

 直播系统开发：基于Nginx与Nginx-rtmp-module

 	
 第1章 Nginx基础

 	
 第2章 Nginx-rtmp-module基础

 	
 第3章 Nginx-rtmp-module进阶

 	
 第4章 Nginx-rtmp-module应用

 	
 第5章 Android端解决方案

 	
 第6章 iOS端解决方案

 	
 第7章 Web端解决方案

 	
 反侵权盗版声明

 第1章 Nginx基础

近几年，直播行业越来越火爆，本书主要介绍开源的直播软件——Nginx-rtmp-module。Nginx-rtmp-module依赖于Nginx，以第三方模块的方式提供直播功能。本章主要介绍Nginx，包括什么是Nginx，为什么选择Nginx，在特定的环境下如何安装和配置Nginx，以及如何使用Nginx，最后介绍Nginx模块的概念。

1.1 Nginx概述及作用

Nginx同Apache、Tomcat一样，是一种服务器软件。它是一个高性能的HTTP和反向代理服务器，同时也是一个IMAP/POP3/SMTP代理服务器。因此，使用Nginx可以搭建网站，也可以实现负载均衡的功能，还可以作为邮件代理服务器来接收和发送邮件。Nginx 1.9.0以后的版本还可以作为通用的TCP/UDP代理服务器，也可以提供一定的缓存服务功能。

1.1.1 可作为Web服务器

Nginx还是一个高性能的HTTP Web服务器（Web服务器还有Apache、IIS等），它包含了基本的HTTP功能和拓展功能，可以先通过动态/静态内容分离，而后为静态内容（HTML/CSS/JaveScript/图片等）提供HTTP访问功能；而动态内容可以整合代理模块，代理给上游服务器，以支持对外部程序的直接调用或者解析，如FastCGI支持PHP。

1.1.2 可作为反向代理服务器

代理服务器分为正向代理服务器和反向代理服务器。

1.正向代理服务器

正向代理服务器是一个位于客户端与原始服务器之间的服务器。为了从原始服务器中取得数据，客户端向代理服务器发送请求并指定目标（原始服务器），然后，代理服务器向原始服务器转交请求，并将获得的内容返回客户端。

正向代理服务器一般作用在客户端，并且在客户端需要进行相关配置，如图1-1所示。

 图1-1

2.反向代理服务器

反向代理服务器作用在服务器端，它在服务器端接收互联网中的连接请求，然后将请求转发给内部网络中的服务器，并将从服务器中得到的结果返回给互联网中请求连接的客户端，如图1-2所示。

反向代理对外是透明的，在客户端不需要任何配置，所以，访问者并不知道自己访问的是一个反向代理服务器。

 图1-2

Nginx就是一个反向代理服务器。

反向代理服务器针对Web服务器提供加速功能，所有外部网络要访问服务器的请求都要通过它。反向代理服务器负责接收客户端的请求，然后到源服务器上获取内容，把内容返回给用户，并把内容保存在本地中，以便日后再收到同样的信息请求时，将本地缓存中的内容直接发给用户，以减少后端Web服务器的压力，提高响应速度。因此，Nginx还具有缓存功能。

3.反向代理服务器实现负载均衡

Nginx可通过反向代理服务器来实现负载均衡，以优化网站的负载，如图1-3所示。

 图1-3

1.1.3 可作为邮件代理服务器

Nginx可被部署成邮件代理服务器，最早开发Nginx的目的之一就是将其作为邮件代理服务器。

1.2 为什么选择Nginx

Nginx有着高并发、性能好和占用内存少等特点，其安装简单，配置文件简洁，启动容易，能长时间不间断运行，还能在不间断服务的情况下升级软件版本，而且成本低。这些优点使得Nginx的应用越来越普遍。

1.高并发、性能好、占用内存少和稳定

作为Web服务器，相比Apache，Nginx占用内存更少，支持的并发连接更多，使用效率更高，并且Nginx要比Apache更“轻量”，性能更好。

2.功能强大

Nginx提供了大量的功能模块，支持诸多特性，应用场景也多，可作为Web服务器、反向代理服务器，也可作为邮件服务器等。

3.拓展性高

Nginx的模块化设计极具拓展性，它完全是由多个不同功能、不同层次、不同类型且耦合度极低的模块组成的。因此，当对某一个模块进行缺陷修复或升级时，可以专注于模块自身，而不会影响其他模块。

这种低耦合度的设计，使得Nginx具有数量庞大的第三方模块。当然，这些公开的第三方模块也如Nginx官方发布的模块一样易用。

4.其他优点

Nginx的其他优点介绍如下。

· 跨平台：Nginx可以在UNIX、Linux、OS系统中编译运行，而且也有Windows的移植版本。

· 占用内存小：10 000个非活动HTTP保持连接，占用大约2.5MB的内存。

· 配置/操作简单：Nginx安装简单，配置文件简洁，易上手。

· 网络依赖性低：理论上只要能够通过ping就可以实施负载均衡，而且可以有效区分内网、外网流量。

· 支持内置服务器检测：Nginx能够根据服务器处理页面返回的状态码、超时信息等，检测服务器是否出现故障，并及时返回错误的请求，重新提交到其他节点上。

1.3 安装Nginx

Nginx可以在不同的操作系统、不同的环境中安装。本节以CentOS 6.9操作系统为例，介绍Nginx的安装和相关配置。

使用Yum安装rpm包的方式比编译安装的方式简单很多，其默认会安装许多模块，但缺点是以后再安装第三方模块时比较麻烦，所以，这里使用编译安装的方式安装Nginx。

1.3.1 选择安装版本

在Nginx官网中可下载Nginx安装包，其中提供了3个版本：Mainline version、Stable version和Legacy versions。

Mainline version是Nginx目前在主力研发的版本。Stable version是最新的稳定版本，是生产环境中建议使用的版本。Legacy versions是稳定的老版本。

这里选择Stable version版本：nginx-1.12.2.tar.gz。安装环境是CentOS 6.9。因为在安装过程所执行的命令需要root权限，所以，这里选择使用root用户安装。

1.3.2 编译安装Nginx

1.准备工作

安装依赖包：gcc、g++。

安装必要的库：zlib、pcre、openssl。

源码编译依赖gcc环境，并且部分Nginx模块依赖于以上3个库，如果没有安装这3个库，则需要先安装。

2.下载解压

将安装包下载到指定目录下并解压。

3.配置

使用configure命令进行配置。它定义了系统的各个方面配置，包括Nginx允许用于连接处理的方法，并且最终创建了一个Makefile文件。

其中“./configure-help”命令能列出大部分常用模块和编译选项，其中部分内容如图1-4所示。

 图1-4

其中以-without开头的选项都是默认安装的，以PATH结尾的选项需要手动指定依赖库源码目录。

（1）配置选项说明。

下面具体介绍一些常见的配置选项。

·--prefix=PATH：设置Nginx的安装目录，默认为/usr/local/nginx。

·--sbin-path=PATH：设置Nginx可执行文件的名称，默认为prefix/sbin/nginx。

·--conf-path=PATH：设置nginx.conf配置文件的名称。Nginx允许使用不同的配置文件启动服务，通过在命令行参数中指定要使用的配置文件，默认为prefix/conf/nginx.conf。

·--pid-path=PATH：设置存储主进程ID的文件，默认为prefix/logs/nginx.pid。安装后也可在nginx.conf中使用pid命令更改。

·--error-log-path=PATH：设置主要错误、警告和诊断文件。安装后，可以使用error_log命令在nginx.conf配置文件中更改文件名，默认为prefix/logs/error.log。

·--http-log-path=PATH：设置 HTTP 服务器的主要请求日志文件。安装之后，可以使用access_log命令在nginx.conf配置文件中更改文件名，默认为prefix/logs/access.log。

·--with-http_ssl_module：可以构建一个将HTTPS协议支持添加到HTTP 服务器中的模块。该模块不是默认生成的。openssl库需要构建和运行这个模块。

·--with-pcre=PATH：将路径设置为pcre库的来源。

·--with-zlib=PATH：将路径设置为zlib库的来源。

更为详细的配置选项说明请参考Nginx官网中的文档。

（2）配置命令。

这里都是选择默认配置，Nginx将默认被安装到/usr/local/nginx目录下。执行命令后部分结果如图1-5所示。

 图1-5

4.编译安装

5.验证是否安装成功

可以通过查看Nginx的版本信息来验证其是否安装成功。

如果安装成功，则会显示Nginx的版本信息，如图1-6所示。

 图1-6

6.修改配置文件

在安装Nginx的配置文件“nginx.conf”时，如果没有指定路径，则默认放在/usr/local/nginx/conf目录下，1.5节会专门介绍nginx.conf文件中的相关配置。

7.验证配置文件的正确性

如果修改了配置文件，则在启动Nginx之前，最好先检查一下配置文件是否正确，以免在重启Nginx之后出现错误，影响服务器的稳定运行，具体执行命令如下：

如果配置文件被正确执行，则结果如图1-7所示。

 图1-7

1.3.3 配置防火墙

安装好Nginx之后，需要配置防火墙，开启80端口。如果不开启80端口，则防火墙会阻止外网访问80端口，从而我们就无法访问Nginx的配置网站。

1.防火墙相关操作

下面介绍几个与防火墙相关的命令：

2.配置防火墙

修改防火墙配置：vi/etc/sysconfig/iptables。

添加配置项：A INPUT-m state-state NEW-m tcp-p tcp-dport 80-j ACCEPT。

重启防火墙：service iptables restart。

3.启动Nginx服务

4.查看Nginx进程信息

启动Nginx之后，便可以使用以下命令查看Nginx进程信息。

命令运行结果如图1-8所示。

 图1-8

其中，master process对应的是主进程，3182是主进程号，worker process是工作进程。

Nginx有一个主进程和多个工作进程。主进程主要用于读取和评估配置，并维护工作进程。工作进程是对请求进行实际处理。Nginx使用基于事件的模型和依赖操作系统的机制来高效地在工作进程之间分配请求。工作进程的数量在配置文件中定义。

5.测试

（1）测试80端口。

执行结果如图1-9所示。

 图1-9

（2）浏览器访问测试。

用浏览器访问地址：http://ip:80，其中“ip”是Nginx服务器的IP地址。访问结果如图1-10所示。

 图1-10

6.关闭Nginx服务

停止进程：kill-QUIT 主进程号。

快速停止：kill-TERM 主进程号。

强制停止：pkill-9 nginx。

1.3.4 加入自启动和系统服务

虽然可以用命令行对Nginx进行开启、关闭等各种操作，但毕竟不是很方便。可以配置Nginx到系统服务器中，从而可以通过service命令来启动和关闭服务。也可以将Nginx设为开机自启动，那么，在每次重启服务器之后就不用手动开启Nginx服务了，非常方便。

1.创建脚本文件

在/etc/init.d目录下创建一个名为“nginx”的脚本文件，文件内容如下：

要根据实际安装路径，修改脚本中的以下两个配置选项：

将nginx="/usr/local/nginx/sbin/nginx"修改成Nginx执行程序的路径。

将NGINX_CONF_FILE="/usr/local/nginx/conf/nginx.conf"修改成配置文件的路径。

2.设置执行权限

要给脚本添加执行权限，不然执行的时候会报错：permission denied。

3.执行

4.加入开机自启动

1.3.5 加入系统变量

在前面的内容中介绍了一些Nginx的操作命令，比如，要查看Nginx的版本信息，我们通常可以这样：

或

使用这种方式，使得我们每次要执行相关命令时，都要输入很长的Nginx执行文件路径或者要先进入指定目录中才行，这确实有点儿麻烦。所以，我们可以将Nginx的路径配置到系统变量中。

1.修改/etc/profile文件

2.添加PATH

在profile文件中添加Nginx执行文件的路径，如图1-11所示。

 图1-11

3.使之立即生效

编辑/etc/profile文件后，对于PATH的修改不会立马生效，如果要立即生效，则执行以下命令：

4.执行Nginx命令

在环境变量生效之后，就可以直接用“nginx”来执行相关命令。比如，之前查看Nginx版本信息的命令，就可以直接执行：

1.4 Nginx命令行

不同于其他软件系统，Nginx仅有几个命令行参数，完全通过配置文件来进行配置。

在1.3节中介绍安装Nginx时，已经涉及了一些Nginx的基础命令行命令，比如显示Nginx的版本，启动和关闭Nginx等。本节会完整介绍Nginx相关的命令行命令。

1.4.1 命令行参数

如果已经配置了系统PATH，则可以通过输入“nginx”来执行命令，否则要输入Nginx执行文件全路径。前面已经介绍了设置PATH的方法，所以下面就以“nginx”执行命令为例来介绍。

执行命令“nginx-?”，可以查看Nginx的命令帮助信息，执行结果如图1-12所示。

 图1-12

1.nginx [-?hvVtTq]

nginx [-?hvVtTq]命令的介绍如下所示。

2.nginx [-s signal]

在启动Nginx之后，可以通过使用-s参数调用Nginx可执行文件来控制Nginx。

3.nginx [-c filename]

nginx [-c filename]命令用于在启动Nginx时指定配置文件，在实际应用时，filename为配置文件全路径，例如：

-c表示configuration，用于指定配置文件。如果不加-c参数，则Nginx会默认加载其安装目录下的conf子目录中的nginx.conf文件。

4.nginx [-p prefix]

nginx [-p prefix]用于设置Nginx的前缀路径，默认值是/usr/local/nginx。

5.nginx [-g directives]

nginx [-g directives]是在配置文件之外设置全局命令。

1.4.2 启动、停止和重启

1.启动Nginx

要启动Nginx，可运行其可执行文件。

Nginx启动命令的格式：Nginx执行文件-c Nginx配置文件所在地址。

（1）用默认配置文件直接启动。

（2）指定配置文件启动。

（3）其他方式启动。

2.停止Nginx

停止Nginx的方法有3种：从容停止、快速停止和强制停止。一般都是通过发送系统信号给主进程的方式来停止Nginx。

（1）查看Nginx的主进程号。

该命令在1.3.3节中介绍过，这里不再赘述。

（2）从容停止。

或

如果在nginx.conf配置文件中指定了pid文件存放的路径，则该文件中存放的就是Nginx当前的主进程号，其默认被放在Nginx安装目录的logs目录下。

（3）快速停止。

（4）强制停止。

（5）其他停止方式。

还可以用其他方式停止Nginx服务：

或

3.重启

如果修改了Nginx的配置文件，要想让新配置的文件生效，就得重启Nginx。同样，可以发送系统信号给Nginx主进程来重启Nginx。

（1）验证配置文件的正确性。

验证配置文件的正确性使用以下命令：

该命令会默认检查/usr/local/nginx/conf/nginx.conf文件。如果要测试指定的配置文件，则执行以下命令（该命令中的文件路径要改成待测试的配置文件路径）：

（2）发送信号重启Nginx。

一旦主进程接收到重启Nginx的信号，它就会检查新配置文件语法的有效性，并尝试应用其中提供的配置。如果应用成功，则主进程启动新的工作进程，并将消息发送给旧的工作进程，请求关闭进程。否则，主进程回滚更改并继续使用旧的工作进程。旧的工作进程在接收到一个关闭命令后，停止接受新的连接，并继续服务当前的请求，直到服务完所有的请求。之后，旧的工作进程退出。

