下采样后通过超像素还原的图片，可以发现对于这两张图片我们通过肉眼几乎无法看出差别，像素还原十分优秀。

 [image:]

图6-6　SRGAN的超像素效果

图6-7与图6-8分别是SRGAN的生成网络与判别网络的结构图，其中大量采用了残差网络的概念，这里不做过多解释，可以在参考文献[20]中查阅到更多相关资料。

 [image:]

图6-7　SRGAN生成网络结构图

 [image:]

图6-8　SRGAN判别网络结构图
6.2　GAN与半监督式学习

6.2.1　半监督式生成：SGAN

传统的机器学习方法一般分为监督式学习和无监督式学习两类。前者在前文中提到过是根据有标签数据进行的机器学习，后者则是利用无标签数据进行的机器学习。在很多实际问题中，带有标签的数据其实是非常少的，而大量的无标签数据似乎是比较容易得到的。半监督式学习所要做的事情就是结合监督式和无监督式这两种方式，同时利用少量标签数据与大量无标签数据进行训练，从而实现对于未标签数据的分类问题。

生成网络训练中的真实数据集可以被看作有标签数据集，而由生成器随机产生的数据则可以被看作无标签数据集。研究者们由此提出了一个问题，是否可以在训练生成模型的同时也能够训练一个半监督式的分类模型。

在之前DCGAN的研究中我们看到使用生成模型特征抽取后形成的判别器已经可以实现分类的效果，但依然存在很多可以优化的方向。首先，由判别器D学习到的特征可以提升分类器C的效果，那么同样一个好的分类器也可以优化判别器的最终表现，之前的研究仅仅使用判别器的训练来最终实现分类效果，可以说忽略了这一优势。其次从效率层面来讲，现有的训练方式无法同时训练分类器C和生成器G。更重要的是，优化判别器D可以提升分类器C的性能，而优化分类器C也可以提升判别器D，通过前面的学习我们也知道GAN中如果提升了判别器D的能力，生成器G的效果也会随之变得更好，三者会在一个交替过程中趋向一个理想的平衡点。

基于上述分析，研究者们提出了一种半监督式GAN（以下简称SGAN）[21]。研究者的目标是希望SGAN能够做到同时训练生成器与半监督式分类器，最终希望实现一个更优的半监督式分类器，以及一个成像质量更高的生成模型。

传统的GAN在判别器网络的输出端会采用二分类的模式，分别代表“真”和“假”。而在SGAN中，最重要的一个转变是把这个二分类（比如Sigmoid函数）转变成了多分类（Softmax），类型数量为N+1，分别指代N个标签的数据和一个“假”数据，表示为[C1,C2,[image:],Fake]。

我们可以通过下面的伪代码5来看一下SGAN的整体实现过程。在实际计算过程中，判别器和分类器其实是融为一体的，这里写作D/C，它们共同与生成器G形成一个博弈关系，最小最大化目标函数为负向最大似然估计（NLL）。

伪代码5　SGAN训练伪代码

输入：I:总迭代次数

　for n=1,…,I do

　　从生成器前置随机分布pg(z)取出m个随机样本z(1),…,z(m);

　　从真实数据分布pdata(x)取出m个真实样本(x(1),y(1)),…,(x(m),y(m));

　　最小化NLL，更新D/C的参数;

　　从生成器前置随机分布pg(z)取出m个随机样本z(1),…,z(m);

　　最大化NLL，更新G的参数;

　end for

图6-9是SGAN的网络结构图，我们可以与之前的cGAN进行对比。两者的差别在于，对于生成器的输入端我们并没有将标签信息进行输入，所以判别器产生的生成数据是随机分布的，并不受网络输入的控制。此外，对于判别器的输出而言cGAN仅仅是一个“真”和“假”的二分类，而SGAN则是一个分类器与判别器的结合体。

 [image:]

图6-9　SGAN网络结构图
6.2.2　辅助分类生成：ACGAN

从之前的介绍我们可以发现，使用有标签的数据集应用于生成对抗网络可以有效增强现有的生成模型，并且形成两种优化的思路。

首先，cGAN中使用了辅助的标签信息来增强原始GAN，对生成器与判别器均使用标签数据对进行训练，从而实现生成模型具备产生特定条件数据的能力。此外，另外一些研究也表明，cGAN所产生的生成模型在生成图像的质量上也比传统的方式会更优一些。当辅助标签信息更丰富的时候，效果也会随之继续提升。

另一类像SGAN这样的结构从另一个方向利用辅助标签信息，即利用判别器或分类器一端来重建标签信息，从而提升GAN的生成效果。从一些研究实验结果可以发现，当我们强制让模型处理额外信息时，反而会让模型本来的生成任务完成得更好，优化后的分类器可以有效提升图像的综合质量。

上述两种思想似乎是从两个角度思考了标签数据对于GAN的优化，那么把这两种方案结合起来是不是会有一种更好的方案？辅助分类GAN（以下简称ACGAN）正是在这样的思想上建立起来的生成对抗网络[22]，通过对结构的改造希望能够将上面的两个优势整合在一起，利用辅助标签信息产生更高质量的生成样本。

下面介绍ACGAN是如何工作的。对于生成器来说有两个输入，一个是标签分类信息C～PC，另一个是随机数据z，得到生成数据为Xfake=G(c,z)。对于判别器分别要判断数据源是否为真实数据的概率分布P(S|X)以及数据源对于分类标签的概率分布P(C|X)。

ACGAN的目标函数包含两部分，如下面公式所示。第一部分LS是面向数据真实与否的代价函数，第二部分LC则是面向数据分类准确性的代价函数。

 [image:]

 [image:]

在ACGAN的训练中，优化的方向是希望训练判别器D能够使得LS+LC最大，而生成器G使得LS-LC最小。对应的物理意义是希望判别器能够尽可能地区分真实数据和生成数据并且能够有效地对数据进行分类，而对于生成器来说则是希望生成数据被尽可能地认为是真实数据且数据都能够被有效分类。

图6-10是ACGAN的网络结构，可以发现其实与之前的cGAN和SGAN都非常接近，可以说是两者的结合体。但这样的修改可以有效生成高质量的生成结果，并且使得训练更加稳定。

 [image:]

图6-10　ACGAN网络结构图
6.3　GAN与无监督式学习

6.3.1　无监督式学习与可解释型特征

无监督式学习是监督式学习的反面，它的训练数据集是大量的无标签数据。无监督最大的优势在于能够对无序的数据进行一个在机器层面的分组归类，对于数据分析而言是非常有价值的。一个优秀的无监督式学习算法可以在事先不了解任何分类任务的情况下，仍然可以正确地猜测到分类情况。如果说从模拟人类思考方式的角度上来看，相比于有监督学习，无监督式学习更加接近人类。当我们面对某一个新事物的时候总可以在大脑中把它放到某一分类中，当我们看到某一类事物时也不需要有大量的标签数据告诉我们这些都是属于一个分类的。

一个比较典型的无监督式学习是k-means聚类，在该算法中向量空间中距离较近的数据点会被自动归成同一类型。大致的算法思路是对于一组都是d维的向量数据集，算法会产生k个聚类集合，并把所有向量都分配到最近的聚类中，并且要求每个组内平方和是最小的。在对几何数据反复地迭代更新后，算法会收敛于某个局部最优解。图6-11是k-means算法在二维与三维空间中自动将无标签数据聚类后形成的三类数据的效果图。

 [image:]

图6-11　k-means聚类效果图（见文前彩色图）

另一个无监督式学习的例子是之前提到过的自动编码器，如图3-2所示通过神经网络对于高维度的数据进行编码与解码的训练，从而产生一个中间层的低维编码。对于各类复杂的数据集，研究人员可以通过自动编码器的方法有效提取低维编码，也就是说这些低维编码是对于原始数据中真实信息量的提取。

与自动编码器类似，生成对抗网络（GAN）在大部分情况下也属于无监督式学习的一类，我们可以通过隐含向量来生成对应的高维度数据。在之前的DCGAN实验效果中我们也看到生成对抗网络的输入隐含向量是模拟了真实数据空间的低维度编码，当在隐含空间中移动的时候，生成的图像也会相应地平滑转变。同时该隐含向量也具备计算属性，比如笑脸女性图片的隐含向量减去普通表情女性图片隐含向量再加上普通表情男性图片隐含向量，可以得到笑脸男性图片的隐含向量。

无监督式学习在上面的研究中都能够实现不错的效果，但是在某些场景下不一定非常有效，原因在于经过特征训练后的数据表征并非可解释型特征，这可能对之后的分类任务帮助非常有限。举例来说，对于GAN的大部分模型其隐含输入的每一个维度并不含有具体含义，如果改变传统的GAN输入端的单个参数，并不会使得最终生成结果发生太大的变化，只有多个维度组合才会产生有意义的改变。比如对人脸数据集进行DCGAN的对抗训练，最后产生的生成模型输入值的每个维度并没有实际的含义，但是如果我们把每个维度对应到一个可解释的维度上，比如性别、面部表情、是否戴眼镜、发型等，那么对生成模型来说就是非常有意义的，我们可以直接根据自己希望的特性来生成数据。
6.3.2　理解InfoGAN

本节要介绍的InfoGAN正是考虑到了上述问题，对传统的GAN进行了一系列修改，从而使生成模型可以产生有意义且可解释的特征[23]。与之前的cGAN不同，原始训练数据并不含有任何标签信息，所有的特征都是通过网络以一种非监督的方式自动学习得到的。

与本章之前介绍的几种GAN不同，InfoGAN采用的是无监督式学习的方式并尝试实现可解释特征。InfoGAN中一个最大的改进是使用了信息论的原理，通过最大化输入噪声和观察值之间的互信息（Mutual Information，MI）来对网络模型进行优化。研究人员表示，InfoGAN能够适用于各类复杂的数据集，可以同时实现离散特征与连续特征，较传统的GAN训练时间更短。

InfoGAN在输入端把随机输入分为两个部分：第一部分为z，代表随机噪声；第二部分为c，代表隐含编码，目标是希望在每个维度上都具备可解释型特征。我们把隐含编码的每个维度定义为c1,c2,…,cL，这样就可以把隐含编码的分布写作P(c1,c2,…,cL)=[image:]。对于InfoGAN的生成器，我们将噪声z和隐含编码c同时输入得到G(z,c)，对于传统的GAN来说通常会忽略辅助的隐含编码信息c，这样会使得生成概率PG(x|c)=PG(x)。为了应对这个问题，在InfoGAN中需要对隐含编码c和生成分布G(z,c)求互信息I(c;G(z,c))，并使其最大化。

InfoGAN的网络结构如图6-12所示。读者可以将其与本章之前的GAN网络结构进行对比，其不同点在于真实训练数据并不带有标签信息，而输入数据为隐含编码和随机噪声的组合，最后通过判别器一端和最大化互信息的方式还原隐含编码的信息。也就是说，判别器D最终需要同时具备还原隐含编码和辨别真伪的能力。前者是为了生成图像能够很好地具备编码中的特性，也就是说隐含编码可以对生成网络产生相对显著的效果；后者则是要求生成模型在还原信息的同时保证生成的数据与真实数据非常逼近。

互信息表示两个随机变量之间依赖程度的度量。对于随机变量X和随机变量Y，定义它们的互信息为I(X;Y)，计算公式如下式所示，可表达为两种不同的熵计算公式，其中H(X)与H(Y)为边缘熵，而H(X|Y)与H(Y|X)为条件熵。

 [image:]

 [image:]

图6-12　InfoGAN网络结构图

从互信息的定义和上面的公式可知，当X与Y互相独立的时候，互信息I(X;Y)=0。相反，如果说X与Y相关程度很高的话，互信息也就会非常大。也就是说对于任意给定的输入x～PG(x)，希望生成器的PG(c|x)有一个相对较小的熵，即希望隐含编码c的信息在生成过程中不会流失。对于生成对抗网络的最大最小问题，我们需要把目标公式做修改并转换为下式：

 [image:]

由于概率P(c|x)难以直接得到，这导致了互信息I(c;G(z,c))难以最大化。实际计算过程中可以通过定义一个近似P(c|x)的辅助分布Q(c|x)来获取互信息的下界，推导过程如下。

 [image:]

由于DKL(P(·|x)‖Q(·|x))≥0，可以得出下面的不等式。由此我们可以得到互信息的下界值。

 [image:]

下面我们来看一下InfoGAN中的一个引理推导。

 [image:]

 [image:]

这样我们可以重新改写之前的不等式，并定义一个新的下界LI(G,Q)。从公式中我们可以发现LI(G,Q)可以通过蒙特卡洛方法逼近。

 [image:]

经过上面一系列的推导，最终可以得到InfoGAN的目标函数，定义如下，其中λ为超参量。

 [image:]

InfoGAN在实验中表现得非常好，在各个数据集上均提炼出了有价值的特征。比如在图6-13的MNIST测试集中，通过控制隐含编码中的c1可以调节生成数字是几，其他参数则可以调节生成字符的倾斜角度、字体宽度等。而原始GAN则对这些变量完全无能为力。

 [image:]

图6-13　InfoGAN在MNIST数据集上的控制

此外图6-14到图6-17也列举了InfoGAN对3D人脸数据集、椅子数据集、门牌号数据集以及人脸数据集的特征提取效果。

 [image:]

图6-14　InfoGAN与3D人脸数据集

 [image:]

图6-15　InfoGAN与椅子数据集

 [image:]

图6-16　InfoGAN与门牌号数据集

 [image:]

图6-17　InfoGAN与人脸数据集
6.4　本章小结

GAN的设计具有多种多样的可能性，本章提出了几类与经典GAN使用了不同结构的生成对抗网络。第一类是基于有监督标签信息的条件式生成对抗网络（cGAN），并在其基础上介绍了cGAN的一些应用，比如超像素。第二类是半监督式学习的生成对抗网络，分别为SGAN和ACGAN，这两者都是使用了部分辅助的信息来优化传统GAN的生成。最后一类是无监督式学习的InfoGAN，非但实现了生成对抗网络的生成效果，还可以让隐含编码中的每一维都具有实际意义。
第7章　文本到图像的生成

2016年，谷歌公司已经实现了比较高质量的机器图像理解，对于一张图片，计算机可以写出非常准确的文字描述。而通过文本描述产生图像却一直是行业中一个颇具挑战的方向，也是一项非常令人期待的突破。本章主要介绍了如何使用GAN来实现文本到图像的生成。
7.1　文本条件式生成对抗网络

想象一下你随意说一句话就能看到对应的场景，抑或是当你在阅读一本小说的时候，配图会自动根据你阅读的文字而变化，这些似乎只是在科幻电影里才能够想象的场景，但GAN的研究让文本到图像的生成成为可能。

实现文本到图像的生成可以分为两个步骤：第一步是从文本信息中学习提取文本特征，并确保这些文本特征能够具备重要的可视细节；第二步是将这些文本特征转化为人们可以直观看到的图像信息，与GAN的思想一致的是这些生成的图像需要“骗过”人眼，让人们以为是真实图像而非生成图像。我们发现文本生成图像这个看似困难的话题在转化为这两个步骤之后，都可以在现有的深度学习研究中找到应对的方案，比如自然语言表示技术、图像合成技术等。

在实际的文本生成图像过程中会遇到一个难点，文本描述与图像通常是一对多的关系，也就是说一段文本描述其实可以对应多种不同的图片，如图7-1所示。比如根据图中的文字描述，它可以对应下面给出的六种不同图片。

 [image:]

图7-1　文本描述与对应图像示例

在这种情况下，使用传统的深度学习方法会导致的问题就是生成质量非常模糊，因为传统的方法总是希望最终输出的结果能与训练集中所有对应的输出接近，而文本对应的图像（如图7-1所示）在像素层面的差别还是非常大的，如果采用的是综合平均的方法，势必导致效果较差。

在这样的场景下，GAN似乎提供了一种比较合适的解决方案，利用对抗网络的训练可以有效应对这种一对多的关系。根据本书前面学习的知识，我们很快就可以想到使用cGAN的方法来实现文本条件下的图像生成[24]。

图7-2这张架构图的思想正是以文本特征为条件的DCGAN，文本的编码信息同时应用于生成器与判别器并作为条件信息，通过卷积层的处理将文本条件信息转化为图像信息。

 [image:]

图7-2　文本条件式DCGAN框架示意图

我们可以通过图7-3来看一下通过这样的网络设计可以实现的效果。

除了上述标准方案以外，研究者还提出了两种优化方法，第一种是使用具备配对意识的判别器（这里简称GAN-CLS方案），也就是说相比标准的架构来说，判别器除了判断输出图像的真假之外，还需要分辨出失败的生成内容是属于生成图像不真实还是生成图像不匹配。下面是GAN-CLS的伪代码实现。

 [image:]

图7-3　网络实现效果图

伪代码6　GAN-CLS伪代码

 [image:]

第二种优化方法是使用流形插值的方案（这里简称GAN-INT方案），深度神经网络能够寻找到高维度匹配数据的低维流形，这使得我们可以对训练集做一些插值的工作。我们知道文本数据其实是一种离散数据，两个文本对应的向量之间的数据可能不代表任何含义，但在这里我们可以把它们看作一种辅助的优化信息。

式（7-1）是GAN-INT方案中添加的生成器优化函数，其中t1和t2是训练集中的两个文本向量，β是中间的差值，在实际应用中可以使用β=0.5。

 [image:]

图7-4和图7-5分别是在鸟数据集和花数据集上采用标准GAN方案、GAN-CLS方案、GAN-INT方案以及混合的GAN-INT-CLS方案的生成效果对比。

 [image:]

图7-4　鸟类数据集效果对比

 [image:]

图7-5　花类数据集效果对比
7.2　文本生成图像进阶：GAWWN

在最基础的文本生成图像之上，还可以对这类生成设置一些风格化的定义，比如采用什么样的背景和什么样的姿态。这里采用的一种方案是对风格编码器采用平方损失。

 [image:]

