

 Hyperledger Fabric 技术内幕：架构设计与实现原理

 	
 第1章 区块链基础与Hyperledger Fabric架构

 	
 1.1 区块链背景、概念与现状

 	
 1.1.1 区块链产生的背景及研究热潮

 	
 1.1.2 区块链概念与核心技术

 	
 1.1.3 区块链典型平台现状及趋势

 	
 1.2 Hyperledger Fabric基本概念与架构

 	
 1.2.1 基本概念

 	
 1.2.2 Hyperledger Fabric架构

 	
 1.2.3 安装基础环境与部署Fabric系统

 	
 1.2.4 Fabric初始化启动流程

 	
 1.2.5 Fabric交易处理流程

 	
 1.3 Hyperledger Fabric源码分析说明

 	
 1.3.2 配置机制

 	
 1.4 小结

 	
 第2章 Orderer排序节点

 	
 2.1 功能概述

 	
 2.2 Orderer节点启动流程

 	
 2.2.1 加载orderer.yaml配置文件

 	
 2.2.2 初始化日志与本地MSP组件

 	
 2.2.3 启动Orderer排序节点

 	
 2.3 Broadcast交易广播服务

 	
 2.3.2 Broadcast服务消息处理

 	
 2.4 Orderer共识排序服务（配置交易消息）

 	
 2.4.2 Solo共识组件

 	
 2.4.3 Kafka共识组件

 	
 2.5 Orderer共识排序服务（普通交易消息）

 	
 2.5.2 Solo共识组件

 	
 2.5.3 Kafka共识组件

 	
 2.6 Deliver区块分发服务

 	
 2.6.1 概述

 	
 2.6.2 Deliver服务消息处理

 	
 2.6.3 Deliver服务客户端

 	
 2.7 小结

 	
 第3章 Peer节点

 	
 3.1 功能概述

 	
 3.1.1 链码生命周期管理

 	
 3.1.2 系统链码

 	
 3.1.3 用户链码

 	
 3.2 Peer节点启动流程

 	
 3.2.2 定义、注册命令与初始化配置

 	
 3.2.3 初始化本地MSP组件

 	
 3.2.4 执行启动Peer节点命令

 	
 3.3 peer channel通道子命令

 	
 3.3.1 定义注册channel子命令

 	
 3.3.2 创建通道命令create

 	
 3.3.3 Peer节点加入通道命令join

 	
 3.3.4 获取区块命令fetch

 	
 3.3.5 获取区块链信息getinfo

 	
 3.3.6 获取已加入通道列表list

 	
 3.3.7 签名配置交易文件signconfigtx

 	
 3.3.8 更新通道配置update

 	
 3.4 peer chaincode链码子命令

 	
 3.4.1 定义注册chaincode子命令

 	
 3.4.2 安装链码命令install

 	
 3.4.3 实例化链码命令instantiate

 	
 3.4.4 调用链码命令invoke

 	
 3.4.5 查询链码命令query

 	
 3.4.6 升级链码命令upgrade

 	
 3.4.7 查询链码列表命令list

 	
 3.4.8 打包链码命令package

 	
 3.4.9 签名链码包命令signpackage

 	
 3.5 其他子命令

 	
 3.5.2 版本子命令

 	
 3.5.3 日志子命令

 	
 3.6 小结

 	
 第4章 Endorser背书节点

 	
 4.1 功能概述

 	
 4.2 Endorser背书服务

 	
 4.3 预处理签名提案消息

 	
 4.3.1 验证消息格式与签名合法性

 	
 4.3.2 检查是否为允许外部调用的系统链码

 	
 4.3.3 检查签名提案消息的唯一性

 	
 4.3.4 检查是否满足通道的访问权限策略

 	
 4.4 模拟执行提案

 	
 4.4.1 检查实例化策略

 	
 4.4.2 启动链码容器概述

 	
 4.4.3 准备启动链码容器

 	
 4.4.4 启动系统链码inprocContainer容器

 	
 4.4.5 启动用户链码Docker容器

 	
 4.4.6 消息处理核心函数

 	
 4.4.7 请求链码执行

 	
 4.4.8 停止链码容器

 	
 4.4.9 处理模拟执行结果

 	
 4.5 对模拟执行结果签名背书

 	
 4.6 小结

 	
 第5章 Committer记账节点

 	
 5.1 功能概述

 	
 5.2 创建与调用Committer功能模块

 	
 5.2.2 调用Committer功能模块

 	
 5.3 交易验证器

 	
 5.3.1 验证交易数据的合法性

 	
 5.3.2 VSCC验证交易背书策略

 	
 5.4 账本提交器

 	
 5.4.1 验证与准备数据

 	
 5.4.2 提交账本数据

 	
 5.5 小结

 	
 第6章 Gossip消息模块

 	
 6.1 功能概述

 	
 6.2 Gossip消息模块启动流程

 	
 6.2.1 创建与初始化Gossip服务器实例

 	
 6.2.2 初始化通道上的Gossip服务模块

 	
 6.3 Gossip消息通信与处理机制

 	
 6.3.2 Gossip消息通信与处理机制

 	
 6.3.3 Gossip服务实例中的消息处理

 	
 6.3.4 state模块中的数据消息处理

 	
 6.3.5 state模块中的远程状态与隐私数据消息处理

 	
 6.3.6 Fetcher组件中的隐私数据请求与响应消息处理

 	
 6.3.7 election选举模块中的主节点选举消息处理

 	
 6.4 Gossip节点管理机制

 	
 6.4.2 选举Leader主节点

 	
 6.4.3 更新节点相关信息机制

 	
 6.5 Gossip数据分发与状态同步机制

 	
 6.5.2 分发隐私数据流程

 	
 6.5.3 更新通道状态信息

 	
 6.5.4 更新数据消息

 	
 6.6 Gossip反熵算法

 	
 6.6.1 获取当前最大的账本高度

 	
 6.6.2 分批发送远程状态请求消息

 	
 6.6.3 处理远程状态请求消息

 	
 6.7 小结

 	
 第7章 公共功能模块

 	
 7.1 账本数据存储模块

 	
 7.1.1 Peer节点账本

 	
 7.1.2 idStore数据库

 	
 7.1.3 区块数据文件与隐私数据库

 	
 7.1.4 区块索引数据库

 	
 7.1.5 状态数据库

 	
 7.1.6 历史数据库

 	
 7.1.7 transient隐私数据库

 	
 7.2 安全服务模块

 	
 7.2.1 MSP（成员关系服务模块）

 	
 7.2.2 BCCSP（区块链密码服务模块）

 	
 7.3 Events事件模块

 	
 7.3.2 订阅与发布事件

 	
 7.3.3 注册与注销事件

 	
 7.4 小结

 	
 附录A Hyperledger Fabric配置文件

 	
 附录B e2e_cli示例相关文件情况

 	
 参考文献

 第1章　区块链基础与Hyperledger Fabric架构

The Times 03/Jan/2009 Chancellor on brink of second bailout for banks.

2009年1月3日，（英国）财政大臣正处于实施第二轮银行紧急援助的边缘。（在比特币创世区块中记录的永不修改的话）

——中本聪

本章将从区块链产生的背景开始介绍比特币、以太坊等热点词汇，探讨区块链当前与未来的发展趋势，并逐步介绍区块链的基本概念与核心技术，进而分析Hyperledger Fabric的架构与核心机制。另外，读者可以在本章中学习到如何搭建Hyperledger Fabric实验环境，尝试运行并查看实验结果。
1.1　区块链背景、概念与现状

本节将介绍区块链产生的背景及研究热潮、区块链的概念与核心技术，并分析目前国际上影响力较大的主流区块链开源平台。
1.1.1　区块链产生的背景及研究热潮

近年来，比特币（Bitcoin）无疑是最热门的投资品词汇，其价格最高时突破了两万美元，成为投资者眼中的新宠和竞相追逐的“真金白银”。比特币一词最初来源于2008年中本聪（Satoshi Nakamoto）在metzdowd.com网站发表的《Bitcoin：A Peer-to-Peer Electronic Cash System》[1]（《比特币：一个点对点的电子现金系统》），这是比特币与区块链理论形成中重要的奠基性论文，并真正开启了虚拟数字货币与区块链应用的人类社会新时代。

中本聪在这篇论文中解决了之前发行虚拟数字货币存在的货币伪造、双重支付（或称“双花”，Double Spent）、匿名化交易、中心化货币发行等挑战，可以不依赖第三方信用机构进行背书，无须基于中心化货币发行体系，在全球范围内实现了点对点交易的可靠记账。比特币持续9年多不间断的正常运行表明，这种分布式架构在适当的激励机制与共识算法的作用下拥有支撑全球范围交易的潜力，为当前金融领域造价不菲的中心化架构提供了新的解决思路。因此，在比特币的“挖矿”产业生态中，每个人都可以参与记账，充分利用非对称加密、哈希算法等现代密码学技术确保比特币交易不可伪造、不可篡改且可溯源的特性，并通过记账奖励的方式激发每个节点参与记账的积极性，这就使得黑客的攻击成本非常高昂，还不如“挖矿”参与社区贡献。正是这种结合正反馈奖励机制与博弈心理学的巧妙设计，使得比特币交易系统迅速发展为一个国际共享的分布式账本系统，比特币也一跃成为当下最热门的投资品种之一。但是，比特币没有类似于传统货币相应对等的背书信用标的物作担保，缺乏全社会认同的货币价值基础。因此，比特币相继被各国进行监管并禁止流通兑现或接受为可交换的“货币”。时至2018年，比特币已经运行了9年多的时间，支持过单笔上亿美元的交易，截至2018年11月，比特币交易系统已经累计生成超过55万个区块（https://www.blockchain.com/en/explorer）。虽然遭到无数次黑客攻击，但从未停止运行，总市值一度超过了上千亿美元，毫无疑问，比特币已成为人类历史上最有影响力的虚拟数字资产之一。

以太坊去中心化自治组织（Decentralized Autonomous Organization，DAO）项目的想法极具天才般的创造性，它旨在构造一个完全去中心化的自治服务平台，并基于超过一定比例的虚拟实体或股东（如67%）来决定投资或修改运行机制，完全透明且无须人类集中式管理。2016年5月，DAO项目通过分布式众筹在28天内筹集了超过1.52亿美元，一举成为当时人类历史上的最大单笔金额众筹项目，同日在各大数字货币交易所开始交易。然而，半个多月后，黑客利用智能合约中递归调用等漏洞盗走了近三分之一众筹所得的以太币，震惊了整个DAO社区，公众也由此对去中心化自治系统的安全性与可行性产生了质疑。项目开发者通过研究发现该漏洞不是出现在DAO架构本身，而是智能合约出现了问题。这迫使开发者对DAO项目强行“硬分叉”，即在挖出第192000个区块后的分支上消除被盗走的货币，并决定最终在提取分发完后自动解散DAO项目。该事件引起了极大的社会争论与媒体关注，但是，以太坊DAO项目无疑是人类社会在去中心化自治系统上具有深远影响力的一次伟大的创新尝试。

近年来，这些创新项目与事件已经开始深刻影响和改变着人类社会，各种琳琅满目的数字虚拟货币以及“去中心化”的分布式应用纷纷出现，虚拟货币交易所在全球遍地开花，追逐企业“币改”与“链改”的大潮席卷而来，而“区块链”就是比特币、以太坊DAO等项目采用的底层核心技术，人们发现它不仅可以作为比特币这种“虚拟货币”诸多优良特性的技术基础，而且还可以用来构筑开放信用体系与资产确权的基石，被认为可能开启人类社会基于互联网与虚拟平台传递价值的时代。

区块链技术通过去中心化方式建立起点对点的信任关系，可能会影响甚至改变决定人类社会组织形式与现象的基本作用力，包括生产力水平、生产资料和生产成果的分配总量与速率、权力的中心化程度等[2]，尤其是弱化了权力集中与运作方式，直接改变了生产资料和生产成果的分配方式，进一步提高了生产力水平。因此，人们普遍认为区块链技术具备改变当前很多领域的潜力，可以与电力、互联网等技术革命相提并论，甚至被《华尔街日报》誉为五百年来最具影响力的金融创新之一。与此同时，区块链已经成为社会与科研人员关注的热点，在金融服务、供应链管理、文化娱乐、智能制造、社会公益、教育就业、医疗健康等垂直领域都引起了人们的广泛关注和强烈兴趣。

目前，区块链被普遍认为是一种具有“颠覆性”的新兴技术，它可能会带来公共与私营服务实现方式上的创新，其最大的“颠覆性”就是重构弱信任主体之间的信用体系，从而避免传统信用体系依靠第三方中介证明的方式。这种信用体系是建立在程序化的区块链共识算法与安全加密算法的基础上，而不是基于单个人或单个系统。同时，数据记录的生成与记录保存需要全网络参识节点按照共识算法进行确认并且不易篡改，如比特币获得51%以上的全网计算能力，就可能拥有记账权并修改账本。

因此，区块链摆脱了传统信任体系中需要第三方信息验证的信用确认模式，能够有效降低信用体系构建成本，提高跨组织体系要素的协同效率，同时提高链上资产的真实性、可信性与安全性，天然适合于松耦合的去中心化应用场景，在协调大规模跨组织活动中能显著降低集中式系统带来的复杂性、安全风险、信息不透明度等问题。人们甚至认为，区块链可以帮助建立去中心化的全球信用体系，让互联网价值传递可以像互联网信息传递一样具有低成本与高效率的特点。这样，人们就能够基于区块链技术，通过去中心化的方式重构新型的经济生态体系，促进个体行为与社区生态之间的高效协调和可持续发展，引入合法的激励机制与监管手段，鼓励个体创造社区价值与协作交换，更加强调点到点的直接个性化服务，连接与盘活互联网的巨量边缘资源，大幅降低社会经济活动成本，从而培育可持续发展的垂直领域社区价值生态，以激发潜在的用户场景需求（如存储、泛娱乐、即时通信、物联网支付等）。同时，区块链也可以为弱信任主体间提供可信平台支持共享敏感数据，以提升行业上下游甚至跨行业大规模协作的效率，减少企业联盟间繁冗业务流程的生产成本，提高信息监管透明度，避免高度中心化系统中单点故障带来的系统失效，降低黑客攻击风险。因此，区块链具有改变未来社会生产与生活形态的潜力，赋能产业经济推动共享经济的普及与发展，催生新的区块链产业与促进相关产业升级，创造社会经济价值。

事实上，研究区块链相关技术与应用场景结合，为生产经济、国防安全、科学研究、社会稳定等领域构建高效、稳定、安全的区块链基础设施，提供高效动态的部署跨域区块链网络的能力，从而抢占战略制高点与商业市场，已经成为目前人们竞相研究区块链相关科学与工程问题的基本动机。区块链的应用场景所引起的有别于传统数据库的核心问题，如互联网大规模数据存储与同步技术、高效共识算法、高强度密码安全技术、高性能跨链技术、新型匿名隐私安全技术等正面临着一场深刻的技术变革，可能会孕育爆发出“区块链+”时代的到来。

但是，人们也应该看到，区块链技术只能确保链上数据的真实性与可信性，可防止不被轻易攻击且不易被随意篡改，却无法解决链下虚假数据或真实数据“转移”到链上数据过程中的真实性问题。同时，以比特币为代表的“虚拟货币”或Token（通证）数字资产也带来了风险定价与管理、价值锚定与信任体系缺失、区块链经济系统顶层设计等新挑战仍然是在各国法律框架和行业监管需求内挑战人类智慧与技术极限的重大难题。

如图1-1所示，2008年以来的区块链典型事件表明，区块链作为一种可能会重塑社会运作方式的“颠覆性”创新技术，已得到越来越多的关注与研究，且已经发展成为具有较大影响力的生态体系。

 [image:]

图1-1　区块链典型事件

国际著名区块链专家Melanie Swan在其重要著作《Blueprint for A New Economy》[3]（《区块链：新经济蓝图及导读》）中较全面地阐述了全球区块链产业理念与实践，并根据区块链带来的革新与应用范围将区块链技术分为区块链1.0、区块链2.0和区块链3.0。

（1）区块链1.0：以比特币为代表的可编程“虚拟货币”

中本聪设计比特币是为了构建一个可信去中心的电子货币交易系统。尽管比特币的发展出现了价格的剧烈波动、数量上限带来的通货紧缩、挖矿造成的巨大能源消耗、各国政府监管限制或者态度不明等问题，但是，以比特币为代表的可编程货币使得价值在互联网中流通交易成为可能，比特币仍然是区块链最成功的实际应用案例。可编程货币意味着比特币类的“虚拟货币”可以按照设计方或者合作方的约定，在达到一定条件时触发指定的专用交易动作（如转账），这对于严格的资金管理控制非常重要。同时，作为一种全球发行的创新数字支付系统，比特币的去中心化特性与安全加密机制降低了交易成本，对传统金融产生了挑战，并且试图成为不依赖于主权国家央行而发行的全球统一货币，为国际金融交易提供“货币”支持。

（2）区块链2.0：基于区块链的可编程金融

人们通过研究发现，数字货币底层的区块链技术同样可以应用到金融的其他领域，并将比特币中的脚本合约系统重新抽象成“智能合约”，同时利用区块链基于去中心化账本具有不可伪造、不可篡改与可溯源的特性，能够用于注册、确认与转移各种不同类型的资产及合约。因此，人们结合具体的金融应用塑造出可编程金融的概念并积极探索实践，包括股权登记转让、证券、私募股权、跨境支付、金融衍生品合约等。例如，新加坡资讯通讯发展局（Infocomm Development Authority of Singapore）联合新加坡星展银行和渣打银行共同进行发票金融区块链应用的概念证明，试图使得对企业和放贷银行的发票金融贸易更加安全和简单。2016年，日本软银（Softbank）联合Topcoder举办了一次区块链开发竞赛，希望可以找到一个基于区块链技术的互联网筹款平台原型。

（3）区块链3.0：将区块链扩展到其他领域应用

人们进一步将区块链扩展到金融以外的其他领域。在法律、零售业、物联网、公共医疗、公益事业等领域，依靠区块链提供的信任平台实现信息共享与身份自证明，而不用完全依赖于权威的第三方认证机构，从而降低信用认证成本，提高行业运行效率。

当前，区块链行业的发展如火如荼，相关公司如雨后春笋般迅速成长起来，整个区块链产业已经发展成包括跨境支付、供应链金融、贸易金融、征信、交易清算、商品溯源、区块链硬件等跨越多个细分市场的完整生态系统[26]，既包括传统的资深计算机厂商，也包括迅速崛起的新兴区块链公司，呈现出共同发展、共同成长、共同促进的行业发展态势。然而，目前区块链技术的发展还至少存在以下三个问题。

一是技术架构上还存在效率不高、安全性挑战、资源消耗高等问题，尤其是低效率的数据吞吐量与共识机制。以公有链为例，目前，比特币在公网上大约每分钟交易笔数峰值不超过7，而2017年双十一支付宝峰值每秒最高超过25.6万笔交易，数据库处理峰值为4200万次/秒。与此同时，比特币交易验证时间长，目前大约是10分钟确认一次交易，6次确认大约需要1个小时，而支付宝、Visa等仅仅需要几秒钟。2016年2月，周小川就指出区块链技术是数字货币的一项可选技术，但目前存在占用计算存储资源过多的问题，无法应对现在的交易规模，这对于高频应用场景可能是无法忍受的瓶颈，只有对时间不敏感的餐馆等消费场所可能会成为线下使用场景。

二是行业监管问题。国内存在严格的金融监管要求和互联网金融实名认证规定，在金融领域需要明确风险责任人，必须要有专门的部门来维护金融市场基础设施。这些要求本身就与某些区块链应用具有的身份匿名等特性存在冲突，如比特币由于其匿名特性已经成为犯罪资金进行洗钱与非法网站进行支付的主要载体，2017年5月爆发的WannaCry“勒索”病毒要求支付比特币，使得犯罪分子身份无法直接通过传统手段进行快速查询定位。因此，如何结合具体应用在两者之间进行权衡是应用开发者需要研究的重要课题。

三是商业应用场景上除了比特币等“虚拟货币”产业生态，还尚未出现“杀手级”应用。就如同微信在移动互联网时代的即时通信领域、支付宝在互联网电商的线上支付领域一样。目前，大多数区块链应用还停留在概念验证与初步探索应用阶段，缺乏类似真实需求的大规模商业应用场景或垂直领域产品，以有效推动区块链生态爆发式的迅速发展。如图1-2所示，2017年，Gartner公司认为区块链技术（Blockchain）在国际上已经开始进入幻灭期的初期，但在中国还处于期望膨胀期，两者都被标记为未来5年到10年才可能落地成熟的技术。2018年10月，Gartner在其发布的2019年十大战略科技发展（具有巨大颠覆性潜力）中仍然将区块链列入其中，并认为到2030年，区块链将创造3.1万亿美元的商业价值。但可以肯定的是，各国将在未来对区块链研究投入更多的关注与资源，以期望提升国家整体的科技创新能力，世界各国在该领域的竞争已经开始并必将更加激烈。

 [image:]

图1-2　2017年版Gartner新兴技术成熟度曲线国际版（左）与中国版（右）[1]

[1] 区块链技术已经用圆圈标记，图片来自互联网并由Gartner公司制作。
1.1.2　区块链概念与核心技术

本节介绍区块链的概念定义与核心技术，包括共识机制、安全机制、存储机制、P2P通信机制以及智能合约等。

1.区块链概念定义

区块链是一种在对等网络环境下，通过透明和可信规则，（按照时间戳顺序）构建不可伪造、不可篡改和可追溯的块链式数据结构，实现和管理事务（或称交易）处理的模式[5]。实际上，它是一种分布式数据存储、点对点传输、共识机制、加密算法等计算机技术的新型应用模式[4]。作为一种创新的应用模式，区块链具有分布式对等、数据块链式、不可伪造和防篡改、透明可信、高可靠性等关键特征[5]。用户可以对链上数据执行交叉验证以防止欺诈，虽然可以对本地数据进行删除和修改（恶意节点行为），但是不会影响全网共识后的数据一致性[30]（只能防止一定比例的恶意节点）。同时，还出现了非链式的DAG、Hashgraph等区块链系统。

根据不同的应用场景与设计体系，区块链可以采用对应的开放共享与节点权限方案，包括如下三种区块链部署模型[5]。

·公有链：任意区块链服务客户都可以使用，任意节点均可接入，由所有节点共同参与共识和读写数据，具有较强的去中心化特征，如比特币和以太坊；

·联盟链：只有利益相关的特定区块链服务客户才能使用，节点只有经过授权许可后方可接入网络，接入节点按照规则参与共识和读写数据，具有较弱的去中心化的特征，如Hyperledger Fabric；

·私有链：仅由单个区块链服务客户使用，仅有授权的节点才能接入，并按照规则参与共识和读写数据。

区块链上记录的区块对象是打包了一段时间内发生的交易与状态的集合。交易是指每次改变状态变化的操作，并拥有唯一的交易标识（如哈希值）。同时，区块头部保存了上一个区块的哈希值、当前区块的哈希值等信息，通常以一种链式结构保存所有的区块结构。事实上，区块链是通过现代密码学与分布式共识机制等技术来确保交易可信，而不是通过大型中心化信用机构解决信任背书问题。

目前，区块链系统包括共识机制、安全机制、存储机制、P2P通信机制、智能合约等核心技术。

2.共识机制

共识机制是一个经典的分布式计算领域问题。在区块链系统中，共识机制是指实现不同信任主体节点之间建立信任、获取权益的数学算法[4]，提供给分布式网络参识节点以用于确认交易动作引起的账本中的状态数据变化，并且能够达成最终一致性。即使出现节点故障或不可信节点等情况，区块链系统上已经发生的交易也能够按照正确的预期方式执行，而不会出现全网节点数据与账本状态不一致的情况。目前，常见的共识机制包括PoW、PoS、DPoS、PBFT等，它们在合规监管、性能效率、资源消耗以及容错性等方面都有各自不同的特点。鉴于共识机制对区块链系统性能的影响至关重要，很多研究都对此进行了深入探讨，并针对区块链应用特点不断进行改进与完善。

（1）PoW（工作量证明）

PoW（Proof of Work，工作量证明）是比特币交易系统最早引入的共识机制，在比特币中称之为“挖矿”，即通过自身算力不断计算寻找满足规则和小于难度目标（前若干位全部为0的数值）的哈希值。这个想法来源于Adam Back设计的用于阻挡垃圾邮件的Hashcash算法[7]。该哈希值是将区块头中80个字节作为工作量证明输入，尝试变换区块头中的随机数Nonce，并连续做两次SHA-256哈希运算得到的。因此，“挖矿”的过程就是寻找碰撞随机数Nonce的过程。通常，“挖矿”找到这个随机数的时间取决于难度目标门槛，这样就可以通过控制难度目标来控制生成新区块的时间，比特币交易系统就是通过上述这种方式控制区块生成速度稳定在10分钟左右，约定由最快计算找到随机数Nonce的节点竞争获得本次交易区块的记账权，并获得一定数量的比特币奖励。接着，该节点将打包后的区块结构对象发送给全网其他节点进行验证存储，再添加到区块链上。整个网络中最长的链就是正确的链，即被认为是最长的有效工作量证明链。上述整个过程完全依赖于节点进行数学运算来测试随机生成的哈希值是否符合规则。理论上，如果需要找到小于难度目标前导17位16进制数值都是0的两次SHA-256哈希运算结果，最坏的情况下大约需要尝试268次（约2.95万亿亿次）才能找到一个合格的随机数，其概率非常低（国内双色球头等奖中奖概率约为1772万分之一）。因此，竞争记账权带来的资源消耗相比其他共识机制更高，根据Digiconomist网站估计，每年比特币消耗的电能高达32.4太瓦时，超过了摩洛哥全国的耗电量。PoW可监管性弱且需要全网参与共识运算，性能效率不高，只允许全网50%的节点出现故障问题。

（2）PoS（权益证明）

PoS（Proof of Stake，权益证明）机制要求网络节点必须提供一定数量的代币证明，与上市公司股票类似，节点证明持有越多的代币，获得记账权的概率就越高。PoS机制被应用在Peercoin、NXT、Blackcoin、以太坊第四个阶段Serenity等处，都会在单纯的权益证明机制上结合不同的方式来增加记账权的随机性以避免中心化，如Peercoin采用获得记账创造区块后起算的币龄（即时间）选择记账权节点，等同于PoW机制中的算力，Blackcoin则采用随机方式预测选择记账节点。同时，PoS机制是根据节点拥有代币的比例与时间来等比例降低挖矿难度，以提高寻找随机数的效率。实际上，PoS机制挖矿产生区块的难度与所有者持有的权益成反比，却依然是通过哈希运算竞争来获取记账权。但是，可以有效增加51%攻击难度（攻击者需要持有超过51%的货币量），且交易的权益证明只能被记在该区块所构成的区块链上，攻击者无法隐藏自己的秘密区块链以影响公链交易上代币被销毁的天数。因此，PoS机制在一定程度上减少了纯粹依靠哈希数学运算来争夺记账权所引起的大量资源消耗，缩短了全网达成共识的时间，性能与安全性有所提升，可监管性弱，依然只能允许全网50%的节点出现故障问题。

（3）DPoS（股份授权证明）

DPoS（Delegated Proof of Stake，股份授权证明）机制是为了防止大矿池垄断全网算力，由Bitshares设计提出的（https://bitshares.org/technology/delegating-proof-of-stake-consensus/）。类似于PoS机制，其区别在于持币节点选举若干数量的代理节点进行验证和记账，类似于董事会投票制度。该机制的优点是可以有效减少参与共识验证的节点数量，缩短共识验证时间，提升区块生成速度，在可监管性与容错性等方面的表现与PoS机制相似，EOS就采用了DPoS共识机制。

（4）PBFT（实用拜占庭容错）

PBFT（Practical Byzantine Fault Tolerance，实用拜占庭容错）算法可以容忍经典拜占庭故障模型，即假设节点具有不确定性故障行为的特点，适用于一般情况下的网络环境，含有软件错误、设备停机、通信故障等常见及不易察觉的错误，甚至包括具有恶意行为的节点，这使得PBFT具有很强的算法适应性。Leslie Lamport等人最初提出的BFT算法只能单纯解决分布式环境下的故障问题[8]，没有考虑实用的算法运行性能，需要指数级算法时间复杂度，后来人们通过研究提出了多项式级别算法才降低其开销，使得实用的BFT算法得以广泛应用[9]。

如图1-3所示，PBFT算法中通常需要包括request、pre-request、prepare、commit和reply五个阶段才能完成，其中，prepare与commit阶段需要两两交互以确保所有节点达成共识一致。通常，PBFT系统至少需要部署到3f+1个节点上，最多可以容忍f个恶意节点出现拜占庭故障，整个系统状态是由其中2f+1个节点决定的。与非拜占庭系统相比，其主要问题是共识算法确定状态的时间较长、占用节点资源较多、长时间应用可能存在错误积累导致系统崩溃等。目前，人们研究通过减少一致性协议包含的阶段数量或者简化条件（如网络稳定等）来解决其性能瓶颈，并通过定期检错来减少可能发生错误的节点，同时，也开始尝试通过可信计算部件来降低所需节点的数量。PBFT共识机制允许监管节点参与，相对其他共识算法，其性能相对更高且耗能较低，可以允许近33%的错误节点。目前，其变种算法已经在Hyperledger Fabric、腾讯TrustSQL、BCOS平台等联盟链系统中研究或应用。

 [image:]

图1-3　PBFT算法运行示意图[9]

目前，很多商业平台都在积极研发自适应共识机制的方式来提高全网参识节点进行共识的效率。如果在状态良好、无恶意节点等可信网络环境中，系统平台可以采用Raft等较成熟的分布式一致性解决方案，高效完成交易并达成共识，占用较少资源并且性能较高。同时，一旦检测到网络环境中出现恶意节点等不可信的交易行为，系统平台就将自动切换到类PBFT共识算法，提高对拜占庭节点错误的容错能力。

3.安全机制

区块链中采用了现代密码学中的哈希算法、对称加密算法、非对称加密算法等来保证数据机密性、完整性、抗抵赖性等安全特性。

（1）哈希算法

哈希算法可以将任意长度的消息明文转换映射为固定长度的二进制串输出，称为哈希值或散列值，又称为该消息的指纹（fingerprint）或摘要（digest）。即使两个消息只差一个字符，在经过哈希函数计算之后，它们所产生的字符串也会十分杂乱随机且完全不存在任何关联性，被广泛应用于检测签名有效性与完整性的场景中。目前，常见的哈希算法包括MD4（RFC1320，输出128位哈希值）、MD5（RFC1321）、SHA-1（输出长度为160位哈希值）、SHA-2（包括SHA-224、SHA-256、SHA-384、SHA-512等算法）、SM3（国密安全算法）等。其中，MD4已经被证明不够安全，MD5与SHA-1不具备强抗碰撞性，具有安全隐患，因此都不推荐使用。安全术语“碰撞”是指两个不同的消息使用同一个哈希函数计算时获得相同哈希值的情况，哈希算法具有抗碰撞性意味着找到两个能够产生碰撞的消息在计算上是非常困难的（注意不是不可能的）。哈希算法应当具有抗碰撞性、原像不可逆性、难题友好性等特点。目前，区块链通常采用SHA-256、Keccak-256CSHA3或更高安全级别的主流算法，常用于构造货币地址、哈希指针、消息摘要等对象。

（2）对称加密算法

对称加密算法中加密与解密的密钥是相同的，速度快且占用空间小，加密强度高，但缺点是密钥一旦泄露就无法继续保持当前系统的安全性，且必须解决如何安全地提前分发密钥问题。目前，典型的对称加密算法包括DES（Data Encryption Standard，经典的分组加密算法，64位密钥，可以被暴力破解）、3DES、ADE（Advanced Encryption Standard，对称加密实现标准，处理速度快）、IDEA（类似于3DES，密钥长度达到128位）以及序列密码（每次变换密钥加密处理数据，如RC4）等。对称加密算法适用于较大数据量的加解密过程，不适合签名与验签的应用场景。

（3）非对称加密算法

非对称加密算法为用户提供一组对应的公开密钥和私有密钥。任何人都可以使用公钥对数据进行加密，只有用户能使用自己的私钥解密，任何未授权的用户包括发送者都无法解密该信息。同时，用户可以使用私钥对信息进行签名，任何人都可以用该用户公开的公钥检验该信息签名的身份，即验证该信息是否由指定用户签名，其身份具有不可否认性，从而使得签名具有不可伪造性。由于加密和解密时使用的密钥是不同的，因此，这类公钥密码算法也称为非对称密码算法。现代公钥密码体系的安全性通常是基于难解的可计算问题，通过私钥计算出公钥非常容易，但是，通过公钥计算出私钥则非常困难，包括RSA（基于大数质因子分解困难特性）、Diffie-Hellman密钥交换、ECC（椭圆曲线算法，密钥短性能高，区块链采用的常见主流算法如ECDSA）、SM2（国密安全算法，同样基于椭圆曲线算法）等，比特币使用的是Certicom密码技术公司提供的椭圆曲线算法secp256k1。非对称加密算法适用于签名与验签场景，同时解决了密钥分发的安全性问题，但不适合大量数据的快速加解密过程，如签名消息时通常要先计算消息摘要，再使用私钥对摘要签名（ECDSA算法）。

4.存储机制

区块链数据通常存储在包括KV键值型数据库、关系型数据库、普通文件等中。其中，KV键值型数据库中数据结构与接口都比较简单，具有很高的读写性能与良好的可扩展性，能支持大规模并发键值对数据的读写请求，支持基本增删改查功能，通常不支持复杂SQL功能与强事务性，无法快速执行范围查询等统计功能。为了获得高性能、低延迟与高吞吐量，目前还出现了分布式内存型的KV键值型数据库，如Redis等，它们通过在内存中维护大量的哈希表来存储关键字及指向键值对的指针，利用并发与索引优化，支持内存数据的高效查询、插入与更新操作。同时，还涌现出了TiDB等新型分布式KV键值型数据库，其支持SQL语句的高效复杂查询，包括范围查询、Join查询支持等，提供接近线性的系统扩展能力与实时并发写入能力。区块链平台常用的KV键值型数据库包括LevelDB、CouchDB、BerkeleyDB等，用于保存区块链中的区块索引信息、状态数据等键值对类型的数据。Hyperledger Fabric还使用普通文件存储原始的账本区块数据，将共识后的区块数据按protocol buffer编码格式序列化为二进制字节数组后，写入文件进行持久化保存。

RDBMS（Relational Database Management System，关系型数据库系统）是基于严格的关系模型来表示与组织结构化数据的，支持SQL语句的增删改查操作，提供能够满足ACID原则的复杂事务处理机制。分布式架构版本具有高并发的读写性能和容错能力，并广泛部署在大规模高可用集群系统中。有些区块链系统考虑将链上相关的账户数据、区块信息、交易流水等信息保存在关系型数据库中，以提供历史数据的快速统计查询等功能，提高数据查询效率。

5.P2P通信机制

区块链网络通常采用P2P（Peer to Peer）协议，节点之间直接通过交换方式共享信息，又被称为对等计算。P2P网络中的每个节点地位平等，不需要中心服务器节点来分配任务，每个节点可同时作为服务提供者与服务请求者。这种分布式架构避免了集中式架构中心节点的性能瓶颈，可以有效利用网络节点的性能与网络带宽，从而提升系统的整体效率。同时，还可以根据需求扩展节点规模，具有良好的可扩展性与负载均衡能力。例如，BitTorrent是基于P2P技术共享大文件并进行内容分发的典型平台，每个用户节点在下载文件的同时又不断为其他用户节点提供上传已经下载的数据。

P2P通信机制用于实现与其他节点之间的通信功能，比特币默认配置连接8个近邻节点，最多允许125个连接请求，包括全功能节点（带有钱包、挖矿、校验与转发区块等功能）与基础全节点（转发区块与交易等功能）、SPV节点（校验区块与交易等功能）等，同时利用Zero MQ实现节点通信机制。Hyperledger Fabric采用gRPC库与Gossip消息协议构建P2P通信机制。以太坊使用基于RLP（Recursive Length Prefix）编码及认证的加密P2P协议，包括whisper协议、swarm协议等具体通信协议，分别用于不同的通信场景。

6.智能合约

1994年密码学家Nick Szabo提出了“智能合约”的概念，即一个智能合约是一套以数字形式定义的承诺，包括合约参与方可以在上面执行这些承诺的协议，它是一种用计算机语言取代法律语言去记录条款的合约[11]。Nick Szabo希望能够在互联网上结合现实社会中已有的合约法律法规以及商业实践，将线下商业活动“搬迁”到互联网上进行。可以说，智能合约就是部署在区块链系统虚拟机上能够自动运行与验证的协议程序，不需要人为干预触发操作，具有一定的自治性、强制性与自我验证功能。

在区块链技术领域，智能合约是指基于预定事件触发、不可篡改、自动执行的计算机程序[5]。虚拟机是区块链系统中运行智能合约的执行环境，如EVM（以太坊虚拟机）提供了图灵完备的虚拟机，通常将用户编写的Solidity语言程序编译成EVM字节代码后再调用运行，而比特币交易系统只是设计了一个不具备图灵完备性的堆栈式脚本引擎，支持锁定脚本与解锁脚本。Hyperledger Fabric采用Docker容器等作为智能合约执行的虚拟机，所有智能合约（Hyperledger Fabric称之为chaincode，即链上代码或链码）都必须实现Init()与Invoke()方法。

事实上，虚拟机通常基于沙箱技术进行隔离封装，以确保智能合约无法与网络、文件系统或者其他进程直接进行交互，用户必须通过虚拟机接口遵循定制的流程，对状态数据通过API进行访问。例如，银行账户管理就可以看作是一组智能合约的应用，传统方式对用户账户的操作需要银行进行监管和授权，否则就会无法执行任何操作。这些操作都可以被设计成智能合约按照对应的流程来执行，一旦部署启动后，除非满足触发下一个智能合约程序的条件，否则，任何人都无法轻易修改程序的正常执行流程，从而确保智能合约的高效准确执行、安全隔离以及较低人为干预风险。但是，由于运行的智能合约程序不能随便人为修改，同样也面临着潜在风险，如以太坊DAO事件中智能合约存在递归程序漏洞、SMT项目中以太坊智能合约存在整数溢出漏洞等。但是，目前大多数区块链系统危机事件都是智能合约自身的程序设计问题，与区块链技术本身提供的安全特性无关。
1.1.3　区块链典型平台现状及趋势

目前，国际上影响力较大的主流区块链开源平台逐渐相互借鉴与融合发展，出现了以下3种典型生态体系及平台。

1.比特币（Bitcoin）

以比特币[19]为代表的“虚拟货币”平台开源社区生态体系。比特币就是以区块链作为底层技术进行设计与研发的，中本聪（Satoshi Nakamoto）在2008年发表的论文《Bitcoin：A Peer-to-Peer Electronic Cash System》中就曾指出，比特币是通过随机哈希值为全部交易加上时间戳，并把它们融入到不断延伸的、基于随机哈希值的工作量证明链条中作为交易记录（即区块），除非重新完成全部的工作量证明，否则形成的交易记录将不可更改。这种记账方式使得比特币的发行可以不依赖任何政府与货币机构的公信力，而是根据特定共识算法通过大规模计算来生成“货币”，由全系统所有参识节点共同背书，其记账权由全网51%的算力决定，第一次在全球范围内实现了一个去中心化的真实点对点电子现金系统，这完全颠覆了以往人们对“货币”的认知，点燃了以比特币为代表的“虚拟货币”概念风口。

比特币记录的区块结构除了最核心的区块头部信息和交易信息之外，还包括魔幻数（0xD9B4BEF9）、区块字节数大小、交易数量等交易相关信息。

·比特币区块头部：记录了版本号、父区块头哈希值、Merkle根哈希值、时间戳、难度目标、随机数（Nonce）等。其中，区块头哈希值是对父区块头通过两次SHA-256哈希运算得到的，可以作为区块的唯一标识符。但是，区块头哈希值并不保存到区块的数据结构中，而是由接收节点重新计算出来的。同时，每个区块头都包含父区块哈希值，这样就将整个账本连接成一个不断增长的链表。比特币上的第一个区块是由中本聪在北京时间2009年1月4日02：15：05创建的“创世区块”（Genesis Block）[12]。

·比特币交易信息：包含生成时间、本次交易Merkle根哈希值、比特币支出与接收地址、版本、本次交易数字签名等。该信息是以明文形式存储的，只有当需要转移货币所有权时，才需要用私钥进行签名与验证。当前交易的付款人通过对前一次交易和收款人的公钥签署一个随机哈希（Hash）的数字签名，并将它附加在货币末尾发送给收款人。收款人对付款人的签名用其公钥进行检验，从而验证该链条上交易的所有者，具体交易模式如图1-4所示。为了防止双重支付（即“双花”），比特币交易系统在文件中以区块的形式保存了所有历史交易序列，每个区块都包含上一个区块的哈希值和当前时间戳，这样就形成了不可伪造和防篡改的区块链结构，并且可以进行历史溯源，即查询任何时间上的任何交易。

 [image:]

图1-4　比特币区块链交易模式[1]

比特币在设计时引入了梅克尔树或默克尔树（Merkle Tree）来实现简化的支付验证（Simplified Payment Verification，SPV），即在不下载账本中所有区块数据的情况下，系统也能够对支付进行快速检验。梅克尔树是一类基于哈希值的二叉树或多叉树，叶子节点存储区块哈希值，非叶子节点包含将所属子节点进行组合后计算的哈希值，通常用于验证信息的完整性。基于区块头中包含的梅克尔树根哈希值和链上已经验证过的中间哈希值列表，梅克尔树可以加快验证指定交易是否包含在区块中，这使得伪造区块头哈希值的成本很高，而且伪造中间哈希值会直接导致验证失败，从而不需要下载所有的区块数据。

2.以太坊（Ethereum）

以以太坊（Ethereum）[20]为代表的支持可编程智能合约的公有链平台开源社区生态体系。其核心理念是将区块链作为可编程的分布式信用基础设施，支持自动化运行的智能合约应用，并将平台交易内容扩展到金融、股权、债务凭证等领域。Vitalik Buterin等创始人于2013年12月开始发起以太坊项目，并计划在第四个阶段Serenity将共识机制从PoW（工作量证明）机制转换到PoS（权益证明）机制上。该项目迅速激发了人们在可信平台上交易金融资产的热情与创造力，现在应用方面有超过上千个DApp上链，已经成为具有国际影响力的开源公链平台。另外，以比特币与以太坊为基础的区块链生态体系还发展出“虚拟货币”或通证（Token）衍生金融与泛娱乐产业链，如ICO（Initial Cryptocurrency Offering）代币融资市场已经受到国家严格监管。

以太坊不同于比特币，比特币利用UTXO（Unspent Transaction Outputs，未花费的交易输出）模型计算余额且没有账户的概念，以太坊提供外部账户（Externally Owned Account，EOA，即通常意义上用公钥与私钥控制的用户账户）和合约账户（不是由私钥文件直接控制，而是由可编程合约代码控制的账户），能够高效查询用户余额和历史交易记录。其中，外部账户没有合约代码，可以通过签名与发送交易到合约账户调用合约，合约账户则能够通过以太坊虚拟机（Ethereum Virtual Machine，EVM）执行智能合约，将执行结果记录到区块链上。以太坊的账户包括交易次数或合约数量（nonce）、以太币余额、合约代码哈希值（合约账户）、账户存储内容的Merkle Patricia树的根节点哈希值（默认为空）等信息，提供支持智能合约执行的栈式EVM，支持图灵完备的计算环境与较为成熟的智能合约编程语言Solidity等。其中，合约程序会被编译成EVM字节码在虚拟机上执行，在正常情况下只能通过日志事件与外部通信。

以太坊采用Merkle Patricia Tree（梅克尔-帕特里夏树，简称MPT，基于Merkle树与Trie树实现的）来实现对交易和状态（数据）的校验和查询操作[13]。由于梅克尔树适用于快速验证与定位非法交易数据哈希值的位置，但不适合于树节点内容的修改操作，因此，以太坊引入了Merkle Patricia树，以实现在账户等信息中执行插入、更新和删除等操作后能快速生成新的树根哈希值。同时，该树根哈希值只与数据有关，而与更新的顺序无关，这样就不需要考虑每次的更新顺序了。每个以太坊区块头均设计了三个树，包括交易树（Transaction Tree）、状态树（State Tree）和收据树（Receipt Tree）。

以太坊的PoW算法又称Ethash算法，通过动态调节难度（融合了内存难度）来达到约每15秒产生一个新区块的速度，即融合了内存难度来提高计算难度，以抵抗单纯定制优化的ASIC挖矿机“挖矿”，其挖矿效率与CPU基本无关，而与内存大小、带宽正相关。以太坊执行智能合约等操作时必须提供“挖矿”获得或购买的以太币（Ether）作为“燃料”（gas），以激励矿工验证交易并竞争执行智能合约，最终由打包交易出块的矿工收取该奖励收益，利用幽灵协议GHOST（Greedy Heaviest Observed Subtree，贪婪最重观察子树）构建树型区块链（含有叔区块，有助于提高区块链的安全性，减弱大型矿工的“挖矿”优势），而不是比特币的链式区块链。另外，以太坊第四阶段将考虑采用PoS机制，即使用带有惩罚机制的Casper协议，以太币的发行率将大大低于幽灵协议下的发行率。

3.Hyperledger Fabric

以Hyperledger Fabric[18]为代表的联盟链平台开源社区生态体系。其目标是面向企业级应用场景的许可区块链（Permissioned Chain），用于解决多个弱信任企业主体间的信任问题，以降低企业间复杂繁琐业务流程带来的信任成本，实现在可控主体范围内共享敏感数据，从而有效提升企业主体间大规模协作活动的效率。Hyperledger Fabric开源社区提供带有身份权限认证的商用区块链平台，采用模块化插件的灵活设计架构，避免了比特币类公链平台与以太坊类公链平台交易效率低下、缺乏完善的身份认证模块等不足，能广泛应用于金融资产存管、供应链、共享经济等领域。Hyperledger Fabric自2015年底开源以来发展迅速，并已经成为主流的联盟链开源平台。另外，值得注意的是，企业以太坊联盟（Enterprise Ethereum Alliance，EEA）、蚂蚁金服、腾讯、百度、BCOS（由微众银行、万向、矩阵元共同发布的开源联盟链平台）、众安、趣链、CITA（秘猿科技）等都与其存在潜在的竞争。企业级BaaS（Blockchain as a Service）平台作为基础设施服务亦是未来国际企业市场的竞争焦点，国际巨头IBM、微软等已经在此领域深耕发力多年，以实现高效动态的部署跨域区块链网络的能力，提供高质量的商用企业级服务。
1.2　Hyperledger Fabric基本概念与架构

本节将首先介绍Hyperledger Fabric的基本概念与架构，接着运行e2e_cli示例演示实验环境的部署步骤，最后分析Fabric系统的初始化启动流程与交易处理流程。
1.2.1　基本概念

本节介绍Hyperledger Fabric的基本概念，包括Peer节点、Orderer排序节点、Client客户端等。

1.Peer节点

在Hyperledger Fabric网络中，Peer节点指提供交易背书、交易验证、提交账本等服务功能的逻辑节点，包括Endorser背书节点、Committer记账节点等，通常采用进程实例（或线程、goroutine等）与功能模块的实现方式，运行在物理服务器、Docker容器等环境中提供服务。因此，不同功能角色的Peer节点可以同时运行在同一个物理节点、虚拟机或容器中。其中，推荐对性能有严格要求的生产环境将Peer节点部署在物理节点上，开发测试环境可以考虑虚拟机或容器环境以方便开发调试与测试。

类似于P2P网络，Fabric中每个Peer节点的功能地位都是对等的，它们之间通过服务分工协作以响应来自Fabric客户端（包括CLI命令行客户端和多种语言SDK客户端）的交易请求消息，并共同维护Fabric分布式账本的数据一致性。目前，Fabric提供了如下两种功能角色的Peer节点，其中：

·Endorser背书节点：负责接收来自客户端的签名提案消息请求，检查消息后模拟执行交易提案，并对模拟执行结果签名背书，即使用私钥对请求提案、状态变更（读写集）等签名，表示Endorser背书节点认为此次交易是合法有效的，然后将签名背书信息等打包成提案响应消息回复给客户端；

·Committer记账节点：负责检查交易消息结构的完整性与合法性、调用VSCC验证交易背书策略、执行MVCC检查读写集冲突等，标记交易的有效性并提交账本，更新本地账本数据库与文件，包括区块数据文件、隐私数据库、区块索引数据库、状态数据库、历史数据库等。

2.Orderer排序节点

Orderer排序节点同样属于逻辑节点，负责管理系统通道与应用通道，维护通道账本与配置，提供Broadcast交易广播服务、Orderer共识排序服务、Deliver区块分发服务等。

通常，Orderer节点通过Broadcast()服务接口接收与处理交易消息请求（普通交易消息与配置交易消息），过滤检查后提交共识组件进行排序，并添加到本地待处理的缓存交易消息列表，按照约定的交易出块规则（如配置出块时间、配置出块字节数限制、通道配置消息单独出块等）切割打包成新区块，再保存到本地账本的区块数据文件中。对于配置交易消息，Orderer节点还负责创建新的应用通道或更新通道配置。同时，Orderer节点通过Deliver()服务接口接收与处理区块请求消息，从本地账本中获取请求范围内的区块数据回复给请求节点。因此，Orderer节点在整个Fabric系统中属于核心功能模块，其处理交易排序达成共识的性能将直接影响到整个Fabric系统的出块效率。

另外，Orderer节点支持独立的多通道（Channel）管理，包括系统通道与应用通道，可以保持各通道内节点的账本数据彼此隔离，账本数据只会同步给加入通道的合法Peer节点，从而确保数据的隐私性与安全性。

3.Client（客户端）

客户端（Client）是用户与Fabric网络组件发送请求进行交互的接口，包括如下两种客户端。

·Fabric-CA客户端：负责节点注册登记，包括登记注册用户信息、获取注册证书与私钥信息等；

·Fabric客户端：负责网络配置与节点管理，包括初始化与更新配置、启动和停止节点等。同时，还负责通道管理（创建、更新、查询等）与链码生命周期管理（安装、实例化、调用、升级等），能够通过Peer节点服务客户端发送消息给Endorser节点与Orderer节点请求处理，包括交易背书、创建通道、更新通道配置、交易排序、请求区块数据等。

目前，Fabric客户端包括CLI（Command Line Interface）命令行客户端和多种语言SDK客户端，如Node.js、Go、Java、Python等，负责与其他服务节点进行交互，提供配置操作、通道操作、链码操作、节点操作、日志操作等相关API接口，支持开发丰富的应用程序。

4.CA节点

CA（Certificate Authority）节点类似于证书机构，提供用户身份注册服务，基于数字证书与标准的PKI服务管理Fabric网络中的成员身份信息，管理证书生命周期如创建、撤销、认证等操作，以及身份鉴别与权限控制功能，包括Ecerts（身份证书）、Tcerts（交易证书）等。目前，Fabric中的身份证书符合X.509标准规范[17]，并且基于ECDSA算法生成公钥与私钥。

通常情况下，任何合法的成员实体都需要在接入网络前获取认证签署的身份证书等，而不需要在运行过程中一直访问CA节点。因此，Fabric-CA节点是相对独立的组件，不会在网络运行时影响到其他流程和节点的状态。

5.Gossip消息协议

Gossip消息协议（流言算法）[22]自20世纪70年代提出到现在已经有40多年的历史，该算法简单高效，具有良好的可扩展性和鲁棒性，被广泛应用于分布式定位、数据库复制等领域，如分布式系统Cassandra用于实现集群失败检测与负载均衡。Gossip消息协议规定，节点采用随机选择近邻节点的方式进行路由并交换信息，近邻节点重复这一过程将其传播给没有数据的节点，直到所有节点收到数据为止。这种方式可以有效避免拥塞和路径失效问题，同时拥有节点数对数量级的较低时间复杂度，常见的数据传输模式包括push模式（主动推方式）、pull模式（主动拉方式）和push/pull模式（推拉结合方式）。

Fabric中的Gossip消息模块可以提供Gossip消息协议服务，负责在应用通道中的组织（通常对应于一个MSP对象）内探测节点成员、在节点间分发区块数据以及同步状态等，用于管理新加入的通道节点，发送成员关系请求消息获知其他节点信息，在组织内分发数据（区块数据与隐私数据）与同步状态，同时使用反熵算法周期性地从其他节点拉取本地缺失的数据（区块数据与隐私数据），以确保组织内所有节点上账本数据的一致性。

6.共识（Consensus）

共识（Consensus）算法通常是指参识节点对一段时间内发生的一批交易状态达成一致观点的计算方法，并按照规则将这些交易打包成区块，以保证同一个通道上所有的节点账本最终具有相同的状态，至少要保证参识节点在以下几个方面的一致性观点。

·区块的基本属性，如区块号。

·区块内交易对象的排列顺序，如按照接收交易的先后时间排序。

·区块内交易的数量，受限于出块时间配置、区块字节数限制、通道配置交易单独出块等规则。

·交易合法性与有效性规则，如VSCC验证交易背书策略、MVCC检查交易数据读写集版本冲突等。

·容忍恶意节点数据或故障节点数据的规则，如PBFT（实用拜占庭容错）算法。

因此，Hyperledger Fabric达成共识的过程包含在交易背书阶段、交易排序阶段、交易验证阶段等，其中：

·背书阶段：Endorser背书节点负责检查签名提案消息并模拟执行，对模拟结果读写集等添加签名，表示予以背书支持，客户端只有收集到满足条件数量的背书信息之后，才允许构造交易请求提交给Orderer节点，同时会在交易验证阶段检查这些背书信息是否满足指定的背书策略，以确保交易背书的合法性；

·排序阶段：目前，Orderer节点支持两类共识组件，包括Solo类型（用于单节点测试）与Kafka类型（基于Kafka集群）。这两类共识组件都是先利用Golang通道、Kafka集群等对接收到的合法消息（符合通道处理要求）进行排序，对交易顺序等达成一致再添加到缓存交易消息列表中，并按照约定的交易出块规则切割打包构造新区块，以保证全局一致的区块顺序、区块内交易顺序与交易数量等。另外，Fabric 0.6中测试的sbft共识组件则是参识节点先将交易分割打包到区块中，经过sbft共识算法（简外的BFT算法）确定区块顺序的一致性以达成共识，最后写入账本；

·验证阶段：Committer记账节点负责验证排序后的交易数据，包括检查交易结构格式的正确性、调用VSCC链码验证交易背书签名是否满足预设指定的背书策略、执行MVCC检查交易数据读写集的版本冲突等，标记交易的有效性，并提交到区块数据文件中，建立索引更新到区块索引数据库。

7.成员关系服务提供者（MSP）

MSP（Membership Service Provider，成员关系服务提供者或成员关系服务模块）是Fabric中提供身份验证的实体抽象概念，基于X.509标准的身份证书实现对不同资源实体（成员、节点、组织、联盟等）进行认证等权限管理操作，同时提供数字签名算法与身份验证算法。

Fabric中属于同一个MSP组件内的成员都拥有共同信任的根证书，支持共享敏感数据。一个组织或联盟都可以对应一个层级化的MSP实例，通常一个MSP对象负责一个组织或联盟对象。MSP对象包括MSP名称ID、信任的根证书、中间证书列表、管理员身份证书、组织单元列表、CRL（证书撤销列表）等。

8.组织（Organization）与联盟（Consortium）

组织（Organization）表示多个成员的集合，通常拥有共同信任的根证书（根CA证书或中间CA证书）。组织下的所有成员被认为拥有同一个组织身份。目前，存在普通成员角色（Member）和管理员角色（Admin）两类组织成员，后者具有修改组织配置的权限。组织对象通常包括组织名称、组织所属MSP名称（MSP ID）、MSP对象、锚节点列表等信息。

联盟（Consortium）表示相互合作的多个组织集合，使用相同的Orderer服务，拥有相同的通道创建策略（ALL、MAJORITY或ANY），其中，MAJORITY策略要求联盟内必须要超过一半的成员都同意才能创建新通道。

9.交易（Transaction）和区块（Block）

交易（Transaction，或称为事务）是Fabric的核心概念，通常是指通过调用链码（智能合约）改变账本状态数据的一次操作。对账本状态的变更是用交易结果读写集来描述的，将交易集合经过Orderer节点排序后按规则打包到区块中。目前，Hyperledger Fabric包括普通交易消息、配置交易消息等，其中，普通交易消息封装了变更账本状态的执行交易结果，需要经过排序后打包成区块，配置交易消息则用于创建新的应用通道或更新通道配置，通常在排序后单独打包成区块，同时将最新配置区块号更新到最新的区块元数据中以便于索引查找。

区块（Block）是指一段时间内发生的交易集合，经排序后按规则打包后并添加签名、哈希值、时间戳与其他元数据所构成的数据结构，而区块链就是以区块为基础按照时间顺序连接构成的链状数据结构。Fabric中的区块结构（Block类型）包括区块头Header、交易数据集合Data以及区块元数据Metadata三个部分，其中，区块头Header封装了区块号、前一个区块的哈希值、当前区块的哈希值，交易数据集合Data封装了打包的交易集合，区块元数据Metadata封装了如下4个元数据索引项，其中：

·BlockMetadataIndex_SIGNATURES：区块签名；

·BlockMetadataIndex_LAST_CONFIG：最新配置区块的区块号；

·BlockMetadataIndex_TRANSACTIONS_FILTER：最新交易过滤器，封装了交易数据集合Data中所有交易对应的交易验证码，标识其交易的有效性。

·BlockMetadataIndex_ORDERER：Orderer配置信息，如Kafka共识组件的初始化参数。

通常情况下，Orderer节点根据交易出块规则（出块时间限制、区块字节数限制、配置交易单独出块等）来确定是否将收到的一批交易消息排序切割打包成区块。

10.链码（Chaincode）

链码（Chaincode）或链上代码就是Hyperledger Fabric中的智能合约，分为系统链码和用户链码。通常情况下，链码要经过安装和实例化（部署）步骤之后才能正常调用，同时必须实现Chaincode类型接口的Init()方法与Invoke()方法。

系统链码在节点启动或初始化新链结构（节点加入通道、节点启动恢复等）时完成部署，用于支持配置管理、背书签名、链码生命周期管理等系统功能，并运行在goroutine中，目前支持如下5类系统链码。

·CSCC（Configuration System Chaincode）：配置系统链码，负责管理系统配置，支持的命令包括JoinChain节点加入应用通道、GetConfigBlock获取通道配置区块、UpdateConfigBlock更新通道配置区块、GetChannels获取节点加入的通道列表等；

·ESCC（Endorsement System Chaincode）：背书管理系统链码，负责对模拟执行结果背书签名，并创建提案响应消息，同时管理背书策略；

·LSCC（Lifecycle System Chaincode）：生命周期系统链码，负责管理用户链码的生命周期，如打包、安装、实例化（部署）、升级、调用、查询等链码操作；

·QSCC（Query System Chaincode）：查询系统链码，负责查询账本和区块链信息，支持的命令包括GetChainInfo获取区块链信息、GetBlockByNumber获取指定区块号的区块数据、GetBlockByHash获取指定区块头哈希值的区块数据、GetTransactionByID获取指定交易ID的交易数据、GetBlockByTxID获取指定交易TxID的区块数据等；

·VSCC（Verification System Chaincode）：验证系统链码，负责对交易数据进行验证，并检查签名背书信息是否满足预定的背书策略。

用户链码是用户编写的智能合约代码，通常运行在Docker容器中，支持打包、安装、实例化（部署）、升级、调用等链码操作。

11.通道（Channel）与链（Chain）

通道（Channel）是Fabric的核心概念，通常是指Orderer排序节点管理的彼此隔离的原子广播渠道，提供隔离Peer节点信息的重要机制。链或链结构（Chain）包含关联通道上的账本区块及其交易数据、通道配置、链码信息等，并将账本上的区块链接起来构成线性数据结构。

Peer节点在加入应用通道时会主动创建关联通道的链结构对象，以管理本地节点上该通道的账本、配置、链码信息等，接收保存来自Orderer节点或其他节点的通道账本数据。通常，由通道组织Leader主节点负责从Orderer节点请求获取通道账本的区块数据，并分发到组织内的其他节点。另外，隐私数据（明文）也会在通道上组织内授权的节点间传播。因此，通道上的数据只会发送给加入通道的合法组织成员，从而隔离未经授权的数据访问，保护数据隐私性。

目前，Fabric上的通道分为应用通道（Application Channel）和系统通道（System Channel），其中：

·应用通道：保存Application配置（组织信息等）等，为上层应用程序处理交易提供隔离机制，在指定通道的组织成员间共享账本数据。客户端向Orderer节点发送通道配置交易消息创建应用通道，并生成该通道的创世区块（Genesis Block），同时还可以提交新的通道配置交易消息以更新通道配置。另外，应用通道账本上还保存了应用通道的创世区块、配置区块（更新通道配置）与普通交易区块。

·系统通道：保存Orderer配置（共识组件类型、服务地址、出块规则、通道数量等）等，基于系统通道配置与应用通道配置交易消息创建新的应用通道，并将其注册到Orderer节点的多通道注册管理器Registrar对象上，同时启动通道共识组件链对象，从而能够正常处理应用通道上的交易消息请求。另外，系统通道账本上还保存了系统通道的创世区块、所有应用通道的创世区块及其更新的配置区块。

注意，Fabric创建或更新应用通道时必须指定通道配置交易文件。

12.账本（Ledger）

Fabric账本（Ledger）提供了多个数据库与文件用于存储账本数据，且每个通道都拥有物理或逻辑上独立的账本对象，具体如下。

·idStore数据库：保存账本ID信息，将账本ID与创世区块字节数组构成的键值对保存到LevelDB数据库中；

·区块数据文件：保存所有区块数据，用于存储所有交易状态发生变更的历史记录；

·隐私数据库：保存隐私数据（明文），支持LevelDB数据库；

·状态数据库：记录最新的世界状态（World State），即状态变更结果，保存有效交易的公共数据、隐私数据哈希值与隐私数据，支持LevelDB与CouchDB数据库；

·历史数据库：记录交易（经过Endorser背书的有效交易）中每个状态数据的历史变化信息，支持LevelDB数据库；

·区块索引数据库：存放区块索引信息，支持按照区块头哈希值、区块号、区块交易ID检查区块的文件位置，支持按照交易ID、区块号与交易序号检查交易的文件位置等，支持LevelDB数据库；

·transient隐私数据库：Fabric 1.1.0开始支持隐私数据集合的实验版本新特征（1.2.0及后续版本支持），用户可以在智能合约的交易执行中获取与保存隐私数据。Peer节点将通过Gossip协议传播的隐私数据交由transient隐私存储对象暂时保存到本地的transient隐私数据库（LevelDB），并在将区块更新提交到账本的隐私数据库时，再自动清理相关的隐私数据记录，以保持数据的时效性。

13.策略管理（Policy）

Fabric采用策略这种权限管理方法对系统资源的访问权限进行控制，包括交易背书策略、链码实例化策略、通道管理策略等。策略（Policy类型，含策略类型Type与策略内容Value）定义了指定类型的验证规范，以检查请求访问的节点签名数据是否符合规范要求，具体如下。

·SignaturePolicy：支持单个角色的签名策略SignaturePolicy_SignedBy类型与多个角色的签名组合策略SignaturePolicy_NOutOf_类型，后者是在前者的基础上支持多个签名实体的AND、OR、NOutOf等签名组合策略，NOutOf是指满足m个条件中的n个即可满足策略（m≥n）；

·ImplicitMetaPolicy：隐式元策略，适用于通道管理策略，是在SignaturePolicy签名策略的基础上定义子策略时所应该满足的规则，通常采用递归方式进行定义，支持ImplicitMetaPolicy_ANY（任意子规则满足）、ImplicitMetaPolicy_ALL（全部子规则满足）、ImplicitMetaPolicy_MAJORITY（超过一半的子规则满足）。

常见的策略具体如下。

·交易背书策略：用于在实例化链码时指定交易的背书规则，客户端需要收集到足够多的有效签名背书，并通过背书策略的验证（VSCC）才能确定该交易是合法有效的。交易背书策略可以在命令行中通过-P选项指定，并使用背书主体角色的布尔表达式（AND、OR等组合）进行描述，默认背书策略要求指定MSP（默认名称“DEFAULT”）成员签名；

·链码实例化策略：指定实例化链码或升级链码的权限，通常是在打包链码package时通过-i选项指定的，默认是通道的组织管理员身份（ADMIN）。链码实例化或升级时将链码数据对象（ChaincodeData类型，含有链码实例化策略）保存到指定通道的账本中（lscc名字空间）；

·通道管理策略：采用递归结构在通道配置中定义不同层级与类型的权限策略，包括Readers（定义读取通道数据的读权限）、Writers（定义提交通道数据的写权限）与Admins（定义修改通道配置的管理权限）等权限，并在通道配置路径（/Channel、/Channel/Application、/Channel/Orderer、/Channel/*/Org等）上指定对应层级对象（系统、应用通道、系统通道、任意组织等）中读、写、管理等权限的策略名称（如/Channel/Writers）、类型（ImplicitMetaPolicy类型或SignaturePolicy类型）与规则（如ImplicitMetaPolicy_ANY策略），其中，使用configtxgen工具生成创世区块或通道配置交易时默认的通道配置策略如表1-1所示，所有策略都定义在common Hools lconfigtxgem/encoder/encoder.go中，*表示Orderer或Application，Org表示组织名称。Fabric 1.2以后支持用户在Configtx.yaml文件中自定义通道配置的默认访问策略类型及策略规则。

表1-1　通道配置的默认策略列表

 [image:]

1.2.2　Hyperledger Fabric架构

1.Hyperledger Fabric系统逻辑架构

Hyperledger Fabric自1.0.0版以后，其系统逻辑架构发生了很大的变化，如图1-5所示。从应用层视角来看，Hyperledger Fabric为开发人员提供了CLI命令行终端、事件模块、客户端SDK、链码API等接口，为上层应用提供了身份管理、账本管理、交易管理、智能合约管理等区块链服务，具体如下。

·身份管理：获取用户注册证书及其私钥，用于身份验证、消息签名与验签等；

·账本管理：提供多种方式查询与保存账本数据，如查询指定区块号的区块数据；

·交易管理：构造并发送签名提案消息请求背书，检查合法后请求交易排序，并打包成区块，验证交易后提交账本；

·智能合约管理：基于链码API编写智能合约程序，安装链码并实例化（部署）后，通过调用链码请求执行更改状态的操作。

 [image:]

图1-5　Hyperledger Fabric逻辑架构示意图[23]

从底层视角看，Hyperledger Fabric提供了成员关系服务、共识服务、链码服务、安全与密码服务等服务，具体如下。

·成员关系服务：Fabric-CA节点提供成员登录注册服务，接收申请并授权新用户证书与私钥等，对身份证书生命周期进行管理。MSP组件基于身份证书实现对成员等资源实体进行认证等权限管理操作，同一个MSP组件对象内的成员拥有共同信任的根证书；

·共识服务：通过Endorser背书节点模拟执行提案消息，请求对模拟执行结果等签名进行背书，再提交到Orderer节点共识组件（Solo、Kafka等）对交易进行排序并打包出块，然后交由Committer记账节点验证交易并提交账本。同时，基于Gossip消息协议提供P2P网络通信机制，实现高效数据分发与状态同步，确保节点账本的一致性；

·链码服务：基于Docker容器提供隔离运行环境执行链码，支持多种语言开发的链码程序（智能合约），具有良好的可扩展性，同时，提供完善的镜像文件仓库管理机制，支持快速环境部署与测试；

·安全与密码服务：将安全与密码服务封装为BCCSP组件，提供生成密钥、消息签名与验签、加密与解密、获取哈希函数等服务功能，具有可插拔组件特性，能够扩展定制的密码安全服务算法（如国密等）。

2.Hyperledger Fabric系统运行时架构

Hyperledger Fabric包括Client客户端节点、CA节点、Endorser背书节点、Committer记账节点、Leader主节点、Orderer排序节点等，如图1-6所示。

 [image:]

图1-6　Hyperledger Fabric系统运行时架构示意图

（1）CA节点

CA节点部署Fabric-CA等可选组件，基于RESTful接口提供用户注册、证书颁发等用户管理与证书服务。用户可以通过客户端登记信息，注册合法用户并登录，申请获取合法的身份证书与私钥，交由MSP组件验证与管理用户实体身份。另外，用户也可以通过其他第三方合法的CA工具实现颁发证书等服务功能。

（2）Client客户端节点

Client客户端节点部署用户应用程序或CLI命令行终端，需要登记注册用户（或其他合法途径）获取合法的证书与私钥，并执行用户程序或命令，首先发送消息到Endorser背书节点请求背书，当收集到足够多的背书结果后，将背书信息、模拟执行结果等封装为普通交易消息，通过Broadcast()服务接口发送给Orderer节点请求排序，生成区块后广播到通道中的所有Peer节点上。对于配置交易消息，还需要创建新的应用通道或者更新通道配置。另外，Client节点还可以通过Deliver()服务接口从Orderer节点请求获取指定通道的区块数据。

（3）Peer节点

Peer节点包括Endorser背书节点、Committer记账节点等，可以运行在同一个物理服务器节点上。

Endorser背书节点负责启动链码容器用于模拟执行签名提案，并对模拟执行结果读写集、交易提案等进行签名背书，表示认可交易提案模拟执行结果。通常，默认静态指定Endorser背书节点为当前操作的Peer节点（如命令行模式），或者设置参数列表动态指定Endorser背书节点。

同一个通道上的所有Peer节点默认都是该通道组织上的Committer记账节点，维护本节点上该通道的账本数据，负责对交易进行验证，调用VSCC系统链码检查背书信息是否满足实例化时指定的背书策略，再执行MVCC检查以标记交易的有效性，并提交本地账本。

另外，Leader主节点代表组织（通常对应于一个MSP组件）通过Deliver()服务接口与Orderer节点建立gRPC通信连接，请求指定通道的账本区块数据。如果接收完毕账本当前已有的区块数据，则阻塞等待直到提交新区块。同时，Leader主节点通过Gossip消息协议将接收的区块数据分发到组织内的其他节点，以达到广播交易的目的。同时，通道组织内的Peer节点基于反熵算法同步缺失的数据（区块数据与隐私数据），及时更新组织内的所有节点账本，以确保数据的一致性。

（4）Orderer排序节点

目前，Hyperledger Fabric中的Orderer排序节点提供了基于单个节点的排序服务（Solo类型，仅用于测试）或基于多个节点（集群）的排序服务（Kafka类型）。其中，Kafka共识组件支持CFT（Crash Fault Tolerence，崩溃故障容错）错误。

Orderer节点通过Broadcast()服务接口接收交易消息请求，包括普通交易消息、配置交易消息等，其将消息提交给共识组件进行排序，再添加到本地缓存交易消息列表，按照出块规则（出块时间配置、区块字节数限制、配置交易消息单独出块等）切割打包成新区块，并提交Orderer节点本地账本。同时，通过Deliver()服务接口处理区块请求消息，从本地账本获取请求的区块数据然后发送给组织Leader主节点，并广播到通道组织内的其他节点上。
1.2.3　安装基础环境与部署Fabric系统

本节以Hyperledger Fabric自带示例e2e_cli为例介绍系统部署的流程，建立实验环境进行研究。

1.安装基础环境

读者可以使用虚拟机或物理服务器安装基础环境以及Fabric系统（1.1.0版）用于测试，推荐安装CentOS、Ubuntu等主流Linux操作系统。本节的实验环境是以CentOS 7.4（发行版本7.4.1708）的x86_64版本操作系统为例，默认内核版本为3.10，选择单机多节点测试环境，即所有功能节点容器运行在同一个单机节点上进行交互，e2e_cli示例默认采用了Kafka共识组件。

为避免出错，生产环境最好是先将内核版本升级到3.10以上的最新版本（按照满足Docker运行环境的配置要求），以修复旧版本可能存在的程序缺陷，同时保证功能稳定与符合系统要求。如果在实例化链码步骤启动Docker容器时发生oci runtime error错误，则必须将系统升级到3.10以上的最新版本。

在虚拟机或物理服务器上安装了CentOS 7.4的x86_64版本的操作系统之后，单机测试环境可以选择关闭SELinux等安全配置，即编辑/etc/selinux/config文件中的SELINUX=disabled，保存后退出然后重启操作系统。

（1）安装与卸载Docker CE

使用root账号登录CentOS 7.4操作系统，在命令行终端中执行如下命令在线安装Docker CE。如果以普通用户账号登录，则在执行特殊命令（如yum）或系统权限命令时需要添加sudo。

#必装软件包

[root@localhost ~]# yum install -y yum-utils device-mapper-persistent-data lvm2

[root@localhost ~]# yum-config-manager --add-repo https://download.docker.com/linux/centos/docker-ce.repo # 配置稳定仓库并保存仓库配置

[root@localhost ~]# yum makecache fast # 更新yum安装的相关Docker软件包

[root@localhost ~]# yum install docker-ce # 安装Docker CE

接着，选择配置Docker服务跟随操作系统开机启动的方式，正常启动Docker运行。

[root@localhost ~]# systemctl enable docker.service # 设置跟随系统开机启动

[root@localhost ~]# systemctl start docker # 正常启动Docker

然后，查询Docker版本号并检查是否已成功安装了Docker。

[root@localhost ~]# docker version

Client:

 Version: 18.06.0-ce-rc3

 API version: 1.38

 Go version: go1.10.3

 Git commit: cbfa3d9

 Built: Thu Jul 12 05:26:08 2018

 OS/Arch: linux/amd64

 Experimental: false

Server:

 Engine:

 Version: 18.06.0-ce-rc3

 API version: 1.38 (minimum version 1.12)

 Go version: go1.10.3

 Git commit: cbfa3d9

 Built: Thu Jul 12 05:28:34 2018

 OS/Arch: linux/amd64

 Experimental: false

如果要卸载已经安装的Docker，则执行如下命令查找已经安装的Docker软件包。

[root@localhost ~]# yum list installed | grep docker

docker-ce.x86_64 18.06.0.ce-2.3.rc3.el7 @docker-ce-test

接着，删除yum中的Docker软件包。

[root@localhost ~]# yum remove docker-ce.x86_64

最后，删除Docker相关的镜像、容器、自定义配置等文件。

[root@localhost ~]# rm -rf /var/lib/docker

（2）安装Docker-Compose

Docker Compose项目实现了快速编排Docker容器集群的功能，可以定义和运行多个Docker容器的应用，其前身是开源项目Fig。Compose使用Dockerfile模板文件定义一个单独的应用容器，通过docker-compose.yml模板文件（YAML格式）定义一组相互关联的应用容器为一个项目（project）提供业务，并通过子命令对项目容器进行生命周期管理。因此，Compose极大地简化了Docker容器集群的编排工作，其Github官方地址为https://github.com/docker/compose。

首先，安装curl软件依赖包。

[root@localhost ~]# yum install curl

接着，查看https://github.com/docker/compose/releases选择较新的Docker Compose版本，执行如下命令下载Docker Compose到目录/usr/local/bin/docker-compose，并设置执行权限。

[root@localhost ~]# curl -L https://github.com/docker/compose/releases/ download/1.21.2/docker-compose-`uname -s`-`uname -m` > /usr/local/bin/docker- compose

[root@localhost ~]# chmod +x /usr/local/bin/docker-compose

如果出现No such file or directory提示问题，则执行如下操作复制对应的目录。

[root@localhost ~]# cp /usr/local/bin/docker-compose /usr/bin

最后，打印docker-compose版本信息，检查是否成功安装。

[root@localhost ~]# docker-compose version

docker-compose version 1.21.2, build a133471

docker-py version: 3.3.0

CPython version: 3.6.5

OpenSSL version: OpenSSL 1.0.1t 3 May 2016

（3）安装与配置Go语言环境

执行如下命令下载Go语言包，以1.10.3版本为例。在线下载速度可能会比较慢，用户同样能通过https://golang.org/doc/install?download=go1.10.3.linux-amd64.tar.gz下载指定版本，并解压到/usr/local目录。

[root@localhost ~]# curl -O https://storage.googleapis.com/golang/go1.10.3. linux-amd64.tar.gz

[root@localhost ~]# tar -C /usr/local -xzf go1.10.3.linux-amd64.tar.gz

接着，使用vim修改/etc/profile文件，并在文件最后添加Go语言环境变量。

export PATH=$PATH:/usr/local/go/bin

export GOROOT=/usr/local/gc

export GOPATH=/opt/gopath

然后，保存文件后执行命令更新环境变量。

[root@localhost ~]# source /etc/profile

最后，执行如下命令查看Go版本信息。

[root@localhost ~]# go version

go version go1.10.3 linux/amd64

至此，Linux操作系统、Docker、Docker Compose、Go语言环境等基础环境安装准备完毕。

2.下载与安装Fabric系统

首先安装Git工具，使用Git命令下载Fabric代码到指定目录中，然后创建并进入到指定源码目录，通过Git的checkout命令切换到指定v1.1.0版本的源码。

[root@localhost ~]# yum –y install git

[root@localhost ~]# mkdir -p ~/go/src/github.com/hyperledger

[root@localhost ~]# cd ~/go/src/github.com/hyperledger/

[root@localhost hyperledger]# git clone https://github.com/hyperledger/fabric.git

[root@localhost hyperledger]# mkdir -p /opt/gopath/src/github.com/hyperledger/fabric/

[root@localhost hyperledger]# cd /opt/gopath/src/github.com/hyperledger/fabric/

[root@localhost fabric]# git checkout -b v1.1.0

如果下载速度太慢，则推荐通过https://github.com/hyperledger/fabric/archive/v1.1.0.tar.gz链接下载源码压缩文件，解压后放入上述目录。注意，下载源码指定目录必须与源码import指定文件路径保持一致，当前源码存放目录是/opt/gopath/src/github.com/hyperledger/fabric/。

[root@localhost ~]# tar -C /opt/gopath/src/github.com/hyperledger/fabric/ -xzf fabric-1.1.0.tar.gz

3.下载Fabric相关的Docker镜像

为了加速下载Fabric相关的Docker镜像，可以创建指定配置文件并添加阿里云加速器地址，保存退出后重新加载Docker服务。该操作需要注册阿里云账号（https://dev.aliyun.com/），进入阿里云镜像加速器页面https://cr.console.aliyun.com/#/accelerator，点击左侧“镜像加速器”目录，查看并复制用户专属的镜像加速器地址，如https://XXX.mirror.aliyuncs.com。

[root@localhost ~]# mkdir -p /etc/docker

[root@localhost ~]# vim /etc/docker/daemon.json

{

 "registry-mirrors": ["https://XXX.mirror.aliyuncs.com"]

}

[root@localhost ~]# systemctl daemon-reload

[root@localhost ~]# systemctl restart docker

接着，切换当前目录至fabric/examples/e2e_cli，运行download-dockerimages.sh脚本下载e2e_cli示例必要的Fabric镜像文件，同时，通过参数指定fabric-ca与Fabric版本为x86_64-1.1.0。

[root@localhost ~]# cd /opt/gopath/src/github.com/hyperledger/fabric/examples /e2e_cli/

[root@localhost e2e_cli]# source download-dockerimages.sh -c x86_64-1.1.0 -f x86_64-1.1.0

e2e_cli示例默认使用Kafka共识组件，因此还需要下载fabric-kafka与fabric-zookeeper镜像。

[root@localhost e2e_cli] docker pull hyperledger/fabric-kafka:latest

[root@localhost e2e_cli] docker pull hyperledger/fabric-zookeeper:latest

然后，执行docker命令查看已经下载的所有镜像（未启用CouchDB数据库）。

[root@localhost e2e_cli] docker images

REPOSITORY TAG IMAGE ID CREATED SIZE

hyperledger/fabric-zookeeper latest 2b51158f3898 2 weeks ago 1.44GB

hyperledger/fabric-kafka latest 936aef6db0e6 2 weeks ago 1.45GB

hyperledger/fabric-ca latest 72617b4fa9b4 4 months ago 299MB

hyperledger/fabric-ca x86_64-1.1.0 72617b4fa9b4 4 months ago 299MB

hyperledger/fabric-tools latest b7bfddf508bc 4 months ago 1.46GB

hyperledger/fabric-tools x86_64-1.1.0 b7bfddf508bc 4 months ago 1.46GB

hyperledger/fabric-orderer latest ce0c810df36a 4 months ago 180MB

hyperledger/fabric-orderer x86_64-1.1.0 ce0c810df36a 4 months ago 180MB

hyperledger/fabric-peer latest b023f9be0771 4 months ago 187MB

hyperledger/fabric-peer x86_64-1.1.0 b023f9be0771 4 months ago 187MB

hyperledger/fabric-javaenv latest 82098abb1a17 4 months ago 1.52GB

hyperledger/fabric-javaenv x86_64-1.1.0 82098abb1a17 4 months ago 1.52GB

hyperledger/fabric-ccenv latest c8b4909d8d46 4 months ago 1.39GB

hyperledger/fabric-ccenv x86_64-1.1.0 c8b4909d8d46 4 months ago 1.39GB

hyperledger/fabric-baseos x86_64-0.4.6 220e5cf3fb7f 4 months ago 151MB

最后，将base/peer-base.yaml配置文件中的默认Docker网络名称e2ecli_default修改为e2e_cli_default，维护默认网络名称与当前目录e2e_cli名称保持一致，启动过程中Docker会基于该目录名称创建网络。

[root@localhost e2e_cli] vim ./base/peer-base.yaml

- CORE_VM_DOCKER_HOSTCONFIG_NETWORKMODE=e2ecli_default # 原来的配置项

- CORE_VM_DOCKER_HOSTCONFIG_NETWORKMODE=e2e_cli_default # 修改后的配置项

如果不修改该网络名称，则可能会报如下错误。

Error: Error endorsing chaincode: rpc error: code = Unknown desc = Error starting container: API error (404): {"message":"network e2ecli_default not found"}

1.2.4　Fabric初始化启动流程

1.e2e_cli示例概述

e2e_cli示例演示了基于链码查询2个账户余额与转账操作，具体如下。

·1个Orderer节点：默认采用Kafka共识组件，即4个Kafka服务节点和3个Zookeeper节点；

·4个Peer节点：e2e_cli示例程序将其顺序编号为Peer0-Peer3，并加上组织名称来标识节点；

·1个CLI命令行客户端节点（同时作为配置节点）：客户端节点使用cryptogen和configtxgen命令行工具生成相关的配置文件、身份证书文件、签名私钥文件、TLS证书、创世区块文件等。

如图1-7所示，e2e_cli示例网络拓扑结构中的4个Peer节点分别属于两个组织，即Org1组织（Peer0/Org1节点与Peer1/Org1节点）和Org2组织（Peer2/Org2节点与Peer3/Org2节点），并加入同一个应用通道（默认名称为mychannel）。各组织的第1个节点即Peer0/Org1节点（主机名peer0.org1.example.com）和Peer2/Org2节点（主机名peer0.org2.example.com）作为锚节点与其他组织通信，默认采用动态选举机制（即core.yaml配置文件默认配置peer.gossip.useLeaderElection为true，peer.gossip.orgLeader为false）选举产生组织上的Leader主节点，并通过Deliver()服务接口负责从Orderer服务节点请求获取本通道账本上的所有区块数据。

e2e_cli示例调用执行network_setup.sh（fabric/examples/e2e_cli/network_setup.sh）脚本，启动或停止Hyperledger Fabric系统，指定应用通道名称$channel-name、超时时间$cli_timeout以及CouchDB启用选项couchdb，其标准命令格式如下：

network_setup <up|down> <\$channel-name> <\$cli_timeout> <couchdb>

实际上，network_setup up命令调用networkUp()函数启动Fabric网络。networkUp()函数首先运行generateArtifacts.sh脚本，在当前e2e_cli/crypto-config目录中生成相关的配置文件，并判断CouchDB启用参数以决定是否启动CouchDB容器（默认不开启该配置项）。接着，调用docker-compose执行$COMPOSE_FILE（即docker-compose-cli.yaml）文件。该文件配置了所有功能节点的容器与镜像名称、依赖配置文件、环境变量、工作目录、服务端口等，并将本地目录作为数据卷挂载到对应节点的镜像目录中。最后，在后台启动所有节点的Docker容器以提供正常的服务。如果没有单独下载Fabric相关镜像，则会自动从官方网站上下载镜像，下载速度可能会较慢，请自行设置镜像加速器。

 [image:]

图1-7　Hyperledger Fabric初始化启动流程示意图

实际上，Orderer排序节点启动后提供共识排序服务并创建系统通道，Peer节点通过默认命令peer node start启动，CLI客户端节点作为用户操作终端默认执行script.sh脚本（examples/e2e_cli/scripts/script.sh），并且上述节点都运行在Docker容器中。如果想手工尝试测试步骤，则可以先删除docker-compose-cli.yaml中的cli容器启动命令command，再运行network_setup up命令启动网络，并手工执行后续步骤以查看实验结果。

script.sh脚本首先尝试获取系统通道（名称为“testchainid”）的创世区块，以测试Orderer节点是否正常可用，再设置当前CLI客户端容器的4个环境变量为Peer0/Org1节点的相关配置，以切换连接到Peer0/Org1节点上。此时，CLI客户端可以发送peer channel create命令到Peer0/Org1节点，请求Orderer节点建立新的应用通道。

接着，script.sh脚本依次切换到所有4个Peer节点上，通过执行peer channel join命令将切换的节点加入到新通道，并执行peer channel update命令更新Peer0/Org1节点与Peer2/Org2节点上的锚节点配置。

然后，script.sh脚本在Peer0/Org1节点上执行peer chaincode install命令，安装链码chaincode_example02.go。同时，在Peer2/Org2节点上执行peer chaincode instantiate命令实例化链码，以启动链码容器提供服务。该链码初始化账户A和账户B的余额分别为100元与200元，指定背书策略是两个组织中的任意成员签名。

最后，script.sh脚本执行peer chaincode invoke命令调用链码，从账户A转账10元到账户B，然后在Peer3/Org2节点上同样安装chaincode_example02.go链码，并执行peer chaincode query命令检查账户A的余额是否为90元。

如图1-7所示，目前，Hyperledger Fabric网络从初始化启动到正常提供链码服务的流程包括以下步骤。

①生成系统初始化启动的相关配置文件。e2e_cli示例脚本generateArtifacts.sh通过cryptogen工具生成组织成员关系和身份证书、密钥等文件。接着，复制生成配置文件docker-compose-e2e.yaml，并替换其中正确的密钥文件位置。然后，通过configtxgen工具生成节点与通道配置文件，包括Orderer节点上系统通道的创世区块文件genesis.block、新建应用通道（mychannel）的配置交易文件channel.tx、组织锚节点配置更新交易文件Org1MSPanchors.tx与Org2MSPanchors.tx等；

②启动Orderer排序节点。Orderer排序节点根据orderer.yaml配置文件、成员组织结构与身份证书（存放在指定配置路径的msp、tls等目录下）等文件启动节点提供服务，并基于系统通道创世区块文件genesis.block创建系统通道（默认通道名称为testchainid）；

③启动Peer节点（Endorser节点、CLI客户端节点等）。Peer节点根据core.yaml配置文件、成员组织结构与身份证书（存放在指定配置路径的msp、tls等目录下）等文件启动节点；

④创建与加入通道、更新锚节点配置。Peer节点首先读取新建应用通道的通道配置交易文件channel.tx，向Orderer节点发送通道配置交易消息，以请求创建新的应用通道（名称为“mychannel”），并依次将两个组织上的所有Peer节点加入新通道，同时，使用Org1MSPanchors.tx与Org2MSPanchors.tx分别更新两个组织的锚节点配置；

⑤安装、实例化与调用链码。Peer节点安装用户链码并进行实例化，在Peer节点上启动Docker容器以提供调用链码服务。此时，Peer节点可以正常发起交易请求处理。

本节将继续介绍Hyperledger Fabric整个初始化启动的详细流程，并作为后续章节分析核心模块的逻辑主线。

2.生成系统初始化启动的相关配置文件

（1）组织成员关系与身份证书等相关文件

用户执行network_setup.sh命令启动Fabric网络，该脚本命令会调用networkUp()函数，如代码清单1-1所示。该函数首先检查指定目录下是否存在./crypto-config目录，用于保存身份证书等文件。如果不存在该目录，则执行source generateArtifacts.sh$CH_NAME命令生成相关目录。其中，应用通道名称$CH_NAME默认为mychannel。

[root@localhost e2e_cli] bash network_setup.sh up

代码清单1-1　network_setup.sh脚本networkUp()函数的源码示例

examples/e2e_cli/network_setup.sh文件

function networkUp () {

 if [-d "./crypto-config"]; then

 echo "crypto-config directory already exists."

 else

 source generateArtifacts.sh $CH_NAME

 fi

 if ["${IF_COUCHDB}" == "couchdb"]; then

 CHANNEL_NAME=$CH_NAME TIMEOUT=$CLI_TIMEOUT docker-compose -f $COMPOSE_FILE -f $COMPOSE_FILE_COUCH up -d 2>&1

 else

 CHANNEL_NAME=$CH_NAME TIMEOUT=$CLI_TIMEOUT docker-compose -f $COMPOSE_FILE up -d 2>&1

 fi

 if [$? -ne 0]; then

 echo "ERROR !!!! Unable to pull the images "

 exit 1

 fi

 docker logs -f cli

}

generateArtifacts.sh脚本按顺序调用了3个函数，即generateCerts()、replacePrivateKey()与generateChannelArtifacts()。

如代码清单1-2所示，generateCerts()函数将cryptogen工具变量CRYPTOGEN配置为指定目录下的二进制程序（$FABRIC_ROOT/release/$OS_ARCH/bin/cryptogen）。其中，$FABRIC_ROOT是e2e_cli示例所在位置的上级目录（$PWD/../..），即Fabric源码目录/opt/gopath/src/github.com/hyperledger/fabric/，$OS_ARCH保存当前操作系统的版本与类型，如linux-amd64。因此，generateCerts()函数检查的目录实际上是/opt/gopath/src/github.com/hyperledger/fabric/release/linux-amd64/bin。

代码清单1-2　generateArtifacts.sh脚本中generateCerts()函数的源码示例

examples/e2e_cli/generateArtifacts.sh文件

……

export FABRIC_ROOT=$PWD/../..

……

OS_ARCH=$(echo "$(uname -s|tr '[:upper:]' '[:lower:]'|sed 's/mingw64_nt.*/windows/')-$(uname -m | sed 's/x86_64/amd64/g')" | awk '{print tolower($0)}')

……

Generates Org certs using cryptogen tool

function generateCerts (){

 CRYPTOGEN=$FABRIC_ROOT/release/$OS_ARCH/bin/cryptogen

 if [-f "$CRYPTOGEN"]; then

 echo "Using cryptogen -> $CRYPTOGEN"

 else

 echo "Building cryptogen"

 make -C $FABRIC_ROOT release

 fi

 echo

 echo "##"

 echo "##### Generate certificates using cryptogen tool #########"

 echo "##"

 $CRYPTOGEN generate --config=./crypto-config.yaml

 echo

}

……

该目录在正常初始状态下不存在任何二进制文件。generateCerts()函数执行make工具命令，编译cryptogen工具到该目录，或者用户可以从指定地址https://nexus.hyperledger.org/content/repositories/releases/org/hyperledger/fabric/hyperledger-fabric/linux-amd64-1.1.0/hyperledger-fabric-linux-amd64-1.1.0.tar.gz下载对应版本的二进制文件压缩包，并解压其中的bin文件夹到上述指定目录，设置合适的文件权限。

cryptogen工具编译成功后，generateCerts()函数执行如下命令，基于当前目录中的配置文件（crypto-config.yaml）生成网络成员组织结构和对应的身份证书、签名私钥等文件，以管理组织成员在网络中的身份信息，并保存到默认的crypto-config目录下，其身份证书等文件生成在对应目录的msp/*中，同时生成TLS证书与密钥等文件，并保存在对应目录的tls/*中。

$CRYPTOGEN gennerate -–config=./crypto-config.yaml

如代码清单1-3所示，e2e_cli示例包含的crypto-config.yaml定义了Orderer排序节点中存在1个组织Orderer（OrdererOrgs类型），Peer节点中存在两个组织Org1和Org2（PeerOrgs类型），且各自包含两个节点（其中1个是普通用户）。

代码清单1-3　crypto-config.yaml的源码示例

examples/e2e_cli/crypto-config.yaml文件

“OrdererOrgs” – 定义Orderer排序节点的组织

OrdererOrgs:

 - Name: Orderer # 组织名称

 Domain: example.com # 域名称

 CA: #CA证书相关身份信息

 Country: US

 Province: California

 Locality: San Francisco

 Specs: # “Specs” – 组织中的节点

 - Hostname: orderer # 主机名称

“PeerOrgs” –定义peer节点的组织

PeerOrgs:

 # 定义Org1组织

 - Name: Org1 # 组织名称

Domain: org1.example.com # 域名称

EnableNodeOUs: true

CA: # 相关身份信息

 Country: US

 Province: California

 Locality: San Francisco

Template:

 Count: 2 # 组织节点总数

Users:

 Count: 1 # 用户节点数量，不包括Admin管理员

定义Org2组织

 - Name: Org2 # 组织名称

 Domain: org2.example.com # 域名称

 EnableNodeOUs: true

 CA: # 相关身份信息

 Country: US

 Province: California

 Locality: San Francisco

 Template:

 Count: 2

 Users:

 Count: 1

crypto-config中的每个目录都代表一种类型组织，其组织的身份证书、签名私钥等文件都存放在各自目录下的msp和tls子目录中，具体如下。

·ordererOrganizations目录：包含了Orderer类型组织（OrdererOrgs）的身份证书.pem文件、签名私钥*_sk文件、TLS证书（证书.crt文件与密钥.key文件）等，目前e2e_cli示例中存在1个Orderer组织，且包含1个Orderer节点；

·peerOrganizations目录：包含了Peer类型组织（PeerOrgs）的身份证书.pem文件、签名私钥*_sk文件、TLS证书（证书.crt文件与密钥.key文件）等，目前e2e_cli示例中存在两个组织（Org1和Org2），且包含4个Peer节点。

为了保证Hyperledger Fabric启动时所有节点都可以正常访问到需要的身份证书、签名私钥等文件，必须将这些文件复制或映射部署到对应节点的配置文件路径下。e2e_cli示例通过docker-compose工具，基于docker-compose-cli.yaml、docker-compose-base.yaml等配置文件，将本地crypto-config中相应的目录作为数据卷挂载到容器指定的目录下，如表1-2所示。

表1-2　cryptogen工具基于crypto-config.yaml生成组织关系与身份证书等文件位置列表

 [image:]

读者可以安装tree命令，查看该目录下的组织成员结构及其证书、私钥等文件情况，详细文件列表见附录B。

[root@localhost e2e_cli]# yum –y install tree

[root@localhost e2e_cli]# tree -L 5 ./crypto-config

./crypto-config

├── ordererOrganizations

│ └── example.com

│ ├── ca

│ │ ├── 07606df0424af9d53de8c3fb5b236cb70bfb04b34cae46bbf0bfbed24b3e51ea_sk

│ │ └── ca.example.com-cert.pem

│ ├── msp

│ │ ├── admincerts

│ │ │ └── Admin@example.com-cert.pem

│ │ ├── cacerts

│ │ │ └── ca.example.com-cert.pem

│ │ └── tlscacerts

│ │ └── tlsca.example.com-cert.pem

│ ├── orderers

│ │ └── orderer.example.com

│ │ ├── msp

│ │ └── tls

│ ├── tlsca

│ │ ├── 7778350b2e621d374db26e2313057388c41b63773ebce80b64bbdb06807b8a1c_sk

│ │ └── tlsca.example.com-cert.pem

│ └── users

│ └── Admin@example.com

│ ├── msp

│ └── tls

└── peerOrganizations

 ├── org1.example.com

 │ ├── ca

 │ │ ├── ca.org1.example.com-cert.pem

 │ │ └── eb7d1cf0b6114150d7994400af9dfdcf5412b7b11a216ab4ecdcc8a4591346b4_sk

 │ ├── msp

 │ │ ├── admincerts

 │ │ │ └── Admin@org1.example.com-cert.pem

 │ │ ├── cacerts

 │ │ │ └── ca.org1.example.com-cert.pem

 │ │ ├── config.yaml

 │ │ └── tlscacerts

 │ │ └── tlsca.org1.example.com-cert.pem

 │ ├── peers

 │ │ ├── peer0.org1.example.com

 │ │ │ ├── msp

 │ │ │ └── tls

 │ │ └── peer1.org1.example.com

 │ │ ├── msp

 │ │ └── tls

 │ ├── tlsca

 │ │ ├── 9bf57185b40e461f8ed81bded116a409a0c457853e23a744571236b7584eff4f_sk

 │ │ └── tlsca.org1.example.com-cert.pem

 │ └── users

 │ ├── Admin@org1.example.com

 │ │ ├── msp

 │ │ └── tls

 │ └── User1@org1.example.com

 │ ├── msp

 │ └── tls

 └── org2.example.com

generateArtifacts.sh脚本接着调用replacePrivateKey()函数，读取并替换正确的私钥文件名称，如代码清单1-4所示。该函数首先在当前目录下基于docker-compose-e2e-template.yaml模板文件创建新的配置文件docker-compose-e2e.yaml。接着，进入Org1组织的CA目录（crypto-config/peerOrganizations/org1.example.com/ca/），获取当前目录下以_sk结尾的私钥文件的文件名作为PRIV_KEY。然后，将docker-compose-e2e.yaml文件中的CA1_PRIVATE_KEY字符串替换为${PRIV_KEY}，即以_sk结尾的私钥文件名称。同样，进入Org2组织的CA目录（crypto-config/peerOrganizations/org2.example.com/ca/），将docker-compose-e2e.yaml文件中的CA2_PRIVATE_KEY字符串替换为${PRIV_KEY}，即该目录下以_sk结尾的私钥文件名称。

代码清单1-4　generateArtifacts.sh脚本中replacePrivateKey()函数的源码示例

examples/e2e_cli/generateArtifacts.sh文件

……

Using docker-compose template replace private key file names with constants

function replacePrivateKey () {

 ARCH=`uname -s | grep Darwin`

 if ["$ARCH" == "Darwin"]; then

 OPTS="-it"

 else

 OPTS="-i"

 fi

 cp docker-compose-e2e-template.yaml docker-compose-e2e.yaml

 CURRENT_DIR=$PWD

 cd crypto-config/peerOrganizations/org1.example.com/ca/ # 进入org1的CA目录

 PRIV_KEY=$(ls *_sk)

 cd $CURRENT_DIR

 # 将docker-compose-e2e.yaml文件中每一行CA1_PRIVATE_KEY替换为${PRIV_KEY}

 sed $OPTS "s/CA1_PRIVATE_KEY/${PRIV_KEY}/g" docker-compose-e2e.yaml

 cd crypto-config/peerOrganizations/org2.example.com/ca/ # 进入org2的CA目录，执行相同的操作

 PRIV_KEY=$(ls *_sk)

 cd $CURRENT_DIR

 sed $OPTS "s/CA2_PRIVATE_KEY/${PRIV_KEY}/g" docker-compose-e2e.yaml

}

（2）节点与通道配置文件

generateArtifacts.sh脚本最后执行generateChannelArtifacts()函数，如代码清单1-5与代码清单1-6所示。该函数首先的使用configtxgen工具基于configtx.yaml创建节点与通道配置文件，包括Orderer系统通道的创世区块文件genesis.block、新建应用通道的配置交易文件channel.tx、锚节点配置更新交易文件Org1MSPanchors.tx与Org2MSPanchors.tx等。

代码清单1-5　generateArtifacts.sh脚本中generateChannelArtifacts()函数的源码示例

examples/e2e_cli/generateArtifacts.sh文件

……

Generate orderer genesis block , channel configuration transaction and anchor peer update transactions

function generateChannelArtifacts() {

 CONFIGTXGEN=$FABRIC_ROOT/release/$OS_ARCH/bin/configtxgen

 if [-f "$CONFIGTXGEN"]; then

 echo "Using configtxgen -> $CONFIGTXGEN"

 else

 echo "Building configtxgen"

 make -C $FABRIC_ROOT release

 fi

 ……

 # Orderer系统通道的创世区块文件

 $CONFIGTXGEN -profile TwoOrgsOrdererGenesis -outputBlock ./channel-artifacts/genesis.block

 ……

 # 应用通道的配置交易文件

 $CONFIGTXGEN -profile TwoOrgsChannel -outputCreateChannelTx ./channel-artifacts/channel.tx -channelID $CHANNEL_NAME

 ……

 # 锚节点配置更新交易文件

 $CONFIGTXGEN -profile TwoOrgsChannel -outputAnchorPeersUpdate ./channel-artifacts/Org1MSPanchors.tx -channelID $CHANNEL_NAME -asOrg Org1MSP

 ……

 $CONFIGTXGEN -profile TwoOrgsChannel -outputAnchorPeersUpdate ./channel-artifacts/Org2MSPanchors.tx -channelID $CHANNEL_NAME -asOrg Org2MSP

 echo

}

代码清单1-6　configtx.yaml的源码示例

examples/e2e_cli/configtx.yaml文件

Profiles: # 模板定义了Orderer系统通道和应用通道配置信息

TwoOrgsOrdererGenesis: # Orderer系统通道配置，包含1个OrdererOrg组织

 和1个SampleConsortium联盟

 Capabilities: # 定义全局Capabilities功能特性

 <<: *ChannelCapabilities

 Orderer: # 系统通道配置信息

 <<: *OrdererDefaults # 具体配置信息，引用下面OrdererDefaults定位

 　　的字段信息

 Organizations: # Orderer系统通道组织

 - *OrdererOrg # 引用下面定义的OrdererOrg组织

 Capabilities: # 定义Orderer系统通道Capabilities功能特性

 <<: *OrdererCapabilities

 Consortiums: # 联盟列表

 SampleConsortium: # 联盟包含Org1和Org2两个组织

 Organizations:

 - *Org1

 - *Org2

 TwoOrgsChannel: # 应用通道配置，包含两个组织Org1和Org2

 Consortium: SampleConsortium # 应用通道关联的联盟名称

 Application: # 应用通道信息

 <<: *ApplicationDefaults # 具体配置信息，引用下面ApplicationDefaults

 定位的字段信息

 Organizations: # 定义应用通道组织

 - *Org1

 - *Org2

 Capabilities: # 定义应用通道Capabilities功能特性

 <<: *ApplicationCapabilities

定义具体的组织描述信息，被Profiles模板引用

Organizations:

- &OrdererOrg # OrdererOrg组织定义

 Name: OrdererOrg # 组织名称

 ID: OrdererMSP # 组织MSP标识ID

 MSPDir: crypto-config/ordererOrganizations/example.com/msp

 # MSP配置文件路径

- &Org1 # Org1组织定义

 Name: Org1MSP # 组织名称

 ID: Org1MSP # 组织MSP ID

 MSPDir: crypto-config/peerOrganizations/org1.example.com/msp

 # MSP配置文件路径

 AnchorPeers: # 定义锚节点信息

 - Host: peer0.org1.example.com # 主机名

 Port: 7051 # 端口

- &Org2 # Org2组织定义

 Name: Org2MSP # 组织名称

 ID: Org2MSP # 组织MSP ID

 MSPDir: crypto-config/peerOrganizations/org2.example.com/msp

 # MSP配置文件路径

 AnchorPeers: # 定义锚节点信息

 - Host: peer0.org2.example.com # 主机名

 Port: 7051 # 端口

定义具体的Orderer描述信息，被前面的Profiles模板引用

Orderer: &OrdererDefaults

 OrdererType: kafka # 共识组件类型

 Addresses:

 - orderer.example.com:7050 # Orderer服务节点地址，可扩展成多个

 　　Orderer节点

 # 打包交易出块的配置规则，根据实际系统需求测试后定制参数

 BatchTimeout: 2s # 打包交易消息出块的超时时间

 BatchSize:

 MaxMessageCount: 10 # 打包交易消息出块的最大消息个数

 AbsoluteMaxBytes: 98 MB # 打包交易消息出块的最大字节数，可以

 适当调大以防止同步区块数量过多

 PreferredMaxBytes: 512 KB # 通常情况下打包交易消息出块的建议字节数

 Kafka:

 Brokers: # 排序服务Kafka Broker服务器地址列表

 - kafka0:9092

 - kafka1:9092

 - kafka2:9092

 - kafka3:9092

 Organizations: # Orderer组织

定义具体的应用通道相关描述信息，被前面的Profiles模板引用

Application: &ApplicationDefaults

 Organizations: # 应用通道组织

Capabilities:

 Global: &ChannelCapabilities # 全局通道Capabilities

 V1_1: true

 Orderer: &OrdererCapabilities # Orderer系统通道Capabilities

 V1_1: true

 Application: &ApplicationCapabilities # Application应用通道Capabilities

 V1_1: true

（3）Orderer系统通道的创世区块文件

generateChannelArtifacts()函数执行如下configtxgen命令，创建Orderer系统通道的创世区块文件genesis.block，用于Orderer节点启动时生成系统通道的初始配置信息，具体如下。

·Orderer节点系统通道的配置信息：定义了Orderer共识组件类型（Solo类型、Kafka类型等）、排序服务地址列表、打包消息出块的超时时间、Kafka配置信息、最大应用通道数目以及参与系统通道的组织等；

·Consortiums联盟列表：定义了Orderer服务节点所服务的联盟列表，联盟内所有组织拥有相同的应用通道创建策略，且创建新的应用通道必须包含合法的所属联盟名称。

$CONFIGTXGEN -profile TwoOrgsOrdererGenesis -outputBlock ./channel-artifacts/genesis.block

（4）新建应用通道的配置交易文件

generateChannelArtifacts()函数执行如下configtxgen命令，构造新建应用通道的配置交易文件channel.tx（CHANNEL_NAME默认为mychannel），再执行通道创建命令peer channel create读取该文件，并将通道配置交易消息发送到Orderer节点，请求创建应用通道并构造该通道创世区块mychannel.block。接着，通过Deliver()服务接口获取该创世区块文件，并写入本地文件系统，将其作为后续其他节点加入应用通道的命令参数。

$CONFIGTXGEN -profile TwoOrgsChannel -outputCreateChannelTx ./channel-artifacts/channel.tx -channelID $CHANNEL_NAME

注意，应用通道名称（或链名称）会作为Kafka消息主题（topic）名称以及CouchDB数据库名称的前缀部分，因此，由于Kafka、CouchDB等命名规则的约定，应用通道名称必须使用小写的字母、数字、点或中划线，长度小于250个字符且首字符必须为字母（common/configtx/validator.go中的validateChannelID()函数负责检查），以防止CouchDB数据库等命名冲突问题。

（5）锚节点配置更新交易文件

generateChannelArtifacts()函数执行如下configtxgen命令，创建指定组织的锚节点配置更新交易文件Org1MSPanchors.tx与Org2MSPanchors.tx。每个组织的锚节点配置更新交易文件都必须单独生成，再执行peer channel update命令进行更新。

创建Org1MSP组织锚节点配置更新交易文件

$CONFIGTXGEN -profile TwoOrgsChannel -outputAnchorPeersUpdate ./channel-artifacts/Org1MSPanchors.tx -channelID $CHANNEL_NAME -asOrg Org1MSP

创建Org2MSP组织锚节点配置更新交易文件

$CONFIGTXGEN -profile TwoOrgsChannel -outputAnchorPeersUpdate ./channel-artifacts/Org2MSPanchors.tx -channelID $CHANNEL_NAME -asOrg Org2MSP

至此，generateChannelArtifacts()函数执行完毕。generateArtifacts.sh脚本返回至network_setup.sh，判断是否启用了CouchDB标志位（默认不开启）。接着，network_setup.sh配置CHANNEL_NAME与TIMEOUT变量，使用docker-compose工具执行指定的docker-compose-cli.yaml文件，负责启动Fabric网络提供服务。

CHANNEL_NAME=$CH_NAME TIMEOUT=$CLI_TIMEOUT docker-compose -f $COMPOSE_FILE up -d 2>&1

最后，generateArtifacts.sh脚本打印日志信息，并结束Fabric网络启动工作。

3.启动Orderer服务节点

如代码清单1-7与代码清单1-8所示，Orderer节点继承了base/docker-compose-base.yaml中的orderer.example.com配置属性。其中，e2e_cli示例中Orderer节点的配置文件位置如表1-3所示。同时，还可以通过设置环境变量或运行时命令行选项进行重新配置。Orderer节点容器启动时执行如下命令，并基于创世区块文件orderer.genesis.block创建系统通道。

orderer # 实际上是默认启动orderer start子命令

表1-3　Orderer排序节点配置文件列表

 [image:]

代码清单1-7　docker-compose-cli.yaml配置文件中Orderer节点与Kafka、Zookeeper集群配置的源码示例

配置的源码示例

examples/e2e_cli/docker-compose-cli.yaml文件

version: '2'

services:

 zookeeper0:

 container_name: zookeeper0

 extends:

 file: base/docker-compose-base.yaml

 service: zookeeper

 environment:

 - ZOO_MY_ID=1

 - ZOO_SERVERS=server.1=zookeeper0:2888:3888 server.2=zookeeper1: 2888:3888 server.3=zookeeper2:2888:3888

 zookeeper1:

 container_name: zookeeper1

 extends:

 file: base/docker-compose-base.yaml

 service: zookeeper

 environment:

 - ZOO_MY_ID=2

 - ZOO_SERVERS=server.1=zookeeper0:2888:3888 server.2=zookeeper1: 2888:3888 server.3=zookeeper2:2888:3888

 zookeeper2:

 container_name: zookeeper2

 extends:

 file: base/docker-compose-base.yaml

 service: zookeeper

 environment:

 - ZOO_MY_ID=3

 - ZOO_SERVERS=server.1=zookeeper0:2888:3888 server.2=zookeeper1: 2888:3888 server.3=zookeeper2:2888:3888

 kafka0:

 container_name: kafka0

 extends:

 file: base/docker-compose-base.yaml

 service: kafka

 environment:

 - KAFKA_BROKER_ID=0

 - KAFKA_MIN_INSYNC_REPLICAS=2

 - KAFKA_DEFAULT_REPLICATION_FACTOR=3

 - KAFKA_ZOOKEEPER_CONNECT=zookeeper0:2181,zookeeper1:2181,zookeeper2:2181

 depends_on:

 - zookeeper0

 - zookeeper1

 - zookeeper2

 kafka1:

 container_name: kafka1

 extends:

 file: base/docker-compose-base.yaml

 service: kafka

 environment:

 - KAFKA_BROKER_ID=1

 - KAFKA_MIN_INSYNC_REPLICAS=2

 - KAFKA_DEFAULT_REPLICATION_FACTOR=3

 - KAFKA_ZOOKEEPER_CONNECT=zookeeper0:2181,zookeeper1:2181,zookeeper2:2181

 depends_on:

 - zookeeper0

 - zookeeper1

 - zookeeper2

 kafka2:

 container_name: kafka2

 extends:

 file: base/docker-compose-base.yaml

 service: kafka

 environment:

 - KAFKA_BROKER_ID=2

 - KAFKA_MIN_INSYNC_REPLICAS=2

 - KAFKA_DEFAULT_REPLICATION_FACTOR=3

 - KAFKA_ZOOKEEPER_CONNECT=zookeeper0:2181,zookeeper1:2181,zookeeper2:2181

 depends_on:

 - zookeeper0

 - zookeeper1

 - zookeeper2

 kafka3:

 container_name: kafka3

 extends:

 file: base/docker-compose-base.yaml

 service: kafka

 environment:

 - KAFKA_BROKER_ID=3

 - KAFKA_MIN_INSYNC_REPLICAS=2

 - KAFKA_DEFAULT_REPLICATION_FACTOR=3

 - KAFKA_ZOOKEEPER_CONNECT=zookeeper0:2181,zookeeper1:2181,zookeeper2:2181

 depends_on:

 - zookeeper0

 - zookeeper1

 - zookeeper2

 orderer.example.com:

 extends:

 file: base/docker-compose-base.yaml

 service: orderer.example.com

 container_name: orderer.example.com

 depends_on: # 指定当前容器启动时需要依赖的启动容器对象

 - zookeeper0

 - zookeeper1

 - zookeeper2

 - kafka0

 - kafka1

 - kafka2

 - kafka3

……

代码清单1-8　docker-compose-base.yaml配置文件Orderer节点与Kafka、Zookeeper集群配置的源码示例

examples/e2e_cli/base/docker-compose-base.yaml文件

version: '2'

services:

 zookeeper:

 image: hyperledger/fabric-zookeeper

 restart: always

 ports:

 - '2181'

 - '2888'

 - '3888'

 kafka:

 image: hyperledger/fabric-kafka

 restart: always

 environment:

 - KAFKA_MESSAGE_MAX_BYTES=103809024 # 99* 1024* 1024 B

 - KAFKA_REPLICA_FETCH_MAX_BYTES=103809024 # 99* 1024* 1024 B

 - KAFKA_UNCLEAN_LEADER_ELECTION_ENABLE=false

 ports:

 - '9092'

 orderer.example.com:

 container_name: orderer.example.com # 容器名称

 image: hyperledger/fabric-orderer # 镜像名称

 environment: # 指定当前配置的环境变量

 - ORDERER_GENERAL_LOGLEVEL=debug

 - ORDERER_GENERAL_LISTENADDRESS=0.0.0.0

 - ORDERER_GENERAL_GENESISMETHOD=file

 - ORDERER_GENERAL_GENESISFILE=/var/hyperledger/orderer/orderer.genesis.block

 - ORDERER_GENERAL_LOCALMSPID=OrdererMSP

 - ORDERER_GENERAL_LOCALMSPDIR=/var/hyperledger/orderer/msp

 # enabled TLS

 - ORDERER_GENERAL_TLS_ENABLED=true

 - ORDERER_GENERAL_TLS_PRIVATEKEY=/var/hyperledger/orderer/tls/server.key

 - ORDERER_GENERAL_TLS_CERTIFICATE=/var/hyperledger/orderer/tls/server.crt

 - ORDERER_GENERAL_TLS_ROOTCAS=[/var/hyperledger/orderer/tls/ca.crt]

 - ORDERER_KAFKA_RETRY_SHORTINTERVAL=1s

 - ORDERER_KAFKA_RETRY_SHORTTOTAL=30s

 - ORDERER_KAFKA_VERBOSE=true

 working_dir: /opt/gopath/src/github.com/hyperledger/fabric # 容器启动后的工作路径

 command: orderer # 启动容器后执行的默认命令

 volumes: # 指定宿主机路径挂载到容器上的路径

 - ../channel-artifacts/genesis.block:/var/hyperledger/orderer/orderer.genesis.block

 - ../crypto-config/ordererOrganizations/example.com/orderers/orderer.example.com/msp:/var/hyperledger/orderer/msp

 - ../crypto-config/ordererOrganizations/example.com/orderers/orderer.example.com/tls/:/var/hyperledger/orderer/tls

 ports: # 指定宿主机端口与容器端口之间的映射关系

 - 7050:7050

……

4.启动Peer节点

如代码清单1-9与代码清单1-10所示，4个Peer节点继承了base/docker-compose-base.yaml中对应容器名称的配置属性。其中，e2e_cli示例中Peer节点配置文件如表1-4所示，可以通过设置环境变量或运行时命令行选项的方式重新进行配置。e2e_cli示例在节点容器启动时默认执行如下命令以启动Peer节点，此时没有加入任何应用通道。由于是在单机上部署多个节点，因此，base/docker-compose-base.yaml中定义的4个Peer节点容器端口映射到宿主机端口都是不同的。如果在生产环境中使用多个物理机分开部署Peer节点，则可以配置成统一的端口提供服务。

peer node start

表1-4　Peer节点配置文件列表

 [image:]

代码清单1-9　docker-compose-cli.yaml配置文件中Peer节点配置的源码示例

examples/e2e_cli/docker-compose-cli.yaml文件

version: '2'

services:

 ……

peer0.org1.example.com:

 container_name: peer0.org1.example.com

 extends:

 file: base/docker-compose-base.yaml

 service: peer0.org1.example.com

peer1.org1.example.com:

 container_name: peer1.org1.example.com

 extends:

 file: base/docker-compose-base.yaml

 service: peer1.org1.example.com

peer0.org2.example.com:

 container_name: peer0.org2.example.com

 extends:

 file: base/docker-compose-base.yaml

 service: peer0.org2.example.com

peer1.org2.example.com:

 container_name: peer1.org2.example.com

 extends:

 file: base/docker-compose-base.yaml

 service: peer1.org2.example.com

cli:

 container_name: cli

 image: hyperledger/fabric-tools

 tty: true

 environment:

 - GOPATH=/opt/gopath

 - CORE_VM_ENDPOINT=unix:///host/var/run/docker.sock

 - CORE_LOGGING_LEVEL=DEBUG

 - CORE_PEER_ID=cli

 - CORE_PEER_ADDRESS=peer0.org1.example.com:7051

 - CORE_PEER_LOCALMSPID=Org1MSP

 - CORE_PEER_TLS_ENABLED=true

 - CORE_PEER_TLS_CERT_FILE=/opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/peerOrganizations/org1.example.com/peers/peer0.org1.example.com/tls/server.crt

 - CORE_PEER_TLS_KEY_FILE=/opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/peerOrganizations/org1.example.com/peers/peer0.org1.example.com/tls/server.key

 - CORE_PEER_TLS_ROOTCERT_FILE=/opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/peerOrganizations/org1.example.com/peers/peer0.org1.example.com/tls/ca.crt

 - CORE_PEER_MSPCONFIGPATH=/opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/peerOrganizations/org1.example.com/users/Admin@org1.example.com/msp

 working_dir: /opt/gopath/src/github.com/hyperledger/fabric/peer

 command: /bin/bash -c './scripts/script.sh ${CHANNEL_NAME}; sleep $TIMEOUT'

 volumes:

 - /var/run/:/host/var/run/

 - ../chaincode/go/:/opt/gopath/src/github.com/hyperledger/fabric/examples/chaincode/go

 - ./crypto-config:/opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/

 - ./scripts:/opt/gopath/src/github.com/hyperledger/fabric/peer/scripts/

 - ./channel-artifacts:/opt/gopath/src/github.com/hyperledger/fabric/peer/channel-artifacts

 depends_on:

 - orderer.example.com

 - peer0.org1.example.com

 - peer1.org1.example.com

 - peer0.org2.example.com

 - peer1.org2.example.com

代码清单1-10　docker-compose-base.yaml配置文件Peer节点配置的源码示例

examples/e2e_cli/base/docker-compose-base.yaml文件

version: '2'

……

peer0.org1.example.com:

 container_name: peer0.org1.example.com

 extends:

 file: peer-base.yaml

 service: peer-base

 environment:

 - CORE_PEER_ID=peer0.org1.example.com

 - CORE_PEER_ADDRESS=peer0.org1.example.com:7051

 - CORE_PEER_CHAINCODEADDRESS=peer0.org1.example.com:7052

 - CORE_PEER_CHAINCODELISTENADDRESS=0.0.0.0:7052

 - CORE_PEER_GOSSIP_EXTERNALENDPOINT=peer0.org1.example.com:7051

 - CORE_PEER_LOCALMSPID=Org1MSP

 volumes:

 - /var/run/:/host/var/run/

 - ../crypto-config/peerOrganizations/org1.example.com/peers/peer0.org1.example.com/msp:/etc/hyperledger/fabric/msp

 - ../crypto-config/peerOrganizations/org1.example.com/peers/peer0.org1.example.com/tls:/etc/hyperledger/fabric/tls

 ports: # 指定宿主机端口与容器端口之间的映射关系

 - 7051:7051

 - 7052:7052

 - 7053:7053

peer1.org1.example.com:

 container_name: peer1.org1.example.com

 extends:

 file: peer-base.yaml

 service: peer-base

 environment:

 - CORE_PEER_ID=peer1.org1.example.com

 - CORE_PEER_ADDRESS=peer1.org1.example.com:7051

 - CORE_PEER_CHAINCODEADDRESS=peer1.org1.example.com:7052

 - CORE_PEER_CHAINCODELISTENADDRESS=0.0.0.0:7052

 - CORE_PEER_GOSSIP_EXTERNALENDPOINT=peer1.org1.example.com:7051

 - CORE_PEER_GOSSIP_BOOTSTRAP=peer0.org1.example.com:7051

 - CORE_PEER_LOCALMSPID=Org1MSP

 volumes:

 - /var/run/:/host/var/run/

 - ../crypto-config/peerOrganizations/org1.example.com/peers/peer1.org1.example.com/msp:/etc/hyperledger/fabric/msp

 - ../crypto-config/peerOrganizations/org1.example.com/peers/peer1.org1.example.com/tls:/etc/hyperledger/fabric/tls

 ports: # 指定宿主机端口与容器端口之间的映射关系

 - 8051:7051

 - 8052:7052

 - 8053:7053

peer0.org2.example.com:

 container_name: peer0.org2.example.com

 extends:

 file: peer-base.yaml

 service: peer-base

 environment:

 - CORE_PEER_ID=peer0.org2.example.com

 - CORE_PEER_ADDRESS=peer0.org2.example.com:7051

 - CORE_PEER_CHAINCODEADDRESS=peer0.org2.example.com:7052

 - CORE_PEER_CHAINCODELISTENADDRESS=0.0.0.0:7052

 - CORE_PEER_GOSSIP_EXTERNALENDPOINT=peer0.org2.example.com:7051

 - CORE_PEER_LOCALMSPID=Org2MSP

 volumes:

 - /var/run/:/host/var/run/

 - ../crypto-config/peerOrganizations/org2.example.com/peers/peer0.org2.example.com/msp:/etc/hyperledger/fabric/msp

 - ../crypto-config/peerOrganizations/org2.example.com/peers/peer0.org2.example.com/tls:/etc/hyperledger/fabric/tls

 ports: # 指定宿主机端口与容器端口之间的映射关系

 - 9051:7051

 - 9052:7052

 - 9053:7053

peer1.org2.example.com:

 container_name: peer1.org2.example.com

 extends:

 file: peer-base.yaml

 service: peer-base

 environment:

 - CORE_PEER_ID=peer1.org2.example.com

 - CORE_PEER_ADDRESS=peer1.org2.example.com:7051

 - CORE_PEER_CHAINCODEADDRESS=peer1.org2.example.com:7052

 - CORE_PEER_CHAINCODELISTENADDRESS=0.0.0.0:7052

 - CORE_PEER_GOSSIP_EXTERNALENDPOINT=peer1.org2.example.com:7051

 - CORE_PEER_GOSSIP_BOOTSTRAP=peer0.org2.example.com:7051

 - CORE_PEER_LOCALMSPID=Org2MSP

 volumes:

 - /var/run/:/host/var/run/

 - ../crypto-config/peerOrganizations/org2.example.com/peers/peer1.org2.example.com/msp:/etc/hyperledger/fabric/msp

 - ../crypto-config/peerOrganizations/org2.example.com/peers/peer1.org2.example.com/tls:/etc/hyperledger/fabric/tls

 ports: # 指定宿主机端口与容器端口之间的映射关系

 - 10051:7051

 - 10052:7052

 - 10053:7053

……

实际上，CLI命令行客户端容器cli启动时执行如下script.sh脚本命令，如代码清单1-11所示。script.sh脚本顺序执行默认的测试流程，包括创建新的应用通道、添加节点、更新锚节点配置等操作，接着执行安装链码、实例化（部署）链码、调用链码、查询链码等链码操作。

/bin/bash -c './scripts/script.sh ${CHANNEL_NAME}; sleep $TIMEOUT'

代码清单1-11　script.sh脚本文件Peer节点启动执行函数的源码示例

examples/e2e_cli/scripts/script.sh文件

……

CHANNEL_NAME="$1"

: ${CHANNEL_NAME:="mychannel"}

: ${TIMEOUT:="60"}

COUNTER=1

MAX_RETRY=5

ORDERER_CA=/opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/ordererOrganizations/example.com/orderers/orderer.example.com/msp/tlscacerts/tlsca.example.com-cert.pem # Orderer节点TLS证书文件路径

……

测试Orderer排序节点是否可用

echo "Check orderering service availability..."

checkOSNAvailability

创建应用通道

echo "Creating channel..."

createChannel

添加Peer节点到指定的应用通道

echo "Having all peers join the channel..."

joinChannel

更新通道中每个组织的锚节点配置

echo "Updating anchor peers for org1..."

updateAnchorPeers 0

echo "Updating anchor peers for org2..."

updateAnchorPeers 2

在Peer0/Org1与Peer2/Org2节点上安装链码

echo "Installing chaincode on org1/peer0..."

installChaincode 0

echo "Install chaincode on org2/peer0..."

installChaincode 2

在Peer2/Org2节点上实例化链码

echo "Instantiating chaincode on org2/peer2..."

instantiateChaincode 2

在Peer0/Org1节点上查询链码，检查账户余额是否为100元

echo "Querying chaincode on org1/peer0..."

chaincodeQuery 0 100

在Peer0/Org1节点上调用链码

echo "Sending invoke transaction on org1/peer0..."

chaincodeInvoke 0

在Peer3/Org2节点上安装链码

echo "Installing chaincode on org2/peer3..."

installChaincode 3

在Peer3/Org2节点上查询链码，检查余额结果是否为90元

echo "Querying chaincode on org2/peer3..."

chaincodeQuery 3 90

……

5.创建、加入通道与更新组织锚节点配置

Hyperledger Fabric要求创建、加入与更新通道的权限必须是具有通道组织（Org1和Org2）的管理员身份。

（1）创建新的应用通道

e2e_cli示例中的CLI客户端容器运行script.sh脚本调用createChannel()函数，创建新的应用通道，如代码清单1-12所示。注意，CLI客户端容器在docker-compose-cli.yaml中通过volumes配置项定义成能访问所有组织用户的身份证书等文件，因此，该函数调用setGlobals()设置全局环境参数，设置如下环境变量，从而在CLI客户端中能灵活切换成指定组织的管理员角色身份，可以直接连接并操作所指定的Peer节点，并且先切换操作到Peer0/Org1节点，如代码清单1-13所示。

·CORE_PEER_LOCALMSPID

·CORE_PEER_TLS_ROOTCERT_FILE

·CORE_PEER_MSPCONFIGPATH

·CORE_PEER_ADDRESS

代码清单1-12　script.sh脚本文件createChannel()函数创建应用通道的源码示例

examples/e2e_cli/scripts/script.sh文件

ORDERER_CA=/opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/ordererOrganizations/example.com/orderers/orderer.example.com/msp/tlscacerts/tlsca.example.com-cert.pem

……

createChannel() {

 setGlobals 0

 if [-z "$CORE_PEER_TLS_ENABLED" -o "$CORE_PEER_TLS_ENABLED" = "false"]; then

 peer channel create -o orderer.example.com:7050 -c $CHANNEL_NAME -f ./channel-artifacts/channel.tx >&log.txt

 else

 peer channel create -o orderer.example.com:7050 -c $CHANNEL_NAME -f ./channel-artifacts/channel.tx --tls --cafile $ORDERER_CA >&log.txt

 fi

 res=$?

 cat log.txt

 verifyResult $res "Channel creation failed"

 echo "===================== Channel \"$CHANNEL_NAME\" is created successfully

 ===================== "

 echo

}

代码清单1-13　script.sh脚本文件setGlobals()函数设置全局环境参数的源码示例

examples/e2e_cli/scripts/script.sh文件

setGlobals () {

 if [$1 -eq 0 -o $1 -eq 1] ; then

 CORE_PEER_LOCALMSPID="Org1MSP"

 CORE_PEER_TLS_ROOTCERT_FILE=/opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/peerOrganizations/org1.example.com/peers/peer0.org1.example.com/tls/ca.crt

 CORE_PEER_MSPCONFIGPATH=/opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/peerOrganizations/org1.example.com/users/Admin@org1.example.com/msp

 if [$1 -eq 0]; then

 CORE_PEER_ADDRESS=peer0.org1.example.com:7051

 else

 CORE_PEER_ADDRESS=peer1.org1.example.com:7051

 fi

 else

 CORE_PEER_LOCALMSPID="Org2MSP"

 CORE_PEER_TLS_ROOTCERT_FILE=/opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/peerOrganizations/org2.example.com/peers/peer0.org2.example.com/tls/ca.crt

 CORE_PEER_MSPCONFIGPATH=/opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/peerOrganizations/org2.example.com/users/Admin@org2.example.com/msp

 if [$1 -eq 2]; then

 CORE_PEER_ADDRESS=peer0.org2.example.com:7051

 else

 CORE_PEER_ADDRESS=peer1.org2.example.com:7051

 fi

 fi

 env | grep CORE

}

接着，createChannel()函数采用Org1管理员身份执行如下peer命令，将该通道的配置交易文件channel.tx发送到Orderer排序节点，创建名称为“mychannel”的应用通道，并接收新建应用通道的创世区块，然后写入本地文件mychannel.block。

peer channel create -o orderer.example.com:7050 -c $CHANNEL_NAME -f ./channel-artifacts/channel.tx

若开启了TLS安全认证，则执行如下peer命令。其中，$ORDERER_CA是TLS认证证书文件路径。

peer channel create -o orderer.example.com:7050 -c $CHANNEL_NAME -f ./channel-artifacts/channel.tx --tls --cafile $ORDERER_CA

（2）Peer节点加入应用通道

e2e_cli示例的script.sh脚本调用joinChannel()函数，循环遍历所有节点并添加到应用通道中，如代码清单1-14所示。该函数首先调用setGlobals()函数切换操作指定节点，接着执行如下peer命令，使用Org1组织管理员身份将Org1组织包含的Peer0/Org1与Peer1/Org1节点加入新建的mychannel应用通道，同时将应用通道创世区块文件mychannel.block设置为命令行参数。Org2组织上类似上述操作处理Peer2/Org2与Peer3/Org2节点。

peer channel join -b $CHANNEL_NAME.block # 将Peer节点加入指定的应用通道

代码清单1-14　script.sh脚本文件joinChannel()函数将Peer节点加入应用通道的源码示例

examples/e2e_cli/scripts/script.sh文件

joinChannel () {

 for ch in 0 1 2 3; do

 setGlobals $ch

 joinWithRetry $ch

 echo "===================== PEER$ch joined on the channel \"$CHANNEL_NAME\" ===================== "

 sleep 2

 echo

 done

}

Sometimes Join takes time hence RETRY atleast for 5 times

joinWithRetry () {

 peer channel join -b $CHANNEL_NAME.block >&log.txt

 res=$?

 cat log.txt

 if [$res -ne 0 -a $COUNTER -lt $MAX_RETRY]; then

 COUNTER=` expr $COUNTER + 1`

 echo "PEER$1 failed to join the channel, Retry after 2 seconds"

 sleep 2

 joinWithRetry $1

 else

 COUNTER=1

 fi

 verifyResult $res "After $MAX_RETRY attempts, PEER$ch has failed to Join the Channel"

}

（3）更新应用通道上组织的锚节点配置

e2e_cli示例的script.sh脚本连续两次调用updateAnchorPeers()函数，更新两个组织的锚节点配置，如代码清单1-15所示。该函数首先调用setGlobals()函数切换操作指定节点，接着执行如下peer命令，用Org1组织管理员身份更新Org1组织上锚节点Peer0/Org1的配置，并指定锚节点配置更新文件Org1MSPanchors.tx。然后以类似操作方法处理Org2组织锚节点Peer2/Org2。其中，变量CORE_PEER_LOCALMSPID根据所属的组织被分别设置为Org1MSP或Org2MSP。

peer channel update -o orderer.example.com:7050 -c $CHANNEL_NAME -f ./channel-artifacts/${CORE_PEER_LOCALMSPID}anchors.tx

若开启了TLS安全认证，则执行如下peer命令。

peer channel update -o orderer.example.com:7050 -c $CHANNEL_NAME -f ./channel-artifacts/${CORE_PEER_LOCALMSPID}anchors.tx --tls --cafile $ORDERER_CA

代码清单1-15　script.sh脚本文件updateAnchorPeers()函数更新锚节点配置的源码示例

examples/e2e_cli/scripts/script.sh文件

updateAnchorPeers() {

 PEER=$1

 setGlobals $PEER

 if [-z "$CORE_PEER_TLS_ENABLED" -o "$CORE_PEER_TLS_ENABLED" = "false"]; then

 peer channel update -o orderer.example.com:7050 -c $CHANNEL_NAME -f ./channel-artifacts/${CORE_PEER_LOCALMSPID}anchors.tx >&log.txt

 else

 peer channel update -o orderer.example.com:7050 -c $CHANNEL_NAME -f ./channel-artifacts/${CORE_PEER_LOCALMSPID}anchors.tx --tls --cafile $ORDERER_CA >&log.txt

 fi

 res=$?

 cat log.txt

 verifyResult $res "Anchor peer update failed"

 echo "===================== Anchor peers for org \"$CORE_PEER_LOCALMSPID\" on \"$CHANNEL_NAME\" is updated successfully ===================== "

 sleep 5

 echo

}

至此，所有组织的Peer节点都已经加入了新的应用通道mychannel，并更新完毕两个组织的锚节点配置。

6.安装、实例化与调用链码

e2e_cli示例的script.sh脚本在指定Peer节点上安装（install）和实例化（instantiate）链码，启动链码容器提供服务，即可调用链码转账与查询余额。

（1）安装链码

e2e_cli示例的script.sh脚本连续两次调用installChaincode()函数，如代码清单1-16所示。该函数执行如下peer命令，分别在Peer0/Org1节点与Peer2/Org2节点上安装chaincode_example02链码，并将该链码命名为“mycc”且版本为1.0。

peer chaincode install -n mycc -v 1.0 -p github.com/hyperledger/fabric/examples/chaincode/go/chaincode_example02

代码清单1-16　script.sh脚本文件installChaincode()函数安装链码的源码示例

examples/e2e_cli/scripts/script.sh文件

installChaincode () {

 PEER=$1

 setGlobals $PEER

 peer chaincode install -n mycc -v 1.0 -p github.com/hyperledger/fabric/examples/chaincode/go/chaincode_example02 >&log.txt

 res=$?

 cat log.txt

 verifyResult $res "Chaincode installation on remote peer PEER$PEER has Failed"

 echo "===================== Chaincode is installed on remote peer PEER$PEER ===================== "

 echo

}

如果链码安装成功，则在指定的安装目录（/var/hyperledger/production/chaincodes/）下保存链码包文件name.version，该文件名称含有链码名称name与链码版本version。先执行docker ps–a命令查看指定cli容器ID（例如7133b3cd32ed），再执行docker exec–it 7133b3cd32ed bash命令进入Peer0/Org1节点容器，切换并查看链码目录下是否存在已安装成功的链码文件mycc.1.0。

使用docker ps –a查看指定cli容器ID（例如7133b3cd32ed）

[root@localhost ~]# docker exec -it 7133b3cd32ed bash

root@7133b3cd32ed:/opt/gopath/src/github.com/hyperledger/fabric/peer# cd /var/hyperledger/production/chaincodes/

root@7133b3cd32ed:/var/hyperledger/production/chaincodes# ls

mycc.1.0

（2）实例化（部署）链码

e2e_cli示例的script.sh脚本调用instantiateChaincode()函数实例化（部署）用户链码。Fabric采用“instantiate”命令来实例化链码，而在发送给Endorser背书节点的提案消息中封装的命令是“deploy”部署，表示将实例化数据保存到指定通道账本状态数据库的LSCC系统链码名字空间（lscc）中，包括链码数据对象（键是链码名称，值是ChaincodeData结构链码数据对象）、隐私数据集合配置信息（启用隐私数据功能的情况下）等。同时，启动链码容器以提供链码调用服务。实际上，instantiate（实例化）与deploy（部署）是同一个链码操作在系统中的不同说法。

另外，实例化（部署）链码还需要注意以下两点。

·实例化链码操作必须在已经安装链码的节点上执行。同一个通道内所有节点上相同链码（具有相同链码名称与链码版本）的实例化数据在通道账本中是共享的，用户只需要在通道内任意Peer节点上成功执行一次实例化链码操作，并通过排序打包出块后将实例化数据广播到其他节点上，则通道上的所有合法节点都可以通过LSCC系统链码访问到该链码的实例化数据。所以，用户需要在提供链码服务的所有节点上安装链码，但只需要成功实例化一次链码即可，而不需要重复实例化链码。一个通道账本中只会维护唯一的实例化数据，即链码数据对象与隐私数据集合配置信息（若支持），表示执行了该链码实例化（部署）操作，其他Peer节点可以直接执行调用链码、查询链码等操作请求。如果在执行这些链码操作时发现本地Peer节点没有启动对应的链码容器，则默认启动链码容器提供服务。注意，即使是相同的链码对象，不同的通道还是需要执行一次实例化（部署）链码操作，因为不同通道的实例化链码数据保存在不同通道的账本数据库上（以链ID或账本ID实现逻辑隔离）。

·Peer节点上同一个版本链码的链码容器是共享的，支持不同通道上的链码实例化（部署）、升级、查询、调用等操作，而不会重复启动相同容器名称的链码容器，即本地只会维护一个链码规范名称（ChaincodeName：ChaincodeVersion）的链码运行时环境对象与一个容器名称（系统链码是ChaincodeName-ChaincodeVersion、用户链码是NetworkID-PeerID-ChaincodeName-ChaincodeVersion）的链码容器。事实上，链码容器是一种无状态的链码运行时环境对象，不会保存任何与交易相关的数据，而是由交易相关的交易模拟器暂时保存模拟执行结果读写集，并在验证交易合法后提交账本。因此，如果在执行链码操作（实例化/部署、升级、查询、调用等）时发现本地节点已经正常启动了指定名称版本的链码容器，则可以直接发送消息给容器请求执行，而不会重复启动新的链码容器。

如代码清单1-17所示，instantiateChaincode()函数执行如下peer命令，在Peer2/Org2节点上实例化链码mycc（版本1.0），并指定链码调用参数列表与背书策略OR('Org1MSP.peer'，'Org2MSP.peer')，表示两个组织的任意Peer节点签名都被认为是合法交易，账户A和账户B的余额分别被初始化为100元与200元。

peer chaincode instantiate -o orderer.example.com:7050 -C $CHANNEL_NAME -n mycc -v 1.0 -c '{"Args":["init","a","100","b","200"]}' -P "OR ('Org1MSP.peer','Org2MSP.peer')"

代码清单1-17　script.sh脚本文件instantiateChaincode()函数实例化链码的源码示例

examples/e2e_cli/scripts/script.sh文件

instantiateChaincode () {

 PEER=$1

 setGlobals $PEER

 if [-z "$CORE_PEER_TLS_ENABLED" -o "$CORE_PEER_TLS_ENABLED" = "false"]; then

 peer chaincode instantiate -o orderer.example.com:7050 -C $CHANNEL_NAME -n mycc -v 1.0 -c '{"Args":["init","a","100","b","200"]}' -P "OR ('Org1MSP.peer','Org2MSP.peer')" >&log.txt

 else

 peer chaincode instantiate -o orderer.example.com:7050 --tls --cafile $ORDERER_CA -C $CHANNEL_NAME -n mycc -v 1.0 -c '{"Args":["init","a","100","b","200"]}' -P "OR ('Org1MSP.peer','Org2MSP.peer')" >&log.txt

 fi

 res=$?

 cat log.txt

 verifyResult $res "Chaincode instantiation on PEER$PEER on channel '$CHANNEL_NAME' failed"

 echo "===================== Chaincode Instantiation on PEER$PEER on channel '$CHANNEL_NAME' is successful ===================== "

 echo

}

执行实例化链码操作之后，使用docker ps-a命令查看当前节点上的容器运行状态，执行结果显示目前只有Peer2/Org2节点启动了mycc-1.0容器。注意，这里是以多行显示太长的容器信息查询结果，以加粗的容器CONTAINER ID标识每条容器信息，其中，NetworkID为dev（core.yaml文件中peer.networkId配置项），PeerID为peer0.org2.example.com（docker-compose-base.yaml文件中配置的CORE_PEER_ID环境变量），ChaincodeName为mycc，ChaincodeVersion为1.0，容器名称NAMES为dev-peer0.org2.example.com-mycc-1.0。

[root@localhost ~]# docker ps -a

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

0376ec9343af dev-peer0.org2.example.com-mycc-1.0-15b571b3ce849066b7ec74497da3b27e54e0df1345daff3951b94245ce09c42b "chaincode -peer.add…" 17 hours ago Up 17 hours dev-peer0.org2.example.com-mycc-1.0 # Peer2/Org2节点

（3）调用链码

至此，e2e_cli示例的script.sh脚本在Peer0/Org1节点与Peer2/Org2节点上都安装了指定链码mycc.1.0，接着在Peer2/Org2节点上实例化链码mycc（1.0版本）并启动链码容器。如代码清单1-18所示，script.sh脚本在Peer0/Org1节点上继续调用链码chaincodeQuery()函数与chaincodeInvoke()函数，启动链码容器并请求查询链码与调用链码mycc，查看账户A的余额，然后从账户A向账户B转账10元。

peer chaincode query -C $CHANNEL_NAME -n mycc -c '{"Args":["query","a"]}'

peer chaincode invoke -o orderer.example.com:7050 -C $CHANNEL_NAME -n mycc -c '{"Args":["invoke","a","b","10"]}'

代码清单1-18　script.sh脚本文件chaincodeInvoke()函数调用链码的源码示例

examples/e2e_cli/scripts/script.sh文件

chaincodeInvoke () {

 PEER=$1

 setGlobals $PEER

 if [-z "$CORE_PEER_TLS_ENABLED" -o "$CORE_PEER_TLS_ENABLED" = "false"]; then

 peer chaincode invoke -o orderer.example.com:7050 -C $CHANNEL_NAME -n mycc -c '{"Args":["invoke","a","b","10"]}' >&log.txt

 else

 peer chaincode invoke -o orderer.example.com:7050 --tls --cafile $ORDERER_CA -C $CHANNEL_NAME -n mycc -c '{"Args":["invoke","a","b","10"]}' >&log.txt

 fi

 res=$?

 cat log.txt

 verifyResult $res "Invoke execution on PEER$PEER failed "

 echo "===================== Invoke transaction on PEER$PEER on channel '$CHANNEL_NAME' is successful ===================== "

 echo

}

（4）查询链码信息

e2e_cli示例的script.sh脚本调用chaincodeQuery()函数查询链码，如代码清单1-19所示。该函数在Peer3/Org2节点（主机名peer1.org2.example.com）上安装链码，接着执行如下命令查询账户A的余额，在Peer3/Org2节点上请求查询链码mycc，并检查其余额是否还剩90元，若是则说明上述调用链码进行转账的操作执行成功。

peer chaincode query -C $CHANNEL_NAME -n mycc -c '{"Args":["query","a"]}'

Query Result: 90 # 账户A余额为90元

代码清单1-19　script.sh脚本文件chaincodeQuery()函数查询链码的源码示例

examples/e2e_cli/scripts/script.sh文件

chaincodeQuery () {

 PEER=$1

 echo "===================== Querying on PEER$PEER on channel '$CHANNEL_NAME'... ===================== "

 setGlobals $PEER

 local rc=1

 local starttime=$(date +%s)

 # continue to poll

 # we either get a successful response, or reach TIMEOUT

 while test "$(($(date +%s)-starttime))" -lt "$TIMEOUT" -a $rc -ne 0

 do

 sleep 3

 echo "Attempting to Query PEER$PEER ...$(($(date +%s)-starttime)) secs"

 peer chaincode query -C $CHANNEL_NAME -n mycc -c '{"Args":["query","a"]}' >&log.txt

 test $? -eq 0 && VALUE=$(cat log.txt | awk '/Query Result/ {print $NF}')

 test "$VALUE" = "$2" && let rc=0

 done

 echo

 cat log.txt

 if test $rc -eq 0 ; then

 echo "===================== Query on PEER$PEER on channel '$CHANNEL_NAME' is successful ===================== "

 else

 echo "!!!!!!!!!!!!!!! Query result on PEER$PEER is INVALID !!!!!!!!!!!!!!!!"

 echo "================== ERROR !!! FAILED to execute End-2-End Scenario =================="

 echo

 exit 1

 fi

}

接着，执行docker ps-a命令查看当前节点上的容器运行状态，执行结果显示当前Peer0/Org1节点、Peer2/Org2节点与Peer3/Org2节点都启动了mycc-1.0容器（容器完整名称使用下划线标记）提供链码服务。注意，script.sh脚本只在Peer2/Org2节点上执行过一次实例化链码操作，其余节点都是直接查询链码或者调用链码请求服务，即如果发现本地没有正常运行该链码容器，则默认启动链码容器后再请求执行其他操作。

[root@localhost ~]# docker ps -a

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

3bf72099be1e dev-peer1.org2.example.com-mycc-1.0-26c2ef32838554aac4f7ad6f100aca865e87959c9a126e86d764c8d01f8346ab "chaincode -peer.add…" 17 hours ago Up 17 hours dev-peer1.org2.example.com-mycc-1.0 # Peer3/Org2

1dfc14776024 dev-peer0.org1.example.com-mycc-1.0-384f11f484b9302df90b453200cfb25174305fce8f53f4e94d45ee3b6cab0ce9 "chaincode -peer.add…" 17 hours ago Up 17 hours dev-peer0.org1.example.com-mycc-1.0 # Peer0/Org1

0376ec9343af dev-peer0.org2.example.com-mycc-1.0-15b571b3ce849066b7ec74497da3b27e54e0df1345daff3951b94245ce09c42b "chaincode -peer.add…" 17 hours ago Up 17 hours dev-peer0.org2.example.com-mycc-1.0 # Peer2/Org2

至此，Hyperledger Fabric网络已经正式启动运行，能够为用户提供正常的链码（智能合约）服务。
1.2.5　Fabric交易处理流程

Hyperledger Fabric正常启动后，用户基于Client节点从Fabric CA节点或通过工具（cryptogen等）生成合法的身份证书、签名私钥等文件，获得合法的节点身份，认证之后进入Fabric网络。此时，用户就能正常发送交易到网络中请求处理，如图1-8所示。

 [image:]

图1-8　Hyperledger Fabric系统中交易处理流程示意图

①发送签名提案消息到Endorser背书节点请求处理

Client节点构造签名提案消息（SignedProposal类型），通过调用Endorser背书服务客户端的ProcessProposal()接口，提交该消息到Endorser背书节点，请求模拟执行交易提案并签名背书。

②Endorser背书节点模拟执行交易提案并签名背书

Endorser背书节点收到签名提案消息之后，进行如下处理。

·检查签名提案消息的格式合法性与签名有效性，包括通道头部、签名头部、签名域、交易ID、消息扩展域的ChaincodeId属性与PayloadVisibility可见性模式等；

·检查提案消息的创建者是否满足指定通道上的通道访问权限，即/Channel/Application/Writers写权限；

·检查并启动链码容器以模拟执行交易提案，并将模拟执行结果暂时保存在交易模拟器中，等待排序共识与交易验证，而不是直接更新到账本中。其中，交易模拟执行结果采用状态数据读写集（读数据的键和版本、写数据的键值）记录交易造成的状态变更结果；

·调用ESCC系统链码对该提案消息的模拟结果读写集等进行签名背书。

③Endorser背书节点向客户端返回提案响应消息，并分发隐私数据明文

Endorser背书节点基于背书信息、模拟执行结果等构造提案响应消息（ProposalResponse类型），并回复给请求客户端。

目前，模拟执行结果读写集包含公有数据（包括公共数据与隐私数据哈希值）与私有数据（或隐私数据）。其中，公有数据交由Orderer节点进行排序出块，再提交到账本区块数据文件，并广播到该通道上的所有节点。如果模拟执行结果中还存在有效的隐私数据明文，则Endorser背书节点通过Gossip消息协议将隐私数据发送给通道内授权的其他节点（由隐私数据集合配置的签名策略决定），交由transient隐私数据存储对象暂时保存到本地的transient隐私数据库（LevelDB），并在提交账本时存储到隐私数据库（LevelDB），同时清理transient隐私数据库中的过期数据。

④处理提案响应消息

Client节点解析Endorser背书节点回复的提案响应消息，获取背书结果并检查提案响应消息状态的合法性，以判断是否收集到了足够多的符合要求的背书签名信息。

⑤发送交易数据给Orderer服务节点请求排序

当收集到足够多数量的符合要求的Endorser背书签名之后（由背书策略决定），Client节点基于模拟执行结果、背书签名等构造合法的签名交易消息（Envelope类型），通过Broadcast()服务接口将该消息提交给Orderer节点，请求交易排序处理。其中，配置交易消息不需要经过Endorser节点处理。

⑥Orderer服务节点对交易进行排序并构造新区块

Orderer排序节点提供Solo类型（用于单节点测试）、Kafka类型（支持CFT容错）等共识组件，对符合通道处理要求的合法交易消息（普通交易消息、配置交易消息等）进行排序并达成一致观点，并对一段时间内接收的一批交易消息按照打包交易的出块规则（出块周期时间、区块字节数限制、配置交易单独出块等）构造新区块，创建应用通道或更新通道配置，同时提交账本。

⑦Leader主节点请求Orderer服务节点发送通道账本区块

Leader主节点通过Deliver()服务接口代表组织从Orderer节点请求通道账本上所有的区块数据，并通过Gossip消息协议分发到组织内的其他Peer节点。如果请求的区块数据不存在，则Orderer节点默认阻塞等待，直到指定区块创建完成并提交账本，再将该区块发送给Leader主节点。

⑧Committer记账节点验证交易并提交账本

Committer记账节点对区块与隐私数据（明文）执行如下检查，并提交至本地账本。如果不存在隐私数据明文，则跳过隐私数据的相关检查与提交账本的步骤。

·检查交易消息格式的正确性、签名合法性、交易内容是否篡改、消息头部的合法性等。

·调用VSCC系统链码，验证收集的签名背书结果是否符合指定的背书策略。

·对模拟结果中公有数据（即区块数据，含有公共数据与隐私数据哈希值）的读写集执行MVCC检查，针对单个键查询、键范围查询、隐私数据哈希值三种情况，检查读数据版本与交易时的账本是否一致，即是否存在读写冲突，并将存在冲突的交易标记为无效交易。

·验证模拟结果中隐私数据的正确性，遍历区块中有效交易的隐私数据读写集哈希值，取出对应交易的原始隐私数据读写集明文，重新计算其哈希值并对两者进行比较。如果两者完全相同，则说明该交易的隐私数据是真实有效的。

·保存所有的区块数据（即公有数据）到区块数据文件中，保存所有的私有数据（即隐私数据）读写集到隐私数据库（LevelDB）中，建立区块索引信息到区块索引数据库，将最新的有效交易数据（包含公共数据读写集、隐私数据读写集、隐私数据读写集哈希值）更新到状态数据库，最后将区块数据中经过Endorser背书的有效交易数据同步到历史数据库。同时，清理transient隐私数据库中的过期数据。

⑨Leader主节点分发数据与状态同步

Leader主节点基于Gossip消息协议将区块数据分发到组织内的其他节点上。同时，节点之间通过反熵算法等机制主动拉取缺失的数据（区块数据与隐私数据）、节点身份信息等，以确保组织内所有节点上的账本数据等信息保持同步。

⑩Committer记账节点验证交易并提交账本（同步骤⑧）

至此，Hyperledger Fabric系统上的一次完整交易处理流程即告结束。
1.3　Hyperledger Fabric源码分析说明

1.3.1　源码分析思路

本书以Hyperledger Fabric初始化启动流程、交易处理流程等流程为主线，分析Fabric核心模块，介绍其核心设计思想，如表1-5所示。

表1-5　Hyperledger Fabric源代码主要目录文件说明表

 [image:]

·核心模块：担任功能节点角色的模块，提供核心功能服务，包括Orderer排序节点与Peer节点（包含Endorser背书节点与Committer记账节点），将在第2章至第5章中分析各个模块的初始化启动流程、处理交易流程以及与其他模块间的交互过程，并介绍其核心功能的设计与实现细节。

·公共模块：为核心模块和其他模块提供基础支持服务，包括bccsp、common、core、events、gossip、msp、protos等目录代码。其中，第6章介绍了Gossip消息模块，为Peer节点提供安全、可靠、可扩展的P2P数据分发协议。第7章介绍了公共功能模块，包括账本数据存储模块、安全服务模块、事件模块等，为其他模块提供底层存储机制、安全机制、异步通信机制等。

·辅助模块：为其他模块提供辅助性工具、运行环境、测试用例、文档等，不作为分析重点，视情况分析以帮助理解其他模块。

同时，分析代码时应注意Hyperledger Fabric代码的常用惯例，这样做将有助于理解数据结构与代码功能，比较典型的情况包括：

·同一个模块的相关代码可能存在于其他多个模块相同模块名称的目录下，需要结合相关目录下的代码共同研究，如分析Peer节点需要结合fabric/peer、core/peer、core/chaincode、protos/peer等目录。

·mocks目录下通常包含模拟功能模块源码以用于测试环境或数据，test名称目录通常包含测试代码与数据，sample名称目录通常包含示例代码。

·Fabric中经常采用提供者模式（Provider Pattern）来分离接口定义与具体实现。通常，核心数据结构都存在XXX接口类型、xxxImpl/YXXX接口实现类型、XXXProvider提供者接口类型、xxxProviderImpl/YXXXProvider提供者接口实现类型等。注意，接口实现类型名称大多数是将接口类型名称XXX的第一个有效单词变为小写字母xxxImpl或直接在前面添加实现功能名称（可能会对XXX略作修改）为YXXX，具体说明如下。

·XXX接口类型通常用于定义该模块提供的功能方法接口，大多数是Interface接口并且没有定义属性字段，xxxImpl/YXXX实现类型会具体实现对应的接口方法和定义属性字段。例如，deliverServiceImpl类型实现了DeliverService接口类型，LedgerCommitter类型实现了Committer接口类型。

·XXXProvider提供者类型本身通常不会直接实现核心数据结构，而只是提供生成或获取XXX接口类型或实现类型的方法描述，由xxxProviderImpl/YXXXProvider提供者类型实现对应的方法，可以直接获取实际功能的接口或实现对象，如blocksProviderImpl类型实现了BlocksProvider接口类型。

·XXXSupport类型通常都是对XXX类型进行操作的支持对象，一般会包含XXX类型对象、相关辅助工具以及资源。

·代码中defaultXXX类型的数据结构通常都是XXX实现类型，其通常作为核心数据结构的默认初始对象。

·本文在分析时使用“→”符号表示程序执行路径上的方法或函数调用关系。

·以大写字母开头的结构字段与方法、数据结构类型与函数通常是公共的，可以提供给外部程序公开调用。以小写字母开头的结构字段与方法、数据结构类型与函数通常都是私有的，一般提供给内部模块调用。

本书为防止分析函数调用过深，从而影响到主线流程的分析，考虑到篇幅有限，并确保清晰简洁，在分析时将遵循如下原则。

·所有代码清单首行标注的源码文件位置均默认处于fabric源码目录下。

·尽可能在一个章节内分析属于同一个功能模块的代码，有可能属于同一个功能模块的相关代码分布在不同的包或模块中。对不复杂的跨功能模块函数调用操作，文中摘选核心代码片段直接解释说明，但将其相对独立完整的模块执行流程仍保留在独立章节中进行分析，如Endorser背书流程等，适当添加引用章节号以便于索引。

·与逻辑主线相关度不高的繁琐底层细节操作，或者较少代码的操作，如简单的参数合法性检查、错误检查、打印处理信息等，限于篇幅，都不提供代码清单或直接省略。

·文中有时会将过长的源代码分割开来在同一个章节中进行解析，这些代码在源代码中可能属于同一个函数中连续执行的程序。

·文中标注了重要变量的原始数据结构类型，以方便读者在源码中进行检索查询。

Hyperledger Fabric 1.1.0实现了很多实验新特性，在正式发布版本中，这些新特性都处于关闭状态或者将参数默认设置为空，其目的是不影响后续版本代码的功能升级，同时又能兼容当前发布版本的稳定性。Fabric源码采用了Makefile管理源码构建工作，很多实验新特性的源码都存在正式代码与实验代码两个版本。用户可以在使用make工具编译源代码时添加打开实验版本标志位metadata.Experimental为true，那么在编译Docker镜像时就会自动添加gotags，即打开实验版本“experimental”选项，从而支持测试很多新特性功能，如链码API支持隐私数据、Java链码实例化与调用等。本书不会专门对所有实验版本新特性进行深入分析，但会解析重大的版本新特性设计，如支持隐私数据集合（Private Data Collection，PDC）新特性，即通道内隐私数据的细粒度隐私保护机制。Hyperledger Fabric 1.2.0及以后版本已经开始支持新特性，读者可以对照学习。

事实上，Fabric社区一直以来就在积极讨论增强通道内隐私保护的新特性，如FAB-1151、FAB-2961、FAB-4976、FAB-8718等。Fabric 1.0.0中引入了多通道（Multiple-channel）机制实现了隔离数据特性，防止通道外的节点非法获取这些受保护的数据，起到了保护通道内公共数据隐私性的目的。但是，这种设计机制仍然存在以下不足之处。