或

（3）其他重启方式。

同样，还可以用其他方式来重启Nginx：

1.4.3 信号控制

可以通过向进程发送信号的方式来控制Nginx。

在1.4.2节中，介绍了用系统信号来控制Nginx的停止和重启的方法。本节介绍一些常见的信号控制操作。

1.常见信号控制操作

主进程支持的信号如表1-1所示。

 表1-1

个别工作进程也可以通过信号来控制Nginx，尽管这不是必需的。具体支持的信号如表1-2所示。

 表1-2

2.具体语法

信号控制的具体语法为：Kill-信号选项 Nginx的主进程号。

例如：

1.4.4 平滑升级

当需要将正在运行的Nginx升级、添加/删除服务器模块时，如果先停止服务做相应的修改后再启动服务，则服务器在一段时间内会不能被访问。Nginx的一大优势就是可以在不中断服务的情况下，使用新版本、重编译的Nginx可执行程序替换旧版本的可执行程序，这样就不会影响对服务器的访问。

下面介绍具体的升级步骤。

1.编译安装新的可执行程序

对于以编译源码方式安装的Nginx，可以将新版本的Nginx编译安装到旧版本的安装路径中，从而用新版本的可执行程序替换旧版本的可执行程序。在替换之前，最好备份一下旧版本的可执行程序。

2.执行命令：kill-USR2 旧版本Nginx主进程号

执行该命令后，旧版本Nginx的主进程将它的pid文件重命名为oldbin文件（例如：/usr/local/nginx/logs/nginx.pid.oldbin），然后执行新版本的可执行程序，依次启动新版本的主进程和工作进程。此时，所有工作进程（包括旧版本和新版本）会同时运行，共同处理输入的请求。

3.执行命令：kill-WINCH 旧版本Nginx主进程号

如果要逐步停止旧版本的工作进程，则要发送WINCH信号给旧版本的主进程，然后，它的工作进程将被从容关闭。

一段时间后，旧版本的工作进程处理完所有已连接的请求后退出，仅由新版本的工作进程来处理输入的请求。

4.恢复旧版本/使用新版本

这个时候，旧版本的主进程不会关闭其listen sockets，并且可以管理它，以便在需要的时候重新启动它的工作进程。

如果新版本的可执行程序有问题，则可以恢复为旧版本，具体操作如下。

（1）kill-HUP 旧版本主进程号：Nginx将在不重载配置文件的情况下，启动旧版本的工作进程。

（2）kill-QUIT 新版本主进程号：从容关闭新版本的工作进程。

（3）kill-TERM 新版本主进程号：强制退出新版本的工作进程。

（4）kill 新版本主进程号：如果因为某些原因新版本的工作进程不能退出，则向其发送kill信号。

如果新版本的主进程退出，则旧版本的主进程会被移除.oldbin后缀，恢复为.pid后缀，这样一切就恢复到版本升级之前了。

如果版本升级成功，而我们也希望保留新版本的服务器，则可以发送QUIT信号给旧版本的主进程，使其退出而只留下新版本的服务器运行。

1.5 Nginx配置

Nginx及其模块的工作方式是在配置文件中确定的。

Nginx配置文件一般包括一个主配置文件和一些辅助的配置文件。这些配置文件均是纯文本文件，全部位于Nginx安装目录下的conf目录中，如图1-13所示。

 图1-13

在默认情况下，主配置文件名为nginx.conf，也可以自定义主配置文件并加载自定义的配置文件启动Nginx。由于除主配置文件nginx.conf外的文件都是在某些情况下才被使用的，只有主配置文件是在任何情况下都被使用的，所以，下面以主配置文件为例，介绍Nginx的配置。

1.5.1 配置命令

Nginx包含由配置文件中指定的命令控制的模块。通常，nginx.conf文件中的命令被分为简单命令和块命令。

1.简单命令

一个简单的命令由名称和参数组成，并以分号结束。

命令名称是一个字符串，可以加单引号或双引号，也可以不加。但是如果名称中包含空格，则一定要加引号。

命令参数就是命令对应的配置值，使用空格或Tab字符与命令名称分隔。命令参数可以是一个或多个Token串，Token串之间使用空格或者Tab字符分隔。例如：

其中“error_log”为命令名称，“logs/error.log”和“info”都为命令参数，该配置项指定了日志文件和错误日志级别。

2.块命令

块命令与简单命令有着相同的结构，但不是以分号结束的，而是以一系列由大括号括起来的附加命令结束的。如果一个块命令在大括号内可以有其他的命令，那么它就被称为一个上下文（例如events、http、server和location），例如：

3.注释

配置文件中以“#”开始的行，或者前面有若干个空格或Tab字符，然后再以“#”结束的行，都被认为是注释。也就是说，注释只对编辑、查看文件的用户有意义，程序在读取这些注释行时，其实际的内容是被忽略的。例如：

1.5.2 配置上下文

在1.5.1节介绍块命令时提到了上下文的概念。

nginx.conf文件中的配置信息，根据其逻辑上的意义被分成了多个作用域，不同的作用域分别用大括号来限定。这些大括号限定的区域被称为上下文，其中容纳着相关配置细节。

不同的作用域含有一个或者多个配置项，这些区域负责提供组织化结构，用于决定是否应用其中包含的配置。

Nginx的几个主要命令的上下文介绍如表1-3所示。

 表1-3

上下文可能会出现包含的情况，通常http和mail一定在main中，server在http中，location在server中。在一个上下文里，可能包含多个其他类型的上下文。例如，如果HTTP服务支持了多个虚拟主机，那么在http里，就会出现多个server。命令只能作用于其设计所面向的对应上下文内。Nginx会将超出指定上下文的命令视为错误。在Nginx官网中详细介绍了每个命令适用的上下文。

1.5.3 配置文件结构

nginx.conf文件的组织方式采用树状结构。

1.5.4 配置变量

Nginx配置文件支持使用变量，可以使用内置变量，也可以自定义变量。

1.内置变量

Nginx可以使用内置变量来配置命令。例如，配置日志格式如下：

Nginx 变量名前面有一个“$”符号，这是语法上的要求。在配置文件中引用变量时都必须加上“$”前缀。http核心模块的内置变量可参考Nginx官网。

2.自定义变量

用户也可以自定义变量，语法为：set var_name value。例如：

这里使用了标准ngx_rewrite模块的set配置命令对变量“$a”进行赋值操作，把字符串“hello world”赋给了它。虽然添加“$”这样的变量前缀会让Java和C#程序员感到不舒服，但这种表示方法的好处也是显而易见的，那就是可以直接把变量嵌入字符串常量中，以构造出新的字符串。例如：

这里通过已有的Nginx变量的值来构造变量b的值，当这两条命令顺序执行完之后，$a的值是“hello world”，而$b的值则是“hello world，hello world”。

1.5.5 配置实例

前面介绍了配置文件的相关知识点，本节会举一个完整的实例，介绍一些简单的Nginx配置命令。实例如下：

在该实例中，涉及的配置区域有：main、events、http、server和location。更多配置命令可参考Nginx官方文档。

1.6 Nginx模块化体系

Nginx具有Web服务器的基础功能，同时具有Web服务反向代理及E-mail服务反向代理功能。

Nginx的内部结构是由核心部分和一系列的功能模块所组成的。这样划分是为了使每个模块的功能相对简单，便于开发，同时也便于对系统进行功能扩展。为了便于描述，在下文中使用Nginx Core来表示Nginx的核心功能部分。

1.6.1 模块概述

Nginx将各功能模块组织成一个链条，当有请求到达时，请求依次经过链条上的部分或者全部模块，然后进行处理。每个模块实现特定的功能。例如，实现对请求解压缩的模块，实现SSI的模块，实现与上游服务器进行通信的模块，实现与FastCGI服务进行通信的模块。各模块之间的关系如图1-14所示。

 图1-14

Nginx Core实现了底层的通信协议，为其他模块和Nginx进程构建了基本的运行环境，并且构建了其他各模块协作的基础。

http模块和mail模块位于Nginx Core与各功能模块的中间，这两个模块分别处理与HTTP协议和E-mail协议（SMTP/IMAP/POP3）有关的事件，并且确保这些事件能以正确的顺序调用其他的功能模块。目前，HTTP协议是在http模块中实现的，但是有可能在将来会被独立到一个单独的模块中，以扩展Nginx支持的SPDY协议。

除此之外，大部分与协议相关的或者与应用程序相关的功能都是通过这些模块实现的。

1.6.2 模块分类

Nginx的模块根据其功能可以分为如表1-4所示的6种类型。

 表1-4

1.7 本章小结

本章介绍了Nginx，包括它的应用、优点、实际的安装和配置，以及Nginx模块的概念。在对Nginx有所了解的基础上，我们可以进一步地探究、了解Nginx-rtmp-module。
第2章 Nginx-rtmp-module基础

随着移动网络的普及，4G、5G网络的接入，在各大移动通信服务提供商不断推出免流量、大流量通信服务套餐的环境下，直播行业更是加快了发展的脚步，快速融入了人们的生活、娱乐、学习中。各大厂家推出的直播平台，更是包含了一整套的服务器体系，这其中有什么奥秘呢?本章为读者打开直播技术的大门。

第1章介绍了Nginx，从本章开始介绍Nginx-rtmp-module（以下简称NRM）的相关知识。虽然，现在在市场上有很多第三方直播平台，但是作为开发者，选择一个入手简单、功能强大的NRM作为切入点学习搭建直播系统也是很不错的选择，下面会一步步地介绍直播系统的搭建。最终让读者能够自己搭建一个简单的直播服务系统是本书的目的。

2.1 Nginx-rtmp-module介绍

NRM的出现使得非专业流媒体开发工程师也可以简单、迅速地搭建流媒体服务器。

NRM的应用特性包含以下几种。

· 支持RTMP、HLS、MPEG-DASH直播。

· 支持RTMP、HLS点播。

· 可以将一次直播分为多个视频文件存储。

· 支持H.264视频编/解码或AAC音频编/解码。

· 支持FFmpeg命令内嵌。

· 支持回调HTTP。

· 可以使用HTTP对直播进行控制，如删除/录播。

· 具有更优秀的缓存技术，确保在效率与解码之间达到平衡，获得更好的效果。

· 支持更多的操作系统，如Linux、FreeBSD、MacOS、Windows。

2.2 RTMP协议与HLS协议

Real Time Messaging Protocol，实时消息传送协议（RTMP协议），它是Adobe公司为Flash播放器和服务器之间传输音/视频和数据而开发的私有协议。

HTTP Live Streaming（HLS）是苹果公司的开发标准。它最初是由苹果公司针对iPhone、iPod、iTouch和iPad等移动设备而开发的流。由于HLS协议是基于HTTP的，因此，其继承了很多HTTP的优点。

2.2.1 RTMP协议

RTMP协议是为了在Adobe Flash平台技术（包括Adobe Flash Player和Adobe AIR）之间高性能传输音/视频和数据而设计的。RTMP协议是一个开放的规范，通过此规范可以创建产品和技术，可以通过OpenAMF、SWF、FLV和F4V格式，提供与Adobe Flash Player兼容的视/音频和数据。

1.关键特性

RTMP协议是应用层协议，需要靠底层可靠的传输层协议（通常是TCP）来保证信息传输的可靠性。在建立完基于传输层协议的链接后，RTMP协议也需要客户端和服务器端通过“握手”来建立基于传输层连接之上的RTMP连接。在连接上会传输一些控制信息，如SetChunkSize和SetACKWindowSize。其中CreateStream命令会创建一个Stream链接，用于传输具体的音/视频等数据，以及控制这些信息传输的命令信息。RTMP协议在传输时会对数据进行格式化，这种被格式化的消息被称为RTMP Message。而在实际传输时，为了更好地实现多路复用、分包和信息的公平性，发送端会把Message划分为带有Message ID的Chunk。每个Chunk可能是一个单独的Message，也可能是Message的一部分，在接收端会根据chunk中包含的data的长度、message id和message的长度，把chunk还原成完整的Message，从而实现信息的收发。

2.握手

一个RTMP连接以“握手”开始。这里的“握手”和其他协议的“握手”不一样。这里的“握手”由3个固定大小的chunk组成，而不是由可变大小的带有头文件的chunk组成。

客户端（发起连接的一方）和服务器端各自发送3个相同的块。这些块如果是客户端发送的，则记为C0、C1和C2，如果是服务器端发送的，则记为S0、S1和S2，如图2-1所示。

 图2-1

3.过程

· 客户端要等收到S1之后才能发送C2。

· 客户端要等收到S2之后才能发送其他信息（控制信息和真实音/视频等数据）。

· 服务器端要等收到C0之后才能发送S1。

· 服务器端必须要等收到C1之后才能发送S2。

· 服务器端必须要等收到C2之后才能发送其他信息（控制信息和真实音/视频等数据）。

2.2.2 HLS协议

HLS用于将实时和按需的音/视频内容流到iPhone、iPad、iPod Touch、Apple TV和Mac中。HTTP允许用户使用普通的Web服务器（而不是专门的流媒体服务器）轻松地将媒体内容部署到流中。HLS流的行为类似于常规的Web流量。它们使用现有的缓存基础设施，如内容传递网络（CDNS），并可靠地通过典型的防火墙和路由器。HLS可以适应可变的网络条件，动态地调整回放，以匹配有线和无线连接的可用速度。

除可靠和易于部署外，HLS还支持的功能有：关闭字幕、快速转发和反向播放、备用音/视频、插入广告，以及保护内容。

在典型的HLS流中，支持HLS的视频编码器解决方案接收一个实时视频提要或分发的媒体文件。编码器在不同的比特率、分辨率和质量级别上创建了多个版本（称为变体）的音/视频。然后编码器将这些变体分割成一系列的小文件，它们被称为媒体段。与此同时，编码器为每个变量创建一个媒体播放列表文件，其中包含指向该变体的媒体段的URL列表。编码器还创建了一个主播放列表文件，其中包含对可变媒体播放列表的URL列表，以及控制流播放行为的描述性标记。在生成播放列表和片段时，编码器或自动脚本将文件上载到Web服务器或CDN中。通过在Web页面中嵌入主播放列表文件的链接，或者创建自己的自定义应用程序来下载主播放列表文件，用户可以提供对内容的访问。

1.关键特性

HLS技术允许用户通过HTTP传输内容，并允许在网络环境变化时自动切换流。这些属性使得HLS成为一个很好的媒体发布的解决方案。此外，该技术还包括可用性、可用性和安全性等特性。用户可以使用以下可扩展的解决方案来保证质量。

2.M3U8

编码器将媒体播放列表保存在M3U格式的文本文件（m3u8文件）中。媒体播放列表中包含媒体段的URL和播放所需的其他信息。播放列表的三种类型：实时、事件或视频点播（VOD），决定了如何导航流。

实时播放列表让观众在有限的时间范围内可以快速地前进和反向播放。在活动结束之前，该程序的时间范围会被一直向前推进。

事件播放列表让观众返回到流的开始。

VOD播放列表表示一个以前完成的程序，可以从头到尾完全导航。

当新创建的媒体段在服务器上可用时，实时和事件类型的程序都需要更新媒体播放列表。编码器将新媒体段引用并添加到播放列表的末尾，并将更新后的播放列表上传至服务器中。在live播放列表中，可以从媒体播放列表中删除对旧媒体段的引用，并将一个滑动窗口提供给连续流。

（1）一个简单的m3u8文件。

播放列表中的#EXT-X-PLAYLIST-TYPE:EVENT标签名称告诉媒体播放器，这个播放列表的行为将与一个实时媒体播放列表不同。事件播放列表保留对旧媒体的引用，同时获得新的引用。在这个过程中会产生一个扩展的媒体播放列表。这种类型的播放列表允许观众从程序开始时自由地（向后或向前）导航。由于所有媒体片段的引用都保留在活动列表的播放列表中，所以，事件播放列表很容易被转换为VOD播放列表。