其中S是风格编码网络，通过图像生成器和风格编码器可以按照下面的步骤产生我们希望的图片。

 [image:]

图7-6的鸟类图像示例是在不同的风格背景下的文本生成图像效果。

 [image:]

图7-6　不同风格背景的文本到图像生成

除了风格转换之外，研究者还希望能够更好地控制生成图像[25]。比如对于鸟类数据集，我们通过文字“一只蓝色的鸟”，可能会生成各种各样不同姿态的鸟，同时鸟也可能出现在图像的各个位置，如果我们对生成器提供更多的条件输入就可能让这些不确定性都转化为确定的情况。比如图7-7的例子，第一行通过一个长方形区域的输入来固定鸟的位置，第二行则是通过关键点的设置来确定鸟的姿态，比如鸟的嘴、肚子、尾巴等，第三行由于文本比较复杂，前置条件仅设置了头的位置，可以看到依然有着不错的效果。

 [image:]

图7-7　不同位置与姿态的文本到图像生成

为了实现上面的两种条件输入，研究者提出了一种能够解决画什么和画在哪儿的生成对抗网络GAWWN——一种同时基于文本条件与位置或姿态条件的生成对抗网络。图7-8和图7-9分别是对应位置与姿态的两种GAWWN实现方法。这两种架构乍看之下都非常复杂，但是核心思想都是将额外的条件信息添加到生成器与判别器的训练中。从模型的设计上来看也是设计者经过大量的实验验证得到的架构。

 [image:]

图7-8　基于位置的文本到图像生成框架图

 [image:]

图7-9　基于姿态的文本到图像生成框架图

这里我们可以再多观察一些最终的生成效果，首先是方框的条件输入对于文本生成图像的影响。在图7-10中可以看到我们测试了三种不同的效果，分别是缩放、平移、拉伸，可以看到都有着不错的效果。

 [image:]

图7-10　基于位置的缩放、平移、拉伸的效果（见文前彩色图）

对于关键点条件输入，我们也可以采用类似的对比方案，这里的图7-11示例中仅设置了鸟的嘴与尾巴的位置，并且通过控制这两者的位置来实现缩放、平移、拉伸的效果。

 [image:]

图7-11　基于姿态的缩放、平移、拉伸效果（见文前彩色图）
7.3　文本到高质量图像的生成

目前大部分文本生成图像的技术都存在一个问题，那就是生成图像模糊不清。主要的原因在于文本往往具有多义性，一段文本所描述的信息其实可以对应多种多样的图像，并且每一幅都是正确的。比如“树枝上有只鸟”这句话，对应的图像可以是不同种类的树或是不同颜色的鸟。

传统的生成对抗网络擅长生成图像，前文中的cGAN也可以实现文本到图像的生成。虽然确实可以实现文本生成图像的效果，但是在细节上依旧存在模糊，目前cGAN的图像生成像素为64×64。研究者还通过提供辅助的信息（比如描述物的位置等）来提升生成图片的清晰度。但除此之外，cGAN无法依靠自身的能力来提高清晰度。
7.3.1　层级式图像生成：StackGAN

StackGAN提出了一种层级式的网络结构来实现高清晰度的文本生成图像[26]。StackGAN的核心理念是把问题进行拆分，将文本生成高清图像的任务拆分为两个子任务：第一个子任务是通过文本生成一个相对模糊的图像，第二个子任务是从模糊的图像生成高清图像。我们可以从图7-12的示例图中看到最终能够实现的效果。

 [image:]

图7-12　StackGAN的层级式生成效果

StackGAN的网络结构如图7-13所示。网络可以分成两个部分，分别为Stage-I GAN与Stage-II GAN，分别对应各自的子任务。此外在最初的输入部分，StackGAN提出了一个条件增强（conditioning augmentation）的模块用以提升输入的向量信息。

 [image:]

图7-13　StackGAN网络结构图

Stage-I GAN：根据给定的文本描述，生成描述对象的基本形状和颜色，并通过随机噪声输入来随机绘制背景，生成一张相对低分辨率图片。它的输入为条件文字描述与随机噪声，输出为低分辨率图片。

Stage-II GAN：主要负责修正低分辨率图像的不足，并通过再次读取文字描述来丰富图片中的细节，从而生成最终的高分辨率图片。它的输入为条件文本描述与Stage-I GAN输出的低分辨率图片，输出为最终的高分辨率图片。

在网络的输入端通常需要通过文本嵌入技术把输入文本t转换为向量形式φt。在以往的方法中该向量形式的维度特别高，通常会大于100维，而训练数据又是十分有限的，这就会导致输入数据在隐含空间中是不连续的，这样的数据集对训练生成器其实非常不友好。

条件增强技术正是要解决这个问题，其添加了一个附加的条件变量[image:]。该变量[image:]采样自独立的高斯分布N(μ(φt),Σ(φt))，其中μ(φt)代表φt的均值，而Σ(φt)则为φt对角协方差矩阵。这样在少量文本图像配对的数据训练集情况下能够产生更多的数据，同时对于微小的扰动能够更好地提高系统的健壮性。

为了使这些条件数据在隐含输入空间中更为平滑且避免过度拟合的问题，条件增强技术要求网络在训练过程中优化下式。通过增大标准高斯分布和条件高斯分布之间的KL散度，能够让网络产生更多样性的输出，也就是说对于类似的句子，能够产生更多不同的输出图像。

 [image:]

上文已经介绍了Stage-I GAN的工作是从描述文本生成低像素的图片，要求能够展现主要对象以及正确的颜色。Stage-I GAN需要训练的判别器D0与生成器G0的目标函数如下所示，其中I0为真实数据，t为文本描述信息，z为满足高斯分布的随机噪声信号，λ为正则化参数，在实验中可以取1。

 [image:]

在Stage-I GAN中，正如上面的架构图展示的那样，生成器G0接收到的输入数据包含文本条件变量[image:]，由计算公式[image:]得到，其中⊙表示对应位相乘而∈服从高斯正态分布N(0,I)。μ0与σ0分别为条件高斯分布N(μ0(φt),Σ0(φt))的均值与方差。最终的输入数据为[image:]与Nz维随机噪声向量的拼接组合。生成器网络会通过上采样生成对应的低像素图片。

在判别器D0这一端，文本向量φt先通过一个全连接层压缩到Nd维，并通过空间复制的方法形成Md×Md×Nd维数据。与此同时图像数据通过一系列的下采样形成一个Md×Md维数据。下一层的图像过滤器需要拼接通道维度和前面已经准备好的Md×Md×Nd维文本信息。判别器最终的全连接层会输出一个最终评分。

从Stage-I GAN生成的低分辨率图片需要通过Stage-II GAN生成更清晰的图片。在第一阶段中某些文字细节可能会被省略，也可能会被丢失，Stage-II GAN的重要步骤是通过低分辨率的图片加上条件文本以改进图像中存在的问题，并生成高质量图片。

低分辨率图片为[image:]，Stage-II GAN需要训练的判别器D与生成器G的目标函数如下所示。模型需要做的是最大化LD且最小化LG。

 [image:]

在Stage-II GAN中不再含有随机噪声z，随机性数据已经包含在输入图片内。条件变量[image:]会与[image:]共享同样的参数，并产生同样的文本向量φt，但会生成不一样的均值和标准差。Stage-II GAN通过补充那些遗漏的文本信息来使得输出图像更清晰。

下面我们来看一下StackGAN的实验效果。对于第一版的StackGAN，图7-14是CUB数据集情况下文本生成图像在两个阶段下的图像生成效果。图7-15是StackGAN中使用条件增强技术对于网络的改善。图7-16在文本向量中插值来展示StackGAN在隐含空间中的平滑特性。

 [image:]

图7-14　StackGAN在CUB数据集的生成效果

 [image:]

图7-15　StackGAN中使用条件增强技术的生成效果优化

 [image:]

图7-16　StackGAN的文本向量空间插值效果

我们也可以比较一下StackGAN与之前的GAN方法在生成图像质量上的提升。第一组是CUB数据集的生成效果比较（如图7-17所示），第二组是Oxford-102数据集和COCO数据集的生成效果比较（如图7-18所示）。在生成质量上确实要优于本章之前的GAN-INT-CLS方法。

 [image:]

图7-17　StackGAN-v1与其他生成器在CUB数据集的效果比较

 [image:]

图7-18　StackGAN-v1与其他生成器在Oxford-102和COCO数据集的效果比较
7.3.2　层级式图像生成的优化：StackGAN-v2

为了让StackGAN能够更加通用，适用于各种尺寸的输出图像，Stack-GAN的研究者又提出了StackGAN-v2版本[27]，图7-19是改进后的网络结构图。

 [image:]

图7-19　StackGAN-v2网络结构图（见文前彩色图）

如图7-20所示，这里直接观察一下StackGAN-v2的生成效果，从左到右分别是在Ima-geNet与LSUN数据集下，StackGAN-v2中三个生成器G0、G1、G2生成的64×64、128×128、256×256像素图片。

 [image:]

图7-20　StackGAN-v2的层级式生成效果

图7-21是各类情况下StackGAN-v2的生成效果。

 [image:]

图7-21　各类情况下的StackGAN-v2的生成效果

在无条件图像生成情况下，对比StackGAN-v2与其他GAN生成图像的质量。这里的对比模型是之前章节中介绍过的DCGAN与WGAN（见图7-22）。

 [image:]

图7-22　StackGAN-v2与DCGAN与WGAN的无条件生成效果

StackGAN-v1与StackGAN-v2的比较：从图7-23可以看到v1版本存在模式崩溃的问题，在方框标注区域反复产生一模一样的数据，而右图的StackGAN-v2则没有发生模式崩溃的情况。

 [image:]

图7-23　StackGAN-v1与StackGAN-v2的对比（见文前彩色图）

StackGAN与StackGAN++的作者在GitHub上开源了StackGAN与Stack-GAN++的代码，读者可以下载源码进一步研究。此外，在这两者的基础上他们最近也发布了最新研究AttnGAN[29]，提出了一种细粒度的文本到图像生成方法，感兴趣的读者可以继续阅读参考文献。
7.4　本章小结

在条件式生成对抗网络的基础上，本章介绍了基于文本的图像生成网络。7.1节提供了文本到图像生成的整体思路，首先需从文本中提取特征信息，其次再从特征信息进一步生成图像。7.2节在上述基础上介绍了一种进阶模型GAWWN，可以在文本条件的前提下增加生成图像中物体的位置与姿态。为了实现更高质量文本到图像的生成，7.3节介绍了一种层级式生成对抗网络StackGAN与StackGAN-v2，通过层级的设计来产生高质量的图像输出。
第8章　图像到图像的生成

在本书前面已经介绍了多种条件式生成的模型，其中不仅有基于条件分类的图像生成，也包含了基于文本信息的图像生成。在本章中，我们来看一下更加复杂的情况，即能否把更为复杂的图像数据作为生成对抗网络的输入条件，实现图片到图片的生成。
8.1　可交互图像转换：iGAN

8.1.1　可交互图像转换的用途

图像生成技术带给了我们很多便利性，尤其是之前提到的文本生成图像，用户简单输入一段文字就可以生成想要的图像。畅想一下文本到图像应用场景，这对于文字创作者来说可以非常低成本地制作出文字配图，而对于漫画创作者来说通过情节生成草图则能够极大地提高创作效率。但如果一切仅从文本出发似乎又显得单调了一些，如果我们想描述一个事物，有时候最简单的方法可能不是通过文字，而是随手画一个草图等。

iGAN的研究者提出了一个非常有趣且实用的场景，他们认为可视化的交流是非常重要的，甚至可以说是生活中必不可少的，但对于大部分人来说他们并不具备视觉方面的创作能力，他们不是画家，无法画出惟妙惟肖的图来表达自己的观点和想法[30]。列举一个线上购物的例子，你想买一双曾经看到过的靴子，你大致知道这个靴子的式样、颜色、款式，但是无法准确地用文字描述出来，而且你也不具备非常强的画画功底，这个时候似乎就缺少了一种表达方式来让线上购物平台知道你的想法。通常在这样的场景下，大部分人只有选择放弃。

iGAN的研究者希望能够提出一种图像到图像的生成模型，让用户可以通过简单几笔勾画出自己脑海中的物体形象，虽然只是草图的形式，可能并不完整或者甚至有些抽象，但是模型可以自动进行图像转换，生成对应图像的真实样子。如图8-1所示，用户希望构建一幅风景画，第一步他使用绿色在区域的下半部分画了一笔，代表草地，右边第一行是模型对应草地的输出。第二步用户用灰色虚线勾勒出山的所在区域，这时候模型输出为右边第二行，出现了山与草原的场景。最后一步使用蓝色在区域顶部画一笔，代表蓝色的天空，右边最下一行则表示出最终的输出图像。

 [image:]

图8-1　iGAN：交互式图像绘制（见文前彩色图）

此外，iGAN的思想也可以支持用户对现有图像进行简单修改。如图8-2所示，用户在对一双普通的黑色皮鞋进行简单的编辑，图上例子的核心步骤是c：用户使用笔刷对原始图像中的鞋子进行上方的拉伸，最终鞋子的造型转变为长款。但要实现中间这一步有一个重要的前提——我们先要将原始图像投射到低维度的自然图像流形中，在这个低维度流形中的每一个图像都可以对应到真实的自然图像。

 [image:]

图8-2　iGAN：交互式图像修改
8.1.2　iGAN的实现方法

首先我们介绍一下什么是自然图像流形（natural image manifold）。假设我们把图像数据的全集看作一个高维度空间，其中包含了各式各样的图像，它的维度只与像素有关而与内容无关。自然图像是指真实世界的图像，也就是说是人类可以理解的图像，比如风景、物体等，我们把自然图像数据集看作图像数据全集的一个低维度流形，类似图8-3所示，在这个流形上的所有数据都能够对应一张人们可以理解的自然图像，且数据间具有连续性，随着点在流形上移动，输出的图像数据也会发生连续的变化。

iGAN使用了生成对抗网络的方案来近似产生自然图像流形，这里有几个原因促使选择GAN。第一点，从之前的章节中我们也看到了，像DCGAN等这样的图像生成网络擅长于制作高质量的图像输出，当我们的训练集在一定范围内的时候，生成效果会变得非常好。有时GAN在细节上可能还是不能满足需求，但是从如图8-4所示的随机输出来看，GAN基本能输出一个合理且可理解的样子。

 [image:]

图8-3　自然图像流形

 [image:]

图8-4　GAN生成的服装类图像示例

第二点是自然图像流形的相邻图像数据应该在图像感知上也具备相似性，而这一点也与GAN的设计非常接近。当GAN隐含空间输入数据很接近的时候，输出的图像也是非常类似的，如图8-5所示，这三组数据分别是三组非常接近的隐含空间数据所对应的图像，虽然细节不同但大体结构都是非常相似的。

 [image:]

图8-5　GAN隐含空间的图像连续性

第三点是自然图像流形中两点之间的图像连续性，即指从一个点到另一个点应该可以实现平滑的切换。在DCGAN中我们已经看到过类似的应用，通过线性地插值我们可以看到图8-6的效果，从左到右形成一个渐进式变化。

 [image:]

图8-6　GAN线性插值后的图像变化

对于以上三点，GAN很好地满足了我们所希望的自然图像流形所具有的特性。下面再来看iGAN究竟是如何运行与实现的。

图8-2中的例子其实已经囊括了iGAN的核心流程，总结一下可以分为三个步骤：首先，将目标图片降维到自然图像流形上，GAN可以用一个隐含特征向量还原原始图片。接着我们通过改变这个输入的隐含特征向量，保证更新后的图像能够既满足用户的编辑，也保证能够接近自然图像流形。这样我们就可以实现交互式图像的修改了。如果是应用到交互式创作图片的话，第一步的原始图像可以直接由GAN随机产生，之后的步骤与上述类似。

图8-7展示了一个更直观的例子，其通过iGAN进行鞋子的创作，初始化是一个随机的鞋子。第一行从左至右是用户的编辑，第二行则是iGAN对应的输出。最后一行我们将最初的输出图像和最终的输出图像之间做一个线性插值，可以与第二行进行一个简单的对比。

 [image:]

图8-7　使用iGAN绘制鞋子

在这里有一点需要注意的是，在图像转换的过程中生成模型会丢失原始图像中的细节部分，iGAN中使用了一些插值技术来尽可能还原图像细节。在实现细节上，iGAN基本上是参考了DCGAN的网络结构，在实验中使用的是Titan X GPU，大约每次更新需要50～100毫秒左右，最终导出生成的高清图像需要5～10秒的时间。
8.1.3　iGAN软件简介与使用方法

iGAN的完整代码已经由伯克利大学与Adobe实验室共同完成并开源在GitHub上，所有人都可以自行下载体验及使用。所有代码都是由Python 2完成的，在使用之前需要在电脑上安装必要的第三方库。

安装numpy，一个开源的Python科学计算库。

$ sudo pip install numpy

安装OpenCV，一个非常流行的图像处理框架，常用于学术领域和商业用途，支持C++、Python、Java等多种编程接口。

$ sudo apt-get install python-opencv

安装Theano，一个与TensorFlow非常类似的机器学习框架，Ian Good-fellow与Yoshua Bengjo也是它的早期开发者，iGAN的代码是基于Theano开发的。