·Orderer排序节点保存了所有通道的账本数据，实际上该节点不读取使用任何账本数据，仅仅为所有通道保存账本数据和提供访问服务。如果存在隐私数据，则同样会暴露给Orderer节点。

·通道内的Peer节点拥有该通道上所有组织的账本数据，包括与本地节点无关的交易数据。

·通道隔离机制提供的数据粒度较粗。如果所有组织之间都需要共享彼此的隐私数据，又不希望其他组织看见自己的所有数据，则每个组织之间都需要构建通道，大约需要构建O(n2)量级的通道数量。同时，通道暂时还不支持删除操作，缺乏灵活性。

·缺乏动态访问控制机制，即在运行过程中还不支持动态控制节点对数据的访问权限。

目前，Fabric社区正在努力推进工作以增强Endorser背书环节、Orderer排序环节以及Committer提交账本环节中的数据隐私性，存在采用加密机制或Hash机制（可以结合加盐即随机字符串或HMAC等机制提高安全强度）两种较为成熟和灵活的方案。但前者需要解决密钥的分发与管理问题，可能带来设计上新的复杂性，这也是Fabric 1.1.0在实验版本中开始支持隐私数据集合及Side DB数据库的基本动机。

新特性采用了Hash机制，即背书节点对交易提案执行结果中的私有数据（即隐私数据）计算哈希值，签名后返回客户端以验证背书节点结果的一致性。同时，将隐私数据明文通过Gossip消息协议传播给授权组（以静态或动态方式指定）的Peer节点集合，其他节点只能接收到隐私数据哈希值作为交易证据，且不需要创建独立的通道，从而实现比通道更细粒度与低开销的数据隐私保护机制。另外，新特性包括隐私数据库（Side DB数据库）、transient隐私数据存储对象（封装了transient隐私数据库）等。当节点提交账本时，将隐私数据读写集更新到隐私数据状态数据库中，将区块数据即公有数据（公共数据与隐私数据哈希值）读写集更新到区块数据文件中。

Fabric 1.2.0及其后续版本（推荐使用隐私数据的生产环境采用）开始在正式版中支持通道隐私数据集合新特性，在1.1.0实验版本的基础上对隐私数据添加了隐私数据集合配置信息，并保存到transient隐私数据库，同时在账本的隐私数据库中添加了区块有效范围信息，另外，还支持服务发现（Service Discovery，以简化客户端应用程序）、可插拔的背书及验证系统链码（Pluggable E/V Syscc，将原先的ESCC与VSCC系统链码实现为灵活的插件对象）等新特性。Fabric 1.3.0支持CouchDB分页机制、Java语言链码支持、基于通道的事件服务等新特性。有兴趣的读者可以通过Jira（https://jira.hyperledger.org/）查看项目更多的开发计划与任务进展情况。
1.3.2　配置机制

Fabric配置机制包括配置文件、配置环境变量与配置命令行选项参数，如表1-6所示。Fabric通过Viper组件管理配置项的解析、设置与获取等操作，Viper组件可以读取系统环境变量、yaml/json配置文件（orderer.yaml和core.yaml）等与绑定命令行选项参数，解析并转换为配置项键值对再存储到Viper组件中，从而灵活支持多种配置方式。通常，Fabric调用InitViper()函数初始化Viper组件的配置文件路径以及指定配置文件名称，默认在$FABRIC_CFG_PATH（如/etc/hyperledger/fabric）路径下查找配置文件，在找不到文件时依次查找当前目录、默认开发配置目录（$GOPATH/src/github.com/hyperledger/fabric/sampleconfig）和系统默认配置路径（/etc/hyperledger/fabric）下的配置文件，接着调用viper.SetConfigName()方法，指定配置文件名称。然后，调用Viper组件的ReadInConfig()方法，从上述指定配置路径上加载指定名称的配置文件，解析成配置项键值对再存储到Viper组件中。Viper组件的常用基本用法如下。

viper.SetConfigName("core") // 设置配置文件名称为core

viper.AddConfigPath("/etc/appname/") // 设置搜索的配置文件路径，可以设置多个

viper.AddConfigPath("$HOME/.appname")

viper.AddConfigPath(".")

viper.ReadInConfig() // 查找并读取配置文件

viper.Get("key") // 获取配置项key对应的属性值

viper.Set("key", "value") // 设置配置项key的值为value

表1-6　Hyperledger Fabric配置机制列表

 [image:]

用户可以通过设置环境变量来改变配置项的属性值，环境变量与配置文件中的配置项名称是严格对应的。例如，orderer.yaml配置文件中General配置下的LogLevel默认为info级别，若设置环境变量ORDERER_GENERAL_LOGLEVEL=NOTICE，则将日志级别更改为NOTICE级别。注意，Peer节点和Orderer节点相关环境变量分别是以CORE_和ORDERER_前缀开头的大写字符串。

另外，用户可以通过设置命令行选项参数来改变配置项的属性值，Fabric采用Cobra组件处理命令行请求，通过重置命令行选项参数来绑定Viper组件指定的配置项，以改变指定配置项的属性值。如代码清单1-20所示，在Peer节点的启动阶段，Cobra组件创建主命令选项mainFlags及其logging-level选项，接着Viper组件将其绑定到自身的logging_level配置项，这样，用户就可以在peer命令行中设置当前模块的日志级别。

因此，设置命令行选项参数、环境变量、配置文件在设置配置项时的优先级是依次降低的。

代码清单1-20　main()主程序的源码示例

peer/main.go文件

func main() {

 ……

 // 定义命令行选项集合

 mainFlags := mainCmd.PersistentFlags()

 ……

 // 设置logging-level选项

 mainFlags.String(“logging-level”, “”, “Default logging level and overrides, see core.yaml for full syntax”)

 viper.BindPFlag(“logging_level”, mainFlags.Lookup(“logging-level”))

 // Viper组件配置绑定的命令行选项

 ……

}

1.4　小结

本章介绍了区块链的基本概念、Hyperledger Fabric架构与相关流程。区块链行业的高速发展引起了社会的广泛关注，并出现了众多的区块链平台与应用。本章介绍了区块链的基本概念与核心技术，分析了Hyperledger Fabric架构及其相关流程，包括初始化启动流程、交易处理流程等，并以e2e_cli为示例搭建实验环境，最后介绍了Fabric 1.1.0的源码情况以及新特性。
第2章　Orderer排序节点

虽然大多数技术倾向于让周围的工人自动完成无意义的工作，但区块链的自动机制是去中心化的。区块链不会让出租车司机失业，而是能直接与客户合作，最后Uber将无容身之处。

——以太坊创始人，Vitalik Buterin

本章将分析Hyperledger Fabric中Orderer排序节点的设计与实现，其源代码主要分布在/orderer、/common、/core和/protos等目录下，如表2-1所示。读者可以通过本章了解到Orderer排序节点的启动流程，以及Orderer排序节点的Broadcast交易广播服务、Orderer共识排序服务、Deliver区块分发服务等。

表2-1　Orderer节点相关源码列表

 [image:]

 [image:]

2.1　功能概述

Orderer排序节点在Hyperledger Fabric系统架构中处于核心角色地位，管理着系统通道与所有应用通道，负责通道创建、通道配置更新等操作，并处理客户端提交的交易消息请求，对交易进行排序并按规则打包成新区块，提交账本并维护通道账本数据，为全网节点提供Broadcast交易广播服务、Orderer共识排序服务、Deliver区块分发服务等。通常，Hyperledger Fabric启动时需要先启动Orderer排序节点，创建系统通道提供正常服务后，再启动其他角色的Peer节点进入正常工作状态。因此，Orderer排序节点相当于Hyperledger Fabric系统的“中枢神经系统”，其服务模块关系与架构示意图如图2-1所示。

Orderer节点启动后基于创世区块初始化系统通道，创建Orderer排序服务器（实现了AtomicBroadcastServer服务器接口），封装了Broadcast服务处理句柄、Deliver服务处理句柄与多通道注册管理器对象（Registrar类型），并提供Broadcast()交易广播服务接口与Deliver()区块分发服务接口。

其中，Orderer排序服务器基于Broadcast()接口接收交易广播服务请求，调用Broadcast服务处理句柄的Handle()方法进行处理，建立消息处理循环，接收与处理客户端提交的普通交易消息、配置交易消息等请求消息（Envelope类型，通道头部类型是ENDORSER_TRANSACTION、CONFIG_UPDATE等），经过滤后发送至通道绑定的共识组件链对象（Solo类型、Kafka类型等）进行排序。接着，再将排序后的交易添加到本地待处理的缓存交易消息列表，并按照交易出块规则构造新区块，提交到Orderer节点指定通道账本的区块数据文件中，同时负责创建新的应用通道、更新通道配置等通道管理工作。目前，Orderer排序服务器负责接收与处理两类交易消息，具体如下。

 [image:]

图2-1　Orderer排序节点的服务模块关系与架构示意图

·配置交易消息（ConfigMsg）：通道头部类型是CONFIG_UPDATE的通道配置交易消息，含有最新的通道配置信息，经过通道消息处理器过滤后，转换为通道头部类型为ORDERER_TRANSACTION或CONFIG的配置交易消息（Envelope类型），分别用于创建新的应用通道或更新通道配置，同时，将通道配置交易消息单独打包成新区块，并提交到系统通道账本与应用通道账本。

·普通交易消息（NormalMsg）：通道头部类型是ENDORSER_TRANSACTION等的标准交易消息（经过Endorser背书的交易消息或其他非配置交易消息），含有改变世界状态的模拟执行结果读写集，经过Endorser节点签名背书后打包发送到Orderer节点请求处理，经过通道消息处理器过滤后，将合法交易提交到共识组件链对象进行排序，再按照交易出块规则（出块时间周期、打包最大交易数量、区块字节数限制等）生成新区块，并提交到通道账本。

同时，Orderer排序服务器提供Deliver()区块分发服务接口，将接收的服务请求交由Deliver服务处理句柄的Handle()方法处理，建立消息处理循环，负责接收与处理客户端提交的区块请求消息（Envelope类型，通道头部类型是DELIVER_SEEK_INFO、CONFIG_UPDATE等），封装了指定区块请求范围的区块搜索信息（SeekInfo类型）。接着，Deliver服务处理句柄循环从本地账本获取区块数据，依次发送给请求节点（如Leader主节点）。如果账本中还未生成指定区块，则Deliver服务处理句柄默认一直阻塞等待，直到该区块创建完成并提交账本后再回复给请求节点。

另外，Orderer排序服务器还提供了多通道注册管理器Registrar对象，负责管理系统通道与所有应用通道，封装了所有通道的链支持对象字典、共识组件字典、区块账本工厂对象等组件，维护所有通道上的通道配置、区块账本对象、共识组件等核心资源，创建通道上的共识组件链对象提供Orderer共识排序服务，负责对交易消息排序，切割打包构造新区块并提交账本，同时负责创建新的应用通道与更新通道配置，其相当于Orderer节点上的“资源管理器”。

实际上，Orderer排序服务器上的通道共识组件链对象利用Golang通道（Solo共识组件）或Kafka集群（Kafka共识组件）作为共识排序后端，对经过通道消息处理器过滤的合法交易消息进行排序，对交易顺序等达成一致性观点。同时，在新通道创建时或启动恢复现有通道时，启动通道绑定的链支持对象以及共识组件链对象，构建交易消息处理循环，接收共识组件已经完成排序的交易消息，并添加到本地待处理的缓存交易消息列表中，包括配置交易消息、普通交易消息等，采用相互独立的消息处理流程分别处理（实际上是在同一个处理方法代码中的不同case处理分支中）。

注意，目前Orderer节点账本只包括区块数据文件与区块索引数据库，负责保存区块数据即公有数据（包含公共数据与隐私数据哈希值），不存在状态数据库、历史数据库、隐私数据库等。不同于Peer节点，Orderer节点在提交区块到本地账本前不需要验证交易背书策略与执行MVCC检查，也不保存任何隐私数据（明文），只负责存储所有通道账本上的区块数据。
2.2　Orderer节点启动流程

Orderer节点的启动命令是orderer start，用于启动主程序的main()函数。该函数调用server.Main()主函数，初始化相关组件配置，创建并启动Orderer排序服务器。如代码清单2-1所示，该函数基于kingpin组件解析用户的输入命令，同时，orderer主命令目前支持3个子命令，具体如下。

·start：默认子命令，用于启动Orderer排序服务器；

·version：打印Orderer排序服务器版本信息；

·benchmark：启动Orderer排序服务器的测试模式。

代码清单2-1　Main()函数的源码示例

orderer/common/server/main.go文件

func Main() {

 fullCmd := kingpin.MustParse(app.Parse(os.Args[1:])) // 解析用户命令行

 ……

 conf, err := config.Load() // 加载orderer.yaml配置文件

 ……

 initializeLoggingLevel(conf) // 初始化日志级别

 initializeLocalMsp(conf) // 初始化本地MSP组件

 prettyPrintStruct(conf) // 打印配置信息

 Start(fullCmd, conf) // 启动Orderer排序服务器

}

server.Main()主函数先调用config.Load()函数，加载指定目录下的orderer.yaml配置文件，解析获取Orderer配置信息，保存在Orderer配置对象conf（TopLevel类型）中，如代码清单2-2所示。接着，根据配置分别初始化日志级别和本地MSP（成员关系服务提供者）组件，打印配置信息。最后，调用Start(fullCmd，conf)函数，启动Orderer排序服务器提供服务。

代码清单2-2　Load()函数的源码示例

orderer/common/localconfig/config.go文件

// 加载orderer.yaml文件与解析环境变量，创建Orderer配置对象

func Load() (*TopLevel, error) {

 config := viper.New() // 创建Viper配置对象

 cf.InitViper(config, configName) // 初始化Viper组件

 config.SetEnvPrefix(Prefix) // 设置环境变量前缀为ORDERER

 config.AutomaticEnv() // 查找匹配环境变量

 replacer := strings.NewReplacer(".", "_") // 创建替换符

 config.SetEnvKeyReplacer(replacer) // 设置环境变量替换符

 err := config.ReadInConfig() // 加载配置文件orderer.yaml

 ……

 var uconf TopLevel

 err = viperutil.EnhancedExactUnmarshal(config, &uconf)

 // 将配置信息解析到Orderer配置对象

 ……

 // 检查配置项的合法性，并初始化Orderer配置对象

 uconf.completeInitialization(filepath.Dir(config.ConfigFileUsed()))

 return &uconf, nil

}

2.2.1　加载orderer.yaml配置文件

config.Load()函数首先初始化Viper组件配置属性，调用InitViper()函数设置配置文件路径，并默认在$FABRIC_CFG_PATH（如/etc/hyperledger/fabric）路径下查找配置文件，找不到文件时再依次查找当前目录、默认开发配置目录（$GOPATH/src/github.com/hyperledger/fabric/sampleconfig）和系统默认配置路径（/etc/hyperledger/fabric）。同时，设置Viper组件查找配置项时，开启匹配系统环境变量的模式，即为Viper组件配置项（以.分割的格式）添加指定前缀“ORDERER_”，转换为大写字母形式，再将“.”替换为“_”。这样，Viper组件就能在查找配置项时，与以“ORDERER_”前缀开头的环境变量进行匹配，获取其在环境变量中的配置值。

接着，调用Viper组件的ReadInConfig()方法，从配置文件路径上加载Orderer节点配置文件orderer.yaml，解析成配置项键值对存储在Viper组件中，再调用viperutil.EnhancedExactUnmarshal()函数，将Viper组件配置项信息重新解析成Orderer配置对象conf（TopLevel类型），用于后面的初始化流程，如代码清单2-3所示。

代码清单2-3　TopLevel类型的源码示例

orderer/common/localconfig/config.go文件

type TopLevel struct {

 General 　General // 通用配置对象

 FileLedger 　FileLedger // 文件账本配置对象

 RAMLedger 　RAMLedger // RAM账本配置对象

 Kafka 　 Kafka // Kafka共识组件配置对象

 Debug 　 Debug // 调试信息配置对象

}

然后，调用completeInitialization()方法，检查Orderer配置对象conf中的配置项。如果发现配置项没有设置参数值，则使用全局变量defaults对象设置conf的默认属性值。

最后，在退出completeInitialization()方法时重置Orderer配置文件路径，包括orderer.genesis.block创世区块文件路径、本地MSP配置文件路径msp/*、TLS密钥文件与证书文件路径tls/*等，主要是添加配置文件所在路径的前缀（如/etc/hyperledger/fabric/），将其转换为绝对路径。如果这些路径已经是绝对路径，则不需要添加路径前缀。

注意，e2e_cli示例中的docker-compose-base.yaml文件通过设置Orderer环境变量来重新配置Orderer节点的配置文件路径，如代码清单1-8所示。Docker容器启动时会将上述配置文件路径映射为/var/hyperledger/orderer/下对应配置文件的绝对路径，orderer.yaml仍然存放在/etc/hyperledger/fabric/路径下。因此，e2e_cli示例中Orderer节点的配置文件位置如表1-2所示，如下所示进入Orderer节点容器后查看配置文件情况。

root@99d587e71c7b:/var/hyperledger/orderer# ls –R # 容器默认没有安装tree命令

.:

msp orderer.genesis.block tls

./msp:

admincerts cacerts keystore signcerts tlscacerts

./msp/admincerts:

Admin@example.com-cert.pem

./msp/cacerts:

ca.example.com-cert.pem

./msp/keystore:

fe83960af76411194f6720e164b5bf2d98c73e5c00202252941f7c16e353fb9e_sk

./msp/signcerts:

orderer.example.com-cert.pem

./msp/tlscacerts:

tlsca.example.com-cert.pem

./tls:

ca.crt server.crt server.key

2.2.2　初始化日志与本地MSP组件

initializeLoggingLevel(conf)函数负责设置Orderer节点上的日志后端输出流、输出格式与默认日志级别（INFO级别）。

initializeLocalMsp(conf)函数首先调用mspmgmt.LoadLocalMsp()方法（7.2.1节），接受Orderer配置对象conf中的General通用配置输入参数，即MSP配置文件路径LocalMSPDir、BCCSP配置项与MSP名称LocalMSPID，以初始化本地MSP组件，如代码清单2-4所示。

代码清单2-4　initializeLocalMsp()函数的源码示例

orderer/common/server/main.go文件

// 初始化本地MSP组件

func initializeLocalMsp(conf *config.TopLevel) {

 // 根据MSP配置文件路径、BCCSP密码服务组件配置、MSP名称初始化本地MSP组件

 err := mspmgmt.LoadLocalMsp(conf.General.LocalMSPDir, conf.General.BCCSP, conf.General.LocalMSPID)

 ……

}

本地MSP组件默认使用bccspmsp类型对象，如代码清单2-5所示。该类型的MSP组件是基于BCCSP组件提供密码套件服务的，封装了MSP组件（通常对应于一个组织）信任的相关证书列表（包含根CA证书、中间CA证书等）、签名者身份实体与管理员身份实体列表、MSP名称、证书撤销列表CRL等。因此，MSP组件可以用于鉴别组织成员身份、签名与验签、验证成员证书有效性等，属于节点身份管理的核心组件。

代码清单2-5　bccspmsp类型的源码示例

msp/mspimpl.go文件

// 基于BCCSP组件的MSP组件接口

type bccspmsp struct {

 version MSPVersion

 internalSetupFunc mspSetupFuncType

 internalValidateIdentityOusFunc validateIdentityOUsFuncType

 rootCerts []Identity

 intermediateCerts []Identity

 tlsRootCerts [][]byte

 tlsIntermediateCerts [][]byte

 certificationTreeInternalNodesMap map[string]bool

 signer SigningIdentity

 admins []Identity

 bccsp bccsp.BCCSP

 name string

 opts *x509.VerifyOptions

 CRL []*pkix.CertificateList

 ouIdentifiers map[string][][]byte

 cryptoConfig *m.FabricCryptoConfig

 ouEnforcement bool

 clientOU, peerOU *OUIdentifier

}

2.2.3　启动Orderer排序节点

Start()函数负责启动和测试Orderer排序节点，如代码清单2-6所示。

代码清单2-6　Start()函数启动Orderer排序节点的源码示例

orderer/common/server/main.go文件

func Start(cmd string, conf *config.TopLevel) {

 signer := localmsp.NewSigner() // 创建本地MSP签名者实体

 serverConfig := initializeServerConfig(conf) // 初始化TLS认证的安全服务器配置项

 grpcServer := initializeGrpcServer(conf, serverConfig) // 初始化gRPC服务器

 caSupport := &comm.CASupport{ // 构造CA证书支持组件对象

 AppRootCAsByChain: make(map[string][][]byte),// Application根CA证书字典

 OrdererRootCAsByChain: make(map[string][][]byte),// Orderer根CA证书字典

 // 设置TLS认证的客户端根CA证书列表

 ClientRootCAs: serverConfig.SecOpts.ClientRootCAs,

 }

 // 设置TLS连接认证的回调函数

 tlsCallback := func(bundle *channelconfig.Bundle) {

 if grpcServer.MutualTLSRequired() { // 检测是否需要认证TLS客户端证书

 logger.Debug("Executing callback to update root CAs")

 updateTrustedRoots(grpcServer, caSupport, bundle)// 执行回调函数更新根CA证书

 }

 }

 // 初始化多通道管理器对象

 manager := initializeMultichannelRegistrar(conf, signer, tlsCallback)

 mutualTLS := serverConfig.SecOpts.UseTLS && serverConfig.SecOpts.RequireClientCert // 设置TLS双向认证标志位

 // 创建Orderer排序服务器

 server := NewServer(manager, signer, &conf.Debug, conf.General.Authentication.TimeWindow, mutualTLS)

 switch cmd { // 分析命令类型

 case start.FullCommand(): // start启动子命令

 logger.Infof("Starting %s", metadata.GetVersionInfo())

 initializeProfilingService(conf) // goroutine启动go profile服务

 // 将Orderer排序服务器注册到gRPC服务器上

 ab.RegisterAtomicBroadcastServer(grpcServer.Server(), server)

 logger.Info("Beginning to serve requests")

 grpcServer.Start() // 启动gRPC服务器提供Orderer服务

 case benchmark.FullCommand(): // "benchmark" 测试用例子命令

 logger.Info("Starting orderer in benchmark mode")

 benchmarkServer := performance.GetBenchmarkServer() // 创建benchmark服务器

 benchmarkServer.RegisterService(server) // 注册到benchmark服务器上

 benchmarkServer.Start() // 启动benchmark服务器

 }

}

Start()函数首先调用localmsp.NewSigner()函数，创建本地MSP签名者实体signer（mspSigner类型，实现了crypto.LocalSigner接口类型），分别调用initializeServerConfig()函数与initializeGrpcServer()函数初始化启动参数，包括：

·gRPC安全服务器配置选项serverConfig；

·本地gRPC服务器grpcServer（*grpcServerImpl类型，默认7050端口）；

·CA证书支持组件caSupport：包括Application、Orderer和Client的根CA证书列表；

·TLS认证连接回调函数tlsCallback：双向TLS安全认证要求更新CA根证书列表。

接着，Start()函数调用initializeMultichannelRegistrar()函数，创建多通道注册管理器Registrar对象，用于注册Orderer节点上的所有通道（包括系统通道和应用通道），负责维护通道配置、账本等重要资源。

然后，Start()函数基于上述参数调用NewServer()函数，创建Orderer排序服务器，提供Orderer服务与管理所有通道资源及其账本、共识组件等，最后解析执行子命令，包括：

·start子命令：启动子命令，用于启动profile服务与Orderer排序服务器。首先调用initializeProfilingService()函数，根据配置（默认为false）启动goroutine并在指定地址（默认为0.0.0.0：6060）上提供profile服务，支持go tool pprof命令查看与分析程序性能瓶颈。接着，调用RegisterAtomicBroadcastServer()函数，将Orderer排序服务器注册到本地的gRPC服务器（7050端口）上。然后，调用grpcServer.Start()方法启动gRPC服务器，开始提供Orderer服务；

·benchmark子命令：测试用例子命令，用于启动测试服务器。首先创建benchmark服务器对象benchmarkServer，接着注册Orderer排序服务器，再调用benchmarkServer.Start()方法启动benchmark服务器。

至此，Orderer排序节点就正式启动了。

1.初始化gRPC服务器配置

initializeServerConfig()函数负责初始化gRPC服务器配置（ServerConfig类型）。该函数首先利用Orderer配置对象conf初始化TLS安全认证配置选项secureOpts，具体如下。

·secureOpts.UseTLS：启用TLS安全认证的使能标志位（默认为false）。若启用该标志位（true），则需要从指定的配置文件路径中读取服务器端的签名私钥、服务器端的身份证书、服务器端的根CA证书列表等。

·secureOpts.RequireClientCert：启用对客户端证书进行认证的使能标志位（默认为false）。如果启动了该选项标志位（true），则需要对服务器端与客户端进行双向TLS安全认证，从指定的客户端根CA证书文件路径列表（General.TLS.ClientRootCAs配置项）中读取证书。

接着，initializeServerConfig()函数将上述读取文件分别设置为secureOpts选项中的Key、Certificate、ServerRootCAs与ClientRootCAs字段值，同时，创建心跳消息配置项kaOpts（KeepaliveOptions类型），用于指定gRPC服务器上服务器端与客户端之间的心跳消息周期时间、超时时间、最小心跳消息周期时间等参数。

最后，initializeServerConfig()函数基于secureOpts与kaOpts参数创建gRPC服务器配置对象（ServerConfig类型）。

2.初始化gRPC服务器实例

initializeGrpcServer()函数根据Orderer配置信息对象conf与服务器配置项serverConfig创建Orderer节点上的gRPC服务器。

该函数首先构造指定地址与端口（默认为7050）上的监听器，再调用NewGRPC-ServerFromListener()函数，基于该监听器和服务器配置项serverConfig创建gRPC服务器实例grpcServer（grpcServerImpl类型，实现了GRPCServer接口）。接着，根据服务器配置serverConfig.SecOpts设置grpcServer对象的属性，包括TLS使能标志位tlsEnabled、服务器证书serverCertificate、服务器选项serverOpts（封装发送消息的最大和最小字节数、服务器端传输层证书等）等。最后，基于serverOpts参数调用grpc.NewServer()方法，创建grpcServer绑定的gRPC服务器server对象（Server类型），并返回该grpcServer服务器实例。

3.初始化多通道注册管理器Registrar对象

initializeMultichannelRegistrar()函数创建并初始化Orderer节点上的多通道注册管理器对象（Registrar类型），用于注册管理Orderer节点上的所有通道（包括系统通道和应用通道）、区块账本、共识组件等资源。因此，多通道注册管理器Registrar对象相当于Orderer节点上的“资源管理器”，为每个通道创建关联的共识组件链对象，负责交易排序、打包出块、提交账本以及通道管理等工作，如代码清单2-7所示。

代码清单2-7　initializeMultichannelRegistrar()函数初始化多通道管理器的源码示例

orderer/common/server/main.go文件

// 创建Orderer节点的多通道注册管理器对象

func initializeMultichannelRegistrar(conf *config.TopLevel, signer crypto.LocalSigner,

 callbacks ...func(bundle *channelconfig.Bundle)) *multichannel.Registrar {

 lf, _ := createLedgerFactory(conf) // 创建通道的账本工厂对象

 if len(lf.ChainIDs()) == 0 { // 不存在任何通道

 initializeBootstrapChannel(conf, lf) // 初始化系统通道

 } else {

 logger.Info("Not bootstrapping because of existing chains")

 }

 // 创建并设置共识组件字典

 consenters := make(map[string]consensus.Consenter)

 consenters["solo"] = solo.New() // Solo类型共识组件

 consenters["kafka"] = kafka.New(conf.Kafka) // Kafka类型共识组件

 // 创建多通道注册管理器对象

 return multichannel.NewRegistrar(lf, consenters, signer, callbacks...)

}

initializeMultichannelRegistrar()函数先调用createLedgerFactory(conf)函数，根据Orderer配置信息对象conf参数（默认账本是“file”文件类型）创建通道的区块账本工厂对象lf（fileLedgerFactory类型）及其账本目录（/var/hyperledger/production/orderer/chains），再检查是否存在任何通道对象，即调用lf.ChainIDs()方法，检查上述账本目录下通道账本目录的个数。如果不存在任何通道账本目录（个数为0），则说明Orderer节点还没有创建任何通道。

接着，调用initializeBootstrapChannel(conf，lf)函数，根据conf配置参数和区块账本工厂对象lf初始化系统通道，先基于配置文件或创世区块文件构造系统通道的创世区块genesisBlock，以及系统通道的区块数据存储对象（7.1.3节），用于执行添加区块、查询区块、查询交易等账本操作。同时，将区块数据存储对象封装为区块账本对象gl（FileLedger类型），注册到Orderer节点的通道区块账本对象字典lf.ledgers（map[string]blockledger.ReadWriter类型）中，再调用gl.Append()方法，将创世区块genesisBlock添加到系统通道账本的区块文件中。

然后，调用solo.New()与kafka.New()函数，分别创建Solo类型共识组件（consenter类型，支持单节点测试）与Kafka类型共识组件（consenterImpl类型，支持CFT类型容错），并注册到共识组件字典consenters（map[string]consensus.Consenter类型）中。

最后，基于上述参数调用multichannel.NewRegistrar()函数，创建Orderer节点上的多通道注册管理器对象。同时，创建系统通道与现存应用通道（可能发生崩溃故障等）的链支持对象（ChainSupport类型），将这些通道都注册到多通道注册管理器上，并调用chain.start()方法，依次启动每个应用通道关联的链支持对象，最后启动系统通道的链支持对象，实际上都是启动的共识组件链对象。其中，Registrar类型与ChainSupport类型示意图如图2-2所示。

至此，Orderer节点上的多通道注册管理器Registrar对象即创建并启动完毕。

 [image:]

图2-2　Registrar类型与ChainSupport类型示意图

（1）创建区块账本工厂对象

createLedgerFactory()函数读取Orderer配置对象conf，创建区块账本工厂对象（fileLedgerFactory类型），用于创建指定通道上基于文件的区块数据存储对象（fsBlockStore类型），负责执行存储区块、查询区块、查询交易数据等操作。该函数先解析获取conf配置对象中的账本配置类型（General.LedgerType配置项），包括file文件类型、json文件类型和ram内存类型三种情况。其中，生产环境推荐采用file文件类型，json文件类型和ram内存类型仅用于测试环境。

createLedgerFactory()函数首先获取Orderer节点上的区块账本存储目录ld，包括默认目录/var/hyperledger/production/orderer或临时目录中的子目录hyperledger-fabric-ordererledger+随机数后缀（默认目录不存在时使用）。接着，调用fileledger.New(ld)函数，创建基于文件的区块账本工厂对象lf（fileLedgerFactory类型），如代码清单2-8与代码清单2-9所示。然后，调用createSubDir()函数，在区块账本目录下建立以chains命名的子目录（/var/hyperledger/production/orderer/chains），由每个通道账本的区块数据存储对象负责在chains子目录下创建维护以通道ID（即链ID）命名的通道账本子目录，用于保存该通道账本的所有区块数据文件。其中，区块数据文件名都是以blockfile_num命名，num是6位区块文件编号，左侧不足位数用0补齐。

代码清单2-8　fileLedgerFactory类型的源码示例

common/ledger/blockledger/file/factory.go文件

type fileLedgerFactory struct {

 blkstorageProvider blkstorage.BlockStoreProvider // 区块数据存储对象提供者

 ledgers map[string]blockledger.ReadWriter // 账本字典

 mutex sync.Mutex // 同步锁

}

代码清单2-9　区块索引配置常量的源码示例

common/ledger/blockledger/blockstorage.go文件

type IndexableAttr string

const (// 可索引属性常量

 IndexableAttrBlockNum = IndexableAttr("BlockNum") // 区块号

 IndexableAttrBlockHash = IndexableAttr("BlockHash") // 区块头哈希值

 IndexableAttrTxID = IndexableAttr("TxID") // 交易ID

 IndexableAttrBlockNumTranNum = IndexableAttr("BlockNumTranNum") // 区块号与交易序号

 IndexableAttrBlockTxID = IndexableAttr("BlockTxID") // 区块交易ID

 IndexableAttrTxValidationCode = IndexableAttr("TxValidationCode") // 交易验证码

)

fileLedgerFactory类型对象包含如下属性。

·区块数据存储对象提供者blkstorageProvider（FsBlockstoreProvider类型）：用于生成指定通道上基于文件的区块数据存储对象（fsBlockStore类型），并指定其初始化配置信息，配置信息具体如下。

·区块文件配置conf：区块账本目录（默认为/var/hyperledger/production/orderer）与最大区块文件字节数（默认是64MB）；

·区块索引配置indexConfig：指定区块索引配置方式，默认设置了IndexableAttrBlockNum索引方式，即按照区块号索引获取区块的文件位置指针，实际上可以支持6种区块索引配置方式；

·区块索引数据库提供者leveldbProvider：用于创建指定账本ID（通道ID或链ID）的LevelDB类型区块索引数据库句柄对象（DBHandle类型），封装了区块索引数据库对象，并添加到区块索引数据库句柄字典dbHandles。同时，区块索引数据库文件存储在指定区块账本目录的索引子目录（index）下，即/var/hyperledger/production/orderer/index。

·账本字典ledgers（map[string]blockledger.ReadWriter类型）：记录通道ID与区块账本对象之间的映射关系，管理Orderer节点上所有通道的区块账本对象（FileLedger类型），封装了对应的区块数据存储对象，用于访问区块数据文件；

·同步锁mutex：用于控制账本字典ledgers上的读写同步操作。

（2）初始化系统通道

initializeBootstrapChannel()函数首先创建系统通道的创世区块，初始化系统通道的区块账本对象及其区块数据存储对象，然后将创世区块添加到本地系统通道的区块数据文件中，如代码清单2-10所示。其中，创世区块包含了系统通道的初始配置信息。

代码清单2-10　initializeBootstrapChannel()函数初始化系统通道的源码示例

orderer/common/server/main.go文件

// 初始化系统通道

func initializeBootstrapChannel(conf *config.TopLevel, lf blockledger.Factory) {

 var genesisBlock *cb.Block

 switch conf.General.GenesisMethod { // 分析创世区块的生成方式

 case "provisional": // 根据配置文件生成创世区块

 genesisBlock = encoder.New(genesisconfig.Load(conf.General.GenesisProfile)).GenesisBlockForChannel(conf.General.SystemChannel)

 case "file": // 根据创世区块文件生成创世区块

 genesisBlock = file.New(conf.General.GenesisFile).GenesisBlock()

 default:

 logger.Panic("Unknown genesis method:", conf.General.GenesisMethod)

 }

 chainID, err := utils.GetChainIDFromBlock(genesisBlock) // 从创世区块中解析获取通道ID

 ……

 gl, err := lf.GetOrCreate(chainID) // 创建系统通道的区块账本对象

 ……

 err = gl.Append(genesisBlock) // 添加区块到系统通道账本上

 ……

}

initializeBootstrapChannel()函数首先解析conf.General.GenesisMethod配置项，获取系统通道创世区块的创建方式，包括provisional（读取配置文件构造创世区块）与file（读取创世区块文件）两种情况。

①provisional方式

initializeBootstrapChannel()函数首先调用genesisconfig.Load(conf.General.GenesisProfile)函数，在configtx.yaml配置文件中获取与conf.General.GenesisProfile名称（默认是Sample-SingleMSPSolo）对应的Profile模板对象。该对象封装了Orderer系统通道与Consortiums联盟列表等配置值与配置策略。接着，调用encoder.New()函数，将该对象包含的通道配置信息转换为通道配置组（cb.ConfigGroup类型），再封装为Bootstrapper结构对象并返回。然后，调用Bootstrapper.GenesisBlockForChannel()方法，将该通道配置组对象封装到区块数据第1个交易的消息负载中，添加区块头部（通道头部类型为HeaderType_CONFIG）以及区块元数据（构造BlockMetadataIndex_LAST_CONFIG索引项，并设置最新配置区块号为0），从而创建系统通道的创世区块对象genesisBlock（Block类型），其通道名称默认为“testchainid”。

②file方式

initializeBootstrapChannel()函数调用file.New(conf.General.GenesisFile).GenesisBlock()方法，读取orderer.yaml文件的conf.General.GenesisFile配置项（默认是“genesisblock”）所指定文件名称的创世区块文件，实际上是通过docker-compose-base.yaml中的环境变量ORDERER_GENERAL_GENESISFILE配置为/var/hyperledger/orderer/orderer.genesis.block，并解析成创世区块对象genesisBlock（Block类型）。

接着，initializeBootstrapChannel()函数初始化系统通道，包括区块账本对象与当前通道的账本子目录。该函数调用utils.GetChainIDFromBlock()方法，解析创世区块中第1个交易的消息负载头部，获取其通道头部中的通道ID，即chdr.ChannelId（chainID）。接着，调用区块账本工厂对象的lf.GetOrCreate(chainID)→fileLedgerFactory.GetOrCreate()方法，创建系统通道的区块账本对象gl。该方法首先检查区块账本工厂对象lf上的账本字典ledgers中是否存在指定通道（chainID）对应的区块账本对象ledger。如果不存在该对象，则调用flf.blkstorageProvider.OpenBlockStore()方法，创建该通道上的区块数据存储对象blockStore（fsBlockStore类型），负责执行存储区块数据与区块链信息、获取区块与交易数据等操作。然后，基于blockStore对象调用NewFileLedger()函数，创建当前通道的区块账本对象ledger（FileLedger类型），并注册到账本工厂对象lf的账本字典ledgers中，再将ledger返回到initializeBootstrapChannel()函数中的gl变量。

然后，initializeBootstrapChannel()函数调用区块账本对象的gl.Append(genesisBlock)→fl.blockStore.AddBlock(block)→store.fileMgr.addBlock(block)方法，利用区块数据存储对象底层的区块文件管理器，将创世区块genesisBlock添加到系统通道账本的区块数据文件中。同时，保存区块检查点信息与索引检查点信息，建立区块索引信息，更新区块文件管理器上的区块检查点信息，即调用mgr.updateCheckpoint()→mgr.cpInfoCond.Broadcast()方法，广播唤醒所有等待该同步条件变量cpInfoCond的程序，通知已有新区块提交到账本中。例如，Orderer节点阻塞等待的Deliver消息处理句柄就会被重新唤醒，并将指定的区块数据发送给通道组织的Leader主节点。

至此，initializeBootstrapChannel()函数初始化系统通道的流程结束。

（3）创建Consenter共识组件

initializeMultichannelRegistrar()函数可创建Solo和Kafka两种类型的共识组件，添加注册到共识组件字典consenters（map[string]consensus.Consenter类型）中。其中，Solo共识组件的New()函数比较简单，直接返回Solo共识组件对象（consenter类型）。Kafka共识组件的New()函数则根据Kafka配置初始化Broker服务器配置项（包含生产者、消费者、元数据等），创建了Kafka共识组件对象（consenterImpl类型），共识组件对象用于提供HandleChain()方法以创建关联通道上指定类型的共识组件链对象，负责交易排序、通道管理等具体处理工作。

（4）创建多通道注册管理器对象

Orderer节点上的多通道注册管理器对象（Registrar类型）实现了多通道（MultiChannel）管理机制，支持多个通道及其链上的数据相互隔离，确保只有同一个通道内的Peer节点才能接收该通道上的账本数据，且不允许其他通道上的节点或外部非法节点接收与访问本通道数据，从而保护通道上的数据隐私。NewRegistrar()函数可用于创建多通道注册管理器对象，如代码清单2-11所示。

代码清单2-11　NewRegistrar()函数创建多通道注册管理器的源码示例

orderer/common/multichannel/registrar.go文件

// 创建新的多通道注册管理器对象

func NewRegistrar(ledgerFactory blockledger.Factory, consenters map[string]consensus.Consenter,

 signer crypto.LocalSigner, callbacks ...func(bundle *channelconfig.Bundle)) *Registrar {

 r := &Registrar{

 chains: make(map[string]*ChainSupport), // 链支持对象字典

 ledgerFactory: ledgerFactory, // 账本工厂对象

 consenters: consenters, // 共识组件字典

 signer: signer, // 本地签名者

 callbacks: callbacks, // 回调函数（如TLS认证连接回调函数）

 }

 existingChains := ledgerFactory.ChainIDs() // 获取该账本工厂对象关联的现存通道ID列表

 // 循环遍历现存通道ID列表

 for _, chainID := range existingChains {

 // 根据通道ID（chainID）获取或新建指定通道上的区块账本对象

 rl, err := ledgerFactory.GetOrCreate(chainID)

 ……

 configTx := getConfigTx(rl) // 获取该通道账本上最新的配置交易对象

 ……

 ledgerResources := r.newLedgerResources(configTx) // 创建新的账本资源对象

 chainID := ledgerResources.ConfigtxValidator().ChainID() // 重新获取链ID

 // 若存在Consortiums配置，则说明是系统通道

 if _, ok := ledgerResources.ConsortiumsConfig(); ok {

 // 如果已经设置系统通道名称，则说明已经创建了系统通道的链支持对象

 if r.systemChannelID != "" {

 logger.Panicf("There appear to be two system chains %s and %s", r.systemChannelID, chainID)

 }

 // 构造该通道的链支持对象

 chain := newChainSupport(

 r, // 多通道管理器

 ledgerResources, // 账本资源对象

 consenters, // 共识组件字典

 signer) // 签名者实体

 // 创建默认通道配置模板

 r.templator = msgprocessor.NewDefaultTemplator(chain)

 // 创建系统通道消息处理器

 chain.Processor = msgprocessor.NewSystemChannel(chain, r.templator, msgprocessor.CreateSystemChannelFilters(r, chain))

 // 将账本的区块迭代器指针设置为最旧区块位置

 iter, pos := rl.Iterator(&ab.SeekPosition{Type: &ab.SeekPosition_Oldest{Oldest: &ab.SeekOldest{}}})

 defer iter.Close()

 if pos != uint64(0) { // 检查区块号，如果不为0，则报错

 logger.Panicf("Error iterating over system channel: '%s', expected position 0, got %d", chainID, pos)

 }

 genesisBlock, status := iter.Next() // 获取创世区块并在日志中记录其哈希值

 if status != cb.Status_SUCCESS {

 logger.Panicf("Error reading genesis block of system channel '%s'", chainID)

 }

 logger.Infof("Starting system channel '%s' with genesis block hash %x and orderer type %s", chainID, genesisBlock.Header.Hash(), chain.SharedConfig().ConsensusType())

 // 将系统通道注册到多通道管理器。这里的代码只执行一次

 r.chains[chainID] = chain // 注册到链支持对象字典

 r.systemChannelID = chainID // 设置系统通道ID

 r.systemChannel = chain // 设置系统通道的链支持对象

 // 为了保证不出错误，在函数退出时最后启动系统通道的链支持对象

 defer chain.start()

 } else {

 // 若不存在联盟配置，则属于应用通道，直接创建链支持对象，注册到多通道注册管理器中

 logger.Debugf("Starting chain: %s", chainID)

 chain := newChainSupport(// 构造应用通道的链支持对象

 r,

 ledgerResources,

 consenters,

 signer)

 r.chains[chainID] = chain // 设置应用通道的链支持对象

 chain.start() // 启动链支持对象

 }

 }

 // 若检测系统通道ID为空，则说明还没有设置系统通道

 if r.systemChannelID == "" {

 logger.Panicf("No system chain found. If bootstrapping, does your system channel contain a consortiums group definition?")

 }

 return r

}

1）创建多通道注册管理器对象

NewRegistrar()函数创建了多通道注册管理器对象，封装了链支持对象字典chains、区块账本工厂对象ledgerFactory、共识组件字典consenters、本地签名者、系统通道ID、系统通道链支持对象、TLS认证连接回调函数列表等，如代码清单2-12所示。

代码清单2-12　多通道注册管理器Registrar类型的源码示例

orderer/common/multichannel/registrar.go文件

type Registrar struct {

 chains map[string]*ChainSupport // 链支持对象字典

 consenters map[string]consensus.Consenter // 共识组件字典

 ledgerFactory blockledger.Factory // 账本工厂对象组件

 signer crypto.LocalSigner // 本地签名者实体

 systemChannelID string // 系统通道ID

 systemChannel *ChainSupport // 系统通道链支持对象

 templator msgprocessor.ChannelConfigTemplator // 通道配置模板，用于生成消息

 处理器

 callbacks []func(bundle *channelconfig.Bundle) // TLS认证连接回调函数列表

}

链支持对象（ChainSupport类型）封装了关联通道上的账本资源对象、消息处理器、区块写组件、共识组件链对象等核心组件与模块，用于过滤验证消息、切割打包消息出块、提交区块写入账本、创建通道与更新通道配置等流程，如代码清单2-13所示。

代码清单2-13　链支持对象ChainSupport类型的源码示例

orderer/common/multichannel/chainsupport.go文件

type ChainSupport struct {

 *ledgerResources // 账本资源对象

 msgprocessor.Processor // 消息处理器

 *BlockWriter // 区块写组件

 consensus.Chain // 共识组件链对象

 cutter blockcutter.Receiver // 消息切割组件

 crypto.LocalSigner // 本地签名者

}

2）遍历并启动现存所有链结构

NewRegistrar()函数调用ledgerFactory.ChainIDs()方法，读取Orderer节点上区块账本目录（/var/hyperledger/production/orderer/chains）中的所有通道账本子目录名称，即当前节点上已经成功创建的现存通道ID列表existingChains。接着，循环遍历existingChains列表中的通道ID，依次执行下面的步骤3至步骤6，构造对应通道上的链支持对象（ChainSupport类型），并启动通道绑定的共识组件链对象。如果是新建的Orderer排序节点刚刚启动，则existingChains列表只会包含系统通道ID（即“testchainid”）。如果是Orderer节点崩溃后重启，则existingChains列表还可能包含其他已经成功创建的应用通道ID列表。

3）获取通道的最新配置交易对象

NewRegistrar()函数继续获取指定通道（chainID）的最新配置交易消息（Envelope类型）。该函数调用ledgerFactory.GetOrCreate(chainID)方法，从区块账本工厂对象的账本字典ledgers中获取指定通道的区块账本对象rl，并调用getConfigTx(rl)函数，请求获取该通道上的最新配置交易对象。

实际上，getConfigTx()函数调用blockledger.GetBlock(reader，reader.Height()-1)函数，先获取当前通道账本上的最新区块lastBlock（区块号为区块账本的高度-1，即reader.Height()-1）。接着，调用GetLastConfigIndexFromBlock()函数，获取最新区块lastBlock上元数据中的BlockMetadataIndex_LAST_CONFIG索引项，解析获得最新配置区块的索引区块号index。然后，调用blockledger.GetBlock(reader，index)函数，从区块文件中获取指定区块号index对应的最新配置区块对象configBlock。最后，调用ExtractEnvelopeOrPanic(configBlock，0)函数，从该配置区块的block.Data.Data交易集合中解析获取第1个交易对象（实际上配置区块只包含了1个配置交易），作为该通道的最新配置交易对象返回到NewRegistrar()函数中的configTx变量。

4）创建账本资源对象

NewRegistrar()函数调用newLedgerResources(configTx)方法，基于指定通道的交易配置对象configTx创建账本资源对象（ledgerResources类型），封装了通道配置资源对象（configResources类型）与区块账本对象（FileLedger类型），分别用于管理通道的配置信息与区块账本。实际上，通道配置资源对象利用封装的BundleSource类型对象来访问底层的通道配置实体对象（channelconfig.Bundle类型），以获取与更新通道配置，如代码清单2-14与代码清单2-15所示。该对象是整个通道配置的核心数据结构，封装了与通道配置管理相关的核心组件，具体如下。

·channelConfig通道配置对象（ChannelConfig类型）：解析configTx包含的通道配置组对象（ConfigGroup类型），提取并保存通道配置值（ConfigValue类型）、Application、Orderer、Consortiums等配置，以及MSP组件管理器（mspManagerImpl类型）；

·policyManager策略管理器（ManagerImpl类型）：用于管理通道上资源的访问权限策略。该对象保存了配置树（以Channel路径为根）上所有ConfigGroup类型配置组对应的子组策略管理器，同时注册各层次路径上的子组策略集合，以控制所有对应通道资源的访问控制权限。目前，该对象支持两种策略类型，即隐式元策略Policy_IMPLICIT_META类型与签名策略Policy_SIGNATURE类型。前者检查子策略（递归到最底层策略还是签名策略）是否满足指定规则（任意ANY、全部ALL、大多数MAJORITY）的要求，后者则检查签名身份组合是否满足指定策略（单个签名或组合签名方式）的要求；

·configtxManager配置交易管理器（ValidatorImpl类型）：用于查询、验证与更新通道配置，封装了名字空间（Channel）、通道ID、配置序号sequence（标识通道配置信息的版本，即通道配置版本号）、配置项字典configMap（管理配置值、配置策略、配置组等配置对象与配置路径之间的映射关系）、当前通道配置对象configProto等以及策略管理器；

·MSP组件管理器mspManager（msp.MSPManager类型）：实际上就是通道配置对象channelConfig中创建的MSP组件管理器，用于管理该通道配置上的所有MSP组件集合，可用于验证与解析合法的Peer节点身份实体。

至此，账本资源对象ledgerResources创建完毕。

代码清单2-14　channelconfig.Bundle类型的源码示例

common/channelconfig/bundle.go文件

type Bundle struct {

 policyManager 　　policies.Manager // 策略管理器

 mspManager 　　msp.MSPManager // MSP组件管理器

 channelConfig 　　*ChannelConfig // 通道配置对象

 configtxManager 　　configtx.Validator // 配置交易管理器

}

代码清单2-15　channelconfig.BundleSource类型的源码示例

common/channelconfig/bundlesource.go文件

type BundleSource struct {

 bundle atomic.Value // Bundle结构对象

 callbacks []func(*Bundle) // 回调函数

}

5）创建链支持对象与共识组件链对象

NewRegistrar()函数首先调用ledgerResources.ConfigtxValidator().ChainID()方法，利用配置交易管理器获取通道配置中关联通道的链ID。接着，调用ledgerResources.Consortiums-Config()方法，检查当前通道配置中是否存在Consortiums配置，即Orderer所服务的联盟列表。如果发现当前通道配置中存在该配置项，则说明当前正在处理系统通道（因为应用通道配置中不包含Consortiums配置项），否则就是应用通道。

①系统通道

NewRegistrar()函数继续检查多通道注册管理器Registrar对象中的系统通道名称systemChannelID。如果该名称不是空字符串，则说明已经创建了系统通道及其名称。因此，报错信息将提示出现两个系统通道。接着，调用newChainSupport()函数，创建系统通道关联的链支持对象（ChainSupport类型），如代码清单2-16所示。

代码清单2-16　newChainSupport()函数创建链支持对象的源码示例

orderer/common/multichannel/chainsupport.go文件

func newChainSupport(

 registrar *Registrar,

 ledgerResources *ledgerResources,

 consenters map[string]consensus.Consenter,

 signer crypto.LocalSigner,

) *ChainSupport {

 // 获取通道上账本的最新区块

 lastBlock := blockledger.GetBlock(ledgerResources, ledgerResources.Height()-1)

 // 从最新区块中获取Orderer元数据索引项

 metadata, err := utils.GetMetadataFromBlock(lastBlock, cb.BlockMetadataIndex_ORDERER)

 ……

 cs := &ChainSupport{ // 构造指定通道的链支持对象

 ledgerResources: ledgerResources, // 区块账本资源对象

 LocalSigner: signer, // 本地签名者

 cutter: blockcutter.NewReceiverImpl(ledgerResources.SharedConfig()),

 // 消息切割组件

 }

 // 设置标准通道消息处理器

 cs.Processor = msgprocessor.NewStandardChannel(cs, msgprocessor.CreateStandardChannelFilters(cs))

 cs.BlockWriter = newBlockWriter(lastBlock, registrar, cs) // 将区块写入组件

 consenterType := ledgerResources.SharedConfig().ConsensusType() // 获取共识组件类型

 consenter, ok := consenters[consenterType] // 获取共识组件对象

 ……

 // 注意链支持对象cs实现了ConsenterSupport接口，以支持Solo与Kafka共识组件链对象

 // Solo共识组件只使用了cs参数，Kafka共识组件则使用了两个参数

 cs.Chain, err = consenter.HandleChain(cs, metadata) // 创建新的共识组件链对象

 ……

 return cs

}

newChainSupport()函数首先解析最新区块元数据的BlockMetadataIndex_ORDERER索引项，获取元数据配置信息metadata，将其作为参数传递给HandleChain()方法调用，以创建共识组件链对象。同时，构造指定通道的链支持对象cs（ChainSupport类型），该对象除了账本资源对象与本地签名者之外，还封装了如下核心组件。

·消息切割组件（receiver类型）：首先调用ledgerResources.SharedConfig()方法，获取指定通道上的Orderer配置，包含共识组件类型、交易出块周期时间、区块最大字节数、通道限制参数（如通道数量）等。接着，基于该配置创建消息切割组件（receiver类型），将本地的缓存交易消息列表按照交易出块规则切割成批量交易集合（[]*cb.Envelope类型），再交由区块账本写组件构造新区块，并提交到账本区块文件。

·标准通道消息处理器（StandardChannel类型）：负责过滤处理应用通道上的消息，以筛选出符合通道要求的消息，默认初始化4个标准通道消息过滤器，即Empty-RejectRule拒绝空消息过滤器、expirationRejectRule拒绝过期的签名者身份证书的过滤器、MaxBytesRule验证消息最大字节数（默认98MB）的过滤器和sigFilter验证消息签名是否满足ChannelWriters（/Channel/Writers）通道写权限策略要求的过滤器。

·区块账本写组件（BlockWriter类型）：负责构造新区块并向账本提交区块文件，同时创建新的应用通道与更新通道配置。该对象在初始化时设置最新的区块号lastBlock、通道配置序号lastConfigSeq、最新的配置区块号lastConfigBlockNum、多通道注册管理器Registrar对象（用于创建新的应用通道）以及关联通道的链支持对象（用于更新通道配置）。

·共识组件链对象（consensus.Chain接口）：采用共识排序后端对交易排序，再添加到缓存交易消息列表，同时利用链支持对象上的消息切割组件、通道消息处理器、区块账本写组件等模块执行打包出块、通道管理等操作。

然后，newChainSupport()函数调用ledgerResources.SharedConfig().ConsensusType()方法，利用ledgerResources对象中的通道配置实体Bundle对象获取当前配置的通道共识组件类型consenterType，从consenters共识组件字典中获取相应的共识组件对象consenter，再调用consenter.HandleChain(cs，metadata)方法，创建该通道的共识组件链对象（consensus.Chain接口），并设置到链支持对象的cs.Chain字段上。共识组件链对象属于通道上共识组件的重要实现模块，利用共识排序后端（如sendChan通道、Kafka集群等）对交易排序并添加到本地的缓存交易消息列表中，按出块规则切割成批量交易集合，再打包出块提交到账本，同时负责创建新通道与更新通道配置，如代码清单2-17所示，其中：

·Solo共识组件：单节点测试模式。该组件的HandleChain()方法没有使用metadata元数据参数，直接调用newChain()函数，创建Solo共识组件链对象（chain类型），封装了共识组件支持对象（即链支持对象cs）、sendChan通道（用于传递和排序交易）、exitChan通道（用于接收退出消息）等；

·Kafka共识组件：基于Kafka集群的共识组件模式。该组件的HandleChain()方法首先从metadata元数据参数中解析获得通道上的Kafka元数据（KafkaMetadata类型），即最新消息偏移量LastOffsetPersisted、最新已处理的消息偏移量LastOriginalOffsetProcessed和最新重新提交的配置消息偏移量LastResubmittedConfigOffset。接着，根据上述参数调用newChain()函数，创建Kafka共识组件链对象（Kafka.chainImpl类型），并关联到指定消息主题（通道ID）与默认分区defaultPartition（0）的Kafka分区通道上（channelImpl类型），用于接收与处理关联通道上经过Kafka集群排序后的交易消息。

其中，上述两类共识组件链对象还实现了consensus.Chain接口与broadcast.Consenter接口。

新通道创建或恢复现存通道时会继续调用chain.start()→cs.Chain.Start()方法，启动通道上的共识组件链对象，创建消息处理循环，等待从共识排序后端接收已排序的交易消息。同时，共识组件链对象为Broadcast服务处理句柄提供了Order()方法与Configure()方法，分别用于构造新的普通交易消息与配置交易消息，封装了当前的通道配置序号与过滤后的合法原始消息，并提交给共识排序后端请求排序。

代码清单2-17　Consenter、Chain与ConsenterSupport接口的源码示例

orderer/consensus/consensus.go文件

Package consensus

// 共识组件

type Consenter interface {

 // 创建共识组件链对象

 HandleChain(support ConsenterSupport, metadata *cb.Metadata) (Chain, error)

}

// 共识组件链对象

type Chain interface {

 Order(env *cb.Envelope, configSeq uint64) error // 提交普通交易消息进行排序

 Configure(config *cb.Envelope, configSeq uint64) error // 提交通道配置交易消息进行

 通道管理

 WaitReady() error // 检查并阻塞等待共识组件能够接收和处理新消息

 Errored() <-chan struct{} // 返回通道，当发生错误时关闭该通道

 Start() // 启动共识组件

 Halt() // 停止并释放资源

}

// 共识组件支持对象

type ConsenterSupport interface {

 crypto.LocalSigner // 本地签名者实体

 msgprocessor.Processor // 消息处理器

 BlockCutter() blockcutter.Receiver // 消息打包组件

 SharedConfig() channelconfig.Orderer // 获取通道Orderer配置

 CreateNextBlock(messages []*cb.Envelope) *cb.Block

 // 创建区块

 WriteBlock(block *cb.Block, encodedMetadataValue []byte)

 // 提交封装了普通交易消息的区块到账本

 WriteConfigBlock(block *cb.Block, encodedMetadataValue []byte)

 // 提交配置区块到账本，创建新通道或更新通道配置

 Sequence() uint64 // 返回当前通道的配置序号

 ChainID() string // 返回关联的通道ID

 Height() uint64 // 返回关联的区块链结构高度

}

orderer/common/broadcast/broadcast.go文件

package broadcast

type Consenter interface {

 Order(env *cb.Envelope, configSeq uint64) error // 处理普通交易消息

 Configure(config *cb.Envelope, configSeq uint64) error // 处理配置交易消息

 WaitReady() error // 等待共识组件允许接收新消息的信号

}

另外，共识组件链对象可在cs.ChainStart()方法的消息处理循环中接收与处理已排序的交易消息，对普通交易消息与配置交易消息进行分类处理，利用ConsenterSupport接口参数，实际上就是关联通道的链支持对象（ChainSupport类型，实现了ConsenterSupport接口），将消息添加到缓存交易消息列表，切割成批量交易集合，并按规则打包出块，如代码清单2-17所示，使用到的组件和方法具体如下。

·Processor：消息处理器利用自定义的过滤器列表依次对交易消息进行过滤处理，检查当前处理的消息是否符合通道的消息要求，以防止处理不合法的消息；

·BlockCutter()：返回消息切割组件（receiver类型），提供Ordered()接口用于将新消息添加到缓存交易消息列表，按交易出块规则切割成批量交易集合，同时提供Cut()接口，不添加交易消息，直接切割当前的缓存交易消息列表构造成批量交易集合；

·CreateNextBlock()：利用区块账本写组件将批量交易集合构造成新区块；

·WriteBlock()：利用区块账本写组件将新区块提交到账本；

·WriteConfigBlock()：创建新的应用通道或更新通道配置，再利用区块账本写组件将新区块提交到账本。

对于系统通道，NewRegistrar()函数继续调用msgprocessor.NewSystemChannel()方法，基于默认的通道配置模板对象（DefaultTemplator类型）创建系统通道的消息处理器（SystemChannel类型），替换前面创建的标准通道消息处理器chain.Processor，并初始化5个系统通道的消息过滤器，对接收到的交易消息依次进行过滤处理，具体如下。

·EmptyRejectRule：拒绝空消息过滤器；

·expirationRejectRule：拒绝过期的签名者身份证书的过滤器；

·MaxBytesRule：消息最大字节数（98MB）过滤器；

·sigFilter：验证消息签名是否满足ChannelWriters（/Channel/Writers）通道写权限策略要求的过滤器；

·SystemChainFilter：验证系统通道合法消息的过滤器，即检查所接收的消息是否为创建新应用通道的配置交易消息，包括通道头部类型（ORDERER_TRANSACTION）、消息Data字段包含的配置交易消息类型（CONFIG类型）及其消息结构的合法性、Orderer配置的最大通道数量等。

最后，NewRegistrar()函数基于前面获取的系统通道区块账本对象，从账本中获取创世区块及其区块号用于打印日志，并设置多通道注册管理器Registrar对象的属性，将上述新建的系统通道链支持对象chain注册到chains字典与系统通道systemChannel上。同时，设置系统通道ID为通道chainID（默认为“testchainid”）。

至此，Orderer节点上的系统通道创建完毕。

注意，由于NewRegistrar()函数在启动期间可能会继续初始化其他现存的应用通道（例如系统崩溃重启恢复）。因此，为了保证所有其他通道都能注册到多通道注册管理器Registrar对象上提供正常服务，该函数最后执行defer chain.start()，在函数退出时启动系统通道上的链支持对象，实际上是启动共识组件链对象，以确保在其他应用通道都初始化完毕并启动共识组件链对象之后，再启动系统通道的共识组件链对象。

②应用通道

NewRegistrar()函数调用newChainSupport()函数，创建对应通道的链支持对象（Chain Support类型），并添加到多通道注册管理器的chains字典中，然后调用chain.start()方法，启动该通道的链支持对象以提供服务。

6）启动共识组件链对象

chain.start()方法调用链支持对象的cs.Chain.Start()方法，利用goroutine启动指定通道上的共识组件链对象，建立消息处理循环，等待接收排序后的交易消息并处理。

①Solo共识组件（2.4.2节和2.5.2节）

cs.Chain.Start()方法启动Solo共识组件链对象（chain类型）的ch.main()主函数（orderer/consensus/solo/consensus.go）。该函数可创建消息处理循环，阻塞并等待sendChan通道中的消息，检查是否存在Broadcast服务处理句柄过滤转发的消息。因此，Solo共识组件链对象只存在一个单独的交易消息通道，按照FIFO（先进先出）原则接收和处理消息（message类型）。sendChan通道负责对交易进行排序，实际上只能处理一个消息，因此，只能用于测试环境，而不适合于生产环境。

②Kafka共识组件（2.4.3节和2.5.3节）

cs.Chain.Start()方法启动Kafka共识组件链对象（chainImpl类型）的startThread(chain)函数（orderer/consensus/kafka/chain.go）。该函数首先创建Kafka生产者、消费者与分区消费者，设置Kafka分区上发布与订阅消息的主题（chainID）与分区号（0），再进入消息处理循环。同时，Broadcast服务处理句柄将过滤验证后的请求消息提交给Kafka共识组件链对象构造Kafka常规消息（KafkaMessage_Regular类型），发送到Kafka集群中请求排序，即根据消息主题（chainID）将交易消息收集到同一个Kafka分区上，按顺序排列并使用消息的位置偏移量来唯一标识交易消息。因此，Kafka集群对交易消息实现了全局排序。另外，Kafka共识组件链对象在自身消息处理循环中从指定的相同Kafka分区上接收和处理已排序的交易消息。

如此循环执行上面的步骤3～6，直至处理完毕existingChains列表中所有的现存通道ID，成功启动通道关联的共识组件链对象，并正常提供Orderer共识排序服务。

至此，Orderer节点上多通道注册管理器对象创建完毕。

4.创建Orderer排序服务器

Start()函数调用NewServer()函数，可根据上述参数（如多通道注册管理器等）创建Orderer排序服务器（实现了AtomicBroadcastServer接口），并注册到本地默认的gRPC服务器（默认为7050端口）上，提供Broadcast()与Deliver()服务接口，通过自身的Broadcast服务处理句柄与Deliver服务处理句柄，分别接收与处理对应的消息请求。同时，基于自身的多通道注册管理器对象管理Orderer节点上所有的通道配置及其账本、共识组件等，并创建共识组件链对象负责通道管理、交易排序等工作，如代码清单2-18所示，其中：

·bh：Broadcast服务处理句柄（deliverHandler类型）。该对象实现了Broadcast交易广播服务的Handle(srv ab.AtomicBroadcast_BroadcastServer)消息处理接口，负责接收客户端提交的普通交易消息与配置交易消息，并分别进行处理，过滤后转发给通道绑定的共识组件链对象进行处理；

·dh：Deliver服务处理句柄（handlerImpl类型）。该对象实现了Deliver区块分发服务的Handle(srv*DeliverServer)消息处理接口，负责接收客户端提交的区块请求消息，从Orderer节点区块账本中读取指定的区块数据，并返回给请求节点。如果请求的指定区块还没有生成，则默认阻塞等待直到该区块创建和提交完毕；

·Registrar：Orderer节点的多通道注册管理器（Registrar类型）。该对象封装了Orderer节点上所有通道的链支持对象字典chains、共识组件字典consenters、区块账本工厂对象ledgerFactory、系统通道链支持对象与ID、本地签名者实体signer等，用于管理通道配置、区块账本对象、共识组件等核心资源，相当于Orderer节点上的“资源管理器”。

代码清单2-18　NewServer()函数的源码示例

orderer/common/server/server.go文件

// 创建Orderer排序服务器

func NewServer(r *multichannel.Registrar, _ crypto.LocalSigner, debug *localconfig.Debug, timeWindow time.Duration, mutualTLS bool) ab.AtomicBroadcastServer {

 s := &server{ // 创建Orderer排序服务器

 dh: deliver.NewHandlerImpl(deliverSupport{Registrar: r},

 timeWindow, mutualTLS), // Deliver服务处理句柄

 bh: broadcast.NewHandlerImpl(broadcastSupport{Registrar: r}),

 // Broadcast服务处理句柄

 debug: debug, // 调试信息

 Registrar: r, // 多通道注册管理器

 }

 return s

}

2.3　Broadcast交易广播服务

2.3.1　概述

Hyperledger Fabric提供了Broadcast(srv ab.AtomicBroadcast_BroadcastServer)交易广播服务接口，接收客户端提交的签名交易消息请求，交由共识组件链对象对交易进行排序与执行通道管理，按照交易出块规则切割打包，构造新区块并提交账本。同时，通过Deliver()区块分发服务接口，将区块数据发送给通道组织内发起请求的Leader主节点，再基于Gossip消息协议广播到组织内的其他节点上，从而实现广播交易消息的目的。

通常，请求节点调用GetBroadcastClientFnc()→GetBroadcastClient()函数以获取Broadcast服务客户端（peer/common/common.go）。该函数先调用common.NewOrdererClientFromEnv()函数，基于Orderer配置（服务地址等）创建Orderer服务客户端（OrdererClient类型，peer/common/ordererclient.go）。接着，调用oc.Broadcast()→OrdererClient.Broadcast()方法，根据Orderer服务地址、服务器安全选项等参数创建gRPC连接对象conn，再执行ab.NewAtomicBroadcastClient(conn).Broadcast(context.TODO())函数，请求调用Broadcast()服务接口，并创建Broadcast服务客户端bc（atomicBroadcastBroadcastClient类型，包含grpc.ClientStream类型客户端通信流），与Orderer节点建立gRPC服务连接，如代码清单2-19所示。同时，该客户端提供了Send(*common.Envelope)等接口，用于发送交易消息请求，例如，第3章命令行模式下执行peer命令时会将该客户端继续封装为broadcastClient类型客户端。

代码清单2-19　AtomicBroadcastClient接口的源码示例

protos/orderer/ab.pb.go文件

// AtomicBroadcast服务客户端接口

type AtomicBroadcastClient interface {

 // 将交易发送到Orderer节点，请求排序并广播到通道上的所有Peer节点

 Broadcast(ctx context.Context, opts ...grpc.CallOption) (AtomicBroadcast_BroadcastClient, error)

 // 从Orderer节点请求获取区块

 Deliver(ctx context.Context, opts ...grpc.CallOption) (AtomicBroadcast_DeliverClient, error)

}

// 实现了AtomicBroadcastClient接口

type atomicBroadcastClient struct {

 cc *grpc.ClientConn // 客户端与Orderer节点间的gRPC通信连接

}

// atomicBroadcastBroadcastClient服务客户端

type atomicBroadcastBroadcastClient struct {

 grpc.ClientStream

}

2.3.2　Broadcast服务消息处理

Orderer节点启动时已经在本地的gRPC服务器上注册了Orderer排序服务器，并创建了Broadcast服务处理句柄。当客户端调用Broadcast()服务接口发起服务请求时，Orderer排序服务器会调用Broadcast()→s.bh.Handle()方法处理请求，即通过Broadcast服务处理句柄调用Handle(srv ab.AtomicBroadcast_BroadcastServer)方法。该方法会建立消息处理循环，通过Broadcast服务器端srv（含有ServerStream类型服务器端通信流）调用srv.Recv()→ServerStream.RecvMsg()方法，监听并接收Brocadcast服务客户端通过Send()接口发送的交易消息请求，如代码清单2-20所示，其消息处理流程如图2-3所示。

代码清单2-20　Broadcast交易广播服务处理句柄的Handle()方法源码示例

orderer/common/broadcast/broadcast.go文件

func (bh *handlerImpl) Handle(srv ab.AtomicBroadcast_BroadcastServer) error {

 ……

 for { // 消息处理循环

 msg, err := srv.Recv() // 等待接收交易请求消息

 ……

 // 解析获取通道头部chdr、配置交易消息标志位isConfig、通道链支持对象（通道消息处理器）

 chdr, isConfig, processor, err := bh.sm.BroadcastChannelSupport(msg)

 ……

 // 检查共识组件链对象是否准备好接收新的交易消息

 if err = processor.WaitReady(); err != nil {

 ……

 }

 // 对交易消息进行分类处理

 if !isConfig { // 普通交易消息

 ……

 configSeq, err := processor.ProcessNormalMsg(msg) // 解析获取通道的最新配置序号

 ……

 err = processor.Order(msg, configSeq) // 构造新的普通交易消息并发送

 到共识组件链对象请求处理

 ……

 } else { // 通道配置交易消息：创建或更新应用通道

 ……

 // 获取配置交易消息与通道的最新配置序号

 config, configSeq, err := processor.ProcessConfigUpdateMsg(msg)

 ……

 // 构造新的配置交易消息发送到共识组件链对象请求处理

 err = processor.Configure(config, configSeq)

 ……

 }

 ……

 // 发送成功处理状态响应消息

 err = srv.Send(&ab.BroadcastResponse{Status: cb.Status_SUCCESS})

 ……

 }

}

 [image:]

图2-3　Orderer节点Broadcast广播消息服务处理句柄上的消息处理流程图

Broadcast服务处理句柄的Handle()方法首先检查交易消息的合法性，调用bh.sm.BroadcastChannelSupport()→Registrar.BroadcastChannelSupport()方法，解析获得消息的通道头部chdr、配置交易消息标志位isConfig与消息关联通道的链支持对象processor（ChainSupport类型，封装了通道消息处理器）。

实际上，Registrar.BroadcastChannelSupport()方法先从交易消息中解析出消息的通道头部chdr（ChannelHeader类型），并从多通道注册管理器的chains字典中获取关联通道（chdr.ChannelId）上的链支持对象cs，包括如下两种情况。

·如果chains字典中已经存在指定通道上的链支持对象cs，则说明该消息是普通交易消息或更新通道配置的配置交易消息，此时返回对应通道上的链支持对象；

·否则，多通道注册管理器上还没有注册该通道上的链支持对象，说明还没有创建该通道，此时该消息是用于创建新应用通道的配置交易消息，因此返回系统通道的链支持对象，用于创建新的应用通道。

然后，Registrar.BroadcastChannelSupport()方法继续检查消息的通道头部类型。如果是通道配置交易消息ConfigUpdateMsg类型，则设置配置交易消息标志位isConfig为true，否则设置为false，以标识区分普通交易消息与配置交易消息。

接着，Handle()方法调用链支持对象的processor.WaitReady()方法，检查当前通道共识组件链对象是否已经准备好允许接收新消息并进行处理，其中：

·Solo共识组件：调用processor.WaitReady()方法返回nil，表示任何时候都允许Broadcast服务处理句柄接收新消息。

·Kafka共识组件：创建关联通道的链支持对象时调用newChain()函数，关闭了doneReprocessingMsgInFlight通道。同时，在启动链支持对象时调用chain.start()→startThread()函数，关闭了startChain通道。因此，processor.WaitReady()方法检查刚启动的Kafka共识组件状态时都会正常通过，不会阻塞程序执行。

然后，Handle()方法根据配置交易消息标志位isConfig分类处理消息，包括：

·普通交易消息：通过应用通道链支持对象的通道消息处理器，调用processor.ProcessNormalMsg()方法，解析获得当前通道的最新配置序号configSeq，经过标准通道上的默认过滤器验证通过后，再调用processor.Order()方法，重新构造对应的普通交易消息（含configSeq），交由共识组件链对象请求排序出块。

·配置交易消息：通过系统通道或应用通道链支持对象的通道消息处理器，调用processor.ProcessConfigUpdateMsg()方法，解析获取通道的配置交易消息config与当前通道的最新配置序号configSeq，经过通道上的默认过滤器验证通过后，再调用processor.Configure()方法，重新构造对应的通道配置消息（含configSeq），交由共识组件链对象继续处理，请求交易排序出块，创建应用通道或更新通道配置。

最后，Handle()方法向Broadcast服务客户端发送消息处理的结果状态响应消息，检查后跳转到消息处理循环起始处，继续调用srv.Recv()方法，阻塞等待新的交易消息请求。

1.普通交易消息

（1）处理过滤普通交易消息ProcessNormalMsg()方法

Broadcast服务处理句柄的Handle()方法可调用processor.ProcessNormalMsg()→StandardChannel.ProcessNormalMsg()方法，利用标准通道消息处理器（实际上是该链支持对象的消息处理器）处理普通交易消息。该方法首先通过链支持对象，调用s.support.Sequence()→cs.ConfigtxValidator().Sequence()→ValidatorImpl.Sequence()方法，获取该通道的最新配置序号configSeq，默认初始值为0，新建应用通道后该配置序号自增为1。该配置序号可用于标识通道配置信息的版本，通过比较该序号就能判断当前通道配置版本是否发生了更新，从而确定当前交易消息是否需要重新过滤与重新排序。

接着，调用该应用通道链支持对象的s.filters.Apply()方法，利用自带的4个默认通道消息过滤器过滤该消息，以检查其是否满足应用通道上的消息处理要求，即EmptyReject-Rule验证不能为空的过滤器、expirationRejectRule拒绝过期的签名者身份证书的过滤器、MaxBytesRule消息最大字节数过滤器（98MB）和sigFilter消息签名验证过滤器（Channel-Writers通道写权限）。

经过上述消息处理后，Broadcast服务处理句柄的Handle()方法将获得交易关联通道的最新配置序号configSeq，并检查消息msg过滤结果中的错误。如果通过了这些检查，则调用链支持对象的processor.Order(msg，configSeq)方法，将该消息交由绑定的共识组件链对象（Solo或Kafka类型）继续处理。

（2）提交共识组件链对象请求排序Order()方法

1）Solo共识组件链对象

processor.Order()方法实际上是调用chain.Order()方法，重新构造消息（message类型）以封装通道配置序号configSeq与普通交易消息normalMsg（Envelope类型），接着发送到Solo共识组件链对象的sendChain通道进行排序，再交由Solo共识组件链对象处理，打包出块提交到账本，如代码清单2-21所示，并对交易消息打包出块（2.5.2节）。

代码清单2-21　Solo共识组件链对象的chain.Order()方法源码示例

orderer/consensus/solo/consensus.go文件

// 构造普通交易消息并交由共识组件进行排序处理

func (ch *chain) Order(env *cb.Envelope, configSeq uint64) error {

 select {

 case ch.sendChan <- &message{ // 重新构造新的普通交易消息，并发送到sendChain通道

 configSeq: configSeq, // 通道的最新配置序号

 normalMsg: env, // 普通交易消息

 }:

 return nil

 case <-ch.exitChan: // 检查通道退出消息

 return fmt.Errorf("Exiting")

 }

}

2）Kafka共识组件链对象

processor.Order()方法实际上是调用chainImpl.order()方法，将普通交易消息序列化成字节数组marshaledEnv，调用chain.enqueue(newNormalMessage(marshaledEnv，configSeq，originalOffset))方法。其中，newNormalMessage()方法基于普通交易消息marshaledEnv构造Kafka常规消息（KafkaMessageRegular类型），其中，该消息的Class类别属于KafkaMessageRegular_NORMAL类型，其封装了普通交易消息、通道配置序号configSeq与初始消息偏移量originalOffset（0）。接着，调用Kafka共识组件链对象的chain.enqueue()方法，将该消息发送到Kafka集群的指定分区上请求排序，再转发给Kafka共识组件链对象请求打包出块。

如代码清单2-22所示，chain.enqueue()方法利用select语句阻塞等待通道消息，以确保Kafka共识组件正常运行之后才能继续发送新的消息请求排序。其中，Orderer节点上的多通道注册管理器在创建或恢复通道时调用chain.start()方法，以启动Kafka共识组件链对象，并关闭chain.startChan通道。因此，chain.enqueue()方法会执行默认的default分支处理消息，即先将上面构造的Kafka常规消息序列化成字节数组paylaod，再创建Kafka生产者消息message（ProducerMessage类型），指定该消息的Topic字段为消息主题（chain.channel）、Key字段为分区号0、Value字段为Kafka常规消息payload等。然后，调用Kafka共识组件链对象的chain.producer.SendMessage(message)方法，将该消息同步发送到Kafka集群指定的分区上。最后，由订阅该分区的Kafka分区消费者channelConsumer获取该消息，再交由Kafka共识组件链对象打包出块（2.5.3节）。

代码清单2-22　Kafka共识组件链对象的equeue()方法源码示例

orderer/consensus/kafka/chain.go文件

// 构造发送Kafka生产者消息到Kafka集群，指定消息主题（chainID）与分区号（0）

func (chain *chainImpl) enqueue(kafkaMsg *ab.KafkaMessage) bool {

 ……

 select {

 case <-chain.startChan: // 共识组件在启动阶段启动完成

 select {

 case <-chain.haltChan: // 已经关闭chain.startChan通道

 ……

 default:

 payload, err := utils.Marshal(kafkaMsg)

 ……

 // 创建Kafka生产者消息

 message := newProducerMessage(chain.channel, payload)

 // 发送消息到Kafka集群请求排序

 if _, _, err = chain.producer.SendMessage(message); err != nil {

 ……

 }

 ……

 return true

 }

 default:

 ……

 }

}

2.配置交易消息

（1）处理与过滤配置交易消息ProcessConfigUpdateMsg()方法

Broadcast服务处理句柄的Handle()方法调用了processor.ProcessConfigUpdateMsg()方法，用于处理与过滤配置交易消息，如图2-4所示。如果当前消息是用于创建新的应用通道，则实际上调用系统通道消息处理器的SystemChannel.ProcessConfigUpdateMsg()方法。如果当前消息是用于更新通道配置，则实际上调用标准通道消息处理器的StandardChannel.ProcessConfigUpdateMsg()方法。两个方法都是基于当前消息与链支持对象构造新的通道配置更新交易消息（ConfigEnvelope类型），并将该消息的通道配置序号增1，表示更新了通道配置版本。接着，基于该消息构造新的通道配置交易消息config（Envelope类型），同时返回当前通道的最新配置序号configSeq。

①创建新的应用通道

SystemChannel.ProcessConfigUpdateMsg()方法处理与过滤通道配置交易消息，用于创建新的应用通道，如代码清单2-23所示。

 [image:]

图2-4　ProcessConfigUpdateMsg()方法处理与过滤配置交易消息的处理流程图

代码清单2-23　SystemChannel系统通道消息处理器的ProcessConfigUpdateMsg()方法源码示例

orderer/common/msgprocessor/systemchannel.go文件

func (s *SystemChannel) ProcessConfigUpdateMsg(envConfigUpdate *cb.Envelope) (config *cb.Envelope, configSeq uint64, err error) {

 channelID, err := utils.ChannelID(envConfigUpdate) // 获取消息中的通道ID

 ……

 logger.Debugf("Processing config update tx with system channel message processor for channel ID %s", channelID)

 // 检查消息中的通道ID与当前通道ID是否一致

 if channelID == s.support.ChainID() {

 // 交由标准通道处理器处理

 return s.StandardChannel.ProcessConfigUpdateMsg(envConfigUpdate)

 }

 // 继续由系统通道处理器处理创建新应用通道的消息

 logger.Debugf("Processing channel create tx for channel %s on system channel %s", channelID, s.support.ChainID())

 // 创建新的应用通道，其通道配置序号默认初始化为0

 // 创建新应用通道的通道配置实体Bundle结构对象

 bundle, err := s.templator.NewChannelConfig(envConfigUpdate)

 ……

 // 构造新的通道配置更新交易消息（ConfigEnvelope类型），注意将该消息的通道配置序号更新为1

 newChannelConfigEnv, err := bundle.ConfigtxValidator().ProposeConfigUpdate

(envConfigUpdate)

 ……

 // 创建内层的通道配置交易消息（CONFIG类型）

 newChannelEnvConfig, err := utils.CreateSignedEnvelope(cb.HeaderType_CONFIG, channelID, s.support.Signer(), newChannelConfigEnv, msgVersion, epoch)

 ……

 // 创建外层的配置交易消息（ORDERER_TRANSACTION类型）

 wrappedOrdererTransaction, err := utils.CreateSignedEnvelope(cb.HeaderType_ORDERER_TRANSACTION, s.support.ChainID(), s.support.Signer(), newChannelEnvConfig, msgVersion, epoch)

 ……

 // 应用系统通道的消息过滤器

 err = s.StandardChannel.filters.Apply(wrappedOrdererTransaction)

 ……

 // 返回新的通道配置交易消息与当前系统通道的配置序号

 return wrappedOrdererTransaction, s.support.Sequence(), nil

}

SystemChannel.ProcessConfigUpdateMsg()方法首先检查消息中的通道ID与系统通道ID（默认为“testchainid”）是否相同，以过滤掉不属于当前系统通道消息处理器应该处理的消息。如果两个通道ID相同，则说明已经创建了该通道，因此继续调用标准通道消息处理器的s.StandardChannel.ProcessConfigUpdateMsg()方法，以正常更新通道配置。否则，该消息就是用于创建新的应用通道。

接着，调用系统通道消息处理器（实际上是链支持对象上的系统通道消息处理器）的s.templator.NewChannelConfig()→DefaultTemplator.NewChannelConfig()方法，基于当前消息构造新应用通道的通道配置实体对象bundle（channelconfig.Bundle类型）。该对象封装了通道配置对象channelConfig、策略管理器policyManager、配置交易管理器configtxManager等，用于管理新应用通道的通道配置信息等，并且通过自身的配置交易管理器维护通道的配置序号，默认初始化为0。

然后，调用通道配置实体的bundle.ConfigtxValidator().ProposeConfigUpdate()方法，实际上调用的是配置交易管理器的ValidatorImpl.proposeConfigUpdate()方法，基于通道配置交易消息提取和验证通道配置的合法性，解析读写集合并计算更新配置项集合deltaSet，将配置交易Signatures字段的签名集合（如signconfigtx、update命令签名）转换为签名数据对象集合signedData，再执行verifyDeltaSet()方法验证其合法性，即检查每个配置项的对应版本增1（发生了更新），并调用其修改策略的policy.Evaluate()方法以验证signedData是否满足对应的合法修改策略，例如Application配置组修改策略要求满足Admins的MAJORITY策略规则，即通道超过一半以上组织Admin管理员的有效签名。如果通过了上述验证，则继续构造与验证全量配置项集合，将deltaSet覆盖上述bundle对象中的通道配置项字典副本的相同配置项（例如Application配置组修改策略），再转换成通道配置组对象，以此构造新的通道配置更新交易消息newChannelConfigEnv（ConfigEnvelope类型），同时更新该交易消息的配置序号为1，如代码清单2-24所示。

代码清单2-24　proposeConfigUpdate()方法的源码示例

common/configtx/validator.go文件

// 创建通道配置更新交易消息

func (vi *ValidatorImpl) proposeConfigUpdate(configtx *cb.Envelope) (*cb.ConfigEnvelope, error) {

 // 解析通道配置更新消息（ConfigUpdate类型）

 configUpdateEnv, err := envelopeToConfigUpdate(configtx)

 ……

 // 验证通道配置更新消息的合法性，并返回配置字典

 configMap, err := vi.authorizeUpdate(configUpdateEnv)

 ……

 // 将配置字典configMap转换为通道配置组（ConfigGroup类型）

 channelGroup, err := configMapToConfig(configMap, vi.namespace)

 ……

 return &cb.ConfigEnvelope{ // 构造通道配置更新消息

 Config: &cb.Config{ // 最新版本的通道配置信息

 Sequence: vi.sequence + 1, // 通道配置序号增1

 ChannelGroup: channelGroup, // 通道配置组

 },

 LastUpdate: configtx, // 最近更新的通道配置交易消息

 }, nil

}

最后，调用CreateSignedEnvelope()函数，对newChannelConfigEnv进行两次封装，以构造新的通道配置交易消息wrappedOrdererTransaction（Envelope类型）。其中，内层消息的通道头部类型为CONFIG，外层消息的通道头部类型为ORDERER_TRANSACTION。接着，调用s.StandardChannel.filters.Apply()方法，实际上是利用系统通道消息处理器定义的5个默认消息过滤器检查过滤该消息。如果过滤结果不包含任何错误，则调用系统通道链支持对象的s.support.Sequence()方法，以获取当前通道的最新配置序号。

至此，SystemChannel.ProcessConfigUpdateMsg()方法处理通道配置交易消息的流程结束，并将通道配置交易消息、当前系统通道的最新配置序号等返回到Broadcast服务处理句柄的Handle()方法。

②更新通道配置

StandardChannel.ProcessConfigUpdateMsg()方法处理与过滤通道配置交易消息，用于更新通道配置，如代码清单2-25所示。

代码清单2-25　StandardChannel标准通道消息处理器的ProcessConfigUpdateMsg()方法源码示例

orderer/common/msgprocessor/standardchannel.go文件

func (s *StandardChannel) ProcessConfigUpdateMsg(env *cb.Envelope) (config *cb.Envelope, configSeq uint64, err error) {

 logger.Debugf("Processing config update message for channel %s", s.support.ChainID())

 seq := s.support.Sequence() // 获取当前通道的配置序号

 err = s.filters.Apply(env) // 过滤消息

 ……

 // 创建新的通道配置更新交易消息，注意配置序号增1

 configEnvelope, err := s.support.ProposeConfigUpdate(env)

 ……

 // 创建新的通道配置交易消息

 config, err = utils.CreateSignedEnvelope(cb.HeaderType_CONFIG, s.support.ChainID(), s.support.Signer(), configEnvelope, msgVersion, epoch)

 ……

 err = s.filters.Apply(config) // 过滤消息

 ……

 return config, seq, nil // 通道配置交易消息，当前通道的配置序号

}

StandardChannel.ProcessConfigUpdateMsg()方法首先获取当前通道的最新配置序号seq，调用s.filters.Apply()方法，利用默认的消息过滤器检查过滤当前的配置交易消息，以保证该交易消息符合指定通道的消息处理要求。如果通过了过滤检查，则调用标准通道消息处理器的s.support.ProposeConfigUpdate()方法，利用通道的配置交易管理器基于当前配置交易消息创建新的通道配置更新交易消息configEnvelope（ConfigEnvelope类型），更新其配置序号增1，验证该配置交易消息的签名集合是否满足更新配置项的修改策略（mod_policy），例如增加通道新组织时需要满足Admins的MAJDRITY策略规则，即通道上超过一半以上组织管理员的有效签名，同时，创建新的通道配置实体对象bundle（channelconfig.Bundle类型），分别调用checkResources(bundle)函数与cs.ValidateNew(bundle)方法，检查该对象的兼容性与合法性，包括Orderer、Application与Consortiums配置项中的共识类型、匹配MSP ID以及组织名称等。接着，调用CreateSignedEnvelope()函数，将configEnvelope消息封装为新的通道配置交易消息（Envelope类型，通道头部类型为CONFIG），并调用s.filters.Apply()方法重新过滤该消息，以确保交易消息处理的合法性。

至此，StandardChannel.ProcessConfigUpdateMsg()方法处理通道配置交易消息的流程结束，并将签名通道配置交易消息、通道当前的最新配置序号等返回到Broadcast服务处理句柄的Handle()方法。

经过上述处理流程，Broadcast服务处理句柄的Handle()方法获得了通道配置交易消息config（Envelope类型，新建应用通道消息的通道头部类型为ORDERER_TRANSACTION，更新通道配置消息的通道头部类型为CONFIG）和处理通道当前的最新配置序号configSeq。接着，Handle()方法继续调用processor.Configure(config，configSeq)方法，重新构造通道配置消息，再提交给当前通道绑定的Solo或Kafka共识组件链对象请求排序。

（2）提交给共识组件链对象请求排序

①Solo共识组件

类似于processor.Order()方法，processor.Configure()方法实际上是调用chain.Configure()方法，重新构造消息（message类型）以封装通道最新配置序号configSeq与通道配置交易消息（configMsg类型），并发送到Solo共识组件链对象的sendChain通道，经过该通道排序后，再交由Solo共识组件链对象打包出块并提交到账本，同时创建新的应用通道或更新通道配置（2.4.2节），如代码清单2-26所示。

代码清单2-26　Solo共识组件链对象的chain.Configure()方法源码示例

orderer/consensus/solo/consensus.go文件

func (ch *chain) Configure(config *cb.Envelope, configSeq uint64) error {

 select {

 case ch.sendChan <- &message{ // 重新构造消息，并发送到sendChain通道

 configSeq: configSeq, // 通道的最新配置序号

 configMsg: config, // 通道配置交易消息

 }:

 return nil

 case <-ch.exitChan: // 检查退出消息

 return fmt.Errorf("Exiting")

 }

}

②Kafka共识组件

类似于processor.Order()方法，processor.Configure()方法实际上是调用chainImpl.configure()方法，同样构造Kafka常规消息（KafkaMessageRegular类型）。其中，Class消息类别属于KafkaMessageRegular_CONFIG类型，包含了通道配置交易消息、通道配置序号configSeq与初始消息偏移量originalOffset（0）。接着，调用chain.enqueue()方法，将其发送到Kafka集群上指定主题（chainID）和分区号（0）的分区上，同时，由Kafka共识组件链对象分区消费者channelConsumer获取该消息，再交由给Kafka共识组件链对象请求打包出块（2.4.3节）。
2.4　Orderer共识排序服务（配置交易消息）

2.4.1　概述

Orderer共识组件提供HandleChain()方法创建通道绑定的共识组件链对象（consensus.Chain接口），包括Solo（solo.chain类型）、Kafka（kafka.chainImpl类型）等类型（同时实现了broadcast.Consenter接口），属于通道共识组件的重要实现模块，并设置到链支持对象的cs.Chain字段。共识组件链对象提供Orderer共识排序服务，负责关联通道上交易排序、打包出块、提交账本、通道管理等工作，目前采用Golang通道或Kafka集群作为共识排序后端，接收来自Broadcast服务过滤转发的交易消息并进行排序。

通常，Client节点首先基于Broadcast服务客户端向Orderer节点提交通道配置交易消息，请求创建新的应用通道。Orderer节点调用Broadcast服务处理句柄的Handle()方法进行处理。由于还没有创建该应用通道，因此多通道注册管理器对象的chains字典中目前不存在该通道的链支持对象。因此，Orderer节点使用系统通道的链支持对象（实际上是系统通道的消息处理器）作为消息处理器processor过滤处理该消息。接着，Orderer节点调用processor.Configure()→Chain Configurel()方法重新构造配置交易消息，提交给通道绑定的共识组件链对象（Solo类型或Kafka类型）请求排序。同时，将当前排序后的配置交易消息单独打包成区块（即新应用通道的创世区块）。然后，通过区块写组件调用ch.support.WriteConfigBlock()→bw.registrar.newChain()方法保存到该通道账本的区块数据文件中，再创建新的应用通道及其链支持对象，注册到多通道注册管理器的chains字典上，启动绑定的共识组件链对象。最后，将新应用通道的创世区块保存到系统通道账本中。

此时，Client节点可以提交通道配置交易消息，以请求更新通道配置。Broadcast服务处理句柄的Handle()方法可以正常获取该通道的链支持对象processor（实际上是该链支持对象的消息处理器）过滤处理该消息，并调用processor.Configure()方法重新构造消息，转发给该通道绑定的共识组件链对象请求排序，再打包出块与更新通道配置，最后保存到当前通道账本中。
2.4.2　Solo共识组件

Solo共识组件链对象启动后执行chain.main()方法，创建消息处理循环，负责打包出块提交到账本与通道管理，其通道配置交易消息的处理流程如图2-5所示。

1.检查与过滤合法消息

Solo共识组件链对象的chain.main()方法首先调用ch.support.Sequence()方法，获取当前通道的最新配置序号seq，阻塞等待通道消息，如代码清单2-27所示，通道说明具体如下。

·sendChan通道：只存在一个单独的交易消息通道（chan*message类型，阻塞接收一个消息），并且按照FIFO（先进先出）原则接收和排序；

·timer通道：按照出块时间配置（2秒）周期性地触发定时器，调用ch.support.BlockCutter().Cut()方法，将当前的缓存交易消息列表切割成一个批量交易集合batch（[]*cb.Envelope类型），再调用CreateNextBlock(batch)与WriteBlock(block，nil)方法，对batch构造新区块，并写入通道账本上的区块数据文件中。这样做是为了防止消息较少而可能无法达到其他出块规则要求，造成通道账本上长时间不能形成区块数据，使得无法正常查询区块数据。因此设计了定时打包出块的消息机制；

·exitChan通道：接收退出消息，结束循环退出消息处理循环。

 [image:]

图2-5　Solo共识组件中通道配置交易消息的处理流程图

代码清单2-27　Solo共识组件链对象的main()方法处理通道配置交易消息的源码示例

orderer/consensus/solo/consensus.go文件

func (ch *chain) main() {

 var timer <-chan time.Time // 定时器消息

 var err error

 for { // 消息处理循环

 seq := ch.support.Sequence() // 获取当前通道的最新配置序号

 err = nil

 select {

 // 检查sendChan通道的消息

 case msg := <-ch.sendChan:

 if msg.configMsg == nil { // 普通交易消息

 ……

 } else { // 通道配置交易消息：创建新的应用通道或更新通道配置

 if msg.configSeq < seq { // 检查消息中的配置序号与当前通道的配置序号

 msg.configMsg, _, err = ch.support.ProcessConfigMsg(msg.configMsg) // 重新过滤与处理配置交易消息

 if err != nil { // 发现错误，丢弃该消息，跳转至循环开始处继续检查

 logger.Warningf("Discarding bad config message: %s", err)

 continue

 }

 }

 // 将当前缓存交易消息列表切割成批量交易消息

 batch := ch.support.BlockCutter().Cut()

 if batch != nil {

 block := ch.support.CreateNextBlock(batch) // 创建新区块

 ch.support.WriteBlock(block, nil) // 将区块写入账本

 }

 block := ch.support.CreateNextBlock([]*cb.Envelope{msg.configMsg}) // 将配置交易消息构造为新区块

 // 将配置区块写入账本，同时执行通道管理

 ch.support.WriteConfigBlock(block, nil)

 timer = nil // 取消定时器

 }

 // 检查出块超时的定时器消息

 case <-timer:

 timer = nil // 取消定时器

 // 将当前缓存交易消息列表切割成批量交易集合

 batch := ch.support.BlockCutter().Cut()

 if len(batch) == 0 { // 如果不存在任何消息，则跳转至循环开始处继续执行

 logger.Warningf("Batch timer expired with no pending requests, this might indicate a bug")

 continue

 }

 logger.Debugf("Batch timer expired, creating block")

 block := ch.support.CreateNextBlock(batch) // 创建新区块

 ch.support.WriteBlock(block, nil) // 将区块写入账本

 // 若接收到退出消息，则退出消息处理循环

 case <-ch.exitChan:

 ……

 }

 }

}

对于通道配置交易消息（msg.configMsg不为nil），chain.main()方法首先比较消息中的配置序号configSeq与当前通道的最新配置序号seq，判断配置交易消息经过排序后，当前通道的通道配置是否发生了更新。如果消息的configSeq较小，说明当前通道配置已经更新过，则通过关联通道的链支持对象调用ch.support.ProcessConfigMsg(msg.configMsg)方法，重新过滤与处理通道配置交易消息，以确保符合通道消息的要求，包括如下两种情况。

·如果当前配置交易消息用于创建新的应用通道，则实际上调用的是系统通道消息处理器的SystemChannel.ProcessConfigMsg()方法，解析msg.configMsg（外层是ORDERER_TRANSACTION类型，内层是CONFIG类型），以获取其封装的配置更新交易消息configEnvelope（ConfigEnvelope类型），并提取出其LastUpdate字段上最近更新的配置交易消息configEnvelope.LastUpdate（Envelope类型），作为参数提交给系统通道消息处理器的s.ProcessConfigUpdateMsg()方法调用，重新过滤处理该消息。

·如果当前配置交易消息用于更新通道配置，则实际上调用的是标准通道消息处理器的StandardChannel.ProcessConfigMsg()方法，解析配置交易消息msg.configMsg（CONFIG类型），同样提取其消息负载LastUpdate字段上最近更新的配置交易消息configEnvelope.LastUpdate，作为参数提交给标准通道消息处理器的s.ProcessConfigUpdateMsg(configEnvelope.LastUpdate)方法进行过滤处理。

2.打包出块并提交到账本

chain.main()方法清空当前缓存交易消息列表，将该列表中的消息集合按出块规则切割成批量交易集合，构造成新区块并提交到账本。该方法首先调用ch.support.BlockCutter().Cut()-->receiver.Cut()方法，如代码清单2-28所示，获取链支持对象上的消息切割组件（receiver类型），利用该组件将自身待处理的缓存交易消息列表pendingBatch（[]*cb.Envelope类型）切割成1个批量交易集合batch。同时，将pendingBatch设置为nil，表示清空了缓存交易消息列表。

代码清单2-28　receiver.Cut()方法的源码示例

orderer/common/blockcutter/blockcutter.go文件

func (r *receiver) Cut() []*cb.Envelope {

 batch := r.pendingBatch // 将缓存的交易消息列表复制到批量交易集合batch

 r.pendingBatch = nil // 将缓存交易消息列表pendingBatch设置为nil

 r.pendingBatchSizeBytes = 0 // 将缓存交易消息列表字节数清零

 return batch

}

如果当前接收的配置交易消息是用于创建新的应用通道，说明还不存在通道对象，则当前缓存交易消息列表pendingBatch中不存在任何交易消息。因此，Cut()方法此时返回空的批量交易集合batch（nil），并跳过将缓存交易消息构造区块并提交到账本的步骤。否则，如果存在合法的批量交易集合batch（不是nil），则chain.main()继续调用ch.support.CreateNextBlock(batch)→BlockWriter.CreateNextBlock()方法，通过链支持对象上的区块账本写组件（BlockWriter类型）创建新区块对象block。该对象包含区块号（最新区块号bw.lastBlock.Header.Number增1）、交易集合数据block.Data（交易消息序列化后的字节数组集合）、当前区块哈希值block.Header.DataHash（保存在区块头中）、前一个区块头哈希值previousBlockHash等。接着，chain.main()调用ch.support.WriteBlock(block，nil)→BlockWriter.WriteBlock()方法更新区块账本写组件上的最新区块lastBlock，并启动goroutine执行bw.commitBlock(encodedMetadataValue)方法更新最新区块元数据，然后提交新区块lastBlock到关联应用通道的账本中，如代码清单2-29所示。

代码清单2-29　CreateNextBlock()、WriteBlock()与commitBlock()方法的源码示例

orderer/common/multichannel/blockwriter.go文件

func (bw *BlockWriter) CreateNextBlock(messages []*cb.Envelope) *cb.Block {

 previousBlockHash := bw.lastBlock.Header.Hash() // 获取当前最新区块头部的哈希值

 data := &cb.BlockData{

 Data: make([][]byte, len(messages)),

 }

 var err error

 for i, msg := range messages { // 遍历批量交易集合并序列化封装到BlockData结构中

 data.Data[i], err = proto.Marshal(msg)

 ……

 }

 // 创建新区块（最新区块号增1）并设置区块哈希值及交易集合数据

 block := cb.NewBlock(bw.lastBlock.Header.Number+1, previousBlockHash)

 block.Header.DataHash = data.Hash() // 设置区块哈希值

 block.Data = data // 设置交易集合数据

 return block

}

// 写入区块到账本中

func (bw *BlockWriter) WriteBlock(block *cb.Block, encodedMetadataValue []byte) {

 bw.committingBlock.Lock()

 bw.lastBlock = block // 更新最新区块

 go func() {

 defer bw.committingBlock.Unlock()

 bw.commitBlock(encodedMetadataValue) // 提交区块到区块账本中

 }()

}

// 提交区块到区块账本中

func (bw *BlockWriter) commitBlock(encodedMetadataValue []byte) {

 // 更新Orderer相关的元数据

 if encodedMetadataValue != nil {

 bw.lastBlock.Metadata.Metadata[cb.BlockMetadataIndex_ORDERER] = utils.MarshalOrPanic(&cb.Metadata{Value: encodedMetadataValue})

 }

 bw.addBlockSignature(bw.lastBlock) // 添加区块元数据中的签名

 bw.addLastConfigSignature(bw.lastBlock) // 添加区块元数据中的最新配置区块及其签名

 err := bw.support.Append(bw.lastBlock) // 将最新区块添加到区块账本中

 ……

}

其中，区块账本写组件的bw.commitBlock(encodedMetadataValue)方法可用于更新区块元数据，包括如下元数据索引项。

·BlockMetadataIndex_ORDERER索引项：基于encodedMetadataValue参数构造区块元数据项（Metadata类型），更新为最新区块元数据的BlockMetadataIndex_ORDERER索引项。其中，encodedMetadataValue参数封装了消息偏移量等Kafka共识组件链对象的初始化参数，Solo共识组件链对象不使用该参数。

·BlockMetadataIndex_SIGNATURES索引项：调用bw.addBlockSignature(bw.lastBlock)方法构造区块元数据项，封装了对签名头部（含有签名者身份信息与消息随机数Nonce）与区块头部的组合信息签名。

·BlockMetadataIndex_LAST_CONFIG索引项：调用bw.addLastConfigSignature(bw.lastBlock)方法构造区块元数据项，封装了当前最新配置值lastConfigValue（记录最新配置区块的区块号）及对组合信息（包含lastConfigValue、签名头部与区块头部）的签名。同时，该方法还获取了当前通道的最新配置序号configSeq。如果区块写组件上保存的配置序号bw.lastConfigSeq小于configSeq，则说明当前通道配置发生了更新。因此，将区块写组件上最新配置区块的区块号lastConfigBlockNum更新为最新区块号block.Header.Number（当前处理的区块是最新配置区块），将最新的通道配置序号bw.lastConfigSeq更新为configSeq。

最后，bw.commitBlock()方法调用bw.support.Append(bw.lastBlock)方法，实际上是通过链支持对象底层的区块文件管理器调用blockfileMgr.addBlock()方法（7.1.3节），将新区块bw.lastBlock添加到当前通道账本的区块数据文件中，建立并更新区块索引信息。

3.执行通道管理操作

chain.main()方法继续调用ch.support.CreateNextBlock()方法，基于通道配置交易消息msg.configMsg构造单独的配置区块block。接着，调用ch.support.WriteConfigBlock()-->BlockWriter.WriteConfigBlock()方法，从配置区块block中解析出第1个交易及其通道消息头部chdr，根据其消息头部类型chdr.Type进行分类处理，创建新的应用通道或更新通道配置，最后将创建的配置区块提交至账本，如代码清单2-30所示。

代码清单2-30　BlockWriter账本区块写组件的WriteConfigBlock()方法源码示例

orderer/common/multichannel/blockwriter.go文件

func (bw *BlockWriter) WriteConfigBlock(block *cb.Block, encodedMetadataValue []byte) {

 ctx, err := utils.ExtractEnvelope(block, 0) // 从配置区块中提取第1个交易消息

 ……

 payload, err := utils.UnmarshalPayload(ctx.Payload)

 ……

 if payload.Header == nil {

 logger.Panicf("Told to write a config block, but configtx payload header is missing")

 }

 chdr, err := utils.UnmarshalChannelHeader(payload.Header.ChannelHeader)

 // 解析消息通道头部

 ……

 switch chdr.Type {

 case int32(cb.HeaderType_ORDERER_TRANSACTION): // 用于创建新的应用通道

 newChannelConfig, err := utils.UnmarshalEnvelope(payload.Data)

 // 解析通道配置交易消息

 ……

 bw.registrar.newChain(newChannelConfig) // 创建新的应用通道

 case int32(cb.HeaderType_CONFIG): // 用于更新通道配置

 configEnvelope, err := configtx.UnmarshalConfigEnvelope(payload.Data)

 ……

 err = bw.support.Validate(configEnvelope) // 验证通道配置交易消息的合法性

 ……

 //基于新的通道配置交易消息创建通道配置实体对象

 bundle, err := bw.support.CreateBundle(chdr.ChannelId, configEnvelope.Config)

 ……

 bw.support.Update(bundle) // 更新通道上链支持对象的通道配置实体

 default:

 logger.Panicf("Told to write a config block with unknown header type: %v", chdr.Type)

 }

 // 将区块写入账本

 bw.WriteBlock(block, encodedMetadataValue)

}

（1）ORDERER_TRANSACTION类型消息（创建新的应用通道）

BlockWriter区块写组件的WriteConfigBlock()方法首先从消息负载数据payload.Data解析出新的通道配置交易消息newChannelConfig（Envelope类型），作为参数提交给bw.registrar.newChain()方法调用执行，创建新的应用通道及其链支持对象，将创世区块提交到该应用通道的区块账本中，并将链支持对象注册到多通道注册管理器对象上，如代码清单2-31所示。

代码清单2-31　newChain()方法创建应用通道的源码示例

orderer/common/multichannel/registrar.go文件

// 创建应用通道

func (r *Registrar) newChain(configtx *cb.Envelope) {

 // 基于给定的配置交易消息创建新的账本资源对象

 ledgerResources := r.newLedgerResources(configtx)

 ledgerResources.Append(blockledger.CreateNextBlock(ledgerResources, []*cb.Envelope{configtx})) // 添加创世区块

 // 复制当前Orderer上多通道注册管理器的chains链支持对象字典，允许同时提供Broadcast/Deliver服务

 newChains := make(map[string]*ChainSupport)

 for key, value := range r.chains {

 newChains[key] = value // 复制链支持对象字典

 }

 cs := newChainSupport(r, ledgerResources, r.consenters, r.signer)

 // 创建新的链支持对象

 chainID := ledgerResources.ConfigtxValidator().ChainID()

 // 重新获取通道ID

 logger.Infof("Created and starting new chain %s", chainID)

 newChains[string(chainID)] = cs // 设置指定通道及其链支持对象

 cs.start() // 启动链支持对象，实际启动共识组件链对象

 r.chains = newChains // 更新多通道注册管理器上的链支持对象字典chains

}

newChain()方法首先调用r.newLedgerResources()方法，基于配置交易消息创建对应的账本资源对象ledgerResources，封装了通道配置实体对象（Bundle类型）及其通道的区块账本对象（FileLedger类型），分别管理通道配置与区块账本。接着，调用CreateNextBlock()方法，将配置交易消息构造成配置区块（即当前新应用通道的创世区块），再执行ledgerResources.Append()方法，利用底层的区块文件管理器将该创世区块添加至应用通道账本的区块数据文件中。然后，复制当前多通道注册管理器上的链支持对象字典chains到newChains临时字典中，再调用newChainSupport()方法创建新应用通道的链支持对象cs并添加到newChains字典中，从而确保不影响当前Orderer节点提供其他服务；同时调用cs.start()方法启动指定通道的共识组件链对象提供正常服务；最后将newChains字典更新为多通道注册管理器上的chains字典。

至此，Orderer节点上的新应用通道创建完毕。

（2）CONFIG类型消息（更新通道配置）

BlockWriter区块写组件的WriteConfigBlock()方法首先从消息负载数据payload.Data中解析出通道配置更新消息configEnvelope（ConfigEnvelope类型），并利用交易验证器验证该消息的合法性，通过检查之后再调用bw.support.CreateBundle()方法，构造新的通道配置实体对象bundle（Bundle类型）。然后，调用bw.support.Update(bundle)方法，将其更新为当前链支持对象管理的底层通道配置实体，而不需要直接修改多通道注册管理器上的链支持对象字典chains。

至此，Orderer节点即更新完成指定通道的通道配置。

最后，WriteConfigBlock()方法调用bw.WriteBlock(block，encodedMetadataValue)方法，更新配置区块的元数据，包括BlockMetadataIndex_ORDERER、BlockMetadataIndex_SIGNATURES、BlockMetadataIndex_LAST_CONFIG等索引项，再将该配置区块写入系统通道（创建新应用通道的情况）或应用通道（更新通道配置的情况）的账本中。其中，Solo共识组件链对象不使用encodedMetadataValue参数。

至此，Solo共识组件链对象的chain.main()方法处理通道配置交易消息的流程结束，重新返回消息处理循环，继续等待新的交易消息请求。
2.4.3　Kafka共识组件

1.Orderer服务集群概述

Orderer节点采用Sarama开源的Kafka第三方库构建Kafka共识组件，可以同时接受处理多个客户端发送的交易消息请求，能够有效提高Orderer节点处理交易消息的并发能力。同时，可利用Kafka集群在单一分区内按序收集相同主题消息（消息序号唯一）的功能，来保证交易消息具有确定性的顺序（以消息序号排序），从而实现对交易排序达成全局共识的目的。

Kafka包括生产者、消费者和分区消费者。Kafka生产者按照主题（Topic）生产消息并进行发布，Kafka服务器集群自动对消息主题进行分类。同一个主题的消息都会被收集到一个或多个分区文件中，按照FIFO（先进先出）的顺序追加到文件尾部，并且每个消息在分区中都会有一个OFFSET位置偏移量作为该消息的唯一标识ID。目前，Hyperledger Fabric基于Kafka集群为每个通道创建绑定了一个主题（即链ID，chainID），并且只设置一个分区（分区号为0）。Kafka消费者管理多个分区消费者并订阅指定分区的主题消息，包括主题（即chainID）、分区号（目前只有1个分区号为0的分区）、起始偏移量（开始订阅的消息位置offset）等。当生产者、消费者以及分区消费者对象不再使用时，要执行Close()方法以释放占用的资源。

Hyperledger Fabric采用Kafka集群对单个或多个Orderer排序节点（或称为Orderer服务集群）提交的交易消息进行排序。此时，Orderer排序节点同时充当Kafka集群的消息生产者（分区）和消费者，发布消息与订阅消息到Kafka集群上的同一个主题分区，即先将Peer节点提交的交易消息转发给Kafka服务端，同时，从指定主题的Kafka分区上按顺序获取排序后的交易消息并自动过滤重启的交易消息。这期间可能会存在网络时延造成获取消息时间的差异。如果不考虑丢包造成消息丢失的情况，则所有Orderer节点获取消息的顺序与数量应该是确定的和一致的。同时，采用相同的Kafka共识组件链对象与出块规则等，以保证所有Orderer节点都可以创建与更新相同配置的通道，并切割生成相同的批量交易集合出块，再“同步”构造出相同的区块数据，从而基于Kafka集群达成全局共识，以保证区块数据的全局一致性。相比于Solo共识组件，Kafka共识组件提供的Orderer服务具有良好的可用性与容错能力，一方面，Kafka集群利用多副本机制确保发生Kafka服务器节点故障（CFT错误）时的数据可用性，另一方面，Orderer服务集群中所有Orderer服务节点都保存了相同的账本数据副本，如图2-6所示，6个Orderer节点共同构成了Orderer服务集群。如果Orderer服务节点发生崩溃故障（CFT类型错误）如Orderer2节点，则Client或Peer节点可以重新连接到其他可用节点（如Orderer3）继续获取服务，从而提高Orderer服务集群的可用性与容错能力。

 [image:]

图2-6　支持多个Orderer排序节点（Orderer服务集群）的Kafka共识组件架构示意图

2.启动共识组件链对象

Orderer节点Kafka共识组件链对象启动后执行startThread()处理函数，如代码清单2-32所示。

代码清单2-32　startThread()函数的源码示例

orderer/consensus/kafka/chain.go文件

func startThread(chain *chainImpl) {

 ……

 // 创建Kafka生产者

 chain.producer, err = setupProducerForChannel(chain.consenter.retryOptions(), chain.haltChan, chain.SharedConfig().KafkaBrokers(), chain.consenter.brokerConfig(), chain.channel)

 ……

 // Kafka生产者发送CONNECT消息建立连接

 if err = sendConnectMessage(chain.consenter.retryOptions(), chain.haltChan, chain.producer, chain.channel); err != nil {

 ……

 }

 ……

 // 创建Kafka消费者

 chain.parentConsumer, err = setupParentConsumerForChannel(chain.consenter.retryOptions(), chain.haltChan, chain.SharedConfig().KafkaBrokers(), chain.consenter.brokerConfig(), chain.channel)

 ……

 // 创建Kafka分区消费者

 chain.channelConsumer, err = setupChannelConsumerForChannel(chain.consenter.retryOptions(), chain.haltChan, chain.parentConsumer, chain.channel, chain.lastOffsetPersisted+1)

 ……

 chain.doneProcessingMessagesToBlocks = make(chan struct{})

 close(chain.startChan) // 已经启动共识组件链对象，不阻塞Broadcast

 　　服务处理句柄

 chain.errorChan = make(chan struct{}) // 创建errorChan通道，不阻塞Deliver服务处理句柄

 ……

 chain.processMessagesToBlocks() // 创建消息处理循环，循环处理订阅分区上接收到的消息

}

startThread()函数首先调用setupProducerForChannel()→sarama.NewSyncProducer()方法，创建Kafka生产者，发布消息到指定主题（即通道ID）和分区号的通道分区（chain.channel）上。

接着，调用sendConnectMessage()函数，构造Kafka连接消息（KafkaMessage_Connect类型），并封装为Kafka生产者消息（ProducerMessage类型）发送到Kafka服务器。该消息指定了主题Topic字段为链ID、Key字段为分区号0、Value字段为CONNECT类型消息负载等。在Kafka集群正常工作的情况下，订阅该主题的Kafka（分区）消费者会接收到该消息，以测试Kafka集群处于正常的“连通”工作状态。

然后，调用setupParentConsumerForChannel()→sarama.NewConsumer()方法，创建指定Kafka分区和Broker服务器配置的Kafka消费者对象，接着通过Kafka消费者调用setupChannelConsumerForChannel()方法，创建Kafka分区消费者对象，并设置从指定主题（链ID）和分区号（0）的Kafka分区上获取消息。同时，调用close(chain.startChan)函数关闭startCahn通道，表示Kafka共识组件链对象启动成功。另外，该操作通知Broadcast服务处理句柄Handle()→processor.WaitReady()方法解除阻塞，继续接收处理新消息。

最后，调用chain.processMessagesToBlocks()方法创建消息处理循环，负责处理从Kafka集群中接收到的订阅消息。

3.分类处理消息

processMessagesToBlocks()方法利用select语句阻塞等待通道上的新消息，如代码清单2-33所示，具体如下。

·chain.channelConsumer.Messages()返回的通道消息：从Kafka集群指定主题与分区上接收的Kafka消息，包括KafkaMessage_Regular类型、KafkaMessage_TimeToCut类型、KafkaMessage_Connect类型等。

·chain.timer通道：按照固定出块时间（2秒）周期性地调用sendTimeToCut()函数，构造并发送Kafka消息（KafkaMessage_TimeToCut类型），通知Orderer节点清空关联通道上待处理的缓存交易消息列表，切割成批量交易集合，并构造指定区块号（chain.lastCutBlockNumber+1）的新区块。这是为了防止出现因消息较少而可能无法达到出块要求，造成长时间不能形成区块，使得无法正常查询区块数据，因此设计了定时打包出块的消息机制。

·chain.channelConsumer.Errors()返回的错误消息：Kafka集群分区消费者的故障与错误。

·chain.haltChan通道：用于通知停止和退出消息处理循环。

·topicPartitionSubscriptionResumed通道与deliverSessionTimedOut通道：该通道消息用于辅助处理Kafka集群分区消费者的故障与错误。

代码清单2-33　Kafka共识组件链对象的processMessagesToBlocks()方法源码示例

orderer/consensus/kafka/chain.go文件

func (chain *chainImpl) processMessagesToBlocks() ([]uint64, error) {

 ……

 for { // 消息处理循环

 select { // 没有default分支，必须阻塞等待下面某个case分支满足条件之后再继续执行

 ……

 // 接收到正常的Kafka分区消费者消息（大多数正常消息的情况下）

 case in, ok := <-chain.channelConsumer.Messages():

 ……

 select {

 case <-chain.errorChan: // 如果该通道已经关闭，则重新创建该通道

 chain.errorChan = make(chan struct{})

 logger.Infof("[channel: %s] Marked consenter as available again", chain.ChainID())

 default:

 }

 if err := proto.Unmarshal(in.Value, msg); err != nil { // 解析Kafka消息

 ……

 continue

 }

 ……

 // 分析Kafka消息类型

 switch msg.Type.(type) {

 case *ab.KafkaMessage_Connect: // Kafka连接消息

 // 由于错误而重新恢复Kafka消费者分区订阅流程

 _ = chain.processConnect(chain.ChainID()) // 处理CONNECT连接消息，

 不做任何事情

 counts[indexProcessConnectPass]++ // 成功处理消息计数增1

 case *ab.KafkaMessage_TimeToCut: // Kafka定时切割生成区块消息

 if err := chain.processTimeToCut(msg.GetTimeToCut(), in.Offset); err != nil {　　　　　　　　　　　　　　// 处理TimeToCut类型消息

 ……

 }

 counts[indexProcessTimeToCutPass]++ // 成功处理消息计数增1

 case *ab.KafkaMessage_Regular: // Kafka常规消息

 if err := chain.processRegular(msg.GetRegular(), in.Offset); err != nil { // 处理Kafka常规消息

 ……

 }

 ……

 }

 case <-chain.timer: // 超时定时器

 // 发送TimeToCut类型消息，请求打包出块

 if err := sendTimeToCut(chain.producer, chain.channel, chain.lastCutBlockNumber+1, &chain.timer); err != nil {

 ……

 }

 ……

 }

 }

}

对于从chain.channelConsumer.Messages()通道中接收的Kafka消息，processMessages-ToBlocks()方法首先检查消息的合法性，确认Kafka共识组件链对象处于正常工作中，并检查chain.errorChan通道是否关闭。如果Kafka共识组件链对象接收到正常的Kafka分区消费者消息，就会重启已经关闭的errorChan通道。因此，如果发生错误，通常会发送1个Kafka连接消息（KafkaMessage_Connect类型，实际上没有执行任何有效操作），重新连接Kafka分区消费者，以激活errorChan通道重新接收消息，确保Kafka共识组件链对象处于正常工作状态。

然后，processMessagesToBlocks()方法解析Kafka消息类型并分类处理，包括Kafka-Message_Regular类型、KafkaMessage_TimeToCut类型、KafkaMessage_Connect类型等。

（1）KafkaMessage_Connect类型消息（CONNECT类型）

Kafka连接消息用于测试连通Kafka分区消费者的工作状态，用于验证Kafka共识组件的正常工作状态与排除故障，并调用chain.processConnect(chain.ChainID())方法处理该消息。注意，本地Orderer节点可能会重复接收到其他Orderer节点用于测通的Kafka连接消息，目前默认不执行任何有效操作。

（2）KafkaMessage_TimeToCut类型消息（TIMETOCUT类型）

processMessagesToBlocks()方法可调用chain.processTimeToCut()方法处理TIMETOCUT类型消息。如果消息中的区块号ttcNumber不是当前Orderer节点当前通道账本中下一个打包出块的区块号（最新区块号lastCutBlockNumber+1），则直接丢弃不处理。否则，调用chain.BlockCutter().Cut()方法，切割当前该通道上待处理的缓存交易消息列表为批量交易集合batch（[]*cb.Envelope），再调用chain.CreateNextBlock(batch)方法构造新区块并提交账本。然后，构造Kafka元数据对象（KafkaMetadata类型），封装消息偏移量receivedOffset与本通道最近已处理消息的偏移量lastOriginalOffsetProcessed，并序列化成元数据字节数组metadata。最后，调用chain.WriteBlock(block，metadata)方法，更新区块元数据并提交账本，同时更新Kafka共识组件链对象的最新区块号lastCutBlockNumber增1。

事实上，Orderer服务集群节点独立打包出块的时间点通常不是完全同步的，同时还可能会重复接收其他Orderer节点提交的TIMETOCUT类型消息（重复区块号）。此时，Orderer节点以接收到的第一个TIMETOCUT类型消息为准，打包出块并提交到账本，再更新当前通道的最新区块号lastCutBlockNumber。这样，chain.processTimeToCut()方法就能利用最新的lastCutBlockNumber过滤掉其他重复的TIMETOCUT类型消息，以保证所有Orderer节点上账本区块文件的数据同步，实际上是将原先的时间同步机制转换为消息同步机制。

（3）KafkaMessage_Regular类型消息（REGULAR类型）

processMessagesToBlocks()方法调用chain.processRegular()方法处理Kafka常规消息，包括通道配置交易消息（KafkaMessageRegular_CONFIG类型，2.4.3节）和普通交易消息（KafkaMessageRegular_NORMAL类型，2.5.3节）。

4.处理Kafka常规消息（配置交易消息）

chain.processRegular()方法首先获取当前通道的最新配置序号seq，再提取Kafka常规消息regularMessage.Payload包含的配置交易消息（Envelope类型），检查regularMessage.Class消息类型的合法性，过滤掉KafkaMessageRegular_UNKNOWN类型消息，并检查版本兼容性，对正常版本的消息进行分类处理，其中，通道配置交易消息（KafkaMessageRegular_CONFIG类型）的处理流程如图2-7所示。

（1）检查最近重新验证且重新排序的配置交易消息

processRegular()方法首先判断regularMessage.OriginalOffset是否为0，以决定是否将该消息重新过滤验证与重新提交到Kafka集群请求排序，如代码清单2-34所示。

 [image:]

图2-7　processRegular()方法处理Kafka常规消息（通道配置交易消息）的流程示意图

代码清单2-34　processRegular()方法处理通道配置交易消息的源码示例

orderer/consensus/kafka/chain.go文件

// 处理Kafka常规消息

func (chain *chainImpl) processRegular(regularMessage *ab.KafkaMessageRegular, receivedOffset int64) error {

 ……

 seq := chain.Sequence() // 获取当前通道的最新配置序号

 env := &cb.Envelope{}

 // 解析消息负载到Envelope结构对象

 if err := proto.Unmarshal(regularMessage.Payload, env); err != nil {

 ……

 }

 ……

 switch regularMessage.Class {

 case ab.KafkaMessageRegular_UNKNOWN: // 未知消息类型

 ……

 case ab.KafkaMessageRegular_NORMAL: // 普通交易消息类型

 ……

 case ab.KafkaMessageRegular_CONFIG: // 通道配置交易消息

 // 如果OriginalOffset不是0，则说明这个配置交易消息是重新验证和重新排序的

 if regularMessage.OriginalOffset != 0 {

 ……

 // 检查合法性，若不大于lastOriginalOffsetProcessed最近已处理消息的偏移量

 // （所有消息），则说明已经处理过该消息了，此时丢弃该消息直接返回

 if regularMessage.OriginalOffset <= chain.lastOriginalOffsetProcessed {

 ……

 return nil

 }

 ……

 // 确认这是最近一次重新排序的配置消息，且通道配置序号是最新的，所以不需要重新

 // 验证，解除阻塞

 if regularMessage.OriginalOffset == chain.lastResubmittedConfigOffset &&

 regularMessage.ConfigSeq == seq {

 ……

 // 因此，关闭通道并解除Broadcast服务处理句柄阻塞等待，通知重新接收消息进行处理

 close(chain.doneReprocessingMsgInFlight)

 }

 // 存在其他Orderer节点重新提交了配置消息，但是本地Orderer节点没有重新提交该消息。

 // 这是由于所有Orderer节点对消息合法性标准的认定不一致而造成的，因此这里需要主动

 // 修正更新本通道的最近重新提交排序的配置交易消息初始偏移量lastResubmitted

 // ConfigOffset，以保证网络中所有Orderer节点数据的一致性（以消息携带的初始偏移

 量为标准）

 if chain.lastResubmittedConfigOffset < regularMessage.OriginalOffset {

 chain.lastResubmittedConfigOffset = regularMessage.OriginalOffset

 }

 }

 // 检查通道的配置序号是否更新了

 if regularMessage.ConfigSeq < seq {

 // 消息版本低，需要重新构造配置交易消息并验证过滤

 ……

 configEnv, configSeq, err := chain.ProcessConfigMsg(env)

 ……

 // 由于重新验证过滤了该配置消息，因此，需要重新提交该配置消息进行排序，重置消息初始偏移量

 if err := chain.configure(configEnv, configSeq, receivedOffset); err != nil {

 return fmt.Errorf("error re-submitting config message because = %s", err)

 }

 ……

 // 重新提交了配置消息进行排序，因此，需要创建doneReprocessingMsgInFlight新通道

 // 阻塞接收消息处理

 //更新最近重新提交消息的偏移量

 chain.lastResubmittedConfigOffset = receivedOffset

 //创建通道阻塞Broadcast服务接收处理消息

 chain.doneReprocessingMsgInFlight = make(chan struct{})

 return nil

 }

 // 当且仅当消息重新验证和重新排序时，才需要修正lastOriginalOffsetProcessed偏移量

 offset := regularMessage.OriginalOffset // 记录配置消息的原始偏移量

 if offset == 0 { // 如果offset为0，则说明是第一次提交通道配置交易消息，而不是

 // 重新验证和重新排序的

 // 记录最近已处理消息的偏移量（所有消息）

 offset = chain.lastOriginalOffsetProcessed

 }

 // 提交通道配置交易消息，offset为最近处理的配置交易消息偏移量

 commitConfigMsg(env, offset)

 default:

 ……

 }

 return nil

}

①regularMessage.OriginalOffset为0

Broadcast交易广播处理句柄过滤通道配置交易消息后，调用processor.Configure()方法构造Kafka常规消息（KafkaMessageRegular_CONFIG类型），设置初始消息偏移量OriginalOffset为0，再执行chain.enqueue()方法将该消息封装成Kafka生产者消息，发布到Kafka集群指定主题（chainID）与分区号（0）的Kafka分区上请求排序。

因此，如果regularMessage.OriginalOffset为0，则说明processRegular()方法是第一次处理该配置交易消息regularMessage。如果消息中的配置序号regularMessage.ConfigSeq小于当前通道的最新配置序号seq，则说明已经更新了通道配置（配置序号较高），然后再处理当前配置交易消息（配置序号较低）。所以，processRegular()方法调用chain.ProcessConfigMsg()方法，重新过滤与处理该消息，以保证符合通道消息要求。如果没有通过验证，则直接丢弃该消息。否则，就将消息的配置序号configSeq更新为当前通道配置序号增1。

接着，调用chain.configure(configEnv，configSeq，receivedOffset)方法，重新构造Kafka常规消息（KafkaMessageRegular_CONFIG类型），并重新提交到Kafka集群请求排序。同时，重置消息的初始偏移量OriginalOffset为当前接收消息的偏移量receivedOffset，以标记当前处理的消息位置以及当前消息是重新提交请求排序的。这样，Orderer节点在收到重新提交的配置交易消息之后，就能通过通道配置序号的检查，从而正常地更新通道配置。

然后，更新最近重新提交的配置交易消息偏移量chain.lastResubmittedConfigOffset为receivedOffset，用于过滤掉后续接收到的其他Orderer节点重复提交的消息，表示已经处理了该消息偏移量（位置）之前的所有消息。同时，创建新的chain.doneReprocessing-MsgInFlight通道，从而在processor.WaitReady()方法中阻塞Broadcast服务处理句柄继续接收新消息，以确保当前通道配置消息处理完毕后再继续处理新消息。

最后，退出processRegular()方法，返回到Kafka共识组件链对象的消息处理循环。

其中，Kafka共识组件链对象（chainImpl类型）封装了3个重要字段，被保存在区块元数据的BlockMetadataIndex_ORDERER索引项中，以构造metadata元数据参数，并提供给consenter.HandleChain(cs，metadata)方法创建Kafka共识组件链对象，用于在创建Kafka分区消费者时初始化起始消息的位置偏移量（自动增1）等参数，具体如下。

·lastOffsetPersisted：记录区块中最后（最新）一个交易的消息位置偏移量。

·lastOriginalOffsetProcessed：记录最近处理过的重新验证且重新排序的消息位置偏移量，用于过滤其他Orderer节点提交的重复消息，以确保当前Orderer节点只会处理一次重新验证且重新排序的消息。

·lastResubmittedConfigOffset：记录最近重新验证且重新排序的配置交易消息的位置偏移量，与LastOriginalOffsetProcessed一起判断最近重新提交的配置交易消息是否已经处理完毕，以防止重复处理该消息。

②regularMessage.OriginalOffset不为0

如果regularMessage.OriginalOffset不为0，则说明这是重新过滤验证和重新排序的通道配置交易消息。

processRegular()方法首先比较regularMessage.OriginalOffset与chain.lastOriginalOffset-Processed，以过滤其他Orderer节点重复提交相同的消息，而本块实际已经处理了该消息，如果regularMessage.OriginalOffset小于或等于Chain.lastOriginalOffsetProcessed，则直接返回到共识组件链对象的消息处理循环。

接着，检查regularMessage.OriginalOffset与chain.lastResubmittedConfigOffset是否相等，以及regularMessage.ConfigSeq与seq是否相等，以确认这是最近重新验证且重新排序的配置交易消息，并且通道配置序号是最新的。如果两者都相等，则不需要再次重新验证且重新排序该消息，调用close(chain.doneReprocessingMsgInFlight)方法，关闭通道以通知Broadcast服务处理句柄解除阻塞，继续接收新消息处理。

然后，检查chain.lastResubmittedConfigOffset是否小于regularMessage.OriginalOffset，以判断其他Orderer节点是否重新提交了偏移量为OriginalOffset的消息，但是当前本地Orderer节点由于验证规则等原因没有通过验证该配置交易消息，从而没有重新提交该消息进行排序。因此，为了保证网络中所有Orderer节点数据的一致性，本地Orderer节点将主动更新chain.lastResubmittedConfigOffset为regularMessage.OriginalOffset原始消息偏移量。

（2）检查与过滤合法消息

processRegular()方法检查比较配置交易消息的配置序号regularMessage.ConfigSeq与当前通道的最新配置序号seq，以过滤出不合法的通道配置交易消息（regularMessage.ConfigSeq小于seq的情况），并将其重新过滤处理与重新提交并排序。目前，存在如下合法的正常情况不需要重新验证，具体如下。

·经过重新验证过滤和重新提交排序的通道配置消息：其携带的配置序号regularMessage.ConfigSeq等于当前通道的最新配置序号seq，说明该消息刚刚通过了上述检查，可以继续执行更新通道配置的流程；

·第一次提交通道配置消息：其携带的配置序号regularMessage.ConfigSeq等于或大于当前通道最新的配置序号seq，属于正常的更新通道配置的情况。

（3）提交配置交易消息执行通道管理操作

processRegular()方法调用commitConfigMsg(env，offset)方法，对通道配置交易消息分两次打包出块，如代码清单2-35所示。该方法首先将当前缓存消息列表清空，并切割成批量交易消息，打包出块后写入账本，接着将配置交易消息单独打包出块，执行通道管理操作（创建新应用通道或更新通道配置），再将配置区块写入本地账本，如图2-8所示。

代码清单2-35　commitConfigMsg()方法的源码示例

orderer/consensus/kafka/chain.go文件

// 处理Kafka常规消息

func (chain *chainImpl) processRegular(regularMessage *ab.KafkaMessageRegular, receivedOffset int64) error {

 ……

 // 提交配置交易消息

 commitConfigMsg := func(message *cb.Envelope, newOffset int64) {

 ……

 batch := chain.BlockCutter().Cut() // 将当前缓存交易消息切割成批量交易集合

 if batch != nil { // 说明还存在需要打包出块的批量交易集合

 logger.Debugf("[channel: %s] Cut pending messages into block", chain.ChainID())

 block := chain.CreateNextBlock(batch) // 创建新区块

 metadata := utils.MarshalOrPanic(&ab.KafkaMetadata{ // 构造Kafka元数据

 LastOffsetPersisted: receivedOffset - 1, // 偏移量减1

 LastOriginalOffsetProcessed: chain.lastOriginalOffsetProcessed,

 LastResubmittedConfigOffset: chain.lastResubmittedConfigOffset,

 })

 chain.WriteBlock(block, metadata) // 写入区块

 chain.lastCutBlockNumber++ //最近生成区块的区块号增1

 }

 logger.Debugf("[channel: %s] Creating isolated block for config message", chain.ChainID())

 chain.lastOriginalOffsetProcessed = newOffset

 block := chain.CreateNextBlock([]*cb.Envelope{message}) // 构造新区块

 metadata := utils.MarshalOrPanic(&ab.KafkaMetadata{ // 构造Kafka元数据

 LastOffsetPersisted: receivedOffset,

 LastOriginalOffsetProcessed: chain.lastOriginalOffsetProcessed,

 LastResubmittedConfigOffset: chain.lastResubmittedConfigOffset,

 })

 chain.WriteConfigBlock(block, metadata) // 写入配置区块

 chain.lastCutBlockNumber++ // 最新区块号增1

 chain.timer = nil

 }

 ……

 return nil

}

 [image:]

图2-8　commitConfigMsg()方法处理通道配置交易消息的流程示意图

在调用commitConfigMsg()方法正式提交与处理通道配置交易消息之前，processRegular()方法使用offset参数更新本链最近处理过的重新验证且重新排序的消息位置偏移量lastOriginalOffsetProcessed，其中：

·如果该通道配置交易消息是第一次由Broadcast消息处理句柄转发给Kafka共识组件链对象处理的（即OriginalOffset为0），并且通过了通道配置序号的检查（即合法消息），则将offset设置为原始的lastOriginalOffsetProcessed偏移量，表示该消息偏移量不需要进行更新；

·如果该配置交易消息是被重新验证且重新排序的，则将offset设置为当时的消息偏移量OriginalOffset，以记录消息接收时的位置。

commitConfigMsg()方法首先调用chain.BlockCutter().Cut()→receiver.Cut()方法，清空当前的缓存交易列表，将其切割成批量交易集合batch（[]*cb.Envelope），接着调用chain.CreateNextBlock(batch)方法，基于该对象创建新区块block，同时构造区块元数据metadata（KafkaMetadata类型，序列化为字节数组）。其中，metadata元数据的LastOffsetPersisted字段用于记录当前配置交易消息前一个消息的消息位置偏移量（receivedOffset-1，注意此时清空打包的是第1个区块），LastOriginalOffsetProcessed字段与LastResubmittedConfigOffset字段均更新为当前本通道记录的已处理消息偏移量。然后，调用chain.WriteBlock(block，metadata)→BlockWriter.WriteBlock()方法，通过区块写组件提交新区块到账本，更新当前通道的最新区块号chain.lastCutBlockNumber增1，确保Kafka共识组件链对象在接收到TIMETOCUT类型消息之后，能够根据lastCutBlockNumber及时判断是否需要对缓存交易消息列表切割出块或丢弃该消息。

接着，commitConfigMsg()方法继续处理通道配置交易消息，更新本链的lastOriginal-OffsetProcessed为newOffset参数，即processRegular()方法的offset参数，其中：

·如果配置交易消息是第一次提交的，并且通过了通道配置序号的合法性检查，则保持lastOriginalOffsetProcessed值不变，即将newOffset设置为lastOriginalOffset Processed。

·如果配置交易消息是重新验证且重新提交排序的，则lastOriginalOffsetProcessed更新为通道配置交易消息被处理时标记的消息偏移量newOffset。

然后，commitConfigMsg()方法调用chain.CreateNextBlock([]*cb.Envelope{message})方法，构造新的配置区块block与元数据对象metadata，将其LastOffsetPersisted字段设置为当前接收消息的偏移量receivedOffset。接着，调用chain.WriteConfigBlock(block，metadata)方法，向账本提交新的配置区块，分为两种情况，具体如下。

·如果消息头部类型是ORDERER_TRANSACTION（创建新的应用通道），则调用多通道注册管理器对象的bw.registrar.newChain()方法，创建新的应用通道及其链支持对象，提交创世区块到该应用通道账本的区块数据文件中，并将该链支持对象注册到多通道注册管理器对象上；

·如果消息头部类型是CONFIG（更新通道配置），则创建新的通道配置实体对象bundle，再通过该通道的链支持对象调用bw.support.Update(bundle)方法，将其更新为底层的通道配置实体。

最后，commitConfigMsg()方法更新本链的最新区块号chain.lastCutBlockNumber增1，关闭定时器timer为nil，以保证在processMessagesToBlocks()方法的消息处理循环中忽略检查timer通道所在的case语句分支。

至此，processRegular()方法处理通道配置交易消息的流程结束，并返回到processMessages ToBlocks()方法的消息处理循环中。
2.5　Orderer共识排序服务（普通交易消息）

2.5.1　概述

共识组件链对象提供Order()方法给Broadcast服务处理句柄以处理普通交易消息，先提交到共识排序后端（sendChan通道或Kafka集群）请求排序，再将排序后的交易添加到本地待处理的缓存交易消息列表，按规则打包出块并提交账本。类似于通道配置交易消息，采用相同的Solo和Kafka共识组件链对象处理普通交易消息只是在同一个消息处理循环中分别由不同的case语句分支进行处理。
2.5.2　Solo共识组件

Solo共识组件链对象启动后执行chain.main()方法，创建消息处理循环，负责打包出块并提交到账本，其普通交易消息的处理流程如图2-9所示。

1.检查与过滤合法消息

Solo共识组件链对象的chain.main()方法首先获取当前通道的最新配置序号seq，阻塞等待sendChan通道中的普通交易消息，如代码清单2-36所示。

代码清单2-36　Solo共识组件链对象的main()方法处理普通交易消息的源码示例

orderer/consensus/solo/consensus.go文件

func (ch *chain) main() {

 ……

 for { // 消息循环处理

 seq := ch.support.Sequence() // 获取当前通道的配置序号

 err = nil

 select {

 // 检查sendChan通道的消息

 case msg := <-ch.sendChan:

 if msg.configMsg == nil { // 普通交易消息

 if msg.configSeq < seq {

 // 检查消息中的配置序号是否小于目前通道的配置序号，

 // 若是则说明通道配置已发生更新，需要重新过滤验证该消息

 _, err = ch.support.ProcessNormalMsg(msg.normalMsg)

 if err != nil { // 若发现错误，则丢弃该消息，跳转继续循环

 logger.Warningf("Discarding bad normal message: %s", err)

 continue

 }

 }

 // 添加消息到缓存交易消息列表，并按出块规则切割成批量交易集合列表batches

 batches, _ := ch.support.BlockCutter().Ordered(msg.normalMsg)

 if len(batches) == 0 && timer == nil {

 // 若结果中不存在出块消息且未设置定时器，则设置定时器

 timer = time.After(ch.support.SharedConfig().BatchTimeout())

 continue

 }

 // 检查等待打包出块的批量交易集合列表

 for _, batch := range batches { // 遍历批量交易集合列表

 block := ch.support.CreateNextBlock(batch) // 创建新区块

 ch.support.WriteBlock(block, nil) // 将区块写入账本

 }

 // 若存在批量交易集合列表，则取消定时器

 if len(batches) > 0 {

 timer = nil

 }

 } else {

 // 配置交易消息：创建新的应用通道或更新通道配置

 ……

 }

 // 生成区块超时

 case <-timer:

 ……

 // 若接收到退出消息，则退出消息处理循环

 case <-ch.exitChan:

 ……

 }

 }

}

 [image:]

图2-9　Solo共识组件中正常交易消息的处理流程图

对于正常交易消息（msg.configMsg为nil），chain.main()方法首先比较消息携带的配置序号configSeq与当前通道的最新配置序号seq。如果发现消息的配置序号较低，说明当前的通道配置发生了更新升级，则调用ch.support.ProcessNormalMsg()方法重新过滤验证交易消息。

2.打包出块并提交到账本

chain.main()方法调用ch.support.BlockCutter().Ordered(msg.normalMsg)→receiver.Ordered()方法，如代码清单2-37所示，即通过消息切割组件receiver将当前接收的普通交易消息添加到缓存交易消息列表中，按打包出块规则切割成批量交易集合列表batches（[][]*cb.Envelope类型）。其中，batches最多包含两个批量交易消息，并且第2个批量交易集合batch最多包含1个交易。

代码清单2-37　消息切割组件receiver类型的Ordered()方法源码示例

orderer/common/blockcutter/blockcutter.go文件

func (r *receiver) Ordered(msg *cb.Envelope) (messageBatches [][]*cb.Envelope, pending bool) {

 messageSizeBytes := messageSizeBytes(msg) // 获取该消息的字节数

 // 检查当前消息的字节数是否超过推荐的消息最大字节数

 if messageSizeBytes > r.sharedConfigManager.BatchSize().PreferredMaxBytes {

 ……

 // 如果存在缓存交易消息列表，则切割出批量交易集合

 if len(r.pendingBatch) > 0 {

 messageBatch := r.Cut() // 切割批量交易集合

 messageBatches = append(messageBatches, messageBatch)

 // 添加到messageBatches列表

 }

 // 将msg构造为单独的批量交易集合，并添加到messageBatches列表中

 messageBatches = append(messageBatches, []*cb.Envelope{msg})

 return // 返回消息处理循环

 }

 // 如果添加msg消息后的消息长度超过推荐的消息最大字节数，则先清空当前缓存交易消息列表

 messageWillOverflowBatchSizeBytes := r.pendingBatchSizeBytes+messageSizeBytes > r.sharedConfigManager.BatchSize().PreferredMaxBytes

 if messageWillOverflowBatchSizeBytes {

 ……

 messageBatch := r.Cut() // 切割批量交易集合

 // 添加到messageBatches列表

 messageBatches = append(messageBatches, messageBatch)

 }

 ……

 r.pendingBatch = append(r.pendingBatch, msg) // 将消息msg添加到缓存交易消息列表

 r.pendingBatchSizeBytes += messageSizeBytes // 调整缓存交易消息列表的消息字节数

 pending = true

 // 检查调整后的缓存交易消息列表的消息个数是否超过了预设的最大消息数

 if uint32(len(r.pendingBatch)) >= r.sharedConfigManager.BatchSize().MaxMessageCount {

 logger.Debugf("Batch size met, cutting batch")

 messageBatch := r.Cut() // 切割批量交易集合

 messageBatches = append(messageBatches, messageBatch) // 添加到批量交易集合列表

 pending = false

 }

 return

}

其中，receiver.Ordered()方法首先获取普通交易消息msg的消息字节数。如果超过了Orderer配置推荐的最大消息字节数PreferredMaxBytes（默认为512KB），则继续检查。如果当前缓存交易消息列表的消息数量len(r.pendingBatch)大于0，则调用receiver组件的r.Cut()方法，清空该列表以切割出第1个批量交易集合messageBatch（[]*cb.Envelope类型），并添加到批量交易消息集合messageBatches中。同时，将普通交易消息msg构造为单独的批量交易消息[]*cb.Envelope{msg}，再添加到messageBatches列表中，这种情况下会形成两个批量交易集合。接着，receiver.Ordered()方法计算当前缓存交易消息列表在添加msg后的消息字节数。如果该字节数超过了推荐的最大消息字节数PreferredMaxBytes，则调用r.Cut()方法切割出批量交易集合messageBatch，再添加到messageBatches列表中，此时会形成第1个批量交易集合。否则，直接添加msg到当前缓存交易消息列表pendingBatch中，计算获取调整后缓存交易消息列表中的消息个数。如果该消息个数超过了Orderer配置的最大消息数MaxMessageCount（默认是10个），则调用r.Cut()方法切割出批量交易集合messageBatch，并添加到messageBatches列表中，将其返回到chain.main()方法中的batches变量。这种情况下会形成第2个批量交易集合，否则，只会形成第1个批量交易集合。

然后chain.main()方法检查批量交易集合列表batches。如果batches中不存在任何缓存消息，同时没有设置定时器timer（nil），则设置定时器触发周期事件为Orderer配置的出块超时时间（默认为2秒），负责周期性地发送打包出块消息（TIMETOCUT类型）。

最后，chain.main()方法遍历batches中的每个对象batch，调用CreateNextBlock(batch)方法，基于该对象创建新区块block，再调用WriteBlock(block，nil)方法，将新区块写入当前通道账本的区块数据文件中。如果batches存在任何批量交易集合，则取消定时器（nil）。

至此，chain.main()方法处理普通交易消息的流程结束，并返回到消息处理循环中。
2.5.3　Kafka共识组件

1.流程概述

Kafka共识组件链对象启动后执行startThread(chain)函数，调用chain.processMessages ToBlocks()→chain.processRegular()方法，建立消息处理循环，其普通交易消息的处理流程如图2-10所示。

 [image:]

图2-10　processRegular()方法处理Kafka常规消息（普通交易消息）的流程示意图

如代码清单2-38所示，类似于Kafka共识组件链对象处理通道配置交易消息的流程，processRegular()方法首先获取当前通道的配置序号seq，再处理Kafka常规消息（KafkaMessageRegular_NORMAL类型，普通交易消息）。

代码清单2-38　Kafka共识组件链对象的processRegular()方法处理普通交易消息的源码示例

orderer/consensus/kafka/chain.go文件

// 处理Kafka常规消息（普通交易消息）

func (chain *chainImpl) processRegular(regularMessage *ab.KafkaMessageRegular, receivedOffset int64) error {

 ……

 seq := chain.Sequence() // 获取当前通道最新的配置序号

 env := &cb.Envelope{}

 // 解析Kafka常规消息到Envelope结构对象

 if err := proto.Unmarshal(regularMessage.Payload, env); err != nil {

 ……

 }

 ……

 switch regularMessage.Class {

 case ab.KafkaMessageRegular_UNKNOWN:

 ……

 case ab.KafkaMessageRegular_NORMAL: // 普通交易消息

 // 如果OriginalOffset不是0，则说明该消息是重新验证且重新提交排序的

 if regularMessage.OriginalOffset != 0 {

 ……

 // 如果消息偏移量不大于lastOriginalOffsetProcessed最近已处理消息的偏移量，

 // 则说明已经处理过该消息，此时应丢弃返回，防止重复处理其他Orderer提交的相同偏移

 量的普通交易消息

 if regularMessage.OriginalOffset <= chain.lastOriginalOffsetProcessed {

 ……

 return nil

 }

 }

 // 检查通道的配置序号是否更新

 if regularMessage.ConfigSeq < seq {

 // 消息的配置序号低，需要重新验证过滤消息

 configSeq, err := chain.ProcessNormalMsg(env)

 ……

 // 重新提交普通交易消息

 if err := chain.order(env, configSeq, receivedOffset); err != nil {

 return fmt.Errorf("error re-submitting normal message because = %s", err)

 }

 return nil

 }

 // 当且仅当消息重新验证和重新排序时，才需要修正lastOriginalOffsetProcessed偏移量

 offset := regularMessage.OriginalOffset

 if offset == 0 {

 offset = chain.lastOriginalOffsetProcessed

 }

 // 提交处理普通交易消息，offset为最近处理的普通交易消息偏移量

 commitNormalMsg(env, offset)

 case ab.KafkaMessageRegular_CONFIG: // 通道配置交易消息

 ……

 default:

 ……

 }

 return nil

}

2.处理Kafka常规消息（普通交易消息）

（1）检查最近重新验证且重新排序的普通交易消息

对于Kafka常规消息中的普通交易消息（KafkaMessageRegular_NORMAL类型），process-Regular()方法首先检查regularMessage.OriginalOffset是否为0，以判断regularMessage对象是否为重新验证且重新提交到Kafka集群进行排序的消息。

如果接收消息的regularMessage.OriginalOffset为0，则说明processRegular()方法是第一次处理该消息，需要检查配置序号。如果消息中的配置序号regularMessage.ConfigSeq小于当前通道的最新配置序号seq，则说明当前通道配置已经过了升级（配置序号变高），但交易消息却是按照旧的通道配置进行过滤验证的（配置序号较小）。因此，processRegular()方法调用chain.ProcessNormalMsg()方法，更新过滤验证该消息以符合当前通道消息的要求。然后，调用chain.order(env，configSeq，receivedOffset)方法，重新构造新的Kafka常规消息（KafkaMessageRegular_NORMAL类型），提交到Kafka集群中重新排序，重置消息的原始位置偏移量OriginalOffset为当前接收消息的位置偏移量receivedOffset。

同时，如果接收消息的regularMessage.OriginalOffset不为0，则是由于processRegular()方法在第一次处理该消息时发现其携带的配置序号较低，需要将该消息申请重新过滤验证和重新提交排序。如果消息的原始偏移量regularMessage.OriginalOffset小于或等于当前最新处理过的消息偏移量lastOriginalOffsetProcessed，则说明Kafka共识组件链对象已经处理过该普通交易消息，此时将直接返回到Kafka共识组件链对象的消息处理循环中。

（2）检查与过滤合法消息

processRegular()方法检查普通交易消息的配置序号regularMessage.ConfigSeq与当前通道的配置序号seq，以过滤出不符合当前通道消息要求的普通交易消息，并将其重新过滤验证与重新提交到Kafka集群并请求排序。目前，合法的正常情况包括如下几种。

·经过重新验证过滤且重新提交排序的普通交易消息：其配置序号regularMessage.ConfigSeq等于当前通道的最新配置序号seq，说明该消息通过了合法性检查，可以提交继续处理；

·第一次提交的普通交易消息：其配置序号regularMessage.ConfigSeq等于或大于当前通道的最新配置序号seq，说明该消息是合法的普通交易消息。

（3）提交普通交易消息打包出块并提交到账本

类似于处理通道配置交易消息，processRegular()方法首先更新本链上的lastOriginal-OffsetProcessed，接着再调用commitNormalMsg()方法，以处理普通交易消息，如代码清单2-39所示。

代码清单2-39　Kafka共识组件链对象的commitNormalMsg()方法提交普通交易消息的源码示例

orderer/consensus/kafka/chain.go文件

// 处理Kafka常规消息（普通交易消息）

func (chain *chainImpl) processRegular(regularMessage *ab.KafkaMessageRegular, receivedOffset int64) error {

 // 提交普通交易消息

 commitNormalMsg := func(message *cb.Envelope, newOffset int64) {

 // 添加所接收的消息到缓存交易消息列表，并切割成批量交易集合列表batches

 batches, pending := chain.BlockCutter().Ordered(message)

 ……

 if len(batches) == 0 {

 // 如果不存在批量交易集合，则启动定时器周期性地发送切割出块消息

 chain.lastOriginalOffsetProcessed = newOffset

 if chain.timer == nil {

 chain.timer = time.After(chain.SharedConfig().BatchTimeout())

 ……

 }

 return

 }

 chain.timer = nil

 offset := receivedOffset // 设置当前消息偏移量

 if pending || len(batches) == 2 {

 offset-- // 计算第1个批量交易消息的偏移量是offset减1

 } else { // 只有1个批量交易集合构成1个区块

 chain.lastOriginalOffsetProcessed = newOffset

 // 设置第1个批量交易集合的消息偏移量为newOffset

 }

 // 构造并提交第1个区块

 block := chain.CreateNextBlock(batches[0])

 metadata := utils.MarshalOrPanic(&ab.KafkaMetadata{ // 构造元数据

 LastOffsetPersisted: offset,

 LastOriginalOffsetProcessed: chain.lastOriginalOffsetProcessed,

 LastResubmittedConfigOffset: chain.lastResubmittedConfigOffset,

 })

 chain.WriteBlock(block, metadata) // 更新区块元数据，并提交区块到账本

 chain.lastCutBlockNumber++ // 更新当前通道上最近出块的区块号增1

 ……

 // 检查第2个批量交易集合，构造并提交第2个区块

 if len(batches) == 2 {

 chain.lastOriginalOffsetProcessed = newOffset

 offset++ // 设置第2个批量交易集合的消息偏移量offset加1

 block := chain.CreateNextBlock(batches[1])

 metadata := utils.MarshalOrPanic(&ab.KafkaMetadata{ // 构造元数据

 LastOffsetPersisted: offset,

 LastOriginalOffsetProcessed: newOffset,

 LastResubmittedConfigOffset: chain.lastResubmittedConfigOffset,

 })

 chain.WriteBlock(block, metadata) // 更新区块元数据，并提交区块到账本

 chain.lastCutBlockNumber++ // 更新当前通道上最近出块的区块号增1

 ……

 }

 }

 ……

 return nil

}

commitNormalMsg()方法首先调用chain.BlockCutter().Ordered()→receiver.Ordered()方法，将新的普通交易消息添加到当前的缓存交易列表，并切割成批量交易集合列表batches（[]*cb.Envelope）。如果batches中没有包含任何消息，则启动定时器周期性地发送打包出块消息（TIMETOCUT类型），主动清空缓存交易消息列表并返回到消息处理循环。否则，关闭定时器timer（nil），使其在Kafka共识组件链对象的消息处理循环中忽略检查timer通道消息的case分支语句。

实际上，batches列表最多包含2个批量交易集合，并且第2个批量交易集合最多包含1个交易。因此，commitNormalMsg()首先调用CreateNextBlock(batches[0])方法，创建第1个区块，并构造Kafka元数据metadata（最近交易偏移量为offset-1）。接着，调用WriteBlock(block，metadata)方法更新最新区块元数据，包括BlockMetadataIndex_ORDERER、BlockMetadataIndex_SIGNATURES、BlockMetadataIndex_LAST_CONFIG等索引项，通过区块写组件将第1个区块写入账本，并更新本链上的最新区块号chain.lastCutBlockNumber使其增1。如果batches存在第2个批量交易集合，则commitNormalMsg()将以同样的方式创建第2个区块对象及其元数据，写入账本并更新lastCutBlockNumber使其增1。

注意，区块中的最后1个交易消息偏移量的计算公式是offset：=receivedOffset-int64(len(batches)-i-1)。其中，i是从0开始计算区块索引号的，receivedOffset是当前消息偏移量。

至此，processRegular()方法处理普通交易消息的流程结束，并重新返回到消息处理循环中。
2.6　Deliver区块分发服务

Orderer排序服务器提供了区块分发服务接口Deliver(srv ab.AtomicBroadcast_DeliverServer)，接收客户端提交的区块请求消息（Envelope类型，通道头部类型是DELIVER_SEEK_INFO、CONFIG_UPDATE等），根据该消息封装的区块搜索信息对象（SeekInfo类型），包括查找最旧区块SeekOldest类型、查找最新区块SeekNewest类型、查找指定位置区块SeekSpecified类型等，构造对应请求范围的范围查询结果迭代器，读取Orderer节点指定通道账本上的区块数据，同时，建立消息处理循环，基于该结果迭代器依次读取请求的区块数据结果，发送给组织的Leader主节点等请求节点。

通常，请求节点调用newDeliverClient()函数以获取Deliver服务客户端（peer/channel/deliverclient.go）。该函数先调用common.NewOrdererClientFromEnv()函数，基于Orderer配置（服务地址等）创建Orderer服务客户端（OrdererClient类型，peer/common/ordererclient.go）。接着，调用OC.Deliuer()OrdererClient.Deliver()方法，根据Orderer服务节点地址、服务器安全选项等参数创建与Orderer节点的gRPC连接conn，然后基于该连接调用ab.NewAtomicBroadcastClient(conn).Deliver(context.TODO())函数，请求调用Deliver()服务接口，创建Deliver服务客户端（atomicBroadcastDeliverClient类型，包含grpc.ClientStream类型客户端通信流），与Orderer节点建立gRPC服务连接，提供Send(*common.Envelope)接口发送交易消息请求，例如第3章命令行模式中执行peer命令时就将其封装为deliverClient类型的客户端。
2.6.1　概述

Orderer节点启动时在本地gRPC服务器上注册了Orderer排序服务器，并创建了Deliver服务处理句柄。当客户端发起Deliver服务请求时，Orderer排序服务器就调用Deliver()方法处理消息请求。如代码清单2-40所示，该方法定义了策略检查器方法policyChecker，即创建消息过滤器用于检查请求消息是否满足ChannelReaders（/Channel/Readers）通道读权限策略，以及Deliver消息追踪器（deliverMsgTracer类型）用于记录调试信息与提供Deliver服务端。