（2）一个媒体播放列表。

VOD 播放列表包含了对所有可用媒体段的引用，这种播放列表允许观众浏览整个程序。＃EXT-X-ENDLIST标签标志着可下载媒体片段的结束。

（3）一个完整的VOD播放列表。

3.主播放列表

主播放列表为流中的每个媒体播放列表提供一个地址。主播放列表中还包括了重要的细节数据，如带宽、分辨率和编解码器。观众通过这些信息可以决定最合适设备的变体和当前测量的可用带宽。

主播放列表中显示了4个变体。在主播放列表中，媒体播放列表的顺序无关紧要，除非你启动了流。之后观众开始下载主播放列表可以播放的第一个版本。如果条件允许，则观众可切换到另一个媒体播放列表中的流。

下面显示了播放列表与切片关系。

观众只能下载一次主播放列表。然而，媒体播放列表的下载次数因播放列表类型而异。对于实时广播和事件广播，播放器在每个媒体段持续时间后下载媒体播放列表文件，因为播放列表可能随着新的媒体段的更新或随着流的进度而丢失旧的媒体段。对于VOD，观众只能下载一次媒体播放列表，如图2-2所示。

4.快速向前和反向播放

HLS通过使用I-frame播放列表，支持快速向前和反向回放。I-frame播放列表指向已经存在的媒体段内的一个字节范围。快进和反向回放不需要特殊的媒体段。

5.交替音频和视频播放

HLS主播放列表提供了多种音频渲染（这是本地化的一个很有价值的特性），例如，你的主播放列表中可能包括多种语言音轨，如法语、德语、西班牙语和英语，音轨中包含未被屏蔽（信号未被组合）的音频片段。HLS还支持多个视频流，例如，体育赛事的多个摄像机视频分屏等。

 图2-2

6.回退和流交替

在主播放列表中，替代媒体播放列表可以根据带宽或设备的情况作为替代品。如果播放器不能重新加载媒体播放列表文件——由于诸如404错误、服务器崩溃或内容分发服务器存在节点问题，则会试图切换到另一个服务器上提供的兼容媒体播放列表。HLS提供具有相同带宽的多个媒体播放列表，播放器切换为相同的播放列表，提供一致的流性能。

7.定时的元数据

用户可以向媒体段添加各种元数据。这些数据在回放期间为应用程序提供了额外的信息。例如，将艺术家的名字和歌曲的标题添加到音频流中，或者将当前目标人物的名字和统计数字添加到视频流中。

在给定的时间偏移量中插入额外的数据，被称为定时元数据（其为可选的，在给定的时间之后将定时元数据插入到所有片段中）。

8.广告插入

HLS通过间断标记，可以将广告、播放列表中的标记平滑地在不同内容之间转换。

9.内容保护

媒体段可以使用采样级加密进行单独加密。在播放列表文件中显示了相应的关键文件，这样用户就可以获取解密的密钥。

10.iOS应用程序要求

以下要求适用于需要向App Store提交的iOS应用程序。根据苹果公司的规定，不兼容的应用程序可能会被App Store拒绝。

· 如果你的应用程序需要通过蜂窝网络传输视频，并且视频在5分钟内，则当视频时长超过10分钟或大小超过5MB时，就必须使用HLS。

· 如果你的应用程序在蜂窝网络上使用HLS，则必须至少提供一个192 Kbps或具有更低带宽的流。低带宽的流可以是纯音频，也可以是带有静态图像的音频。

编码器通过将事件数据划分为短的MPEG-2传输流文件来创建媒体段。通常，文件包含H.264视频或AAC音频，持续时间为5~10秒。编码器允许设置媒体段的编码和持续时间。

2.3 NRM的搭建

首先，请先参照第1章，在Linux系统中成功安装Nginx。这里所使用的版本为CentOS，使用工具为Xshell。

1.下载 NRM

在GitHub中打开Nginx-rtmp-module首页，在其中选择“Download.tar.gz”选项，如图2-3所示。

 图2-3

这里所下载的版本为arut-nginx-rtmp-module-v1.2.1-0-g791b613.tar.gz。当然也可以使用 wget命令下载。wget 是一个从网络上自动下载文件的工具，支持通过 HTTP、HTTPS、FTP 这3个最常见的TCP/IP协议下载，并可以使用HTTP代理（wget是World Wide Web与“get”的结合）。

2.安装Irzsz程序

lrzsz是一款在Linux里可代替FTP上传和下载的程序。

3.创建一个目录

4.上传tar文件

输入rz命令并按Enter键，然后选择要下载的arut-nginx-rtmp-module-v1.2.1-0-g791b613.tar.gz文件。

5.修改文件名

用户可以使用mv命令为文件或目录重命名，或者将文件由一个目录移入另一个目录中。该命令如同MS-DOS下的ren和move命令的组合。rename是一个可以对多个文件重命名的mv命令。

也可以使用rename命令。

6.解压缩文件

tar是Linux中用来解压缩文件的命令。

7.简化目录

简化目录是为了更方便地输入后续的操作命令，简化目录后的结果如图2-4所示。

 图2-4

8.检查Nginx配置

在“./nginx –v”中，输入小写“v”只会显示版本信息。

 图2-5

9.配置NRM到Nginx中

加载NRM库，并输出到指定目录中，最后开启debuglog，如图2-6所示。

 图2-6

10.启动Nginx

到这里NRM组件安装完毕。

2.4 搭建第一个直播系统

在2.4节介绍了搭建NRM环境，下面搭建一个简单的直播系统。

1.进入配置文件目录

打开配置文件目录：

其中nginx.conf为默认加载的配置文件，nginx.conf.default为默认配置的文件备份，如图2-7所示。

 图2-7

2.修改默认配置文件

修改系统服务脚本init.d：

将nginx.conf修改为live.conf：修改默认service nginx服务指向的配置文件，如图2-8所示。

 图2-8

3.精简及确认live.conf

精简后的live.conf中去除了默认注释：

4.配置RTMP直播

（1）RTMP标签。

NRM的基础标签的所有服务都被配置在RTMP标签中。

（2）Server标签。

Server标签是服务标签，一个RTMP服务中可以有多个Server标签，每个Server标签可以监听不同端口，Server标签中的配置是应用于所有Application标签的。

（3）Application标签。

Application标签是应用标签，一个Server标签中可以有多个Application标签，Application标签中的配置是应用于其本身的，application name确保了在请求时进行准确的Application划分。

5.防火墙规则

RTMP协议是基于TCP协议的。重启防火墙使配置生效。

6.推流

FFmpeg与推/拉流会在第3章中说明，如图2-9所示为推流中的FFmpeg。

 图2-9

7.拉流

这里使用VLC流媒体播放器来拉流，此时正在直播的动画片可以观看了，如图2-10所示。

 图2-10

2.5 本章小结

本章内容主要包括：

· RTMP：Adobe面向Flash的流媒体协议。

· HLS：苹果公司面向苹果产品的流媒体协议。

· Nginx-rtmp-module：Nginx中的./configure--add-module。

本章介绍了RTMP、HLS两种协议，并介绍了如何安装及搭建Nginx-rtmp-module环境，最后还完成了第一个直播系统。
第3章 Nginx-rtmp-module进阶

在第2章中简单地介绍了RTMP与HLS所对应的不同平台，以及如何成功搭建第一个直播系统。本章会介绍如何配置一个基于HLS协议的直播系统，以及m3u8与ts文件的配置，然后逐渐深入介绍NRM与直播系统的高级应用。

3.1 如何使NRM支持HLS协议直播

在2.5节中我们搭建了一个基于RTMP协议的直播系统，那么基于HLS协议的直播系统是如何搭建的?在HLS协议直播系统中，m3u8和ts文件被存放在哪里?基于HLS协议的直播系统是否可以与基于RTMP协议的直播系统一起存在?这些在本节会进行介绍。

1.为m3u8文件创建一个预备目录

2.修改配置文件

因为HLS协议是基于HTTP协议的，所以我们无法通过RTMP协议头访问HLS m3u8文件，因此，下面在http标签下配置它的访问操作。

3.推流

执行推流命令，这里额外配置了视频编码器libx264与音频编码器aac：

通过前面的配置，我们可以得知m3u8和ts文件被存放在/usr/local/m3u8File目录下，查看这个目录可以得知是否有m3u8及ts文件输出，如图3-1所示。

 图3-1

然后通过VLC播放HLS流媒体，如图3-2所示。

 图3-2

可以看到，通过HLS相关配置，我们就可以轻松地得到m3u8和ts文件了，再通过location与type中的配置客户端，就可以通过HTTP协议访问m3u8和ts文件播放流媒体了。

3.2 推/拉流与串流码

在直播技术中，经常会涉及推流（Push）和拉流（Pull）。将流媒体推送到流媒体服务器的过程被叫作推流。向服务器获取视频数据的过程就叫作拉流。

在直播地址中，application之后的参数就是串流码（Stream Key），它用来区分同一个application中不同的直播流。

以下三条互不影响的直播流是三路直播流，虽然第一条与第三条的串流码相同，但是因为application不同，所以它们也都是独立且不影响的直播流。

3.3 Control控制器

Control控制器是http模块，它可以通过HTTP协议从外部控制rtmp模块。通过Control控制器，我们可以使用record、drop和redirect这3个命令来实现我们的业务场景。

我们要做的仅仅是将以下location添加到http server标签中，如图3-3所示。这里在server linten 80标签下增加了一个location/control并设置为rtmp_control all。这样我们就开启了控制器模块在http下的通道。

 图3-3

3.3.1 record命令

通过record命令，可以实现录制与停止直播流功能。

1.示例

下面先来看一个最简单的实现录制直播流的配置示例。

首先手动创建一个目录mkdir/tmp/rec，再执行ffmpeg推流命令，然后请求开启录制的URL。

执行程序后，页面返回/tmp/rec/77_.flv文件。但是，我们在tmp/rec目录下并没发现有录制的文件。这通常是因为授予文件夹的访问权限不够高，无法在rec目录中进行创建及写入操作。下面通过chmod-R 777/tmp对目录进行授权：-R是递归子目录，777是最高权限，因为tmp目录在后面会被放很多东西，所以对其授予全部权限，然后再执行录制命令，成功录制文件，如图3-4所示。

 图3-4

如何停止录制呢?很简单，将URL中的start替换为stop即可。

2.常用配置

（1）rtmp_stat。

rtmp_stat是流数据统计模块，在http模块中配置它，可以通过URL实时监控流媒体的各种状态。

示例如下：

（2）record。

下面是record配置中最基础的功能，用来设定录制媒体选项命令，如表3-1所示。

 表3-1

示例如下：

（3）record_path。

record_path用于设置录制文件的输出路径。

示例如下：

（4）record_suffix。

record_suffix用于设置录制文件输出的文件名。如下代码所示，NRM会将“{1}”的位置自动替换为Stream Key，因此，我们可以设置个性的文件名格式规范（支持strftime函数）。

示例：

（5）record_unique。

record_unique 用于将当前时间戳添加到已被记录的文件中，避免在每次产生新记录时，重写文件。record_unique默认是关闭的，其输出格式为{StreamKey}-{long time}，例如77-1517192930.flv。

示例如下：

（6）record_append。

record_append用于将新数据追加到旧文件中，或者当已录制的文件丢失时创建它。旧数据和文件中的新数据之间没有时间差。record_append默认是关闭的。因此，append与unique、suffix的配置是有所冲突的，因为unique与使用了strftime函数的suffix总会生成一个不同的文件名，因此，append的追加也就没有意义了。

示例：

（7）record_max_size。

record_max_size是指最大录制文件的大小，当录制文件超过设置的数值时，文件将会被清空，然后写入后续数据。

示例如下：

3.3.2 drop命令

在配置了control选项后，可以通过drop命令有选择地踢出推流用户或拉流用户。

3.3.3 redirect命令

可以通过redirect命令有选择地重定向推流用户或拉流用户。

当然，同drop命令一样，也可以通过clientId与addr来指向地址或用户ID进行操作。

3.4 数据统计模块

数据统计模块是http模块。因此，统计命令应该位于http模块中。

下面在http server模块下增加两个location。

第一个location将流媒体的状态全部记录到stat.xsl中。第二个location将stat.xsl访问目录指定到/download/NRM中。stat.xsl被包含在NRM的安装目录中，直接指向那里就可以。配置完成后，访问http://172.26.22.30/liveStat，如图3-5所示。可以看到页面中清晰地显示了不同直播下的观众、状态、上/下行速率、时间、地址、系统等信息。

 图3-5

3.5 Exec相关功能

可以通过Exec下提供的模块来与shell命令或ffmpeg等常用组件命令进行交互。

当发布开始的时候，触发此事件：

3.6 本章小结

本章介绍了HLS在NRM中的使用、推/拉流等术语、control控制器的使用、直播状态的监控，以及一些常用的配置信息。通过以上内容，我们基本可以搭建出一个支持HLS协议的直播服务器，并可以根据常用配置进行个性化设置。
第4章 Nginx-rtmp-module应用

本章会介绍FFmpeg的具体应用与安装配置、NRM常用配置字典，以及直播系统中常用的架构体系。

4.1 FFmpeg

1.FFmpeg介绍

FFmpeg是一个完整的、跨平台的解决方案，用于记录、转换和流化音/视频。

FFmpeg采用LGPL或GPL许可证，提供了录制、转换及流化音/视频的完整解决方案。其包含了非常先进的音/视频编解码库libavcodec。

FFmpeg是在Linux平台下开发的，但是它同样也可以在其他操作系统环境中编译运行，包括Windows、Mac OS X等系统。这个项目最早是由Fabrice Bellard发起的，在2004年至2015年由Michael Niedermayer主要负责维护。许多FFmpeg的开发人员都来自MPlayer项目组，而且当前FFmpeg也是被放在MPlayer项目组的服务器上的。其名称来自MPEG视频编码标准，“FF”代表“Fast Forward”。

2.FFmpeg组件

FFmpeg的组件包含libavcodec、libavutil、libavformat、libavfilter、libavdevice、libswscale和libswresample（这些都可以应用于应用程序），以及ffmpeg、ffplay和ffprobe（可以被终端用户进行编码和播放），如图4-1所示。

 图4-1

· libavutil是一个包含简化编程功能的库，包括随机数生成器、数学例程、核心多媒体实用程序等。

· libavcodec是一个包含解码和编码器的音/视频编解码器的库。

· libavformat是一个包含用于多媒体容器格式的demuxers和muxers的库。

· libavdevice 是一个包含输入和输出设备的库，用于抓取和呈现许多常见的多媒体输入/输出软件框架，包括Video4Linux、Video4Linux2、VfW和ALSA。

· libavfilter是一个包含媒体过滤器的库。

· libswscale是一个执行高度优化的图像缩放和颜色空间/像素格式转换操作的库。

· libswresample 是一个执行高度优化的音频重采样、rematrixing和示例格式转换操作的库。

· libpostproc是一个用于后期效果处理的库。

3.所支持的协议

FFmpeg所支持的协议包括：HTTP、RTP、RTSP、RealMedia RTSP/RDT、TCP、UDP、Gopher、RTMP、RTMPT、RTMPE、RTMPTE、RTMPS、SDP、MMS over TCP。