$ sudo pip install--upgrade--no-deps git+git://github.com/Theano/Theano.git

安装PyQt，用于软件的图形界面。此外还需要安装一个PyQt的图形库组件QDarkStyleSheet，用于表单的设计。

$ sudo apt-get install python-qt4

$ sudo pip install qdarkstyle

安装Dominate，用于使用Python操作HTML。

$ sudo pip install dominate

代码在GTX Titan X+CUDA 7.5+cuDNN 5的环境下进行过测试，为了能够很好地在GPU上运行程序，还需根据官方教程安装CUDA和cuDNN。

安装完这些要求的库之后，我们可以从GitHub上复制iGAN的源码。

$ git clone https://github.com/junyanz/iGAN

$ cd iGAN

接着我们需要下载对应的模型文件。项目方目前提供的模型文件有五类，分别是室外场景、教堂、手提袋、鞋子以及鞋子的手绘稿。下面的命令行代码是下载室外场景的模型。

$ bash./models/scripts/download_dcgan_model.sh outdoor_64

最后我们可以运行Python脚本执行软件。

$ THEANO_FLAGS='device=gpu0, floatX=float32, nvcc.fastmath=True' python iGAN_

 main.py --model_name outdoor_64

这里介绍一下iGAN可交互式图片生成软件的UI界面，如图8-8所示，这是最终用户端的展示状态。

 [image:]

图8-8　iGAN软件的UI界面

对图8-8的布局做一下说明，上方左侧的白色框为用户的主输入输出界面，在这个区域内用户可以进行画图和图像编辑，生成的图像也会以背景的形式展现在这个框内。右侧的白框区域为输出图像的备选结果，因为生成的结果通常是多样的，用户可以根据自己的喜好选择想要的输出。中间的滑动条用来进行插值操作，可以探索输出结果和最初随机生成图像之间的内容。下方的工具栏可以选择笔刷的种类，颜色笔刷用来改变特定区域的色彩，草图笔刷用来勾勒形态，形变笔刷用来改变物体的形状。最后的控制面板区域可以播放差值序列的输出、固定当前的设置、重启整个软件系统、保存当前输出到网页中等。

在软件的使用交互上，彩色笔刷可以通过点击右键来选择颜色，按住左键拖动进行画图，使用鼠标滚轮可以改变线的粗细。草图笔刷也是类似的用法，长按左键作画即可。形变笔刷需要在草图和颜色画完之后使用，右键选择区域，长按左键改变区域，滚动鼠标滚轮可调节所选区域的尺寸。

图8-9是使用软件生成图像的三个案例。第一和第二张图为不同造型和颜色的教堂建筑，第三张图是户外自然风光。可以发现，用户只需要简单几笔勾画出大致的样子和颜色，软件就可以输出逼真的效果图，这一功能可以大大提高用户作图的效率，不需要高超的画图功底也可以达到令人满意的效果。

图8-10展示了iGAN对于原始图片修改的使用，用户的操作显示对图像左边区域进行一个向内的形变，其次是使用颜色画笔对手提包的颜色进行修改。第二行的数据是用户编辑过程中的图像变化，第一行则是输入数据与最终数据之间插值产生的结果。

 [image:]

图8-9　iGAN软件生成的三个案例（见文前彩色图）

 [image:]

图8-10　iGAN图片修改的可视化对比图

iGAN是发表于2016年的研究，开启了GAN在图像到图像生成中的应用，该论文的作者也在发表了iGAN之后继续先后提出了非常著名的Pix2Pix与CycleGAN，这两个会在后面几节中进行详细的说明。
8.2　匹配数据图像转换：Pix2Pix

8.2.1　理解匹配数据的图像转换

从iGAN的研究中我们发现图像到图像的生成在应用中的潜力，实际生活中许多问题都希望能够通过输入的图像生成我们希望的对应图像。例如图8-11希望能够将黑白输入的图像转变成彩色图像，对于过去一个时代中大量的黑白复原会有很大的帮助。图8-12是将航拍的街道图像转换为地图图像输出，可以有效减少地图绘制的时间。图8-13的应用和iGAN有点类似，它可以将手绘的草图转化为真实事物的照片。

 [image:]

图8-11　黑白图片转换为彩色图片（见文前彩色图）

 [image:]

图8-12　航拍图片转换为地图图片

 [image:]

图8-13　手绘图片转换为实物图片

我们发现虽然这些应用的应用点都有所不同，但是在技术层面其实都是从图像到图像的转换，完全可以采用同样的结构和模型并应用到各自的数据集中。研究者们希望研发出一套图像转换的解决方案，它能够面向所有匹配图像数据集的训练与生成。

所谓匹配数据集是指在训练集中两个互相转换的领域之间有很明确的一一对应数据。比如上面三个例子中，第一个例子中的训练集里黑白照片会对应一张彩色照片，第二个例子中的航拍照片会对应已有的地图图片，最后一个例子中的草图手绘稿会对应真实事物的照片。

在工程实践中研究者需要自己收集这些匹配数据，但有时同时采集两个不同领域的匹配数据是麻烦的，通常采用的方案是从更完整的数据中还原简单数据。比如图8-11，我们可以直接将彩色图片通过图像处理的方法转为黑白图片，对于图8-13我们也可以用边缘以提取技术，将手提包的真实图片提取边缘以模拟手绘草图的样子。当然这一方法也不适用于所有情况，对于图8-12的例子我们就无法直接转移，而是需要到谷歌地图上直接寻找配对的航拍图和地图，还有图8-14中黑夜和白天的图像转换，也需要事先收集大量同一场景的白天和黑夜的照片。

 [image:]

图8-14　白天图片转换为黑夜图片

由于匹配数据集的存在，深度学习领域的研究者已经尝试使用卷积神经网络来解决这类“图像翻译”问题。但与上一章中文本到图像生成碰到的问题类似，最终的图像转换会非常模糊，因为卷积神经网络会试图让最终的输出接近所有相类似的结果。而生成对抗网络可以很好地避免这一问题的产生，本节要重点介绍的Pix2Pix正是基于生成对抗网络的匹配数据图像转换的解决方案。
8.2.2　Pix2Pix的理论基础

Pix2Pix是iGAN的作者在2017年发表的论文研究成果[31]，同样采用了cGAN的思想，将输入的图像作为生成对抗网络的条件。在网络结构的设计上，Pix2Pix基本参考了DCGAN的结构，使用了卷积层、批归一化以及ReLU激活函数。

图8-15展示了Pix2Pix使用cGAN训练生成对抗网络的思路，这里是手绘鞋和真实鞋子图像的一组配对数据，生成器通过作为条件的手绘数据生成了左图中的鞋子，然后我们将两者放入判别器中，判别器应该判断为假，而当我们将真实的配对数据输入时，判别器应该判断为真。

 [image:]

图8-15　Pix2Pix框架示意图

我们先重温之前提到过的cGAN的目标函数，如式（8-1）所示，其中D(x,y)表示真实配对数据输入图像x与输出图像y对于判别器D的结果，而D(x,G(x,z))则是x经过生成器产生的图像G(x,z)对于判别器判断的结果。

LcGAN(G,D)=Ex,y[log D(x,y)]+Ex,z[log(1-D(x,G(x,z)))]　（8-1）

除了上面的cGAN优化函数以外，Pix2Pix的论文里还提到可以加入L1 Loss作为传统的损失函数对网络加以优化。

LL1(G)=Ex,y,z[‖y-G(x,z)‖1]　（8-2）

最终的生成器目标函数如下所示，其中λ为超参量，可以根据情况调节，当λ=0时表示不采用L1 Loss的损失函数。

 [image:]

此外这里还要说明一点，在cGAN中虽然没有随机参量z，其实整个网络也是可以运行的，但这导致的结果是生成器的每一个输入都会对应一个确定的输出结果。

下面我们来看一下Pix2Pix在不同状态下的测试结果，调节公式中的λ，有以下三种情况：仅使用传统的L1 Loss、仅使用cGAN以及同时使用两者的目标函数，结果如图8-16所示。

 [image:]

图8-16　不同Pix2Pix之间的对比

更多具体数据的测试结果如表8-1所示，分别计算了五种组合情况下的像素精确度、分类精确度以及分类IoU（Intersection over Union的缩写，一种计算预测区域与真实区域重叠部分占比的计算方法），L1+cGAN的组合在各项指标中都是最接近理想状态的。

表8-1　不同损失函数的精确度比较

 [image:]

从图8-16中我们会发现L1 Loss的输出结果是大致接近原始图像的，但是由于之前提到传统深度学习的问题即导致生成图像非常模糊，而使用cGAN所生成的图像则具备了细节清晰的效果，但是它的问题在于额外添加了很多不必要的细节，有时离原本的真实图像在细节上差距较大。最后一组L1+cGAN的输出结果是比较令人满意的，综合了两者的特性，既完善了细节也保证了一致性。

我们可以总结出L1 Loss用于生成图像的大致结构、轮廓等，也可以说是图像的低频部分。而cGAN则主要用于生成细节，是图像的高频部分。Pix2Pix在这一点上进行了优化，研究者认为既然GAN仅用于高频部分的生成，那么在训练过程中也没有必要把整个图像都拿来做训练，仅需把图像的一部分作为判别器的接收区域即可，这也就是PatchGAN的思想。由于参数更少，PatchGAN可以使得训练过程变得更加高效，同时也可以针对更大的图像数据集进行训练。

在Patch的大小上Pix2Pix也进行了测试，针对原始图像为286×286的情况，分别采用了1×1像素（称为PixelGAN）、16×16像素、70×70像素以及全图286×286像素（称作ImageGAN），结果如图8-17所示。相比于模糊的L1生成图像，PixelGAN虽然未能在图像细节上改进，但是在色彩上面已经优于原始L1的方案。16×16和70×70的PatchGAN均取得了比较不错的效果，相比之下70×70在色彩还原和图像细节上都更胜一筹，而最后ImageGAN和70×70的PatchGAN相差不大。在最终的数据结果（见表8-2）中，70×70的PatchGAN取得了最好的成绩。

 [image:]

图8-17　不同Patch大小的Pix2Pix

表8-2　不同判别器接收区域的精确度比较

 [image:]

在生成器的设计上，最简单的想法是图8-18左图的编/解码器网络，通过左侧的不断下采样到达中间的隐含编码层，然后再通过右侧的上采样来还原图像。在Pix2Pix的应用中，这样的方案是可行的，但是似乎少利用了一些匹配图像数据中已有的信息。

让我们重新来看一下大部分图像到图像的生成有什么特点。我们会发现虽然匹配数据的风格或样式不同，但是整体的框架和结构是类似的，甚至于说如图8-11所示黑白照片与彩色照片的配对数据集两者的图像边缘是完全重合的。为了能够利用这类信息，也可以使用图8-18右侧的U-Net结构[28]，它与自动编码器网络不同的是，左侧和右侧的网络之间添加了很多跳跃连接，可以将部分有用的重复信息直接共享到生成器中。

 [image:]

图8-18　编/解码器与U-Net

图8-19是使用传统编码解码网络与U-Net之间的差别，在仅使用L1 Loss和L1+cGAN的两种情况下，U-Net都具备了比较高的清晰度，生成了更高质量的图像数据。表8-3记录了四种组合情况下三种准确度的比较，使用U-Net的L1+cGAN方案在各种精度计算下都表现最优。

 [image:]

图8-19　传统编/解码器与U-Net比较

表8-3　不同损失函数的精确度比较

 [image:]

8.2.3　Pix2Pix的应用实践

Pix2Pix不仅仅是一个在研究领域非常成功的作品，同时在社区中也因为该技术的开源而变得非常知名。计算机视觉、图像图形学等领域的从业人员包括一些视觉艺术家纷纷在它的代码基础上展开了自己的项目，使得Pix2Pix的应用在社区的驱动下变得更完善。

由于Pix2Pix的最原始代码是使用Torch编写的，项目的官网上也提供了社区开发者Christopher Hesse改写的TensorFlow版本。本书在这里以Pix2Pix的TensorFlow版本为例，为大家介绍如何使用Pix2Pix来创造我们的图像。在介绍以前我们先看一下基于Pix2Pix的TensorFlow提供的可交互示例（https://affinelayer.com/pixsrv/）。

如图8-20和图8-21所示交互示例可以在网页上根据用户编辑的草图生成猫咪或输入的方块来生成建筑物，整个过程时间很短，大家可以直接在网页上体验。

 [image:]

图8-20　Web软件试用：手绘生成猫咪

 [image:]

图8-21　Web软件试用：输入方块生成建筑物

在使用Pix2Pix-TensorFlow以前先确认电脑上已经安装了CUDA、cuDNN以及TensorFlow。

从GitHub上复制项目到本地。

git clone https://github.com/affinelayer/pix2pix-tensorflow.git

cd pix2pix-tensorflow

项目代码中已经包含了下载数据集的代码，可以直接运行进行下载，这里包含了五种数据集，分别为建筑物、城市风景、地图、鞋子草图、手提包草图，可以根据自己的需要进行下载。

python tools/download-dataset.py facades

python tools/download-dataset.py cityscapes

python tools/download-dataset.py maps

python tools/download-dataset.py edges2shoes

python tools/download-dataset.py edges2handbags

下载完成后可以使用代码进行训练，针对不同的GPU可能需要大约1到8小时不等，如果只有CPU的话时间会非常久，对于还没有GPU的读者建议使用GPU云机进行训练。这里使用建筑数据集进行训练。

python pix2pix.py \

 --mode train \

 --output_dir facades_train \

 --max_epochs 200 \

 --input_dir facades/train \

 --which_direction BtoA

一些参数的使用说明如下：

mode：在训练时为“train”，测试时为“test”。

input_dir：训练图像数据集的文件夹位置。

output_dir：保存模型的文件夹。

which_direction：用来确定训练的方向，AtoB或BtoA。

max_epochs：设置最大迭代次数。

output_filetype：输出格式可以是png或jpg。

完成训练后可以使用测试代码进行测试。

python pix2pix.py \

 --mode test \

 --output_dir facades_test ' \

 --input_dir facades/val \

 --checkpoint facades_train

如果电脑上安装有Docker的话，可以不用安装环境，直接通过Docker来运行训练代码和测试代码。

训练模型：

python tools/dockrun.py python pix2pix.py \

 --mode train \

 --output_dir facades_train \

 --max_epochs 200 \

 --input_dir facades/train \

 --which_direction BtoA

测试模型：

python tools/dockrun.py python pix2pix.py \

 --mode test \

 --output_dir facades_test \

 --input_dir facades/val \

 --checkpoint facades_train

此外，项目还提供了一些工具来帮助你创造自己的训练集。如图8-22用自己的数据来实现图像的补全，需要对原始数据进行一系列操作，首先是调整尺寸，然后需要挖空，最终形成匹配数据对。

 [image:]

图8-22　创造自己的数据集

使用项目中的工具来实现上述数据集的建立如下所示。

尺寸调整：

python tools/process.py \

 --input_dir photos/original \

 --operation resize \

 --output_dir photos/resized

中间挖孔：

python tools/process.py \

 --input_dir photos/resized \

 --operation blank \

 --output_dir photos/blank

匹配数据对：

python tools/process.py \

 --input_dir photos/resized \

 --b_dir photos/blank \

 --operation combine \

 --output_dir photos/combined

分别放入训练集与验证集：

python tools/split.py

 --dir photos/combined

如果你已经有了自己做好的训练集，且匹配数据之间命名、尺寸大小都相同的话，可以直接使用工具箱中的process.py。

python tools/process.py \

 --input_dir a \

 --b_dir b \

 --operation combine \

 --output_dir c

图8-23到图8-29分别是一些不同场景下使用Pix2Pix的效果图。当然Pix2Pix也并非在所有情况下都表现得非常好，图8-30就展示了几个Pix2Pix失败的案例。

 [image:]

图8-23　模拟图片与道路实景转换（见文前彩色图）

 [image:]

图8-24　方块积木与建筑物图片转换

 [image:]

图8-25　白天与黑夜转换

 [image:]

图8-26　背包手绘稿与实物图转换

 [image:]

图8-27　鞋子手绘稿与实物图转换

 [image:]

图8-28　残缺图片与完整图片转换

 [image:]

图8-29　夜视图片与实景图片转换

 [image:]

图8-30　Pix2Pix失败案例
8.3　非匹配数据图像转换：CycleGAN

8.3.1　理解非匹配数据的图像转换

上一节中的Pix2Pix可以很好地处理匹配数据集的图像转换，但是在很多情况下匹配数据集是没有的或者说非常难收集到，但我们可以拿到两个领域中的大量非匹配数据。另外如图8-14所示提到的白天黑夜照片转换，我们可以想象一下收集大量无相关的白天和黑夜照片很简单，但要收集那么多匹配的白天和黑夜照片就很耗时了。工程上确实可以在同一场景采集白天和黑夜的照片，这导致的是实际操作中时间和工程量消耗巨大。

让我们通过图8-31来认识一下匹配数据与非匹配数据的差别，左图中是鞋子轮廓草图和实物图的匹配数据，每一双鞋子都能找到对应的手绘稿，在实际训练集的采集过程中即使没有手绘稿，也可以通过边缘提取技术等制造出配对数据。现在设想一下另一个场景，我们希望能够实现风景照的莫奈印象派风格化转换，把照片中的场景转变成画作中的样子，但是通常训练集中是没有风景照的印象派版本的，如图8-31的右图所示是两类完全没有关联的数据，第一组X是大量的风景图片，而右边Y则是莫奈的印象派风格画作。我们需要另一种新的方法来应对这类问题。

 [image:]

图8-31　匹配数据与非匹配数据

 [image:]

图8-32　莫奈画作与实景的互相转换

在2017年同时有两篇非常相似的论文CycleGAN和DiscoGAN提出了一种解决非匹配数据集的图像转换方案[32][33]。其中CycleGAN的作者团队也是前两节介绍的iGAN与Pix2Pix的研究团队，可以说在图像到图像生成领域，该伯克利大学的研究团队做出了非常大的贡献。

我们先用CycleGAN中给出的概念来畅想一下非匹配数据图像转换实现后的应用场景。对于之前图8-31右图的训练集，我们可以通过CycleGAN来实现莫奈印象派作品与真实风景照的互相转换。如图8-32所示，当我们将莫奈的画作转换成风景照后，似乎也可以想象当时莫奈作画时面对的风景，而当我们将自己的照片转换为莫奈印象派风格画作时，也不需要支付一大笔钱来请一个绘画高手。