代码清单2-40　Orderer排序服务器的Deliver()方法源码示例

orderer/common/server/server.go文件

// Deliver区块请求服务方法

func (s *server) Deliver(srv ab.AtomicBroadcast_DeliverServer) error {

 ……

 policyChecker := func(env *cb.Envelope, channelID string) error { // 定义策略检查器

 chain, ok := s.GetChain(channelID) // 获取指定通道的链支持对象

 ……

 // 创建消息过滤器

 sf := msgprocessor.NewSigFilter(policies.ChannelReaders, chain)

 return sf.Apply(env) // 过滤消息

 }

 server := &deliverMsgTracer{

 DeliverSupport: &deliverHandlerSupport{AtomicBroadcast_DeliverServer: srv},

 msgTracer: msgTracer{

 debug: s.debug,

 function: "Deliver",

 },

 }

 // Deliver服务消息处理

 return s.dh.Handle(deliver.NewDeliverServer(server, policyChecker, s.sendProducer(srv)))

}

Deliver()方法接着调用NewDeliverServer()函数，基于上述参数创建Deliver服务器（Deliver Server类型），并封装如下参数。

·DeliverSupport对象：其实就是Deliver消息追踪器，提供Deliver服务的Atomic Broadcast_DeliverServer服务端及其gRPC通信流（ServerStream类型），接收区块请求消息，并回复请求处理结果；

·policyChecker策略检查器：用于检查接收的区块请求消息必须满足指定通道上的ChannelReaders（/Channel/Readers）访问控制权限策略的要求；

·sendProducer()方法：发送指定执行结果状态类型的Deliver服务响应消息（Deliver Response类型），如Status_SUCCESS、Status_UNKNOWN等结果状态（protos/common/common.proto）。

最后，Deliver()方法通过Deliver服务处理句柄调用s.dh.Handle()方法，处理Deliver服务区块请求消息。
2.6.2　Deliver服务消息处理

如代码清单2-41所示，Handle()方法创建了Deliver服务的消息处理循环。该方法首先调用Deliver服务器的srv.Recv()方法，负责监听和接收消息请求，即利用Deliver服务器srv（AtomicBroadcast_DeliverServer接口）中的grpc.ServerStream服务端通信流监听等待客户端消息。实际上，请求客户端通过Deliver()服务接口创建了atomicBroadcastDeliverClient结构对象（实现了AtomicBroadcast_DeliverClient接口），利用该对象的grpc.ClientStream客户端流向Orderer节点发送区块请求消息以获取区块数据。

接着，Handle()方法检查消息的合法性，调用Deliver服务处理句柄的ds.deliverBlocks()方法，从Orderer节点本地指定通道的区块账本中获取请求的区块数据，并回复给请求节点。

代码清单2-41　Deliver服务处理句柄的Handle()方法源码示例

common/deliver/deliver.go文件

func (ds *deliverHandler) Handle(srv *DeliverServer) error {

 ……

 // 等待消息请求并进行处理

 for {

 logger.Debugf("Attempting to read seek info message from %s", addr)

 envelope, err := srv.Recv() // 等待接收客户端发送的区块消息请求

 if err == io.EOF {

 logger.Debugf("Received EOF from %s, hangup", addr)

 return nil

 }

 ……

 // 从Orderer节点本地指定通道的区块账本中获取指定区块，并向客户端发送请求

 if err := ds.deliverBlocks(srv, envelope); err != nil {

 return err

 }

 logger.Debugf("Waiting for new SeekInfo from %s", addr)

 }

}

1.检查消息合法性

deliverBlocks()方法首先检查接收消息的合法性，包括格式正确性、证书合法性、链支持对象正确性、访问控制权限合法性（/Channel/Readers）等，如代码清单2-42所示，包括：

·解析获得消息负载payload，检查消息负载头部与通道头部的合法性；

·调用Deliver服务处理句柄的ds.validateChannelHeader()方法，计算消息通道头部的时间戳与服务器时间戳的时间差值，检查该差值是否在允许的15分钟时间窗口内（peer.authentication.timewindow配置项）；

·如果启用TLS安全认证，则调用ds.bindingInspector()方法，检查上下文对象与通道头部中的TLS客户端证书是否匹配；

·调用ds.sm.GetChain(chdr.ChannelId)→ds.Registrar.GetChain(chainID)方法，从多通道注册管理器对象的chains字典中获取指定通道（chainID）的链支持对象chain，并检查该对象是否存在错误信息；

·调用newSessionAC()函数，构造访问控制对象accessControl（sessionAC类型），以用于封装访问控制权限验证支持对象acSupport（实际上就是链支持对象）、访问策略检查器checkPolicy、身份证书过期时间等信息。接着，调用accessControl.evaluate()方法，检查当前接收的消息是否满足指定通道（chdr.ChannelId）上的访问控制权限ChannelReaders（/Channel/Readers）对应的通道读权限策略，同时，检查身份证书时间是否过期等。

代码清单2-42　deliverBlocks()方法检查消息合法性与格式正确性的源码示例

common/deliver/deliver.go文件

func (ds *deliverHandler) deliverBlocks(srv *DeliverServer, envelope *cb.Envelope) error {

 addr := util.ExtractRemoteAddress(srv.Context())

 payload, err := utils.UnmarshalPayload(envelope.Payload)

 // 解析消息负载

 ……

 // 解析通道头部

 chdr, err := utils.UnmarshalChannelHeader(payload.Header.ChannelHeader)

 ……

 err = ds.validateChannelHeader(srv, chdr) // 验证通道头部合法性

 ……

 chain, ok := ds.sm.GetChain(chdr.ChannelId) // 获取指定通道的链支持对象

 ……

 erroredChan := chain.Errored() // 检查错误

 select {

 case <-erroredChan:

 ……

 default:

 }

 // 创建访问控制对象

 accessControl, err := newSessionAC(chain, envelope, srv.PolicyChecker, chdr.ChannelId, crypto.ExpiresAt)

 ……

 if err := accessControl.evaluate(); err != nil { // 检查消息签名是否符合指定的通道读权限

 策略

 ……

 }

 seekInfo := &ab.SeekInfo{}

 // 解析区块搜索信息SeekInfo结构对象

 if err = proto.Unmarshal(payload.Data, seekInfo); err != nil {

 ……

 }

 if seekInfo.Start == nil || seekInfo.Stop == nil { // 检查起始位置与结束位置的合法性

 ……

 }

 ……

 // 创建区块账本迭代器并获取起始区块号，同时设置起始位置

 cursor, number := chain.Reader().Iterator(seekInfo.Start)

 defer cursor.Close()

 var stopNum uint64

 switch stop := seekInfo.Stop.Type.(type) { // 检查停止位置类型

 case *ab.SeekPosition_Oldest: // 查找最旧的区块

 stopNum = number // 起始区块号

 case *ab.SeekPosition_Newest: // 查找最新的区块

 stopNum = chain.Reader().Height() - 1 // 最新区块号

 case *ab.SeekPosition_Specified: // 查找指定位置的区块

 stopNum = stop.Specified.Number // 指定区块号

 if stopNum < number { // 检查结束区块号的合法性，不应该小于起始区块号

 ……

 }

 }

 ……

}

接着，deliverBlocks()方法从消息负载数据中解析获得区块搜索信息seekInfo（SeekInfo类型），检查该对象指定区块请求范围的起始位置seekInfo.Start与结束位置seekInfo.Stop（*SeekPosition类型）的合法性（不为nil）。

然后，deliverBlocks()方法调用关联链支持对象的chain.Reader().Iterator(seekInfo.Start)→FileLedger.Iterator()方法。该方法根据startPosition.Type起始位置对象的类型计算起始区块号startingBlockNumber，具体说明如下。

·SeekPosition_Oldest：搜索最旧的区块，将起始区块号startingBlockNumber设置为0；

·SeekPosition_Newest：搜索最新的区块，将起始区块号startingBlockNumber设置为当前通道账本的最新区块号info.Height-1，即账本高度减1；

·SeekPosition_Specified：搜索指定位置的区块，将起始区块号startingBlockNumber设置为指定起始位置的区块号start.Specified.Number。

FileLedger.Iterator()方法接着调用fl.blockStore.RetrieveBlocks(startingBlockNumber)→store.fileMgr.retrieveBlocks(startNum)→newBlockItr(mgr，startNum)函数，创建指定区块存储对象上的区块迭代器（fsblkstorage.blocksItr类型），封装了区块文件管理器mgr、最新区块号mgr.cpInfo.lastBlockNumber、指定获取的区块号startBlockNum（初始化为区块请求的起始位置）、区块文件流（nil）等，并将其返回到FileLedger.Iterator()方法中的iterator变量。然后，FileLedger.Iterator()方法构造账本区块迭代器cursor（fileLedgerIterator类型），封装了区块账本对象、起始区块号startingBlockNumber、区块迭代器iterator，并返回curosr与startingBlockNumber到deliverBlocks()方法，如代码清单2-43所示。

代码清单2-43　账本FileLedger类型的Iterator()方法源码示例

common/ledger/blockledger/file/impl.go文件

func (fl *FileLedger) Iterator(startPosition *ab.SeekPosition) (blockledger.Iterator, uint64) {

 var startingBlockNumber uint64

 switch start := startPosition.Type.(type) { // 分析起始位置类型

 case *ab.SeekPosition_Oldest: // 搜索最旧区块，区块号为0

 startingBlockNumber = 0

 case *ab.SeekPosition_Newest: // 搜索最新区块

 info, err := fl.blockStore.GetBlockchainInfo() // 获取区块链信息

 if err != nil {

 logger.Panic(err)

 }

 newestBlockNumber := info.Height - 1 // 最新区块号

 startingBlockNumber = newestBlockNumber

 case *ab.SeekPosition_Specified: // 搜索指定位置区块

 startingBlockNumber = start.Specified.Number

 height := fl.Height()

 if startingBlockNumber > height { // 若超过高度，则报错

 return &blockledger.NotFoundErrorIterator{}, 0

 }

 default:

 return &blockledger.NotFoundErrorIterator{}, 0

 }

 // 构造区块迭代器

 iterator, err := fl.blockStore.RetrieveBlocks(startingBlockNumber)

 if err != nil {

 return &blockledger.NotFoundErrorIterator{}, 0

 }

 // 构造账本区块迭代器

 return &fileLedgerIterator{ledger: fl, blockNumber: startingBlockNumber, commonIterator: iterator}, startingBlockNumber

}

最后，deliverBlocks()方法根据结束位置对象的类型seekInfo.Stop.Type计算结束区块号stopNum，并检查起始区块号number与结束区块号stopNum的合法性（stopNum应该不小于number），具体说明如下。

·SeekPosition_Oldest：搜索最旧的区块，并设置结束区块号stopNum与起始区块号number相同。

·SeekPosition_Newest：搜索最新的区块，将结束区块号stopNum设置为当前通道账本的最新区块号chain.Reader().Height()-1，即账本高度减1。

·SeekPosition_Specified：搜索指定位置的区块，将结束区块号stopNum设置为指定结束位置的区块号stop.Specified.Number。

2.读取区块数据

deliverBlocks()方法继续建立循环以读取区块数据，从本地区块账本中获取指定区块号范围内的区块数据，并依次顺序发送给请求客户端，如代码清单2-44所示。

代码清单2-44　deliverBlocks()方法读取区块数据处理循环的源码示例

common/deliver/deliver.go文件

// 从账本中获取指定请求的区块并发送给请求客户端

func (ds *deliverHandler) deliverBlocks(srv *DeliverServer, envelope *cb.Envelope) error {

 ……

 for {// 读取区块数据处理循环

 if seekInfo.Behavior == ab.SeekInfo_FAIL_IF_NOT_READY {

 if number > chain.Reader().Height()-1 {

 return sendStatusReply(srv, cb.Status_NOT_FOUND) // 没有找到

 }

 }

 block, status := nextBlock(cursor, erroredChan) // 从本地账本获取下一个区块

 ……

 number++ // 区块计数增1

 if err := accessControl.evaluate(); err != nil { // 再次检查是否满足访问控制

 // 策略要求

 ……

 }

 ……

 if err := sendBlockReply(srv, block); err != nil { // 发送区块数据

 ……

 }

 if stopNum == block.Header.Number { // 检查获取区块的区块号是否达到结束区块号

 break

 }

 } // 循环结束

 if err := sendStatusReply(srv, cb.Status_SUCCESS); err != nil { // 发送成功状态

 ……

 }

 ……

}

deliverBlocks()方法首先检查搜索区块的行为类型seekInfo.Behavior。如果该对象类型是SeekInfo_FAIL_IF_NOT_READY，则表示如果没有找到指定区块就直接返回错误。通道组织的Leader主节点发送的区块搜索信息被默认配置为SeekInfo_BLOCK_UNTIL_READY类型，表示如果Orderer节点没有找到指定区块，则阻塞等待直到该区块获取成功。

接着，调用nextBlock()函数，基于上面构造的账本区块迭代器cursor从Orderer节点本地账本的区块文件中获取下一个可用区块block，并检查执行结果状态是否成功。如果获取成功，则更新区块计数number使其增1，并调用accessControl.evaluate()方法，再次检查该请求消息是否满足指定的通道读权限策略。

然后，调用sendBlockReply()方法，构造Deliver服务响应消息（DeliverResponse类型）封装获取的账本区块数据block，再回复给请求节点。如果该区块号block.Header.Number达到了指定的结束区块号stopNum，则跳出当前数据处理循环。

如果处理完毕所有指定范围内的区块数据，则调用sendStatusReply(srv，cb.Status_SUCCESS)方法构造执行成功状态的Deliver服务响应消息，再回复给请求客户端，最后返回到Handle()方法的消息处理循环中，继续等待接收新的区块请求消息。

3.获取下一个区块数据

nextBlock()方法启动1个goroutine执行账本区块迭代器的cursor.Next()方法，获取下一个可用的区块数据，执行完成时关闭done通道，接着阻塞等待通道cancel（即erroredChan错误通道）与通道done。如果发生了错误，则通过cancel通道发送消息通知退出nextBlock()方法。

cursor.Next()方法调用fileLedgerIterator.Next()→i.commonIterator.Next()→blocksItr.Next()方法，以获取下一个区块数据，如代码清单2-45所示。该方法首先检查账本中当前可用的最大区块号itr.maxBlockNumAvailable，实际上就是当前区块检查点信息中的最近提交账本的区块号，表示目前账本中拥有的合法区块范围。如果该区块号小于当前请求获取的区块号itr.blockNumToRetrieve，则继续通过区块迭代器调用itr.waitForBlock(itr.blockNumToRetrieve)方法，主动阻塞程序直到Orderer节点提交指定的区块数据才继续执行。

代码清单2-45　区块账本迭代器blocksItr类型的Next()方法获取下一个区块的源码示例

common/ledger/blkstorage/fsblkstorage/blocks_itr.go文件

// 获取下一个区块

func (itr *blocksItr) Next() (ledger.QueryResult, error) {

 // 检查请求区块号若大于当前的最大区块号，则阻塞等待

 if itr.maxBlockNumAvailable < itr.blockNumToRetrieve {

 itr.maxBlockNumAvailable = itr.waitForBlock(itr.blockNumToRetrieve)

 }

 itr.closeMarkerLock.Lock()

 defer itr.closeMarkerLock.Unlock()

 if itr.closeMarker { // 已经关闭，直接返回nil

 return nil, nil

 }

 if itr.stream == nil { // 检查区块文件流

 logger.Debugf("Initializing block stream for iterator. itr.maxBlock-NumAvailable=%d", itr.maxBlockNumAvailable)

 if err := itr.initStream(); err != nil { // 初始化指定区块号的区块数据文件流

 return nil, err

 }

 }

 nextBlockBytes, err := itr.stream.nextBlockBytes() // 获取下一个区块的字节数组

 if err != nil {

 return nil, err

 }

 itr.blockNumToRetrieve++ // 指定获取的区块号增1

 return deserializeBlock(nextBlockBytes) // 解析区块数据

}

如代码清单2-46所示，区块迭代器的waitForBlock()方法用于创建消息处理循环，以等待获取指定的区块数据。该方法首先通过区块文件管理器mgr获取当前区块检查点信息（checkpointInfo类型）中保存的最新区块号itr.mgr.cpInfo.lastBlockNumber，即已提交账本的区块号。如果该区块号小于请求的区块号blockNum且迭代器未关闭，则说明指定请求的区块还没有被创建提交。因此，调用itr.mgr.cpInfoCond.Wait()方法，阻塞等待区块文件管理器mgr上的同步条件变量cpInfoCond，直到有新区块提交账本，重新唤醒该变量通知本方法。这是Deliver区块分发服务的Handle()方法中的关键代码，与创建新区块的过程以及Deliver服务客户端请求区块的过程密切相关。Orderer节点生成新区块时调用commitBlock()方法，实际上最终调用的是updateCheckpoint()→mgr.cpInfoCond.Broadcast()方法，以广播唤醒所有等待该同步条件变量的程序，并通知有新的区块提交到账本。此时，该操作会唤醒waitForBlock()方法中的循环程序，继续检查是否已经创建生成指定区块号blockNum的区块。如果当前账本的最新区块号itr.mgr.cpInfo.lastBlockNumber仍然小于区块号blockNum，则继续阻塞等待。否则，跳出循环返回blocksItr.Next()方法继续执行。

代码清单2-46　区块迭代器blocksItr类型的waitForBlock()方法阻塞等待区块的源码示例

common/ledger/blkstorage/fsblkstorage/blocks_itr.go文件

// Orderer节点阻塞等待新区块，直到指定区块创建提交

func (itr *blocksItr) waitForBlock(blockNum uint64) uint64 {

 itr.mgr.cpInfoCond.L.Lock()

 defer itr.mgr.cpInfoCond.L.Unlock()

 for itr.mgr.cpInfo.lastBlockNumber < blockNum && !itr.shouldClose() {

 // 等待新区块，直到出现指定请求的区块数据

 ……

 itr.mgr.cpInfoCond.Wait() // 阻塞等待，直到有新区块生成通知唤醒

 ……

 }

 return itr.mgr.cpInfo.lastBlockNumber // 等待指定区块创建完毕，返回该区块号

}

然后，blocksItr.Next()方法调用itr.initStream()方法，先获取区块迭代器的itr.blockNumToRetrieve对应区块的文件位置指针lp（*fileLocPointer类型），再基于该文件位置指针（包括区块文件名后缀编号、文件偏移量等）以及账本区块文件目录，创建指定区块的区块文件流（blockStream类型）并设置到itr.stream。接着，调用itr.stream.nextBlockBytes()方法，从该区块文件中获取得到下一个区块数据字节数组nextBlockBytes，获取成功后更新区块账本迭代器itr上的blockNumToRetrieve使其增1，准备继续获取下一个区块对象。

最后，调用deserializeBlock(nextBlockBytes)函数，基于nextBlockBytes字节数组解析出区块头、交易数据集合以及元数据，重新构造成区块对象（Block类型），再将请求的区块依次返回到deliverBlocks()方法中，并回复给请求客户端。
2.6.3　Deliver服务客户端

本节以Leader主节点为例，分析Deliver服务客户端从Orderer节点请求获取区块的流程。通常，Leader主节点通过两种方式产生，具体如下。

·动态选举方式：组织内的所有Peer节点在core.yaml配置文件中都将peer.gossip.useLeaderElection设置为true，同时将peer.gossip.orgLeader设置为false。所有Peer节点在该通道上的Gossip消息模块初始化之后，启动Leader主节点的election选举模块参与竞争，并动态选举出符合选举算法要求的组织Leader主节点。

·静态配置方式：组织内的所有Peer节点在core.yaml配置文件中都将peer.gossip.useLeaderElection设置为false，同时，只有指定的Leader主节点将peer.gossip.orgLeader设置为true，其他节点将peer.gossip.orgLeader设置为false。Leader主节点启动后直接向其他节点宣布自身为组织Leader节点，启动deliveryService服务模块（Deliver服务实例）从Orderer节点请求区块，并分发到组织内的其他节点上。

注意，peer.gossip.useLeaderElection与peer.gossip.orgLeader配置项不能同时配置为true。

Hyperledger Fabric中Gossip消息协议的实现机制比较复杂，有兴趣的读者可以参考election选举模块动态选举Leader主节点的流程（6.4.2节），以及Leader主节点基于Gossip消息协议分发区块数据的过程（6.5.1节）。

1.初始化Deliver服务实例

Leader主节点是通过Gossip服务器实例上指定通道的deliveryService服务模块请求区块的。在Leader主节点加入应用通道时，Gossip服务器实例调用InitializeChannel()方法以启动指定通道上的deliveryService服务模块，即Deliver服务实例（deliverServiceImpl类型），其他节点则不会启动已经创建的deliveryService服务模块。该模块负责构造Deliver服务客户端，建立与Orderer节点的gRPC服务连接，如代码清单2-47所示。

代码清单2-47　Gossip消息模块的InitializeChannel()方法启动Deliver服务实例的源码示例

gossip/service/gossip_service.go文件

func (g *gossipServiceImpl) InitializeChannel(chainID string, endpoints []string, support Support) {

 ……

 if g.deliveryService[chainID] == nil { // 检查是否已经存在Deliver服务实例

 ……

 g.deliveryService[chainID], err = g.deliveryFactory.Service(g, endpoints, g.mcs) // 创建Deliver服务实例对象

 ……

 }

 if g.deliveryService[chainID] != nil {

 // peer.gossip.useLeaderElection与peer.gossip.orgLeader是互斥的两个配置参数，

 // 如果将两个都设置为true且没有被定义，则会引起Peer节点错误

 // 启用Leader主节点动态选举机制

 leaderElection := viper.GetBool("peer.gossip.useLeaderElection")

 // 静态设置为组织Leader主节点

 isStaticOrgLeader := viper.GetBool("peer.gossip.orgLeader")

 if leaderElection && isStaticOrgLeader { // 若同时设置两个标志位，则会报错

 logger.Panic("Setting both orgLeader and useLeaderElection to true isn't supported, aborting execution")

 }

 if leaderElection { // 启用了动态Leader主节点选举机制

 logger.Debug("Delivery uses dynamic leader election mechanism, channel", chainID)

 g.leaderElection[chainID] = g.newLeaderElectionComponent(chainID,

g.onStatusChangeFactory(chainID, support.Committer))// 创建选举模块

 } else if isStaticOrgLeader { // 若静态指定了Leader主节点，则连接

 // Orderer节点请求区块数据

 logger.Debug("This peer is configured to connect to ordering service for blocks delivery, channel", chainID)

 // 启动指定通道上的Deliver服务实例请求获取区块数据

 g.deliveryService[chainID].StartDeliverForChannel(chainID, support.Committer, func() {})

 } else { // 错误情况

 logger.Debug("This peer is not configured to connect to ordering service for blocks delivery, channel", chainID)

 }

 } else {

 logger.Warning("Delivery client is down won't be able to pull blocks for chain", chainID)

 }

}

Gossip服务器实例的InitializeChannel()方法首先调用g.deliveryFactory.Service()→deliverclient.NewDeliverService()方法，构造Deliver服务客户端配置信息（deliverclient.Config类型），再创建指定应用通道（chainID）上的Deliver服务实例（deliverServiceImpl类型），并验证其配置信息。其中，除了Gossip服务器实例之外，该配置信息还封装了如下字段。

·Endpoints：Orderer排序节点列表（[]string类型），实际上是随机从该列表中选择其中1个可用Orderer节点进行连接，请求获取通道账本的区块数据。

·CryptoSvc：消息加密服务组件（mspMessageCryptoService类型），提供消息加密、解析证书等功能，包括通道策略管理器获取组件（获取通道策略管理器用于管理通道策略）、本地签名者对象（签名消息等）、身份反序列化组件管理器（解析身份证书信息等）。

·ConnFactory：创建连接工厂方法，默认初始化为deliverclient.DefaultConnectionFactory方法对象，用于构造gRPC连接对象与Orderer节点建立连接。

·ABCFactory：创建AtomicBroadcastClient客户端工厂方法，默认初始化为deliverclient.DefaultABCFactory方法对象，用于构造Broadcast服务客户端与Orderer节点进行连接交互，并发送与接收数据。

接着，InitializeChannel()方法将创建的Deliver服务实例注册到deliveryService服务模块字典（map[string]deliverclient.DeliverService类型）中，检查当前节点上Leader主节点配置的标志位（leaderElection与isStaticOrgLeader），并调用指定通道上Deliver服务实例的StartDeliverForChannel()方法（静态配置或动态配置），从而启动Leader主节点的Deliver服务客户端，以请求所在通道账本的区块数据。

2.启动Deliver服务实例

Deliver服务实例（deliverServiceImpl类型）上保存了区块提供者字典blockProviders（map[string]blocksprovider.BlocksProvider类型），用于维护链chainID到区块提供者对象（BlocksProvider类型）之间的映射关系。事实上，Deliver服务实例通过关联的区块提供者，调用DeliverBlocks()方法以请求区块数据，基于BlocksProvider结构上的服务客户端（broadcastClient类型）与Orderer节点建立连接，创建Deliver服务客户端，发送消息请求并接收区块数据，如代码清单2-48所示。

代码清单2-48　Deliver服务实例的StartDeliverForChannel()方法源码示例

core/deliverservice/deliveryclient.go文件

func (d *deliverServiceImpl) StartDeliverForChannel(chainID string, ledgerInfo blocksprovider.LedgerInfo, finalizer func()) error {

 ……

 if _, exist := d.blockProviders[chainID]; exist { // 获取绑定指定通道的区块提供者

 …… // 若已经存在，则报错

 } else { // 若不存在区块提供者

 client := d.newClient(chainID, ledgerInfo) // 则创建Deliver服务实例上的

 // broadcastClient客户端

 logger.Debug("This peer will pass blocks from orderer service to other peers for channel", chainID)

 // 创建指定通道关联的区块提供者

 d.blockProviders[chainID] = blocksprovider.NewBlocksProvider(chainID, client, d.conf.Gossip, d.conf.CryptoSvc)

 // 启动goroutine开始从Orderer节点请求获取区块，并发送到组织内其他Peer节点

 go func() {

 d.blockProviders[chainID].DeliverBlocks() // 请求获取区块数据

 finalizer()

 }()

 }

 return nil

}

Deliver服务实例的StartDeliverForChannel()方法首先从blockProviders字典中获取指定通道（chainID）上的区块提供者对象。如果Leader主节点是第一次初始化关联通道上的Deliver服务实例，则不存在该通道关联的区块提供者对象。否则，说明此时已经启动了Deliver服务实例，则报错退出。

接着，StartDeliverForChannel()方法调用d.newClient()→NewBroadcastClient()函数，创建指定通道的broadcastClient结构客户端，用于与Orderer节点建立连接，以发送请求与接收区块数据结果。同时，创建新的区块请求者对象requester（blocksRequester类型），封装broadcastClient结构客户端（实现了blocksprovider.BlocksDeliverer接口）以作为Deliver区块分发服务客户端，如代码清单2-49所示。

代码清单2-49　Deliver服务实例的newClient()方法源码示例

core/deliverservice/deliveryclient.go文件

func (d *deliverServiceImpl) newClient(chainID string, ledgerInfoProvider blocksprovider.LedgerInfo) *broadcastClient {

 requester := &blocksRequester{ // 定义区块请求者blocksRequester结构对象

 tls: comm.TLSEnabled(),

 chainID: chainID,

 }

 // 定义broadcastSetup()方法

 broadcastSetup := func(bd blocksprovider.BlocksDeliverer) error {

 return requester.RequestBlocks(ledgerInfoProvider)

 // 请求区块数据

 }

 ……

 connProd := comm.NewConnectionProducer(d.conf.ConnFactory(chainID), d.conf.Endpoints) 　 // 创建connProducer对象

 // 创建broadcastClient客户端

 bClient := NewBroadcastClient(connProd, d.conf.ABCFactory, broadcastSetup, backoffPolicy)

 requester.client = bClient // 设置到区块请求者对象的客户端

 return bClient

}

broadcastClient结构客户端作为Deliver服务实例的核心数据结构，封装了3个重要的字段与方法，具体如下。

·prod对象（comm.ConnectionProducer接口）：Deliver服务实例的newClient()方法调用comm.NewConnectionProducer()函数创建该对象（connProducer类型，实现了comm.ConnectionProducer接口），包含Orderer服务节点列表与connect连接工厂方法（ConnectionFactory类型）。其中，NewConnectionProducer()函数的参数d.conf.ConnFactory(chainID)生成了指定通道上的connect()方法。该方法接受Orderer节点地址作为参数，根据Viper组件配置初始化gRPC连接选项，指定通信连接的最大发送消息字节数、TLS证书等参数，并与指定的Orderer节点建立连接后返回gRPC连接。实际上，InitializeChannel()方法创建Deliver服务实例时在其配置对象中定义了ConnFactory方法，并默认初始化为deliverclient.DefaultConnectionFactory方法对象，即上述参数d.conf.ConnFactory工厂方法，用于创建指定通道上的连接方法connect()；

·createClient方法（clientFactory方法类型）：该方法是NewBroadcastClient()函数中的d.conf.ABCFactory方法参数，实际上在InitializeChannel()函数创建Deliver服务实例时被定义为其配置对象中的ABCFactory方法，默认初始化为deliverclient.Default ABCFactory方法。该方法调用orderer.NewAtomicBroadcastClient()函数，基于gRPC连接对象创建atomicBroadcastClient结构客户端（实现了AtomicBroadcast Client接口），实现了Broadcast()与Deliver()接口，并提供给区块提供者向Orderer节点发送请求并接收区块数据；

·onConnect方法（broadcastSetup方法类型）：该方法是在broadcastClient结构客户端调用Deliver()方法与Orderer节点建立连接后被自动调用的。如果客户端已经连接到Orderer节点，则不会调用该方法。该方法在Deliver服务实例的newClient()中被初始化为broadcastSetup()方法，即调用requester.RequestBlocks()方法，通过broadcastClient结构客户端，向Orderer节点请求获取指定区块，其在与Orderer节点的交互过程中发挥着重要作用。

然后，StartDeliverForChannel()方法调用blocksprovider.NewBlocksProvider()方法，创建指定通道（chainID）上的区块提供者对象（blocksProviderImpl类型，实现了BlocksProvider接口），封装了broadcastClient结构客户端、Gossip服务器实例及其消息加密服务组件。

最后，StartDeliverForChannel()方法启动goroutine，调用区块提供者对象的Deliver-Blocks()方法，向Orderer节点发送消息请求的区块数据。

3.请求获取区块

（1）通过broadcastClient客户端发送请求并等待区块

DeliverBlocks()方法建立区块分发服务的消息处理循环，如果当前通道上的区块提供者对象运行正常，则调用b.client.Recv()→broadcastClient.Recv()方法，通过broadcastClient客户端发送请求并等待接收区块。

broadcastClient.Recv()方法的执行过程比较复杂。该方法首先调用bc.try()→bc.doAction(action)方法，执行指定参数action()方法定义的动作。如果broadcastClient客户端与Orderer节点之间没有建立服务连接，则先调用bc.connect()方法建立Deliver服务连接，如代码清单2-50所示。否则，表示已经发送了区块请求消息，则执行action()方法，即如果当前broadcastClient客户端运行正常，则调用broadcastClient客户端的bc.Blocks Deliverer.Recv()方法，等待接收返回的Deliver服务响应消息结果。同时，如果上述的bc.doAction(action)方法执行失败，则根据配置启动重试流程。

代码清单2-50　broadcastClient客户端的bc.connect()方法源码示例

core/deliverservice/client.go文件

func (bc *broadcastClient) connect() error {

 bc.endpoint = ""

 conn, endpoint, err := bc.prod.NewConnection() // 创建新连接

 ……

 ctx, cf := context.WithCancel(context.Background()) // 创建context上下文对象

 logger.Debug("Establishing gRPC stream with", endpoint, "...")

 abc, err := bc.createClient(conn).Deliver(ctx) // 创建Deliver服务客户端并连接

 ……

 err = bc.afterConnect(conn, abc, cf, endpoint) // 执行连接后的处理函数

 ……

 // 如果程序执行到这里，则确认连接已经关闭

 bc.Disconnect(false)

 return err

}

1）与Orderer节点建立Deliver服务连接

broadcastClient客户端的bc.connect()方法首先调用bc.prod.NewConnection()方法，创建返回新的gRPC连接conn与可用的Orderer服务端点endpoint。该方法先从prod对象的Orderer服务节点禁用列表disabledEndpoints中剔除所有禁用时间超过10秒的节点，恢复其作为备选的可用Orderer服务节点。同时，调用shuffle()函数对当前endpoints列表中的节点进行随机混洗。接着，遍历endpoints列表检查每个节点的可用性，获取第1个可用的Orderer服务节点，并且不属于disabledEndpoints列表。然后，调用prod对象cp.connect()方法即deliverclient.DefaultConnectionFactory()方法，建立与指定Orderer服务节点的gRPC连接对象conn（*grpc.ClientConn类型）。注意，prod对象是在d.newClient()方法新建broadcastClient客户端时创建设置的（core/deliverservice/deliveryclient.go）。

接着，bc.connect()方法基于默认的context.Background()对象创建带有取消函数cf的context上下文对象ctx，调用bc.createClient(conn).Deliver(ctx)方法，请求调用Deliver服务。其中，createClient()实际上就是deliverclient.DefaultABCFactory()方法。该方法调用orderer.NewAtomicBroadcastClient()函数，基于上述gRPC连接对象创建atomicBroadcastClient结构客户端（实现了AtomicBroadcastClient接口），并调用该客户端的Deliver()服务方法，以创建Deliver服务客户端abc（atomicBroadcastDeliverClient类型，含有服务客户端流ClientStream），从而与Orderer服务节点正式建立服务连接。同时，Deliver服务客户端abc提供了发送消息的Send()方法以及等待接收消息的Recv()方法，实际上是通过底层封装的ClientStream客户端通信流与Orderer节点进行交互。

然后，bc.connect()方法调用bc.afterConnect(conn，abc，cf，endpoint)方法，依次设置broadcastClient客户端的成员对象，包括Orderer服务节点endpoint、连接对象conn（connection类型，包括gRPC连接对象conn与context上下文对象取消函数cf等）、Deliver服务客户端abc（atomicBroadcastDeliverClient类型，实现了BlocksDeliverer接口）等。

这样，bc.afterConnect()方法就创建完成了Deliver服务实例的broadcastClient客户端，并与Orderer节点建立了gRPC服务连接。

最后，bc.afterConnect()调用bc.onConnect(bc)方法，即自定义broadcastSetup()方法，如代码清单2-49所示，实际上是调用了requester.RequestBlocks()方法，向Orderer节点发送请求消息以获取指定范围的区块数据，如代码清单2-51所示。

代码清单2-51　区块请求者blocksRequester类型的RequestBlocks()方法源码示例

core/deliverservice/requester.go文件

func (b *blocksRequester) RequestBlocks(ledgerInfoProvider blocksprovider.LedgerInfo) error {

 height, err := ledgerInfoProvider.LedgerHeight() // 获取本地账本高度

 ……

 if height > 0 { // 检查账本高度

 logger.Debugf("Starting deliver with block [%d] for channel %s", height, b.chainID)

 // 请求从最新账本高度开始获取区块数据集合

 if err := b.seekLatestFromCommitter(height); err != nil {

 return err

 }

 } else {

 logger.Debugf("Starting deliver with oldest block for channel %s", b.chainID)

 if err := b.seekOldest(); err != nil { // 请求从最旧区块开始获取区块数据集合

 return err

 }

 }

 return nil

}

2）请求获取指定范围内的区块数据requester.RequestBlocks()方法

requester.RequestBlocks()方法首先调用ledgerInfoProvider.LedgerHeight()方法，获取Peer节点（如Leader主节点）本地的区块账本高度height。如果区块账本高度height大于0，则调用区块请求者的b.seekLatestFromCommitter(height)方法，否则，调用b.seekOldest()方法，利用封装的Deliver服务客户端向Orderer节点发送请求，以获取指定区块范围内的区块数据，如代码清单2-52所示。

代码清单2-52　seekOldest()方法与seekLatestFromCommitter()方法的源码示例

core/deliverservice/requester.go文件

// 搜索从最旧区块开始的区块数据集合

func (b *blocksRequester) seekOldest() error {

 seekInfo := &orderer.SeekInfo{ // 构造区块搜索信息对象

 Start: &orderer.SeekPosition{Type: &orderer.SeekPosition_Oldest {Oldest: &orderer.SeekOldest{}}}, // 起始位置

 Stop: &orderer.SeekPosition{Type: &orderer.SeekPosition_Specified {Specified: &orderer.SeekSpecified{Number: math.MaxUint64}}}, // 结束位置

 Behavior: orderer.SeekInfo_BLOCK_UNTIL_READY, // 搜索区块行为类型

 }

 msgVersion := int32(0)

 epoch := uint64(0)

 tlsCertHash := b.getTLSCertHash()

 env, err := utils.CreateSignedEnvelopeWithTLSBinding(common.HeaderType_DELIVER_SEEK_INFO, b.chainID, localmsp.NewSigner(), seekInfo, msgVersion, epoch, tlsCertHash) // 创建请求消息

 if err != nil {

 return err

 }

 return b.client.Send(env) // 发送请求消息

}

// 搜索从指定区块高度开始的区块数据集合

func (b *blocksRequester) seekLatestFromCommitter(height uint64) error {

 seekInfo := &orderer.SeekInfo{ // 构造区块搜索信息对象

 Start: &orderer.SeekPosition{Type: &orderer.SeekPosition_Specified {Specified: &orderer.SeekSpecified{Number: height}}}, // 起始位置

 Stop: &orderer.SeekPosition{Type: &orderer.SeekPosition_Specified {Specified: &orderer.SeekSpecified{Number: math.MaxUint64}}}, // 结束位置

 Behavior: orderer.SeekInfo_BLOCK_UNTIL_READY, // 搜索区块行为类型

 }

 msgVersion := int32(0)

 epoch := uint64(0)

 tlsCertHash := b.getTLSCertHash()

 env, err := utils.CreateSignedEnvelopeWithTLSBinding(common.HeaderType_DELIVER_SEEK_INFO, b.chainID, localmsp.NewSigner(), seekInfo, msgVersion, epoch, tlsCertHash) // 创建请求消息

 ……

 return b.client.Send(env) // 发送请求消息

}

b.seekLatestFromCommitter(height)或b.seekOldest()方法首先构造指定区块请求范围的区块搜索信息对象（SeekInfo类型）。该对象指定起始区块号是height或最旧区块号0，结束区块号是math.MaxUint64（264-1，约1845亿亿），几乎可以认为包括了Orderer节点指定通道上的所有区块数据。

同时，将区块搜索行为类型Behavior字段设置为SeekInfo_BLOCK_UNTIL_READY类型。如果Orderer节点没有找到指定的区块，则阻塞等待区块，直到指定区块提交成功后再回复给请求客户端。事实上，当Deliver服务处理句柄的deliverBlocks()方法将指定通道账本上的所有数据都发送完毕时，即当前请求获取的区块号到达通道账本高度height，deliverBlocks()方法在调用nextBlock()→cursor.Next()方法时会一直阻塞，等待区块号为当前账本高度height的新区块提交账本后再发送给客户端，并更新height使其增1。如此循环处理，deliverBlocks()方法会一直将最新创建提交的区块发送给请求客户端（2.6.2节）。这是Orderer节点Deliver区块分发服务的核心处理代码，也是requester.RequestBlocks()方法如此重要的原因。

接着，seekLatestFromCommitter()方法或seekOldest()方法基于区块搜索信息添加通道ID（chainID）、消息版本、TLS证书哈希值等信息，创建新的签名请求消息（Envelope类型，其通道头部类型是DELIVER_SEEK_INFO）。然后，通过区块请求者的broadcastClient客户端调用b.client.Send()方法，将该消息发送给Orderer节点。注意，b.client.Send()方法采用的是与b.client.Recv()方法类似的处理流程，即调用bc.try()-->bc.doAction(action)方法，先尝试连接Orderer节点（实际上已完成服务连接），再执行指定动作方法action()，即bc.BlocksDeliverer.Send()→atomicBroadcastDeliverClient.Send()方法，然后利用底层的Deliver服务客户端通信流发送区块请求消息。

最后，broadcastClient客户端的bc.doAction(action)方法执行指定动作方法action()。如前所述，实际上就是调用bc.BlocksDeliverer.Recv()方法，等待接收Orderer节点返回的Deliver服务响应处理结果消息。如果检查发现该响应结果消息是orderer.DeliverResponse类型，就将该消息返回给指定通道上区块提供者的blocksProviderImpl.DeliverBlocks()方法中的msg变量。

（2）处理Deliver服务响应消息

blocksProviderImpl.DeliverBlocks()方法用于分析处理Orderer节点返回的Deliver服务响应消息，包括两种消息类型，如代码清单2-53所示。

代码清单2-53　DeliverBlocks()方法处理Deliver服务响应消息的源码示例

core/deliverservice/blocksprovider/blocksprovider.go文件

func (b *blocksProviderImpl) DeliverBlocks() {

 ……

 for !b.isDone() { // 检查是否停止处理

 msg, err := b.client.Recv() // 等待接收消息

 ……

 switch t := msg.Type.(type) { // 分析消息类型

 case *orderer.DeliverResponse_Status: // DeliverResponse状态消息

 if t.Status == common.Status_SUCCESS { // 请求执行成功

 logger.Warningf("[%s] ERROR! Received success for a seek that should never complete", b.chainID)

 return

 }

 ……

 continue

 case *orderer.DeliverResponse_Block: // DeliverResponse区块消息

 ……

 seqNum := t.Block.Header.Number // 获取区块号

 marshaledBlock, err := proto.Marshal(t.Block)

 // 获取经过序列化的区块字节数组

 ……

 if err := b.mcs.VerifyBlock(gossipcommon.ChainID(b.chainID), seqNum, marshaledBlock); err != nil {　　// 验证区块

 logger.Errorf("[%s] Error verifying block with sequnce number %d, due to %s", b.chainID, seqNum, err)

 continue

 }

 numberOfPeers := len(b.gossip.PeersOfChannel(gossipcommon.ChainID(b.chainID))) // 获取通道Peer节点数量

 payload := createPayload(seqNum, marshaledBlock) // 创建消息负载

 gossipMsg := createGossipMsg(b.chainID, payload) // 创建Gossip消息

 ……

 // 添加消息负载到本地消息负载缓冲区，等待提交账本

 if err := b.gossip.AddPayload(b.chainID, payload); err != nil {

 ……

 }

 ……

 b.gossip.Gossip(gossipMsg) // 通过Gossip消息协议发送区块消息到组织内

 // 的其他节点

 default:

 logger.Warningf("[%s] Received unknown: ", b.chainID, t)

 return

 }

 }

}

①DeliverResponse_Status类型

该类型消息用于描述Deliver服务请求执行状态。如果DeliverBlocks()方法接收到Status_SUCCESS状态，则说明本次区块请求处理成功，表示已经接收完毕区块请求消息指定范围内的区块数据。除此以外的其他状态消息都是非成功的执行状态消息，包括Status_BAD_REQUEST、Status_FORBIDDEN等。

②DeliverResponse_Block类型

该类型消息包含请求获取的区块数据。DeliverBlocks()方法首先解析获得区块号seqNum与区块对象字节数组marshaledBlock，通过区块提供者提供的消息加密服务模块调用b.mcs.VerifyBlock()方法，验证该区块对象的有效性，包括消息合法性（如头部的通道ID、区块哈希值等）、验证元数据签名满足区块验证策略等。

接着，DeliverBlocks()方法调用createPayload(seqNum，marshaledBlock)方法，创建Gossip消息负载payload（gossip_proto.Payload类型）。该对象封装了区块号seqNum（SeqNum字段）与区块字节数组marshaledBlock（Data字段），未指定PrivateData字段上的隐私数据明文读写集（nil）。实际上，隐私数据是由Endorser背书节点通过Gossip消息协议传播到组织内的其他授权节点的，而不是经过Orderer节点广播到通道中，并最终由transient隐私数据存储对象暂时保存到本地的transient隐私数据库上。同时，计算隐私数据读写集的哈希值，并封装到交易模拟执行结果的公有数据读写集中，与公共数据一起提交到Orderer节点请求排序打包出块。目前，区块中不包含隐私数据明文，如果经过Orderer节点传播给组织内的其他节点，则存在隐私信息泄露的风险。

然后，DeliverBlocks()方法调用createGossipMsg()方法，基于payload消息负载创建DataMsg类型的数据消息gossipMsg（GossipMessage_CHAN_AND_ORG消息标签），接着调用b.gossip.AddPayload()方法，将payload消息负载（含有区块数据）添加到本地的消息负载缓冲区中，等待Committer记账节点验证处理并提交到账本中。

最后，DeliverBlocks()方法调用Gossip服务器实例的b.gossip.Gossip(gossipMsg)方法，基于Gossip消息协议将DataMsg类型数据消息（只含有区块数据）分发到组织内的其他Peer节点上，并保存到该节点的消息存储器上。

理论上，由于区块请求消息指定的结束区块号math.MaxUint64非常大（264-1）。因此，Leader主节点会始终在DeliverBlocks()方法的消息处理循环中等待接收通道账本的新区块，并发送到组织内的其他节点上。

Fabric 1.2重构了Orderer排序节点模块中的少量函数与变量，Fabric 1.3在启动Kafka共识组件链对象与创建消息主题时增加了重试机制（注意，Kafka版本必须在0.10.1.0以上），总体上保持了该模块的源代码及其处理逻辑。
2.7　小结

本章介绍了Orderer排序节点功能模块的设计与实现机制，包括Orderer服务节点启动流程、Broadcast交易广播服务、Orderer共识排序服务、Deliver区块分发服务等。

Orderer节点在正常启动后创建了多通道注册管理器，用于管理Orderer节点上的通道、账本等资源，初始化系统通道与现存的应用通道。同时，基于共识组件链对象提供Orderer交易排序服务，对合法交易进行排序，按照规则打包出块并提交账本，创建新的应用通道与更新通道配置。

同时，创建了Orderer排序服务器提供Broadcast交易广播服务与Deliver区块分发服务。其中，前者用于过滤出合法的交易消息，利用共识组件链对象（Solo类型或Kafka类型）采用的共识排序后端（Golang通道或Kafka集群）对交易进行排序，并打包出块广播到通道上的所有节点。其中，基于Kafka共识组件的Orderer服务集群架构能够有效地提高Orderer节点服务的可用性与并发性。后者从通道账本上获取请求的区块数据，回复给请求客户端。如果还没有生成请求的区块，则阻塞等待直到该区块创建提交完成。
第3章　Peer节点

比特币是一场技术的创世巨作。

——微软公司，Bill Gates

本章主要分析Hyperledger Fabric中Peer节点功能模块的设计与实现，其源代码主要分布在/peer、/core和/protos等目录下，具体如表3-1所示。读者可以在本章了解到Peer节点启动流程、Peer命令模块等。

表3-1　Peer节点功能模块相关源码列表

 [image:]

3.1　功能概述

Peer节点功能模块在Hyperledger Fabric架构中提供了用户与系统交互的接口，支持node子命令（start和status），用于启动Peer节点功能服务器提供服务，包括EventHub事件服务器、Deliver Events事件服务器、链码支持服务器、Admin管理服务器、Endorser背书服务器、Gossip消息服务器等。同时，Peer节点功能模块还支持channel、chaincode、logging、version等子命令，用于创建Hyperledger Fabric系统上的应用通道、链码、日志等对象并进行管理。

目前，Peer节点包括Endorser背书节点、Committer记账节点等，具体说明如下。

·Endorser背书节点：检查用户提交的签名提案消息，启动链码容器模拟执行交易提案，验证结果通过后调用ESCC（Endorsement System Chaincode）交易背书系统链码，对模拟结果中的公有数据（包括公共数据及隐私数据哈希值）进行签名背书。如果启用了通道隐私数据机制，则通过Gossip消息协议分发模拟执行结果中的有效隐私数据明文到组织内的其他授权节点上；

·Committer记账节点：负责检查交易消息格式的合法性与验证背书策略的有效性（VSCC系统链码），执行MVCC检查模拟交易结果中的读写集冲突，标记无效交易，并提交到区块数据文件与隐私数据库，更新区块索引数据库，提交有效交易的公有数据（公共数据与隐私数据哈希值）以及隐私数据明文到状态数据库中，同步区块数据中经过Endorser背书的有效交易数据到历史数据库。
3.1.1　链码生命周期管理

以第1章Fabric启动流程中使用的命令为例，当Orderer节点与Peer节点启动完毕之后，Client客户端节点首先执行peer channel create命令，发送通道配置交易消息到Orderer节点，请求创建新的应用通道。接着，执行peer channel join命令，将Peer节点加入应用通道，在本地Peer节点上创建该通道的链结构对象（peer.chain类型），用于管理该通道上的账本数据、通道配置等。然后，分别执行peer chaincode package/install/instantiate命令打包、安装与实例化（部署）用户链码。最后，执行peer chaincode invoke命令，调用执行已安装的链码，并执行peer chaincode query命令查询链码调用结果。

系统链码默认初始化在程序中，在Peer节点启动时执行实例化（部署）操作，以提供系统链码调用服务，目前不允许通过人工方式直接部署或升级系统链码。同时，正常的用户链码生命周期要求链码需要先经过打包（可选）、安装和实例化步骤之后，才能执行链码调用、升级、查询等步骤，SDK客户端会封装上述底层细节以便于开发应用程序，具体如下。

·链码（签名）打包package/signpackage：支持单个安装节点对链码包签名打包命令package或多个所有者对链码包签名打包命令signpackage。如果执行package命令时没有添加-s-S命令选项，则将链码源码、名称、版本等封装为链码部署规范对象（ChaincodeDeploymentSpec类型），再序列化为字节数组后写入链码包文件，并且不需要指定实例化策略，而是在执行LSCC系统链码添加链码数据对象到账本之前，自行检查默认的链码实例化策略（组织ADMIN管理员身份）。如果执行package命令时添加了-s-S命令选项，则构造含有签名链码部署规范对象（SignedChaincodeDeploymentSpec类型，同样含有链码部署规范）的链码包对象（Envelope类型），并包含-i选项指定的实例化策略信息（可选，默认为组织ADMIN管理员身份）、所有者签名列表等，再交由其他的链码所有者使用signpackage命令依次进行校验与签名，将其序列化后写入指定的链码包文件。

·链码安装install：基于链码打包命令package/signpackage创建的链码包文件，解析出链码部署规范对象或者封装了签名链码部署规范的Envelope结构对象。如果不存在指定的链码包文件，则可以基于命令行参数创建链码部署规范对象。接着，基于上述对象构造对应的链码调用规范参数（ChaincodeInvocationSpec类型）提供给LSCC系统链码调用，并添加签名封装为签名提案消息通道头部类型是ENDORSER-TRANSACTION，提交给指定的Endorser背书节点请求处理。然后，Endorser背书节点通过LSCC系统链码将该链码安装文件保存到指定目录下，默认为/var/hyperledger/production/chaincodes/name.version，并且同一个节点上不会重复安装相同名称和版本的链码（即使代码不同，也可能导致安装链码失败，因此需要应用程序或人工辅助判断）。注意，链码安装install命令只是将文件安装到需要执行链码的单个背书节点上，并不需要绑定任何通道，也不会保存到账本数据中，而且同一个节点上多个通道可以共享同一个链码安装文件。

·链码实例化（部署）instantiate：需要提前安装好用户链码，构造链码调用规范对象并封装为签名提案消息（通道头部类型是ENDORSER_TRANSACTION），再发送到Endorser背书节点请求处理。接着，通过LSCC系统链码基于链码计算哈希值以创建链码数据对象（ChaincodeData类型），并将该对象与链码隐私数据集合配置信息（若存在）保存到指定通道的账本状态数据库中（名字空间lscc）。然后，基于安装的链码文件获取链码部署规范以构建链码镜像，启动链码容器并调用链码的Init()方法，执行初始化链码操作，准备好正常的链码运行时环境（FSM状态机处于ready状态），用于处理链码调用等请求。注意，链码实例化需要绑定指定的通道，实例化完成后该通道就具有了提供相应链码（智能合约）服务的功能，不同通道上的链码数据是隔离的。同时，链码实例化时可以通过“-P”命令行选项参数指定链码背书策略，指定参与背书签名的Endorser背书节点要求，只有通过指定节点的签名验证才能提交账本，从而在Committer记账节点提交账本之前执行VSCC链码验证背书信息的合法性，即是否满足实例化链码时指定的背书策略。目前，instantiate子命令暂时不支持用户直接指定实例化策略，即检查实例化交易签名是否符合通道策略，以保证通道写入权限的安全，当前默认支持通道组织的管理员身份，但是可以在打包链码package时通过-i选项指定实例化策略。注意，系统链码是在节点启动时自动部署完成的，只需要构造链码调用规范请求启动inprocContainer类型容器（基于goroutine实现的），并且不保存实例化数据到通道账本中（不是通过LSCC系统链码部署链码的）。

·链码调用invoke：只能调用已经完成实例化操作的链码，运行该命令时可以通过“-c”选项参数指定具体的调用方法名称及其参数列表。Endorser背书节点请求指定链码容器调用链码的Invoke()方法，根据参数执行具体的命令方法，同时使用交易模拟器暂时记录模拟执行结果，并将该结果、背书信息等封装成新的签名交易消息，发送给Orderer节点请求排序。注意，invoke命令不需要指定链码版本，而是默认调用指定通道上已经实例化或升级的最新版本链码。如果发现当前节点没有启动链码容器，则在调用链码之前自行启动链码容器。

·链码升级upgrade：用于升级指定应用通道上的用户链码（不能手动升级系统链码），以扩展功能、修复漏洞等，与instantiate命令类似，其只是重新实例化（部署）指定通道上新版本的链码，并且不会删除关闭旧版本的链码容器（以字符串版本号标识区别）。因此，同一个通道上允许同时存在多个版本的链码容器，以服务节点上的其他通道。升级链码同样需要先安装新版本链码，通过install命令将新链码打包保存到Endorser背书节点上默认指定目录下的链码包文件name.version（以版本号标识区别）中。upgrade命令请求Endorser背书节点执行LSCC系统链码，先将新的链码数据对象保存到指定通道的账本状态数据库中（lscc名字空间），以覆盖掉原来相同链码关联的链码数据对象。接着，在Endorser背书节点上启动新版本的链码容器，并调用该链码Init()方法完成初始化，同时，不影响本通道与其他通道上旧版本链码容器的正常运行。

·链码查询query：用于查询Peer节点本地账本中的状态数据，与invoke命令类似，同样调用最新版本链码，请求链码容器执行已经实例化链码的Invoke()方法中定义的具体命令方法。不同的是，由于只是查询相关状态的数据，query命令执行完毕后通常不需要生成签名交易消息发送到Orderer节点请求排序，而是直接返回查询结果到客户端。如果发现当前节点没有启动链码容器，则在执行查询链码之前自行启动链码容器。

事实上，Fabric采用交易模拟器暂时记录交易模拟执行结果读写集，再提交到Orderer节点排序出块，并广播到通道上的其他节点进行验证后再提交到账本，这样之后才能查询到有效的交易数据，而不是实时提交更新到所有节点的本地账本中。因此，链码实例化、调用、升级等涉及状态数据写集合的操作都不具有强事务性，执行链码操作后无法保证实时查询到状态数据的最新值，可以基于事件机制订阅区块实现监控。
3.1.2　系统链码

系统链码在Peer节点启动时（peer node start）默认在程序中完成了初始化（core/scc/importsysccs.go），通过调用registerChaincodeSupport()→scc.RegisterSysCCs()函数，将所有默认的系统链码容器注册到全局系统链码容器模板字典typeRegistry中，不支持package/signpackage、install、instantiate、upgrade等命令操作系统链码。目前，Fabric定义了5种系统链码结构（SystemChaincode类型），包括CSCC、ESCC、LSCC、QSCC与VSCC等（Fabric 1.2.0以后将ESCC与VSCC分离出来封装为插件）。该对象封装了链码名称、链码路径、链码实体对象等属性，负责提供系统配置管理、提案背书签名、链码生命周期管理、账本和链信息查询、交易验证管理等公共系统功能。实际上，系统链码与用户链码类似于操作系统的特权指令与非特权指令，系统链码用于管理系统相关资源与提供特殊功能，不允许用户随意操作和修改，不支持用户链码命令，以保护系统运行与资源的安全，类似于操作系统OS中的系统调用只能通过标准接口调用执行，而用户链码则允许自定义智能合约功能，支持用户链码命令进行部署与升级。

实例化系统链码是在Peer节点启动时调用deploySysCC()函数，逐个启动默认的5个系统链码容器（inprocContainer类型），从而使得Peer节点具备提供系统链码服务的能力，并将系统链码容器模板对象注册到typeRegistry字典（map[string]*inprocContainer类型）中。一旦系统链码容器启动成功，就会请求注册到Endorser背书节点（Peer侧），在Endorser背书节点上创建对应的链码运行时环境对象（chaincodeRTEnv类型，封装了Peer侧消息处理句柄Handler对象），并注册到全局链码支持服务实例theChaincodeSupport的链码运行时环境字典chaincodeMap（map[string]*chaincodeRTEnv类型）中。该字典负责维护当前节点上的链码规范名称（ChaincodeName：ChaincodeVersion，即链码名称：链码版本）与链码运行时环境对象之间的映射关系。系统链码容器名称是ChaincodeName-ChaincodeVersion，启动容器前根据该容器名称从全局系统链码容器实例字典instRegistry（map[string]*inprocContainer类型）中查询并获取对应的链码容器实例。如果不存在该对象，则先通过typeRegistry字典获取系统链码容器模板对象以构造系统链码容器实例，再注册到instRegistry字典中。

全局链码支持服务实例theChaincodeSupport不会重复注册相同链码规范名称的链码运行时环境对象，同时，Peer节点上也不会重复注册相同系统链码容器实例名称的容器实例对象。因此，Peer节点上所有通道中相同名称和相同版本的系统链码共享同一个系统链码容器对象。事实上，链码容器是一种无状态的链码运行时环境对象，不会保存任何交易相关的数据，只能通过与Endorser背书节点（Peer侧）的通信请求来获取与保存状态数据等，Peer侧利用执行链码前创建的交易上下文对象字典，查找该通道上此次交易关联的交易模拟器以访问账本数据，并记录所有模拟执行结果读写集。另外，Peer节点在加入应用通道时也会调用peer.InitChain(chainID)方法，在指定链上部署所有默认的系统链码，以确保系统链码容器处于正常启动运行状态，并提供系统链码服务。

实际上，系统链码容器是利用InprocVM类型虚拟机启动inprocContainer类型容器（基于goroutine实现的）的，与Endorser背书节点（Peer侧）之间基于2个Golang通道建立双向通信，并创建链码消息处理句柄（Handler类型）处理接收的链码消息（ChaincodeMessage类型）。因此，Peer节点在加入通道时需要调用CSCC系统链码，在inprocContainer类型容器中创建本地通道的链结构对象（peer.chain类型），用于接收与保存该通道的账本数据，并将该链结构对象保存至Peer节点全局变量chains中的链结构字典list（map[string]*chain类型）。该字典用于管理通道的链ID到链结构之间的映射关系。这样，Peer节点就能通过chains.list字典管理本地所有应用通道上的账本、通道配置等资源。
3.1.3　用户链码

用户链码需要经过正常的链码打包（可选）、安装与实例化（部署）操作流程后才能正常执行链码调用操作，提供自定义方法的智能合约功能。不同于系统链码容器的启动方式，用户链码的实例化操作需要通过ProcessPropesed()服务接口，请求Endorser背书节点上已经部署的LSCC系统链码间接启动用户链码容器（Docker容器）。

Peer节点加入指定应用通道之后，客户端节点可以先执行install安装链码命令，将用户链码安装到Endorser背书节点的指定路径上。接着，执行instantiate实例化链码命令，构造deploy部署命令的提案请求消息（封装了链码调用规范对象，含有链码部署规范参数），并通过ProcessProposd()服务接口发送给Endorser背书节点请求处理。Endorser背书节点通过LSCC系统链码将实例化数据保存到通道账本的状态数据库中，包括链码数据对象、链码隐私数据集合配置信息等。然后，Endorser背书节点启动链码部署规范指定用户链码名称的Docker容器，并调用链码的Init()方法初始化链码执行环境，从而正常提供链码服务。

同时，Endorser背书节点（Peer侧）可创建Docker容器对应的链码运行时环境对象，并注册到链码支持服务实例theChaincodeSupport的链码运行环境字典chaincodeMap中。其中，键为链码规范名称（ChaincodeName：ChaincodeVersion）。用户链码的Docker容器名称是NetworkID-PeerID-ChaincodeName-ChaincodeVersion。在启动用户链码的Docker容器之前，链码支持服务实例theChaincodeSupport会检查是否已经存在相同链码规范名称的链码运行的环境对象，以确保不会启动相同链码规范名称的链码容器。因此，同一个Peer节点上所有通道上相同名称和相同版本的用户链码同样共享同一个用户链码容器。

实际上，用户链码的Docker容器与Endorser背书节点之间是基于gRPC连接实现双向通信的，双方都建立了链码消息处理循环，利用消息处理句柄（Handler类型）及其FSM（有限状态机）处理所接收的链码消息。
3.2　Peer节点启动流程

3.2.1　启动流程概述

Peer节点启动命令为peer node start，其入口主程序的main()主函数（peer/main.go）负责初始化peer主命令对象，注册子命令与初始化环境配置，解析用户输入子命令start并启动Peer节点，包括如下流程步骤：

·定义、注册命令与初始化基本配置。基于Cobra组件定义peer主命令对象mainCmd，并通过Viper组件调用InitConfig()函数，从本地core.yaml配置文件、环境变量、命令行选项等读取与解析peer命令的相关配置。同时，初始化主命令mainCmd的标志位选项version、logging-level等，然后在主命令mainCmd上注册version、node、chaincode、clilogging、channel等子命令，设置最大可用CPU核数与日志后端；

·初始化本地MSP组件。通过Viper组件获取MSP组件的配置文件路径mspMgrConfigDir、BCCSP配置项bccspConfig、MSP名称ID即localMSPID、MSP组件类型localMSPType等，基于这4个参数构造本地MSP配置对象（FabricMSPConfig类型），接着创建默认的bccspmsp结构对象（实现了MSP接口）作为本地MSP组件，并解析MSP配置对象与初始化本地MSP组件；

·执行启动Peer节点命令。main()主函数最后执行mainCmd.Execute()方法，解析peer node start命令以正式启动Peer节点。
3.2.2　定义、注册命令与初始化配置

1.定义主命令

main.go基于Go第三方库Cobra定义了peer主命令变量mainCmd（Command类型），同时定义了命令执行函数PersistentPreRunE()与Run()，分别用于设置日志记录器配置与打印版本或帮助信息，如代码清单3-1所示。

代码清单3-1　Peer节点定义主命令的源码示例

peer/main.go文件

// 定义peer主命令

var mainCmd = &cobra.Command{ // 基于Cobra组件构造主命令

 Use: "peer", // 定义命令使用方法

 // 定义执行函数

 PersistentPreRunE: func(cmd *cobra.Command, args []string) error {

 // 检查CORE_LOGGING_LEVEL环境变量，覆盖所有其他日志设置值。否则，使用core.yaml

 // 文件中的配置值

 var loggingSpec string

 if viper.GetString("logging_level") != "" {

 loggingSpec = viper.GetString("logging_level") // 获取配置文件中的日志级别

 } else {

 loggingSpec = viper.GetString("logging.level") // 获取配置文件中的日志级别

 }

 flogging.InitFromSpec(loggingSpec) // 根据配置的日志级别初始化

 // 日志记录器

 return nil

 },

 Run: func(cmd *cobra.Command, args []string) { // 定义执行函数

 if versionFlag {

 fmt.Print(version.GetInfo()) // 打印peer程序版本信息

 } else {

 cmd.HelpFunc()(cmd, args) // 直接打印命令帮助信息

 }

 },

}

var versionFlag bool // peer命令选项version使能

 // 标志位

2.注册子命令

main()函数基于Cobra组件构造所有的子命令，注册到主命令变量mainCmd上，子命令的具体定义及执行可参见子命令模块分析（3.3节至3.5节）。目前，peer主命令包含5类子命令，如代码清单3-2所示，具体包括：

·channel通道子命令：用于创建应用通道、获取区块、Peer节点加入应用通道、获取节点所加入的应用通道列表、更新应用通道配置、签名配置交易文件、获取指定的应用通道信息等，包括create、fetch、join、list、update、signconfigtx、getinfo等子命令；

·chaincode链码子命令：用于安装链码、实例化（部署）链码、调用链码、打包链码、查询链码、签名链码包、升级链码、获取通道链码列表等，包括install、instantiate、invoke、package、query、signpackage、upgrade、list等子命令；

·node节点子命令：用于管理节点服务进程与查询服务状态，包括start、status等子命令；

·logging日志子命令：用于获取、设置与恢复日志级别功能，包括getlevel、setlevel、revertlevels等子命令；

·version版本子命令：用于打印Hyperledger Fabric中的Peer节点服务器版本信息。

代码清单3-2　Peer节点的main()函数定义注册命令与初始化配置的源码示例

peer/main.go文件

func main() {

 viper.SetEnvPrefix(cmdRoot) // 设置环境变量前缀core

 viper.AutomaticEnv() // 查找匹配环境变量

 replacer := strings.NewReplacer(".", "_") // 创建替换符

 viper.SetEnvKeyReplacer(replacer) // 设置环境变量替换符

 // 定义命令行选项集合，对所有peer及其子命令都有效

 mainFlags := mainCmd.PersistentFlags()

 // 设置绑定version与logging-level选项

 mainFlags.BoolVarP(&versionFlag, "version", "v", false, "Display current version of fabric peer server")

 mainFlags.String("logging-level", "", "Default logging level and overrides, see core.yaml for full syntax")

 // Viper配置绑定命令行选项

 viper.BindPFlag("logging_level", mainFlags.Lookup("logging-level"))

 // 注册子命令

 mainCmd.AddCommand(version.Cmd()) // version子命令

 mainCmd.AddCommand(node.Cmd()) // node子命令start、status

 mainCmd.AddCommand(chaincode.Cmd(nil)) // chaincode子命令install、

 instantiate、invoke等

 mainCmd.AddCommand(clilogging.Cmd(nil)) // cli日志子命令 getlevel

 setlevel revertlevels

 mainCmd.AddCommand(channel.Cmd(nil)) // channel子命令 create、

 fetch、join等

 // 加载配置文件core.yaml

 err := common.InitConfig(cmdRoot)

 ……

 runtime.GOMAXPROCS(viper.GetInt("peer.gomaxprocs")) // 设置最大可用的CPU核数

 // 初始化系统日志后端

 flogging.InitBackend(flogging.SetFormat(viper.GetString("logging.format")), logOutput)

 ……

}

3.初始化Viper组件配置

main()函数首先初始化Viper组件配置，设置匹配的环境变量前缀为“CORE_”。接着，调用mainCmd.PersistentFlags()方法，获取主命令的命令行选项集合mainFlags，并设置version、logging-level等命令行选项，然后注册子命令，调用common.InitConfig(cmdRoot)函数，读取默认指定配置路径（FABRIC_CFG_PATH等）或候选配置路径上的core.yaml配置文件，解析配置项并转换为键值对存储在Viper组件中。最后，通过Viper组件设置其他基本参数，包括运行时最大可用CPU核数（peer.gomaxprocs配置项）与配置日志格式构建日志后端（logging.format配置项）。
3.2.3　初始化本地MSP组件

MSP组件是管理本地成员身份的重要安全模块，封装了根CA证书、本地签名者实体等。main()函数首先基于Viper组件获取core.yaml文件中MSP组件的配置文件路径mspMgrConfigDir（peer.mspConfigPath配置项）、MSP名称mspID（peer.localMspId配置项）与MSP组件类型mspType（peer.localMspType配置项，默认为FABRIC类型），提供给common.InitCrypto()函数作为参数进行调用，以获取BCCSP区块链加密服务组件，并用于初始化本地MSP组件，如代码清单3-3所示。

代码清单3-3　Peer节点的main()函数初始化MSP组件的源码示例

peer/main.go文件

func main() {

 ……

 // 初始化本地MSP组件对象

 var mspMgrConfigDir = config.GetPath("peer.mspConfigPath") // 获取MSP配置文件路径

 var mspID = viper.GetString("peer.localMspId") // 获取本地MSP名称

 var mspType = viper.GetString("peer.localMspType") // 获取本地MSP组件类型

 if mspType == "" {

 // 默认设置MSP组件类型为FABRIC类型

 mspType = msp.ProviderTypeToString(msp.FABRIC)

 }

 // 获取BCCSP组件配置信息，初始化MSP组件对象

 err = common.InitCrypto(mspMgrConfigDir, mspID, mspType)

 ……

}

common.InitCrypto()函数首先调用SetBCCSPKeystorePath()函数，获取Viper组件配置中BCCSP组件密钥存储文件的路径（peer.BCCSP.SW.FileKeyStore.KeyStore配置项），转换为绝对路径后设置该配置项。接着，调用viperutil.EnhancedExactUnmarshalKey("peer.BCCSP"，&bccspConfig)函数，将core.yaml中的BCCSP组件配置信息解析到bccspConfig变量。然后，调用mspmgmt.LoadLocalMspWithType()函数（7.2.1节），基于上述参数（MSP配置文件路径mspMgrConfigDir、BCCSP配置项bccspConfig、MSP ID即localMSPID与MSP类型localMSPType）初始化本地MSP组件，如代码清单3-4所示。

代码清单3-4　InitCrypto()函数的源码示例

peer/common/common.go文件

// 初始化MSP组件对象

func InitCrypto(mspMgrConfigDir, localMSPID, localMSPType string) error {

 ……

 _, err = os.Stat(mspMgrConfigDir) // 检查MSP配置文件路径是否存在

 ……

 // 重新设置BCCSP密钥存储文件的绝对路径

 SetBCCSPKeystorePath()

 var bccspConfig *factory.FactoryOpts

 // 解析配置文件中的BCCSP配置信息并保存到bccspConfig变量

 err = viperutil.EnhancedExactUnmarshalKey("peer.BCCSP", &bccspConfig)

 ……

 // 基于上述参数初始化本地MSP组件对象

 err = mspmgmt.LoadLocalMspWithType(mspMgrConfigDir, bccspConfig, localMSPID , localMSPType)

 ……

}

3.2.4　执行启动Peer节点命令

main()主函数通过Cobra组件调用主命令Execute()方法，执行peer node start命令启动Peer节点，如代码清单3-5所示。其中，Cobra组件解析完用户输入的命令行选项之后，依次执行节点启动命令nodeStartCmd对象（cobra.Command类型）中定义的所有相关的执行方法（实际上目前只定义了RunE()方法），并按照cobra.Command命令中定义的如下顺序来执行。

1）PersistentPreRunE()/PersistentPreRun()；

2）PreRunE()/PreRun()；

3）RunE()/Run()；

4）PostRunE()/PostRun()；

5）PersistentPostRunE()/PersistentPostRun()。

代码清单3-5　Peer节点的main()函数执行启动Peer节点命令的源码示例

peer/main.go文件

func main() {

 ……

 // 执行用户输入命令

 if mainCmd.Execute() != nil {

 os.Exit(1)

 }

 logger.Info("Exiting.....")

}

目前，start子命令在注册子命令步骤中调用AddCommand()函数，将node子命令添加到主命令结构中，并执行start子命令自定义的serve()函数启动Peer节点。

1.初始化服务启动的基本参数

（1）获取本地MSP组件类型

start子命令执行函数serve()首先检查本地MSP组件类型。目前，Hyperledger Fabric支持FABRIC类型和IDEMIX类型两种MSP组件，默认采用基于BCCSP组件构建的FABRIC类型MSP组件，如代码清单3-6所示。

代码清单3-6　start子命令的serve()函数获取本地MSP组件类型的源码示例

peer/node/start.go文件

func serve(args []string) error {

 mspType := mgmt.GetLocalMSP().GetType() // 获取本地MSP组件类型

 if mspType != msp.FABRIC { // 检查MSP组件类型

 panic("Unsupported msp type " + msp.ProviderTypeToString(mspType))

 }

 ……

}

（2）注册资源访问策略提供者

serve()函数调用RegisterACLProvider()函数，用于注册资源访问策略提供者aclProvider（ACLProvider接口类型），如代码清单3-7所示。

代码清单3-7　start子命令的serve()函数注册资源访问策略提供者的源码示例

peer/node/start.go文件

func serve(args []string) error {

 ……

 // 初始化资源访问策略提供者

 aclmgmt.RegisterACLProvider(nil)

 ……

}

事实上，RegisterACLProvider()函数调用newACLMgmt()函数，创建新的aclMgmtImpl结构对象（实现了ACLProvider接口）设置给全局变量aclProvider。该函数调用newResourceProvider()函数，创建资源访问策略提供者（resourceProvider类型），默认封装了PeerGetResourceslonfig()方法作为resGetter字段，用于获取指定通道的通道配置实体对象，同时，使用defaultACLProvider对象作为默认的底层支持对象以管理资源访问权限，并在其创建函数newDefaultACLProvider()中调用initialize()方法，分别在Peer节点资源策略字典pResourcePolicyMap（map[string]string类型）与通道资源策略字典cResourcePolicyMap（map[string]string类型）中注册默认的资源访问权限策略，如表3-2所示，其对应的默认策略规则如表1-1所示。

表3-2　Peer节点的资源访问权限策略列表

 [image:]

 [image:]

这样，Peer节点就能够通过aclMgmtImpl对象调用aclMgmtImpl.CheckACL(resName string，channelID string，idinfo interface{})→policy.Evaluate()方法（ACLProvider接口方法），检查指定资源的访问控制权限，即检查参数idinfo实体对象（如签名提案消息）是否满足指定通道（channelID）上指定资源resName的访问权限要求（如通道权限策略或由链码实现的策略等）。

另外，Fabric 1.2以后支持在configtx.yaml中自定义默认的资源访问权限与策略规则，Application.ACLs配置项对应于表3-2，如cscc/GetConfigBlock表示请求执行CSCC系统链码调用GetConfigBlock()方法。同时，移除了1.1.0版本中的PEER_RESOURCE_UPDATE类型消息与common/resourcesconfig等资源配置代码（实验新特性）。

（3）初始化本地账本管理器

serve()函数调用ledgermgmt.Initialize(peer.ConfigTxProcessors)→initialize()函数，初始化Peer节点的账本管理器，如代码清单3-8所示。其中，peer.ConfigTxProcessors参数定义了通道上的配置交易消息处理器字典，如代码清单3-9所示，目前支持处理通道配置交易消息（HeaderType_CONFIG类型）和Peer节点资源更新消息（HeaderType_PEER_RESOURCE_UPDATE类型，Fabric 1.2与1.3已废弃）。同时，配置交易消息处理器提供了GenerateSimulationResults()方法，用于生成配置交易消息对应的通道配置与资源配置信息，作为模拟执行结果保存到交易模拟器中，再生成模拟执行结果的公共数据，封装成交易对象（Transaction类型）提交给Committer记账节点进行验证。

代码清单3-8　start子命令的serve()函数初始化本地账本管理器的源码示例

peer/node/start.go文件

func serve(args []string) error {

 ……

 ledgermgmt.Initialize(peer.ConfigTxProcessors) // 初始化本地账本管理器

 ……

}

代码清单3-9　配置交易消息处理器字典ConfigTxProcessors的源码示例

core/peer/peer.go文件

 var configTxProcessor = newConfigTxProcessor()

 var ConfigTxProcessors = customtx.Processors{ // 定义配置交易消息处理器字典

 // 通道配置交易消息

 common.HeaderType_CONFIG: configTxProcessor,

 // Peer资源更新消息

 common.HeaderType_PEER_RESOURCE_UPDATE: configTxProcessor,

}

如代码清单3-10所示，initialize()函数负责初始化本地账本管理器的具体工作。

代码清单3-10　initialize()函数源码示例

core/ledger/ledgermgmt/ledger_mgmt.go文件

// 初始化账本管理器

func initialize(customTxProcessors customtx.Processors) {

 ……

 initialized = true // 设置Peer节点初始化标志位为true

 // 创建已打开的账本字典openedLedgers

 openedLedgers = make(map[string]ledger.PeerLedger)

 // 初始化配置交易消息处理器字典，设置给全局变量processors字典

 customtx.Initialize(customTxProcessors)

 cceventmgmt.Initialize() // 初始化链码事件管理器

 provider, err := kvledger.NewProvider() // 创建本地Peer节点账本提供者

 ……

 provider.Initialize(kvLedgerStateListeners) // 初始化状态监听器

 ledgerProvider = provider // 设置为全局默认的Peer节点账本提供者

 logger.Info("ledger mgmt initialized")

}

initialize()函数首先设置账本管理器的初始化标志位initialized为true，初始化已打开账本字典openedLedgers（map[string]ledger.PeerLedger类型）。接着，调用customtx.Initialize(customTxProcessors)函数，将配置交易消息处理器字典processors设置为参数customTxProcessors，支持处理通道配置交易消息与Peer节点资源更新消息。然后，调用cceventmgmt.Initialize()函数，初始化链码事件管理器（cceventmgmt.Mgr类型），用于监听与处理链码生命周期事件。

接着，initialize()函数调用kvledger.NewProvider()函数，创建本地Peer节点账本提供者provider（kvledger.Provider类型），包括：

·账本ID数据库（idStore类型）：提供存储账本ID（即链ID）与创世区块键值对的LevelDB数据库；

·账本数据存储对象提供者（ledgerstorage.Provider类型）：创建账本数据存储对象，负责管理区块数据文件、隐私数据库、区块索引数据库等；

·历史数据库提供者（HistoryDBProvider类型）：创建历史数据库，存储每个状态数据的历史信息；

·状态数据库提供者（CommonStorageDBProvider类型）：创建状态数据库（LevelDB或CouchDB类型），存储世界状态（world state），包括有效交易的公有数据与隐私数据。

同时，kvledger.NewProvider()函数调用provider.recoverUnderConstructionLedger()方法，检查标记为账本构造中状态的Peer账本对象，恢复和同步不一致的状态数据库与历史数据库。对于崩溃等故障造成还未提交其他区块（除了创世区块外）的Peer账本对象，则需要在idStore数据库中保存指定账本ID及其创世区块构成的键值对。如果没有提交创世区块，则在idStore数据库中清除对应的账本构造中状态标志位。

然后，initialize()函数调用provider.Initialize(kvLedgerStateListeners)方法，初始化Peer节点账本提供者的状态监听器，默认设置lscc名字空间上的账本状态监听器对象（KVLedgerLSCCStateListener类型），用于验证交易后触发更新CouchDB数据库索引信息等操作（5.4节）。

最后，initialize()函数将本地Peer节点账本提供者provider设置给全局变量ledgerProvider，使得Peer节点可以通过ledgerProvider创建本地的账本数据库对象。

（4）初始化服务器基本参数

serve()函数可初始化Peer节点功能服务器的基本参数，如代码清单3-11所示。该函数首先检查命令选项chaincodeDevMode（默认为false），如果是开发模式（true），则设置Viper组件上的链码模式（chaincode.mode配置项，默认为“net”）为DevModeUserRunsChaincode（“dev”）。接着，缓存并获取全局变量Peer节点地址localAddress与端点peerEndpoint，解析获取Peer节点地址peerHost，为启动Peer节点上的功能服务器做准备，包括EventHub事件服务器、DeliverEvents事件服务器、ChaincodeSupport链码支持服务器、Admin节点管理服务器、Endorser背书服务器、Gossip消息服务器等。

代码清单3-11　serve()函数初始化Peer节点上服务器基本参数的源码示例

peer/node/start.go文件

func serve(args []string) error {

 ……

 if chaincodeDevMode { // 检查链码模式

 ……

 //设置链码模式

 viper.Set("chaincode.mode", chaincode.DevModeUserRunsChaincode)

 }

 // 读取配置并缓存Peer节点地址与端点

 if err := peer.CacheConfiguration(); err != nil {

 return err

 }

 // 获取缓存的Peer端点

 peerEndpoint, err := peer.GetPeerEndpoint()

 ……

 var peerHost string

 // 获取Peer节点IP地址，注意IP地址与端口已经被分离

 peerHost, _, err = net.SplitHostPort(peerEndpoint.Address)

 ……

}

2.创建gRPC服务器

serve()函数创建了至少3个gRPC服务器（独立端口），用于注册Peer节点功能服务器，如表3-3所示。

表3-3　Peer节点功能服务器列表

 [image:]

（1）创建gRPC服务器

serve()函数首先创建第1个默认的gRPC服务器。该函数先通过Viper组件获取Peer节点的gRPC服务器地址listenAddr（7051端口），如代码清单3-12所示。接着，调用peer.GetServerConfig()函数，构造gRPC服务器的安全配置项serverConfig。该对象封装了TLS认证所需要的服务器认证证书与密钥、客户端的根CA证书列表、服务器端的根CA证书列表、服务器心跳消息keepalive选项等。然后，调用peer.CreatePeerServer()方法，创建基于指定服务器地址listenAddr与服务器安全选项serverConfig的gRPC服务器实例peerServer。

代码清单3-12　serve()函数创建gRPC服务器的源码示例

peer/node/start.go文件

func serve(args []string) error {

 ……

 // 获取Peer节点的gRPC服务器监听地址

 listenAddr := viper.GetString("peer.listenAddress")

 serverConfig, err := peer.GetServerConfig() // 构造gRPC服务器的安全配置项

 ……

 // 创建gRPC服务器（默认为7051端口）

 peerServer, err := peer.CreatePeerServer(listenAddr, serverConfig)

 ……

}

（2）创建EventHub事件服务器

EventHub事件服务器用于向订阅事件的客户端通知异步事件。

serve()函数检查gRPC服务器的安全配置项serverConfig，如果启用了TLS安全认证，则设置全局的证书支持对象credSupport，获取并保存服务器端的根CA证书与客户端证书，用于TLS安全认证与提供给其他模块调用，如代码清单3-13所示。

代码清单3-13　serve()函数创建EventHub事件服务器的源码示例

peer/node/start.go文件

func serve(args []string) error {

 ……

 // 若启用TLS安全认证，则配置服务器端的根CA证书与客户端证书

 if serverConfig.SecOpts.UseTLS {

 logger.Info("Starting peer with TLS enabled")

 cs := comm.GetCredentialSupport() // 创建证书支持对象CredentialSupport结构对象

 cs.ServerRootCAs = serverConfig.SecOpts.ServerRootCAs 设置服务器根CA证书

 // 获取gRPC客户端证书用于TLS连接认证

 clientCert, err := peer.GetClientCertificate()

 ……

 // 设置客户端证书

 comm.GetCredentialSupport().SetClientCertificate(clientCert)

 }

 // 创建事件EventHub服务器（7053端口）

 ehubGrpcServer, err := createEventHubServer(serverConfig)

 ……

}

serve()函数继续调用createEventHubServer(serverConfig)函数，创建EventHub事件服务器，如代码清单3-14所示。该函数首先创建支持事件服务器的gRPC服务器参数，包括服务监听器lis与服务器配置serverConfig，并基于这两个参数创建gRPC服务器实例grpcServer（7053端口）。

代码清单3-14　createEventHubServer()函数的源码示例

peer/node/start.go文件

// 创建事件服务器（7053端口）

func createEventHubServer(serverConfig comm.ServerConfig) (comm.GRPCServer, error) {

 ……

 // 创建服务监听器（7053端口）

 lis, err = net.Listen("tcp", viper.GetString("peer.events.address"))

 ……

 // 设置服务器配置的心跳消息keepalive选项

 serverConfig.KaOpts = comm.DefaultKeepaliveOptions()

 if viper.IsSet("peer.events.keepalive.minInterval") {

 serverConfig.KaOpts.ServerMinInterval = viper.GetDuration("peer.events.keepalive.minInterval")

 }

 // 基于监听器与服务器配置创建gRPC服务器实例

 grpcServer, err := comm.NewGRPCServerFromListener(lis, serverConfig)

 ……

 // 最大消息数、发消息的超时时间、允许的时间差范围

 mutualTLS := serverConfig.SecOpts.UseTLS && serverConfig.SecOpts.RequireClientCert 　　 // 获取启动双向TLS认证标志位

 ehConfig := initializeEventsServerConfig(mutualTLS) // 初始化EventHub服务器配置

 ehServer := producer.NewEventsServer(ehConfig) // 创建新的EventHub服务器，

 // 不带有监听地址与服务器安全配置

 pb.RegisterEventsServer(grpcServer.Server(), ehServer) // 将ehServer注册到gPRC服务器上

 return grpcServer, nil

}

接着，serve()函数调用initializeEventsServerConfig()函数，设置EventHub服务器配置ehConfig（EventsServerConfig类型），指定最大缓冲的消息数量、缓冲超时时间、允许时间差范围等。如果启用了双向的TLS安全认证，则ehConfig对象还要绑定回调函数BindingInspector()，用于验证TLS证书哈希值的一致性。

然后，serve()函数调用producer.NewEventsServer(ehConfig)方法，创建事件服务器ehServer（EventsServer类型），执行initializeEvents()函数以初始化事件服务器，构造事件处理器gEventProcessor以用于处理事件的订阅与分发，接着调用addInternalEventTypes()函数注册默认的内部事件类型，具体包括如下事件。

·EventType_BLOCK区块事件

·EventType_CHAINCODE链码事件

·EventType_REJECTION拒绝事件

·EventType_REGISTER注册事件（实际没有注册登记该事件）

·EventType_FILTEREDBLOCK过滤区块事件。

initializeEvents()函数然后利用goroutine启动事件处理器gEventProcessor，以建立事件消息处理循环（7.3.1节）。

最后，serve()函数调用pb.RegisterEventsServer(grpcServer.Server()，ehServer)函数，将事件服务器ehServer注册到gRPC服务器上，基于gRPC服务器管理服务监听端口（默认为7053端口）与服务器安全配置，监听并提供Chat()等gRPC服务接口，用于注册与注销事件，并支持其他模块组件订阅与发布感兴趣的事件（7.3节）。

Fabric 1.3以后废弃了EventHub事件服务器，只保留本地Peer节点的DeliverEvents事件服务器提供基于通道的（区块或过滤区块）事件服务。

（3）创建DeliverEvents事件服务器

serve()函数检查如果开启了双向的TLS安全认证，则设置mutualTLS标志位为true，并定义获取资源策略检查器即policyCheckerProvider()函数。该函数将直接调用全局变量aclProvider对象的CheckACL()方法，检查签名消息在通道（channelID）上是否满足指定资源的访问控制权限策略。

接着，serve()函数调用peer.NewDeliverEventsServer()函数，基于mutualTLS、policy-CheckerProvider等参数创建DeliverEvents事件服务器abServer（peer.server类型，实现了DeliverServer接口类型），提供Deliver()与DeliverFiltered()服务接口，分别用于处理请求正常区块与过滤区块的消息。同时，通过DeliverEvents服务消息处理句柄（deliverHandler类型）调用Handle()方法，检查请求消息是否满足BLOCKEVENT与FILTEREDBLOCKEVENT对应的/Channel/Application/Readers资源访问控制权限策略。如果通过了检查，则从本地账本中获取指定范围的区块或过滤区块，回复给请求节点，这一点类似于Orderer节点的Deliver区块分发服务流程。

最后，serve()函数调用pb.RegisterDeliverServer()方法，将DeliverEvents事件服务器abServer注册到默认的gRPC服务器上（7051端口），以提供本地事件服务，如代码清单3-15所示。

代码清单3-15　serve()函数创建DeliverEvents事件服务器的源码示例

peer/node/start.go文件

func serve(args []string) error {

 ……

 // 检查是否开启了双向的TLS安全认证

 mutualTLS := serverConfig.SecOpts.UseTLS && serverConfig.SecOpts.RequireClientCert

 // 定义资源访问权限策略检查函数

 policyCheckerProvider := func(resourceName string) deliver.PolicyChecker {

 return func(env *cb.Envelope, channelID string) error {

 return aclmgmt.GetACLProvider().CheckACL(resourceName, channelID, env)

 }

 }

 // 创建DeliverEvents事件服务器，并注册到Peer节点gRPC服务器上（7051端口）

 abServer := peer.NewDeliverEventsServer(mutualTLS, policyCheckerProvider, &peer.DeliverSupportManager{})

 pb.RegisterDeliverServer(peerServer.Server(), abServer)

 ……

}

（4）创建ChaincodeSupport链码支持服务器

Peer节点上的全局链码支持服务实例或链码支持服务器theChaincodeSupport对象（ChaincodeSupport类型）实现了ChaincodeSupportServer服务器接口，被注册到本地gRPC服务器上（专用端口或7052端口），提供Register(ChaincodeSupport_RegisterServer)error服务接口，用于接收与处理用户链码容器发送的注册请求，并建立gRPC服务通信流，使得两侧可以正常接收与发送链码消息。同时，建立链码消息处理句柄及消息处理循环（4.4.5节）。另外，系统链码容器则是通过Golang通道建立通信连接的（4.4.4节）。

如代码清单3-16所示，serve()函数首先调用ccprovider.EnableCCInfoCache()函数，启用链码信息缓存功能，设置ccInfoCacheEnabled标志位为true。这样，调用GetChaincodeData()函数就可以从缓存链码信息字典ccInfoCache.cache（map[string]*ChaincodeData类型）中快速获取缓存的指定链码数据对象，而不需要从文件系统中获取。其中，键为链码名称ccname+"/"+链码版本ccversion，值为对应的链码数据对象（ChaincodeData类型）。该对象封装了链码名称、链码版本、背书策略、链码包数据、链码数据对象ID、实例化策略、ESCC和VSCC链码名称等链码实例化信息。如果ccInfoCache.cache字典中没有缓存该链码数据对象，则调用c.cacheSupport.GetChaincode()方法，从文件系统中重新读取该链码数据对象。

代码清单3-16　serve()函数创建ChaincodeSupport链码支持服务器的源码示例

peer/node/start.go文件

func serve(args []string) error {

 ……

 ccprovider.EnableCCInfoCache() // 启用链码信息缓存

 ca, err := accesscontrol.NewCA() // 为链码服务创建自签名的CA认证对象，以用来保存

 // 证书和密钥对等信息

 ……

 // 创建链码支持服务专用gRPC服务器与链码支持服务实例ChaincodeSupport（专用端口或7052端口）

 ccSrv, ccEndpoint, err := createChaincodeServer(ca, peerHost)

 ……

 // 将链码支持服务器实例ChaincodeSupoort对象注册到Peer节点gRPC服务器上

 // 同时注册系统链码以支持部署调用系统链码

 registerChaincodeSupport(ccSrv, ccEndpoint, ca)

 go ccSrv.Start() // 启动gRPC服务器提供链码支持服务

 logger.Debugf("Running peer")

 ……

}

接着，serve()函数调用accesscontrol.NewCA()函数，为链码支持服务器创建自签名的CA认证对象ca，用于保存证书、密钥对、签名私钥等，再调用createChaincodeServer()函数，创建gRPC服务器提供链码支持服务（专用配置端口或7052端口）。

然后，serve()函数调用registerChaincodeSupport()函数，创建Peer节点全局单例链码支持服务器theChaincodeSupport对象。该对象负责维护Peer节点上的链码运行时环境对象字典chaincodeMap（含有处理对应链码容器消息的消息处理句柄Handler对象）及其启动状态字典launchStarted。接着，调用scc.RegisterSysCCs()方法，将所有默认的系统链码注册到全局系统链码容器模板字典typeRegistry中（此时还没有启动系统链码容器）。同时，将theChaincodeSupport.auth链码支持服务器注册到上述创建的gRPC服务器上提供服务，如代码清单3-17所示。

代码清单3-17　registerChaincodeSupport()函数源码示例

peer/node/start.go文件

// 注册链码支持服务器

func registerChaincodeSupport(grpcServer comm.GRPCServer, ccEndpoint string, ca accesscontrol.CA) {

 userRunsCC := chaincode.IsDevMode() // 获取链码模式

 // 获取链码启动超时时间配置

 ccStartupTimeout := viper.GetDuration("chaincode.startuptimeout")

 if ccStartupTimeout < time.Duration(5)*time.Second { // 检测并设置启动

 超时，至少为5秒

 ……

 ccStartupTimeout = time.Duration(5) time.Second

 }

 ……

 // 创建新的链码支持服务器实例ChaincodeSupport对象（实现ChaincodeSupportServer接口）

 // 参数：链码端点获取函数、用户运行链码模式、链码启动超时时间、CA认证对象

 ccSrv := chaincode.NewChaincodeSupport(ccEndpoint, userRunsCC, ccStartupTimeout, ca)

 // 注册所有系统链码（core/scc/importsysccs.go）

 scc.RegisterSysCCs()

 // 将链码支持服务器实例注册到gRPC服务器上提供服务

 pb.RegisterChaincodeSupportServer(grpcServer.Server(), ccSrv)

}

其中，registerChaincodeSupport()函数首先获取并检查配置参数，调用chaincode.New ChaincodeSupport()函数，创建链码支持服务器theChaincodeSupport对象。NewChaincode Support()函数利用Viper组件及参数设置theChaincodeSupport上的字段对象，并调用accesscontrol.NewAuthenticator()函数创建theChaincodeSupport.auth对象（authenticator类型，实现了ChaincodeSupportServer类型）。该对象执行newInterceptor()函数创建消息拦截器（interceptor类型，实现了ChaincodeSupportServer接口，设置给auth.ChaincodeSupportServer对象）及其拦截函数auth.authenticate()。同时，将消息拦截器的下一个next链接对象设置为全局链码支持服务器实例theChaincodeSupport对象。因此，registerChaincodeSupport()函数返回theChaincodeSupport.auth对象，并将其作为Peer节点链码支持服务器用于接收和处理服务请求。

用户链码Docker容器启动时调用Register()服务接口发送注册请求，同时，Peer节点通过auth.ChaincodeSupportServer对象调用Register()方法，处理该请求消息并建立服务连接，基于该服务的gRPC服务器端流stream构造interceptedStream结构对象is，再调用stream.Recv()方法继续等待消息。用户链码Docker容器基于服务的客户端流构建消息处理句柄，发送ChaincodeMessage_REGISTER类型链码消息，封装链码名称以请求注册链码容器。

接着，Peer侧接收到用户链码容器消息请求msg，并调用is.auth()→auth.authenticate()函数（core/chaincode/accesscontrol/access.go）验证过滤该消息，包括检查消息类型是否为ChaincodeMessage_REGISTER、消息格式正确性、TLS证书哈希值正确性、本地注册链码名称是否匹配等。如果通过了消息合法性的验证，则将该消息msg发送到is.incMessages通道。这样，就实现了利用interceptor消息拦截器进行消息验证过滤的功能。

然后，通过interceptor消息拦截器，调用i.next.Register()→theChaincodeSupport.Register()方法，将该消息提交给链码支持服务实例theChaincodeSupport对象，如代码清单3-18所示。该对象调用Register()方法处理消息，基于interceptedStream结构对象is（包含链码支持服务ServerStream类型服务端通信流）与theChaincodeSupport对象创建Peer侧消息处理句柄Handler对象handler，调用handler.processStream()方法创建消息处理循环，通过Handler对象调用handler.ChatStream.Recv()→interceptedStream.Recv()方法，并试图从is.incMessages通道上获取验证过滤后的链码消息。如果该通道不存在任何消息，则默认调用is.stream.Recv()→ServerStream.RecvMsg()方法重新等待消息请求。

实际上，Fabric通过interceptor消息拦截器实现了自定义的消息验证过滤功能，并且能够根据需求在链码支持服务接收消息前定制不同功能的消息过滤器，具有良好的可扩展性。这种设计理念同样体现在Endorser背书服务器接收消息的验证过滤上，Orderer节点中系统通道和应用通道上的通道消息处理器也采用了类似的设计理念。

注意，系统链码容器不需要通过调用Register()方法来注册到链码支持服务器实例theChaincodeSupport对象。

代码清单3-18　interceptor类型消息拦截器的Register()函数源码示例

core/chaincode/accesscontrol/interceptor.go文件

func (i *interceptor) Register(stream pb.ChaincodeSupport_RegisterServer) error {

 is := &interceptedStream{

 incMessages: make(chan *pb.ChaincodeMessage, 1),

 stream: stream,

 ServerStream: stream,

 auth: i.auth,

 }

 msg, err := stream.Recv() // 等待接收消息

 if err != nil {

 return fmt.Errorf("Recv() error: %v, closing connection", err)

 }

 err = is.auth(msg, is.ServerStream) // 验证接收的链码消息

 if err != nil {

 return err

 }

 is.incMessages <- msg

 close(is.incMessages)

 return i.next.Register(is)

}

接着，registerChaincodeSupport()函数继续调用scc.RegisterSysCCs()→registerSysCC()函数，在Peer节点上注册所有默认的系统链码systemChaincodes（core/scc/importsysccs.go），包括CSCC、LSCC、ESCC、VSCC、QSCC等系统链码。该函数首先检查注册系统链码的合法性，即检查指定系统链码的使能标志位Enabled是否已开启，并调用isWhitelisted()函数，检查指定的系统链码插件是否在允许注册启用的配置白名单中。接着，调用inproccontroller.Register(syscc.Path，syscc.Chaincode)函数，将系统链码路径syscc.Path（基于$GOPATH/src/的相对路径）与链码实例对象syscc.Chaincode注册到系统链码容器模板typeRegistry字典（map[string]*inprocContainer类型）中，如代码清单3-19所示。typeRegistry字典负责将指定的链码路径映射到对应的inprocContainer容器模板对象上，以支持在部署系统链码时提供容器模板从而构造链码容器实例，并启动指定的系统链码容器。

代码清单3-19　Register()函数源码示例

core/container/inproccontroller/inproccontroller.go文件

// 注册系统链码到全局变量typeRegistry字典中

func Register(path string, cc shim.Chaincode) error {

 tmp := typeRegistry[path] // 根据链码路径获取对应的inprocContainer容器对象，

 // 检查是否已经存在

 if tmp != nil { // 若已经注册，则直接报错

 return SysCCRegisteredErr(path)

 }

 // 创建inprocContainer容器对象并注册到typeRegistry字典中

 typeRegistry[path] = &inprocContainer{chaincode: cc}

 return nil

}

然后，registerChaincodeSupport()函数调用pb.RegisterChaincodeSupportServer()函数，将已创建的theChaincodeSupport.auth对象（实现了ChaincodeSupportServer接口）注册到gRPC服务器上，提供链码支持服务如Register()接口。

最后，serve()函数利用goroutine执行ccSrv.Start()方法，启动gRPC服务器提供链码支持服务（专用配置端口或7052端口）。

（5）创建Admin管理服务器与Endorser背书服务器

Admin管理服务器提供节点启动、节点状态查询等服务。Endorser背书服务器提供对交易提案的模拟执行结果执行签名背书的服务。

serve()函数首先调用pb.RegisterAdminServer(peerServer.Server()，core.NewAdminServer())函数，将创建的Admin管理服务器注册到默认的gRPC服务器（7051端口）上，提供节点管理服务。目前，Admin管理服务器仅提供获取服务器状态与启动服务器等功能，同时还能够获取、设置与恢复指定模块日志级别。

接着，serve()函数定义privDataDist()分发隐私数据函数（7.1.7节），提供给Endorser背书节点通过Gossip消息协议向组织内授权的Peer节点分发指定通道和交易的隐私数据（明文），同时，保存到自身节点transient隐私数据存储对象的临时隐私数据库中。serve()函数继续调用endorser.NewEndorserServer()函数，创建新的Endorser背书服务器serverEndorser（Endorser类型），封装分发隐私数据函数privDataDist()。同时，解析core.yaml配置文件的peer.handlers配置项到libConf（library.Config类型），包含认证过滤器列表authFilters和链码参数装饰器列表decorators。然后，调用library.InitRegistry(libConf).Lookup(library.Auth).([]authHandler.Filter)函数，基于指定配置信息libConf（如DefaultAuth与ExpirationCheck）加载和构造library.Auth类型的认证过滤器列表authFilters，同时，执行类型推断以检查该对象的合法性，并转换为指定的过滤器类型，提供给Endorser背书服务器用于过滤合法消息。

然后，serve()函数调用authHandler.ChainFilters(serverEndorser，authFilters...)方法，将所有的认证过滤器都通过自身的next字段链接到下一个对象，从而构造出认证过滤器链，链尾对象是Endorser背书服务器serverEndorser，同时，该函数返回链头的第1个认证过滤器auth对象。注意，该链上所有的认证过滤器（Filter类型）都实现了背书服务器EndorserServer接口，并提供ProcessProposal(context.Context，*SignedProposal)服务方法。因此，客户端将提案消息发送给Endorser背书服务器时，只有经过前面所有认证过滤器的ProcessProposal()方法验证过滤处理之后，如检查过期的身份证书，才会调用下一个认证过滤器的f.next.ProcessProposal()方法，最终提交给Peer节点背书服务器的serverEndorser.ProcessProposal()方法进行处理。

最后，serve()函数调用pb.RegisterEndorserServer(peerServer.Server()，auth)函数，将Endorser背书服务器注册到Peer节点的默认gRPC服务器上提供服务（7051端口），如代码清单3-20所示。

代码清单3-20　serve()函数创建Admin管理服务器与Endorser背书服务器的源码示例

peer/node/start.go文件

func serve(args []string) error {

 ……

 // 将Admin服务器注册到Peer节点gRPC服务器上（7051端口）

 pb.RegisterAdminServer(peerServer.Server(), core.NewAdminServer())

 // 定义Gossip协议分发隐私数据函数

 privDataDist := func(channel string, txID string, privateData *rwset.TxPvtReadWriteSet) error {

 return service.GetGossipService().DistributePrivateData(channel, txID, privateData)

 }

 // 创建新的EndorserServer背书节点服务器

 serverEndorser := endorser.NewEndorserServer(privDataDist, &endorser.SupportImpl{})

 libConf := library.Config{}

 if err = viperutil.EnhancedExactUnmarshalKey("peer.handlers", &libConf); err != nil {

 return errors.WithMessage(err, "could not load YAML config")

 }

 // 创建消息过滤器列表

 authFilters := library.InitRegistry(libConf).Lookup(library.Auth).([]authHandler.Filter)

 // 将所有消息过滤器均构造成消息过滤器链，并返回第1个过滤器（Filter类型，实现了EndorserServer

 // 接口）

 auth := authHandler.ChainFilters(serverEndorser, authFilters...)

 // 注册EndorserServer背书服务器到gRPC服务器（7051端口）

 pb.RegisterEndorserServer(peerServer.Server(), auth)

……

}

Fabric 1.2与1.3将ESCC系统链码逻辑封装成插件，并在core.yaml中定义peer.handlers.endorsers.escc配置项，在Peer节点启动时被解析成Endorser插件（PluginEndorser类型），再注册到Endorser背书服务器上服务支持组件的PluginEndorser字段。这样，Endorser节点就能调用endorseProposal()→PluginEndorser.EndorseWithPlugin()方法执行签名背书，即利用endorsers配置项定义的DefaultEndorsement()方法获取插件实例工厂对象，先通过New()方法构造对应的插件实例（默认为DefaultEndorsement类型），再分别调用Init()方法执行初始化和Endorse()方法执行背书流程。

（6）创建Gossip消息服务器

Peer节点的Gossip消息服务器是基于Gossip消息协议分发数据与同步状态的，负责将区块数据与隐私数据发送到组织内的其他Peer节点。同时，Gossip消息服务器提供了节点管理机制、反熵算法等，支持同步更新节点信息与缺失的数据信息（区块数据与隐私数据）。

serve()函数首先构造Gossip消息服务器的启动参数，具体如下。

·bootstrap：通过Viper组件获取的Gossip初始节点列表。新加入Peer节点启动时需要主动连接这些节点，以获取网络中的节点成员关系信息。注意，bootstrap节点与Peer节点应该属于同一个组织（严格来说是属于同一个MSP对象）。

·serializedIdentity：调用mgmt.GetLocalSigningIdentityOrPanic().Serialize()方法返回的本地MSP签名者身份实体信息，并序列化为字节数组作为Peer节点身份信息。

·messageCryptoService：调用peergossip.NewMCS()函数返回的Gossip消息加密服务组件，用于认证远程Peer节点身份与验证节点发送的消息数据合法性。该组件封装了策略管理器获取组件channelPolicyManagerGetter（用于获取指定通道ID上的资源访问权限策略管理器）、本地签名者localSigner（用于签名等）、反序列化身份组件管理者deserializer（用于解析指定身份信息、获取所属组织的MSP ID等）。

·secAdv：通过调用peergossip.NewSecurityAdvisor()函数创建的本地MSP安全辅助组件（mspSecurityAdvisor类型）。Fabric为了系统的安全会保持MSP组件更新至最新状态，并通过Orderer节点发送的配置交易来实现更新。为了实现上述机制，secAdv对象为MSP组件提供了安全和身份相关的功能，如解析Peer节点身份所属MSP组件的名称等。

·secureDialOpts：定义Gossip消息服务器的回调函数。该函数用于创建Gossip服务器安全配置的gRPC拨号连接选项，封装了发送消息的最大字节数与接收消息的最大字节数、心跳消息keepalive选项、TLS安全证书等。

·certs：若启用了TLS安全认证，则certs对象可用于保存TLS认证的服务器端与客户端身份证书。

接着，serve()函数调用service.InitGossipService()函数，创建Gossip消息服务器并设置为全局单例变量Gossip服务器实例gossipServiceInstance，注册到Peer节点默认的gRPC服务器上提供服务（7051端口），如代码清单3-21所示。此时还没有请求区块，需要等到Peer节点加入通道之后创建该通道上的Deliver服务实例，如果当前节点竞争（或被静态指定）成为组织Leader主节点，则启动该通道上的Deliver服务实例，代表组织向Orderer节点请求获取本通道上的账本区块数据（6.2节）。

代码清单3-21　serve()函数创建Gossip消息服务器实例的源码示例

peer/node/start.go文件

func serve(args []string) error {

 ……

 // 获取Bootstrap连接的初始节点地址列表，默认为127.0.0.1:7051

 bootstrap := viper.GetStringSlice("peer.gossip.bootstrap")

 serializedIdentity, err := mgmt.GetLocalSigningIdentityOrPanic().Serialize()//获取本地MSP签名者身份实体并序列化

 ……

 messageCryptoService := peergossip.NewMCS(// 构造Gossip消息加密服务组件

 peer.NewChannelPolicyManagerGetter(), // 通道策略管理器获取组件

 localmsp.NewSigner(), // 本地签名者

 mgmt.NewDeserializersManager()) // 身份反序列化组件管理器

 // 创建MSP安全辅助组件

 secAdv := peergossip.NewSecurityAdvisor(mgmt.NewDeserializersManager())

 // 定义Gossip服务器回调函数，用于创建Gossip服务器安全配置的gRPC拨号连接选项

 secureDialOpts := func() []grpc.DialOption {

 var dialOpts []grpc.DialOption

 dialOpts = append(dialOpts, grpc.WithDefaultCallOptions(grpc.MaxCallRecvMsgSize (comm.MaxRecvMsgSize()),

 grpc.MaxCallSendMsgSize(comm.MaxSendMsgSize())))// 设置最大发送和接收消息字节数

 kaOpts := comm.DefaultKeepaliveOptions() // 获取默认的心跳消息keepalive选项

 if viper.IsSet("peer.keepalive.client.interval") {

 kaOpts.ClientInterval = viper.GetDuration("peer.keepalive.client.interval")

 }

 if viper.IsSet("peer.keepalive.client.timeout") {

 kaOpts.ClientTimeout = viper.GetDuration("peer.keepalive.client.timeout")

 }

 // 在gRPC通信拨号连接选项中设置心跳通信keepalive选项

 dialOpts = append(dialOpts, comm.ClientKeepaliveOptions(kaOpts)...)

 if comm.TLSEnabled() { // 启用TLS安全认证，设置客户端TLS通信证书

 dialOpts = append(dialOpts, grpc.WithTransportCredentials(comm.GetCredentialSupport().GetPeerCredentials()))

 } else {

 dialOpts = append(dialOpts, grpc.WithInsecure()) // 否则，关闭TLS安全认证

 }

 return dialOpts

 }

 // 检查gRPC服务器端是否启用TLS安全认证，获取并设置服务器端与客户端身份证书

 var certs *common2.TLSCertificates

 if peerServer.TLSEnabled() {

 serverCert := peerServer.ServerCertificate()

 clientCert, err := peer.GetClientCertificate()

 if err != nil {

 return errors.Wrap(err, "failed obtaining client certificates")

 }

 certs = &common2.TLSCertificates{}

 certs.TLSServerCert.Store(&serverCert)

 certs.TLSClientCert.Store(&clientCert)

 }

 // 创建Gossip消息服务器实例gossipServiceInstance

 err = service.InitGossipService(serializedIdentity, peerEndpoint.Address, peerServer.Server(), certs,

 messageCryptoService, secAdv, secureDialOpts, bootstrap...)

 ……

 defer service.GetGossipService().Stop() // 退出本函数的运行时停止Gossip消息服务器

 ……

}

最后，serve()函数定义defer service.GetGossipService().Stop()，在退出时延迟调用该函数以停止Gossip消息服务器。

3.部署系统链码与初始化现存通道的链结构

（1）部署系统链码initSysCCs()函数

serve()调用initSysCCs()→scc.DeploySysCCs("")函数以部署系统链码，即全局变量systemChaincodes包含的5个默认系统链码，并指定链ID为空字符串。该函数遍历5个系统链码（CSCC、LSCC、QSCC、VSCC与ESCC），执行deploySysCC()函数以部署系统链码，并启动系统链码容器提供服务，如代码清单3-22所示。

代码清单3-22　serve()函数部署系统链码的源码示例

peer/node/start.go文件

func serve(args []string) error {

 ……

 // 初始化并部署系统链码（链ID指定为空字符串）

 initSysCCs()

 // 定义初始化函数以初始化系统链码

 peer.Initialize(func(cid string) {

 logger.Debugf("Deploying system CC, for chain <%s>", cid)

 scc.DeploySysCCs(cid)

 })

 ……

}

SystemChaincode系统链码类型如代码清单3-23所示，deploySysCC()函数首先检查系统链码的使能标志位与配置白名单以判断部署链码操作的合法性，通过检查后调用ccprovider.GetChaincodeProvider()函数，获取链码提供者实例ccprov对象（ccProviderImpl类型），以获取上下文对象（包含交易模拟器对象）并辅助执行链码部署操作。

代码清单3-23　SystemChaincode系统链码类型与deploySysCC()函数的源码示例

core/scc/sysccapi.go文件

type SystemChaincode struct {

 Name string // 系统链码名称

 Path string // 系统链码路径

 InitArgs [][]byte // 初始化参数列表以启动系统链码

 Chaincode shim.Chaincode // 链码实例对象

 InvokableExternal bool // 标识该系统链码是否可以从外部进行调用

 InvokableCC2CC bool // 标识该系统链码是否可以执行链码到链码的调用

 Enabled bool // 使能开关

}

// 部署指定系统链码

func deploySysCC(chainID string, syscc *SystemChaincode) error {

 // 检查系统链码标志位是否开启，以及指定系统链码是否存在于系统链码插件白名单中

 if !syscc.Enabled || !isWhitelisted(syscc) {

 ……

 }

 ……

 // 获取链码提供者ccProviderImpl结构实例对象

 ccprov := ccprovider.GetChaincodeProvider()

 txid := util.GenerateUUID() // 基于UUID生成交易ID

 ctxt := context.Background() // 获取默认的链码context上下文对象

 if chainID != "" {

 lgr := peer.GetLedger(chainID) // 获取指定链ID关联的账本对象

 ……

 // 创建带有KV键值对的context上下文对象和交易模拟器

 ctxt2, txsim, err := ccprov.GetContext(lgr, txid)

 ……

 ctxt = ctxt2 // 更新ctxt上下文对象

 defer txsim.Done() // 退出时释放该交易模拟器所占用的资源

 }

 // 构造链码ChaincodeID结构对象和链码描述规范ChaincodeSpec结构对象

 // 设置路径和名称

 chaincodeID := &pb.ChaincodeID{Path: syscc.Path, Name: syscc.Name}

 spec := &pb.ChaincodeSpec{Type: pb.ChaincodeSpec_Type(pb.ChaincodeSpec_Type_value["GOLANG"]), ChaincodeId: chaincodeID, Input: &pb.ChaincodeInput{Args: syscc.InitArgs}}

 // 构建指定系统链码的链码部署规范对象

 chaincodeDeploymentSpec, err := buildSysCC(ctxt, spec) // 实际上没有使用ctxt

 ……

 version := util.GetSysCCVersion() // 获取系统链码版本

 // 获取链码上下文对象CCContext结构对象

 cccid := ccprov.GetCCContext(chainID, chaincodeDeploymentSpec.ChaincodeSpec.ChaincodeId.Name, version, txid, true, nil, nil)

 // 部署（实例化）系统链码。注意ccprov是链码提供者ccProviderImpl结构实例对象

 _, _, err = ccprov.ExecuteWithErrorFilter(ctxt, cccid, chaincodeDeploymentSpec)

 // 启动完毕，即完成系统链码部署

 sysccLogger.Infof("system chaincode %s/%s(%s) deployed", syscc.Name, chainID, syscc.Path)

 return err

}

接着，deploySysCC()函数创建与获取部署系统链码的参数，包括交易ID即txid、context上下文对象ctxt、链码部署规范对象chaincodeDeploymentSpec、系统链码版本version、链码上下文对象cccid等，具体说明如下。

·txid交易ID：调用util.GenerateUUID()函数，基于UUID（Universally Unique Identifier，通用唯一识别码）规则生成的唯一交易编号。

·context上下文对象ctxt：先调用context.Background()方法，获取默认的context上下文对象。如果系统链码是部署到链ID（chainID）不为空字符串的通道上，则调用ccprov.GetContext(lgr，txid)方法创建新的context上下文对象ctxt2，保存KV键值对封装交易模拟器，并将ctxt2更新为当前上下文对象ctxt。其中，键为TXSimulatorKey，值为交易模拟器txsim（lockBasedTxSimulator类型），用于访问账本与保存模拟执行结果。

·链码部署规范chaincodeDeploymentSpec：基于当前系统链码属性构造链码的ChaincodeID结构对象（包含链码路径与链码名称）与链码描述规范对象（ChaincodeSpec类型，简称CS，封装了链码语言类型GOLANG、链码的ChaincodeID结构对象、链码调用默认输入参数InitArgs等）。接着，调用buildSysCC()函数，构造链码部署规范对象（ChaincodeDeploymentSpec类型，简称CDS）用于提供部署链码的参数，指定链码容器的执行环境类型为ChaincodeDeploymentSpec_SYSTEM，链码包CodePackage对象暂时设置为空。

·系统链码版本version：调用util.GetSysCCVersion()函数，获取系统链码版本metadata.Version，目前是通过定义在Makefile中的变量以及LDFLAGS传递该变量值。

·链码上下文对象cccid：调用ccprov.GetCCContext()方法，基于上述参数构造新的链码上下文实例对象cccid（ccProviderContextImpl类型）。该对象实际上只包含链码上下文CCContext结构对象，封装了链ID、链码名称、链码版本、交易ID、链码规范名称（ChaincodeName：ChaincodeVersion）等信息。

最后，deploySysCC()函数调用ccprov.ExecuteWithErrorFilter()方法，实际上最终调用的是chaincode.Execute()函数（core/chaincode/exectransaction.go，参见4.4.2节，用户链码实例化也会最终调用该函数），利用goroutine启动inprocContainer类型容器来部署系统链码，执行成功后返回initSysCCs()函数，并依次部署完毕所有的系统链码。

目前，系统链码支持的Invoke()方法的常用命令如表3-4所示。

表3-4　系统链码Invoke()方法支持的常用命令列表

 [image:]

（2）初始化现存通道上的链结构Initialize()函数

serve()函数调用peer.Initialize()函数，初始化Peer节点上现存通道的链结构列表，根据账本目录下的账本文件恢复上次系统停止或崩溃时已经创建成功的通道链结构，如代码清单3-24所示。

代码清单3-24　Initialize()函数的源码示例

core/peer/peer.go文件

func Initialize(init func(string)) {

 nWorkers := viper.GetInt("peer.validatorPoolSize")

 // 获取交易验证线程数量

 ……

 validationWorkersSemaphore = semaphore.NewWeighted(int64(nWorkers))

 // 设置信号量并发访问数量

 chainInitializer = init // 设置初始化函数

 ……

 ledgermgmt.Initialize(ConfigTxProcessors) // 初始化账本管理器

 ledgerIds, err := ledgermgmt.GetLedgerIDs() // 获取当前账本管理器下的账本ID列表

 ……

 for _, cid := range ledgerIds { // 遍历当前账本ID列表

 ……

 // 创建本地Peer节点账本

 if ledger, err = ledgermgmt.OpenLedger(cid); err != nil {

 ……

 continue

 }

 // 从指定通道账本中获取最新配置区块

 if cb, err = getCurrConfigBlockFromLedger(ledger); err != nil {

 ……

 continue

 }

 // 在Peer节点上创建指定通道的链结构

 if err = createChain(cid, ledger, cb); err != nil {

 ……

 continue

 }

 InitChain(cid) // 用自定义函数初始化通道链结构，如部署系统链码

 }

}

Initialize()函数首先将自定义函数init设置给全局变量chainInitializer，用于初始化指定通道上的系统链码，即确保系统链码容器能够正常启动运行并提供服务。

接着，Initialize()函数调用ledgermgmt.Initialize(ConfigTxProcessors)函数，初始化本地账本管理器，实际上已经在serve()函数中执行过一次。因此，这里跳过并继续调用ledgermgmt.GetLedgerIDs()函数，获取当前idStore数据库中保存的所有账本ID列表ledgerIds。

然后，Initialize()函数遍历ledgerIds列表中的每个链ID对象（cid），调用ledgermgmt.OpenLedger(cid)函数，创建指定通道账本（cid）上的Peer节点账本对象ledger（closableLedger类型，包含kvLedger对象）。该对象封装了账本数据存储对象（管理区块数据文件、隐私数据库、区块索引数据库等）、状态数据库、历史数据库等。接着，调用getCurrConfigBlock FromLedger(ledger)函数，通过ledger基于区块链信息中的账本高度获取最新的区块对象，并从该对象的区块元数据中获取最新的配置区块号，再获取该通道的最新通道配置区块cb。Initialize()函数基于该配置区块cb等参数调用createChain()函数（6.2.2节），在Peer节点上创建指定通道（cid）的链结构对象（chain类型），并保存到全局变量chains.list链结构字典（map[string]*chain类型）中，提供给Peer节点用于管理该通道上的账本、通道配置等资源。

最后，Initialize()函数调用InitChain(cid)→chainInitializer(cid)→scc.DeploySysCCs(cid)方法，初始化指定通道（cid）并部署所有系统链码。

另外，Fabric 1.2与1.3版本增加了服务发现（Service Discovery）功能，以简化客户端应用开发。discover命令的main()函数（cmd/discover/main.go）注册了peer、config与endorsers子命令及其执行函数，并绑定server、channel、chaincode、collection等命令行选项，然后等待用户命令并解析执行。同时，Peer节点启动时根据peer.discovery.enabled配置项（默认为true）调用registerDiscoveryService()→discovery.NewService()方法，创建服务发现服务器并注册到本地gRPC服务器（7051端口），提供Discover()方法解析并遍历请求查询对象列表，根据是否包含通道ID从channelDispatchers字典或localDispatchers字典中获取与执行指定查询类型（QueryType类型）注册的关联处理函数dispatchQuery，目前支持4类查询，包括ConfigQueryType用于从最新配置区块中解析获取所有组织的FabricMSPConfig结构对象（包含MSP名称、根证书等）及其Orderer服务端点，ChaincodeQueryType用于获取通道中符合给定链码背书策略的合法背书节点信息，PeerMembershipQueryType与LocalMembershipQueryType分别获取加入指定通道与本地保存的Peer节点成员关系信息。

4.启动gRPC服务器与profile服务器

目前，serve()函数已经运行了1个goroutine执行ccSrv.Start()方法，即启动gRPC服务器提供链码支持服务（7052端口）。接着，serve()函数执行4个goroutine，分别启动监听信号程序、gRPC服务器、profile服务器等，如代码清单3-25所示，具体说明如下。

·执行goroutine阻塞等待sigs通道以接收特定信号。这是基于信号的传统进程间通信方式，一旦接收到syscall.SIGINT类型或syscall.SIGTERM类型的信号，就向serve通道发送nil消息，以结束本地Peer节点的运行进程。

·执行goroutine调用peerServer.Start()方法，启动默认的gRPC服务器（7051端口）提供服务，并注册DeliverEvents事件服务器、Admin管理服务器、Endorser背书服务器、Gossip消息服务器等。如果发生错误而退出，则发送错误到serve通道。

·执行goroutine启动基于专用事件监听端口（7053端口）的gRPC服务器，并注册EventHub事件服务器。

·如果启用profile使能标志位，则执行goroutine启动go profile服务器提供服务，并将错误信息记录到日志里。

代码清单3-25　serve()函数启动gRPC服务器的源码示例

peer/node/start.go文件

func serve(args []string) error {

 ……

 serve := make(chan error) // 建立传递错误消息的通道

 sigs := make(chan os.Signal, 1) // 传递信号的通道

 // 设置本进程信号通道的通知信号，包括中断/终止信号

 signal.Notify(sigs, syscall.SIGINT, syscall.SIGTERM)

 go func() { // 设置本进程阻塞等待的特定通知信号

 sig := <-sigs // 从sigs通道读取信号值，阻塞等待方式

 logger.Debugf("sig: %s", sig)

 serve <- nil // 输出nil

 }()

 // 利用goroutine 启动gRPC服务器（7051端口，注册了Admin管理服务器、Endorser背书服务器等）

 go func() {

 var grpcErr error

 if grpcErr = peerServer.Start(); grpcErr != nil { // 监听端口（7051）提供服务

 grpcErr = fmt.Errorf("grpc server exited with error: %s", grpcErr)

 } else {

 logger.Info("peer server exited")

 }

 serve <- grpcErr// 若因发生错误而退出，则发送错误到serve通道

 }()

 // 向进程文件中写入运行进程ID

 if err := writePid(config.GetPath("peer.fileSystemPath")+"/peer.pid", os.Getpid()); err != nil {

 return err

 }

 // 启动基于专用事件监听端口的gRPC服务器（7053端口，已注册EventHub事件服务器）

 if ehubGrpcServer != nil {

 go ehubGrpcServer.Start()

 }

 // 如果打开profile使能标志位，则启动提供服务

 if viper.GetBool("peer.profile.enabled") {

 go func() {// 启动go profile服务器，如果出错，则不会发送错误信息，只是记录到日志里

 // 获取profile监听地址

 profileListenAddress := viper.GetString("peer.profile.listenAddress")

 logger.Infof("Starting profiling server with listenAddress = %s", profileListenAddress)

 if profileErr := http.ListenAndServe(profileListenAddress, nil); profileErr != nil {// 启动profile服务器

 logger.Errorf("Error starting profiler: %s", profileErr)

 }

 }()

 }

 ……

}

5.初始化模块日志记录器

如代码清单3-26所示，serve()函数首先基于Viper组件调用common.SetLogLevel-FromViper(module)函数，为指定的功能模块设置日志级别默认值。接着，调用flogging.SetPeerStartupModulesMap()函数，构造与设置Peer启动模块日志级别字典，维护指定模块的日志级别。最后，使用serve通道阻塞程序等待消息，直到出现中断信号、gRPC服务器错误等情况才会退出程序。

代码清单3-26　serve()函数初始化模块日志记录器的源码示例

peer/node/start.go文件

func serve(args []string) error {

 ……

 // 根据core.yaml为指定模块设置日志级别默认值

 overrideLogModules := []string{"msp", "gossip", "ledger", "cauthdsl", "policies", "grpc", "peer.gossip"}

 for _, module := range overrideLogModules {

 err = common.SetLogLevelFromViper(module) // 设置日志模块级别

 ……

 }

 // 构造Peer启动模块日志级别字典：模块名称->日志级别

 flogging.SetPeerStartupModulesMap()

 // 阻塞直到出现中断信号、gRPC服务器错误等造成的退出

 return <-serve

 ……

}

至此，Peer节点及其功能服务器启动完毕，接下来开始正常提供Peer相关功能服务。
3.3　peer channel通道子命令

channel目录中的命令模块源码实现了peer channel子命令功能，如表3-5所示。

表3-5　channel源码文件功能列表

 [image:]

本节先介绍peer channel命令执行函数的通用处理流程，接着逐个分析每个子命令的执行过程。
3.3.1　定义注册channel子命令

1.概述

channel.go文件定义了channel子命令对象channelCmd、命令行选项集合、子命令相关变量等，并提供命令行选项重置和更新等相关函数。Peer节点启动时利用Cobra组件注册了所有的channel子命令，并支持channel子命令的解析与运行，如代码清单3-27所示。

代码清单3-27　channel子命令定义与注册的源码示例

peer/channel/channel.go文件

……

var (

 // join命令相关变量

 genesisBlockPath string // 创世区块文件路径

 // create命令相关变量

 channelID string // 通道ID

 channelTxFile string // 通道配置交易文件路径

 timeout int // 获取区块超时时间

)

// 注册channel子命令

func Cmd(cf *ChannelCmdFactory) *cobra.Command {

 AddFlags(channelCmd) // 添加设置命令行选项参数

 channelCmd.AddCommand(createCmd(cf)) // 创建通道

 channelCmd.AddCommand(fetchCmd(cf)) // 获取指定区块

 channelCmd.AddCommand(joinCmd(cf)) // 加入通道

 channelCmd.AddCommand(listCmd(cf)) // 获取当前节点已经加入的通道列表

 channelCmd.AddCommand(updateCmd(cf)) // 更新通道配置

 channelCmd.AddCommand(signconfigtxCmd(cf)) // 签名配置交易文件

 channelCmd.AddCommand(getinfoCmd(cf)) // 获取指定通道信息

 return channelCmd

}

……

// 定义channel子命令对象

var channelCmd = &cobra.Command{

 Use: channelFuncName,

 Short: fmt.Sprint(shortDes),

 Long: fmt.Sprint(longDes),

 PersistentPreRun: common.SetOrdererEnv,

}

……

peer channel命令在定义channelCmd命令对象时调用了AddFlags()函数，将Orderer相关配置变量绑定到定义的命令行选项参数上，在解析执行channelCmd命令时调用自定义的PersistentPreRun()→SetOrdererEnv()函数（peer/common/ordererenv.go），解析命令行选项中的Orderer相关配置项，并设置到Viper组件中，如Orderer服务节点地址等，如表3-6所示。

表3-6　Orderer相关配置的命令行选项参数列表

 [image:]

接着，peer channel命令调用自定义的RunE()执行函数。该函数首先检查参数的合法性，再调用InitCmdFactory(isEndorserRequired EndorserRequirement，isOrdererRequired OrdererRequirement)函数，用于获取channel通道命令工厂对象（ChannelCmdFactory类型）。该对象保存了channel通道命令相关的服务客户端与本地签名者，包括Endorser背书服务客户端、Broadcast交易广播服务客户端、Deliver区块分发服务客户端等。其中，参数isEndorserRequired和isOrdererRequired将根据命令用途分别指明是否需要设置Endorser背书服务客户端和Deliver区块分发服务客户端，如表3-7所示。

表3-7　channel命令的InitCmdFactory()函数参数配置列表

 [image:]

如代码清单3-28所示，InitCmdFactory()函数默认调用common.GetDefaultSignerFnc()函数，以获取本地签名者实体Signer。如果参数isEndorserRequired为true，即需要设置Endorser背书服务客户端，则调用common.GetEndorserClientFnc()→common.GetEndorserClient()函数，实际上最终调用的是pb.NewEndorserClient()函数创建Endorser背书客户端（endorser Client类型），Peer节点采用CLI命令行终端时会默认将自身Peer节点作为Endorser背书节点。

其中，第1章CLI客户端容器就是在执行命令前设置CORE_PEER_LOCALMSPID、CORE_PEER_MSPCONFIGPATH、CORE_PEER_ADDRESS等环境变量，加载指定组织管理员角色的身份证书、私钥文件等，同时连接指定Peer节点（默认本地节点）作为Endorser背书节点。

代码清单3-28　ChannelCmdFactory类型与InitCmdFactor()函数的源码示例

peer/channel/channel.go文件

// 定义BroadcastClient交易广播客户端工厂方法

type BroadcastClientFactory func() (common.BroadcastClient, error)

type ChannelCmdFactory struct { // ChannelCmdFactory通道命令工厂对象

 EndorserClient pb.EndorserClient // Endorser背书服务客户端

 Signer msp.SigningIdentity // 本地签名者实体

 BroadcastClient common.BroadcastClient // Broadcast服务客户端

 DeliverClient deliverClientIntf // Deliver服务客户端，负责发送请求区块消息

 BroadcastFactory BroadcastClientFactory // Broadcast客户端工厂方法，定义用于获取

 // Broadcast服务客户端方法

}

// 根据参数初始化ChannelCmdFactory通道命令工厂对象

func InitCmdFactory(isEndorserRequired EndorserRequirement, isOrdererRequired OrdererRequirement) (*ChannelCmdFactory, error) {

 var err error

 cmdFact := &ChannelCmdFactory{} // 创建ChannelCmdFactory通道命令工厂对象

 cmdFact.Signer, err = common.GetDefaultSignerFnc() // 获取本地默认签名者身份信息实体

 ……

 // 设置BroadcastClientFactory广播客户端工厂方法

 cmdFact.BroadcastFactory = func() (common.BroadcastClient, error) {

 return common.GetBroadcastClientFnc()

 }

 if isEndorserRequired {

 // 创建Endorser背书客户端

 cmdFact.EndorserClient, err = common.GetEndorserClientFnc()

 ……

 }

 if isOrdererRequired {

 if len(strings.Split(common.OrderingEndpoint, ":")) != 2 {// 检查参数合法性

 return nil, fmt.Errorf("ordering service endpoint %s is not valid or missing", common.OrderingEndpoint)

 }

 // 创建Deliver客户端向Orderer节点请求区块

 cmdFact.DeliverClient, err = newDeliverClient(channelID)

 ……

 }

 logger.Infof("Endorser and orderer connections initialized")

 return cmdFact, nil

}

Orderer服务客户端包括Broadcast交易广播服务客户端与Deliver区块分发服务客户端，前者用于发送交易消息以请求排序或进行通道管理，后者则用于请求获取指定的区块数据，两者都默认连接channel命令行选项-o指定的Orderer服务节点，具体说明如下。

·InitCmdFactory()函数定义了Broadcast客户端工厂函数BroadcastFactory()，默认调用common.GetBroadcastClientFnc()→GetBroadcastClient()函数，创建broadcastClient结构客户端，包含Broadcast交易广播服务客户端，用于发送服务请求消息；

·如果参数isOrdererRequired为true，则InitCmdFactory()函数调用newDeliver-Client(channelID)函数，创建指定通道（channelID）上的deliverClient结构客户端，包含Deliver区块分发服务客户端、TLS证书哈希值等。

Fabric 1.2以后在通道命令工厂对象上增加了Peer节点上的DeliverEvents事件服务客户端（DeliverClient字段），用于从Peer节点请求指定区块，并使用isPeerDeliverRequired参数（默认fasle）作为启用标志位。

2.命令处理流程

如图3-1所示，channel通道命令在各自的子命令文件中定义子命令对象，并在peer node start命令执行过程中注册到主命令上，等待用户通过客户端输入命令，经过Cobra组件解析后调用自定义的RunE()等执行函数。通常，该函数先调用InitCmdFactory()函数初始化命令工厂对象，创建与Endorser背书节点与Orderer服务节点进行交互的服务客户端，以及本地签名者实体，然后执行子命令的处理流程，具体说明如下。

·与Endorser背书节点进行交互。这类通道子命令执行时通常先构造签名提案消息（SignedProposal类型），设置处理子命令所请求调用的链码及其参数，通过Endorser服务客户端的ProcessProposal()服务接口提交给Endorser背书节点请求处理，并进入Endorser背书处理流程（4.2节）。这类子命令包括join、getinfo、list等；

·与Orderer服务节点进行交互。这类通道子命令执行时通常先构造签名交易消息（Envelope类型），通过Broadcast服务客户端提交给Orderer节点请求通道管理与进行交易排序（2.4节和2.5节）。这类命令包括create、update等。同时，通过Deliver服务客户端从Orderer节点请求获取指定的区块数据（2.6节）。这类子命令包括create、fetch等；

·本地直接处理。例如，signconfigtx子命令直接在本地对配置交易文件进行签名，而不需要设置任何服务客户端与其他节点交互。

 [image:]

图3-1　peer channel通道子命令定义与处理流程示意图

3.常用类型消息

Hyperledger Fabric的常用类型消息包括Envelope类型消息、SignedProposal类型消息、SginedGossipMessage类型消息、ChaincodeMessage类型消息等，如表3-8所示，其中：

·Envelope类型消息：用于客户端与Orderer服务节点进行交互，包括链码相关操作（实例化、调用和升级等）、应用通道操作（创建与更新等）、请求获取区块结构等；

·SignedProposal类型消息：用于客户端与Endorser背书节点进行交互，包括链码操作（安装、实例化、升级、调用、查询等链码）、通道操作（加入、列出应用通道、获取区块链信息）等；

·SginedGossipMessage类型消息：用于通道上Peer节点间通过Gossip消息协议进行通信，如分发区块数据、同步状态等；

·ChaincodeMessage类型消息：用于链码容器侧与Peer侧之间的通信，如REGISTER注册、GET_STATE获取状态数据、PUT_STATE保存状态数据等；

·SignedEvent/Event类型消息：用于订阅与发布事件。

表3-8　Hyperledger Fabric常用类型消息列表

 [image:]

3.3.2　创建通道命令create

1.命令概述

peer channel create命令用于创建新的应用通道，首先读取指定的通道配置交易文件或获取默认的通道配置信息，以创建通道配置交易消息（Envelope类型，通道头部类型为CONFIG_UPDATE）。接着，通过Broadcast服务客户端将该消息发送给Orderer服务节点，请求创建新的应用通道，并通过Deliver服务客户端从Orderer服务节点请求获取该通道的创世区块。然后，将该创世区块写入到以channelID.block命名的本地区块文件。注意，只有组织管理员身份的节点才能调用create子命令。

create.go文件定义了createCmd(cf*ChannelCmdFactory)函数，用于创建create子命令对象createCmd，并更新相关命令行选项，如代码清单3-29所示。在Peer节点启动过程中利用Cobra组件将该命令注册到主命令结构上，以支持解析与执行create子命令，示例命令形式如下。

peer channel create -o orderer.example.com:7050 -c mychannel -f ./channel-artifacts/channel.tx

代码清单3-29　create子命令生成函数createCmd()源码示例

peer/channel/create.go文件

func createCmd(cf *ChannelCmdFactory) *cobra.Command {

 createCmd := &cobra.Command{

 Use: "create",

 Short: createCmdDescription,

 Long: createCmdDescription,

 RunE: func(cmd *cobra.Command, args []string) error {

 return create(cmd, args, cf)

 },

 }

 flagList := []string{

 "channelID", // 通道ID

 "file", // 配置交易文件路径

 "timeout", // 创建通道超时时间

 }

 attachFlags(createCmd, flagList) // 更新命令行选项集合

 return createCmd

}

2.命令执行步骤

create子命令创建应用通道的执行步骤如图3-2所示。

1）peer channel create经过Cobra组件解析后调用自定义执行函数create()，如代码清单3-30所示。该函数首先检查参数的合法性，调用InitCmdFactory()函数以获取通道命令工厂对象ChannelCmdFactory，不需要设置Endorser背书服务客户端，而需要设置Orderer排序服务客户端，包括Broadcast交易广播服务客户端与Deliver区块分发服务客户端。

 [image:]

图3-2　create子命令创建应用通道时序图

代码清单3-30　create子命令创建通道执行函数create()函数的源码示例

peer/channel/create.go文件

// create子命令创建通道的执行函数

func create(cmd *cobra.Command, args []string, cf *ChannelCmdFactory) error {

 // 由-c命令设置通道ID（channelID），并检查channelID参数的合法性

 if channelID == common.UndefinedParamValue {

 return errors.New("Must supply channel ID")

 }

 var err error

 if cf == nil {

 // 获取ChannelCmdFactory通道命令工厂对象，不需要Endorser背书服务客户端，

 // 需要Orderer排序服务客户端

 cf, err = InitCmdFactory(EndorserNotRequired, OrdererRequired)

 if err != nil {

 return err

 }

 }

 return executeCreate(cf) // 执行create命令

}

2）接着，create()函数调用executeCreate()函数请求创建新的应用通道，如代码清单3-31所示。该函数首先调用sendCreateChainTransaction()函数，发送通道配置交易消息到Orderer节点请求处理。

代码清单3-31　executeCreate()函数的源码示例

peer/channel/create.go文件

func executeCreate(cf *ChannelCmdFactory) error {

 var err error

 // 发送通道配置交易消息以创建新的应用通道

 if err = sendCreateChainTransaction(cf); err != nil {

 return err

 }

 var block *cb.Block

 if block, err = getGenesisBlock(cf); err != nil { // 获取应用通道的创世区块

 return err

 }

 b, err := proto.Marshal(block) // 将创世区块序列化封装为字节数组

 ……

 file := channelID + ".block" // 设置区块文件名channelID.block

 // 写入本地区块文件channelID.block

 if err = ioutil.WriteFile(file, b, 0644); err != nil {

 return err

 }

 return nil

}

sendCreateChainTransaction()函数首先检查配置交易文件路径channelTxFile的合法性，构造应用通道的配置交易消息（Envelope类型，通道头部类型为CONFIG_UPDATE），如代码清单3-32所示。其中，如果存在合法的通道配置交易文件路径channelTxFile（不是空字符串），则调用createChannelFromConfigTx()函数，读取文件并解析成通道配置交易消息（Envelope类型）。否则，调用createChannelFromDefaults()→MakeChannelCreationTransaction()函数，基于configtx.yaml配置文件解析SampleSingleMSPChannel配置结构（包含Application、Consortium等通道配置），构造通道的配置更新消息（ConfigUpdate类型），再封装成ConfigUpdateEnvelope结构对象并签名。然后，调用CreateSignedEnvelope()函数，基于该对象创建签名的通道配置交易消息（Envelope类型），且消息的通道头部类型为CONFIG_UPDATE。

代码清单3-32　sendCreateChainTransaction()函数的源码示例

peer/channel/create.go文件

func sendCreateChainTransaction(cf *ChannelCmdFactory) error {

 var err error

 var chCrtEnv *cb.Envelope

 // 检查通道配置交易文件路径的合法性

 if channelTxFile != "" {

 // 基于配置交易文件获取通道配置交易消息

 if chCrtEnv, err = createChannelFromConfigTx(channelTxFile); err != nil {

 return err

 }

 } else {

 // 根据默认配置创建配置交易消息

 if chCrtEnv, err = createChannelFromDefaults(cf); err != nil {

 return err

 }

 }

 // 检查配置交易消息的合法性，并重新创建带签名的配置交易消息

 if chCrtEnv, err = sanityCheckAndSignConfigTx(chCrtEnv); err != nil {

 return err

 }

 var broadcastClient common.BroadcastClient

 broadcastClient, err = cf.BroadcastFactory() // 获取broadcastClient客户端

 if err != nil {

 return fmt.Errorf("Error getting broadcast client: %s", err)

 }

 defer broadcastClient.Close()

 err = broadcastClient.Send(chCrtEnv) // 发送新的通道配置交易消息到Orderer

 // 节点，请求创建新的应用通道

 return err

}

接着，sendCreateChainTransaction()函数调用sanityCheckAndSignConfigTx()函数，检查通道配置交易消息的合法性，并解析该消息负载的Data字段，重新获取通道配置更新对象（ConfigUpdateEnvelope类型），添加签名后重新构造带签名的通道配置交易消息chCrtEnv（Envelope类型，通道头部类型是CONFIG_UPDATE）。

最后，sendCreateChainTransaction()函数调用cf.BroadcastFactory()方法，获取Broadcast交易广播服务客户端（broadcastClient类型），执行broadcastClient，Send(chCrtEnv)方法，通过该客户端将通道配置交易消息发送到Orderer节点，请求创建新的应用通道。

3）Orderer节点上的Broadcast服务处理句柄接收到通道配置交易消息请求，并进行检查，如果当前多通道注册管理器中不存在关联通道的链支持对象，则说明该消息是用于创建新的应用通道，此时默认使用系统通道的链支持对象作为通道消息处理器来处理该消息，否则，使用关联通道的链支持对象作为通道消息处理器。接着，通道消息处理器解析该消息，并重新创建通道配置交易消息。其中，外层消息头部类型是ORDERER_TRANSACTION，内层消息类型是CONFIG。然后，使用系统通道消息处理器上绑定的5个默认消息过滤器进行处理，并转发给系统通道的共识组件链对象（Solo类型、Kafka类型等）请求处理。

交易消息经过排序后，共识组件链对象将当前的通道配置交易消息单独打包出块，即创世区块，并提交到账本区块数据文件，同时，调用newChain()方法，创建新的应用通道并构造链支持对象及其共识组件链对象，注册到Orderer节点的多通道注册管理器Registrar对象上。最后，启动该通道链支持对象及其共识组件链对象，以正常提供该通道上的共识排序服务，该过程可参见2.3节与2.4节的分析。

4）executeCreate()函数继续调用getGenesisBlock(cf)函数，通过命令工厂对象cf的Deliver区块分发客户端（deliverClient类型）调用getSpecifiedBlock()函数，向Orderer节点发送消息请求获取创世区块，如代码清单3-33所示。

代码清单3-33　create创建通道命令的getSpecifiedBlock()函数源码示例

peer/channel/deliverclient.go文件

// 获取指定区块号的区块

func (r *deliverClient) getSpecifiedBlock(num uint64) (*common.Block, error) {

 err := r.seekSpecified(num) // 发送请求获取指定区块的消息

 ……

 return r.readBlock() // 读取创世区块

}

其中，getSpecifiedBlock()函数先构造SeekInfo结构的区块搜索信息（指定区块号为0，即创世区块），并添加本地签名者身份信息、TLS客户端的证书哈希值等信息，创建区块请求消息对象（Envelope类型，通道头部类型为CONFIG_UPDATE），再通过deliverClient客户端调用Send()方法，将该消息发送到Orderer节点以请求获取区块。

接着，Orderer节点的Deliver服务消息处理句柄接收到区块请求消息，从本地对应通道的区块账本中读取指定区块号的区块，如创世区块，打包成Deliver响应消息（DeliverResponse_Block类型）返回给客户端。

同时，getSpecifiedBlock()函数通过deliverClient客户端调用readBlock()方法，执行Deliver服务客户端的r.client.Recv()方法，阻塞等待结果消息，解析接收到的Deliver响应消息结果并检查其合法性，以获取该通道的创世区块。

5）最后，executeCreate()函数按照protobuf格式将创世区块序列化封装为字节数组，并写入以channelID.block命名的本地区块文件，将其作为Peer节点加入指定通道（channelID）的命令参数。

至此，peer channel create命令执行结束。Orderer服务节点上创建了指定的应用通道，Peer节点保存以channelID.block命名的本地区块文件（创世区块）。
3.3.3　Peer节点加入通道命令join

1.命令概述

peer channel join命令用于将Peer节点加入到指定的应用通道，通过请求默认的Endorser背书节点执行CSCC系统链码，在本地Peer节点上创建绑定该通道的链结构对象，并注册到Peer节点的链结构字典chains.list（map[string]*chain类型）中，以管理本地通道上的账本、通道配置等资源，同时，初始化该通道上的Gossip消息服务模块。其中，Leader主节点会启动Deliver服务实例，代表组织向Orderer服务节点请求该通道账本上的区块数据，并基于Gossip消息协议分发到组织内的其他Peer节点上。普通节点（非Leader节点）只能接收从其他节点转发的账本区块。join命令执行成功意味着该Peer节点可以正常接收该通道账本上的所有区块数据。

Peer节点加入应用通道必须拥有该通道的创世区块文件channelID.block，在CSCC系统链码执行过程中会检查该Peer节点成员身份是否符合默认策略，即是否为通道组织的管理员身份Admins。注意，通道ID或通道名称channelID通常会用作该通道的链ID或链名称chainID，以及账本ID，源码中经常会将这三者名称根据情况使用，实质上是同一个名称字符串。

join.go文件提供了joinCmd(cf*ChannelCmdFactory)函数，用于创建join子命令对象joinCmd，如代码清单3-34所示，更新相关命令行选项集合，在Peer节点启动过程中利用Cobra组件注册到主命令上，以支持join子命令的正常解析与运行，示例命令形式如下。

peer channel join -b mychannel.block -o orderer.example.com:7050

代码清单3-34　join子命令生成函数joinCmd()的源码示例

peer/channel/join.go文件

// join命令：Peer节点加入指定通道中

func joinCmd(cf *ChannelCmdFactory) *cobra.Command {

 joinCmd := &cobra.Command{ // 定义join命令

 Use: "join",

 Short: commandDescription,

 Long: commandDescription,

 RunE: func(cmd *cobra.Command, args []string) error {

 return join(cmd, args, cf)

 },

 }

 flagList := []string{ // 指定创世区块文件路径

 "blockpath",

 }

 attachFlags(joinCmd, flagList) // 更新到命令行选项集合

 return joinCmd

}

2.命令执行步骤

join子命令Peer节点加入应用通道的执行步骤如图3-3所示。

 [image:]

图3-3　join子命令Peer节点加入应用通道时序图

1）peer channel join经过Cobra组件解析后调用自定义执行函数join()，如代码清单3-35所示。该函数用于检查参数的合法性，调用InitCmdFactory()函数以获取通道命令工厂对象ChannelCmdFactory。

代码清单3-35　join()函数的源码示例

peer/channel/join.go文件

func join(cmd *cobra.Command, args []string, cf *ChannelCmdFactory) error {

 // 检查创世区块文件路径的合法性

 if genesisBlockPath == common.UndefinedParamValue {

 return errors.New("Must supply genesis block path")

 }

 var err error

 if cf == nil {

 // 获取ChannelCmdFactory通道命令工厂对象

 cf, err = InitCmdFactory(EndorserRequired, OrdererNotRequired)

 ……

 }

 return executeJoin(cf) // 执行join命令

}

2）接着，join()调用executeJoin()函数，将当前Peer节点加入指定应用通道，如代码清单3-36所示。

代码清单3-36　executeJoin()函数的源码示例

peer/channel/join.go文件

func executeJoin(cf *ChannelCmdFactory) (err error) {

 spec, err := getJoinCCSpec() // 创建链码描述规范对象

 ……

 // 创建链码调用规范对象

 invocation := &pb.ChaincodeInvocationSpec{ChaincodeSpec: spec}

 creator, err := cf.Signer.Serialize() // 序列化封装本地签名者身份实体信息为字节数组

 ……

 // 基于链码调用规范创建提案消息

 var prop *pb.Proposal

 prop, _, err = putils.CreateProposalFromCIS(pcommon.HeaderType_CONFIG, "", invocation, creator)

 ……

 // 对提案消息签名生成签名提案消息

 var signedProp *pb.SignedProposal

 signedProp, err = putils.GetSignedProposal(prop, cf.Signer)

 ……

 // 通过Endorser客户端发送签名提案消息到Endorser背书节点请求处理

 var proposalResp *pb.ProposalResponse

 proposalResp, err = cf.EndorserClient.ProcessProposal(context.Background(), signedProp)

 ……

 // 检查提案响应消息状态的合法性

 if proposalResp.Response.Status != 0 && proposalResp.Response.Status != 200 {

 return ProposalFailedErr(fmt.Sprintf("bad proposal response %d", proposalResp.Response.Status))

 }

 ……

}

executeJoin()函数先调用getJoinCCSpec()函数，读取创世区块文件获取创世区块字节数组gb，并创建链码描述规范对象（ChaincodeSpec类型）。该对象封装了链码调用信息以及输入参数，包括语言类型（GOLANG）、链码ChaincodeID结构对象（指明调用的链码名称为cscc，即CSCC配置管理系统链码）、链码调用输入参数对象（ChaincodeInput类型，包括参数列表，例如调用命令cscc.JoinChain、创世区块字节数组gb等）。

接着，executeJoin()函数构造签名提案消息。该函数先基于链码描述规范创建链码调用规范对象invocation（ChaincodeInvocationSpec类型），将本地签名者身份实体序列化封装为消息创建者creator字节数组，并基于invocation、creator等参数调用CreateProposalFromCIS()函数，创建提案消息（Proposal类型），指定通道头部类型为CONFIG以及chainID为空字符串，再将链码描述规范中的ChaincodeID对象序列化封装后添加到消息头部的Extension扩展字段中，以提供给Endorser背书节点及CSCC系统链码解析调用。然后，调用GetSignedProposal()函数添加签名信息，从而创建获得签名提案消息signedProp（SignedProposal类型）。

最后，executeJoin()函数通过Endorser背书服务客户端调用cf.EndorserClient.ProcessProposal()方法，将签名提案消息signedProp发送到本地默认的Endorser背书节点请求处理，进入Endorser背书处理流程（4.2节）。

3）Endorser背书节点接收到签名提案消息之后，请求CSCC系统链码容器（inprocContainer类型）调用该链码的Invoke()方法进行处理（core/scc/cscc/configure.go）。

CSCC系统链码的Invoke()方法解析出请求命令JoinChain，检查参数的合法性以及访问权限。该方法首先读取第2个参数args[1]，即创世区块字节数组，反序列化解析出创世区块对象block，并从block中解析获取Peer节点要加入的通道ID即cid，再调用validateConfigBlock()函数验证创世区块的合法性。接着，调用e.policyChecker.CheckPolicyNoChannel()函数，检查签名提案消息是否符合本地MSP上管理员的访问权限策略。如果通过了上述所有的检查，则调用joinChain(cid，block)函数，处理Peer节点加入指定通道cid的请求操作，如代码清单3-37所示。

代码清单3-37　CSCC系统链码Invoke()方法处理join命令消息的源码示例

core/scc/cscc/configure.go文件

func (e *PeerConfiger) Invoke(stub shim.ChaincodeStubInterface) pb.Response {

 ……

 // 获取签名提案消息

 sp, err := stub.GetSignedProposal()

 ……

 switch fname {

 case JoinChain: // 处理Peer节点加入应用通道命令消息

 if args[1] == nil {

 return shim.Error("Cannot join the channel <nil> configuration block provided")

 }

 block, err := utils.GetBlockFromBlockBytes(args[1]) // 解析获取创世区块

 ……

 cid, err := utils.GetChainIDFromBlock(block) // 解析获取链ID

 ……

 if err := validateConfigBlock(block); err != nil { // 验证创世区块的合法性

 ……

 }

 // 检查签名提案消息是否符合本地MSP上管理员权限策略

 if err = e.policyChecker.CheckPolicyNoChannel(mgmt.Admins, sp); err != nil {

 ……

 }

 return joinChain(cid, block) // 将Peer节点加入通道

 ……

 }

 ……

}

如代码清单3-38所示，joinChain()函数先调用peer.CreateChainFromBlock()函数，基于通道创世区块在本地Peer节点上创建指定通道的链结构，以正常接收该通道的账本区块，这也意味着Peer节点加入了指定通道。

代码清单3-38　joinChain()函数的源码示例

core/scc/cscc/configure.go文件

func joinChain(chainID string, block *common.Block) pb.Response {

 // 基于通道创世区块在本地节点上创建链结构，正常接收通道账本区块

 if err := peer.CreateChainFromBlock(block); err != nil {

 return shim.Error(err.Error())

 }

 peer.InitChain(chainID) // 初始化

 bevent, _, _, err := producer.CreateBlockEvents(block) // 创建区块事件

 if err != nil {

 cnflogger.Errorf("Error processing block events for block number [%d]: %s", block.Header.Number, err)

 } else {

 if err := producer.Send(bevent); err != nil { // 发送区块事件到订阅节点

 cnflogger.Errorf("Channel [%s] Error sending block event for block number [%d]: %s", chainID, block.Header.Number, err)

 }

 }

 // 返回执行成功的响应消息

 return shim.Success(nil)

}

如代码清单3-39所示，CreateChainFromBlock()函数先从创世区块中解析出通道ID（chainID）。接着，调用CreateLedger()函数创建Peer节点本地账本对象（kvLedger类型），包括该通道的账本数据存储对象（管理区块数据文件、隐私数据库、区块索引数据库等）、状态数据库、历史数据库等，并在封装后添加到全局变量openedLedgers字典中。然后，调用createChain()函数创建指定通道的链结构对象（chain类型），并添加到本地Peer节点的chains.list链结构字典中。最后，调用service.GetGossipService().InitializeChannel()方法（6.2节）初始化该通道（chainID）上的Gossip消息模块，启动组织上Leader主节点的Deliver服务实例，代表组织从Orderer节点获取并转发通道账本的区块数据。

代码清单3-39　CreateChainFromBlock()函数的源码示例

core/peer/peer.go文件

func CreateChainFromBlock(cb *common.Block) error {

 cid, err := utils.GetChainIDFromBlock(cb) // 从配置区块中解析获取通道ID（chainID）

 ……

 var l ledger.PeerLedger

 // 根据创世区块创建本地Peer节点账本

 if l, err = ledgermgmt.CreateLedger(cb); err != nil {

 return fmt.Errorf("Cannot create ledger from genesis block, due to %s", err)

 }

 // 创建新的通道链结构，并添加到链结构字典中

 return createChain(cid, l, cb)

}

接着，joinChain()函数调用peer.InitChain(chainID)函数，以初始化通道的链结构，在指定通道（chainID）上部署默认的系统链码，该过程类似于3.2.4节Peer节点启动过程中部署系统链码的过程（链ID为空字符串），区别在于部署系统链码时上下文对象context保存了交易模拟器，能够支持访问账本并记录模拟执行结果。

然后，joinChain()函数创建与发送区块事件。该函数先调用producer.Create-BlockEvents()函数，基于创世区块构造区块事件bevent（Event_Block类型），接着调用producer.Send(bevent)函数，将事件bevent发送到事件处理器的gEventProcessor.eventChannel通道中以请求处理。gEventProcessor会遍历关联事件类型的事件处理句柄列表，如果存在对象与远程Peer节点的连接会话并且没有过期，则调用该事件处理句柄的SendMessage()函数，将该事件消息发送给订阅事件的Peer节点（7.3.1节）。

最后，joinChain()函数将执行成功的响应消息返回给Endorser背书节点，并转发给请求客户端。

4）executeJoin()函数检查Endorser背书节点回复的提案响应消息处理结果，确认Peer节点已经加入指定通道。

至此，peer channel join命令执行结束。Peer节点加入指定应用通道，同时在本地创建关联通道的链结构对象，以正常接收该通道的账本数据。
3.3.4　获取区块命令fetch

1.命令概述

peer channel fetch命令用于向Orderer服务节点请求获取指定位置的区块。Orderer节点通过Deliver服务处理句柄接收区块请求消息，从本地指定通道的区块账本中获取指定的区块，并回复给请求客户端再写入到指定的区块文件中。

fetchconfig.go文件提供fetchCmd(cf*ChannelCmdFactory)函数，创建fetch子命令对象fetchCmd，如代码清单3-40所示，更新相关命令行选项集合，在Peer节点启动过程中利用Cobra组件注册到主命令上，以支持fetch命令的正常解析与运行，可以获取newest最新区块、oldest最旧区块、config配置区块以及number指定位置的区块，示例命令形式如下。

peer channel fetch oldest mychannel.block -o orderer.example.com:7050 -c mychannel

代码清单3-40　fetch子命令生成函数fetchCmd()的源码示例

peer/channel/fetchconfig.go文件

// fetch命令：获取指定区块并写入区块文件

func fetchCmd(cf *ChannelCmdFactory) *cobra.Command {

 fetchCmd := &cobra.Command{ // 构造fetch命令

 Use: "fetch <newest|oldest|config|(number)> [outputfile]",

 Short: "Fetch a block",

 Long: "Fetch a specified block, writing it to a file.",

 RunE: func(cmd *cobra.Command, args []string) error {

 return fetch(cmd, args, cf)

 },

 }

 flagList := []string{

 "channelID",

 }

 attachFlags(fetchCmd, flagList) // 更新命令行选项集合

 return fetchCmd

}

2.命令执行步骤

fetch子命令获取指定区块的执行步骤如图3-4所示。

 [image:]

图3-4　fetch子命令获取指定区块时序图

1）peer channel fetch<newest|oldest|config|(number)>[outputfile]经过Cobra组件解析后调用自定义执行函数fetch()，如代码清单3-41所示。该函数检查参数的合法性，接着调用InitCmdFactory()函数，获取通道命令工厂对象ChannelCmdFactory，再根据参数类型（newest|oldest|config|(number)）通过cf.DeliverClient客户端调用对应的getXXX()方法，向Orderer节点请求指定的区块。

代码清单3-41　fetch()函数的源码示例

peer/channel/fetchconfig.go文件

func fetch(cmd *cobra.Command, args []string, cf *ChannelCmdFactory) error {

 var err error

 if cf == nil {

 // 初始化命令工厂对象

 cf, err = InitCmdFactory(EndorserNotRequired, OrdererRequired)

 ……

 }

 ……

 var block *cb.Block

 switch args[0] {

 case "oldest": // 获取最旧的区块

 block, err = cf.DeliverClient.getOldestBlock()

 case "newest": // 获取最新的区块

 block, err = cf.DeliverClient.getNewestBlock()

 case "config": // 配置交易区块

 iBlock, err2 := cf.DeliverClient.getNewestBlock() // 获取最新区块

 ……

 // 获取最新配置区块索引区块号

 lc, err2 := utils.GetLastConfigIndexFromBlock(iBlock)

 ……

 block, err = cf.DeliverClient.getSpecifiedBlock(lc) // 获取指定区块号的区块

 default:

 num, err2 := strconv.Atoi(args[0]) // 解析指定区块号

 ……

 // 获取指定区块号的区块

 block, err = cf.DeliverClient.getSpecifiedBlock(uint64(num))

 }

 ……

 b, err := proto.Marshal(block) // 序列化区块数据为字节数组

 ……

 if len(args) == 1 {

 file = channelID + "_" + args[0] + ".block" // 生成区块文件名

 } else {

 file = args[1]

 }

 if err = ioutil.WriteFile(file, b, 0644); err != nil { // 写入区块文件

 return err

 }

 return nil

}

2）cf.DeliverClient客户端的getXXX()方法首先调用seekHelper()函数，构造指定位置的区块搜索信息结构对象（SeekInfo类型），并根据4种命令类型设置区块搜索范围（起始区块号与结束区块号相同），将区块搜索行为类型设置为SeekInfo_BLOCK_UNTIL_READY，如代码清单3-42所示。如果发现账本中还没有生成请求的区块，则Orderer节点阻塞等待直到该区块创建并提交完毕。接着，getXXX()方法调用CreateSignedEnvelopeWithTLSBinding()函数，创建签名的区块请求消息（Envelope类型，通道头部类型是CONFIG_UPDATE）。然后，通过cf.DeliverClient客户端的Send()方法将该消息发送给Orderer节点请求区块。

代码清单3-42　seekHelper()函数的源码示例

peer/channel/deliverclient.go文件

func seekHelper(

 chainID string,

 position *ab.SeekPosition,

 tlsCertHash []byte,

) *common.Envelope {

 seekInfo := &ab.SeekInfo{ // 构造区块搜索信息对象

 Start: position,

 Stop: position,

 Behavior: ab.SeekInfo_BLOCK_UNTIL_READY,

 }

 env, err := utils.CreateSignedEnvelopeWithTLSBinding(

 // 创建CONFIG_UPDATE类型的签名交易消息对象

 common.HeaderType_CONFIG_UPDATE, chainID, localmsp.NewSigner(),

 seekInfo, int32(0), uint64(0), tlsCertHash)

 ……

 return env

}

3）Orderer节点通过Deliver服务处理句柄接收到区块请求消息后，从本地区块账本中获取指定位置的区块，并封装成Deliver响应消息返回给请求节点（2.6节）。

4）同时，getXXX()方法调用r.readBlock()方法，通过cf.DeliverClient客户端的Recv()方法等待Deliver响应消息（区块消息或状态消息），检查错误后返回到fetch()函数继续处理。最后，将收到的区块写入指定的区块文件中。

至此，peer channel fetch命令执行完毕。
3.3.5　获取区块链信息getinfo

1.命令概述

peer channel getinfo命令用于向Endorser节点发送消息请求，以获取指定通道的区块链信息，通过QSCC系统链码查询指定应用通道账本的区块链信息对象（BlockchainInfo类型），封装了指定通道账本的区块链高度、当前区块头哈希值、前一个区块头哈希值等。

getinfo.go文件提供了getinfoCmd(cf*ChannelCmdFactory)函数，用于创建getinfo子命令对象getinfoCmd，更新相关命令行选项，在Peer节点启动过程中利用Cobra组件注册到主命令上，支持getinfo子命令的解析与执行，获取指定通道账本的区块链信息，如代码清单3-43所示，示例命令形式如下。

peer channel getinfo –c mychannel

代码清单3-43　getinfo子命令生成函数getinfoCmd()的源码示例

peer/channel/getinfo.go文件

func getinfoCmd(cf *ChannelCmdFactory) *cobra.Command {

 getinfoCmd := &cobra.Command{ // 定义getinfo命令

 Use: "getinfo",

 Short: "get blockchain information of a specified channel.",

 Long: "get blockchain information of a specified channel. Requires '-c'.",

 RunE: func(cmd *cobra.Command, args []string) error {

 return getinfo(cf)

 },

 }

 flagList := []string{

 "channelID",

 }

 attachFlags(getinfoCmd, flagList) // 更新到命令行选项集合

 return getinfoCmd

}

2.命令执行步骤

getinfo子命令获取指定通道账本上区块链信息的执行步骤如图3-5所示。

 [image:]

图3-5　getinfo子命令获取指定通道上的区块链信息时序图

1）peer channel getinfo经过Cobra组件解析后调用自定义的执行函数getinfo()，如代码清单3-44所示。该函数检查完参数的合法性，再调用InitCmdFactory()函数以获取通道命令工厂对象ChannelCmdFactory。

代码清单3-44　getinfo()函数的源码示例

peer/channel/getinfo.go文件

func getinfo(cf *ChannelCmdFactory) error {

 if channelID == common.UndefinedParamValue { // 检查通道ID合法性

 return errors.New("Must supply channel ID")

 }

 var err error

 if cf == nil {

 // 初始化ChannelCmdFactory通道命令工厂对象

 cf, err = InitCmdFactory(EndorserRequired, OrdererNotRequired)

 ……

 }

 client := &endorserClient{cf} // 创建Endorser背书服务客户端

 blockChainInfo, err := client.getBlockChainInfo() // 请求获取通道账本的区块链信息

 ……

 jsonBytes, err := json.Marshal(blockChainInfo) // 序列化blockChainInfo字节数组

 ……

}

2）接着，getinfo()函数通过Endorser背书服务客户端（endorserClient类型）调用client.getBlockChainInfo()方法，以获取指定通道账本的区块链信息，如代码清单3-45所示。

代码清单3-45　getBlockChainInfo()方法获取区块链信息的源码示例

peer/channel/getinfo.go文件

// 获取区块链信息

func (cc *endorserClient) getBlockChainInfo() (*cb.BlockchainInfo, error) {

 var err error

 // 构造获取区块链信息的链码调用规范对象

 invocation := &pb.ChaincodeInvocationSpec{

 ChaincodeSpec: &pb.ChaincodeSpec{ // 构造链码描述规范对象

 // 链码语言

 Type: pb.ChaincodeSpec_Type(pb.ChaincodeSpec_Type_value["GOLANG"]),

 ChaincodeId: &pb.ChaincodeID{Name: "qscc"}, // 调用链码名称

 Input: &pb.ChaincodeInput{Args: [][]byte{[]byte(qscc.GetChainInfo),

 　　　 []byte(channelID)}}, // 调用参数列表

 },

 }

 var prop *pb.Proposal

 c, _ := cc.cf.Signer.Serialize() // 序列化签名身份实体字节数组

 prop, _, err = utils.CreateProposalFromCIS(cb.HeaderType_ENDORSER_TRANSACTION, "", invocation, c) // 创建提案消息

 ……

 var signedProp *pb.SignedProposal

 signedProp, err = utils.GetSignedProposal(prop, cc.cf.Signer)// 创建签名提案消息

 ……

 // 通过EndorserClient客户端发送该签名提案消息到Endorser背书节点请求处理

 proposalResp, err := cc.cf.EndorserClient.ProcessProposal(context.Background(), signedProp) // 收到提案响应消息

 ……

 blockChainInfo := &cb.BlockchainInfo{}

 // 解析区块链消息到BlockchainInfo结构对象

 err = proto.Unmarshal(proposalResp.Response.Payload, blockChainInfo)

 ……

}

getBlockChainInfo()方法首先构造签名提案消息用于请求查询区块链信息。该函数创建请求消息的链码调用规范对象，封装了链码描述规范对象，该对象指定了链码语言类型（GOLANG）、调用的系统链码名称（qscc）以及输入参数列表（获取区块链信息的命令qscc.GetChainInfo、指定通道ID即channelID）等。接着，调用CreateProposalFromCIS()函数，基于链码调用规范对象创建提案消息，指明消息通道头部类型为ENDORSER_TRANSACTION以及链ID为空字符串。然后，调用GetSignedProposal()函数，构造签名提案消息signedProp（SignedProposal类型）。接着，getBlockChainInfo()方法通过Endorser背书服务客户端调用ProcessProposal()方法，发送该签名提案消息signedProp到本地默认的Endorser背书节点，进入Endorser背书处理流程（4.2节）。

3）Endorser背书节点接收到提案消息，请求QSCC查询管理系统链码容器调用其Invoke()方法（core/scc/qscc/query.go），以获取指定通道账本的区块链信息。

Invoke()方法首先按照正常流程检查请求消息的合法性与访问权限。该方法从消息中解析获取命令名称（fname）与链ID（cid），检查参数个数与命令类型等。接着，调用peer.GetLedger()函数，从Peer节点本地chains.list字典中获取指定通道（cid）的链结构对象，并获得本地Peer节点账本对象targetLedger（kvLedger类型）。然后，调用stub.GetSignedProposal()方法获取签名提案消息sp，再调用getACLResource(fname)方法以获取QSCC.GetChainInfo资源名称（默认对应通道读权限策略/Channel/Application/Readers），并调用aclmgmt.GetACLProvider().CheckACL()→defaultACLProvider.CheckACL()方法，检查签名提案消息sp是否满足指定资源的/Channel/Application/Readers读权限策略。

如果通过了上述检查，则Invoke()方法调用getChainInfo(targetLedger)→mgr.bcInfo.Load().(*common.BlockchainInfo)函数，即通过当前账本的区块文件管理器以原子操作的方式读取底层存储的区块链信息bcInfo（BlockchainInfo类型），并进行类型推断以检查对象类型的合法性。然后，将执行成功的消息及区块链信息打包返回给Endorser背书节点，并转发给请求客户端。

4）最后，getBlockChainInfo()函数继续分析Endorser背书节点返回的提案响应消息，将查询结果解析到区块链信息（BlockchainInfo类型）中，封装成JSON格式并打印输出。

至此，peer channel getinfo命令执行完毕。
3.3.6　获取已加入通道列表list

1.命令概述

peer channel list命令用于向Endorser背书节点发送请求，通过CSCC配置管理系统链码查询该Peer节点当前已经加入的所有应用通道列表。

list.go文件提供了listCmd(cf*ChannelCmdFactory)函数，用于创建list子命令对象listCmd，如代码清单3-46所示，在Peer节点启动过程中利用Cobra组件注册到主命令上，以支持list子命令的正常解析与执行，示例命令形式如下。

peer channel list

代码清单3-46　list子命令生成函数listCmd()的源码示例

peer/channel/list.go文件

// 定义peer channel list命令：获取Peer节点已经加入的所有应用通道列表

func listCmd(cf *ChannelCmdFactory) *cobra.Command {

 return &cobra.Command{

 Use: "list",

 Short: "List of channels peer has joined.",

 Long: "List of channels peer has joined.",

 RunE: func(cmd *cobra.Command, args []string) error {

 return list(cf)

 },

 }

}

2.命令执行步骤

list子命令获取Peer节点加入通道列表的执行步骤如图3-6所示。

 [image:]

图3-6　list子命令获取Peer节点加入通道列表时序图

1）peer channel list经过Cobra组件解析后调用自定义执行函数list()，如代码清单3-47所示。该函数先检查参数的合法性，接着调用InitCmdFactory()函数以获取通道命令工厂对象ChannelCmdFactory。

代码清单3-47　list()函数的源码示例

peer/channel/list.go文件

func list(cf *ChannelCmdFactory) error {

 var err error

 if cf == nil {

 // 初始化命令工厂对象

 cf, err = InitCmdFactory(EndorserRequired, OrdererNotRequired)

 ……

 }

 client := &endorserClient{cf}

 // 请求获取当前Peer节点加入的所有通道列表

 if channels, err := client.getChannels(); err != nil {

 return err

 } else {

 fmt.Println("Channels peers has joined: ")

 for _, channel := range channels { // 遍历获取的通道信息列表，打印通道ID

 fmt.Printf("%s\n", channel.ChannelId)

 }

 }

 return nil

}

2）接着，list()函数通过Endorser背书服务客户端调用getChannels()函数，获取Peer节点所加入的通道列表。

与getinfo命令处理流程类似，getChannels()函数首先构造签名提案消息。该函数首先创建链码调用规范对象，封装了链码描述规范对象，该对象指定了链码语言类型（GOLANG语言）、调用的系统链码名称（cscc）以及参数（cscc.GetChannels）等。接着，调用CreateProposalFromCIS()函数与GetSignedProposal()函数，创建签名提案消息signedProp（SignedProposal类型），并发送到本地默认的Endorser背书节点请求处理（4.2节）。

3）Endorser背书节点请求CSCC链码容器调用Invoke()方法，以获取当前Peer节点加入的通道列表。

Invoke()方法首先按照正常流程检查请求消息的合法性与访问权限。该方法先解析获取命令名称（fname），检查参数的个数与命令类型等合法性，接着获取签名提案消息sp，并调用e.policyChecker.CheckPolicyNoChannel(mgmt.Members，sp)方法，检查该签名提案消息sp是否满足MSP组件组织成员MEMBER角色身份的要求。

如果通过了上述检查，则Invoke()方法调用getChannels()→peer.GetChannelsInfo()函数，遍历Peer节点全局变量chains.list链结构字典，获取Peer节点加入通道信息列表。如代码清单3-48所示，该函数基于链结构对应的链ID创建通道信息对象（ChannelInfo类型），将其添加到通道信息列表channelInfoArray（[]*ChannelInfo类型）中。接着，将该列表结果打包成通道查询响应结果对象（ChannelQueryResponse类型），并序列化成字节数组cqrbytes后，再打包返回给Endorser背书节点，转发给请求客户端。

代码清单3-48　GetChannelsInfo()函数的源码示例

core/peer/peer.go文件

// 获取通道信息列表

func GetChannelsInfo() []*pb.ChannelInfo {

 var channelInfoArray []*pb.ChannelInfo // 用于保存通道信息

 chains.RLock()

 defer chains.RUnlock()

 for key := range chains.list { // 遍历当前Peer节点已经加入的所有通道对象

 channelInfo := &pb.ChannelInfo{ChannelId: key} // 封装链ID

 channelInfoArray = append(channelInfoArray, channelInfo)

 // 添加到通道信息列表中

 }

 return channelInfoArray

}

4）最后，list()函数检查Endorser背书节点回复的提案响应消息，解析到通道查询响应信息对象（ChannelQueryResponse类型）中，并输出打印所有的应用通道列表信息。

至此，peer channel list命令执行完毕。
3.3.7　签名配置交易文件signconfigtx

1.命令概述

peer channel signconfigtx用于对通道配置更新交易文件进行签名，并重新保存于该配置文件中。该命令属于本地操作，不需要设置Endorser背书客户端或Orderer服务客户端。

signconfigtx.go文件提供了signconfigtxCmd(cf*ChannelCmdFactory)函数，用于创建signconfigtx子命令对象signconfigtxCmd，如代码清单3-49所示，在Peer节点启动过程中利用Cobra组件注册到主命令上，以支持signconfigtx子命令的正常解析与运行，对配置文件进行签名和保存，示例命令形式如下。

peer channel signconfigtx –f ./mychannel.tx

代码清单3-49　signconfigtx子命令生成函数signconfigtxCmd()的源码示例

peer/channel/signconfigtx.go文件

// 定义signconfigtx命令：对通道配置交易文件进行签名并保存到文件

func signconfigtxCmd(cf *ChannelCmdFactory) *cobra.Command {

 signconfigtxCmd := &cobra.Command{

 Use: "signconfigtx",

 Short: "Signs a configtx update.",

 Long: "Signs the supplied configtx update file in place on the filesystem.