4.示例

转码一个视频码率为4Mbps：

转码一个视频为24帧：

转码流程如下：

（1）FFmpeg调用libavformat库（包含demuxers）来读取输入文件，并获取包含编码数据的数据包。

（2）将编码的信息包传递给解码器。

（3）解码器产生未压缩的帧，可以通过过滤做进一步处理。

（4）过滤后，帧被传递给编码器，编码器将其编码并输出编码的数据包。

（5）最后，这些数据包被传递给muxer，它将编码的包写入输出文件中。

4.1.1 FFmpeg的安装

本节介绍FFmpeg的安装及组件的选择。

1.下载

先下载ffmpeg-x.x.x.tar.bz2（本书使用的版本为ffmpeg-3.4.1.tar.bz2）或通过wget命令在Linux系统中直接下载。

2.解压

通过rz命令将下载文件上传到/download目录中：

3.配置

进行如下配置：

如果出现错误，则可以查看4.2节中的相关问题解决方法。

4.添加FFmpeg到环境变量

profile 记录着系统中的环境变量设置：

找到文件尾部，如果看到尾部已经有export，则在所有export前插入：

再把 $FFMPEG_HOME/bin:插入到$PATH变量的前端。

如果文件尾部没有exprot，则直接插入，内容如图4-2所示。

 图4-2

如果在执行source命令后提示配置错误，则会导致profile文件失效，部分Linux命令失效。需要输入“export PATH=/usr/bin:/usr/sbin:/bin:/sbin:/usr/X11R6/bin”，恢复部分Linux命令，并尽快修复profile文件。

shell命令基本都在/usr/bin，/usr/sbin，/bin，/sbin，/usr/X11R6/bin目录中定义。

5.ffmpeg./configure可能出现的问题

当没有办法创建临时文件到/tmp目录下时，如图4-3所示，可以检查是否有/tmp目录，如果没有，则输入“mkdir/tmp”即可。

 图4-3

图4-4所示的为没有NASM/YASM或其版本太旧导致的问题。

 图4-4

· YASM是一个完全重写的NASM汇编。目前，它支持x86和AMD64命令集。

· NASM是一款基于80×86和x86-64平台的汇编语言编译程序，其设计初衷是为了实现编译器程序跨平台和模块化的特性。

6.安装YASM

下载YASM的解压文件包，然后配置选项、编译及安装。

添加YASM到环境变量中：

添加后的效果如图4-5所示。

 图4-5

7.测试

下面进行测试：

确认输出的FFmpeg版本信息无误，如图4-6所示。

8.FFmpeg验收

下面进行FFmpeg验收：

 图4-6

4.1.2 FFmpeg的配置

FFmpeg可以选择多种音/视频编码器对媒体进行渲染。下面安装几种常用的视频编码器。

1.确认组件

因为在4.1.1节中是选择默认配置安装FFmpeg的，所以我们只有一些列基础库，如图4-7所示。

 图4-7

2.libx264

libx264是当下十分热门的H264编码器，有着非常广泛的应用。H264编码器的优势是低码率、具有流畅连续的高清图像、高容错率、强网络适应性和高压缩比。

H.264的压缩比是MPEG-2的2倍以上，是MPEG-4的1.5~2倍。举一个例子，如果原始文件的大小为88GB，那么用MPEG-2压缩标准压缩后变成3.5GB，压缩比为25∶1；用H.264压缩标准压缩后变为879MB，压缩比达到102∶1。

在下面的命令中增加了–vcodec和–acodec，这里使用视频编码器libx264，使用音频编码器aac。

3.libx264安装

重新配置及编译安装FFmpeg，将新的libx264配置到FFmpeg中。

因为x264会依赖NASM的汇编加速，因此，这里先安装NASM。如果不安装NASM，则会报错：Minimum version is nasm-2.13。

（1）安装NASM。

安装NASM后的结果如图4-8所示。

 图4-8

安装x264：

输入“./configure”后会列出配置清单让我们确认，如图4-9所示。

 图4-9

此时依然报错找不到libx264。

使用“tail/download/ffmpeg/ffbuild/config.log”命令查看原因，如图4-10所示。

 图4-10

看一下安装lib x264时的输出信息，如图4-11所示。

 图4-11

可以看到x264文件的目录，因为我们在安装的时候手动选择了安装路径——prefix=/usr/local/x264，因此，x264目录下的lib和include目录中的文件无法被FFmpeg自动发现。

成功配置并执行后会弹出提示如图4-12所示的内容证明安装成功。

 图4-12

之后在执行make&make install语句时，发现系统依然有报错，如图4-13所示。

 图4-13

先不要着急，仔细看一下报错信息，原来是libx264.c文件中使用的x264版本与当前安装的x264版本无法兼容。我们明明是在官网中下载的最新版本的FFmpeg，怎么会有这样的问题?

因为x264与FFmpeg是两个不同的开源项目，如果其官网发布打包不及时，则很可能会出现最新版本的FFmpeg无法兼容最新的x264的情况。

首先进入x264官网查看它的Git信息以及与FFmpeg匹配问题，可以发现FFmpeg在Git中迭代了这个与x264不匹配的问题版本，但是并没有放到官网中。

（2）修复FFmpeg与x264不匹配的问题。

由此可以确定问题出在FFmpeg版本上，那么直接从Git官网中下载最新版并且重新安装即可。

这里配置应该是成功的，因为在前文中已经配置过PKG_CONFIG_PATH环境变量。如果你的代码还是报错，则请仔细看前面的内容。

4.1.3 FFmpeg与直播的应用

前文已经介绍了NRM可以通过exec来执行各种命令，其中最常见的就是FFmpeg命令。可以通过FFmpeg命令可以完成几乎我们想要的一切功能。

当触发推流时间时，要将当前流媒体以不同尺寸推到其他的application中。

当然，上面的FFmpeg命令只是调整了视频尺寸，通常我们还应该配合设置视频帧数来进行制式调整。

4.2 基础配置信息

无论是rtmp标签，还是server标签，甚至是application标签，都可以算是核心配置信息中的成员。因为它们的存在，影响着整个NRM，必须要配置。

1.rtmp

rtmp是根级标签，并且是配置中最关键的标签。

2.server

一个rtmp中可以包含多个server标签，每个server标签可以通过端口隔离。

3.listen

listen只能被放在server中，指定了所在server标签绑定的端口信息。

4.application

application可以被放在server标签中，可以包含多个application并通过applicationName来隔离。

5.ping和ping_timeout

ping和ping_timeout可以被放在rtmp和server中，用于主动检查心跳，将各心跳包发送到客户端。ping_timeout中设置的值为超时回复时间，如果在超时回复时间内没有得到回复，则关闭客户端。ping默认为1分钟，timeout默认为30秒，当ping为0时，关闭此功能。

6.ack_window

ack_window可以被放在rtmp和server中，用于设置rtmp确认窗口大小，默认为5000000字节。

RTMP消息包一共分成3种类型。第一类是命令（通知）消息，第二类是音频消息，第三类是视频消息。而窗口大小则属于第一类消息，即命令消息。窗口大小的本意是让对端了解与本端的通信状况，用以控制媒体传输流量的一种方案。通常，我们从RTMP服务器中拉取RTMP流到本地时，在协商的过程中，会发送0x05和0x06消息包，即带宽值通知，通常设为2.5MB。在实际的拉流过程中，我们通常隔一段时间就得向服务器报告我们已经从服务中收到了多少数据，此种报告就是窗口大小，即ack size 确认。在实际开发的过程中，通常当接收的数据量接近于3倍带宽值（2.5MB×3）时，向服务器报告一下目前已接收了多少数据。

在接收端的TCP协议缓存中还有多少剩余空间，发送端必须保证发送的数据不超过这个剩余空间，以免造成缓冲区溢出，这个窗口是接收端用来限制流量的。在传输过程中，窗口大小与接收端的进程取出数据的快慢有关。

7.chunk_size

chunk_size可以被放在rtmp和server中，用于设置流中的块大小，默认是4096字节。这个值越大，CPU开销就越低，但是这个值不能小于128字节。

8.max_message

max_message可以被放在rtmp和server中，用于设置输入数据报文最大尺寸。所有输入数据都会被分割成报文（然后进一步被分割为块）。报文在处理结束之前会被放在内存中。从理论上讲，如果接收到的报文很大，则可能会影响服务器的稳定性。报文默认值为 1MB，此时可以满足大多数情况。

9.buflen

buflen可以被放在rtmp和server中，用于设置缓冲区长度。

10.rtmp_auto_push

rtmp_auto_push用于设置当多任务进行时，分发任务到多个进程。

11.rtmp_auto_push_reconnect

rtmp_auto_push_reconnect用于设置当rtmp_auto_push 开启并因超时被销毁时，进行重连。

12.meta

meta可以被放在rtmp，server和application中，用于将元数据信息发送到客户端，默认为打开。

13.interleave

interleave可以被放在rtmp，server和application中，用于交叉模式，此模式下音/视频在同一个chunk stream上，默认为关闭。

14.wait_key

wait_key可以被放在rtmp，server和application中，用于使视频流从一个关键帧开始，默认为关闭。

15.wait_video

wait_video可以被放在rtmp，server和application中，用于禁用音频，直到第一个视频帧发送，默认为关闭。可以与wait_key结合，使客户端接收视频关键帧。然而，这通常会增加连接延迟。可以在编码器中调整关键帧间隔以减少延迟。最新版本的IE浏览器需要设置这个选项才能正常播放。

16.sync

sync可以被放在rtmp，server和application中，用于同步音频流和视频流。如果客户端带宽不足以接收到服务器的数据，那么一些帧会被服务器删除。这导致了音频流和视频流不同步。当时间戳差异超过指定为同步参数的值时，则将发送一个绝对帧，默认是300ms。

17.allow,deny

allow,deny可以被放在rtmp，server和application中，用于设置白名单和黑名单。

18.play

play可以被放在rtmp，server和application中，用于播放本地或远程点播文件。

19.max_connections

max_connections可以被放在rtmp，server和application中，用于设置最大连接数。

20.access_log

access_log可以被放在rtmp，server和application中，用于通常来说，rtmp日志是和nginx/logs/access.log文件存放在一起的，通过access_log可以单独存放rtmp_log。

21.log_format

log_format：自定义日志格式。

· connection：连接数。

· remote_addr：客户端地址。

· app_application：名称。

· name：最后一个串流码名称。

· args：最后一个播放的流/推流参数。

· flashver：Flash版本。

· swfurl：swf地址。

· tcurl：tc地址。

· pageurl：客户端页面地址。

· command：推/拉流中命令：none，play，publish，play+publish。

· bytes_sent：发送到客户端的字节数。

· bytes_received：接收到客户端的字节数。

· time_local：连接关闭时间。

· session_time：连接持续时间。

· session_readable_time：格式化日期。

· msec：UNIX时间戳。

4.3 本章小结

本章介绍了FFmpeg的安装及使用、常用的直播系统架构，以及常见的Nginx-rtmp-module配置信息。学完本章，读者应该基本掌握了安装Nginx-rtmp-module和FFmpeg及两者的配置，并可以建立一个属于自己的直播系统。在后面的内容中会介绍对于不同客户端中SDK的开发及应用。
第5章 Android端解决方案

2017年，直播成为互联网行业中最抢眼的领域之一。现在，从传统的PC端到移动端，各行业都对直播这块“大蛋糕”很感兴趣。

言归正传，下面从技术的角度介绍在Android端如何搭建一个直播客户端。

5.1 移动端视频直播介绍

1.直播行业分析

随着互联网技术的突飞猛进，短短几年，移动设备从开始的只能打电话、发短信和图片的非智能手机，发展为现在的装满了社交、视频、支付、资讯等形形色色应用程序的智能手机，通信内容也从文字、图片扩展到了音频、视频等。

如今正火的视频直播平台，其实在很早以前就出现过，最早的视频聊天室其实就是这种视频直播平台的前身，只是在那个时候主播是依赖计算机进行视频直播的，观众也需要在计算机上观看。现在，随着科技的发展，大多数人都至少有一部智能手机，而且几乎走到哪里都有Wi-Fi，这些为移动端视频直播奠定了良好的基础。因此，自2015年以来，移动端视频直播已经成为众多行业巨头争夺的重点。

2017年，各大直播平台纷纷获得融资，其中微吼直播已经完成了C轮两亿元融资、云犀直播获得2000万元Pre-A轮融资，百度、腾讯也纷纷直播领域，而卓朗科技作为国内领先的虚拟化和云计算基础软件的企业，也不会放过这次机会。

2.直播技术的发展趋势

如今，商业化移动直播技术受到各大企业重视。众多互联网直播平台也是层出不穷，但是绝大部分也只是做到了“尽力而为的互动”直播，而不能达到真正的“深层互动”的直播，同时视频清晰度、视频延迟和流畅性等问题也普遍存在。

因此，未来需要一种更为专业的直播技术服务，以及更为完善的解决方案和硬件设备支持，将这种“浅层互动”提升为“深层互动”，以满足各行业客户的定制化需求。我们写这本书不只是想告诉大家我们对直播技术有完善的解决方案，还想通过这本书，把开发直播平台开发技术毫无保留地分享给大家，让每个人都能轻松搭建一个自己的直播平台。关于RTMP协议在前面介绍过了，这里就不再做介绍了。本章主要介绍在Android端如何完成推流和拉流，我们的推流是借鉴于GitHub上的开源项目Yasea框架来完成的，拉流是借鉴于B站的开源项目IJKPlayer框架来完成的，后面会对这两个框架进行详细介绍。

5.2 Yasea框架介绍

Yasea是一个Android流媒体客户端，它通过移动设备的摄像机和麦克风，把YUV和PCM的音/视频数据编码并转码为H.264/AAC的格式，然后把H.264/AAC格式的数据封装到FLV中，并通过RTMP协议发送到服务器中进行传输。

1.特性列表

· 支持Android 4.1及以上版本。

· 同时支持 H.264/AAC格式的硬编码和软编码。

· RTMP 推流，事件状态回调。

· 手机横/竖屏动态切换。

· 前/后摄像头热切换。

· 在推流过程随时录制 MP4格式文件，支持暂停和恢复功能。

· 具有实时美颜（磨皮）滤镜。

2.框架分析

可以先在GitHub上下载源码看一下（在GitHub上搜索项目“Yasea”），下载完成后在Android Studio中导入源码。在导入过程中可能会出现SDK等编译错误，读者可自行修改一下，这里就不详细介绍解决办法了。下面先看一下源码里library目录下的module的结构，如图5-1所示。

 图5-1

从图5-1中可以看出源码大致由assets、cpp、java、res这4个文件夹组成。其中，assets文件夹中主要是滤镜需要的图片文件；cpp文件夹中主要是JNI需要的文件；在java文件夹中，net.ossrs.yasea文件夹中是项目封装的核心代码文件，而com文件夹中是第三方开源项目SimpleRtmp、x264、Magicfilter、mp4parser等代码；在res文件夹中，raw文件夹中是滤镜需要的一些核心文件。

3.使用介绍

在集成过程中主要用到的是net.ossrs.yasea包下Yasea框架提供的方法，其他类、方法在这里就不详细介绍了。在具体使用过程中主要用到的是SrsCameraView和SrsPublisher类中的方法，下面介绍一下这两个类中常用、重要的方法。

5.3 IJKPlayer框架介绍

IJKPlayer是B站的工程师基于FFmpeg及MediaCoder开发的开源播放器框架，其内部实现了软解码及硬解码的功能，基本流程如图5-2所示。

 图5-2

在众多的播放器中，我们选取了比较出众的IJKPlayer进行源码剖析。它是一个基于FFPlay的轻量级Android/iOS端视频播放器框架，具有跨平台的功能，其API易于集成、编译配置可裁剪、方便控制安装包大小。