当然同样的我们也可以创作出更多不同风格的画作，比如图8-33展示的莫奈风格、梵高风格、塞尚风格和浮世绘风格，一切都是基于我们输入的风景照，但是却能以不同风格的艺术手段展现出来。

 [image:]

图8-33　实景的各类画风转换

其实对于照片的风格转换，读者可能了解到已经有研究者提出过别的方案，而且效果不错。其中比较流行的方法是通过卷积神经网络将某个画作中的风格叠加到原始图片上，如图8-34所示。但这类方法与本节中概念的不同点在于，它是将两张特定的图片之间进行转换，而我们希望这种转换是存在于两个图像领域中的。

 [image:]

图8-34　神经网络风格转换

我们把思维从照片风格化的例子里拉回到现实中，看看还能做些什么，是不是可以做一些时间维度上的转变呢？如果说之前图8-14例子中白天和黑夜的时间跨度还不够大的话，图8-35则可以实现风景图片夏天与冬天的互相转换。这个对于Pix2Pix这样的匹配数据训练来说几乎是难以实现的。

CycleGAN给出的例子里最有趣同时也是最著名的就是图8-36中斑马与马的互相转换，这是大自然中天然的一对同一物种但是外观风格完全不同的经典例子。由于马的行为是动态的，我们没有办法分别捕捉同一场景同一姿势的斑马与马的照片，只有采用非匹配数据集的方法才可以实现它们之间的转换。

 [image:]

图8-35　夏天与冬天的风景照片转换

 [image:]

图8-36　斑马与马的风景转换

当然我们也可以在一些软件里发现非匹配数据图像转换的影子，比如一款非常流行的照片处理应用Faceapp，可将这种转换应用在人脸图像上。图8-37是Faceapp官网的介绍图，其中不仅可以对照片中人物的表情进行变化，还能进行年龄和风格的变化。感兴趣的读者也可以从苹果应用商店或者Google Play上下载Faceapp进行体验。

 [image:]

图8-37　Faceapp功能示例
8.3.2　CycleGAN的理论基础

由于DiscoGAN的思想与CycleGAN几乎是相同的，这里我们只对CycleGAN进行介绍。由于是与iGAN和Pix2Pix相同的研究团队，整体的思路也是前两者的延续，更有助于读者理解。

 [image:]

图8-38　CycleGAN整体框架

图8-38是CycleGAN的一个大体框架，它的核心是由两个生成对抗网络的合作组成的。X与Y分别代表两组不同领域的图像数据，第一组生成对抗网络是生成器G（从X到Y的生成）与判别器DY，用于判断图像是否属于领域Y；第二组生成对抗网络是反向的生成器F（从Y到X的生成）与判别器DX，用于判断图像是否属于领域X。两个生成器G和F的目标是尽可能生成对方领域中的图像以“骗过”各自对应的判别器DY和DX。

上面的框架似乎非常简单，从直觉上来看通过两组生成对抗网络独立的训练就能够达成我们的目标，但是仔细思考一下会发现其实是不够的。我们仅拿其中一组举例，如果生成器G希望让判别器DY认为从X转化过来的图像是属于Y的最好方法是什么呢？其实G可以什么都不做，完全不用提取任何与X有关的信息，而是直接从Y中生成数据并作为输出。可以说独立的训练会导致失去各自条件的意义。

 [image:]

图8-39　第一组生成对抗网络

 [image:]

图8-40　第二组生成对抗网络

这里需要引入一个Cycle-consistency Loss的概念，这也是CycleGAN名字的由来。如图8-39和图8-40所示，我们需要将两组生成对抗网络有机地结合起来。首先我们来看一下图8-39，在生成器G通过条件数据x生成为Y领域中的数据[image:]后，我们需要将它通过对面的生成器F重新还原一个原来领域中的[image:]，为了保证一致性，我们希望让x和[image:]尽可能接近，而x和[image:]之间的距离我们称之为Cycle-consistency Loss。反之，对于图8-40其实也是相同的情况。上述的步骤可以用下面两组公式表达。

x→G(x)→F(G(x))≈x（8-4）

y→F(y)→G(F(y))≈y（8-5）

针对上述情况，我们可以设计两种目标函数分别对应生成对抗网络的目标函数与Cycle-consistency Loss。其中前者针对两组生成对抗网络的公式如下。

LGAN(G,DY,X,Y)=Ey～pdata(y)[log DY(y)]+Ex～pdata(x)[log(1-DY(G(x))]　（8-6）

LGAN(F,DX,X,Y)=Ex～pdata(x)[log DX(x)]+Ey～pdata(y)[log(1-DX(F(y))]　（8-7）

同样，针对Cycle-consistency Loss，我们可以写成下式，确保生成器产生的数据能够与反向生成后的数据基本保持一致。式子中等式的右侧由两项组成，分别对应两个方向各自的情况。CycleGAN的论文中在这里使用L1范数作为损失的计算。

Lcyc(G,F)=Ex～pdata(x)[||F(G(x))-x||1]　（8-8）

+Ey～pdata(y)[||G(F(y))-y||1]　（8-9）

最终，我们可以写出完整的目标函数如下所示。其中λ会调节最终生成数据之间的相关性，λ越大则最终生成的内容会与条件图像越接近。

L(G,F,DX,DY)=LGAN(G,DY,X,Y)+LGAN(F,DX,Y,X)+λLcyc(G,F)（8-10）

与GAN一样，最终的优化函数依然是需要解决下面这个极小极大值的问题。

 [image:]

在网络结构的设计上，CycleGAN参考了李飞飞团队在风格迁移网络方面的研究。图8-41为生成器的网络结构，由编码层、转换层和解码层三部分组成。图8-42为判别器的网络结构，是一个简单的卷积神经网络，用来判断输入图像是否属于某一分类。

 [image:]

图8-41　CycleGAN生成器网络结构

 [image:]

图8-42　CycleGAN判别器网络结构
8.3.3　CycleGAN的应用实践

CycleGAN的源码已经开源在了GitHub上，程序依然是使用Torch完成的，目前互联网上已经有了大量使用TensorFlow或Keras实现的Cycle-GAN，如果读者感兴趣可以参考本书参考文献中提及的一种TensorFlow版本的CycleGAN。

这里介绍一下如何运行CycleGAN研究团队提供的源码。首先我们需要安装必要的软件和框架。

首先需要在电脑上安装Torch，其次需要根据下面的命令安装部分Torch的包。

$ luarocks install nngraph

$ luarocks install class

$ luarocks install https://raw.githubusercontent.com/szym/display/master/

 display-scm-0.rockspec

复制CycleGAN的项目到本地。

$ git clone https://github.com/junyanz/CycleGAN

$ cd CycleGAN

项目方提供了一系列数据集，可以通过运行下面的命令行来下载。

$ bash./datasets/download_dataset.sh dataset_name

包含的模型有：

·建筑数据集。

·城市风景数据集。

·地图数据集。

·马和斑马的数据集。

·苹果与橙子的数据集。

·优胜美地夏天和冬天的风景照数据集。

·风景照与各个艺术风格画作的数据集。

·iPhone照片与单反照片的数据集。

同样的，项目方提供了数据集对应的已经训练好的模型，只需运行一下命令即可下载。

$ bash./pretrained_models/download_model.sh<model_name>

项目方提供了7种已经训练好的模型，分别是苹果和橙子的互转、马与斑马的互转、四种艺术风格的转换、莫奈风格画作转照片、街景与模拟图的互转、地图和卫星图的互转以及iPhone拍摄照片到单反拍摄照片的转换。我们可以尝试使用这些预先训练好的模型来生成图像。

首先下载测试图片。

$ bash./datasets/download_dataset.sh ae_photos

接着我们下载塞尚风格的模型，注意，如果是使用CPU进行生成，可以下载对应的CPU版本style_cezanne_cpu。

$ bash ./pretrained_models/download_model.sh style_cezanne

通过下面这一行命令我们就可以生成保罗·塞尚风格的图片了，最终的结果会保存到：./results/style_cezanne_pretrained/latest_test/index.html。

$ DATA_ROOT=./datasets/ae_photos name=style_cezanne_pretrained model= one_

 direction_test phase=test loadSize=256 fineSize=256 resize_or_crop="scale_

 width" th test.lua

下面我们来看一下如何使用代码进行非匹配数据的训练。

首先下载斑马与马的数据集。

$ bash ./datasets/download_dataset.sh horse2zebra

在GPU环境下运行下面的命令行训练模型。

$ DATA_ROOT=./datasets/horse2zebra name=horse2zebra_model th train.lua

如果只有CPU，可以运行下面的命令进行模型训练。

$ DATA_ROOT=./datasets/horse2zebra name=horse2zebra_model gpu=0 cudnn=0 th

 train. lua

最后，我们可以使用测试数据对模型进行测试，结果会保存至结果文件夹中的index.html中。

$ DATA_ROOT=./datasets/horse2zebra name=horse2zebra_model phase=test th test.

 lua

如果希望展示训练过程中的图像输出，可以采用以下方案。

安装展示包：

$ luarocks install https://raw.githubusercontent.com/szym/display/master/

 display-scm-0. rockspec

在本地运行服务器，然后就可以在浏览器中打开http://localhost:8000进行预览。

$ th-ldisplay.start

图8-43～图8-46分别展示了几组CycleGAN项目方给出的生成结果，几乎能达到以假乱真的效果。图8-47是著名的电脑游戏GTA中的图像转换为真实世界图像的效果图。

 [image:]

图8-43　斑马与马的图像转换结果

 [image:]

图8-44　优胜美地冬天与夏天图像转换结果

 [image:]

图8-45　橙子与苹果图像转换结果

当然CycleGAN也有失败的时候，尤其是当测试数据与训练数据差距过大的时候。图8-48给出的例子是源数据为人骑马的照片，然而训练集中只有马并没有人，这导致模型最终生成的图片里把人也打上了斑马条纹。图8-49展示了更多失败的例子。

 [image:]

图8-46　手机拍摄照片与单反拍摄照片的互相转换结果

 [image:]

图8-47　侠盗猎车游戏场景与真实场景的转换结果

 [image:]

图8-48　斑马与马图像转换的失败例子

 [image:]

图8-49　CycleGAN的一些失败案例

与Pix2Pix一样，CycleGAN诞生以来也受到了社区开发者和研究者们的追捧，非常多基于CycleGAN的项目涌现了出来。一组比较有意思的研究是将Pix2Pix与CycleGAN应用到了中文的不同字体。如图8-50所示，对于不同的字体我们可以收集到匹配数据或者是非匹配数据。有一篇zi2zi的论文是使用了Pix2Pix的技术在匹配数据上进行训练，但问题在于工程量浩大，而且生成的字体仅限于一些具备完整字库的字体。CycleGAN可以有效解决非匹配字体情况下的生成，理论上对于每个个人来讲，可以通过CycleGAN的技术生成任何自己风格的文字。图8-51是通过CycleGAN生成的不同字迹，虽然并非与真实情况完全一样，但是在字里行间已经有了原来字体的神韵[34]。

 [image:]

图8-50　匹配字体数据与非匹配字体数据
8.4　多领域图像转换：StarGAN

8.4.1　多领域的图像转换问题

Pix2Pix与CycleGAN分别解决了两个领域之间基于匹配数据和非匹配数据的转换。但是在实际的应用中我们会发现需要大量的多领域转换，例如图8-52所示，这可能是一个智能修图的场景，用户输入一张人物照片，他希望能够通过选项来调节照片中人物的外貌，比如图中例子的发色、性别、年龄、肤色等。又比如图8-53，对于同一个人物照片我们希望能够将他转换成各种不一样的表情，从普通的表情转换为愤怒、喜悦和恐惧等。

 [image:]

图8-51　CycleGAN的字体生成结果

之前的Pix2Pix和CycleGAN可以非常好地解决领域间转换问题，它们同样可以应用于多领域的转换，但是存在的问题是必须在每两个领域之间进行单独的训练。我们假设场景为图8-53的表情转换，一共有四个领域，分别为中性、生气、喜悦与恐惧，我们将它们从1到4标号。如果使用CycleGAN的话我们可以看到图8-54，在每两个领域都需要训练两个生成器，比如领域1和领域3之间，就需要有生成器G31与生成器G13，分别作为从3到1和从1到3的生成。

 [image:]

图8-52　头像照片的多种外貌转换

 [image:]

图8-53　头像照片的多种表情转换

我们会发现，在四个领域的情况下已经需要12个不同的生成器了，随着领域数量的增加，该数量会越来越大，如果领域的数量为n的话，排列组合的数量为[image:]。在领域很多的情况下，要训练这么多生成模型是非常消耗资源的。

 [image:]

图8-54　使用CycleGAN实现多领域转换的情况

此外，除了在训练过程中的资源消耗以外，StarGAN的研究者还发现如果仅使用CycleGAN的方法在每两个领域之间进行生成器的训练，那么各自的训练过程都是独立的，这导致比如像图8-53中虽然每个领域是不一样的表情，但是人脸的结构是基本一致的，独立的训练会浪费大量可以辅助优化生成器的数据，这显然也是不合理的。针对这两个问题，研究者们希望能够为这样的多领域转换找到一个更加合适的解决方案。

 [image:]

图8-55　使用StarGAN实现多领域转换的情况

StarGAN的论文在2017年年底发布在了arxiv上，并随后发表在了计算机视觉领域会议CVPR2018[35]。StarGAN提供了一种针对多领域的解决方案，在多领域转换的情况下仅需训练一个通用的生成器即可。图8-55是StarGAN的结构示意图，对于五个领域的情况仅需中间的一个生成器G即可，整个网络形成一个星形的拓扑结构，这也是StarGAN的命名由来。

在下一节中本书会介绍StarGAN是通过什么方案来使得多领域转换仅需一个生成器就可以完成的。
8.4.2　StarGAN的理论基础

StarGAN的网络设计借鉴了很多经典的思想，其中最重要的正是Cycle-GAN和cGAN。首先我们看一下StarGAN的网络结构，其判别器如图8-56所示，输入为任意分类的真伪图片，输出部分需要将所有数据都进行真伪判断，对真数据还需要进行所属领域的分类，这一判别器非常类似前面介绍的ACGAN。

 [image:]

图8-56　StarGAN判别器结构图

图8-57展示了StarGAN比较完整的流程，对于生成器的输入不仅需要原始图片，同时还需要像cGAN一样设定一个目标领域。由生成器产生的图像会进入上面所说的判别器中进行判定，目标是让判别器将其判定为真实图像且属于目标领域。与此同时该生成图像还需要再次输入本身的生成器中，且将输入条件设置为源领域，用于重建原始图像，确保重建的图像能够与原始图像越接近越好。

 [image:]

图8-57　StarGAN完整结构图

根据上述网络架构，我们来看一下StarGAN的目标函数。首先是常规的GAN对抗损失函数，也就是生成器能否让判别器认为该生成图像为真实图像，其中c为条件参数，表示目标类型。

 [image:]

其次是分类损失，同样也要同时对生成器和判别器进行优化，这里可以写成两种分类损失：第一种是对于真数据的分类损失[image:]，第二种是假数据的分类损失[image:]，对应下面两个公式。其中Dcls(c′|x)代表判别器将真实输入x归为原始分类c′的判别概率分布，(x,c′)是真实训练数据中的分类匹配数据，判别器D的目标是最小化这个损失函数。另一方面，对于生成器来说希望基于x的生成数据能够被判别器判断为目标分类c，需要G能够最小化损失函数[image:]。

 [image:]

最终我们还需构建重建损失，确保生成的数据能够很好地还原到本来的领域分类中。这里使用原始数据和经过两次生成（先转换到分类c，再转换为源分类c′）的图像L1损失作为重建损失，公式如下所示。

 [image:]

最终的目标函数如下，分为判别器与生成器。其中λcls和λrec为超参数，用来控制分类损失、重建损失相对于对抗损失的重要性，在StarGAN原文的实验中取λcls=1和λrec=10。

 [image:]

StarGAN的另外一个创新点在于能够同时协调多个包含不同领域的数据集，比如图8-51的外貌数据集和图8-52的表情数据集。但这里存在的问题是两个数据集之间是不知道对方的分类标签是什么的，比如外貌数据集只知道自己包含发色、肤色等，却不知道表情数据集包含了喜悦、愤怒等。

在StarGAN中，研究者们加入了一个Mask向量m的概念，用来忽略那些未知的分类，仅关注于自身了解的分类。最终的分类标签向量如下所示，其中ci用来表示第i个数据库的分类信息。

 [image:]

在训练过程中，会将上式中的[image:]直接输入生成器作为条件信息，由于Mask向量的存在，那些无关的分类标签向量会变成零向量，生成器会自动忽略。另一方面在多任务的训练中，判别器也仅会对自己了解的分类进行判别。图8-58是使用两个多分类数据库同时训练的框架图，使用的就是外貌数据集和表情数据集，可以看到Mask向量分别在两种数据库的情况下对应为[1,0]和[0,1]，会将不属于该数据库的分类标签向量置为全零。在这样的多数据库训练过程后，判别器会具备各个数据库的分类判别能力，而生成器也可以同时针对多个数据库的信息进行图像生成。

图8-59和图8-60分别展示了生成器与判别器的网络结构图。说明一下，其中nd为数据库的数量，nc为每个数据库中分类的数量。
8.4.3　StarGAN的应用实践

StarGAN同样也在GitHUb上开源了代码，使用PyTorch完成了项目代码的编写。运行项目前先确保自己的Python版本在3.5以上，安装了PyTorch 0.4.0，如果希望通过TensorBoard进行训练可视化的话，需要TensorFlow的版本在1.3以上。

首先我们复制项目到本地：

$ git clone https://github.com/yunjey/StarGAN.git

$ cd StarGAN/

对于本节之前的两个数据库：外貌数据库和表情数据库，前者可以通过下列命令直接下载。

 [image:]