 Requires '-f'.",

 RunE: func(cmd *cobra.Command, args []string) error {

 return sign(cmd, args, cf)

 },

 }

 flagList := []string{

 "file",

 }

 attachFlags(signconfigtxCmd, flagList) // 更新到命令行选项集合

 return signconfigtxCmd

}

2.命令执行步骤

signconfigtx子命令对指定通道配置更新交易文件签名的执行步骤具体如下。

1）peer channel signconfigtx经过Cobra组件解析后调用自定义执行函数sign()，如代码清单3-50所示。该函数首先检查参数的合法性，接着调用InitCmdFactory()函数，以获取通道命令工厂对象ChannelCmdFactory。

代码清单3-50　sign()函数的源码示例

peer/channel/signconfigtx.go文件

func sign(cmd *cobra.Command, args []string, cf *ChannelCmdFactory) error {

 ……

 if cf == nil {

 // 创建命令工厂对象

 cf, err = InitCmdFactory(EndorserNotRequired, OrdererNotRequired)

 ……

 }

 fileData, err := ioutil.ReadFile(channelTxFile) // 读取通道配置交易文件

 ……

 ctxEnv, err := utils.UnmarshalEnvelope(fileData) // 解析配置交易Envelope结构

 对象

 ……

 sCtxEnv, err := sanityCheckAndSignConfigTx(ctxEnv) // 检查配置交易消息并签名

 ……

 sCtxEnvData := utils.MarshalOrPanic(sCtxEnv) // 序列化签名配置交易消息为字

 节数组

 return ioutil.WriteFile(channelTxFile, sCtxEnvData, 0660) // 写入文件

}

2）接着，sign()函数调用ReadFile()函数读取通道配置交易文件，解析到配置更新交易消息对象（Envelope类型）中，然后调用sanityCheckAndSignConfigTx()函数，检查消息格式的正确性与合法性，并对该消息进行签名。

3）最后，sign()函数将上述签名的配置更新交易消息序列化成字节数组，再写入到指定的文件。

sanityCheckAndSignConfigTx()函数负责检查消息格式的正确性与合法性，如果通过消息检查则对其进行签名，如代码清单3-51所示。

代码清单3-51　sanityCheckAndSignConfigTx()函数的源码示例

peer/channel/create.go文件

func sanityCheckAndSignConfigTx(envConfigUpdate *cb.Envelope) (*cb.Envelope, error) {

 payload, err := utils.ExtractPayload(envConfigUpdate) // 解析获取配置交易消息的消息

 // 负载

 ……

 // 检查消息负载的消息头部合法性

 if payload.Header == nil || payload.Header.ChannelHeader == nil {

 return nil, InvalidCreateTx("bad header")

 }

 // 解析通道头部

 ch, err := utils.UnmarshalChannelHeader(payload.Header.ChannelHeader)

 ……

 // 检查配置交易类型（CONFIG_UPDATE类型）

 if ch.Type != int32(cb.HeaderType_CONFIG_UPDATE) {

 return nil, InvalidCreateTx("bad type")

 }

 if ch.ChannelId == "" { // 检查消息通道头部的通道ID合法性

 return nil, InvalidCreateTx("empty channel id")

 }

 if channelID == "" { // 设置更新全局变量通道ID

 channelID = ch.ChannelId

 }

 if ch.ChannelId != channelID { // 检查两个通道ID是否相同

 return nil, InvalidCreateTx(fmt.Sprintf("mismatched channel ID %s != %s", ch.ChannelId, channelID))

 }

 configUpdateEnv, err := configtx.UnmarshalConfigUpdateEnvelope(payload.Data)//解析配置ConfigUpdateEnvelope结构

 ……

 signer := localsigner.NewSigner() // 创建新的本地签名者

 sigHeader, err := signer.NewSignatureHeader() // 创建新的签名头部

 ……

 configSig := &cb.ConfigSignature{ // 构造配置签名ConfigSignature结构

 SignatureHeader: utils.MarshalOrPanic(sigHeader),

 }

 // 对配置交易消息签名头部SignatureHeader域与配置交易消息ConfigUpdate域组合而成的字节数

 // 组进行签名

 configSig.Signature, err = signer.Sign(util.ConcatenateBytes(configSig.SignatureHeader, configUpdateEnv.ConfigUpdate))

 // 添加签名结果

 configUpdateEnv.Signatures = append(configUpdateEnv.Signatures, configSig)

 // 创建并返回签名的配置交易消息（Envelope类型）

 return utils.CreateSignedEnvelope(cb.HeaderType_CONFIG_UPDATE, channelID, signer, configUpdateEnv, 0, 0)

}

sanityCheckAndSignConfigTx()函数解析通道配置交易消息以获取其消息负载payload，并执行如下检查。

·消息负载头部与通道头部对象是否为nil。

·检查消息通道头部类型是否为CONFIG_UPDATE。

·检查消息通道头部通道ID（ch.ChannelId）的合法性。如果在命令行中没有指定通道ID，则默认将其设置为全局的变量通道ID（channelID）。

·检查消息通道头部的通道ID与命令行中指定的通道ID是否匹配。

如果通过上述消息检查，则sanityCheckAndSignConfigTx()函数继续对该消息进行签名。该函数首先从消息负载的payload.Data中解析出配置更新消息对象configUpdateEnv（ConfigUpdateEnvelope类型），同时，创建获取本地签名者实体及签名头部sigHeader，并构造配置交易消息签名configSig。（ConfigSignature类型，其SignatureHeader字段设置为本地签名头部sigHeader）接着，对configSig.SignatureHeader与configUpdateEnv.ConfigUpdate的组合信息进行签名，并将签名结果添加到配置更新消息的configUpdateEnv.Signatures字段中（保存签名集合）。然后，基于上述参数构造Envelope结构的签名配置交易消息对象（通道头部类型为CONFIG_UPDATE），并返回给sign()函数，再写入配置交易文件。

至此，peer channel signconfigtx命令执行完毕。
3.3.8　更新通道配置update

1.命令概述

peer channel update命令用于更新应用通道配置，将新的通道配置更新交易消息（消息通道头部类型为CONFIG_UPDATE）发送到Orderer节点，重新创建指定通道上的通道配置实体对象（Bundle类型），再更新原来的通道配置。例如，fabric-samples-1.1.0中eyfn.sh示例，添加org3新组织时构造的配置交易需要通道上所有组织管理员的签名后提交更新（update命令会添加本地签名），以验证是否满足修改通道配置的权限策略要求（默认为Admins的MAJORITY策略规则，即需要通道上超过一半以上组织管理员的有效签名）。

update.go文件提供了updateCmd(cf*ChannelCmdFactory)函数，用于创建update子命令对象udpateCmd，如代码清单3-52所示，更新相关命令行选项，在Peer节点启动过程中利用Cobra组件将update子命令注册到主命令上，以支持update子命令的正常解析与运行，示例命令形式如下。

peer channel update -o orderer.example.com:7050 -c mychannel -f ./channel-artifacts/Org1MSPanchors.tx

代码清单3-52　update子命令生成函数updateCmd()的源码示例

peer/channel/update.go文件

// 定义peer channel update命令：更新通道配置

func updateCmd(cf *ChannelCmdFactory) *cobra.Command {

 updateCmd := &cobra.Command{

 Use: "update",

 Short: "Send a configtx update.",

 Long: "Signs and sends the supplied configtx update file to the channel. Requires '-f', '-o', '-c'.",

 RunE: func(cmd *cobra.Command, args []string) error {

 return update(cmd, args, cf)

 },

 }

 flagList := []string{ // 定义命令行选项

 "channelID",

 "file",

 }

 attachFlags(updateCmd, flagList) // 更新到命令行选项集合

 return updateCmd

}

2.命令执行步骤

update子命令更新通道配置的执行步骤如图3-7所示。

 [image:]

图3-7　update子命令更新通道配置时序图

1）peer channel update经过Cobra组件解析后调用自定义执行函数update()。该函数首先检查通道ID、通道配置更新交易文件等参数的合法性，再调用InitCmdFactory()函数获取通道命令工厂对象ChannelCmdFactory，不需要设置Endorser背书服务客户端，而需要设置Orderer服务客户端。

2）update()函数先调用ioutil.ReadFile(channelTxFile)函数，读取指定的通道配置更新交易文件，解析为配置更新交易消息（CONFIG_UPDATE类型）。接着，调用sanityCheckAndSign ConfigTx()函数检查该消息，通过检查后对该消息进行签名。然后，调用cf.BroadcastFactory()函数创建broadcastClient客户端，通过该客户端将通道配置更新交易消息发送到Orderer节点请求处理，检查发送操作成功后结束运行。

3）Orderer节点通过Broadcast服务处理句柄的Handle()方法接收到该请求消息，利用对应通道的链支持对象进行初步过滤处理之后，被封装成新的通道配置交易消息（通道头部类型CONFIG），并转发给共识组件链对象请求排序。接着，共识组件链对象清空缓存的交易消息列表成批量交易集合，打包构造成新区块并提交到账本。然后，将过滤后的通道配置交易消息单独打包出块提交到账本，并在调用的WriteConfigBlock()函数中创建新的通道配置实体对象（Bundle类型），更新到关联通道的链支持对象中，从而完成应用通道的配置更新操作，如代码清单3-53所示。

代码清单3-53　WriteConfigBlock()函数更新通道配置的源码示例

orderer/common/multichannel/blockwriter.go文件

func (bw *BlockWriter) WriteConfigBlock(block *cb.Block, encodedMetadataValue []byte) {

 ……

 case int32(cb.HeaderType_CONFIG): // 更新应用通道配置

 configEnvelope, err := configtx.UnmarshalConfigEnvelope(payload.Data)

 ……

 err = bw.support.Validate(configEnvelope)

 ……

 // 基于新的通道配置创建指定通道配置实体对象

 bundle, err := bw.support.CreateBundle(chdr.ChannelId, configEnvelope.Config)

 ……

 bw.support.Update(bundle) // 更新通道配置实体对象

 ……

}

4）实际上，该配置区块分发到该组织的所有节点后交由本地的Committer记账节点验证交易，如果发现该交易消息为HeaderType_CONFIG类型，则利用关联链结构上的链支持对象执行Apply()方法（5.3.1节），检查其合法性与修改权限后更新到本地的通道配置上，并自动执行默认的回调函数（6.2.2节），以更新全局变量mspMap字典中当前新链上的MSP管理器，支持验证通道新组织的节点身份。同时，在将区块提交账本前执行preCommit()→lc.eventer()事件回调函数，更新该链结构中的最新配置区块。

至此，peer channel update命令执行结束，Orderer节点更新了指定的应用通道配置。
3.4　peer chaincode链码子命令

chaincode目录中的命令模块源码实现了peer chaincoe子命令功能，具体如表3-9所示。

表3-9　chaincode源码文件功能列表

 [image:]

本节将先分析peer chaincode命令执行函数的通用处理流程，接着逐个分析每个chaincode链码子命令的执行过程。
3.4.1　定义注册chaincode子命令

1.概述

chaincode.go文件定义了chaincode子命令、相关变量及命令行选项集合等，在系统加载chaincode包时调用初始化函数init()，执行resetFlags()函数重置相关命令行选项。同时，在Peer节点启动过程中利用Cobra组件注册所有chaincode链码子命令，以支持chaincode链码子命令的解析与正常执行，如代码清单3-54所示。

代码清单3-54　chaincode子命令定义与注册的源码示例

peer/chaincode/chaincode.go文件

……

// 基于Cobra组件注册chaincode链码子命令

func Cmd(cf *ChaincodeCmdFactory) *cobra.Command {

 addFlags(chaincodeCmd) // 设置添加命令选项集合

 chaincodeCmd.AddCommand(installCmd(cf)) // 安装链码命令

 chaincodeCmd.AddCommand(instantiateCmd(cf)) // 实例化链码命令

 chaincodeCmd.AddCommand(invokeCmd(cf)) // 调用链码命令

 chaincodeCmd.AddCommand(packageCmd(cf, nil)) // 打包链码命令

 chaincodeCmd.AddCommand(queryCmd(cf)) // 查询链码命令

 chaincodeCmd.AddCommand(signpackageCmd(cf)) // 签名链码包命令

 chaincodeCmd.AddCommand(upgradeCmd(cf)) // 升级链码命令

 chaincodeCmd.AddCommand(listCmd(cf)) // 获取链码列表命令

 return chaincodeCmd

}

……

// 定义chaincode命令对象

var chaincodeCmd = &cobra.Command{

 Use: chainFuncName,

 Short: fmt.Sprint(shortDes),

 Long: fmt.Sprint(longDes),

 PersistentPreRun: common.SetOrdererEnv, // 执行函数

}

……

与channel通道子命令类似，peer chaincode链码子命令在定义chaincodeCmd命令时调用addFlags()函数，用于将Orderer相关配置变量绑定到定义的命令行选项参数上，并在解析执行chaincodeCmd命令时调用自定义的PersistentPreRun()执行函数。该函数调用SetOrdererEnv()函数以解析命令行选项中的Orderer相关配置项，并绑定到Viper组件中，如表3-6所示。

peer chaincode链码子命令接着调用RunE()执行函数。该函数首先检查参数的合法性，再调用InitCmdFactory(isEndorserRequired，isOrdererRequired bool)函数（peer/chaincode/common.go），以获取链码命令工厂对象（ChaincodeCmdFactory类型），如代码清单3-55所示。该对象封装了链码命令相关的服务客户端以及本地签名者实体。其中，参数isEndorser-Required可根据命令指明是否需要设置Endorser背书服务客户端，以用于与Endorser背书节点通信请求处理。参数isOrdererRequired可根据命令指明是否需要设置Broadcast交易广播服务客户端，以用于与Orderer节点通信请求交易排序等。其中，chaincode子命令的InitCmdFactory()函数参数配置列表如表3-10所示。

表3-10　chaincode子命令InitCmdFactory()函数参数配置列表

 [image:]

代码清单3-55　ChaincodeCmdFactory类型与InitCmdFactory()函数的源码示例

peer/chaincode/common.go文件

// 链码命令工厂

type ChaincodeCmdFactory struct {

 EndorserClient pb.EndorserClient // EndorserClient背书服务客户端

 Signer msp.SigningIdentity // 本地签名者实体

 BroadcastClient common.BroadcastClient // BroadcastClient交易广播服务客户端

}

// 初始化命令工厂对象

func InitCmdFactory(isEndorserRequired, isOrdererRequired bool) (*ChaincodeCmdFactory, error) {

 var err error

 var endorserClient pb.EndorserClient

 if isEndorserRequired {

 // 构造获取Endorser背书节点客户端

 endorserClient, err = common.GetEndorserClientFnc()

 ……

 }

 signer, err := common.GetDefaultSignerFnc() //获取签名者实体

 ……

 var broadcastClient common.BroadcastClient

 if isOrdererRequired {

 if len(common.OrderingEndpoint) == 0 { // 检查是否配置了Orderer节点

 // 获取指定通道上最新配置的Orderer节点列表

 orderingEndpoints, err := common.GetOrdererEndpointOfChainFnc(channelID, signer, endorserClient)

 ……

 if len(orderingEndpoints) == 0 {

 return nil, fmt.Errorf("Error no orderer endpoint got for %s", channelID)

 }

 logger.Infof("Get chain(%s) orderer endpoint: %s", channelID, orderingEndpoints[0])

 // 将第1个Orderer节点设置为指定Orderer服务节点地址

 viper.Set("orderer.address", orderingEndpoints[0])

 }

 // 获取Broadcast交易广播服务客户端

 broadcastClient, err = common.GetBroadcastClientFnc()

 ……

 }

 return &ChaincodeCmdFactory{ // 基于上述参数构造ChaincodeCmdFactory链码命令工厂对象

 EndorserClient: endorserClient,

 Signer: signer,

 BroadcastClient: broadcastClient,

 }, nil

}

如果参数isEndorserRequired为true，则InitCmdFactory()函数调用common.GetEndorser-ClientFnc()函数，实际上是通过pb.NewEndorserClient()函数创建Endorser背书客户端（endorserClient类型），Peer节点采用CLI命令行终端时会默认将自身Peer节点作为Endorser背书节点。Fabric 1.2以后增加了peerAddresses、waitForEvent等命令行选项，分别指定Peer节点地址列表提供事件服务与是否开启等待区块事件的标志位。InitCmdFactory()函数会根据peerAddresses列表及其TLS证书列表构造对应Peer节点的区块事件服务客户端列表以及Endorser背书服务客户端列表，并设置到链码命令工厂对象的DeliverClients字段与EndorserClients字段上。

接着，InitCmdFactory()通过common.GetDefaultSignerFnc()→common.GetDefaultSigner()函数，获取本地默认的签名者实体signer。

如果参数isOrdererRequired为true，则InitCmdFactory()函数首先获取Orderer服务节点地址，即调用common.GetOrdererEndpointOfChainFnc()→GetOrdererEndpointOfChain()函数，向Endorser背书节点发送签名提案消息，请求调用CSCC系统链码中的GetConfig Block命令，以获取该通道的最新配置区块block。接着，基于该区块构造对应的应用通道配置实体对象bundle，通过调用bundle.ChannelConfig().OrdererAddresses()方法获取通道配置中的Orderer服务节点列表orderingEndpoints。然后，通过Viper组件调用viper.Set("orderer.address"，orderingEndpoints[0])方法，将第1个Orderer服务节点设置到Orderer服务节点地址配置项orderer.address中。这样，InitCmdFactory()函数就能调用common.GetBroadcastClientFnc()→oc.Broadcast()函数，基于Viper组件获取Orderer服务节点配置，并创建Broadcast交易广播客户端（broadcastClient类型，包含atomicBroadcastClient结构客户端对象，实现了AtomicBroadcastClient接口），默认连接上述地址orderer.address对应的Orderer服务节点请求排序服务。

最后，InitCmdFactory()函数构造链码命令工厂对象（ChaincodeCmdFactory类型），封装指定的服务客户端endorserClient、broadcastClient以及本地签名者实体signer。

2.命令处理流程

与peer channel通道子命令类似，peer chaincode链码子命令的定义与处理流程如图3-8所示。在peer node start启动过程中注册chaincode链码子命令结构到主命令上，Cobra组件可解析用户命令，调用命令定义的RunE()执行函数。通常，先调用InitCmdFactory()函数，初始化链码命令工厂对象，根据配置参数创建Endorser背书服务客户端与Orderer排序服务客户端对象，然后执行子命令的具体处理流程，其中说明如下。

·与Endorser背书节点进行交互。这类链码子命令首先构造签名提案消息（SignedProposal类型），设置请求调用的系统链码等参数。接着，通过endorserClient客户端调用ProcessProposal()服务接口，将该消息发送给本地默认的Endorser背书节点请求处理，进入Endorser背书处理流程（4.2节）。这类命令包括install、instantiate、invoke、list、query、upgrade等。

·与Orderer服务节点进行交互。这类链码子命令首先构造交易消息对象（Envelope类型），通过broadcastClient客户端将该消息发送给Orderer节点请求处理，进入Orderer节点的交易排序流程（2.5节）。这类命令包括instantiate、invoke、upgrade等。

·本地直接执行链码打包及其签名命令，包括package和signpackage等。

 [image:]

图3-8　peer chaincode链码子命令的定义与处理流程示意图
3.4.2　安装链码命令install

1.命令概述

peer chaincode install子命令可基于package/signpackage打包的链码安装包文件解析获取链码部署规范或者封装了签名链码部署规范的Envelope结构对象，或基于命令行参数构造链码部署规范，再通过LSCC系统链码请求安装到链码所有者Endorser背书节点上，并保存在指定目录（默认为/var/hyperledger/production/chaincodes/）下，同时以name.version命名链码包文件。注意，安装链码不需要绑定具体的通道链结构，并且不会将相关数据记录到通道账本中。因此，多个通道可以共享本地节点上同一个已安装的链码包文件。同时，不是链码所有者的节点应无权成为执行链码的Endorser背书节点。另外，安装链码需要组织管理员身份权限。

install.go文件提供了installCmd(cf*ChaincodeCmdFactory)函数，用于创建install子命令对象installCmd，以及更新命令行选项集合，如代码清单3-56所示，示例命令形式如下。

peer chaincode install -n mycc -v 1.0 -p github.com/hyperledger/fabric/examples/chaincode/go/chaincode_example02

代码清单3-56　install子命令installCmd()函数的源码示例

peer/chaincode/install.go文件

// 创建install子命令用于安装链码

func installCmd(cf *ChaincodeCmdFactory) *cobra.Command {

 chaincodeInstallCmd = &cobra.Command{ // 定义install命令

 Use: "install",

 Short: fmt.Sprint(installDesc),

 Long: fmt.Sprint(installDesc),

 ValidArgs: []string{"1"},

 RunE: func(cmd *cobra.Command, args []string) error {

 var ccpackfile string

 if len(args) > 0 {

 ccpackfile = args[0] // 链码包的源文件路径（相对路径）

 }

 return chaincodeInstall(cmd, ccpackfile, cf) // 调用执行函数

 },

 }

 flagList := []string{ // 设置install子命令标志选项

 "lang", // 链码语言

 "ctor", // 链码调用参数，JSON格式，默认{}

 "path", // 链码源文件路径

 "name", // 链码名称

 "version", // 版本信息

 }

 attachFlags(chaincodeInstallCmd, flagList) // 更新到命令行选项集合

 return chaincodeInstallCmd // 返回install子命令完成子命令注册

}

2.命令执行步骤

install子命令安装链码的执行步骤如图3-9所示。

1）peer chaincode install经过Cobra组件解析后调用自定义执行函数chaincodeInstall()，如代码清单3-57所示。该函数首先检查参数的合法性，再调用InitCmdFactory()函数以获取链码命令工厂对象（ChaincodeCmdFactory类型）。该对象负责初始化Endorser背书服务客户端、本地签名者实体对象Signer等。其中，install命令需要设置Endorser背书服务客户端，而不需要设置Broadcast交易广播消息服务客户端。

 [image:]

图3-9　install子命令安装链码时序图

代码清单3-57　chaincodeInstall()函数的源码示例

peer/chaincode/install.go文件

func chaincodeInstall(cmd *cobra.Command, ccpackfile string, cf *ChaincodeCmdFactory) error {

 var err error

 if cf == nil {

 cf, err = InitCmdFactory(true, false) // 初始化链码命令工厂对象

 ……

 }

 var ccpackmsg proto.Message

 // 检查是否存在指定链码包文件路径

 if ccpackfile == "" { // 若未指定链码包文件路径，则根据命令行参数构造链码部署规范

 // 检查链码包文件路径、链码版本与链码名称参数的合法性

 if chaincodePath == common.UndefinedParamValue || chaincodeVersion == common.UndefinedParamValue || chaincodeName == common.UndefinedParamValue {

 return fmt.Errorf("Must supply value for %s name, path and version parameters.", chainFuncName)

 }

 // 构造链码部署规范

 ccpackmsg, err = genChaincodeDeploymentSpec(cmd, chaincodeName, chaincodeVersion)

 ……

 } else {

 var cds *pb.ChaincodeDeploymentSpec

 // ccpackmsg是CDSPackage类型返回的链码部署规范或SignedCDSPackage类型返回的

 // Envelope结构对象

 ccpackmsg, cds, err = getPackageFromFile(ccpackfile)

 ……

 // 从链码部署规范中获取链码名称与链码版本

 cName := cds.ChaincodeSpec.ChaincodeId.Name

 cVersion := cds.ChaincodeSpec.ChaincodeId.Version

 // 检查链码名称与链码版本的合法性

 if chaincodeName != "" && chaincodeName != cName { // 检查用户提供的链码名称是否匹配

 return fmt.Errorf("chaincode name %s does not match name %s in package", chaincodeName, cName)

 }

 // 检查用户提供的链码版本是否匹配

 if chaincodeVersion != "" && chaincodeVersion != cVersion {

 return fmt.Errorf("chaincode version %s does not match version %s in packages", chaincodeVersion, cVersion)

 }

 }

 // 安装链码到Peer节点（默认操作的Endorser背书节点）指定的文件位置上

 err = install(ccpackmsg, cf)

 return err

}

2）chaincodeInstall()函数首先检查指定的链码包文件路径ccpackfile是否存在，以决定创建链码包消息ccpackmsg的方式。

如果用户指定了ccpackfile链码包文件路径（不为空字符串），则chaincodeInstall()函数调用getPackageFromFile(ccpackfile)函数，从本地文件系统中读取该链码包文件。接着，调用GetCCPackage()函数，从链码包字节数组中提取有效的链码包对象ccpack（CDSPackage类型或SignedCDSPackage类型），并依次调用CDSPackage类型与SignedCDSPackage类型的InitFromBuffer()方法，尝试解析获取其包含的链码包消息ccpackmsg，即链码部署规范对象（包含源码、版本、名称等）或者封装了签名链码部署规范（SignedChaincode DeploymentSpec类型）的Envelope结构对象（包含链码实例化策略、所有者签名列表等）。最后，检查链码包信息的合法性，即检查上述对象封装的链码部署规范中链码描述规范对象（ChaincodeSpec类型）包含的链码名称cName与链码版本cVersion，判断其是否与用户提供的链码名称及版本是否相同（非空字符串）。

如果用户没有指定ccpackfile链码包文件路径（空字符串），则chaincodeInstall()函数解析命令行参数并构造链码部署规范对象，作为链码包消息ccpackmsg。该函数首先检查链码命令行参数的有效性，并调用ChaincodePackageExists()函数，检查指定的链码安装文件（/var/hyperledger/production/chaincodes/name.version）是否已经存在。如果已经存在该文件，则不需要重复安装。否则，调用genChaincodeDeploymentSpec()→getChaincodeSpec()函数，构造链码描述规范对象spec（ChaincodeSpec类型），指定链码语言类型（如GOLANG）、链码ChaincodeID结构（包含链码源码路径、链码名称、链码版本）、链码输入参数列表等。然后，调用getChaincodeDeploymentSpec(spec，true)函数，基于上述参数构造链码部署规范对象，检查是否处于非开发模式（chaincode.mode默认配置不是“dev”开发模式，而是“net”），并且还需要设置链码压缩包（crtPkg标志位为true），具体可分为如下两种情况。

·如果不满足上述指定模式，则getChaincodeDeploymentSpec()函数基于链码描述规范对象构造链码部署规范，并保持CodePackage字段的链码代码包字节数组为空。

·（默认情况）否则，getChaincodeDeploymentSpec()函数调用checkSpec()函数，首先检查链码描述规范对象的合法性，即解析获取链码描述规范关联的链码Platform平台对象（Go、Node.js等），再调用ValidateSpec()函数检查链码描述规范spec中链码路径的合法性等。接着，检查通过后调用container.GetChaincodePackageBytes()函数，实际上最终调用的是相关平台的platform.GetDeploymentPayload()方法，以获取链码容器的链码压缩包codePackageBytes，如Golang语言平台会将链码相关的源码文件及其依赖文件（打包到链码源码路径下vendor目录中，过滤掉$GOROOT和项目提供的库，注意打包时依赖库都必须已经安装在指定源码目录下如$GOPATH/src）、CouchDB索引文件等打包封装为.tar.gz格式的二进制数据，再将该对象设置到链码部署规范的CodePackage字段上。最后，基于链码描述规范对象spec与codePackageBytes构造链码部署规范对象并返回。

3）接着，chaincodeInstall()函数调用install()函数，基于链码包消息ccpackmsg构造封装了链码部署规范的签名提案消息（SignedProposal类型，通道头部类型为ENDORSER_TRANSACTION），并发送给Endorser背书节点请求将链码包保存到指定文件位置上，如代码清单3-58所示。

代码清单3-58　install()函数的源码示例

peer/chaincode/install.go文件

// 安装链码到Peer节点上的指定文件位置。

func install(msg proto.Message, cf *ChaincodeCmdFactory) error {

 creator, err := cf.Signer.Serialize() // 获取MSP签名者

 ……

 // 创建提案消息，封装install安装命令

 prop, _, err := utils.CreateInstallProposalFromCDS(msg, creator)

 ……

 var signedProp *pb.SignedProposal

 signedProp, err = utils.GetSignedProposal(prop, cf.Signer) // 创建签名提案消息

 ……

 // 通过EndorserClient客户端提交签名提案消息到Endorser背书节点请求处理

 proposalResponse, err := cf.EndorserClient.ProcessProposal(context.Background(), signedProp)

 ……

 return nil

}

install()函数先调用CreateInstallProposalFromCDS()函数，基于链码包消息ccpackmsg和本地签名者实体creator构造链码调用规范，提供给LSCC系统链码调用。该对象包含链码描述规范，封装了链码语言（GOLANG类型）、调用的系统链码名称（lscc）以及链码输入参数（“install”子命令、链码包消息ccpackmsg字节数组等），注意此时链ID为空字符串。

接着，调用CreateProposalFromCIS()函数，基于链码调用规范对象创建提案消息（Proposal类型，通道头部类型是ENDORSER_TRANSACTION），并指定交易ID为随机数nonce和消息创建者身份实体creator组合后的哈希值（SHA256哈希函数），可以唯一标识该交易对象。

然后，调用utils.GetSignedProposal()函数，通过MSP本地签名者实体cf.Signer对提案消息进行签名，创建签名提案消息（SignedProposal类型）。

最后，通过EndorserClient客户端调用ProcessProposal()服务接口，将该消息提交到本地默认的Endorser背书节点请求处理，进入Endorser背书处理流程（4.2节）。

4）Endorser背书节点检查签名提案消息的合法性之后，请求LSCC系统链码容器调用Invoke()方法以安装链码（core/scc/lscc/lscc.go），如代码清单3-59所示。

代码清单3-59　Invoke()方法处理install链码命令的源码示例

core/scc/lscc/lscc.go文件

func (lscc *lifeCycleSysCC) Invoke(stub shim.ChaincodeStubInterface) pb.Response {

 args := stub.GetArgs() // 获取参数列表

 if len(args) < 1 {

 return shim.Error(InvalidArgsLenErr(len(args)).Error())

 }

 function := string(args[0]) // 获取常用命令名称

 sp, err := stub.GetSignedProposal() // 获取签名提案消息

 ……

 switch function {

 case INSTALL: // 安装链码

 if len(args) < 2 { // 检查参数个数

 return shim.Error(InvalidArgsLenErr(len(args)).Error())

 }

 // 验证是否满足Admins策略

 if err = lscc.policyChecker.CheckPolicyNoChannel(mgmt.Admins, sp); err != nil {

 return shim.Error(fmt.Sprintf("Authorization for INSTALL has been denied (error-%s)", err))

 }

 depSpec := args[1] // 获取链码部署规范对象

 err := lscc.executeInstall(stub, depSpec) // 执行安装链码操作

 if err != nil {

 return shim.Error(err.Error())

 }

 return shim.Success([]byte("OK")) // 返回成功

 ……

 }

 ……

}

LSCC系统链码的Invoke()方法首先执行正常的消息格式检查，提取签名提案消息，处理INSTALL类型安装链码命令的请求。该方法先获取链码参数列表args，实际上就是链码调用规范中链码描述规范的Input.Args，包含指定命令（“install”）和链码包消息ccpackmsg字节数组，并检查参数个数的合法性（不少于2个）。接着，解析指定命令function与签名提案消息sp，并根据function分类执行操作。对于INSTALL类型（“install”），先调用lscc.policyChecker.CheckPolicyNoChannel(mgmt.Admins，sp)方法，验证签名提案消息sp是否满足本地所属MSP上的组织管理员角色身份。如果通过了检查，则取出第2个参数args[1]设为depSpec，即链码包消息ccpackmsg字节数组，实际上包含了链码部署规范对象或者封装了签名链码部署规范的Envelope结构对象。然后，调用lscc.executeInstall()方法，正式执行链码安装操作。

其中，lscc.executeInstall()方法先调用ccprovider.GetCCPackage()函数，基于ccbytes字节数组（即链码包消息depSpec参数）分别尝试调用cccdspack.InitFromBuffer()方法与ccscdspack.InitFromBuffer()方法，以正确解析出链码包对象ccpack（CDSPackage类型或者SignedCDSPackage类型）。接着，调用ccpack.GetDepSpec()方法解析出包含的链码部署规范对象，并调用lscc.isValidChaincodeName()方法与lscc.isValidChaincodeVersion()方法，分别检查链码部署规范对象中链码名称与链码版本的合法性（不为空字符串且符合命名规范）。然后，基于链码包ccpack调用ccprovider.ExtractStatedbArtifactsFromCCPackage()方法，基于cds.CodePackage链码代码包对象过滤出路径前缀含有"META-INF/statedb/"字符串的文件，即提取出CouchDB状态数据库的索引文件集合（*.json文件，启用CouchDB数据库的情况下），验证文件元数据的合法性后构造链码定义对象（ChaincodeDefinition类型，封装了链码名称、版本以及哈希值标识ID），并调用cceventmgmt.GetMgr().Handle ChaincodeInstall()方法基于链码事件管理器处理安装链码操作。Committer记账节点在处理部署链码等操作（保存lscc名字空间中新的链码数据对象等）提交账本前，会更新链码事件管理器的最新部署链码字典latestChaincodeDeploys以及CouchDB状态数据库索引信息。因此，上述HandleChaincodeInstall()方法遍历当前注册的所有链码生命周期事件监听器（创建kvLedger账本对象时注册，实际上此处只是负责提供已注册的关联链ID即chainid），调用isChaincodePresentInLatestDeploys()方法，基于该字典获取指定通道chainid上的链码定义对象列表ccDefs（[]*ChaincodeDefinition类型），并遍历该列表依次比较链码名称、链码版本与哈希值ID。如果没有找到匹配的对象，则继续执行m.infoProvider.IsChaincodeDeployed()方法，构造账本查询执行器从本地指定通道账本的lscc名字空间中获取对应的链码数据对象，并比较链码版本与哈希值ID。如果匹配到正确的对象，则说明确实已经实例化了该链码，并继续调用链码事件管理器Mgr的invokeHandler()listener.HandleChaincodeDeploy()方法，将基于安装链码参数构造的链码定义对象更新到当前已部署链码的状态数据库（如CouchDB）中以建立索引。否则，不执行任何操作。正常情况下，CouchDB公共数据索引文件分布在链码的META-INF/statedb/couchdb/indexes目录下，隐私数据集合的索引文件存放在链码的META-INF/statedb/couchdb/collections/<collection_name>/indexes目录下，并且使用.json文件定义JSON格式的索引信息，引用CouchDB索引的JSON语法（http://docs.couchdb.org/en/2.1.1/api/database/find.html#db-index），Fabric自带示例marbles02中的索引文件indexOwner.json定义了如下格式的索引。

{

"index":{

 "fields":[# 索引字段

 "docType",

 "owner"

]

},

"ddoc":"indexOwnerDoc", # 索引文档名称

"name":"indexOwner", # 索引名称

"type":"json" # json类型

}

实际上，marbles02中还定义了关键的marble类型数据结构，如下所示。

type marble struct {

 ObjectType string `json:"docType"`

 Name string `json:"name"`

 Color string `json:"color"`

 Size int `json:"size"`

 Owner string `json:"owner"`

}

因此，该索引文件定义了对ObjectType与Owner字段建立索引，在安装与实例化链码marbles02之后，正常情况下可以执行如下命令，查询“docType”为“marble”且“owner”为“tom”的所有者资产情况，实际上是调用了queryMarblesByOwner()方法，如代码清单3-60所示，通过执行拼接的查询命令语句，利用建立的索引字段来加速查询效率（空间换时间）。如果没有合适的索引，那么在大数据量的情况下可能会触发查询等操作超时问题。

peer chaincode query -C mychannel -n marbles -c '{"Args":["queryMarblesByOwner","tom"]}'

代码清单3-60　queryMarblesByOwner()方法的源码示例

examples/chaincode/go/marbles02/marbles_chaincode.go文件

func (t *SimpleChaincode) queryMarblesByOwner(stub shim.ChaincodeStubInterface, args []string) pb.Response {

 // 0

 // "bob"

 if len(args) < 1 {

 return shim.Error("Incorrect number of arguments. Expecting 1")

 }

 owner := strings.ToLower(args[0])

 queryString := fmt.Sprintf("{\"selector\":{\"docType\":\"marble\",\"owner\":\"%s\"}}", owner)

 queryResults, err := getQueryResultForQueryString(stub, queryString)

 if err != nil {

 return shim.Error(err.Error())

 }

 return shim.Success(queryResults)

}

接着，lscc.executeInstall()方法调用lscc.support.PutChaincodeToLocalStorage(ccpack)函数，检查链码包对象ccpack（CDSPackage类型或SignedCDSPackage类型）的属性字段与安装路径的合法性（不为nil），再调用ioutil.WriteFile()函数，将链码包数据ccpack.buf写入指定路径的链码安装文件中（默认为/var/hyperledger/production/chaincodes/name.version）。

然后，lscc.executeInstall()方法返回LSCC系统链码的Invoke()方法，继续调用shim.Success([]byte("OK"))方法，即构造链码执行结果（Response类型）再返回给链码容器侧的handler.cc.Invoke(stub)方法，并在执行完毕时回复ChaincodeMessage_COMPLETE类型链码消息给Peer侧，通知链码调用执行完毕。

同时，Peer侧接收到该链码执行结果消息，检查合法后若处于ready状态，则调用handler.notify()方法，将该链码执行结果消息发送到交易上下文对象的响应通知通道tctx.responseNotifier中，以通知外层的theChaincodeSupport.Execute()方法已经完成链码调用操作，并依次返回e.s.Execute()→callChaincode()→simulateProposal()→ProcessProposal()方法，不需要对模拟执行结果背书签名（链ID为空字符串）。

5）Endorser背书节点继续将链码执行结果封装为提案响应消息（ProposalResponse类型，封装了模拟执行成功或失败的结果）回复给请求客户端。install()函数接收到链码执行结果消息之后，检查到消息错误后结束命令执行。

至此，peer chaincode install命令执行结束。需要注意的是，安装链码只能针对单个节点。因此，用户通常需要在所有执行链码的Endorser背书节点上都安装链码。
3.4.3　实例化链码命令instantiate

1.命令概述

peer chaincode instantiate子命令可用于在指定应用通道上实例化（部署）已安装的用户链码，需要指定具体的通道ID或链ID。该命令将请求消息发送给Endorser背书节点，先通过LSCC系统链码将实例化链码数据（包括ChaincodeData结构链码数据对象、链码隐私数据集合配置信息等）保存到指定通道账本的状态数据库（lscc名称空间）中。接着，在Peer节点上创建并启动Docker容器，调用链码的Init()方法以执行初始化操作，提供正常的链码容器执行环境与链码服务调用，以用于模拟执行交易提案。注意，系统链码是在Peer节点启动或加入通道时默认自动部署的。链码实例化时可以通过“-P”命令行选项参数指定链码背书策略，以指明交易背书的合法条件，从而在Committer记账节点提交到账本之前执行VSCC以验证背书信息的合法性，即是否满足实例化链码时指定的背书策略。默认的链码实例化策略要求链码创建者必须具有通道组织的管理员身份，会在利用LSCC链码添加链码数据对象到账本之前与验证交易阶段进行检查，即验证消息创建者的签名数据（SignedData类型）是否符合实例化策略，其中，实例化策略可以在打包链码时通过-i命令行选项指定（可选）。

另外，同一个通道上的Peer节点只需要执行一次实例化（部署）链码操作，通过交易排序出块广播到通道内的其他Peer节点账本上，其他Peer节点可以直接执行调用链码、查询链码等操作请求。不同通道都需要对相同的链码对象执行一次实例化（部署）链码操作，因为不同通道的实例化链码数据保存在不同通道的账本数据库上（以链ID/账本ID实现逻辑隔离）。但是，同一个Peer节点上的链码容器是共享的，不会重复启动相同链码名称与版本的链码容器。注意，该命令使用--collections-config选项指定隐私数据集合配置文件（JSON格式）。

instantiate.go文件提供了instantiateCmd(cf*ChaincodeCmdFactory)函数，用于创建instantiate子命令对象instantiateCmd，如代码清单3-61所示，示例命令形式如下。

peer chaincode instantiate -o orderer.example.com:7050 -C mychannel -n mycc -v 1.0 -c '{"Args":["init","a","100","b","200"]}' -P "OR ('Org1MSP.peer','Org2MSP.peer')"

代码清单3-61　instantiate子命令instantiateCmd()函数的源码示例

peer/chaincode/instantiate.go文件

// 创建instantiate子命令用于实例化（部署）链码

func instantiateCmd(cf *ChaincodeCmdFactory) *cobra.Command {

 chaincodeInstantiateCmd = &cobra.Command{

 Use: instantiateCmdName,

 Short: fmt.Sprint(instantiateDesc),

 Long: fmt.Sprint(instantiateDesc),

 ValidArgs: []string{"1"},

 RunE: func(cmd *cobra.Command, args []string) error {

 return chaincodeDeploy(cmd, args, cf) // 执行实例化链码函数

 },

 }

 flagList := []string{

 "lang", // 链码语言

 "ctor", // 链码具体执行参数信息，JSON格式，默认为{}

 "name", // 链码名称

 "channelID", // 通道ID

 "version", // 链码版本

 "policy", // 链码所关联的背书策略

 "escc", // 指定背书系统链码的名称，默认为escc

 "vscc", // 指定验证系统链码的名称，默认为vscc

 "collections-config", // 隐私数据集合配置信息

 }

 attachFlags(chaincodeInstantiateCmd, flagList) // 更新到命令行选项集合

 return chaincodeInstantiateCmd

}

2.命令执行步骤

instantiate子命令实例化（部署）链码的执行步骤如图3-10所示。

1）peer chaincode instantiate经过Cobra组件解析后调用自定义执行函数chaincode-Deploy()，如代码清单3-62所示。该函数首先检查参数通道ID等的合法性（不应该为nil），再调用InitCmdFactory()函数创建链码命令工厂对象（ChaincodeCmdFactory类型），并初始化Endorser背书服务客户端、本地签名者Signer、Broadcast交易广播服务客户端等对象。

代码清单3-62　chaincodeDeploy()函数的源码示例

peer/chaincode/instantiate.go文件

func chaincodeDeploy(cmd *cobra.Command, args []string, cf *ChaincodeCmdFactory) error {

 if channelID == "" { // 检查通道ID参数

 return errors.New("The required parameter 'channelID' is empty. Rerun the command with -C flag")

 }

 var err error

 if cf == nil {

 cf, err = InitCmdFactory(true, true) // 初始化命令工厂对象

 ……

 }

 defer cf.BroadcastClient.Close()

 env, err := instantiate(cmd, cf) // 实例化链码

 ……

 if env != nil {

 err = cf.BroadcastClient.Send(env) // 向Orderer节点发送实例化链码结果的

 // 签名提案消息

 }

 return err

}

 [image:]

图3-10　instantiate子命令实例化（部署）链码时序图

2）chaincodeDeploy()首先调用instantiate()函数，通过getChaincodeDeploymentSpec(spec，false)函数构造链码部署规范对象，以封装实例化链码的信息（链码代码包CodePackage域为nil），接着将其作为输入参数构造链码调用规范对象，以提供给LSCC系统链码调用，封装链码描述规范spec，指定语言类型为GOLANG、链码ChaincodeID对象（链码名称lscc）与链码调用参数列表ccinp（含有“deploy”命令、需要实例化链码的通道ID、链码部署规范、背书策略、escc、vscc等）。然后，基于该链码调用规范创建签名提案消息（SignedProposal类型，通道头部类型为ENDORSER_TRANSACTION），并通过EndorserClient客户端（endorserClient类型）发送给Endorser背书节点请求处理（4.2节），如代码清单3-63所示。

代码清单3-63　instantiate()函数的源码示例

peer/chaincode/instantiate.go文件

func instantiate(cmd *cobra.Command, cf *ChaincodeCmdFactory) (*protcommon.Envelope, error) {

 spec, err := getChaincodeSpec(cmd) // 基于命令行参数构造链码描述规范对象

 ……

 cds, err := getChaincodeDeploymentSpec(spec, false) // 创建链码部署规范对象

 ……

 creator, err := cf.Signer.Serialize() // 序列化本地签名者实体

 ……

 // 创建提案消息

 prop, _, err := utils.CreateDeployProposalFromCDS(channelID, cds, creator, policyMarshalled, []byte(escc), []byte(vscc), collectionConfigBytes)

 ……

 var signedProp *pb.SignedProposal

 // 创建签名提案消息

 signedProp, err = utils.GetSignedProposal(prop, cf.Signer)

 ……

 // 通过EndorserClient客户端发送签名提案消息到Endorser背书节点请求处理

 proposalResponse, err := cf.EndorserClient.ProcessProposal(context.Background(), signedProp)

 ……

 if proposalResponse != nil {

 // 创建签名交易

 env, err := utils.CreateSignedTx(prop, cf.Signer, proposalResponse)

 ……

 return env, nil

 }

 return nil, nil

}

3）如4.4.2节分析，Endorser背书节点调用simulateProposal()→callChaincode()函数执行请求的链码命令，分为两个步骤执行deploy部署（实例化）链码命令和upgrade升级链码命令，具体步骤如下。

步骤一：调用LSCC链码的Invoke()方法保存实例化链码数据到指定通道的账本状态数据库中，包括链码数据对象（ChaincodeData类型）、链码隐私数据集合配置信息等，如代码清单3-64所示。

代码清单3-64　Invoke()方法处理deploy部署链码命令的源码示例

core/scc/lscc/lscc.go文件

func (lscc *lifeCycleSysCC) Invoke(stub shim.ChaincodeStubInterface) pb.Response {

 ……

case DEPLOY, UPGRADE: // 部署或升级链码

 // 检查并获取参数

 if len(args) < 3 { // 检测参数个数是否有效

 return shim.Error(InvalidArgsLenErr(len(args)).Error())

 }

 chainname := string(args[1]) // 获取链ID

 if !lscc.isValidChainName(chainname) { // 检查链码ID不能为空字符串

 return shim.Error(InvalidChainNameErr(chainname).Error())

 }

 ac, exists := lscc.sccprovider.GetApplicationConfig(chainname)

 ……

 if (!ac.Capabilities().PrivateChannelData() && len(args) > 6) ||

 (ac.Capabilities().PrivateChannelData() && len(args) > 7) {

 return shim.Error(InvalidArgsLenErr(len(args)).Error())

 }

 depSpec := args[2]

 cds, err := utils.GetChaincodeDeploymentSpec(depSpec)

 ……

 var EP []byte

 if len(args) > 3 && len(args[3]) > 0 {

 EP = args[3]

 } else {

 p := cauthdsl.SignedByAnyMember(peer.GetMSPIDs(chainname))

 EP, err = utils.Marshal(p)

 ……

 }

 var escc []byte

 if len(args) > 4 && args[4] != nil {

 escc = args[4]

 } else {

 escc = []byte("escc")

 }

 var vscc []byte

 if len(args) > 5 && args[5] != nil {

 vscc = args[5]

 } else {

 vscc = []byte("vscc")

 }

 var collectionsConfig []byte

 if ac.Capabilities().PrivateChannelData() && len(args) > 6 {

 collectionsConfig = args[6]

 }

 cd, err := lscc.executeDeployOrUpgrade(stub, chainname, cds, EP, escc, vscc, collectionsConfig, function) // 部署或升级链码

 ……

 cdbytes, err := proto.Marshal(cd)

 ……

 return shim.Success(cdbytes)

 ……

}

LSCC链码的Invoke()方法首先检查参数的合法性，具体说明如下。

·检查参数的个数不少于3个，且链ID不为空字符串；

·调用lscc.sccprovider.GetApplicationConfig()方法，获取通道配置ApplicationConfig，检查其Capabilities属性配置是否支持隐私数据及其参数个数的匹配情况。如果支持隐私数据，则参数个数必须大于7个，否则，参数个数必须大于6个；

·调用utils.GetChaincodeDeploymentSpec()函数，解析第3个参数以获取链码部署规范对象；

·接着依次解析后面的参数，其中，第4个参数为背书策略，若输入参数中没有指定背书策略，则默认构造背书策略（SignaturePolicyEnvelope类型），指定该通道上任意组织成员角色（MEMBER）签名即可。第5个和第6个参数分别是系统链码escc与vscc链码的名称，第7个参数是链码隐私数据集合配置信息。

LSCC链码的Invoke()方法接着调用lscc.executeDeployOrUpgrade()方法，提取出链码包ccpack及其链码数据对象。

其中，lscc.executeDeployOrUpgrade()方法先调用isValidChaincodeName()函数与isValidChaincodeVersion()函数，分别检查链码部署规范对象参数中链码名称与链码版本的合法性，以确保该对象不能为空字符串且符合命名规范。

接着，调用lscc.support.GetChaincodeFromLocalStorage()函数，基于验证过的链码名称与链码版本从文件系统上的链码安装文件中获取链码包对象ccpack（CDSPackage类型或SignedCDSPackage类型），再调用ccpack.GetChaincodeData()方法，计算链码哈希值并创建链码数据对象（ChaincodeData类型）。该对象封装了链码名称、链码版本、链码CDSData类型或SignedCDSData类型的数据字节数组、链码包标识ID、实例化策略等。

最后，分析命令类型（DEPLOY命令或UPGRADE命令等），并继续调用DEPLOY命令下的lscc.executeDeploy()函数，检查参数以及实例化策略的合法性，将链码数据对象与链码隐私数据集合配置信息（如果存在）保存到指定通道账本的状态数据库中（lscc名字空间）。其中，lscc.executeDeploy()函数的执行步骤具体如下。

该函数首先调用lscc.getCCInstance()函数，通过执行stub.GetState(ccname)方法从账本状态数据库中获取与链码名称ccname对应的链码数据对象（链码实例化数据）。如果未发现保存指定的链码数据对象，则继续设置当前链码数据对象（ChaincodeData类型）的属性值，包括escc名称、vscc名称、背书策略等。否则，认为该链码已经完成了实例化操作，直接报错返回。

接着，lscc.executeDeploy()调用lscc.support.GetInstantiationPolicy()方法，获取链码数据对象的实例化策略cdfs.InstantiationPolicy。若当前链码包是SignedCDSPackage类型，则调用GetInstantiationPolicy()方法以获取链码包自带的实例化策略。否则，构造实例化策略为默认的签名策略对象（SignaturePolicyEnvelope类型），将其定义为该应用通道上任意组织内的ADMIN管理员角色身份。

然后，lscc.executeDeploy()函数调用参数的stub.GetSignedProposal()方法，重新获取签名提案消息，并执行lscc.support.CheckInstantiationPolicy()方法，检查该提案消息是否满足链码数据对象指定的实例化策略cdfs.InstantiationPolicy。如果通过了实例化策略检查，则调用lscc.putChaincodeData()→stub.PutState()方法，将创建的链码数据对象提交保存到指定通道的账本状态数据库中。实际上，该方法调用stub.handler.handlePutState()方法创建ChaincodeMessage_PUT_STATE类型的链码消息，封装了PutState结构对象payloadBytes作为消息负载。其中，键为链码名称cd.Name，值为链码数据对象（ChaincodeData类型）序列化后的字节数组cdbytes。同时，将该链码消息从链码容器侧发送到Peer侧进行处理，请求写入该通道账本状态数据库的lscc名字空间中（4.4.7节）。实际上Handler对象会将该写数据暂时记录在与该交易关联的交易模拟器中，等待交易验证合法通过后再提交到账本，当Peer侧执行完成后向链码容器回复ChaincodeMessage_RESPONSE类型的链码消息结果。

最后，lscc.executeDeploy()函数调用lscc.putChaincodeCollectionData()→stub.PutState()方法，用于保存指定链上的链码隐私数据集合配置信息（不为空）。类似于链码数据对象的处理流程，不同的是，该方法构造了PutState结构对象作为消息负载。其中，键为链码名称cd.Name+"~collection"，值为隐私数据集合配置信息对象的字节数组collectionConfigBytes（不为空）。另外，Fabric 1.2与1.3会遍历其所有配置项，调用checkCollectionMemberPolicy()函数，获得当前链上的MSP列表msps，解析签名背书策略中的签名身份实体集合并逐个验证其合法性。

至此，LSCC链码的Invoke()方法执行结束，并回复ChaincodeMessage_COMPLETED链码消息给Peer侧（Endorser背书节点），表示完成了LSCC系统链码调用。同时，该操作也表示执行完成了第一个步骤，即利用LSCC系统链码成功保存了链码实例化数据（链码数据对象、隐私数据集合配置信息等）到账本中。

步骤二：deploy、upgrade等命令会继续从文件系统中读取已安装的链码包文件，编译生成镜像并启动新的链码Docker容器，再执行链码的Init()方法以完成初始化操作，部署成功并提供链码服务，如代码清单3-65所示。

代码清单3-65　callChaincode()函数处理deploy命令的源码示例

core/endorser/endorser.go文件

func (e *Endorser) callChaincode(ctxt context.Context, ……) {

 ……

 res, ccevent, err = e.s.Execute(ctxt, chainID, cid.Name, version, txid, scc, signedProp, prop, cis)

 ……

 if cid.Name == "lscc" && len(cis.ChaincodeSpec.Input.Args) >= 3 && (string(cis.ChaincodeSpec.Input.Args[0]) == "deploy" || string(cis.ChaincodeSpec.Input.Args[0]) == "upgrade") {

 var cds *pb.ChaincodeDeploymentSpec

 cds, err = putils.GetChaincodeDeploymentSpec(cis.ChaincodeSpec.Input.Args[2]) // 获取并验证链码部署规范

 ……

 // 若试图部署/升级系统链码，则报错

 if e.s.IsSysCC(cds.ChaincodeSpec.ChaincodeId.Name) {

 ……

 }

 // 执行部署/升级用户链码

 _, _, err = e.s.Execute(ctxt, chainID, cds.ChaincodeSpec.ChaincodeId.Name, cds.ChaincodeSpec.ChaincodeId.Version, txid, false, signedProp, prop, cds)

 ……

 }

 ……

}

callChaincode()方法首先调用putils.GetChaincodeDeploymentSpec()函数，从参数列表中解析获得链码部署规范对象，调用e.s.Execute()方法执行部署链码的操作（4.2节），注意第2次调用的链码名称是封装在链码部署规范中的cds.ChaincodeSpec.ChaincodeId.Name，即此次链码操作期望实例化（部署）的链码对象。当链码容器启动成功后，Peer侧会发送链码消息（ChaincodeMessage_INIT类型）到用户链码Docker容器请求初始化，链码容器侧调用Handler.beforeInit()→Handler.handleInit()→handler.cc.Init(stub)方法，执行实例化链码的Init()方法进行初始化。然后，在执行成功后向Peer侧（Endorser节点）回复ChaincodeMessage_COMPLETED类型链码消息，以表示完成了初始化链码操作。如果执行失败，则回复ChaincodeMessage_ERROR类型链码消息。

注意，在实例化用户链码第一次调用ChaincodeSupport.Launch()方法时，链码支持服务实例chaincodeSupport，在chaincodeMap字典中应该找不到对应的链码运行时环境对象chrte（nil），必须执行后续的启动步骤。同时，userRunsCC标志位为false（默认配置“net”不是开发模式），链码运行时环境类型为ChaincodeDeploymentSpec_DOCKER，并且执行instantiate()→getChaincodeDeploymentSpec()函数构造链码部署规范时，将该链码部署规范cds.CodePackage链码代码包设置为nil。因此，ChaincodeSupport.Launch()方法根据链码名称cID.Name与链码版本cID.Version调用ccprovider.GetChaincodeFromFS()方法，重新从文件系统中获取链码包对象ccpack，并执行ccpack.GetDepSpec()方法获得新的链码部署规范cds（含有正常的cds.CodePackage链码代码包）。接着，定义builder()方法基于链码部署规范cds为用户链码创建生成Docker容器的context文件流，在启动Docker容器前重新编译链码运行程序，并构建Docker镜像以支持用户链码Docker容器启动。

Peer侧接收到该消息，继续执行背书签名处理（4.5节），并将签名背书结果等打包成提案响应消息，回复给Endorser客户端。

4）instantiate()函数检查Endorser节点回复的提案响应消息（不为nil），调用utils.CreateSignedTx()函数以构造签名交易消息（Envelope类型，消息通道头部类型为ENDORSER_TRANSACTION），然后返回chaincodeDeploy()函数中继续处理。该消息封装了签名提案消息、提案模拟执行结果及其背书信息等，并根据消息头部扩展项的负载可见性模式（即hdrExt.PayloadVisibility字段）获取指定签名提案消息的消息负载。目前，只支持消息负载上所有字节都整体可见的模式。

5）chaincodeDeploy()函数通过BroadcastClient客户端调用cf.BroadcastClient.Send()方法，将该签名交易消息发送给Orderer节点请求排序出块，再广播到该通道上的其他Peer节点上，并保存到节点账本中。

至此，peer chaincode instantiate命令执行结束。此时，Endorser背书节点启动完成用户链码Docker容器，通过Init()方法初始化链码执行环境，并提供正常的链码服务。

以fabric-samples-1.2.0/chaincode/marbles02_private为例，其隐私数据集合配置文件collections_config.json如下所示，其中，blockToLive属性（Fabric 1.2正式引入）表示隐私数据的有效期，即有效区块数量（若超过则清理，5.4.2节）。

[

 {// 允许Org1或Org2组织的任意成员读取或保存隐私数据

 "name": "collectionMarbles", // 隐私数据集合名称

 "policy": "OR('Org1MSP.member', 'Org2MSP.member')", // 签名策略

 "requiredPeerCount": 0, // 成功应答的最小节点数量

 "maxPeerCount": 3, //分发数据的最大节点数量

 "blockToLive":1000000 //数据有效期（区块数量），0表示不删除

},

 {// 只允许Org1组织成员读取或保存隐私数据，若Org2组织成员查询则权限不足而失败

 "name": "collectionMarblePrivateDetails",

 "policy": "OR('Org1MSP.member')",

 "requiredPeerCount": 0,

 "maxPeerCount": 3,

 "blockToLive":3

 }

]

3.4.4　调用链码命令invoke

1.命令概述

peer chaincode invoke子命令调用已经实例化成功的链码，需要将被请求调用的方法名称及其参数指定在“-c”命令行选项中，交由链码的Invoke()方法进行处理。invoke不支持指定链码版本，默认调用最新实例化或升级成功的链码版本。注意，invoke只能保证交易提交到Orderer节点，无法保证最终能够写入到账本中可以使用事件机制订阅区块事件实现监控。

invoke.go文件提供了invokeCmd(cf*ChaincodeCmdFactory)函数，用于创建invoke子命令对象invokeCmd，如代码清单3-66所示，从账户a向账户b转账10元的示例命令形式如下。

peer chaincode invoke -o orderer.example.com:7050 -C mychannel -n mycc -c '{"Args":["invoke","a","b","10"]}'

代码清单3-66　invoke子命令invokeCmd()函数的源码示例

peer/chaincode/invoke.go文件

// 创建invoke子命令用于调用链码

func invokeCmd(cf *ChaincodeCmdFactory) *cobra.Command {

 chaincodeInvokeCmd = &cobra.Command{

 Use: "invoke",

 Short: fmt.Sprintf("Invoke the specified %s.", chainFuncName),

 Long: fmt.Sprintf("Invoke the specified %s. It will try to commit the endorsed transaction to the network.", chainFuncName),

 ValidArgs: []string{"1"},

 RunE: func(cmd *cobra.Command, args []string) error {

 return chaincodeInvoke(cmd, args, cf)

 },

 }

 flagList := []string{

 "name", // 链码名称

 "ctor", // 链码调用参数

 "channelID", // 通道ID

 }

 attachFlags(chaincodeInvokeCmd, flagList) // 更新到命令行选项集合

 return chaincodeInvokeCmd

}

2.命令执行步骤

invoke子命令调用链码的执行步骤如图3-11所示。

1）peer chaincode invoke经过Cobra组件解析后调用自定义执行函数chaincode-Invoke()，如代码清单3-67所示。该函数首先检查参数通道ID的合法性，接着调用InitCmdFactory()函数以获取链码命令工厂对象（ChaincodeCmdFactory类型）。

 [image:]

图3-11　invoke子命令调用链码时序图

代码清单3-67　chaincodeInvoke()函数的源码示例

peer/chaincode/invoke.go文件

func chaincodeInvoke(cmd *cobra.Command, args []string, cf *ChaincodeCmdFactory) error {

 if channelID == "" { // 检查通道ID参数

 return errors.New("The required parameter 'channelID' is empty. Rerun the command with -C flag")

 }

 var err error

 if cf == nil {

 cf, err = InitCmdFactory(true, true) // 初始化命令工厂对象

 ……

 }

 defer cf.BroadcastClient.Close() // 退出函数时关闭BroadcastClient客户端

 return chaincodeInvokeOrQuery(cmd, args, true, cf) // 调用链码

}

2）chaincodeInvoke()函数接着调用chaincodeInvokeOrQuery()函数，构造签名提案消息，发送给Endorser背书节点请求执行调用链码操作。

chaincodeInvokeOrQuery()函数调用getChaincodeSpec()函数，基于命令行参数与配置创建链码描述规范对象，包含链码语言、ChaincodeID对象、调用输入参数等。接着，调用ChaincodeInvokeOrQuery()函数，基于该链码描述规范对象构造链码调用规范，获取本地签名者身份实体creator等参数，并调用CreateChaincodeProposalWithTransient()函数与GetSignedProposal()函数，从而创建签名提案消息（SignedProposal类型，消息头部类型为ENDORSER_TRANSACTION）。最后，通过EndorserClient客户端调用ProcessProposal()方法，将该消息发送给Endorser背书节点请求处理（4.2节），如代码清单3-68所示。

代码清单3-68　ChaincodeInvokeOrQuery()函数的源码示例

peer/chaincode/common.go文件

func ChaincodeInvokeOrQuery(spec *pb.ChaincodeSpec, cID string, invoke bool, signer msp.SigningIdentity, endorserClient pb.EndorserClient, bc common.BroadcastClient,) (*pb.ProposalResponse, error) {

 invocation := &pb.ChaincodeInvocationSpec{ChaincodeSpec: spec}

 // 构造链码调用规范对象

 if customIDGenAlg != common.UndefinedParamValue {

 invocation.IdGenerationAlg = customIDGenAlg

 }

 creator, err := signer.Serialize() // 获取本地签名者实体

 ……

 funcName := "invoke"

 if !invoke { // 若命令名称不是invoke，则设置为query

 funcName = "query"

 }

 var tMap map[string][]byte

 if transient != "" {

 if err := json.Unmarshal([]byte(transient), &tMap); err != nil {

 return nil, fmt.Errorf("Error parsing transient string: %s", err)

 }

 }

 var prop *pb.Proposal

 // 创建链码提案消息

 prop, _, err = putils.CreateChaincodeProposalWithTransient(pcommon.HeaderType_ENDORSER_TRANSACTION, cID, invocation, creator, tMap)

 ……

 var signedProp *pb.SignedProposal

 // 创建签名提案消息

 signedProp, err = putils.GetSignedProposal(prop, signer)

 ……

 var proposalResp *pb.ProposalResponse

 // 发送给Endorser背书节点请求处理

 proposalResp, err = endorserClient.ProcessProposal(context.Background(), signedProp)

 ……

 if invoke { // invoke命令

 if proposalResp != nil { // 检查提案响应消息结果

 // 检查提案响应消息结果状态码

 if proposalResp.Response.Status >= shim.ERROR {

 return proposalResp, nil

 }

 // 创建签名交易消息Envelope结构对象

 env, err := putils.CreateSignedTx(prop, signer, proposalResp)

 ……

 // 发送签名交易消息到Orderer节点请求排序出块

 if err = bc.Send(env); err != nil {

 return proposalResp, fmt.Errorf("Error sending transaction %s: %s", funcName, err)

 }

 }

 }

 // query命令：不需要构造签名交易消息发送给Orderer服务节点

 return proposalResp, nil

}

3）Endorser背书节点的ProcessProposal()方法接收到调用链码的消息请求，发送给用户链码Docker容器，请求调用Invoke()方法以执行指定命令。

首先，ProcessProposal()方法调用simulateProposal()方法以模拟执行交易提案。对于用户链码，该方法先通过LSCC系统链码执行getccdata命令，从指定通道的账本数据库（lscc名字空间）中获取对应链码的链码数据对象。同时，对于系统链码只获取链码版本。这样，就能从该对象中解析获取最近实例化或升级成功的链码版本version，以构造链码规范名称（cid.Name：version）提供给callChaincode()方法调用。

接着，callChaincode()方法执行链码命令。该方法首先根据链码规范名称等参数检查链码容器是否已经启动。如果链码容器已经启动，则构造并发送ChaincodeMessage_TRANSACTION类型链码消息到用户链码Docker容器，请求调用链码的Invoke()方法以执行指定命令。用户链码的Docker容器接收链码消息后，交给Handler处理句柄及其FSM（有限状态机）处理，并最终调用Handler.handleTransaction()→handler.cc.Invoke()方法，基于链码参数（交易ID、通道ID、输入参数列表等）执行链码的Invoke()方法中指定的命令。链码的Invoke()方法根据链码程序执行过程中调用的API，构造并发送对应的ChaincodeMessage_GET_STATE、ChaincodeMessage_GET_STATE_BY_RAGE等链码消息到Peer侧，请求执行对应的查询账本数据、调用链码等操作，并将操作结果封装成ChaincodeMessage_RESPONSE类型链码消息返回链码容器。这样，当Invoke()方法的指定命令执行成功时，链码容器将回复ChaincodeMessage_COMPLETED类型的链码消息给Endorser背书节点Peer侧，通知已经完成链码的Invoke()方法调用流程。

然后，Endorser背书节点Peer侧继续调用endorseProposal()方法，实际上是通过ESCC系统链码对模拟执行结果进行背书签名，并将签名结果、模拟执行结果读写集、链码执行响应消息等封装为提案响应消息（ProposalResponse类型），返回给请求客户端。

4）ChaincodeInvokeOrQuery()函数检查提案响应消息结果的合法性与错误，对于invoke命令，需要将结果再次提交给Orderer节点进行排序，并返回chaincodeInvokeOr-Query()函数。实际上，该函数调用putils.CreateSignedTx()函数，构造签名交易消息（Envelope类型，消息通道头部为ENDORSER_TRANSACTION），封装了提案消息、提案响应消息（含链码执行响应消息、模拟执行结果读写集等）、背书信息列表等信息，并根据消息负载可见性模式hdrExt.PayloadVisibility过滤链码提案消息负载（实际上是整体可见），如图3-12所示。接着，ChaincodeInvokeOrQuery()函数通过broadcastClient结构客户端调用bc.Send()方法，将该消息发送给Orderer节点请求排序出块。

另外，Fabric 1.2与1.3中的invoke命令增加了确认交易打包出块并提交Peer节点账本的步骤。如果开启了waitForEvent等待区块事件标志位（true），则Chaincode-InvokeOrQuery()函数利用链码命令工厂对象的DeliverClients列表构造deliverGroup结构对象dg，调用dg.Connect()→go dg.ClientConnect()→dc.Client.DeliverFiltered()方法，与命令行选项（peerAddresses）指定Peer节点列表上的DeliverEvents事件服务器建立批量的区块事件服务连接，再构造过滤区块请求消息（指定请求范围从最新区块到math.MaxUint64），并将其发送到对应的Peer节点上。接着，调用dg.Wait()→go dg.ClientWait()方法建立循环，执行刚才建立的服务连接dc.Connection.Recv()方法，以等待接收对应Peer节点返回的过滤区块对象。这样，依次解析遍历其过滤交易列表，如果存在匹配的交易ID，则说明当前交易已经成功打包出块并提交到Peer节点账本。

 [image:]

图3-12　经过背书的交易封装提交给Orderer节点的消息Envelope类型示意图

5）chaincodeInvokeOrQuery()函数继续检查提案响应消息结果的错误，对于invoke调用命令，该函数解析该结果包含的链码动作对象（ChaincodeAction类型），并打印相应的执行结果与解析成功与否的状态信息。

至此，peer chaincode invoke命令执行结束，Peer节点将执行成功的交易模拟执行结果发送给Orderer节点请求排序出块。
3.4.5　查询链码命令query

1.命令概述

peer chaincode query子命令用于查询Peer节点本地的账本数据状态，与invoke命令类似，同样需要调用已部署（实例化）用户链码中Invoke()方法定义的命令。该命令名称及其参数由用户在“-c”命令行选项中指定，与invoke命令不同的是，query命令不需要生成签名交易消息并提交到Orderer节点，而是直接向客户端返回查询结果。因此，query子命令不需要与Orderer服务节点进行交互。

query.go文件提供了queryCmd(cf*ChaincodeCmdFactory)函数，用于创建链码query子命令对象queryCmd，如代码清单3-69所示，示例命令形式如下。

$ peer chaincode query –C mychannel –n mycc –c '{"Args":["query","a"]}'

代码清单3-69　query子命令queryCmd()函数的源码示例

peer/chaincode/query.go文件

// 创建query子命令查询账本

func queryCmd(cf *ChaincodeCmdFactory) *cobra.Command {

 chaincodeQueryCmd = &cobra.Command{

 Use: "query",

 Short: fmt.Sprintf("Query using the specified %s.", chainFuncName),

 Long: fmt.Sprintf("Get endorsed result of %s function call and print it. It won't generate transaction.", chainFuncName),

 ValidArgs: []string{"1"}, // 非标志位参数列表

 RunE: func(cmd *cobra.Command, args []string) error {

 return chaincodeQuery(cmd, args, cf) // 执行查询query命令函数

 },

 }

 flagList := []string{

 "ctor", // 链码调用执行参数（JSON格式）

 "name", // 链码名称

 "tid", // 链码调用规范中ID生成算法和编码，目前支持默认的sha256与base64

 "channelID", // 通道ID

 }

 attachFlags(chaincodeQueryCmd, flagList) // 更新到命令行选项集合

 // 设置命令标志位raw：输出的查询结果格式是原始格式字节数组

 chaincodeQueryCmd.Flags().BoolVarP(&chaincodeQueryRaw, "raw", "r", false,

 "If true, output the query value as raw bytes, otherwise format as a printable string")

 // 设置命令标志位hex：输出的查询结果格式是十六进制格式字节数组

 chaincodeQueryCmd.Flags().BoolVarP(&chaincodeQueryHex, "hex", "x", false,

 "If true, output the query value byte array in hexadecimal. Incompatible with --raw")

 return chaincodeQueryCmd

}

2.命令执行步骤

query子命令查询链码的执行步骤如图3-13所示。

 [image:]

图3-13　query子命令查询链码时序图

1）peer chaincode query经过Cobra组件解析后调用自定义执行函数chaincodeQuery()，如代码清单3-70所示。该函数首先检查参数（通道ID等）的合法性，再调用InitCmd-Factory()函数，获取链码命令工厂对象（ChaincodeCmdFactory类型）并初始化Endorser背书服务客户端、本地签名者Signer等结构。

代码清单3-70　chaincodeQuery()函数的源码示例

peer/chaincode/query.go文件

func chaincodeQuery(cmd *cobra.Command, args []string, cf *ChaincodeCmdFactory) error {

 if channelID == "" {

 return errors.New("The required parameter 'channelID' is empty. Rerun the command with -C flag")

 }

 var err error

 if cf == nil {

 cf, err = InitCmdFactory(true, false) // 初始化命令工厂对象

 ……

 }

 return chaincodeInvokeOrQuery(cmd, args, false, cf) // 调用链码或查询链码

}

2）query命令处理流程与invoke命令类似，chaincodeQuery()函数调用相同的处理函数chaincodeInvokeOrQuery()执行查询链码命令。该函数首先构造链码调用规范，并封装为签名提案消息发送给Endorser背书节点，通过Peer侧发送ChaincodeMessage_TRANSACTION类型链码消息给用户链码的Docker容器，请求调用Handler.handle-Transaction()→handler.cc.Invoke()方法执行查询命令，查询指定的状态数据等，如e2e_cli示例通过stub.GetState()方法查询账户余额。链码容器侧执行成功后回复Chaincode-Message_COMPLETED类型的链码消息给Endorser节点，通知已完成链码查询操作。然后，Endorser节点继续对模拟执行结果调用ESCC系统链码执行背书签名操作，并将签名结果等封装成提案响应消息，依次返回给请求节点上的chaincodeInvokeOrQuery()函数。

3）chaincodeInvokeOrQuery()函数检查提案响应消息的合法性与错误，并打印查询结果。

至此，peer chaincode query命令执行结束。
3.4.6　升级链码命令upgrade

1.命令概述

peer chaincode upgrade子命令用于升级指定应用通道上的用户链码，以扩展功能、修复漏洞等，与instantiate命令类似，需要重新实例化（部署）新版本的链码，而且不必删除旧版本链码容器（以字符串版本号标识区别），在账本状态数据库中基于链ID/账本ID隔离不同通道的实例化数据，从而允许同一个Peer节点上不同通道中多版本的链码对象以及容器同时存在（链码名称相同，而链码版本不同）。因此，其他应用通道上的账本状态数据库仍然保存原来旧版本的链码数据对象（ChaincodeData类型）、链码隐私数据集合配置信息等，同时保持运行着原来旧版本的链码容器。Fabric需要用户自行维护不同应用通道上应用程序与链码版本的对应关系。注意，Peer节点上的不同通道可以共享同一个链码容器，因此，不能因为升级链码而随意停止原有旧版本的链码容器，必须考虑未升级链码的通道仍然可以提供正常的旧版本链码服务。同时，升级链码通常要在Init()方法中保护好通道账本上原有旧版本链码的状态数据，以避免被破坏丢失。

升级链码同样需要先安装新版本链码，通过install子命令将新链码打包保存到Endorser背书节点的指定目录下。upgrade升级链码与instantiate实例化（部署）链码（3.4.3节）的过程类似，upgrade子命令在Endorser背书节点上同样包括两个步骤。第一步通过LSCC系统链码将链码数据对象等信息更新到指定通道账本的状态数据库中（lscc名字空间）。第二步启动新版本用户链码的Docker容器，并执行Init()方法以初始化正常的链码执行环境。

另外，需要确保新链码名称与原来的链码名称一致，并更新版本（以最后更新的版本为准），在升级链码进行部署时会检查新版本链码的实例化策略。

upgrade.go文件提供了upgradeCmd(cf*ChaincodeCmdFactory)函数，用于创建链码upgrade子命令对象upgradeCmd，如代码清单3-71所示，示例命令形式如下。

$ peer chaincode upgrade –o orderer.example.com:7050 –C mychannel –n mycc –p github.com/hyperledger/fabric/examples/chaincode/go/chaincode_example02 –v 1.1 –c '{"Args":["init","a","100","b","200"]}'

代码清单3-71　upgrade子命令upgradeCmd()函数的源码示例

peer/chaincode/upgrade.go文件

// 创建upgrade子命令用于升级链码

func upgradeCmd(cf *ChaincodeCmdFactory) *cobra.Command {

 chaincodeUpgradeCmd = &cobra.Command{ // 构造upgrade命令

 Use: upgradeCmdName,

 Short: "Upgrade chaincode.",

 Long: "Upgrade an existing chaincode with the specified one. The new chaincode will immediately replace the existing chaincode upon the transaction committed.",

 ValidArgs: []string{"1"},

 RunE: func(cmd *cobra.Command, args []string) error {

 return chaincodeUpgrade(cmd, args, cf) // 执行链码升级命令

 },

 }

 flagList := []string{

 "lang", // 链码语言

 "ctor", // 链码调用参数

 "path", // 链码文件路径

 "name", // 链码名称

 "channelID", // 通道ID

 "version", // 链码版本

 "policy", // 链码所关联的背书策略

 "escc", // 指定背书链码的名称，默认为escc

 "vscc", // 指定验证链码的名称，默认为vscc

 }

 attachFlags(chaincodeUpgradeCmd, flagList) // 更新到命令行选项集合

 return chaincodeUpgradeCmd

}

2.命令执行步骤

upgrade子命令升级链码的执行步骤如图3-14所示。

 [image:]

图3-14　upgrade子命令升级链码时序图

1）peer chaincode upgrade经过Cobra组件解析后调用自定义执行函数chaincodeUpgrade()，如代码清单3-72所示。该函数首先检查参数合法性，再调用InitCmdFactory()函数以获取链码命令工厂对象（ChaincodeCmdFactory类型）。

代码清单3-72　chaincodeUpgrade()函数的源码示例

peer/chaincode/upgrade.go文件

// 升级链码

func chaincodeUpgrade(cmd *cobra.Command, args []string, cf *ChaincodeCmdFactory) error {

 var err error

 if cf == nil {

 cf, err = InitCmdFactory(true, true) // 初始化命令工厂对象

 ……

 }

 defer cf.BroadcastClient.Close()

 env, err := upgrade(cmd, cf) // 升级链码并获取签名交易消息

 ……

 if env != nil {

 logger.Debug("Send signed envelope to orderer")

 err = cf.BroadcastClient.Send(env) // 通过BroadcastClient交易广播服务

 // 客户端发送消息到Orderer节点请求排序

 return err

 }

 return nil

}

2）chaincodeUpgrade()函数调用upgrade()执行升级链码操作。

类似于instantiate实例化（部署）链码过程，如代码清单3-73所示，upgrade()函数首先创建链码调用规范对象提供给LSCC系统链码调用，基于该对象构造签名提案消息（SignedProposal类型，通道头部类型为ENDORSER_TRANSACTION），然后通过EndorserClient客户端将该消息发送到Endorser背书节点请求处理（4.2节）。

代码清单3-73　upgrade()函数的源码示例

peer/chaincode/upgrade.go文件

func upgrade(cmd *cobra.Command, cf *ChaincodeCmdFactory) (*protcommon.Envelope, error) {

 if channelID == "" { // 检查通道ID合法性

 return nil, errors.New("The required parameter 'channelID' is empty. Rerun the command with -C flag")

 }

 spec, err := getChaincodeSpec(cmd) // 获取链码描述规范对象

 ……

 cds, err := getChaincodeDeploymentSpec(spec, false) // 获取链码部署规范对象

 ……

 creator, err := cf.Signer.Serialize() // 获取签名者实体对象

 ……

 // 基于链码部署规范创建提案消息

 prop, _, err := utils.CreateUpgradeProposalFromCDS(channelID, cds, creator, policyMarshalled, []byte(escc), []byte(vscc))

 ……

 var signedProp *pb.SignedProposal

 signedProp, err = utils.GetSignedProposal(prop, cf.Signer) // 创建签名的提案消息

 ……

 // 向Endorser背书节点发送消息请求处理

 proposalResponse, err := cf.EndorserClient.ProcessProposal(context.Background(), signedProp)

 ……

 // 检测提案响应消息结果

 if proposalResponse != nil {

 // 创建并返回签名交易消息

 env, err := utils.CreateSignedTx(prop, cf.Signer, proposalResponse)

 ……

 return env, nil

 }

 return nil, nil

}

3）Endorser背书节点接收到消息后，同样分为两步执行upgrade命令。与deploy命令不同的是，第一个步骤在Endorser节点上通过LSCC链码升级链码时，其Invoke()方法检查完upgrade命令参数，调用executeDeployOrUpgrade→executeUpgrade()函数处理UPGRADE类型的命令请求，执行升级链码操作，如代码清单3-74所示。

代码清单3-74　executeUpgrade()函数的源码示例

core/scc/lscc/lscc.go文件

// 升级链码

func (lscc *lifeCycleSysCC) executeUpgrade(……) {

 ……

 // 获取已部署链码的旧版本链码数据对象

 cdLedger, err := lscc.getChaincodeData(chaincodeName, cdbytes)

 ……

 // 如果升级的是相同版本，则不升级

 if cdLedger.Version == cds.ChaincodeSpec.ChaincodeId.Version {

 return nil, IdenticalVersionErr(cds.ChaincodeSpec.ChaincodeId.Name)

 }

 // 检查旧版本的实例化策略合法性

 if cdLedger.InstantiationPolicy == nil {

 return nil, InstantiationPolicyMissing("")

 }

 // 获取签名提案消息

 signedProp, err := stub.GetSignedProposal()

 ……

 // 检查签名提案消息是否符合原来旧版本链码的实例化策略要求

 err = lscc.support.CheckInstantiationPolicy(signedProp, chainName, cdLedger.InstantiationPolicy)

 ……

 cdfs.InstantiationPolicy, err = lscc.support.GetInstantiationPolicy(chainName, ccpackfs) // 获取新版本链码的实例化策略

 ……

 // 检查签名提案消息是否符合新升级版本链码的实例化策略要求

 err = lscc.support.CheckInstantiationPolicy(signedProp, chainName, cdfs.InstantiationPolicy)

 ……

 // 保存新版本链码的链码数据对象

 err = lscc.putChaincodeData(stub, cdfs)

 ……

}

executeUpgrade()函数先获取已部署旧版本链码的链码数据对象cdLedger，并比较该对象中链码的旧版本与参数包含的新版本是否一致。如果两者相同则无须升级，否则，调用CheckInstantiationPolicy()函数，检查签名提案消息是否满足旧版本链码的实例化策略要求。实际上，该函数基于cdLedger包含的旧版本实例化策略构造instPol策略对象（封装已编译的策略评估验证方法compiled等），解析签名提案消息构造签名数据对象sd（SignedData类型），然后调用instPol.Evaluate(sd)方法（5.3.2节），验证该消息是否符合旧版本链码的实例化策略要求，以确保只有满足当前实例化策略要求的成员才能升级链码。

如果通过了上述检查，则executeUpgrade()函数将继续调用GetInstantiationPolicy()函数，获取新版本链码的实例化策略，同样检查签名提案消息是否符合新版本链码的实例化策略要求。如果通过了检查，则将新版本链码的链码数据对象保存到指定通道账本的状态数据库中（lscc名字空间）替换旧的链码数据对象，并更新了该链码的实例化策略。另外，Fabric 1.2与1.3会调用ac.Capabilities().CollectionUpgrade()方法，以检查当前通道的Application配置是否支持升级隐私数据集合配置信息（默认true），接着执行lscc.putChaincodeCollectionData()方法，以保存新的隐私数据配置信息到状态数据库中。

然后，Endorser背书节点的callChaincode()函数重新从文件系统中读取已安装的新链码包，创建Docker镜像并启动新用户链码的Docker容器，执行Init()方法完成初始化以提供正常的链码服务。

最后，Endorser背书节点对上述模拟执行结果进行背书签名，并将提案处理结果消息返回给请求客户端。

4）upgrade()函数接收并检查提案响应消息的合法性，调用utils.CreateSignedTx()函数，基于该消息构造签名交易消息对象，并返回chaincodeUpgrade()函数继续处理。

5）chaincodeUpgrade()函数调用cf.BroadcastClient.Send()方法，通过broadcastClient结构客户端将包含升级链码处理结果的签名交易消息发送给Orderer节点，请求交易排序出块，并广播到该通道上的其他Peer节点上。

至此，peer chaincode upgrade命令执行结束。Endorser背书节点启动了新版本链码的Docker容器，并完成初始化提供新版本的链码服务。
3.4.7　查询链码列表命令list

1.命令概述

peer chaincode list子命令用于查询Peer节点上已经安装或已经实例化的链码列表。该命令只需要与Endorser背书节点进行交互，通过LSCC系统链码查询本地已经安装或已经实例化的链码列表。

list.go文件提供了listCmd(cf*ChaincodeCmdFactory)函数，用于创建链码list子命令对象listCmd，并更新相关命令行选项，如代码清单3-75所示，示例命令形式如下。

$ peer chaincode list -–installed –C mychannel

$ peer chaincode list -–instantiated –C mychannel

代码清单3-75　list子命令listCmd()函数的源码示例

peer/chaincode/list.go文件

// 创建list子命令获取已经安装或已经实例化的链码列表

func listCmd(cf *ChaincodeCmdFactory) *cobra.Command {

 chaincodeListCmd = &cobra.Command{

 Use: "list",

 Short: "Get the instantiated chaincodes on a channel or installed chaincodes on a peer.",

 Long: "Get the instantiated chaincodes in the channel if specify channel, or get installed chaincodes on the peer",

 RunE: func(cmd *cobra.Command, args []string) error {

 return getChaincodes(cmd, cf) // 调用获取链码列表函数

 },

 }

 flagList := []string{

 "channelID", // 通道ID

 "installed", // 列出已经安装的链码列表

 "instantiated", // 列出已经实例化的链码列表

 }

 attachFlags(chaincodeListCmd, flagList) // 更新到命令行选项集合

 return chaincodeListCmd

}

2.命令执行步骤

list子命令获取已安装或已实例化链码列表的执行步骤如图3-15所示。

 [image:]

图3-15　list子命令获取已安装或已实例化链码列表时序图

1）peer chaincode list经过Cobra组件解析后调用自定义执行函数getChaincodes()，如代码清单3-76所示。该函数首先检查参数（getInstalledChaincodes与getInstantiated-Chaincodes标志位、通道ID等）的合法性，接着调用InitCmdFactory()函数以获取链码命令工厂对象（ChaincodeCmdFactory类型），初始化Endorser背书服务客户端、本地签名者Signer等。

代码清单3-76　getChaincodes()函数的源码示例

peer/chaincode/list.go文件

// 获取已经安装或已经实例化的链码列表

func getChaincodes(cmd *cobra.Command, cf *ChaincodeCmdFactory) error {

 if getInstantiatedChaincodes && channelID == "" { // 检查参数合法性

 return errors.New("The required parameter 'channelID' is empty. Rerun the command with -C flag")

 }

 var err error

 if cf == nil {

 cf, err = InitCmdFactory(true, false) // 初始化命令工厂对象

 ……

 }

 creator, err := cf.Signer.Serialize() // 获取本地签名者实体

 ……

 var prop *pb.Proposal

 // 获取已安装的链码列表

 if getInstalledChaincodes && (!getInstantiatedChaincodes) {

 prop, _, err = utils.CreateGetInstalledChaincodesProposal(creator)

 } else if getInstantiatedChaincodes && (!getInstalledChaincodes) {

 //获取已经实例化的链码列表

 prop, _, err = utils.CreateGetChaincodesProposal(channelID, creator)

 } else { // 否则，必须在命令行中指定--installed或者--instantiated

 return fmt.Errorf("Must explicitly specify \"--installed\" or \"--instantiated\"")

 }

 ……

 var signedProp *pb.SignedProposal

 signedProp, err = utils.GetSignedProposal(prop, cf.Signer) // 创建签名的提案消息

 ……

 // 发送签名提案消息到Endorser节点请求处理

 proposalResponse, err := cf.EndorserClient.ProcessProposal(context.Background(), signedProp)

 ……

 cqr := &pb.ChaincodeQueryResponse{}

 err = proto.Unmarshal(proposalResponse.Response.Payload, cqr) // 解析提案响应消息的消息负载

 ……

 for _, chaincode := range cqr.Chaincodes { // 打印所有链码信息

 fmt.Printf("%v\n", ccInfo{chaincode}.String())

 }

 return nil

}

2）getChaincodes()函数接着构造签名提案消息，并发送给Endorser背书节点请求处理。首先，getChaincodes()函数构造提案消息，包括如下两种情况。

·如果是安装链码列表命令（getInstalledChaincodes标志位为true且getInstantiated-Chaincodes标志位为false），则调用CreateGetInstalledChaincodesProposal()函数；

·如果是实例化链码列表命令（getInstantiatedChaincodes标志位为true且getInstalled-Chaincodes标志位为false），则调用CreateGetChaincodesProposal()函数。

上面这两个被调用的函数都会构造链码调用规范对象，包含链码调用参数（命令名称getinstalledchaincodes或getchaincodes），并调用CreateProposalFromCIS()函数与GetSigned Proposal()函数，以创建签名提案消息（SignedProposal类型，通道头部类型为ENDORSER_TRANSACTION），指定链ID为空字符串。然后，将该消息通过endorserClient结构客户端发送给Endorser背书节点请求处理（4.2节）。

3）Endorser背书节点接收到消息后，请求LSCC系统链码容器模拟执行链码的Invoke()方法，并根据参数getinstalledchaincodes（即GETINSTALLEDCHAINCODES）或getchaincodes（即GETCHAINCODES）进行分类处理，如代码清单3-77所示。Invoke()方法检查该链码调用必须带有1个参数，并调用CheckPolicyNoChannel()函数，检查签名提案消息是否满足组织管理员权限策略。如果通过了检查，则分别调用getInstalledChaincodes()函数与getChaincodes()函数以获取不同类型要求的链码列表，并将包含查询结果的提案响应消息发送给客户端。另外，Fabric 1.2与1.3在处理GETCHAINCODES类型请求时检查/Channel/Application/Readers策略。

代码清单3-77　Invoke()方法处理list链码命令的源码示例

core/scc/lscc/lscc.go文件

func (lscc *lifeCycleSysCC) Invoke(stub shim.ChaincodeStubInterface) pb.Response {

 ……

 case GETCHAINCODES: // 获取所有已经实例化（部署）的链码

 if len(args) != 1 {

 return shim.Error(InvalidArgsLenErr(len(args)).Error())

 }

 if err = lscc.policyChecker.CheckPolicyNoChannel(mgmt.Admins, sp); err != nil { // 检查组织管理员权限策略

 return shim.Error(fmt.Sprintf("Authorization for GETCHAINCODES on channel %s has been denied with error %s", args[0], err))

 }

 return lscc.getChaincodes(stub) // 返回所有已经实例化（部署）的链码

 case GETINSTALLEDCHAINCODES: // 获取已经安装的链码

 if len(args) != 1 {

 return shim.Error(InvalidArgsLenErr(len(args)).Error())

 }

 // 检查组织管理员权限策略

 if err = lscc.policyChecker.CheckPolicyNoChannel(mgmt.Admins, sp); err != nil {

 return shim.Error(fmt.Sprintf("Authorization for GETINSTALLEDCHAINCODES on channel %s has been denied with error %s", args[0], err))

 }

 return lscc.getInstalledChaincodes() // 返回节点上已经安装的链码列表

 ……

}

·getInstalledChaincodes()函数

getInstalledChaincodes()函数调用lscc.support.GetChaincodesFromLocalStorage()方法，实际上最终调用的是GetInstalledChaincodes()函数，负责遍历Peer节点上本地链码安装路径（默认为/var/hyperledger/production/chaincodes/）中的所有链码安装包文件，基于查询结果创建已安装链码列表ccInfoArray（[]*pb.ChaincodeInfo类型），如代码清单3-78所示。

代码清单3-78　GetInstalledChaincodes()函数的源码示例

core/common/ccprovider/ccprovider.go文件

// 查询通道上已安装的链码列表

func GetInstalledChaincodes() (*pb.ChaincodeQueryResponse, error) {

 files, err := ioutil.ReadDir(chaincodeInstallPath)

 // 读取指定目录下的所有链码安装文件

 ……

 var ccInfoArray []*pb.ChaincodeInfo

 for _, file := range files {

 // 分割链码包文件名称

 fileNameArray := strings.SplitN(file.Name(), ".", 2)

 // 检查文件名格式的正确性，只处理文件名格式正确的文件

 if len(fileNameArray) == 2 {

 ccname := fileNameArray[0] // 链码名称

 ccversion := fileNameArray[1] // 链码版本

 ccpack, err := GetChaincodeFromFS(ccname, ccversion) // 读取链码包文件

 if err != nil {

 ccproviderLogger.Errorf("Unreadable chaincode file found on filesystem: %s", file.Name())

 continue

 }

 cdsfs := ccpack.GetDepSpec()

 name := cdsfs.GetChaincodeSpec().GetChaincodeId().Name // 获取链码ID的名称

 // 获取链码ID的版本

 version := cdsfs.GetChaincodeSpec().GetChaincodeId().Version

 // 检查名称和版本是否一致

 if name != ccname || version != ccversion {

 ccproviderLogger.Errorf("Chaincode file's name/version has been modified on the filesystem: %s", file.Name())

 continue

 }

 path := cdsfs.GetChaincodeSpec().ChaincodeId.Path // 获取链码路径

 input, escc, vscc := "", "", ""

 // 构造链码信息对象

 ccInfo := &pb.ChaincodeInfo{Name: name, Version: version, Path: path, Input: input, Escc: escc, Vscc: vscc, Id: ccpack.GetId()}

 ccInfoArray = append(ccInfoArray, ccInfo) // 添加该链码信息对

 // 象到链码信息列表中

 }

 }

 // 基于链码信息列表构造查询响应消息

 cqr := &pb.ChaincodeQueryResponse{Chaincodes: ccInfoArray}

 return cqr, nil

}

GetInstalledChaincodes()函数首先调用ioutil.ReadDir(chaincodeInstallPath)函数，读取指定的链码安装路径下的文件列表，遍历该文件列表中的每个文件对象及其文件名称，过滤处理文件名称正确的文件（ccname.ccversion），即文件名应该包含以“.”分割的2个字符串，在检查通过后解析获取链码名称ccname与链码版本ccversion。接着，调用GetChaincodeFromFS(ccname，ccversion)函数，从本地文件系统中获取指定的链码名称与版本的链码安装包ccpack，提取出链码部署规范、链码名称name与版本version。同时，检查其链码名称name与链码版本version和上述文件名中提取的对应信息（ccname与ccversion）是否相同。如果两者匹配相同，则基于上述参数构造链码信息对象（ChaincodeInfo类型，包含链码名称、链码版本、链码路径等信息），并将该对象添加到已安装链码列表ccInfoArray中。最后，将该链码列表ccInfoArray封装为链码查询响应消息（ChaincodeQueryResponse类型），返回到LSCC链码的Invoke()方法，交由Endorser节点处理后回复给请求客户端。

·getChaincodes()方法

getChaincodes()方法通过请求查询指定通道账本的状态数据库中lscc名字空间下的状态数据，即获取所有已经实例化的链码数据对象（ChaincodeData类型），解析并构造已实例化的链码列表ccInfoArray（[]*pb.ChaincodeInfo类型），如代码清单3-79所示。

代码清单3-79　getChaincodes()方法的源码示例

core/scc/lscc/lscc.go文件

// 查询通道上已经实例化的链码

func (lscc *lifeCycleSysCC) getChaincodes(stub shim.ChaincodeStubInterface) pb.Response {

 itr, err := stub.GetStateByRange("", "") // 查询并获取该通道上链码数据的结果迭代器

 ……

 var ccInfoArray []*pb.ChaincodeInfo // 记录已安装链码列表

 for itr.HasNext() { // 获取下一个数据记录

 response, err := itr.Next()

 ……

 ccdata := &ccprovider.ChaincodeData{}

 // 解析链码数据对象

 if err = proto.Unmarshal(response.Value, ccdata); err != nil {

 return shim.Error(err.Error())

 }

 ……

 ccpack, err := lscc.support.GetChaincodeFromLocalStorage(ccdata.Name, ccdata.Version) 　　 // 获取链码安装包

 if err == nil {

 // 获取链码规范中的链码路径

 path = ccpack.GetDepSpec().GetChaincodeSpec().ChaincodeId.Path

 // 获取输入参数列表

 input = ccpack.GetDepSpec().GetChaincodeSpec().Input.String()

 }

 ccInfo := &pb.ChaincodeInfo{Name: ccdata.Name, Version: ccdata.Version, Path: path, Input: input, Escc: ccdata.Escc, Vscc: ccdata.Vscc} // 构造链码信息对象

 ccInfoArray = append(ccInfoArray, ccInfo) // 添加该链码信息对象到链码列表中

 }

 cqr := &pb.ChaincodeQueryResponse{Chaincodes: ccInfoArray}

 // 添加链码信息列表到查询响应消息中

 cqrbytes, err := proto.Marshal(cqr)

 ……

 return shim.Success(cqrbytes)

}

getChaincodes()方法首先调用stub.GetStateByRange()方法，构造ChaincodeMessage_GET_STATE_BY_RANGE类型链码消息，发送到Peer侧请求查询指定范围内的公共数据集合。其中，该消息指定的查询起始键与结束键都是空字符串，并指定隐私数据集合名称collection为空字符串，表示查询该通道账本中lscc名字空间下的所有链码数据对象，同时将查询结果封装到范围查询数据结果迭代器itr（StateQueryIterator类型）中。

接着，调用查询结果迭代器itr.Next()方法，遍历并解析其中的链码数据对象结果到ccdata（ChaincodeData类型）中，基于链码名称ccdata.Name与链码版本ccdata.Version调用GetChaincodeFromLocalStorage()函数，从本地文件系统重新获取已安装的链码安装包，解析获取该链码实例的链码路径与输入参数列表。这里存在一个程序错误，即需要过滤掉itr.Next()从账本中获取的链码隐私集合配置信息（键包含“~”分隔符），该程序问题已在Fabric1.3.0的代码中得到修复。

然后，基于上述参数构造链码信息对象（ChaincodeInfo类型，包括链码名称、链码版本、链码路径等信息），并添加到已安装链码列表ccInfoArray中。

最后，将该链码列表ccInfoArray封装为链码查询响应消息（ChaincodeQueryResponse类型），将其序列化封装后返回LSCC链码的Invoke()方法，并交由Endorser节点处理，再回复给请求客户端。

4）请求客户端的getChaincodes()函数继续检查Endorser节点回复的提案响应消息，并打印查询结果中所有已经安装或已经实例化的链码列表信息。

至此，peer chaincode list命令执行结束。
3.4.8　打包链码命令package

1.命令概述

peer chaincode package子命令用于将链码部署规范（ChaincodeDeploymentSpec类型）序列化后写入指定文件。打包链码命令属于本地操作命令。如果执行时添加-s-S命令选项，则需要构造含有签名链码部署规范对象（SignedChaincodeDeploymentSpec类型）的链码包（Envelope类型），并包含实例化策略信息、所有者签名列表等，再交由其他多个所有者使用signpackage命令继续进行校验与签名，最后写入指定的链码包文件。如果没有指定-S命令选项，则只创建包含空背书签名的签名链码部署规范的链码包对象（只含有链码部署规范与实例化策略），同时其他所有者都无法对其进行签名。所有者签名可以验证链码包内容是否被篡改过，同时表明节点的合法身份与认可链码包内容。另外，可以通过-i指定实例化策略（可选，默认为AND('mspid.admin')，即组织ADMIN管理员身份），用于验证执行链码实例化操作的链码所有者身份是否合法。

package.go文件提供了packageCmd(cf*ChaincodeCmdFactory)函数，用于创建链码package子命令对象packageCmd，并更新相关命令行选项，如代码清单3-80所示，示例命令形式如下。

$ peer chaincode package –n mycc –p github.com/hyperledger/fabric/examples/chaincode/go/chaincode_example02 –v 1.0 –s –S –i "AND ('Org1MSP.admin')" ccpack.file

代码清单3-80　package子命令packageCmd()函数的源码示例

peer/chaincode/package.go文件

// 创建package子命令打包链码

func packageCmd(cf *ChaincodeCmdFactory, cdsFact ccDepSpecFactory) *cobra.Command {

 chaincodePackageCmd = &cobra.Command{

 Use: "package",

 Short: packageDesc,

 Long: packageDesc,

 ValidArgs: []string{"1"},

 RunE: func(cmd *cobra.Command, args []string) error {

 if len(args) != 1 {

 return fmt.Errorf("output file not specified or invalid number of args (filename should be the only arg)")

 }

 if cdsFact == nil {

 cdsFact = defaultCDSFactory // 设置链码部署规范工厂函数

 }

 return chaincodePackage(cmd, args, cdsFact, cf) // 执行打包链码函数

 },

 }

 flagList := []string{

 "lang", // 链码语言

 "ctor", // 链码调用参数

 "path", // 链码文件路径

 "name", // 链码名称

 "version", // 命令中指定的版本信息

 }

 attachFlags(chaincodePackageCmd, flagList) // 更新到命令行选项集合

 // 设置命令行选项参数

 chaincodePackageCmd.Flags().BoolVarP(&createSignedCCDepSpec, "cc-package", "s", false, "create CC deployment spec for owner endorsements instead of raw CC deployment spec")

 chaincodePackageCmd.Flags().BoolVarP(&signCCDepSpec, "sign", "S", false, "if creating CC deployment spec package for owner endorsements, also sign it with local MSP")

 chaincodePackageCmd.Flags().StringVarP(&instantiationPolicy, "instantiate-policy", "i", "", "instantiation policy for the chaincode")

 return chaincodePackageCmd

}

2.命令执行步骤

package子命令打包链码的执行步骤具体如下。

1）peer chaincode package经过Cobra组件解析后调用自定义执行函数chaincode-Package()，如代码清单3-81所示。该函数首先检查参数的合法性，设置链码部署规范工厂函数cdsFact，用于创建链码部署规范对象，接着调用InitCmdFactory()函数，初始化链码命令工厂对象（ChaincodeCmdFactory类型），不需要设置Endorser背书服务客户端与Broadcast交易广播服务客户端。

代码清单3-81　chaincodePackage()函数的源码示例

peer/chaincode/package.go文件

func chaincodePackage(cmd *cobra.Command, args []string, cdsFact ccDepSpecFactory, cf *ChaincodeCmdFactory) error {

 if cdsFact == nil {

 return fmt.Errorf("Error chaincode deployment spec factory not specified")

 }

 var err error

 if cf == nil {

 cf, err = InitCmdFactory(false, false) // 初始化链码工厂对象

 ……

 }

 spec, err := getChaincodeSpec(cmd) // 获取链码描述规范对象

 ……

 cds, err := cdsFact(spec) // 创建链码部署规范对象

 ……

 if createSignedCCDepSpec { // 创建完整的打包格式，包含签名的链码部署规范

 bytesToWrite, err = getChaincodeInstallPackage(cds, cf)

 ……

 } else { // 只打包链码部署规范

 bytesToWrite = utils.MarshalOrPanic(cds)

 }

 ……

 fileToWrite := args[0] // 获取要写入的链码包文件名称

 err = ioutil.WriteFile(fileToWrite, bytesToWrite, 0700) // 写入文件

 ……

 return err

}

2）chaincodePackage()函数首先调用getChaincodeSpec()函数，解析命令行参数构造链码描述规范对象，并基于该对象调用cdsFact()→defaultCDSFactory()→getChaincodeDeploymentSpec(spec，true)函数，创建链码部署规范对象cds。注意，默认在非开发模式下，该对象的cds.CodePackage链码代码包不为nil，即封装了链码源码及其依赖库等。其中，createSignedCCDepSpec与signCCDepSpec标志位分别对应-s与-S命令选项。

接着，检查命令参数类型并进行分类处理。如果createSignedCCDepSpec为true，则需要创建完整的打包格式，调用getChaincodeInstallPackage()函数，基于链码部署规范cds添加实例化策略、所有者签名等信息，构造签名链码部署规范对象（SignedChaincode-DeploymentSpec类型），再封装为Envelope结构的签名消息（通道头部类型为CHAINCODE_PACKAGE），如代码清单3-82所示。否则，只打包链码部署规范对象。

同时，上述两种情况下，最后都是将指定打包的对象序列化为bytesToWrite字节数组，并写入指定名称（第1个参数args[0]用于指定文件名称）的文件中。

代码清单3-82　getChaincodeInstallPackage()函数的源码示例

peer/chaincode/package.go文件

// 获取链码安装包

func getChaincodeInstallPackage(cds *pb.ChaincodeDeploymentSpec, cf *ChaincodeCmd-Factory) ([]byte, error) {

 var objToWrite proto.Message

 // 设置为默认的链码部署规范

 objToWrite = cds

 var err error

 var owner msp.SigningIdentity

 // 创建签名的链码部署规范（-s命令选项）

 if createSignedCCDepSpec {

 if signCCDepSpec { // 支持所有者签名（-S命令选项）

 if cf.Signer == nil {

 return nil, fmt.Errorf("Error getting signer")

 }

 owner = cf.Signer // 设置签名身份实体

 }

 }

 ip := instantiationPolicy // 获取实例化策略

 if ip == "" {

 // 如果没有给定一个实例化策略名称，那么默认的Admin管理员必须对链码实例化提案消息进行签名

 mspid, err := mspmgmt.GetLocalMSP().GetIdentifier() // 获取MSP标识ID

 if err != nil {

 return nil, err

 }

 ip = "AND('" + mspid + ".admin')" // 设置实例化策略

 }

 sp, err := getInstantiationPolicy(ip) // 获取实例化策略

 if err != nil {

 return nil, err

 }

 // 获取CHAINCODE_PACKAGE类型的Envelope结构消息对象

 objToWrite, err = ccpackage.OwnerCreateSignedCCDepSpec(cds, sp, owner)

 if err != nil {

 return nil, err

 }

 // 转换proto对象为byte数组

 bytesToWrite, err := proto.Marshal(objToWrite) // 序列化链码安装包

 if err != nil {

 return nil, fmt.Errorf("Error marshalling chaincode package : %s", err)

 }

 return bytesToWrite, nil

}

3）getChaincodeInstallPackage()函数负责构造完整格式的链码包并签名。

getChaincodeInstallPackage()函数首先检查createSignedCCDepSpec标志位与signCCDep-Spec标志位。如果两个标志位都设置为启用状态（true），即同时指定了命令行选项-s-S，则设置本地签名者实体对象owner为初始化的cf.Signer对象（不为nil），具体说明如下。

·createSignedCCDepSpec标志位（命令行选项-s）：用于生成多个所有者签名的链码包；

·signCCDepSpec标志位（命令行选项-S）：允许对链码包进行签名，这样其他的链码所有者就都可以使用signpackage命令进行签名了。

接着，getChaincodeInstallPackage()函数获取命令行选项-i指定的实例化策略instantiation-Policy。如果没有指定实例化策略，则采用默认的实例化策略AND('mspid.admin')，即组织的ADMIN管理员身份。此时，继续调用getInstantiationPolicy()函数，提取上述获取的实例化策略中对应的签名策略对象sp（SignaturePolicyEnvelope类型）。

然后，基于上述参数调用ccpackage.OwnerCreateSignedCCDepSpec(cds，sp，owner)函数，创建签名的链码部署规范对象并将其序列化为字节数组objToWrite。该函数先调用owner.Sign(append(cdsbytes，append(instpolicybytes，endorser...)...))方法，使用背书节点的本地签名者实体owner对链码部署规范cdsbytes、实例化策略instpolicybytes和身份信息endorser的组合信息进行签名，构造签名背书信息对象（Endorsement类型），并添加到所有者签名列表endorsements中。接着，调用createSignedCCDepSpec()函数，创建签名的链码部署规范cip（SignedChaincodeDeploymentSpec类型），包含链码部署规范cdsbytes、实例化策略instpolicybytes、所有者签名列表endorsements等信息，并被序列化为字节数组cipbytes，再添加消息的通道头部类型（CHAINCODE_PACKAGE）、消息版本（0）、空字符串链ID等信息，封装成Envelope结构对象并作为链码打包结果。最后，将该对象序列化成字节数组后，再依次返回到chaincodePackage()函数。

至此，peer chaincode package命令执行结束。
3.4.9　签名链码包命令signpackage

1.命令概述

peer chaincode signpackage子命令用于多个签名者对链码包文件进行签名背书，并依次添加本地签名者的合法签名到所有者的签名背书信息列表中。签名链码包命令同样属于本地操作命令。注意，只有链码在执行打包命令package时指定了-s和-S选项，才能允许其他的链码所有者使用signpackage子命令继续签名。

signpackage.go文件提供了signpackageCmd(cf*ChaincodeCmdFactory)函数，用于创建链码signpackage子命令对象signpackageCmd，如代码清单3-83所示，示例命令形式如下。

peer chaincode signpackage ccpack.file signed_ccpack.file

代码清单3-83　signpackage子命令signpackageCmd()函数的源码示例

peer/chaincode/signpackage.go文件

// 创建signpackage子命令签名链码包

func signpackageCmd(cf *ChaincodeCmdFactory) *cobra.Command {

 spCmd := &cobra.Command{

 Use: "signpackage",

 Short: "Sign the specified chaincode package",

 Long: "Sign the specified chaincode package",

 ValidArgs: []string{"2"}, // 参数列表

 RunE: func(cmd *cobra.Command, args []string) error {

 if len(args) < 2 {

 return fmt.Errorf("peer chaincode signpackage <inputpackage> <outputpackage>")

 }

 return signpackage(cmd, args[0], args[1], cf) // 执行签名链码包命令

 },

 }

 return spCmd

}

2.命令执行步骤

1）peer chaincode signpackage经过Cobra组件解析后调用自定义执行函数signpackage()，如代码清单3-84所示。该函数首先检查参数的合法性，再调用InitCmdFactory()函数，获取并初始化链码命令工厂对象（ChaincodeCmdFactory类型），其不需要设置Endorser背书服务客户端与Broadcast交易广播服务客户端。

代码清单3-84　signpackage()函数的源码示例

peer/chaincode/signpackage.go文件

func signpackage(cmd *cobra.Command, ipackageFile string, opackageFile string, cf *ChaincodeCmdFactory) error {

 var err error

 if cf == nil {

 cf, err = InitCmdFactory(false, false) // 初始化命令工厂对象

 ……

 }

 b, err := ioutil.ReadFile(ipackageFile) // 读取输入链码包文件

 ……

 env := utils.UnmarshalEnvelopeOrPanic(b) // 解析成消息Envelope结构对象

 env, err = ccpackage.SignExistingPackage(env, cf.Signer) // 签名链码包

 ……

 b = utils.MarshalOrPanic(env) // 序列化签名链码包

 err = ioutil.WriteFile(opackageFile, b, 0700) // 将签名后的链码包对象写入文件

 ……

 return nil

}

2）signpackage()函数接着调用ReadFile(ipackageFile)函数，读取链码包文件并解析获取Envelope结构的链码包对象，再调用ccpackage.SignExistingPackage(env，cf.Signer)函数，与package打包链码命令的OwnerCreateSignedCCDepSpec()函数类似，如代码清单3-85所示。

代码清单3-85　SignExistingPackage()函数的源码示例

core/common/ccpackage/ccpackage.go文件

// 添加本地签名到已签名的链码包中

func SignExistingPackage(env *common.Envelope, owner msp.SigningIdentity) (*common.Envelope, error) {

 ……

 ch, sdepspec, err := ExtractSignedCCDepSpec(env) // 获取签名的链码部署规范对象

 ……

 if ch == nil {

 return nil, fmt.Errorf("channel header not found in the envelope")

 }

 if sdepspec == nil || sdepspec.ChaincodeDeploymentSpec == nil || sdepspec.InstantiationPolicy == nil || sdepspec.OwnerEndorsements == nil {

 return nil, fmt.Errorf("invalid signed deployment spec")

 }

 endorser, err := owner.Serialize() // 获取签名者身份实体字节数组

 ……

 // 使用背书实体的密钥签名进行签名

 signature, err := owner.Sign(append(sdepspec.ChaincodeDeploymentSpec, append(sdepspec.InstantiationPolicy, endorser...)...))

 ……

 // 添加到签名背书信息列表中

 endorsements := append(sdepspec.OwnerEndorsements, &peer.Endorsement　{Signature: signature, Endorser: endorser})

 // 重新构造签名链码部署规范对象

 return createSignedCCDepSpec(sdepspec.ChaincodeDeploymentSpec, sdepspec.InstantiationPolicy, endorsements)

}

其中，SignExistingPackage()函数先调用ExtractSignedCCDepSpec()函数，解析获取签名链码部署规范对象sdepspec，并检查该对象的消息格式及通道头部的合法性。接着，通过本地签名者实体调用owner.Sign()方法，对链码部署规范对象sdepspec.Chaincode-DeploymentSpec、实例化策略sdepspec.InstantiationPolicy与签名者身份实体信息endorser的组合信息进行签名，并获得签名结果signature。然后，基于signature与本地签名者身份信息endorser构造签名背书信息对象（Endorsement类型），再添加到所有者签名背书信息列表endorsements（[]*Endorsement类型）中。

最后，基于endorsements等参数调用createSignedCCDepSpec()函数，创建新的签名链码部署规范（SignedChaincodeDeploymentSpec类型），并添加通道头部类型（CHAINCODE_PACKAGE）、链ID（空字符串）等构造Envelope结构对象，作为对链码包签名的结果返回signpackage()函数。

3）signpackage()函数继续将该对象序列化成字节数组，调用WriteFile(opackageFile，b，0700)函数将其写入opackageFile变量指定名称的文件中。

至此，peer chaincode signpackage命令执行结束。
3.5　其他子命令

3.5.1　状态查询子命令

peer node status子命令通过请求Peer节点上的Admin管理服务器来查询节点运行状态。该命令经过Cobra组件解析后调用自定义执行函数status()，如代码清单3-86所示。

代码清单3-86　status()函数的源码示例

peer/node/status.go文件

func status() (err error) {

 adminClient, err := common.GetAdminClient() // 创建Admin服务客户端

 ……

 status, err := adminClient.GetStatus(context.Background(), &empty.Empty{})

 // 请求获取节点状态

 ……

 fmt.Println(status)

 return nil

}

status()函数首先调用common.GetAdminClient()函数，创建指定地址（peer.address配置项）上的Admin服务客户端对象（adminClient类型），通过Admin服务客户端调用GetStatus()方法，向Peer节点上的Admin服务器发送请求以获取节点的运行状态。

Peer节点上的Admin服务器接收请求后，调用ServerAdmin.GetStatus()方法（core/admin.go）进行处理，将当前服务器状态封装成ServerStatus结构对象消息（ServerStatus_STARTED类型），并回复给请求客户端。status()函数接收到状态消息后检查错误，并打印节点运行状态。

至此，peer chaincode status命令执行结束。
3.5.2　版本子命令

peer version子命令用于打印当前程序版本信息，该命令经过Cobra组件解析后调用自定义执行函数GetInfo()。该函数基于Makefile文件中LDFLAGS传递的元数据变量metadata构造链码信息字符串，包括基础镜像版本BaseVersion、Docker名字空间BaseDockerNamespace、Docker标签BaseDockerLabel等。接着，直接打印版本信息，包括程序版本、Go语言版本、操作系统与体系结构信息等。
3.5.3　日志子命令

peer longging getlevel|setlevel|revertlevels用于获取、设置与恢复指定模块的日志级别。该命令经过Cobra组件解析后调用对应的执行函数getLevel()、setLevel()和revertLevels()。这些执行函数首先调用checkLoggingCmdParams(cmd，args)函数，检查日志命令与参数的合法性，检查通过后调用InitCmdFactory()函数，以初始化日志命令工厂对象（LoggingCmdFactory类型）。接着，调用common.GetAdminClient()函数，创建指定服务地址（peer.address配置项）的本地Admin服务客户端，然后通过该Admin服务客户端将日志操作请求发送给Peer节点上的Admin服务器。该服务器接收到请求消息后进行分类处理，具体说明如下。

·GetModuleLogLevel()函数：处理getlevel<module>子命令请求，调用flogging.GetModuleLevel(request.LogModule)→logging.GetLevel(module).String()函数，查询模块日志级别，并构造日志操作响应消息（LogLevelResponse类型），返回给请求客户端；

·SetModuleLogLevel()函数：处理setlevel<module regular expression> <log level>子命令请求，调用flogging.SetModuleLevel(request.LogModule，request.LogLevel)→setModuleLevel(moduleRegExp，level，true，false)函数，设置指定模块的日志级别，其中，模块名称支持正则化表达式描述，然后构造日志操作响应消息（LogLevelResponse类型），返回给请求客户端；

·RevertLogLevels()函数：处理revertlevels子命令请求，调用flogging.RevertTo-PeerStartupLevels()→setModuleLevel(key，peerStartModules[key]，false，true)函数，恢复当前所有启动模块的日志级别为Peer节点启动时的日志级别，然后构造空消息返回给请求客户端。

最后，logging命令的执行函数getLevel()、setLevel()和revertLevels()收到日志操作响应消息后，检查消息错误并结束命令执行。
3.6　小结

本章介绍了Peer节点功能模块的设计与实现机制，包括Peer节点的启动流程与Peer命令模块。

Peer节点启动后创建了多个gRPC服务器，注册了EventHub事件服务器、Deliver Events事件服务器、ChaincodeSupport链码支持服务器、Admin管理服务器、Endorser背书服务器、Gossip消息服务器等，同时部署了默认的5种系统链码，接着依次启动gRPC服务器提供正常的Peer节点功能服务。同时，本章还介绍了Peer命令模块启动执行的流程，包括channel通道子命令、chaincode链码子命令、node节点子命令、version版本子命令、logging日志子命令等。
第4章　Endorser背书节点

区块链不仅仅是用在比特币，我相信区块链能改变未来二三十年的经济和金融体系，它关乎信任、信誉和安全。

——阿里巴巴集团，马云

本章主要分析Hyperledger Fabric中Endorser背书节点功能模块的设计与实现，其源代码主要分布在/core、/peer和/protos等目录下，如表4-1所示。读者可以通过本章了解到Endorser背书节点处理签名提案消息的流程，包括启动链码容器、模拟执行链码、调用ESCC链码签名背书等。

表4-1　Endorser背书节点功能模块相关源码列表

 [image:]

4.1　功能概述

Endorser背书服务器（或称Endorser背书节点）是在Peer节点启动过程中创建的，注册到本地gRPC服务器（7051端口）上提供服务，对请求服务的签名提案消息执行启动链码容器、模拟执行链码、签名背书等流程。所有客户端提交到账本的普通交易消息都需要经过指定的Endorser背书节点签名认可，并在检查收到足够的签名背书信息之后，才能将签名提案消息、模拟执行结果及其背书信息等打包成签名交易消息（Envelope类型），发送给Orderer节点请求排序出块。因此，Endorser背书节点承担着Hyperledger Fabric系统上的“信用背书机构”角色。

目前，Endorser背书节点提供了ProcessProposal(ctx context.Context，signedProp*pb.SignedProposal)(*pb.ProposalResponse，error)服务接口，用于处理客户端提交的签名提案消息（SignedProposal类型）。Endorser背书节点首先检查是否已经启动该消息中请求执行的链码容器对象，即通过全局链码支持服务实例theChaincodeSupport检查本地维护的链码运行时环境字典chaincodeMap（map[string]*chaincodeRTEnv类型），查看该字典中是否已经注册了指定的链码规范名称（ChaincodeName：ChaincodeVersion）关联的链码运行时环境对象（chaincodeRTEnv类型）。如果还没有注册该对象，则说明还未启动对应的链码容器对象，此时应启动链码容器以提供链码运行时环境，同时将其注册到chaincodeMap字典中，以管理容器的运行状态与处理链码消息。通常，系统链码容器是在Peer节点初始化启动时或创建链结构时部署的，其程序执行路径是DeploySysCCs()→chaincode.Execute()（3.2.4节），并没有通过ProcessProposal()接口请求启动容器，实际上是利用InprocVM类型虚拟机启动inprocContainer类型容器（基于goroutine实现的），并且与Endorser背书节点建立2个Golang通道进行双向通信。用户链码容器是由客户端通过ProcessProposal()接口提交实例化链码请求，并在Endorser背书节点上通过LSCC系统链码间接地启动用户链码的Docker容器，然后与Endorser背书节点建立gRPC服务连接进行通信。注意，theChaincodeSupport对象通过检查chaincodeMap字典来保证不重复启动相同链码规范名称的链码容器对象。

实际上，链码容器是一种无状态的链码运行时环境对象，不保存任何本地数据。除了链码调用参数之外，与链码容器只能通过调用ChaincodeStubInterface接口定义的API方法，与Endorser背书节点（Peer侧）通信交互，才能请求执行获取状态数据、保存状态数据、调用链码等操作，并且不绑定任何具体通道的链结构。因此，同一个节点上不同通道可以共用相同链码规范名称的链码容器。

同时，对应的链码运行时环境对象（chaincodeRTEnv类型）包含Handler消息处理句柄及其FSM（有限状态机），负责处理链码容器发送的链码消息，并维护当前Peer侧上所有交易的交易上下文字典txCtxs（map[string]*transactionContext类型）。该字典用于管理交易提案消息的交易标识txCtxID（链ID+交易ID）与交易上下文对象（transactionContext类型，封装了交易模拟器）之间的映射关系。这样，当不同交易的链码容器请求Peer侧访问账本时，Peer侧的Handler对象就能根据链码消息查找指定链（chainID）上指定交易（txid）关联的交易上下文对象，利用该对象封装的交易模拟器访问账本数据，并将模拟执行结果暂时记录在交易模拟器中，等待交易验证通过后更新账本，并且有可能拒绝无效交易（“模拟执行”）。访问账本的这种方式也决定了Committer记账节点执行MVCC检查交易有效性的策略（5.4.1节），即根据已提交区块的当前账本状态数据库来检查当前交易读写集数据的有效性（实际上只检查读数据），如果当前交易读取了当前区块中前面交易的写数据，或者当前交易的读操作数据版本与当前账本状态数据库（截至已提交的上一个区块）中读取的数据版本不一致，则都设置该读数据无效，那么该交易就是无效的。因此，该无效交易的写数据集合就不能更新到状态数据库中，同时，也不能同步到历史数据库，但是目前仍然会将该无效交易打包出块，并保存到区块数据文件中作为记录保留。

Endorser背书节点的ProcessProposal()方法在模拟执行链码之前为当前交易（链ID不为空字符串的情况）创建了关联的交易模拟器。在每次调用链码（ChaincodeMessage_INIT消息请求调用Init()方法以初始化链码、ChaincodeMessage_TRANSACTION消息请求调用Invoke()以调用链码）或通知做好准备等待链码调用（ChaincodeMessage_READY消息）之前，都会将该交易模拟器绑定到构造的交易上下文对象上，同时注册到txCtxs字典中，负责访问账本数据、记录模拟执行结果等操作。同时，如果调用链码结束或通知已准备完成（两侧Handler对象上的FSM状态为ready），则在txCtxs字典中删除该交易上下文对象键值对。

Endorser背书节点在链码模拟执行结束后调用ESCC背书管理系统链码，利用本地签名者实体对模拟执行结果进行签名背书，然后将模拟执行结果、背书签名、链码执行响应消息等封装为提案响应消息（ProposalResponse类型），并回复给请求客户端。

注意，客户端在发起签名提案消息请求时需要指定背书节点，如第3章命令行模式下Endorser背书节点通常就是默认操作的Peer节点。
4.2　Endorser背书服务

Endorser背书节点提供ProcessProposal()服务接口用于接收与处理签名提案消息的请求，启动用户链码容器，执行调用链码，并对模拟执行结果进行签名背书，主要分为3个执行步骤，如代码清单4-1所示。注意，Peer节点启动时解析core.yaml文件中的peer.handlers配置项，并构造认证过滤器列表。如果存在合法类型的认证过滤器，则需要先经过所有认证过滤器调用ProcessProposal()方法进行验证过滤，例如检查身份证书是否过期，然后再提交给背书服务器的serverEndorser.ProcessProposal()方法进行处理。

代码清单4-1　ProcessProposal()方法处理签名提案消息的源码示例

core/endorser/endorser.go文件

// 处理提案消息并背书签名

func (e *Endorser) ProcessProposal(ctx context.Context, signedProp *pb.SignedProposal) (*pb.ProposalResponse, error) {

 addr := util.ExtractRemoteAddress(ctx)

 endorserLogger.Debug("Entering: Got request from", addr)

 defer endorserLogger.Debugf("Exit: request from", addr)

 // 检查并检验签名提案消息的合法性

 vr, err := e.preProcess(signedProp)

 if err != nil {

 resp := vr.resp

 return resp, err

 }

 prop, hdrExt, chainID, txid := vr.prop, vr.hdrExt, vr.chainID, vr.txid

 // 创建交易模拟器与历史查询执行器

 var txsim ledger.TxSimulator

 var historyQueryExecutor ledger.HistoryQueryExecutor

 if chainID != "" {

 // 创建交易模拟器对象

 if txsim, err = e.s.GetTxSimulator(chainID, txid); err != nil {

 return &pb.ProposalResponse{Response: &pb.Response{Status: 500, Message: err.Error()}}, err

 }

 if historyQueryExecutor, err = e.s.GetHistoryQueryExecutor(chainID); err != nil { // 创建历史查询器对象

 return &pb.ProposalResponse{Response: &pb.Response{Status: 500, Message: err.Error()}}, err

 }

 // 将历史查询执行器添加到context中的KV键值对

 ctx = context.WithValue(ctx, chaincode.HistoryQueryExecutorKey, historyQueryExecutor)

 defer txsim.Done() // 退出时释放资源

 }

 // 模拟交易执行

 cd, res, simulationResult, ccevent, err := e.simulateProposal(ctx, chainID, txid, signedProp, prop, hdrExt.ChaincodeId, txsim)

 ……

 if res != nil { // 检查交易模拟运行结果的响应消息

 if res.Status >= shim.ERROR {

 ……

 // 创建背书失败的提案响应消息

 pResp, err := putils.CreateProposalResponseFailure(prop.Header, prop.Payload, res, simulationResult, cceventBytes, hdrExt.ChaincodeId, hdrExt.PayloadVisibility)

 ……

 return pResp, &chaincodeError{res.Status, res.Message}

 }

 }

 // 调用ESCC系统链码对模拟执行结果进行背书，并回复提案响应消息

 var pResp *pb.ProposalResponse

 if chainID == "" { // 若链ID为空，则不需要进行背书，直接构造提案响应消息返回

 pResp = &pb.ProposalResponse{Response: res}

 } else { // 签名背书

 pResp, err = e.endorseProposal(ctx, chainID, txid, signedProp, prop, res, simulationResult, ccevent, hdrExt.PayloadVisibility, hdrExt.ChaincodeId, txsim, cd)

 if err != nil {

 return &pb.ProposalResponse{Response: &pb.Response{Status: 500, Message: err.Error()}}, err

 }

 if pResp != nil {

 if res.Status >= shim.ERRORTHRESHOLD { // 检查响应消息是否存在错误

 endorserLogger.Debugf("[%s][%s] endorseProposal() resulted in chaincode %s error for txid: %s", chainID, shorttxid(txid), hdrExt.ChaincodeId, txid)

 return pResp, &chaincodeError{res.Status, res.Message}

 }

 }

 }

 pResp.Response.Payload = res.Payload // 设置链码提案响应消息负载字节数组,

 // 含有链码调用返回值

 return pResp, nil

}

1）调用preProcess()方法预处理签名提案消息，验证消息合法性。

preProcess()方法首先检查签名提案消息格式的合法性与签名有效性，包括通道头部、签名头部、签名域、交易ID、消息扩展域ChaincodeId字段以及PayloadVisibility可见性模式字段等。接着，检查签名提案消息是否为允许外部调用的系统链码，再通过交易ID查询账本验证签名提案消息的唯一性（即在账本上没保存过该交易），并检查该签名消息的创建者是否满足通道写权限（CHANNELWRITERS，即/Channel/Application/Writers）策略的要求。只有通过上述检查，才能将验证过的签名提案消息等参数传递给链码容器请求模拟执行。

2）调用simulateProposal()方法启动链码容器并模拟执行提案，将结果读写集记录到模拟交易器中。

simulateProposal()方法首先从提案消息中解析获取链码调用规范对象，检查其实例化策略，确保链码合法可用并且允许实例化。

接着，simulateProposal()方法调用callChaincode()方法，启动链码容器并模拟执行链码。该方法先通过Peer侧的链码支持服务实例调用theChaincodeSupport.Launch()方法，启动链码容器，建立链码容器侧与Peer侧之间的双向通信连接。同时，创建两侧的Handler处理句柄及其FSM，构建消息处理循环，并将FSM转换到ready状态。然后，调用theChaincodeSupport.Execute()方法，将初始化或调用链码消息（ChaincodeMessage_INIT类型或Chaincode-Message_TRANSACTION类型）发送到链码容器侧，请求访问账本数据，并记录模拟执行结果到交易模拟器中。同时，周期性地发送ChaincodeMessage_KEEPALIVE类型链码消息，作为心跳消息监控链码容器的存活情况。当交易提案模拟执行完毕后，callChaincode()方法通过合法的交易模拟器（不为nil）调用txsim.GetTxSimulationResults()方法，以获取模拟执行结果读写集，利用Gossip消息协议将有效的隐私数据明文读写集（不为nil）分发到组织内授权的其他Peer节点上，并返回链码执行响应消息、模拟结果中的公有数据读写集、链码执行事件等。

最后，simulateProposal()方法检查链码响应消息。如果发现存在链码执行响应消息错误，则构造背书失败的提案响应消息。否则，链码执行成功，继续对模拟执行结果签名背书。

3）调用endorseProposal()方法对模拟执行结果进行签名背书，并返回提案响应消息。

ProcessProposal()方法先检查chainID，如果其为空字符串（如系统链码CSCC），则不需要对提案模拟执行结果进行背书，直接将结果封装为提案响应消息即可。否则，调用endorseProposal()方法对模拟执行结果进行签名背书。

首先，endorseProposal()方法依次获取ESCC背书系统链码的输入参数（最后含有8个参数），解析参数对象并检查参数合法性。

接着，endorseProposal()方法调用callChaincode()方法（与第2）步中方法调用的区别在于cis链码调用规范参数，封装了指定调用的链码实体），请求执行ESCC背书系统链码的Invoke()方法，预处理完毕参数之后，调用CreateProposalResponse()方法构造提案响应消息，同时对提案模拟执行结果读写集签名背书。该消息封装了版本（1）、背书信息（背书签名与签名者身份信息）、提案响应消息负载（含有链码动作ChaincodeAction结构对象、提案消息头部与负载的哈希值）、响应状态信息（执行成功状态码200和字符串OK）等。然后，将该提案响应消息序列化为字节数组，并返回endorseProposal()方法。

最后，endorseProposal()方法检查链码执行响应消息的结果状态res.Status（shim.ERRORTHRESHOLD错误阈值为400），从消息负载res.Payload中重新解析出提案响应消息pResp（ProposalResponse类型，含有模拟执行结果、背书签名信息等），并回复给请求客户端。

至此，Endorser背书节点处理签名提案消息并签名背书的过程结束。
4.3　预处理签名提案消息

preProcess()方法负责预处理签名提案消息，包括验证提案消息格式与签名的合法性、检查提案消息是否为允许通过外部调用的系统链码、检查交易的唯一性、检查签名提案消息是否满足指定的通道访问权限策略等，如代码清单4-2所示。

代码清单4-2　preProcess()方法预处理签名提案消息的源码示例

core/endorser/endorser.go文件

// 预处理提案消息

func (e *Endorser) preProcess(signedProp *pb.SignedProposal) (*validateResult, error) {

 // 1. 验证签名提案消息格式与签名的合法性

 vr := &validateResult{}

 prop, hdr, hdrExt, err := validation.ValidateProposalMessage(signedProp)

 ……

 // 2. 检查提案消息是否允许外部调用的系统链码

 // 解析消息通道头部ChannelHeader结构

 chdr, err := putils.UnmarshalChannelHeader(hdr.ChannelHeader)

 ……

 // 解析消息签名头部SignatureHeader结构

 shdr, err := putils.GetSignatureHeader(hdr.SignatureHeader)

 ……

 // 如果是系统链码，则检查是否为允许从外部调用的系统链码：cscc、lscc或qscc

 if e.s.IsSysCCAndNotInvokableExternal(hdrExt.ChaincodeId.Name) {

 ……

 // 构造提案响应消息对象：状态码为500（错误）与错误信息

 vr.resp = &pb.ProposalResponse{Response: &pb.Response{Status: 500, Message: err.Error()}}

 return vr, err

 }

 // 3. 检查签名提案消息的唯一性

 chainID := chdr.ChannelId // 获取通道标识号ChannelID，即链chainID

 // 检查账本中交易ID的唯一性。注意ValidateProposalMessage()方法已经验证了交易号ID的合法性

 txid := chdr.TxId

 ……

 if chainID != "" {

 // 根据交易ID从账本中获取指定的交易对象，检查账本中交易对象的唯一性，

 // 若找到该对象则说明重复发起了交易，此时应报错

 if _, err = e.s.GetTransactionByID(chainID, txid); err == nil {

 return vr, errors.Errorf("duplicate transaction found [%s]. Creator [%x]", txid, shdr.Creator)

 }

 // 4. 检查签名提案消息是否满足指定通道的访问权限策略，以确保允许交易

 // 检查是否为系统链码，确保是用户链码

 if !e.s.IsSysCC(hdrExt.ChaincodeId.Name) {

 // 检查提案是否符合WRITER写通道权限策略

 if err = e.s.CheckACL(signedProp, chdr, shdr, hdrExt); err != nil {

 vr.resp = &pb.ProposalResponse{Response: &pb.Response{Status: 500, Message: err.Error()}}

 return vr, err

 }

 }

 } else { // chainID为空字符串的情况

 }

 vr.prop, vr.hdrExt, vr.chainID, vr.txid = prop, hdrExt, chainID, txid

 return vr, nil

}

4.3.1　验证消息格式与签名合法性

preProcess()方法首先调用validation.ValidateProposalMessage()函数，以检查签名提案消息格式与签名的合法性，解析获取提案消息、消息头部及其扩展域。

其中，ValidateProposalMessage()函数先从签名提案消息signedProp中解析出提案消息prop与消息头部hdr，调用validateCommonHeader(hdr)方法，检查消息头部的合法性，其中：

·validateChannelHeader(chdr)函数检查通道头部chdr的合法性，其通道头部类型应该属于ENDORSER_TRANSACTION、CONFIG_UPDATE、CONFIG或PEER_RESOURCE_UPDATE，并且Epoch字段应该为0；

·validateSignatureHeader(shdr)函数检查签名头部shdr的合法性，随机数Nonce和消息签名者Creator不应该为nil，并且该对象字节数不为0。

接着，ValidateProposalMessage()函数调用checkSignatureFromCreator()方法检查消息签名的合法性。该方法先获取当前通道的身份反序列化组件mspObj，解析出该签名头部的签名者creator，并调用creator.Validate()方法，验证creator是否为MSP有效的X.509合法证书（7.2.1节）。然后，调用creator.Verify()方法获取哈希方法及消息摘要（哈希值），通过所属MSP组件的BCCSP加密安全组件调用id.msp.bccsp.Verify()方法，验证消息签名的真实性。

通过上述检查后，ValidateProposalMessage()函数调用CheckProposalTxID()方法，验证提案消息头部中的交易ID是否计算正确，即重新计算消息随机数Nonce（防止重放攻击）与签名者Creator组合信息后的哈希值，并且与交易ID进行比较。如果两者匹配相同，则说明交易ID是正确的，接着根据消息类型进行分类处理，包括：

·PEER_RESOURCE_UPDATE类型：返回提案消息prop与消息头部hdr对象；

·CONFIG类型与ENDORSER_TRANSACTION类型：调用validateChaincodeProposalMessage()函数验证消息的合法性，并获取消息头部扩展域对象chaincodeHdrExt。即调用GetChaincodeHeaderExtension()方法，提取交易消息中头部扩展域的ChaincodeId字段与PayloadVisibility字段，检查其合法性。其中，普通交易消息都应该存在ChaincodeId字段（包含链码路径、名称、版本等，不为nil）与PayloadVisibility字段（即消息负载可见性模式，目前只能设置nil，可被ESCC设置覆盖）。如果当前消息通过了检查，则ValidateProposalMessage()函数返回提案消息prop、消息头部hdr及其扩展域chaincodeHdrExt到preProcess()方法中。
4.3.2　检查是否为允许外部调用的系统链码

preProcess()方法重新解析消息头部，获取通道头部chdr与签名头部shdr，并调用IsSysCCAndNotInvokableExternal()方法，检查提案消息头部的hdrExt.ChaincodeId.Name链码名称是否为支持从外部调用的系统链码，即遍历默认的5种系统链码，比较匹配链码名称，再检查匹配链码的InvokableExternal标志位进行判断。目前，只有CSCC、LSCC与QSCC三种系统链码支持从外部调用。
4.3.3　检查签名提案消息的唯一性

preProcess()方法继续检查签名提案消息的唯一性，以防止重放攻击。该方法从提案消息通道头部提取链ID（chdr.ChannelId）与交易ID（chdr.TxId），包括两种情况，其中：

·如果链ID不是空字符串，则preProcess()方法需要检查该交易ID的唯一性，确保之前没有提交过该交易到账本中。即调用e.s.GetTransactionByID(chainID，txid)→SupportImpl.GetTransactionByID()方法，根据交易ID从账本的区块文件以及区块索引数据库获取交易数据与交易验证码，并构造成已处理的交易对象（ProcessedTransaction类型）。如果获取交易数据成功且没有错误，则说明账本中已经保存了指定交易ID的交易数据。因此，当前提案消息属于重复提交，报错返回。否则，就说明该签名提案消息通过了消息唯一性的检查；

·如果链ID是空字符串，则preProcess()方法不需要检查签名提案消息的唯一性与验证通道访问权限策略，只需要通过ValidateProposalMessage()函数验证该提案消息的合法性即可。
4.3.4　检查是否满足通道的访问权限策略

preProcess()方法检查签名提案消息是否满足指定通道的访问权限策略，以保证允许合法的模拟执行交易提案。该方法首先调用IsSysCC(hdrExt.ChaincodeId.Name)函数，检查链码是否为系统链码。如果是用户链码，则调用CheckACL()→defaultACLProvider.CheckACL()方法，检查签名提案消息是否满足通道PROPOSE权限策略要求，以允许提交该消息到指定通道上继续进行处理。注意，此处不检查系统链码的情况。

其中，CheckACL()方法先调用defaultPolicy()方法，从全局通道资源策略字典cResourcePolicyMap中获取指定策略名称resources.PROPOSE的默认策略，即CHANNELWRITERS（/Channel/Application/Writers）通道写权限策略。对于SignedProposal类型的签名提案消息，CheckACL()方法调用d.policyChecker.CheckPolicy()方法，检查该签名提案消息是否满足该通道上的Writers写权限策略要求。

CheckPolicy()方法先检查策略名称、签名提案等参数的合法性，依次解析出提案消息、消息头部、签名头部等参数，并基于上述参数构造对应的签名数据（SignedData类型）。接着，调用CheckPolicyBySignedData()方法以检查该签名数据是否符合指定策略。该方法调用policyManager.GetPolicy(policyName)方法，获取指定策略相对路径上的通道策略对象policy，并编译生成策略验证方法，再利用该对象调用policy.Evaluate()方法，验证签名数据对象是否满足通道/Channel/Application/Writers写权限策略的要求。实际上，Fabric采用ImplicitMetaPolicy类型隐式元策略来描述通道策略，默认定义/Channel/Application/Writers策略是满足/Channel/*/Writers的ANY策略，这就意味着任意子策略成立都符合满足该策略的要求。

policy.Evaluate()方法会遍历该策略配置下的所有子策略，并调用子策略验证方法直到当前最底层的子策略为SignaturePolicy签名策略。其中，签名策略应指明必须存在某个角色签名（SignedBy类型）或若干个角色组合签名（NoutOf类型）。因此，policy.Evaluate()方法会同时记录满足要求的子策略数量，达到指定阈值就认为符合了当前的通道权限策略要求。如此递归处理之后，policy.Evaluate()方法就能判断出当前签名数据对象是否满足指定的/Channel/Application/Writers策略要求。

最后，preProcess()方法设置验证结果对象的提案消息、消息头部的扩展域、链ID、交易ID等属性，并返回到ProcessProposal()方法中继续处理。
4.4　模拟执行提案

ProcessProposal()方法启动链码容器与初始化链码执行环境，模拟执行合法的签名提案消息，并将模拟执行结果记录在交易模拟器中。其中，对公有数据（包含公共数据与隐私数据哈希值）继续签名背书，并提交给Orderer节点请求排序出块，同时将隐私数据通过Gossip消息协议发送到组织内的其他授权节点上。

对于链ID（chainID）不为空字符串的签名提案消息，ProcessProposal()方法为该交易创建交易模拟器与历史查询执行器，用于保存模拟执行结果与查询历史数据（因为交易模拟器可以访问本地账本的状态数据库，但是无法提供历史数据），具体说明如下。

·GetTxSimulator(chainID，txid)方法创建该交易的交易模拟器txsim（lockBased-TxSimulator类型），包含本地Peer节点账本kvLedger对象的交易管理器（含有状态数据库，用于访问账本）与RWSetBuilder结构对象（用于保存模拟执行结果）。其中，RWSetBuilder结构对象封装了公有数据读写集Builder字典pubRwBuilderMap（map[string]*nsPubRwBuilder类型）与隐私数据读写集Builder字典pvtRwBuilderMap（map[string]*nsPvtRwBuilder类型），分别用于保存模拟执行结果中的公有数据与隐私数据。同时，将交易模拟器txsim作为参数传递给simulateProposal()方法调用，并保存到context上下文对象的KV键值对中，传递给Peer侧Handler对象用于处理链码消息请求时访问账本和记录模拟执行结果。其中，键是“txsimulatorkey”字符串。

·GetHistoryQueryExecutor(chainID)方法创建该通道（chainID）上的历史查询执行器对象（LevelHistoryDBQueryExecutor类型），并存储到context的KV键值对中，以支持查询该通道账本上的历史数据。其中，键是“historyqueryexecutorkey”字符串。

接着，ProcessProposal()方法调用simulateProposal()方法以模拟执行交易提案，如代码清单4-3所示。

代码清单4-3　simulateProposal()方法模拟执行交易提案的源码示例

core/endorser/endorser.go文件

// 模拟执行交易提案

func (e *Endorser) simulateProposal(ctx context.Context, chainID string, txid string, signedProp *pb.SignedProposal, prop *pb.Proposal, cid *pb.ChaincodeID, txsim ledger.TxSimulator) (resourcesconfig.ChaincodeDefinition, *pb.Response, []byte, *pb.ChaincodeEvent, error) {

 endorserLogger.Debugf("[%s][%s] Entry chaincode: %s", chainID, shorttxid(txid), cid)

 defer endorserLogger.Debugf("[%s][%s] Exit", chainID, shorttxid(txid))