1.结构说明

可以在GitHub上下载或查看IJKPlayer项目，其主要目录结构如表5-1所示。

 表5-1

下面是在Android目录中看到的目录名称和说明，如表5-2所示。

 表5-2

2.特性列表

如表5-3所示的是框架的一些特性和说明。

 表5-3

3.前期准备

在开发直播系统前，先介绍一下如何编译IJKPlayer和FFmpeg。

注意：尽量不要在Windows下编译，因为会有各种想不到的Bug出现，这里以在Ubuntu下编译源码为例。首先必须安装Homebrew、Git、Yasm这3个软件，然后要注意Android NDK必须安装，最好是r10之前的版本，不然编译可能会出错。

全部安装完成后，在命令行中继续一步步执行如下代码。

如果在执行过程中没有出现任何问题，则执行成功后打开android文件夹下的ijkplayer目录，在对应的CPU项目中可以找到相应的.so文件。

4.简单用法

在官方的示例项目中用到了很多功能，可是其中的大多数功能我们都不需要，所以需要去掉一些没用的代码。exo是Google开发的新的播放器，这里不需要，直接去掉即可。我们需要的只有tv.danmaku.ijk.media.example.widget.media包下的部分类。ijkplayer-arm64、ijkplayer-armv5、ijkplayer-armv7a、ijkplayer-x86、ijkplayer-x86_64是不同体系架构的动态链接库，在工程结构中作为一个模块。如果项目没有要求兼容多平台，则可以删除其他目录结构，单独保留自己需要的平台目录即可。如果对IJKPlayer没有改动，那么也可以在Gradle里直接集成。

5.播放的实现方式

在项目中的XML文件中，只需加上下面这个组件即可。

然后，在Activity代码中注册这个组件，并设置其需要的方法。

6.常用的方法

5.4 Android端开发实战

通过前面的介绍，相信读者对推流、拉流使用的两个主要框架有了大概的了解。下面介绍一个关于直播系统的实战项目。

5.4.1 主要功能

先来介绍一下此项目要实现的主要功能。常见的直播软件都有两个客户端：直播端和观众端。其中涉及两个功能界面：主播的直播功能界面和观众的播放功能界面。

本项目的直播功能主要包括：

· 美颜设置。

· 摄像头切换。

· 开始/结束推流。

· 软/硬编码转换。

播放功能主要包括：

· 开始/结束拉流。

· 点赞动画。

· 开启/关闭弹幕。

直播功能界面如图5-3（主播的直播功能界面）和图5-4（观众的播放功能界面）所示。

 图5-3

 图5-4

5.4.2 框架导入

为了简捷、方便，在此项目中，除Yasea框架外，其他第三方依赖库我们都是在Gradle中以引入的方式来实现的，项目结构如图5-5所示。

 图5-5

其中主要包括：

· MainActivity：主界面。

· PullActivity：拉流功能代码。

· PushActivity：推流功能代码。

1.依赖引用说明

2.所需权限

5.4.3 滤镜

首先介绍一下滤镜功能。我们平时看到直播里的主播都非常漂亮，皮肤状态也非常好，其实这大部分都是滤镜的功劳。直播软件和我们平时用的图片处理工具一样，它也可以有磨皮、美白、增/减亮度、锐化等功能。要在直播中实现滤镜功能，需要用Yasea框架中依赖的MagicCamera库。MagicCamera是一个支持实时滤镜的照相机和视频录像的组件，包含美颜等40余种实时滤镜，以及具有拍照、录像、修改图片等功能，在GitHub中可下载。下面简单介绍一下MagicCamera的使用方法。

要实现照相机实时预览功能，只需要在程序的布局文件中集成MagicCameraView组件，代码如下：

在Activity代码中注册MagicCameraView组件，通过调用MagicEngine对象中的方法来对照相机、滤镜进行操作。

（1）设置滤镜方法。

（2）设置美颜强度。

（3）保存图片方法。

（4）设置切换前/后摄像头。

（5）开启/关闭录制视频。

MagicCamera部分滤镜与Instagram的样式对照如表5-4所示。

 表5-4

 续表

5.4.4 推流

推流功能依赖的是Yasea框架，在前面已经介绍过了。下面看一看如何在代码中实现。先在项目中导入依赖库，然后在布局文件中引用照相机组件，代码如下:

在Activity里进行组件注册、功能设置等：

在上面的代码中可以看到，我们分别对编码、RTMP、录像设置了状态回调方法，从而可以在这些方法中获得是否连接成功、是否断开、视频码率、帧率状态等。

5.4.5 拉流

此项目中的拉流功能使用的是B站开源的IJKPlayer框架。在前面介绍过IJKPlayer框架编译和它的一些方法。IJKPlayer是一个基于FFmpeg的轻量级Android视频播放器，而FFmpeg是全球领先的多媒体框架之一，它能够解码、编码、转码、流和播放大部分的视频格式。

1.环境配置

这里使用在Gradle中引入IJKPlayer的方式：

2.播放器使用

依赖的框架集成完之后，根据IJKPlayer提供的IMediaPlayer类，自定义一个播放器组件：

自定义完成后，在布局文件中加入播放器控件：

Activity中的注册界面、组件，功能设置如下：

5.4.6 弹幕

为了方便用户拓展直播系统的功能，下面在示例项目中加入一些简单的功能，比如点赞、弹幕等。下面先介绍一下同样是由B站开源的Danmaku Flame Master弹幕解析绘制框架。它也是目前Android平台中最好的弹幕框架，目前已经被优酷、土豆、斗鱼、AcFun等App使用。

1.特性

Danmaku Flame Master框架具有以下特性。

· 支持使用多种方式（View/SurfaceView/TextureView）实现高效绘制。

· 支持B站XML弹幕格式解析。

· 支持基础弹幕精确还原绘制。

· 支持Mode 7特殊弹幕功能。

· 支持多核机型优化，高效预缓存机制。

· 支持多种显示效果选项实时切换。

· 支持实时弹幕显示。

· 支持换行弹幕支持/运动弹幕。

· 支持自定义字体。

· 支持多种弹幕参数设置。

· 支持多种方式的弹幕屏蔽。

2.集成方法

在Gradle中引入的方式：

在文件中加入弹幕控件：

Activity中的功能代码也简单，注册弹幕控件并添加数据即可：

效果如图5-6所示。

 图5-6

5.5 本章小结

本章介绍了在Android端实现直播的过程，同时也对Yasea、IJKPlayer、Magicfilter、DanmakuFlameMaster等开源框架做了简单的说明。

这些框架为实现直播系统这些强大的功能奠定了良好的基础，在这里，我们也要感谢这些框架开发者的无私奉献。

看到这里，如果读者还没有能成功搭建一个自己的直播平台，那么也可以看看我们提供的直播Demo。当然这几个框架的功能远远不止这些，如果你想更深入地了解这些框架，那么可以到GitHub上关注一下。
第6章 iOS端解决方案

前5章介绍了如何搭建视频直播服务器，以及在Android端如何实现视频直播。本章介绍在iOS端如何实现视频直播。

6.1 iOS端视频直播介绍

在介绍如何在iOS端实现视频直播之前，首先要介绍在手机端实现视频直播是通过哪几步实现的。

1.手机端和服务器端的交互

向服务器端传输数据的过程被称作推流。向服务器端获取视频数据的过程被称为拉流。

2.手机端视频直播流程

手机端视频直播流程大体分为采集、前期处理、编码、推流和传输、服务器处理、解码和拉流、播放这7步。

（1）采集。

采集是整个视频直播流程中的第一个环节，它是从设备中获取原始视频和音频数据，然后将其输出到下一个环节中。视频的采集涉及两个方面的数据采集：音频采集和图像采集，它们分别对应两种完全不同的输入源和数据格式。

（2）前期处理。

现在的直播不仅仅是简单地录制视频，一般还需要对视频做一些美化处理，比如美颜、添加模糊效果及水印等。目前，在iOS端，在这方面最著名的开源框架就是GPUImage。其中内置了125种渲染效果,还支持各种自定义脚本等，让我们可以对视频做更多的处理。

（3）编码。

对流媒体传输来说，编码是比较重要的，编码性能、编码速度和编码压缩比会直接影响整个流媒体传输过程中的用户体验和传输成本。编码的重点和难点在于要在分辨率、帧率、GOP等参数设计上找到最佳平衡点。iOS 8被推出之后，苹果公司开放了VideoToolbox.framework，其硬件兼容性比较好，用户可以直接采取硬编码，常用的编码有H.265等。

（4）推流和传输。

推流和传输取决于服务器端的性能，发送端和接收端的网络连接、抖动和缓存还是需要客户端来实现的。目前的主要传输协议一般是RTMP、HLS、FLV等。

（5）服务器处理。

服务器会对推来的视频流进行流处理，以适配各种不同协议，例如RTMP、HLS、FLV等。

（6）解码和拉流。

编码和解码是相对存在的，推流需要编码，同样，拉流需要解码。

（7）播放。

播放器会对流进行播放。

6.2 SDK的选择和前期准备

前面介绍了实现手机端视频直播一共分为7步，其中采集、编码和解码可以直接调用iOS端的SDK，相对比较简单。而前期处理、推流和拉流是相对比较复杂的操作，如果你有底层编码经验，则可以直接针对不同协议进行开发。如果你是初学者或者对底层开发不是很了解，则可以直接选择一些开源库进行开发。我们经过多方对比，下面为读者选择了一些比较成熟的开源库，在此也对提供这些开源库的作者表示感谢。

1.SDK的选择

（1）GPUImage。

GPUImage是一款强大的图像处理框架，它是基于OpenGL ES的开源框架，其中提供了各种各样的图像处理滤镜，并且支持照相机和摄像机的实时滤镜功能，还能够自定义图像滤镜。我们可以利用这个框架对视频进行前期处理。

（2）LFLiveKit。

LFLiveKit是优酷土豆旗下开源的iOS推流框架，可以利用这个框架进行推流操作。

（3）IJKPlayer。

IJKPlayer是B站提供的开源拉流框架，它同时支持iOS和Android两个客户端，可以利用这个框架进行拉流操作。

2.前期准备

在正式开发项目之前，还需要做一些准备工作。

（1）安装Yasm。

下载最新版本的Yasm安装文件（yasm-1.3.0.tar）。

打开安装文件压缩包，在终端依次执行如下命令：

执行完命令会出现如图6-1所示的效果。

 图6-1

（2）下载gas-preprocessor文件。

下载gas-preprocessor.pl文件。

（3）安装Brew。

在终端输入如下命令：

（4）编译FFmpeg。

FFmpeg是一套可以用来记录、转换数字音/视频，并能将其转换为流的开源计算机程序。其采用LGPL或GPL许可证，并提供了录制、转换及流化音/视频的完整解决方案。在完成前面3项准备工作后就可以编译FFmpeg了。FFmpeg的编译是一个比较耗时的过程，而且必须先完成上面3项准备工作，以免出现各种错误。编译效果如图6-2所示。

 图6-2

编译成功后的文件夹如图6-3所示。

 图6-3

6.3 GPUImage框架介绍

GPUImage是由Brad Larson创建的，它是基于GPU的图像处理库。GPUImage封装了OpenGL ES的复杂代码，并用极其简单的接口以很快的速度处理图像。

1.GPUImage处理画面原理

GPUImage采用链式方式来处理画面，通过addTarget:方法为链条添加每个环节的对象，处理完一个target，就把上一个环节处理好的图像数据传递给下一个target处理，这被称为GPUImage处理链。

2.GPUImage的集成

使用GPUImage需要事先在项目中添加库：CoreMedia、CoreVideo、OpenGLES、AVFoundation、QuartzCore。导入GPUImage有两种方式：

（1）直接从https://Github中下载，然后手动导入。

（2）使用CocoaPods导入。

3.GPUImage的基础类

由于GPUImage的功能相当全面，所以不是所有的类都会用到。下面简单介绍一下GPUImage的每个基础类的功能。在视频直播中，用得比较多的功能就是美颜和滤镜，其中主要用到GPUImageFilter和GPUImageVideoCamera等类。

6.4 LFLiveKit框架介绍

LFLiveKit框架是实现直播推流的开源框架，其利用H.264和AAC硬编码，支持GPUImage美化、RTMP传输推流、弱网络丢帧，以及支持动态切换码率功能。

1.LFLiveKit的集成

（1）在导入LFLiveKit之前，需要先导入一些相关类库：UIKit、Foundation、AVFoundation、VideoToolbox、AudioToolbox、libz、libstdc++。

（2）导入这些相关库依然有两种方式：

· 直接从GitHub上下载LFLivekit，然后手动导入。

· 使用CocoaPods导入。

（3）引入头文件：

注意：如果导入LFLiveKit，则无须再导入GPUImage，因为LFLiveKit已经为我们集成了GPUImage，如图6-4所示。

 图6-4

2.LFLiveKit的基础架构

LFLiveKit的基础架构如表6-1所示。

 表6-1

 续表

3.LFLiveKit的简单使用

（1）Objective-C。

（2）Swift。

6.5 IJKPlayer框架介绍

IJKPlayer 是一个基于FFmpeg的轻量级Android/iOS端视频播放器。其实现了跨平台功能，具有API易于集成、编译配置可裁剪、支持硬件加速解码、更加省电等优点。目前比较火的美拍和斗鱼App都在使用这个框架。

1.IJKPlayer的编译运行

（1）首先下载IJKPlayer安装文件。

（2）在解压缩后的IJKPlayer文件夹中，找到IJKMediaDemo文件。打开IJKMediaDemo文件，编译会提示“libavformat/avformat.h'file not found”的错误，这是因为libavformat是FFmpeg中的库，而IJKPlayer是基于FFmpeg这个库的，因此需要导入FFmpeg。

（3）使用终端，打开IJKPlayer-master目录，输入./init-ios.sh命令运行脚本文件。init-ios.sh命令的作用：下载FFmpeg源码，如果在前期准备中已经编译了FFmpeg，则可以直接到FFmpeg中导入需要的文件。

（4）执行完脚本后，就会发现IJKPlayer中有FFmpeg了，但这仅仅是把FFmpeg下载了，并没有编译，我们还要继续编译。

在编译时需要在终端输入如下命令：

./compile-ffmpeg.sh clean用于删除一些文件和文件夹，为编译ffmpeg.sh做准备。./compile-ffmpeg.sh all 是真正的编译各个平台的FFmpeg库，并生成所有平台的通用库。如图6-5所示，此时FFmpeg已经彻底编译成功。

 图6-5

（5）可以运行代码了。

2.IJKPlayer的集成

IJKPlayer 的集成有两种方法：一种方法是像在IJKMediaDemo工程中那样，直接导入工程IJKMediaPlayer.xcodeproj，这种方法比较初级，这里就不多做介绍了。第二种方法是把IJKPlayer打包成Framework，然后导入工程中使用。这种方法比较利于后期移植，方便使用。下面介绍如何把IJKPlayer打成包成Framework。

（1）首先打开工程IJKMediaPlayer.xcodeproj。

（2）单击“Edit Scheme”按钮，在打开的对话框中设置Scheme，将“Build Configuration”改成“Release”，如图6-6所示。

 图6-6

（3）设置好Scheme后，分别用真机和模拟器进行编译。

（4）编译完成后单击鼠标右键，在弹出的快捷菜单中选择“IJKMediaFramework.framework”选项，进入“Finder”窗口。进入“Finder”窗口后，可以看到真机和模拟器编译的结果，如图6-7所示。