图8-58　StarGAN同时训练两个多分类数据库的框架示意图

 [image:]

图8-59　StarGAN生成器网络结构图

 [image:]

图8-60　StarGAN判别器网络结构图

$ bash download.sh celeba

后者需要到官网[1]申请下载，完成后按照图8-61的格式加以处理。单独基于外貌数据库的StarGAN训练与测试如下所示。

 [image:]

图8-61　数据文件结构

训练：

$ python main.py --mode train --dataset CelebA --image_size 128 --c_dim 5 \

 --sample_dir stargan_celeba/samples --log_dir stargan_

 celeba/logs \

 --model_save_dir stargan_celeba/models --result_dir

 stargan_celeba/results \

 --selected_attrs Black_Hair Blond_Hair Brown_Hair Male Young

测试：

$ python main.py --mode test --dataset CelebA --image_size 128 --c_dim 5 \

 --sample_dir stargan_celeba/samples --log_dir stargan_

 celeba/logs \

 --model_save_dir stargan_celeba/models --result_dir

 stargan_celeba/results \

 --selected_attrs Black_Hair Blond_Hair Brown_Hair Male Young

单独基于表情数据库的StarGAN训练与测试如下所示。

训练：

$ python main.py --mode train --dataset RaFD --image_size 128 --c_dim 8 \

 --sample_dir stargan_rafd/samples --log_dir stargan_rafd/logs \

 --model_save_dir stargan_rafd/models --result_dir stargan_

 rafd/results

测试：

$ python main.py --mode test --dataset RaFD --image_size 128 \

 --c_dim 8 --rafd_image_dir data/RaFD/test \

 --sample_dir stargan_rafd/samples --log_dir stargan_rafd/logs \

 --model_save_dir stargan_rafd/models --result_dir stargan_

 rafd/results

同时对两个数据库进行StarGAN的训练与测试如下所示。

训练：

$ python main.py --mode=train --dataset Both --image_size 256 --c_dim 5

 --c2_dim 8 \

 --sample_dir stargan_both/samples --log_dir stargan_both/logs \

 --model_save_dir stargan_both/models --result_dir stargan_

 both/results

测试：

$ python main.py --mode test --dataset Both --image_size 256 --c_dim 5

 --c2_dim 8 \

 --sample_dir stargan_both/samples --log_dir stargan_both/logs \

 --model_save_dir stargan_both/models --result_dir stargan_

 both/results

如果想在自己的数据库上进行训练的话，可以将格式按照图8-61展示的那样处理好，然后再进行StarGAN的训练与测试。

训练：

$ python main.py --mode train --dataset RaFD --rafd_crop_size CROP_SIZE --image_

 size IMG_SIZE \

 --c_dim LABEL_DIM --rafd_image_dir TRAIN_IMG_DIR \

 --sample_dir stargan_custom/samples --log_dir stargan_

 custom/logs \

 --model_save_dir stargan_custom/models --result_dir stargan_

 custom/results

测试：

$ python main.py --mode test --dataset RaFD --rafd_crop_size CROP_SIZE --image_

 size IMG_SIZE \

 --c_dim LABEL_DIM --rafd_image_dir TEST_IMG_DIR \

 --sample_dir stargan_custom/samples --log_dir stargan_custom/

 logs \

 --model_save_dir stargan_custom/models --result_dir stargan_

 custom/results

如果读者不想花时间进行上述训练，而只是想看看结果，可以使用StarGAN已经准备好的预训练模型，通过以下命令下载。

$ bash download.sh pretrained-celeba-256x256

接着可以直接基于模型进行图像的生成，生成结果会保存在对应路径中。

$ python main.py --mode test --dataset CelebA --image_size 256 --c_dim 5 \

 --selected_attrs Black_Hair Blond_Hair Brown_Hair Male Young \

 --model_save_dir='stargan_celeba_256/models' \

 --result_dir='stargan_celeba_256/results'

图8-62和图8-63是官方给出的最终生成效果图，分别对应上文提到的外貌数据库与表情数据库，读者可以自己按照上述步骤尝试使用一下多分类的转换。

 [image:]

图8-62　StarGAN的多种外貌生成效果图

 [image:]

图8-63　StarGAN的多种表情生成效果图

[1] http://www.socsci.ru.nl:8180/RaFD2/RaFD
8.5　本章小结

本章介绍了四种图像到图像的生成对抗网络。iGAN是第一个交互式的图像到图像的生成模型，可以通过用户的图形输入来产生合理的图像输出。Pix2Pix是基于匹配数据的图像转换模型，根据匹配数据的训练可以在新图像上做相同的转换。CycleGAN的功能与Pix2Pix类似，但它的训练数据是无匹配的两个不同领域数据集，通过CycleGAN的训练方式可以让图像在两个领域之间进行转换。最后的StarGAN是一种多领域的图像转换模型，在不增加网络复杂的前提下实现了各种类型图像的互转。图像到图像的生成可以应用于各种领域，目前在开发者社区中也是非常流行的一个方向。
第9章　GAN的应用：从多媒体到艺术设计

9.1　GAN在多媒体领域的应用

生成对抗网络技术源于Ian在图像生成领域的探索，所以GAN的大部分研究最先都基于多媒体领域。在本节中我们从一些研究实例来看一下GAN是如何应用到这些领域的。
9.1.1　图像去模糊

在之前的介绍中我们已经看到了很多关于GAN在图像应用中的实用案例。在4.3.3节中，我们看到了如何使用DCGAN来补全图像，对于部分镂空和随机镂空的情况都可以做到比较完美的补全。在6.1.2节中介绍的SRGAN可以将模糊图片通过生成对抗网络还原成高清图片，也就是所谓的超像素。由于硬件成本通常都比较高，通过此项技术可以在不升级原有硬件的情况下提高成像效果。

一个与补全图像和超像素非常类似的应用实例是图片去模糊（DeblurGAN）[36]。在现实场景中，由于拍摄或者设备原因，经常会拍摄到模糊的图片，在很多情况下我们无法回到当时并重新拍摄同样的照片，此时图像去模糊就起到了很大的作用。

图9-1是一个图像模糊情况下的物体检测实验，使用的是GoPro拍摄的图片，第一张图片是照片模糊的状态下使用著名的物体识别方法YOLO实现的效果，计算机几乎难以识别图中的内容，错误率非常高。第二张图片是使用了DeblurGAN之后的效果，可以发现与第三张理想情况下的识别效果已经非常接近了，而且从图像质量还原上看效果也已经非常好了。

 [image:]

图9-1　图像模糊情况的物体检测试验（见文前彩色图）

官方提供了大量GoPro拍摄的街景数据作为训练数据。图9-2展示的是模糊图像（左图）以及经过DeblurGAN转换后的还原图像（中图）与真实清晰图像（右图）之间的对比。其中下方的小图是对应方框中图像的放大。从肉眼观测来看，DeblurGAN对于模糊图像的还原做得非常好，几乎逼近真实清晰图像的效果。

 [image:]

图9-2　DeblurGAN转换效果示意图

DeblurGAN生成器网络结构如图9-3所示，包含2个步长为0.5的卷积模块、9个残差模块和2个转置卷积模块。其中每个残差模块包含一个卷积层、一个实例归一化层和ReLU激活函数。这里的9个残差模块是DeblurGAN用来对模糊照片进行上采样的核心模块。

 [image:]

图9-3　DeblurGAN生成器网络结构图

图9-4展示了DeblurGAN训练过程的框架图，目标函数中包含两种损失函数，第一种是感知损失（perceptual loss），第二种是对抗损失（这里使用的是WGAN loss）。感知损失用于判断该生成对抗网络是否是在还原原始图像，而对抗损失则判断能否生成真实图像。从成像方面加以区分的话，前者专注在图像内容上，而后者则专注于还原图像的细节部分。

 [image:]

图9-4　DeblurGAN训练过程的框架图

DeblurGAN项目方在GitHub上推荐了实现的Keras版本代码[1]。读者可以直接运行源码来体验还原模糊图像的效果。首先通过下列命令行下载项目。

$ git clone https://github.com/Raphael

 Meudec/deblur-gan.git

$ cd deblur-gan

如果希望使用GoPro数据集的话，可以运行下载数据命令。

$ python organize_gopro_dataset.py --dir_

 in=GOPRO_Large --dir_out=images

可以分别使用train.py与test.py来训练与测试网络。

$ python train.py --n_images=512 --batch_

 size=16

$ python test.py

如需对你自己的图片进行去模糊处理，可以运行下面的命令。

$ python deblur_image.py --image_path=

 path/to/image

除了GoPro数据集以外，原作中还给出了Kohler数据集[2]的测试结果，如图9-5所示。经过多次测试验证，DeblurGAN在模糊图像还原的任务中可以非常高效地完成修复任务，并且比传统的深度学习方法加速好几倍。

[1] https://github.com/raphaelmeudec/deblur-gan

[2] https://sites.google.com/site/jspanhomepage/l0rigdeblur
9.1.2　人脸生成

GAN目前有非常多在人脸生成方向上的应用。比如2018年年初社交媒体Reddit与Twitter的项目DeepFake，它的核心功能非常简单，就是将视频或图片中的人脸进行互换。这个功能对于那些制图高手来说似乎并不困难，但是DeepFake完全是基于计算机自身的能力进行处理完成的，并且最终实现的效果非常棒，有时让人几乎看不出修改的样子。图9-6是两位名人在DeepFake中的人脸互换例子。

 [image:]

图9-5　Kohler数据集还原效果图

 [image:]

图9-6　DeepFake名人人脸互换

最初版本的DeepFake使用的是自动编码器的技术，后来网络上有了基于GAN的改进版本faceswap-GAN[1]，下面简单介绍一下它的整体运行思路。图9-7是faceswap-GAN训练阶段与测试阶段的示意图，训练过程中需要大量的人脸A数据，通过算法将其进行扭曲处理变得与人脸A不同，再通过自动编码器生成遮罩于重建的人脸，最终通过遮罩信息与之前输入的信息还原人脸A的数据。在测试过程中，网络会将人脸B的信息认为是训练集中扭曲过的训练集人脸，经过同样的步骤将其还原为人脸A的状态。

 [image:]

图9-7　faceswap-GAN训练过程与测试过程示意图

图9-8是上述faceswap-GAN的目标函数，由三个损失函数组成。第一项为重建损失，确保重建后的人脸与原始人脸相似。第二项为GAN中的对抗损失，需要计算机判断输出的人脸是真实的还是生成的。最后一项为可选项，是人脸数据的感知损失，用于判断原图像与生成图像的整体相似度。

目前faceswap-GAN完整的代码设计在GitHub的项目源码中可以找到。从应用的角度看，目前对于“换脸”依然大部分用于网络趣味性应用，比如国外知名的社交软件SnapChat就有一款非常流行的滤镜，可将用户的脸进行互换。此外从商用角度考虑，比如可以将该技术应用于电影制作中的后期处理，对于替身演员的人脸更换可以完全使用该技术来进行处理。

 [image:]

图9-8　faceswap-GAN目标函数示意图

此外GAN也应用到更多其他的人脸变化中，比如对于人脸的年龄变化预测[38]。如图9-9所示，系统的输入是年轻时候的照片，而输出则是随着年龄增长对于该用户长相改变的预测。

[1] https://github.com/shaoanlu/faceswap-GAN
9.1.3　音频合成

AI在音乐生成方面已经有很多商业上的尝试。比如网络歌手Taryn Southern发布的专辑《I AM AI》，整张专辑都是由AI全程参与的。其中首发的歌曲《Break Free》在YouTube上得到了超高的点击量，整首歌也充满了未来感，MV中的视频部分采用了DeepDream生成器合成的图像，为这首歌增添了一份神秘的色彩（见图9-10）。

 [image:]

图9-9　GAN的人脸年龄化预测

 [image:]

图9-10　歌曲《Break Free》的MV由DeepDream合成图像

在古典音乐方面，有一家叫作Aiva的公司通过深度学习技术吸收了海量的古典音乐作品。正如同人类音乐家在创作以前必须要经历漫长的模仿过程一样，Aiva通过计算机自己的方式快速成长，从模仿到创作的时间远远快过普通人。据团队介绍，他们通过深度学习让Aiva阅读大量由最著名的作曲家（巴赫、贝多芬、莫扎特等）创作的古典音乐。Aiva通过对现有音乐作品的学习来捕捉音乐理论的概念。听过大量音乐并学习了自己的音乐理论模型之后，Aiva组成了自己的乐谱。这些乐谱由专业艺术家在录音室的真实乐器上演绎，实现最佳音质。

音乐界的图灵测试是把AI与作曲家各自作的曲子混在一起，如果在演奏的时候人们不能分辨出区别，那么就说这个AI通过了图灵测试的考验。而在实际测试过程中，测试者几乎无法分辨Aiva的作品。

我们发现目前大部分GAN应用领域的工作确实都集中在图像和视频领域，在研究领域对于基于GAN的音频生成的相关工作还很少。这里要介绍的WaveGAN和SpecGAN正是研究者将GAN应用在音频合成上的尝试[39]。

为了将GAN应用到音频领域，一个最直观的做法就是把音频信息也当作图像进行处理。图9-11是图像数据和音频数据的可视化比较，左图为从图像数据中随机取出的5×5像素，可以发现图像数据的特点是边缘比较显著，右图为截取的长度为25的音频可视化数据，它的特点在于具备很强的周期性。

 [image:]

图9-11　图像数据和音频数据的可视化比较

WaveGAN与SpecGAN的差别在于，前者对音频采用时间域的处理方法，而后者使用的是频域处理。我们先看一下WaveGAN是如何做的。

WaveGAN的整体架构是基于DCGAN进行的改进。根据音频数据的特性，将DCGAN中5×5的二维过滤器替换为长度为25的一维过滤器，上采样也从2变成了4。同样对于判别器也需要做出相应的修改。图9-12和图9-13是图像数据使用DCGAN与音频数据使用WaveGAN的可视化比较。

 [image:]

图9-12　DCGAN可视化示意图

 [image:]

图9-13　WaveGAN可视化示意图

在多次实验验证后，使用DCGAN或者WGAN-GP的方法均可以达到令人比较满意的效果。最终的实验效果如图9-14所示，三行数据分别是真实音频数据、WaveGAN生成数据以及SpecGAN生成数据。其中SC09是数字0到9的人声发音数据集，TIMIT是大规模语音数据，最后三列分别是鸟叫声、鼓声和钢琴声。

 [image:]

图9-14　WaveGAN生成效果图

除了一些常规的计算机验证方式以外，该实验还邀请了大量真实体验者来为WaveGAN和SpecGAN生成的数据进行打分。实验中使用SC09数据集，将真实数据与两类生成数据打乱提供给体验者，让他们分别从音质、理解容易程度和多样性上进行1到5的打分，图9-15是最终的评分统计结果。

WaveGAN与SpecGAN的项目代码开源在GitHub上[1]，同时提供了实验的数据集供大家测试。

 [image:]

图9-15　WaveGAN生成效果评分

[1] https://github.com/chrisdonahue/wavegan
9.2　GAN与AI艺术

还记得本书开头那个艺术品赝品制作和鉴别师的例子吗？人工智能的研究也确实已经在艺术领域生根发芽了，比如上一节中我们看到的，AI在音乐制作上就给予了创作者很大的帮助。在本节中我们重点讨论AI艺术与GAN在其中的应用。
9.2.1　AI能否创造艺术

随着人工智能行业的发展，越来越多的应用从实际的工程领域逐渐开始影响艺术行业的发展。越来越多的人开始思考，究竟AI是否能够创造艺术？一些艺术家也开始担心自己的工作受到了威胁。但从另一个角度来看，人工智能时代会不会出现全新的艺术形式，是否会带来更多的艺术可能性？

如果说有艺术家在担心自己的工作会被AI取代的话，那么目前他们更应该思考的是AI作为一种艺术创作工具能够给他们的艺术创作带来什么帮助。回顾历史可以发现，每当新技术出现的时候，艺术领域最初总会有一种排斥的态度，比如最初的摄影、电脑动画制作，但是往往随之而来的却是大规模的创新与新艺术形式的崛起。

这里以摄影艺术的发展为例来对比AI与艺术创作的关系。在摄影技术刚刚出现的时候，有些绘画艺术家也曾说“这是绘画艺术的末日”，然而摄影虽然取代了原本绘画的一部分功能属性，但是从艺术层面却产生了全新的摄影艺术形式，并对传统的绘画艺术起到了很大的推动作用[41]。

图9-16是19世纪摄影技术刚刚发明不久的绘画作品（左图）与摄影作品（右图）。那个时候的画家都投身于现实主义，大量写实作品层出不穷。而同时期的摄影技术还处于早期，拍摄一张照片需要比较长的时间，而且成像质量也还比较低。

 [image:]

图9-16　19世纪的绘画作品与摄影作品

但是随着摄影技术的进步，成像质量逐步提升，成像速度也越来越快，如图9-17左图。这个时候的画家也开始不再专注在写实上，而是会选择更多样化的绘画创作，比如图9-17中图所示著名印象派画家詹姆斯·惠斯勒的作品《Nocturne》。相对地，如图9-17右图所示，摄影师们也开始模仿画家的抽象派绘画作品。摄影与绘画在发展过程中产生了积极的相互作用，推动各自不断发展。

 [image:]

图9-17　摄影与绘画的互相影响

与摄影技术一样，AI技术也同样会是艺术创作者们的工具。科学技术的不断进步会使得艺术创作更加平民化，就像摄影让普通人也可以创作自己的图像作品一样，AI也会进一步降低艺术创作的门槛。

AI技术也许可以为艺术行业带来全新的面貌。首先，它一定会创造全新的艺术形态，给艺术家提供更多的机会。其次，AI技术会对传统的艺术形态进行加强，让原来的艺术形式焕发出全新的活力。在我们的传统思维中，科学技术与艺术总是互相独立的关系，但是历史一次又一次证明它们之间应该是相辅相成的。
9.2.2　AI与计算机艺术的发展