 // === 检查实例化策略

 cis, err := putils.GetChaincodeInvocationSpec(prop) // 解析获取链码调用规范对象

 ……

 if err = e.disableJavaCCInst(cid, cis); err != nil {

 return nil, nil, nil, nil, err

 }

 var cdLedger resourcesconfig.ChaincodeDefinition

 var version string

 // 检查是否为系统链码

 if !e.s.IsSysCC(cid.Name) { // 如果是调用用户链码，则需要保证该链码已经实例化了

 // === 用户链码，通过调用LSCC系统链码获取账本中保存的链码数据对象ChaincodeData结构

 // 如果链上有链码数据对象，则说明链码已经成功实例化

 cdLedger, err = e.s.GetChaincodeDefinition(ctx, chainID, txid, signedProp, prop, cid.Name, txsim)

 ……

 version = cdLedger.CCVersion() // 获取已保存的链码版本

 // 检查提案中的实例化策略与调用账本中的实例化策略是否匹配

 err = e.s.CheckInstantiationPolicy(cid.Name, version, cdLedger)

 ……

 } else {// === 执行系统链码，如lscc等

 version = util.GetSysCCVersion() // 获取系统链码版本

 }

 // === 启动链码容器调用链码

 ……

 res, ccevent, err = e.callChaincode(ctx, chainID, version, txid, signedProp, prop, cis, cid, txsim)

 ……

 //=== 获取并处理交易模拟执行结果

 if txsim != nil {

 if simResult, err = txsim.GetTxSimulationResults(); err != nil {

 return nil, nil, nil, nil, err

 }

 if simResult.PvtSimulationResults != nil { // 检查模拟结果隐私数据的合法性

 if cid.Name == "lscc" {

 return nil, nil, nil, nil, errors.New("Private data is forbidden to be used in instantiate")

 }

 if err := e.distributePrivateData(chainID, txid, simResult.PvtSimulationResults); err != nil { // 分发隐私数据

 return nil, nil, nil, nil, err

 }

 }

 // 获取模拟结果的公有数据

 if pubSimResBytes, err = simResult.GetPubSimulationBytes(); err != nil {

 return nil, nil, nil, nil, err

 }

 }

 return cdLedger, res, pubSimResBytes, ccevent, nil

}

4.4.1　检查实例化策略

simulateProposal()方法可检查提案消息中的实例化策略与本地账本的实例化策略是否相同，以防止执行非法交易。

simulateProposal()方法首先调用GetChaincodeInvocationSpec(prop)函数，从提案消息中解析提取出链码调用规范对象（ChaincodeInvocationSpec类型），作为后面执行链码callChaincode()方法的调用参数，并封装了链码调用执行的参数，如请求系统链码（lscc）、调用命令（install）及其参数列表（链码包消息等）。接着，执行一些常规检查如Java链码等，然后调用IsSysCC(cid.Name)方法，依次匹配默认的系统链码名称，以判断当前链码类型是用户链码还是系统链码，分为用户链码和系统链码两种情况检查实例化策略。

（1）用户链码

simulateProposal()方法检查是否已经成功实例化该用户链码。该方法先调用e.s.GetChaincodeDefinition()方法，通过调用LSCC系统链码查询指定通道的账本状态数据库（lscc名字空间），获取指定链码名称cid.Name对应的链码数据对象cdLedger（ChaincodeData类型）。通常，只有实例化链码成功才会保存相应的链码数据对象到账本中。

其中，GetChaincodeDefinition()方法首先将交易模拟器txsim保存到context上下文对象KV键值对中，其中，键为“txsimulatorkey”字符串。接着，调用chaincode.GetChaincodeDefinition()方法构造关联的链码上下文对象（CCContext类型），包含链码规范名称ChaincodeName：ChaincodeVersion，并作为参数提交给ExecuteChaincode()方法请求执行链码。ExecuteChaincode()方法先调用createCIS()函数，重新构造链码调用规范对象，封装了链码语言（GOLANG类型）、调用链码名称（lscc）与调用参数（“getccdata”命令、链ID即chainID、查询的链码名称）。接着，调用Execute()函数，请求LSCC系统链码容器查询上述参数指定的链码数据对象（ChaincodeData类型）。对于getccdata命令，LSCC系统链码的Invoke()方法将调用aclmgmt.GetACLProvider().CheckACL()方法，检查请求消息的签名数据是否符合指定资源LSCC_GETCCDATA对应的应用通道读权限策略/Channel/Application/Readers。如果通过了该策略验证，则调用lscc.getCCInstance()→stub.GetState()方法，发送ChaincodeMessage_GET_STATE类型链码消息到Peer侧，由Handler对象通过交易上下文对象获取该交易关联的交易模拟器，再从账本状态数据库（lscc名字空间）获取指定链码名称ccname对应的链码数据对象，并依次返回到Invoke()方法。最后，chaincode.GetChaincodeDefinition()方法验证查询执行结果，将其解析到链码数据对象cdLedger（ChaincodeData类型，包含链码版本、实例化策略等）。

接着，simulateProposal()方法调用cdLedger.CCVersion()方法，解析获取链码版本version。注意，invoke命令只指定了调用链码名称cid.Name，并没有指定链码版本，而是需要从通道账本数据库中获取该链码经过实例化或升级的最新链码数据对象（含有链码版本），解析获取链码版本version，并构造链码规范名称（cid.Name：version）。这样，链码支持服务实例就能检查是否存在重复的链码容器对象及运行状态。因此，invoke命令只会调用指定通道上该链码最新实例化或升级的链码版本，而并不会影响其他通道上该链码旧版本对象的正常运行。query查询链码命令类似。

然后，simulateProposal()方法调用CheckInstantiationPolicy()方法，检查当前提案消息的实例化策略。该方法先调用GetChaincodeData()方法，从本地文件系统中获取已安装的链码包文件，解析后构造对应的链码数据对象ccdata。接着，基于字节比较上述两个链码数据对象cdLedger与ccdata中包含的实例化策略InstantiationPolicy是否一致，从而过滤掉不合法的链码调用请求。

（2）系统链码

simulateProposal()方法调用util.GetSysCCVersion()函数，获取系统链码版本version，即系统元数据metadata.Version（编译时通过LDFLAGS传递变量值来获取的），Fabric 1.2与1.3改为硬编码作为后面执行链码callChaincode()方法的参数。
4.4.2　启动链码容器概述

simulateProposal()方法调用Endorser背书节点的e.callChaincode()方法，启动链码容器并请求调用链码模拟执行。

callChaincode()方法分为3步执行，首先检查并设置交易模拟器到context上下文对象，接着通过Endorser服务支持对象（SupportImpl类型）调用e.s.Execute()方法执行链码，对于deploy命令或upgrade命令，利用LSCC系统链码保存链码实例化的数据（链码数据对象等），对于其他命令，正常调用对应链码的Invoke()方法，然后单独处理deploy命令或upgrade命令，第二次调用e.s.Execute()方法，启动指定的链码容器并执行链码的Init()方法完成初始化操作。

1.callChaincode()方法执行流程概述

如果该交易存在交易模拟器txsim（不为nil），则callChaincode()方法首先将该交易绑定的交易模拟器txsim添加到context上下文对象的KV键值对中。其中，键TXSimulatorKey为“txsimulatorkey”。实际上，如果外层的ProcessProposal()方法发现提交的签名提案消息中的链ID（chainID）不为空字符串，则为该交易创建交易模拟器，只是在callChaincode()方法中才保存到context上下文中，作为参数传递给Peer侧的Handler消息处理句柄，用于访问账本数据库并记录模拟执行结果。如果签名提案消息中的链ID（chainID）是空字符串，则不需要创建交易模拟器，如请求LSCC系统链码安装链码，不需要访问和保存账本数据。接着，调用e.s.IsSysCC(cid.Name)方法，检查当前链码名称是否匹配系统链码名称，以判断该链码类型是用户链码（false）还是系统链码（true），并设置scc标志位，作为参数提供给e.s.Execute()方法执行链码调用，如代码清单4-4所示。

代码清单4-4　callChaincode()方法调用链码的源码示例

core/endorser/endorser.go文件

// 模拟链码执行

func (e *Endorser) callChaincode(ctxt context.Context, chainID string, version string, txid string, signedProp *pb.SignedProposal, prop *pb.Proposal, cis *pb.ChaincodeInvocationSpec, cid *pb.ChaincodeID, txsim ledger.TxSimulator) (*pb.Response, *pb.ChaincodeEvent, error) {

 ……

 // 设置context上下文对象中交易模拟器的KV键值对，其中，键为TXSimulatorKey，值为交易模拟

 // 器txsim

 if txsim != nil {

 ctxt = context.WithValue(ctxt, chaincode.TXSimulatorKey, txsim)

 }

 scc := e.s.IsSysCC(cid.Name) // 根据链码名称检查是否为系统链码

 res, ccevent, err = e.s.Execute(ctxt, chainID, cid.Name, version, txid, scc, signedProp, prop, cis) // 执行链码调用

 ……

 // 检查调用链码名称lscc，链码调用输入参数的个数应大于等于3个，

 // 第1个参数为deploy部署或upgrade升级，第2个参数是链ID，第3个是链码部署规范对象

 if cid.Name == "lscc" && len(cis.ChaincodeSpec.Input.Args) >= 3 && (string(cis.ChaincodeSpec.Input.Args[0]) == "deploy" || string(cis.ChaincodeSpec.Input.Args[0]) == "upgrade") {

 var cds *pb.ChaincodeDeploymentSpec

 cds, err = putils.GetChaincodeDeploymentSpec(cis.ChaincodeSpec.Input.Args[2]) 　 // 获取并验证链码部署规范

 ……

 // 若试图部署/升级系统链码，则报错

 if e.s.IsSysCC(cds.ChaincodeSpec.ChaincodeId.Name) {

 return nil, nil, errors.Errorf("attempting to deploy a system chaincode %s/%s", cds.ChaincodeSpec.ChaincodeId.Name, chainID)

 }

 // 执行部署/升级链码

 _, _, err = e.s.Execute(ctxt, chainID, cds.ChaincodeSpec.ChaincodeId.Name, cds.ChaincodeSpec.ChaincodeId.Version, txid, false, signedProp, prop, cds)

 ……

 }

 return res, ccevent, err

}

接着，callChaincode()方法调用e.s.Execute()→SupportImpl.Execute()方法，启动链码容器并执行链码，这是所有链码操作都必须执行的步骤。SupportImpl.Execute()方法先创建链码上下文对象cccid（CCContext类型），设置链码规范名称为ChaincodeName：ChaincodeVersion，并分析链码规范spec参数类型，具体说明如下。

·链码调用规范（ChaincodeInvocationSpec类型）：获取参数装饰器列表并依次过滤链码输入参数，更新链码调用规范与链码上下文对象。接着，调用chaincode.ExecuteChaincode()→createCIS()方法，基于链码名称cccid.Name与过滤后的链码输入参数args构造新的链码调用规范对象。然后，基于该对象继续调用chaincode.Execute()函数，由全局链码支持服务实例theChaincodeSupport通过自身chaincodeMap字典查找对应的链码容器是否已经注册，如果不存在对应的链码运行时环境对象，则启动链码容器提供链码服务（链码已经实例化的情况下）。若启动链码成功，则发送ChaincodeMessage_TRANSACTION类型链码消息到链码容器，请求调用链码的Invoke()方法以执行指定的命令方法，模拟执行链码并将结果暂时保存到交易模拟器中，从而完成执行链码调用的过程。其中，deploy命令与upgrade命令在第一步中都会构造链码调用规范以请求调用LSCC系统链码，执行其Invoke()方法将链码数据对象等实例化数据保存到指定通道的账本状态数据库中（lscc名字空间），表示已执行完成该通道上的链码部署（实例化）操作；

·链码部署规范（ChaincodeDeploymentSpec类型）：目前，deploy（对应于instantiate命令）部署（实例化）链码命令与upgrade升级链码命令在第二步时提供链码部署规范对象作为SupportImpl.Execute()方法的spec参数，该对象封装了期望启动容器提供服务的链码信息（链码名称、版本、路径等）。SupportImpl.Execute()方法继续调用chaincode.Execute()函数（core/chaincode/exectransaction.go），以启动新的链码容器，发送ChaincodeMessage_INIT类型链码消息到链码容器，请求调用指定链码的Init()方法以执行初始化操作，并提供正常的链码调用服务。

然后，callChaincode()方法继续单独处理deploy命令或upgrade命令，第2次调用e.s.Execute()方法以启动链码容器。实际上，callChaincode()方法首先检查参数的合法性，包括链码名称cid.Name是“lscc”、链码调用输入参数个数大于或等于3个、链码调用参数中链码调用规范的第1个输入参数是deploy命令或upgrade命令。如果通过了上述检查，则调用GetChaincodeDeploymentSpec()函数，从链码调用规范的第3个参数中解析出链码部署规范对象cds，检查请求操作链码的名称cds.ChaincodeSpec.ChaincodeId.Name是否为系统链码。如果该链码是用户链码，则调用e.s.Execute()→SupportImpl.Execute()方法，执行指定的deploy命令或upgrade命令。否则，报错退出，因为系统链码不支持deploy命令或upgrade命令。注意，第2次调用e.s.Execute()方法传递的参数spec是链码部署规范cds（ChaincodeDeploymentSpec类型），用于启动指定的链码容器并执行Init()方法。

因此，对于deploy命令与upgrade命令，callChaincode()方法在第1次调用e.s.Execute()方法时，请求执行LSCC系统链码的Invoke()方法，保存指定链码的链码数据对象等实例化数据到关联通道的账本状态数据库中。接着，callChaincode()方法在第2次调用e.s.Execute()方法时，启动新的链码容器，请求调用指定链码Init()方法进行初始化，从而完成链码部署（实例化）或升级操作。对于其他命令，callChaincode()方法只调用1次e.s.Execute()方法，检查并启动新的链码容器（因为已经完成了链码实例化操作，若已启动链码则跳过该步骤），请求执行指定链码的Invoke()方法。

2.chaincode.Execute()函数执行流程概述

chaincode.Execute()函数负责检查与启动链码容器，请求执行链码的相应方法，包括Init()方法与Invoke()方法，该函数是执行系统链码与用户链码相关命令操作的程序入口点，如代码清单4-5所示。

代码清单4-5　chaincode.Execute()方法调用链码模拟交易执行的源码示例

core/chaincode/exectransaction.go文件

// 执行提案消息

func Execute(ctxt context.Context, cccid *ccprovider.CCContext, spec interface{}) (*pb.Response, *pb.ChaincodeEvent, error) {

 var err error

 var cds *pb.ChaincodeDeploymentSpec

 var ci *pb.ChaincodeInvocationSpec

 // === 设置初始链码消息对象

 // 部署（实例化）deploy命令或升级upgrade命令：调用链码Init()接口方法

 cctyp := pb.ChaincodeMessage_INIT

 // 检查链码规范对象类型为ChaincodeDeploymentSpec或ChaincodeInvocationSpec

 if cds, _ = spec.(*pb.ChaincodeDeploymentSpec); cds == nil {

 if ci, _ = spec.(*pb.ChaincodeInvocationSpec); ci == nil {

 panic("Execute should be called with deployment or invocation spec")

 }

 // 调用invoke或查询query命令等：调用链码Invoke()接口方法

 cctyp = pb.ChaincodeMessage_TRANSACTION

 }

 // === 启动链码容器，返回链码输入参数等

 // created->established->ready状态

 _, cMsg, err := theChaincodeSupport.Launch(ctxt, cccid, spec)

 ……

 cMsg.Decorations = cccid.ProposalDecorations // 设置链码输入参数装饰器字典

 var ccMsg *pb.ChaincodeMessage

 // 创建指定类型的链码消息

 ccMsg, err = createCCMessage(cctyp, cccid.ChainID, cccid.TxID, cMsg)

 ……

 // === 模拟执行交易链码并等待完成，监听并返回resp响应结果消息

 resp, err := theChaincodeSupport.Execute(ctxt, cccid, ccMsg, theChaincode-Support.executetimeout) // ready->ready状态

 ……

 // === 处理模拟执行结果

 if resp.ChaincodeEvent != nil {

 resp.ChaincodeEvent.ChaincodeId = cccid.Name // 链码名称

 resp.ChaincodeEvent.TxId = cccid.TxID // 交易ID

 }

 // 若是ChaincodeMessage_COMPLETED类型的消息，则正常完成链码执行

 if resp.Type == pb.ChaincodeMessage_COMPLETED {

 res := &pb.Response{}

 unmarshalErr := proto.Unmarshal(resp.Payload, res) // 解析响应消息负载

 ……

 return res, resp.ChaincodeEvent, nil

 } else if resp.Type == pb.ChaincodeMessage_ERROR { // 检查链码消息错误

 return nil, resp.ChaincodeEvent, errors.Errorf("transaction returned with failure: %s", string(resp.Payload))

 }

 return nil, nil, errors.Errorf("receive a response for txid (%s) but in invalid state (%d)", cccid.TxID, resp.Type)

}

chaincode.Execute()函数首先分析链码规范参数spec的类型，以设置正确的链码消息类型对象，并发送给链码容器请求执行对应操作，具体说明如下。

·链码部署规范（ChaincodeDeploymentSpec类型）：说明是deploy部署（实例化）链码命令、upgrade升级链码命令或者部署系统链码操作，此时设置链码消息类型为ChaincodeMessage_INIT，调用链码的Init()方法执行链码初始化操作；

·链码调用规范（ChaincodeInvocationSpec类型）：说明是invoke调用链码命令、query查询链码命令或者调用系统链码操作，此时设置链码消息类型为ChaincodeMessage_TRANSACTION，调用链码的Invoke()方法执行链码调用操作。

接着，chaincode.Execute()函数通过链码支持服务实例，调用theChaincodeSupport.Launch()→ChaincodeSupport.Launch()方法（4.4.3节），根据链码运行时环境对象的类型（ChaincodeDeploymentSpec_DOCKER或ChaincodeDeploymentSpec_SYSTEM）启动对应类型的链码容器。链码容器启动后请求注册到Peer侧的链码支持服务实例theChaincodeSupport上，创建关联的链码运行时环境对象及其链码消息处理句柄Handler对象，并注册到链码运行时环境字典chaincodeMap（map[string]*chaincodeRTEnv类型）上。然后，Peer侧发送ChaincodeMessage_READY类型链码消息通知链码容器侧，将两侧Handler对象上的FSM转换为readystate状态（即“ready”），并返回链码调用参数对象cMsg（ChaincodeInput类型，包含链码参数列表与参数修饰器列表）等。

Peer节点上的链码支持服务实例对象theChaincodeSupport（ChaincodeSupport类型）属于核心数据结构，封装了链码运行时环境字典chaincodeMap及其链码消息处理句柄Handler对象，负责管理链码容器的启动、注册、停止、执行链码等操作，可以设置链码容器的启动超时时间、链码执行超时时间、CA组件等，具体说明如下。

·链码运行时环境字典chaincodeMap：负责将链码规范名称（Chaincode-Name：ChaincodeVersion）映射到关联的链码运行时环境对象上。同时，维护对应的链码容器启动状态字典launchStarted（map[string]bool类型），避免多个请求同时启动相同的链码容器，并确保不重复启动相同链码规范名称的链码容器；

·链码消息处理句柄Handler对象：被封装在链码运行时环境对象chrte中，提供FSM（有限状态机）定义链码消息处理的逻辑，负责处理关联链码容器发送的链码消息。同时，Handler对象还包括注册标志位chrte.handler.registered与readyNotify通道。其中，chrte.handler.registered标志位用于标识Handler对象是否成功注册到chaincodeMap字典中的chrte.handler上，从而使得Peer侧可以正常接收与处理来自链码容器的消息，同时还可以辅助判断链码容器是否正常运行。readyNotify通道用于通知外层的launchAndWaitForRegister()方法链码容器是否注册成功的消息。

然后，chaincode.Execute()函数请求执行链码操作，等待执行完成或者超时返回。该方法首先调用createCCMessage()函数，基于上述链码调用参数对象cMsg创建指定类型的链码消息（ChaincodeMessage_INIT类型或ChaincodeMessage_TRANSACTION类型），将其作为参数传递给theChaincodeSupport.Execute()→ChaincodeSupport.Execute()方法（4.4.7节）执行链码调用。chaincode.Execute()方法先在chaincodeMap字典中查找指定链码规范名称的链码运行时环境对象chrte，即再次检查该链码容器是否已经正常启动并注册。如果发现已经注册了该链码容器，则调用chrte.handler.sendExecuteMessage()方法，发送上述链码消息到该链码容器请求执行链码，并等待链码调用执行结果。同时，设置链码执行超时时间，一旦发现超时就立即结束链码调用执行。

最后，chaincode.Execute()函数处理模拟执行结果。该方法首先检查调用链码执行过程中的错误与结果，并更新合法链码事件ChaincodeEvent字段（不为nil）的链码名称与交易ID，检查结果消息的类型（ChaincodeMessage_COMPLETED表示执行成功，ChaincodeMessage_ERROR表示执行失败），然后返回相应的模拟执行结果到callChaincode()方法。

至此，chaincode.Execute()函数检查并启动了链码容器，执行完成链码请求操作。其中，链码支持对象ChaincodeSupport类型示意图如图4-1所示。
4.4.3　准备启动链码容器

1.Launch()方法

ChaincodeSupport.Launch()方法用于启动指定类型（ChaincodeDeploymentSpec_SYSTEM或ChaincodeDeploymentSpec_DOCKER）的链码运行时环境，准备好启动链码容器的工作。

Launch()方法先检查链码规范参数，并检查是否已经启动了指定的链码容器，包括：

·调用chaincodeSupport.chaincodeHasBeenLaunched(canName)方法，检查指定链码规范名称canName（ChaincodeName：ChaincodeVersion）对应的链码运行时环境对象chrte是否已经注册在chaincodeMap字典中。如果链码容器已经成功启动，则在链码容器启动状态字典launchStarted中将对应canName的启动状态设置为true；

·检查chrte.handler.registered以判断链码运行时环境chrte关联的消息处理句柄Handler对象是否已经注册，即registered标志位是否为true；

·调用chrte.handler.isRunning()方法，检查链码运行时环境对象包含的Handler句柄中FSM（有限状态机）是否处于正常启动运行状态（true）。通常，Handler对象注册成功并启动FSM后，默认运行状态为true。

 [image:]

图4-1　链码支持对象ChaincodeSupport类型示意图

如果canName关联的链码容器已经正常运行，则直接返回到chaincode.Execute()方法。否则，Launch()方法将继续检查与设置启动参数。

如果链码部署规范cds参数为nil，则需要从文件系统中重新获取链码部署规范对象。Launch()方法首先过滤掉系统链码，因为系统链码默认初始化在程序中且存在链码实体，部署系统链码时会构造链码部署规范对象。对于用户链码，继续调用GetCDS()→chaincode.ExecuteChaincode()方法，构造链码调用规范对象提供给LSCC系统链码，封装链码名称（lscc）、链码调用参数（getdepspec、链ID、链码名称）等。这样，通过LSCC系统链码获取指定通道账本中保存的链码数据对象，解析获取链码版本，并基于链码名称与链码版本从文件系统中获取安装的链码包对象ccpack，再调用ccpack.GetDepSpec()方法，获取链码部署规范字节数组并返回。最后，检查返回的查询执行结果状态，将该结果重新解析成链码部署规范对象cds。

如果userRunsCC标志位不是开发模式（默认为“net”）或者启动ChaincodeDeployment-Spec_SYSTEM类型的链码运行时环境，同时不存在链码运行时环境对象chrte（nil）或其消息处理句柄Handler对象chrte.handler（nil），则执行如下步骤。

1）如果不存在cds.CodePackage链码代码包（nil），同时userRunsCC标志位不是用户开发模式并且不是启动ChaincodeDeploymentSpec_SYSTEM类型的链码运行时环境，则调用GetChaincodeFromFS()方法，基于参数封装的链码名称cID.Name与链码版本cID.Version，从本地文件系统获取安装的链码包对象ccpack（CDSPackage类型或SignedCDSPackage类型），再执行ccpack.GetDepSpec()方法从链码包中重新解析获取链码部署规范对象cds，其中，安装命令会保证链码包封装正常的cds.CodePackage链码代码包。

2）接着，基于该链码部署规范对象cds定义builder()方法，用于创建Docker容器context文件流（包含构建镜像过程中所需要的Dockerfile以及其他资源文件），实际上该方法返回平台相关的Docker文件构建方法，即platforms.GenerateDockerBuild(cds)，用于后面构建用户链码的Docker镜像，以支持启动Docker容器。

3）最后，调用chaincodeSupport.launchAndWaitForRegister()方法，启动并注册链码容器。链码容器启动后会与Peer侧建立通信连接，发送ChaincodeMessage_REGISTER类型的链码消息，请求注册关联的链码运行时环境对象到本地chaincodeMap字典中。同时，Peer侧将处理该链码容器消息的Handler对象（包含gRPC连接通信流或inProcStream类型通信流）替换容器启动前调用preLaunchFunc()函数注册的占位（placeholder）Handler对象，设置Handler对象的registered注册标志位为true，表示该链码容器启动后注册成功。链码容器侧会继续等待接收Peer侧回复的ChaincodeMessage_REGISTERED类型链码消息。如果注册成功，则Peer侧与链码容器侧上Handler对象的FSM负责将状态由created转换为established。

如果上述执行过程中没有发生任何错误，则ChaincodeSupport.Launch()方法继续调用chaincodeSupport.sendReady()方法，发送ChaincodeMessage_READY类型链码消息到链码容器侧，通知FSM将状态都转换到ready状态上，这就意味着链码容器正式启动成功，并准备好提供链码服务。一旦检测到链码容器启动失败，就调用chaincodeSupport.Stop()方法停止链码容器（4.4.8节），并注销相关资源。

代码清单4-6　ChaincodeSupport类型Launch()方法启动链码容器的源码示例

core/chaincode/chaincode_support.go文件

// 启动链码并完成注册

func (chaincodeSupport *ChaincodeSupport) Launch(context context.Context, cccid *ccprovider.CCContext, spec interface{}) (*pb.ChaincodeID, *pb.ChaincodeInput, error) {

 // === 检查链码规范格式并获取参数

 ……

 // 检查链码规范必须是ChaincodeDeploymentSpec或ChaincodeInvocationSpec类型

 if cds, _ = spec.(*pb.ChaincodeDeploymentSpec); cds == nil {

 if ci, _ = spec.(*pb.ChaincodeInvocationSpec); ci == nil {

 panic("Launch should be called with deployment or invocation spec")

 }

 }

 // 获取链码ChaincodeId和链码调用输入参数对象

 if cds != nil { // 链码部署规范

 cID = cds.ChaincodeSpec.ChaincodeId

 cMsg = cds.ChaincodeSpec.Input

 } else { // 链码调用规范

 cID = ci.ChaincodeSpec.ChaincodeId

 cMsg = ci.ChaincodeSpec.Input

 }

 canName := cccid.GetCanonicalName() // 获取链码上下文对象CCContext的链码规范名称

 ……

 // === 检查链码容器启动正常

 // 检查是否注册在链码容器字典中

 if chrte, ok = chaincodeSupport.chaincodeHasBeenLaunched(canName); ok {

 if !chrte.handler.registered { // 若Handler对象未完成注册，但是链码容器已经

 // 注册完成，则说明发生错误

 ……

 }

 // 检查链码容器Handler对象的运行状态

 if chrte.handler.isRunning() { // 正常运行，不需要启动链码容器

 ……

 return cID, cMsg, nil

 }

 ……

 } else { // 链码容器还未注册

 if chaincodeSupport.launchStarted(canName) { // 检查链码容器的启动标志

 ……

 }

 }

 chaincodeSupport.runningChaincodes.Unlock() // 解锁

 // 启动链码容器

 // === 获取链码部署规范对象

 if cds == nil { // 检查该链码是否为系统链码

 if cccid.Syscc { // 跳过系统链码

 return cID, cMsg, errors.Errorf("a syscc should be running (it cannot be launched) %s", canName)

 }

 if chaincodeSupport.userRunsCC {

 ……

 }

 var depPayload []byte

 // 基于LSCC系统链码获取链码部署规范

 depPayload, err = GetCDS(context, cccid.TxID, cccid.SignedProposal, cccid.Proposal, cccid.ChainID, cID.Name)

 ……

 cds = &pb.ChaincodeDeploymentSpec{}

 err = proto.Unmarshal(depPayload, cds) // 解析链码部署规范对象

 ……

 }

 // 注册并启动链码容器

 if (!chaincodeSupport.userRunsCC || cds.ExecEnv == pb.ChaincodeDeploymentSpec_SYSTEM) && (chrte == nil || chrte.handler == nil) {

 if cds.CodePackage == nil { //检查链码部署规范的链码安装包是否存在

 if !(chaincodeSupport.userRunsCC || cds.ExecEnv == pb.Chaincode-DeploymentSpec_SYSTEM) {

 ccpack, err := ccprovider.GetChaincodeFromFS(cID.Name, cID.Version) //从文件系统获取链码包

 ……

 cds = ccpack.GetDepSpec() // 重新提取链码部署规范结构

 chaincodeLogger.Debugf("launchAndWaitForRegister fetched %d bytes from file system", len(cds.CodePackage))

 }

 }

 // 定义基于链码规范对象构建Docker镜像context文件流的方法（用户链码）

 builder := func() (io.Reader, error) { return platforms.GenerateDockerBuild(cds) }

 // ===== 核心代码：正式启动并注册链码容器

 err = chaincodeSupport.launchAndWaitForRegister(context, cccid, cds, &ccLauncherImpl{context, chaincodeSupport, cccid, cds, builder})

 ……

 }

 // === 发送READY状态消息完成链码容器启动

 if err == nil {

 // Peer侧发送READY消息到链码容器侧，将FSM转换到ready上，从而启动完成链码容器

 err = chaincodeSupport.sendReady(context, cccid, chaincodeSupport.ccStartupTimeout)

 if err != nil { // 初始化链码失败

 ……

 errIgnore := chaincodeSupport.Stop(context, cccid, cds) // 停止链码容器

 ……

 }

 chaincodeLogger.Debug("sending init completed")

 }

 chaincodeLogger.Debug("LaunchChaincode complete") // 链码容器启动成功

 return cID, cMsg, err

}

2.launchAndWaitForRegister()方法

launchAndWaitForRegister()方法是Launch()启动链码容器的核心方法，具体负责启动链码容器的工作，并注册到Peer侧chaincodeMap字典及其launchStarted字典中，如代码清单4-7所示。

代码清单4-7　launchAndWaitForRegister()方法启动与注册链码容器的源码示例

core/chaincode/chaincode_support.go文件

// 启动并注册链码容器

func (chaincodeSupport *ChaincodeSupport) launchAndWaitForRegister(ctxt context.Context, cccid *ccprovider.CCContext, cds *pb.ChaincodeDeploymentSpec, launcher launcherIntf) error {

 // === 重新检查指定链码容器的注册状态和启动状态位

 canName := cccid.GetCanonicalName() // 获取链码规范名称

 ……

 chaincodeSupport.runningChaincodes.Lock()

 // 如果chaincodeMap字典中已经存在对应的链码规范名称，则说明已经启动链码容器，此时直接返回即可

 if _, hasBeenLaunched := chaincodeSupport.chaincodeHasBeenLaunched(canName); hasBeenLaunched {

 ……

 }

 // 检查该链码容器是否已经正常运行，直接返回

 if chaincodeSupport.launchStarted(canName) {

 ……

 }

 chaincodeLogger.Debugf("chaincode %s is being launched", canName)

 // 设置启动状态标志位

 chaincodeSupport.runningChaincodes.launchStarted[canName] = true

 // === 退出时重置启动状态标志位

 defer func() {

 chaincodeSupport.runningChaincodes.Lock()

 defer chaincodeSupport.runningChaincodes.Unlock()

 // 删除指定链码容器的启动状态

 delete(chaincodeSupport.runningChaincodes.launchStarted, canName)

 chaincodeLogger.Debugf("chaincode %s launch seq completed", canName)

 }()

 chaincodeSupport.runningChaincodes.Unlock()

 // === 启动链码容器并等待其注册到Peer节点链码支持服务器上

 notfy := make(chan bool, 1) // 用于通知链码注册成功

 errChan := make(chan error) // 用于通知注册过程中发生的错误

 go func() {

 var err error

 defer func() { // 退出时会主动检查错误

 if err != nil {

 errChan <- err // 遇到错误时发送到错误通道

 }

 }()

 // 核心方法：启动容器，实际调用的是ccLauncherImpl方法

 resp, err := launcher.launch(ctxt, notfy)

 // 检查是否存在错误

 if err != nil || (resp != nil && resp.(container.VMCResp).Err != nil) {

 ……

 }

 }()

 // === 阻塞等待处理响应消息，等待REGISTER链码消息

 var err error

 select {

 case ok := <-notfy:

 // Peer侧接收到链码容器侧发来的REGISTER注册链码消息，触发Handler的FSM运行，

 // 在回调方法beforeregister()中将外层Handler传递的notfy通道注册到Peer侧Handler中，

 // 根据链码注册成功结果，将结果消息放入notfy通道，触发此处的select语句。

 // 若notfy为flase，则说明注册失败。反之，则说明注册成功

 if !ok {

 err = errors.Errorf("registration failed for %s(networkid:%s,peerid:%s,tx:%s)", canName, chaincodeSupport.peerNetworkID, chaincodeSupport.peerID, cccid.TxID)

 }

 case err = <-errChan: // 检查goroutine结束时主动输出的错误消息（非nil）

 if err == nil {

 panic("nil error notified. the launch contract is to notify errors only")

 }

 case <-time.After(chaincodeSupport.ccStartupTimeout): // 链码启动超时

 err = errors.Errorf("timeout expired while starting chaincode %s(networkid:%s,peerid:%s,tx:%s)", canName, chaincodeSupport.peerNetworkID, chaincodeSupport.peerID, cccid.TxID)

 }

 // === 检查上述流程是否存在错误，若存在错误，则停止正在运行的链码容器

 if err != nil {

 chaincodeLogger.Debugf("stopping due to error while launching: %+v", err)

 errIgnore := chaincodeSupport.Stop(ctxt, cccid, cds)

 ……

 }

 return err

}

launchAndWaitForRegister()方法首先重新检查链码容器的注册状态，以确保链码容器已经正常运行。该方法调用chaincodeHasBeenLaunched()方法，检查chaincodeMap字典中是否存在指定链码规范名称canName关联的链码运行时环境对象，再调用launchStarted()方法，检查launchStarted字典中指定链码规范名称canName关联的链码容器的启动运行状态。如果关联的链码运行时环境对象及其启动状态位都不存在，则说明还没有启动链码容器。否则，说明链码容器启动正常，设置launchStarted[canName]上的链码容器启动状态标志位为true。同时，定义在退出launchAndWaitForRegister()方法时删除该链码容器的启动状态标志位，以确保下次进入后可以正常启动链码容器。

接着，launchAndWaitForRegister()方法利用goroutine启动链码容器。首先定义defer func()方法，在函数退出时检查容器启动的错误，并将非nil的错误发送到errChan通道，以辅助判断链码容器的启动状态。同时，调用launcher.launch(ctxt，notfy)→ccLauncherImpl.launch()方法（4.4.3节）启动链码容器，这是整个launchAndWaitForRegister()方法启动链码容器的核心代码。注意，参数notfy通道用于通知链码注册成功与否。ccLauncherImpl.launch()方法在启动链码容器前会调用preLaunchFunc()预启动函数，将该参数notfy设置为Peer侧链码运行时环境对象中占位（placeholder）Handler对象的readyNotify通道。当链码容器启动完毕且在Peer侧链码支持服务对象上注册成功后（ChaincodeMessage_REGISTER类型消息），将notfy设置为注册Handler对象的readyNotify通道。这样，Peer侧的FSM进入established状态后，会调用Handler.enterEstablishedState()→handler.notifyDuringStartup()方法，通过readyNotify通道发送给外层等待的launchAndWaitForRegister()方法，通知链码容器是否启动以及是否注册成功的消息，这是链码容器启动过程中基于通道实现的消息反馈机制。

然后，launchAndWaitForRegister()方法使用select语句，阻塞程序等待链码容器的启动结果，具体说明如下。

·notfy通道：接收链码容器注册成功与否的通知消息；

·errChan通道：接收goroutine结束时主动发送的非nil错误消息；

·time.After(chaincodeSupport.ccStartupTimeout)：接收链码容器启动超时的定时器消息。其中，超时时间chaincodeSupport.ccStartupTimeout默认设置为5秒。

最后，launchAndWaitForRegister()方法检查上述执行流程中的错误。如果出现错误，则调用chaincodeSupport.Stop()方法（4.4.8节），停止链码容器并释放资源。

3.启动链码容器launch()方法

launcher.launch()方法实际上调用的是ccLauncherImpl.launch()方法，先构造链码容器的启动镜像请求对象（StartImageReq类型），再启动链码容器。该方法首先构造启动镜像请求对象的参数，具体说明如下。

·调用ccl.ccSupport.getLaunchConfigs()方法，创建启动链码容器的参数列表args、环境变量参数列表env、TLS证书列表filesToUpload等。其中，参数env是以“CORE_CHAINCODE_”开头的配置项字符串及其配置值，包括CORE_CHAINCODE_ID_NAME（链码规范名称）、CORE_CHAINCODE_LOGGING_LEVEL（默认日志级别）等。参数args与链码语言类型是相关联的，例如，Golang语言或CAR类型将args设置为[]string{"chaincode"，fmt.Sprintf("-peer.address=%s"，chaincodeSupport.peerAddress)}，即执行链码程序二进制程序chaincode，并通过命令行选项指定连接的服务地址。如果启用了TLS安全认证，则还需要在环境变量参数中设置TLS认证的相关证书与密钥配置，并调用getTLSFiles()方法，设置TLS认证所需要加载的文件列表；

·调用ccl.cccid.GetCanonicalName()方法，获取链码规范名称canName（ChaincodeName：ChaincodeVersion）；

·定义preLaunchFunc()预启动方法，实际上是通过theChaincodeSupport链码支持服务实例调用ccl.ccSupport.preLaunchSetup(canName，notfy)方法，用于在启动链码容器前先在chaincodeMap字典中添加指定的链码运行时环境对象，并关联到链码规范名称canName。接着，初始化该链码运行时环境对象的占位（placeholder）Handler对象及其readyNotify通道（默认设置为notfy通道参数），但是此时还缺少与链码容器连接的通信流，因此，还未正式启动运行，必须接收到链码注册消息后才会正式注册Handler对象；

·定义链码ID对象ccid（CCID类型），封装了NetworkID、PeerID、Version、链码描述规范（ChaincodeSpec类型）等链码名称相关参数，用于后面构造镜像名称或容器名称。注意，这里没有指定ccid对象中的链ID，即ChainID（空字符串），这是由于后面构造镜像名称或容器名称时没有包括ChainID部分，以支持不同的通道可以共享相同名称的链码容器。

接着，ccLauncherImpl.launch()方法基于上述参数构造链码容器的启动镜像请求对象sir（StartImageReq类型），封装了ccid、镜像构建函数ccl.builder、参数列表args、环境变量列表env、需要加载的TLS文件列表filesToUpload、预启动方法preLaunchFunc()等。同时，在关联的context上下文对象中设置KV键值对进行参数传递。其中，键为“CCHANDLER”字符串，值为关联的ccSupport对象，即全局变量theChaincodeSupport链码支持服务实例。实际上除了预启动方法preLaunchFuncl，在系统链码的inprocContainer容器启动过程中，该参数用于创建Peer侧的Handler对象及其消息处理循环。对于用户链码的Dcoker容器启动过程，暂时没有使用该参数。

然后，ccLauncherImpl.launch()方法调用ccl.ccSupport.getVMType()方法，分析链码部署规范对象的cds.ExecEnv，以设置正确的虚拟机（容器）类型，即System类型（系统链码）或Docker类型（用户链码）。

最后，ccLauncherImpl.launch()方法调用container.VMCProcess()方法，处理虚拟机（容器）请求启动操作，如代码清单4-8所示。

代码清单4-8　VMCProcess()方法启动虚拟机的源码示例

core/container/controller.go文件

func VMCProcess(ctxt context.Context, vmtype string, req VMCReqIntf) (interface{}, error) {

 v := vmcontroller.newVM(vmtype) // 根据指定类型创建新的虚拟机对象

 ……

 c := make(chan struct{}) // 用于传递goroutine执行状态

 var resp interface{}

 // goroutine执行创建、启动、停止、注销容器等操作

 go func() {

 defer close(c) // 退出时关闭通道

 id, err := v.GetVMName(req.getCCID(), nil) // 获取链码容器名称

 ……

 vmcontroller.lockContainer(id)

 resp = req.do(ctxt, v) // 执行虚拟机请求

 vmcontroller.unlockContainer(id)

 }()

 // 阻塞等待执行结果

 select {

 case <-c: // 如果goroutine正常退出，则会关闭通道，

 // 触发case语句执行

 return resp, nil

 case <-ctxt.Done(): // 等待执行cancel()取消方法

 <-c

 return nil, ctxt.Err()

 }

}

4.处理虚拟机启动请求VMCProcess()方法

VMCProcess()方法首先调用vmcontroller.newVM(vmtype)方法，根据指定虚拟机（容器）类型vmtype创建新的虚拟机（容器）对象，包括InprocVM类型（SYSTEM）或DockerVM类型（DOCKER）。InprocVM类型虚拟机是基于goroutine创建的inproc-Container类型容器，DockerVM类型虚拟机提供的是标准的Docker容器。

接着，VMCProcess()方法启用goroutine执行创建、启动、停止、注销容器等操作。该方法先调用v.GetVMName()方法获取链码容器名称id。通常，链码容器的完整规范命名为NetworkID-PeerID-ChaincodeName-ChaincodeVersion-SHA256(ChainID)，其将所有非法字符都替换成连接字符（-）。实际上，系统链码的容器名称是ChaincodeName-ChaincodeVersion，用户链码的容器名称是NetworkID-PeerID-ChaincodeName-ChaincodeVersion，都没有指定链ID（ChainID）。

然后，VMCProcess()方法对指定容器名称为id的链码容器对象加锁，并调用req.do(ctxt，v)→StartImageReq.do()→v.Start()方法，根据容器类型（InprocVM类型或DockerVM类型）分别调用InprocVM.Start()方法或DockerVM.Start()方法启动容器，执行操作完成后对该链码容器对象进行解锁。

最后，VMCProcess()方法通过select语句阻塞等待启动执行结果，具体说明如下。

·c通道：接收上述goroutine退出的消息，并结束程序运行；

·ctxt.Done()通道：接收等待执行上下文对象的context.cancel()方法，并等待goroutine退出后再返回。
4.4.4　启动系统链码inprocContainer容器

InprocVM类型虚拟机（容器）的Start()方法负责启动系统链码的容器对象（inproc-Container类型）。

1.创建系统链码容器实例

Start()方法首先从全局的系统链码容器模板字典typeRegistry（map[string]*inproc-Container类型）中获取指定链码路径的系统链码容器模板对象ipctemplate。目前，typeRegistry字典在Peer节点启动时默认注册了5种系统链码。接着，调用vm.GetVMName()方法，获取系统链码容器实例名称instName（ChaincodeName-ChaincodeVersion-SHA256(ChainID)），Peer节点在启动时部署系统链码的ChainID为空字符，实际上该名称为ChaincodeName-ChaincodeVersion。

然后，Start()方法基于链码容器模板ipctemplate、容器实例名称instName等参数调用vm.getInstance()方法，创建系统链码容器实例ipc。该方法先从全局的系统链码容器实例字典instRegistry（map[string]*inprocContainer类型）中获取指定名称instName关联的容器实例instRegistry[instName]。如果不存在该容器实例，则基于上述参数构造inprocContainer结构对象ipc，封装了参数列表、环境变量列表以及系统链码容器模板ipctemplate所包含的链码实例（实现了Chaincode接口，提供Init()与Invoke()方法）等。最后，将系统链码容器实例ipc更新到链码容器实例字典instRegistry中。其中，typeRegistry字典与instRegistry字典都定义在core/container/inproccontroller/inproccontroller.go中。

2.检查运行状态并准备启动容器

Start()方法检查系统链码容器的运行状态标志位ipc.running。如果发现该链码容器处于正常的运行状态，则说明已经启动成功，不需要再继续执行。

接着，通过传递参数context上下文对象，可获取链码支持服务实例对象，检查其类型的合法性（ccintf.CCSupport接口类型）。其中，键为“CCHANDLER”，值为全局变量theChaincodeSupport链码支持服务实例。这是launcher.launch(ctxt，notfy)方法在构造启动镜像请求对象（StartImageReq类型）时保存到context中的。

然后，调用prelaunchFunc()启动预处理方法（core/chaincode/chaincode_support.go），在Peer侧的chaincodeMap字典中注册与链码容器对应的链码运行时环境对象，包含消息处理句柄占位Handler对象及其readyNotify通道。其中，readyNotify通道用于通知外层的launchAndWaitForRegister()方法是否启动成功的消息，并绑定了该方法阻塞等待消息的notfy通道。

最后，设置系统链码容器的运行状态标志位ipc.running为true，表示该链码容器已经启动运行。

3.启动系统链码容器

Start()方法执行goroutine调用ipc.launchInProc()→inprocContainer.launchInProc()方法，启动系统链码容器。如果没有发生错误，则直接返回到VMCProcess()方法，并结束goroutine与关闭通道c。

接着，VMCProcess()方法检测到通道c关闭，将虚拟机（容器）启动方法的执行结果resp返回到launchAndWaitForRegister()方法中。其中，resp只负责记录启动容器过程中是否出现了错误，而链码容器启动并注册成功的消息仍然是通过notfy通道进行传递的。

最后，launchAndWaitForRegister()方法在goroutine中继续检查执行启动过程中的错误以及resp的合法性。如果发现存在错误，则退出goroutine，并将该错误封装后发送到错误通道errChan，通知launchAndWaitForRegister()方法进行错误处理。否则，正常启动时不会触发检测错误的case分支语句，而是等待notfy通道的消息，以接收链码容器启动成功与否的结果消息或者启动超时消息。

至此，系统链码容器启动完毕。

代码清单4-9　Start()方法启动InprocVM虚拟机的源码示例

core/container/inproccontroller/inproccontroller.go文件

// 启动InprocVM

func (vm *InprocVM) Start(ctxt context.Context, ccid ccintf.CCID, args []string, env []string, filesToUpload map[string][]byte, builder container.BuildSpecFactory, prelaunchFunc container.PrelaunchFunc) error {

 // === 创建链码容器实例

 path := ccid.ChaincodeSpec.ChaincodeId.Path // 获取链码路径

 ipctemplate := typeRegistry[path] // 获取默认的链码容器模板

 ……

 instName, _ := vm.GetVMName(ccid, nil) // 获取容器名称

 // 基于链码容器模板构造链码容器实例

 ipc, err := vm.getInstance(ctxt, ipctemplate, instName, args, env)

 ……

 // === 检查运行状态并做好启动容器的准备工作

 if ipc.running { // 检查链码容器的运行状态标志位，若已经运行，则直接退出

 return fmt.Errorf(fmt.Sprintf("chaincode running %s", path))

 }

 // 获取链码支持服务实例对象

 ccSupport, ok := ctxt.Value(ccintf.GetCCHandlerKey()).(ccintf.CCSupport)

 ……

 // 检查并启动预处理方法，实际上是注册占位Handler及其readyNotify通道。

 // readyNotify通道用于通知是否注册成功，并绑定了notfy通道

 if prelaunchFunc != nil {

 if err = prelaunchFunc(); err != nil {

 return err

 }

 }

 ipc.running = true // 设置容器正常启动运行

 // === 启动系统链码容器对象，返回并等待容器注册结束

 go func() {

 defer func() {

 if r := recover(); r != nil {// 若goroutine异常退出，则捕获异常

 inprocLogger.Criticalf("caught panic from chaincode %s", instName)

 }

 }()

 // 核心代码：启动系统链码容器

 ipc.launchInProc(ctxt, instName, args, env, ccSupport)

 }()

 return nil

}

4.ipc.launchInProc()方法

ipc.launchInProc()方法具体负责启动系统链码容器的工作，即执行两个goroutine分别创建链码容器侧与Peer侧的Handler消息处理句柄，并建立消息处理循环，绑定两个Golang通道，即peerRcvCCSend通道和ccRcvPeerSend通道（阻塞通道类型），分别用于两侧，可以实现双向发送和接收链码消息（ChaincodeMessage类型），再交由各自的Handler消息处理句柄及其FSM（有限状态机）处理，如代码清单4-10所示。FSM根据接收的链码消息类型以及当前状态，按照FSM定义的消息处理流程来执行回调函数，并转换到相应的状态上。

代码清单4-10　launchInProc()方法的源码示例

core/container/inproccontroller/inproccontroller.go文件

func (ipc *inprocContainer) launchInProc(ctxt context.Context, id string, args []string, env []string, ccSupport ccintf.CCSupport) error {

 // === 创建接收与发送消息的Golang通道以及监控状态的通道

 // 发送消息通道，用于链码容器侧发送同时Peer侧接收

 peerRcvCCSend := make(chan *pb.ChaincodeMessage)

 // 接收消息通道，用于Peer侧发送同时链码容器侧接收

 ccRcvPeerSend := make(chan *pb.ChaincodeMessage)

 var err error

 ccchan := make(chan struct{}, 1) // 传递链码容器侧Handler对象运行状态的通道

 ccsupportchan := make(chan struct{}, 1) // 传递Peer侧Handler对象运行状态的通道

 // 下面两个goroutine分别启动链码容器侧和Peer侧的Handler处理句柄，同时分别绑定了

 // peerRcvCCSend和ccRcvPeerSend通道，用于双方双向发送和接收消息，提供给Handler

 // 做进一步处理，以实现双方信息的沟通。

 // === 利用goroutine启动系统链码容器，创建Handler处理句柄及其FSM

 go func() {

 defer close(ccchan) // 退出时关闭ccchan通道

 inprocLogger.Debugf("chaincode started for %s", id)

 // 检查参数和环境变量的合法性

 if args == nil {

 args = ipc.args

 }

 if env == nil {

 env = ipc.env

 }

 // 启动系统链码容器，运行消息处理循环

 err := _shimStartInProc(env, args, ipc.chaincode, ccRcvPeerSend, peerRcvCCSend)

 ……

 }()

 // === 启动goroutine创建Peer侧的Handler处理句柄及其FSM

 go func() {

 defer close(ccsupportchan) // 退出时关闭ccsupportchan通道

 inprocStream := newInProcStream(peerRcvCCSend, ccRcvPeerSend)

 // 创建新的inProcStream类型通信流连接链码容器

 inprocLogger.Debugf("chaincode-support started for %s", id)

 // ccSupport参数实际上是全局链码支持服务实例theChaincodeSupport

 // 启动Peer侧Handler处理句柄，创建消息处理循环，处理链码容器侧发送的消息

 err := ccSupport.HandleChaincodeStream(ctxt, inprocStream)

 ……

 }()

 // === 阻塞等待通道消息

 select {

 case <-ccchan: // 链码容器侧退出，关闭Peer侧接收/链码侧发送的通道

 close(peerRcvCCSend)

 inprocLogger.Debugf("chaincode %s quit", id)

 case <-ccsupportchan: // Peer侧链码支持对象退出，关闭Peer侧发送/链码侧接收的通道

 close(ccRcvPeerSend)

 inprocLogger.Debugf("chaincode support %s quit", id)

 case <-ipc.stopChan: // 若停止链码容器，则同时关闭两个通道

 close(ccRcvPeerSend)

 close(peerRcvCCSend)

 inprocLogger.Debugf("chaincode %s stopped", id)

 }

 return err

}

ipc.launchInProc()方法首先创建通道以接收消息或运行状态，具体说明如下。

·peerRcvCCSend和ccRcvPeerSend通道：用于接收与发送链码消息的Golang通道（阻塞通道类型）。其中，peerRcvCCSend通道用于链码容器侧发送消息，同时用于Peer侧接收消息。ccRcvPeerSend通道用于Peer侧发送消息，同时用于链码容器侧接收消息。因此，系统链码的inprocContainter容器是通过这两个独立的Golang通道实现与Peer侧的通信；

·ccchan通道与ccsupportchan通道：分别用于监控执行系统链码容器侧与Peer侧上消息处理循环的goroutine运行状态。当消息处理循环退出引起goroutine退出时，会自动关闭对应关联的通道，从而被后面的阻塞语句捕获到。

接着，ipc.launchInProc()方法执行goroutine启动系统链码容器，创建Handler对象及其FSM。该方法先检查系统链码容器参数列表与环境变量参数列表的合法性（不是nil），再调用_shimStartInProc()→shim.StartInProc()方法，启动指定的inprocContainter类型容器，即基于该goroutine提供链码运行时环境及其链码服务。

shim.StartInProc()方法（core/chaincode/shim/chaincode.go）首先遍历环境变量列表env匹配“CORE_CHAINCODE_ID_NAME=”对应的配置项，解析获取链码规范名称chaincodename，再调用newInProcStream()函数，创建与Peer侧建立通信连接的通信流stream（inProcStream类型）。实际上，就是将该通信流stream的发送和接收消息通道分别绑定到peerRcvCCSend通道和ccRcvPeerSend通道。接着，调用chatWithPeer()方法（4.4.6节），创建链码容器侧的消息处理句柄Handler对象及其FSM，并启动消息处理循环。

同时，ipc.launchInProc()方法启动goroutine创建Peer侧的Handler对象及其FSM。该方法先创建通信流inprocStream（inProcStream类型）与链码容器侧建立连接，将发送和接收消息通道分别绑定到ccRcvPeerSend通道和peerRcvCCSend通道。接着，调用ccSupport.HandleChaincodeStream()→ChaincodeSupport.HandleChaincodeStream()→HandleChaincodeStream()方法（4.4.6节），创建Peer侧的Handler对象并初始化FSM，启动消息处理循环，接收处理链码容器侧发送的消息。

最后，ipc.launchInProc()方法调用select语句阻塞等待通道消息，包括：

·ccchan通道或ccsupportchan通道：分别用于监控系统链码容器或Peer侧上消息处理循环的运行状态，退出时会关闭通道，并触发执行对应通道所在的case分支语句，关闭链码容器侧的发送消息通道peerRcvCCSend或Peer侧的发送消息通道ccRcvPeerSend；

·ipc.stopChan通道：接收停止链码容器运行的消息，同时关闭peerRcvCCSend通道与ccRcvPeerSend通道。
4.4.5　启动用户链码Docker容器

DockerVM.Start()方法负责启动Docker容器以支持用户链码服务。Hyperledger Fabric基于https://github.com/fsouza/go-dockerclient第三方库与利用Docker API来构建Docker镜像，并启动链码容器。

1.创建用户链码Docker容器

DockerVM.Start()方法首先调用vm.GetVMName(ccid，formatImageName)方法获取镜像名称imageID。该方法先获取正常名称NetworkID-PeerID-ChaincodeName-Chaincode-Version-SHA256(ChainID)，实际上container.VMCProcess()方法在启动容器之前构造了启动镜像请求对象（StartImageReq类型），设置其链码ID参数ccid（CCID类型）时没有指定ChainID（空字符串）。因此，实际镜像名称是NetworkID-PeerID-ChaincodeName-ChaincodeVersion，再利用formatImageName()函数对该名称name进行格式规范处理，对name计算SHA256哈希值后转换为十六进制字符串hash，调用vmRegExp.ReplaceAllString()方法以过滤出合法名称name，即满足regexp.MustCompile("[^a-zA-Z0-9-_.]")指定规范要求的正则表达式，只允许字母、数字、连字符（-）、下划线（_）和点号（.），并且不符合规范的非法字符都替换为连字符（-），再将name-hash拼接的镜像名称imageName转换为小写字母，最后调用imageRegExp.MatchString()方法，以检查imageName是否匹配规范的镜像名称正则表达式，即regexp.MustCompile("^[a-z0-9]+(([._-][a-z0-9]+)+)？$")。

接着，调用vm.GetVMName(ccid，nil)方法，创建链码Docker容器名称containerID，即NetworkID-PeerID-ChaincodeName-ChaincodeVersion-SHA256(ChainID)，其中，最后一部分是对指定链ID（即ChainID）计算SHA256哈希值后再转换为十六进制字符串，实际上由于没有指定ChainID，因此同样只会获取名称NetworkID-PeerID-ChaincodeName-ChaincodeVersion，并调用vmRegExp.ReplaceAllString()方法，过滤替换所有不符合规范的非法字符为连字符（-）（只允许字母、数字、连字符（-）、下划线（_）和点（.））。

然后，调用vm.stopInternal()→client.StopContainer()方法，停止指定容器名称的Docker容器，尝试杀死和删除同名的Docker容器对象，做好启动前的准备工作，如代码清单4-11所示。

代码清单4-11　DockerVM类型的Start()方法初始化与创建Docker容器的源码示例

core/container/dockercontroller/dockercontroller.go文件

// 启动Docker容器

func (vm *DockerVM) Start(ctxt context.Context, ccid ccintf.CCID,

 args []string, env []string, filesToUpload map[string][]byte, builder container. BuildSpecFactory, prelaunchFunc container.PrelaunchFunc) error {

 imageID, err := vm.GetVMName(ccid, formatImageName) // 获取镜像ID

 ……

 client, err := vm.getClientFnc() // 获取Docker客户端

 ……

 containerID, err := vm.GetVMName(ccid, nil) // 获取容器ID

 ……

 // 获取配置VM属性值：是否附加到标准输出流

 attachStdout := viper.GetBool("vm.docker.attachStdout")

 ……

 vm.stopInternal(ctxt, client, containerID, 0, false, false) //停止容器

 // === 创建指定Docker容器

 dockerLogger.Debugf("Start container %s", containerID)

 err = vm.createContainer(ctxt, client, imageID, containerID, args, env, attachStdout)

 if err != nil {

 // 检测错误，若没有找到Docker镜像，则试图创建Docker镜像并重试

 if err == docker.ErrNoSuchImage {

 if builder != nil {// 检测builder函数以重建Docker镜像

 dockerLogger.Debugf("start-could not find image <%s> (container id <%s>), because of <%s>..."+

 "attempt to recreate image", imageID, containerID, err)

 reader, err1 := builder() // 获取Docker镜像文件输入流

 ……

 // 构建并部署Docker镜像

 if err1 = vm.deployImage(client, ccid, args, env, reader); err1 != nil {

 return err1

 }

 dockerLogger.Debug("start-recreated image successfully")

 if err1 = vm.createContainer(ctxt, client, imageID, containerID, args, env, attachStdout); err1 != nil { // 创建容器

 dockerLogger.Errorf("start-could not recreate container post recreate image: %s", err1)

 return err1

 }

 } else {// 无法找到builder函数

 dockerLogger.Errorf("start-could not find image <%s>, because of %s", imageID, err)

 return err

 }

 } else {// 其他错误，无法重建镜像

 dockerLogger.Errorf("start-could not recreate container <%s>, because of %s", containerID, err)

 return err

 }

 }

 ……

}

接着，DockerVM.Start()方法调用vm.createContainer()方法以创建用户链码的Docker容器。该方法先基于上下文对象、镜像名称、命令列表、环境变量列表等构造Dcoker配置项config（docker.Config类型），并封装为Docker容器的启动选项copts（docker.CreateContainerOptions类型），再调用client.CreateContainer(copts)方法以正式启动Docker容器。事实上，第一次实例化链码在启动容器时并不存在该用户链码的Docker镜像，会发生docker.ErrNoSuchImage错误，即由于不存在指定Docker镜像而引起容器创建操作失败。因此，Fabric基于hyperledger/fabric-ccenv镜像上的编译环境来编译指定用户链码的二进制文件（包括源码等），下载后添加链码环境变量、标签、编译参数等，以创建字节数更少的Docker镜像文件。实际上，DockerVM.Start()方法调用的是builder()→platforms.GenerateDockerBuild()函数，创建生成Docker镜像的context文件流reader。

然后，DockerVM.Start()方法调用vm.deployImage()→client.BuildImage()方法，构建用户链码的Docker镜像。该方法先构造镜像编译选项opts（BuildImageOptions类型），封装了容器ID、Pull标志位（默认为false，chaincode.pull配置项）、Docker镜像输入流InputStream（Docker镜像文件流reader，作为Docker容器context文件流）以及输出流，并通过Docker客户端调用client.BuildImage(opts)方法，基于Docker API构建生成上述指定链码的Docker镜像。

最后，DockerVM.Start()方法调用vm.createContainer()方法，重新创建用户链码的Docker容器。Fabric没有简单地采用Dcoker build与Dockerfile机制来构建镜像，因为这样产生的镜像体积过大，包含了编译用户链码的环境部分，占用了很多的资源与空间。因此，这里启动的Docker容器是基于Dockerfile指定的hyperledger/fabric-baseos x86_64-1.1.0基础镜像，使用ADD命令将binpackage.tar（chaincode可执行程序的压缩包）复制并解压到/usr/local/bin目录下。同时，在容器配置Config中设置的Cmd启动命令默认为"chaincode-peer.address=0.0.0.0：7052"，即定义在core/chaincode/chaincode_support.go中getLaunchConfigs()方法初始化的启动参数。其中，chaincode是用户链码添加参数后编译的可执行二进制程序。因此，当用户链码的Docker容器启动后会首先执行用户链码程序chaincode。

至此，DockerVM.Start()方法创建并启动完成用户链码的Docker容器。

注意，上述过程在创建链码的Docker镜像文件流时调用了2个重要方法，即GenerateDockerBuild()方法与generateDockerBuild()方法。

（1）platforms.GenerateDockerBuild()方法

platforms.GenerateDockerBuild()方法首先调用_Find(cds.ChaincodeSpec.Type)函数，根据用户链码语言类型（如Golang）获取链码语言平台对象platform（Platform类型）。接着，调用_generateDockerfile(platform，cds)→generateDockerfile()方法，生成用户链码的Dockerfile文件。

以Golang语言为例，如代码清单4-12节所示，该Dockerfile文件定义的FROM命令指定用户链码拉取由core.yaml中chaincode.golang.runtime配置项指定的Fabric基础镜像，默认设置为$(BASE_DOCKER_NS)/fabric-baseos：$(ARCH)-$(BASE_VERSION)。假设使用的是x86_64类型系统，则实际上拉取的是hyperledger/fabric-baseos：x86_64-1.1.0镜像。ADD命令将编译生成的链码可执行程序压缩包binpackage.tar解压到/usr/local/bin目录下，并添加如下标签信息和环境变量。

·链码名称org.hyperledger.fabric.chaincode.id.name

·链码版本org.hyperledger.fabric.chaincode.id.version

·链码语言org.hyperledger.fabric.chaincode.type

·链码构建Fabric版本org.hyperledger.fabric.version

·链码构建基本镜像版本org.hyperledger.fabric.base.version

·链码构建时Fabric程序构建版本CORE_CHAINCODE_BUILDLEVEL

代码清单4-12　GenerateDockerfile()方法生成用户链码的Dockerfile文件的源码示例

core/chaincode/platforms/golang/platform.go文件

func (goPlatform *Platform) GenerateDockerfile(cds *pb.ChaincodeDeploymentSpec) (string, error) {

 var buf []string

 buf = append(buf, "FROM "+cutil.GetDockerfileFromConfig("chaincode.golang.runtime"))

 buf = append(buf, "ADD binpackage.tar /usr/local/bin")

 dockerFileContents := strings.Join(buf, "\n")

 return dockerFileContents, nil // 返回Dockerfile文件

}

然后，platforms.GenerateDockerBuild()将生成的Dockerfile文件dockerFile保存到inputFiles输入文件列表inputFiles["Dockerfile"]中，并调用io.Pipe()方法以创建IO管道，构造输入输出流input与output，实现了数据的双向读写。接着，启动goroutine执行_generateDockerBuild()→generateDockerBuild()函数，创建Docker镜像的context输入流。同时，将其输出流output绑定到压缩文件流tw中。

（2）generateDockerBuild()方法

generateDockerBuild()方法首先将inputFiles列表中的所有文件（如Dockerfile文件）依次写入压缩文件流tw，再调用platform.GenerateDockerBuild()方法，创建与语言平台相关的Docker镜像输入流。以Golang语言为例，如代码清单4-13所示，该方法先构造链码容器选项（DockerBuildOptions类型）的3个参数Cmd、InputStream与OutputStream。其中，Cmd参数指定了编译命令，即请求执行go build命令，将指定链码路径上的源码根据链接选项参数、实验新特性标签等编译成/chaincode/output目录下的可执行二进制程序，即用户链码程序chaincode。另外，InputStream参数指定了用户链码代码包CDS.CodePackage作为输入流，包含了链码源码及其依赖库等，OutputStream参数绑定了输出流binpackage，并在结束时调用cutil.WriteBytesToPackage()函数，将编译后的文件流输出到压缩文件流tw中，并最终流到input中。

代码清单4-13　GenerateDockerBuild()方法生成Docker镜像输入流的源码示例

core/chaincode/platforms/golang/platform.go文件

func (goPlatform *Platform) GenerateDockerBuild(cds *pb.ChaincodeDeploymentSpec, tw *tar.Writer) error {

 spec := cds.ChaincodeSpec // 获取链码规范

 pkgname, err := decodeUrl(spec) // 解析获取链码所在的路径

 if err != nil {

 return fmt.Errorf("could not decode url: %s", err)

 }

 ldflagsOpt := getLDFlagsOpts()

 logger.Infof("building chaincode with ldflagsOpt: '%s'", ldflagsOpt)

 var gotags string

 // 检查是否打开实验版本的新特征

 if metadata.Experimental == "true" {

 gotags = " experimental"

 }

 logger.Infof("building chaincode with tags: %s", gotags)

 codepackage := bytes.NewReader(cds.CodePackage) // reader

 binpackage := bytes.NewBuffer(nil) // writer

 // 构建Docker镜像，并执行命令输出结果到binpackage输出流中

 err = util.DockerBuild(util.DockerBuildOptions{

 Cmd: fmt.Sprintf("GOPATH=/chaincode/input:$GOPATH go build -tags \"%s\" %s -o /chaincode/output/chaincode %s", gotags, ldflagsOpt, pkgname),

 InputStream: codepackage,

 OutputStream: binpackage,

 })

 if err != nil {

 return err

 }

 // 将构建的Docker镜像写入tar文件

 return cutil.WriteBytesToPackage("binpackage.tar", binpackage.Bytes(), tw)

}

接着，platform.GenerateDockerBuild()方法根据该链码容器选项调用util.DockerBuild()函数（core/chaincode/platforms/util/utils.go），利用Docker客户端尝试构造fabric-ccenv临时容器，编译指定的用户链码二进制程序，并在编译完成后删除该容器。

其中，util.DockerBuild()函数首先获取上述hyperledger/fabric-ccenv：x86_64-1.1.0镜像（“chaincode.builder”配置项）的Dockerfile文件。如果检查发现本地不存在该镜像，则调用client.PullImage()方法拉取镜像。同时，调用client.CreateContainer()方法以创建对应的fabric-ccenv容器，并在Docker容器配置中指定环境变量、启动命令即执行DockerBuildOptions选项的Cmd参数、开启标准输出流与错误流等。接着，调用client.UploadToContainer()方法，指定opts.InputStream输入流即链码代码包CDS.CodePackage，同时，指定加载容器路径为“/chaincode/input”。在设置完容器的其他选项之后，util.DockerBuild()函数调用client.StartContainer()方法，启动fabric-ccenv临时容器执行go build命令，将指定链码路径上的源码编译成chaincode二进制程序，再保存到/chaincode/output/目录中。然后，util.DockerBuild()函数调用client.DownloadFromContainer()方法，将该文件从容器路径/chaincode/output/中下载到输出流opts.OutputStream中。同时，在退出util.DockerBuild()函数时调用client.RemoveContainer()方法，删除fabric-ccenv临时容器。

platform.GenerateDockerBuild()最后调用cutil.WriteBytesToPackage()方法，将编译后的用户链码二进制程序通过输出流OutputStream（即绑定的binpackage对象），写入到压缩文件流tw中，指定文件头部名称为“binpackage.tar”。同时，基于IO管道通过输出流output传递到输入流input，然后作为builder()函数的返回值设置给Docker镜像的文件输入流reader。

至此，generateDockerBuild()方法执行结束。

2.设置用户链码Docker容器属性

DockerVM.Start()方法检查是否启用了Docker容器的attachStdout标志位（默认为false，core.yaml文件中的vm.docker.attachStdout配置项），用于输出信息来调试程序。如果启用了该标志位，则创建两个goroutine。其中，一个goroutine用于绑定链码的Docker容器输出流与错误流到IO管道上，另一个goroutine用于配置容器输出到日志记录上，以分析Docker容器的运行状态，如代码清单4-14所示。

代码清单4-14　DockerVM类型Start()方法设置用户链码Docker容器属性的源码示例

core/container/dockercontroller/dockercontroller.go文件

func (vm *DockerVM) Start(ctxt context.Context, ccid ccintf.CCID,

 args []string, env []string, filesToUpload map[string][]byte, builder container.BuildSpecFactory, prelaunchFunc container.PrelaunchFunc) error {

 ……

 // 绑定容器输出流与错误流到IO管道上

 if attachStdout {

 attached := make(chan struct{}) // 接收绑定成功消息

 r, w := io.Pipe() // 创建IO管道

 go func() { // 绑定容器输出流与错误流到IO管道

 err := client.AttachToContainer(docker.AttachToContainerOptions{

 Container: containerID, // 指定容器ID

 OutputStream: w, // 输出流

 ErrorStream: w, // 错误流

 Logs: true,

 Stdout: true,

 Stderr: true,

 Stream: true,

 Success: attached,

 })

 // 如果运行到这里，容器就已经终止了，则发送错误信号

 _ = w.CloseWithError(err)

 }()

 go func() { // 通过日志记录输出

 // 阻塞直到绑定容器IO通道完成或者超时

 select {

 case <-attached:

 // 成功绑定

 case <-time.After(10 time.Second): // 超时10秒触发定时器

 dockerLogger.Errorf("Timeout while attaching to IO channel in container %s", containerID)

 return

 }

 attached <- struct{}{}

 // 为IO管道建立缓冲区接收容器的输出流与错误流

 is := bufio.NewReader(r)

 containerLogger := flogging.MustGetLogger(containerID)

 logging.SetLevel(logging.GetLevel("peer"), containerID)

 for {

 // 循环将文本输出到日志记录器中

 line, err2 := is.ReadString('\n') // 一直读取到换行符\n

 if err2 != nil {

 switch err2 {

 case io.EOF:

 dockerLogger.Infof("Container %s has closed its IO channel", containerID)

 default:

 dockerLogger.Errorf("Error reading container output: %s", err2)

 }

 return

 }

 containerLogger.Info(line)

 }

 }()

 }

 ……

}

3.加载安装TLS证书文件

DockerVM.Start()方法继续检查TLS认证的证书情况，并做好启动用户链码Docker容器前的准备工作，如代码清单4-15所示。

代码清单4-15　DockerVM类型Start()方法加载安装TLS证书文件与启动容器的源码示例

core/container/dockercontroller/dockercontroller.go文件

// 启动Docker容器

func (vm *DockerVM) Start(ctxt context.Context, ccid ccintf.CCID,

 args []string, env []string, filesToUpload map[string][]byte, builder container.BuildSpecFactory, prelaunchFunc container.PrelaunchFunc) error {

 ……

 // 在启动容器之前加载TLS证书文件到容器中

 if len(filesToUpload) != 0 {

 payload := bytes.NewBuffer(nil)

 gw := gzip.NewWriter(payload)

 tw := tar.NewWriter(gw)

 // 遍历TLS证书文件并写入tar压缩文件流

 for path, fileToUpload := range filesToUpload {

 cutil.WriteBytesToPackage(path, fileToUpload, tw)

 }

 if err = tw.Close(); err != nil {

 return fmt.Errorf("Error writing files to upload to Docker instance into a temporary tar blob: %s", err)

 }

 gw.Close()

 // 上传该tar压缩文件到容器指定的路径上

 err = client.UploadToContainer(containerID, docker.UploadToContainerOptions{

 InputStream: bytes.NewReader(payload.Bytes()),

 Path: "/",

 NoOverwriteDirNonDir: false,

 })

 ……

 }

 // 执行自定义容器启动前执行的方法，创建占位Handler对象及readyNotify消息通道

 if prelaunchFunc != nil {

 if err = prelaunchFunc(); err != nil {

 return err

 }

 }

 // 启动指定容器ID对应的容器对象

 err = client.StartContainer(containerID, nil)

 ……

}

如果filesToUpload列表存在TLS根证书文件，即文件个数len(filesToUpload)不等于0，则DockerVM.Start()方法循环遍历背书节点的TLS根证书文件，将其中的每个文件都依次写入到压缩文件流tw中，再调用client.UploadToContainer()方法，将tw压缩文件流内容上传到Docker容器内的指定文件路径“/”上。

4.启动用户链码Docker容器并执行用户链码

DockerVM.Start()方法接着执行自定义的预启动方法prelaunchFunc()。与启动系统链码inprocContainer容器类似，该方法创建Peer侧对应的链码运行时环境对象、占位（placeholder）Handler对象及其readyNotify消息通道。这样，当用户链码Docker容器启动完毕且注册成功后，Handler处理句柄对象能够通过readyNotify通道通知外层等待的launchAndWaitForRegister()方法。最后，调用client.StartContainer()方法，启动用户链码Docker容器，并默认执行chaincode-peer.address=0.0.0.0：7052命令。

通常情况下，用户链码在启动执行时会先调用Peer节点上链码支持服务器的Register()服务接口，请求与Peer侧链码支持服务器建立连接，获取gRPC服务客户端通信流和Peer侧发送与接收消息。以Fabric自带示例的marble链码程序marbles_chaincode.go为例，Docker容器启动时会自动执行用户链码程序，即调用main()→shim.Start(new(SimpleChaincode))，如代码清单4-16所示。

代码清单4-16　marbles_chaincode.go链码程序入口Start()方法的源码示例

core/chaincode/shim/chaincode.go文件

func Start(cc Chaincode) error {

 SetupChaincodeLogging() // 设置匹配环境变量，设置日志格式与级别

 chaincodename := viper.GetString("chaincode.id.name") // 获取链码规范名称

 ……

 if streamGetter == nil {

 streamGetter = userChaincodeStreamGetter // 用户链码通信流获取函数

 }

 // 调用链码支持服务Register()接口建立与Peer侧的gRPC通信连接

 stream, err := streamGetter(chaincodename)

 ……

 // 与Peer侧开始通信，并进入消息处理循环中

 err = chatWithPeer(chaincodename, stream, cc)

 return err

}

shim.Start()方法首先调用SetupChaincodeLogging()函数，设置开启Viper组件匹配环境变量，同时设置默认日志格式与级别。接着，调用viper.GetString("chaincode.id.name")方法，通过Viper组件获取链码规范名称chaincodename，实际上是解析获取环境变量CORE_CHAINCODE_ID_NAME中保存的链码规范名称，该环境变量是在启动Docker容器之前在getLaunchConfigs()方法中配置的，并设置到链码容器的启动配置中。然后，调用stream-Getter(chaincodename)→userChaincodeStreamGetter()方法，建立服务连接并获取通信流。

其中，userChaincodeStreamGetter()方法先设置命令行选项peer.address绑定到peerAddress变量（设置为0.0.0.0：7052），调用newPeerClientConnection()函数，成功创建与peerAddress地址之间的连接对象clientConn，再基于该对象调用pb.NewChaincodeSupport-Client(clientConn)方法，创建链码支持服务客户端chaincodeSupportClient（chaincodeSupport-Client类型），用于管理与Peer侧的gRPC服务连接，如代码清单4-17所示。接着，调用chaincodeSupportClient.Register()服务接口，发送消息给Peer侧链码支持服务器（即链码处理服务实例theChaincode Support）请求注册，并返回stream（chaincodeSupportRegisterClient类型，即链码支持服务客户端对象，实现了PeerChaincodeStream接口，因此可以被链码容器侧Handler对象设置为通信流ChatStream使用），并且封装ClientStream类型的链码支持服务客户端流对象，以用于和Peer侧进行通信。

最后，shim.Start()方法执行chatWithPeer()方法，创建链码容器侧的Handler消息处理句柄以及消息处理循环，并将stream绑定到Handler.ClientStream上。

代码清单4-17　链码程序userChaincodeStreamGetter()函数的源码示例

core/chaincode/shim/chaincode.go文件

// 获取用户链码通信流函数

func userChaincodeStreamGetter(name string) (PeerChaincodeStream, error) {

 flag.StringVar(&peerAddress, "peer.address", "", "peer address")

 ……

 clientConn, err := newPeerClientConnection() // 创建与Peer侧节点的gRPC连接对象

 ……

 // 创建链码支持服务客户端

 chaincodeSupportClient := pb.NewChaincodeSupportClient(clientConn)

 // 通过链码支持客户端Register()接口注册并获取通信流

 stream, err := chaincodeSupportClient.Register(context.Background())

 ……

 return stream, nil

}

实际上，Peer侧链码支持服务实例的theChaincodeSupport.auth对象（实现了Chaincode SupportServer接口）负责接收用户链码Docker容器提交的Register()服务请求。该对象首先通过消息拦截器（interceptor类型）上的Register()方法过滤消息，通过所有消息过滤器之后，调用i.next.Register()→ChaincodeSupport.Register()→HandleChaincodeStream()函数（core/chaincode/accesscontrol/interceptor.go），创建Peer侧的Handler处理句柄及消息处理循环。其中，Handler处理句柄将消息拦截器流对象stream（interceptedStream类型，实现了ChaincodeStream接口）绑定到自身的通信流ChatStream（ccintf.ChaincodeStream类型），含有链码支持服务的服务端通信流（ServerStream类型），用于与链码容器侧进行通信。在调用消息拦截器流对象的Recv()方法等待接收消息时，先检查消息拦截器流对象的incMessages通道，如果不存在任何过滤消息，则默认调用消息拦截器流对象的is.stream.Recv()→ServerStream.RecvMsg()方法以重新监听等待消息。

至此，Peer侧与链码容器侧（系统链码的inprocContainer类型容器与用户链码的Docker容器）都已经创建了Handler对象消息处理句柄及其FSM，且构建了消息处理循环以及通信机制（Golang通道或gRPC通信流）。

由上述分析可知，系统链码与用户链码使用了相同的核心函数源代码，即chatWithPeer()函数与HandleChaincodeStream()函数（4.4.6节）。其中，chatWithPeer()函数负责创建链码容器侧的执行环境，HandleChaincodeStream()函数负责创建Peer侧的执行环境。两侧在创建Handler处理句柄时都将建立的通信流绑定到Handler.ChatStream，并使用ChatStream.Send()方法发送链码消息与ChatStream.Recv()方法接收链码消息，根据绑定的通信流类型分别调用不同的底层方法，如表4-2所示，具体说明如下。

·当启动系统链码的inprocContainer容器时，Peer侧与链码容器侧都使用inProc Stream类型的通信流进行通信，基于Golang通道（即ccRcvPeerSend通道与peerRcvCCSend通道）实现了inProcStream.Send()方法与inProcStream.Recv()方法；

·当启动用户链码的Docker容器时，Peer侧与链码容器侧都使用gRPC通信流进行通信。其中，Peer侧绑定了消息过滤器流对象stream（interceptedStream类型，包含链码支持服务的ServerStream类型服务端通信流），Docker容器侧绑定了链码支持服务客户端对象stream（chaincodeSupportRegisterClient类型，包含链码支持服务的ClientStream类型客户端通信流），两侧是基于gRPC连接来实现发送与接收消息的。

表4-2　Peer侧与链码容器侧底层发送与接收消息方法列表

 [image:]

因此，在4.4.6节分析chatWithPeer()函数与HandleChaincodeStream()函数时，如果不明显区分链码容器类型，则将inprocContainer容器或Docker容器统称为链码容器，并在发送与接收消息时默认自动绑定对应类型的通信流。
4.4.6　消息处理核心函数

1.Peer侧消息处理HandleChaincodeStream()函数

（1）创建Peer侧的Handler对象及其FSM

HandleChaincodeStream()函数首先调用newChaincodeSupportHandler(chaincodeSupport，stream)函数，创建Peer侧的Handler对象及其FSM，并定义了FSM上所有的状态机事件和回调函数，以负责控制链码消息处理逻辑。同时，绑定通信流stream（inProcStream类型或interceptedStream类型）与链码容器侧通信，如代码清单4-18所示。

代码清单4-18　HandleChaincodeStream()函数的源码示例

core/chaincode/handler.go文件

// 处理链码消息

func HandleChaincodeStream(chaincodeSupport *ChaincodeSupport, ctxt context.Context, stream ccintf.ChaincodeStream) error {

 deadline, ok := ctxt.Deadline()

 chaincodeLogger.Debugf("Current context deadline = %s, ok = %v", deadline, ok)

 // 创建Peer侧链码支持服务的Handler对象，包括FSM

 handler := newChaincodeSupportHandler(chaincodeSupport, stream)

 return handler.processStream() // 启动消息处理循环

}

注意，Peer侧新创建的Handler对象此时还没有完成注册，即设置到Peer侧链码支持服务对象theChaincodeSupport中的chaincodeMap字典上。只有接收到链码容器侧发送的ChaincodeMessage_REGISTER类型消息后，Peer侧才会调用Handler.beforeRegisterEvent()方法，基于FSM处理该消息。接着，调用handler.chaincodeSupport.registerHandler(handler)方法，重新注册Handler对象（包含通信流stream）到chaincodeMap字典中，将新Hanlder对象上的readyNotify通道设置为原来占位Handler对象上的readyNotify通道。然后，将新的Hanlder对象替换原来的占位Handler对象，再将新的Handler对象上的注册标志位registered设置为true。同时，调用handler.decomposeRegistered-Name(handler.ChaincodeID)方法，解析注册消息中封装的链码规范名称，获取链码名称、链码版本与链ID，设置到Handler对象的链码实例ccInstance字段（ChaincodeInstance类型）。这样，在Handler对象处理链码消息时，可以调用handler.getCCRootName()方法获取链码名称提供给交易模拟器，作为访问交易相关账本状态数据库的名字空间。最后，beforeRegisterEvent()方法回复ChaincodeMessage_REGISTERED类型的消息到链码容器侧，以通知完成注册操作，如代码清单4-19所示。同时，Peer侧的FSM将从created状态转换到established状态，调用Handler.enterEstablishedState()→handler.notifyDuringStartup(true)方法，通过Handler.readyNotify通道将链码容器注册成功与否的消息通知到外层的launchAndWaitForRegister()方法，并依次返回继续调用链码。这样，Peer侧Handler对象就能通过刚获取的通信流stream正常接收和处理链码消息。

代码清单4-19　beforeRegisterEvent()方法的源码示例

core/chaincode/handler.go文件

// 处理链码注册事件

func (handler *Handler) beforeRegisterEvent(e *fsm.Event, state string) {

 ……

 chaincodeID := &pb.ChaincodeID{}

 err := proto.Unmarshal(msg.Payload, chaincodeID) // 构造并解析链码ChaincodeID结构对象

 ……

 handler.ChaincodeID = chaincodeID // 设置Handler对象ChaincodeID字段

 err = handler.chaincodeSupport.registerHandler(handler)

 // 将Handler对象注册到链码支持服务实例中

 if err != nil { // 注册失败

 e.Cancel(errors.New(err.Error()))

 handler.notifyDuringStartup(false) // 启动失败

 return

 }

 handler.decomposeRegisteredName(handler.ChaincodeID) // 解析链码名称等

 chaincodeLogger.Debugf("Got %s for chaincodeID = %s, sending back %s", e.Event, chaincodeID, pb.ChaincodeMessage_REGISTERED)

 // 回复发送ChaincodeMessage_REGISTERED类型的链码消息，表示注册成功

 if err := handler.serialSend(&pb.ChaincodeMessage{Type: pb.ChaincodeMessage_REGISTERED}); err != nil {

 e.Cancel(errors.WithMessage(err, fmt.Sprintf("error sending %s", pb.Chaincode-Message_REGISTERED)))

 handler.notifyDuringStartup(false) // 通知启动失败

 return

 }

}

如图4-2所示，Peer侧上Handler对象的FSM（有限状态机）包括created、establised、ready与end状态。Fabric 1.2.0后的版本移除了FSM的设计，但保留了其处理链码消息的核心逻辑流程，使得代码更加简洁。

 [image:]

图4-2　Peer侧FSM示意图

Hyperledger Fabric采用第三方库http://github.com/looplab/fsm实现了FSM，因此需要定义状态以及事件处理和状态转移的回调函数。FSM根据接收到的事件消息与当前状态来触发状态转移，并执行定义的回调函数操作，包括事件处理回调函数与状态转移回调函数。其中，事件处理回调函数用于定义处理事件Event前后的操作，包括beforeEventCallbacks()函数和afterEventCallbacks()函数。状态转移回调函数用于定义进入和离开状态State的操作，包括enterStateCallbacks()函数和leaveStateCallbacks()函数。

FSM处理新事件时调用handler.FSM.Event()方法，按照beforeEventCallbacks()→Check(f.current，dst){→enterStateCallbacks()→leaveStateCallbacks()}→afterEventCallbacks()的顺序处理新事件Event。如果调用Check(f.current，dst)函数发现目的状态dst与源状态f.current一致，则不需要调用enterStateCallbacks()→leaveStateCallbacks()两个函数。

（2）创建消息处理循环

接着，HandleChaincodeStream()函数调用handler.processStream()方法，启动Peer侧上Handler对象的消息处理循环，如代码清单4-20所示。

代码清单4-20　Handler消息处理句柄的processStream()方法源码示例

core/chaincode/handler.go文件

func (handler *Handler) processStream() error {

 defer handler.deregister()

 ……

 recv := true // 接收标志位

 ……

 for { // Peer侧消息处理循环

 ……

 // === 启动goroutine接收链码容器侧发送的消息，并放入到msgAvail通道

 if recv {

 recv = false

 go func() {

 var in2 *pb.ChaincodeMessage

 // 收到消息并解析为链码消息ChaincodeMessage结构对象

 in2, err = handler.ChatStream.Recv()

 msgAvail <- in2

 }()

 }

 // === 阻塞等待接收通道消息

 select {

 case sendErr := <-errc: // 非阻塞式的错误通道，捕获到发送错误

 if sendErr != nil {

 return sendErr

 }

 continue // 发送成功，继续执行

 case in = <-msgAvail: // 链码消息阻塞通道，从链码容器侧接收到请求消息

 // 处理错误消息，直接退出结束循环

 ……

 // 重新打开接收消息标志位，允许goroutine接收消息

 recv = true

 if in.Type == pb.ChaincodeMessage_KEEPALIVE { // 心跳消息

 chaincodeLogger.Debug("Received KEEPALIVE Response")

 continue

 }

 case nsInfo = <-handler.nextState: // 接收状态迁移信息通道的消息

 in = nsInfo.msg

 ……

 case <-handler.waitForKeepaliveTimer(): // 心跳消息定时器

 if handler.chaincodeSupport.keepalive <= 0 {// 检查心跳消息周期时间

 chaincodeLogger.Errorf("Invalid select: keepalive not on (keepalive=%d)", handler.chaincodeSupport.keepalive)

 continue

 }

 handler.serialSendAsync(&pb.ChaincodeMessage{Type: pb.ChaincodeMessage_ KEEPALIVE}, nil) // 发送消息回应

 continue

 }

 // === 运行FSM处理接收的链码消息与状态迁移消息

 err = handler.handleMessage(in)

 ……

 if nsInfo != nil && nsInfo.sendToCC {

 chaincodeLogger.Debugf("[%s]sending state message %s", shorttxid(in.Txid), in.Type.String())

 if nsInfo.sendSync { // 检查同步发送消息标志位

 // READY消息将两侧FSM转换为ready状态

 if in.Type.String() != pb.ChaincodeMessage_READY.String() {

 panic(fmt.Sprintf("[%s]Sync send can only be for READY state %s\n", shorttxid(in.Txid), in.Type.String()))

 }

 // Peer侧发送READY消息到链码容器侧

 if err = handler.serialSend(in); err != nil {

 return errors.WithMessage(err, fmt.Sprintf("[%s]error sending ready message, ending stream:", shorttxid(in.Txid)))

 }

 } else {// 异步发送，如果同步发送有错误，则将错误发送给errc错误通道

 handler.serialSendAsync(in, errc)

 }

 }

 }

}

Peer侧上Handler对象的handler.processStream()方法用于启动goroutine，接收链码容器侧发送的消息。该方法首先检查接收消息标志位recv（默认是true的开启状态），通过调用handler.ChatStream.Recv()方法，等待接收来自链码容器侧的链码消息，并将接收的消息放入msgAvail通道，通过select语句阻塞等待通道上的消息，具体说明如下。

·errc错误消息通道：用于捕获后面调用handler.serialSendAsync(in，errc)方法异步发送消息时发生的错误；

·msgAvail链码消息通道：接收从链码容器侧发送到的链码请求消息。如果是io.EOF或错误消息，则直接退出结束循环。否则，重新设置接收消息标志位recv（true），以允许上面阻塞等待的goroutine继续接收链码容器侧的消息。如果是ChaincodeMessage_KEEPALIVE类型的心跳链码消息，则忽略不做任何事情，并且不会触发改变FSM的状态，直接跳转到消息处理循环开始处继续执行。否则，设置到接收消息in中，交由FSM继续处理；

·handler.nextState状态迁移信息通道：读取状态迁移信息包含的nsInfo.msg消息，并设置到接收消息in中，交由FSM继续处理；

·handler.waitForKeepaliveTimer()方法返回的心跳消息定时器：如果发现不合法的keepalive配置项，则跳转到消息处理循环开始处继续执行。否则，调用handler.serialSendAsync()方法，周期性地发送ChaincodeMessage_KEEPALIVE类型的链码消息到链码容器侧，以监控其运行状态。

然后，调用handler.handleMessage(in)方法，交由FSM处理所接收的链码请求消息或状态迁移消息。如果该消息是ChaincodeMessage_COMPLETED类型或Chaincode-Message_ERROR类型，并且当前FSM处于ready状态，则说明Peer侧发送的ChaincodeMessage_INIT或ChaincodeMessage_TRANSACTION类型链码请求消息已经处理完成。接着，调用handler.notify()方法，获取与当前交易关联的交易上下文对象tctx（transactionContext类型），即handler.txCtxs[txCtxID]（txCtxID是chainID+txid），再将链码执行结果消息发送到其响应消息通道tctx.responseNotifier中，用于通知外层阻塞等待该链码执行结果的theChaincodeSupport.Execute()方法。最后，调用handler.FSM.Cannot()方法，检查FSM处理当前事件消息的合法性。如果通过了检查，则调用handler.FSM.Event()方法，按照FSM定义的处理流程检查事件消息，执行回调函数进行处理，并在过滤错误消息之后返回到handler.processStream()方法中。

最后，handler.processStream()方法检查并处理状态迁移信息nsInfo。如果存在合法的FSM状态迁移信息nsInfo（不为nil），并且发送消息标志位nsInfo.sendToCC为true，同时，该消息是同步发送的（nsInfo.sendSync为true），则该消息必须为ChaincodeMessage_READY类型的链码消息，否则报错。此时，调用handler.serialSend()→handler.ChatStream.Send()方法将该消息同步发送到链码容器侧，通知链码容器侧将FSM转换为ready状态。另外，如果不是同步发送的消息（nsInfo.sendSync为false），则调用handler.serialSendAsync(in，errc)方法，利用goroutine异步将消息发送到链码容器侧，其发送错误会被收集到上面的errc错误消息通道中。

至此，HandleChaincodeStream()函数就创建完成了Handler消息处理句柄及其FSM，并建立了Peer侧的消息处理循环。

（3）发送READY消息通知已准备好链码的执行环境

外层的launchAndWaitForRegister()方法接收到注册成功的消息（true）后返回Chaincode Support.Launch()方法，继续调用chaincodeSupport.sendReady()方法，通过执行chaincodeSupport.chaincodeHasBeenLaunched(canName)方法检查获取已经启动链码容器的链码运行时环境对象chrte，接着调用chrte.handler.ready()方法，发送ChaincodeMessage_READY类型的链码消息到链码容器侧，如代码清单4-21所示，通知将FSM转换为ready状态，以做好链码调用前的准备工作。

代码清单4-21　Handler消息处理句柄的ready()方法源码示例

core/chaincode/handler.go文件

func (handler *Handler) ready(ctxt context.Context, chainID string, txid string, signedProp *pb.SignedProposal, prop *pb.Proposal) (chan *pb.ChaincodeMessage, error) {

 // 创建交易上下文transactionContext结构对象

 txctx, funcErr := handler.createTxContext(ctxt, chainID, txid, signedProp, prop)

 if funcErr != nil { // 检查错误

 return nil, funcErr

 }

 chaincodeLogger.Debug("sending READY")

 // 创建READY类型链码消息

 ccMsg := &pb.ChaincodeMessage{Type: pb.ChaincodeMessage_READY, Txid: txid, ChannelId: chainID}

 // 设置链码消息的Proposal字段为签名提案消息

 if err := handler.setChaincodeProposal(signedProp, prop, ccMsg); err != nil {

 return nil, err

 }

 // 发送READY消息到FSM

 handler.triggerNextStateSync(ccMsg)

 return txctx.responseNotifier, nil

}

ready()方法首先调用handler.createTxContext()方法，创建此次交易关联的交易上下文对象（transactionContext类型），在该对象中设置context上下文对象保存的交易模拟器和历史查询执行器，并注册到Handler对象的txCtxs字典上，其中，键为txCtxID（chainID+txid），用于唯一标识该交易，以避免同时重复处理相同的交易。这样，Handler对象就能够根据链码消息提供的txCtxID来获取对应的交易上下文对象及其包含的交易模拟器，再基于链码容器注册时提供的链码名称作为名字空间，就能正常访问本地指定账本的状态数据库。同时，txCtxs字典在每次调用链码时都会更新，将链码调用过程中读取和写入的状态数据结果保存到对应的交易模拟器中。接着，构造ChaincodeMessage_READY类型的链码消息ccMsg，绑定该消息的交易ID与链ID，设置其Proposal字段为签名提案消息signedProp。然后，调用handler.triggerNextStateSync(ccMsg)方法，将ChaincodeMessage_READY类型的链码消息封装到状态迁移信息（nextStateInfo类型）中，指定发送的标志位sendToCC以及同步发送的标志位sendSync都是true。最后，将该消息发送到handler.nextState通道中，提交给Peer侧的Handler对象进行处理，再将与该交易关联的交易上下文对象的tctx.responseNotifier通道返回给chaincodeSupport.sendReady()方法，以阻塞等待执行成功或失败的通道消息。

Peer侧的Handler对象在handler.processStream()方法消息处理循环中捕获到handler.nextState通道的消息，交由handler.handleMessage()方法处理，通知FSM将状态由established转换为ready。该事件消息会触发调用enterReadyState()回调方法，通过调用handler.notify()方法将消息发送到交易上下文对象的tctx.responseNotifier通道中，从而通知外层的chaincodeSupport.sendReady()方法，即当前链码容器已经正常运行且准备就绪。最后，调用chrte.handler.deleteTxContext()方法，删除handler.txCtxs字典中对应的交易上下文对象键值对，表示此次交易的相关操作已处理完毕。同时，Peer侧的Handler对象继续调用handler.serialSendAsync()方法，将ChaincodeMessage_READY类型的链码消息发送到链码容器侧，通知将FSM的状态从established转换为ready，并且不触发其他操作。

至此，链码容器就正式启动完毕。Peer侧与链码容器侧都已启动Handler消息处理句柄与创建消息处理循环，两侧FSM都处于ready正常运行状态。

2.链码容器侧消息处理chatWithPeer()函数

chatWithPeer()函数创建链码容器侧的Handler处理句柄及其FSM，发送Chaincode-Message_REGISTER类型的链码消息到Peer侧以请求注册，同时创建链码容器侧的消息处理循环，并建立与Peer侧之间的消息通信，如代码清单4-22所示。

代码清单4-22　chatWithPeer()函数的源码示例

core/chaincode/shim/chaincode.go文件

func chatWithPeer(chaincodename string, stream PeerChaincodeStream, cc Chaincode) error {

 // 创建链码容器侧的Handler处理句柄对象与FSM

 handler := newChaincodeHandler(stream, cc)

 defer stream.CloseSend()

 // 构造链码ChaincodeID结构对象，封装链码名称，注册到Peer侧（名字空间）

 chaincodeID := &pb.ChaincodeID{Name: chaincodename}

 payload, err := proto.Marshal(chaincodeID)

 ……

 // 发送ChaincodeMessage_REGISTER类型链码消息到Peer节点进行注册

 if err = handler.serialSend(&pb.ChaincodeMessage{Type: pb.ChaincodeMessage_REGISTER, Payload: payload}); err != nil {

 return errors.WithMessage(err, "error sending chaincode REGISTER")

 }

 // 利用goroutine启动链码容器侧的消息处理循环

 waitc := make(chan struct{}) // 阻塞等待结束通道

 errc := make(chan error) // 错误消息通道

 go func() {

 defer close(waitc) // goroutine结束关闭waitc通道

 msgAvail := make(chan *pb.ChaincodeMessage)

 var nsInfo *nextStateInfo

 var in *pb.ChaincodeMessage

 recv := true // 设置接收消息标志位，true表示可以接收来自

 // Peer侧的消息

 for {

 ……

 if recv { // 检查recv接收消息标志位

 recv = false

 go func() {

 var in2 *pb.ChaincodeMessage

 in2, err = stream.Recv() // 接收消息放入msgAvail通道

 msgAvail <- in2

 }()

 }

 // 阻塞等待并检查通道消息

 select {

 case sendErr := <-errc: // 错误消息通道，接收serialSendAsync()发送消息错误

 if sendErr == nil { // 若不存在错误，则继续执行消息处理循环

 continue

 }

 err = errors.Wrap(sendErr, fmt.Sprintf("error sending %s", in.Type.String()))

 return // 直接退出并结束消息处理循环

 case in = <-msgAvail: // 消息接收通道，若存在错误，则结束处理

 ……

 recv = true // 重置接收消息标志位，在下一次循环时继续接收消息

 case nsInfo = <-handler.nextState: // 检查状态迁移信息通道

 in = nsInfo.msg

 ……

 }

 // 处理接收消息或状态迁移消息

 err = handler.handleMessage(in)

 ……

 if in.Type == pb.ChaincodeMessage_KEEPALIVE {// 处理KEEPALIVE类型链码消息

 chaincodeLogger.Debug("Sending KEEPALIVE response")

 handler.serialSendAsync(in, nil) // 发送KEEPALIVE类型消息

 } else if nsInfo != nil && nsInfo.sendToCC {

 // 若存在状态迁移信息且打开发送标志位，则发送消息给Peer侧

 chaincodeLogger.Debugf("[%s]send state message %s", shorttxid(in.Txid), in.Type.String())

 handler.serialSendAsync(in, errc)

 }

 }

 }()

 <-waitc // 等待结束

 return err

}

chatWithPeer()函数首先调用newChaincodeHandler(stream，cc)函数，创建链码容器侧的Handler消息处理句柄，具体如下。

·通信流ChatStream：包含inProcStream类型或ClientStream类型的通信流，用于与Peer侧接收和发送消息；

·链码实例cc：包含链码定义的Init()方法与Invoke()方法，提供具体的链码服务功能；

·响应消息通道responseChannel字典：用于绑定交易的响应消息通道，接收Peer侧处理链码请求的结果消息；

·状态迁移信息通道nextState：接收状态迁移信息（nextStateInfo类型），包含的消息可用于触发FSM并转换其状态，同时封装了消息发送标志位sendToCC与同步发送标志位sendSync；

·FSM（有限状态机）：负责控制事件处理逻辑，定义了FSM的状态、事件、事件处理和状态转移的回调函数等。链码容器侧上的FSM包括created、establised、init、ready与end状态，如图4-3所示的是链码容器侧状态机的示意图。

 [image:]

图4-3　链码容器侧FSM示意图

chatWithPeer()函数构造ChaincodeMessage_REGISTER类型的链码消息，调用handler.serialSend()方法将该消息发送到Peer侧请求注册。该消息封装了ChaincodeID结构对象（包含链码规范名称）作为消息负载，注册成功后解析出该链码名称，并设置到Peer侧上Handler对象的链码实例ccInstance字段，通过调用handler.getCCRootName()方法，获取链码名称，作为访问交易相关账本状态数据库的名字空间。其中，链码规范名称是启动容器前在getLaunchConfigs()方法中设置到CORE_CHAINCODE_ID_NAME环境变量上的。同时，chatWithPeer()函数利用goroutine启动链码容器侧消息处理循环，接收并处理Peer侧消息及本地的状态迁移消息。

接着，chatWithPeer()函数检查recv接收消息的标志位（初始化为true即开启状态），启动goroutine调用stream.Recv()方法，等待接收Peer侧的链码消息并发送到msgAvail通道，通过select语句阻塞等待消息，具体说明如下。

·errc错误消息通道：接收调用handler.serialSendAsync(in，errc)方法异步发送消息时发生的错误；

·msgAvail链码消息通道：接收从Peer侧发送的链码消息。如果是io.EOF消息、错误消息或nil消息，则直接退出循环。否则，重新开启recv接收消息标志位（true），表示允许goroutine继续接收Peer侧消息；

·handler.nextState状态迁移信息通道：读取状态迁移信息包含的消息nsInfo.msg，并设置到接收消息in中。

然后，chatWithPeer()函数调用handler.handleMessage(in)方法，将接收的消息交由链码容器侧的FSM处理。如果是ChaincodeMessage_KEEPALIVE类型消息，则忽略返回继续执行。否则，调用handler.FSM.Cannot()方法，检查FSM处理当前事件消息的合法性。如果通过了检查，则调用handler.FSM.Event()方法，处理当前接收的事件消息，并在过滤错误消息之后返回到chatWithPeer()函数。

同时，chatWithPeer()函数检查接收消息的类型。如果该消息类型是ChaincodeMessage_KEEPALIVE，则回应ChaincodeMessage_KEEPALIVE消息给Peer侧。对于其他类型的消息，如果存在合法的状态迁移信息nsInfo（不为nil），并且消息发送标志位nsInfo.sendToCC为true，则调用handler.serialSendAsync(in，errc)方法，将当前处理的消息in异步发送到Peer侧，同时将出现的错误发送到errc通道。

最后，chatWithPeer()函数使用waitc通道阻塞程序运行，一旦goroutine在执行过程中出现异常退出，则调用close(waitc)函数以关闭waitc通道，该操作会被chatWithPeer()函数捕获，从而结束链码容器侧的消息处理循环。

至此，chatWithPeer()函数就创建完成了链码容器侧的Handler处理句柄及其FSM，并建立了消息处理循环。

3.链码容器启动流程小结

链码容器启动流程的主要执行步骤如图4-4所示。

 [image:]

图4-4　链码容器启动流程时序图

1）Peer侧调用ChaincodeSupport.Launch()方法启动链码容器。Peer侧调用Handle ChaincodeStream()函数与链码容器侧调用chatWithPeer()函数，分别创建两侧对应的Handler对象及其FSM，建立消息处理循环与通信机制（Golang通道或gRPC通信流）。同时，将两侧FSM的状态设置为created。

链码容器侧的chatWithPeer()函数调用newChaincodeHandler(stream，cc)函数，创建自身的Handler消息处理句柄，绑定通信流stream以及链码实例cc（提供链码Init()方法与Invoke()方法）。接着，构造链码ChaincodeID结构对象chaincodeID，封装了链码规范名称（含有访问账本数据库的名字空间，即链码名称），并将该对象序列化后封装到ChaincodeMessage_REGISTER类型的链码消息中作为消息负载。然后，调用handler.serialSend()方法，将该消息发送到Peer侧请求注册，将Handler对象（含有与当前链码容器侧连接的通信流）注册到Peer侧的链码服务实例对象上提供服务。

2）Peer侧收到来自链码容器侧的ChaincodeMessage_REGISTER类型消息，交由handler.handleMessage()→Handler.beforeRegisterEvent()方法基于FSM进行处理。该方法首先调用handler.chaincodeSupport.registerHandler()方法，获取处理该链码容器消息的Handler对象（绑定了通信流对象），将其readyNotify通道设置为占位Handler对象的readyNotify通道。接着，将其注册到关联的chaincodeRTEnv链码运行时环境对象中，替换启动之前临时创建的占位Handler对象。然后，解析注册消息中封装的链码规范名称以获取链码名称等，设置到Handler对象的链码实例ccInstance字段（ChaincodeInstance类型）上。这样，Handler对象就可以调用handler.getCCRootName()方法，获取链码名称以提供给交易模拟器，作为访问账本状态数据库的名字空间。最后，回复ChaincodeMessage_REGISTERED消息到链码容器侧以通知注册完成。同时，按照FSM定义的消息处理逻辑，将当前状态由created转换为established，再调用Handler.enterEstablishedState()→handler.notifyDuringStartup(true)方法，通过Handler.readyNotify通道向外层的launchAnd-WaitFor Register()方法通知当前容器注册成功或失败的消息。

3）链码容器侧接收到ChaincodeMessage_REGISTERED消息之后，交由handler.handleMessage()→handler.beforeRegistered()方法进行处理，在检查消息的合法性之后，更新自身FSM的状态由created转换为established。

4）然后，Peer侧调用chaincodeSupport.sendReady()→chrte.handler.ready()方法，构造ChaincodeMessage_READY类型的链码消息，首先触发Peer侧的FSM将状态由established转换为ready，再将ChaincodeMessage_READY类型的链码消息发送到链码容器侧，通知将FSM的状态转换为ready状态，做好链码初始化与调用前的准备工作。

至此，链码容器就正式启动完毕。Peer侧与链码容器侧都启动了Handler消息处理句柄与消息处理循环，两侧的FSM都处于ready状态。
4.4.7　请求链码执行

1.Execute()函数

在启动链码容器并注册成功后，Launch()方法返回链码输入参数cMsg。chaincode.Execute()函数继续调用createCCMessage()方法，基于cMsg构造指定类型的链码消息ccMsg（ChaincodeMessage类型）。其中，deploy命令、upgrade命令、部署系统链码等操作会构造ChaincodeMessage_INIT类型的链码消息，invoke命令、query命令、调用系统链码等操作会构造ChaincodeMessage_TRANSACTION类型的链码消息。

接着，调用theChaincodeSupport.Execute()→ChaincodeSupport.Execute()方法以请求链码容器执行链码。该方法首先调用chaincodeSupport.chaincodeHasBeenLaunched()方法，检查Peer侧上的chaincodeMap字典中是否已经注册了与指定链码规范名称相关联的链码运行时环境对象chrte。如果已经注册了该对象，则调用chrte.handler.sendExecuteMessage()方法，实际上是通过状态迁移信息通道handle.nextState将请求消息ccMsg交由Handler对象进行处理，并转发给链码容器侧，同时返回用于监听执行状态的通道notfy，使用select语句阻塞监听notfy通道与执行超时定时器通道的消息。如果发现链码已执行完成或链码执行超时，则调用chrte.handler.deleteTxContext()方法以删除指定的交易上下文对象键值对，表示已完成此次执行交易任务。

其中，sendExecuteMessage()方法创建此次交易的交易上下文对象，封装了交易模拟器、历史查询执行器、responseNotifier通道等，用于访问账本数据库与反馈链码执行结果。同时，调用handler.triggerNextState()方法，将该消息封装为nextStateInfo结构消息（nsInfo.sendToCC发送标志位为ture），并发送到Peer侧Handler对象的handler.nextState通道，返回该交易txctx.responseNotifier通道到ChaincodeSupport.Execute()方法中的notfy通道，用于监听链码调用执行结果状态。

代码清单4-23　链码支持对象Execute()方法源码示例

core/chaincode/chaincode_support.go文件

// 调用Init()或Invoke()模拟执行交易并等待完成或超时

func (chaincodeSupport *ChaincodeSupport) Execute(ctxt context.Context, cccid *ccprovider.CCContext, msg *pb.ChaincodeMessage, timeout time.Duration) (*pb.ChaincodeMessage, error) {

 ……

 // 检查指定的链码容器应该已经正常启动

 chrte, ok := chaincodeSupport.chaincodeHasBeenLaunched(canName)

 ……

 // 若检查通过，则发送执行链码消息给链码容器侧，返回指定交易上下文对象绑定的响应消息通道

 if notfy, err = chrte.handler.sendExecuteMessage(ctxt, cccid.ChainID, msg, cccid.SignedProposal, cccid.Proposal); err != nil {

 return nil, errors.WithMessage(err, fmt.Sprintf("error sending"))

 }

 var ccresp *pb.ChaincodeMessage

 // 阻塞等待消息并进行处理

 select {

 case ccresp = <-notfy: // 等待执行链码的响应消息

 case <-time.After(timeout): // 执行链码超时

 err = errors.New("timeout expired while executing transaction")

 }

 // 如果执行链码成功，则删除指定的交易上下文对象键值对

 chrte.handler.deleteTxContext(msg.ChannelId, msg.Txid)

 return ccresp, err

}

同时，Peer侧上的processStream()方法在消息处理循环中从handler.nextState通道捕获到新消息nsInfo（nextStateInfo类型），将nsInfo.msg消息交由handler.handleMessage()方法处理。对于ChaincodeMessage_INIT消息与ChaincodeMessage_TRANSACTION消息，不做任何操作处理并保持FSM现有的ready状态。如果存在nsInfo对象（不为nil）且nsInfo.sendToCC发送标志位设置为ture，则调用handler.serialSendAsync()方法，将上述链码消息nsInfo.msg异步发送到链码容器侧。

链码容器侧在chatWithPeer()方法中调用stream.Recv()方法，等待接收Peer侧的链码消息，并发送到msgAvail消息通道中，通过错误检查后交由链码容器侧的handler.handleMessage()方法进行处理。

链码的Init()与Invoke()方法执行流程如图4-5所示。

 [image:]

图4-5　链码的Init()方法与Invoke()方法执行流程时序图

2.ChaincodeMessage_INIT类型链码消息

Peer侧向链码容器侧发送ChaincodeMessage_INIT类型的链码消息以初始化链码，触发链码容器侧启动其Init()方法的执行流程。链码容器侧接收到消息后交由Handler对象调用beforeInit()方法，先利用e.Args[0].(*pb.ChaincodeMessage)解析链码消息并进行类型推断，检查消息的合法性。对于ChaincodeMessage_INIT类型的消息，继续调用handler.handleInit()方法初始化链码。

如代码清单4-24所示，handleInit()方法首先初始化参数stub（ChaincodeStub类型）。该参数封装了链码初始化与调用时所需要的所有参数，包括Handler消息处理句柄、通道ID、交易ID、调用链码的输入参数args、签名提案消息signedProposal等。接着，调用handler.cc.Init(stub)方法以执行指定链码的Init()方法，做好链码运行的准备工作，如初始化LSCC链码实例策略检查器policyChecker、CSCC链码实例配置管理器configMgr等。如果调用Init()方法的结果状态超过了ERROR（500），则存在执行错误。否则，将调用链码执行结果封装为ChaincodeMessage_COMPLETED类型的链码消息，并在handleInit()方法退出时发送到handler.nextState通道，交由FSM继续处理。

代码清单4-24　链码容器侧上Handler对象的handleInit()方法初始化链码的源码示例

core/chaincode/shim/handler.go文件

func (handler *Handler) handleInit(msg *pb.ChaincodeMessage) {

 go func() {

 var nextStateMsg *pb.ChaincodeMessage

 send := true

 defer func() { // 退出时发送到handler.nextState通道

 handler.triggerNextState(nextStateMsg, send)

 }()

 ……

 // === 从消息负载中解析链码输入参数ChaincodeInput结构对象

 input := &pb.ChaincodeInput{}

 unmarshalErr := proto.Unmarshal(msg.Payload, input)

 ……

 stub := new(ChaincodeStub)

 // 初始化链码参数ChaincodeStub结构对象

 err := stub.init(handler, msg.ChannelId, msg.Txid, input, msg.Proposal)

 ……

 // === 调用链码Init()方法执行初始化操作

 res := handler.cc.Init(stub)

 chaincodeLogger.Debugf("[%s]Init get response status: %d", shorttxid(msg.Txid), res.Status)

 if res.Status >= ERROR { // 出错检查

 ……

 }

 resBytes, err := proto.Marshal(&res) // 序列化封装为字节数组

 ……

 // === 向Peer侧发送ChaincodeMessage_COMPLETED类型链码消息，表示执行完成Init()方法

 nextStateMsg = &pb.ChaincodeMessage{Type: pb.ChaincodeMessage_COMPLETED, Payload: resBytes, Txid: msg.Txid, ChaincodeEvent: stub.chaincodeEvent, ChannelId: stub.ChannelId}

 chaincodeLogger.Debugf("[%s]Init succeeded. Sending %s", shorttxid(msg.Txid), pb.ChaincodeMessage_COMPLETED)

 }()

}

Peer侧上的processStream()方法在消息处理循环中捕获到handler.nextState通道的新消息，检查后交由handler.handleMessage()方法进行处理。对于ChaincodeMessage_COMPLETED类型或者ChaincodeMessage_ERROR类型的消息，若处于ready状态，则调用handler.notify()方法，将上述链码消息结果发送到当前交易上下文对象的响应通知通道tctx.responseNotifier中，以通知外层的theChaincodeSupport.Execute()方法已经完成了链码调用的请求。

至此，ChaincodeMessage_INIT类型的链码消息处理完毕。

3.ChaincodeMessage_TRANSACTION类型链码消息

Peer侧发送ChaincodeMessage_TRANSACTION类型的链码消息到链码容器侧，请求调用链码的Invoke()方法，并且该链码已经完成了初始化工作。链码容器侧收到消息后交由Handler对象调用beforeTransaction()方法进行处理，利用e.Args[0].(*pb.Chaincode-Message)获取链码消息并进行类型推断，以检查消息的合法性。对于ChaincodeMessage_TRANSACTION类型消息，调用handler.handleTransaction()方法进行处理。

如代码清单4-25所示，handleTransaction()方法首先初始化链码参数stub（ChaincodeStub类型），调用handler.cc.Invoke(stub)方法以执行链码的Invoke()方法，并执行调用参数中指定的命令操作，在执行过程中调用链码API发送ChaincodeMessage_GET_HISTORY_FOR_KEY等消息，请求Peer侧执行账本访问等操作。同时，Peer侧的Handler对象接收到消息请求之后，基于链码容器注册时提供的链码规范名称解析获取链码名称，即名字空间，可以利用交易模拟器访问Peer侧本地上的账本数据库，执行查询数据、保存数据、调用链码等操作，同时将模拟执行结果记录到交易模拟器上，并封装为ChaincodeMessage_RESPONSE类型的消息，再回复给链码容器侧。当链码容器侧执行结束Invoke()方法时，构造ChaincodeMessage_COMPLETE类型的链码消息nextStateMsg，以通知Peer侧完成了链码调用操作，实际上是在退出handleTransaction()方法时调用handler.triggerNextState()方法，将该消息nextStateMsg发送到状态迁移通道handler.nextState中。

代码清单4-25　handleTransaction()方法处理链码调用请求的源码示例

core/chaincode/shim/handler.go文件

func (handler *Handler) handleTransaction(msg *pb.ChaincodeMessage) {

 go func() {

 var nextStateMsg *pb.ChaincodeMessage

 send := true

 defer func() { // 退出时发送到handler.nextState通道

 handler.triggerNextState(nextStateMsg, send)

 }()

 ……

 // === 从消息负载中解析链码输入参数ChaincodeInput结构对象

 input := &pb.ChaincodeInput{}

 unmarshalErr := proto.Unmarshal(msg.Payload, input)

 ……

 stub := new(ChaincodeStub)

 // 初始化链码参数ChaincodeStub结构对象

 err := stub.init(handler, msg.ChannelId, msg.Txid, input, msg.Proposal)

 ……

 // 调用Invoke()方法执行调用链码操作

 res := handler.cc.Invoke(stub)

 resBytes, err := proto.Marshal(&res) // 序列化封装为字节数组

 ……

 // 向Peer侧发送ChaincodeMessage_COMPLETED类型链码消息，表示已完成链码调用操作

 chaincodeLogger.Debugf("[%s]Transaction completed. Sending %s", shorttxid (msg.Txid), pb.ChaincodeMessage_COMPLETED)

 nextStateMsg = &pb.ChaincodeMessage{Type: pb.ChaincodeMessage_COMPLETED, Payload: resBytes, Txid: msg.Txid, ChaincodeEvent: stub.chaincodeEvent, ChannelId: stub.ChannelId}

 }()

}

同时，链码容器侧在chatWithPeer()方法的消息处理循环中捕获到handler.nextState通道的新消息nextStateMsg，通过错误检查后交由handler.handleMessage()处理，目前对ChaincodeMessage_COMPLETED类型的链码消息不做任何处理，接着调用handler.serialSendAsync()方法，将链码执行结果发送到Peer侧。

然后，Peer侧的processStream()方法在消息处理循环中由handler.ChatStream.Recv()方法接收上述链码执行结果，检查错误后交由handler.handleMessage()方法进行处理。如果是ChaincodeMessage_COMPLETED类型或者ChaincodeMessage_ERROR类型的消息，并且处于ready状态，则继续调用handler.notify()方法，将该链码执行结果发送到交易上下文对象的响应通知通道tctx.responseNotifier，以通知外层的theChaincodeSupport.Execute()方法已经完成了链码调用操作。

至此，ChaincodeMessage_TRANSACTION类型的链码消息处理完毕。

4.其他类型链码消息

链码容器并不直接访问Peer节点上的账本数据库、执行链码调用等操作，该对象是一个无状态的链码执行环境，必须将访问账本数据、调用链码等操作发送到Peer侧请求处理，等待处理完毕后将链码响应结果返回到链码容器侧。

实际上，链码容器侧的Handler对象在调用Init()方法与Invoke()方法时，会调用链码ChaincodeStub类型的API与Peer侧进行交互，即执行Handler对象中对应的handleXXX()方法（core/chaincode/shim/handler.go），处理如下类型的链码消息。

·ChaincodeMessage_GET_HISTORY_FOR_KEY

·ChaincodeMessage_GET_QUERY_RESULT

·ChaincodeMessage_GET_STATE

·ChaincodeMessage_PUT_STATE

·ChaincodeMessage_DEL_STATE

·ChaincodeMessage_GET_STATE_BY_RANGE

·ChaincodeMessage_QUERY_STATE_CLOSE

·ChaincodeMessage_QUERY_STATE_NEXT

·ChaincodeMessage_INVOKE_CHAINCODE

另外，Peer侧会周期性地发送ChaincodeMessage_KEEPALIVE类型的心跳消息到链码容器侧，同时，链码容器侧接到该消息后回应ChaincodeMessage_KEEPALIVE消息，以确认节点的在线状态。

Fabric 1.3还增加了ChaincodeMessage_GET_STATE_METADATA类型与ChaincodeMessage_PUT_STATE_METADATA类型分别用于获取与设置状态元数据，以封装key级别的背书策略等。

代码清单4-26　链码容器侧的Handler类型源码示例

core/chaincode/shim/handler.go文件

// 链码容器侧的Handler消息处理句柄

type Handler struct {

 sync.RWMutex

 serialLock sync.Mutex

 To string

 ChatStream PeerChaincodeStream // 通信流

 FSM *fsm.FSM // 有限状态机

 cc Chaincode // 执行的链码

 responseChannel map[string]chan pb.ChaincodeMessage

 // 响应消息通道字典，交易ID->链码消息通道

 nextState chan *nextStateInfo // 迁移状态消息通道

}

（1）链码容器侧发送链码请求消息

ChaincodeStub类型实现了shim.ChaincodeStubInterface定义的API，如代码清单4-27所示，封装了链码参数列表、交易ID、通道ID、提案消息、消息创建者实体、Handler处理句柄等，同时基于Handler消息处理句柄提供的handleXXX()方法实现了该接口定义的访问账本数据、链码调用等方法。

代码清单4-27　ChaincodeStubInterface接口的源码示例

core/chaincode/shim/interfaces_experimental.go文件

type ChaincodeStubInterface interface {

 ……

 // 调用链码

 InvokeChaincode(chaincodeName string, args [][]byte, channel string) pb.Response

 // 公共数据操作

 GetState(key string) ([]byte, error)

 PutState(key string, value []byte) error

 DelState(key string) error

 GetStateByRange(startKey, endKey string) (StateQueryIteratorInterface, error)

 GetStateByPartialCompositeKey(objectType string, keys []string) (StateQuery-IteratorInterface, error)

 ……

 GetQueryResult(query string) (StateQueryIteratorInterface, error)

 GetHistoryForKey(key string) (HistoryQueryIteratorInterface, error)

 // 隐私数据操作

 GetPrivateData(collection, key string) ([]byte, error)

 PutPrivateData(collection string, key string, value []byte) error

 DelPrivateData(collection, key string) error

 GetPrivateDataByRange(collection, startKey, endKey string) (StateQuery-IteratorInterface, error)

 GetPrivateDataByPartialCompositeKey(collection, objectType string, keys []string) (StateQueryIteratorInterface, error)

 GetPrivateDataQueryResult(collection, query string) (StateQueryIterator-Interface, error)

 ……

}

本节以handleGetState()方法为例说明调用执行流程。

handleXXX()方法首先根据链码操作请求构造对应的链码消息，如handleGetState()方法会构造ChaincodeMessage_GET_STATE类型的链码消息用于获取给定通道ID与交易ID上指定键的状态数据。

接着，handleXXX()方法调用handler.callPeerWithChaincodeMsg()方法，将该链码消息发送到Peer侧请求处理。有些handleXXX()方法没有调用该方法，而是直接执行该方法所包含的步骤代码，如handleGetHistoryForKey()方法等。

其中，handler.callPeerWithChaincodeMsg()方法先调用handler.createChannel()方法，创建与当前交易txCtxID（即chainID+txid）关联的链码响应消息通道respChan，并将respChan通道注册到Handler对象的responseChannel字典（map[string]chan pb.Chaincode-Message类型）中。然后，调用handler.sendReceive(msg，respChan)方法，通过执行handler.serialSendAsync()方法将链码消息异步发送到Peer侧请求处理，接着进入消息处理循环，使用select语句阻塞等待通道消息，如代码清单4-28所示，具体说明如下。

·errc错误消息通道：用于捕获发送链码消息时出现的错误消息；

·respChan通道：即sendReceive()方法的消息通道参数c，用于捕获Peer侧处理的链码响应结果消息，并返回到上述handler.callPeerWithChaincodeMsg()方法中，用于通知链码请求已经处理完毕。

代码清单4-28　sendReceive()方法的源码示例

core\chaincode\shim\handler.go文件

func (handler *Handler) sendReceive(msg *pb.ChaincodeMessage, c chan pb.ChaincodeMessage) (pb.ChaincodeMessage, error) {

 errc := make(chan error, 1) // 创建错误消息通道

 handler.serialSendAsync(msg, errc) // 发送链码消息到Peer侧以请求执行操作

 for {

 select {

 case err := <-errc:

 if err == nil {

 continue // 若没有错误，则继续等待

 }

 // 若发生错误，则返回空的链码消息以及错误

 return pb.ChaincodeMessage{}, err

 case outmsg, val := <-c: // 等待Peer侧执行操作结果

 if !val {

 return pb.ChaincodeMessage{}, errors.New("unexpected failure on receive")

 }

 return outmsg, nil

 }

 }

}

同时，handler.createChannel()方法在退出时调用handler.deleteChannel()方法，以删除该字典中当前交易的链码响应消息通道键值对。

然后，handleXXX()方法处理链码调用执行结果，将执行结果封装到链码响应消息的消息负载responseMsg.Payload中，对于正常执行结果的链码响应消息，具体说明如下。

·账本查询类请求：直接返回查询结果（如handleGetState()等）或者返回Query-Response结构对象（如handleGetHistoryForKey()、handleGetStateByRange()等）作为消息负载responseMsg.Payload；

·账本操作类请求：链码响应消息的类型可用于判断其执行是成功还是失败（Chaincode-Message_RESPONSE类型或ChaincodeMessage_ERROR类型），包括handleDelState()与handlePutState()等；

·链码调用链码请求：如果responseMsg.Payload中的链码消息是ChaincodeMessage_COMPLETED消息，则表示调用执行成功，否则，表示执行失败，如handle-InvokeChaincode()。

最后，handleXXX()方法将执行结果返回到链码的Init()方法与Invoke()方法中并继续执行。

（2）Peer侧处理链码消息请求

以ChaincodeMessage_GET_STATE链码消息为例，Peer侧将其交由Handler对象的afterGetState()方法进行处理，利用e.Args[0].(*pb.ChaincodeMessage)方法解析链码消息，并进行类型推断以检查其合法性，接着调用handler.handleGetState()方法，启动goroutine查询本地账本的状态数据库，如代码清单4-29所示。

代码清单4-29　Peer侧上Handler对象的handleGetState()方法源码示例

core\chaincode\handler.go文件

func (handler *Handler) handleGetState(msg *pb.ChaincodeMessage) {

 go func() {

 // 检查交易的唯一性

 uniqueReq := handler.createTXIDEntry(msg.ChannelId, msg.Txid)

 ……

 // 检测context中是否存在交易模拟器对象

 txContext, serialSendMsg = handler.isValidTxSim(msg.ChannelId, msg.Txid,

 "[%s]No ledger context for GetState. Sending %s", shorttxid(msg.Txid), pb.ChaincodeMessage_ERROR)

 defer func() {

 handler.deleteTXIDEntry(msg.ChannelId, msg.Txid) // 删除交易键值对

 chaincodeLogger.Debugf("[%s]handleGetState serial send %s",

 shorttxid(serialSendMsg.Txid), serialSendMsg.Type)

 handler.serialSendAsync(serialSendMsg, nil) // 退出时发送错误或

 // 正常查询结果消息

 }()

 ……

 key := string(msg.Payload)

 getState := &pb.GetState{}

 unmarshalErr := proto.Unmarshal(msg.Payload, getState)

 ……

 chaincodeID := handler.getCCRootName() 　　// 获取链码名称（名字空间）

 ……

 if isCollectionSet(getState.Collection) {

 res, err = txContext.txsimulator.GetPrivateData(chaincodeID, getState.Collection, getState.Key) // 获取隐私数据

 } else {

 // 获取公共数据

 res, err = txContext.txsimulator.GetState(chaincodeID, getState.Key)

 }

 if err != nil {

 ……

 serialSendMsg = &pb.ChaincodeMessage{Type: pb.ChaincodeMessage_ERROR, Payload: payload, Txid: msg.Txid, ChannelId: msg.ChannelId}

 } else if res == nil {

 ……

 serialSendMsg = &pb.ChaincodeMessage{Type: pb.ChaincodeMessage_RESPONSE, Payload: res, Txid: msg.Txid, ChannelId: msg.ChannelId}

 } else {

 ……

 serialSendMsg = &pb.ChaincodeMessage{Type: pb.ChaincodeMessage_RESPONSE, Payload: res, Txid: msg.Txid, ChannelId: msg.ChannelId}

 }

 }()

}

handler.handleGetState()方法首先检查交易的唯一性，以确保不会同时重复处理同一个交易（chainID+txid），即调用handler.createTXIDEntry()方法查询Handler对象的handler.txidMap字典，检查指定交易标识（chainID+txid）的记录项是否已经存在。如果已经存在该交易记录项，则说明Handler对象正在处理该交易的有关操作，不能同时重启处理本次交易，所以放弃并返回。否则，继续调用handler.isValidTxSim()方法，检查关联的交易上下文对象txContext的合法性，即检查txContext及其交易模拟器txContext.txsimulator是否存在（不为nil）。

接着，handler.handleGetState()方法将链码消息的消息负载msg.Payload解析到GetState结构对象中（封装了查询的Key键），并调用handler.getCCRootName()方法，获取当前Handler对象处理的链码名称（解析链码容器注册时提供的链码规范名称之后获取的）。如果链码消息参数中设置了隐私数据集合标志位Collection（true），则调用txContext.txsimulator.GetPrivateData()方法，从状态数据库中查询隐私数据并返回。否则，调用txContext.txsimulator.GetState()方法，从状态数据库中查询公共数据并返回。同时，将查询数据结果保存在交易模拟器中（7.1.5节）。

最后，handler.handleGetState()方法将查询结果封装为ChaincodeMessage_RESPONSE类型或ChaincodeMessage_ERROR类型的链码消息，并在退出方法时删除handler.txidMap字典中本次交易记录项的键值对。同时，调用handler.serialSendAsync()方法，将结果发送给到码容器侧。

另外，链码相互调用的ChaincodeMessage_INVOKE_CHAINCODE类型链码消息支持调用同一个链或不同链上的链码，增强了链码可维护性与可扩展性。其中，shim.ChaincodeStubInterface提供了InvokeChaincode()接口，其参数包括chaincodeName（规范化的链码名称chaincode-name：version/channel-name，实际上调用最新版本）、args（被调用链码的参数）、channel（被调用通道名称，默认当前通道）等。Peer侧接收该链码请求消息后调用enterBusyState()方法处理与检查（CHANNELWRITERS等），包括如下两种情况。

如果属于同一个链的链码调用请求，则重新构造一个上下文对象以封装当前交易的交易模拟器与历史执行查询器，对于用户链码需要获取被调用链码的链码数据对象，确保已经成功执行实例化操作，并获取最新链码版本version，同时通过本地安装链码包获取链码数据对象以检查实例化策略是否匹配，确保该链码已经安装且具有调用链码的合法性，对于系统链码则直接获取指定版本。接着，基于上述参数构造链码上下文对象（CCContext类型），创建链码调用规范对象，执行handler.chaincodeSupport.Launch()方法以启动指定链码的链码容器（若未启动），启动成功后构造ChaincodeMessage_TRANSACTION类型的链码消息，执行handler.chaincodeSupport.Execute()方法，通过handler.nextState通道将该链码请求消息交由Handler对象处理，并转发给链码容器侧请求执行链码，同时，指定执行超时时间（默认30秒）并等待执行结果响应消息。最后，将被调用链码的模拟执行结果读写集记录到当前交易的同一个交易模拟器中，以请求验证与提交账本，从而修改状态数据。

如果属于不同链的链码调用请求，则处理流程大致类似，但是不复用当前交易的交易模拟器，而是基于被调用链码所在通道账本对象与当前交易ID执行NewTxSimulator()方法，创建一个新的交易模拟器封装到上下文对象中，用于访问被调用链码所在链的状态数据（即读数据操作）等，因此，当前交易的交易模拟器并不会记录被调用链码的模拟执行结果读写集，也不会修改被调用链账本上的状态数据（即写数据操作）。

（3）链码容器侧处理链码响应消息

链码容器侧接收到该消息后，交由Handler对象的handler.handleMessage()方法继续处理。对于ChaincodeMessage_RESPONSE与ChaincodeMessage_ERROR消息，链码容器侧分别调用Handler对象的afterResponse()方法与afterError()方法进行处理，通过执行handler.sendChannel()方法将结果发送到与交易txCtxID（chainID+txID）关联的链码响应通道respChan中，即handler.responseChannel[txCtxID]。这样，链码容器侧的handler.sendReceive(msg，respChan)方法就会捕获到respChan通道上的消息，并将结果返回到handleGetState()等handleXXX()方法中，从而继续执行直到结束再返回到Init()或Invoke()方法。

至此，其他类型的链码消息执行结束。
4.4.8　停止链码容器

一旦上述容器的启动过程失败，chaincodeSupport.sendReady()方法就会将错误信息返回到theChaincodeSupport.Launch()方法，调用chaincodeSupport.Stop()方法以停止链码容器，注销并释放相关资源。

chaincodeSupport.Stop()方法首先构造停止镜像请求对象（StopImageReq类型），通过调用container.VMCProcess()→req.do()→StopImageReq.do()→v.Stop()方法停止链码容器。

对于系统链码的inprocContainer容器，v.Stop()方法调用InprocVM.Stop()方法，先基于容器名称从instRegistry字典中获取对应的链码容器实例ipc，检查其ipc.running运行状态标志位。如果该对象处于正常的运行状态，则发送struct{}{}空结构到链码容器的ipc.stopChan停止消息通道。该消息会被ipc.launchInProc()方法的select阻塞等待语句捕获，将同时关闭peerRcvCCSend通道与ccRcvPeerSend通道，正常退出goroutine。最后，InprocVM.Stop()调用delete(instRegistry，instName)函数，从instRegistry字典中删除指定的链码容器实例，如代码清单4-30所示。

代码清单4-30　inprocContainer容器的Stop()方法源码示例

core/container/inproccontroller/inproccontroller.go文件

// 停止链码容器

func (vm *InprocVM) Stop(ctxt context.Context, ccid ccintf.CCID, timeout uint, dontkill bool, dontremove bool) error {

 path := ccid.ChaincodeSpec.ChaincodeId.Path // 获取链码路径

 ipctemplate := typeRegistry[path] // 获取链码容器模板，检查是否已经注册

 ……

 instName, _ := vm.GetVMName(ccid, nil) // 获取容器名称

 ipc := instRegistry[instName] // 获取指定的链码容器实例

 ……

 // 检查该链码容器的运行状态

 if !ipc.running {

 return fmt.Errorf("%s not running", instName)

 }

 // 发送停止容器运行的消息到stopChan通道上，select语句捕获到停止消息

 ipc.stopChan <- struct{}{}

 delete(instRegistry, instName) // 在全局instRegistry字典中删除指定的链码容器实例

 return nil

}

对于用户链码的Docker容器，v.Stop()方法调用DockerVM.Stop()方法，先通过调用getClientFnc()方法获取Docker容器的客户端，再调用vm.stopInternal()→client.StopContainer()方法，请求停止指定的Docker容器，如代码清单4-31所示。

代码清单4-31　Docker容器的Stop()方法源码示例

core/container/dockercontroller/dockercontroller.go文件

// 停止链码容器

func (vm *DockerVM) Stop(ctxt context.Context, ccid ccintf.CCID, timeout uint, dontkill bool, dontremove bool) error {

 id, err := vm.GetVMName(ccid, nil) // 获取镜像名称

 ……

 client, err := vm.getClientFnc() // 获取新的Docker容器客户端

 ……

 id = strings.Replace(id, ":", "_", -1)

 // 停止链码容器

 err = vm.stopInternal(ctxt, client, id, timeout, dontkill, dontremove)

 return err

}

chaincodeSupport.Stop()方法在停止链码容器后，继续检查chaincodeMap字典并删除指定的链码运行时环境对象。
4.4.9　处理模拟执行结果

callChaincode()方法调用链码以模拟执行签名提案之后，返回链码执行结果到simulateProposal()方法中。simulateProposal()方法继续处理模拟执行结果，通过合法的交易模拟器调用txsim.GetTxSimulationResults()方法，获取当前交易模拟器rwsetBuilder对象保存的模拟执行结果读写集simResult，包括公有数据读写集PubSimulationResults（含有公共数据与隐私数据哈希值）和隐私数据读写集PvtSimulationResults，如代码清单4-32所示。

代码清单4-32　交易模拟器的GetTxSimulationResults()方法源码示例

core/ledger/kvledger/txmgmt/rwsetutil/rwset_builder.go文件

func (b *RWSetBuilder) GetTxSimulationResults() (*ledger.TxSimulationResults, error) {

 // 获取交易模拟执行结果的隐私数据读写集

 pvtData := b.getTxPvtReadWriteSet()

 var err error

 var pubDataProto *rwset.TxReadWriteSet

 var pvtDataProto *rwset.TxPvtReadWriteSet

 // 计算隐私数据哈希值

 if pvtData != nil {

 if pvtDataProto, err = pvtData.toProtoMsg(); err != nil {

 return nil, err

 }

 // 遍历计算集合隐私数据的哈希值

 for _, ns := range pvtDataProto.NsPvtRwset {

 for _, coll := range ns.CollectionPvtRwset {

 b.setPvtCollectionHash(ns.Namespace, coll.CollectionName, coll.Rwset) // 计算并设置集合隐私数据的哈希值

 }

 }

 }

 // 获取交易模拟执行结果的公有数据读写集

 pubSet := b.GetTxReadWriteSet()

 if pubSet != nil {

 if pubDataProto, err = b.GetTxReadWriteSet().toProtoMsg(); err != nil {

 return nil, err

 }

 }

 // 构造交易模拟执行结果TxSimulationResults结构对象

 return &ledger.TxSimulationResults{

 PubSimulationResults: pubDataProto, // 模拟结果公有数据

 PvtSimulationResults: pvtDataProto, // 模拟结果隐私数据

 }, nil

}

GetTxSimulationResults()方法首先通过交易模拟器自身的rwsetBuilder对象，调用b.getTxPvtReadWriteSet()方法，将模拟执行结果中b.pvtRwBuilderMap保存的隐私数据集合转换为TxPvtRwSet类型的隐私数据读写集pvtData，实际上只包括隐私数据写集合（明文），再调用pvtData.toProtoMsg()方法转换为rwset.TxPvtReadWriteSet类型的隐私数据对象pvtDataProto，实际上就是按照protobuf格式将该对象各字段序列化为字节数组，以便于打包传输数据，其中，隐私数据写集合collPvtRwSet.KvRwSet被整体序列化为字节数组protoMsg.Rwset，即后面的coll.Rwset。

接着，遍历pvtDataProto隐私数据中包含的所有读写集（[]*NsPvtReadWriteSet），通过rwsetBuilder对象调用b.setPvtCollectionHash(ns.Namespace，coll.CollectionName，coll.Rwset)方法，将该隐私数据写集合coll.Rwset的哈希值保存到rwsetBuilder对象的隐私数据哈希值中，即pubRwBuilderMap[ns.Namespace].collHashRwBuilder[coll.CollectionName].pvtDataHash，并指定名字空间ns.Namespace与集合名称coll.CollectionName。

然后，调用b.GetTxReadWriteSet()方法，先将rwsetBuilder对象中b.pubRwBuilder Map保存的公有数据转换为NsRwSet类型的公有数据读写集列表，含有公共数据读写集（包含读集合、写集合、范围查询数据集合）与隐私数据读写集哈希值（包含读集合哈希值、写集合哈希值、隐私数据哈希值b.pvtDataHash），并封装为TxRwSet类型的公有数据读写集对象pubSet。如果pubSetg不为nil，则执行b.GetTxReadWriteSet().toProtoMsg()方法，将该对象转换为*rwset.TxReadWriteSet类型的公有数据对象pubDataProto。其中，公共数据nsRwSet.KvRwSet被整体序列化为字节数组protoMsg.Rwset，隐私数据读集合与写集合哈希值collHashedRwSet.HashedRwSet（含有读集合哈希值HashedReads与写集合哈希值HashedWrites）被整体序列化为字节数组protoMsg.HashedRwset。

最后，构造交易模拟执行结果对象（TxSimulationResults类型）以封装公有数据pubDataProto与隐私数据pvtDataProto。

接着，simulateProposal()方法检查模拟执行结果中的隐私数据读写集simResult.PvtSimulationResults是否有效（不为nil），通过检查后调用Gossip消息模块distribute PrivateData()方法（peer/node/start.go中的privDataDist()方法），实际上就是Gossip服务器实例的gossipServiceImpl.DistributePrivateData()方法，如代码清单4-33所示，通过Gossip消息协议将隐私数据分发到通道内授权的其他Peer节点上，利用transient隐私数据存储对象暂时保存到本地的transient隐私数据库（LevelDB）中，并等待验证交易与提交账本处理。

代码清单4-33　DistributePrivateData()方法的源码示例

gossip/service/gossip_service.go文件

// 分发通道中的隐私数据读写集

func (g *gossipServiceImpl) DistributePrivateData(chainID string, txID string, privData *rwset.TxPvtReadWriteSet) error {

 g.lock.RLock()

 handler, exists := g.privateHandlers[chainID] // 获取指定通道上的隐私数据处理句柄

 g.lock.RUnlock()

 if !exists {

 return errors.Errorf("No private data handler for %s", chainID)

 }

 // 分发隐私数据

 if err := handler.distributor.Distribute(txID, privData, handler.support.Cs); err != nil {

 logger.Error("Failed to distributed private collection, txID", txID, "channel", chainID, "due to", err)

 return err

 }

 // 存储隐私数据到transient对象中

 if err := handler.coordinator.StorePvtData(txID, privData); err != nil {

 logger.Error("Failed to store private data into transient store, txID",

 txID, "channel", chainID, "due to", err)

 return err

 }

 return nil

}

其中，gossipServiceImpl.DistributePrivateData()方法首先从Gossip服务器实例中获取当前交易关联通道的隐私数据处理句柄handler，调用handler.distributor.Distribute()方法，将隐私数据分发到通道内授权的其他Peer节点上（6.5.2节）。接着，由其他Peer节点上Gossip服务实例的state模块监听捕获到该消息，放入commChan通道等待处理（6.3.5节）。然后，调用handler.coordinator.StorePvtData(txID，privData)方法，通过coordinator模块将指定交易txID的隐私数据读写集privData暂时保存到本地transient隐私数据库中（7.1.7节）。Committer记账节点在提交区块数据与隐私数据之后，主动删除transient隐私数据库中关联的隐私数据，以及时清理过期数据（7.1.7节）。

另外，Fabric 1.2与1.3会调用e.AssemblePvtRWSet()方法，构造隐私数据读写集及其集合配置信息对象（TxPvtReadWriteSetWithConfigInfo类型），封装隐私数据（明文）及其对应的隐私数据集合配置信息列表（基于链码名称通过LSCC从状态数据库中获得），同时获取当前提案消息关联通道的账本高度endorsedAt，以标记提案背书时的账本高度位置，然后调用distributePrivateData()→privDataDist()方法，分发该隐私数据及集合配置信息对象，其他授权组织的Peer节点接收后最终执行transient对象的PersistWithConfig()方法，将隐私数据及其集合配置信息暂时缓存到本地的transient隐私数据库中。

最后，simulateProposal()方法调用simResult.GetPubSimulationBytes()方法，获取模拟执行结果中的公有数据读写集pubSimResBytes并返回。
4.5　对模拟执行结果签名背书

ProcessProposal()方法最后对模拟执行结果进行签名背书。该方法首先检查签名提案消息中指定的链ID（chainID）。如果该链ID为空字符串，则直接将上述模拟执行结果res封装为提案响应消息对象（ProposalResponse类型）并返回，例如调用LSCC系统链码执行install安装链码操作。否则，调用endorseProposal()方法对模拟执行结果进行签名背书。

如代码清单4-34所示，endorseProposal()方法首先解析并获取ESCC链码调用参数，包括escc方法名称、链码事件、链码版本、链码ChaincodeID结构对象等，并封装到链码调用规范对象。接着，调用e.callChaincode()方法，请求执行ESCC背书系统链码，对提案消息的模拟执行结果等信息进行签名背书，检查错误后提取提案响应消息并返回。

代码清单4-34　endorseProposal()方法的源码示例

core/endorser/endorser.go文件

func (e *Endorser) endorseProposal(……) (*pb.ProposalResponse, error) {

 ……

 // 初始化链码参数，包括escc背书方法名称、链码事件、链码版本等

 isSysCC := cd == nil

 var escc string

 if isSysCC {

 escc = "escc" // 背书系统链码名称

 } else {

 escc = cd.Endorsement() // 获取背书方法名称

 }

 ……

 if event != nil {

 // 获取链码事件进行序列化封装后的字节数组

 eventBytes, err = putils.GetBytesChaincodeEvent(event)

 ……

 }

 // 获取响应消息序列化后的字节数组

 resBytes, err := putils.GetBytesResponse(response)

 ……

 if isSysCC {

 ccid.Version = util.GetSysCCVersion() // 设置执行链码的版本

 } else {

 ccid.Version = cd.CCVersion()

 }

 ccidBytes, err := putils.Marshal(ccid) // 序列化链码ChaincodeID结构

 ……

 args := [][]byte{[]byte(""), proposal.Header, proposal.Payload, ccidBytes, resBytes, simRes, eventBytes, visibility}

 version := util.GetSysCCVersion() // 获取系统链码版本

 ecccis := &pb.ChaincodeInvocationSpec{ChaincodeSpec: &pb.ChaincodeSpec{Type: pb.ChaincodeSpec_GOLANG, ChaincodeId: &pb.ChaincodeID{Name: escc}, Input: &pb.ChaincodeInput{Args: args}}} 　　 // 构造链码调用规范

 // 调用ESCC系统链码进行背书

 res, _, err := e.callChaincode(ctx, chainID, version, txid, signedProp, proposal, ecccis, &pb.ChaincodeID{Name: escc}, txsim)

 ……

 if res.Status >= shim.ERRORTHRESHOLD { // 超过错误阈值，返回构造的

 // 错误响应消息

 return &pb.ProposalResponse{Response: res}, nil

 }

 prBytes := res.Payload // 获取消息负载字节数组

 pResp, err := putils.GetProposalResponse(prBytes) // 反序列化解析提案响应消息

 ……

 return pResp, nil

}

callChaincode()方法调用ESCC系统链码的EndorserOneValidSignature.Invoke()方法，对模拟结果执行签名背书操作，如代码清单4-35所示。

代码清单4-35　ESCC系统链码的Invoke()方法源码示例

core/scc/escc/endorser_onevalidsignature.go文件

func (e *EndorserOneValidSignature) Invoke(stub shim.ChaincodeStubInterface) pb.Response {

 args := stub.GetArgs() // 获取参数列表

 // 检测参数个数

 if len(args) < 6 {

 return shim.Error(fmt.Sprintf("Incorrect number of arguments (expected a minimum of 5, provided %d)", len(args)))

 } else if len(args) > 8 {

 return shim.Error(fmt.Sprintf("Incorrect number of arguments (expected a maximum of 7, provided %d)", len(args)))

 }

 ……

 hdr = args[1] // 获取消息头部字节数组

 ……

 payl = args[2] // 获取链码提案负载对象字节数组

 ……

 ccid, err := putils.UnmarshalChaincodeID(args[3]) // 获取链码ChaincodeID结构对象

 ……

 response, err := putils.GetResponse(args[4]) // 获取执行链码响应消息

……

 results = args[5] // 获取模拟执行结果

 events := []byte("")

 if len(args) > 6 && args[6] != nil {

 events = args[6] // 获取链码事件

 }

 var visibility []byte

 if len(args) > 7 {

 visibility = args[7] // 获取消息负载可见性参数visibility，目前

 // Fabric只支持整体完全可见的模式

 }

 localMsp := mspmgmt.GetLocalMSP() // 获取本地MSP组件

 ……

 // 获取本地默认签名者身份实体（即背书成员）

 signingEndorser, err := localMsp.GetDefaultSigningIdentity()

 ……

 // 创建签名的提案响应消息

 presp, err := utils.CreateProposalResponse(hdr, payl, response, results, events, ccid, visibility, signingEndorser)

 ……

 // 序列化提案响应字节数组

 prBytes, err := utils.GetBytesProposalResponse(presp)

 ……

 pResp, err := utils.GetProposalResponse(prBytes) // 解析提案响应消息

 ……

 if pResp.Response == nil { // 检查调用链码的结果是否合法

 fmt.Println("GetProposalResponse get empty Response")

 }

 logger.Debugf("ESCC exits successfully")

 return shim.Success(prBytes) // 回复执行成功消息

}

EndorserOneValidSignature.Invoke()方法首先检查消息及参数的合法性，检查通过后调用localMsp.GetDefaultSigningIdentity()方法，获取本地默认的签名者身份实体signingEndorser（即背书成员），并基于上述解析的参数调用utils.CreateProposalResponse()函数，设置如下变量以构造提案响应消息（ProposalResponse类型，包含背书签名信息、模拟执行结果、链码响应消息结果等，如图4-6所示），具体说明如下。

·pHashBytes：调用GetProposalHash1()函数以计算指定信息的哈希值。该函数先解析获取链码提案的消息负载对象（ChaincodeProposalPayload类型），调用GetBytesProposalPayloadForTx()方法，根据visibility负载可见性模式参数基于链码提案的消息负载构造链码提案负载的字节数组。目前，visibility负载可见性模式参数默认设置为整个提案消息都是可见的（nil）。接着，基于消息的通道头部、签名头部以及链码提案消息负载的字节数组计算哈希值pHashBytes（SHA256哈希算法），该哈希值使得客户端与Endorser节点可以独立验证消息是否被篡改过，并被封装到提案响应消息负载对象中；

·prpBytes：调用GetBytesProposalResponsePayload(pHashBytes，response，results，events，ccid)方法，先构造指定的链码动作对象（ChaincodeAction类型）保存链码执行产生的状态变化与链码事件，封装了链码执行生成的事件events、模拟执行结果读写集results、链码响应消息结果response、提案消息头部扩展项中的链码ChaincodeID结构对象ccid等。接着，基于链码动作对象的序列化字节数组cActBytes（Extension字段）与pHashBytes哈希值（ProposalHash字段）构造提案响应消息负载对象（ProposalResponsePayload类型），并序列化为字节数组prpBytes；

·endorser：使用signingEndorser.Serialize()方法序列化本地签名者对象获得的字节数组；

·signature：本地签名者调用signingEndorser.Sign(append(prpBytes，endorser...))方法，对prpBytes与endorser组合信息进行签名，并返回签名结果signature。

 [image:]

图4-6　提案响应消息ProposalResponse类型示意图

然后，utils.CreateProposalResponse()函数基于上述参数构造提案响应消息对象，封装了版本号Version（1）、背书信息Endorsement（签名为signature、节点签名者实体信息为endorser）、提案响应负载对象prpBytes、响应状态信息（状态值为200且消息字符串为“OK”，表示签名背书成功），并返回该提案响应消息到EndorserOneValidSignature.Invoke()方法。

最后，EndorserOneValidSignature.Invoke()方法调用utils.GetBytesProposalResponse()方法，序列化上述提案响应消息为字节数组prBytes，重新将其解析为ProposalResponse结构对象，检查其消息的合法性（不为nil），然后调用shim.Success(prBytes)方法以返回执行成功的消息。

Fabric 1.2与1.3以插件形式封装了ESCC系统链码，因此，endorseProposal()方法调用e.s.EndorseWithPlugin()→PluginEndorser.EndorseWithPlugin()方法继续执行背书操作。

至此，Endorser背书节点处理签名提案消息的流程结束。

另外，Fabric 1.2.0及以后版本从1.1.0源码中移除了全局变量theChaincodeSupport链码支持服务实例及其chaincodeMap字典，而在链码支持服务ChaincodeSupport类型中引入了HandlerRegistry结构，提供handlers字典（map[string]*Handler类型）管理链码容器对应的Peer侧Handler链码消息处理句柄，以及launching字典（map[string]*LaunchState类型）用于管理对应容器的启动状态，其中，键都是链码规范名称（ChaincodeName：Chaincode Version），同时，移除了Handler对象上的FSM等模块设计与prelaunchFunc()预启动方法，并由Handler对象直接负责维护运行状态（created、established与ready）。虽然代码经过了较大重构，尤其是链码容器启动前准备工作的代码（4.4.3节），但整体上保留了启动链码容器、调用执行链码以及处理链码消息的核心流程与程序，从而使得代码更加简洁与易于扩展。其中，链码容器启动与执行链码的总入口是ChaincodeSupport类型的Execute()方法。

Peer侧（Endorser背书节点）执行ChaincodeSupport.Execute()→cs.Invoke()→cs.Lauch()→cs.Launcher.Launch()方法（1.3版本）或者继续调用RuntimeLauncher.start()方法（1.2版本）以启动容器，在launching字典中注册当前链码容器的启动状态对象launchState，并阻塞等待launchState.Done()（即launchState.done通道）所返回的容器启动结果。实际上，Peer侧的Handler对象在处理完链码容器启动时发送的ChaincodeMessage_REGISTER消息后，调用h.notifyRegistry()→h.sendReady()方法请求转换到ready状态，再执行h.Registry.Ready(h.chaincodeID.Name)→HandlerRegistry.Ready()方法，根据链码规范名称获取关联的容器启动状态对象launching[cname]，删除该对象并执行launchStatus.Notify(nil)方法，以关闭其done通道，将容器启动成功的消息通知外层方法。如果启动过程中出现错误，则执行h.Registry.Failed()→HandlerRegistry.Failed()方法，将错误封装到链码容器启动状态对象中，以通知容器启动失败。

接着，Peer侧的Invoke()方法继续执行ChaincodeSupport.execute()→handler.Execute()方法请求调用链码，同时创建交易上下文对象txctx封装交易模拟器、历史查询执行器等，并阻塞等待txctx.ResponseNotifier通道返回执行结果或执行超时。当Peer侧接收到链码执行完毕的结果消息msg时，Handler对象执行h.Notify(msg)方法，获取关联的交易上下文对象tctx，将执行结果消息msg发送到tctx.ResponseNotifier通道上，以通知外层的handler.Execute()方法链码执行结束的消息。

另外，Fabric 1.3支持key级别背书策略，在链码参数ChaincodeStubInterface类型中新增了如下接口，其中，ep表示背书策略字节数组，默认与“VALIDATION_PARAMETER”构成键值对，被封装到状态元数据StateMetadata结构中，从而支持更加细粒度的背书策略，请参考keylevelep.EndorsementCC链码实例（integration/chaincode/keylevelep/chaincode.go）。

SetStateValidationParameter(key string, ep []byte) error

GetStateValidationParameter(key string) ([]byte, error)

SetPrivateDataValidationParameter(collection, key string, ep []byte) error

GetPrivateDataValidationParameter(collection, key string) ([]byte, error)

4.6　小结

本章介绍了Endorser背书节点功能模块的设计与实现机制，包括Endorser背书节点处理签名提案消息的流程，深入分析了链码容器启动与链码调用执行过程。

Endorser背书节点提供了背书服务的ProcessProposal()接口，负责启动链码容器部署链码，与Peer节点建立连接进行通信。接着，将签名提案消息转发给链码容器，请求调用链码的Init()或Invoke()方法，将模拟执行结果保存到与当前交易关联的交易模拟器中，并调用ESCC系统链码对模拟执行结果等签名进行背书，然后将背书签名信息等封装为提案响应消息回复给客户端。如果客户端收集到足够多的背书成功结果，就可以构造签名交易消息请求交易排序，并打包出块广播。
第5章　Committer记账节点

It is，quite simply，one of the most powerful innovations in finance in 500 years.