 图6-7

（5）打开终端并合并两个版本的Framework，输入命令行，命令行格式如下：

注意：我们合并的Framework是/Release-iphoneos/IJKMediaFramework.framework/IJKMedia Framework和/Release-iphonesimulator/IJKMediaFramework.framework/IJKMediaFramework这两个文件。

（6）合并成功后，需要用合并完的IJKMediaFramework替换原来其中一个版本的IJKMediaFramework，生成新的Framework，如图6-8所示。

 图6-8

（7）至此，替换过新的Framework后的IJKMediaFramework.framework文件就是我们需要的框架了，可以将其复制，再导入我们的工程中并使用。在本书中也会提供制作好的IJKMediaFramework.framework。

（8）在工程中，除要导入新的IJKMediaFramework.framework外，还要导入别的依赖库：libz.tbd、libbz2.tbd、libstdc++.tbd、AudioToolbox.framework、AVFoundation.framework CoreGraphics.framework、CoreMedia.framework、MediaPlayer.framework MobileCoreServices.framework、OpenGLES.framework、QuartzCore.framework UIKit.framework VideoToolbox.framework。

3.IJKplayer的简单使用

6.6 iOS端开发实战

通过前面的学习，读者应该掌握了开发直播系统需要的基础知识和基本框架的使用。本节介绍如何开发一个直播App。

6.6.1 主要功能

要开发一个直播App，主要功能包括以下几种。

1.直播端

· 设置美颜。

· 切换前/后摄像头。

· 开始/结束推流。

· 调整画质。

2.播放端

· 开始/结束拉流。

· 调整画质。

· 点赞动画。

· 开启/关闭弹幕。

3.实现效果

· 直播端（见图6-9）。

· 播放端（见图6-10）。

 图6-9

 图6-10

6.6.2 框架导入

然后创建新工程，导入所需要的框架和依赖库，如图6-11所示。

 图6-11

6.6.3 滤镜

在开启直播前，通常会对采集到的视频进行美化处理，使场景看上去更美观。常用的视频美化处理包括磨皮、美白、提高亮度、提高饱和度等，这些操作都是滤镜处理的一种。

滤镜处理的原理是：把静态图片或者视频的每一帧进行图形变换再显示出来。其本质就是变换像素点的坐标和颜色。要实现滤镜功能，就需要使用GPUImage框架，也可以直接使用LFLiveKit框架，LFLiveKit框架内部已经对GPUImage做了一次简单的封装。本节会分别介绍这两种框架在视频美化上的应用。

1.LFLiveKit框架

LFLiveKit框架中的LFGPUImageBeautyFilter就是已经封装好GPUImage的类，可以直接调用里面的方法进行美颜。这个类提供了3种方法，分别用于实现美白程度调节、亮度调节、色调调节，代码如下：

这些功能使用起来非常方便，直接调用即可，代码如下：

2.GPUImage框架

在6.3节中讲过GPUImage框架是基于OpenGL ES的，而使用OpenGL ES用来处理图片，一般会分为4步：

（1）初始化OpenGL ES环境，编译、连接顶点着色器和片元着色器。

（2）缓存顶点、纹理坐标数据，传送图像数据到GPU。

（3）绘制图元到特定的帧缓存中。

（4）在帧缓存中取出绘制的图像。

在GPUImage框架中，GPUImageFilter类主要负责上述第（1）~（3）步，GPUImageFramebufferz类主要负责第（4）步。了解了OpenGL ES的处理过程，再来看一看GPUImage框架的处理过程。在6.3节中讲过GPUImage采用链式方式来处理画面，具体分为3个环节：source→filter→final target。

（1）source（视频、图片源）。

GPUImageVideoCamera：用于实时拍摄视频。

GPUImageStillCamera：用于实时拍摄照片。

GPUImagePicture：用于处理已经拍摄好的图片。

GPUImageMovie：用于处理已经拍摄好的视频。

（2）filter（滤镜）。

GPUImageFilter：用来接收源图像，通过自定义的顶点、片元着色器来渲染新的图像，并在绘制完成后通知响应链的下一个对象。

GPUImageFramebuffer：用来管理纹理缓存的格式与读/写帧缓存的buffer。

（3）final target（处理后的视频、图片）。

GPUImageView和GPUImageMovieWriter：最终输入目标，显示图片或者视频。

美颜功能主要实现两个效果：磨皮和美白。

· 磨皮（GPUImageBilateralFilter）：本质就是让像素点模糊。可以使用高斯模糊，但是可能会导致图像边缘不清晰。而使用双边滤波（Bilateral Filter），可以有针对性地模糊像素点，能保证边缘不被模糊。

· 美白（GPUImageBrightnessFilter）：本质就是提高亮度。

将这两个功能组合成滤镜组链使用，就会实现我们想要的美颜效果。实现代码如下：

注意：

· SessionPreset最好使用AVCaptureSessionPresetHigh，会自动识别，如果分辨率太高，则设备不支持时会直接报错。

· GPUImageVideoCamera必须要强引用，否则会被销毁，不能持续采集视频。

· 必须调用startCameraCapture，底层才会把采集到的视频源渲染到GPUImageView中。

· GPUImageBilateralFilter的distanceNormalizationFactor值越小，磨皮效果越好，distanceNo rmalizationFactor取值要大于1。

GPUImage是相当强大的开源框架，它能实现的效果远远比美颜效果多得多，它的源码也有很好的学习价值。

6.6.4 推流

这里使用LFLiveKit框架中的LFLiveSession进行推流。LFLiveSession常用属性如表6-2所示。

 表6-2

1.实现步骤

（1）引用头文件和LFLiveSessionDelegate代理。

（2）创建变量。

（3）初始化session。

（4）设置LFLiveVideoConfiguration。

（5）实现代理方法。

（6）开始直播。

（7）结束直播。

2.实现效果

实现效果如图6-12所示。

 图6-12

6.6.5 拉流

拉流使用IJKPlayer框架，本节介绍IJKPlayer框架具体的拉流过程。

3.实现步骤

（1）引入头文件。

（2）创建变量。

（3）初始化player。

（4）设置IJKFFOptions。

· 设备参数设置。

· 直播设置。

（5）本地通知。

· 添加本地通知。

· 移除本地通知。

· 通过通知捕获播放状态。

（6）开始播放。

（7）结束播放。

4.实现效果

实现效果如图6-13所示。

 图6-13

6.6.6 点赞

点赞是观众观看直播时常用的一个功能，实现起来相对简单，可以将其理解为一个自定义的动画效果。

1.实现步骤

（1）创建显示的view。

（2）创建随机点。

（3）创建动画。

（4）绘制。

2.实现效果

实现效果如图6-14所示。

 图6-14

6.6.7 弹幕

弹幕也是直播时观众经常用到的功能，实现起来也并不复杂，也可以借助一些优秀的开源库实现。这里选择了比较好的一个开源框架BarrageRenderer来实现弹幕功能。

1.实现步骤

（1）引用。

（2）初始化弹幕。

（3）绘制弹幕样式。

（4）弹幕显示方式。

（5）实现回调方法。

（6）开始弹幕。

（7）结束弹幕。

2.实现效果

实现效果如图6-15所示。

 图6-15

6.7 本章小结

本章介绍了在iOS端实现视频直播的整个过程和实现方式。在实现过程中用到了3个开源框架：GPUImage、LFLiveKit和IJKPlayer，这些框架对初学者和开发者有很大的帮助。

最后，本章介绍了和直播相关的一些内容。

· 采集数据：在iOS平台上采集音/视频数据，需要使用AVFoundation.framework框架，从CaptureSession会话的回调中获取音/视频数据。

· 传输层协议：主要采用RTMP协议（默认端口为1935，采用TCP协议）和HLS协议。

· 音/视频编码、解码：使用FFmpege编码、解码。

· 视频编码格式：H.265、H.264、MPEG-4等，封装容器有TS、MKV、AVI、MP4等。

· 音频编码格式：G.711、AAC、Opus等，封装容器有MP3、OGG、AAC等。

· 渲染工具：采用OpenGL渲染YUV数据，呈现视频画面。将PCM送入设备的硬件资源播放，产生声音。iOS 播放流式音频，使用 AudioQueue 的方式，即利用AudioToolbox.framework框架。
第7章 Web端解决方案

视频直播是近两年互联网行业中很火的一个板块，而RTMP是目前市面上实现视频直播所采用的比较主流的数据传输方式。

一般来说，视频主播通过OBS等推流软件，将摄像头捕捉的视频通过RTMP协议传输到指定的服务器地址，服务器将接收到的视频流以m3u8格式保存，客户端再通过拉取RTMP视频流的方式获取视频数据并播放。

以上就是一个视频直播的基本模型。如果想直接在浏览器中向RTMP服务器推流，该如何实现呢?

本章主要介绍在浏览器中向服务器推送RTMP视频流的实现方式。

7.1 Adobe Flash Player

Flash是由Macromedia公司推出的一种交互式矢量图和Web动画的标准，之后被Adobe公司所收购，如图7-1所示。网页设计者使用Flash可以创作出既漂亮又可以改变尺寸的导航界面及其他奇特的效果。

 图7-1

Flash的前身是Future Wave的Future Splash，它是世界上第一款用于设计和编辑Flash文档的商用2D矢量动画软件。1996年11月，Macromedia收购了Future Wave，并将其更名为Flash。后来Flash于2005年被Adobe公司所收购。2012年8月15日，Flash退出Android平台。2015年12月1日，Adobe升级了Flash CC 2015动画软件，并更名为Animate CC 2015.5，使其与Flash技术保持一致。

7.1.1 Flash Player

Flash Player是一个多媒体动画播放器，用于播放小型、快速、交互式的动画，以及动态标志和Macromedia Flash制作的图像。这个播放器体积很小，下载很快。Flash Player还支持高质量的MP3音频流、文本输入字段、交互式界面等。使用Flash Player最新版本可以观看所有的Flash格式。网页上的多媒体内容几乎都是Flash格式的。

2003年8月25日，Flash的开发者Macromedia推出了Flash MX 2004。新的Flash MX 2004增加了对移动设备和手机的支持，这使得Flash可以直接运行于手机上。随着手机性能的大幅提升，目前大部分智能手机完全能够支持Flash。同时，Flash Player具有Java这样的跨平台功能，所以无论使用何种平台，只要安装了Flash Player，就能保证最终的显示效果是一致的。但是目前，随着技术的进步，Flash已经渐渐退出了移动端，移动端的动画播放采用了更新、更轻巧的技术。但Flash作为PC端向下兼容的解决方案，是必不可少的。

7.1.2 为什么要使用Flash

一提到Web端推送RTMP协议视频流，就不得不提Flash了。

RTMP实时消息传送协议是Adobe Systems公司为Flash的播放器和服务器之间的音频、视频和数据传输开发的开放协议，如图7-2所示。

RTMP有多种变种：

· RTMP工作在TCP之上，默认使用端口1935。

· RTMPE在RTMP的基础上增加了加密功能。

· RTMPT被封装在HTTP请求之上，可穿透防火墙。

· RTMPS类似RTMPT，增加了TLS/SSL的安全功能。

 图7-2

目前，市面上的大部分浏览器都可以很好地支持Flash，使用Flash可以避免很多使用新技术带来的兼容问题。而且，RTMP正是为了Flash而生的!只需要几行简单的JavaScript代码，浏览器就可以轻松支持Flash。

7.2 ActionScript与Flex

Flex是Adobe提供的一款ActionScript开发框架，其提供了丰富的API，并能将ActionScript编译成可被Flash Player执行的SWF文件。在开始工作之前，我们需要在开发环境中下载并安装Flex SDK。

7.2.1 Flex环境的搭建

Flex环境的搭建包括以下几步（建议读者使用与本书相同的软件版本）：

· 下载并安装JDK（本书使用的版本为Sun JDK 6）。

· 下载并解压Eclipse（本书使用的版本为Eclipse Ganymede J2EE，含WTP插件）。

· 下载并安装Flex Builder Eclipse插件版（本书使用的版本为Flex Builder 3.0.1）。

· 下载并安装Tomcat（本书使用的版本为Tomcat 6.0.18）。

· 下载并安装 FireFox（考虑到 Flex 3.0 和一些插件的兼容性问题，本书使用的版本为FireFox 2.0.0.17）。

Flex代码是在运行Flash Player的SWF文件之后编译的，查看一些SWF文件在运行时输出的调试信息比较困难。所以，在安装基本软件之后，必须安装一个FireFox插件来调试Flex。

打开FireFox，在FireFox的扩展组件站点中搜索并安装HttpFox、Flash Tracer和Cache Status这3个插件，如图7-3所示。

 图7-3

安装Flash Player的Debug版本后，Flash Tracer可以显示在程序中使用trace()语句输出的调试信息。使用HttpFox插件不仅可以查看HTTP通信的过程和数据，还能查看来自缓存的内容。另外，缓存状态插件也方便我们轻松地管理缓存。在Flex开发过程中，经常需要清除缓存的内容，这样可以快速看到最新的效果。

接下来，打开Flex Builder，选择“Window→Preferences→Server→Runtime Environments”选项并设置Tomcat，选择“Window→Preferences→General→Web Browser”选项，将浏览器设置为外部浏览器FireFox，如图7-4和图7-5所示。

 图7-4

 图7-5

到此为止，开发环境就搭建完毕。

7.2.2 Flex项目的创建

1.创建Flex项目

打开Flex Builder，新建一个Flex Project，如图7-6所示。

 图7-6

再设置页面，如图7-7所示，选择项目类型为Web application，关于AIR应用的基本知识，可以参考IBM developerWorks中的一篇文章《：使用Adobe AIR和Dojo开发基于Ajax的Mashup应用》。对于Application server type，这里以J2EE为例，不使用Use remote object access service。最后，使用Eclipse Ganymede J2EE版本内置的WTP（Web Tools Platform）创建一个后端使用Java开发，前端使用Flex开发的AIR项目。在默认设置下，src是Java代码的源代码文件夹。

 图7-7

在随后的设置页面中，配置项目运行时的J2EE Server为我们在安装配置开发环境中配置的Apache Tomcat v6.0，如图7-8所示。

 图7-8

单击“Next”按钮，之后打开的对话框中的所有内容都是默认设置的。如图7-9所示，Main source folder是设置默认的Flex代码（包括MXML和ActionScript）的源文件夹。Main application file是项目默认的主应用文件。Output folder URL是项目运行在我们配置的Tomcat上的URL，如图7-9所示。

完成后，让我们看一看这个项目的组成部分（见图7-10）：flex_src是默认的Flex源位置，flex_libs是Flex存储的其他第三方包的默认路径。类似于Web应用程序的lib文件夹。src是Java代码的位置。WebContent文件夹的结构与由WTP创建的Web项目的结构完全相同。在默认输出路径bin-debug文件夹中，可以看到Flex Builder自动生成的FlexSample.mxml文件已被自动编译为FlexSample.swf文件，如图7-10所示。

 图7-9

 图7-10

接下来，向新创建的项目中添加一些内容并让它运行：双击FlexSample.mxml文件，在其中添加一个最基本的Flex组件——Label，并且在该应用初始化的时候调用init()方法。我们在init()中用trace()语句输出调试信息。

2.运行、部署以及调试

在要运行的项目文件上单击鼠标右键，在弹出的快捷菜单中选择“Run As→Run On Server”选项，如图7-11所示。在打开的对话框中保持选择默认选项，之后可以看到该项目被部署到配置的tomcat 6中，并且Flex Builder会自动打开一个之前配置的外部FireFox窗口。