程序化生成艺术

在AI艺术概念还没有诞生之前，早在20世纪就有一些先驱艺术家尝试使用计算机来创作艺术。通过设计师对于程序规则的设定创造出了“绘画机器”，计算机可以利用随机性算法自动生成基于规则的艺术作品，这也就是最初的程序化生成艺术（generative art，见图9-18）[42]。

这些基于自动化系统的艺术作品利用大自然随机性的美感进入传统艺术无法触碰的领域，算法艺术家将分形、遗传算法等技术手段加入到创作过程中，帮助他们产生那些无法复制的美丽作品，而这些作品已经越来越多地被人们所接受。现代新媒体艺术展上会大量出现程序化生成艺术的身影（见图9-19）。

 [image:]

图9-18　程序化生成艺术作品

 [image:]

图9-19　新媒体艺术展中的程序化生成艺术

Electric Sheep是一款非常著名的分布式程序化生成艺术作品，用户在安装软件后会在屏保时开启它并随机生成艺术动态画面。它使用众包式的随机算法，所有用户都可以通过客户端软件接入Electric Sheep的网络，将它设置为屏保后用户的电脑会自动为整个网络提供渲染服务，作为回报用户的界面上也会展示出美轮美奂的生成艺术动画。该作品名字的含义也寓意着人类睡觉时数羊的场景，而计算机睡眠的时候则是自动化地创造艺术（见图9-20）。

此外，MIT媒体实验室专门面向视觉艺术编程开发了编程语言Processing，在视觉艺术家中非常流行，使用Processing来编写算法动画非常简洁，开发者可以使用交互式的编程方式即时看到编写的结果。Processing是基于Java开发的，之后也推出了Python和JavaScript版本，简化的编程语言也让更多的设计师和开发者加入到了程序艺术的行列中。读者可以从Processing的官网[1]下载编辑器以体验如何创作一个程序化生成艺术作品，官网配套了非常友好的入门教程（见图9-21）。

 [image:]

图9-20　Electric Sheep中的生成艺术

 [image:]

图9-21　Processing作品展示

DeepDream：AI的艺术梦境

DeepDream启始于Google内部的一个图像分类和识别的需求。人工神经网络的发展以及庞大的图像库如ImageNet的建立，推进了图像分类和语音识别的飞速发展。对于图像识别，这些神经网络模型非常有效，但是为什么有效以及在哪一层产生了效果？科学家们花了更多的时间来探究这个“黑盒子”里面的逐步演进，希望通过可视化的手段来探究计算机眼中的世界是什么样的。

首先简单介绍一下DeepDream项目的神经网络，这个模型原本用于图像识别。这是一个由10～30层人造神经元堆叠而成的模型，科学家通过数以百万计的训练实例逐渐调整网络参数，直到创造出他们想要的分类模型。每个图像从输入层输入，然后与之后的每一层进行交互，直到最终达到输出层。最终的输出层会给出模型的结果，即识别出图像是什么事物并进行分类。研究者们发现，那些用来训练的图像分类神经网络已经具备了相当多的信息，可以用来生成或改变图像，这个原本用于图像识别的系统已经有了创作抽象作品的能力。[2]

神经网络层次越深，虽然耗费的算力越多，但最终出来的模型的准确度也会越高。这是因为在模型中，每一层逐渐提取图像的更高层次的特征，直到最后一层基本上对显示的内容可以做出判断。举个例子，如果输入这个模型的图片是一棵树。第一层可能会查找边缘或角落，中间层解释基本特征来寻找整体形状或组件，比如叶子，最后的几层将这些组装成完整的解释，输出相对比较复杂的事物描述，比如树木。最终模型输出的结果就是判断出这个图片是一棵树。在此过程中，每一层的抽取和判断是具有随机性的，所以神经网络最有挑战性和最吸引人的就是了解每一层究竟发生了什么。DeepDream的科学家从这个角度思考，逐渐发现这个原本用于图像识别的系统有了创作抽象作品的能力[43]。

Google的技术人员给网络提供任意一张图像或照片，让网络进行分析，然后选择一个网络层，增强某一个检测到的属性。神经网络的设计方式会让每一层处理不同层次的抽象特征，因此生成图像的特征复杂性取决于选择了增强哪一层。低层次的网络处理的是边缘，中层次处理的是组件比如叶子，高层次处理的是完整的物体。所以，如果增强较低的层次的检测属性，往往会产生笔画或简单的装饰图案，因为这些网络层对诸如边缘等基本特征比较敏感，参考图9-22和图9-23。

 [image:]

图9-22　神经网络低层次特征属性的增强

 [image:]

图9-23　神经网络低层次不同特征属性增强的变化

如果选择了较高的层次，那些网络层会识别出图像中更复杂的特征，甚至是整个对象。我们可以对神经网络产生一个正反馈循环：如果云朵中的某一部分看起来有点像飞鸟，那我们就把它变得更像一只鸟，效果可以参考图9-24。

 [image:]

图9-24　神经网络高层次特征属性的增强

这个产生了非常有意思的结果，即使是一个相对简单的神经网络，也可以用来进行图像的想象，就像孩子们看到云会想象成一些随机的形状。图9-25这个神经网络主要是在动物的图像上进行的训练，所以很自然地将云朵的形状解析成了动物。由于这些信息存储在高层次的抽象中，所以在输出的结果中混合了有趣的动物特征。

 [image:]

图9-25　云朵和动物

当然，还可以用这个技术做更多有意思的事情，可以应用在任意的图像上。结果与图像类型有很大的差异，因为输入图像的特征会使得网络往一定的方向发展。例如图9-26，地平线的图像上会出现塔和宫殿，岩石和树木会转变成建筑物，而鸟和昆虫则会出现在叶子上[44]。

 [image:]

图9-26　DeepDream的图像融合

就这样，一个用于图像识别的系统因为一个网络学习结果可视化的需求，打开了从单一进化图层了解事物的新视角。就像当年，毕加索将一个物体的多个剖面拼合并平铺在同一个平面时，全新的构图角度创造了立体主义，也带来了前所未有的冲击。如果忽略DeepDream背后的高性能计算机，其产生的作品无疑是一种新的艺术流派。只是目前如此诡异的艺术形态还难以被主流大众所接受。

艺术风格转换

在上文的DeepDream中我们其实已经看到了一些风格转换的画面，所谓艺术风格转换是指将某一幅图片以另一种艺术形态进行重绘的过程。最初对于这样的风格转换通常使用的也是规则化的图像处理，如图9-27和图9-28的一些案例[41]。

随着神经网络技术的进步，在2016年这一领域有了突破性进展，研究者们发明了神经网络风格转换的方法。使用卷积神经网络作为风格转换的载体，在对于风格和原图的融合过程中我们无需知道艺术作品应该是什么样的，网络会自动学习到对应的特性，对应的网络结构如图9-29所示。

 [image:]

图9-27　基于规则的图像手绘风格转换1

 [image:]

图9-28　基于规则的图像手绘风格转换2

 [image:]

图9-29　神经网络风格转换流程框架示意图

在本书第8章中我们也学习了如何使用GAN来进行从图像到图像的风格转换。使用Pix2Pix和CycleGAN的技术可以将图像进行领域之间的转移，如图9-30所示CycleGAN将一系列油画作品还原成了真实图像的场景，让人能够直观地感受到画家创作时所面对的风景。

 [image:]

图9-30　CycleGAN的实景与油画风格转换

在风格转换技术越来越成熟的情况下，市场上也涌现出了一批像Prisma[3]这样的热门图片App（见图9-31）。对于普通消费者来说，这样的应用能够更好地拉近他们与艺术创作之间的距离，通过简单的拍摄和软件制作就可以创作出一幅属于他们自己的艺术画。

 [image:]

图9-31　Prisma风格化效果图

[1] https://processing.org/

[2] https://ai.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html

[3] https://prisma-ai.com/
9.2.3　艺术生成网络：从艺术模仿到创意生成

GAN作为AI领域最著名的生成模型，除了上面提到的艺术风格转换以外，我们更希望它能够自主地生成艺术作品，在这一节中我们会介绍研究者们如何使用GAN技术让AI从模仿开始，一步一步开始创作全新风格的艺术作品。

GAN的艺术模仿

由于DCGAN在图像生成领域的成功，研究者自然想要尝试它在图像艺术生成领域的效果。但是相比于图像生成来说，艺术作品生成还是会有所不同。我们先看看之前DCGAN训练时使用的数据集，它们的特点在于图片中物体与背景的轮廓都非常清晰，大部分图片也只是包含一个目标物体，比如MNIST中的数字等。而艺术作品则与真实图片不太一样，它们通常都比较抽象，可能作品中都不会出现实际的物体。

ArtGAN是一种基于DCGAN在艺术生成上进行改进的生成对抗网络[45]，它借鉴了cGAN的思想，将各种艺术类型、艺术风格、艺术创作者作为训练集的标签，通过这些艺术标签可以更好地控制艺术生成的风格。ArtGAN的整体框架图如图9-32所示，基本与cGAN非常类似，将分类信息分别提供给生成器与判别器，此外在生成器中的解码器与判别器中的编码器之间会建立一个重建损失，确保真实艺术作品集在训练中能够很好地被生成器还原。

 [image:]

图9-32　ArtGAN网络结构图

图9-33是ArtGAN使用艺术家信息作为分类信息的生成效果，其中第一行为法国著名画家古斯塔夫·多尔（Gustave Doré）的作品分类，第二行为文森特·梵高的作品分类，左边的第一张图为真实艺术家作品，而右边的都是ArtGAN生成的作品，两者的风格都与原作者的绘画风格非常接近。

而图9-34是按照艺术风格作为分类信息的生成效果，展示了浮世绘风格的原画和生成作品，一般浮世绘的作品都是使用木板作为作品的底板，所以大部分浮世绘作品是淡黄色的主基调，可以看到ArtGAN生成的浮世绘作品也秉承了这一特点。

 [image:]

图9-33　艺术家分类的ArtGAN生成作品

 [image:]

图9-34　艺术风格分类的ArtGAN生成作品

GAN的艺术创意生成

上面ArtGAN的艺术生成已经可以满足最基础的艺术生成需求，但是生成的艺术作品依然是基于现有的艺术风格。这也符合生成对抗网络本身的原理，因为GAN的生成器从最初就是希望模仿真实训练数据的分布。但是在艺术生成领域，这也会导致生成的艺术作品风格显得单调，艺术家们不只希望艺术的模仿，而是想要更有新意的作品产生。

有一些AI艺术家比如Mario Klingemann和Mike Tyka，为了避免GAN产生过于风格单调的艺术作品而会尝试使用一些训练得“不怎么好”的GAN，当然这是故意而为之，希望能够让生成器因为那些“不完美”而产生一些出乎意料的作品。

在2017年，Facebook研究院提出了一种创造性对抗网络（Creative Ad-versarial Network，CAN），它的目标是能够自主地生成能够被大众接受的艺术作品，但是希望生成的艺术作品能够与现有的作品具备一定的区分度，而不是简单的复刻现有的风格[47]。

CAN希望生成的艺术作品可以符合以下三点：

·能够生成具有创新性的艺术作品。

·但不能过于创新以至于无法被大众接受。

·艺术风格要有新意，尽量能与现有的风格有所区分。

CAN中包含了一个艺术判别器，用于判断作品是否属于艺术范畴，同时还有一个使用艺术风格作为分类信息的分类器，但是与ArtGAN截然不同的是，CAN的目标是要让生成的作品在被判断为艺术作品的前提下，艺术风格越模糊越好，也就是说CAN希望在生成的作品被判断为艺术品的同时，能够让艺术风格的分类器对它无从下手。

CAN的结构图如图9-35所示，真实的人类艺术家作品和生成器作品同时输入到判别器中进行对抗训练，判断是否属于艺术范畴的判别器会像普通的GAN一样进行训练，而艺术风格分类器则作为创意生成的核心，判断作品是不是会很好地被分类到一个固定的艺术风格中。最终我们需要训练的创意生成器需要具备能够“骗过”艺术品判别器，但是难以被艺术风格分类器很好地归于某一类的能力。

 [image:]

图9-35　CAN网络结构图

CAN的研究者不满足于系统的实现和理论的验证，他们还组织了4次用户访谈实验，将GAN与CAN生成的作品以及人类艺术家作品打乱呈现给参与实验的观众，并设置了不同的问题来要求观众回答，其中也加入了2016年巴塞尔国际艺术展中人类艺术家的优秀作品（见图9-36）。下面我们分别看看这4组实验的设计和结果。

实验1　该实验包含两个问题，希望验证的内容是：CAN是否能够创作出“骗过”观众的艺术作品，同时也希望验证观众是否喜欢机器生成的艺术作品。

·问题1：是否是计算机创作的？

·问题2：喜爱程度（从1到5打分）

 [image:]

图9-36　2016年巴塞尔国际艺术展作品

实验的结果让研究者有些吃惊，CAN的生成作品非但超越了传统GAN生成的作品，甚至在用户的打分中超越了一些人类艺术家的优秀作品。

实验2　实验1存在的问题是，如果一开始就提问“是否计算机生成”，那么评估者的回答很可能是随机的。实验2希望对实验1进行优化，在经过一系列问题之后再询问“是否计算机生成”，那么得到的回答应该是经过深思熟虑的。

·问题1：喜爱程度（从1到5打分）

·问题2：创新程度（从1到5打分）

·问题3：惊喜程度（从1到5打分）

·问题4：风格模糊程度（从1到5打分）

·问题5：复杂程度（从1到5打分）

·问题6：是否是计算机创作的？

实验的结果和研究者们料想的一致，更多由CAN生成的作品被判断为出自人类艺术家之手。但是实验一中的其他结果在实验二中依然是一致的。

实验3　实验3的目标是在上面实验的基础上进一步验证CAN生成的内容能否被划定为艺术的范畴，所以这里设计的四个问题都是属于艺术领域的。

·问题1：作品能否传达艺术家的意图。

·问题2：作品能否展现新兴的结构。

·问题3：作品能否与人交流。

·问题4：作品能否赋予灵感。

研究者在实验前假设人类艺术作品应该会在这几个问题下得分更高，但是出人意料的是CAN生成的作品却得到了更高的分数。这一结果确实是值得思考，难道基于人类艺术家作品集训练产生的机器生成艺术已经超越了人类本身吗？

实验4　实验4专注于创造力，我们将使用了风格模糊的CAN作品与没有使用艺术模糊的CAN作品成对地展示给观众，分别问以下两个问题。

·问题1：哪幅作品更具有创新性？

·问题2：哪幅作品更具备美学吸引力？

结果与研究者设想的一致，使用了风格模糊的CAN在创新性上确实是更胜一筹。

最后带着思考，我们可以欣赏一下CAN的生成作品。图9-37是在实验中用户评价非常高的艺术生成作品。

 [image:]

图9-37　观众高评价的CAN生成作品（见文前彩色图）

在实验1和实验3中，分别按照观众喜爱程度、是否出自人类艺术家、作品的意向性、作品的组合、作品与观众的交流以及作品给人的灵感对CAN生成作品进行排名，每一组中的前五名排序如图9-38所示。

 [image:]

图9-38　CAN生成作品各项排行榜（见文前彩色图）
9.3　GAN与AI设计

9.3.1　AI时代的设计

如果说AI艺术在一定程度上是利用了随机性来完成艺术创作，那么AI设计则是要在随机性中实现特定的目标。设计的过程是发现问题并解决问题，在一定程度上这对AI的能力要求更高了。

其实在AI设计理念诞生之前，建筑领域就已经在使用计算机进行参数化设计，所谓参数化设计是指将设计要素全部数值化，通过对算法的修改和数值的变化来生成不同的设计方案。目前大部分计算机辅助设计通常都是基于设计师的强规则，可以将其称为自动化设计，而AI时代的设计则是数据驱动型的，往往需要基于大量的设计素材以及用户数据来生成最恰当的设计。

在2016年的“双十一”这个电商平台创造的购物狂欢节上，阿里巴巴悄悄推出一个全新的内部AI产品——“鲁班”（在2018年改名为“鹿班”）[1]。这一款AI产品真正做到了解放设计师的双手，甚至于在效率上远远超过了人类美工的工作，一秒可以制作上千张美工图片。

作为AI设计的一个标志性产品，“鲁班”把自己的目标定位在广告横幅上，这也是设计领域需求量最大但是时效性最低的内容，需要设计师进行大量创造性较低的重复性工作。在2016年的“双十一”上，“鲁班”创造了1.7亿个设计横幅以用于商品展示（见图9-39），虽然其中依然有很多工作需要由设计师来干预，但是已经大大降低了人类设计师的工作量。2017年，“鲁班”进一步升级，在内部增加了配色设计、风格设计、构图设计等，使得AI生成的广告设计更像是人类设计师的作品，这也让该年的用户广告点击率有所上升。AI设计第一次能够真正融合了“美学”和“商业”两种属性。

除了“鲁班”之外，这几年也有其他的AI设计应用出现，尤其是对于一些特定的领域，AI已经展现出了自己不俗的能力。比如在Logo和品牌制作方向上，有一批诸如Logojoy[2]这样的AI设计公司涌现出来，用户只需要输入品牌名称标语以及一些个人偏好的属性，系统就会自动输出专属于该用户的Logo和品牌设计（见图9-40和图9-41）。虽然AI自动生成的Logo可能还不够精美，但是对于设计师前期的灵感获取已经非常有帮助了，此外当设计师面对客户的时候也可以使用该工具以确定客户企业的喜好，进行更精细化的作品设计。

 [image:]

图9-39　鲁班智能设计的广告位横幅

 [image:]

图9-40　Logojoy生成的Logo

 [image:]