虚拟货币是500多年来最具影响力的金融创新之一。（1494年出现了复式记账法，距今524年）

——《华尔街日报》2015年1月

本章将分析Hyperledger Fabric中Committer记账节点功能模块的设计与实现，其源代码主要分布在/core、/gossip和/protos等目录下，如表5-1所示。读者可以在本章了解到Committer功能模块（交易验证器与账本提交器）创建与调用的流程，以及交易验证器与账本提交器的具体实现细节。

表5-1　Committer记账节点相关源码列表

 [image:]

 [image:]

5.1　功能概述

Committer记账节点负责验证交易与提交账本，包括公有数据（即区块数据，包含公共数据与隐私数据哈希值）与隐私数据。Committer记账节点在提交账本之前需要验证交易数据的有效性，如交易消息格式的正确性、签名合法性等，并调用VSCC（Validation System Chaincode，验证系统链码）验证消息的合法性以及指定背书策略的有效性。接着，验证并准备模拟执行结果读写集，执行MVCC（Multi-Version Concurrency Control）多版本并发控制检查，用于检查读写冲突并标记交易的有效性。最后，提交所有区块数据到区块数据文件以及所有隐私数据到隐私数据库，建立索引信息并保存到区块索引数据库，更新有效交易的公有数据（包含公共数据、隐私数据哈希值）与隐私数据到状态数据库，将经过Endorser背书的有效交易数据同步到历史数据库，同时清理缓存隐私数据的transient隐私数据库。

事实上，通道上同一个组织（通常对应于一个MSP组件对象）上加入的所有Peer节点都默认成为该组织的Committer记账节点，接收该组织内传播的区块数据或隐私数据，并验证交易数据与提交账本。如代码清单5-1所示，Committer记账节点的功能模块（或称为Committer功能模块）包括交易验证模块（或称为交易验证器）与账本提交模块（或称为账本提交器），具体说明如下。

·交易验证器（Validator接口）：定义了Validate(block*common.Block)方法，用于验证区块block中交易数据的合法性，包括交易格式的合法性、背书策略的有效性（VSCC）等；

·账本提交器（Committer接口）：定义了CommitWithPvtData(blockAndPvtData*ledger.BlockAndPvtData)方法，执行MVCC检查，基于状态数据检查模拟执行结果中的读写冲突，标记其中的无效交易，再提交区块与隐私数据对象blockAndPvtData到账本中。

代码清单5-1　Validator、vsccValidator与Committer接口的源码示例

type Validator interface {

 Validate(block *common.Block) error // 验证区块交易数据的合法性

}

type vsccValidator interface {

 VSCCValidateTx(payload *common.Payload, envBytes []byte, env *common.Envelope) (error, peer.TxValidationCode)

}

type Committer interface {

 // 提交区块与隐私数据对象到账本

 CommitWithPvtData(blockAndPvtData *ledger.BlockAndPvtData) error

 // 获取指定的区块与隐私数据对象

 GetPvtDataAndBlockByNum(seqNum uint64) (*ledger.BlockAndPvtData, error)

 // 获取指定区块号的区块隐私数据列表，并过滤指定的隐私数据

 GetPvtDataByNum(blockNum uint64, filter ledger.PvtNsCollFilter) ([]*ledger.TxPvtData, error)

 LedgerHeight() (uint64, error) // 获取账本高度

 // 根据区块号列表获取对应的区块列表

 GetBlocks(blockSeqs []uint64) []*common.Block

 Close() // 关闭服务

}

5.2　创建与调用Committer功能模块

5.2.1　创建Committer功能模块

Peer节点通过请求调用CSCC系统链码加入应用通道，执行joinChain()→peer.Create-ChainFromBlock()→createChain()函数，基于应用通道创世区块创建通道的链结构对象，用于管理账本、通道配置等资源，以正常接收通道的账本区块，如代码清单5-2所示。接着，创建了交易验证器（txValidator类型，实现了Validator接口），并封装了vsccValidatorImpl结构对象（实现了vsccValidator接口类型）用于支持调用VSCC链码。然后，创建账本提交器（LedgerCommitter类型，实现了Committer接口），并定义回调函数eventer，用于提交账本后自动更新链结构上的最新配置区块对象。

代码清单5-2　createChain()函数的源码示例

core/peer/peer.go文件

func createChain(cid string, ledger ledger.PeerLedger, cb *common.Block) error {

 ……

 vcs := struct { // 构造新的验证链码支持对象

 *chainSupport

 *semaphore.Weighted

 Support

 }{cs, validationWorkersSemaphore, GetSupport()}

 validator := txvalidator.NewTxValidator(vcs) // 创建交易验证器

 c := committer.NewLedgerCommitterReactive(ledger, func(block *common.Block) error { // 创建账本提交器

 // 定义区块事件处理回调函数

 // 获取链ID

 chainID, err := utils.GetChainIDFromBlock(block)

 ……

 return SetCurrConfigBlock(block, chainID) // 设置指定链的当前配置区块

 })

 ……

 // 创建transient隐私数据存储对象

 store, err := transientStoreFactory.OpenStore(bundle.ConfigtxValidator().ChainID())

 ……

 // 初始化指定通道上的Gossip消息模块。

 // 若是主节点，则从Orderer服务节点获取区块数据。否则，从组织内其他节点同步数据

 service.GetGossipService().InitializeChannel(bundle.ConfigtxValidator().ChainID(), ordererAddresses, service.Support{

 Validator: validator, // 交易验证器

 Committer: c, // 账本提交器

 Store: store, // transient隐私数据存储对象

 Cs: simpleCollectionStore, // 隐私数据集合存储对象

 })

 ……

 chains.list[cid] = &chain{ // 构造新的链结构并插入Peer节点链结构

 字典中

 cs: cs, // 链支持对象

 cb: cb, // 配置区块

 committer: c, // 账本提交器

 }

 return nil

}

接着，将创建的交易验证器与账本提交器封装到服务支持组件（service.Support类型），将其作为参数传递给service.GetGossipService().InitializeChannel()函数调用，用于初始化通道的Gossip消息模块，并封装到该对象的coordinator模块与Fetcher组件上，如代码清单5-3所示。其中，交易验证器用于验证交易的合法性与背书策略的有效性（5.3节），账本提交器用于提交区块与隐私数据（5.4节与7.1.7节）。

代码清单5-3　InitializeChannel()函数的源码示例

gossip/service/gossip_service.go文件

func (g *gossipServiceImpl) InitializeChannel(chainID string, endpoints []string, support Support) {

 ……

 coordinator := privdata2.NewCoordinator(privdata2.Support{

 // coordinator模块

 CollectionStore: support.Cs, // 隐私数据集合存储对象

 Validator: support.Validator, // 交易验证器

 TransientStore: support.Store, // 隐私存储对象

 Committer: support.Committer, // 账本提交器

 Fetcher: fetcher, // Fetcher组件

 }, g.createSelfSignedData())

 g.privateHandlers[chainID] = privateHandler{ // 隐私数据处理句柄

 support: support,

 coordinator: coordinator,

 distributor: privdata2.NewDistributor(chainID, g),

 }

 g.chains[chainID] = state.NewGossipStateProvider(chainID, servicesAdapter, coordinator) // 创建指定通道上的state模块

 ……

}

InitializeChannel()函数会继续将coordinator模块设置到Gossip服务实例的private-Handlers字典与chains字典中的关联通道（chainID）上，具体说明如下。

·privateHandlers字典（map[string]privateHandler类型）：管理隐私数据处理句柄（private-Handler类型），其distributor对象与coordinator对象分别用于分发与保存隐私数据；

·chains字典（map[string]state.GossipStateProvider类型）：管理链上的state模块（GossipStateProviderImpl类型）。该模块负责接收与处理DataMsg类型的数据消息、StateRequest类型的远程状态请求消息、StateResponse类型的远程状态应答消息、PrivateData类型的隐私数据消息等GossipMessage消息，将DataMsg类型的数据消息等包含的消息负载压入本地的payloads消息负载缓冲区，等待提交账本处理。同时，state模块还封装了coordinator模块作为ledger字段（ledgerResources类型），其封装的交易验证器与账本提交器分别用于验证交易与提交账本。
5.2.2　调用Committer功能模块

Peer节点加入应用通道时创建了该通道上的state模块，启动goroutine执行listen()方法，建立消息监听循环，使用select语句阻塞等待通道消息，通道消息具体如下。

·gossipChan通道：用于接收DataMsg类型的数据消息；

·commChan通道：用于接收StateRequest类型的远程状态请求消息、StateResponse类型的远程状态应答消息、PrivateData类型的隐私数据消息等。

state模块调用queueNewMessage()方法处理DataMsg类型的数据消息（6.3.4节）。该方法首先调用addPayload()方法，将其消息负载放入本地的payloads消息负载缓冲区。如果该消息负载的区块号等于next，即等待提交账本的下一个区块号，则将该消息发送到readyChan通道中，以通知接收到符合期望条件的数据。同时，state模块的deliverPay-loads()方法在消息处理循环中会捕获到该消息，如代码清单5-4所示。一旦出现符合期望条件的数据消息（即区块号为next），就会执行payloads.Pop()→PayloadsBufferImpl.Pop()方法，从消息负载缓冲区中弹出匹配的消息负载payload，解析获得封装的区块数据rawBlock与隐私数据p，并检查该消息的合法性。然后，调用state模块的s.commitBlock(rawBlock，p)方法，验证区块数据rawBlock与隐私数据p并提交账本，更新区块高度等元数据。

代码清单5-4　state模块的deliverPayloads()方法源码示例

gossip/state/state.go文件

func (s *GossipStateProviderImpl) deliverPayloads() {

 ……

 for {

 select {

 // 等待符合条件的新消息达到

 case <-s.payloads.Ready():

 ……

 // 弹出负载消息

 for payload := s.payloads.Pop(); payload != nil; payload = s.payloads.Pop() {

 rawBlock := &common.Block{}

 // 解析到区块的Block结构对象

 if err := pb.Unmarshal(payload.Data, rawBlock); err != nil {

 ……

 }

 // 检查区块数据的合法性

 if rawBlock.Data == nil || rawBlock.Header == nil {

 ……

 }

 ……

 // 解析隐私数据到消息负载的PrivateData字段中

 if payload.PrivateData != nil {

 err := p.Unmarshal(payload.PrivateData)

 ……

 }

 if err := s.commitBlock(rawBlock, p); err != nil { // 提交区块

 ……

 }

 }

 ……

 }

 }

}

state模块的commitBlock()方法继续调用s.ledger.StoreBlock()→coordinator.Store-Block()方法，通过coordinator模块提交等待处理的区块数据block与隐私数据privateData-Sets，这是验证交易与提交账本流程的核心方法，如代码清单5-5所示。

代码清单5-5　coordinator模块的StoreBlock()方法保存区块和隐私数据的源码示例

gossip/privdata/coordinator.go文件

func (c *coordinator) StoreBlock(block *common.Block, privateDataSets util.PvtData-Collections) error {

 // === 检查区块数据与消息头部的合法性

 if block.Data == nil {

 return errors.New("Block data is empty")

 }

 if block.Header == nil {

 return errors.New("Block header is nil")

 }

 logger.Infof("Received block [%d]", block.Header.Number)

 logger.Debugf("Validating block [%d]", block.Header.Number)

 // === 验证区块，包括调用VSCC系统链码

 err := c.Validator.Validate(block)

 ……

 blockAndPvtData := &ledger.BlockAndPvtData{

 Block: block,

 BlockPvtData: make(map[uint64]*ledger.TxPvtData),

 }

 // == 处理隐私数据

 // 获取已有的隐私数据读写集

 ownedRWsets, err := computeOwnedRWsets(block, privateDataSets)

 ……

 // 获取隐私数据信息

 privateInfo, err := c.listMissingPrivateData(block, ownedRWsets)

 ……

 for len(privateInfo.missingKeys) > 0 && time.Now().Before(limit) {

 // 从其他Peer节点拉取缺失的隐私数据

 c.fetchFromPeers(block.Header.Number, ownedRWsets, privateInfo)

 time.Sleep(pullRetrySleepInterval)

 }

if bFetchFromPeers {

 if len(privateInfo.missingKeys) == 0 {

 logger.Debug("Fetched all missing collection private write sets from remote peers")

 } else {

 logger.Warning("Could not fetch all missing collection private write sets from remote peers. Will commit block with missing private write sets:", privateInfo.missingKeys)

 }

}

 // === 构造blockAndPvtData结构中的隐私数据

 for seqInBlock, nsRWS := range ownedRWsets.bySeqsInBlock() {

 rwsets := nsRWS.toRWSet()

 logger.Debugf("Added %d namespace private write sets for block [%d], tran [%d]", len(rwsets.NsPvtRwset), block.Header.Number, seqInBlock)

 blockAndPvtData.BlockPvtData[seqInBlock] = &ledger.TxPvtData{

 SeqInBlock: seqInBlock,

 WriteSet: rwsets,

 }

 }

 // === 构造blockAndPvtData结构中的缺失隐私数据

 for missingRWS := range privateInfo.missingKeys {

 blockAndPvtData.Missing = append(blockAndPvtData.Missing, ledger.Missing-PrivateData{

 TxId: missingRWS.txID,

 Namespace: missingRWS.namespace,

 Collection: missingRWS.collection,

 SeqInBlock: int(missingRWS.seqInBlock),

 })

 }

 // === 提交区块和隐私数据

 err = c.CommitWithPvtData(blockAndPvtData)

 ……

 // 在transient存储对象中删除指定交易集合关联的隐私数据读写集

 if len(blockAndPvtData.BlockPvtData) > 0 {

 if err := c.PurgeByTxids(privateInfo.txns); err != nil {

 logger.Error("Purging transactions", privateInfo.txns, "failed:", err)

 }

 }

 // 在transient隐私数据存储对象中清理指定高度以下的隐私数据读写集

 seq := block.Header.Number

 if seq%c.transientBlockRetention == 0 && seq > c.transientBlockRetention {

 err := c.PurgeByHeight(seq - c.transientBlockRetention)

 ……

 }

 return nil

}

coordinator.StoreBlock()方法首先检查参数的合法性，调用交易验证器的Validate()方法（5.3节），验证交易数据的合法性，并执行VSCC系统链码验证背书策略的有效性。接着，构造区块与隐私数据对象（BlockAndPvtData类型），初始化Block字段为区块数据block。对于Leader主节点接收的区块数据，其隐私数据集合privateDataSets（[]*ledger.Tx-PvtData类型）为nil。对于反熵算法同步的缺失数据信息，则同时包含区块数据block与隐私数据集合privateDataSets。如果Fabric 1.1.0启用隐私数据的实验新特性（1.2.0以后的正式版已支持），则执行如下隐私数据处理流程。

（1）计算当前节点上现存的隐私数据集合

coordinator.StoreBlock()方法调用computeOwnedRWsets()方法遍历隐私数据集合private-DataSets，只处理交易序号在区块数据block范围内的交易数据txPvtData，构造当前节点上现存的隐私数据读写集ownedRWsets（map[rwSetKey][]byte类型）。其中，键为rwSetKey类型，封装了交易ID、交易序号、隐私数据集合名称、名字空间（即链码名称）、读写集哈希值字符串等，值为对应交易上的隐私数据读写集（实际上只含有写集合）。

（2）计算本地实际缺失的隐私数据信息

coordinator.StoreBlock()方法调用listMissingPrivateData(block，ownedRWsets)方法，基于当前区块block获取符合条件的隐私数据信息privateInfo对象（privateDataInfo类型），包含本地实际缺失的隐私数据键列表，如代码清单5-6所示。

代码清单5-6　coordinator模块的listMissingPrivateData()方法源码示例

gossip/privdata/coordinator.go文件

// 查找缺失的隐私数据读写集

func (c *coordinator) listMissingPrivateData(block *common.Block, ownedRWsets map[rwSetKey][]byte) (*privateDataInfo, error) {

 // 检查区块元数据的合法性

 if block.Metadata == nil || len(block.Metadata.Metadata) <= int(common.BlockMeta-dataIndex_TRANSACTIONS_FILTER) {

 return nil, errors.New("Block.Metadata is nil or Block.Metadata lacks a Tx filter bitmap")

 }

 txsFilter := txValidationFlags(block.Metadata.Metadata[common.BlockMetadata-Index_TRANSACTIONS_FILTER])

 if len(txsFilter) != len(block.Data.Data) {

 return nil, errors.Errorf("Block data size(%d) is different from Tx filter size(%d)", len(block.Data.Data), len(txsFilter))

 }

 sources := make(map[rwSetKey][]*peer.Endorsement)

 privateRWsetsInBlock := make(map[rwSetKey]struct{})

 missing := make(rwSetKeysByTxIDs)

 data := blockData(block.Data.Data)

 bi := &transactionInspector{

 sources: sources,

 missingKeys: missing,

 ownedRWsets: ownedRWsets,

 privateRWsetsInBlock: privateRWsetsInBlock,

 coordinator: c,

 }

 // 获取交易列表，记录缺失隐私数据key到missingKeys中

 txList, err := data.forEachTxn(txsFilter, bi.inspectTransaction)

 if err != nil {

 return nil, errors.WithStack(err)

 }

 privateInfo := &privateDataInfo{

 sources: sources,

 missingKeysByTxIDs: missing,

 txns: txList,

 }

 logger.Debug("Retrieving private write sets for", len(privateInfo.missingKeys-ByTxIDs), "transactions from transient store")

 // 在transient存储对象中获取缺失的隐私数据读写集，并保存到ownedRWsets列表中

 c.fetchMissingFromTransientStore(privateInfo.missingKeysByTxIDs, ownedRWsets)

 // 从ownedRWsets列表中剔除privateRWsetsInBlock中标记为不在当前区块的读写集

 // 只过滤保留当前区块范围交易中的隐私数据

 for k := range ownedRWsets {

 if _, exists := privateRWsetsInBlock[k]; !exists {

 // privateRWsetsInBlock[k]标记当前区块中的隐私数据

 logger.Warning("Removed", k.namespace, k.collection, "hash", k.hash, "from the data passed to the ledger")

 delete(ownedRWsets, k)

 }

 }

 privateInfo.missingKeys = privateInfo.missingKeysByTxIDs.flatten()

 // 剔除所有已有的读写集

 privateInfo.missingKeys.exclude(func(key rwSetKey) bool {

 _, exists := ownedRWsets[key]

 return exists

 })

 return privateInfo, nil

}

listMissingPrivateData()方法首先检查消息的合法性，其中，区块元数据block.Meta-data.Metadata至少包含两个索引项。接着，获取该区块元数据中的交易验证码列表txsFilter（BlockMetadataIndex_TRANSACTIONS_FILTER索引项），检查txsFilter列表的长度与区块Data字段上的交易集合个数是否相同，并构造bi对象（transactionInspector类型）用于查看当前节点上的隐私数据情况等。该对象封装了现存的隐私数据集合ownedRWsets、缺失隐私数据键列表missingKeys、拥有隐私数据的Peer节点列表sources等。

接着，调用data.forEachTxn(txsFilter，bi.inspectTransaction)方法，获取当前区块block中经过Endorser背书的普通交易消息的交易ID列表txList。该方法遍历查看当前区块block中经过Endorser背书的有效交易，解析其模拟执行结果读写集txRWSet、背书信息列表ccActionPayload.Action.Endorsements等参数，提供给consumer()→bi.inspectTransaction()方法调用，以计算出缺失隐私数据的键列表及其背书节点列表。

bi.inspectTransaction()方法先遍历txRWSet中每个交易读写集，检查所包含合法隐私数据读写集及其写数据哈希值（说明存在合法的隐私数据），再获取对应隐私数据集合访问策略，传递给bi.isEligible()方法以检查当前节点是否具有权限访问该隐私数据集合，通过检查后，其背书节点必须符合访问该隐私数据集合访问策略中成员组织列表policy.MemberOrgs()的要求。构造对应的隐私数据键（rwSetKey类型），标记到区块内的隐私数据读写集bi.privateRWsetsInBlock[key]中。其中，键key是rwSetKey的结构对象，值是空结构struct{}{}。然后，在现存的隐私数据集合ownedRWsets[key]中检查与键key对应的隐私数据是否存在，如果不存在，则将缺失隐私数据的键key与拥有该隐私数据的合法背书节点分别保存在bi.missingKeys[txAndSeq]列表与bi.sources[key]列表中，其背书节点必须符合访问该隐私数据集合访问策略中成员组织列表policy.MemberOrgs()的要求。其中，txAndSeq指定了交易ID（chdr.TxId）与交易序号（seqInBlock）。

然后，基于bi.missingKeys列表、bi.sources列表、交易ID列表txList构造隐私数据信息privateInfo（privateDataInfo类型），以封装背书节点列表sources、缺失隐私数据的键列表missingKeysByTxIDs、区块交易ID列表txns等。同时，调用coordinator模块的c.fetch-MissingFromTransientStore()方法，根据缺失隐私数据的键列表privateInfo.missingKeys-ByTxIDs，从本地的transient隐私数据存储对象中获取缺失的隐私数据读写集，并添加到现存的隐私数据列表ownedRWsets中。

其中，fetchMissingFromTransientStore()方法先调用missing.FiltersByTxIDs()方法，遍历缺失隐私数据的键列表privateInfo.missingKeysByTxIDs，以构造缺失隐私数据过滤器的集合filters。其中，键是txAndSeq结构对象，值是对应的隐私数据过滤器列表（PvtNsCollFilter类型，即map[string]PvtCollFilter类型），每个过滤器（PvtCollFilter类型，即map[string]bool类型）都包含了缺失隐私数据键的名字空间与集合名称，默认初始化为true。接着，遍历过滤器集合filters中的每个过滤器filter，调用coordinator模块的c.fetchFromTransientStore()方法，基于该过滤器filter获取符合要求的本地隐私数据。具体过程是，该方法调用c.TransientStore.GetTxPvtRWSetByTxid()方法，利用transient对象从transient隐私数据库中获取指定交易ID关联的查询结果迭代器iterator（7.1.7节），调用iterator.Next()方法获取下一个可用的结果，利用filter过滤出指定名字空间与集合名称的隐私数据结果。然后，对隐私数据进行合法性检查，并构造该交易的隐私数据读写集，再添加到现存的隐私数据列表ownedRWsets中。其中，键是txAndSeq结构对象，值是缺失的隐私数据读写集col.Rwset。

最后，listMissingPrivateData()方法遍历现存的隐私数据读写集ownedRWsets，根据bi.privateRWsetsInBlock中的交易存在标记，过滤并删除掉不属于当前区块范围的隐私数据。接着，调用privateInfo.missingKeysByTxIDs.flatten()方法，将缺失隐私数据键列表转换为map[rwSetKey]struct{}类型对象。同时，将该对象设置为privateInfo.missingKeys缺失隐私数据的键列表，剔除掉ownedRWsets列表中现存隐私数据的键，最终获得当前Peer节点上实际缺失的隐私数据键列表privateInfo.missingKeys，并返回privateInfo对象到coordinator.StoreBlock()方法继续处理。

（3）从远程节点请求拉取本地缺失的隐私数据集合

coordinator.StoreBlock()方法接着检查缺失的隐私数据键列表privateInfo.missingKeys，调用fetchFromPeers()方法，利用Fetcher组件从其他Peer节点请求拉取缺失的隐私数据，并保存到本地，然后更新privateInfo.missingKeys列表（7.1.7节）。

至此，coordinator.StoreBlock()方法预处理隐私数据的流程结束。

然后，coordinator.StoreBlock()方法将继续遍历ownedRWsets列表，调用nsRWS.toRWSet()方法，将包含的隐私数据nsRWS转换为TxPvtReadWriteSet结构对象，并构造对应交易（seqInBlock）的交易隐私数据对象（TxPvtData类型），再保存到blockAndPvtData.BlockPvtData（map[uint64]*TxPvtData类型）中。接着，遍历privateInfo.missingKeys列表，构造对应的缺失隐私数据列表blockAndPvtData.Missing（[]MissingPrivateData类型，目前提交账本时可忽略）。然后，调用CommitWithPvtData(blockAndPvtData)→LedgerCommitter.CommitWithPutData()方法，通过账本提交器执行MVCC检查并提交到账本。

最后，coordinator.StoreBlock()方法清理transient对象中的临时隐私数据。该方法首先调用PurgeByTxids(privateInfo.txns)方法，删除本地transient对象（临时隐私数据库）中privateInfo.txns交易列表关联的隐私数据读写集，即不再保留已提交的交易数据。接着，检查当前区块号seq。如果seq是transientBlockRetention（默认为1000）的整数倍且大于transientBlockRetention，则调用PurgeByHeight(seq-c.transientBlockRetention)方法，删除未提交或提交不成功区块的交易隐私数据孤儿记录（orphan entries），删除指定高度以下的隐私数据，并保留当前区块高度指定配置高度c.transientBlockRetention以内区块的隐私数据读写集，以保持数据的时效性。
5.3　交易验证器

交易验证器对象（txValidator类型）实现了Validator接口的Validate(block*common.Block)方法，用于验证区块block中所有交易数据的合法性。同时，该对象还封装了vscc-ValidatorImpl结构对象（实现了vsccValidator接口类型），用于执行VSCC链码以验证背书策略的有效性。
5.3.1　验证交易数据的合法性

1.准备验证交易数据

Validate()方法首先启动goroutine创建交易数据处理循环，对区块block.Data.Data列表中保存的每个交易数据都启动1个内层的goroutine，并行执行验证交易的操作，基于区块、交易序号、交易数据、交易验证器等构造区块验证请求对象（blockValidationRequest类型），作为参数传递给validateTx()函数调用执行，以验证交易数据的合法性，并将该验证结果放入results通道返回。

注意，Validate()方法在进入内层goroutine之前，会调用交易验证器的v.support.Acquire()方法，申请获取信号量并请求占用1个线程资源，并在退出goroutine后调用v.support.Release(1)方法，释放占用的信号量资源。实际上，交易验证器是在createChain()方法中设置worker信号量为validationWorkersSemaphore。其中，Peer节点启动时会调用serve()→peer.Initialize()函数，定义validationWorkersSemaphore数量为peer.validatorPoolSize配置项或者runtime.NumCPU()方法返回的可用逻辑CPU核数。这样，Validate()方法就能充分利用多核CPU的并发资源，提高交易的验证效率。

接着，Validate()方法建立循环并阻塞等待results通道中的验证结果消息，遍历处理每笔交易的验证结果。该方法先检查当前交易是否正确（即res.err不为nil），再调用txsfltr.SetFlag()方法，设置对应的交易验证码res.validationCode到交易验证码列表txsfltr中。如果交易验证码是有效交易即TxValidationCode_VALID，则记录验证结果中的调用链码实例res.txsChaincodeName与升级链码实例res.txsUpgradedChaincode，分别更新到调用链码列表txsChaincodeNames与升级链码列表txsUpgradedChaincodes中。同时，将交易ID（res.txid）保存到交易ID列表txidArray中，上述三个列表中的键都是区块内的交易序号res.tIdx。

然后，Validator()方法检查交易验证器是否允许存在重复交易。如果允许存在重复交易，则调用markTXIdDuplicates()方法标记所有重复交易为合法交易。接着，调用invalid-TXsForUpgradeCC()方法，对于因升级链码造成执行非最新链码版本的交易为无效交易的情况，以及最新升级链码交易中调用链码的情况，都标记为无效交易（即TxValidationCode_CHAINCODE_VERSION_CONFLICT）。

最后，Validate()方法调用utils.InitBlockMetadata(block)函数，将交易验证码列表txs-fltr更新到区块元数据的BlockMetadataIndex_TRANSACTIONS_FILTER索引项中，如代码清单5-7所示。

代码清单5-7　txValidator类型的Validate()方法源码示例

core/committer/txvalidator/validator.go文件

func (v *txValidator) Validate(block *common.Block) error {

 ……

 // 创建交易验证码列表

 txsfltr := ledgerUtil.NewTxValidationFlags(len(block.Data.Data))

 // 调用的链码实例字典

 txsChaincodeNames := make(map[int]*sysccprovider.ChaincodeInstance)

 // 升级的链码实例字典

 txsUpgradedChaincodes := make(map[int]*sysccprovider.ChaincodeInstance)

 txidArray := make([]string, len(block.Data.Data)) // 交易ID列表

 results := make(chan *blockValidationResult) // 验证结果

 // === 循环启动goroutine验证区块中的所有交易

 go func() {

 for tIdx, d := range block.Data.Data {

 tIdxLcl := tIdx

 dLcl := d

 // 请求信号量，控制并发验证的线程数量

 v.support.Acquire(context.Background(), 1)

 go func() {

 defer v.support.Release(1) // 执行完毕后释放信号量

 validateTx(&blockValidationRequest{ // 验证交易

 d: dLcl,

 block: block,

 tIdx: tIdxLcl,

 v: v,

 }, results)

 }()

 }

 }()

 // ==== 处理验证交易结果

 logger.Debugf("expecting %d block validation responses", len(block.Data.Data))

 for i := 0; i < len(block.Data.Data); i++ { // 遍历并处理每笔交易的验证结果

 res := <-results // 读取验证结果

 if res.err != nil {

 ……

 } else {

 logger.Debugf("got result for idx %d, code %d", res.tIdx, res.vali-dationCode)

 txsfltr.SetFlag(res.tIdx, res.validationCode) // 设置交易验证码

 if res.validationCode == peer.TxValidationCode_VALID {

 if res.txsChaincodeName != nil {

 // 设置调用链码实例

 txsChaincodeNames[res.tIdx] = res.txsChaincodeName

 }

 if res.txsUpgradedChaincode != nil {

 // 设置升级链码实例

 txsUpgradedChaincodes[res.tIdx] = res.txsUpgradedChaincode

 }

 txidArray[res.tIdx] = res.txid // 设置交易ID

 }

 }

 }

 ……

 // 检查标记重复交易ID

 if v.support.Capabilities().ForbidDuplicateTXIdInBlock() {

 markTXIdDuplicates(txidArray, txsfltr)

 }

 // 处理因为升级链码造成标记为非法交易的情况

 txsfltr = v.invalidTXsForUpgradeCC(txsChaincodeNames, txsUpgradedChaincodes, txsfltr)

 utils.InitBlockMetadata(block) // 初始化元数据结构

 // 设置交易过滤器索引项

 block.Metadata.Metadata[common.BlockMetadataIndex_TRANSACTIONS_FILTER] = txsfltr

 return nil

}

2.执行验证交易数据

（1）概述

validateTx()函数接受区块验证请求对象（blockValidationRequest类型）作为参数，封装了区块结构block、交易序号tIdxLcl、交易数据dLcl、交易验证器等，验证区块中的指定交易，并将区块交易验证结果（blockValidationResult类型）放入results通道返回，如代码清单5-8所示。

代码清单5-8　validateTx()函数的源码示例

core/committer/txvalidator/validator.go文件

func validateTx(req *blockValidationRequest, results chan <- *blockValidationResult) {

 block := req.block // 区块

 d := req.d // 交易数据

 tIdx := req.tIdx // 交易序号

 v := req.v // 交易验证器txValidator结构

 txID := "" // 交易ID

 if d == nil { // 如果数据为nil，则直接返回交易序号

 ……

 }

 // 解析获取交易数据的Envelope结构对象

 // 若发生错误则直接退出

 if env, err := utils.GetEnvelopeFromBlock(d); err != nil {

 ……

 } else if env != nil {

 ……

 // 检查交易格式是否正确、签名是否合法、交易内容是否被篡改

 if payload, txResult = validation.ValidateTransaction(env, v.support.Capabilities()); txResult != peer.TxValidationCode_VALID {

 …… // 非法交易，直接返回

 }

 chdr, err := utils.UnmarshalChannelHeader(payload.Header.ChannelHeader)

 // 解析获取通道头部

 ……

 channel := chdr.ChannelId // 获取通道ID

 logger.Debugf("Transaction is for channel %s", channel)

 // 检查通道链结构是否存在

 if !v.chainExists(channel) {

 ……

 }

 // 分析消息通道头部类型

 if common.HeaderType(chdr.Type) == common.HeaderType_ENDORSER_TRANSACTION {

 // 普通交易消息

 // 检查重复存储交易

 txID = chdr.TxId // 获取交易ID

 // 从账本获取指定交易的ID数据，检查是否存在

 if _, err := v.support.Ledger().GetTransactionByID(txID); err == nil {

 ……

 }

 logger.Debug("Validating transaction vscc tx validate")

 // 获取交易读写集，并检查写集的合法性，调用VSCC验证交易背书策略

 err, cde := v.vscc.VSCCValidateTx(payload, d, env)

 ……

 invokeCC, upgradeCC, err := v.getTxCCInstance(payload) // 获取交易链码实例

 ……

 txsChaincodeName = invokeCC // 设置调用链码实例

 if upgradeCC != nil {

 ……

 txsUpgradedChaincode = upgradeCC // 设置升级链码实例

 }

 } else if common.HeaderType(chdr.Type) == common.HeaderType_CONFIG {

 // 通道配置交易消息，解析获取配置交易对象

 configEnvelope, err := configtx.UnmarshalConfigEnvelope(payload.Data)

 ……

 // 更新通道配置

 if err := v.support.Apply(configEnvelope); err != nil {

 ……

 }

 logger.Debugf("config transaction received for chain %s", channel)

 } else if common.HeaderType(chdr.Type) == common.HeaderType_PEER_RESOURCE_UPDATE { // Peer资源更新消息

 results <- &blockValidationResult{

 tIdx: tIdx,

 err: nil,

 }

 return

 } else {

 ……

 }

 // 序列化封装交易Envelope结构对象

 if _, err := proto.Marshal(env); err != nil {

 ……

 }

 // 交易是合法的，基于上述参数构造区块验证结果对象

 results <- &blockValidationResult{

 tIdx: tIdx,

 txsChaincodeName: txsChaincodeName,

 txsUpgradedChaincode: txsUpgradedChaincode,

 validationCode: peer.TxValidationCode_VALID,

 txid: txID,

 }

 return

 } else { // 交易数据为nil，返回交易消息错误

 ……

 }

}

validateTx()函数首先调用validation.ValidateTransaction()方法，用于验证该交易的格式正确性、签名的合法性、交易内容是否被篡改等，获取交易的消息负载payload（Payload类型）与交易验证码txResult（TxValidationCode_VALID等），并基于消息负载payload解析出合法的通道头部chdr及其通道ID（chdr.ChannelId）。接着，调用交易验证器v.chain-Exists()方法，检查该通道的链结构是否存在（实际上只返回true），分析消息通道头部的类型并进行分类处理，具体说明如下。

·HeaderType_ENDORSER_TRANSACTION类型：经过Endorser背书的普通交易消息。validateTx()函数先检查交易的唯一性，即从通道头部中获取对应的交易ID（chdr.TxId，即txID），再调用v.support.Ledger().GetTransactionByID(txID)方法，从本地通道账本中获取对应的交易数据，以检查账本中是否重复保存了相同的交易（重放攻击）。接着，通过交易验证器中的vsccValidatorImpl结构对象，调用v.vscc.VSCCValidateTx()方法，执行VSCC系统链码以验证其签名背书信息是否满足指定的交易背书策略。然后，调用v.getTxCCInstance()方法，从当前交易的消息负载中解析获取该交易调用的合法链码实例对象，包括调用链码实例txsChaincodeName与升级链码实例txsUpgradedChaincode；

·HeaderType_CONFIG类型：通道配置交易消息。validateTx()方法先从该交易的消息负载payload.Data中解析出配置交易消息（ConfigEnvelope类型），调用v.support.Apply(configEnvelope)→chainSupport.Apply()方法（core/peer/peer.go），验证该消息的合法性及修改权限后创建新的通道配置实体对象bundle，并在验证bundle对象的合法性后，创建新的资源配置实体对象rBundle（resourcesconfig.Bundle类型）。最后，通过当前通道的链支持对象，调用cs.bundleSource.Update(rBundle)方法，更新底层的资源配置实体对象为rBundle，从而完成链结构上的通道配置更新操作。同时，执行在createChain()方法中定义的回调函数（6.2.2节），更新全局变量mspMap字典中当前新链上的MSP组件管理器对象，支持验证通道新组织的节点身份；

·HeaderType_PEER_RESOURCE_UPDATE类型：Peer资源更新类型消息，直接发送区块验证结果消息（只封装交易序号tIdx）到results通道返回。Fabric 1.2与1.3已废弃该类型消息；

·未知交易类型消息：直接返回未知交易消息，设置其交易验证码为TxValidation-Code_UNKNOWN_TX_TYPE类型。

最后，validateTx()函数序列化封装通过检查的合法交易消息，基于上述参数构造区块验证结果对象（blockValidationResult类型），封装了交易序号tIdx，然后将该对象放入results通道并返回。

（2）验证交易的合法性ValidateTransaction()函数

ValidateTransaction()函数用于验证指定交易的参数合法性、交易格式的正确性、签名的合法性、交易内容是否被篡改等，如代码清单5-9所示。

代码清单5-9　ValidateTransaction()函数的源码示例

core/common/validation/msgvalidation.go文件

// 验证交易的合法性

func ValidateTransaction(e *common.Envelope, c channelconfig.ApplicationCapabilities) (*common.Payload, pb.TxValidationCode) {

 putilsLogger.Debugf("ValidateTransactionEnvelope starts for envelope %p", e)

 if e == nil { // 检查参数合法性

 ……

 }

 payload, err := utils.GetPayload(e) // 解析交易消息负载

 ……

 chdr, shdr, err := validateCommonHeader(payload.Header) // 验证消息头部格式

 ……

 err = checkSignatureFromCreator(shdr.Creator, e.Signature, e.Payload, chdr.ChannelId) // 验证消息签名的合法性

 ……

 switch common.HeaderType(chdr.Type) { // 分析消息通道头部类型

 case common.HeaderType_ENDORSER_TRANSACTION: // 普通交易消息

 err = utils.CheckProposalTxID(// 验证交易ID，防止重复提交账本

 chdr.TxId,

 shdr.Nonce,

 shdr.Creator)

 ……

 // 验证ENDORSER类型交易的交易负载

 err = validateEndorserTransaction(payload.Data, payload.Header)

 ……

 case common.HeaderType_PEER_RESOURCE_UPDATE: // Peer资源更新消息

 if !c.ResourcesTree() {

 return nil, pb.TxValidationCode_UNSUPPORTED_TX_PAYLOAD

 }

 // 剩余验证类似于common.HeaderType_CONFIG类型消息

 fallthrough

 case common.HeaderType_CONFIG: // CONFIG通道配置交易消息

 // 验证CONFIG类型交易的交易负载

 err = validateConfigTransaction(payload.Data, payload.Header)

 ……

 default:

 // 不支持的交易消息类型

 return nil, pb.TxValidationCode_UNSUPPORTED_TX_PAYLOAD

 }

}

ValidateTransaction()函数先检查合法交易（不为nil）的格式正确性。该函数从交易中解析获得其消息负载payload，再调用validateCommonHeader()函数以验证该消息头部pay-load.Header，检查其通道头部chdr与签名头部shdr的合法性，具体说明如下。

·调用validateChannelHeader(chdr)函数，检查通道头部chdr的类型是否属于ENDORSER_TRANSACTION、CONFIG_UPDATE、CONFIG或PEER_RESOURCE_UPDATE，且Epoch域必须为0；

·调用validateSignatureHeader(shdr)函数，检查签名头部shdr格式的正确性，包含的随机数Nonce与消息创建者Creator都不为nil，并且其字节数组长度都不为0。

接着，ValidateTransaction()函数调用checkSignatureFromCreator()方法，检查消息签名的合法性。该方法先调用mspmgmt.GetIdentityDeserializer(ChainID)方法，获取消息关联通道（chdr.ChannelId，即ChainID）上的MSP组件身份证书解析器mspObj。同时，调用mspObj.DeserializeIdentity()方法，反序列化解析出签名头部的消息创建者身份实体creator。然后，调用creator.Validate()→bccspmsp.validateIdentity()方法，验证该证书的有效性（7.2.1节），即是否满足证书符合X.509标准、证书不属于CRL、证书组织单元OU字段与MSP组织单元有交集等要求。如果检查通过，则调用creator.Verify()方法，根据消息及消息签名验证该消息创建者是否真实地生成了该签名，即解析出其公钥与消息摘要，通过BCCSP组件调用Verify()方法验证签名的真实性，默认采用ECDSA签名算法。

然后，ValidateTransaction()函数根据消息通道头部的类型进行分类处理，检查交易内容是否被篡改等。

①ENDORSER_TRANSACTION类型（经过Endorser签名背书的普通交易消息）

ValidateTransaction()函数调用utils.CheckProposalTxID()方法，验证交易ID的正确性，即基于签名头部的shdr.Nonce与shdr.Creator重新计算组合后的哈希值，再与当前交易ID（chdr.TxId）比较是否相同。如果两者匹配相同，则通过上述检查，然后调用validateEndorser-Transaction()方法，验证普通交易上消息负载payload的合法性。

其中，validateEndorserTransaction()方法首先调用utils.GetTransaction()函数，从消息负载的payload.Data中提取交易的Transaction结构对象tx，并循环遍历访问该对象所包含的交易动作列表tx.Actions（[]*TransactionAction类型），对于其中每个交易动作对象act，继续后面的步骤。接着，检查交易动作act的合法性（不为nil），解析出该消息的签名头部sHdr并验证该签名头部的合法性，即包含的随机数Nonce和消息签名者身份实体Creator都不为nil，并且字节数组长度都不为0。

如果通过了上述检查，则调用utils.GetChaincodeActionPayload(act.Payload)与GetProposal-ResponsePayload()方法，分别提取链码动作对象的消息负载ccActionPayload与提案响应消息的ccActionPayload.Action.ProposalResponsePayload消息负载prp。接着，构造普通交易类型的消息头部hrOrig，封装了当前交易消息的通道头部hdr.ChannelHeader（通道头部的ChannelHeader字段）与链码动作对象的消息头部act.Header（签名头部的SignatureHeader字段）。然后，利用GetProposalHash2()方法计算出指定的提案消息哈希值pHash，即对消息头部hrOrig中的通道头部ChannelHeader、签名头部SignatureHeader与链码提案消息负载ccActionPayload.ChaincodeProposalPayload重新计算哈希值（SHA256哈希算法）。

最后，validateEndorserTransaction()方法基于字节比较pHash与prp.ProposalHash是否一致，以判断该交易消息内容是否被篡改过，从而确保与Endorser节点返回的消息是相同的。

如此重复上述步骤，依次检查完毕该交易下的所有交易动作对象。如果没有任何错误，则通过交易验证，并返回消息负载payload与交易有效的TxValidationCode_VALID交易验证码。

②PEER_RESOURCE_UPDATE类型（Peer资源更新交易消息类型）

ValidateTransaction()函数调用c.ResourcesTree()→ApplicationProvider.ResourcesTree()方法，检查通道应用配置是否支持v11ResourcesTreeExperimental标志位。如果没有启用该标志位，则返回TxValidationCode_UNSUPPORTED_TX_PAYLOAD交易验证码。否则，后续验证过程与CONFIG类型消息相同。Fabric 1.2与1.3已废弃该类型消息。

③CONFIG类型（通道配置交易消息）

ValidateTransaction()函数调用validateConfigTransaction()方法，验证当前交易的消息负载数据payload.Data与消息头部payload.Header（都不为nil），通过检查后返回交易有效的TxValidationCode_VALID交易验证码。

④其他未知消息类型

ValidateTransaction()函数返回TxValidationCode_UNSUPPORTED_TX_PAYLOAD，即不支持的交易负载交易验证码。

至此，ValidateTransaction()方法验证交易流程结束。其中，PEER_RESOURCE_UPDATE类型与CONFIG类型的交易都不需要经过VSCC验证其背书策略。对于ENDORSER_TRANSACTION类型交易，需要通过vsccValidatorImpl结构对象，调用VSCCValidateTx()方法，继续执行VSCC链码验证交易背书策略。

（3）验证普通交易消息vsccValidatorImpl.VSCCValidateTx()方法

vsccValidatorImpl.VSCCValidateTx()方法检查普通交易消息的合法性，调用VSCC验证背书策略的有效性（5.3.2节），如代码清单5-10所示。

代码清单5-10　VSCCValidateTx()方法的源码示例

core/committer/txvalidator/validator.go文件

func (v *vsccValidatorImpl) VSCCValidateTx(payload *common.Payload, envBytes []byte, env *common.Envelope) (error, peer.TxValidationCode) {

 ……

 // 获取消息头部扩展项

 hdrExt, err := utils.GetChaincodeHeaderExtension(payload.Header)

 ……

 // 解析获取通道头部

 chdr, err := utils.UnmarshalChannelHeader(payload.Header.ChannelHeader)

 ……

 wrNamespace := []string{} // 写集合名字空间

 writesToLSCC := false // 设置lscc系统链码写数据标志位

 writesToNonInvokableSCC := false // 设置不可被调用的系统链码写数据标志位

 respPayload, err := utils.GetActionFromEnvelope(envBytes)

 ……

 txRWSet := &rwsetutil.TxRwSet{}

 // 获取交易结果读写集列表

 if err = txRWSet.FromProtoBytes(respPayload.Results); err != nil {

 return errors.WithMessage(err, "txRWSet.FromProtoBytes failed"), peer.TxValidationCode_BAD_RWSET

 }

 for _, ns := range txRWSet.NsRwSets { // 遍历交易结果读写集列表

 if v.txWritesToNamespace(ns) { // 检查是否存在写集合KVWrite列表

 wrNamespace = append(wrNamespace, ns.NameSpace) // 添加名字空间

 if !writesToLSCC && ns.NameSpace == "lscc" { // 检查是否存在lscc名字空间

 writesToLSCC = true // 设置lscc系统链码写数据标志位

 }

 // 检查是否存在不可被其他链码调用的系统链码

 if !writesToNonInvokableSCC && v.sccprovider.IsSysCCAndNotInvokable-CC2CC(ns.NameSpace) {

 writesToNonInvokableSCC = true // 设置不可被调用的系统链码写数据标志位

 }

 // 不可以被外部调用的系统链码

 if !writesToNonInvokableSCC && v.sccprovider.IsSysCCAndNotInvokableExternal(ns.NameSpace) {

 writesToNonInvokableSCC = true // 设置不可被调用的系统链码写数据标志位

 }

 }

 }

 // 检查ChaincodeId合法性

 if hdrExt.ChaincodeId == nil {

 return errors.New("nil ChaincodeId in header extension"), peer.TxValidation-Code_INVALID_OTHER_REASON

 }

 if respPayload.ChaincodeId == nil {

 return errors.New("nil ChaincodeId in ChaincodeAction"), peer.TxValidation-Code_INVALID_OTHER_REASON

 }

 // 获取调用链码的名称和版本

 ccID := hdrExt.ChaincodeId.Name // 名称

 ccVer := respPayload.ChaincodeId.Version // 版本

 if ccID == "" { // 检查消息头部中链码名称的合法性

 ……

 }

 if ccID != respPayload.ChaincodeId.Name { // 检查消息头部扩展项中与链码提案消息

 负载中链码的名称是否匹配

 ……

 }

 if ccVer == "" { // 检查链码提案消息负载中链码版本的合法性

 ……

 }

 if !v.sccprovider.IsSysCC(ccID) { // 用户链码

 // 验证用户链码是否更新lscc名字空间数据

 if writesToLSCC {

 return errors.Errorf("chaincode %s attempted to write to the namespace of LSCC", ccID),

 peer.TxValidationCode_ILLEGAL_WRITESET

 }

 // 验证用户链码是否更新了不可调用链码的数据

 if writesToNonInvokableSCC {

 return errors.Errorf("chaincode %s attempted to write to the name-space of a system chaincode that cannot be invoked", ccID),

 peer.TxValidationCode_ILLEGAL_WRITESET

 }

 // 根据链码背书策略验证写集合

 for _, ns := range wrNamespace {

 // 获取验证链码与vscc名称与版本以及背书验证策略

 txcc, vscc, policy, err := v.GetInfoForValidate(chdr.TxId, chdr.ChannelId, ns)

 ……

 // 检查链码名称与名字空间是否匹配，并检查链码版本是否匹配

 if ns == ccID && txcc.ChaincodeVersion != ccVer {

 ……

 return err, peer.TxValidationCode_EXPIRED_CHAINCODE

 }

 // 执行VSCC验证背书策略

 if err = v.VSCCValidateTxForCC(envBytes, chdr.TxId, chdr.ChannelId, vscc.ChaincodeName, vscc.ChaincodeVersion, policy); err != nil {

 switch err.(type) { // 错误类型

 case *commonerrors.VSCCEndorsementPolicyError:

 return err, peer.TxValidationCode_ENDORSEMENT_POLICY_FAILURE

 default:

 return err, peer.TxValidationCode_INVALID_OTHER_REASON

 }

 }

 }

 } else { // 系统链码

 // 检查链码是否为不可从外部调用的系统链码

 if v.sccprovider.IsSysCCAndNotInvokableExternal(ccID) {

 return errors.Errorf("committing an invocation of cc %s is illegal", ccID),

 peer.TxValidationCode_ILLEGAL_WRITESET

 }

 // 获取最新的链码版本，vscc和验证策略

 _, vscc, policy, err := v.GetInfoForValidate(chdr.TxId, chdr.ChannelId, ccID)

 ……

 // 执行VSCC验证背书策略

 if err = v.VSCCValidateTxForCC(envBytes, chdr.TxId, vscc.ChainID, vscc.ChaincodeName, vscc.ChaincodeVersion, policy); err != nil {

 switch err.(type) { // 错误类型

 case *commonerrors.VSCCEndorsementPolicyError:

 return err, peer.TxValidationCode_ENDORSEMENT_POLICY_FAILURE

 default:

 return err, peer.TxValidationCode_INVALID_OTHER_REASON

 }

 }

 }

 return nil, peer.TxValidationCode_VALID

}

vsccValidatorImpl.VSCCValidateTx()方法首先从交易消息负载的消息头部解析出消息头部扩展项hdrExt与通道头部chdr，并从交易消息中解析获得链码动作对象respPayload（ChaincodeAction类型），再调用txRWSet.FromProtoBytes(respPayload.Results)方法，解析获得转换后的模拟执行结果读写集txRWSet.NsRwSets（[]*NsRwSet类型）。

接着，遍历txRWSet.NsRwSets并调用txWritesToNamespace(ns)方法，检查名字空间ns下是否存在公共数据的写集合或隐私数据的写数据哈希值（需要支持隐私数据），以设置写数据标志位。如果存在写集合数据，则将该名字空间的ns.NameSpace名称添加到wrNamespace列表（名字空间通常就是链码名称）中，同时设置相关的写数据标志位，具体说明如下。

·如果链码名字空间名称是“lscc”，则设置writesToLSCC标志位为true；

·如果名字空间名称属于不可被其他链码调用的系统链码，则设置writesToNon-InvokableSCC标志位为true；

·如果名字空间名称属于不可被外部调用的系统链码，则设置writesToNonInvok-ableSCC标志位为true。

然后，检查链码名称与链码版本的合法性，包括消息头部扩展项hdrExt与链码动作respPayload中ChaincodeID结构对象包含的链码名称是否一致，以及链码名称ccID（hdrExt.ChaincodeId.Name）与链码版本ccVer（respPayload.ChaincodeId.Version）不为空字符串。如果通过了上述检查，则分为用户链码与系统链码两种情况继续验证。

（1）用户链码情况

vsccValidatorImpl.VSCCValidateTx()方法首先检查writesToLSCC标志位与writesToNonIn-vokableSCC标志位必须都是false，以确保用户链码的合法性。因为用户链码没有权限将数据写到LSCC系统链码、不可被其他链码调用的系统链码以及不可被外部调用的系统链码等名字空间的账本中。

接着，循环遍历当前交易模拟执行结果中写集合关联的名字空间集合wrNamespace。对于每个名字空间ns，调用v.GetInfoForValidate()→getCDataForCC()方法，构造对应的链码部署规范请求调用LSCC系统链码，以获取指定通道账本上该链码的链码数据对象（ChaincodeData类型），返回相关信息以用于验证交易，包括交易链码实例txcc（含链ID、链码名称、链码版本等）、VSCC链码名称及版本、链码背书策略等。

如果消息头部扩展项中的链码名称ccID与名字空间ns相同，并且本地账本中获取的链码版本txcc.ChaincodeVersion与消息解析的链码版本ccVer不相同，则说明交易调用的链码版本不是最新的。因此，返回链码过期的TxValidationCode_EXPIRED_CHAINCODE交易验证码。

最后，调用v.VSCCValidateTxForCC()方法，对交易执行VSCC系统链码以验证背书策略的有效性（5.3.2节）。

（2）系统链码情况

vsccValidatorImpl.VSCCValidateTx()方法通过交易验证器，调用v.sccprovider.IsSysCC-AndNotInvokableExternal()方法，检查当前系统链码InvokableExternal标志位，确认当前链码必须支持从外部调用。接着，调用GetInfoForValidate()方法，创建用于验证交易的信息，包括链码实例（包含链码名称、链码版本等）、VSCC链码名称（即vscc）及版本、链码背书策略policy（SignaturePolicyEnvelope类型策略，默认设置为通道上所属MSP组件中任意组织成员Member角色的签名）等。然后，调用v.VSCCValidateTxForCC()方法，对交易执行VSCC系统链码。

至此，vsccValidatorImpl.VSCCValidateTx()方法执行完毕。
5.3.2　VSCC验证交易背书策略

1.准备调用VSCC链码

VSCCValidateTxForCC()方法首先为调用VSCC系统链码准备好参数，再执行VSCC系统链码以检查当前交易的背书签名信息是否满足指定的背书策略，并检查链码执行结果错误，如代码清单5-11所示。

代码清单5-11　VSCCValidateTxForCC()方法的源码示例

core/committer/txvalidator/validator.go文件

// 调用VSCC链码验证交易

func (v *vsccValidatorImpl) VSCCValidateTxForCC(envBytes []byte, txid, chid, vsccName, vsccVer string, policy []byte) error {

 logger.Debugf("VSCCValidateTxForCC starts for envbytes %p", envBytes)

 defer logger.Debugf("VSCCValidateTxForCC completes for envbytes %p", envBytes)

 ctxt, txsim, err := v.ccprovider.GetContext(v.support.Ledger(), txid)

 // 获取交易上下文对象以及交易模拟器

 ……

 defer txsim.Done()

 args := [][]byte{[]byte(""), envBytes, policy} // 参数列表：方法名称（未使用）、

 交易消息、背书策略

 vscctxid := coreUtil.GenerateUUID() // 生成UUID作为VSCC交易ID

 cccid := v.ccprovider.GetCCContext(chid, vsccName, vsccVer, vscctxid, true, nil, nil) // 创建链码context上下文对象

 logger.Debug("Invoking VSCC txid", txid, "chaindID", chid)

 res, _, err := v.ccprovider.ExecuteChaincode(ctxt, cccid, args)

 // 执行链码调用VSCC

 …… // 检查错误并处理

 return nil

}

VSCCValidateTxForCC()方法首先调用v.ccprovider.GetContext()方法，创建指定交易的交易模拟器txsim，构造context上下文对象ctxt，并封装了交易模拟器的KV键值对。其中，键TXSimulatorKey为“txsimulatorkey”，值为交易模拟器对象txsim。接着，设置VSCC链码的调用参数列表args，包括方法名称（空字符串）、交易消息字节数组envBytes、背书策略字节数组policy等，并调用coreUtil.GenerateUUID()函数，生成唯一的UUID编号作为VSCC交易ID（vscctxid）。然后，基于上述参数调用v.ccprovider.GetCCContext()方法，创建链码上下文对象ctx（CCContext类型，包含链码规范名称），并封装到ccProviderContextImpl结构的cccid对象中进行管理。最后，基于上述参数调用v.ccprovider.ExecuteChaincode(ctxt，cccid，args)方法，请求执行VSCC链码的Invoke()方法以验证交易背书策略的有效性。

2.调用VSCC系统链码

（1）VSCC系统链码的Invoke()方法

VSCC系统链码的Invoke()方法用于验证交易背书策略，要求检查背书信息的有效性（即使用有效证书进行签名）、是否存在恰当的（满足要求的）背书数量（转换为NoutOf类型进行比较）与来自预期的背书节点（指定组织和角色）等，可以通过客户端命令行（实例化命令的-P选项）或SDK指定背书策略，如代码清单5-12所示。

代码清单5-12　VSCC系统链码的Invoke()方法源码示例

core/scc/vscc/validator_onevalidsignature.go文件

func (vscc *ValidatorOneValidSignature) Invoke(stub shim.ChaincodeStubInterface) pb.Response {

 args := stub.GetArgs() // 获取参数列表：方法名称、交易消息、

 背书策略

 if len(args) < 3 { // 检查参数的合法性

 return shim.Error("Incorrect number of arguments")

 }

 ……

 env, err := utils.GetEnvelopeFromBlock(args[1]) // 解析获取交易消息

 ……

 payl, err := utils.GetPayload(env) // 解析获取消息负载

 ……

 chdr, err := utils.UnmarshalChannelHeader(payl.Header.ChannelHeader)

 // 解析通道头部

 ……

 ac, exists := vscc.sccprovider.GetApplicationConfig(chdr.ChannelId)

 // 获取通道应用配置

 ……

 // 编译生成背书策略验证方法

 mgr := mspmgmt.GetManagerForChain(chdr.ChannelId) // 获取指定通道的MSP管理器

 pProvider := cauthdsl.NewPolicyProvider(mgr) // 创建新的策略提供者

 policy, _, err := pProvider.NewPolicy(args[2]) // 获取策略，将传入的背书策略编译成验

 证方法

 ……

 // 检查消息负载头部类型为经过背书的普通交易类型

 if common.HeaderType(chdr.Type) != common.HeaderType_ENDORSER_TRANSACTION {

 logger.Errorf("Only Endorser Transactions are supported, provided type %d", chdr.Type)

 return shim.Error(fmt.Sprintf("Only Endorser Transactions are supported, provided type %d", chdr.Type))

 }

 tx, err := utils.GetTransaction(payl.Data) // 解析消息负载数据获取交易

 ……

 for _, act := range tx.Actions { // 循环遍历交易动作（包含背书信息）

 cap, err := utils.GetChaincodeActionPayload(act.Payload) // 获取链码动作负载

 ……

 // 去掉重复的背书节点身份，构建SingedData类型的签名数据列表，包括原始数据、身份信息与签名

 signatureSet, err := vscc.deduplicateIdentity(cap)

 ……

 // 验证签名集合是否满足指定策略

 err = policy.Evaluate(signatureSet)

 if err != nil {

 logger.Warningf("Endorsement policy failure for transaction txid=%s, err: %s", chdr.GetTxId(), err.Error())

 // 通过检查签名的个数来判断是否存在重复背书签名

 if len(signatureSet) < len(cap.Action.Endorsements) {

 return shim.Error(DUPLICATED_IDENTITY_ERROR)

 }

 return shim.Error(fmt.Sprintf("VSCC error: endorsement policy failure, err: %s", err))

 }

 // 获取消息头部扩展项

 hdrExt, err := utils.GetChaincodeHeaderExtension(payl.Header)

 ……

 // 针对lscc系统链码的需要执行特殊的验证流程

 if hdrExt.ChaincodeId.Name == "lscc" {

 logger.Debugf("VSCC info: doing special validation for LSCC")

 err = vscc.ValidateLSCCInvocation(stub, chdr.ChannelId, env, cap, payl, ac.Capabilities())

 ……

 }

 }

 logger.Debugf("VSCC exists successfully")

 return shim.Success(nil)

}

VSCC系统链码的Invoke()方法首先检查参数的合法性（不小于3个参数，并且第2个与第3个参数都不为nil），依次解析获取交易消息env、交易消息负载payl、消息通道头部chdr、通道Application配置ac等参数，并调用mspmgmt.GetManagerForChain()方法，获取指定通道的MSP组件管理器mgr，用于反序列化解析指定的身份实体信息字节数组为正确类型的身份实体对象（Identity类型）。

接着，Invoke()方法调用cauthdsl.NewPolicyProvider(mgr)方法，创建新的策略提供者pProvider，封装了上述的MSP组件管理器mgr。同时，调用pProvider.NewPolicy()方法，基于背书策略参数args[2]创建策略policy，封装了策略验证方法compiled()与身份信息解析组件mgr。NewPolicy()方法解析背书策略参数为sigPolicy对象（SignaturePolicyEnvelope类型），检查其策略版本sigPolicy.Version必须为0，并调用compile(sigPolicy.Rule，sigPolicy.Identities，pr.deserializer)方法构造策略验证方法compiled()，其原型为func(signedData[]*cb.SignedData，used[]bool)bool，用于验证签名数据集合signedData是否满足指定的策略要求。

然后，Invoke()方法调用utils.GetTransaction(payl.Data)函数，从交易消息负载对象的payl.Data中解析出交易对象tx（Transaction类型），循环遍历该交易包含的交易动作tx.Actions（TransactionAction类型）。接着，调用utils.GetChaincodeActionPayload(act.Pay-load)函数，解析其链码动作消息负载cap（ChaincodeActionPayload类型），再调用vscc.deduplicateIdentity(cap)方法去掉重复的背书实体信息，并创建过滤后的签名背书实体信息集合signatureSet（[]*common.SignedData类型）。该对象封装了每个签名背书信息的被签名原始数据、签名身份实体、签名信息等。

最后，Invoke()方法调用policy.Evaluate(signatureSet)方法以验证指定背书策略的有效性。该方法先调用deduplicate(signatureSet，p.deserializer)方法（common/cauthdsl/policy.go），解析并剔除signatureSet集合中重复的签名身份实体信息。接着，执行evaluator()方法即上面编译的compiled()策略验证方法，调用SatisfiesPrincipal()方法，以检查消息中包含的签名身份实体集合，是否满足指定背书策略中MSPrincipal结构对象描述的实体类型要求。如果通过了上述背书策略的验证，则调用utils.GetChaincodeHeaderExtension(payl.Header)函数，解析提取消息头部的扩展项hdrExt。最后，检查链码名称，如果是“lscc”系统链码，则继续调用vscc.ValidateLSCCInvocation()方法，针对LSCC链码调用执行特殊的验证流程。

（2）构造策略验证方法

compile()方法可根据指定的背书策略构造对应的策略验证方法。目前，Hyperledger Fabric基于签名策略的SignaturePolicy结构对象支持两种背书策略类型，即单个角色的签名策略SignaturePolicy_SignedBy类型与多个角色的签名组合策略SignaturePolicy_NOutOf_类型。

①SignaturePolicy_NOutOf_类型（NOutOf策略）

所有的组合签名背书策略（AND、OR等类型策略）都可以转换为NOutOf类型策略，即满足m个条件中的n个就满足策略（m≥n）。该类型的背书策略遍历所有子策略，递归构造子策略验证方法compiledPolicy，将其设置到子策略验证方法集合policies中。接着，构造并返回NOutOf类型的策略验证方法，其方法原型是func(signedData[]*cb.SignedData，used[]bool)bool。

该方法首先遍历policies子策略方法集合中的每个子策略policy，用_used列表复制所有当前签名身份实体已匹配使用的标记列表used，并调用子策略验证方法policy(signedData，_used)，对指定的签名数据signedData进行验证，检验对应的签名身份实体信息是否满足子策略的背书要求。注意，此时子策略如果是SignaturePolicy_NOutOf_类型，则需要继续递归调用背书策略验证方法。否则，如果是SignaturePolicy_SignedBy类型，则调用单个角色的签名策略验证方法进行验证。但是，最底层通常是SignaturePolicy_SignedBy类型的策略对象。

如果通过了上述的背书策略验证，则将通过策略验证的子策略数量verified增加1，并使用_used列表重新设置最新的签名身份实体已匹配使用的标记列表used。这样，当不满足背书验证策略时，就能正常恢复used列表数据，即丢弃_used列表，而不会影响后面的子策略验证并且能够继续调用执行。

最后，该方法将判断通过验证的子策略数量verified是否满足背书策略要求的个数，即verified大于等于N，并返回验证结果。

代码清单5-13　compile()方法处理SignaturePolicy_NOutOf_类型签名策略的源码示例

common/cauthdsl/cauthdsl.go文件

func compile(policy *cb.SignaturePolicy, identities []*mb.MSPPrincipal, deserializer msp.IdentityDeserializer) (func([]*cb.SignedData, []bool) bool, error) {

 ……

 switch t := policy.Type.(type) { // 检查背书策略类型，背书策略可以转换为NOutOf

 类型策略

 case *cb.SignaturePolicy_NOutOf_: // NOutOf策略：需要期望的N个实体签名背书

 policies := make([]func([]*cb.SignedData, []bool) bool, len(t.NOutOf.Rules)) // 创建N个策略验证方法集合

 for i, policy := range t.NOutOf.Rules { // 遍历子策略

 compiledPolicy, err := compile(policy, identities, deserializer)

 // 对子策略递归构造策略验证方法

 ……

 policies[i] = compiledPolicy // 设置子策略验证方法

 }

 // 构造并返回策略验证方法

 return func(signedData []*cb.SignedData, used []bool) bool {

 grepKey := time.Now().UnixNano()

 cauthdslLogger.Debugf("%p gate %d evaluation starts", signedData, grepKey)

 verified := int32(0)

 _used := make([]bool, len(used))

 for _, policy := range policies { // 遍历子策略验证方法

 copy(_used, used)

 if policy(signedData, _used) { // 对指定的签名数据进行验证，查看其是

 　　否满足子策略要求

 verified++ // 若签名数据满足子策略要求，则verified增加1

 // 恢复签名身份实体集合已匹配使用的标记列表，从而防止签名数据不满足验证

 策略时可以恢复used数据

 copy(used, _used)

 }

 }

 // 检查通过验证的子策略数量是否满足策略要求

 if verified >= t.NOutOf.N { // 满足N个子策略通过规则的要求

 cauthdslLogger.Debugf("%p gate %d evaluation succeeds", signedData, grepKey)

 } else {

 cauthdslLogger.Debugf("%p gate %d evaluation fails", signedData, grepKey)

 }

 return verified >= t.NOutOf.N // 计算是否通过策略验证

 }, nil

 case *cb.SignaturePolicy_SignedBy: // SignedBy：需要期望类型的单个实体对象签名

 ……

 default:

 return nil, fmt.Errorf("Unknown type: %T:%v", t, t)

 }

}

②SignaturePolicy_SignedBy类型（单个角色的签名策略）

compile()方法检查当前策略所指定的签名者索引号SignedBy的合法性（大于等于0且小于签名身份实体总数），并从签名身份实体列表identities[t.SignedBy]（[]*MSPPrincipal类型）中获取指定索引的签名身份实体（MSPPrincipal类型）。接着构造并返回策略验证方法，其方法原型同样是func(signedData[]*cb.SignedData，used[]bool)bool。

该方法首先遍历签名数据列表signedData中的每个签名数据sd，通过当前签名身份实体已匹配使用的标记列表used进行判断，跳过那些已匹配使用（从左到右的顺序）的签名身份实体。如果通过了上述检查，则调用deserializer.DeserializeIdentity(sd.Identity)方法，根据该节点所属组织的MSP ID（即sId.Mspid）从通道MSP管理器mgr中获取对应组织MSP，默认调用deserializeIdentityInternal()方法以解析出签名身份实体identity。然后，执行identity.SatisfiesPrincipal(signedByID)→bccspmsp.SatisfiesPrincipal()方法，验证该签名身份实体信息identity是否满足指定签名策略的Principal结构对象要求。其中，signedByID是索引号SignedBy对应的签名身份实体MSPPrincipal结构对象。

如果检查发现该对象满足指定要求，则继续调用identity.Verify(sd.Data，sd.Signature)方法（msp/identities.go），验证identity签名的真实性。即利用所属MSP组织默认的哈希算法（SHA256）对原始消息数据sd.Data计算消息摘要（哈希值），并基于公钥、消息摘要、签名等调用id.msp.bccsp.Verify()方法，通过BCCSP组件验证identity签名的真实性。目前，默认支持ECDSA签名与验签算法。

如果通过了签名真实性验证，则在used[i]列表中设置签名身份实体已匹配使用的标志位为true。只要存在一个通过签名背书验证的签名数据，就返回验证通过的结果（true）。只有当所有签名数据都没有通过验证时，才返回验证未通过的结果（false）。

代码清单5-14　compile()方法处理SignaturePolicy_SignedBy类型签名策略的源码示例

common/cauthdsl/cauthdsl.go文件

func compile(policy *cb.SignaturePolicy, identities []*mb.MSPPrincipal, deserializer msp.IdentityDeserializer) (func([]*cb.SignedData, []bool) bool, error) {

 ……

 switch t := policy.Type.(type) { // 检查背书策略类型，签名策略可以转换为NOutOf

 类型策略

 case *cb.SignaturePolicy_NOutOf_: // NOutOf策略：需要期望的N个实体签名的策略规则

 ……

 // SignedBy：需要期望的单个实体签名，该实体必须匹配MSP的指定角色

 case *cb.SignaturePolicy_SignedBy:

 // 检查签名者集合索引号的合法性

 if t.SignedBy < 0 || t.SignedBy >= int32(len(identities)) {

 return nil, fmt.Errorf("identity index out of range, requested %v, but identies length is %d", t.SignedBy, len(identities))

 }

 signedByID := identities[t.SignedBy] // 获取指定的签名主体MSPPrincipal结构对象

 // 构造并返回策略验证方法

 return func(signedData []*cb.SignedData, used []bool) bool {

 cauthdslLogger.Debugf("%p signed by %d principal evaluation starts (used %v)", signedData, t.SignedBy, used)

 for i, sd := range signedData { // 遍历签名数据列表

 if used[i] { // 跳过签名身份实体集合中已匹配使用的签名主体对象

 cauthdslLogger.Debugf("%p skipping identity %d because it has already been used", signedData, i)

 continue

 }

 ……

 // 反序列化解析签名身份实体

 identity, err := deserializer.DeserializeIdentity(sd.Identity)

 ……

 // 检查签名身份实体是否满足指定的MSPPrincipal结构要求

 err = identity.SatisfiesPrincipal(signedByID)

 ……

 // 若满足背书策略要求，则验证签名的真实性

 err = identity.Verify(sd.Data, sd.Signature)

 ……

 cauthdslLogger.Debugf("%p principal evaluation succeeds for identity %d", signedData, i)

 used[i] = true // 在签名背书实体集合中设置已匹配使用的标志位

 return true

 }

 cauthdslLogger.Debugf("%p principal evaluation fails", signedData)

 return false // 验证策略失败

 }, nil

 default:

 return nil, fmt.Errorf("Unknown type: %T:%v", t, t)

 }

}

（3）验证签名身份实体满足策略要求

SatisfiesPrincipal()方法可用于检查当前消息中的签名身份实体集合，验证其是否满足指定背书策略中MSPrincipal结构对象描述的实体类型要求。其中，MSPrincipal结构对象代表MSP组件中一类具有特定身份的实体集合，包括3种类型，即MSPPrincipal_ROLE类型、MSPPrincipal_IDENTITY类型与MSPPrincipal_ORGANIZATION_UNIT类型。

①MSPPrincipal_ROLE类型

这种情况期望签名身份实体id包含指定的MSP角色类型，如MEMBER成员、ADMIN管理员、CLIENT客户端、PEER节点等，如代码清单5-15所示。

代码清单5-15　SatisfiesPrincipal()方法处理MSPPrincipal_ROLE类型要求的源码示例

msp/mspimpl.go文件

// 检测签名身份实体是否满足MSPrincipal结构对象描述的角色要求

func (msp *bccspmsp) SatisfiesPrincipal(id Identity, principal *m.MSPPrincipal) error {

 switch principal.PrincipalClassification { // 分析3种MSPPrincipal类型对象

 case m.MSPPrincipal_ROLE:

 // MSPPrincipal对象只包含MSP角色

 mspRole := &m.MSPRole{}

 err := proto.Unmarshal(principal.Principal, mspRole) // 解析MSPRole类型对象

 ……

 // 检查该签名身份实体是否属于指定的MSP对象，即MSP名称是否相同

 if mspRole.MspIdentifier != msp.name {

 return errors.Errorf("the identity is a member of a different MSP (expected %s, got %s)", mspRole.MspIdentifier, id.GetMSPIdentifier())

 }

 // 检查MSP角色类型

 switch mspRole.Role {

 case m.MSPRole_MEMBER: // MEMBER普通成员

 mspLogger.Debugf("Checking if identity satisfies MEMBER role for %s", msp.name)

 // 验证签名身份实体id是否属于MSP的合法成员

 return msp.Validate(id) // 验证身份证书的有效性

 case m.MSPRole_ADMIN: // ADMIN管理员

 mspLogger.Debugf("Checking if identity satisfies ADMIN role for %s", msp.name)

 // 检查签名身份实体id是否就是MSP管理员

 for _, admincert := range msp.admins {

 // 遍历MSP所有Admin证书与id证书进行字节对比，若匹配则说明满足角色类型

 if bytes.Equal(id.(*identity).cert.Raw, admincert.(*identity).cert.Raw) {

 return nil

 }

 }

 return errors.New("This identity is not an admin")

 case m.MSPRole_CLIENT:

 fallthrough

 case m.MSPRole_PEER:

 mspLogger.Debugf("Checking if identity satisfies role [%s] for %s", m.MSPRole_MSPRoleType_name[int32(mspRole.Role)], msp.name)

 // 验证签名身份实体id是否属于MSP的合法成员

 if err := msp.Validate(id); err != nil { // 验证身份证书的有效性

 return errors.Wrapf(err, "The identity is not valid under this MSP [%s]", msp.name)

 }

 if err := msp.hasOURole(id, mspRole.Role); err != nil {

 return errors.Wrapf(err, "The identity is not a [%s] under this MSP [%s]", m.MSPRole_MSPRoleType_name[int32(mspRole.Role)], msp.name)

 }

 return nil

 default:

 return errors.Errorf("invalid MSP role type %d", int32(mspRole.Role))

 }

 case m.MSPPrincipal_IDENTITY:

 ……

 case m.MSPPrincipal_ORGANIZATION_UNIT:

 ……

 default:

 return errors.Errorf("invalid principal type %d", int32(principal.PrincipalClassi-fication))

 }

}

protos/msp/msp_principal.pb.go

type MSPRole struct {

 MspIdentifier string // MSP标识符

 Role MSPRole_MSPRoleType // MSP角色

}

SatisfiesPrincipal()方法首先解析MSPrincipal结构对象包含的MSP角色类型mspRole，检查该对象属于指定的MSP组件对象，即MSP组件名称mspRole.MspIdentifier与签名身份实体所属MSP组件名称msp.name是否相同，检查通过后继续分析MSP角色类型，具体说明如下。

·MEMBER成员角色（MSPRole_MEMBER）：调用msp.Validate(id)方法，检查签名身份实体id是否属于同一个MSP的合法成员，并验证该签名身份实体证书的有效性，即是否满足证书符合X.509标准、证书验证链的有效性、证书不属于CRL证书撤销列表、证书组织单元OU字段与MSP组织单元有交集等要求。如果通过了证书有效性的验证，则说明该签名身份实体符合MEMBER成员角色的MSPrincipal结构对象要求；

·ADMIN管理员角色（MSPRole_ADMIN）：遍历MSP所有管理员身份证书，将其与当前签名身份实体的证书进行字节比对。如果匹配通过，则说明其满足ADMIN管理员角色的MSPrincipal结构对象要求。由于在MSP组件初始化阶段已经检查过管理员证书，因此此阶段可跳过ADMIN证书有效性的检查步骤；

·CLIENT客户端角色（MSPRole_CLIENT）：处理流程与PEER节点角色相同；

·PEER节点角色（MSPRole_PEER）：首先调用msp.Validate(id)方法，检查签名身份实体id是否属于MSP的合法成员，并验证该签名身份实体证书的有效性。如果验证通过，则调用msp.hasOURole()方法，通过比对OrganizationalUnitIdentifier域上的组织单元标识符，来判断该签名身份实体是否拥有MSP指定角色类型（CLIENT或PEER）的组织单元对象。如果通过了上述检查，则说明该签名身份实体符合CLIENT或PEER角色的MSPrincipal结构对象要求。

②MSPPrincipal_IDENTITY类型

这种情况期望签名身份实体id包含指定的身份证书。SatisfiesPrincipal()方法首先调用msp.DeserializeIdentity(principal.Principal)方法，解析获取指定MSPPrincipal结构对象的身份实体信息principalId。接着，基于字节对比签名身份实体id与principalId包含的证书，如果两个证书是相同的，则说明该身份实体id符合指定身份的MSPrincipal结构对象要求，如代码清单5-16所示。

代码清单5-16　SatisfiesPrincipal()方法处理MSPPrincipal_IDENTITY类型要求的源码示例

msp/mspimpl.go文件

func (msp *bccspmsp) SatisfiesPrincipal(id Identity, principal *m.MSPPrincipal) error {

 switch principal.PrincipalClassification { // 分析3种MSPPrincipal类型对象

 case m.MSPPrincipal_ROLE:

 ……

 case m.MSPPrincipal_IDENTITY:

 // 解析指定MSPPrincipal结构对象的身份实体信息，并比较证书是否匹配

 principalId, err := msp.DeserializeIdentity(principal.Principal)

 ……

 // 如果证书匹配，则继续验证该身份实体

 if bytes.Equal(id.(*identity).cert.Raw, principalId.(*identity).cert.Raw) {

 return principalId.Validate()

 }

 return errors.New("The identities do not match")

 case m.MSPPrincipal_ORGANIZATION_UNIT:

 ……

 default:

 return errors.Errorf("invalid principal type %d", int32(principal.Principal-Classification))

 }

}

③MSPPrincipal_ORGANIZATION_UNIT类型

这种类型的情况期望签名身份实体id包含MSPPrincipal结构中的组织单元对象，如代码清单5-17所示。

代码清单5-17　SatisfiesPrincipal()方法处理MSPPrincipal_ORGANIZATION_UNIT类型要求的源码示例

msp/mspimpl.go文件

func (msp *bccspmsp) SatisfiesPrincipal(id Identity, principal *m.MSPPrincipal) error {

 switch principal.PrincipalClassification {

 case m.MSPPrincipal_ROLE:

 ……

 case m.MSPPrincipal_IDENTITY:

 ……

 case m.MSPPrincipal_ORGANIZATION_UNIT: // MSPPrincipal结构对象包含的组织单元

 OU := &m.OrganizationUnit{}

 err := proto.Unmarshal(principal.Principal, OU) // 解析Principal结构对象包

 含的组织单元

 ……

 // 检查是否属于指定的MSP，即检查MSP名称是否相同

 if OU.MspIdentifier != msp.name {

 return errors.Errorf("the identity is a member of a different MSP (expected %s, got %s)", OU.MspIdentifier, id.GetMSPIdentifier())

 }

 // 检验身份实体id是否属于指定MSP的合法成员

 err = msp.Validate(id) // 验证证书的有效性

 ……

 // 检查身份实体id是否包含指定MSPPrincipal对象包含的组织单元OU

 for _, ou := range id.GetOrganizationalUnits() {

 if ou.OrganizationalUnitIdentifier == OU.OrganizationalUnitIdentifier &&

 // 比较组织单元标识符

 bytes.Equal(ou.CertifiersIdentifier, OU.CertifiersIdentifier) {

 // 比较证书链标识符

 return nil // 通过验证

 }

 }

 return errors.New("The identities do not match") // 未匹配报错

 default:

 return errors.Errorf("invalid principal type %d", int32(principal.Principal-Classification))

 }

}

SatisfiesPrincipal()方法首先解析指定MSPPrincipal结构对象包含的组织单元对象OU到OrganizationUnit结构对象中，检查OU对象是否属于指定MSP组件，即检查MSP组件名称OU.MspIdentifier与msp.name是否相同。接着，SatisfiesPrincipal()方法调用msp.Validate(id)方法，检查签名身份实体id是否属于MSP的合法成员，并验证该签名身份实体证书的有效性。如果通过了证书有效性的验证，则SatisfiesPrincipal()方法继续检查签名身份实体id是否包含指定MSPPrincipal对象的组织单元OU，即先遍历签名身份实体id的组织单元id.GetOrganizationalUnits()，通过字节比较该组织单元的标识符Organizational-UnitIdentifier与证书标识符CertifiersIdentifier是否一致。如果匹配到相同的组织单元，则表示通过了验证，说明签名身份实体id包含了MSPPrincipal结构中的组织单元对象。

（4）验证LSCC系统链码调用

①解析并检查参数的合法性

ValidateLSCCInvocation()方法首先解析获取链码提案的消息负载cpp与链码调用规范对象cis，检查cis中包含的链码描述规范对象、输入Input和参数列表Input.Args的合法性（都不为nil），并基于参数列表Input.Args解析出LSCC链码需要处理的命令名称lsccFunc及其参数列表lsccArgs，如代码清单5-18所示。

代码清单5-18　ValidateLSCCInvocation()方法中解析并检查参数格式的源码示例

core/scc/vscc/validator_onevalidsignature.go文件

// 验证LSCC链码调用

func (vscc *ValidatorOneValidSignature) ValidateLSCCInvocation(

 stub shim.ChaincodeStubInterface,

 chid string,

 env *common.Envelope,

 cap *pb.ChaincodeActionPayload,

 payl *common.Payload,

 ac channelconfig.ApplicationCapabilities,

) error {

 // 获取链码提案的消息负载

 cpp, err := utils.GetChaincodeProposalPayload(cap.ChaincodeProposalPayload)

 ……

 cis := &pb.ChaincodeInvocationSpec{}

 err = proto.Unmarshal(cpp.Input, cis) // 解析链码调用规范

 ……

 // 检查合法性

 if cis.ChaincodeSpec == nil ||

 cis.ChaincodeSpec.Input == nil ||

 cis.ChaincodeSpec.Input.Args == nil {

 logger.Errorf("VSCC error: committing invalid vscc invocation")

 return fmt.Errorf("VSCC error: committing invalid vscc invocation")

 }

 // 设置LSCC包含命令名称和参数列表

 lsccFunc := string(cis.ChaincodeSpec.Input.Args[0])

 lsccArgs := cis.ChaincodeSpec.Input.Args[1:]

 logger.Debugf("VSCC info: ValidateLSCCInvocation acting on %s %#v", lsccFunc, lsccArgs)

 ……

}

接着，ValidateLSCCInvocation()方法检查UPGRADE升级与DEPLOY部署（实例化）链码命令参数，以及lscc名字空间读写集的合法性，如代码清单5-19所示。

代码清单5-19　ValidateLSCCInvocation()方法中验证链码命令参数的源码示例

core/scc/vscc/validator_onevalidsignature.go文件

func (vscc *ValidatorOneValidSignature) ValidateLSCCInvocation(

 ……

) error {

 ……

 switch lsccFunc { // 命令名称

 case lscc.UPGRADE, lscc.DEPLOY: // LSCC链码更新或实例化（部署）链码操作

 // === 检查参数的合法性

 logger.Debugf("VSCC info: validating invocation of lscc function %s on arguments %#v", lsccFunc, lsccArgs)

 // 检查LSCC参数必须至少是2个参数

 if len(lsccArgs) < 2 {

 return fmt.Errorf("Wrong number of arguments for invocation lscc(%s): expected at least 2, received %d", lsccFunc, len(lsccArgs))

 }

 // 不支持通道隐私数据，参数大于5个

 if (!ac.PrivateChannelData() && len(lsccArgs) > 5) ||

 // 支持通道隐私数据，参数大于6个

 (ac.PrivateChannelData() && len(lsccArgs) > 6) {

 return fmt.Errorf("Wrong number of arguments for invocation lscc(%s): received %d", lsccFunc, len(lsccArgs))

 }

 // 解析获取链码部署规范对象

 cdsArgs, err := utils.GetChaincodeDeploymentSpec(lsccArgs[1])

 ……

 // 检查链码参数的合法性

 if cdsArgs == nil || cdsArgs.ChaincodeSpec == nil || cdsArgs.Chain-codeSpec.ChaincodeId == nil ||

 cap.Action == nil || cap.Action.ProposalResponsePayload == nil {

 return fmt.Errorf("VSCC error: invocation of lscc(%s) does not have appropriate arguments", lsccFunc)

 }

 // === 解析交易读写集合

 pRespPayload, err := utils.GetProposalResponsePayload(cap.Action.Proposal-ResponsePayload) // 获取提案响应负载

 ……

 if pRespPayload.Extension == nil { // 扩展项

 return fmt.Errorf("nil pRespPayload.Extension")

 }

 // 获取链码动作

 respPayload, err := utils.GetChaincodeAction(pRespPayload.Extension)

 ……

 txRWSet := &rwsetutil.TxRwSet{}

 // 构造解析交易读写集

 if err = txRWSet.FromProtoBytes(respPayload.Results); err != nil {

 return fmt.Errorf("txRWSet.FromProtoBytes error %s", err)

 }

 // === 获取调用LSCC链码结果的读写集

 var lsccrwset *kvrwset.KVRWSet

 for _, ns := range txRWSet.NsRwSets {

 logger.Debugf("Namespace %s", ns.NameSpace)

 if ns.NameSpace == "lscc" { // 匹配lscc名字空间

 lsccrwset = ns.KvRwSet // 获取其读写集

 break

 }

 }

 // 构造LSCC链码从账本中查询已实例化的链码数据记录

 cdLedger, ccExistsOnLedger, err := vscc.getInstantiatedCC(chid, cdsArgs.ChaincodeSpec.ChaincodeId.Name)

 ……

 // === 验证读写集

 // 检查lscc读写集的合法性

 if lsccrwset == nil {

 return errors.New("No read write set for lscc was found")

 }

 // LSCC在deploy/upgrade上必须存在至少一次写状态记录

 if len(lsccrwset.Writes) < 1 {

 return errors.New("LSCC must issue at least one single putState upon deploy/upgrade")

 }

 // 键名称必须是链码名称

 if lsccrwset.Writes[0].Key != cdsArgs.ChaincodeSpec.ChaincodeId.Name {

 return fmt.Errorf("Expected key %s, found %s", cdsArgs.ChaincodeSpec.ChaincodeId.Name, lsccrwset.Writes[0].Key)

 }

 // 值必须是ChaincodeData结构的链码数据对象

 cdRWSet := &ccprovider.ChaincodeData{}

 // 构造并解析ChaincodeData结构对象

 err = proto.Unmarshal(lsccrwset.Writes[0].Value, cdRWSet)

 ……

 // 检查链码名称必须一致

 if cdRWSet.Name != cdsArgs.ChaincodeSpec.ChaincodeId.Name {

 return fmt.Errorf("Expected cc name %s, found %s", cdsArgs.Chaincode-Spec.ChaincodeId.Name, cdRWSet.Name)

 }

 // 检查链码版本必须一致

 if cdRWSet.Version != cdsArgs.ChaincodeSpec.ChaincodeId.Version {

 return fmt.Errorf("Expected cc version %s, found %s", cdsArgs.Chain-codeSpec.ChaincodeId.Version, cdRWSet.Version)

 }

 // 检查数据只能写入lscc和部署或升级的链码名字空间

 for _, ns := range txRWSet.NsRwSets { // 遍历名字空间的读写集合

 if ns.NameSpace != "lscc" && ns.NameSpace != cdRWSet.Name && len(ns.KvRwSet.Writes) > 0 {

 return fmt.Errorf("LSCC invocation is attempting to write to namespace %s", ns.NameSpace)

 }

 }

 logger.Debugf("Validating %s for cc %s version %s", lsccFunc, cdRWSet.Name, cdRWSet.Version)

 ……

 }

}

ValidateLSCCInvocation()方法检查命令参数的合法性，具体如下。

·检查LSCC系统链码参数必须至少是2个参数；

·调用ac.PrivateChannelData()方法以检查是否支持隐私通道数据。如果不支持隐私通道数据，则要求参数大于5个。否则，要求参数大于6个；

·调用utils.GetChaincodeDeploymentSpec()方法，从参数lsccArgs[1]解析出链码部署规范对象cdsArgs，并检查该参数的合法性（不为nil）；

·调用utils.GetProposalResponsePayload()方法，从链码动作对象中解析出提案响应消息负载对象pRespPayload，并检查其头部扩展项参数的合法性（不为nil）。

接着，ValidateLSCCInvocation()方法调用utils.GetChaincodeAction()函数，从pResp-Payload.Extension扩展项中解析出链码动作对象（ChaincodeAction类型）。然后，从该对象的Results字段中解析出交易模拟执行结果的读写集txRWSet，并遍历txRWSet.NsRwSets以获取账本lscc命令空间中交易的公共数据（不是隐私数据哈希值）读写集lsccrwset。最后，调用vscc.getInstantiatedCC()方法，从账本lscc名字空间中查询链码部署规范的cdsArgs参数所指定的已实例化链码数据对象cdLedger（ChaincodeData类型）。

然后，ValidateLSCCInvocation()方法验证交易结果中lscc名字空间读写集lsccrwset的合法性，具体如下。

·检查lsccrwset的合法性（不为nil）；

·检查lsccrwset.Writes至少包含1个数据，确保LSCC系统链码在DEPLOY或UPGRADE命令执行过程中必须存在至少一次写状态记录，即写入链码数据对象，如果支持隐私数据，则还需要保存链码隐私数据集合配置信息等；

·检查LSCC链码交易写入状态数据的键名称lsccrwset.Writes[0].Key，必须是链码部署规范指定的链码名称cdsArgs.ChaincodeSpec.ChaincodeId.Name；

·检查LSCC链码交易写入状态数据的值lsccrwset.Writes[0].Value，必须是Chain-codeData类型的链码数据对象，并检查其类型解析是否成功；

·检查cdRWSet与cdsArgs指定的链码名称与链码版本是否一致；

·检查交易模拟执行结果的数据，只能写入DEPLOY部署或UPGRADE升级命令操作的链码名字空间（包括“lscc”），如果其他不相关的名字空间中存在写状态记录，则是不合法的。

②验证DEPLOY命令的读写集与实例化策略

ValidateLSCCInvocation()方法继续验证DEPLOY命令的交易模拟执行结果读写集，如代码清单5-20所示。

代码清单5-20　ValidateLSCCInvocation()方法中验证DEPLOY命令读写集与实例化策略的源码示例

core/scc/vscc/validator_onevalidsignature.go文件

func (vscc *ValidatorOneValidSignature) ValidateLSCCInvocation(

 ……

) error {

 ……

 switch lsccFunc { // 命令名称

 ……

 switch lsccFunc {

 case lscc.DEPLOY: // 部署（实例化）链码

 if ac.PrivateChannelData() { // 检查是否启用隐私数据

 // 验证部署读写集与隐私数据集合

 err = vscc.validateDeployRWSetAndCollection(lsccrwset, cdRWSet, lscc-Args, chid, cdsArgs.ChaincodeSpec.ChaincodeId.Name)

 ……

 } else {

 // 不支持隐私数据时，lscc在deploy操作中只能有一次账本写操作

 if len(lsccrwset.Writes) != 1 {

 return errors.New("LSCC can only issue a single putState upon deploy/upgrade")

 }

 }

 pol := cdRWSet.InstantiationPolicy // 获取实例化策略

 ……

 err = vscc.checkInstantiationPolicy(chid, env, pol, payl)

 // 检查是否满足实例化策略

 ……

 if ccExistsOnLedger { // 链码已经实例化，若还执行实例化链码，则报错

 return fmt.Errorf("Chaincode %s is already instantiated", cdsArgs.ChaincodeSpec.ChaincodeId.Name)

 }

 case lscc.UPGRADE: // lscc升级链码

 // 验证读写集

 // 目前upgrade只能有一次账本写操作，不支持隐私数据配置信息升级（1.2.0支持）

 if len(lsccrwset.Writes) != 1 {

 return errors.New("LSCC can only issue one putState upon upgrade")

 }

 if !ccExistsOnLedger { // 如果没有实例化就升级链码，则报错

 return fmt.Errorf("Upgrading non-existent chaincode %s", cdsArgs.ChaincodeSpec.ChaincodeId.Name)

 }

 pol := cdLedger.InstantiationPolicy // 获取账本中链码数据保存的实例化数据

 ……

 // 检查交易消息是否满足实例化策略

 err = vscc.checkInstantiationPolicy(chid, env, pol, payl)

 ……

 // 检查链码数据中的链码版本与升级链码版本是否一致

 if cdLedger.Version == cdsArgs.ChaincodeSpec.ChaincodeId.Version {

 return fmt.Errorf("Existing version of the cc on the ledger (%s) should be different from the upgraded one", cdsArgs.ChaincodeSpec.ChaincodeId.Version)

 }

 // 检查读写集中的实例化策略

 if ac.V1_1Validation() {

 polNew := cdRWSet.InstantiationPolicy

 ……

 if !bytes.Equal(polNew, pol) { // 如果策略相同，则再次检查实例化策略

 err = vscc.checkInstantiationPolicy(chid, env, polNew, payl)

 ……

 }

 }

 }

 }

 return nil

 default:

 return fmt.Errorf("VSCC error: committing an invocation of function %s of lscc is invalid", lsccFunc)

 }

}

ValidateLSCCInvocation()方法首先调用ac.PrivateChannelData()方法，如果不支持隐私数据，则LSCC链码公共数据读写集的写集合数量len(lsccrwset.Writes)必须只有1个，即只保存链码数据对象，并且不需要保存链码隐私数据集合配置数据。否则，若启用隐私数据，则调用vscc.validateDeployRWSetAndCollection()方法，验证读写集与隐私数据集合，具体如下。

·检查LSCC链码执行结果lsccrwset.Writes写集合中的写数据个数必须是1个（链码数据对象）或2个（链码数据对象与隐私数据集合配置数据），且前面的步骤需确保该参数必须大于0。

·检查链码参数个数lsccArgs，如果大于5个，则将参数lsccArgs[5]设置为隐私数据集合配置参数collectionsConfigArgs。

·检查lsccrwset.Writes写状态个数，如果是2个，则说明存在通道隐私数据。那么，首先调用privdata.BuildCollectionKVSKey(cdRWSet.Name)方法，构造隐私数据集合配置数据的Key键，即cdRWSet.Name+"~collection"。接着，将其与链码执行结果中第2个写数据的Key键lsccrwset.Writes[1].Key进行比较，验证该隐私数据集合对象是否正确。如果通过了上述检查，则获取lsccrwset.Writes[1].Value并作为隐私数据集合配置账本对象collectionsConfigLedger。

·检查比较collectionsConfigLedger与collectionsConfigArgs是否匹配。

·检查隐私数据集合配置数据的合法性。首先调用vscc.collectionStore.RetrieveCollec-tionConfigPackage()方法，获取lscc名字空间中指定通道账本中链码名称（名字空间）的隐私数据集合配置对象cb，解析为CollectionConfigPackage结构的链码配置包对象，检查该解析过程中是否出现错误。

·同时，解析collectionsConfigArgs参数为CollectionConfigPackage结构的链码配置包，检查该解析过程中是否出现错误。

接着，ValidateLSCCInvocation()方法调用vscc.checkInstantiationPolicy()方法，验证指定签名消息是否满足实例化策略cdRWSet.InstantiationPolicy。该方法先获取指定通道上的MSP组件管理器mgr及其策略提供者npp，根据实例化策略调用npp.NewPolicy()方法，编译生成实例化策略验证方法instPol。同时，解析获取签名消息头部shdr并构造签名数据sd，包括原始消息负载env.Payload、消息创建者身份实体shdr.Creator、消息签名env.Signature等。然后，调用instPol.Evaluate(sd)方法，验证该签名数据sd是否满足指定的实例化策略。

如果通过了实例化策略的验证，则ValidateLSCCInvocation()方法将继续检查该链码是否已经完成了实例化，即检查读取链码数据对象返回的存在标志位ccExistsOnLedger是否为true。如果该链码确实已经实例化，同时当前正在调用deploy命令，说明对同一个链码重复执行部署（实例化）操作，则报错返回。

③验证UPGRADE命令的结果读写集与实例化策略

ValidateLSCCInvocation()方法首先检查LSCC链码交易结果lsccrwset.Writes写状态的个数必须为1个，且链码必须实例化成功后才能调用UPGRADE命令（ccExistsOnLedger是true）。接着，获取账本保存的链码实例化策略cdLedger.InstantiationPolicy，调用vscc.checkInstantiationPolicy()方法，验证签名消息是否满足该实例化策略，并检查账本记录的链码版本cdLedger.Version与升级链码参数的cdsArgs.ChaincodeSpec.ChaincodeId.Version链码版本是否一致。然后，调用ac.V1_1Validation()方法，检查是否启用V1.1版本的验证流程。如果启用了该流程，则需要获取并验证交易结果读写集中记录的链码实例化策略cdRWSet.InstantiationPolicy。同时，检查上述两个实例化策略cdLedger.InstantiationPolicy与cdRWSet.InstantiationPolicy是否一致。如果两者不相同，则调用vscc.checkInstantiationPolicy()方法，需要重新验证交易结果读写集中记录的实例化策略cdRWSet.InstantiationPolicy。

另外，Fabric 1.2以后将VSCC系统链码封装成插件，在Peer节点启动时读取core.yaml中handlers.validators.vscc配置项参数（默认为DefaultValidation()方法），并调用peer.Initialize()→createChain()→NewTxValidator()→NewPluginValidator()方法，构造Validator插件并注册到交易验证器TxValidator.Vscc的pluginValidator字段上。这样，交易验证器执行VSCCValidateTxForCC()→v.pluginValidator.ValidateWithPlugin()→plugin.Validate()方法，利用handlers.validators.vscc配置项方法获取插件实例工厂对象，并执行New()方法构造对应的插件实例（默认为DefaultValidation类型），然后分别调用Init()方法执行初始化和Validate()方法执行交易验证流程。

同时，Fabric 1.3还支持key级别的背书策略，默认采用DefaultValidation类型的交易验证插件，并最终调用vscc.stateBasedValidator.Validate()→KeyLevelValidator.Validate()方法，对状态数据（包括公共数据与隐私数据哈希值）及其元数据的写集合依次执行policyChecker.checkSBAndCCEP()方法，获取其对应key的背书策略并进行验证，如果不存在key级别的背书策略（即状态元数据中不存在VALIDATION_PARAMETER键值对），则默认验证当前链码的背书策略。最后，调用policyChecker.checkCCEPIfNoEPChecked()方法以验证当前交易提案的背书信息是否满足链码的背书策略。如果通过了上述验证以及MVCC等检查，则交易管理器调用PubAndHashUpdates.ApplyWriteSet()方法时，会将状态数据及其元数据、版本等封装成VersionedValue结构对象，再添加到数据更新批量操作中，并更新到状态数据库。
5.4　账本提交器

账本提交器的LedgerCommitter.CommitWithPvtData()方法负责执行具体的账本提交工作。该方法首先调用LedgerCommitter对象的lc.preCommit(blockAndPvtData.Block)方法，预处理待提交的区块数据，对于配置区块执行自定义lc.eventer(block)回调函数（定义在core/peer/peer.go中的createChain()函数中），即从当前区块中解析出链ID，再调用SetCurrConfigBlock()函数，从本地链结构字典中获取关联的链结构chains.list[cid]并更新其最新的配置区块。接着，调用lc.PeerLedger.CommitWithPvtData(blockAndPvtData)→kvLedger.CommitWithPvtData()方法提交数据到账本中，这是账本提交器的核心工作方法。当成功提交账本后，调用lc.postCommit(blockAndPvtData.Block)方法，基于该区块创建区块事件与过滤区块事件，并执行producer.Send()方法将两个事件发送到事件服务器，通知订阅客户端有新区块到达，如图5-1所示。

 [image:]

图5-1　区块与隐私数据BlockAandPvtData类型示意图

kvLedger.CommitWithPvtData()方法对交易继续执行MVCC检查，判断读数据的有效性，以标记交易的有效性，再提交更新账本，分为验证与准备数据、提交账本数据两个步骤。

（1）验证与准备数据

kvLedger.CommitWithPvtData()方法调用l.txtmgmt.ValidateAndPrepare(pvtdataAndBlock，true)→LockBasedTxMgr.ValidateAndPrepare()方法，利用交易管理器上的验证器（DefaultImpl类型）验证并准备区块与隐私数据对象pvtdataAndBlock（ledger.BlockAndPvtData类型），对交易结果的读写集执行MVCC检查（实际上只检查读数据的有效性），验证并标记读数据版本的有效性，获取经过验证的数据更新批量操作对象batch（UpdateBatch类型，实际上只更新写数据，包含写入操作与删除操作）。

LockBasedTxMgr.ValidateAndPrepare()方法首先调用txmgr.validator.ValidateAndPrepare-Batch()→DefaultImpl.ValidateAndPrepareBatch()方法，即利用交易管理器的验证器执行上述操作。DefaultImpl.ValidateAndPrepareBatch()方法先调用preprocessProtoBlock()方法，将区块对象（common.Block类型）转换为内部区块结构internalBlock（valinternal.Block类型），如图5-2所示。该对象封装了区块号与有效交易列表，只保留经过背书的普通交易模拟执行结果的读写集与非背书交易的公共数据读写集。

接着，DefaultImpl.ValidateAndPrepareBatch()方法调用impl.InternalValidator.Validate-AndPrepareBatch()方法，利用验证器DefaultImpl封装的内部交易管理器（Validator类型），基于本地状态数据库对上述构造的内部区块对象internalBlock所包含的交易执行MVCC检查，验证并标记交易结果读集合的有效性。同时，构造交易的公共数据写集合与隐私数据哈希值写集合，并添加到更新批量操作集合pubAndHashUpdates（PubAndHash-Updates类型）。最后，调用validateAndPreparePvtBatch()方法过滤掉所有的无效交易，将有效交易的隐私数据写集合添加到隐私数据更新批量操作集合pvtUpdates（PvtUpdateBatch类型）。

 [image:]

图5-2　valinternal.Block内部区块类型示意图

然后，DefaultImpl.ValidateAndPrepareBatch()方法调用postprocessProtoBlock()方法，基于已验证的内部区块internalBlock对象，更新原始的区块对象（common.Block类型）元数据BlockMetadataIndex_TRANSACTIONS_FILTER索引项，即更新了交易验证码列表，已经标记了当前区块中的全部有效交易。

最后，DefaultImpl.ValidateAndPrepareBatch()方法基于公有数据更新批量操作pubAnd-HashUpdates与隐私数据明文更新批量操作pvtUpdates，创建当前交易对应的数据更新批量操作对象（UpdateBatch类型），其包含交易中的公共数据更新批量操作、隐私数据哈希值更新批量操作与隐私数据更新批量操作。

LockBasedTxMgr.ValidateAndPrepare()方法接着更新自身交易管理器txmgr的当前区块currentBlock为已验证交易有效性的区块对象（common.Block类型），同时更新txmgr.batch为当前数据更新批量操作batch，然后调用invokeNamespaceListeners(batch)方法，请求执行名字空间监听器。目前，Peer节点在启动时注册了lscc名字空间状态监听器listener（KVLedgerLSCCStateListener类型）。因此，对于lscc名字空间的数据更新批量操作，首先构造更新批量操作中的公共数据写集合，调用listener.HandleStateUpdates()→KVLedgerLSCCStateListener.HandleStateUpdates()方法，创建链码定义对象列表（Chain-codeDefinition类型，包含链码数据对象ChaincodeData结构解析获取的链码名称、链码版本、链码哈希值ID）。实际上，HandleStateUpdates()方法会过滤掉其中的隐私数据集合配置数据对象与删除操作数据对象，只获取链码实例化时保存的链码数据对象，并构造对应的链码定义对象列表chaincodeDefs（[]*ChaincodeDefinition类型）。最后，调用GetMgr().HandleChaincodeDeploy()方法，先将chaincodeDefs列表更新到指定通道上最新部署链码字典latestChaincodeDeploys上，遍历该列表中的每个链码定义对象，跳过没有安装的链码，然后执行m.invokeHandlers()→listener.HandleChaincodeDeploy方法，基于链码定义对象获取对应的CouchDB状态数据库句柄，再根据路径过滤器dbArtifactsDirFilter（"META-INF/statedb/couchdb/indexes"）过滤出CouchDB数据库索引文件集合，遍历所有索引文件调用db.CreateIndex()方法，根据索引定义规范建立对应的索引信息，从而将有效交易所关联的索引信息更新到对应的CouchDB状态数据库中。

（2）提交账本数据

如代码清单5-21所示，kvLedger.CommitWithPvtData()方法首先调用当前节点kvLedger账本对象的l.blockStore.CommitWithPvtData(pvtdataAndBlock)方法，负责提交区块和隐私数据对象pvtdataAndBlock到账本中，包括区块文件与隐私数据库，并更新区块索引数据库。接着，通过当前节点kvLedger账本对象调用l.txtmgmt.Commit()方法，提交区块交易更新批量操作txmgr.batch到状态数据库。最后，调用当前节点kvLedger账本对象l.historyDB.Commit(block)方法，更新区块数据block到历史数据库。

代码清单5-21　CommitWithPvtData()方法提交区块与隐私数据到账本的源码示例

core/ledger/kvledger/kv_ledger.go文件

func (l *kvLedger) CommitWithPvtData(pvtdataAndBlock *ledger.BlockAndPvtData) error {

 var err error

 block := pvtdataAndBlock.Block // 获取区块对象

 blockNo := pvtdataAndBlock.Block.Header.Number // 获取区块号

 logger.Debugf("Channel [%s]: Validating state for block [%d]", l.ledgerID, blockNo)

 // 验证并准备区块和隐私数据对象

 err = l.txtmgmt.ValidateAndPrepare(pvtdataAndBlock, true)

 ……

 logger.Debugf("Channel [%s]: Committing block [%d] to storage", l.ledgerID, blockNo)

 l.blockAPIsRWLock.Lock()

 defer l.blockAPIsRWLock.Unlock()

 // 提交区块和隐私数据到账本中

 if err = l.blockStore.CommitWithPvtData(pvtdataAndBlock); err != nil {

 return err

 }

 logger.Infof("Channel [%s]: Committed block [%d] with %d transaction(s)", l.ledgerID, block.Header.Number, len(block.Data.Data))

 logger.Debugf("Channel [%s]: Committing block [%d] transactions to state data-base", l.ledgerID, blockNo)

 if err = l.txtmgmt.Commit(); err != nil { // 更新有效交易数据到状态数据库

 panic(fmt.Errorf('Error during commit to txmgr:%s', err))

 }

 if ledgerconfig.IsHistoryDBEnabled() {

 logger.Debugf("Channel [%s]: Committing block [%d] transactions to history database", l.ledgerID, blockNo)

 if err := l.historyDB.Commit(block); err != nil { // 更新区块数据到历史数据库

 panic(fmt.Errorf('Error during commit to history db:%s', err))

 }

 }

 return nil

}

5.4.1　验证与准备数据

1.预处理构造内部区块

（1）preprocessProtoBlock()方法

preprocessProtoBlock()方法解析common.Block区块对象，将其转换为valinternal.Block结构的内部区块对象，如代码清单5-22所示。

代码清单5-22　preprocessProtoBlock()方法的源码示例

core/ledger/kvledger/txmgmt/validator/valimpl/helper.go文件

func preprocessProtoBlock(txmgr txmgr.TxMgr, block *common.Block, doMVCCVali-dation bool) (*valinternal.Block, error) {

 b := &valinternal.Block{Num: block.Header.Number}

 // === 获取交易验证码列表

 txsFilter := util.TxValidationFlags(block.Metadata.Metadata[common.BlockMetadata-Index_TRANSACTIONS_FILTER])

 if len(txsFilter) == 0 { // 检查交易验证码列表长度，若不存在，则创建新的交易验证码列表

 txsFilter = util.NewTxValidationFlags(len(block.Data.Data))

 block.Metadata.Metadata[common.BlockMetadataIndex_TRANSACTIONS_FILTER] = txsFilter

 }

 for txIndex, envBytes := range block.Data.Data { // 遍历区块含有的所有交易

 var env *common.Envelope

 var chdr *common.ChannelHeader

 var payload *common.Payload

 var err error

 // 解析获取交易消息对象Envelope结构

 if env, err = utils.GetEnvelopeFromBlock(envBytes); err == nil {

 if payload, err = utils.GetPayload(env); err == nil { // 解析获取交易消息负载

 // 解析获取消息通道头部

 chdr, err = utils.UnmarshalChannelHeader(payload.Header.ChannelHeader)

 }

 }

 if txsFilter.IsInvalid(txIndex) { // 检查该交易的有效性

 ……

 continue // 跳过无效交易

 }

 ……

 // === 分析交易类型进行处理

 var txRWSet *rwsetutil.TxRwSet

 txType := common.HeaderType(chdr.Type) // 解析获取交易类型

 logger.Debugf("txType=%s", txType)

 // Endorser背书普通交易消息

 if txType == common.HeaderType_ENDORSER_TRANSACTION {

 // 提取链码动作负载ChaincodeAction结构

 respPayload, err := utils.GetActionFromEnvelope(envBytes)

 ……

 txRWSet = &rwsetutil.TxRwSet{}

 // 解析结果读写集

 if err = txRWSet.FromProtoBytes(respPayload.Results); err != nil {

 txsFilter.SetFlag(txIndex, peer.TxValidationCode_INVALID_OTHER_REASON)

 continue // 跳过错误交易

 }

 } else { // 处理非Endorser背书的交易消息

 rwsetProto, err := processNonEndorserTx(env, chdr.TxId, txType, txmgr, !doMVCCValidation)

 ……

 if rwsetProto != nil {

 if txRWSet, err = rwsetutil.TxRwSetFromProtoMsg(rwsetProto); err != nil { // 解析结果读写集

 return nil, err

 }

 }

 if txRWSet != nil {

 b.Txs = append(b.Txs, &valinternal.Transaction{IndexInBlock: txIndex, ID: chdr.TxId, RWSet: txRWSet}) // 添加交易

 }

 }

 return b, nil

}

preprocessProtoBlock()方法首先读取区块元数据BlockMetadataIndex_TRANSACTIONS_FILTER索引项，创建当前交易验证码列表txsFilter。如果发现txsFilter列表中不存在任何数据，则调用util.NewTxValidationFlags()函数，创建新的交易验证码列表txsFilter，默认设置所有交易的交易验证码都是TxValidationCode_VALID（整数0）。

接着，preprocessProtoBlock()方法循环遍历区块交易集合block.Data.Data包含的所有交易对象，提取交易消息负载并解析通道头部，通过txsFilter列表过滤掉无效交易，即交易验证码不是TxValidationCode_VALID的交易。对于没有经过交易验证的区块数据，新创建的txsFilter列表中的所有交易验证码默认都是交易有效的，再通过后面执行MVCC检查以判断读数据的有效性，从而标记出所有的无效交易。

然后，preprocessProtoBlock()方法根据交易类型分别进行处理，获取对应的模拟执行结果读写集，具体如下。

·ENDORSER_TRANSACTION类型：调用utils.GetActionFromEnvelope()函数，从交易消息负载中提取链码动作对象respPayload（ChaincodeAction类型），再调用txRWSet.FromProtoBytes()方法，解析respPayload.Results包含的交易模拟执行结果读写集，并转换为txRWSet读写集（rwsetutil.TxRwSet类型）；

·其他类型：包括通道配置交易CONFIG类型与Peer资源更新配置交易PEER_RESOURCE_UPDATE类型。调用processNonEndorserTx()函数，获取模拟执行结果中的公共数据读写集rwsetProto，具体执行过程见后面的processNonEndorserTx()函数分析，并调用rwsetutil.TxRwSetFromProtoMsg()方法，解析rwsetProto中包含的交易模拟执行结果读写集，再将其转换为txRWSet读写集（rwsetutil.TxRwSet类型）。

最后，preprocessProtoBlock()方法创建交易对象（Transaction类型），封装了交易序号txIndex、交易ID、过滤转换的结果读写集txRWSet等，并添加到内部区块（valinternal.Block类型）的交易列表b.Txs（[]*Transaction类型）中。

（2）处理非背书交易processNonEndorserTx()函数

processNonEndorserTx()函数用于处理非ENDORSER_TRANSACTION类型交易的模拟执行结果。该函数首先调用customtx.GetProcessor(txType)方法，获取处理该交易类型txType的配置交易消息处理器对象processor（Peer节点启动时初始化的）。接着，调用txmgr.NewTxSimulator(txid)方法，创建指定交易ID（txid）关联的交易模拟器sim（lock-BasedTxSimulator类型），并调用processor.GenerateSimulationResults()方法，基于该交易消息、交易模拟器sim等参数生成模拟执行结果，再保存到交易模拟器中的公共数据读写集中，包括通道配置交易（CONFIG类型）与Peer资源更新配置交易（PEER_RESOURCE_UPDATE类型）两种情况。

①通道配置交易CONFIG类型

processor.GenerateSimulationResults()方法调用processChannelConfigTx()函数以处理通道配置交易对象，如代码清单5-23所示。

代码清单5-23　processChannelConfigTx()函数的源码示例

core/peer/configtx_processor.go文件

// 处理通道配置交易

func processChannelConfigTx(chainid string, txEnv *common.Envelope, simulator ledger.TxSimulator) error {

 configEnvelope := &common.ConfigEnvelope{} // 解析获取通道配置交易ConfigEnvelope

 结构对象

 if _, err := utils.UnmarshalEnvelopeOfType(txEnv, common.HeaderType_CONFIG, configEnvelope); err != nil {

 return err

 }

 channelConfig := configEnvelope.Config // 获取通道配置信息对象

 // 通过模拟器模拟保存到状态数据库

 if err := persistConf(simulator, channelConfigKey, channelConfig); err != nil {

 return err

 }

 peerLogger.Debugf("channelConfig=%s", channelConfig)

 if channelConfig == nil {

 return fmt.Errorf("Channel config found nil")

 }

 // 获取资源配置功能启用标志位

 resConfCapabilityOn, err := isResConfigCapabilityOn(chainid, channelConfig)

 if err != nil {

 return err

 }

 // 获取资源配置交易

 resourceConfigSeed, err := extractFullConfigFromSeedTx(configEnvelope)

 if err != nil {

 return err

 }

 // 检查交易序号是否为第1个交易且启用了Peer节点资源配置功能标志位

 if channelConfig.Sequence == 1 && resConfCapabilityOn {

 if resourceConfigSeed == nil {

 return fmt.Errorf("Resource config cannot be nil in the genesis ('CONFIG') transaction")

 }

 // 通过模拟器模拟保存到状态数据库

 return persistConf(simulator, resourcesConfigKey, resourceConfigSeed)

 }

 return nil

}

首先，processChannelConfigTx()函数调用persistConf()→simulator.SetState()方法，将其通道配置信息（CONFIG类型）模拟保存到交易模拟器中，即rwsetBuilder对象指定peerName-space名字空间（空字符串）中公共数据读写集pubRwBuilderMap[ns]的写集合writeMap[key]中。其中，key键为resourcesconfigtx.CHANNEL_CONFIG_KEY，value值为通道配置信息的字节数组，如代码清单5-24所示。

代码清单5-24　persistConf()方法的源码示例

core/peer/configtx_processor.go文件

// 保存配置信息KV键值对到交易模拟器中

func persistConf(simulator ledger.TxSimulator, key string, config *common.Config) error {

 serializedConfig, err := serialize(config // 序列化封装通道配置信息字节数组

 if err != nil {

 return err

 }

 // 模拟器写入该通道配置信息状态KV键值对

 return simulator.SetState(peerNamespace, key, serializedConfig)

}

接着，processChannelConfigTx()函数调用isResConfigCapabilityOn()方法，提取通道资源配置标志位resConfCapabilityOn。同时，调用extractFullConfigFromSeedTx()方法，从通道配置更新的isolatedData字典中提取与键ResourceConfigSeedDataKey对应的资源配置对象resourceConfigSeed（Config类型）。

如果通道配置序号为1且启用了resConfCapabilityOn标志位，则调用persistConf()方法，保存相应的键值对到交易模拟器上rwsetBuilder对象的公共数据读写集。其中，键为resourcesconfigtx.RESOURCES_CONFIG_KEY，值为resourceConfigSeed资源配置信息字节数组。

②Peer资源更新配置交易PEER_RESOURCE_UPDATE类型

processor.GenerateSimulationResults()方法首先检查初始化账本的标志位initializingLedger，即参数doMVCCValidation取反。如果是正常提交账本数据（doMVCCValidation为true），则跳过并继续调用processResourceConfigTx()函数。

processResourceConfigTx()函数调用validateAndApplyResourceConfig()函数，以验证与更新资源配置对象。该方法先通过当前通道的链支持对象调用cs.bundleSource.Stable-Bundle()方法，获取当前资源配置实体对象currentBundle。接着，根据该对象和资源更新配置交易消息调用computeFullConfig()方法，构造Peer资源更新的全量配置结构对象fullResourceConfig，并进行检查。如果检查通过，则调用resourcesconfig.NewBundle()方法，创建新的资源配置实体rBundle，并通过链支持对象调用cs.bundleSource.Update(rBundle)方法，更新当前通道上的资源配置实体并返回fullResourceConfig。最后，process-ResourceConfigTx()函数调用persistConf()方法，将资源配置信息键值对保存到交易模拟器上rwsetBuilder对象的公共数据读写集中。其中，键为resourcesconfigtx.RESOURCES_CONFIG_KEY，值为Peer资源更新的全量配置结构对象的字节数组。

最后，processNonEndorserTx()方法调用sim.GetTxSimulationResults()→RWSetBuilder.GetTxSimulationResults()方法，获取非Endorser背书交易消息情况下的模拟执行结果sim-Res，并返回simRes.PubSimulationResults包含的公共数据，如通道配置、资源配置等信息。

至此，processNonEndorserTx()函数的执行流程结束。

注意，Fabric 1.2与1.3已经废弃了PEER_RESOURCE_UPDATE类型消息，移除了上述两种消息处理中关于资源配置更新的代码。

2.执行MVCC检查与准备公有数据

kvLedger目前采用基于KV键值对的状态数据模型，支持读状态数据、写状态数据与删除状态数据，交易提案的模拟执行结果包括读集合与写集合。ValidateAndPrepareBatch()方法首先调用impl.InternalValidator.ValidateAndPrepareBatch()方法，利用验证器Default-Impl封装的内部交易管理器（Validator类型），基于本地状态数据库对预处理的内部区块internalBlock所包含的交易数据执行MVCC检查，用于验证交易结果中公有数据（公共数据与隐私数据哈希值）的读数据是否有效，并标记关联的无效交易，从而筛选出全部有效的交易，最后将有效交易的公共数据与隐私数据哈希值写集合（包括写操作与删除操作）添加到数据更新批量操作updates中，如代码清单5-25所示。

代码清单5-25　ValidateAndPrepareBatch()方法的源码示例

core/ledger/kvledger/txmgmt/validator/statebasedval/state_based_validator.go文件

func (v *Validator) ValidateAndPrepareBatch(block *valinternal.Block, doMVCC-Validation bool) (*valinternal.PubAndHashUpdates, error) {

 ……

 updates := valinternal.NewPubAndHashUpdates() // 创建公共数据和隐私数据哈希

 值批量更新操作

 for _, tx := range block.Txs { // 遍历区块包含的所有交易列表

 var validationCode peer.TxValidationCode

 var err error

 // 验证Endorser背书交易

 if validationCode, err = v.validateEndorserTX(tx.RWSet, doMVCCValidation, updates); err != nil {

 return nil, err

 }

 tx.ValidationCode = validationCode

 if validationCode == peer.TxValidationCode_VALID { // 检查交易的有效性

 logger.Debugf("Block [%d] Transaction index [%d] TxId [%s] marked as valid by state validator", block.Num, tx.IndexInBlock, tx.ID)

 committingTxHeight := version.NewHeight(block.Num, uint64(tx.IndexInBlock)) // 创建高度标记版本

 updates.ApplyWriteSet(tx.RWSet, committingTxHeight) // 更新写集合添加到PubAnd-

 HashUpdates结构对象

 } else {

 logger.Warningf("Block [%d] Transaction index [%d] TxId [%s] marked as invalid by state validator. Reason code [%s]",

 block.Num, tx.IndexInBlock, tx.ID, validationCode.String())

 }

 }

 return updates, nil

}

ValidateAndPrepareBatch()方法首先调用valinternal.NewPubAndHashUpdates()方法，构造公共数据和隐私数据哈希值的更新批量操作集合updates（PubAndHashUpdates类型），用于记录截至目前当前区块中所有验证成功的有效交易写集合。

接着，ValidateAndPrepareBatch()方法遍历内部区块保存的交易列表block.Txs，调用validateEndorserTX()→v.validateTx()方法，对每个交易tx执行MVCC检查。

该方法遍历当前交易的读写集tx.RWSet，针对读集合依次检查单个键查询、键范围查询、隐私数据哈希值查询三种情况，验证该读集合是否与当前账本以及updates记录的最新值存在读写冲突等，如代码清单5-26所示。如果存在冲突，则返回TxValidationCode_MVCC_READ_CONFLICT交易验证码或TxValidationCode_PHANTOM_READ_CONFLICT交易验证码，不需要验证写集合。如果当前交易通过了上述三种情况检查，则返回有效交易的TxValidationCode_VALID交易验证码。对于有效交易，ValidateAndPrepareBatch()方法根据区块号block.Num与交易序号uint64(tx.IndexInBlock)创建交易高度对象committ-ingTxHeight（Height类型）以标记版本，然后调用updates.ApplyWriteSet(tx.RWSet，committing-TxHeight)方法，将该有效交易的公共数据与隐私数据哈希值的写集合（包括写操作与删除操作，使用IsDelete标志位区分）添加到updates对象（PubAndHashUpdates类型）中。

实际上，ValidateAndPrepareBatch()方法以交易为粒度更新updates对象，可以保证同一个区块后面的交易能基于已经验证过的交易数据执行正确的验证操作。

代码清单5-26　validateTx()方法的源码示例

core/ledger/kvledger/txmgmt/validator/statebasedval/state_based_validator.go文件

// 执行MVCC检查以验证读集合

func (v *Validator) validateTx(txRWSet *rwsetutil.TxRwSet, updates *valinternal.PubAndHashUpdates) (peer.TxValidationCode, error) {

 for _, nsRWSet := range txRWSet.NsRwSets { // 遍历读写集合

 ns := nsRWSet.NameSpace // 获取名字空间名称

 // 验证单个键查询公共数据读集合

 if valid, err := v.validateReadSet(ns, nsRWSet.KvRwSet.Reads, updates.PubUpdates); !valid || err != nil {

 if err != nil {

 return peer.TxValidationCode(-1), err

 }

 return peer.TxValidationCode_MVCC_READ_CONFLICT, nil

 // MVCC读冲突

 }

 // 验证键范围查询公共数据读集合

 if valid, err := v.validateRangeQueries(ns, nsRWSet.KvRwSet.RangeQueries-Info, updates.PubUpdates); !valid || err != nil {

 if err != nil {

 return peer.TxValidationCode(-1), err

 }

 return peer.TxValidationCode_PHANTOM_READ_CONFLICT, nil // 幻读冲突

 }

 // 验证隐私数据读集合的哈希值

 if valid, err := v.validateNsHashedReadSets(ns, nsRWSet.CollHashedRwSets, updates.HashUpdates); !valid || err != nil {

 if err != nil {

 return peer.TxValidationCode(-1), err

 }

 return peer.TxValidationCode_MVCC_READ_CONFLICT, nil // MVCC读冲突

 }

 }

 return peer.TxValidationCode_VALID, nil // 交易有效

}

如图5-3所示，PubAndHashUpdates类型包含PubUpdateBatch类型公共数据的更新批量操作集合与HashedUpdateBatch类型隐私数据哈希值的更新批量操作集合。

PubUpdateBatch类型公共数据的更新批量操作集合封装了statedb.UpdateBatch，该对象包含更新批量操作集合map[string]*nsUpdates，用于维护链码名字空间到公共数据的更新批量操作集合之间的映射关系。nsUpdates对象包含映射表map[string]*VersionedValue用于映射键Key到写数据对象，每个元素VersionedValue都含有Value值与Version版本（Height类型，包含区块号和区块内交易序号）。其中，删除数据操作只维护Value值，将Version版本设置为nil作为删除操作的标记，写数据操作会同时维护Value值和Version版本。

 [image:]

图5-3　公共数据和隐私数据哈希值的更新批量操作集合PubAndHashUpdates类型示意图

HashedUpdateBatch类型隐私数据哈希值的更新批量操作集合封装了UpdateMap字典（map[string]nsBatch类型），用于维护链码名字空间ns到nsBatch隐私数据哈希值的批量操作集合的映射关系。nsBatch对象包含的statedb.UpdateBatch字段与PubUpdateBatch类型公共数据处理方式类似，只是在处理隐私数据哈希值时，statedb.UpdateBatch会维护隐私数据集合名称到更新批量操作nsUpdates之间的映射关系，再由nsUpdates对象维护映射表map[string]*VersionedValue，用于映射隐私数据的哈希值键KeyHash到隐私数据的写数据哈希值ValueHash。

在交易模拟执行结果的读写集中，读集合包含键的版本，写集合包含键的最新值，版本使用区块高度（Height类型）进行标识（封装区块号和区块内的交易序号）。合法的交易数据只能读取已经保存在账本中的区块数据，由于当前区块被验证时还没有正式写入账本并最终确认有效交易的状态变更操作，所以读取同一个区块中前面交易的写数据（即区块内交易先写后读的情况）是无效的。因此，这些无效交易（脏数据）使得Fabric无法并行处理区块内的关联交易与同时提交账本，会显著影响对应业务场景的交易吞吐量。目前，账本提交器先按照区块粒度验证每个读写集的有效性，再根据updates按照交易顺序依次维护更新当前有效交易的写集合，并按照区块粒度提交更新账本。如果当前交易的读数据存在updates中，即读取了当前区块中前面交易的写数据（检查Key是否匹配），或者当前交易的读操作数据版本与当前状态数据库中读取的数据版本不一致，则都设置该读数据无效。由此可见，目前的Fabric架构更适合于一次写且多次读或者低频写数据的应用场景。

（1）单个键查询

如代码清单5-27所示，validateTx()方法调用v.validateReadSet()方法，验证针对单个键查询的公共数据读集合nsRWSet.KvRwSet.Reads，循环遍历该集合中的每个读数据kvRead，再调用validateKVRead()方法，验证单个键查询操作中的读数据版本。

代码清单5-27　validateKVRead()方法的源码示例

core/ledger/kvledger/txmgmt/validator/statebasedval/state_based_validator.go文件

// 对单个键查询的读操作执行MVCC检查

func (v *Validator) validateKVRead(ns string, kvRead *kvrwset.KVRead, updates *privacyenabledstate.PubUpdateBatch) (bool, error) {

 if updates.Exists(ns, kvRead.Key) { // 检测是否存在updates对象中

 return false, nil

 }

 committedVersion, err := v.db.GetVersion(ns, kvRead.Key) // 获取状态数据库中保存的状态值

 ……

 // 检查两个读数据版本是否一致。如果不一致，则说明读的数据有可能被更新了，读数据无效

 if !version.AreSame(committedVersion, rwsetutil.NewVersion(kvRead.Version)) {

 logger.Debugf("Version mismatch for key [%s:%s]. Committed version = [%#v], Version in readSet [%#v]",

 ns, kvRead.Key, committedVersion, kvRead.Version)

 return false, nil

 }

 return true, nil

}

validateKVRead()方法首先检查updates更新批量操作集合，其公共数据是否已经存在该读数据kvRead的键，即指定名字空间ns的读写集字典map[string]*VersionedValue中是否已经存在读数据键Key。如果已经存在该对象，则说明读取了同一个区块前面交易中的写数据，但是此时当前被验证的区块还没有正式确认写入账本，因此读数据无效并返回false。否则，继续调用v.db.GetVersion(ns，kvRead.Key)方法，根据读数据键Key获取当前账本（截至上一个区块）状态数据库中保存的读数据操作版本committedVersion（Height类型）。然后，调用rwsetutil.NewVersion(kvRead.Version)方法，构造指定单个键查询中的读数据版本（Height类型），并调用version.AreSame()方法以比较该版本与提交版本committedVersion。如果两个版本不一致，则说明读数据版本不是当前保存在账本中的数据版本，此次读数据无效并返回false。如果通过了上述检查，则说明此次读数据有效并返回true。

（2）键范围查询

validateTx()方法调用v.validateRangeQueries()方法，验证针对键范围查询的公共数据读集合，循环遍历nsRWSet.KvRwSet.RangeQueriesInfo中的每个范围查询信息对象，并调用validateRangeQuery()方法，验证键范围查询中的读数据版本是否有效，如代码清单5-28所示。

代码清单5-28　validateRangeQuery()方法的源码示例

core/ledger/kvledger/txmgmt/validator/statebasedval/state_based_validator.go文件

// 验证键范围查询

func (v *Validator) validateRangeQuery(ns string, rangeQueryInfo *kvrwset.RangeQueryInfo, updates *privacyenabledstate.PubUpdateBatch) (bool, error) {

 logger.Debugf("validateRangeQuery: ns=%s, rangeQueryInfo=%s", ns, rangeQueryInfo)

 includeEndKey := !rangeQueryInfo.ItrExhausted

 // 创建新的组合查询迭代器

 combinedItr, err := newCombinedIterator(v.db, updates.UpdateBatch,

 ns, rangeQueryInfo.StartKey, rangeQueryInfo.EndKey, includeEndKey)

 ……

 if rangeQueryInfo.GetReadsMerkleHashes() != nil {

 logger.Debug('Hashing results are present in the range query info hence, initiating hashing based validation')

 validator = &rangeQueryHashValidator{}

 } else {

 logger.Debug('Hashing results are not present in the range query info hence, initiating raw KVReads based validation')

 validator = &rangeQueryResultsValidator{}

 }

 validator.init(rangeQueryInfo, combinedItr) // 根据上面的类型判断初始化验证器对象

 return validator.validate() // 验证读操作数据的有效性

}

validateRangeQuery()方法首先调用newCombinedIterator()方法，构造在当前状态数据库与updates公共数据中指定名字空间ns上的组合查询迭代器combinedItr（combinedIterator类型），具体包括如下内容。

·查询范围的起始键rangeQueryInfo.StartKey与结束键rangeQueryInfo.EndKey；

·状态数据库的范围查询迭代器dbItr（kvScanner类型）；

·updates.PubUpdates中公共数据的范围查询迭代器updatesItr（nsIterator类型）等。

因此，combinedItr对象可以利用dbItr与updatesItr迭代器分别访问指定查询范围内的状态数据库与updates.PubUpdates对象的查询结果数据。

接着，调用rangeQueryInfo.GetReadsMerkleHashes()方法，检查rangeQueryInfo对象。如果该对象包含了合法的梅克尔树摘要对象，则创建rangeQueryHashValidator类型的范围查询验证器validator。否则，创建rangeQueryResultsValidator类型的范围查询验证器validator。

然后，调用validator.init(rangeQueryInfo，combinedItr)方法以初始化范围查询验证器，再调用validator.validate()方法，以验证范围查询读数据的有效性。

①rangeQueryHashValidator类型

这种情况下，validate()方法是基于梅克尔树摘要对象计算的哈希值来判断范围查询读数据的有效性。其中，参数rangeQueryInfo含有梅克尔树摘要对象inMerkle。

validate()方法首先利用查询组合迭代器combinedItr对象遍历范围查询结果数据即itr.Next()，每次循环迭代都在前一次计算的结果上调用v.resultsHelper.AddResult()方法，添加该查询结果数据，并调用v.resultsHelper.GetMerkleSummary()方法，以重新构造新的梅克尔树摘要对象merkle。

接着，检查merkle与inMerkle两个梅尔克树摘要对象，包括最高层级MaxLevel及其MaxLevelHashes最高层级哈希值字节数组的长度等。如果通过了检查，则将已匹配的层级索引号lastMatchedIndex自增1。然后，比较merkle与inMerkle指定梅克尔树层级lastMatchedIndex的哈希值MaxLevelHashes[lastMatchedIndex]是否相同。如果两者仍然相同，则当前读数据通过验证。那么，到目前为止的范围查询结果读数据都是有效的。当所有数据都通过验证时，即itr.Next()访问获取的所有数据都验证完毕，则调用v.results-Helper.Done()方法以重新计算梅克尔树哈希值，更新该范围查询结果的梅克尔树摘要对象merkle。

最后，调用inMerkle.Equal(merkle)方法以比较merkle与inMerkle（QueryReadsMerkle-Summary类型）。如果两者一致，则说明这种类型的情况下，键范围查询读数据都是有效的，再返回验证结果true，否则返回false。

②rangeQueryResultsValidator类型

这种情况下，validate()方法采用逐个比较每个元素对象的方法来判断范围查询读数据的有效性。该方法首先调用v.rqInfo.GetRawReads().GetKvReads()方法，获取参数range-QueryInfo包含的读集合rqResults，接着循环遍历rqResults对象中的每个元素kvRead，使用组合查询迭代器combinedItr对象调用itr.Next()方法，依次获取其中的读数据result（KVRead类型）。然后，按照迭代索引号顺序依次比较kvRead与result两个对象的键Key与版本Version是否相同。如果上述对象都完全一致，则说明读数据是有效的。如果指定范围内的所有读数据都通过了验证，则validate()方法还会继续检查result对象中是否还存在多余的数据（不为nil）。如果不存在多余的数据，则说明该类型情况下的范围查询读数据都是有效的，此时返回验证结果true，否则返回false。

（3）隐私数据哈希值查询

隐私数据读数据哈希值对象（KVReadHash类型）与写数据哈希值对象（KVWriteHash类型）的键是通过调用util.ComputeStringHash(key)函数计算键key来获得哈希值的，写数据哈希值对象（KVWriteHash类型）的值是通过调用util.ComputeHash(value)函数计算写数据值value获得的哈希值。

validateTx()方法调用v.validateNsHashedReadSets()方法，以验证隐私数据集合哈希值集合nsRWSet.CollHashedRwSets的有效性。该方法首先循环遍历其中的每个数据collHashedRWSet（CollHashedRwSet类型），调用validateCollHashedReadSet()方法，验证该对象包含的每个隐私数据的读数据哈希值集合collHashedRWSet.HashedRwSet.HashedReads（[]*KVReadHash类型）是否有效，即调用v.validateKVReadHash()方法，以验证每个读数据哈希值对象kvRead-Hash（KVReadHash类型），该过程与单个键查询的读数据有效性验证流程类似，如代码清单5-29所示。

代码清单5-29　validateKVReadHash()方法的源码示例

core/ledger/kvledger/txmgmt/validator/statebasedval/state_based_validator.go文件

func (v *Validator) validateKVReadHash(ns, coll string, kvReadHash *kvrwset.KVReadHash,

 updates *privacyenabledstate.HashedUpdateBatch) (bool, error) {

 // 检查是否包含在更新操作updates中

 if updates.Contains(ns, coll, kvReadHash.KeyHash) {

 return false, nil

 }

 // 获取账本中指定操作数据的版本

 committedVersion, err := v.db.GetKeyHashVersion(ns, coll, kvReadHash.KeyHash)

 ……

 // 比较版本是否一致

 if !version.AreSame(committedVersion, rwsetutil.NewVersion(kvReadHash.Version)) {

 logger.Debugf("Version mismatch for key hash [%s:%s:%#v]. Committed version = [%s], Version in hashedReadSet [%s]",

 ns, coll, kvReadHash.KeyHash, committedVersion, kvReadHash.Version)

 return false, nil

 }

 return true, nil

}

validateKVReadHash()方法首先调用updates.Contains(ns，coll，kvReadHash.KeyHash)函数，检查updates中同一个区块内前面有效交易的隐私数据哈希值批量更新操作。如果这些操作中含有当前指定的隐私数据读数据哈希值的键kvReadHash.KeyHash，说明读取了同一个区块中排在前面交易中的写数据，则该读数据哈希值无效，并直接返回false。

接着，调用v.db.GetKeyHashVersion()方法，基于输入参数即指定读数据的名字空间ns、隐私数据集合名称coll以及隐私数据读数据哈希值对象kvReadHash，从状态数据库中获取当前账本（截至上一个区块）中指定操作的隐私数据读数据哈希值的版本committed-Version（Height类型）。其中，键是kvReadHash.KeyHash。注意，状态数据库中保存的是前面提交账本的隐私数据写数据哈希值，当前隐私数据读数据哈希值版本必须与该对象保持一致。

然后，调用rwsetutil.NewVersion(kvReadHash.Version)方法，构造其读数据哈希值的版本，再调用version.AreSame()方法，将该版本与committedVersion进行比较。如果发现两个版本不一致，说明读数据哈希值版本不是当前保存在数据库中的版本，则该读数据无效并返回false。

如果通过了上述所有的检查，则说明该读数据有效，v.validateKVReadHash()方法执行结束并返回true。

3.验证与准备隐私数据

validateAndPreparePvtBatch()方法验证与准备隐私数据blockAndPvtdata.BlockPvtData，并将其写集合操作（写入操作或删除操作）添加到隐私数据更新批量操作pvtUpdates（PvtUp-dateBatch类型）中，如代码清单5-30所示。

代码清单5-30　validateAndPreparePvtBatch()方法的源码示例

core/ledger/kvledger/txmgmt/validator/valimpl/helper.go文件

// 验证和准备隐私数据写集合，并添加到隐私数据更新批量操作

func validateAndPreparePvtBatch(block *valinternal.Block, pvtdata map[uint64] *ledger.TxPvtData) (*privacyenabledstate.PvtUpdateBatch, error) {

 pvtUpdates := privacyenabledstate.NewPvtUpdateBatch()

 for _, tx := range block.Txs { // 遍历区块的每个交易

 if tx.ValidationCode != peer.TxValidationCode_VALID { // 跳过无效交易

 continue

 }

 if !tx.ContainsPvtWrites() { // 跳过没有隐私数据写集合的交易

 continue

 }

 txPvtdata := pvtdata[uint64(tx.IndexInBlock)] // 获取指定交易的隐私数据

 if txPvtdata == nil { // 跳过没有隐私数据的交易

 continue

 }

 // 检查是否需要验证隐私数据，默认都返回true

 if requiresPvtdataValidation(txPvtdata) {

 // 验证隐私数据哈希值是否匹配

 if err := validatePvtdata(tx, txPvtdata); err != nil {

 return nil, err

 }

 }

 var pvtRWSet *rwsetutil.TxPvtRwSet

 var err error

 if pvtRWSet, err = rwsetutil.TxPvtRwSetFromProtoMsg(txPvtdata.WriteSet); err != nil { 　　// 解析隐私数据写集合

 return nil, err

 }

 // 添加到隐私数据更新批量操作

 addPvtRWSetToPvtUpdateBatch(pvtRWSet, pvtUpdates, version.NewHeight(block.Num, uint64(tx.IndexInBlock)))

 }

 return pvtUpdates, nil

}

validateAndPreparePvtBatch()方法首先遍历当前内部区块（valinternal.Block类型）的交易列表block.Txs，对于其中的每个交易对象tx（Transaction类型），需要过滤掉如下三类交易。

·交易验证码不为TxValidationCode_VALID的无效交易。

·不存在隐私数据写数据哈希值的交易。

·无隐私数据（为nil）的交易。

如果交易通过了上述检查，则对于合法有效的交易tx及其隐私数据txPvtdata（TxPvt-Data类型），调用validatePvtdata(tx，txPvtdata)方法，以验证隐私数据哈希值的正确性，因为隐私数据都是由Endorser背书节点生成的，需要检查传播后的数据是否被篡改过。该方法先遍历隐私数据txPvtdata包含的隐私数据读写集collPvtdata.Rwset（按照protobuf格式序列化的字节数组，实际上只包含隐私数据写集合），并调用util.ComputeHash()方法计算其哈希值collPvtdataHash（SHA256哈希算法）。接着，调用tx.RetrieveHash(nsPvtdata.Namespace，collPvtdata.CollectionName)方法，从交易tx的公共数据中获取指定名字空间nsPvtdata.Namespace与隐私数据集合名称collPvtdata.CollectionName下的隐私数据哈希值collData.PvtRwSetHash，并设置给hashInPubdata，实际上该隐私数据哈希值是在Endorser背书节点处理模拟执行结果时根据原始的隐私数据计算生成的（4.4.9节）。然后，基于字节比较隐私数据哈希值collPvtdataHash与hashInPubdata是否相同。如果两者一致，则说明隐私数据哈希值验证正确，数据没有被篡改过，如代码清单5-31所示。

代码清单5-31　validatePvtdata()方法的源码示例

core/ledger/kvledger/txmgmt/validator/valimpl/helper.go文件

func validatePvtdata(tx *valinternal.Transaction, pvtdata *ledger.TxPvtData) error {

 ……

 for _, nsPvtdata := range pvtdata.WriteSet.NsPvtRwset {

 for _, collPvtdata := range nsPvtdata.CollectionPvtRwset {

 // 基于原始数据计算隐私数据哈希值

 collPvtdataHash := util.ComputeHash(collPvtdata.Rwset)

 hashInPubdata := tx.RetrieveHash(nsPvtdata.Namespace, collPvtdata.Collec-tionName) // 获取交易中的数据哈希值

 if !bytes.Equal(collPvtdataHash, hashInPubdata) { // 比较隐私数据哈希值

 …… // 报错返回

 }

 }

 }

 }

 return nil

}

然后，validateAndPreparePvtBatch()方法调用rwsetutil.TxPvtRwSetFromProtoMsg()方法，将隐私数据写集合txPvtdata.WriteSet解析为TxPvtRwSet类型的读写集pvtRWSet，如图5-4所示。接着，调用version.NewHeight(block.Num，uint64(tx.IndexInBlock)方法，构造隐私数据版本ver（Hieght类型，包含区块号与交易序号），并调用addPvtRWSetToPvt-UpdateBatch()方法，遍历pvtRWSet中的隐私数据写集合Writes字段（[]*KVWrite类型），检查其中每个写数据的kvwrite.IsDelete标志位，以构造对应的删除数据操作或写数据操作，具体说明如下。

·如果kvwrite.IsDelete是删除操作（true），则调用pvtUpdateBatch.Delete()方法，添加删除操作的隐私数据键kvwrite.Key与版本ver到隐私数据更新批量操作pvtUp-dateBatch中；

·如果kvwrite.IsDelete是写操作（fasle），则调用pvtUpdateBatch.Put()方法，添加写入操作的隐私数据键kvwrite.Key、值kvwrite.Value与版本ver到隐私数据更新批量操作pvtUpdateBatch中。

最后，validateAndPreparePvtBatch()方法返回隐私数据的更新批量操作pvtUpdates给ValidateAndPrepareBatch()方法。

4.更新区块元数据

postprocessProtoBlock()方法利用已验证交易的内部区块validatedBlock来更新区块对象block（common.Block类型）上的区块元数据，包括交易验证码列表，如代码清单5-32所示。该方法首先获取block区块元数据中的BlockMetadataIndex_TRANSACTIONS_FILTER索引项，即交易验证码列表txsFilter。接着，遍历validatedBlock中的交易tx（txTransaction类型），包括所有的有效交易与无效交易，将该交易的交易序号tx.IndexInBlock与交易验证码tx.ValidationCode保存到txsFilter列表中。最后，重新将txsFilter列表设置到block上区块元数据的BlockMetadataIndex_TRANSACTIONS_FILTER索引项中，从而完成区块元数据的更新。

 [image:]

图5-4　交易隐私读写集TxPvtRwSet类型的示意图

代码清单5-32　postprocessProtoBlock()方法的源码示例

core/ledger/kvledger/txmgmt/validator/valimpl/helper.go文件

func postprocessProtoBlock(block *common.Block, validatedBlock *valinternal.Block) {

 // 获取交易验证码列表

 txsFilter := util.TxValidationFlags(block.Metadata.Metadata[common.BlockMeta-dataIndex_TRANSACTIONS_FILTER])

 for _, tx := range validatedBlock.Txs { // 遍历已验证区块的所有交易

 txsFilter.SetFlag(tx.IndexInBlock, tx.ValidationCode) // 设置更新交易验证码

 }

 block.Metadata.Metadata[common.BlockMetadataIndex_TRANSACTIONS_FILTER] = txsFilter

 // 设置到区块元数据中

}

5.4.2　提交账本数据

1.提交区块与隐私数据对象

Peer节点账本kvLedger对象的l.blockStore.CommitWithPvtData(pvtdataAndBlock)方法通过账本数据存储对象提交区块与隐私数据对象pvtdataAndBlock（ledger.BlockAndPvtData类型）到账本中，包括区块文件与隐私数据库，建立区块索引并更新区块索引数据库。如代码清单5-33所示。

代码清单5-33　CommitWithPvtData()方法的源码示例

core/ledger/ledgerstorage/store.go文件

// 提交区块和隐私数据对象

func (s *Store) CommitWithPvtData(blockAndPvtdata *ledger.BlockAndPvtData) error {

 s.rwlock.Lock()

 defer s.rwlock.Unlock()

 var pvtdata []*ledger.TxPvtData

 for _, v := range blockAndPvtdata.BlockPvtData {

 pvtdata = append(pvtdata, v) // 添加隐私数据到隐私数据列表pvtdata

 }

 // 准备将隐私数据列表pvtdata提交到账本中，先提交再确认

 if err := s.pvtdataStore.Prepare(blockAndPvtdata.Block.Header.Number, pvtdata); err != nil {

 return err

 }

 // 提交区块到账本中

 if err := s.AddBlock(blockAndPvtdata.Block); err != nil {

 s.pvtdataStore.Rollback()

 return err

 }

 return s.pvtdataStore.Commit() // 确认提交隐私数据

}

（1）准备提交隐私数据

CommitWithPvtData()方法首先遍历参数blockAndPvtdata.BlockPvtData隐私数据字典（map[uint64]*TxPvtData），将其所包含的隐私数据都添加到新创建的隐私数据列表pvtdata（[]*ledger.TxPvtData类型）。接着，通过隐私数据存储对象调用s.pvtdataStore.Prepare()→store.Prepare()方法，将pvtdata列表中的每个隐私数据对象重新编码并构成KV键值对，添加到账本上隐私数据库的更新批量操作中，并同步更新到数据库中。最后，等待区块数据提交操作确认后，根据提交结果状态确认提交或回滚恢复隐私数据，如代码清单5-34所示。

代码清单5-34　Prepare()方法的源码示例

core/ledger/pvtdatastorage/store_impl.go文件

func (s *store) Prepare(blockNum uint64, pvtData []*ledger.TxPvtData) error {

 // 检查合法性，执行Prepare()时应该是false，因为Commit和Rollback操作会重置该标志位

 if s.batchPending {

 return &ErrIllegalCall{'A pending batch exists as as result of last invoke to "Prepare" call.