 图7-11

如图7-12所示，在要运行的FlexSample.mxml文件上单击鼠标右键，在弹出的快捷菜单中选择“Run As→Flex Application”选项，如图7-12所示。

 图7-12

如果没有意外，则应该看到以下内容：Flash Tracer插件使用trace()语句输出调试信息——“Hello World!”，并且显示在屏幕上。另外，打开FireFox的HttpFox插件，也可以看到FlexSample.swf是在运行时加载的，如图7-13所示。

 图7-13

如果想在运行项目时观察变量的值，就像调试Java代码一样，该怎么做呢?首先，在ActionScript代码中添加断点，就像我们在Java代码中设置断点一样，如图7-14所示。

 图7-14

然后选择FlexSample.mxml文件，单击鼠标右键，在弹出的快捷菜单中选择“Debug As→Flex Application”选项，调试运行，如图7-15所示。

 图7-15

当系统弹出提示信息时，切换到Flex的调试视图，如图7-16所示。然后我们就可以轻松地调试Flex代码了，就像调试Java代码，如图7-16所示。

 图7-16

使用WTP可以将项目导出为标准的war文件。导出的war文件可以被放置在Tomcat的webapps目录或其他Web服务器目录中，以作为标准的Web应用程序进行部署。

到目前为止，我们编译的程序已经可以在服务器上运行了。

7.2.3 使用ActionScript组件

1.Flex的核心

Flex的核心是MXML和ActionScript。

MXML用于为属于表示层的Flex应用程序制作UI布局，通过编辑到ActionScript中并生成ActionScript类文件，最终在Flash Player上运行。

所以，ActionScript仍然是Flex的核心。在Flex中，ActionScript是一个包含组件（容器和控件）、管理器类、数据服务类和所有其他函数的类的类库。

2.ActionScript常用的三种方式

（1）内联方式。

（2）级联方式。

（3）外联方式。

上面的方法是用ActionScript创建一个新的、单独的ascf文件，然后为Script元素的源属性值调用元素设置方法，并且可以在方法中传入参数。这个文件可以在多个文件中调用，以实现ActionScript方法在多个文件中的复用。

3.ActionScript构建组件

可以使用ActionScript创建一个可复用组件，该组件可以在Flex应用程序中作为标签引用。在ActionScript中创建的组件可以包含图像元素、自定义的业务逻辑，甚至可以扩展现有的Flex组件。在ActionScript中，Flex组件实现了类层次结构，每个组件都是Action类的一个实例。

所有Flex可视组件都是从UIComponent类派生出来的。要创建自己的组件，则可以创建一个继承UIComponent或UIComponent子类的类。是否将类用作自定义组件的超类取决于你想要实现的内容。例如，你可能需要一个自定义按钮控件，那么你可以创建UIComponent类的子类，然后覆盖Flex Button类的所有功能。比较好的创建自定义按钮控件的方法是创建Flex按钮组件的子类，并在自定义类中对其进行修改。下面是具体的代码（注：一切从可重用性方面考虑，否则不需要构建组件），仅供参考。

（1）PaddedPanel.as。

（2）NumericDisplay.as。

（3）CountryComboBox.as。

（4）主应用程序MXML。

4.灵活创建自定义组件

使用ActionScript组件的一般目的是创建可配置和可重用的组件。例如，创建一个具有属性、可分配时间、可定义新样式，以及具有自定义ActionScript组件等。

在创建自定义ActionScript组件时，其中的注意事项之一是可重用性，即是否要创建一个紧密耦合的组件，它是与某个应用程序紧密耦合的组件，还是可以在多个应用程序中重用的组件。

编写与某个应用程序紧密耦合的组件，通常依赖于应用程序的结构、变量名称或其他细节的组件。如果要更改此应用程序，则可能需要修改与之紧密耦合的组件以反映此更改。

5.松散耦合

要设计一个松散耦合的组件以供重用，组件需要有明确可辨识的接口，指定如何将信息传递给组件，以及如何将结果传递回应用程序。

典型的松散耦合的组件使用属性将信息传递给组件。这些属性由默认访问器（setter和getter方法）定义，并指定参数的类型。例如CountryComboBox自定义组件定义了一个公共的_userShortNames属性，该属性通过使用get userShortNames（）和set useShortNames（）访问器方法来公开私有属性_userShortNames。

私有属性_userShortNames的Inspectable元数据标记定义了属性，该属性被显示在AdobeFlex Builder的属性提示中，并被标记在内在函数中。也可以使用此元数据标记来限制允许的属性值。

注意：所有公共属性都会出现在MXML代码提示和属性检查器中。如果有关于可以辅助阅读的代码提示或属性检查器中属性的附加信息（如枚举值，或者一些文件路径的字符串），那么附加信息也会被添加到Inspectable元素的Data中。

6.利用代码提示和属性检查器

MXML代码提示和属性检查器来自相同的数据，所以，如果显示其中一个，那么另一个应该也是显示的状态。

另外，如果ActionScript代码暗示元数据不起作用，则可以随时在ActionScript中看到相应的代码提示，具体内容取决于当前的上下文。Flex Builder使用ActionScript代码提示。

定义组件以将信息返回给主应用程序的最佳办法是设计包含要返回的数据的组件分发事件。这样，主函数可以定义事件监听器来处理事件并采取适当的行动。也可以在事件中使用数据绑定，比如，绑定属性使用Bindable元数据标签userShortName进行编程。隐式的userShortName属性设置器发送更改事件，在此过程中使用Flex框架的内部机制来使数据绑定正常工作。

7.2.4 NetStream对象

NetStream对象是视频流实现相关操作的关键部分，当然，同样重要的还有NetConnection类。

NetStream对象在Flash Player或AIR应用程序与Flash Media Server之间或者Flash Player或AIR应用程序与本地文件系统之间打开单向流式连接。NetStream对象是NetConnection对象中的通道。此通道可以使用NetStream.publish（）方法发布流或订阅发布的流，并使用NetStream.play（）方法接收数据，可以发布或播放实时数据及以前记录的数据，还可以使用NetStream对象向所有订阅的客户端发送文本消息（请参阅NetStream.send（）方法）。

播放外部视频文件比在SWF文件中嵌入视频具有许多优点，例如，具有更好的性能和内存管理，以及独立的视频和SWF帧频。

NetStream对象提供的方法和属性可用于跟踪、加载和播放文件，并允许用户控制播放文件（停止或暂停等）。

以下是发布实时音/视频的工作流程。

· 创建一个NetConnection对象。

· 使用NetConnection.connect（）方法连接到服务器中的应用程序实例。

· 创建一个NetStream对象，以便在连接中创建数据流。

· 使用 NetStream.attachAudio（）方法通过流捕获并发送音频，然后使用 NetStream.attachCamera（）方法捕获并发送视频。

· 使用NetStream.publish（）方法为该流提供唯一的名称，然后使用该流将数据发送到服务器中，以便其他用户可以接收数据。还可以记录发布数据的时间，以便用户稍后可以播放。

订阅此流的文件将在调用play()方法时使用传递给publish()方法的名称，并与发布者调用相同的NetConnection.connect()方法。它们必须调用Video.attachNetStream()方法来传输视频，然后调用NetStream.play()方法来播放视频。

使用Flash Media Server的关键帧创建NetConnection和NetStream对象后，可以使用NetStream.send()方法将现场音/视频流的元数据添加到服务器中。元数据可以是诸如视频的高度或宽度、持续时间、创建者的名字等信息。要定义元数据，需要使用特殊处理程序名称@setDataFrame作为NetStream.send()方法的第一个参数。接收Live Streaming的客户端还需要定义onMetaData事件处理程序以从流中检索元数据。

7.2.5 获取视频流

NetStream对象通过NetConnection对象打开一个单向流量通道。使用NetStream对象可以执行以下操作。

· 调用NetStream.play（）方法，从本地磁盘、Web服务器或Flash Media Server中播放媒体文件。

· 调用NetStream.publish（）方法，将视/音频和数据流发布到Flash Media Server中。

· 调用NetStream.send（）方法，将数据消息发送到所有订阅客户端中。

· 调用NetStream.send（）方法，向实时流添加元数据。

· 调用NetStream.appendBytes（）方法，将ByteArray数据传递给NetStream。

注意：不能通过同一个NetStream对象播放和发布流。

直接使用ActionScript，可以通过摄像头、麦克风和流媒体数据捕获网络中的素材和声音到RTMP服务器中。

Adobe AIR和Flash Player 9.0.115.0及其更高版本，支持从标准MPEG-4容器格式派生出来的文件格式。如果包含H.264视频和/或HE-AAC V2编码音频，则这些文件包括F4V、MP4、M4A、MOV、MP4V、3GP和3G2格式。在相同编码配置文件下，H.264可以比Sorenson或On2以更低的比特率提供更高质量的视频。AAC是MPEG-4视频标准中定义的标准音频格式。HE-AAC V2是AAC的扩展，使用带通复制（SBR）和参数立体（PS）技术来提高低码率下的编码效率。

有关支持的编解码器和文件格式的信息，请参阅：

· 《Flash Media Server帮助文档》。

· 《探索Flash Player对高清H.264视频和AAC音频的支持》。

· 《FLV/F4V开放规范文档》。

Flash Media Server、F4V文件和FLV文件可以在流式传输或播放期间发送包含特定数据点数据的事件对象。在播放过程中，可以使用两种方法处理来自数据流或FLV文件的数据：

将客户端属性与事件处理程序关联以接收数据对象。

使用NetStream.client属性分配对象可以调用特定的数据处理函数。分配给NetStream.client属性的对象可以侦听以下数据点：

· onCuePoint()

· onImageData()

· onMetaData()

· onPlayStatus()

· onSeekPoint()

· onTextData()

· onXMPData()

在编写这些函数的过程中，处理了播放过程中从流中返回的数据对象。将客户端属性与NetStream类的子类相关联并写入事件处理程序中，可以接收数据对象。NetStream是一个密封的类，也就是说，不能在运行程序时向NetStream类添加属性或方法。但是，可以创建NetStream的子类并定义事件处理程序，也可以使这个子类动态并将事件处理程序添加到子类的实例中。在使用对象复制、直接路由或发布API之前，应等待接收到的NetGroup.Neighbor.Connect事件。

注意：要通过音频文件（如MP3文件）发送数据，应使用Sound类将音频文件与Sound对象相关联，然后使用Sound.id3属性读取声音文件中的元数据。

7.2.6 实例：使用as实现一个基础的推流器

7.3 SWFObject

7.3.1 为什么选择SWFObject

1.SWFObject的优点

· 比其他嵌入方法更灵活、更高效。

· 无论你是HTML开发人员还是Flash或JavaScript开发人员，都能找到适合自己的方法。

· 打破默认的标签集，以促进用户使用自定义标签。

· 使用性能更高的JavaScript方法。

· 使用方便。

2.为什么SWFObject使用JavaScript

· SWFObject使用JavaScript来克服在页面中使用标签引入Flash的问题：它会检测Flash播放器的版本，并确定是否显示 Flash 内容或替代为其他内容，以防止以版本过低的Flash插件显示Flash内容。

· 如果Flash插件版本过低，则可以通过操作dom显示给用户一些信息。

注意：如果Flash插件没有安装，则会以dom元素替代Flash标签。

· 提供可以快速安装Adobe的最新Flash Player的通道。

· 提供一套JavaScript API来执行常见的Flash播放器操作。

3.该使用静态的还是动态的方法发布

SWFObject提供了两种不同的方法嵌入Flash Player：

· 静态发布的方法用标准的标签嵌入Flash内容和替代元素，并使用JavaScript来解决那些单独用标签无法解决的问题。

· 动态发布方法是基于标签的替代内容，通过JavaScript用Flash来替换替代内容的方法，前提是当前Flash版本和JavaScript支持。

（1）静态发布的优点：

· 有利于标准的实际生产。

· 拥有最佳的嵌入性能。

· Flash内容采用嵌入式机制，不依赖于脚本语言，所以拥有更好的兼容性。

· 如果安装了Flash插件，但JavaScript已停用，或者浏览器不支持JavaScript，则仍然可以看到Flash内容。

· 可以运行在Flash支持困难的设备上，如索尼PSP。

· RSS阅读器等自动化工具可以捕捉到Flash内容。

（2）动态发布的优点：

· 与脚本应用程序集成良好，可以实现动态Flash效果。

· 避免了使用点击激活机制来激活IE 6/7和Opera 9.0以上浏览器中的活动内容。

7.3.2 静态嵌入Flash Player

1.使用SWFObject的静态方法嵌入Flash Player

使用符合标准的代码嵌入Flash Player和备用内容。SWFObject的基本标签使用嵌套对象的方法（用专有IE条件注释），以确保跨浏览器支持，并仅针对标签进行优化。

注意：嵌套对象方法需要一个双重对象定义（外部对象针对IE浏览器，其他对象用于其他所有浏览器），需要定义你的对象属性和嵌套的Param元素两次。

需要的属性：

· classid（只用于外层元素，值一直是：clsid：D27CDB6E-AE6D-11cf-96B8-444553540000）

· type（只用于内层元素，值一直是：application/x-shockwave-flas）

· data（只用于内层元素，定义swf的路径：data="myContent.swf"）

· width（定义swf的宽度，内外层都用到）

· height（定义swf的高度，内外层都用到）

需要的参数：

· movie（只用于内层元素，定义swf的路径：<param name="movie"value="myContent.swf"/>）

建议不要使用code base属性指向Adobe Flash插件安装程序的URL的服务器，因为这是违法的，它限定了只能当前的域来访问。我们建议在替换内容中添加一个提示，以便用户获得更好的体验，而不是下载Flash。

2.怎么使用HTML来配置Flash内容

可以在标签中添加下面的属性：

· id

· name

· class

· align

可以用下面的参数:

· play

· loop

· menu

· quality

· scale

· align

· wmode

· bgcolor

· base

· swliveconnect

· flashvars

· devicefont (more info)

· allowscriptaccess (more info here and here)

· seamlesstabbing (more info)

· allowfullscreen (more info)

· allownetworking (more info)

3.使用替换元素

object元素允许在其中放置替换元素，这些元素在未安装或不支持Flash Player时显示，其内容也将被搜索引擎抓取。总而言之，当你希望你的内容可供没有插件的用户访问时，则应该使用替换内容，这样对搜索引擎友好。如果有访问者的提示，则可以让用户获得更好的体验，而不是直接让用户下载插件。

将JavaScript库引在HTML页面的头部文件中。SWFObject库是一个外部JavaScript文件，一旦加载完成，SWFObject就会被执行，并且一旦dom元素加载完成，dom操作就会被执行。所有浏览器都支持（IE、Firefox、Safari和Opera 9.0）此操作，此时onload事件会被触发。

下面用SWFObject库注册你的Flash，并告诉SWFObject。

具体如何执行呢?可以添加一个唯一的ID外部对象标签来定义你的Flash或是添加swfobject.registerObject：

· 第1个参数（字符串，必需）：指定标签中使用的ID。

· 第2个参数（字符串，必需）：指定为内容分配的Flash版本号。它会激活Flash版本检测，以确定是否显示Flash内容或强制通过dom操作显示替换内容。Flash的版本号通常由4个部分组成：major.minor.release.build，但SWFObject只识别前3位，所以“WIN 9，0，18，0”（IE浏览器）或“Shockwave Flash 9 r18”（其他浏览器）将被翻译为“9.0.18”。如果只想测试主要版本号，则可以省略次要版本号和分发版本号，例如翻译“9”而不是“9.0.0”。