图9-41　Logojoy生成的品牌设计

设计配色也是经常让设计师们头疼的领域，在实际的设计过程中，设计师们总是会面临大量的配色方案选择。Khroma是一个专注于AI配色的平台[3]，它会根据设计师的偏好提供最适合的配色方案选项，随着设计师的使用，它也会智能地学习出专属于每一个设计师的配色风格。

一些设计师已经开始担心自己的职业受到AI的挑战。但事实上目前的AI设计依然是作为设计师的辅助工具，帮助设计师提高获取灵感的效率、降低重复性设计工作的时间。2017年同济大学设计创意学院和特赞信息科技联合发布了首份《设计和人工智能报告》[4]，重点分析了设计与人工智能的关系，把这两者的结合作为一门全新的交叉学科，希望帮助更多设计师为人工智能时代做准备。报告认为：“设计需要创造力和感情，恰好应该在智能时代扮演更重要的链接人工智能和人性的角色。因此，设计与人工智能的关系远远要比工作取代关系深入和复杂。”阿里“鲁班”的负责人乐乘也多次表示：“AI无法取代设计师，但是可以通过人机协作来互相增强。”在下一节中我们会看到AI技术如何实现辅助式设计。

[1] http://lubanner.com

[2] http://www.logojoy.com

[3] http://khroma.co

[4] http://sheji.ai
9.3.2　AI辅助式设计的研究

为了完成一项产品的设计，设计师需要耗费大量的精力。首先面对设计需求，设计师需要从大量的草图绘制中寻找灵感。在确定草图后，设计师还需要精细地绘制来满足需求。在最终各种不同的设计方案中，设计师还需要花费大量的精力来进行精挑细选，如果用户不满意可能又要进行新的探索。

上述工作中的每一步，设计师都会有自己严格的工作流程与方式，那么AI在其中可以扮演什么样的角色呢？下面我们从几个方面来看一下AI辅助式设计可以做的事情，以及目前正在开展的一些研究。

草图生成

谷歌公司尝试了很多类似于DeepDream这样的艺术创作，甚至为Deep-Dream举办了一场艺术展，但他们显然更希望能够解决一些艺术之外的实际问题。草图是传达想法最简洁直观的表达方式，当设计师希望表述自己想法的时候，画一张草图似乎是最快捷的办法。SketchRNN是谷歌公司提出的一种草图生成工具，它可以在用户画了简单几笔之后，自动为用户补全他的想法，图9-42是SketchRNN生成的手绘草图[48]。

 [image:]

图9-42　SketchRNN生成的草图

SketchRNN不仅收集了大量手绘图的终稿，而且将用户手绘过程中的一笔一划全部记录下来用作训练。它不仅是让计算机学会如何输出草图风格的图片，而且让计算机真正去学习如何作画。图9-43是SketchRNN的网络结构图，是一个序列到序列的差分自动编码器架构，其中编码器是一个双向的RNN，解码器是一个自回归RNN。

假设我们设置的模型是猫，那么对于用户输入的草图手绘，SketchRNN并不是直接还原用户手绘的原样，而是将用户输入的内容作为条件信息并利用模型自身学习到的内容对猫进行重绘，如图9-44所示。重建后的草图与原图十分神似但也并非一模一样。

 [image:]

图9-43　SketchRNN的网络结构图

 [image:]

图9-44　SketchRNN对于猫的手绘重建效果

由于每一个模型都会有一个固定的主题，所以当输入的手绘稿出现偏差和错误的时候，SketchRNN会自动在重绘时进行修正。比如图9-45中第一张图输入的是一只三眼猫，但是重构后则变回了普通的两只眼睛的样子。而当用户输入的是牙刷时，输出的结果就有些难以理解了，但我们会发现模型似乎也在尽力绘制一只猫的样子。

 [image:]

图9-45　SketchRNN对于错误输入的手绘重建效果

图9-46是基于用户输入系统自动完成手绘的效果图，对于未完成的草图手稿，SketchRNN会给出各种不同的补全结果以供用户选择。如果用户前期画的内容越明确，最终系统输出的结果也越有可能是用户内心所期望的。

 [image:]

图9-46　SketchRNN的草图自动补全

官方提供了关于SketchRNN的源码和训练数据，可以在谷歌Magenta的网站[1]上下载。此外如果想直接体验草图生成的效果，项目方也提供了网页端的Demo[2]供大家试用。

交互式图像生成

在第8章中我们已经看到了iGAN的表现，用户在画板中输入大致几笔草图，iGAN会自动输出对应的实景图片，这对于不具备手绘能力的普通用户来说是非常便捷的工具，而对于设计师来说则可以大大提高他们从手稿到实物图设计中间的效率，并可以基于生成的实物图进行精细化设计。

而对于已有的实物图片，通过简单的几笔修改就可以将图像改成自己希望的模样。比如对于一个挎包的修改，用户希望将原来的挎包的设计改版成一个较小的款式。如果使用传统方法，我们需要使用Photoshop之类的修图工具，对它的边缘进行编辑，如果技术不够过关，最后编辑的效果可能会如图9-47所示。

 [image:]

图9-47　使用Photoshop等软件编辑一个挎包的过程

但是如果有了iGAN的帮助就不同了，用户只需如图9-48所示在原图的基础上画一个大致的轮廓，iGAN会自动对挎包进行变形，最终生成理想中挎包的样子。

 [image:]

图9-48　使用iGAN编辑一个挎包的过程

这样的交互式图像生成不仅可以帮助设计师提高工作效率，也在很大程度上降低了用户绘图的门槛，让其在不需要大量绘图能力的情况下就能画出一幅令人满意的图画。

在之前的例子中我们已经看到了很多iGAN实现交互式服装设计的例子，设计师可以通过简单几笔就能生成一个大致的鞋子或者背包，虽然最终图像不会非常完美，但是作为一个创作灵感的辅助已经足够了，设计师可以基于生成的内容进行二次创作，进一步细化设计细节。

TextureGAN是Adobe公司联合美国乔治亚理工学院的一项关于不同材质服饰的生成模型研究，该模型可以实现在现有服饰手绘草图稿的基础上添加相应的材质贴片，自动生成基于该材质的最终设计效果图，图9-49是其在不同鞋型上的尝试，图9-50是对于同款背包，尝试不同材质贴片产生的不一样的效果[52]。

 [image:]

图9-49　不同鞋型的TextureGAN材质贴片生成效果

TextureGAN还支持多区域贴片的设计生成，比如在图9-51中的人体服饰模型图上，在不同地方设置不一样的贴片可以生成不同的穿搭效果。这对于服饰设计师来说确实是一种福音，他们可以很便捷地尝试不同材质或花纹在他们的设计图上的可视化呈现。

 [image:]

图9-50　相同包款的TextureGAN材质贴片生成效果

 [image:]

图9-51　TextureGAN多区域贴片生成效果

探索生成模型的隐含空间

对于普通用户来说，要从零开始做设计是非常困难的，但如果是在一个领域中进行探索以发现一个适合自己的设计作品似乎简单很多。然而由于设计所涉及的维度实在太多，几乎无法通过穷举的方法来查看每一种可能并挑选出最合适的方案。而生成模型中的隐含空间似乎提供了某种可能性，隐含空间实际上是对于生成空间的降维，通过对低维度隐含空间的探索，我们可以发现更多的设计可能性。

比如之前DCGAN章节里提到过的卧室设计图生成，就可以通过在隐含空间中插值的方式来查看不同卧室设计风格之间的过渡，普通用户也可以在没有室内设计师的帮助下探索自己心仪的效果（见图9-52）。

 [image:]

图9-52　DCGAN卧室图片生成的隐含空间插值效果图

SketchRNN也同样可以使用插值来进行手绘草图的探索，如图9-53所示用户输入的是一个猫脸和一个猫的全身草图，通过内部插值可以生成中间一系列过渡的草图，最中间一幅是一个完整的猫的图画。

 [image:]

图9-53　SketchRNN插值生成效果

一篇叫作TopoSketch的研究基于这一种方法提出了静态图片生成动态视频的方案[53]。如图9-54中选取5张不同表情的静态人脸照片，通过在隐含空间中插值的方式我们可以得到这些图片之间的过渡图像。由于在隐含空间中距离较近的点在生成空间中也应该保持较近的距离，所以相邻点之间表情变化不会非常大，这也使得最终输出的图像序列是连贯的。

有研究者们为了尝试商业Logo在生成对抗网络上的生成，在互联网上抓取了将近60万的Logo数据（LLD）以用于模型训练。他们也使用了隐含空间探索的方式来发现更多的Logo设计可能性，在图9-55中他们选取了4个Logo，并在隐含空间中进行插值，可以看到Logo之间的过渡转换，以及融合了几种Logo风格的设计[54]。

 [image:]

图9-54　TopoSketch

 [image:]

图9-55　四种Logo的内部插值生成效果

也许有人会问，AI设计是否会抑制了人类本身的创造力？如果所有的新事物可以由人工智能技术去探索，那么我们的思维是否会被这样的技术所禁锢。目前这依然是一个开放的问题，就如同生成对抗网络本身的原理一样，在设计师与人工智能的博弈中，我们依然希望最终胜利的是不断进步的人类设计师自己[55]。

[1] https://magenta.tensorflow.org/sketch_rnn

[2] https://magenta.tensorflow.org/assets/sketch_rnn_demo/index.html
9.4　本章小结

本章介绍了生成对抗网络在从多媒体到艺术设计中的应用。从行业发展到应用落地，多媒体和艺术设计领域不断受到计算机以及人工智能的冲击，在这种冲击下更多的是让该领域迸发出全新的活力。作为一门新兴的技术，生成对抗网络为多媒体应用与艺术设计提供了更多的可能性，相信在之后行业的发展中它会起到非常重要的作用。
第10章　GAN研究热点

10.1　评估与优化

在GAN的优化方向上，对于生成模型的评估指标一直是行业的重要研究领域，对于生成效果的评估最直观的方法就是人眼检测，因为人具备天生的判断能力，可以很好地判别一张图片是不是计算机生成的，而对于生成艺术这类抽象的判断方法，似乎用人去判断才是最合适的选择。

然而如果只依靠人来判断的话会有很多问题，首先最大的问题就是人力资源是有限的，而生成的图像却源源不断，如果所有的生成内容都需要人来做评价，则成本过高了。其次对于图像类的数据，人每看一张可能就需要花费几秒钟，这对于海量的数据来说是不现实的。此外，人为的操作不免会导致失误，这也是我们评估模型不想看到的。

Ian Goodfellow在对GAN进行优化的时候提出的评估方法是Inception Score。认识Inception Score之前我们先看一下Inception v3神经网络，这是谷歌公司研发的一个基于ImageNet（来自1000个分类的1200万张图片）训练的分类模型，在分类任务中表现非常突出。在大量的深度学习任务中Inception v3都会是一个比较好的预训练模型，其网络结构如图10-1所示。

Inception Score是基于上述模型对于生成图像质量的评估指标[57]，它从以下两个指标来进行评价：

·生成的图像是否包含清晰的内容，从分类角度来讲也就是该图像是否能够被高概率地判断为某一个类别？

·生成模型需要保证多样性，所以希望模型生成的图像能够尽量多地覆盖所有的分类。

 [image:]

图10-1　Inception v3网络结构图（见文前彩色图）

基于上述两种特性可以通过下面的式子来计算出Inception Score的得分，其中DKL为KL散度，p(y|x)为特定输入分类的概率，p(y)为整体分类的概率。

IS(G)=exp(Ex～pgDKL(p(y|x)||p(y)))（10-1）

另一种评估方法是FID（Frechet Inception Distance）Score，该方法将生成的图像嵌入Inception Net的一个特定层给出的特征空间中，将该空间视为连续的多元高斯分布，对生成数据和实际数据的均值和协方差进行计算[58]。

谷歌基于FID方法对大量的生成对抗模型进行了评测，如图10-2所示。大部分的GAN包括WGAN等其实在该指标下表现都大致相同，但是GAN方法生成图像的FID要高于VAE方法所生成的，这说明GAN确实更适合于图像生成的任务。但从另一个角度看，我们会发现GAN的各类模型FID Score的分布都比较大，可见训练中的数据等因素会对GAN的最终效果产生比较大的影响，而模型之间的差异其实并不是非常大[59]。

 [image:]

图10-2　各种GAN的FID测试结果

Ian Goodfellow本人也曾在访谈中表示，目前该领域的证实研究确实非常难做。FID的评估方法可能是目前业界比较优秀的评价方式了。

在2018年5月，Ian Goodfellow参与了一个新研究SAGAN[60]，在GAN网络中加入了自注意力（self-attention）模型，有效地将Inception Score从之前最优的36.8提升到52.52，而将FID Score从27.62降低到18.65。业界对GAN在生成上的优化还在不断继续，也许在不久的将来就会有新的突破。

GAN优化的另一个方向是针对GAN经常出现的泛化性问题和模式崩溃问题的优化，其本质是对生成多样性的一种优化方向。

泛化性问题的本质是生成模型并没有从有限的训练集中学会如何生成数据，而是“死记硬背”地记住了一部分训练数据，在生成的时候只是单纯地重复输出训练集中已有的数据。

模式崩溃问题其实分为两种，第一种是彻底的模式崩溃，这也是在GAN的训练中常见也比较易于发现的，当训练到一定程度后我们会发现生成器开始不停地重复类似的数据，仿佛进入某个怪圈，这个时候就可以停止训练了，因为生成器已经进入模式崩溃状态，见图10-3。

 [image:]

图10-3　文本生成图像中的模式崩溃

另一种情况称为模式消失（missing mode），这一情况属于比较棘手也难以发现的，在这种情况下生成模型看似具备多样性，但其实只会生成一部分类型的数据，很容易“骗过”人的判断。

除了上述指标方向的优化以外，对于GAN在离散输出的研究也会是之后的热门研究方向。Ian Goodfellow之前表示由于GAN需要计算生成器输出的梯度，因此在有连续输出的地方才能很好地工作，而像文本这样离散的数据不具备可导性，很难使用GAN进行生成。目前像SeqGAN等一系列面向离散生成的GAN研究者们正在努力尝试攻破这些难题[61]。
10.2　对抗攻击

安全问题一直伴随着人工智能行业的发展，GAN的发明者Ian Goodfellow在OpenAI和Google工作期间一直致力于研究生成对抗网络在安全领域的应用，他在预防对抗攻击的研究上花费了很多精力，希望理解为什么机器学习模型很容易被微小的扰动干扰[62][65]。

在2018年5月的深度学习与安全研讨会上，Ian做了一个专门的主题演讲来告诉大家研究对抗攻击与对抗样本的重要性。此外机器学习领域顶级大会NIPS也在2018年举办了计算机视觉方向的对抗攻击挑战赛，可见行业对于机器学习对抗攻击方向的重视程度。

那么究竟什么是对抗攻击呢？下面我们来看一个OpenAI的小例子。图10-4中最左边是一张熊猫的图像，使用机器学习模型可以57.7%的概率判断为熊猫，但是在加入了中间的扰动后形成对抗样本，最终输出右边的图像，从肉眼上来看依然是熊猫，但是机器学习模型却将其99.3%判断为长臂猿。

 [image:]

图10-4　对抗攻击示例

OpenAI给出的另一个例子是洗衣机（见图10-5），我们将洗衣机的照片打印出来并用智能手机的识别软件进行判断，在原图不处理的情况下识别出的内容依然是洗衣机，当我们加入扰动后，手机识别软件就开始在保险柜和洗衣机之间摇摆不定了，如果我们进一步加强对抗样本的扰动，最终识别软件开始认为这其实是一台音响或者保险柜，而完全认不出这是洗衣机。但是从人的肉眼来看这三张照片几乎没有任何区别。

 [image:]

图10-5　对抗攻击下的手机摄像头物体识别

上面的这两个例子似乎读者会觉得：不就是机器犯错吗？没什么大不了的。但是对于现在越来越普及的AI智能助手等服务，对抗攻击会让这些服务失灵。另外更值得注意的是，在很多与安全直接相关的领域，对抗攻击可能会导致致命的后果。比如现在热门的自动驾驶汽车就大量运用了计算机视觉的技术来识别路况，一个恶意的对抗攻击会让计算机将停车标志识别为通过标志，导致车祸的发生。

事实上深度神经网络非常容易受“受欺骗”，图10-6中这些毫无意义的图片会被卷积神经网络以很高的概率分类到某个类型。想要做到这样的一种“欺骗”效果其实并不难，在神经网络训练过程中会不断更新大量的神经元参数来满足训练结果，而对于对抗攻击者来说只需要在网络参数不变的情况下不断更新输入图像的像素，就可以逐渐逼近对抗样本所期望的效果。

我们也可以通过二维平面示意图（见图10-7）中的二分类任务理解这种对抗攻击的方式。其中虚线是该二分类任务的实际边界，而实线是基于训练数据得到的模型分界线，对抗攻击者通过逐步将训练集中的数据移动到虚线与实线之间的错判区域中就可完成一次对抗攻击。

 [image:]

图10-6　对抗样本示例

 [image:]

图10-7　二维平面理解对抗攻击

在生成对抗网络中，生成器其实就扮演了一个对抗攻击者的角色，而判别器则需要有很强的鲁棒性，这样才能应对生成器的假数据。对抗式训练是目前应对对抗攻击的一种方法，与传统生成对抗网络训练生成模型的目的不同，这里的对抗式训练是为了获得一个高强度的判别器，以确保未来的对抗样本不会对其造成干扰。

Ian Goodfellow和他在谷歌的同事Nicolas Papernot一起研发了一个对抗样本的开源项目CleverHans[1]。该项目内置了很多扰动的方法，读者可以将其下载后应用在自己的训练集上以测试模型是否具备一定的抵抗对抗攻击的能力。