 Invoke "Commit" or "Rollback" on the pending batch before invoking "Prepare" function'}

 }

 expectedBlockNum := s.nextBlockNum() // 获取下一个区块号

 if expectedBlockNum != blockNum { // 检查区块号的合法性

 return &ErrIllegalArgs{fmt.Sprintf("Expected block number=%d, recived block number=%d", expectedBlockNum, blockNum)}

 }

 // 创建数据库更新操作集合batch，记录所有需要删除或增加数据的key键

 batch := leveldbhelper.NewUpdateBatch()

 var key, value []byte

 var err error

 // 遍历隐私数据列表，构造该隐私数据KV键值对

 for _, txPvtData := range pvtData {

 // 构造key键：前缀+Height结构对象（区块号与交易序号）

 key = encodePK(blockNum, txPvtData.SeqInBlock)

 if value, err = encodePvtRwSet(txPvtData.WriteSet); err != nil {

 // 构造value值：隐私数据写集合

 return err

 }

 logger.Debugf("Adding private data to LevelDB batch for block [%d], tran [%d]", blockNum, txPvtData.SeqInBlock)

 batch.Put(key, value) // 添加隐私数据键值对的操作

 }

 batch.Put(pendingCommitKey, emptyValue) // 添加pendingCommitKey键值对的操作

 if err := s.db.WriteBatch(batch, true); err != nil { // 同步执行数据库的更新操作集合

 return err

 }

 s.batchPending = true // 更新状态标志位

 logger.Debugf("Saved %d private data write sets for block [%d]", len(pvtData), blockNum)

 return nil

}

Prepare()方法首先调用隐私数据存储对象（pvtdatastorage.store类型）的s.nextBlock-Num()方法，对最近成功提交的区块号lastCommittedBlock增1，以获得当前期望提交的区块号expectedBlockNum。

接着，Prepare()方法检查expectedBlockNum与当前区块号blockNum是否相同，以确保提交了与正确区块号对应的数据，通过检查后遍历隐私数据列表prvtData，构造每个隐私数据txPvtData的KV键值对，调用batch.Put(key，value)方法添加到数据库更新批量操作batch（UpdateBatch类型）中，同时，过滤掉值为nil的不合法数据。其中，KV键值对的编码规则具体如下。

·调用encodePK()方法构造键key，即[]byte{2}+Height{blockNum，txNum}.ToBytes()，包含前缀和版本的字节数组（区块号blockNum与交易序号txNum）。

·调用encodePvtRwSet()方法构造值value，即隐私数据写集合txPvtData.WriteSet序列化后的字节数组。

然后，Prepare()方法添加等待确认提交标识符的KV键值对，以标识当前隐私数据等待提交确认的状态。其中，键为pendingCommitKey（[]byte{0}），值为空字节数组[]byte{}。

最后，Prepare()方法调用s.db.WriteBatch(batch，true)方法，同步执行数据库更新操作batch，并设置batchPending等待提交确认的标志位为true。WriteBatch()方法首先循环遍历batch的隐私数据键值对，对于每个元素键k与值v，重新编码成数据库的键值对。其中，组合键为[]byte(dbName)+[]byte{0x00}+[]byte(k)，数据库名称dbName是账本ID，用于在隐私数据库中隔离不同通道链结构上的隐私数据。接着，根据值v是否为nil标识删除操作，调用levelBatch.Delete(key)方法和levelBatch.Put(key，v)方法分别创建写入数据操作与删除数据操作，并添加到数据库批量操作levelBatch中。然后，WriteBatch()方法调用h.db.WriteBatch(levelBatch，sync)方法，同步更新levelBatch到隐私数据库（LevelDB）中。

Fabric 1.2与1.3在Prepare()方法中调用prepareStoreEntries()方法，构造隐私数据记录集合及其过期信息记录集合（[]*expiryEntry，其键包含了前缀expiryKeyPrefix即[]byte{3}、过期区块号与当前提交区块号committingBlock，值包含了名字空间、集合名称与交易序号）。其中，计算过期区块号的流程是先调用btlPolicy.GetExpiringBlock()方法，基于LSCC从状态数据库中获取指定名字空间与隐私数据集合名称的配置对象，解析其blockToLive字段作为隐私数据的有效区块数量btl，再计算出过期区块号committingBlock+btl+uint64(1)。如果发生了整数上溢或者不存在正整数的blockToLive，则不保存其过期信息。另外，Fabric 1.3还保存了缺失的隐私数据信息集合及其过期信息记录集合。

（2）提交区块数据

CommitWithPvtData()继续调用s.AddBlock(blockAndPvtdata.Block)方法，实际上是通过区块文件管理器，调用blockfileMgr.addBlock()方法（7.1.3节），提交新区块blockAndPvt-data.Block到区块数据文件中，并保存新的区块检查点信息newCPInfo。接着，调用indexBlock()方法，建立当前区块的索引信息与索引检查点信息（当前区块号等），更新到区块索引数据库中。然后，调用mgr.updateCheckpoint(newCPInfo)方法，更新区块文件管理器上的区块检查点信息，再执行mgr.cpInfoCond.Broadcast()方法，广播唤醒所有等待该同步条件变量的程序，通知已有新区块提交到账本中。最后，调用mgr.updateBlockchain-Info()方法，更新区块链信息，如最新区块高度、最新区块头哈希值等。

（3）确认提交隐私数据操作

如果提交区块数据成功，则CommitWithPvtData()方法通过隐私数据存储对象，调用s.pvtdataStore.Commit()方法，执行隐私数据的提交确认操作。由于前面的Prepare()方法已经更新了所有的隐私数据键值对到数据库中，因此，该方法实际上是在隐私数据库上删除pendingCommitKey键值对，并添加lastCommittedBlkkey键值对，以保存最近提交成功的区块号committingBlockNum。最后，更新隐私数据相关标志位与变量，将等待提交确认标志位batchPending与标志位isEmpty设置为false，将lastCommitted-Block更新为提交账本的区块号committingBlockNum。

Fabric 1.2与1.3在Commit()方法确认隐私数据提交后调用performPurgeIfScheduled(committingBlockNum)→purgeExpiredData()方法，用于清理当前账本高度committingBlockNum以下所有过期的隐私数据及其过期信息记录。该方法先调用retrieveExpiryEntries()方法，基于隐私数据库构造范围查询迭代器，以获取指定区块号范围{0，committingBlockNum}内所有隐私数据的过期信息集合（含前缀expiryKeyPrefix即[]byte{3}），然后遍历该集合将过期信息键编码后添加到数据批量更新操作中，并执行deriveDataKeys()方法解析出需要删除的隐私数据键，重新编码后添加到数据批量更新操作中，最后再一起更新到隐私数据库上，如此处理直至删除所有过期的隐私数据及其过期信息记录。

如果提交区块数据失败，则CommitWithPvtData()将通过隐私数据存储对象调用s.pvt-dataStore.Rollback()方法执行回滚操作，将已提交的隐私数据恢复到提交数据库之前的状态。Rollback()方法首先调用s.retrievePendingBatchKeys()方法，构造隐私数据范围查询迭代器，包括自从上次提交确认区块号的下一个区块号（lastCommittedBlock+1）以后的所有区块交易数据，并且隐私数据组合键的前缀是以pvtDataKeyPrefix（[]byte{2}）开头的，同时将待删除的隐私数据键添加到等待提交确认键列表pendingBatchKeys中。接着，调用leveldbhelper.NewUpdateBatch()方法，创建数据库更新批量操作batch（UpdateBatch类型）。然后，循环遍历pendingBatchKeys中每个待删除的键key，调用batch.Delete(key)方法构造删除数据操作并添加到batch中。同时，添加等待提交确认标识符键pendingCommitKey（[]byte{0}）的删除操作。最后，调用s.db.WriteBatch(batch，true)方法，同步执行batch更新到隐私数据库上，并将batchPending标志位设置为false。

2.提交状态数据库

Peer节点账本kvLedger对象调用l.txtmgmt.Commit()方法，实际上是通过自身的交易管理器调用LockBasedTxMgr.Commit()方法，将当前有效交易的数据更新批量操作txmgr.batch（privacyenabledstate.UpdateBatch类型）提交到状态数据库中，该类型如图5-5所示。

 [image:]

图5-5　数据更新批量操作privacyenabledstate.UpdateBatch类型示意图

LockBasedTxMgr.Commit()方法首先调用version.NewHeight()方法以构造数据的新版本，封装了最新的区块号txmgr.currentBlock.Header.Number与区块的最后一个交易序号uint64(len(txmgr.currentBlock.Data.Data)-1)。接着，将该版本和txmgr.batch作为参数提交给txmgr.db.ApplyPrivacyAwareUpdate()→CommonStorageDB.ApplyPrivacyAwareUpdates()方法调用，执行更新操作到状态数据库中。

ApplyPrivacyAwareUpdates()方法中的参数updates是传入的更新批量操作txmgr.batch参数。该方法先调用addPvtUpdates()方法，将隐私数据的更新批量操作updates.PvtUpdates添加到公共数据的更新批量操作updates.PubUpdates中，如代码清单5-35所示。addPvt-Updates()方法首先遍历updates.PvtUpdates下指定名字空间ns与集合名称coll中包含的隐私数据键值对key与vv，调用derivePvtDataNs(ns，coll)方法以构造隐私数据的组合名字空间，即ns+"$$"+"p"+coll。接着，调用pubUpdateBatch.Update()方法，将该隐私数据更新操作添加到公共数据的更新批量操作updates.PubUpdates中，以支持后面调用与公共数据相同的数据操作接口。

ApplyPrivacyAwareUpdates()方法接着调用addHashedUpdates()方法，获取公有数据中隐私数据哈希值的更新批量操作updates.HashUpdates，再添加到公共数据的更新批量操作updates.PubUpdates中。同时，根据数据库类型在参数base64Key上指明是否需要对键进行Base64编码。其中，CouchDB数据库设置为true，LevelDB数据库设置为false，如代码清单5-35所示。类似于addPvtUpdates()方法，addHashedUpdates()方法同样遍历并获取updates.HashUpdates下指定名字空间ns与集合名称coll中包含的隐私数据哈希值键值对key与vv，根据base64Key标志位对键key进行Base64编码。接着，调用deriveHashed-DataNs(ns，coll)方法，构造隐私数据哈希值的组合名字空间，即ns+"$$"+"h"+coll。然后，调用pubUpdateBatch.Update()方法，将该隐私数据哈希值的更新操作添加到公共数据的更新批量操作updates.PubUpdates中。

代码清单5-35　addPvtUpdates()与addHashedUpdate()方法的源码示例

core/ledger/kvledger/txmgmt/privacyenabledstate/common_storage_db.go文件

func addPvtUpdates(pubUpdateBatch *PubUpdateBatch, pvtUpdateBatch *PvtUpdateBatch) {

 for ns, nsBatch := range pvtUpdateBatch.UpdateMap {

 for _, coll := range nsBatch.GetCollectionNames() {

 for key, vv := range nsBatch.GetUpdates(coll) {

 pubUpdateBatch.Update(derivePvtDataNs(ns, coll), key, vv)

 }

 }

 }

}

func addHashedUpdates(pubUpdateBatch *PubUpdateBatch, hashedUpdateBatch *Hashed-UpdateBatch, base64Key bool) {

 for ns, nsBatch := range hashedUpdateBatch.UpdateMap {

 for _, coll := range nsBatch.GetCollectionNames() {

 for key, vv := range nsBatch.GetUpdates(coll) {

 if base64Key { // Base64编码

 key = base64.StdEncoding.EncodeToString([]byte(key))

 }

 pubUpdateBatch.Update(deriveHashedDataNs(ns, coll), key, vv)

 }

 }

 }

}

这样，ApplyPrivacyAwareUpdates()方法就将所有数据的更新批量操作都添加到updates.PubUpdates中了，接着调用s.VersionedDB.ApplyUpdates()方法，同步更新批量操作updates.PubUpdates.UpdateBatch到本地的状态数据库中。这里以默认底层的LevelDB类型数据库为例，如代码清单5-36所示。

代码清单5-36　ApplyUpdates()方法的源码示例

core/ledger/kvledger/txmgmt/statedb/stateleveldb/stateleveldb.go文件

func (vdb *versionedDB) ApplyUpdates(batch *statedb.UpdateBatch, height *version.Height) error {

 dbBatch := leveldbhelper.NewUpdateBatch()

 namespaces := batch.GetUpdatedNamespaces()

 for _, ns := range namespaces {

 updates := batch.GetUpdates(ns)

 for k, vv := range updates {

 compositeKey := constructCompositeKey(ns, k)

 logger.Debugf("Channel [%s]: Applying key(string)=[%s] key(bytes)=[%#v]", vdb.dbName, string(compositeKey), compositeKey)

 if vv.Value == nil {

 dbBatch.Delete(compositeKey)

 } else {

 dbBatch.Put(compositeKey, statedb.EncodeValue(vv.Value, vv.Version))

 }

 }

 }

 dbBatch.Put(savePointKey, height.ToBytes())

 if err := vdb.db.WriteBatch(dbBatch, true); err != nil {

 return err

 }

 return nil

}

ApplyUpdates()方法首先依次遍历更新批量操作updates.PubUpdates.UpdateBatch中的名字空间ns及其更新操作对象（nsUpdates类型）。对于其包含的键值对（键k与值vv），调用constructCompositeKey(ns，k)方法重新构造组合键compositeKey，即[]byte(ns)+[]byte{0x00}[]byte(k)。

接着，检查该键值对操作的删除标识，即值vv.Value域。如果vv.Value为nil，说明该键值对更新操作为删除操作，则继续调用dbBatch.Delete(compositeKey)方法，添加该删除操作到dbBatch对象（UpdateBatch类型）中。否则，调用dbBatch.Put(compositeKey，statedb.EncodeValue(vv.Value，vv.Version))方法，将vv.Version中的区块号与交易序号经过编码序列化成字节数组，并与vv.Value组合成编码值encodedValue，再将其写入操作添加到dbBatch对象中。

然后，调用dbBatch.Put(savePointKey，height.ToBytes())方法，添加保存点标识的KV键值对。其中，键为[]byte{0x00}，值为版本height（包含最新区块号和最新交易序号）经过编码序列化后的字节数组。

最后，调用vdb.db.WriteBatch(dbBatch，true)方法，以原子操作方式将dbBatch更新同步到状态数据库上。注意，在写入数据库时同样会重新构造KV键值对，在原来的键上添加数据库名称（链ID/账本ID）前缀，即[]byte(dbName)+[]byte{0x00}，以隔离不同通道上的状态数据。

3.更新历史数据库

Peer节点账本kvLedger对象继续调用l.historyDB.Commit(block)方法，以更新区块block中经过Endorser背书的有效交易数据到历史数据库中，如代码清单5-37所示。

代码清单5-37　historyDB历史数据库的Commit()方法更新区块数据的源码示例

core/ledger/kvledger/history/historydb/historyleveldb/historyleveldb.go文件

func (historyDB *historyDB) Commit(block *common.Block) error {

 blockNo := block.Header.Number // 获取区块号

 var tranNo uint64

 dbBatch := leveldbhelper.NewUpdateBatch()

 logger.Debugf("Channel [%s]: Updating history database for blockNo [%v] with [%d] transactions",

 historyDB.dbName, blockNo, len(block.Data.Data))

 // 获取交易验证码列表

 txsFilter := util.TxValidationFlags(block.Metadata.Metadata[common.BlockMetadata-Index_TRANSACTIONS_FILTER])

 if len(txsFilter) == 0 {

 txsFilter = util.NewTxValidationFlags(len(block.Data.Data))

 block.Metadata.Metadata[common.BlockMetadataIndex_TRANSACTIONS_FILTER] = txs-Filter

 }

 for _, envBytes := range block.Data.Data { // 遍历区块所有交易数据

 if txsFilter.IsInvalid(int(tranNo)) { // 过滤掉无效交易

 logger.Debugf("Channel [%s]: Skipping history write for invalid transac-tion number %d",

 historyDB.dbName, tranNo)

 tranNo++

 continue

 }

 // 解析获取交易消息Envelope结构对象

 env, err := putils.GetEnvelopeFromBlock(envBytes)

 ……

 payload, err := putils.GetPayload(env) // 解析获取消息负载

 ……

 chdr, err := putils.UnmarshalChannelHeader(payload.Header.ChannelHeader)

 // 解析获取通道头部

 ……

 // 检查类型：经Endorser背书的普通交易消息

 if common.HeaderType(chdr.Type) == common.HeaderType_ENDORSER_TRANSACTION {

 // 从交易消息中解析提取链码动作

 respPayload, err := putils.GetActionFromEnvelope(envBytes)

 ……

 txRWSet := &rwsetutil.TxRwSet{}

 // 解析交易读写集到TxReadWriteSet结构对象中

 if err = txRWSet.FromProtoBytes(respPayload.Results); err != nil {

 return err

 }

 // 遍历所有读写集，重新构造KV键值对添加到历史数据库

 for _, nsRWSet := range txRWSet.NsRwSets {

 ns := nsRWSet.NameSpace

 for _, kvWrite := range nsRWSet.KvRwSet.Writes {

 writeKey := kvWrite.Key

 // 构造组合键

 compositeHistoryKey := historydb.ConstructCompositeHistoryKey (ns, writeKey, blockNo, tranNo)

 // 写入空的字节数组[]byte{}

 dbBatch.Put(compositeHistoryKey, emptyValue)

 }

 }

 } else {

 // 跳过交易，因为该消息不是经过Endorser背书的普通交易消息

 logger.Debugf("Skipping transaction [%d] since it is not an endorse-ment transaction\n", tranNo)

 }

 tranNo++

 }

 height := version.NewHeight(blockNo, tranNo) // 创建版本对象

 dbBatch.Put(savePointKey, height.ToBytes()) // 添加保存点用于恢复

 // 同步更新批量操作dbBatch到历史数据库中

 if err := historyDB.db.WriteBatch(dbBatch, true); err != nil {

 return err

 }

 logger.Debugf("Channel [%s]: Updates committed to history database for blockNo [%v]", historyDB.dbName, blockNo)

 return nil

}

Commit()方法首先获取区块元数据的BlockMetadataIndex_TRANSACTIONS_FILTER索引项，解析获取交易验证码列表txsFilter。

接着，循环遍历block.Data.Data集合中的交易，通过txsFilter列表过滤掉无效交易。同时，记录下区块内的交易序号tranNo，再解析出交易包含的消息负载与通道头部，过滤筛选出经过Endorser背书签名的普通交易消息（通道头部类型为ENDORSER_TRANSACTION），获取当前交易上链码动作对象中的提案响应消息负载respPayload，并从respPayload.Results中解析出该交易的模拟执行结果读写集txRWSet（rwsetutil.TxRwSet类型）。

然后，循环遍历交易读写集txRWSet的名字空间ns中的公共数据写集合，对于其中的每个写数据（KVWrite类型），提取该写数据的键kvWrite.Key作为writeKey。接着，调用historydb.ConstructCompositeHistoryKey()函数，如代码清单5-38所示，使用分隔符[]byte{0x00}依次分割历史数据信息（ns，writeKey，blockNo+tranNo）字节数组，以构造新的组合键compositeHistoryKey。其中，blockNo+tranNo用于标识数据版本，并且执行EncodeOrderPreservingVarUint64()方法对blockNo与tranNo重新编码成字节数组。然后，调用dbBatch.Put(compositeHistoryKey，emptyValue)方法，将compositeHistoryKey的写入操作添加到历史数据库更新批量操作dbBatch（UpdateBatch类型）中。其中，emptyValue为空字节数组[]byte{}，这是由于dbBatch.Put()方法不允许参数为nil。

如此循环处理所有的公共数据写集合，直到区块中的所有交易对象被处理完毕，再调用dbBatch.Put(savePointKey，height.ToBytes())方法，添加保存点标识的KV键值对到dbBatch中，以记录当前数据的版本。其中，键为[]byte{0x00}，值为版本height（包含区块号与交易序号）经过编码序列化后的字节数组。

代码清单5-38　historyDB历史数据库的ConstructCompositeHistoryKey()函数构造组合键的源码示例

core/ledger/kvledger/history/historydb/histmgr_helper.go文件

func ConstructCompositeHistoryKey(ns string, key string, blocknum uint64, trannum uint64) []byte {

 var compositeKey []byte

 compositeKey = append(compositeKey, []byte(ns)...)

 compositeKey = append(compositeKey, compositeKeySep...)

 compositeKey = append(compositeKey, []byte(key)...)

 compositeKey = append(compositeKey, compositeKeySep...)

 compositeKey = append(compositeKey, util.EncodeOrderPreservingVarUint64(blocknum)...)

 compositeKey = append(compositeKey, util.EncodeOrderPreservingVarUint64(trannum)...)

 return compositeKey

}

最后，调用historyDB.db.WriteBatch(dbBatch，true)方法，同步更新dbBatch到历史数据库（LevelDB）中。注意，在写入数据库时同样会重新构造KV键值对，在原来的键上添加数据库名称前缀，即[]byte(dbName)+[]byte{0x00}，以隔离不同通道上的历史数据记录。
5.5　小结

本章介绍了Committer记账节点的设计与实现机制，包括创建与调用Commiter功能模块（交易验证器与账本提交器）的流程。其中，交易验证器用于验证交易数据的合法性，调用VSCC系统链码验证背书策略的有效性。账本提交器负责对交易执行MVCC检查，标记交易的有效性，并提交区块数据（公共数据与隐私数据哈希值）到区块文件中，更新区块索引数据库，保存隐私数据到隐私数据库，同步有效交易的数据到状态数据库，提交经过Endorser背书签名的有效交易数据到历史数据库。
第6章　Gossip消息模块

比特币本质上就是一场海市蜃楼。

——伯克希尔哈撒韦公司，沃伦·巴菲特

本章分析Hyperledger Fabric中Gossip消息模块的设计与实现，其源代码主要分布在/gossip、/peer、和/protos等目录下，如表6-1所示。读者可以在本章了解到Gossip消息模块的启动流程，以及Gossip消息通信与处理机制，这是理解Gossip消息模块的运行时架构如何实现的基础。另外，读者还可以了解到Gossip消息模块的节点管理机制、分发数据消息机制、反熵算法数据同步机制等。

表6-1　Gossip消息模块相关源码列表

 [image:]

 [image:]

6.1　功能概述

Gossip消息模块采用了Gossip消息协议（流言算法）[22]，该算法自20世纪70年代提出至今已经有40多年的历史，其特点是简单高效，具有良好的可扩展性与鲁棒性，已广泛应用于分布式定位、数据库复制等领域，如分布式系统Cassandra采用Gossip消息协议来实现集群的失败检测与负载均衡。

Gossip消息模块为Peer节点提供了安全、可靠、可扩展的P2P数据分发协议（Data Dissemination Protocol），用于广播数据与同步状态数据，以确保通道内所有Peer节点上账本数据的一致性。同时，周期性地同步更新节点存活信息、节点成员关系信息、节点身份信息、数据信息（区块数据和隐私数据）、Leader主节点选举信息等，及时清理过期无效的消息与更新节点信息相关列表，确保Peer节点上信息的时效性。Gossip消息协议能够保证数据转发全网的成功率，能够有效避免网络拥塞与路径失效问题，同时采用签名与验签等安全机制以防止转发拜占庭节点的伪造消息。

Leader主节点通过Deliver()接口从Orderer节点请求获取通道账本上的所有区块（不包含隐私数据）。目前，Hyperledger Fabric 1.1.0的实验新特性支持隐私数据（1.2.0及以后版本已经支持），由Endorser背书节点基于Gossip消息协议在组织内传播隐私数据，同时将隐私数据哈希值记录到模拟执行结果的公有数据中，提交给Orderer节点打包到区块里，发送给Leader主节点。接着，Leader主节点随机选择组织所属MSP组件（通常对应于一个组织）中的3个近邻节点（不足3个节点的选择全部近邻节点），转发账本区块数据，同时，通过反熵算法（AntiEntropy）基于账本的区块链高度差来同步缺失的数据（包括区块数据与隐私数据）。然后，近邻节点重复上述过程将数据传播到组织内的其他Peer节点上，直到账本高度一致为止。

Hyperledger Fabric网络中的每个合法Peer节点都拥有已认证的身份证书与PKI-ID标识符（基于身份证书计算的哈希值）。同时，利用pkiID2Cert字典管理节点PKI-ID及其身份证书信息之间的映射关系。

Gossip消息模块主要负责管理Peer成员节点，提供分发数据与更新信息的机制、反熵算法、Gossip消息存储更新与安全机制等。

1.管理网络Peer成员节点，维护节点信息相关列表

（1）管理新加入Peer节点

新启动的Peer节点会主动连接Bootstrap启动引导节点，发送成员关系请求消息，通过验证后等待成员关系响应消息。该消息封装了存活节点与离线节点的AliveMsg消息。接着，将该消息更新到本地Gossip服务实例中discovery模块上的节点信息相关列表，包括最近联系节点的时间戳列表、存活与离线节点的成员关系对象（MembershipStore类型）、节点成员信息列表id2Member等，具体过程分析见6.4.1节。

（2）选举Leader主节点

Leader主节点代表组织连接Orderer服务节点，请求获取通道账本的所有区块，并广播到组织内的其他Peer节点。选举Leader主节点包括静态配置方式（2.6.3节）与动态配置方式（6.4.2节）。如果采用动态选举Leader主节点的方式，则Peer节点会先向组织内的其他节点广播proposal消息，声称参与Leader主节点的选举，并缓存其他节点发送的proposal消息。接着，按照PKI-ID字母顺序进行排序，选举最前面的节点作为Leader主节点。然后，Leader主节点会周期性地广播declaration消息，通知其他节点放弃Leader主节点的竞争。同时，其他节点也会周期性地检查是否收到了declaration消息，以判断当前Leader主节点的存活状态。如果发现Leader主节点离线，则其他节点自动进入新一轮选举Leader主节点的流程，具体过程分析见6.4.2节。

（3）更新节点的相关信息与数据信息机制

Gossip消息模块在创建具体服务模块时会启动相应的goroutine，建立消息处理循环提供服务，具体说明如下。

·Gossip服务实例及其discovery模块：负责周期性地请求节点存活信息、成员关系信息等，确保discovery模块能够及时发现新节点与离线节点，维护加入和离开通道的Peer节点成员关系（6.4.3节）；

·Gossip服务实例的certStore模块：周期性地向其他节点请求Pull类节点身份消息（PullMsgType_IDENTITY_MSG类型的消息内容），拉取其他节点上合法的PeerIdentity类型节点身份消息，维护本地idMapper模块最新的节点身份信息字典pkiID2Cert（6.4.3节）；

·chanState模块中GossipChannel通道对象上的blocksPuller模块：周期性地向其他节点发送Pull类数据消息（PullMsgType_BLOCK_MSG消息内容），拉取缺失的DataMsg类型数据消息到本地节点，并提交账本（6.5.4节）。

2.分发数据消息与更新通道状态信息

（1）分发数据消息（区块数据与隐私数据）

①区块数据

Leader主节点基于Deliver()接口从Orderer服务节点请求账本上的所有区块（含有公共数据与隐私数据哈希值），缓存到消息负载缓冲区并等待提交账本，随机选择节点转发数据，通过Gossip消息协议广播到通道组织内的所有Peer节点。这种数据分发方式使得数据传播路径具有一定的随机性，能够有效提高整个网络系统的健壮性与鲁棒性，适应节点的动态变化，避免网络拥塞导致的通信开销大等问题（6.5.1节）。

②隐私数据（明文）

如果模拟执行结果中存在合法的隐私数据读写集（不为nil），则Endorser背书节点可通过Gossip消息协议将隐私数据分发到通道组织内授权的其他Peer节点上。同时，利用transient隐私数据存储对象暂时保存到本地transient隐私数据库（LevelDB）中。注意，这里的隐私数据读写集都是明文，如果将其发送给Orderer服务节点排序出块并广播给通道内的所有节点，则有可能向未授权的节点泄露隐私数据（6.5.2节）。

（2）更新通道状态信息

Gossip服务实例的chanState模块负责周期性地向近邻节点发布通道状态信息（包含节点最新账本高度等），同时，周期性地请求其他节点的通道状态信息，并在其Gossip-Channel通道对象上维护其他节点的通道状态信息，以提供给反熵算法模块用于计算与其他节点的最大账本高度差，从而准确地标识岀本地所缺失的数据信息（6.5.3节）。

3.反熵算法同步缺失数据（区块数据与隐私数据）

由于网络延迟、节点故障等原因，部分Peer节点可能没有及时保存完整的账本数据。因此，Peer节点在创建Gossip服务实例的state模块时会执行反熵算法函数，负责周期性地检查本地节点与其他节点的最大账本高度差，以构造StateRequest类型远程状态请求消息，并从其他节点拉取本地的缺失数据（区块数据与隐私数据）。如此重复执行上述数据请求操作，直至账本高度差降为0。这样，所有节点就都能与Orderer节点上账本的区块数据以及Endorser背书节点上的隐私数据保持同步更新（6.6节）。因此，反熵算法可以有效应对节点崩溃、网络暂时无法连通等故障，避免集中从单节点同步数据。

4.提供Gossip消息存储更新与安全机制

为了保存各种类型的Gossip消息，Gossip消息模块创建了不同类型的消息存储对象，添加新消息时采用不同的消息验证策略以验证有效性，从而判断是否替换当前保存的原有消息。例如，验证AliveMsg类型节点的存活消息，需要比较节点的PKI-ID与消息时间戳。同时，Gossip消息模块还会周期性地清理消息存储对象中的过期消息，以保证消息的时效性（6.3.2节）。

同时，Gossip服务实例利用MCS（MessageCryptoService）消息加密模块对消息进行签名与验签，以及验证节点证书的有效性，从而防止拜占庭节点（恶意节点）伪造假消息传播到其他节点上。

如果启用TLS认证连接，则在第一次与远程节点建立握手连接时验证对方TLS证书的真实性，并检查对方节点的身份证书信息是否合法有效。如果通过了验证，则认为可以信任该节点，将其添加到idMapper模块的节点身份信息字典pkiID2Cert中。
6.2　Gossip消息模块启动流程

Gossip消息模块的启动流程包括两个步骤，即创建与初始化Gossip服务器实例、初始化通道的Gossip服务模块。

（1）创建与初始化Gossip服务器实例（6.2.1节）

如3.2节所述，Peer节点启动时调用service.InitGossipService()方法，创建全局的Gossip服务器实例gossipServiceInstance（service.gossipServiceImpl类型），负责管理节点上的Gossip服务模块与组件，如deliveryService服务模块字典、leaderElection选举模块字典等。该Gossip服务器实例调用NewGossipService()函数以创建Gossip服务实例对象（gossip.gossipServiceImpl类型），管理具体的Gossip服务模块以提供Gossip服务功能，如idMapper模块用于管理Peer节点的身份信息、comm通信模块提供通信接口等。同时，在创建具体的Gossip服务模块时会启用goroutine等服务程序，支撑Gossip服务模块的服务正常运行。最后，Gossip服务器实例在NewGossipService()函数中继续做好Gossip消息模块启动前的准备工作，注册到gRPC服务器上提供GossipStream()等服务接口。

注意，此时Gossip服务器实例gossipServiceInstance还没有创建与启动当前通道上的deliverService服务模块（Deliver服务实例），无法从Orderer节点接收区块。因此，对于新启动的Peer节点来说，此时本地还没有接收到任何新的账本数据。

（2）初始化通道的Gossip服务模块（6.2.2节）

Peer节点加入应用通道时请求Endorser节点调用CSCC系统链码，创建本地节点上关联通道的链结构对象，用于管理通道配置、账本等资源。接着，调用service.GetGossip-Service().Initialize-Channel()方法，初始化该通道上的Gossip服务模块，包括Gossip-Channel通道对象、隐私数据处理句柄privateHandler、state模块、deliverService服务模块等。如果配置了动态选举Leader主节点的模式，则创建election选举模块参与竞争Leader主节点。如果启用了静态配置模式且当前节点是Leader主节点，则启动该通道上的deliver-Service服务模块，从Orderer节点请求获取该通道上的账本区块，并转发给组织内的其他Peer节点。
6.2.1　创建与初始化Gossip服务器实例

1.创建Gossip服务器实例

Peer节点启动时执行的serve()函数负责构造Gossip消息模块的启动参数（3.2.4节），包括Gossip初始节点列表bootstrap、本地MSP签名者对象serializedIdentity、消息加密服务组件messageCryptoService、MSP安全辅助组件secAdv等。接着，调用service.InitGossipService()函数，基于上述参数创建Gossip服务器实例。该函数首先调用integration.NewGossip-Component()函数，构造Gossip服务实例对象gossip（gossip.gossipServiceImpl类型，如图6-2所示），并注册到gRPC服务器（7051端口）或自定义的gRPC服务器上以提供Gossip服务，再基于gossip对象创建Gossip服务器实例gossipServiceInstance（service.gossipServiceImpl类型，如图6-1所示）。最后，serve()函数执行defer service.GetGossip-Service().Stop()，定义在退出时停止Gossip服务器实例对象，并释放占用的相关资源。

2.创建Gossip服务实例

gossip.NewGossipService()函数初始化Gossip服务实例（gossip.gossipServiceImpl类型），创建Gossip服务模块提供服务，并启用goroutine等服务程序，具体说明如下。

·stateInfoMsgStore：Gossip服务实例的消息存储模块（messageStoreImpl类型），用于保存StateInfo类型状态信息消息，定义了消息验证策略函数pol()，用于判断消息的有效性，并执行go store.expirationRoutine()以定时清理过期消息。

·idMapper：节点身份管理器（identityMapperImpl类型），负责维护pkiID2Cert字典，保存节点的PKI-ID及其节点身份信息（storedIdentity类型，封装了PKI-ID、身份证书以及过期时间等参数）。其中，节点的PKI-ID是调用mcs.GetPK-IidOfCert()方法根据所属组织的MSP ID与节点身份证书信息计算的哈希值（SHA-256哈希算法）。同时，执行go idMapper.periodicalPurgeUnusedIdentities()，负责周期性地从pkiID2Cert字典中删除过期、被撤销以及无效的节点身份信息。

·comm：Gossip服务实例通信模块，向其他模块提供通信接口以实现Peer节点之间的通信。NewGossipService()函数根据参数指定是否提供gRPC服务器，分别调用createCommWithServer()函数与createCommWithoutServer()函数，创建通信实例对象（commImpl类型，实现了GossipServer服务接口），并注册到Peer节点gRPC服务器上（指定端口或7051端口），对外提供GossipStream()、Ping()等gRPC服务接口，用于建立服务连接，支撑其他模块的通信。

·chanState：Gossip服务实例的通道消息处理模块（channelState类型），管理Peer节点所有链上的GossipChannel通道列表channels（map[string]channel.GossipChannel类型），维护链ID及其GossipChannel通道对象（gossipChannel类型，实现了GossipChannel接口）。其中，GossipChannel通道对象可分别提供blockMsgStore、stateInfoMsgStore与leaderMsgStore等消息存储对象，用于处理通道内传播的消息，包括DataMsg类型数据消息、状态类消息、LeadershipMsg类型主节点选举消息等。该对象创建时会执行两个go gc.periodicalInvocation()，分别周期性地执行gc.publishStateInfo()方法与gc.requestStateInfo()方法，以用于发布与请求通道状态信息（含有账本的区块链高度）。同时，还利用blocksPuller模块周期性地发送Pull类数据消息（PullMsgType_BLOCK_MSG类型的消息内容），请求拉取缺失数据。

 [image:]

图6-1　Gossip服务器实例service.gossipServiceImpl类型示意图

 [image:]

图6-2　Gossip服务实例gossip.gossipServiceImpl类型示意图

·emitter：Gossip服务实例上的批量消息发送模块（batchingEmitterImpl类型），为其他模块提供发送Gossip消息的接口。为了提高消息的发送效率，emitter模块分类过滤消息缓冲区（默认最多10个消息）中的消息集合，分批打包发送给其他节点。同时，执行go p.periodicEmit()以周期性地（默认为10毫秒，peer.gossip.maxPropagationBurstLatency配置项）检查缓冲区消息是否满足发送的条件，并执行g.sendGossipBatch()回调函数以分类分批发送消息到其他节点。

·discAdapter：discoveryAdapter类型的适配器模块，用于为discovery模块接收、过滤与转发消息。该适配器模块封装了comm通信模块用于底层消息的通信，并定义了discovery模块的gossipFunc()分发数据函数和forwardFunc()转发数据函数，它们都将消息添加到emitter模块中请求发送。其中，forwardFunc()函数还定义了消息过滤器用于过滤节点。同时，discAdapter适配器模块还提供了incChan通道，用于接收AliveMsg类型、MemReq类型与MemRes类型消息。

·disSecAdap：discoverySecurityAdapter类型的安全适配器模块，封装了Security-Advisor安全辅助组件、idMapper模块、MessageCryptoService消息加密服务组件、通信模块、日志模块、Peer节点身份证书信息等，可提供身份管理、消息加密、签名与验签等安全服务。

·certPuller：周期性地发送Pull类节点身份消息，请求拉取PeerIdentity类型节点身份消息，并通过自身的engine模块管理存储消息摘要（节点的PKI-ID），具体处理4类底层交互的Pull类消息（Hello消息、DataDig摘要消息、DataReq摘要请求消息与DataUpdate摘要更新消息）。

·certStore：通过certPuller模块管理与存储PeerIdentity类型节点身份消息，预处理Pull类节点身份消息，并交由certPuller模块具体处理。当交互处理完DataReq摘要请求消息时，执行RegisterMsgHook()回调函数，将请求节点的信息更新到pkiID2-Cert字典中。

·disc：Gossip服务实例的discovery模块（gossipDiscoveryImpl类型），负责维护通道中其他Peer节点的状态与成员关系，使用deadLastTS与aliveLastTS时间戳列表（map[string]*timestamp）保存离线节点与存活节点最近发生联系的时间戳，使用aliveMembership与deadMembership成员关系存储对象管理存活节点与离线节点的成员关系消息列表（map[string]*proto.SignedGossipMessage），同时使用id2Member字典（map[string]*NetworkMember）管理联系过的节点。其中，键都是PKI-ID。同时，discovery模块还负责处理AliveMsg类型节点存活消息、MemReq类型成员关系请求消息和MemRes类型成员关系响应消息，使用aliveMsgStore消息存储对象保存上述3类消息中封装的AliveMsg消息，并更新到本地节点的相关信息列表中。另外，NewDiscoveryService()函数在创建discovery模块后启动了5个goroutine，用于支持discovery模块处理消息与管理成员关系，具体如下。

·go d.periodicalSendAlive()：周期性地（默认5秒）发送AliveMsg消息，基于comm模块通知组织内的其他Peer节点。

·go d.periodicalCheckAlive()：周期性地（默认2.5秒）遍历检查aliveLastTS时间戳列表。如果发现节点的时间差大于阈值（默认25秒），则认为该节点可能离线，那么此时应调用discovery模块的d.expireDeadMembers()方法，更新相关列表以清理该节点，如deadLastTS时间戳列表，并关闭与该节点的连接。

·go d.handleMessages()：建立消息处理循环并使用select语句阻塞等待，监听discAdapter适配器模块的discoveryAdapter.incChan通道消息，包括AliveMsg消息、MemReq消息与MemRes消息。接着，调用discovery模块的d.handle-Message()方法处理消息，同时监听d.toDieChan通道上的关闭消息。

·go d.periodicalReconnectToDead()：周期性地（默认25秒）通过discAdapter适配器发起Ping测试，试图重新连接deadLastTS时间戳列表中已经离线的Peer节点。如果发现能够重新连通该离线节点，则通过discoveryAdapter适配器模块构造并发送MemReq消息，以请求获取节点的成员关系信息。

·go d.handlePresumedDeadPeers()：处理可能已经离线的节点，建立消息处理循环并使用select语句阻塞等待，监听d.comm.PresumedDead()方法返回的discovery-Adapter.presumedDead通道消息。接着，调用isAlive()方法以检查该节点的在线状态，如果aliveLastTS列表包含该节点，则调用d.expireDeadMembers()方法以清理离线节点，更新时间戳列表等。同时，监听d.toDieChan通道上的关闭消息。

NewGossipService()函数的源码示例如代码清单6-1所示。

代码清单6-1　NewGossipService()函数的源码示例

gossip/gossip/gossip_impl.go文件

// 创建Gossip服务实例并初始化服务模块

func NewGossipService(conf *Config, s *grpc.Server, secAdvisor api.Security-Advisor,

 mcs api.MessageCryptoService, selfIdentity api.PeerIdentityType,

 secureDialOpts api.PeerSecureDialOpts) Gossip {

 var err error

 lgr := util.GetLogger(util.LoggingGossipModule, conf.ID)

 g := &gossipServiceImpl{ // 构造Gossip服务实例

 selfOrg: secAdvisor.OrgByPeerIdentity(selfIdentity),

 secAdvisor: secAdvisor,

 selfIdentity: selfIdentity,

 presumedDead: make(chan common.PKIidType, presumedDeadChanSize),

 disc: nil,

 mcs: mcs,

 conf: conf,

 ChannelDeMultiplexer: comm.NewChannelDemultiplexer(),

 logger: lgr,

 toDieChan: make(chan struct{}, 1),

 stopFlag: int32(0),

 stopSignal: &sync.WaitGroup{},

 includeIdentityPeriod: time.Now().Add(conf.PublishCertPeriod),

 }

 g.stateInfoMsgStore = g.newStateInfoMsgStore() // 状态信息消息存储模块

 // 创建Peer身份管理器：管理身份证书与PKI-ID

 g.idMapper = identity.NewIdentityMapper(mcs, selfIdentity, func(pkiID common.PKIidType, identity api.PeerIdentityType) {

 g.comm.CloseConn(&comm.RemotePeer{PKIID: pkiID})

 g.certPuller.Remove(string(pkiID))

 })

 // 通信模块

 if s == nil {

 g.comm, err = createCommWithServer(conf.BindPort, g.idMapper, selfIden-tity, secureDialOpts)

 } else {

 g.comm, err = createCommWithoutServer(s, conf.TLSCerts, g.idMapper, selfIden-tity, secureDialOpts)

 }

 ……

 g.chanState = newChannelState(g) // 创建chanState模块

 // 创建emitter模块分类批量发送消息

 g.emitter = newBatchingEmitter(conf.PropagateIterations,

 conf.MaxPropagationBurstSize, conf.MaxPropagationBurstLatency,

 g.sendGossipBatch)

 // 创建DiscoveryAdapter适配器模块、DiscoverySecurityAdapter安全适配器模块、Discovery

 服务实例

 g.discAdapter = g.newDiscoveryAdapter()

 g.disSecAdap = g.newDiscoverySecurityAdapter()

 g.disc = discovery.NewDiscoveryService(g.selfNetworkMember(), g.discAdapter, g.disSecAdap, g.disclosurePolicy)

 g.logger.Info("Creating gossip service with self membership of", g.selfNet-workMember())

 g.certPuller = g.createCertStorePuller() // certPuller模块，请求节点身份信息

 // certStore模块

 g.certStore = newCertStore(g.certPuller, g.idMapper, selfIdentity, mcs)

 if g.conf.ExternalEndpoint == "" {

 g.logger.Warning("External endpoint is empty, peer will not be accessible outside of its organization")

 }

 go g.start() // 启动Gossip服务实例

 go g.connect2BootstrapPeers() // 连接Bootstrap节点

 return g

}

接着，NewGossipService()方法执行go g.start()与go g.connect2BootstrapPeers()，启动Gossip服务实例对象并连接到Bootstrap节点。

其中，go g.start()启动了3个goroutine，具体说明如下。

·go g.syncDiscovery()：建立消息处理循环，周期性地（默认4秒）调用discovery模块的g.disc.InitiateSync()方法，在discovery模块的aliveMembership对象（Membership-Store类型）中随机选出3个节点，发送MemReq类型成员关系请求消息，请求获取成员关系信息（包含合法的存活节点信息与离线节点信息），以更新本地节点的相关信息列表；

·go g.handlePresumedDead()：建立消息处理循环并使用select语句阻塞等待消息，监听接收comm通信模块的deadEndpoints通道消息。该消息封装了离线节点的PKI-ID。接着，将该消息转发到gossip实例的presumedDead通道（即discovery适配器的presumedDead通道），交由handlePresumedDeadPeers()方法进行处理；

·go g.acceptMessages(incMsgs)：建立消息处理循环并使用select语句阻塞等待消息，监听接收comm通信模块中msgPublisher对象上订阅通道的过滤消息incMsgs，同时过滤掉Conn类型、Empty类型、PrivateReq类型、PrivateRes类型与PrivateData类型消息，再交由Gossip服务实例的g.handleMessage()方法进行处理。

go g.connect2BootstrapPeers()用于连接BootstrapPeers列表（peer.gossip.bootstrap配置项）中的引导启动节点，请求获取现有节点的成员关系信息，通过discovery模块发送MemReq类型消息，请求获取成员关系信息并更新本地相关列表。

表6-2　Gossip服务器实例启动的服务程序列表

 [image:]

6.2.2　初始化通道上的Gossip服务模块

1.初始化启动参数

Peer节点通过CSCC系统链码加入指定的应用通道，调用createChain()方法初始化当前通道上的Gossip服务模块，包括GossipChannel消息通道、隐私数据处理句柄对象、数据请求服务deliveryService模块、选举模块等，如代码清单6-2所示。

代码清单6-2　createChain()函数的源码示例

core/peer/peer.go文件

func createChain(cid string, ledger ledger.PeerLedger, cb *common.Block) error {

 // 获取已保存的通道配置，即与channelConfigKey对应的值

 chanConf, err := retrievePersistedChannelConfig(ledger)

 ……

 var bundle *channelconfig.Bundle

 if chanConf != nil {

 // 创建新的通道配置实体对象Bundle结构

 bundle, err = channelconfig.NewBundle(cid, chanConf)

 ……

 } else { // 解析配置消息Envelope对象，即第1个交易

 envelopeConfig, err := utils.ExtractEnvelope(cb, 0)

 ……

 // 创建新的通道配置实体对象Bundle结构

 bundle, err = channelconfig.NewBundleFromEnvelope(envelopeConfig)

 ……

 }

 // 检查通道配置对象是否支持指定的功能特性

 capabilitiesSupportedOrPanic(bundle)

 // 检查通道配置对象上策略管理器的规范性

 channelconfig.LogSanityChecks(bundle)

 ……

 cs := &chainSupport{ // 构造链支持对象

 Application: ac, // 通道配置上的Application配置项

 ledger: ledger, // PeerLedger账本对象

 // 区块文件账本对象

 fileLedger: fileledger.NewFileLedger(fileLedgerBlockStore{ledger}),

 }

 ……

 // 创建新的通道资源配置实体Bundle对象

 rBundle, err := resourcesconfig.NewBundle(cid, resConf, bundle)

 ……

 // 构造并设置新通道资源配置的BundleSource对象

 cs.bundleSource = resourcesconfig.NewBundleSource(

 rBundle, // 通道资源配置实体Bundle对象

 gossipCallbackWrapper, // 回调函数

 trustedRootsCallbackWrapper, // 回调函数

 mspCallback, // 回调函数

 peerSingletonCallback, // 回调函数

)

 ……

 validator := txvalidator.NewTxValidator(vcs) // 创建新的交易验证器

 c := committer.NewLedgerCommitterReactive(ledger, func(block *common.Block) error { // 定义回调函数获取账本提交器

 chainID, err := utils.GetChainIDFromBlock(block) // 获取链ID

 ……

 return SetCurrConfigBlock(block, chainID) // 设置指定链的当前配置区块

 })

 // 通过通道配置获取默认的Orderer排序节点列表

 ordererAddresses := bundle.ChannelConfig().OrdererAddresses()

 ……

 // 初始化指定通道上的Gossip服务模块

 // 若是Leader主节点，则从Orderer节点获取通道账本区块，否则，从组织内其他节点接收数据

 service.GetGossipService().InitializeChannel(bundle.ConfigtxValidator().Chain-ID(), ordererAddresses, service.Support{

 Validator: validator, // 交易验证器

 Committer: c, // 账本提交器

 Store: store, // transient隐私数据存储对象

 Cs: simpleCollectionStore, // 隐私数据集合存储对象

 })

 chains.Lock()

 defer chains.Unlock()

 chains.list[cid] = &chain{ // 构造新链结构并插入Peer节点上的链结构字典

 cs: cs, // 链支持对象

 cb: cb, // 最新配置区块

 committer: c, // 账本提交器

 }

 return nil

}

createChain()方法首先调用retrievePersistedChannelConfig(ledger)函数，读取账本中保存的通道配置chanConf，并构造通道配置实体对象bundle（channelconfig.Bundle类型）。接着，调用resourcesconfig.NewBundle(cid，resConf，bundle)方法，创建当前通道的资源配置实体对象rBundle（resourcesconfig.Bundle类型）。然后，调用resourcesconfig.NewBundleSource()方法，创建并设置当前通道的链支持对象（chainSupport类型）上的bundleSource字段对象bs（resourcesconfig.BundleSource类型），并执行bs.Update(bundle)方法以更新底层的资源配置实体rBundle，再依次执行gossipCallbackWrapper()、trustedRootsCallbackWrapper()、mspCallback()、peerSingletonCallback()等回调函数。注意，Fabric 1.2以后废弃了资源配置实体对象rBundle，替换了Peer节点链结构中链支持对象上的bundleSource字段类型（channel-config.BundleSource类型），以保存操作通道配置实体对象（channelconfig.Bundle类型）。

（1）gossipCallbackWrapper()函数

gossipCallbackWrapper()函数根据当前新链的通道配置创建与更新对应的GossipChannel通道对象，用于过滤消息并控制其在通道内的传播。

gossipCallbackWrapper()函数首先调用gossipEventer.ProcessConfigUpdate()方法，更新当前通道链结构的通道配置。其中，参数（gossipSupport类型）包含当前通道配置实体bundle中的交易验证器、通道配置及其Application应用通道配置。该方法检查参数的合法性之后，调用ce.receiver.updateAnchors()方法，遍历通道配置中所有组织下的锚节点列表，针对每个锚节点构造对应的加入通道消息（joinChannelMessage类型）。该消息封装了通道的配置序号（检查通道的配置版本）与组织的锚节点列表members2AnchorPeers（map[string][]api.Anchor-Peer类型）。其中，members2AnchorPeers保存了每个MSP组织中的锚节点列表（含地址与端口）。接着，ProcessConfigUpdate()方法调用Gossip服务实例（gossip.gossipServiceImpl）的g.JoinChan()方法，创建新的GossipChannel通道对象，并连接锚节点以请求节点的成员关系信息。

首先，g.JoinChan()方法调用g.chanState.joinChannel()→channelState.joinChannel()方法，检查当前chanState模块的channels列表（map[string]channel.GossipChannel类型）中是否存在与当前新链（chainID）关联的GossipChannel通道对象。

如果不存在指定的GossipChannel通道对象，则调用channel.NewGossipChannel()方法，创建与当前新链关联的GossipChannel通道对象gc，并依次构造GossipChannel通道对象上的blocksPuller模块、消息存储对象（blockMsgStore、stateInfoMsgStore与leaderMsg-Store）等。同时，channel.NewGossipChannel()方法调用GossipChannel通道的gc.Configure-Channel()方法，基于加入通道消息joinMsg参数更新当前GossipChannel通道对象上的组织列表（即锚节点所属的组织列表）与joinMsg配置消息，过滤掉stateInfoMsgStore存储对象中不合法的消息（发送消息节点不属于锚节点所属的组织列表）。然后，启动2个go gc.periodicalInvocation()，分别周期性地执行gc.publishStateInfo()方法与gc.requestStateInfo()方法，用于发布与请求通道状态信息（包含通道账本的区块链高度等信息）。最后，将新创建的GossipChannel通道对象gc添加到chanState模块的cs.channels[string(chainID)]上，从而使得chanState模块能够管理与过滤当前新链上传播的消息。

如果已经存在指定的GossipChannel通道对象gc，则调用gc.ConfigureChannel()方法，基于joinMsg参数更新配置，包括GossipChannel通道对象的组织列表与joinMsg配置消息，并过滤掉stateInfoMsgStore存储对象中的不合法消息。

接着，g.JoinChan()方法遍历joinMsg消息中的通道组织列表，调用g.learnAnchor-Peers()方法，遍历该通道上的所有锚节点列表，检查每个锚节点的节点地址、端口等信息的合法性，跳过自身节点、与锚节点不属于同一个组织且没有外部端点的节点等，再调用discovery模块的g.disc.Connect()方法，循环尝试与该锚节点建立握手连接，并向锚节点发送MemReq消息，以请求获取节点的成员关系消息。

如图6-3所示的是Peer节点上链结构字典Chains类型示意图。

最后，ProcessConfigUpdate()方法调用ce.receiver.updateEndpoints()方法，更新当前新链配置中最新的Orderer节点列表。如果当前通道上已经创建了deliveryService服务模块（Deliver服务实例），则设置更新Orderer节点列表，并主动断开其客户端（broadcastClient类型）与当前Orderer节点的连接，以重新连接到新的Orderer节点获取区块。实际上，加入通道的新节点上Gossip服务器实例此时还没有创建deliveryService服务模块，需要在后面的service.GetGossipService().InitializeChannel()方法中初始化该模块，因此，这里跳过Orderer节点列表的更新操作。

 [image:]

图6-3　Peer节点上链结构字典chains类型示意图

（2）trustedRootsCallbackWrapper()函数

trustedRootsCallbackWrapper()函数调用updateTrustedRoots(bundle.ChannelConfig())方法，解析新链结构的通道配置，更新当前节点上默认的gRPC服务器中配置的信任根CA证书列表。

（3）mspCallback()函数

mspCallback()函数调用mspmgmt.XXXSetMSPManager()方法，设置全局变量mspMap字典中当前新链上的MSP组件管理器对象，将其设置为当前新链通道配置中的MSP组件管理器，以用于管理该通道配置上所有的MSP组件集合。

（4）peerSingletonCallback()函数

peerSingletonCallback()函数用于更新当前通道链支持对象中的通道配置cs.Application与cs.Resources。

接着，createChain()方法继续准备InitializeChannel()方法的参数以启动Gossip服务器实例，具体如下。

·bundle.ConfigtxValidator().ChainID()：利用通道配置实体对象bundle封装的交易验证器获取当前通道配置中的链ID；

·ordererAddresses：调用bundle.ChannelConfig().OrdererAddresses()方法，获取通道配置中的Orderer节点列表，用于更新deliveryService服务模块启动时连接的服务节点；

·service.Support：服务支持组件对象，包括如下对象。

·Validator：调用txvalidator.NewTxValidator(vcs)函数，创建Committer模块的交易验证器（txValidator类型），封装了vsccValidatorImpl结构（实现了vscc-Validator接口类型），用于执行VSCC以验证交易背书策略的有效性（5.3节）。

·Committer：调用committer.NewLedgerCommitterReactive()方法，基于该链的节点账本对象ledger（kvLedger类型）创建Committer模块的账本提交器（Ledger-Committer类型），并指定其区块事件处理回调函数eventer，以用于设置该链的最新配置区块（5.4节）。

·Store：调用transientStoreFactory.OpenStore()方法，创建指定通道上的transient隐私数据存储对象（transientstore.store类型），用于临时缓存Endorser背书节点通过Gossip消息协议分发的隐私数据（4.4.9节与7.1.7节）。

·Cs：负责维护隐私数据集合存储对象（simpleCollectionStore类型），用于从通道账本中获取指定链码的隐私数据集合配置信息，封装了隐私数据的访问权限策略。

然后，createChain()方法调用service.GetGossipService().InitializeChannel()方法，基于上述参数初始化当前通道上Gossip服务器实例的deliveryService服务模块等。

最后，createChain()方法将创建的通道链结构注册到Peer节点的链结构字典chains.list中，并指定通道的链支持对象、创世区块对象、账本提交器（含有节点账本对象ledger）等，使得Peer节点可以管理该链的通道配置、账本等通道资源，并控制通道内的消息传播。

2.初始化Gossip服务模块

InitializeChannel()方法初始化指定通道上Gossip服务器实例的服务模块或组件，如代码清单6-3所示。

代码清单6-3　InitializeChannel()方法的源码示例

gossip/service/gossip_service.go文件

func (g *gossipServiceImpl) InitializeChannel(chainID string, endpoints []string, support Support) {

 g.lock.Lock()

 defer g.lock.Unlock()

 logger.Debug("Creating state provider for chainID", chainID)

 servicesAdapter := &state.ServicesMediator{GossipAdapter: g, MCSAdapter: g.mcs} // 构造服务适配器

 storeSupport := &DataStoreSupport{ // 构造数据存储支持对象

 TransientStore: support.Store, // transient隐私数据对象

 Committer: support.Committer, // 账本提交器

 }

 // 初始化隐私数据获取组件

 dataRetriever := privdata2.NewDataRetriever(storeSupport)

 fetcher := privdata2.NewPuller(support.Cs, g.gossipSvc, dataRetriever, chainID)

 // 创建Fetcher组件

 coordinator := privdata2.NewCoordinator(privdata2.Support{ // 创建coordinator模块

 CollectionStore: support.Cs,

 Validator: support.Validator,

 TransientStore: support.Store,

 Committer: support.Committer,

 Fetcher: fetcher,

 }, g.createSelfSignedData())

 g.privateHandlers[chainID] = privateHandler{ // 创建隐私数据处理句柄

 support: support,

 coordinator: coordinator,

 distributor: privdata2.NewDistributor(chainID, g),

 }

 g.chains[chainID] = state.NewGossipStateProvider(chainID, servicesAdapter, coor-dinator) // 创建并注册state模块

 if g.deliveryService[chainID] == nil {

 var err error

 g.deliveryService[chainID], err = g.deliveryFactory.Service(g, endpoints, g.mcs) // 创建并注册Deliver服务实例

 ……

 }

 if g.deliveryService[chainID] != nil {

 // 参数peer.gossip.useLeaderElection与peer.gossip.orgLeader是互斥的两个配置项，

 // 如果将两个配置项都设置为true，则会引起Peer节点panic错误并终止

 // 动态选举Leader主节点

 leaderElection := viper.GetBool("peer.gossip.useLeaderElection")

 // 静态设置Leader主节点

 isStaticOrgLeader := viper.GetBool("peer.gossip.orgLeader")

 if leaderElection && isStaticOrgLeader {

 logger.Panic("Setting both orgLeader and useLeaderElection to true isn't supported, aborting execution")

 }

 if leaderElection { // 启用Leader主节点选举模块

 logger.Debug("Delivery uses dynamic leader election mechanism, channel", chainID)

 g.leaderElection[chainID] = g.newLeaderElectionComponent(chainID, g.onStatusChangeFactory(chainID, support.Committer))

 } else if isStaticOrgLeader { // 静态指定Leader主节点

 logger.Debug("This peer is configured to connect to ordering service for blocks delivery, channel", chainID)

 // Leader主节点启动Deliver服务实例以请求获取区块

 g.deliveryService[chainID].StartDeliverForChannel(chainID, support.Committer, func() {})

 } else { // 错误情况

 logger.Debug("This peer is not configured to connect to ordering service for blocks delivery, channel", chainID)

 }

 } else {

 logger.Warning("Delivery client is down won't be able to pull blocks for chain", chainID)

 }

}

InitializeChannel()方法首先创建本地数据存储支持对象storeSupport，封装了transient隐私数据存储对象与账本提交器对象，分别用于访问transient隐私数据库与账本数据（包括区块文件与隐私数据库）。

接着，InitializeChannel()方法调用privdata2.NewDataRetriever(storeSupport)方法，构造dataRetriever对象用于获取隐私数据，然后基于dataRetriever、simpleCollectionStore等参数创建Fetcher组件fetcher，用于请求获取缺失的隐私数据。其中，Fetcher组件在创建时还会启动goroutine，监听PrivateReq类型隐私数据请求消息与PrivateRes类型隐私数据响应消息，如表6-3所示。

表6-3　Gossip服务器实例初始化通道时启动的服务程序列表

 [image:]

然后，InitializeChannel()方法创建coordinator模块，封装交易验证器、账本提交器、隐私数据集合存储对象、transient隐私数据存储对象、隐私数据请求对象Fetcher组件等。接着，将coordinator模块注册到Gossip服务器实例指定通道上的privateHandler隐私数据处理句柄上与state模块上，用于管理本地通道账本上的区块数据与隐私数据，执行验证交易与提交账本、获取本地隐私数据、拉取缺失隐私数据等操作。同时，InitializeChannel()方法创建与初始化该通道上的Gossip服务模块，具体如下。

·privateHandlers（map[string]privateHandler类型）：该字典可保存指定通道上的隐私数据处理句柄（privateHandler类型），提供给Gossip服务实例在DistributePrivate-Data()函数中分发与保存隐私数据。其调用该对象上的distributor.Distribute()方法分发隐私数据，利用该对象上的coordinator.StorePvtData()方法保存隐私数据，例如Endorser节点调用distributePrivateData()→gossipServiceImpl.DistributePrivateData()函数。其中，distributePrivateData()函数是在节点启动时（peer node start）设置的，即privDataDist()函数。

·chains（map[string]state.GossipStateProvider类型）：该字典可保存指定通道上的state模块对象（GossipStateProviderImpl类型）。这里的状态（state）泛指数据，包括区块数据与隐私数据。实际上，state模块负责处理DataMsg类型数据消息、StateRequest类型远程状态请求消息、StateResponse类型远程状态响应消息、pvtDataMsg类型隐私数据等（6.3.4节与6.3.5节），启用goroutine等程序处理对应类型的消息，如表6-3所示。同时，state模块封装了coordinator对象作为ledger属性字段，负责验证交易与提交账本（5.3节与5.4节）。

·deliveryService（map[string]deliverclient.DeliverService类型）：该字典可保存指定通道上的Deliver服务实例（deliverServiceImpl类型，实现了deliverclient.Deliver-Service接口）。其中，Leader主节点会调用StartDeliverForChannel()方法，启动Deliver服务实例，并创建区块分发服务的broadcastClient结构客户端。该客户端定义了连接到Orderer节点的参数及相关回调函数。接着，调用blocksprovider.New-BlocksProvider()方法，创建区块提供者BlocksProvider（blocksProviderImpl类型）并执行DeliverBlocks()方法，主动向Orderer节点请求获取指定范围内（起始区块号是height，结束区块号是math.MaxUint64，即264-1）的区块数据，建立消息处理循环，依次处理每次接收的1个区块数据，解析并添加到本地的消息负载缓冲区中，等待提交账本。同时，将该数据重新封装为DataMsg类型的数据消息（GossipMessage_CHAN_AND_ORG消息标签，不包含隐私数据），最后调用Gossip()方法对消息进行签名，并将该消息添加到指定通道的GossipChannel通道对象上，包括blocksPuller模块与blockMsgStore消息存储对象，再交由emitter模块转发给其他节点。

·leaderElection（map[string]election.LeaderElectionService）：该字典可保存Peer节点上指定通道的Leader主节点选举服务实例（leaderElectionSvcImpl类型），即election模块（6.4.2节）。Leader主节点选举成功后执行g.onStatusChangeFactory()回调函数，启动该通道的deliveryService服务模块，即Deliver服务实例，并从Orderer节点请求获取关联通道的账本数据。当Gossip服务实例停止时，同样会检查停止election选举模块。

目前，Leader主节点可通过动态选举机制与静态配置机制两种方式来产生（2.6.3节）。
6.3　Gossip消息通信与处理机制

6.3.1　Gossip消息概述

Gossip消息（GossipMessage类型）按照消息的Content类型（如数据、节点身份、Leader主节点选举）可分为20种消息，如表6-4所示。Gossip消息的原型定义在protos/gossip/message.proto及message.pb.go文件中，添加签名后被封装为SignedGossipMessage类型消息再发送。该消息结构中的Content字段保存了消息实体，同时，以GossipMessage_开头的字符串用来标识消息类型，后文中如果没有特别说明消息类型，则为了简洁会省去Gossip-Message_字符串。

表6-4　Gossip消息的消息内容类型与消息标签类型列表

 [image:]

1.辅助类消息

辅助类消息用于提供信息以辅助其他模块，并不会负责传播具体的数据消息、隐私数据、状态信息等数据，具体说明如下。

·Empty：空消息。例如，Peer节点发送Ping消息用于测试远程节点是否连通。

·Conn：用于Peer节点之间建立通信连接。例如，Handshake()方法建立双方节点握手协议时，会将当前节点的身份证书哈希值、消息签名等封装为Conn类型连接消息，发送给对方以验证节点身份的真实性。

·Ack：应答消息，用于回应处理结果。例如，privateDataMessage()方法处理隐私数据消息后回复结果状态消息。

2.Pull类消息

Gossip消息模块上的Pull算法用于Peer节点向其他节点主动拉取所需要的数据，包括4个步骤（gossip/algo/pull.go中的代码注释）及对应的4种消息，假设存在A和B两个节点，Pull算法的步骤实现如下。

1）A发送Hello消息及Nonce（消息随机数）给B。

2）B处理Hello消息后，返回DataDigest摘要消息及Nonce给A。

3）A校验数据和Nonce，将B作为待发送节点，并封装请求的数据项为DataRequest摘要请求消息，再发送该消息及Nonce到B。

4）B处理消息后，返回请求数据的DataUpdate摘要更新消息及Nonce给A。

Nonce是通信安全中使用一次即废弃的整数。Pull类消息的内容类型（MsgType域）包括PullMsgType_UNDEFINED、PullMsgType_BLOCK_MSG与PullMsgType_IDENTITY_MSG，分别用于标识未定义类型消息、数据消息与节点身份消息。

3.数据与状态类消息

Gossip消息中的数据类消息包括数据消息、隐私数据消息等，具体说明如下。

·DataMsg：数据消息（包含区块数据与隐私数据），如Orderer服务节点发送的区块数据、组织内其他Peer节点转发的区块数据或隐私数据等；

·PrivateData：隐私数据消息。Endorser背书节点通过Gossip消息模块，向其他Peer节点主动转发的隐私数据，由transient对象暂时保存到本地的transient隐私数据库中，并在提交账本时保存到账本的隐私数据库中；

·PrivateReq：隐私数据请求消息，用于向其他Peer节点请求缺失的隐私数据；

·PrivateRes：隐私数据响应消息，即PrivateReq类型隐私数据请求消息的响应结果。

Gossip消息中的状态类消息包括5种，状态是指数据（包括区块数据与隐私数据），状态信息是指账本区块链的有关状态信息，具体如下。

·StateInfo：封装了账本区块链的状态信息，如区块账本高度等；

·StateSnapshot：状态信息快照消息（StateInfoSnapshot类型），封装了StateInfo消息集合；

·StateInfoPullReq：状态信息请求消息，用于请求获取StateSnapshot消息；

·StateRequest：远程状态请求消息，用于向其他节点请求指定区块号范围内的数据集合（包括区块数据与隐私数据）；

·StateResponse：远程状态响应消息，用于回复StateRequest消息指定的数据集合。

4.节点管理类消息

Gossip消息中的节点管理类消息包括如下5类消息，具体如下。

·AliveMsg：节点存活消息，用于周期性地发布和发现节点存活情况，同时被包含在其他消息中，用于封装节点身份的相关信息（PKI-ID、端点、启动时间）等；

·MemReq：成员关系请求消息，用于请求其他节点上保存的已知存活节点与离线节点的成员关系消息列表；

·MemRes：成员关系响应消息，用于回复MemReq消息请求节点，并封装当前节点上已知存活节点与离线节点的成员关系消息列表；

·LeadershipMsg：选举Leader主节点消息，用于在组织范围内广播参与主节点选举，包括声明参与选举的proposal消息和声明为Leader主节点的declaration消息；

·PeerIdentity：节点身份消息，封装了节点的PKI-ID、身份证书信息等。

5.Gossip消息标签

Gossip消息模块还提供了6种Gossip消息标签（GossipMessage_Tag字段，以Gossip-Message_开头标识的字符串），用于标识消息的节点传播范围（如通道或组织消息等），以控制在指定的范围内传播消息，主要包括：

·UNDEFINED：未定义消息类型；

·EMPTY：空消息；

·ORG_ONLY：只允许在组织内传播的消息；

·CHAN_ONLY：只允许在通道内传播的消息；

·CHAN_AND_ORG：允许在通道内与组织内传播的消息；

·CHAN_OR_ORG：允许在通道内或者组织内传播的消息。
6.3.2　Gossip消息通信与处理机制

Gossip消息通信与处理机制是整个Gossip消息模块的运行时架构基础，包括以下核心的接口、模块与服务。

·comm通信模块的GossipStream()服务接口（gRPC服务）。Gossip消息模块基于该接口实现了Peer节点间的双向通信连接，其他功能模块则通过comm通信模块及其底层的节点连接对象来发送与接收消息，典型接口包括Gossip模块接收消息（ReceivedMessageImpl类型）提供的msg.Respond()方法与msg.Ack()方法、comm模块实例（commImpl类型）提供的comm.send()方法、discovery模块的d.comm.SendToPeer()方法等；

·ChannelDeMultiplexer消息多路分用模块。目前，Gossip服务实例上的ChannelDe-Multiplexer结构对象与comm通信模块上的msgPublisher对象（ChannelDeMulti-plexer类型）都能提供消息多路分用功能，负责创建与管理channel通道（comm.channel类型），注册绑定自定义的消息过滤器函数pred（common.MessageAcceptor类型），以用于筛选过滤指定类型的消息。

·通常，本地节点首先调用comm通信模块的conn.handler()方法来处理接收的消息，实际上是调用msgPublisher对象的DeMultiplex()方法，即遍历该对象的channel通道列表，调用绑定的消息过滤器pred以过滤上述消息，并将消息分类转发到关联的Golang通道中，交由相应的消息处理模块继续处理。

·同时，在上述过滤消息的过程中，对于DataMsg类型的数据消息、Leadership-Msg类型主节点选举消息与StateInfo类型状态信息消息，则利用GossipChannel通道对象将这三种消息提交给Gossip服务实例上的ChannelDeMultiplexer模块重新进行过滤。其中，DataMsg消息被过滤转发给gossipChan通道，保存到本地的消息负载缓冲区，并等待提交账本。LeadershipMsg消息被转发给msgChan通道，用于检查更新Leader主节点的状态信息（6.3.3节）。

·emitter模块。批量消息发送模块基于comm通信模块为其他模块提供发送消息的接口。通常，其他模块将消息封装为emittedGossipMessage类型消息，添加到emitter模块的消息缓冲区中等待处理。当缓冲区消息数量达到预置数量（默认是10个）或者定时器触发周期性地清空缓冲区时，emitter模块就会主动清空缓冲区数据，将消息分类分批发送给其他节点，以提高消息发送效率；

·certPuller模块与blocksPuller模块。certPuller模块负责周期性地向其他节点（默认为3个）发送Pull类节点身份消息（PullMsgType_IDENTITY_MSG类型的消息内容），请求拉取其他节点上的PeerIdentity类型节点身份消息，用于维护idMapper模块上最新的节点身份信息字典pkiID2Cert。同时，GossipChannel通道对象上的blocksPuller模块负责周期性地发送Pull类型数据消息（PullMsgType_BLOCK_MSG类型的消息内容），请求拉取数据消息，将缺失的DataMsg消息同步到本地账本。同时，这两个模块会将接收的响应消息及其摘要信息（节点PKI-ID或区块号）更新到本地itemID2Msg消息列表及engine摘要存储对象中；

·Gossip消息存储对象。Gossip消息存储对象负责保存不同类型的消息，及时更新消息并提供数据请求服务，支持验证消息的有效性与周期性地清理过期消息，以保证消息的时效性。

1.comm通信模块提供的GossipStream()服务接口

Peer节点利用comm通信模块的GossipStream()服务接口建立通信连接，分别创建各自的节点连接对象（comm.connection类型），用于管理连接的节点对象、消息发送通道、消息处理句柄、通信流等，并绑定服务的客户端通信流clientStream（Gossip_GossipStreamClient接口，含有grpc.ClientStream通信流）或服务器端通信流serverStream（Gossip_GossipStreamServer接口，含有grpc.ServerStream通信流），以支持双向发送与接收Gossip消息。

（1）本地Peer节点

comm通信模块为其他模块提供Send()/SendWithAck()→sendToEndpoint()方法，用于发送消息，如代码清单6-4所示。

代码清单6-4　sendToEndpoint()方法的源码示例

gossip/comm/comm_impl.go文件

func (c *commImpl) sendToEndpoint(peer *RemotePeer, msg *proto.SignedGossip-Message, shouldBlock blockingBehavior) {

 if c.isStopping() {

 return

 }

 c.logger.Debug("Entering, Sending to", peer.Endpoint, ", msg:", msg)

 defer c.logger.Debug("Exiting")

 var err error

 // 获取远程节点的节点连接对象

 conn, err := c.connStore.getConnection(peer)

 if err == nil {

 disConnectOnErr := func(err error) {

 c.logger.Warningf("%v isn't responsive: %v", peer, err)

 c.disconnect(peer.PKIID) // 断开连接

 }

 conn.send(msg, disConnectOnErr, shouldBlock) // 发送消息到远程节点

 return

 }

 c.logger.Warningf("Failed obtaining connection for %v reason: %v", peer, err)

 c.disconnect(peer.PKIID) // 断开连接

}

实际上，comm通信模块通过节点连接存储对象connStore（connectionStore类型）管理所有的节点连接对象，如图6-4所示。其中，pki2Conn字典（map[string]*connection类型）用于维护远程节点PKI-ID与节点连接对象之间的映射关系。因此，一旦成功建立正常的通信连接，其他模块只需要通过conn即可发送与接收消息，不需重复建立连接，并且能够快速查找到指定节点的连接信息。

首先，sendToEndpoint()方法调用comm通信模块的c.connStore.getConnection()方法，创建远程节点连接对象conn并保存到pki2Conn字典中，与远程节点建立gRPC连接，同时构建本地消息处理循环。getConnection()方法的执行步骤具体如下。

1）getConnection()方法检查pki2Conn字典是否存在指定远程节点连接对象conn。如果不存在该对象，则调用cs.connFactory.createConnection(endpoint，pkiID)方法，基于远程Peer节点的PKI-ID（pkiID）与端点（endpoint）创建新的对应节点连接对象，如代码清单6-5所示。

 [image:]

图6-4　节点连接存储对象connectionStore类型示意图

代码清单6-5　createConnection()方法的源码示例

gossip/comm/comm_impl.go文件

// 创建节点连接对象

func (c *commImpl) createConnection(endpoint string, expectedPKIID common.PKIidType) (*connection, error) {

 ……

 ctx := context.Background()

 ctx, _ = context.WithTimeout(ctx, c.dialTimeout)

 cc, err = grpc.DialContext(ctx, endpoint, dialOpts...) // 建立gRPC通信连接

 ……

 cl := proto.NewGossipClient(cc) // 创建GossipClient客户端

 ctx, cancel := context.WithTimeout(context.Background(), defConnTimeout)

 defer cancel()

 if _, err = cl.Ping(ctx, &proto.Empty{}); err != nil {

 cc.Close()

 return nil, errors.WithStack(err)

 }

 ctx, cf := context.WithCancel(context.Background())

 // 调用GossipStream()方法，建立gRPC通信流

 if stream, err = cl.GossipStream(ctx); err == nil {

 // 认证远程Peer节点的合法性

 connInfo, err = c.authenticateRemotePeer(stream, true)

 if err == nil {

 pkiID = connInfo.ID

 // 验证节点PKI ID

 if expectedPKIID != nil && !bytes.Equal(pkiID, expectedPKIID) {

 ……

 return nil, errors.New("Authentication failure")

 }

 conn := newConnection(cl, cc, stream, nil) // 创建新的节点连接对象

 // 设置conn节点连接对象

 conn.pkiID = pkiID

 conn.info = connInfo

 conn.logger = c.logger

 conn.cancel = cf

 h := func(m *proto.SignedGossipMessage) {

 c.logger.Debug("Got message:", m)

 // 调用DeMultiplex()方法实现消息多路分用

 c.msgPublisher.DeMultiplex(&ReceivedMessageImpl{

 conn: conn,

 lock: conn,

 SignedGossipMessage: m,

 connInfo: connInfo,

 })

 }

 // 定义handler消息处理句柄方法

 conn.handler = interceptAcks(h, connInfo.ID, c.pubSub)

 return conn, nil

 }

 c.logger.Warningf("Authentication failed: %+v", err)

 }

 cc.Close() // 关闭连接

 return nil, errors.WithStack(err)

}

createConnection()方法首先设置gRPC服务拨号连接的参数cc（ClientConn类型），包括gRPC连接选项、context上下文对象、远程节点服务端点等，再调用proto.NewGossip-Client(cc)方法以创建GossipClient客户端cl（gossipClient类型），包含GossipStream()、Ping()等接口。

GossipClient客户端先调用Ping()方法发送空消息，以测试其与远程节点是否连通。如果测试连通没有错误，则GossipClient客户端调用cl.GossipStream()方法以请求调用gRPC服务，与远程Peer节点建立gRPC连接，并在本地节点上创建GossipStream()服务的客户端通信流stream（gossipGossipStreamClient类型，实现了Gossip_GossipStreamClient接口）。同时，远程Peer节点的comm通信模块（实现了GossipServer服务接口）接收到服务请求，调用GossipStream()方法处理，与本地节点建立服务通信连接，并创建节点连接对象。该对象的serverStream字段保存了GossipStream()服务的服务器端通信流（gossipGossipStreamServer类型，实现了Gossip_GossipStreamServer接口）。然后，两侧节点的comm通信模块都将调用conn.serviceConnection()方法，建立消息处理循环，利用GossipStream()服务的通信流接收与发送数据。

接着，createConnection()方法调用c.authenticateRemotePeer()方法，认证远程peer节点的合法性，并创建获取节点连接信息connInfo（ConnectionInfo类型）。

其中，authenticateRemotePeer()方法先创建Conn类型节点连接消息，调用stream.Send()方法将该消息发送到待认证节点以建立连接，并调用readWithTimeout()方法，等待2秒接收回复结果。其中，Conn消息包含了本地Peer节点的ConnEstablish连接信息，如节点TLS证书哈希值、节点PKI-ID、身份证书信息等。接着，将接收的回复消息解析成Conn消息，封装了远程Peer节点的ConnEstablish连接信息。然后，调用c.idMapper.Put()方法，检查远程Peer节点的PKI-ID与身份证书信息的合法性，构成键值对更新到本地的pkiID2Cert字典中。其中，键为远程节点的PKI-ID，值为storedIdentity结构对象，包含了远程节点PKI-ID、最近访问时间lastAccessTime、节点身份证书信息peerIdentity及过期定时器expirationTimer。最后，基于回复消息构造远程节点的连接信息connInfo，包含远程节点的PKI-ID、身份证书信息、节点地址、认证信息（AuthInfo类型、节点签名与消息负载）等，并验证该节点身份证书的哈希值是否一致（启用TLS安全认证的情况下）、消息签名的真实性（与本地节点属于同一个组织的情况）或者符合ChannelApplicationReaders（即/Channel/Application/Readers）通道访问权限策略（与本地节点属于不同组织的情况）。如果通过了上述检查，则返回远程Peer节点的连接信息connInfo。

然后，createConnection()方法调用newConnection()函数，创建与远程Peer节点连接的节点连接对象conn，封装了GossipStream()服务的客户端通信流stream（clientStream字段）、节点连接信息connInfo（info字段）、发送消息通道outBuff（默认缓冲20个消息，peer.gossip.sendBuffSize配置项）等。接着，调用interceptAcks()函数以获取消息过滤器，并设置到消息处理句柄对象conn.handler上，用于处理过滤接收的消息，其原型为func(message*proto.SignedGossipMessage)。实际上，该函数先过滤出Ack消息，基于消息随机数与远程节点的PKI-ID构造新的消息主题，与Ack消息一起发布出去，接着调用自定义函数，即comm通信模块的msgPublisher.DeMultiplex()方法，利用ChannelDeMultiplexer消息多路分用模块中的消息过滤器筛选出指定类型的消息，通过关联的Golang通道传递给相应的模块进行处理。目前，支持过滤的消息包括DataMsg类型、StateRequest类型、StateResponse类型、PrivateReq类型、PrivateRes类型、PrivateData类型、LeadershipMsg类型等。

至此，createConnection()方法创建节点连接对象conn结束，并返回getConnection()方法。

2）getConnection()方法获取createConnection()方法创建的节点连接对象conn，检查后将该对象保存到connStore模块的pki2Conn字典中。

3）getConnection()方法执行go conn.serviceConnection()以建立消息处理循环，如代码清单6-6所示，分别启动goroutine执行conn.readFromStream()与conn.writeToStream()，利用conn对象绑定的GossipStream()服务客户端流接收与发送消息，具体说明如下。

·conn.writeToStream()方法建立发送消息的消息处理循环，如代码清单6-7所示，阻塞等待conn.outBuff通道上的待发送消息，通过GossipStream()服务的客户端流调用stream.Send()方法，发送消息给远程Peer节点；

·conn.readFromStream()方法建立接收消息的消息处理循环，如代码清单6-8所示，通过GossipStream()服务的客户端流调用stream.Recv()方法，等待接收远程节点的消息，并解析构造SignedGossipMessage类型消息，检查合法后发送到msgChan通道请求继续处理；

·conn.serviceConnection()方法建立消息处理循环，阻塞等待msgChan通道上的新消息，并交由conn.handler()方法进行过滤与处理。

代码清单6-6　serviceConnection()方法的源码示例

gossip/comm/conn.go文件

func (conn *connection) serviceConnection() error {

 errChan := make(chan error, 1)

 msgChan := make(chan *proto.SignedGossipMessage, util.GetIntOrDefault("peer.gossip.recvBuffSize", defRecvBuffSize))

 defer close(msgChan)

 go conn.readFromStream(errChan, msgChan) // 读取消息

 go conn.writeToStream() // 发送消息

 // 检测连接是否关闭停止

 for !conn.toDie() {

 select {

 case stop := <-conn.stopChan: // 关闭通道消息

 conn.logger.Debug("Closing reading from stream")

 conn.stopChan <- stop

 return nil

 case err := <-errChan: // 错误通道

 return err

 case msg := <-msgChan: // 获取消息通道

 conn.handler(msg) // 处理消息

 }

 }

 return nil

}

代码清单6-7　writeToStream()方法的源码示例

gossip/comm/conn.go文件

func (conn *connection) writeToStream() {

 for !conn.toDie() {

 stream := conn.getStream() // 获取通信流

 ……

 select {

 case m := <-conn.outBuff: // 从消息缓冲通道中接收待发送的消息

 err := stream.Send(m.envelope) // 发送消息到远程节点

 ……

 case stop := <-conn.stopChan:

 conn.logger.Debug("Closing writing to stream")

 conn.stopChan <- stop

 return

 }

 }

}

代码清单6-8　readFromStream()方法的源码示例

gossip/comm/conn.go文件

func (conn *connection) readFromStream(errChan chan error, msgChan chan *proto.SignedGossipMessage) {

 ……

 for !conn.toDie() {

 stream := conn.getStream() // 获取通信流

 ……

 envelope, err := stream.Recv() // 等待接收消息

 ……

 msg, err := envelope.ToGossipMessage() // 创建签名的Gossip消息

 ……

 msgChan <- msg // 发送消息到msgChan通道中

 }

}

至此，getConnection()方法执行结束，并与远程节点建立了gRPC通信连接，基于goroutine建立起本地节点的消息处理循环。

sendToEndpoint()方法继续调用conn.send()方法，将消息放入消息待发送通道conn.outBuff中。同时，在上面建立的消息处理循环里捕获到conn.outBuff通道的消息，利用GossipStream()服务的客户端流stream将该消息发送给指定的远程Peer节点。

（2）远程Peer节点

远程Peer节点在初始化Gossip服务实例时将comm通信模块注册在gRPC服务器上（7051端口），提供GossipStream()接口以接收服务请求，建立gRPC通信连接，认证连接节点的合法性，创建节点连接对象conn并注册到pki2Conn字典中，基于GossipStream()服务的服务器端通信流建立消息处理循环，以正常接收与发送消息，如代码清单6-9所示。

代码清单6-9　GossipStream()方法的源码示例

gossip/comm/comm_impl.go文件

func (c *commImpl) GossipStream(stream proto.Gossip_GossipStreamServer) error {

 if c.isStopping() {

 return fmt.Errorf("Shutting down")

 }

 connInfo, err := c.authenticateRemotePeer(stream, false) // 认证远程Peer节的合法性

 ……

 c.logger.Debug("Servicing", extractRemoteAddress(stream))

 // 创建节点连接对象，并注册到pki2Conn字典

 conn := c.connStore.onConnected(stream, connInfo)

 ……

 h := func(m *proto.SignedGossipMessage) {

 c.msgPublisher.DeMultiplex(&ReceivedMessageImpl{

 conn: conn,

 lock: conn,

 SignedGossipMessage: m,

 connInfo: connInfo,

 })

 }

 conn.handler = interceptAcks(h, connInfo.ID, c.pubSub) // 定义handler消息处理句柄方法

 ……

 return conn.serviceConnection() // 创建消息处理循环

}

GossipStream()方法首先调用comm通道模块的c.authenticateRemotePeer()方法，类似于本地节点，认证Peer节点的合法性，获取节点的连接信息connInfo，不同之处在于其使用了TLS认证的客户端证书（initiator标志位参数决定）。

接着，调用c.connStore.onConnected()方法以检查pki2Conn字典。如果不存在指定的节点连接对象，则调用cs.registerConn()→newConnection()方法，创建新的节点连接对象conn，包含GossipStream()服务的服务器端通信流。注意，虽然本地节点与远程节点上同一个连接的conn节点连接对象同时保存在同一个pki2Conn字典中。但是，两者的键（连接节点PKI-ID）与值（conn连接对象）是不相同的，并且保存在两个Peer节点上，分别绑定同一个gRPC服务的服务器端通信流与客户端通信流。因此，发起通信时只需要通过查找pki2Conn字典中指定的节点连接对象，就能获取绑定的gRPC通信流以发送与接收消息。

然后，同样调用interceptAcks()方法注册消息处理句柄conn.handler，过滤Ack消息后调用comm通信模块的msgPublisher.DeMultiplex()方法，以过滤出指定类型的消息继续处理。

最后，与本地Peer节点类似，GossipStream()方法调用conn.serviceConnection()方法创建消息处理循环，利用GossipStream()服务的服务器端通信流接收与发送消息，并调用conn.handler()方法过滤与处理接收的消息。

至此，本地节点与远程节点基于GossipStream()服务建立起通信以及消息处理循环，支持双向接收与发送消息。

2.ChannelDeMultiplexer消息多路分用模块

目前，Fabric中设计了两个ChannelDeMultiplexer模块用于提供消息多路分用的功能，包括Gossip服务实例上的ChannelDeMultiplexer模块与comm通信模块上的msgPublisher对象（ChannelDeMultiplexer类型）。

ChannelDeMultiplexer模块可通过channels通道可列表（[]*channel类型）过滤不同类型的消息，如图6-5所示。channel通道使用自定义的pred消息过滤器函数过滤消息，将筛选出的消息发送到关联的Golang通道ch中，再交由不同的消息处理模块处理（6.3.3节至6.3.7节）。同时，由ChannelDeMultiplexer模块独立维护与请求节点的消息通信。注意，pred消息过滤器函数（MessageAcceptor类型）的函数原型是func(interface{})bool，用于判断接收消息是否符合指定消息类型的要求，并返回符合要求（true）或不符合要求（false）的过滤结果。

 [image:]

图6-5　ChannelDeMultiplexer类型示意图

目前，ChannelDeMultiplexer模块中channel通道定义的消息过滤器如表6-5所示。由于消息过滤器在创建时大多数都是直接定义在函数参数中的，没有明确的函数名称，同时可能还会过滤多种类型的消息，因此，本节以关联的Golang通道作为标题，分析相应消息的过滤处理流程。

表6-5　Gossip消息模块上channel通道的消息过滤器列表

 [image:]

注：（1）[image:]表示需要过滤筛选出来的消息类型，[image:]表示需要过滤筛选掉的消息类型。

（2）CDM是ChannelDeMultiplexer模块的缩写简称，是指提供ChannelDeMultiplexer模块的对象，包括Gossip服务实例（Gossip）与comm通信模块（comm）。

（3）消息过滤条件要求消息的链ID必须匹配指定通道的链ID，包含合法的GossipMessage类型或Signed-GossipMessage类型消息，并按照表6-5的消息过滤条件进行筛选。

（1）incMsgs通道

Gossip消息模块执行go g.start()启动Gossip服务实例，创建消息过滤器msgSelector，调用g.comm.Accept(msgSelector)方法创建comm通信模块的channel通道，注册msgSelector消息过滤器并返回关联的incMsgs通道（默认缓冲10个消息），用于接收过滤的指定类型消息，如代码清单6-10所示。

代码清单6-10　comm通信模块的Accept()方法源码示例

gossip/comm/comm_impl.go文件

func (c *commImpl) Accept(acceptor common.MessageAcceptor) <-chan proto.Received-Message {

 // 创建新的channel通道对象，并注册消息过滤器

 genericChan := c.msgPublisher.AddChannel(acceptor)

 specificChan := make(chan proto.ReceivedMessage, 10) // 创建缓存消息通道

 // 检测comm模块是否还在正常运行

 if c.isStopping() {

 c.logger.Warning("Accept() called but comm module is stopping, returning empty channel")

 return specificChan

 }

 c.lock.Lock()

 c.subscriptions = append(c.subscriptions, specificChan) // 添加到订阅信息通道

 c.lock.Unlock()

 go func() {

 defer c.logger.Debug("Exiting Accept() loop")

 defer func() {

 recover()

 }()

 c.stopWG.Add(1) // 添加停止等待信号

 defer c.stopWG.Done()

 for {

 select {

 case msg := <-genericChan:

 specificChan <- msg.(*ReceivedMessageImpl) // 通过专用通道接收消息

 case s := <-c.exitChan:

 c.exitChan <- s

 return

 }

 }

 }()

 return specificChan

}

实际上，msgSelector消息过滤器首先检查消息类型的合法性（实现了ReceivedMessage接口），获取其SignedGossipMessage字段对象，解析获取正确的SignedGossipMessage类型消息。接着，检查该消息Content字段的消息类型，过滤掉Conn类型连接消息、Empty类型空消息与隐私数据消息（PrivateReq类型、PrivateRes类型与PrivateData类型）等消息，并将过滤后的消息返回给上述关联的Golang通道incMsgs，如代码清单6-11所示。

代码清单6-11　start()方法启动Gossip服务的源码示例

gossip/gossip/gossip_impl.go文件

func (g *gossipServiceImpl) start() {

 go g.syncDiscovery()

 go g.handlePresumedDead() // 处理可能离线的Peer节点

 msgSelector := func(msg interface{}) bool { // 定义消息过滤器方法

 gMsg, isGossipMsg := msg.(proto.ReceivedMessage)

 if !isGossipMsg {

 return false

 }

 // 过滤掉3类消息

 isConn := gMsg.GetGossipMessage().GetConn() != nil // 连接消息

 isEmpty := gMsg.GetGossipMessage().GetEmpty() != nil // 空消息

 // 隐私数据消息

 isPrivateData := gMsg.GetGossipMessage().IsPrivateDataMsg()

 return !(isConn || isEmpty || isPrivateData) // 过滤3类消息

 }

 incMsgs := g.comm.Accept(msgSelector) // 创建消息接收通道

 go g.acceptMessages(incMsgs) // 处理过滤后的消息

 g.logger.Info("Gossip instance", g.conf.ID, "started")

}

Gossip服务实例接着执行go g.acceptMessages(incMsgs)建立消息处理循环，利用select语句阻塞监听incMsgs通道的消息，将接收的消息交由Gossip服务实例的g.handleMessage()方法来处理，如代码清单6-12所示。

代码清单6-12　acceptMessages()方法的源码示例

gossip/gossip/gossip_impl.go文件

func (g *gossipServiceImpl) acceptMessages(incMsgs <- chan proto.ReceivedMessage) {

 defer g.logger.Debug("Exiting")

 g.stopSignal.Add(1)

 defer g.stopSignal.Done()

 for {

 select {

 case s := <-g.toDieChan:

 g.toDieChan <- s

 return

 case msg := <-incMsgs:

 g.handleMessage(msg) // 处理过滤后的消息

 }

 }

}

Gossip服务实例的g.handleMessage()方法负责处理与转发14类消息，分别交由3个功能模块处理（6.3.3节），具体说明如下。

·chanState通信模块上GossipChannel通道对象的HandleMessage()方法：处理通道内传播的消息（消息标签为GossipMessage_CHAN_AND_ORG、GossipMessage_CHAN_ONLY、GossipMessage_CHAN_OR_ORG等），包括Pull类数据消息（Pull-MsgType_BLOCK_MSG消息内容）、数据消息（DataMsg类型）、状态类消息（State-Info类型、StateInfoPullReq类型、StateSnapshot类型等）、Leader主节点选举消息（LeadershipMsg类型）等；

·discovery模块的handleMsgFromComm()方法：处理节点存活消息（AliveMsg类型）与成员关系类消息（MemReq类型与MemRes类型）；

·certStore模块的handleMessage()方法：处理节点身份消息，包括Pull类节点身份消息（PullMsgType_IDENTITY_MSG消息内容）。

（2）state模块的gossipChan通道与commChan通道

Gossip服务器实例调用NewGossipStateProvider()函数，创建指定通道上的state模块（GossipStateProviderImpl类型），包括gossipChan通道与commChan通道，分别用于接收Gossip服务实例或comm通信模块上ChannelDeMultiplexer模块的channel通道过滤后的消息，如代码清单6-13所示。

代码清单6-13　NewGossipStateProvider()方法的源码示例

gossip/state/state.go文件

func NewGossipStateProvider(chainID string, services *ServicesMediator, ledger ledgerResources) GossipStateProvider {

 gossipChan, _ := services.Accept(func(message interface{}) bool {

 return message.(*proto.GossipMessage).IsDataMsg() && // 过滤出数据消息与匹配通道ID

 bytes.Equal(message.(*proto.GossipMessage).Channel, []byte(chainID))

 }, false)

 remoteStateMsgFilter := func(message interface{}) bool {

 receivedMsg := message.(proto.ReceivedMessage)

 msg := receivedMsg.GetGossipMessage()

 // 过滤远程节点状态信息消息与隐私数据消息

 if !(msg.IsRemoteStateMessage() || msg.GetPrivateData() != nil) {

 return false

 }

 if !bytes.Equal(msg.Channel, []byte(chainID)) { // 匹配通道ID

 return false

 }

 connInfo := receivedMsg.GetConnectionInfo() // 获取节点连接信息对象

 authErr := services.VerifyByChannel(msg.Channel, connInfo.Identity, conn-Info.Auth.Signature, connInfo.Auth.SignedData) // 验证通道的合法性

 ……

 return true

 }

 // 过滤消息

 _, commChan := services.Accept(remoteStateMsgFilter, true)

 ……

 s := &GossipStateProviderImpl{ // 构造state模块

 mediator: services,

 chainID: chainID,

 gossipChan: gossipChan,

 commChan: commChan,

 ……

 }

 ……

}

NewGossipStateProvider()方法调用services.Accept(acceptor common2.MessageAcceptor，passThrough bool)方法，创建Gossip服务实例或comm通信模块上ChannelDeMultiplexer模块中的channel通道，并添加到ChannelDeMultiplexer模块的channels通道列表（[]*channel类型）中，注册消息过滤器MessageAcceptor参数对象。其中，passThrough参数用于标识调用Gossip服务实例（passThrough为false）或者调用comm通信模块（passThrough为true）上的ChannelDeMultiplexer模块来过滤消息，并分别返回gossipChan通道与comm-Chan通道用于接收过滤后的消息。同时，这两个通道被初始化设置到state模块对象中。接着，NewGossipStateProvider()方法执行go listen()，建立消息处理循环以监听gossipChan通道与commChan通道的新消息，并分别执行go s.queueNewMessage()（6.3.4节）与go s.dispatch()（6.3.5节）对接收的消息进行处理。

①gossipChan通道

services.Accept(…，false)方法通过Gossip服务实例上的ChannelDeMultiplexer模块创建channel通道，注册消息过滤器后，返回gossipChan通道。

services.Accept()方法首先调用Gossip服务实例的g.AddChannel(acceptByType)方法，利用ChannelDeMultiplexer模块创建新的channel通道对象，注册自定义的acceptByType消息过滤器，并返回关联的Golang通道inCh。其中，acceptByType消息过滤器检查消息类型的合法性（GossipMessage类型或SignedGossipMessage类型），获取GossipMessage消息对象并调用acceptor消息过滤器，如代码清单6-14所示。acceptor负责过滤出指定通道（chainID）上的数据消息（DataMsg类型），再将过滤后的消息返回给关联的inCh通道。

接着，services.Accept()方法创建outCh通道（默认缓冲10个消息），专门缓冲接收inCh通道过滤后的消息，将其作为services.Accept()方法的返回对象（即gossipChan通道）。

最后，services.Accept()方法启动goroutine建立消息处理循环，监听当前inCh通道上的过滤消息，检查该消息类型的合法性（SignedGossipMessage类型），并解析获取Gossip-Message消息对象，转发到outCh通道再交由其他模块继续处理。

代码清单6-14　Gossip服务实例的Accept()方法源码示例

gossip/gossip/gossip_impl.go文件

func (g *gossipServiceImpl) Accept(acceptor common.MessageAcceptor, passThrough bool) (<-chan *proto.GossipMessage, <-chan proto.ReceivedMessage) {

 if passThrough { // 若passThrough是true，则消息通过comm模块发送

 return nil, g.comm.Accept(acceptor)

 }

 acceptByType := func(o interface{}) bool { // 根据类型判断是否接受该消息

 // 过滤出GossipMessage类型消息

 if o, isGossipMsg := o.(*proto.GossipMessage); isGossipMsg {

 return acceptor(o) // 继续使用acceptor过滤消息

 }

 if o, isSignedMsg := o.(*proto.SignedGossipMessage); isSignedMsg {

 sMsg := o // 过滤出SignedGossipMessage类型消息

 return acceptor(sMsg.GossipMessage) // 继续使用acceptor过滤消息

 }

 g.logger.Warning("Message type:", reflect.TypeOf(o), "cannot be evaluated")

 return false

 }

 // 创建注册Gossip消息通道，返回消息通道用于监听过滤后的消息

 inCh := g.AddChannel(acceptByType)

 outCh := make(chan *proto.GossipMessage, acceptChanSize)

 go func() {

 for {

 select {

 case s := <-g.toDieChan: // 关闭通道消息

 g.toDieChan <- s

 return

 case m := <-inCh: // 等待接收消息

 if m == nil {

 return

 }

 outCh <- m.(*proto.SignedGossipMessage).GossipMessage

 }

 }

 }()

 return outCh, nil

}

②commChan通道

services.Accept(remoteStateMsgFilter，true)方法调用g.comm.Accept(acceptor)方法，由comm模块上的ChannelDeMultiplexer对象创建并返回commChan通道，如代码清单6-15所示。

代码清单6-15　comm通信模块的Accept()函数源码示例

gossip/comm/comm_impl.go文件

func (c *commImpl) Accept(acceptor common.MessageAcceptor) <-chan proto.Received-Message {

 genericChan := c.msgPublisher.AddChannel(acceptor) // 创建并注册channel通道

 specificChan := make(chan proto.ReceivedMessage, 10) // 创建缓存消息通道

 if c.isStopping() { // 检查运行状态

 c.logger.Warning("Accept() called but comm module is stopping, returning empty channel")

 return specificChan

 }

 c.lock.Lock()

 c.subscriptions = append(c.subscriptions, specificChan) // 添加订阅通道

 c.lock.Unlock()

 go func() {

 defer c.logger.Debug("Exiting Accept() loop")

 defer func() {

 recover()

 }()

 c.stopWG.Add(1)

 defer c.stopWG.Done()

 for {

 select {

 case msg := <-genericChan:

 // 通过specificChan通道接收消息

 specificChan <- msg.(*ReceivedMessageImpl)

 case s := <-c.exitChan:

 c.exitChan <- s

 return

 }

 }

 }()

 return specificChan

}

g.comm.Accept()方法首先调用comm模块的c.msgPublisher.AddChannel(acceptor)方法，创建channel通道并注册acceptor消息过滤器，返回关联的genericChan通道。其中，acceptor（即remoteStateMsgFilter参数方法）负责过滤接收的消息。该方法先从接收的消息中解析获取SignedGossipMessage类型消息，再过滤指定类型的消息，包括StateRequest类型远程状态请求消息、StateResponse类型远程状态响应消息与PrivateData类型隐私数据消息。接着，基于字节比较消息的通道ID（msg.Channel）与指定通道ID（chainID）是否匹配，检查通过后获取远程节点连接信息connInfo。然后，基于该对象的身份证书信息与认证信息（签名与签名数据）调用services.VerifyByChannel()方法，构造远程节点的签名数据对象（SignedData类型，包含签名数据消息、身份证书信息与签名），验证该签名数据对象是否符合指定通道（msg.Channel）上ChannelApplicationReaders（即/Channel/Application/Readers）通道访问权限策略的要求。

接着，g.comm.Accept()方法创建specificChan通道（默认缓冲10个消息），用于缓冲收集genericChan通道过滤的消息，同时将specificChan通道作为services.Accept()方法的返回对象（即commChan通道）。

最后，g.comm.Accept()方法启动goroutine建立消息处理循环，监听关联通道genericChan上的过滤消息，检查消息类型的合法性（ReceivedMessageImpl类型），再转发给specificChan专用缓存通道（默认为10个消息容量），即返回NewGossipStateProvider()方法中的commChan通道。

（3）Fetcher组件msgChan通道

Gossip服务器实例在InitializeChannel()方法中创建了coordinator模块，可以访问指定通道账本上的区块数据与隐私数据。该模块上的Fetcher组件（privdata.puller类型）负责处理隐私数据类消息（PrivateReq类型、PrivateRes类型与PrivateData类型）。其中，Fetcher组件是调用privdata2.NewPuller()函数创建的，并且还会调用p.Accept(…，true)→g.comm.Accept(acceptor)方法，通过comm模块的ChannelDeMultiplexer对象创建channel通道，返回关联的msgChan通道并设置给Fetcher组件，同时，注册该channel通道上的消息过滤器方法acceptor，如代码清单6-16所示。

代码清单6-16　NewPuller()函数的源码示例

gossip/privdata/pull.go文件

func NewPuller(cs privdata.CollectionStore, g gossip, dataRetriever PrivateData-Retriever, channel string) *puller {

 p := &puller{ // 创建Fetcher组件

 pubSub: util.NewPubSub(),

 stopChan: make(chan struct{}),

 channel: channel,

 cs: cs,

 gossip: g,

 PrivateDataRetriever: dataRetriever,

 }

 // 创建channel通道，注册消息过滤器，返回关联通道

 _, p.msgChan = p.Accept(func(o interface{}) bool {

 // 检查类型并获取SignedGossipMessage类型消息对象

 msg := o.(proto.ReceivedMessage).GetGossipMessage()

 // 处理指定通道上的消息

 if !bytes.Equal(msg.Channel, []byte(p.channel)) {

 return false

 }

 return msg.IsPrivateDataMsg() // 检查是否为隐私数据类消息

 }, true)

 go p.listen() // 监听消息

 return p

}

acceptor方法先检查接收消息类型的合法性（ReceivedMessage类型），根据所接收的消息获取正确的SignedGossipMessage类型消息。接着，通过字节比较消息携带的通道ID（msg.Channel）与指定通道ID（chainID）是否匹配。如果通过了检查，则调用msg.IsPrivate-DataMsg()方法，过滤出隐私数据类消息（PrivateReq类型、PrivateRes类型与PrivateData类型）。

然后，privdata2.NewPuller()函数执行go p.listen()，创建消息处理循环，如代码清单6-17所示，监听msgChan通道的消息，解析获取SignedGossipMessage类型的消息，再过滤出PrivateReq类型的隐私数据请求消息与PrivateRes类型的隐私数据响应消息，分别交由Fetcher组件的handleRequest()与handleResponse()方法处理（6.3.6节）。

代码清单6-17　Fetcher组件的listen()方法源码示例

gossip/privdata/pull.go文件

func (p *puller) listen() {

 for {

 select {

 case <-p.stopChan:

 return

 case msg := <-p.msgChan:

 if msg == nil {

 return

 }

 if msg.GetGossipMessage().GetPrivateRes() != nil {

 p.handleResponse(msg) // 处理PrivateRes隐私数据响应消息

 }

 if msg.GetGossipMessage().GetPrivateReq() != nil {

 p.handleRequest(msg) // 处理PrivateReq隐私数据请求消息

 }

 }

 }

}

（4）msgChan通道

当Leader主节点采用动态选举机制时，Gossip服务器实例在InitializeChannel()方法中调用g.newLeaderElectionComponent()→NewLeaderElectionService()函数，创建当前节点在指定通道上的election选举模块le（leaderElectionSvcImpl类型），执行go le.start()启动election选举模块。同时，执行go le.handleMessages()处理接收到的消息，如代码清单6-18所示。

代码清单6-18　election选举模块的handleMessages()方法源码示例

gossip/election/election.go文件

func (le *leaderElectionSvcImpl) handleMessages() {

 le.logger.Debug(le.id, ": Entering")

 defer le.logger.Debug(le.id, ": Exiting")

 defer le.stopWG.Done()

 msgChan := le.adapter.Accept() // 返回关联通道

 for {

 select {

 case <-le.stopChan: // 停止通道消息

 le.stopChan <- struct{}{} // 发送空结构消息请求停止

 return

 case msg := <-msgChan: // 关联通道的消息

 // 检查该节点是否位于本地存活节点成员关系列表中

 if !le.isAlive(msg.SenderID()) {

 le.logger.Debug(le.id, ": Got message from", msg.SenderID(), "but it is not in the view")

 break

 }

 le.handleMessage(msg) // 处理LeadershipMsg主节点选举消息

 }

 }

}

le.handleMessages()调用le.adapter.Accept()→adapterImpl.Accept()→ai.gossip.Accept(…，false)→gossipServiceImpl.Accept()方法，通过Gossip服务实例上的ChannelDeMultiplexer模块创建channel通道并注册消息过滤器，返回关联的adapterCh通道。类似于gossipChan通道的处理流程，消息过滤器函数检查接收消息类型的合法性（GossipMessage类型或SignedGossipMessage类型），并获取包含的GossipMessage类型消息，交由acceptor消息过滤器继续处理，并过滤出符合如下条件的消息。

·GossipMessage类型消息。

·消息标签为GossipMessage_CHAN_AND_ORG。

·指定通道ID（ai.channel）上的消息。

·LeadershipMsg主节点选举消息。

然后，adapterImpl.Accept()方法启动goroutine建立消息处理循环，阻塞等待监听adapterCh通道的过滤消息，检查通过后将其封装为msgImpl结构消息，并转发给msgCh通道，将其返回到le.handleMessages()方法中的msgChan通道，如代码清单6-19所示。

代码清单6-19　adapterImpl适配器实例的Accept()方法源码示例

gossip/election/adapter.go文件

func (ai *adapterImpl) Accept() <-chan Msg {

 // 定义消息过滤器

 adapterCh, _ := ai.gossip.Accept(func(message interface{}) bool {

 return message.(*proto.GossipMessage).Tag == proto.GossipMessage_CHAN_AND_ORG && // 消息标签

 message.(*proto.GossipMessage).IsLeadershipMsg() &&

 // Leadership主节点选举消息

 bytes.Equal(message.(*proto.GossipMessage).Channel, ai.channel)

 // 检查是否为指定通道上的消息

 }, false)

 msgCh := make(chan Msg)

 go func(inCh <-chan *proto.GossipMessage, outCh chan Msg, stopCh chan struct{}) {

 for {

 select { // 监听消息

 case <-stopCh: // 停止通道

 return

 case gossipMsg, ok := <-inCh: // 接收消息

 if ok {

 outCh <- &msgImpl{gossipMsg}

 } else {

 return

 }

 }

 }

 }(adapterCh, msgCh, ai.doneCh)

 return msgCh

}

最后，le.handleMessages()方法建立消息处理循环，阻塞等待监听msgChan通道上的过滤消息，调用le.isAlive(msg.SenderID())方法以筛选节点，检查消息发送节点的PKI-ID必须在本地节点的aliveMembership成员关系列表中。如果通过了检查，则将接收的LeadershipMsg消息交由election模块的le.handleMessage()方法继续处理（6.3.7节）。

3.emitter消息发送模块

emitter模块（batchingEmitterImpl类型）为Gossip服务实例的其他服务模块提供发送消息的接口。通常，其他模块先将待发送消息封装为emittedGossipMessage类型消息，再添加到emitter模块缓冲区中等待发送。当满足下面其中一个条件时，emitter模块就会主动清空缓冲区的消息集合，对消息进行过滤与分类，然后分批打包发送出去，具体如下。

·emitter模块缓冲区的消息数量达到或超过10个（gossip.maxPropagationBurstSize配置项）消息。

·emitter模块执行go p.periodicEmit()，每隔10毫秒（peer.gossip.maxPropagation-BurstLatency配置项）周期性地清空缓冲区消息。

如代码清单6-20所示，emitter模块调用emit()→p.cb()方法发送消息。其中，cb()方法是创建emitter模块时定义的g.sendGossipBatch()回调函数。该方法先遍历emitter模块缓冲区消息集合中的每个消息，检查消息类型的合法性（emittedGossipMessage类型），再调用gossipBatch()方法，以过滤并分类分批发送消息。

代码清单6-20　emit()方法的源码示例

gossip/gossip/batcher.go文件

// emitter模块发送消息方法

func (p *batchingEmitterImpl) emit() {

 if p.toDie() { // 测试是否已经关闭

 return

 }

 if len(p.buff) == 0 { // 测试消息缓冲区是否为空

 return

 }

 msgs2beEmitted := make([]interface{}, len(p.buff))

 for i, v := range p.buff { // 遍历消息缓冲区

 msgs2beEmitted[i] = v.data // 设置消息数据

 }

 p.cb(msgs2beEmitted) // 执行回调函数分批发送消息

 p.decrementCounters() // 递减计数器

}

gossipBatch()方法首先调用partitionMessages(pred common.MessageAcceptor，a[]*emitted-GossipMessage)函数，实现消息过滤与分类。其中，pred消息过滤器将指定的消息集合过滤分为两个消息列表（[]*emittedGossipMessage）。接着，对于符合条件的消息列表中的消息，调用g.gossipInChan()方法或g.comm.Send()方法将其发送到远程节点，然后继续处理剩余的消息列表。

如代码清单6-21所示，gossipBatch()方法目前支持的消息过滤器具体如下。

·isABlock：DataMsg类型数据消息的过滤器；

·isAStateInfoMsg：StateInfo类型状态信息消息的过滤器；

·aliveMsgsWithNoEndpointAndInOurOrg：组织内传播不带端点的AliveMsg消息过滤器；

·isOrgRestricted：组织内传播的消息过滤器，实际上使用了aliveMsgsWithNoEndpoint-AndInOurOrg过滤器；

·isLeadershipMsg：LeadershipMsg类型主节点选举消息的过滤器。

代码清单6-21　gossipBatch()方法定义消息过滤器的源码示例

gossip/gossip/gossip_impl.go文件

func (g *gossipServiceImpl) gossipBatch(msgs []*emittedGossipMessage) {

 if g.disc == nil {

 g.logger.Error("Discovery has not been initialized yet, aborting!")

 return

 }

 var blocks []*emittedGossipMessage

 var stateInfoMsgs []*emittedGossipMessage

 var orgMsgs []*emittedGossipMessage

 var leadershipMsgs []*emittedGossipMessage

 // === 定义消息过滤器方法

 isABlock := func(o interface{}) bool { // DataMsg数据消息过滤器

 return o.(*emittedGossipMessage).IsDataMsg()

 }

 isAStateInfoMsg := func(o interface{}) bool { // StateInfo状态消息过滤器

 return o.(*emittedGossipMessage).IsStateInfoMsg()

 }

 // 组织内传播的不带端点AliveMsg消息过滤器

 aliveMsgsWithNoEndpointAndInOurOrg := func(o interface{}) bool {

 msg := o.(*emittedGossipMessage)

 if !msg.IsAliveMsg() {

 return false

 }

 member := msg.GetAliveMsg().Membership

 return member.Endpoint == "" && g.isInMyorg(discovery.NetworkMember {PKIid: member.PkiId})

 }

 isOrgRestricted := func(o interface{}) bool { // 组织内部消息过滤器

 return aliveMsgsWithNoEndpointAndInOurOrg(o) || o.(*emittedGossipMessage). IsOrgRestricted()

 }

 isLeadershipMsg := func(o interface{}) bool { // Leader主节点选举消息过滤器

 return o.(*emittedGossipMessage).IsLeadershipMsg()

 }

 ……

}

gossipInChan()方法的原型是gossipInChan(messages[]*emittedGossipMessage，chanRouting-Factory channelRoutingFilterFactory)。其中，参数chanRoutingFactory函数的原型是func(channel.GossipChannel)filter.RoutingFilter，可定义节点过滤器或组合过滤器用于过滤出指定要求的远程节点，如代码清单6-22所示。

代码清单6-22　gossipInChan()方法的源码示例

gossip/gossip/gossip_impl.go文件

func (g *gossipServiceImpl) gossipInChan(messages []*emittedGossipMessage, chanRouting-Factory channelRoutingFilterFactory) {

 if len(messages) == 0 {

 return

 }

 totalChannels := extractChannels(messages) // 获取通道列表

 var channel common.ChainID

 var messagesOfChannel []*emittedGossipMessage

 for len(totalChannels) > 0 { // 检查通道数量大于0

 // 获取第1个通道ID

 channel, totalChannels = totalChannels[0], totalChannels[1:]

 // 获取该Gossip通道中的所有消息

 grabMsgs := func(o interface{}) bool { // 匹配通道ID

 return bytes.Equal(o.(*emittedGossipMessage).Channel, channel)

 }

 // 对消息进行分类

 messagesOfChannel, messages = partitionMessages(grabMsgs, messages)

 if len(messagesOfChannel) == 0 {

 continue

 }

 // 获取指定通道的GossipChannel对象

 gc := g.chanState.getGossipChannelByChainID(channel)

 ……

 membership := g.disc.GetMembership()

 var peers2Send []*comm.RemotePeer

 if messagesOfChannel[0].IsLeadershipMsg() {

 peers2Send = filter.SelectPeers(len(membership), membership, chanRouting-Factory(gc))

 } else {

 peers2Send = filter.SelectPeers(g.conf.PropagatePeerNum, membership, chan-RoutingFactory(gc))

 }

 // 发送消息到远程节点上

 for _, msg := range messagesOfChannel {

 filteredPeers := g.removeSelfLoop(msg, peers2Send)

 g.comm.Send(msg.SignedGossipMessage, filteredPeers...)

 }

 }

}

gossipInChan()方法先调用extractChannels()方法，遍历消息集合messages，获取所有消息包含的通道ID集合totalChannels列表，并剔除重复的通道ID。

接着，gossipInChan()方法循环遍历totalChannels列表，取出第1个通道ID（channel），将其余的通道ID更新为totalChannels列表。同时，调用partitionMessages()函数，利用grabMsgs消息过滤器筛选出指定通道（channel）上的消息集合messagesOfChannel，如通道上DataMsg类型数据的消息集合。

然后，gossipInChan()方法获取参数membership与gc，用于调用filter.SelectPeers()节点过滤方法。该方法先调用getGossipChannelByChainID(channel)方法，从chanState模块通道列表中获取与指定通道（channel）对应的GossipChannel通道对象gc。接着，调用discovery模块的g.disc.GetMembership()方法，获取aliveMembership对象中保存的节点信息列表membership（[]NetworkMember类型）。同时，检查第1个消息即（messagesOfChannel[0]）的消息类型，调用filter.SelectPeers()方法，以过滤出符合消息发送条件的节点列表peers2-Send，具体说明如下。

·如果该消息是LeadershipMsg类型主节点选举消息，则使用chanRoutingFactory参数过滤出membership列表中的所有存活节点，利用自定义的过滤器或组合过滤器依次筛选出过滤节点列表filteredPeers。如果len(filteredPeers)小于或等于指定的节点数量len(membership)，则将filteredPeers列表中的所有节点添加到待发送节点列表peers2Send中。否则，从filteredPeers节点列表中随机选出指定节点数量len(membership)的节点集合，再添加到peers2Send列表。

·对于其他类型的消息，从filteredPeers列表中选出3个节点（gossip.propagatePeer-Num配置项，若不足3个则选择全部），再添加到peers2Send列表中。

最后，gossipInChan()方法遍历messagesOfChannel消息集合，调用g.removeSelfLoop(msg，peers2Send)方法遍历peers2Send节点列表。对于其中的每个节点，先调用消息自带的过滤器msg.filter()方法过滤掉不符合条件的节点，如IsNotSameFilter过滤掉消息发送节点，从而获得符合条件的节点集合filteredPeers列表。然后，调用comm模块的g.comm.Send()方法，将消息发送给过滤后的filteredPeers列表。

如此循环处理，直到通道ID集合totalChannels全部被处理完毕。至此，gossipInChan()方法处理与发送消息的流程结束。

（1）DataMsg类型数据消息

gossipBatch()方法通过isABlock过滤器从消息集合中筛选出DataMsg消息集合，接着调用g.gossipInChan()方法发送消息。其中，该方法的chanRoutingFactory参数定义了组合节点过滤器，用于过滤出符合发送消息要求的远程节点，具体说明如下。

·gc.EligibleForChannel：该过滤器检查通道中给定节点的合法性，即先获取节点的PKI-ID，再通过GossipChannel通道的stateInfoMsgStore消息存储对象，获取与该PKI-ID对应的StateInfo消息。如果存在该消息，则筛选过滤出该节点；

·gc.IsMemberInChan：该过滤器检查给定的节点是否属于该通道的组织（实际上是MSP对象），即先获取节点所属的MSP ID，接着遍历指定GossipChannel通道上所有组织所属的MSP ID，比较两者是否相同。如果发现存在匹配的组织，则认为检查的节点符合要求；

·g.isInMyorg：该过滤器检查给定节点与当前节点是否属于同一个组织。

（2）LeadershipMsg类型主节点选举消息

gossipBatch()方法先通过isLeadershipMsg过滤器从消息集合中过滤出Leadership-Msg消息集合，再调用g.gossipInChan()方法发送消息。其中，chanRoutingFactory参数定义的组合过滤器与DataMsg消息相同，后续处理过程也类似。

（3）StateInfo类型状态信息消息

gossipBatch()方法通过isAStateInfoMsg过滤器从消息集合中筛选出StateInfo消息集合，遍历其中的每个消息，调用如下组合过滤器peerSelector过滤出待发送节点，具体如下。

·g.isInMyorg：该过滤器检查给定节点与当前节点是否属于同一个组织；

·gc.IsMemberInChan：该过滤器检查给定节点是否属于该通道的组织；

·stateInfMsg.filter：消息自带过滤器。

其中，g.isInMyorg与gc.IsMemberInChan过滤器只需要满足其中一个条件即可，state-InfMsg.filter过滤器是必须满足的条件。

（4）组织内传播的消息

gossipBatch()方法通过isOrgRestricted过滤器从消息集合中筛选出组织内传播的消息集合orgMsgs，同时，构造节点过滤器g.isInMyorg，即检查给定节点与当前节点是否属于同一个组织。

（5）其他消息

gossipBatch()方法循环遍历剩余的其他消息，跳过非AliveMsg类型消息，并基于如下组合过滤器过滤出待发送节点，具体如下。

·selectByOriginOrg：调用g.peersByOriginOrgPolicy()方法构造节点过滤器方法，用于筛选出当前AliveMsg消息发送节点所在组织的节点或本地Peer节点所在组织的节点，并且过滤掉无组织MSP名称的节点；

·msg.filter：消息自带过滤器。

代码清单6-23　gossipBatch()方法过滤与发送消息的源码示例

gossip/gossip/gossip_impl.go文件

func (g *gossipServiceImpl) gossipBatch(msgs []*emittedGossipMessage) {

 ……

 // === 发送DataMsg消息

 blocks, msgs = partitionMessages(isABlock, msgs) // 筛选出DataMsg数据消息

 // 向通道中符合条件的peer节点传播消息

 g.gossipInChan(blocks, func(gc channel.GossipChannel) filter.RoutingFilter {

 return filter.CombineRoutingFilters(gc.EligibleForChannel, gc.IsMember-InChan, g.isInMyorg)

 })

 // === 发送Leadership消息

 // 筛选出Leadership消息

 leadershipMsgs, msgs = partitionMessages(isLeadershipMsg, msgs)

 // 向通道中符合条件的Peer节点传播消息

 g.gossipInChan(leadershipMsgs, func(gc channel.GossipChannel) filter.RoutingFilter {

 return filter.CombineRoutingFilters(gc.EligibleForChannel, gc.IsMember-InChan, g.isInMyorg)

 })

 // === 发送StateInfo消息

 stateInfoMsgs, msgs = partitionMessages(isAStateInfoMsg, msgs)

 for _, stateInfMsg := range stateInfoMsgs { // 遍历所有状态信息列表

 peerSelector := g.isInMyorg

 gc := g.chanState.lookupChannelForGossipMsg(stateInfMsg.GossipMessage)

 if gc != nil && g.hasExternalEndpoint(stateInfMsg.GossipMessage.GetState-Info().PkiId) {

 peerSelector = gc.IsMemberInChan

 }

 peerSelector = filter.CombineRoutingFilters(peerSelector, func(member discovery.NetworkMember) bool {

 return stateInfMsg.filter(member.PKIid)

 })

 peers2Send := filter.SelectPeers(g.conf.PropagatePeerNum, g.disc.GetMem-bership(), peerSelector)

 g.comm.Send(stateInfMsg.SignedGossipMessage, peers2Send...)

 }

 // === 发送组织内传播的消息

 orgMsgs, msgs = partitionMessages(isOrgRestricted, msgs)

 peers2Send := filter.SelectPeers(g.conf.PropagatePeerNum, g.disc.GetMember-ship(), g.isInMyorg)

 for _, msg := range orgMsgs { // 遍历组织消息并进行发送

 g.comm.Send(msg.SignedGossipMessage, g.removeSelfLoop(msg, peers2Send)...)

 }

 // === 发送其他消息

 for _, msg := range msgs {

 if !msg.IsAliveMsg() {

 g.logger.Error("Unknown message type", msg)

 continue

 }

 selectByOriginOrg := g.peersByOriginOrgPolicy(discovery.NetworkMember {PKIid: msg.GetAliveMsg().Membership.PkiId})

 selector := filter.CombineRoutingFilters(selectByOriginOrg, func(member discovery.NetworkMember) bool {

 return msg.filter(member.PKIid)

 })

 peers2Send := filter.SelectPeers(g.conf.PropagatePeerNum, g.disc.GetMember-ship(), selector)

 g.sendAndFilterSecrets(msg.SignedGossipMessage, peers2Send...)

 }

}

4.certPuller与blocksPuller消息拉取模块

（1）概述

Gossip服务实例的certStore模块负责管理与存储PeerIdentity类型节点身份消息，并发送Pull类节点身份消息（PullMsgType_IDENTITY_MSG消息内容），请求拉取其他节点上的PeerIdentity类型节点身份消息，并更新到本地。实际上，Gossip服务实例调用New-GossipService()→g.createCertStorePuller()方法创建了certPuller模块（pullMediatorImpl类型），其实就是Gossip服务实例的certPuller模块，并在certPuller模块配置对象（pull.Con-fig类型）中初始化该模块处理的消息类型为PullMsgType_IDENTITY_MSG。

GossipChannel通道对象的blocksPuller模块负责管理与存储DataMsg类型数据消息，发送Pull类数据消息（PullMsgType_BLOCK_MSG消息内容），拉取其他节点上的DataMsg数据信息，并更新到当前节点。实际上，Gossip服务实例的chanState模块调用New-GossipChannel()→gc.createBlockPuller()方法创建了blocksPuller模块（pullMediatorImpl类型），并在其配置config（pull.Config类型）中设置该模块的处理消息类型为PullMsgType_BLOCK_MSG。

certPuller模块与blocksPuller模块的pullMediatorImpl类型如图6-6所示。

 [image:]

图6-6　certPuller模块与blocksPuller模块pullMediatorImpl类型示意图

其中，engine对象（PullEngine类型）具体负责消息请求处理流程，包含engine.state状态（摘要信息）存储器，用于保存本地Peer节点上相应数据类型的摘要对象，如Pull类节点身份消息包含的节点PKI-ID、Pull类数据消息包含的区块号等。engine模块在创建时会启动goroutine，负责周期性地（peer.gossip.pullInterval配置项，默认4秒）调用engine.initiatePull()方法，发送Pull类消息（节点身份消息或数据消息）以初始化拉取消息的交互进程。

engine.initiatePull()方法首先设置acceptingDigests标志位为1，表示允许engine.On-Digest()方法处理Digest摘要消息。接着，调用engine.SelectPeers()方法，从当前节点的aliveMembership对象的存活节点列表中随机挑选出3个节点（peer.gossip.pullPeerNum配置项，若不足3个则选择全部节点），对于每个节点peer，依次将Nonce消息随机数添加到outgoingNONCES消息随机数集合，同时更新nonces2peers与peers2nonces列表，以保存消息随机数据与Peer节点间的双向映射关系，再调用engine.Hello()方法，将签名的Hello消息发送到节点peer。该消息封装了Nonce随机数、模块配置处理的Pull类消息类型（PullMsgType_BLOCK_MSG或者PullMsgType_IDENTITY_MSG类型）等。最后，设置定时器（peer.gossip.digestWaitTime配置项，默认1秒）触发调用engine.processIncomingDigests()方法，以处理远程节点回复的Digest类型摘要消息，如代码清单6-24所示。

代码清单6-24　processIncomingDigests()方法的源码示例

gossip/gossip/algo/pull.go文件

func (engine *PullEngine) processIncomingDigests() {

 engine.ignoreDigests() // 关闭标志位，忽略Digest消息

 engine.lock.Lock()

 defer engine.lock.Unlock()

 requestMapping := make(map[string][]string)

 for n, sources := range engine.item2owners { // 遍历拥有摘要信息的节点列表

 // 随机选择一个发送节点

 source := sources[util.RandomInt(len(sources))] // 获取该节点的摘要请求列表

 if _, exists := requestMapping[source]; !exists {

 requestMapping[source] = make([]string, 0)

 }

 // 将当前摘要信息添加到节点的摘要请求列表

 requestMapping[source] = append(requestMapping[source], n)

 }

 engine.acceptResponses() // 打开标志位，接收摘要更新消息

 for dest, seqsToReq := range requestMapping { // 发送数据请求消息

 engine.SendReq(dest, seqsToReq, engine.peers2nonces[dest])

 }

 // 设置摘要更新消息等待时间

 responseWaitTime := util.GetDurationOrDefault("peer.gossip.responseWaitTime", defResponseWaitTime)

 time.AfterFunc(responseWaitTime, engine.endPull) // 执行注销清理工作

}

engine.processIncomingDigests()方法首先调用engine.ignoreDigests()方法，设置accept-ingDigests标志位为0，表示停止接收Digest摘要消息，直到新的Pull类消息交互启动时才会重新打开该标志位。接着，构造摘要请求列表requestMapping（map[string][]string类型）。其中，键是拥有该摘要信息的Peer节点（端点），值是请求的摘要信息列表。实际上，engine.processIncomingDigests()方法先遍历engine.item2owners列表，随机选择1个拥有该摘要消息的源节点source，并将该节点拥有的摘要信息添加到对应源节点的requestMapping[source]摘要请求列表中，再调用engine.acceptResponses()方法，设置acceptingResponses标志位为1，表示开始接收DataUpdate摘要更新消息。然后，循环遍历requestMapping列表，获取每个源节点dest及其摘要请求列表seqsToReq、消息随机数Nonce（engine.peers2nonces[dest]）作为参数提交给engine.SendReq()方法调用。该方法基于上述参数构造DataReq摘要请求消息，并调用p.Sndr.Send()→g.comm.Send()方法发送该消息到指定的源节点。如此循环处理，直至发送完requestMapping列表中所有的摘要请求消息。最后，设置定时器默认2秒（peer.gossip.responseWaitTime配置项）触发调用engine.endPull()方法。该方法将清空outgoingNONCES随机数集合，重置清空engine模块item2owners、peers2nonces以及nonces2peers列表，设置acceptingResponses标志位为0，以结束本次Pull类消息的交互过程。

pullMediatorImpl.HandleMessage()方法负责具体处理Pull类消息，如代码清单6-25所示，包括Hello消息、DataDig摘要消息、DataReq摘要请求消息与DataUpdate摘要更新消息。

代码清单6-25　pullMediatorImpl类型的HandleMessage()方法源码示例

gossip/gossip/pull/pullstore.go文件

// 处理Pull类消息

func (p *pullMediatorImpl) HandleMessage(m proto.ReceivedMessage) {

 // === 检查消息格式与类型

 // 检查消息合法性与消息类型（Pull类消息）

 if m.GetGossipMessage() == nil || !m.GetGossipMessage().IsPullMsg() {

 return

 }

 msg := m.GetGossipMessage() // 获取SignedGossipMessage类型签名消息

 msgType := msg.GetPullMsgType() // 获取Pull类消息

 if msgType != p.config.MsgType { // 检查与模块配置的消息类型是否匹配

 return

 }

 p.logger.Debug(msg)

 itemIDs := []string{}

 items := []*proto.SignedGossipMessage{}

 var pullMsgType MsgType

 // 分析消息类型，并调用相应的消息处理方法

 if helloMsg := msg.GetHello(); helloMsg != nil { // Hello消息

 pullMsgType = HelloMsgType

 p.engine.OnHello(helloMsg.Nonce, m)

 }

 if digest := msg.GetDataDig(); digest != nil { // 摘要消息

 d := p.PullAdapter.IngressDigFilter(digest)

 itemIDs = d.Digests

 pullMsgType = DigestMsgType

 p.engine.OnDigest(d.Digests, d.Nonce, m)

 }

 if req := msg.GetDataReq(); req != nil { // 摘要请求消息

 itemIDs = req.Digests

 pullMsgType = RequestMsgType

 p.engine.OnReq(req.Digests, req.Nonce, m)

 }

 if res := msg.GetDataUpdate(); res != nil { // 摘要更新消息

 itemIDs = make([]string, len(res.Data))

 items = make([]*proto.SignedGossipMessage, len(res.Data))

 pullMsgType = ResponseMsgType

 for i, pulledMsg := range res.Data {

 // 提取SignedGossipMessage类型消息

 msg, err := pulledMsg.ToGossipMessage()

 ……

 p.MsgCons(msg)

 itemIDs[i] = p.IdExtractor(msg) // 设置与摘要：PKI-ID或区块号

 items[i] = msg // 设置消息

 p.Lock()

 // 设置与指定摘要（PKI-ID或区块号）对应的消息

 p.itemID2Msg[itemIDs[i]] = msg

 p.Unlock()

 }

 // 检查消息随机数，将摘要集合添加到engine.state存储对象中

 p.engine.OnRes(itemIDs, res.Nonce)

 }

 // 依次调用对应消息类型的钩子方法

 for _, h := range p.hooksByMsgType(pullMsgType) {

 h(itemIDs, items, m)

 }

}

（2）Hello消息

pullMediatorImpl.HandleMessage()方法首先设置当前处理的消息类型为HelloMsg-Type，再调用engine.OnHello()方法以处理接收的Hello消息。该方法先将消息随机数Nonce添加到engine模块的incomingNONCES集合中，设置定时器（peer.gossip.requestWaitTime配置项，默认为1秒）清理过期的消息随机数Nonce。

接着，engine.OnHello()方法调用engine.digFilter()方法，获取摘要信息过滤器方法filter，用于过滤掉不符合要求的消息摘要对象。其中，engine.digFilter()是engine模块创建时调用algo.NewPullEngineWithFilter()方法定义的EgressDigestFilter类型过滤器，根据certPuller模块或blocksPuller模块配置处理的消息类型可分为如下两种情况。

①PullMsgType_IDENTITY_MSG类型

engine.digFilter()方法是定义在createCertStorePuller()中的adapter.EgressDigFilter()方法，即g.sameOrgOrOurOrgPullFilter()（gossip/gossip/gossip_impl.go）。对于Pull类节点身份消息，该方法将当前接收的消息（ReceivedMessage类型）作为参数，以创建过滤符合如下条件的摘要信息过滤器方法（EgressDigestFilter类型）。实际上，该过滤器filter从本地engine.state保存的摘要信息集合中过滤出符合如下要求的摘要信息对象，返回当前摘要信息对象是否符合要求的结果（true或false），具体说明如下。

·如果发送消息的Peer节点身份不存在于任何组织中，即所属组织的MSP ID为空，则构造的摘要信息过滤器filter始终返回false，即不接受处理该节点发送的任何engine.state保存的摘要信息对象；

·如果发送消息的Peer节点与本地Peer节点属于同一个组织，则构造的摘要信息过滤器filter始终返回true，即接受处理该节点发送的任何engine.state保存的摘要信息对象；

·如果不属于上述情况，则构造如下摘要信息过滤器方法。该方法检查当前消息摘要发送节点的合法性（属于合法的组织等），如果检查的当前摘要信息对象（PKI-ID）标识节点与本地Peer节点属于同一个组织，或者与当前发送消息的Peer节点属于同一个组织，则构造的摘要信息过滤器filter始终返回true，即接受处理当前摘要信息对象。

②PullMsgType_BLOCK_MSG类型

engine.digFilter()方法是基于在NewPullMediator()中的acceptAllFilter()消息过滤器方法定义的。注意，adapter.EgressDigFilter在创建blocksPuller模块的createBlockPuller()方法中没有被初始化（即默认为nil）。对于Pull类数据消息，该方法构造的摘要信息过滤器始终返回true，即接受处理消息发送节点的所有摘要信息对象。

实际上，engine.digFilter()方法就是上述消息过滤器（EgressDigestFilter类型）的egressDigFilter.byContext()→EgressDigestFilter.byContext()（gossip/gossip/pull/pullstore.go）方法，返回上述摘要信息过滤器方法，用于检查参数context的类型合法性（Received-Message类型），以处理当前消息并过滤出指定的摘要信息对象。

然后，engine.OnHello()方法遍历当前certStore模块或blocksPuller模块上engine.state存储对象中的摘要信息集合，通过调用filter(dig)方法过滤出符合要求的摘要信息对象，并添加到digest摘要信息列表中。

最后，调用engine.SendDigest()方法构造DataDig摘要消息digMsg，该消息封装了当前模块配置处理Pull类消息的消息类型（PullMsgType_IDENTITY_MSG或PullMsgType_BLOCK_MSG类型）、Nonce消息随机数、digest摘要信息列表等，再调用Respond(digMsg)方法，对消息进行签名后再发送到指定的连接节点。

至此，Hello消息处理完毕。

（3）DataDig摘要消息

pullMediatorImpl.HandleMessage()方法调用p.PullAdapter.IngressDigFilter()方法，处理接收到的DataDig数据摘要消息，过滤筛选出符合条件的摘要信息对象（DataDigest类型）。IngressDigFilter()方法是在创建engine模块时调用algo.NewPullEngineWithFilter()方法中构造的IngressDigestFilter类型过滤器，根据certStore模块或blocksPuller模块配置处理的消息类型可分为如下两种情况。

①PullMsgType_IDENTITY_MSG类型

IngressDigFilter()方法是定义在NewPullMediator()中的adapter.IngressDigFilter()过滤器方法。对于Pull类节点身份消息，该方法构造的摘要过滤器方法filter始终返回参数中的摘要信息对象digestMsg（DataDigest类型）。

②PullMsgType_BLOCK_MSG类型

IngressDigFilter()方法是定义在createBlockPuller()方法中的adapter.IngressDigFilter()方法。对于Pull类数据消息，adapter.IngressDigFilter()方法首先获取当前blocksPuller模块所属GossipChannel通道的账本区块链高度height。接着，遍历digestMsg数据摘要消息参数（DataDigest类型）中包含的摘要信息对象列表，将摘要信息转换为整数类型seqNum，即区块号。然后，比较seqNum与height的大小。如果seqNum大于或等于height，则该摘要信息对象是符合要求的，即摘要信息对象提供节点存在当前节点缺失的数据。因此，需要将该摘要信息重新添加到digestMsg.Digests列表中。

接着，HandleMessage()方法将当前消息类型设置为DigestMsgType，再调用engine.OnDigest()方法，以处理过滤后的摘要信息对象（DataDigest类型），检查当前节点是否有权限处理Digest摘要信息，即必须同时满足以下两个条件。

·检查acceptingDigests标志位，判断是否允许engine模块处理Digest摘要消息。

·检查engine.outgoingNONCES列表，是否已经存在该消息的随机数Nonce，表示接收与处理过相同随机数Nonce的消息。

其中，acceptingDigests标志位的默认初始值是0，表示不接受处理Digest摘要消息。同时，engine模块周期性地调用initiatePull()→engine.acceptDigests()方法，设置accepting-Digests标志位为1，表示可以开始处理Digest摘要消息。

如果通过了上述检查，则engine.OnDigest()方法将遍历参数中摘要信息对象（Data-Digest类型）包含的所有摘要信息，调用engine.state.Exists()方法，检查engine.state中是否已经保存了该摘要信息对象。如果本地已经保存了该对象，则跳过继续执行。否则，继续检查拥有该摘要信息的节点集合engine.item2owners列表是否已经存在。若不存在，则创建新的engine.item2owners列表。然后，将新节点engine.nonces2peers[nonce]添加到engine.item2owners列表中。

同时，engine模块周期性地调用processIncomingDigests()方法以处理Digest摘要消息，向源节点集合engine.item2owners列表发送摘要信息请求消息。

至此，DataDig摘要消息处理完毕。

（4）DataReq摘要请求消息

HandleMessage()方法设置当前处理的消息类型为RequestMsgType，调用engine.OnReq()方法以处理DataReq数据摘要请求消息，将请求的摘要消息封装成DataUpdate消息，并返回给请求节点。

其中，engine.OnReq()方法先检查engine.outgoingNONCES列表，是否已经存在该消息随机数Nonce，以确保之前接收与处理过携带该消息随机数的消息，并确保拥有处理该消息的合法权限。

接着，调用engine.digFilter(context)方法，创建摘要信息过滤器filter，遍历摘要信息对象请求列表items中的每个对象，检查本地engine.state存储对象中是否存在对应的摘要信息对象，并通过filter()摘要信息过滤器，筛选出符合要求的摘要信息对象。其中，filter()摘要信息过滤器与Hello消息处理过程中定义的过滤器相同。

然后，将过滤出来的摘要信息对象添加到items2Send消息发送列表中，并检查该列表中消息数量的合法性（不为0）。

最后，执行go engine.SendRes()以发送请求的摘要信息对象。SendRes()方法先遍历items2Send列表中的摘要信息对象item，检查certStore模块或blocksPuller模块中用于保存原始消息的itemID2Msg摘要消息列表（map[string]*proto.SignedGossipMessage类型）。如果itemID2Msg列表中已经保存了请求的消息，则将其Envelope字段对象添加到items2return返回消息列表（[]*proto.Envelope类型）中，即请求的摘要信息消息集合。这样，遍历处理完毕所有的摘要信息请求对象。接着，构造DataUpdate摘要更新响应消息，封装了items2return返回消息列表、消息随机数Nonce、模块配置处理的Pull类消息类型（PullMsgType_IDENTITY_MSG或者PullMsgType_BLOCK_MSG类型）等。然后，调用context.(proto.ReceivedMessage).Respond()方法对DataUpdate消息进行签名，并发送给摘要信息对象的请求节点。

至此，DataReq摘要请求消息处理完毕。

（5）DataUpdate摘要更新消息

HandleMessage()方法设置当前处理的消息类型为ResponseMsgType，解析DataUpdate摘要更新消息res，遍历其包含的更新数据消息列表res.Data（[]*Envelope类型），调用pulledMsg.ToGossipMessage()方法，将每个更新数据消息重新封装为SignedGossipMessage类型消息。接着，HandleMessage()方法调用p.MsgCons()方法以处理该摘要更新消息，可分为如下两种情况。

①PullMsgType_IDENTITY_MSG类型

certPuller模块在createCertStorePuller()方法（gossip/gossip/gossip_impl.go）中定义MsgCons()方法为certConsumer()方法。该方法从接收的消息中解析出PeerIdentity类型节点身份消息，检查解析结果的合法性，提取出节点的PKI-ID及其身份证书信息，并更新到节点身份信息字典pkiID2Cert中。

②PullMsgType_BLOCK_MSG类型

blocksPuller模块在createBlockPuller()方法（gossip/gossip/channel/channel.go）中定义了MsgCons()方法。该方法调用gc.DeMultiplex(msg)方法，将当前消息转发给Gossip服务实例的ChannelDeMultiplexer模块继续处理，目前可以过滤筛选出DataMsg类型数据消息，并发送到gossipChan通道，交由state模块的GossipStateProviderImpl.queueNewMessage()方法继续处理，消息负载缓冲区并提交到账本（6.3.4节）。

然后，HandleMessage()方法调用p.IdExtractor()方法，提取当前消息的摘要信息（节点PKI-ID或区块号），将其更新到itemIDs摘要信息对象列表。同时，将当前消息设置到items列表与p.itemID2Msg摘要消息列表中，再调用p.engine.OnRes()方法，以检查消息随机数Nonce等的合法性，具体说明如下。

·检查engine.outgoingNONCES列表中是否已经存在该消息随机数Nonce，以确定之前接收与处理过携带该消息随机数Nonce的消息；

·检查acceptingResponses标志位是否为1，以确定engine模块能够接受并处理Data-Update消息。

如果通过了上述检查，则将itemIDs中的摘要信息对象更新到本地的engine.state存储对象上。

最后，HandleMessage()方法在交互过程中依次处理完上述4种消息，再遍历调用pull-MsgType消息类型相关的钩子方法p.hooksByMsgType(pullMsgType)，执行相关的更新与处理操作。

5.Gossip消息存储对象

Gossip消息模块包含的消息存储对象如表6-6所示，提供给各个服务模块存储不同用途的消息，提供验证消息有效性的方法，并周期性地清理过期消息，以确保消息的时效性。

表6-6　Gossip消息存储对象列表

 [image:]

 [image:]

由于messageStoreImpl结构对象（实现MessageStore接口）被嵌入到aliveMsgStore类型与stateInfoCache类型中，如图6-7所示。因此，除了certPuller模块与blocksPuller模块外，其余都是调用NewMessageStoreExpirable()/NewMessageStore()→newMsgStore()函数创建messageStoreImpl结构消息来存储对象，具体说明如下。

·NewMessageStoreExpirable()函数启动goroutine执行expirationRoutine()函数，负责周期性地清理过期无效消息，包括stateInfoMsgStore、aliveMsgStore、blockMsg-Store、leaderMsgStore等消息存储器。

·NewMessageStore()函数建立消息循环，周期性地调用Purge()函数清理过期无效消息，包括GossipChannel通道对象上的stateInfoMsgStore等消息存储器。

（1）添加新消息

①certPuller模块与blocksPuller模块

certPuller模块与blocksPuller模块（pullMediatorImpl类型）调用Add()方法添加新消息。该方法首先调用IdExtractor()函数以提取消息的摘要信息，具体说明如下。

·certPuller模块：IdExtractor()函数实际上是createCertStorePuller()方法中定义的pki-IDFromMsg()函数，可提取PeerIdentity消息的摘要信息即节点PKI-ID；

·blocksPuller模块：IdExtractor()函数实际上是createBlockPuller()方法中定义的seq-NumFromMsg()函数，可提取DataMsg消息的dataMsg.Payload.SeqNum区块号作为摘要信息。

接着，将PeerIdentity消息或DataMsg消息保存到itemID2Msg摘要消息列表中，再通过自身的engine模块（PullEngine类型）调用engine.state.Add()方法，将消息的摘要信息保存到engine.state的摘要信息集合中。其中，键是摘要信息（节点PKI-ID或区块号），值保存的是空结构对象struct{}{}，如代码清单6-26所示。

代码清单6-26　pullMediatorImpl类型的Add()方法源码示例

gossip/pull/pullstore.go文件

func (p *pullMediatorImpl) Add(msg *proto.SignedGossipMessage) {

 p.Lock()

 defer p.Unlock()

 itemID := p.IdExtractor(msg) // 提取节点PKI-ID或区块号

 p.itemID2Msg[itemID] = msg // 添加消息

 p.engine.Add(itemID) // 添加到engine模块中

}

 [image:]

图6-7　Gossip消息存储对象类型示意图

②其他模块

除了certPuller模块与blocksPuller模块，其他消息存储对象都调用messageStoreImpl.Add()方法，添加新消息到自身的messages消息列表（[]*msg类型）中。其中，Gossip-Channel通道上的stateInfoMsgStore还会保存节点PKI-ID对应的接收消息，将其缓存在自身MembershipStore对象的消息列表（map[string]*proto.SignedGossipMessage类型）中，以支持快速查询指定的消息。

messageStoreImpl.Add()方法先判断当前添加消息的有效性，即调用消息验证策略函数pol()，遍历当前消息存储对象中的消息列表，验证当前消息是否可以替换消息列表的原有消息，并返回消息是否有效的验证结果，如代码清单6-27所示。消息验证策略函数pol()的函数原型是type MessageReplacingPolicy func(this interface{}，that interface{})InvalidationResult。其中，this和that分别代表当前接收消息与消息列表中的原有消息。实际上是调用proto.NewGossipMessageComparator()方法，创建消息验证策略函数pol()，作为参数传入NewMessageStoreExpirable()函数或者NewMessageStore()函数，以构造新的messageStoreImpl结构消息存储对象。

代码清单6-27　messageStoreImpl类型的Add()方法源码示例

gossip/gossip/msgstore/msgs.go文件

func (s *messageStoreImpl) Add(message interface{}) bool {

 s.lock.Lock()

 defer s.lock.Unlock()

 n := len(s.messages) // 获取消息列表的个数

 for i := 0; i < n; i++ { // 遍历所有消息

 m := s.messages[i]

 switch s.pol(message, m.data) { // 调用消息验证策略函数

 case common.MessageInvalidated: // 若当前消息无效，原有消息有效，则丢弃当前消息

 return false

 case common.MessageInvalidates: // 若当前消息有效，原有消息无效，则丢弃原有消息

 s.invTrigger(m.data) // 消息验证触发器函数

 s.messages = append(s.messages[:i], s.messages[i+1:]...)

 // 删除原有消息

 n--

 i--

 }

 }

 s.messages = append(s.messages, &msg{data: message, created: time.Now()})

 // 添加当前消息到消息列表

 return true

}

如代码清单6-28所示，消息验证策略函数pol()调用msgComparator.invalidationPolicy(this，that)方法，验证当前消息的有效性。目前支持验证5种消息，如表6-7所示，分别采用不同的有效性验证方法，具体如下。

·消息时间戳：依次比较消息时间戳信息PeerTime中的IncNum字段和SeqNum字段，只要发现当前消息中的字段数值比原有消息要大，则当前消息有效。如果两个字段都相同，则保留原有消息；

·消息区块号：对于DataMsg消息来说，区块号相等时原有消息有效。如果消息缓冲区能够保存两个区块号间的所有消息（在创建时指定消息容量，默认为100个消息），则两个消息都有效。否则，区块号大的消息有效；

·节点PKI-ID：相等则当前消息有效，否则说明是两个消息，此时两者都有效。

表6-7　消息类型及其消息验证策略

 [image:]

代码清单6-28　invalidationPolicy()方法的源码示例

protos/gossip/extensions.go文件

func (mc *msgComparator) invalidationPolicy(this interface{}, that interface{}) common.InvalidationResult {

 thisMsg := this.(*SignedGossipMessage)

 thatMsg := that.(*SignedGossipMessage)

 // AliveMsg节点存活消息

 if thisMsg.IsAliveMsg() && thatMsg.IsAliveMsg() {

 return aliveInvalidationPolicy(thisMsg.GetAliveMsg(), thatMsg.GetAliveMsg())

 }

 // DataMsg数据消息

 if thisMsg.IsDataMsg() && thatMsg.IsDataMsg() {

 return mc.dataInvalidationPolicy(thisMsg.GetDataMsg(), thatMsg.GetDataMsg())

 }

 // StateInfoMsg状态信息消息

 if thisMsg.IsStateInfoMsg() && thatMsg.IsStateInfoMsg() {

 return mc.stateInvalidationPolicy(thisMsg.GetStateInfo(), thatMsg.GetState-Info())

 }

 // PeerIdentity节点身份消息

 if thisMsg.IsIdentityMsg() && thatMsg.IsIdentityMsg() {

 return mc.identityInvalidationPolicy(thisMsg.GetPeerIdentity(), thatMsg.GetPeerIdentity())

 }

 // LeadershipMsg主节点选举消息

 if thisMsg.IsLeadershipMsg() && thatMsg.IsLeadershipMsg() {

 return leaderInvalidationPolicy(thisMsg.GetLeadershipMsg(), thatMsg.Get-LeadershipMsg())

 }

 return common.MessageNoAction

}

消息验证结果包括3种情况，具体说明如下。

·MessageInvalidated：若当前消息无效，原有消息有效，则丢弃当前消息。

·MessageInvalidates：若当前消息有效，原有消息无效，则丢弃原有消息并将当前消息放入消息列表中，接着根据消息类型调用invTrigger()方法，包括：

·chanState模块上stateInfoMsgStore消息存储器中的StateInfo状态信息消息：invTrigger()方法是invalidationTrigger()方法（gossip/gossip/channel/channel.go）。该方法先解析消息发送节点的PKI-ID，再调用membershipStore.Remove(pkiID)方法，从stateInfoMsgStore对象上的MessageStore消息存储对象中删除对应节点的StateInfo消息；

·chanState模块上blockMsgStore消息存储器中的DataMsg消息：invTrigger()方法调用GossipChannel对象的gc.blocksPuller.Remove(seqNumFromMsg())方法，先利用seqNumFromMsg()函数获取其摘要信息（区块号），再根据摘要信息从blocksPuller模块的itemID2Msg摘要消息列表与engine模块中删除对应的摘要消息与摘要信息对象；

·对于其余消息类型，目前invTrigger()方法不执行任何有效操作。

·MessageNoAction：若两个消息不进行比较，则两个消息都是有效的。

（2）清理过期无效消息

①chanState模块stateInfoMsgStore对象

chanState模块调用newStateInfoCache()函数，创建GossipChannel通道对象上的state-InfoMsgStore对象，并启动goroutine建立消息处理循环，周期性地调用Purge()方法用于清理过期无效消息，如代码清单6-29所示。

代码清单6-29　newStateInfoCache()函数的源码示例

gossip/gossip/channel/channel.go文件

func newStateInfoCache(sweepInterval time.Duration, hasExpired func(interface{}) bool, verifyFunc membershipPredicate) *stateInfoCache {

 membershipStore := util.NewMembershipStore()

 pol := proto.NewGossipMessageComparator(0)

 s := &stateInfoCache{

 verify: verifyFunc,

 MembershipStore: membershipStore,

 stopChan: make(chan struct{}),

 }

 invalidationTrigger := func(m interface{}) {

 pkiID := m.(*proto.SignedGossipMessage).GetStateInfo().PkiId

 membershipStore.Remove(pkiID)

 }

 s.MessageStore = msgstore.NewMessageStore(pol, invalidationTrigger)

 go func() {

 for {

 select {

 case <-s.stopChan:

 return

 case <-time.After(sweepInterval):

 s.Purge(hasExpired)

 }

 }

 }()

 return s

}

如代码清单6-30所示，Purge()方法首先调用messageStoreImpl结构对象的s.isPurge-Needed(shouldMsgBePurged)方法，遍历stateInfoMsgStore对象的消息列表messages（[]*msg类型），调用shouldMsgBePurged()→shouldBePurged()方法，检查是否存在需要清理的无效消息。如果发现无效消息，则进入消息清理的流程，否则直接返回。

代码清单6-30　Purge()方法的源码示例

gossip/gossip/msgstore/msgs.go文件

func (s *messageStoreImpl) Purge(shouldBePurged func(interface{}) bool) {

 shouldMsgBePurged := func(m *msg) bool {

 return shouldBePurged(m.data)

 }

 if !s.isPurgeNeeded(shouldMsgBePurged) {

 return

 }

 s.lock.Lock()

 defer s.lock.Unlock()

 n := len(s.messages)

 for i := 0; i < n; i++ {

 if !shouldMsgBePurged(s.messages[i]) {

 continue

 }

 s.invTrigger(s.messages[i].data)

 s.messages = append(s.messages[:i], s.messages[i+1:]...)

 n--

 i--

 }

}

isPurgeNeeded方法的源码示例如代码清单6-31所示。

代码清单6-31　isPurgeNeeded()方法的源码示例

gossip/gossip/msgstore/msgs.go文件

// 需要检测是否存在超时的消息，若存在则返回true，否则返回false

func (s *messageStoreImpl) isPurgeNeeded(shouldBePurged func(*msg) bool) bool {

 s.lock.RLock()

 defer s.lock.RUnlock()

 for _, m := range s.messages { // 遍历消息

 if shouldBePurged(m) {

 return true

 }

 }

 return false

}

shouldBePurged()是定义在NewGossipChannel()函数中的hashPeerExpiredInMember-ship()函数。如代码清单6-32所示，该方法首先调用GossipChannel通道对象的gc.Look-up(pkiID)→gossipDiscoveryImpl.Lookup()方法，检查指定消息是否需要被清理，即查看StateInfo消息发送节点的PKI-ID是否存在于discovery模块的id2Member字典中。如果不存在该节点，则说明该消息是无效的，需要进行清理。

代码清单6-32　hashPeerExpiredInMembership()函数的源码示例

gossip/gossip/channel/channel.go文件

hashPeerExpiredInMembership := func(o interface{}) bool {

 pkiID := o.(*proto.SignedGossipMessage).GetStateInfo().PkiId

 return gc.Lookup(pkiID) == nil

}

接着，Purge()方法重新遍历stateInfoMsgStore对象的消息列表，调用shouldMsgBe-Purged()方法，检查每个消息的有效性。如果发现需要清理的消息，则调用invTrigger()方法，即定义在newStateInfoCache()函数中的invalidationTrigger()方法。该方法先提取出消息发送节点的PKI-ID，再调用membershipStore.Remove()方法以删除stateInfoMsgStore.MembershipStore中的无效消息。

②certStore模块

certStore模块上的pull模块实际上是利用Gossip服务实例的certPuller模块来周期性地请求Pull类节点身份消息（PullMsgType_IDENTITY_MSG消息内容），同时维护本地节点idMapper模块中的pkiID2Cert字典。

事实上，Gossip服务实例创建idMapper模块时会执行go idMapper.periodicalPurge-UnusedIdentities()。该方法周期性地（默认为6分钟）从idMapper模块的pkiID2Cert字典中删除已经过期、被撤销以及身份证书无效的节点身份信息，并执行is.onPurge()→identity-MapperImpl.onPurge()回调函数（gossip/gossip/gossip_impl.go）。该回调函数定义在New-Gossip-Service()→identity.NewIdentityMapper()函数的参数中，首先调用g.comm.Close-Conn()方法以关闭和删除与指定节点（PKI-ID）关联的节点连接对象，再调用g.certPuller.Remove()方法，从certStore模块的itemID2Msg摘要消息列表与engine对象中删除与该节点关联的消息与摘要信息（PKI-ID），从而周期性地清理certStore模块上过期无效的节点身份信息。

③其他对象

除了certStore模块、GossipChannel通道上的stateInfoMsgStore对象与blocksPuller模块，其余模块的消息存储对象（messageStoreImpl类型）在创建时都执行go expirationRoutine()，以周期性地清理过期无效的消息，如代码清单6-33所示。

代码清单6-33　expirationRoutine()方法的源码示例

gossip/gossip/msgstore/msgs.go文件

func (s *messageStoreImpl) expirationRoutine() {

 for {

 select {

 case <-s.doneCh: // 完成通道消息

 return

 case <-time.After(s.expirationCheckInterval()): // 超时定时器触发消息

 hasMessageExpired := func(m *msg) bool {

 // 未超时且达到阈值时间

 if !m.expired && time.Since(m.created) > s.msgTTL {

 return true

 // 未设置超时且达到2倍阈值时间

 } else if time.Since(m.created) > (s.msgTTL 2) {

 return true

 }

 return false

 }

 if s.isPurgeNeeded(hasMessageExpired) { // 检查是否存在超时无效的消息

 s.expireMessages() // 处理超时消息

 }

 }

 }

}

expirationRoutine()方法首先周期性地调用isPurgeNeeded(hasMessageExpired)方法，遍历检查消息存储对象的消息列表中是否存在需要清理的消息，即调用hasMessageExpired()函数检查给定的消息是否已经过期无效，判断条件包括：

·消息的expired标志位没有过期（false），但消息的运行时间超过了阈值时间msgTTL；

·消息的运行时间超过了2倍的阈值时间msgTTL。

如果存在过期无效的消息，则调用expireMessages()方法，遍历消息列表检查消息的expired标志位，具体可分为两种情况进行处理，如代码清单6-34所示。

代码清单6-34　expireMessages()方法的源码示例

gossip/gossip/msgstore/msgs.go文件

// 超时消息处理

func (s *messageStoreImpl) expireMessages() {

 s.externalLock()

 s.lock.Lock()

 defer s.lock.Unlock()

 defer s.externalUnlock()

 n := len(s.messages)

 for i := 0; i < n; i++ { // 循环遍历消息存储中的消息列表

 m := s.messages[i]

 if !m.expired { // 检测超时标志位，目前不超时

 if time.Since(m.created) > s.msgTTL { // 检测创建时间是否超时

 m.expired = true

 s.expireMsgCallback(m.data) // 调用回调函数

 s.expiredCount++ // 超时次数自增

 }

 } else { //

 if time.Since(m.created) > (s.msgTTL 2) { // 超过2倍设置的超时时间

 s.messages = append(s.messages[:i], s.messages[i+1:]...)