· 第3个参数，字符串（可选），可用于启动Adobe Express安装程序并指定Quick Install SWF文件的URL。当所需插件版本不可用时，“快速安装”将显示标准的Flash插件下载对话框，以替换你的Flash内容。项目中默认的expressInstall.swf文件被打包在一起，其中还包括相应的expressInstall.fla和AS文件（位于src目录中），可以让你自定义快速安装。

注意：快速安装只会被触发一次（第一次被调用时），它只支持Windows和MAC平台上的Flash Player 6.0.65版本，并且需要的最小尺寸为310px137px。

· 第4个参数（JavaScript 函数，可选）：可用于定义一个回调函数，可以调用该函数来处理插件创建成功或失败时的情况。

注意：

1.可以使用SWFObject HTML和JavaScript生成器来更快地编写代码。

2.可以将多个SWF文件嵌入一个HTML页面中。

3.引用动态对象元素的最简单方法是使用JavaScript API：swfobject.getObjectById（objectIdStr）。

7.3.3 动态嵌入Flash Player

1.使用SWFObject动态嵌入Flash Player

第1步：用符合标准的标签创建要替换内容。SWFObject动态嵌入遵循逐步增强的原则，当有足够的JavaScript和Flash插件支持时，用Flash代替要替换的内容。下面先定义替代方案，用一个id标记它。

第2步：将JavaScript库引在HTML页面的头部。SWFObject库是一个外部的JavaScript文件。一旦加载完成，SWFObject就会被执行，并且一旦dom元素加载完成，dom操作就会被执行。所有浏览器都支持（IE、Firefox、Safari和Opera 9.0以上）dom操作。onload事件在被触发后执行。

第3步：使用JavaScript嵌入SWF：

· swfobject.embedSWF（swfUrl，id，width，height，version，expressInstallSwfurl，flashvars，params，attributes，callbackFn）：有5个必需的参数和5个可选参数。

· swfUrl（string，必需）：指定SWF的URL。

· id（string，必需）：指定包含替换元素的HTML元素的ID，可以用闪光灯的内容替换。

· width（string，必需）：指定SWF的宽度。

· height（string，必需）：指定SWF的高度。

· version（string，必需）：指定 SWF 发布所需要的 Flash Player 的版本（格式为：major.minor.release或major）。

· expressInstallSwfurl（字符串，可选）：指定快速安装路径来激活快速安装。

· flashvars（object，可选）：指定要传递给Flash的变量（使用键值对）。

· params（object，可选）：指定嵌入对象的参数（使用键值对）。

· attributes（object，可选）：指定对象的属性（使用键值对）。

· callbackFn（JavaScript 函数，可选）：定义可以调用的回调函数，无论调用 Flash 是成功还是失败。

小提示：要想不破坏参数的顺序，则可以省略可选参数。如果不想使用某个参数，但想使用下一个参数，则可以将其值设置为false。对于Flash，其参数和属性也可以使用{}。

2.如何配置Flash

要配置Flash，则可以添加以下经常使用的可选属性的对象元素：

· id（如果没有定义，则会自动取替换元素容器的id）

· align

· name

· styleclass

· class

注意：class是ECMA4中保留的关键字，在IE浏览器中会报错，除非用引号把它括起来（如"class" or'class'）。出于这个原因，SWFobject提供了作为一种安全的替代语法类的styleClass关键字，如果使用的是styleClass，则SWFobject会自动插入并替换成class。

如果你宁愿用class代替styleClass，那么要用引号将其括起来。

可以使用下面可选的Flash指定的参数：

· play

· loop

· menu

· quality

· scale

· align

· wmode

· bgcolor

· base

· swliveconnect

· flashvars

· devicefont (more info)

· allowscriptaccess (more info here and here)

· seamlesstabbing (more info)

· allowfullscreen (more info)

· allownetworking (more info)

3.使用JavaScript对象来定义flashvars、params和object's attributes

最好使用对象表示法来定义对象：

</script>可以用键值对的方式写：

也可以用"属性"的形式写:

还可以直接把参数内容加载至swfobject.embedSWF()中。

如果你不想使用一个可选的参数，则可以把它定义为false或一个空对象。

flashvars的对象是一个速记符号，为了易用，你可以忽略它，通过 params对象来指定你的flashvars。

在从SWFObject（1.5版本）迁移到SWFObject（2.0版本）时，需要注意以下几点：

· SWFObject（2.0版本）不能与SWFObject 1.5向后兼容。

· 当前首选将所有脚本块插入HTML页面的标题中，由于JavaScript代码执行的原因，将冲突添加到页面主体（例如是Flash而不是替换内容）。

· 库的实际名称是小写的（例如是swfobjec，而不是SWFObject）。

· 方法只能通过库访问。

另外，SWFObject 2.0版本与JavaScript API完全不同且更复杂，只要JavaScript可用，SWFObject （2.0版本）就会将整个替换标记的内容（包括所引用的HTML容器元素）替换为Flash版本支持的Flash内容。但是，SWFObject（1.5版本）只替换表情符号容器中的内容。如果没有定义一个id属性，则object元素将自动继承包含元素的id。

· 只要JavaScript可用，SWFObject（2.0版本）将整个要替换的内容（包括所引用的HTML容器元素）替换为Flash版本支持的Flash内容。但是，UFO只替换表情符号容器中的内容。如果没有定义一个id属性，则object元素将自动继承包含元素的id。

· SWFObject（2.0版本）中不包含UFO的setcontainercss功能。

· 判断SWFObject（2.0版本）是否支持MIME类型application/xhtml+xml。

· SWFObject（2.0版本）不支持XML MIME类型，这是由设计决定的，主要因为只有少数Web开发人员使用，而且其他主要的浏览器厂商正在寻求一种新的HTML解析标准（HTML 5），它与当前的W3C解析方法不同。

7.4 Flex与JavaScript的通信

现在我们不仅可以用ActionScript编写一个Flex程序，还可以通过swfobject.js将用Flex制作的程序嵌入网页中。但是这样会面临一个问题：程序虽然被嵌入网页中，但是要实现各种交互则需要这两部分相互协调才能完成。比如，要给Flash Player发送一条视频流的URL，怎么做?这就需要用JavaScript控制Flex程序，或者用Flex程序控制JavaScript。在Flex中已经内置了相关方法，可以用来向JavaScript发送消息。

7.4.1 使用Flex调用JavaScript函数

Flex通过使用原型的ExternalInterface.call（）函数在JavaScript中调用方法ExternalInterface.call（function_name：string，参数为string），参数function_name为调用JavaScript函数的名称，是JavaScript函数的必需参数。这个函数有返回值，这意味着JavaScript函数可以将结果返回给ExternalInterface.call（）函数调用。先举一个简单的例子——JavaScript函数：

Flex的调用：

这样，一个简单的通信连接就完成了。

7.4.2 使用JavaScript调用Flex函数

在Flex端需要声明和页面交互的JavaScript方法。通过ExternalInterface类的addCallback()函数即可实现。

addCallback()函数的原型为addCallback(js_function:String,flex_function:Function)，第一个参数js_function是JavaScript可以调用的方法名称，第二个参数flex_function是JavaScript回调的Flex方法。下面举一个简单的例子。

在Flex端：

在JavaScript端，首先要引用并获取SWF对象，如果我们已经拿到了该对象，就可以调取对象中的方法：

这样就实现了JavaScript端主动向Flex端发送消息的功能了。

7.4.3 使用JavaScript获取SWF对象的引用

在JavaScript代码中，首先要定义一个object标签对象，object标签对象的大概格式如下：

定义好这个节点标签后，还需要再写一个JavaScript函数来获取该SWF对象的引用。

在上面代码中，testFlexFunc()函数调用Flex函数的语句可以改写为：

7.4.4 实例：使用SWFObject将Flash播放器嵌入网页中

1.Flex代码

2.HTML代码

7.5 播放器的制作

学习了上面的技术，就可以在Web端操作Flex进行推/拉流了。无论是推流端，还是拉流端，都需要有一套完整的播放器才可以预览或者观看视频。本节介绍如何制作一个功能比较完善的Flash播放器。这一部分知识点繁多，涉及各种功能，下面将知识点进行细化，以方便读者阅读。

7.5.1 主要功能

在制作播放器时，往往要根据需求编写各种各样的代码，但基础的功能不变，具体包括以下几项。

· 视频的暂停/播放。

· 视频的拖放播放和定点播放。

· 音量被禁用/打开。

· 拖动滑块来控制音量。

· 视频缓冲区进度突出显示。

· 视频全屏处理：单击按钮或单击视频屏幕实现全屏显示。

7.5.2 相关变量

下面是一些关键变量：

7.5.3 初始化视频画布

打开视频播放页面后，首先初始化视频播放画面，根据接收的用户参数，初始化视频画面的大小。对象定义如下：

初始化方法如下：

7.5.4 加载视频流并播放

当视频初始化时，视频播放方法被调用，并且该方法被放置在应用程序事件的标题中。

当连接对象连接成功时播放视频。上面代码中的nc.connect(null);表示如果不使用Flash Media Server，则可以使用null作为参数，通过本地文件系统或Web服务器播放视频和MP3文件。

说明：

· this.addEventListener（Event.ENTER_FRAME，EnterFrameHandler）：用于监视播放过程中的事件处理。由于播放进度和缓存进度是实时显示的，以及在某个时间点还需要动态实时渲染给用户，所以当视频进入加载画面时，需要实时监控。

· ns.addEventListener（NetStatusEvent.NET_STATUS，NetStreamStatusHandler）：用于在视频流播放后监听事件处理。

· onMetaData：是一种回调方法，可以在客户端加载到视频流中时，异步检索有关媒体的元数据，如总媒体大小、总播放时间、采样率等。

7.5.5 高亮显示播放进度及缓冲进度

说明：

· 这里将playTime作为播放进度条中当前实时播放的时间点，视频的总时间作为播放进度条显示的最大值。

· ns.bytesLoaded是缓存的流媒体字节的大小（以字节为单位），ns.bytesTotal是流媒体的总大小，缓存大小的比例可以在播放进度条的相应位置上进行绘制。缓存进度 Strip实际上是一个矩形框，可以放在播放进度条的下面，初始宽度为0，当缓冲区达到100%时，即缓冲完成，缓冲区长度和播放进度条长度相等。缓冲方框可以用BorderContainer来制作，具体代码如下：

页面所有的控件和标签如下：

7.5.6 视频的播放与暂停

视频的暂停与播放会调用视频流的pause()方法和resume()方法，通过是否暂停的状态变量进行控制，部分代码如下：

7.5.7 拖曳滑块播放视频

拖曳滑块播放视频，主要用于确定并记录流的剪辑位置。要找到剪辑的最终位置，可以调用视频流seek（参数）方法，其中参数为当前剪辑位置。如果不直接单击而是拖曳滑块，那么剪辑的最终位置应该是鼠标左键弹起的位置。此时的单击相当于实际触发滑块的移动事件，滑动快速移动到单击的位置，部分代码如下：

7.5.8 播放结束处理

正常播放完视频后，播放指针归零，即播放进度条上的滑块指向开始的位置，播放按钮处于准备就绪状态，视频流处于暂停状态。可以通过视频流的当前状态信息来判断视频是否播放结束。例如，在下面的代码中，可以通过e.info.code状态值获得各种状态，代码片段如下：

7.5.9 音量大小控制

视频声音控制通过SoundTransform类实现，该类包含音量和平移的属性。如果静音后运行调节滑块，则需要再定义一个临时变量tmpSound，以便开启声音时为最终设置的音量。

7.5.10 全屏显示控制

可以使用FlashCanvas对象的stage属性值来设置视频全屏显示，但是考虑到正常的屏幕和宽屏处理，常见的显示分辨率可以分为4∶3（1024×768），5∶4（1280×1024）），16∶9和16∶10（这里为宽屏测试，需要后续处理）。单击全屏按钮或单击屏幕全屏按钮，可以调用display（）方法，代码片段如下：

7.5.11 流数据字符格式化

视频处于播放状态时，当前时间和总时间是以秒（s）为单位的，比如180s的文件，当播放到一半时显示90s，这时需要按时间格式来显示才显得友好。另外，还有音量的值是介于0~1的某个值，也需要按百分比来显示才显得更友好。代码片段如下：

7.5.12 视频画面的平滑优化处理

一般视频在全屏显示后，会让文字或图像产生失真的感觉，产生水纹。对于这个问题的处理，Flex封装了一个简单、有效的方法，只需要设置一个属性即可，即在video对象中设置一个属性：

把该属性值设置为true，表示启用画面优化处理，并且这个设置能大大提高画面的质量。

7.5.13 播放接口的调用

代码采用Flex开放的播放器编译后，最终生成的是一个.swf文件，其需要通过页面加载来调用，可以是静态的HTML页面，也可以是动态的ASPX页面，在调用过程中会引用swfobject.js文件：

其中flashContent标签为嵌入的SWF播放器的容器。

7.5.14 实例：制作自定义播放器

7.6 Web端开发实战

掌握了前面的技术知识，下面就可以编写应用实例了。下面基于swfobject.js，编写并封装一套SDK，方便我们在HTML中进行调用与配置。另外，对于Flex播放器，也可根据实际功能的需要进行自定义编写。

7.6.1 推流

1.HTML

2.ActionScript

7.6.2 拉流

1.HTML

这一部分内容和推流端大同小异，所以就不再举例，重点介绍ActionScript部分。

2.ActionScript

7.7 本章小结

经过前面的介绍，相信读者大致了解了Web端推流的方法，其大致流程如下：

· 安装FlashBuilder并创建一个Flex项目。

· 使用ActionScript编写一个推流器/拉流器。

· 将Flex生成的SWF播放器文件通过swfobject.js嵌入HTML中。

· 利用JavaScript与播放器的通信控制推流、拉流与播放等。

在实际中，应该将常用的JavaScript功能封装成一套SDK以方便使用，下面是笔者封装的一些常用属性以及方法名称：

实际的需求千变万化，在编写SDK时要随机应变，总结出一套最适合项目需求的SDK。
反侵权盗版声明

电子工业出版社依法对本作品享有专有出版权。任何未经权利人书面许可，复制、销售或通过信息网络传播本作品的行为；歪曲、篡改、剽窃本作品的行为，均违反 《中华人民共和国著作权法》，其行为人应承担相应的民事责任和行政责任，构成犯罪的，将被依法追究刑事责任。

为了维护市场秩序，保护权利人的合法权益，本社将依法查处和打击侵权盗版的单位和个人。欢迎社会各界人士积极举报侵权盗版行为，本社将奖励举报有功人员，并保证举报人的信息不被泄露。

举报电话：（010） 88254396；（010） 88258888

传真：（010） 88254397

E-mail:dbqq@phei.com.cn

通信地址：北京市海淀区万寿路173信箱

电子工业出版社总编办公室

邮编：100036
EPUB/cover.jpg
o NERIINABISERERRL R, FHAFEERREAL

Broadview
www.broadview.com.cn EEE':E)\;?’_‘IE; ﬁ?ﬂﬁ%%ﬂ%ﬁéﬂﬁ'&%, j"]ﬂ:jﬁggﬁﬁﬁ

HERGHR

HEFNginx5Nginx—rtmp—module

SR IAREBA O &

A shE g () E2xises

EPUB/cover.xhtml
[image: Cover]