除了传统的对抗训练以外，也有研究者使用防御式提炼（defensive distillation），其在预防对抗攻击上有比较好的效果。相比于传统分类器基于固定标签的训练，使用防御式提炼的模型采用的是概率分类作为训练标签，也就是说对于某一个识别物并不以固定值作为标签，而是标记出它对应每个分类的概率。为了得到这个概率，需要先用传统的标签训练方式先训练出一个前置的分类模型。最终，通过这种概率分类数据训练得到的模型可以有效降低对抗攻击的可能性。当然这个方法也并非是完美的，当攻击者的算力非常高时，这类防御方法也会被攻破。

目前业界将对抗攻击的防御方法大致分为三种类型。第一种是修改训练的方式和输入数据，比如对数据加入一些随机性或是使用对抗式训练的方法。第二种是修改网络，比如上述的防御式提炼，证明可以抵抗小幅度的扰动。最后一种方法是使用附加网络来联合抵抗对抗攻击。

对于对抗攻击的研究目前依然是一个开放的领域，虽然现在还没有一个完美的研究能够找到应对对抗攻击的方法，但是也没有理论能证明对抗攻击是无法防御的。

[1] https://github.com/tensorflow/cleverhans
10.3　发展中的GAN

随着GAN技术的不断发展，它的商业应用场景非常广泛，本书中已经提到的应用包括文本生成图像、图像领域转换、多媒体应用以及艺术与设计领域的一些尝试性探索，比如艺术生成与设计辅助。越来越多的研究人员开始关注如何将GAN落地到应用层面，这也使得GAN自身的发展越来越多面化。

在图像生成的方向上，原始GAN生成的图像大多质量偏低，大量的研究希望能够改进原始GAN从而可以输出高分辨率的图像。在本书第7章文本到图像的生成中就提出过StackGAN，其通过层级式的方式，希望能够提升图像的分辨率，此外之前的SRGAN和DeblurGAN也是通过不同的方式希望解决高质量的图像生成问题。2017年年底，英伟达研究院发布了一项图像生成效果非常惊人的研究ProgressiveGAN，利用了渐进增大式的方式使得训练后的网络可以生成非常高质量的图像[66]，如图10-8所示。

 [image:]

图10-8　Progressive GAN生成的高质量图像

GAN优秀的数据生成能力也已经受到医疗领域的关注，数据对深度学习系统尤其是卷积神经网络的性能起着至关重要的作用，这一挑战在医学图像研究领域尤其突出。在医学病理研究方面，医院与研究机构拥有的病例数量非常有限，这使得在医学上做图像分类和图像分割依然比较困难。然而GAN给医疗行业注入了全新的活力，Facebook就专门发布过一篇使用GAN来做图像分割的论文[67]。又比如GAN也可以做到脑机接口任务中的数据增强，可以使用脑电超采样或将损坏的数据段通过GAN来进行大脑信息数据的恢复。

第8章中图像到图像的生成被认为是医学图像分析的下一个前沿领域，会有大量的潜在应用。比如磁共振（MR）成像与CT图的转换，MR成像在放疗等治疗过程中具有非常重要的作用，然而由于高额的成本和其他诸如体内金属物干扰等导致MR成像的使用受到限制。有研究者提出了基于CT图的MR成像生成，使用匹配和非匹配的训练数据将CT图像转换成MR图像，从而实现MR成像的合成（见图10-9）。一些诸如MedGAN这样的模型希望为医疗领域的图像转换搭建一个通用型架构[74]，它在图像层面上以端到端的方式进行训练。此外，它也提出了通过使用编/解码器的渐进式细化，同时增强医疗图像到医疗图像的输出清晰度。

Ian Goodfellow在2018年2月在Twitter上列出了一份GAN领域最新发展的十篇论文[1]。其中包含了本书之前章节中提到的WGAN-GP、StackGAN-v2以及ProgressiveGAN。此外还包括了使用“谱归一化”的方法来进行权值的归一化，从而实现更高质量的生成图像[75]；Pix2Pix的升级版本Pix2PixHD使用条件式GAN来进行高清图像的合成处理[76]；另外在应用方面也提出了用于隐私保护的临床医疗数据集的生成，可以在不涉及隐私的情况下大量产生可用于医疗研究的数据集[77]。

 [image:]

图10-9　GAN对于CT图和MR图的转换

生成对抗网络的研究目前仍然处于早期阶段，技术也还在不断发生变化，相信在不久的将来以生成对抗网络为代表的一系列人工智能技术会带给我们更多的惊喜。希望读者能在本书的帮助下拥抱人工智能，思考其背后的技术原理，在全新的人工智能时代到来以前让我们做好准备。

[1] https://twitter.com/goodfellow_ian/status/968250128774475776
参考文献

［1］Goodfellow I J,Pouget-Abadie J,Mirza M,et al.Generative Adversarial Nets［C］//International Conference on Neural Information Processing Systems.MIT Press,2014:2672-2680.

［2］Goodfellow I.NIPS 2016 Tutorial:Generative Adversarial Networks［J］.arXiv preprint arXiv:1701.00160,2016.

［3］Creswell A,White T,Dumoulin V,et al.Generative Adversarial Networks:An Overview［J］.IEEE Signal Processing Magazine,2018,35(1):53-65.

［4］An introduction to Generative Adversarial Networks(with code in TensorFlow)［EB/OL］.http://blog.aylien.com/introduction-generative-adversarial-networks-code-tensorflow.

［5］Radford A,Metz L,Chintala S.Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks［J］.Computer Science,2015.

［6］Dumoulin V,Visin F.A guide to Convolution Arithmetic for Deep Learning［J］.arXiv preprint arXiv:1603.07285,2016.

［7］MNIST Generative Adversarial Model in Keras［EB/OL］.https://www.kdnuggets.com/2016/07/mnist-generative-adversarial-model-keras.html.

［8］Yeh R,Chen C,Lim T Y,et al.Semantic Image Inpainting with Perceptual and Contextual Losses.［J］.arXiv preprint arXiv:1607.07539,2016,2.

［9］White T.Sampling Generative Networks［J］.arXiv preprint arXiv:1609.04468,2016.

［10］Lin M,Chen Q,Yan S.Network in Network［J］.arXiv preprint arXiv:1312.4400,2013.

［11］Arjovsky M,Bottou L.Towards Principled Methods for Training Generative Adversarial Networks［J］.arXiv preprint arXiv:1701.04862,2017.

［12］Nowozin S,Cseke B,Tomioka R.f-GAN:Training Generative Neural Samplers using Variational Divergence Minimization［J］.Advances in Neural Information Processing Systems,2016.

［13］Arjovsky M,Chintala S,Bottou L.Wasserstein GAN［J］.arXiv preprint arXiv:1701.07875,2017.

［14］郑华滨.令人拍案叫绝的Wasserstein GAN［EB/OL］.https://zhuanlan.zhihu.com/p/25071913.

［15］Salimans T,Goodfellow I,Zaremba W,et al.Improved Techniques for Training GANs［J］.Advances in Neural Information Processing Systems,2016.

［16］Metz L,Poole B,Pfau D,et al.Unrolled Generative Adversarial Networks［J］.arXiv preprint arXiv:1611.02163.

［17］Gulrajani I,Ahmed F,Arjovsky M,et al.Improved Training of Wasserstein GANs［J］.Advances in Neural Information Processing Systems,2017.

［18］Mirza M,Osindero S.Conditional Generative Adversarial Nets［J］.Computer Science,2014:2672-2680.

［19］Denton E L,Chintala S,Fergus R.Deep Generative Image Models Using a Laplacian Pyramid of Adversarial Networks［C］//Advances in Neural Information Processing Systems.2015:1486-1494.

［20］Ledig C,Theis L,Huszár F,et al.Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network［C］//CVPR.2017,2(3):4.

［21］Odena A.Semi-supervised Learning with Generative Adversarial Networks［J］.arXiv preprint arXiv:1606.01583,2016.

［22］Odena A,Olah C,Shlens J.Conditional Image Synthesis with Auxiliary Classifier GANs［J］.arXiv preprint arXiv:1610.09585,2016.

［23］Chen X,Duan Y,Houthooft R,et al.Infogan:Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets［C］//Advances in Neural Information Processing Systems.2016:2172-2180.

［24］Reed S,Akata Z,Yan X,et al.Generative Adversarial Text to Image Synthesis［J］.arXiv preprint arXiv:1605.05396,2016.

［25］Reed S,Akata Z,Mohan S,et al.Learning What and Where to Draw［J］.New Republic,2016.

［26］Zhang H,Xu T,Li H,et al.Stackgan:Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks［J］.arXiv preprint,2017.

［27］Zhang H,Xu T,Li H,et al.Stackgan++:Realistic Image Synthesis with Stacked Generative Adversarial Networks［J］.arXiv preprint arXiv:1710.10916,2017.

［28］Ronneberger O,Fischer P,Brox T.U-Net:Convolutional Networks for Biomedical Image Segmentation［C］//International Conference on Medical Image Computing and Computer-Assisted Intervention.Springer,Cham,2015:234-241.

［29］Xu T,Zhang P,Huang Q,et al.Attngan:Fine-grained Text to Image Generation with Attentional Generative Adversarial Networks［J］.arXiv preprint,2017.

［30］Zhu J Y,Krähenbühl P,Shechtman E,et al.Generative Visual Manipulation on the Natural Image Manifold［C］//European Conference on Computer Vision.Springer,Cham,2016:597-613.

［31］Isola P,Zhu J Y,Zhou T,et al.Image-to-image Translation with Conditional Adversarial Networks［J］.arXiv preprint,2017.

［32］Zhu J Y,Park T,Isola P,et al.Unpaired Image-to-image Translation Using Cycle-consistent Adversarial Networks［J］.arXiv preprint,2017.

［33］Kim T,Cha M,Kim H,et al.Learning to Discover Cross-domain Relations with Generative Adversarial Networks［J］.arXiv preprint arXiv:1703.05192,2017.

［34］Chang B,Zhang Q,Pan S,et al.Generating Handwritten Chinese Characters using CycleGAN［J］.arXiv preprint arXiv:1801.08624,2018.

［35］Choi Y,Choi M,Kim M,et al.Stargan:Unified Generative Adversarial Networks for Multi-domain Image-to-image Translation［J］.arXiv preprint,2017,1711.

［36］Kupyn O,Budzan V,Mykhailych M,et al.DeblurGAN:Blind Motion Deblurring Using Conditional Adversarial Networks［J］.arXiv preprint arXiv:1711.07064,2017.

［37］GAN with Keras:Application to Image Deblurring［EB/OL］.https://blog.sicara.com/keras-generative-adversarial-networks-image-deblurring-45e3ab6977b5.

［38］Yang H,Huang D,Wang Y,et al.Learning Face Age Progression:A Pyramid Architecture of GANs［J］.arXiv preprint arXiv:1711.10352,2017.

［39］Donahue C,McAuley J,Puckette M.Synthesizing Audio with Generative Adversarial Networks［J］.arXiv preprint arXiv:1802.04208,2018.

［40］Roberts A,Engel J,Eck D.Hierarchical Variational Autoencoders for Music［C］//NIPS Workshop on Machine Learning for Creativity and Design.2017.

［41］Hertzmann A.Can Computers Create Art?［C］//Arts.Multidisciplinary Digital Publishing Institute.2018,7(2):18.

［42］Galanter P.What is Generative Art?Complexity Theory as a Context for Art Theory［C］//In GA2003–6th Generative Art Conference.2003.

［43］Colton S,Wiggins G A.Computational Creativity:The Final Frontier?［C］//Ecai.2012,2012:21-16.

［44］Inceptionism:Going Deeper into Neural Networks［EB/OL］.https://ai.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html.

［45］Tan W R,Chan C S,Aguirre H E,et al.ArtGAN:Artwork Synthesis with Conditional Categorical GANs［C］//Image Processing(ICIP),2017 IEEE International Conference on.IEEE,2017:3760-3764.

［46］Wilber M J,Fang C,Jin H,et al.BAM!the Behance Artistic Media Dataset for Recognition beyond Photography［C］//Proc.ICCV.2017,1(2):4.

［47］Elgammal A,Liu B,Elhoseiny M,et al.CAN:Creative Adversarial Networks,Generating"Art"by Learning about Styles and Deviating from Style Norms［J］.arXiv preprint arXiv:1706.07068,2017.

［48］Teaching Machines to Draw［EB/OL］.https://ai.googleblog.com/2017/04/teaching-machines-to-draw.html.

［49］Ha D,Eck D.A Neural Representation of Sketch Drawings［J］.arXiv preprint arXiv:1704.03477,2017.

［50］Su W,Du D,Yang X,et al.Interactive Sketch-Based Normal Map Generation with Deep Neural Networks［C］//ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games(i3D 2018).ACM,2018.

［51］Lassner C,Pons-Moll G,Gehler P V.A Generative Model of People in Clothing［C］//Proceedings of the IEEE International Conference on Computer Vision.2017,6.

［52］Xian W,Sangkloy P,Lu J,et al.Texturegan:Controlling Deep Image Synthesis with Texture Patches［J］.arXiv preprint,2017.

［53］Loh I,White T.TopoSketch:Drawing in Latent Space［C］//NIPS Workshop on Machine Learning for Creativity and Design.2017.

［54］Sage A,Agustsson E,Timofte R,et al.Logo Synthesis and Manipulation with Clustered Generative Adversarial Networks［J］.arXiv preprint arXiv:1712.04407,2017.

［55］Carter S,Nielsen M.Using Artificial Intelligence to Augment Human Intelligence［J］.Distill,2017,2(12):e9.

［56］Theis L,Oord A,Bethge M.A Note on the Evaluation of Generative Models［J］.arXiv preprint arXiv:1511.01844,2015.

［57］Barratt S,Sharma R.A Note on the Inception Score［J］.arXiv preprint arXiv:1801.01973,2018.

［58］Heusel M,Ramsauer H,Unterthiner T,et al.Gans Trained by a Two Time-scale Update Rule Converge to a Local Nash Equilibrium［C］//Advances in Neural Information Processing Systems.2017:6626-6637.

［59］Lucic M,Kurach K,Michalski M,et al.Are GANs Created Equal?a Large-scale Study［J］.arXiv preprint arXiv:1711.10337,2017.

［60］Zhang H,Goodfellow I,Metaxas D,et al.Self-Attention Generative Adversarial Networks［J］.arXiv preprint arXiv:1805.08318,2018.

［61］Yu L,Zhang W,Wang J,et al.SeqGAN:Sequence Generative Adversarial Nets with Policy Gradient［C］//AAAI.2017:2852-2858.

［62］Goodfellow I J,Shlens J,Szegedy C.Explaining and Harnessing Adversarial Examples(2014)［J］.arXiv preprint arXiv:1412.6572.

［63］Akhtar N,Mian A.Threat of Adversarial Attacks on Deep Learning in Computer Vision:A Survey［J］.arXiv preprint arXiv:1801.00553,2018.

［64］Papernot N,McDaniel P,Wu X,et al.Distillation as a Defense to Adversarial Perturbations against Deep Neural Networks［J］.arXiv preprint arXiv:1511.04508,2015.

［65］Goodfellow I.Defense Against the Dark Arts:An Overview of Adversarial Example Security Research and Future Research Directions［J］.arXiv preprint arXiv:1806.04169,2018.

［66］Karras T,Aila T,Laine S,et al.Progressive Growing of GANs for Improved Quality,Stability,and Variation［J］.arXiv preprint arXiv:1710.10196,2017.

［67］Luc P,Couprie C,Chintala S,et al.Semantic Segmentation Using Adversarial Networks［J］.ArXiv preprint arXiv:1611.08408,2016.

［68］Chen H,Engkvist O,Wang Y,et al.The Rise of Deep Learning in Drug Discovery［J］.Drug Discovery Today,2018.

［69］Benhenda M.ChemGAN Challenge for Drug Discovery:can AI Reproduce Natural Chemical Diversity?［J］.arXiv preprint arXiv:1708.08227,2017.

［70］Frid-Adar M,Diamant I,Klang E,et al.GAN-based Synthetic Medical Image Augmentation for increased CNN Performance in Liver Lesion Classification［J］.arXiv preprint arXiv:1803.01229,2018.

［71］Jin D,Xu Z,Tang Y,et al.CT-Realistic Lung Nodule Simulation from 3D Conditional Generative Adversarial Networks for Robust Lung Segmentation［J］.arXiv preprint arXiv:1806.04051,2018.

［72］Wang Y,Yu B,Wang L,et al.3D Conditional Generative Adversarial Networks for High-quality PET Image Estimation at Low Dose［J］.NeuroImage,2018,174:550-562.

［73］Hartmann K G,Schirrmeister R T,Ball T.EEG-GAN:Generative Adversarial Networks for Electroencephalograhic(EEG)Brain Signals［J］.arXiv preprint arXiv:1806.01875,2018.

［74］Armanious K,Yang C,Fischer M,et al.MedGAN:Medical Image Translation Using GANs［J］.arXiv preprint arXiv:1806.06397,2018.

［75］Miyato T,Kataoka T,Koyama M,et al.Spectral Normalization for Generative Adversarial Networks［J］.arXiv preprint arXiv:1802.05957,2018.

［76］Wang T C,Liu M Y,Zhu J Y,et al.High-resolution Image Synthesis and Semantic Manipulation with Conditional GANs［J］.arXiv preprint arXiv:1711.11585,2017.

［77］Beaulieu-Jones B K,Wu Z S,Williams C,et al.Privacy-preserving Generative Deep Neural Networks Support Clinical Data Sharing［J］.BioRxiv,2017:159756.

［78］林懿伦，戴星原，李力，等.人工智能研究的新前线：生成式对抗网络［J］.自动化学报，2018(5).

［79］王坤峰，左旺孟，谭营，等.生成式对抗网络：从生成数据到创造智能［J］.自动化学报，2018(5).
EPUB/cover.xhtml
[image: Cover]

EPUB/cover.jpg
R B EER

siT

Generative Adversarial Network
A Primer

dRD AL RN
A I

BRE &E

> | LY