 // 添加到消息列表中

 n-- // 总个数减1

 i-- // 索引减1

 s.expiredCount-- // 超时次数减1

 }

 }

 }

}

如果消息没有过期，但消息创建后的运行时间超过了阈值时间msgTTL，则设置expired过期标志位为true，并调用expireMsgCallback()回调函数，对过期无效的消息进行处理，包括：

·discovery模块的aliveMsgStore消息存储对象上保存的AliveMsg消息：expireMsg-Callback()回调函数是定义在newAliveMsgStore()函数中的callback()函数（gossip/discovery/discovery_impl.go），如代码清单6-35所示。该函数先检查该消息类型的合法性（AliveMsg类型），通过检查后提取发送消息的节点PKI-ID，并删除dis-covery模块上相关列表中的对应信息；

·chanState模块的blockMsgStore消息存储对象上保存的DataMsg消息：expireMsg-Callback()回调函数调用GossipChannel通道对象的gc.blocksPuller.Remove(seqNum-FromMsg(m))方法，如代码清单6-36所示。该方法先调用seqNumFromMsg(m)函数，获取摘要信息（区块号），再根据摘要信息删除blocksPuller模块中的过期无效消息，包括itemID2Msg字典保存的Pull类数据消息以及engine.state保存的摘要信息对象；

·对于其余消息类型，expireMsgCallback()回调函数不执行任何有效操作。

如果消息创建后的运行时间超过了2倍的阈值时间msgTTL，则直接从消息列表mess-ages中删除该过期无效的消息。

代码清单6-35　newAliveMsgStore()函数定义的callback()回调函数源码示例

gossip/discovery/discovery_impl.go文件

func newAliveMsgStore(d *gossipDiscoveryImpl) *aliveMsgStore {

 ……

 callback := func(m interface{}) { // 回调函数

 msg := m.(*proto.SignedGossipMessage)

 if !msg.IsAliveMsg() {

 return

 }

 id := msg.GetAliveMsg().Membership.PkiId // 获取PKI ID

 d.aliveMembership.Remove(id)

 d.deadMembership.Remove(id)

 delete(d.id2Member, string(id))

 delete(d.deadLastTS, string(id))

 delete(d.aliveLastTS, string(id))

 }

 s := &aliveMsgStore{ // 构造消息存储对象

 MessageStore: msgstore.NewMessageStoreExpirable(policy, trigger, aliveMsg-TTL, externalLock, externalUnlock, callback),

 }

 ……

}

代码清单6-36　blockMsgStore对象回调函数源码示例

gossip/gossip/channel/channel.go文件

gc.blockMsgStore = msgstore.NewMessageStoreExpirable(comparator, func(m inter-face{}) {

 gc.blocksPuller.Remove(seqNumFromMsg(m))

}, gc.GetConf().BlockExpirationInterval, nil, nil, func(m interface{}) {

 gc.blocksPuller.Remove(seqNumFromMsg(m))

})

6.3.3　Gossip服务实例中的消息处理

1.概述

Gossip服务实例的handleMessage()方法负责处理与转发14种Gossip消息。该方法首先检查消息的合法性，即消息不为nil且SignedGossipMessage字段不为nil，再调用validate-Msg()方法以验证消息类型的合法性，包括：

·调用IsTagLegal()方法，检查当前消息类型与消息标签是否合法匹配。

·验证AliveMsg消息与StateInfo消息中消息签名的真实性。

如果通过了上述消息检查，则handleMessage()方法将接收的14种Gossip消息分为3类进行处理，如代码清单6-37所示。

代码清单6-37　handleMessage()方法的源码示例

fabric/gossip/gossip/gossip_impl.go文件

func (g *gossipServiceImpl) handleMessage(m proto.ReceivedMessage) {

 if g.toDie() {

 return

 }

 if m == nil || m.GetGossipMessage() == nil {

 return

 }

 msg := m.GetGossipMessage() // 获取Gossip消息

 g.logger.Debug("Entering,", m.GetConnectionInfo(), "sent us", msg)

 defer g.logger.Debug("Exiting")

 // 验证消息合法性

 if !g.validateMsg(m) {

 g.logger.Warning("Message", msg, "isn't valid")

 return

 }

 // 支持通道内传播的消息：交由GossipChannel对象的HandleMessage()进行处理

 // GossipMessage_CHAN_AND_ORG || GossipMessage_CHAN_ONLY || GossipMessage_CHAN_

 OR_ORG

 if msg.IsChannelRestricted() {

 // 根据消息查找对应的GossipChannel对象

 if gc := g.chanState.lookupChannelForMsg(m); gc == nil {

 if g.isInMyorg(discovery.NetworkMember{PKIid: m.GetConnectionInfo().ID}) && msg.IsStateInfoMsg() {

 // 如果都满足，则添加该消息到stateInfoMsgStore对象中

 if g.stateInfoMsgStore.Add(msg) {

 g.emitter.Add(&emittedGossipMessage{ // 添加到发送消息列表中

 SignedGossipMessage: msg,

 filter: m.GetConnectionInfo().ID.IsNotSameFilter,

 // 过滤器不转发到远程节点

 })

 }

 }

 if !g.toDie() { // 检测gossip服务是否关闭

 g.logger.Debug("No such channel", msg.Channel, "discarding message", msg)

 }

 } else { // 找到对应的GossipChannel对象

 // Leadership主节点选举消息

 if m.GetGossipMessage().IsLeadershipMsg() {

 if err := g.validateLeadershipMessage(m.GetGossipMessage()); err != nil {

 g.logger.Warningf("Failed validating LeaderElection message: %+v", errors.WithStack(err))

 return

 }

 }

 gc.HandleMessage(m) // 处理消息

 }

 return

 }

 // 过滤出discovery模块处理的消息：AliveMsg节点存活消息、MemReq成员关系请求消息与MemRes

 成员关系响应消息

 if selectOnlyDiscoveryMessages(m) {

 // MemReq成员关系请求消息

 if m.GetGossipMessage().GetMemReq() != nil {

 sMsg, err := m.GetGossipMessage().GetMemReq().SelfInformation.ToGossip-Message()

 ……

 // 检查AliveMsg节点存活消息类型的合法性

 if !sMsg.IsAliveMsg() {

 g.logger.Warning("Got membership request with selfInfo that isn't an AliveMessage")

 return

 }

 if !bytes.Equal(sMsg.GetAliveMsg().Membership.PkiId, m.GetConnection-Info().ID) { // 检查节点PKI-ID是否匹配

 g.logger.Warning("Got membership request with selfInfo that doesn't match the handshake")

 return

 }

 }

 g.forwardDiscoveryMsg(m) // 转发消息给discovery模块继续处理

 }

 // Pull类节点身份消息

 if msg.IsPullMsg() && msg.GetPullMsgType() == proto.PullMsgType_IDENTITY_MSG {

 g.certStore.handleMessage(m)

 }

}

（1）支持通道内传播的消息

handleMessage()方法调用msg.IsChannelRestricted()方法，过滤出满足指定要求的消息，其消息标签必须是GossipMessage_CHAN_AND_ORG、GossipMessage_CHAN_ONLY或GossipMessage_CHAN_OR_ORG，即消息是允许在通道内进行传播的。

如果通过了消息标签的检查，则handleMessage()方法通过Gossip服务实例的chan-State模块继续调用lookupChannelForMsg()方法。若该消息是StateInfo类型状态信息消息或StateInfoPullReq类型状态信息请求消息，则根据消息中保存的通道MAC码（节点PKI-ID与链ID组合后计算的哈希值）获取对应的GossipChannel通道对象。否则，直接获取指定通道（msg.Channel）上的GossipChannel通道对象。

如果chanState模块的channels通道列表中不存在关联的GossipChannel通道对象，则继续检查消息发送节点与本节点是否属于同一个组织，并且该消息是否为StateInfo消息。如果该消息符合上述要求，则调用g.stateInfoMsgStore.Add(msg)方法以判断该消息的有效性，将有效消息添加到Gossip服务实例的stateInfoMsgStore消息存储对象中。如果添加成功，则基于该消息构造emittedGossipMessage类型消息，通过emitter模块发送到其他Peer节点上，并使用IsNotSameFilter()方法过滤掉该消息的发送节点。

如果channels通道列表存在关联的GossipChannel通道对象gc，则继续检查消息的类型。若当前消息是LeadershipMsg类型主节点选举消息，则调用validateLeadership-Message()方法，通过MCS消息加密服务模块验证该消息签名的真实性，验证通过后调用GossipChannel通道对象的gc.HandleMessage()方法，以处理Pull类数据消息（PullMsgType_BLOCK_MSG消息内容）、数据消息（DataMsg类型）、状态类消息（StateInfo类型、State-InfoPullReq类型与StateSnapshot类型等）、Leader主节点选举消息（LeadershipMsg类型）等。

（2）discovery模块处理的消息

handleMessage()方法调用selectOnlyDiscoveryMessages()函数，过滤出discovery模块负责处理的3种消息，包括AliveMsg节点存活消息（AliveMsg类型）、成员关系请求与响应消息（MemReq类型与MemRes类型）等。

对于MemReq消息需要验证其合法性，handleMessage()方法首先解析获取该消息内容封装的AliveMsg消息，检查该消息的合法性并通过之后，调用sMsg.GetAliveMsg().Membership.PkiId提取该消息发送节点的PKI-ID，并通过m.GetConnectionInfo().ID获取接收消息中节点连接信息所包含的节点PKI-ID，再检查这两个节点的PKI-ID是否相同。如果不相同，则说明节点信息不匹配，验证失败并直接返回。

如果通过了上述消息检查，则handleMessage()方法调用forwardDiscoveryMsg()方法，将接收的消息放入discoveryAdapter适配器模块的g.discAdapter.incChan通道中，交由discovery模块继续处理。同时，由Gossip服务器实例的初始化过程可知，discovery模块创建时执行了go d.handleMessages()，负责阻塞监听discAdapter适配器模块discoveryAdapter.incChan通道上的合法消息，并调用discovery模块的d.handleMsgFromComm()方法处理该消息。

（3）Pull类节点身份消息

handleMessage()方法检查过滤出Pull类节点身份消息（PullMsgType_IDENTITY_MSG消息内容），交由certStore模块的handleMessage()方法进行处理。

2.GossipChannel对象处理通道内传播的消息

chanState模块上GossipChannel通道对象的gossipChannel.HandleMessage()方法负责处理通道内传播的消息，包括Pull类数据消息（PullMsgType_BLOCK_MSG消息内容）、数据消息（DataMsg类型）、状态类消息（StateInfo类型、StateInfoPullReq类型与StateSnap-shot类型等）、Leader主节点选举消息（LeadershipMsg类型）等，如代码清单6-38所示。

代码清单6-38　GossipChannel通道对象的HandleMessage()方法源码示例

gossip/gossip/channel/channel.go文件

func (gc *gossipChannel) HandleMessage(msg proto.ReceivedMessage) {

 // === 验证消息的合法性

 if !gc.verifyMsg(msg) {

 gc.logger.Warning("Failed verifying message:", msg.GetGossipMessage().GossipMessage)

 return

 }

 m := msg.GetGossipMessage()

 if !m.IsChannelRestricted() { // 检查该消息是否支持通道内传播

 gc.logger.Warning("Got message", msg.GetGossipMessage(), "but it's not a per-channel message, discarding it")

 return

 }

 orgID := gc.GetOrgOfPeer(msg.GetConnectionInfo().ID) // 获取所属组织MSP ID

 if len(orgID) == 0 {

 gc.logger.Debug("Couldn't find org identity of peer", msg.GetConnection-Info())

 return

 }

 if !gc.IsOrgInChannel(orgID) { // 检查该组织是否属于本通道

 gc.logger.Warning("Point to point message came from", msg.GetConnection-Info(),

 ", org(", string(orgID), ") but it's not eligible for the channel", string (gc.chainID))

 return

 }

 // === 检查处理StateInfoPullReq状态信息请求消息

 if m.IsStateInfoPullRequestMsg() {

 // 创建StateSnapshot状态快照消息并回复

 msg.Respond(gc.createStateInfoSnapshot(orgID))

 return

 }

 // === 检查处理StateSnapshot状态快照消息

 if m.IsStateInfoSnapshot() {

 // 处理StateSnapshot状态快照消息

 gc.handleStateInfSnapshot(m.GossipMessage, msg.GetConnectionInfo().ID)

 return

 }

 ……

}

GossipChannel通道对象（gossipChannel类型）负责处理通道内传播的指定类型消息，提供消息存储器保存接收的消息，并周期性地清理过期无效消息。该对象的gossipChannel.HandleMessage()方法首先检查接收消息的合法性，具体如下。

·调用GossipChannel通道对象的verifyMsg()方法，验证消息格式的正确性与合法性，其中：

·消息的合法性（不为nil）及其SignedGossipMessage域对象的合法性（不为nil）；

·消息的connInfo字段中Peer节点PKI-ID的合法性（不为nil）；

·对于StateInfo消息与StateInfoPullReq消息，需要比较消息中的通道MAC码与重新计算的通道MAC码（节点PKI-ID与通道ID组合经过SHA256哈希函数计算的哈希值）是否匹配；

·基于字节比较消息的通道ID（m.Channel）与GossipChannel通道上的通道ID（chainID）是否匹配，即只处理指定通道上的消息。

·调用IsChannelRestricted()方法，再次检查该消息标签是否属于通道内传播的消息类型，即GossipMessage_CHAN_AND_ORG、GossipMessage_CHAN_ONLY、Gossip-Message_CHAN_OR_ORG等。

·调用IsOrgInChannel()方法，检查发送请求的Peer节点是否属于当前GossipChannel通道上的组织，即遍历通道内的组织列表以匹配组织的MSP名称。

接着，gossipChannel.HandleMessage()方法可分为5种消息情况进行处理，包括：

·StateInfoPullReq类型状态信息请求消息；

·StateSnapshot类型状态信息快照消息；

·DataMsg类型数据消息或StateInfo类型状态信息消息；

·Pull类数据消息（PullMsgType_BLOCK_MSG消息内容）；

·LeadershipMsg类型主节点选举消息。

chanState模块上GossipChannel通道类型示意图如图6-8所示。

（1）StateInfoPullReq类型状态信息请求消息

gossipChannel.HandleMessage()方法调用gc.createStateInfoSnapshot()方法，创建State-Snapshot类型的状态信息快照消息作为响应消息回复给请求节点，如代码清单6-39所示。

代码清单6-39　GossipChannel通道对象的createStateInfoSnapshot()方法源码示例

gossip/gossip/channel/channel.go文件

func (gc *gossipChannel) createStateInfoSnapshot(requestersOrg api.OrgIdentity-Type) *proto.GossipMessage {

 sameOrg := bytes.Equal(gc.selfOrg, requestersOrg)

 rawElements := gc.stateInfoMsgStore.Get()

 elements := []*proto.Envelope{}

 for _, rawEl := range rawElements {

 msg := rawEl.(*proto.SignedGossipMessage)

 orgOfCurrentMsg := gc.GetOrgOfPeer(msg.GetStateInfo().PkiId)

 if sameOrg || !bytes.Equal(orgOfCurrentMsg, gc.selfOrg) {

 elements = append(elements, msg.Envelope)

 continue

 }

 if netMember := gc.Lookup(msg.GetStateInfo().PkiId); netMember == nil || netMember.Endpoint == "" {

 continue

 }

 elements = append(elements, msg.Envelope)

 }

 return &proto.GossipMessage{

 Channel: gc.chainID,

 Tag: proto.GossipMessage_CHAN_OR_ORG,

 Nonce: 0,

 Content: &proto.GossipMessage_StateSnapshot{

 StateSnapshot: &proto.StateInfoSnapshot{

 Elements: elements,

 },

 },

 }

}

 [image:]

图6-8　chanState模块上GossipChannel通道类型示意图

createStateInfoSnapshot()方法首先调用gc.stateInfoMsgStore.Get()方法，获取缓存的StateInfo消息列表rawElements。接着，循环遍历rawElements中的消息，调用gc.GetOrg-OfPeer(msg.GetStateInfo().PkiId)方法，提取每个消息发送节点的PKI-ID及其组织MSP ID，检查过滤出符合如下条件的StateInfo消息，并将该消息的Envelope字段添加到elements消息列表（[]*proto.Envelope）中。只要满足如下条件1）或条件2）就能添加elements消息列表。如果两个条件都不满足，则检查条件3），如果能满足，那么同样能够添加到elements消息列表，判断条件包括：

1）StateInfoPullReq消息请求节点与当前节点属于同一个组织；

2）StateInfo消息发送节点与当前节点不属于同一个组织，即该消息来自于其他组织；

3）调用gc.Lookup(msg.GetStateInfo().PkiId)→gossipDiscoveryImpl.Lookup()方法，检查StateInfo消息发送节点PKI-ID的合法性，即discovery模块的id2Member字典中应该存在该节点，同时还包含有合法的外部端点（不为nil）。

接着，createStateInfoSnapshot()方法构造StateInfoSnapshot消息，封装了过滤后的elements消息列表，并打包成GossipMessage类型消息返回给HandleMessage()方法，同时，指定其消息标签类型为GossipMessage_CHAN_OR_ORG。

gossipChannel.HandleMessage()方法然后调用msg.Respond()方法，对StateInfoSnap-shot消息签名并封装成SignedGossipMessage类型消息，通过接收消息保存的节点连接对象调用m.conn.send()方法，将该消息发送到请求节点。

至此，StateInfoPullReq类型状态信息请求消息处理完毕。

（2）StateSnapshot类型状态信息快照消息

gossipChannel.HandleMessage()方法调用gc.handleStateInfSnapshot()方法，处理State-Snapshot类型状态信息快照消息，如代码清单6-40所示。

代码清单6-40　GossipChannel通道对象的handleStateInfSnapshot()方法源码示例

gossip/gossip/channel/channel.go文件

func (gc *gossipChannel) handleStateInfSnapshot(m *proto.GossipMessage, sender common.PKIidType) {

 chanName := string(gc.chainID)

 for _, envelope := range m.GetStateSnapshot().Elements {

 stateInf, err := envelope.ToGossipMessage()

 ……

 if !stateInf.IsStateInfoMsg() {

 gc.logger.Warning("Channel", chanName, ": Element of StateInfoSnap-shot isn't a StateInfoMessage:",

 stateInf, "message sent from", sender)

 return

 }

 si := stateInf.GetStateInfo()

 orgID := gc.GetOrgOfPeer(si.PkiId)

 if orgID == nil {

 gc.logger.Debug("Channel", chanName, ": Couldn't find org identity of peer",

 string(si.PkiId), "message sent from", string(sender))

 return

 }

 if !gc.IsOrgInChannel(orgID) {

 gc.logger.Warning("Channel", chanName, ": Peer", stateInf.GetState-Info().PkiId,

 "is not in an eligible org, can't process a stateInfo from it, sent from", sender)

 return

 }

 expectedMAC := GenerateMAC(si.PkiId, gc.chainID)

 if !bytes.Equal(si.Channel_MAC, expectedMAC) {

 gc.logger.Warning("Channel", chanName, ": StateInfo message", stateInf,

 ", has an invalid MAC. Expected", expectedMAC, ", got", si.Channel_MAC, ", sent from", sender)

 return

 }

 err = gc.ValidateStateInfoMessage(stateInf)

 ……

 if gc.Lookup(si.PkiId) == nil {

 continue

 }

 gc.stateInfoMsgStore.Add(stateInf)

 }

}

gossipChannel.HandleMessage()方法首先循环遍历StateSnapshot消息包含的StateInfo消息列表（[]*Envelope类型），检查每个消息的格式正确性与合法性，其中：

·调用envelope.ToGossipMessage()方法，解析获取StateInfo消息，并构造对应的SignedGossipMessage类型消息stateInf，同时检查其消息格式的正确性；

·调用stateInf.GetStateInfo()方法，获取该消息包含的StateInfo消息，同时检查其类型的合法性；

·检查StateSnapshot消息发送节点所属组织MSP ID（即orgID）的合法性（不为nil），并调用gc.IsOrgInChannel(orgID)方法，检查orgID组织是否属于本地节点所在GossipChannel通道上的某个组织；

·基于消息发送节点的PKI-ID与GossipChannel通道对象的链ID生成通道MAC码，检查该对象是否匹配消息发送节点包含的通道MAC码；

·调用gc.ValidateStateInfoMessage()方法，即调用MCS模块的Verify()方法，验证stateInf状态信息消息上签名的有效性，包括Envelope字段与Envelope.Secret-Envelope字段上的签名与消息负载。如果发送消息的节点与本地Peer节点属于同一个组织，则调用identity.Verify()方法验证其消息签名的真实性。否则，调用MCS模块的s.VerifyByChannel()方法，验证该签名消息是否符合指定通道（chainID）上Readers（/Channel/Application/Readers）通道访问权限策略；

·调用gc.Lookup()→gossipDiscoveryImpl.Lookup()方法，检查StateInfo消息发送节点PKI-ID的合法性，即discovery模块的id2Member字典是否存在该节点的PKI-ID。如果不存在该对象，则跳过继续处理。

接着，gossipChannel.HandleMessage()方法调用gc.stateInfoMsgStore.Add(stateInf)方法，添加过滤后的StateInfo消息stateInf。该方法先调用cache.MessageStore.CheckValid()方法以检查消息的有效性，并执行cache.verify()→hashPeerExpiredInMembership()方法，检查该消息发送节点是否存在于discovery模块的id2Member字典中。如果通过了上述检查，则将消息stateInf添加到stateInfoMsgStore消息存储对象中。然后，调用msg.GetStateInfo().PkiId以获取消息发送节点的PKI-ID，再执行cache.MembershipStore.Put(pkiID，msg)方法，将发送节点PKI-ID与StateInfo消息stateInf构造成键值对，并添加到cache.MembershipStore成员关系存储对象的Gossip消息列表中。

至此，StateSnapshot类型状态信息快照消息处理完毕。

（3）DataMsg类型数据消息或StateInfo类型状态信息消息

gossipChannel.HandleMessage()方法对DataMsg数据消息或StateInfo状态信息消息进行分开检查与处理，如代码清单6-41所示。

代码清单6-41　HandleMessage()方法处理DataMsg消息或StateInfo消息的源码示例

gossip/gossip/channel/channel.go文件

func (gc *gossipChannel) HandleMessage(msg proto.ReceivedMessage) {

 ……

 // === 检查该消息是否为DataMsg数据消息或StateInfo状态信息消息

 if m.IsDataMsg() || m.IsStateInfoMsg() {

 added := false

 if m.IsDataMsg() { // DataMsg数据消息

 if m.GetDataMsg().Payload == nil { // 检查消息负载的合法性

 gc.logger.Warning("Payload is empty, got it from", msg.GetConnection-Info().ID)

 return

 }

 if !gc.blockMsgStore.CheckValid(msg.GetGossipMessage()) {

 // 检查消息的合法性

 return

 }

 if !gc.verifyBlock(m.GossipMessage, msg.GetConnectionInfo().ID) {

 gc.logger.Warning("Failed verifying block", m.GetDataMsg().Payload.SeqNum)

 return

 }

 added = gc.blockMsgStore.Add(msg.GetGossipMessage())

 } else { // StateInfoMsg状态信息消息

 added = gc.stateInfoMsgStore.Add(msg.GetGossipMessage())

 }

 if added {

 // 向emmiter模块提交消息，并转发到其他节点

 gc.Forward(msg)

 // 继续过滤消息：DataMsg数据消息，提交本地消息负载缓冲区并等待处理

 gc.DeMultiplex(m)

 if m.IsDataMsg() { // DataMsg数据消息

 gc.blocksPuller.Add(msg.GetGossipMessage())

 // 添加到blocksPuller模块

 }

 }

 return

 }

 ……

}

①DataMsg类型数据消息

gossipChannel.HandleMessage()方法首先检查DataMsg消息的合法性，包括：

·DataMsg消息的消息负载合法性（不为nil）；

·调用gc.blockMsgStore.CheckValid()方法，通过比较消息区块号来检查DataMsg消息的有效性；

·调用gc.verifyBlock()→gc.mcs.VerifyBlock()方法，利用MCS模块验证DataMsg消息负载中区块（Payload.Data）的合法性，包括区块及其各字段格式解析的正确性，以及区块元数据中的签名数据是否满足配置的BlockValidation区块验证策略。

如果通过了上述检查，则调用gc.blockMsgStore.Add(msg.GetGossipMessage())方法，添加当前消息到GossipChannel通道的blockMsgStore存储对象中，并返回添加成功与否的结果。

②StateInfo类型状态信息消息

gossipChannel.HandleMessage()方法调用gc.stateInfoMsgStore.Add(msg.GetGossipMess-age())方法，添加StateInfo消息到stateInfoMsgStore存储对象中，类似于StateSnapshot消息循环保存单个StateInfo消息的过程，并返回添加成功与否的结果。

如果添加消息成功，则调用GossipChannel通道的gc.Forward(msg)→gossipAdapter-Impl.Forward(msg)方法，将当前消息msg构造成emittedGossipMessage类型消息，并指定其消息过滤器为IsNotSameFilter，即过滤掉消息发送节点，再将该消息添加到emitter模块的消息缓冲区中，等待发送给其他节点。

然后，gossipChannel.HandleMessage()方法调用gc.DeMultiplex(m)，将当前消息（Data-Msg消息或StateInfo消息）转发给Gossip服务实例的ChannelDeMultiplexer模块进行过滤处理，如表6-5所示。该模块能够过滤出DataMsg类型的数据消息，并发送到关联的gossipChan通道，交由state模块的GossipStateProviderImpl.queueNewMessage()方法（6.3.4节）继续处理，将该消息添加到本地的消息负载缓冲区中，等待提交到账本。

如果当前消息是DataMsg消息，则调用gc.blocksPuller.Add(msg.GetGossipMessage())方法，将当前消息添加到指定通道GossipChannel对象的blocksPuller模块中，提取并保存其消息的摘要信息。注意，blocksPuller模块负责保存DataMsg消息及其摘要信息，并不负责提交到账本。

至此，gossipChannel.HandleMessage()方法处理DataMsg类型数据消息与StateInfo类型状态信息消息的流程结束。

（4）Pull类数据消息

gossipChannel.HandleMessage()方法首先检查消息msg的合法性与访问权限，包括：

·调用gc.hasLeftChannel()方法，检查GossipChannel通道对象的leftChannel标志位，如果发现Peer节点已经离开通道，则直接退出该方法，否则继续执行；

·调用gc.stateInfoMsgStore.MsgByID()方法，在stateInfoMsgStore消息存储对象中，根据当前消息的发送节点PKI-ID，检查是否存在来自该节点的StateInfo消息。如果不存在任何消息，则直接退出；

·调用gc.eligibleForChannelAndSameOrg()→filter.CombineRoutingFilters()方法，基于如下两个消息过滤器构造组合消息过滤器。

·EligibleForChannel过滤器：用于检查指定成员节点是否有资格从该通道获取数据，即先调用gc.GetIdentityByPKIID()方法，根据消息发送节点的PKI-ID查找idMapper字典中对应的节点身份证书信息peerIdentity，调用gc.state-InfoMsgStore.MsgByID(member.PKIid)方法，在消息存储器中查找是否存在来自该节点的StateInfo消息。如果不存在任何消息，则验证失败并返回false；

·sameOrg过滤器：检查消息发送节点与GossipChannel通道的本地节点，如果两者属于同一个组织，则验证通过并返回true。

如果通过了上述检查，且当前消息是DataUpdate摘要更新消息，则遍历该消息包含的更新数据项item（[]*Envelope类型），并执行如下检查。

·调用item.ToGossipMessage()方法以解析item更新数据项，重新构造SignedGossip-Message类型消息gMsg，验证数据消息的格式正确性与消息合法性，即该消息包含的通道ID与GossipChannel通道ID（chainID）应该相同。

·调用gc.blockMsgStore.CheckValid()方法，基于消息的区块号检查当前消息gMsg的有效性。如果发现当前消息无效，则丢弃当前消息并返回false，否则继续执行。

·调用gc.verifyBlock()→gc.mcs.VerifyBlock()方法，验证区块消息及其字段格式的合法性，获取元数据中的签名集合signatureSet以及配置的BlockValidation区块验证策略policy，再调用policy.Evaluate(signatureSet)方法，以验证签名是否符合区块验证策略，验证过程类似于DataMsg消息。

如果通过了上述检查，则调用gc.blockMsgStore.Add(gMsg)方法，将当前消息gMsg添加到blockMsgStore消息存储对象的消息列表中。如果没有添加成功，则当前的更新数据项gMsg是无效的，说明该消息已经保存在blockMsgStore区块消息存储对象中或者区块号高度差值过大（默认为100，peer.gossip.maxBlockCountToStore配置项），此时跳过继续执行。否则，添加消息成功，将item添加到过滤消息列表filteredEnvelopes（[]*proto.Envelope类型）中。

当所有的更新数据项都处理完毕后，gossipChannel.HandleMessage()方法重新将过滤消息列表filteredEnvelopes设置到DataUpdate摘要更新消息的m.GetDataUpdate().Data中，以保证该消息上的所有数据项都经过了更新过滤。

至此，针对DataUpdate摘要更新消息的定制处理流程执行结束。

最后，对于所有类型的Pull类消息，调用gc.blocksPuller.HandleMessage(msg)方法，将消息msg交由blocksPuller模块继续处理。

代码清单6-42　HandleMessage()方法处理Pull类数据消息的源码示例

gossip/gossip/channel/channel.go文件

func (gc *gossipChannel) HandleMessage(msg proto.ReceivedMessage) {

 ……

 // === Pull类数据消息

 if m.IsPullMsg() && m.GetPullMsgType() == proto.PullMsgType_BLOCK_MSG {

 if gc.hasLeftChannel() {

 gc.logger.Info("Received Pull message from", msg.GetConnectionInfo().Endpoint, "but left the channel", string(gc.chainID))

 return

 }

 // 检查是否存在来自该节点的StateInfo消息

 if gc.stateInfoMsgStore.MsgByID(msg.GetConnectionInfo().ID) == nil {

 gc.logger.Debug("Don't have StateInfo message of peer", msg.GetConnec-tionInfo())

 return

 }

 if !gc.eligibleForChannelAndSameOrg(discovery.NetworkMember{PKIid: msg.GetConnectionInfo().ID}) { // 检查权限

 gc.logger.Warning(msg.GetConnectionInfo(), "isn't eligible for pulling blocks of", string(gc.chainID))

 return

 }

 if m.IsDataUpdate() { // 摘要更新消息

 filteredEnvelopes := []*proto.Envelope{}

 for _, item := range m.GetDataUpdate().Data {

 gMsg, err := item.ToGossipMessage()

 ……

 if !bytes.Equal(gMsg.Channel, []byte(gc.chainID)) {

 gc.logger.Warning("DataUpdate message contains item with channel", gMsg.Channel, "but should be", gc.chainID)

 return

 }

 // 验证消息的有效性

 if !gc.blockMsgStore.CheckValid(msg.GetGossipMessage()) {

 return

 }

 if !gc.verifyBlock(gMsg.GossipMessage, msg.GetConnectionInfo().ID) {

 return

 }

 // 添加消息到blockMsgStore消息存储对象中

 added := gc.blockMsgStore.Add(gMsg)

 if !added {

 continue // 若没有添加，则说明该区块已经存在或距离太远

 }

 filteredEnvelopes = append(filteredEnvelopes, item)

 }

 // 将过滤后的区块列表设置到更新数据消息

 m.GetDataUpdate().Data = filteredEnvelopes

 }

 gc.blocksPuller.HandleMessage(msg)

 }

 ……

}

（5）LeadershipMsg类型主节点选举消息

gossipChannel.HandleMessage()方法首先调用gc.leaderMsgStore.Add()方法处理接收的消息，通过消息验证策略方法pol()遍历leaderMsgStore对象的消息列表，比较消息的节点PKI-ID与消息时间戳，将有效的LeadershipMsg消息添加到GossipChannel通道上leaderMsgStore对象的消息列表中。

如果消息添加成功，则调用gc.DeMultiplex()方法，将当前消息转发给Gossip服务实例的ChannelDeMultiplexer模块进行过滤处理，并发送到election模块的msgChan通道中，交由election模块的le.handleMessage()方法（6.3.7节）继续处理。

至此，gossipChannel.HandleMessage()方法处理LeadershipMsg类型主节点选举消息的流程结束。

代码清单6-43　HandleMessage()方法处理LeadershipMsg主节点选举消息的源码示例

gossip/gossip/channel/channel.go文件

func (gc *gossipChannel) HandleMessage(msg proto.ReceivedMessage) {

 ……

 // 主节点选举消息

 if m.IsLeadershipMsg() {

 added := gc.leaderMsgStore.Add(m)

 if added {

 gc.DeMultiplex(m)

 }

 }

}

3.discovery模块上的节点信息消息处理

discovery模块的handleMsgFromComm()方法负责处理AliveMsg类型的节点存活消息、MemReq类型的成员关系请求消息与MemRes类型的成员关系响应消息，如代码清单6-44所示。

代码清单6-44　discovery模块的handleMsgFromComm()方法源码示例

gossip/discovery/discovery_impl.go文件

func (d *gossipDiscoveryImpl) handleMsgFromComm(msg proto.ReceivedMessage) {

 if msg == nil {

 return

 }

 // 检查消息类型：AliveMsg节点存活消息、MemReq成员关系请求消息与MemRes成员关系响应消息

 m := msg.GetGossipMessage()

 if m.GetAliveMsg() == nil && m.GetMemRes() == nil && m.GetMemReq() == nil {

 d.logger.Warning("Got message with wrong type (expected Alive or Member-shipResponse or MembershipRequest message):", m.GossipMessage)

 return

 }

 d.logger.Debug("Got message:", m)

 defer d.logger.Debug("Exiting")

 // === 处理MemReq成员关系请求消息

 if memReq := m.GetMemReq(); memReq != nil {

 // 提取AliveMsg消息

 selfInfoGossipMsg, err := memReq.SelfInformation.ToGossipMessage()

 ……

 // 检查AliveMsg节点存活消息的合法性

 if d.msgStore.CheckValid(selfInfoGossipMsg) {

 d.handleAliveMessage(selfInfoGossipMsg) // 处理AliveMsg消息并更新成员列表

 }

 var internalEndpoint string

 if m.Envelope.SecretEnvelope != nil {

 // 设置内部端点

 internalEndpoint = m.Envelope.SecretEnvelope.InternalEndpoint()

 }

 // 发送MemRes成员关系响应消息到请求节点

 go d.sendMemResponse(selfInfoGossipMsg.GetAliveMsg().Membership, internal-Endpoint, m.Nonce)

 return

 }

 // === 处理AliveMsg节点存活消息

 if m.IsAliveMsg() {

 if !d.msgStore.Add(m) {

 return

 }

 d.handleAliveMessage(m) // 处理AliveMsg消息

 d.comm.Forward(msg) // 交由emitter模块转发消息

 return

 }

 // === 处理MemRes成员关系响应消息

 if memResp := m.GetMemRes(); memResp != nil { // 检查类型合法性

 d.pubsub.Publish(fmt.Sprintf("%d", m.Nonce), m.Nonce) // 发布消息

 for _, env := range memResp.Alive { // 遍历AliveMsg消息

 am, err := env.ToGossipMessage() // 转换为SignedGossipMessage类型消息

 ……

 return

 }

 if !am.IsAliveMsg() { // 检查是否为AliveMsg类型消息

 d.logger.Warning("Expected alive message, got", am, "instead")

 return

 }

 // 检查消息的合法性

 if d.msgStore.CheckValid(am) {

 d.handleAliveMessage(am) // 处理AliveMsg消息

 }

 }

 for _, env := range memResp.Dead { // 遍历离线节点列表

 dm, err := env.ToGossipMessage() // 转换为SignedGossipMessage类型消息

 ……

 return

 }

 if !d.crypt.ValidateAliveMsg(dm) { // 验证消息签名

 d.logger.Debugf("Alive message isn't authentic, someone spoofed %s's identity", dm.GetAliveMsg().Membership)

 continue

 }

 if !d.msgStore.CheckValid(dm) { // 检查消息的有效性

 return

 }

 newDeadMembers := []*proto.SignedGossipMessage{}

 d.lock.RLock()

 if _, known := d.id2Member[string(dm.GetAliveMsg().Membership.PkiId)]; !known { // 获取指定PKI-ID的节点成员

 newDeadMembers = append(newDeadMembers, dm) // 添加离线节点成员

 }

 d.lock.RUnlock()

 // 更新成员列表

 d.learnNewMembers([]*proto.SignedGossipMessage{}, newDeadMembers)

 }

 }

}

（1）AliveMsg类型节点存活消息

discovery模块的handleMsgFromComm()方法接收处理AliveMsg消息，将该消息添加到discovery模块的aliveMsgStore消息存储对象中，验证消息的有效性并更新本地的相关节点信息列表，然后通过emitter模块将该消息转发给组织内的其他节点，其执行步骤具体如下。

首先，handleMsgFromComm()方法调用d.msgStore.Add()方法，将当前AliveMsg节点存活消息添加到discovery模块的aliveMsgStore消息存储对象中，遍历保存的消息列表，比较节点PKI-ID与消息时间戳以验证当前消息的有效性。接着，调用discovery模块的d.handle-AliveMessage()方法，处理AliveMsg节点的存活消息，如代码清单6-45所示。

代码清单6-45　discovery模块handleAliveMessage()方法源码示例

gossip/discovery/discovery_impl.go文件

// 处理AliveMsg节点存活消息

func (d *gossipDiscoveryImpl) handleAliveMessage(m *proto.SignedGossipMessage) {

 d.logger.Debug("Entering", m)

 defer d.logger.Debug("Exiting")

 // 验证AliveMsg消息的有效性

 if !d.crypt.ValidateAliveMsg(m) {

 d.logger.Debugf("Alive message isn't authentic, someone must be spoofing %s's identity", m.GetAliveMsg())

 return

 }

 pkiID := m.GetAliveMsg().Membership.PkiId // 获取发送节点的PKI-ID

 if equalPKIid(pkiID, d.self.PKIid) { // 比较PKI-ID

 ……

 return

 }

 ts := m.GetAliveMsg().Timestamp // 获取AliveMsg消息的时间戳

 d.lock.RLock()

 _, known := d.id2Member[string(pkiID)] // 根据节点PKI-ID获取对应的节点身份证书

 d.lock.RUnlock()

 if !known { // 若id2Member不存在该节点对象，则更新该消息到相关成员信息列表中

 d.learnNewMembers([]*proto.SignedGossipMessage{m}, []*proto.SignedGossip-Message{})

 return

 }

 d.lock.RLock()

 _, isAlive := d.aliveLastTS[string(pkiID)] // 获取指定节点的最近存活节点联系时间戳

 // 获取指定节点的最近离线节点联系时间戳

 lastDeadTS, isDead := d.deadLastTS[string(pkiID)]

 d.lock.RUnlock()

 if !isAlive && !isDead { // 未知状态

 d.logger.Panicf("Member %s is known but not found neither in alive nor in dead lastTS maps, isAlive=%v, isDead=%v", m.GetAliveMsg().Membership.Endpoint, isAlive, isDead)

 return

 }

 if isAlive && isDead { // 错误状态

 d.logger.Panicf("Member %s is both alive and dead at the same time", m.GetAliveMsg().Membership)

 return

 }

 if isDead { // 离线状态

 // 若离线时间在当前时间之前，则说明节点已恢复正常工作，恢复并更新Peer节点成员列表

 if before(lastDeadTS, ts) {

 d.resurrectMember(m, *ts)

 } else if !same(lastDeadTS, ts) { // 时间戳不相同

 d.logger.Debug(m.GetAliveMsg().Membership, "lastDeadTS:", lastDeadTS, "but got ts:", ts)

 }

 return

 }

 d.lock.RLock()

 // 重新获取指定节点的存活节点的最近联系时间戳

 lastAliveTS, isAlive := d.aliveLastTS[string(pkiID)]

 d.lock.RUnlock()

 if isAlive { // 活跃状态

 if before(lastAliveTS, ts) {

 // 更新现存的成员列表

 d.learnExistingMembers([]*proto.SignedGossipMessage{m})

 } else if !same(lastAliveTS, ts) { // 时间不一致，不做任何处理

 d.logger.Debug(m.GetAliveMsg().Membership, "lastAliveTS:", lastAliveTS, "but got ts:", ts)

 }

 }

}

其中，handleAliveMessage()方法首先调用discovery模块的d.crypt.ValidateAliveMsg()方法，即通过discoverySecurityAdapter安全适配器对象调用d.crypt.ValidateAliveMsg(m)方法，验证当前AliveMsg消息的有效性。如果消息发送节点与当前节点属于同一个组织，则验证其消息签名的真实性。否则，需要验证该签名消息是否符合通道（chainID）上Readers（即/Channel/Application/Readers）通道访问权限策略的要求。

如果通过了上述检查，则handleAliveMessage()方法获取消息发送节点的PKI-ID，并过滤与本节点相同PKI-ID的情况（即跳过当前节点）。接着，根据节点的PKI-ID尝试读取deadLastTS或aliveLastTS时间戳列表，获取对应的时间戳lastDeadTS或lastAliveTS，以判断AliveMsg消息发送节点的状态（Dead离线状态或Alive在线状态），并进行分类处理，具体如下。

·Dead离线状态：调用before(lastDeadTS，ts)方法判断当前AliveMsg消息的时间戳ts是否有效，即顺序比较PeerTime结构中的IncNum和SeqNum字段。如果当前消息的时间戳ts有效，则调用d.resurrectMember(m，*ts)方法以更新指定的消息发送节点信息，即构造并添加该节点信息到aliveLastTS列表、aliveMembership的消息列表与id2Member列表中，同时在deadLastTS列表与deadMembership列表中删除对应的节点信息；

·Alive在线状态：调用before(lastAliveTS，ts)方法判断当前AliveMsg消息的时间戳ts是否有效。如果消息有效，则调用d.learnExistingMembers()方法更新指定的消息发送节点信息，即在aliveLastTS列表、aliveMembership的消息列表与id2Member列表中设置新的节点PKI-ID信息键值对。

然后，handleMsgFromComm()方法调用d.comm.Forward()→da.forwardFunc()方法以转发消息。该方法定义在创建discAdapter模块时调用的newDiscoveryAdapter()方法中（gossip/gossip/gossip_impl.go）。实际上，forwardFunc()方法将转发的AliveMsg消息重新封装为emittedGossipMessage类型消息，添加到emitter模块的消息缓冲区中等待发送。同时，指定了消息过滤器IsNotSameFilter，即发送消息时过滤掉消息发送节点本身。

至此，handleMsgFromComm()方法处理AliveMsg类型节点存活消息的流程结束。

（2）MemReq类型成员关系请求消息

discovery模块的handleMsgFromComm()方法首先解析MemReq消息，更新到本地节点信息列表，构造消息过滤器shouldBeDisclosed()与omitConcealedFields()，用于过滤deadMembership与aliveMembership中的消息列表以及封装了本地节点信息的AliveMsg消息，从而获取符合要求的成员关系消息列表，并将其封装成MemRes类型成员关系响应消息，回复给请求节点，其执行流程具体如下。

首先，handleMsgFromComm()方法解析出MemReq类型的成员关系请求消息，调用memReq.SelfInformation.ToGossipMessage()方法，将该MemReq消息中SelfInformation字段封装的AliveMsg消息转换为SignedGossipMessage类型消息selfInfoGossipMsg。同时，再调用discovery模块的d.msgStore.CheckValid()方法，比较节点的PKI-ID与消息时间戳来检查selfInfoGossipMsg消息的有效性，通过检查后，调用d.handleAliveMessage()方法处理AliveMsg消息。

接着，handleMsgFromComm()方法基于接收的消息解析获取远程节点的内部端点，并与消息随机数Nonce一起作为参数执行go d.sendMemResponse()，构造MemRes类型成员关系响应消息，并发送给目标Peer节点，如代码清单6-46所示。

代码清单6-46　discovery模块的sendMemResponse()方法源码示例

gossip/discovery/discovery_impl.go文件

func (d *gossipDiscoveryImpl) sendMemResponse(targetMember *proto.Member, internalEndpoint string, nonce uint64) {

 d.logger.Debug("Entering", targetMember)

 // 构造NetworkMember结构对象（远程节点）

 targetPeer := &NetworkMember{

 Endpoint: targetMember.Endpoint,

 Metadata: targetMember.Metadata,

 PKIid: targetMember.PkiId,

 InternalEndpoint: internalEndpoint,

 }

 aliveMsg, err := d.createAliveMessage(true) // 构造AliveMsg类型节点存活消息

 ……

 // 创建MemRes类型成员关系响应消息

 memResp := d.createMembershipResponse(aliveMsg, targetPeer)

 if memResp == nil {

 ……

 d.comm.CloseConn(targetPeer) // 关闭通信连接

 return

 }

 defer d.logger.Debug("Exiting, replying with", memResp)

 msg, err := (&proto.GossipMessage{

 Tag: proto.GossipMessage_EMPTY,

 Nonce: nonce,

 Content: &proto.GossipMessage_MemRes{

 MemRes: memResp,

 },

 }).NoopSign() // 构造GossipMessage类型消息并签名

 ……

 d.comm.SendToPeer(targetPeer, msg) // 发送到远程节点

}

其中，sendMemResponse()方法首先获取AliveMsg消息包含的远程节点信息，构造NetworkMember结构的远程节点对象targetPeer，封装了该节点的端点、元数据、PKI-ID、内部端点等。接着，调用d.createAliveMessage()方法，创建本地节点的AliveMsg消息aliveMsg，利用discoverySecurityAdapter模块对消息进行签名，封装了端点、元数据、PKI-ID、启动时间、消息计数器（自动增1）等，并启动内部端点，保留该消息的Envelope.SecretEnvelope字段（保存内部端点及其签名）。

接着，sendMemResponse()方法调用d.createMembershipResponse(aliveMsg，targetPeer)方法，创建MemRes类型成员关系响应消息的消息内容对象（MembershipResponse类型）。该方法先调用disclosurePolicy()方法（gossip/gossip/gossip_impl.go），检查远程节点所属组织的MSP ID，并创建两个消息过滤函数即shouldBeDisclosed()与omitConcealedFields()。如果该消息发送节点不属于任何组织（即MSP名称为空），则shouldBeDisclosed()默认始终返回false，omitConcealedFields()默认返回消息的Envelope字段对象。否则，创建如下对应的消息过滤函数，具体如下。

·shouldBeDisclosed：检查过滤AliveMsg消息，先检查AliveMsg消息发送节点必须和远程节点或当前节点属于同一个组织，再满足后面任意一个条件即可通过验证，即AliveMsg消息发送节点与远程节点属于同一个组织，或者AliveMsg消息发送节点与远程节点同时存在合法的外部端点进行通信；

·omitConcealedFields：检查如果当前节点与远程节点不属于同一个组织，则过滤消息中的加密消息信封envp（设置为nil），否则不过滤任何信息。

createMembershipResponse()方法接着使用上述两个消息过滤函数筛选符合条件的Alive-Msg消息，包括：

·使用shouldBeDisclosed()过滤函数过滤当前的AliveMsg消息。

·遍历当前节点discovery模块中deadMembership与aliveMembership保存的消息列表，使用shouldBeDisclosed()过滤函数过滤掉不符合条件的Peer节点消息，再使用omitConcealedFields()过滤函数过滤设置消息结构中的字段，基于过滤消息构造deadPeers离线节点与aliveSnapshot存活节点的成员关系消息列表（[]*proto.Envelope）；

·使用omitConcealedFields()过滤函数处理当前的AliveMsg消息，并将过滤消息添加到aliveSnapshot消息列表中。

createMembershipResponse()方法然后基于aliveSnapshot与deadPeers列表构造成员关系响应消息的内容对象（MembershipResponse类型），返回memResp到handleMsgFrom-Comm()方法中继续执行。

最后，sendMemResponse()方法基于返回值memResp构造MemRes类型成员关系响应消息并签名，通过discovery模块调用d.comm.SendToPeer()方法，将该消息回复给指定的远程节点targetPeer。

至此，handleMsgFromComm()方法处理MemReq类型成员关系请求消息的流程结束。

（3）MemRes类型成员关系响应消息

discovery模块的handleMsgFromComm()方法先处理MemRes类型成员关系响应消息的消息订阅请求，通知已经接收到指定Nonce主题的订阅消息，并解除对应的程序阻塞，接着验证MemRes消息中的Alive消息列表与Dead消息列表，更新本地的节点信息列表，其执行流程具体如下。

首先，discovery模块通过PubSub模块调用Publish()方法，处理以Nonce消息随机数为主题的消息订阅请求。该方法先获取PubSub模块的subscriptions列表中指定Nonce主题对应的订阅者集合，遍历订阅者集合中的订阅者对象，检查与该对象关联的通道容量。如果发现该通道c还没有达到预设的最大容量（默认为50个），则将该消息的Nonce放入其通道c中，通知本地发送MemReq消息的discovery模块程序，即sendUntilAcked()→sub.Listen()方法监听等待通道c中的消息，从而解除相应消息订阅请求的阻塞等待。

接着，handleMsgFromComm()方法处理MemRes消息中的Alive存活成员消息列表。该方法先遍历Alive消息列表，调用env.ToGossipMessage()方法将AliveMsg消息重新封装为SignedGossipMessage类型消息，并检查消息类型的合法性（AliveMsg类型）。后面的消息处理流程类似于MemReq消息，接着调用d.msgStore.CheckValid()方法与handleAlive-Message()方法处理有效的AliveMsg消息，并更新相关节点信息列表。

最后，handleMsgFromComm()方法处理MemRes消息中的Dead离线成员消息列表。该方法遍历该Dead消息列表，调用env.ToGossipMessage()方法将AliveMsg消息重新封装为SignedGossipMessage类型消息。接着，调用d.crypt.ValidateAliveMsg()方法验证当前消息的合法性。如果发送消息节点与当前节点属于同一个组织，则直接验证消息签名。否则，需要验证该节点签名是否符合通道（chainID）上Readers（/Channel/Application/Readers）通道访问权限策略的要求。如果通过了上述检查，则调用d.msgStore.CheckValid()方法，在消息存储对象的消息列表中检查当前AliveMsg消息的有效性（基于PKI-ID与消息时间戳）。如果当前消息仍然有效，则从discovery模块的id2Member字典中获取对应节点PKI-ID的消息发送节点（NetworkMember类型），如果不存在该节点对象，则需要将当前AliveMsg消息添加到离线成员关系消息列表newDeadMembers（[]*proto.SignedGossipMessage）中。然后，调用d.learnNewMembers()方法，将newDeadMembers列表更新到本地相关的节点信息列表中。

至此，handleMsgFromComm()方法处理MemRes类型成员关系响应消息的流程结束。

4.certStore模块节点身份消息处理

certStore模块上的puller模块（pullMediatorImpl类型）用于发送Pull类节点身份消息（PullMsgType_IDENTITY_MSG消息内容），请求拉取其他节点的PeerIdentity类型节点身份消息，更新到idMapper模块的pkiID2Cert字典中。该puller模块同时也是Gossip服务实例的certPuller模块。

（1）certStore模块及其puller模块

Gossip服务实例调用NewGossipService()→newCertStore()函数创建certStore模块，设置puller模块为函数参数certPuller模块。该函数基于本地节点的身份证书信息解析获取节点的PKI-ID，并添加到idMapper模块的pkiID2Cert字典中。

接着，newCertStore()函数调用certStore.createIdentityMessage()方法，构造本地节点的PeerIdentity类型节点身份消息，用于封装节点身份证书信息、节点PKI-ID、元数据（nil）等。注意，这里是节点生成PeerIdentity类型节点身份消息的唯一位置，即只有在Peer节点加入通道并初始化通道的Gossip服务模块时生成该消息。事实上，certPuller模块负责周期性地从其他节点拉取PeerIdentity类型节点身份消息，以更新本地idMapper模块中的pkiID2Cert字典。

然后，newCertStore()函数调用puller.Add()方法，将本地节点PeerIdentity类型节点身份消息添加到puller模块（即certPuller模块）中，利用IdExtractor()→pkiIDFromMsg()方法提取节点的PKI-ID作为摘要信息，并更新到本地的itemID2Msg摘要消息列表与engine.state模块中。

最后，newCertStore()函数调用puller.RegisterMsgHook()方法，注册消息处理的Hook钩子方法，用于在处理指定消息类型结束时执行特定的任务。例如，对于RequestMsgType类型消息，该方法会遍历指定的Peer节点身份消息，提取节点的PKI-ID与身份证书信息，并更新到本地的pkiID2Cert字典中。

代码清单6-47　newCertStore()函数的源码示例

gossip/gossip/certstore.go文件

// 创建证书存储对象

func newCertStore(puller pull.Mediator, idMapper identity.Mapper, selfIdentity api.PeerIdentityType, mcs api.MessageCryptoService) *certStore {

 selfPKIID := idMapper.GetPKIidOfCert(selfIdentity) // 获取PKI ID

 logger := util.GetLogger(util.LoggingGossipModule, string(selfPKIID))

 certStore := &certStore{

 mcs: mcs,

 pull: puller,

 idMapper: idMapper,

 selfIdentity: selfIdentity,

 logger: logger,

 }

 // 添加PKI-ID与身份证书信息键值对

 if err := certStore.idMapper.Put(selfPKIID, selfIdentity); err != nil {

 certStore.logger.Panicf("Failed associating self PKIID to cert: %+v", errors.WithStack(err))

 }

 selfIDMsg, err := certStore.createIdentityMessage() // 创建Peer节点身份消息

 ……

 puller.Add(selfIDMsg) // 添加身份消息

 // 注册消息处理钩子方法

 puller.RegisterMsgHook(pull.RequestMsgType, func(_ []string, msgs []*proto.Signed-GossipMessage, _ proto.ReceivedMessage) {

 for _, msg := range msgs {

 pkiID := common.PKIidType(msg.GetPeerIdentity().PkiId) // 获取PKI-ID

 cert := api.PeerIdentityType(msg.GetPeerIdentity().Cert) // 获取证书

 // 保存PKI-ID与证书键值对

 if err := certStore.idMapper.Put(pkiID, cert); err != nil {

 certStore.logger.Warningf("Failed adding identity %v, reason %+v", cert, errors.WithStack(err))

 }

 }

 })

 return certStore

}

（2）certStore模块的handleMessage()方法

如果接收的消息是DataUpdate摘要更新消息，则certStore模块的handleMessage()方法会先验证DataUpdate摘要更新消息的合法性，如代码清单6-48所示。

代码清单6-48　certStore模块的handleMessage()方法源码示例

gossip/gossip/certstore.go文件

// 处理Pull类节点身份消息（PullMsgType_IDENTITY_MSG消息内容）

func (cs *certStore) handleMessage(msg proto.ReceivedMessage) {

 // 获取数据更新

 if update := msg.GetGossipMessage().GetDataUpdate(); update != nil {

 for _, env := range update.Data { // 遍历更新数据

 m, err := env.ToGossipMessage() // 转换为SignedGossipMessage类型消息

 ……

 if !m.IsIdentityMsg() { // 测试是否为节点身份消息

 cs.logger.Warning("Got a non-identity message:", m, "aborting")

 return

 }

 if err := cs.validateIdentityMsg(m); err != nil { // 验证节点身份消息

 cs.logger.Warningf("Failed validating identity message: %+v", errors.WithStack(err))

 return

 }

 }

 }

 cs.pull.HandleMessage(msg) // 处理节点身份消息

}

其中，handleMessage()方法首先调用msg.GetGossipMessage().GetDataUpdate()方法，解析获取DataUpdate摘要更新消息，依次遍历该消息Data字段（[]*Envelope类型）中的消息列表，对于其中的每个更新数据项，将其包含的消息重新封装为SignedGossipMessage类型消息。

接着，handleMessage()方法调用m.IsIdentityMsg()方法，检查该消息是否为PeerIdentity类型节点身份消息，再通过certStore模块调用cs.validateIdentityMsg()方法验证该消息。该方法先从PeerIdentity消息中解析出身份证书，并提取出节点的PKI-ID，将其与消息中的PKI-ID进行比较是否相同。同时，调用msg.Verify()方法，通过MCS模块验证消息签名。如果发送消息的Peer节点与当前节点同属于一个组织内，则直接验证其消息签名的真实性，否则，需要验证该签名消息是否符合指定通道（chainID）上Readers（/Channel/Application/Readers）通道访问权限策略的要求。然后，调用MCS模块的cs.mcs.ValidateIdentity()方法，以验证发送消息的Peer节点身份证书的有效性。

如果DataUpdate摘要更新消息中的所有数据更新项都通过了上述验证，则handle-Message()方法调用certStore模块的cs.pull.HandleMessage()方法，将该Pull类节点身份消息交由certPuller模块继续处理。

至此，handleMsgFromComm()方法处理Pull类节点身份消息的流程结束。
6.3.4　state模块中的数据消息处理

state模块的queueNewMessage()方法接收来自gossipChan通道的DataMsg类型数据消息，并添加到指定通道上payloads模块（PayloadsBufferImpl类型）的消息负载缓冲区中，等待处理并提交账本，如代码清单6-49所示。其中，GossipStateProviderImpl类型的state模块如图6-9所示。

代码清单6-49　state模块的queueNewMessage()方法源码示例

gossip/state/state.go文件

// 添加DataMsg消息到消息负载缓冲区，等待提交到账本中

func (s *GossipStateProviderImpl) queueNewMessage(msg *proto.GossipMessage) {

 if !bytes.Equal(msg.Channel, []byte(s.chainID)) { // 检查链ID是否匹配

 logger.Warning("Received enqueue for channel",

 string(msg.Channel), "while expecting channel", s.chainID, "ignoring enqueue")

 return

 }

 dataMsg := msg.GetDataMsg()

 if dataMsg != nil {

 if err := s.addPayload(dataMsg.GetPayload(), nonBlocking); err != nil {

 logger.Warning("Failed adding payload:", err)

 return

 }

 logger.Debugf("Received new payload with sequence number = [%d]", data-Msg.Payload.SeqNum)

 } else {

 logger.Debug("Gossip message received is not of data message type, usually this should not happen.")

 }

}

 [image:]

图6-9　GossipStateProviderImpl类型示意图

queueNewMessage()方法首先检查消息中的通道ID与state模块的通道ID是否一致，以保证处理指定通道上的合法消息，并提取出DataMsg消息dataMsg。接着，调用dataMsg.Get-Payload()方法以提取消息负载，再调用state模块的s.addPayload()方法，将该消息负载以非阻塞的方式添加到payloads模块的本地消息负载缓冲区buf（map[uint64]*proto.Payload）中，如代码清单6-50所示。

代码清单6-50　state模块的addPayload()方法源码示例

gossip/state/state.go文件

func (s *GossipStateProviderImpl) addPayload(payload *proto.Payload, blockingMode bool) error {

 if payload == nil {

 return errors.New("Given payload is nil")

 }

 logger.Debug("Adding new payload into the buffer, seqNum = ", payload.SeqNum)

 height, err := s.ledger.LedgerHeight()

 ……

 if !blockingMode && payload.SeqNum-height >= defMaxBlockDistance {

 return errors.Errorf("Ledger height is at %d, cannot enqueue block with sequence of %d", height, payload.SeqNum)

 }

 for blockingMode && s.payloads.Size() > defMaxBlockDistance*2 {

 time.Sleep(enqueueRetryInterval)

 }

 s.payloads.Push(payload) // 保存到消息负载缓冲区中

 return nil

}

addPayload()方法执行以下检查以控制state模块的消息处理过程，确保接收到的消息能够及时得到处理，根据阻塞方式blockingMode参数，对超出预定数量的消息负载进行分类处理，具体如下。

·nonBlocking非阻塞方式：如果DataMsg消息的消息负载区块号与当前账本高度的差值大于或等于最大的区块距离defMaxBlockDistance（默认为100），则报错返回丢弃该消息，否则通过检查；

·blocking阻塞方式：建立循环默认每100毫秒执行一次检查。如果当前的消息负载缓冲区中的消息数量大于2倍的defMaxBlockDistance（默认为100），则当前等待处理的消息过多并继续等待，否则通过检查。

addPayload()方法接着调用state模块的s.payloads.Push(payload)→PayloadsBufferImpl.Push()方法，将消息负载添加到payloads模块的消息负载缓冲区buf中，并等待提交账本。其中，PayloadsBufferImpl.Push()方法会检查消息负载的区块号seqNum是否符合如下要求，如代码清单6-51所示，next是指期望等待提交账本的下一个区块号，其中：

·seqNum必须大于或等于next，即本地还没有保存过该区块号的消息负载；

·当前区块号的消息负载还没有保存到缓冲区上，即对应的buf[seqNum]必须为nil。

代码清单6-51　Push()方法的源码示例

gossip/state/payloads_buffer.go文件

func (b *PayloadsBufferImpl) Push(payload *proto.Payload) {

 b.mutex.Lock()

 defer b.mutex.Unlock()

 seqNum := payload.SeqNum // 获取消息负载序号

 // 检查区块号是否小于next，或者是否被处理过

 if seqNum < b.next || b.buf[seqNum] != nil {

 logger.Debugf("Payload with sequence number = %d has been already processed", payload.SeqNum)

 return

 }

 b.buf[seqNum] = payload // 保存到消息负载缓冲区

 // 通知已经接收到期望的下一个区块的序号next

 if seqNum == b.next {

 // 解除阻塞当前goroutine执行

 go func() {

 b.readyChan <- struct{}{}

 }()

 }

}

如果通过了上述检查，那么该消息负载就会被添加到缓冲区buf中。如果seqNum等于期望等待提交账本的下一个区块号next，则将空结构struct{}{}作为信号消息发送到payloads模块的readyChan通道中。同时，state模块初始化时执行go deliverPayloads()，建立了消息处理循环并使用select语句阻塞等待通道消息，如代码清单6-52所示。如果检查发现payloads模块的s.payloads.Ready()→b.readyChan通道接收到信号（空结构struct{}{}），则调用s.payloads.Pop()→PayloadsBufferImpl.Pop()方法，从消息负载缓冲区buf中弹出最新区块号next匹配的消息负载payload。接着，将payload.Data解析为Block结构对象rawBlock，将隐私数据字段payload.PrivateData解析为PvtDataCollections结构对象p。然后，调用state模块的commitBlock(rawBlock，p)方法提交该数据消息，包括区块数据rawBlock与隐私数据p，并在成功提交到账本之后更新区块高度等元数据。

代码清单6-52　state模块的deliverPayloads()方法源码示例

gossip/state/state.go文件

func (s *GossipStateProviderImpl) deliverPayloads() {

 ……

 for {

 select {

 // 等待新的消息负载

 case <-s.payloads.Ready():

 ……

 for payload := s.payloads.Pop(); payload != nil; payload = s.payloads.Pop() { // 取出消息负载

 rawBlock := &common.Block{}

 // 解析到区块Block结构对象

 if err := pb.Unmarshal(payload.Data, rawBlock); err != nil {

 ……

 }

 // 检查区块结构的合法性

 if rawBlock.Data == nil || rawBlock.Header == nil {

 ……

 }

 ……

 // 解析隐私数据到消息负载的PrivateData列表中

 if payload.PrivateData != nil {

 err := p.Unmarshal(payload.PrivateData)

 ……

 }

 // 提交到账本

 if err := s.commitBlock(rawBlock, p); err != nil {

 ……

 }

 }

 case <-s.stopCh: // 停止state模块运行

 s.stopCh <- struct{}{}

 logger.Debug("State provider has been stopped, finishing to push new blocks.")

 return

 }

 }

}

state模块的commitBlock()方法首先调用s.ledger.StoreBlock()→coordinator.StoreBlock()方法，利用Committer功能模块验证交易（5.3节）与提交到账本（5.4节），包括区块block及关联的隐私数据privateDataSets。接着，调用common2.NewNodeMetastate()方法，基于区块号block.Header.Number构造节点元数据（NodeMetastate类型）并序列化为b。然后，调用state模块的s.mediator.UpdateChannelMetadata()方法，基于节点元数据b与通道chainID更新通道状态元数据。

其中，UpdateChannelMetadata()方法先根据通道chainID获取指定的GossipChannel通道对象gc，并调用createStateInfoMsg()方法，基于节点元数据字节数组（包含区块链高度等）构造通道的StateInfo消息stateInfMsg并签名。该对象封装了通道MAC码、节点元数据、节点PKI-ID、节点启动时间、当前时间、账本高度等。接着，调用GossipChannel对象的gc.UpdateStateInfo()方法，更新通道状态信息stateInfMsg到指定通道上的state-InfoMsgStore消息存储对象，并更新该通道的账本高度ledgerHeight与状态信息消息state-InfoMsg。然后，设置shouldGossipStateInfo更新标志位为1，表示该GossipChannel通道对象的stateInfMsg状态信息消息存在更新，需要发布给其他节点。同时，GossipChannel通道对象会周期性地调用gc.publishStateInfo()方法以检查shouldGossipStateInfo标志位。如果发现该标志位为1，则调用gc.Gossip(stateInfoMsg)方法，发送当前通道的stateInfoMsg消息给其他节点进行更新。发送结束后，如果还存在其他的存活成员节点，则设置should-GossipStateInfo标志位为0，以停止更新操作，等待下次调用UpdateStateInfo()方法时再次打开标志位。

至此，state模块的queueNewMessage()方法处理DataMsg类型数据消息的流程结束。

代码清单6-53　state模块的commitBlock()方法源码示例

gossip/state/state.go文件

func (s *GossipStateProviderImpl) commitBlock(block *common.Block, pvtData util.PvtDataCollections) error {

 // 提交区块与隐私数据

 if err := s.ledger.StoreBlock(block, pvtData); err != nil {

 logger.Errorf("Got error while committing(%+v)", errors.WithStack(err))

 return err

 }

 // 更新本节点元数据的账本高度

 nodeMetastate := common2.NewNodeMetastate(block.Header.Number)

 b, err := nodeMetastate.Bytes() // 转换为字节数组

 if err == nil {

 // 更新通道元数据状态（账本高度）

 s.mediator.UpdateChannelMetadata(b, common2.ChainID(s.chainID))

 } else {

 logger.Errorf("Unable to serialize node meta nodeMetastate, error = %+v", errors.WithStack(err))

 }

 logger.Debugf("Channel [%s]: Created block [%d] with %d transaction(s)",

 s.chainID, block.Header.Number, len(block.Data.Data))

 return nil

}

6.3.5　state模块中的远程状态与隐私数据消息处理

1.远程状态请求及其响应消息处理

directMessage()方法首先检查消息的通道ID（msg.GetGossipMessage().Channel）与state模块的通道ID（s.chainID）是否匹配，以保证在处理指定通道上的合法消息。如果检查匹配通过，则根据消息类型分别进行处理，具体如下。

·StateRequest类型远程状态请求消息：先检查state模块的stateRequestCh通道中已经缓存的消息数量。如果该数量还没有达到预定数量defChannelBufferSize（默认为100个），则将接收的StateRequest消息放入该通道中。同时，state模块的processStateRequests()方法在goroutine的消息处理循环中捕获到该通道消息，并调用state模块的s.handleStateRequest(msg)方法处理StateRequest消息；

·StateResponse类型远程状态响应消息：如果state模块的stateTransferActive标志位是1，则将接收到的StateResponse消息放入state模块的s.stateResponseCh通道，通知反熵算法的antiEntropy()→requestBlocksInRange()方法，在消息处理循环中捕获到该通道消息，并调用state模块的s.handleStateResponse()方法处理StateResponse消息。

（1）state模块的handleStateRequest()方法

state模块的handleStateRequest()方法处理StateRequest类型的远程状态请求消息request，请求获取指定区块号范围的数据集合（包括区块与隐私数据），如代码清单6-54所示。

代码清单6-54　state模块的handleStateRequest()方法源码示例

gossip/state/state.go文件

// 处理StateRequest远程状态请求消息

func (s *GossipStateProviderImpl) handleStateRequest(msg proto.ReceivedMessage) {

 // === 检查消息的合法性

 if msg == nil {

 return

 }

 // 解析获取StateRequest远程状态请求消息

 request := msg.GetGossipMessage().GetStateRequest()

 batchSize := request.EndSeqNum - request.StartSeqNum // 检查请求区块数据范围的合法性

 if batchSize > defAntiEntropyBatchSize { // 超过预定数值

 ……

 }

 // 请求区块起始序号和结束序号的合法性

 if request.StartSeqNum > request.EndSeqNum {

 ……

 }

 currentHeight, err := s.ledger.LedgerHeight() // 获取账本高度

 ……

 if currentHeight < request.EndSeqNum { // 检查请求结束区块号的合法性

 ……

 }

 // === 构造并发送StateResponse类型远程状态响应消息

 endSeqNum := min(currentHeight, request.EndSeqNum) // 设置结束区块号

 // 构造StateResponse消息

 response := &proto.RemoteStateResponse{Payloads: make([]*proto.Payload, 0)}

 for seqNum := request.StartSeqNum; seqNum <= endSeqNum; seqNum++ {

 logger.Debug("Reading block ", seqNum, " with private data from the coord-inator service")

 connInfo := msg.GetConnectionInfo()

 peerAuthInfo := common.SignedData{ // 构造签名数据

 Data: connInfo.Auth.SignedData,

 Signature: connInfo.Auth.Signature,

 Identity: connInfo.Identity,

 }

 // 获取区块与隐私数据

 block, pvtData, err := s.ledger.GetPvtDataAndBlockByNum(seqNum, peerAuthInfo)

 ……

 if block == nil {

 logger.Errorf("Wasn't able to read block with sequence number %d from ledger, skipping....", seqNum)

 continue

 }

 blockBytes, err := pb.Marshal(block) // 序列化封装区块字节数组

 ……

 var pvtBytes [][]byte

 if pvtData != nil {

 pvtBytes, err = pvtData.Marshal() // 序列化封装隐私数据字节数组

 ……

 }

 // 构造并添加消息负载

 response.Payloads = append(response.Payloads, &proto.Payload{

 SeqNum: seqNum, // 区块号

 Data: blockBytes, // 区块

 PrivateData: pvtBytes, // 隐私数据

 })

 }

 // 发送StateResponse类型远程状态响应消息

 msg.Respond(&proto.GossipMessage{

 Nonce: msg.GetGossipMessage().Nonce, // 设置为请求消息Nonce

 Tag: proto.GossipMessage_CHAN_OR_ORG, // 消息标签

 Channel: []byte(s.chainID), // 通道ID/链ID

 Content: &proto.GossipMessage_StateResponse{StateResponse: response},

 })

}

handleStateRequest()方法首先检查消息的合法性，包括：

·检查msg消息的合法性（不为nil）；

·检查请求区块号范围batchSize不应该大于预定数值defAntiEntropyBatchSize（默认为10），即一次最多请求10个数据；

·检查请求的起始区块号StartSeqNum应该小于或等于结束区块号EndSeqNum。

由于本地节点可能没有包含指定请求范围内的所有数据，因此，handleStateRequest()方法调用min(currentHeight，request.EndSeqNum)方法，比较获取两个对象中较小的数值，并作为实际请求的结束区块号endSeqNum。

然后，handleStateRequest()方法依次遍历request指定的区块号范围（request.StartSeq-Num，endSeqNum）。对于其中的每个区块号，构造发送消息节点认证信息的签名数据（SignedData类型），封装了该节点用于认证的签名数据、签名和身份证书信息。接着，调用state模块的s.ledger.GetPvtDataAndBlockByNum()→coordinator.GetPvtDataAndBlockByNum()方法，利用coordinator模块获取指定区块号seqNum对应的区块block与隐私数据pvtData（7.1.3节）。然后，基于这两个对象的序列化字节数组构造消息负载对象（Payload类型），并添加到查询结果的消息负载列表response.Payloads（[]*Payload类型）中。

如此循环处理完毕request请求范围内的所有数据后，handleStateRequest()方法基于查询结果response构造StateResponse类型的远程状态响应消息，并添加请求消息的随机数Nonce、消息标签GossipMessage_CHAN_OR_ORG、通道ID等，将其重新封装为Gossip-Message类型消息，再调用msg.Respond()方法对其签名后回复给请求节点。

（2）state模块的handleStateResponse()方法

state模块的handleStateResponse()方法处理StateResponse类型的远程状态响应消息，并提交数据到本地账本中，如代码清单6-55所示。

代码清单6-55　state模块的handleStateResponse()方法源码示例

gossip/state/state.go文件

// 处理远程状态响应消息

func (s *GossipStateProviderImpl) handleStateResponse(msg proto.ReceivedMessage) (uint64, error) {

 max := uint64(0)

 // 获取StateResponse类型远程状态响应消息

 response := msg.GetGossipMessage().GetStateResponse()

 // 提取消息负载，验证和添加到本地消息负载缓冲区中

 if len(response.GetPayloads()) == 0 {

 return uint64(0), errors.New("Received state transfer response without payload")

 }

 for _, payload := range response.GetPayloads() { // 获取消息负载

 logger.Debugf("Received payload with sequence number %d.", payload.SeqNum)

 if err := s.mediator.VerifyBlock(common2.ChainID(s.chainID), payload.SeqNum, payload.Data); err != nil { // 验证

 ……

 return uint64(0), err

 }

 if max < payload.SeqNum { // 更新当前最大区块号

 max = payload.SeqNum

 }

 err := s.addPayload(payload, blocking) // 添加到消息负载缓冲区中

 ……

 }

 return max, nil

}

handleStateResponse()方法首先从接收的消息中解析出StateResponse类型的远程状态响应消息response。接着，循环遍历response上消息负载列表中的消息负载payload（Payload类型），调用state模块的s.mediator.VerifyBlock()方法，实际上是通过Gossip服务实例的MCS模块验证消息负载中区块及其字段的合法性，获取区块元数据中的签名集合signatureSet以及配置的BlockValidation区块验证策略policy，调用policy.Evaluate(signa-tureSet)方法以验证该签名是否符合指定的区块验证策略。如果通过了上述检查，则将当前消息的区块号payload.SeqNum与当前最大的区块号max进行比较，如果payload.SeqNum大于max，则将max更新为payload.SeqNum。然后，以阻塞方式将当前消息负载payload添加到本地的消息负载缓冲区中，等待处理并提交到账本。

如此处理完毕所有的消息负载，handleStateResponse()方法将返回当前最大区块号max。

2.隐私数据消息处理

state模块的privateDataMessage()方法负责处理PrivateData类型的隐私数据消息（含有隐私数据明文），如代码清单6-56所示。

代码清单6-56　state模块的privateDataMessage()方法源码示例

gossip/state/state.go文件

// 处理PrivateData类型的隐私数据消息

func (s *GossipStateProviderImpl) privateDataMessage(msg proto.ReceivedMessage) {

 if !bytes.Equal(msg.GetGossipMessage().Channel, []byte(s.chainID)) {

 logger.Warning("Received state transfer request for channel",

 string(msg.GetGossipMessage().Channel), "while expecting channel", s.chainID, "skipping request...")

 return

 }

 gossipMsg := msg.GetGossipMessage()

 pvtDataMsg := gossipMsg.GetPrivateData()

 collectionName := pvtDataMsg.Payload.CollectionName // 隐私数据集合名称

 txID := pvtDataMsg.Payload.TxId

 pvtRwSet := pvtDataMsg.Payload.PrivateRwset

 if len(pvtRwSet) == 0 { // 没有隐私数据读写集

 logger.Warning("Malformed private data message, no rwset provided, collec-tion name = ", collectionName)

 return

 }

 // 构造交易隐私数据读写集

 txPvtRwSet := &rwset.TxPvtReadWriteSet{

 DataModel: rwset.TxReadWriteSet_KV, // 数据模型

 NsPvtRwset: []*rwset.NsPvtReadWriteSet{{

 Namespace: pvtDataMsg.Payload.Namespace,

 CollectionPvtRwset: []*rwset.CollectionPvtReadWriteSet{{

 CollectionName: collectionName,

 Rwset: pvtRwSet,

 }}},

 },

 }

 if err := s.ledger.StorePvtData(txID, txPvtRwSet); err != nil {

 logger.Errorf("Wasn't able to persist private data for collection %s, due to %s", collectionName, err)

 msg.Ack(err) // Sending NACK to indicate failure of storing collection

 }

 msg.Ack(nil)

 logger.Debug("Private data for collection", collectionName, "has been stored")

}

privateDataMessage()方法首先检查消息的通道ID与state模块的通道ID是否匹配，并提取出pvtDataMsg消息及其集合名称、交易ID与读写集，检查其包含的隐私数据读写集的合法性（即读写集个数不为0）。接着，基于上述参数构造交易隐私数据读写集txPvtRwSet（TxPvtReadWriteSet类型），并指定为TxReadWriteSet_KV数据模型。然后，调用s.ledger.StorePvtData(txID，txPvtRwSet)→coordinator.StorePvtData()→c.TransientStore.Persist()方法（7.1.7节），通过transient对象将指定交易ID的隐私数据读写集txPvtRwSet保存至transient隐私数据库（LevelDB）。最后，调用msg.Ack(nil)方法，构造Ack类型应答消息并回复给消息发送节点，通知消息已经处理完毕。
6.3.6　Fetcher组件中的隐私数据请求与响应消息处理

coordinator模块的Fetcher组件（puller类型）可提供handleRequest()方法与handle-Response()方法，分别用于处理PrivateReq类型的隐私数据请求消息与PrivateRes类型的隐私数据响应消息。

1.隐私数据请求消息处理

handleRequest()方法首先通过Fetcher组件调用p.createResponse()方法，获取本地账本保存的隐私数据元素对象列表（[]*PvtDataElement类型，包含摘要及其消息负载），构造PrivateRes类型的隐私数据响应消息，该类型如图6-10所示。接着，添加通道ID、消息标签GossipMessage_CHAN_ONLY、请求消息随机数Nonce等封装成GossipMessage类型消息。然后，调用message.Respond()方法对该消息进行签名，通过消息封装的节点连接对象调用m.conn.send()方法，将该消息发送到请求节点，如代码清单6-57所示。

 [image:]

图6-10　隐私数据响应消息GossipMessage_PrivateRes类型示意图

代码清单6-57　handleRequest()方法的源码示例

gossip/privdata/pull.go文件

// 处理隐私数据请求消息

func (p *puller) handleRequest(message proto.ReceivedMessage) {

 logger.Debug("Got", message.GetGossipMessage(), "from", message.GetConnection-Info().Endpoint)

 message.Respond(&proto.GossipMessage{

 Channel: []byte(p.channel),

 Tag: proto.GossipMessage_CHAN_ONLY,

 Nonce: message.GetGossipMessage().Nonce,

 Content: &proto.GossipMessage_PrivateRes{

 PrivateRes: &proto.RemotePvtDataResponse{

 Elements: p.createResponse(message),

 },

 },

 })

}

Fetcher组件的p.createResponse()方法根据接收的PrivateReq类型隐私数据请求消息，从本地transient隐私数据存储对象（封装了transient隐私数据库）与本地账本的隐私数据库中，分别获取请求的隐私数据集合，再创建PrivateRes类型的隐私数据响应消息，如代码清单6-58所示。

代码清单6-58　createResponse()方法的源码示例

gossip/privdata/pull.go文件

// 创建隐私数据响应消息

func (p *puller) createResponse(message proto.ReceivedMessage) []*proto.PvtData-Element {

 authInfo := message.GetConnectionInfo().Auth // 获取节点连接认证信息

 ……

 msg := message.GetGossipMessage()

 // 遍历请求的隐私数据摘要数据列表

 for _, dig := range msg.GetPrivateReq().Digests {

 // 获取指定的隐私数据集合对象

 colAP, err := p.cs.RetrieveCollectionAccessPolicy(fcommon.CollectionCriteria{

 Channel: p.channel,

 Collection: dig.Collection,

 TxId: dig.TxId,

 Namespace: dig.Namespace,

 })

 ……

 colFilter := colAP.AccessFilter() // 生成访问策略验证方法

 ……

 // 验证远程Peer节点是否符合colFilter过滤器

 eligibleForCollection := colFilter(fcommon.SignedData{

 Identity: message.GetConnectionInfo().Identity,

 Data: authInfo.SignedData,

 Signature: authInfo.Signature,

 })

 ……

 rwSets := p.CollectionRWSet(dig) // 生成隐私数据集合读写集

 ……

 if len(rwSets) == 0 {

 continue

 }

 returned = append(returned, &proto.PvtDataElement{ // 添加到隐私数据元素列表

 Digest: dig,

 Payload: util.PrivateRWSets(rwSets...),

 })

 }

 return returned

}

createResponse()方法首先遍历PrivateReq消息中摘要数据列表上的摘要对象（PvtDataDigest类型），如图6-11所示，通过Fetcher组件中的隐私数据集合存储对象（simple-CollectionStore类型）调用p.cs.RetrieveCollectionAccessPolicy()方法（core/common/priv-data/store.go），获取与该对象关联的隐私数据集合对象的访问权限策略。

 [image:]

图6-11　隐私数据请求消息GossipMessage_PrivateReq类型示意图

RetrieveCollectionAccessPolicy()方法先查询lscc名字空间下指定隐私数据集合键（指定链码名字空间即链码名称+"~"+"collection"）对应的链码隐私数据集合配置包（Collection-ConfigPackage类型）。该对象封装了隐私数据集合配置CollectionConfig列表，如图6-12所示。接着，遍历该隐私数据集合配置列表中的CollectionConfig_StaticCollectionConfig静态集合配置类型对象，筛选出指定链码集合名称的配置对象，并构造隐私数据集合对象（SimpleCollection类型），以封装该隐私数据集合对象的访问权限策略（目前支持签名策略）、成员列表（按照MSPPrincipal类别解析对应的签名身份实体对象）等。最后，将该隐私数据集合对象返回到createResponse()方法中的colAP变量。

接着，createResponse()方法调用隐私数据集合对象的colAP.AccessFilter()方法，生成隐私数据对象的访问策略验证方法colFilter，即过滤出能够满足隐私数据集合中成员访问策略的节点。createResponse()方法构造请求节点的签名数据对象（SignedData类型），并传递给colFilter()过滤器方法，验证该对象是否符合指定隐私数据集合对象的访问权限策略。

如果通过了上述检查，则说明请求节点符合当前隐私数据的访问权限策略。create-Response()方法继续调用Fetcher组件的p.CollectionRWSet(dig)方法（7.1.7节），根据隐私数据摘要信息dig获取隐私数据对象，如图6-13所示。实际上是利用Fetcher组件中的DataStoreSupport结构对象分别从本地的transient隐私数据存储对象（封装了transient隐私数据库）与本地账本的隐私数据库中获取请求的隐私数据，以构造隐私数据集合读写集rwSets（[]util.PrivateRWSet{}类型）。然后，基于当前隐私数据摘要dig与隐私数据集合读写集rwSets构造隐私数据元素对象（PvtDataElement类型），并添加到返回的隐私数据元素对象列表returned中。

最后，当遍历处理完毕请求的所有隐私数据摘要列表之后，createResponse()方法将返回获取的隐私数据元素对象列表returned。

2.隐私数据响应消息处理

如代码清单6-59所示，handleResponse()方法首先从接收的消息中提取PrivateRes类型的隐私数据响应消息。接着，遍历该消息的隐私数据元素列表msg.Elements中的隐私数据元素el（PvtDataElement类型），计算其消息摘要el.Digest的哈希值hash。然后，调用Fetcher组件的p.pubSub.Publish(hash，el)方法，将隐私数据元素el发送给指定主题（哈希值hash）的所有消息订阅对象所关联的通道上，通知所订阅的隐私数据响应消息已经到达。如果发现通道缓冲消息达到预设的最大数量subscriptionBuffSize（默认为50个），则直接处理下一个消息订阅对象。因此，隐私数据请求节点的Fetcher组件在发送完毕所有的请求数据之后，可以通过订阅通道收集相应的消息处理响应结果，以判断是否已经收集到所有的消息处理结果。

 [image:]

图6-12　隐私数据集合CollectionConfigPackage类型与SimpleCollection类型示意图

 [image:]

图6-13　Fetcher组件puller类型示意图

代码清单6-59　handleResponse()方法的源码示例

gossip/privdata/pull.go文件

// 处理隐私数据响应消息

func (p *puller) handleResponse(message proto.ReceivedMessage) {

 msg := message.GetGossipMessage().GetPrivateRes()

 logger.Debug("Got", msg, "from", message.GetConnectionInfo().Endpoint)

 for _, el := range msg.Elements {

 if el.Digest == nil {

 logger.Warning("Got nil digest from", message.GetConnectionInfo().Endpoint, "aborting")

 return

 }

 hash, err := el.Digest.Hash()

 if err != nil {

 logger.Warning("Failed hashing digest from", message.GetConnection-Info().Endpoint, "aborting")

 return

 }

 p.pubSub.Publish(hash, el)

 }

}

6.3.7　election选举模块中的主节点选举消息处理

election选举模块的le.handleMessage()方法可用于处理LeadershipMsg类型的主节点选举消息，如代码清单6-60所示。

代码清单6-60　election选举模块的handleMessage()函数源码示例

gossip/election/election.go文件

func (le *leaderElectionSvcImpl) handleMessage(msg Msg) {

 msgType := "proposal"

 if msg.IsDeclaration() { // 检查是否声明自己是Leader主节点

 msgType = "declaration"

 }

 le.logger.Debug(le.id, ":", msg.SenderID(), "sent us", msgType)

 le.Lock()

 defer le.Unlock()

 if msg.IsProposal() { // 是否为proposal消息

 le.proposals.Add(string(msg.SenderID())) // 添加发送者ID

 } else if msg.IsDeclaration() { // 测试是否声明当前节点是Leader主节点

 atomic.StoreInt32(&le.leaderExists, int32(1)) // 设置Leader主节点存在标志位

 // 检查是否休眠，且中断通道没有消息

 if le.sleeping && len(le.interruptChan) == 0 {

 le.interruptChan <- struct{}{}

 }

 if bytes.Compare(msg.SenderID(), le.id) < 0 && le.IsLeader() {

 // 比较选择更小的PKI-ID

 le.stopBeingLeader() // 停止本节点成为Leader主节点

 }

 } else {

 le.logger.Error("Got a message that's not a proposal and not a declaration")

 }

}

handleMessage()方法首先检查接收消息的类型，如果该消息是declaration消息，即声明消息发送节点是Leader主节点，则设置当前消息类型msgType为“declaration”，否则，保持msgType为“proposal”。接着，调用le.proposals.Add()方法，将该消息发送节点的PKI-ID添加到proposals消息集合中并等待处理。

对于declaration消息，handleMessage()方法检查更新当前节点的Leader主节点信息，设置Leader主节点存在标志位leaderExists为1，表明已经存在Leader主节点。如果election选举模块处于休眠状态中（le.sleeping标志位为true），并且interruptChan通道中不存在中断消息，则发送空结构struct{}{}到le.interruptChan通道，作为信号唤醒election选举模块，并重新参与竞争Leader主节点。如果消息发送者的节点PKI-ID比当前节点PKI-ID更小，并且当前节点声明为Leader主节点（le.isLeader标志位为1），则消息发送者自动成为Leader主节点，当前节点放弃竞争Leader主节点。因此，调用le.stopBeingLeader()方法，停止本节点参与竞争Leader主节点，即设置le.isLeader标志位为0，并执行le.callback(false)→gossipServiceImpl.onStatusChangeFactory(false)回调函数，实际上是调用g.deliveryService.StopDeliverForChannel()方法，停止当前通道上的Deliver服务实例及其请求数据的broadcastClient客户端，删除关联的区块提供者BlocksProvider结构对象，转换为普通节点并从其他节点接收数据，如代码清单6-61所示。

代码清单6-61　onStatusChangeFactory()函数源码示例

gossip/service/gossip_service.go文件

// 根据Leader主节点标志位启动或停止区块请求

func (g *gossipServiceImpl) onStatusChangeFactory(chainID string, committer block-sprovider.LedgerInfo) func(bool) {

 return func(isLeader bool) {

 if isLeader { // 检查本节点是否为Leader

 ……

 // 启动Deliver服务实例

 if err := g.deliveryService[chainID].StartDeliverForChannel(chainID, committer, yield); err != nil {

 logger.Errorf("Delivery service is not able to start blocks delivery for chain, due to %+v", errors.WithStack(err))

 }

 } else { // 停止Deliver服务实例

 logger.Info("Renounced leadership, stopping delivery service for channel", chainID)

 if err := g.deliveryService[chainID].StopDeliverForChannel(chainID); err != nil {

 logger.Errorf("Delivery service is not able to stop blocks delivery for chain, due to %+v", errors.WithStack(err))

 }

 }

 }

}

至此，handleMessage()方法处理LeadershipMsg类型主节点选举消息的流程结束。
6.4　Gossip节点管理机制

6.4.1　管理新加入Peer节点

新加入Peer节点启动时调用g.connect2BootstrapPeers()方法，连接Bootstrap节点列表（peer.gossip.bootstrap配置项）中的节点，发送MemReq消息请求获取成员关系信息。

connect2BootstrapPeers()方法首先遍历g.conf.BootstrapPeers节点列表，定义identifier()方法用于获取每个远程Bootstrap节点的节点标识信息对象（PeerIdentification类型）。该对象封装了节点的PKI-ID与SelfOrg标志位（标识是否与当前节点属于同一个组织）。其中，identifier()方法先调用g.comm.Handshake()方法，与远程Peer节点建立握手连接。该方法调用proto.NewGossipClient(cc)方法，为本地Peer节点创建gossipClient客户端。接着，调用GossipStream()服务接口并与远程Bootstrap节点建立服务连接，获取客户端通信流stream，再调用authenticateRemotePeer()方法认证远程Peer节点的合法性，并创建节点连接信息connInfo，以验证远程Peer节点的PKI-ID与connInfo.ID是否一致。如果通过了检查，则与远程节点正式建立了握手连接，并返回该节点的身份证书信息。然后，identifier()方法检查远程Bootstrap节点与当前节点是否属于同一个MSP组织，检查通过后基于身份证书信息重新解析获取远程Peer节点的PKI-ID，并构造远程Bootstrap节点的节点标识对象（PeerIdentification类型）。

然后，connect2BootstrapPeers()方法调用discovery模块的g.disc.Connect()方法，连接除自身节点以外的其他Bootstrap节点，执行goroutine并循环尝试请求成员关系信息，最多可请求120次（每隔25秒请求一次），如代码清单6-62所示。

代码清单6-62　discovery模块的Connect()方法源码示例

gossip/discovery/discovery_impl.go文件

func (d *gossipDiscoveryImpl) Connect(member NetworkMember, id identifier) {

 for _, endpoint := range []string{member.InternalEndpoint, member.Endpoint} {

 if d.isMyOwnEndpoint(endpoint) {

 d.logger.Debug("Skipping connecting to myself")

 return

 }

 }

 d.logger.Debug("Entering", member)

 defer d.logger.Debug("Exiting")

 go func() {

 for i := 0; i < maxConnectionAttempts && !d.toDie(); i++ {

 id, err := id()

 ……

 peer := &NetworkMember{ // 构造网络成员对象

 InternalEndpoint: member.InternalEndpoint,

 Endpoint: member.Endpoint,

 PKIid: id.ID,

 }

 m, err := d.createMembershipRequest(id.SelfOrg)

 ……

 req, err := m.NoopSign()

 ……

 req.Nonce = util.RandomUInt64()

 req, err = req.NoopSign()

 ……

 go d.sendUntilAcked(peer, req) // 发送请求到peer节点

 return

 }

 }()

}

在该循环中，Connect()方法首先调用id()→identifier()方法，获取远程Bootstrap节点的节点标识对象（PeerIdentification类型）。接着，构造对应的网络成员对象（NetworkMember类型），调用d.createMembershipRequest()方法以创建MemReq消息。该消息封装了包含自身信息的AliveMsg消息，封装了PKI-ID、网络端点、元数据、节点启动时间、消息序号等信息，再添加消息随机数Nonce并签名。然后，启动go d.sendUntilAcked()，将MemReq消息发送到远程的Bootstrap节点上，如代码清单6-63所示。

代码清单6-63　discovery模块的sendUntilAcked()方法源码示例

gossip/discovery/discovery_impl.go文件

func (d *gossipDiscoveryImpl) sendUntilAcked(peer *NetworkMember, message *proto.SignedGossipMessage) {

 nonce := message.Nonce

 // 检查重连次数

 for i := 0; i < maxConnectionAttempts && !d.toDie(); i++ {

 sub := d.pubsub.Subscribe(fmt.Sprintf("%d", nonce), time.Second*5)

 d.comm.SendToPeer(peer, message) // 发送消息

 if _, timeoutErr := sub.Listen(); timeoutErr == nil {

 return

 }

 time.Sleep(getReconnectInterval()) // 休眠等待重连

 }

}

sendUntilAcked()方法建立循环（最多尝试请求120次）尝试发送指定的MemReq消息。该循环首先通过discovery模块调用d.pubsub.Subscribe()方法，创建了以消息随机数Nonce为主题的消息订阅者sub。接着，通过comm通信模块将请求消息发送到远程的Peer节点上，建立节点连接对象与本地消息处理循环（6.3.2节）。然后，调用sub.Listen()方法，监听通道并等待主题应答消息，具体说明如下。

·time.After(s.ttl)：定时器每5秒触发一次并解除程序阻塞，表示发送消息已经超时，并且没有收到任何应答消息，接着休眠等待25秒（peer.gossip.reconnectInterval配置项），再次循环尝试发送请求消息；

·消息订阅者s.c通道：如果接收到订阅的主题应答消息，则表示远程节点已经成功接收了该消息，并直接返回退出。

远程Bootstrap节点接收到MemReq消息之后，经过comm通信模块上ChannelDe-Multiplexer模块的过滤，最终交由discovery模块的handleMsgFromComm()方法处理，对远程节点上保存的成员关系消息列表进行过滤后，获取aliveSnapshot存活节点与deadPeers离线节点的成员关系消息列表，并被重新封装为MemRes类型的成员关系响应消息，再回复给本地Peer节点。

同时，本地comm模块通过conn.readFromStream()方法接收到MemRes消息，检查通过后交由conn.handler()方法处理，实际上是通过comm模块上的msgPublisher对象进行过滤并分发到incMsgs通道，交由discovery模块的handleMsgFromComm()方法处理。该方法先处理以Nonce消息随机数为主题的消息订阅请求，将该主题消息放入订阅通道中，通知discovery模块解除sendUntilAcked()→sub.Listen()程序的阻塞等待。接着，解析并获取接收消息中的Alive存活节点与Dead离线节点的成员消息列表，更新本地的节点信息相关列表，包括aliveLastTS、deadLastTS、aliveMembership、deadMembership等以及id2Member列表。

至此，新Peer节点连接Bootstrap节点列表的过程结束，成功获取并更新本地节点信息的相关列表。
6.4.2　选举Leader主节点

election选举模块将通道MSP组织内的Peer节点分为Leader主节点与Follower普通节点两种角色。如果开启了动态选举Leader主节点的模式，则Peer节点可通过向组织内的其他节点发送LeadershipMsg类型的主节点选举消息参与竞争，包括声明成为Leader主节点的declaration消息和申请成为Leader主节点的proposal消息。

LeadershipMsg消息封装了Peer节点PKI-ID、IsDeclaration标志位（是否声明为Leader主节点，表示declaration消息或proposal消息）、Timestamp时间戳（含有节点启动时间与消息计数器）等信息，如图6-14所示。

 [image:]

图6-14　Leader主节点选举消息LeadershipMsg类型示意图

Gossip消息模块调用InitializeChannel()方法，初始化指定通道上的Gossip服务模块。如果采用动态选举Leader主节点的方式，则调用Gossip服务实例的g.newLeaderElection-Component()→election.NewLeaderElectionService()方法，创建election选举模块le（leader-ElectionSvcImpl类型）。接着，执行go le.start()以启动election选举模块参与竞争Leader主节点。

1）执行go le.handleMessages()启动选举消息处理服务（6.3.7节），创建GossipChannel通道的消息过滤器，过滤与处理LeadershipMsg消息。

le.handleMessages()方法首先调用le.adapter.Accept()→adapterImpl.Accept()→ai.gossip.Accept(…，false)方法，创建关联的msgChan通道用于接收过滤消息，并通过Gossip服务实例的ChannelDeMultiplexer模块创建新的channel通道，注册自定义消息过滤器，负责过滤指定通道（ai.channel）上的LeadershipMsg类型主节点选举消息，通过检查后交由election选举模块的le.handleMessage()方法处理。

接着，le.handleMessage()方法检查接收消息的类型，具体如下。

·proposal消息：申请成为Leader主节点。election模块调用le.proposals.Add()方法，添加消息发送者的节点PKI-ID到le.proposals集合中等待处理。

·declaration消息：声明节点是Leader主节点。election模块主动比较消息发送者的节点PKI-ID与当前节点PKI-ID。如果发送者节点的PKI-ID更小且当前节点声明为Leader主节点，则调用le.stopBeingLeader()方法，停止本节点成为Leader主节点，并设置Leader主节点标志位isLeader为0。接着，调用le.callback(false)→gossipService-Impl.onStatusChangeFactory()回调方法，停止当前节点请求区块的Deliver服务实例broadcastClient客户端，并删除关联的区块提供者BlocksProvider结构键值对，设置其b.done标志位为1。这样，使得区块提供者在DeliverBlocks()方法中跳出消息处理循环，转换为普通节点并从其他节点接收区块。

2）调用le.waitForMembershipStabilization()方法，等待网络通道内的所有节点稳定下来，即等待15秒（peer.gossip.election.startupGracePeriod配置项）后参与Leader主节点选举。

如代码清单6-64所示，le.waitForMembershipStabilization()方法先调用len(le.adapter.Peers())方法，通过discovery模块获取本地保存的当前节点数量viewSize，接着每隔1秒就重新获取最新的节点数量newSize，判断如下条件并更新信息，包括：

·如果newSize与viewSize相等，则当前成员关系是稳定的。否则，更新viewSize为最新数量newSize，继续进入网络稳定阶段；

·如果网络稳定时间超过15秒，则触发定时器返回；

·如果le.isLeaderExists()为true，则接收到declaration类型的LeadershipMsg消息，说明已经选举出了Leader主节点，并直接返回。

代码清单6-64　election模块的waitForMembershipStabilization()方法源码示例

gossip/election/election.go文件

// 等待节点成员关系稳定下来，直到超时或者直到有节点声称是Leader主节点为止

func (le *leaderElectionSvcImpl) waitForMembershipStabilization(timeLimit time.Duration) {

 le.logger.Debug(le.id, ": Entering")

 defer le.logger.Debug(le.id, ": Exiting, peers found", len(le.adapter.Peers()))

 endTime := time.Now().Add(timeLimit) // 设置结束时间，添加时间限制

 viewSize := len(le.adapter.Peers())

 for !le.shouldStop() { // 测试当前选举模块是否已经停止运行

 time.Sleep(getMembershipSampleInterval()) // 指定休眠时间

 newSize := len(le.adapter.Peers()) // 获取当前Peer节点的个数

 // 若Peer节点的个数相同，或者超时，或者已经存在Leader主节点，则直接返回

 if newSize == viewSize || time.Now().After(endTime) || le.isLeaderExists() {

 return

 }

 viewSize = newSize

 }

}

3）当前节点的election模块执行go le.run()，参与竞争选举Leader主节点，如代码清单6-65所示。

代码清单6-65　election模块的run()方法源码示例

gossip/election/election.go文件

// 竞争参与Leader主节点选举

func (le *leaderElectionSvcImpl) run() {

 defer le.stopWG.Done()

 for !le.shouldStop() { // 检查是否停止Gossip服务

 if !le.isLeaderExists() { // 检查是否存在Leader主节点

 le.leaderElection() // 若不存在，则选举Leader主节点

 }

 if le.isLeaderExists() && le.isYielding() {

 le.stopYielding()

 }

 if le.shouldStop() { // 测试是否停止服务

 return

 }

 if le.IsLeader() { // 是否为Leader主节点

 le.leader() // 成为Leader主节点

 } else {

 le.follower() // 成为Follower节点

 }

 }

}

election选举模块首先调用le.isLeaderExists()方法，检查le.leaderExists标志位以判断当前组织内是否已经产生了Leader主节点，如代码清单6-66所示。如果当前还没有产生Leader主节点，则调用le.leaderElection()方法，参与竞争Leader主节点。

代码清单6-66　election模块的leaderElection()方法源码示例

gossip/election/election.go文件

// 选举Leader主节点

func (le *leaderElectionSvcImpl) leaderElection() {

 le.logger.Debug(le.id, ": Entering")

 defer le.logger.Debug(le.id, ": Exiting")

 if le.isYielding() { // 停止参与选举Leader主节点

 return

 }

 le.propose() // 发送proposal消息参与Leader选举

 le.waitForInterrupt(getLeaderElectionDuration()) // 等待网络稳定

 if le.isLeaderExists() { // 检查是否已经存在Leader主节点

 le.logger.Info(le.id, ": Some peer is already a leader")

 return

 }

 if le.isYielding() {

 le.logger.Debug(le.id, ": Aborting leader election because yielding")

 return

 }

 // 若不存在Leader主节点，则检查是否存在比当前节点PKI-ID更小的候选节点成为Leader主节点

 for _, o := range le.proposals.ToArray() { // 将缓存proposal消息列表转换为数组

 并依次遍历

 id := o.(string)

 if bytes.Compare(peerID(id), le.id) < 0 { // 比较是否存在更小的Peer节点PKI-ID

 return

 }

 }

 // 若执行到这里，则不存在比当前节点更好的候选节点

 le.beLeader() // 成为Leader主节点

 atomic.StoreInt32(&le.leaderExists, int32(1)) // 设置Leader主节点存在性标志位为1

}

le.leaderElection()方法首先调用le.propose()方法参与竞争选举Leader主节点，即调用le.adapter.CreateMessage(false)方法，构造LeadershipMessage消息（proposal类型）并广播给组织内的其他节点，其他节点接收后将该节点的PKI-ID缓存到le.proposals集合并等待处理。

接着，le.leaderElection()方法调用le.waitForInterrupt(getLeaderElectionDuration())方法，使election模块进入休眠状态5秒（peer.gossip.election.leaderElectionDuration配置项），休眠过程中election模块可能会被唤醒继续执行。例如，当前节点接收到其他节点声明为Leader主节点的declaration消息。

le.leaderElection()方法唤醒election模块后，先执行le.isLeaderExists()方法，如果已经选举出Leader主节点，或者le.isYielding()方法发现正在放弃Leader主节点领导权并转变成普通节点，则停止当前节点成为Leader主节点。否则，循环读取le.proposals集合中缓存的其他节点PKI-ID，按照字母顺序排序，比较当前Peer节点与其他节点的PKI-ID。如果当前Peer节点PKI-ID最小，则调用le.beLeader()方法，声明当前Peer节点为Leader主节点，再设置isLeader标志位为1。注意，如果存在多个节点都声明为Leader主节点，即收到其他节点发送的declaration消息，则主动选择PKI-ID字母序最小的节点成为Leader主节点。如果发送消息的节点PKI-ID更靠前，则当前节点主动放弃竞争Leader主节点，并标识自身的isLeader标志位为0。

最后，le.beLeader()方法调用le.callback(true)回调函数，实际上调用了election模块初始化时传入的onStatusChangeFactory()方法参数（service/gossip_service.go）。参数为true则意味着将当前节点转换为Leader主节点，并启动该节点的Deliver服务实例，代表组织负责从Orderer服务节点请求获取通道账本数据。然后，设置le.leaderExists标志位为1，以标识当前节点为Leader主节点。

Leader主节点选举完成后，每个Peer节点的election模块都将调用le.IsLeader()方法，以判断自身节点的角色，再执行相应的处理流程，具体说明如下。

·Leader主节点执行le.leader()方法。该方法首先调用le.adapter.CreateMessage()方法，构造LeadershipMsg消息，即声明当前节点是Leader主节点的declaration消息。接着，调用le.adapter.Gossip()方法，将该声明消息广播到组织内的其他节点。然后，调用le.waitForInterrupt()方法，让当前节点进入休眠状态并等待5秒。如果超时唤醒或被主动唤醒，则继续循环执行上述过程，以保持当前的Leader主节点状态；

·普通节点执行le.follower()方法。该方法首先调用le.proposals.Clear()方法清空消息集合，并设置当前节点的leaderExists标志位为0。接着，在le.handleMessage()方法中等待接收Leader主节点发送的declaration消息。然后，阻塞等待10秒（peer.gossip.election.leaderAliveThreshold配置项）接收declaration消息。如果接收到declaration消息，则将leaderExists标志位设置为1。否则，当前组织还没有选举出Leader主节点，则leaderExists标志位保持为0。那么，在le.run()方法的下一次循环中，当前节点会重新参与竞争Leader主节点。因此，当Leader主节点离线时，其他普通节点会重新参与竞争选举Leader主节点（即PKI-ID最小的节点）。

至此，Leader主节点的选举流程结束。
6.4.3　更新节点相关信息机制

除了Gossip消息存储对象会周期性地清理过期消息之外（6.3.2节），Gossip服务实例还提供了其他服务程序，以周期性地维护本地信息列表，具体说明如下。

·discovery模块负责发现新节点与维护节点信息的相关列表，通过周期性地发送Alive-Msg消息与MemReq消息，以更新本地的节点信息相关列表；

·certStore模块中的pull模块（即certPuller模块）负责周期性地拉取Pull节点身份消息（PullMsgType_IDENTITY_MSG消息内容），更新本地idMapper模块的pkiID2Cert字典；

·idMapper模块周期性地清理过期无效的Peer节点身份信息。

1.更新节点存活信息

discovery模块通过执行go d.periodicalSendAlive()建立循环，如代码清单6-67所示，周期性地发送本地节点的AliveMsg类型节点存活消息。

代码清单6-67　discovery模块的periodicalSendAlive()方法源码示例

gossip/discovery/discovery_impl.go文件

// 周期性地发送AliveMsg节点存活消息

func (d *gossipDiscoveryImpl) periodicalSendAlive() {

 defer d.logger.Debug("Stopped")

 for !d.toDie() { // 检测是否关闭

 d.logger.Debug("Sleeping", getAliveTimeInterval())

 time.Sleep(getAliveTimeInterval()) // 休眠指定时间

 msg, err := d.createAliveMessage(true)

 if err != nil {

 d.logger.Warningf("Failed creating alive message: %+v", errors.With-Stack(err))

 return

 }

 d.comm.Gossip(msg)

 }

}

d.periodicalSendAlive()方法每隔5秒就调用一次createAliveMessage()方法，构造本地节点的AliveMsg类型节点存活消息，封装本地节点PKI-ID、网络端点、元数据、节点启动时间、消息序号等。

接着，调用d.crypt.SignMessage()方法，通过discoverySecurityAdapter模块对该消息进行签名，并封装为SignedGossipMessage类型消息。如果当前时间运行在discovery-SecurityAdapter模块规定的时间includeIdentityPeriod（默认为10秒，peer.gossip.publish-CertPeriod配置项）内，则需要在AliveMsg消息中添加本地Peer节点的身份证书信息。

然后，通过discovery模块调用d.comm.Gossip()方法（即定义在newDiscoveryAdapter()中的discoveryAdapter.gossipFunc()方法），如代码清单6-68所示。该方法将AliveMsg消息封装为emittedGossipMessage类型消息，添加到emitter模块的消息缓冲区中，等待发送给通道组织中的其他Peer节点（6.3.2节）。

代码清单6-68　gossipFunc()方法的源码示例

gossip/gossip/gossip_impl.go文件

func (g *gossipServiceImpl) newDiscoveryAdapter() *discoveryAdapter {

 return &discoveryAdapter{

 ……

 gossipFunc: func(msg *proto.SignedGossipMessage) { // 发送方法

 if g.conf.PropagateIterations == 0 { // 检查发送节点数量

 return

 }

 g.emitter.Add(&emittedGossipMessage{ // 添加到emitter模块并等待发送

 SignedGossipMessage: msg,

 filter: func(_ common.PKIidType) bool {

 return true

 },

 })

 },

 ……

 }

}

远程Peer节点接收到AliveMsg消息后，经消息过滤然后转发给discovery模块的handle-MsgFromComm()方法（6.3.3节）处理。该方法先验证AliveMsg消息的有效性，即比较节点PKI-ID与消息时间戳，将有效消息替换到discovery模块的aliveMsgStore对象中。接着，继续检查消息签名的有效性，先过滤掉与本地节点PKI-ID相同的情况，更新节点成员列表，再通过emitter模块将该AliveMsg消息转发给组织内的其他节点。由于消息中保存了发送消息节点的证书，因此，Peer节点之间的消息是无法伪造签名的，其他节点不能只通过发送消息来改变状态。

在初始化通道的Gossip服务模块时，每个节点的discovery模块还会提供如下机制来维护更新节点信息的相关列表，具体说明如下。

·启动go d.periodicalCheckAlive()：周期性地（默认为2.5秒）检查节点时间差值是否大于阈值（默认为25秒），再调用d.expireDeadMembers()方法更新清理相关列表中的离线节点，即从aliveMembership对象的存活节点消息列表中，删除该节点消息，并添加到deadMembership对象的离线节点消息列表中。同时，更新deadLastTS与aliveLastTS时间戳列表，关闭与离线节点的连接；

·启动go d.periodicalReconnectToDead()：周期性地（默认为25秒）调用discAdapter适配器模块，尝试重新连接deadLastTS时间戳列表中的节点。如果发现能连通的离线节点，则构造MemReq消息，发送给离线节点建立连接，并恢复节点成员关系；

·启动go d.handlePresumedDeadPeers()：处理可能已经离线的Peer节点，通过dis-coveryAdapter.presumedDead通道接收需要处理的离线节点消息，并调用d.expireDead-Members()方法，更新相关节点信息列表。

2.更新节点成员关系信息

Gossip服务实例在g.start()启动方法中执行go g.syncDiscovery()，创建消息处理循环，每隔4秒调用一次discovery模块的g.disc.InitiateSync()方法，发送MemReq消息以获取其他节点的成员关系消息，并更新本地的相关信息列表，如代码清单6-69所示。

代码清单6-69　discovery模块的InitiateSync()方法源码示例

gossip/discovery/discovery_impl.go文件

func (d *gossipDiscoveryImpl) InitiateSync(peerNum int) {

 if d.toDie() {

 return

 }

 var peers2SendTo []*NetworkMember

 m, err := d.createMembershipRequest(true) // 创建节点成员关系请求消息

 ……

 memReq, err := m.NoopSign()

 ……

 d.lock.RLock()

 n := d.aliveMembership.Size()

 k := peerNum

 if k > n {

 k = n

 }

 aliveMembersAsSlice := d.aliveMembership.ToSlice() // 转换为数组

 for _, i := range util.GetRandomIndices(k, n-1) { // 随机选择k个节点

 // 获取AliveMsg消息中的节点成员信息

 pulledPeer := aliveMembersAsSlice[i].GetAliveMsg().Membership

 var internalEndpoint string

 if aliveMembersAsSlice[i].Envelope.SecretEnvelope != nil {

 internalEndpoint = aliveMembersAsSlice[i].Envelope.SecretEnvelope.Internal-Endpoint()

 }

 netMember := &NetworkMember{ // 构造网络成员对象

 Endpoint: pulledPeer.Endpoint,

 Metadata: pulledPeer.Metadata,

 PKIid: pulledPeer.PkiId,

 InternalEndpoint: internalEndpoint,

 }

 peers2SendTo = append(peers2SendTo, netMember) // 添加待发送Peer节点

 }

 d.lock.RUnlock()

 // 遍历待发送Peer节点列表

 for _, netMember := range peers2SendTo {

 d.comm.SendToPeer(netMember, memReq)

 }

}

InitiateSync()方法首先创建本地节点的AliveMsg消息，封装为MemReq类型成员关系请求消息。接着，在本地aliveMembership对象（保存AliveMsg消息，含有发送节点信息）中随机选出3个成员节点（peer.gossip.pullPeerNum配置项，若不足3个则选择全部节点），将这些节点的端点、元数据、PKI-ID、内部端点（若存在）等封装为NetworkMember结构对象，添加到待发送节点列表peers2SendTo中。最后，遍历peers2SendTo列表中的节点，调用discovery模块的d.comm.SendToPeer()方法，对MemReq消息进行过滤与签名之后，基于comm通信模块发送到指定节点。

其他Peer节点接收到MemReq消息后，经消息过滤处理然后转发给discovery模块的handleMsgFromComm()方法进行处理。该方法先提取MemReq消息封装的AliveMsg消息，验证消息的有效性与签名的真实性，并获取shouldBeDisclosed()与omitConcealedFields()过滤函数，从discovery模块的deadMembership对象与aliveMembership对象中过滤出符合条件的成员关系消息列表，构造MemRes类型成员关系响应消息，对其签名后再回复给请求节点。

本地节点将接收的MemRes消息过滤后转发给discovery模块的handleMsgFromComm()方法处理。该方法先发布并处理以Nonce消息随机数为主题的消息订阅请求，接着解析获取MemRes消息包含的Alive存活节点与Dead离线节点的成员关系消息列表，验证通过后更新到本地的相关信息列表中，包括aliveLastTS、deadLastTS、aliveMembership、dead-Membership以及id2Member等。

至此，InitiateSync()方法更新节点成员关系信息的处理流程结束。

3.更新节点身份消息

certStore模块通过Gossip服务实例的certPuller模块周期性地发送Pull类节点身份消息（PullMsgType_IDENTITY_MSG消息内容），请求拉取其他节点的PeerIdentity类型节点身份消息，更新本地idMapper模块的节点身份信息字典pkiID2Cert。

如6.3.2节所述，certPuller模块启动goroutine创建消息处理循环，每隔4秒（peer.gossip.pullInterval配置项）调用一次engine.initiatePull()方法，启动Pull类消息的交互进程，如代码清单6-70所示。该方法选择特定节点发送Pull类Hello消息，请求PeerIdentity类型的节点身份信息，等待回复消息并更新到本地。

代码清单6-70　initiatePull()方法的源码示例

gossip/gossip/algo/pull.go文件

func (engine *PullEngine) initiatePull() {

 engine.lock.Lock()

 defer engine.lock.Unlock()

 engine.acceptDigests() // 设置可以接收Digest消息

 for _, peer := range engine.SelectPeers() { // 遍历选择的Peer节点列表发送数据

 nonce := engine.newNONCE() // 创建随机数Nonce

 engine.outgoingNONCES.Add(nonce) // 添加Nonce随机数

 engine.nonces2peers[nonce] = peer // 设置与Nonce对应的peer节点

 engine.peers2nonces[peer] = nonce // 设置与peer节点对应的Nonce

 engine.Hello(peer, nonce) // 向该peer节点发送带有Nonce的Hello消息

 }

 // 设置等待摘要响应消息时间

 digestWaitTime := util.GetDurationOrDefault("peer.gossip.digestWaitTime", def-DigestWaitTime)

 time.AfterFunc(digestWaitTime, func() { // 定时器启动处理Digest摘要消息

 engine.processIncomingDigests()

 })

}

其他Peer节点接收到Pull类节点身份消息后，先过滤处理然后转发给certStore模块的handleMessage()方法处理。该方法调用certPuller模块的HandleMessage()方法处理Hello消息，并与本地Peer节点进行交互，直到接收DataUpdate摘要更新消息（6.3.2节）为止。接着，解析获取的PeerIdentity类型节点身份消息，更新节点PKI-ID与节点身份证书信息到本地idMapper模块的pkiID2Cert字典中，然后将PKI-ID及其消息更新到certPuller模块的itemID2Msg摘要消息列表与engine模块的state摘要存储对象上，并调用指定消息类型注册的消息处理钩子方法。

至此，certStore模块周期性地更新PeerIdentity类型节点身份消息的流程结束。

4.清理节点身份信息

Gossip服务实例的idMapper模块在NewIdentityMapper()方法中执行go idMapper.periodicalPurgeUnusedIdentities()，每隔6分钟调用一次idMapper模块的SuspectPeers()方法进行定期检查，从idMapper模块的pkiID2Cert字典中删除已过期、被撤销及身份证书无效的Peer节点身份信息，如代码清单6-71所示。

代码清单6-71　SuspectPeers()方法的源码示例

gossip/identity/identity.go文件

func (is *identityMapperImpl) SuspectPeers(isSuspected api.PeerSuspector) {

 for _, identity := range is.validateIdentities(isSuspected) {

 identity.cancelExpirationTimer()

 is.delete(identity.pkiID, identity.peerIdentity)

 }

}

SuspectPeers()方法首先调用is.validateIdentities()方法，获取需要撤销的节点身份信息列表。该方法循环遍历本地idMapper模块的pkiID2Cert字典，对于其中的节点身份信息对象，检查该节点身份信息的最后访问时间lastAccessTime。如果lastAccessTime与当前时间的时间差超过1个小时，则撤销该节点的身份信息并添加到revokedIdentities列表（[]*storedIdentity）中。接着，调用SuspectPeers()方法检查该Peer节点，实际上是调用periodicalPurgeUnusedIdentities()方法中自定义的函数参数（gossip/identity/identity.go），该函数默认返回false。因此，直接跳过并执行下一个循环，而不需要执行后面的程序。当循环遍历结束时，返回需要撤销的节点身份信息列表revokedIdentities。

接着，循环遍历revokedIdentities列表中的节点身份信息对象identity，调用identity.cancelExpirationTimer()方法，停止身份过期定时器。

然后，调用idMapper模块的is.delete()方法，删除当前指定的节点身份信息对象identity。该方法先执行参数onPurge()回调函数，如代码清单6-72所示，该函数定义在创建idMapper模块的NewIdentityMapper()函数中。onPurge()函数先调用g.comm.CloseConn()方法，关闭与identity关联节点（pkiID）的连接，从comm通信模块的pki2Conn列表中删除对应的节点连接对象键值对。接着，调用g.certPuller.Remove()方法，从certStore模块的itemID2Msg消息列表与engine对象中删除identity关联节点的节点身份消息与摘要信息（节点PKI-ID）。最后，从idMapper模块的pkiID2Cert字典中删除指定PKI-ID关联的Peer节点身份信息键值对。

代码清单6-72　NewGossipService()函数初始化idMapper模块的源码示例

gossip/gossip/gossip_impl.go文件

func NewGossipService(conf *Config, s *grpc.Server, secAdvisor api.Security-Advisor,

 mcs api.MessageCryptoService, selfIdentity api.PeerIdentityType,

 secureDialOpts api.PeerSecureDialOpts) Gossip {

 ……

 // 创建idMapper模块，定义了onPurge()回调函数

 g.idMapper = identity.NewIdentityMapper(mcs, selfIdentity, func(pkiID common.PKIidType, identity api.PeerIdentityType) {

 g.comm.CloseConn(&comm.RemotePeer{PKIID: pkiID})

 g.certPuller.Remove(string(pkiID))

 })

 ……

}

6.5　Gossip数据分发与状态同步机制

6.5.1　分发区块数据流程

1.Leader主节点请求获取账本区块

Leader主节点基于Deliver服务实例从Orderer节点请求通道账本的区块数据（2.6.3节），即通过blocksRequester对象调用RequestBlocks()→b.seekLatestFromCommitter(height)方法，发送包含区块搜索信息（SeekInfo类型）的区块请求消息给Orderer节点。该消息设置了区块数据请求范围的起始区块号是当前节点上该通道账本的区块链高度height，结束区块号是math.MaxUint64（即264-1）。同时，设置Behavior区块搜索行为类型是SeekInfo_BLOCK_UNTIL_READY，即如果Orderer节点没有找到指定的区块，则阻塞等待直到创建指定区块并提交账本后再发送给请求节点。

同时，Orderer服务节点的Deliver服务处理句柄（deliverHandler类型）在deliverBlocks()方法中构建消息处理循环，接收区块请求消息并处理，将指定范围内的区块数据依次从本地账本中取出，并发送给Leader主节点。如果发现指定区块没有创建或已经发送完毕当前通道账本上的所有区块数据（即请求获取的区块号达到通道账本的区块链高度），则Orderer节点就会阻塞等待，直到指定区块提交账本后再发送给Leader主节点（2.6.2节）。

当Leader主节点接收到新区块（DeliverResponse_Block类型）时，Leader主节点先调用DeliverBlocks()→b.mcs.VerifyBlock()方法，通过MCS消息加密服务模块验证该区块结构的合法性，以及区块元数据中的签名是否满足指定的区块验证策略BlockValidation。接着，调用createPayload()方法以构造消息负载payload，封装区块号seqNum（SeqNum字段）与区块数据的字节数组marshaledBlock（Data字段），不包含隐私数据（PrivateData字段）。然后，调用createGossipMsg()方法，基于消息负载payload构造DataMsg类型的数据消息，并封装为GossipMessage类型消息gossipMsg。同时，调用b.gossip.AddPayload()方法，将该消息负载payload添加到本地的消息负载缓冲区buf中，等待处理并提交账本（6.3.4节）。

然后，deliverBlocks()方法调用b.gossip.Gossip()→gossip.gossipServiceImpl.Gossip()方法，将该DataMsg消息发送到组织内的其他节点。该方法先检查消息标签的合法性，并对DataMsg类型的数据消息进行签名。由于该消息是支持通道内传播的消息，因此调用get-GossipChannelByChainID()方法，获取指定通道上的GossipChannel通道对象gc，并调用gc.AddToMsgStore()方法，将DataMsg消息添加到blockMsgStore与blocksPuller消息存储对象上。同时，blocksPuller对象周期性地发送Pull类数据消息，以拉取并更新本地节点账本上缺失的DataMsg消息（6.5.4节）。最后，将该DataMsg消息封装为emittedGossip-Message类型消息，添加到emitter模块缓冲区中，交由emitter模块打包并发送到组织内的其他Peer节点上。

至此，Leader主节点会一直运行等待从Orderer节点获取通道账本上的区块数据，并转发给组织内的其他节点。

2.Peer节点过滤转发数据消息

Peer节点接收到DataMsg类型的数据消息，将其过滤处理后交由GossipChannel通道的HandleMessage()方法继续处理。

HandleMessage()方法首先检查DataMsg消息中消息负载的合法性，验证消息中的区块元数据签名集合是否符合BlockValidation区块验证策略，检查通过后将DataMsg消息添加到blockMsgStore消息存储对象中。如果该消息验证通过且添加成功，则调用gc.For-ward()→gossipAdapterImpl.Forward()方法，将该消息封装成emittedGossipMessage类型消息，交由emitter模块发送到其他节点。接着，调用gc.DeMultiplex()方法，将DataMsg消息转发给Gossip服务实例的ChannelDeMultiplexer模块进行过滤处理。实际上，该模块可以过滤出DataMsg类型的数据消息与LeadershipMsg类型的主节点选举消息。其中，DataMsg类型的数据消息被转发到state模块的gossipChan通道，交由state模块的queueNewMessage()方法继续处理（6.3.4节）。

最后，HandleMessage()方法调用gc.blocksPuller.Add()方法，将DataMsg消息添加到blocksPuller模块中，调用IdExtractor()→seqNumFromMsg()方法以提取区块号作为摘要信息，并添加到itemID2Msg摘要消息列表与engine.state摘要对象集合中。

3.Peer节点处理数据消息并提交账本

state模块的queueNewMessage()方法负责添加DataMsg消息的消息负载到payloads的消息负载缓冲区中，等待处理并提交到账本。

其中，queueNewMessage()方法首先检查是否正在处理指定通道上的合法消息，即比较消息包含的通道ID与当前通道ID。如果两者相同，则调用state模块的s.addPayload()方法，以非阻塞方式（nonBlocking）将消息负载压入payloads模块的消息负载缓冲区buf中，检查DataMsg消息的区块号与当前账本高度的差值必须小于最大区块距离defMaxBlock-Distance（默认为100）。如果DataMsg消息的区块号刚好等于next（期望提交账本的下一个区块号），则将空结构struct{}{}作为信号消息，发送到payloads模块的readyChan通道，通知state模块初始化时启动的deliverPayloads()方法处理新数据。

deliverPayloads()方法调用payloads.Pop()方法，从消息缓冲区中取出消息负载（区块号为next），解析获取区块与隐私数据，目前只包括从Orderer节点请求获取的区块数据。接着，调用commitBlock()方法将该消息负载提交到账本中（5.2节），并基于节点元数据（含区块号）构造通道的StateInfo类型状态信息消息stateInfMsg，封装了节点元数据、账本高度等信息。然后，调用gc.UpdateStateInfo(stateInfMsg)方法，将stateInfMsg消息添加到GossipChannel通道上的stateInfoMsgStore消息存储对象中，以更新通道上的通道状态信息stateInfMsg等。同时，设置shouldGossipStateInfo标志位为1，以触发gc.publishStateInfo()方法周期性地检查shouldGossipStateInfo标志位，当该标志位为1时，自动向其他节点发送当前最新的通道状态信息。

至此，Gossip消息模块分发区块数据的流程结束。
6.5.2　分发隐私数据流程

1.Endorser背书节点分发隐私数据

Endorser背书节点模拟执行提案后，检查模拟执行结果。如果存在合法的隐私数据读写集（不为nil），则调用Gossip消息模块的distributePrivateData()方法，将隐私数据分发到通道内授权的其他Peer节点上，同时，通过transient对象将其保存到本地缓存隐私数据的transient隐私数据库（LevelDB）中。

其中，distributePrivateData()方法实际上就是Peer节点启动时定义的privDataDist()方法（peer/node/start.go），并最终调用Gossip服务实例的gossipServiceImpl.DistributePrivateData()方法，如代码清单6-73所示。该方法先从Gossip服务实例的g.privateHandlers[chainID]中获取关联通道上的隐私数据处理句柄handler，再调用handler.distributor.Distribute()方法，将模拟结果中的隐私数据构造成PrivateData类型隐私数据消息，然后通过Gossip消息协议，分发到通道内满足隐私数据集合访问权限策略的其他Peer节点上。

代码清单6-73　DistributePrivateData()方法的源码示例

gossip/service/gossip_service.go文件

func (g *gossipServiceImpl) DistributePrivateData(chainID string, txID string, privData *rwset.TxPvtReadWriteSet) error {

 g.lock.RLock()

 handler, exists := g.privateHandlers[chainID] // 获取指定通道上的隐私数据处理句柄

 g.lock.RUnlock()

 if !exists {

 return errors.Errorf("No private data handler for %s", chainID)

 }

 // 分发隐私数据

 if err := handler.distributor.Distribute(txID, privData, handler.support.Cs); err != nil {

 logger.Error("Failed to distributed private collection, txID", txID, "channel", chainID, "due to", err)

 return err

 }

 // 保存隐私数据到transient隐私数据存储对象中

 if err := handler.coordinator.StorePvtData(txID, privData); err != nil {

 logger.Error("Failed to store private data into transient store, txID",

 txID, "channel", chainID, "due to", err)

 return err

 }

 return nil

}

如代码清单6-74所示，Distribute()方法首先通过消息分发对象（distributorImpl类型）调用d.computeDisseminationPlan()方法，计算并获取消息分发计划列表（[]*dissemination类型），如代码清单6-75所示。该列表中的每个消息分发计划对象（dissemination类型，其示意图如图6-15所示）都封装了隐私数据消息及其发送标准对象（SendCriteria类型，包含发送超时时间、最小应答消息数量、发送节点条件过滤器等），并确保隐私数据的请求节点必须满足其指定的访问权限策略。然后，调用消息分发对象的d.disseminate()方法，遍历所有的消息分发计划对象，并调用d.SendByCriteria()方法，通过comm通信模块将封装的PrivateData类型隐私数据消息发送到符合要求的节点上。

代码清单6-74　Distribute()方法的源码示例

gossip/privdata/distributor.go文件

func (d *distributorImpl) Distribute(txID string, privData *rwset.TxPvtReadWriteSet, cs privdata.CollectionStore) error {

 disseminationPlan, err := d.computeDisseminationPlan(txID, privData, cs)

 if err != nil {

 return errors.WithStack(err)

 }

 return d.disseminate(disseminationPlan)

}

 [image:]

图6-15　dissemination类型示意图

代码清单6-75　computeDisseminationPlan()方法的源码示例

gossip/privdata/distributor.go文件

func (d *distributorImpl) computeDisseminationPlan(txID string, privData *rwset.TxPvtReadWriteSet, cs privdata.CollectionStore) ([]*dissemination, error) {

 var disseminationPlan []*dissemination

 for _, pvtRwset := range privData.NsPvtRwset {

 namespace := pvtRwset.Namespace

 for _, collection := range pvtRwset.CollectionPvtRwset {

 collectionName := collection.CollectionName

 cc := common.CollectionCriteria{

 Namespace: namespace,

 Collection: collectionName,

 TxId: txID,

 Channel: d.chainID,

 }

 colAP, err := cs.RetrieveCollectionAccessPolicy(cc)

 if err != nil {

 logger.Error("Could not find collection access policy for", cc, "error", err)

 return nil, errors.WithMessage(err, fmt.Sprintf("collection access policy for %v not found", cc))

 }

 colFilter := colAP.AccessFilter()

 if colFilter == nil {

 logger.Error("Collection access policy for", cc, "has no filter")

 return nil, errors.Errorf("No collection access policy filter computed for %v", cc)

 }

 pvtDataMsg, err := d.createPrivateDataMessage(txID, namespace, collection.CollectionName, collection.Rwset)

 if err != nil {

 return nil, errors.WithStack(err)

 }

 dPlan, err := d.disseminationPlanForMsg(colAP, colFilter, pvtDataMsg)

 if err != nil {

 return nil, errors.WithStack(err)

 }

 disseminationPlan = append(disseminationPlan, dPlan...)

 }

 }

 return disseminationPlan, nil

}

其中，computeDisseminationPlan()方法首先遍历隐私数据读写集privData中所有的名字空间与集合名称下的所有元素，对于每个隐私数据读写集，基于名字空间、集合名称、交易ID以及链ID构造对应的隐私数据集合标准对象cc（CollectionCriteria类型），并通过隐私数据集合存储对象调用cs.RetrieveCollectionAccessPolicy(cc)方法，利用LSCC系统链码获取账本数据库中的链码隐私数据配置信息collections（CollectionConfigPackage类型）。接着，遍历其包含的配置列表collections.Config（[]*CollectionConfig），对于其中的common.CollectionConfig_StaticCollectionConfig类型，利用cc.Collection过滤出指定集合名称的链码隐私数据配置信息cconf.StaticCollectionConfig，基于该对象调用sc.Setup()方法设置隐私数据集合对象（SimpleCollection类型），包括隐私数据集合名称name、隐私数据配置信息conf、隐私数据集合对象的访问权限策略accessPolicy（目前支持签名策略）、成员组织列表memberOrgs等。最后，将隐私数据集合对象返回到computeDisseminationPlan()方法中的colAP变量。

接着，调用colAP.AccessFilter()方法，构造隐私数据集合访问策略验证方法colFilter，用于过滤符合条件的节点。同时，调用d.createPrivateDataMessag()方法，基于当前的隐私数据读写集构造对应的PrivateData类型隐私数据消息。

然后，调用d.disseminationPlanForMsg()方法，基于colFilter构造GossipChannel通道对象上的节点过滤器routingFilter，用于验证通道内指定节点的签名数据是否满足指定隐私数据集合的访问权限策略，从而过滤筛选出符合发送隐私数据标准的节点，并构造相应的消息分发计划，如代码清单6-76所示。接着，创建隐私数据发送标准对象sc（SendCriteria类型），封装了分发消息的超时时间（peer.gossip.pvtData.pushAckTimeout配置项）、通道ID（chainID）、发送的最大节点数量、成功应答响应的最小节点数量、IsEligible节点过滤器（即上面构造的routingFilter过滤器）。这样，d.disseminationPlanForMsg()方法就能为当前消息构造对应的消息分发计划dissemination，并封装隐私数据的发送标准对象sc及当前对应的PrivateData类型隐私数据消息，再将dissemination添加到disseminationPlan列表（[]*dissemination）中。

其中，routingFilter过滤器方法（filter.RoutingFilter类型）的原型是func(discovery.NetworkMember)bool。对于指定节点member，该过滤器先根据member.PKIid获取节点的身份证书信息peerIdentity与GossipChannel对象缓存的关联StateInfo消息msg（包含消息负载及其签名）。如果不存在合法的peerIdentity或msg，则直接返回false。接着，根据上述参数构造该节点的签名信息对象（PeerSignature类型），并创建签名数据对象（SignedData类型）执行colFilter()→sc.accessPolicy.Evaluate()→policy.evaluator()→compile()方法（5.3.2节），以验证给定的节点签名数据对象是否满足指定隐私数据集合配置的签名策略。

如此循环处理直至遍历处理完所有的隐私数据消息，再返回隐私数据的消息分发计划列表disseminationPlan。

代码清单6-76　disseminationPlanForMsg()方法的源码示例

gossip/privdata/distributor.go文件

func (d *distributorImpl) disseminationPlanForMsg(colAP privdata.CollectionAccessPolicy, colFilter privdata.Filter, pvtDataMsg *proto.SignedGossipMessage) ([]*dissemination, error) {

 var disseminationPlan []*dissemination

 routingFilter, err := d.gossipAdapter.PeerFilter(gossipCommon.ChainID(d.chainID), func(signature api.PeerSignature) bool {

 return colFilter(common.SignedData{

 Data: signature.Message,

 Signature: signature.Signature,

 Identity: []byte(signature.PeerIdentity),

 })

 })

 ……

 sc := gossip2.SendCriteria{

 Timeout: viper.GetDuration("peer.gossip.pvtData.pushAckTimeout"),

 Channel: gossipCommon.ChainID(d.chainID),

 MaxPeers: colAP.MaximumPeerCount(),

 MinAck: colAP.RequiredPeerCount(),

 IsEligible: func(member discovery.NetworkMember) bool {

 return routingFilter(member)

 },

 }

 disseminationPlan = append(disseminationPlan, &dissemination{

 criteria: sc,

 msg: pvtDataMsg,

 })

 return disseminationPlan, nil

}

disseminate()方法循环遍历隐私数据的消息分发计划列表（[]*dissemination类型），启动goroutine，并通过消息分发对象（distributorImpl类型）调用d.SendByCriteria(dis.msg，dis.criteria)方法，将PrivateData类型隐私数据消息dis.msg发送到符合发送标准dis.criteria的节点上，如代码清单6-77所示。

代码清单6-77　disseminate()方法的源码示例

gossip/privdata/distributor.go文件

func (d *distributorImpl) disseminate(disseminationPlan []*dissemination) error {

 var failures uint32

 var wg sync.WaitGroup

 wg.Add(len(disseminationPlan))

 for _, dis := range disseminationPlan {

 go func(dis *dissemination) {

 defer wg.Done()

 err := d.SendByCriteria(dis.msg, dis.criteria)

 if err != nil {

 atomic.AddUint32(&failures, 1)

 m := dis.msg.GetPrivateData().Payload

 logger.Error("Failed disseminating private RWSet for TxID", m.TxId, ", namespace", m.Namespace, "collection", m.CollectionName, ":", err)

 }

 }(dis)

 }

 wg.Wait()

 failureCount := atomic.LoadUint32(&failures)

 if failureCount != 0 {

 return errors.Errorf("Failed disseminating %d out of %d private RWSets", failureCount, len(disseminationPlan))

 }

 return nil

}

d.SendByCriteria()方法首先调用g.disc.GetMembership()方法，获取discovery模块上aliveMembership对象中关联的存活节点集合membership（[]NetworkMember），同时，设置发送的最大节点数量criteria.MaxPeers为len(membership)。如果len(criteria.Channel)不为0即指定了相应的通道，则调用getGossipChannelByChainID(criteria.Channel)方法，从chanState模块的通道列表中获取指定通道（criteria.Channel）上的GossipChannel通道对象gc，并调用gc.GetPeers()方法获取该通道上符合条件的节点集合membership，实际上是重新设置了该变量。然后，调用filter.SelectPeers()方法，利用IsEligible节点过滤器（即上面构造的routingFilter过滤器）过滤筛选出指定数量（criteria.MaxPeers）的节点（若不足则选择全部过滤节点），并添加到待发送节点集合peers2send。同时，调用g.comm.Send-With-Ack()方法发送隐私数据消息，并指定消息发送的超时时间（criteria.Timeout）、应答消息的最小数量（criteria.MinAck）等参数。最后，检查应答消息的数量是否达到发送标准的最小数量要求（criteria.MinAck），并返回disseminate()方法。

2.Peer节点处理隐私数据消息并提交到账本

Peer节点收到PrivateData类型隐私数据消息，将其过滤处理后交由state模块的private-DataMessage()方法处理（6.3.5节）。

privateDataMessage()方法首先检查PrivateData消息的合法性，且是当前state模块关联通道上的消息。接着，构造对应的隐私数据读写集txPvtRwSet（TxPvtReadWriteSet类型），通过transient对象调用s.ledger.StorePvtData(txID，txPvtRwSet)方法，将指定交易（txID）的隐私数据读写集txPvtRwSet保存到本地的transient隐私数据库中（7.1.7节）。最后，调用msg.Ack(nil)方法以构造Ack类型的应答消息，并回复给隐私数据发送节点上的SendWithAck()方法，通知发送的隐私数据消息已经处理完毕并解除阻塞。

至此，Gossip消息模块分发隐私数据的流程结束。
6.5.3　更新通道状态信息

Gossip服务实例的chanState模块在创建新的GossipChannel通道时会执行2个go gc.periodicalInvocation()，分别周期性地执行gc.publishStateInfo()方法发送通道的StateInfo类型状态信息消息到其他节点，以及执行gc.requestStateInfo()方法请求获取其他节点上的通道StateInfo消息。

StateInfo消息包含了节点账本的区块链信息（包括最新的账本高度等），其他节点的StateInfo消息都被缓存到本地节点上指定通道的GossipChannel通道对象中，并保存在stateInfoMsgStore消息存储对象中，提供给本地节点用于获取通道上其他节点的最新账本高度，计算账本区块链的高度差以判断其与其他节点的账本数据差异，从而标识出本地账本的缺失数据（包括区块数据与隐私数据）范围，接着通过反熵算法的数据同步机制从其他节点拉取数据，并更新到本地账本。

1.发布通道状态信息

如代码清单6-78所示，gc.publishStateInfo()方法周期性地检查shouldGossipStateInfo标志位。如果shouldGossipStateInfo标志位是1，则调用gc.Gossip()方法，获取本地Gossip-Channel通道对象上的gc.stateInfoMsg消息（即通道的StateInfo类型状态信息消息），并通过emitter模块发送给其他节点。否则，不执行任何操作。如果GossipChannel通道对象上还存在组织内的其他合法节点，则重新设置shouldGossipStateInfo标志位为0。其他节点接收到StateInfo消息后，交由Gossip服务实例的handleMessage()方法处理，检查通过后保存到本地GossipChannel通道的stateInfoMsgStore消息存储对象中。

代码清单6-78　publishStateInfo()方法的源码示例

gossip/gossip/channel/channel.go文件

// 发布通道状态信息消息

func (gc *gossipChannel) publishStateInfo() {

 // 检查Gossip状态信息消息更新标志位

 if atomic.LoadInt32(&gc.shouldGossipStateInfo) == int32(0) {

 return

 }

 gc.RLock()

 stateInfoMsg := gc.stateInfoMsg // 获取通道状态信息消息

 gc.RUnlock()

 gc.Gossip(stateInfoMsg) // 发送状态信息消息

 if len(gc.GetMembership()) > 0 { // 检查是否存在组织内的存活成员节点

 atomic.StoreInt32(&gc.shouldGossipStateInfo, int32(0))

 }

}

2.请求通道状态信息

gc.requestStateInfo()方法调用gc.createStateInfoRequest()方法，创建StateInfoPullReq类型的状态信息请求消息，再调用filter.SelectPeers()方法，从组织内的合法节点中选择3个节点（若不足3个则选择全部）发送请求消息，如代码清单6-79所示。

代码清单6-79　requestStateInfo()方法的源码示例

gossip/gossip/channel/channel.go文件

// 请求获取状态信息

func (gc *gossipChannel) requestStateInfo() {

 req, err := gc.createStateInfoRequest() // 创建状态信息请求消息

 if err != nil {

 gc.logger.Warningf("Failed creating SignedGossipMessage: %+v", errors.WithStack(err))

 return

 }

 // 获取发送节点列表

 endpoints := filter.SelectPeers(gc.GetConf().PullPeerNum, gc.GetMembership(), gc.IsMemberInChan)

 gc.Send(req, endpoints...) // 发送状态信息请求消息

}

远程节点接收消息后过滤转发给GossipChannel通道对象的HandleMessage()方法进行处理（6.3.3节），验证消息的合法性后调用gc.createStateInfoSnapshot(orgID)方法，创建StateInfoSnapshot类型的状态信息快照消息，并回复给请求节点。其中，该方法调用gc.stateInfoMsgStore.Get()方法，获取GossipChannel通道对象上stateInfoMsgStore对象所保存的StateInfo消息列表。接着，遍历该列表中的每个消息，筛选出符合要求的StateInfo消息，将其Envelope字段对象添加到elements消息列表（[]*proto.Envelope），并封装为StateInfoSnapshot消息。最后，调用msg.Respond()方法对消息签名并回复给请求节点。

本地节点收到StateInfoSnapshot消息之后，遍历并验证该消息包含的StateInfo消息。如果通过了验证，则添加到本地GossipChannel通道对象上的消息存储对象stateInfoMsg-Store中。
6.5.4　更新数据消息

chanState模块的GossipChannel通道对象可利用blocksPuller模块周期性地发送Pull类数据消息（PullMsgType_BLOCK_MSG消息内容）到其他节点，请求拉取缺失的DataMsg类型数据消息，并更新到本地账本。

blocksPuller模块利用goroutine创建消息处理循环，每隔4秒（peer.gossip.pullInterval配置项）就调用一次engine.initiatePull()方法，循环启动Pull类消息的交互进程，选择特定节点发送Hello消息以请求获取DataMsg消息。

同时，其他节点将收到的Pull类数据消息过滤处理后交由GossipChannel通道的HandleMessage()方法处理（6.3.3节），检查消息的合法性后调用blocksPuller模块的Handle-Message()方法，处理Hello消息并继续交互，以确认本地节点所缺失的数据信息并打包到DataUpdate摘要更新消息，再回复给本地节点。

接着，本地节点在blocksPuller模块的HandleMessage()方法中调用p.MsgCons()方法（6.3.2节），以处理摘要更新消息。实际上是调用gc.DeMultiplex(msg)方法，将其转发给Gossip服务实例的ChannelDeMultiplexer模块进行处理，过滤筛选出DataMsg类型的数据消息，并发送到gossipChan通道，交由state模块的GossipStateProviderImpl.queueNew-Message()方法处理（6.3.4节），将其添加到本地的消息负载缓冲区，等待处理并提交到账本。注意，DataMsg消息包含区块数据与隐私数据，因此，会同时更新本地账本中的区块数据文件与隐私数据库。最后，将DataMsg消息及其摘要信息（区块号）更新到blocksPuller模块中，包括itemID2Msg摘要消息列表与engine.state摘要存储对象。
6.6　Gossip反熵算法

熵（entropy）在物理学中用于表征体系的混乱程度。Gossip消息模块引入了反熵算法，用于解决网络延迟等原因造成节点间账本状态（账本高度）的差异问题，以降低整个通道内所有节点间账本状态的不一致程度，即“反熵”。

目前，Leader主节点从Orderer服务节点同步的数据信息不包含隐私数据，只包含公开的区块数据。反熵算法antiEntropy()从其他节点同步本地账本的缺失数据，包括区块数据与隐私数据，并通过区块号范围来标识缺失的数据集合。
6.6.1　获取当前最大的账本高度

Gossip服务实例的state模块在NewGossipStateProvider()方法中创建完毕后，执行go s.antiEntropy()方法启动反熵算法。

如代码清单6-80所示，antiEntropy()方法首先建立消息处理循环，阻塞等待通道消息，默认每隔10秒就调用一次s.ledger.LedgerHeight()→LedgerCommitter.LedgerHeight()方法，通过Peer节点账本的kvLedger对象获取本地节点指定通道上的账本高度current，检查通过后调用state模块的s.maxAvailableLedgerHeight()方法，以获取当前GossipChannel通道上其他节点中最大的账本高度max，从而准确计算岀本地节点缺失数据的区块号范围。

代码清单6-80　state模块的antiEntropy()方法源码示例

gossip/state/state.go文件

func (s *GossipStateProviderImpl) antiEntropy() {

 defer s.done.Done()

 defer logger.Debug("State Provider stopped, stopping anti entropy procedure.")

 for {

 select {

 case <-s.stopCh:

 s.stopCh <- struct{}{}

 return

 case <-time.After(defAntiEntropyInterval): // 定时器消息

 current, err := s.ledger.LedgerHeight() // 获取账本高度

 if err != nil {

 logger.Errorf("Cannot obtain ledger height, due to %+v", errors.WithStack(err))

 continue

 }

 if current == 0 {

 logger.Error("Ledger reported block height of 0 but this should be impossible")

 continue

 }

 // 获取最大账本高度

 max := s.maxAvailableLedgerHeight()

 if current-1 >= max {

 continue

 }

 // 请求指定范围内的数据集合

 s.requestBlocksInRange(uint64(current), uint64(max))

 }

 }

}

其中，maxAvailableLedgerHeight()方法先通过state模块调用s.mediator.PeersOf-Channel()方法，获取通道中符合条件的节点列表。该方法通过chanState模块调用g.chan-State.getGossipChannelByChainID()方法获取与指定通道（channel）对应的GossipChannel通道对象gc，再调用gc.GetPeers()方法获取通道上符合条件的成员节点列表。

gc.GetPeers()方法调用gc.GetMembership()→membershipFilter.GetMembership()方法，遍历当前节点discovery模块中aliveMembership对象的存活节点消息列表，并构造对应的消息发送节点列表（[]NetworkMember类型），使用如下组合节点过滤器过滤出符合要求的节点member，具体说明如下。

·gc.EligibleForChannel：idMapper模块的pkiID2Cert字典和stateInfoMsgStore消息存储对象中都应该保存指定节点的身份证书信息和StateInfo消息，检查是否存在；

·sameOrg：给定节点与本地节点应该属于同一个组织，即MSP名称相同，检查是否相同。

gc.GetPeers()方法接着从stateInfoMsgStore对象中获取与指定节点（member.PKIid）对应的StateInfo消息，检查合法后将该消息的Metadata字段、Properties字段（封装了账本高度）等更新到member中，再将检查更新过的member添加到节点列表members中。

接着，maxAvailableLedgerHeight()方法遍历过滤后的members节点列表，从节点的Properties字段或者Metadata字段中解析出账本高度peerHeight。如果当前记录的最大账本高度max比peerHeight小，则将max更新为最新的账本高度peerHeight。如此处理并遍历所有的节点，并返回这些节点中当前的最大账本高度max。

antiEntropy()方法检查本地的账本高度current是否小于最大账本高度max，即当前账本是否缺少了其他节点的账本数据。如果不缺少任何账本数据，则直接跳过本地检查并继续等待。否则，执行state模块的s.requestBlocksInRange(uint64(current)，uint64(max))方法，向其他节点请求指定范围内缺失的数据集合（起始区块号为current，结束区块号为max）。
6.6.2　分批发送远程状态请求消息

requestBlocksInRange()方法首先建立消息处理循环，采用分批请求数据的方式（一次最多10个数据消息），将StateRequest类型的远程状态请求消息发送到其他符合条件的节点上，获取指定范围内的数据集合。注意，这里的状态泛指数据，包括区块数据与隐私数据，如代码清单6-81所示。

代码清单6-81　state模块的requestBlocksInRange()方法源码示例

gossip/state/state.go文件

// 获取指定范围内的数据集合

func (s *GossipStateProviderImpl) requestBlocksInRange(start uint64, end uint64) {

 atomic.StoreInt32(&s.stateTransferActive, 1)

 defer atomic.StoreInt32(&s.stateTransferActive, 0)

 for prev := start; prev <= end; {

 next := min(end, prev+defAntiEntropyBatchSize) // 获取下一个区块号

 // 创建StateRequest远程状态请求消息

 gossipMsg := s.stateRequestMessage(prev, next)

 responseReceived := false

 tryCounts := 0

 for !responseReceived { // 没有接收到响应消息

 if tryCounts > defAntiEntropyMaxRetries { // 检查是否超过最大重试次数

 logger.Warningf("Wasn't able to get blocks in range [%d...%d], after %d retries",

 prev, next, tryCounts)

 return

 }

 // 选择Peer节点请求数据

 peer, err := s.selectPeerToRequestFrom(next)

 ……

 s.mediator.Send(gossipMsg, peer) // 发送数据请求消息

 tryCounts++ // 重试次数增1

 select { // 等待直到超时或有响应消息到达

 case msg := <-s.stateResponseCh: // 接收到状态响应消息通道的消息

 // 检查Nonce随机数是否一致，以判断该响应消息是否有效

 if msg.GetGossipMessage().Nonce != gossipMsg.Nonce {

 continue

 }

 index, err := s.handleStateResponse(msg) // 处理状态响应消息

 ……

 prev = index + 1 // 更新prev对象

 responseReceived = true // 收到回复消息

 case <-time.After(defAntiEntropyStateResponseTimeout): // 超时

 case <-s.stopCh: // 接收到停止消息

 s.stopCh <- struct{}{}

 return

 }

 }

 }

}

requestBlocksInRange()方法首先设置stateTransferActive标志位为1，表示state模块正在请求从远程节点获取本地的缺失数据，并在退出时重置该标志位为0。

接着，requestBlocksInRange()方法建立消息处理循环，采用分批发送数据请求消息的方式，设置本次循环的数据请求范围是{prev，end}。其中，prev设置为当前本地的账本高度current，end设置为当前的最大账本高度max。同时，调用state模块的s.stateRequest-Message(prev，next)方法，创建对应的StateRequest类型远程状态请求消息，设置本次的数据请求范围是{prev，next}。其中，next是调用min(end，prev+defAntiEntropyBatchSize)函数返回的结果，即获取end与prev+defAntiEntropyBatchSize（默认为10个数据）中的最小数值。另外，在每次成功获取数据之后，应更新本次循环的数据请求范围{prev，next}。

然后，requestBlocksInRange()方法建立内层的消息处理循环，等待接收消息并进行处理，同时，将responseReceived标志位作为内层循环的判断条件，如果成功接收到每次指定范围内的数据集合，则结束内层消息处理循环，并跳出到外层的消息处理循环中继续发送请求消息。实际上，在内层的消息处理循环中，requestBlocksInRange()方法最多重试3次发送同一个StateRequest消息。内层的消息处理循环首先调用s.selectPeerTo-RequestFrom(next)方法，选择准备发送消息的节点。类似于maxAvailableLedgerHeight()方法，该方法调用filterPeers()→s.mediator.PeersOfChannel()方法以过滤出符合条件的节点列表，如代码清单6-82所示，遍历每个节点member并调用predicate()方法，即s.hasRequiredHeight(height)方法进行过滤，以筛选出节点的账本高度大于或等于next（即拥有请求范围内的数据）的节点，再添加到Peer节点集合peers，如代码清单6-83所示。最后，获取peers[util.RandomInt(n)]，即从peers集合中随机选择1个Peer节点，作为请求节点返回到requestBlocksInRange()方法中的peer变量。

代码清单6-82　state模块的filterPeers()方法源码示例

gossip/state/state.go文件

// 过滤出符合条件的Peer节点列表

func (s *GossipStateProviderImpl) filterPeers(predicate func(peer discovery.Network-Member) bool) []*comm.RemotePeer {

 var peers []*comm.RemotePeer

 // 遍历通道中的Peer节点列表

 for _, member := range s.mediator.PeersOfChannel(common2.ChainID(s.chainID)) {

 if predicate(member) { // 判断该节点成员是否符合条件，若符合则添加到Peer节点列表中

 peers = append(peers, &comm.RemotePeer{Endpoint: member.Preferred-Endpoint(), PKIID: member.PKIid})

 }

 }

 return peers

}

代码清单6-83　state模块的hasRequiredHeight()方法源码示例

gossip/state/state.go文件

// 测试该Peer节点账本是否拥有指定请求的区块高度，即是否包含请求的区块

func (s *GossipStateProviderImpl) hasRequiredHeight(height uint64) func(peer discovery.NetworkMember) bool {

 return func(peer discovery.NetworkMember) bool {

 if peer.Properties != nil {

 // 判断账本高度是否达到请求的区块高度

 return peer.Properties.LedgerHeight >= height

 }

 // 解析元数据状态

 if nodeMetadata, err := common2.FromBytes(peer.Metadata); err != nil {

 logger.Errorf("Unable to de-serialize node meta state, error = %+v", errors.WithStack(err))

 } else if nodeMetadata.LedgerHeight >= height { // 判断账本高度是否达到请求的

 区块高度

 return true

 }

 return false

 }

}

最后，requestBlocksInRange()方法调用state模块的s.mediator.Send(gossipMsg，peer)→g.comm.Send()方法，即通过comm模块将StateRequest消息发送给指定节点peer，并阻塞等待通道消息，具体说明如下。

·s.stateResponseCh：接收正常的StateRequest类型远程状态响应消息（6.6.3节）；

·time.After(defAntiEntropyStateResponseTimeout)：超过3秒就触发定时器消息，若认为没有接收到响应消息，则跳转到内层的消息处理循环起始处重试；

·s.stopCh：接收停止消息。将空结构发送到stopCh通道中以结束state模块，并退出当前requestBlocksInRange()方法。
6.6.3　处理远程状态请求消息

1.远程节点回复远程状态响应消息

远程节点接收到StateRequest类型的远程状态请求消息之后，经过消息过滤器处理后交由state模块的directMessage()方法处理，并检查stateRequestCh通道当前缓存的消息数量。如果没有达到预设容量defChannelBufferSize（默认为100），则将该消息交由state模块的handleStateRequest()方法继续处理（6.3.5节）。

handleStateRequest()方法先从接收消息中解析出StateRequest消息request，检查该消息的合法性，保证一次请求最多不能超过10个数据，并获取本地的账本高度current-Height，设置请求的数据范围上限（endSeqNum）为min(currentHeight，request.EndSeqNum)，即两者中的最小数值，以确定本地账本可以提供的数据范围。

接着，handleStateRequest()方法遍历请求的数据范围{request.StartSeqNum，endSeq-Num}中的区块号seqNum。该方法首先调用msg.GetConnectionInfo()方法，获取数据请求节点的节点连接信息对象，基于该对象的认证信息与身份信息构造节点的签名数据对象peerAuthInfo（SignedData类型）。同时，通过state模块调用s.ledger.GetPvtDataAndBlock-ByNum(seqNum，peerAuthInfo)方法（7.1.3节），利用coordinator模块从本地账本的区块文件中获取指定区块号seqNum的区块block，从隐私数据库中获取关联的隐私数据读写集（7.1.3节），并遍历隐私数据集合，验证peerAuthInfo是否满足账本中保存的隐私数据集合访问权限策略的要求，将通过验证的隐私数据集合转换成隐私数据列表pvtData（[]*ledger.TxPvtData）。然后，检查区块block与隐私数据pvtData的合法性（不为nil），并分别被序列化封装为字节数组blockBytes与pvtBytes。

然后，handleStateRequest()方法基于区块号seqNum、blockBytes与pvtBytes构造消息负载（Payload类型），并添加到响应消息的消息负载列表response.Payloads中。

最后，当处理完毕请求数据范围内的所有数据时，handleStateRequest()方法基于状态响应消息response构造StateResponse类型的远程状态响应消息，并添加消息随机数Nonce、消息标签GossipMessage_CHAN_OR_ORG、通道ID等信息封装为GossipMessage类型消息，再调用msg.Respond()方法对消息进行签名并回复给请求节点。

2.本地节点处理远程状态响应消息

本地节点接收到StateResponse消息，将其过滤处理后交由state模块的directMessage()方法进行处理。如果state模块的stateTransferActive标志位是1（实际上是requestBlocksIn-Range()方法将其设置为1），则将StateResponse消息放入state模块的stateResponseCh通道中。

state模块中反熵算法的requestBlocksInRange()方法会捕获到该StateResponse消息。该方法首先会检查消息的合法性，即该消息与StateRequest消息中的Nonce随机数必须匹配。接着，调用state模块的s.handleStateResponse()方法，开始处理StateResponse消息，如代码清单6-84所示。

代码清单6-84　state模块的handleStateResponse()方法源码示例

gossip/state/state.go文件

func (s *GossipStateProviderImpl) handleStateResponse(msg proto.ReceivedMessage) (uint64, error) {

 max := uint64(0)

 response := msg.GetGossipMessage().GetStateResponse() // 获取状态响应消息

 // 提取消息负载，验证和添加到本地消息负载缓冲区

 if len(response.GetPayloads()) == 0 {

 return uint64(0), errors.New("Received state transfer response without payload")

 }

 for _, payload := range response.GetPayloads() { // 获取并遍历消息负载列表

 logger.Debugf("Received payload with sequence number %d.", payload.SeqNum)

 // 验证区块合法性

 if err := s.mediator.VerifyBlock(common2.ChainID(s.chainID), payload.SeqNum, payload.Data); err != nil {

 err = errors.WithStack(err)

 logger.Warningf("Error verifying block with sequence number %d, due to %+v", payload.SeqNum, err)

 return uint64(0), err

 }

 if max < payload.SeqNum {

 max = payload.SeqNum

 }

 err := s.addPayload(payload, blocking) // 添加到消息负载缓冲区

 if err != nil {

 logger.Warningf("Payload with sequence number %d wasn't added to payload buffer: %v", payload.SeqNum, err)

 }

 }

 return max, nil

}

其中，handleStateResponse()方法首先遍历StateResponse消息中包含的消息负载列表（[]*Payload类型），调用state模块的s.mediator.VerifyBlock()方法，检查每个消息负载payload的合法性，包括区块的合法性、区块元数据的签名集合是否满足区块验证策略等。接着，将当前消息负载包含的区块号payload.SeqNum与当前最大的区块号max进行比较。如果payload.SeqNum大于max，则将max更新为payload.SeqNum。然后，调用state模块的addPayload(payload，blocking)方法，以阻塞方式将当前消息负载payload添加到本地的消息负载缓冲区中，等待处理并提交到账本。注意，不同于Leader主节点从Orderer服务节点获取的区块数据，该消息负载包含了区块数据与隐私数据，会分别提交到账本的区块数据文件与隐私数据库中。最后，返回最大的区块号max到requestBlocksInRange()方法中的index变量。

最后，requestBlocksInRange()方法将数据请求范围的起始区块号prev更新为index+1，设置responseReceived标志位为true，并跳出内层的消息处理循环，继续请求下一个批次的数据{prev，next}，直到指定请求范围内的所有数据都处理完毕。

至此，反熵算法的antiEntropy()方法已将本地节点的账本高度更新到当前Gossip-Channel通道内其他节点上的最大账本高度。

Fabric 1.2与1.3保留了Gossip消息模块的核心代码与消息处理流程，只重构了少数方法与变量，典型情况包括：

·在通道账本状态信息StateInfo类型的Properties属性中新增了Chaincodes字段，用于保存当前通道中已经实例化的链码信息集合（含有链码名称、版本等）。当在本地安装已成功部署的链码或Committer将部署链码交易的状态数据成功提交账本后，执行HandleMetadataUpdate()→service.GetGossipService().UpdateChaincodes()方法，更新链码信息到当前通道状态信息中；

·在隐私数据消息的PrivateData类型中新增了PrivateSimHeight字段（背书时的账本高度）与CollectionConfigs字段（隐私数据集合配置信息对象，含有集合名称、签名策略、BlockToLive等）。这样，其他Peer能直接获取其配置信息，而无需通过LSCC从状态数据库中读取（6.5.2节）。
6.7　小结

本章介绍了Gossip消息模块的设计与实现机制，包括Gossip消息模块的启动流程、消息通信与处理机制、节点管理机制、数据分发与状态同步机制、反熵算法等。

Gossip消息模块比较复杂，涉及众多子模块的相互协调，能支持节点的动态加入与退出，提供高效的数据分发与状态同步机制。Gossip消息的通信与处理机制是Gossip消息模块运行时架构的基础，有助于理解Gossip消息过滤、转发与处理流程以及其他机制，有兴趣的读者可以深入研究。
第7章　公共功能模块

区块链技术在未来会非常重要。我不认为它会像人们预期的那样颠覆世界，但一定会影响并改变人们的生活方式。不过，在我看来，它非常重要，却略显无聊。

——《失控》作者，凯文·凯利（KK）

本章主要介绍Hyperledger Fabric中公共功能模块的设计与实现。读者可以在本章了解到账本数据存储模块、安全服务模块、Events事件模块等。
7.1　账本数据存储模块

Hyperledger Fabric账本数据存储模块提供了文件系统与键值型数据库用于存储账本数据，并被统一封装为Peer节点的账本对象（kvLedger类型）进行管理，包括账本数据存储对象（管理区块数据文件、隐私数据库与区块索引数据库）、状态数据库、历史数据库、transient隐私数据库等，如代码清单7-1所示。Fabric中经常采用提供者模式（Provider Pattern）来分离接口的定义与具体实现，Peer节点的账本提供者（kvledger.Provider类型）包含的多种数据库提供者负责创建上述数据库，采用LevelDB类型或CouchDB类型数据库作为底层的键值型数据库，同时采用文件系统保存区块数据。其中，idStore账本数据库由Peer节点的账本提供者负责管理。对于账本区块文件上的区块数据，Fabric只支持查询与添加记录，不支持删除与修改已有记录。

代码清单7-1　Provider类型与kvLedger类型的源码示例

core/ledger/kvledger/kv_ledger_provider.go文件

// Peer节点账本提供者

type Provider struct {

 idStore *idStore // idStore数据库

 ledgerStoreProvider *ledgerstorage.Provider // 账本对象提供者（区块存储对

 象与隐私数据存储对象）

 vdbProvider privacyenabledstate.DBProvider // 状态数据库提供者

 historydbProvider historydb.HistoryDBProvider // 历史数据库提供者

 stateListeners ledger.StateListeners // 状态监听器

}

core/ledger/kvledger/kv_ledger.go文件

type kvLedger struct {

 ledgerID string // 账本ID

 blockStore *ledgerstorage.Store // 区块存储对象（区块数据文件

 与隐私数据库）

 txtmgmt txmgr.TxMgr // 交易管理器（含有状态数据库）

 historyDB historydb.HistoryDB // 历史数据库

 blockAPIsRWLock *sync.RWMutex // 读写同步锁

}

7.1.1　Peer节点账本

1.创建账本提供者对象

kvledger.Provider类型对象作为Peer节点的账本提供者，实现了PeerLedgerProvider接口，封装了账本底层的各类数据库提供者，用于创建对应的数据库实例。Peer节点启动时调用ledgermgmt.Initialize()→kvledger.NewProvider()函数，创建Peer节点的账本提供者（kvledger.Provider类型，如图7-1所示），如代码清单7-2所示。该函数依次创建idStore数据库、账本数据存储对象提供者、状态数据库提供者、历史数据库提供者等，并在最后调用recoverUnderConstructionLedger()方法，检查并恢复未完成构造的Peer节点账本对象（崩溃故障等原因）。

代码清单7-2　NewProvider()函数的源码示例

core/ledger/kvledger/kv_ledger_provider.go文件

func NewProvider() (ledger.PeerLedgerProvider, error) {

 logger.Info("Initializing ledger provider")

 // 获取账本存储文件的路径，并创建账本ID存储对象

 idStore := openIDStore(ledgerconfig.GetLedgerProviderPath())

 ledgerStoreProvider := ledgerstorage.NewProvider() // 构造账本数据存储对象提供者

 // 构建状态数据库提供者DBProvider

 vdbProvider, err := privacyenabledstate.NewCommonStorageDBProvider()

 ……

 var historydbProvider historydb.HistoryDBProvider

 historydbProvider = historyleveldb.NewHistoryDBProvider()

 logger.Info("ledger provider Initialized")

 provider := &Provider{idStore, ledgerStoreProvider, vdbProvider, historydb-Provider, nil} // 构造账本提供者

 provider.recoverUnderConstructionLedger() // 恢复未完成构造的Peer节点账本对象

 return provider, nil

}

 [image:]

图7-1　kvledger.Provider类型示意图

如代码清单7-3所示，recoverUnderConstructionLedger()方法首先调用idStore数据库的getUnderConstructionFlag()方法，获取该账本的构造状态标志位键值对。其中，键为[]byte("underConstructionLedgerKey")，值为[]byte(ledgerID)。如果获取成功，则解析返回账本ID（ledgerID）。接着，调用provider.openInternal(ledgerID)方法，打开或创建指定通道账本（ledgerID）上的Peer节点账本对象ledger（kvLedger类型），检查并恢复不同步的状态数据库与历史数据库。然后，调用ledger.GetBlockchainInfo()方法，获取通道账本上的区块链信息bcInfo，并分析本地的账本高度bcInfo.Height，具体说明如下。

·高度为0：说明目前账本中没有提交任何区块（包括创世区块）。因此，没有创建本地的Peer节点账本对象，此时应在idStore数据库中删除账本构造状态的标志位；

·高度为1：说明已经提交了创世区块，则调用ledger.GetBlockByNumber(0)方法获取创世区块（第1个区块），通过idSotre数据库调用createLedgerID()方法，构造并保存指定账本ID（ledgerID）与创世区块字节数组构成的键值对；

·其他情况：报错返回。

代码清单7-3　recoverUnderConstructionLedger()方法的源码示例

core/ledger/kvledger/kv_ledger_provider.go文件

func (provider *Provider) recoverUnderConstructionLedger() {

 logger.Debugf("Recovering under construction ledger")

 // 检查是否存在正在构造中的账本的标志位

 ledgerID, err := provider.idStore.getUnderConstructionFlag()

 panicOnErr(err, "Error while checking whether the under construction flag is set")

 if ledgerID == "" { // 检查账本ID的合法性

 logger.Debugf("No under construction ledger found. Quitting recovery")

 return

 }

 logger.Infof("ledger [%s] found as under construction", ledgerID)

 // 获取指定账本ID的Peer节点账本对象

 ledger, err := provider.openInternal(ledgerID)

 panicOnErr(err, "Error while opening under construction ledger [%s]", ledgerID)

 bcInfo, err := ledger.GetBlockchainInfo() // 获取账本上的区块链信息

 panicOnErr(err, "Error while getting blockchain info for the under construc-tion ledger [%s]", ledgerID)

 ledger.Close() // 关闭账本

 switch bcInfo.Height { // 检查账本高度

 case 0: // 还未提交任何区块

 logger.Infof("Genesis block was not committed. Hence, the peer ledger not created. unsetting the under construction flag")

 panicOnErr(provider.runCleanup(ledgerID), "Error while running cleanup for ledger id [%s]", ledgerID)

 panicOnErr(provider.idStore.unsetUnderConstructionFlag(), "Error while unsetting under construction flag")

 case 1: // 已经提交了创世区块

 logger.Infof("Genesis block was committed. Hence, marking the peer ledger as created")

 genesisBlock, err := ledger.GetBlockByNumber(0) // 获取创世区块（第1个区块）

 panicOnErr(err, "Error while retrieving genesis block from blockchain for ledger [%s]", ledgerID)

 // 创建账本ID的键值对

 panicOnErr(provider.idStore.createLedgerID(ledgerID, genesisBlock), "Error while adding ledgerID [%s] to created list", ledgerID)

 default: // 报错

 ……

 }

 return

}

2.创建Peer节点账本对象

Peer节点账本提供者kvledger.Provider调用Create(genesisBlock*common.Block)方法，基于指定通道账本的创世区块genesisBlock创建Peer节点账本对象（kvLedger类型，实现了PeerLedger接口类型），负责管理账本数据存储对象（区块数据文件、隐私数据库）、状态数据库、历史数据库等，如代码清单7-4所示。

代码清单7-4　kvledger.Provider对象的Create()方法源码示例

core/ledger/kvledger/kv_ledger_provider.go文件

// 创建Peer节点账本对象

func (provider *Provider) Create(genesisBlock *common.Block) (ledger.PeerLedger, error) {

 // 从创世区块中获取链ID作为账本ID

 ledgerID, err := utils.GetChainIDFromBlock(genesisBlock)

 ……

 // 检查idStore数据库中是否已经存在该账本ID

 exists, err := provider.idStore.ledgerIDExists(ledgerID)

 ……

 // 设置该账本还处于构造中的标志位

 if err = provider.idStore.setUnderConstructionFlag(ledgerID); err != nil {

 return nil, err

 }

 lgr, err := provider.openInternal(ledgerID)

 ……

 if err := lgr.CommitWithPvtData(&ledger.BlockAndPvtData{ // 提交区块与隐私数据

 Block: genesisBlock,

 }); err != nil {

 lgr.Close()

 return nil, err

 }

 // 创建账本ID的键值对，键是账本ID，值是序列化后的创世区块字节数组

 panicOnErr(provider.idStore.createLedgerID(ledgerID, genesisBlock), "Error while marking ledger as created")

 return lgr, nil

}

// 打开或创建指定账本的Peer节点账本对象

func (provider *Provider) openInternal(ledgerID string) (ledger.PeerLedger, error) {

 // 账本数据存储对象

 blockStore, err := provider.ledgerStoreProvider.Open(ledgerID)

 ……

 vDB, err := provider.vdbProvider.GetDBHandle(ledgerID) // 状态数据库

 ……

 // 历史数据库

 historyDB, err := provider.historydbProvider.GetDBHandle(ledgerID)

 ……

 // 获取或创建指定账本的kvLedger对象，封装了账本数据存储对象、状态数据库和历史数据库等

 l, err := newKVLedger(ledgerID, blockStore, vDB, historyDB, provider.state-Listeners)

 ……

}

Peer节点与Orderer节点上账本数据库与区块数据文件路径的默认配置如表7-1和表7-2所示。

表7-1　Peer节点上账本数据库与区块数据文件路径的默认配置列表

 [image:]

表7-2　Orderer节点上账本数据库与区块数据文件路径的默认配置列表

 [image:]

（1）Create()方法

Create()方法调用utils.GetChainIDFromBlock()方法，解析获取创世区块的第1个交易数据对象block.Data.Data[0]，基于其消息负载的payload.Header.ChannelHeader，解析出通道头部包含的通道ID（ChannelId），即账本ID（ledgerID）。

接着，调用provider.idStore.ledgerIDExists(ledgerID)方法检查idStore数据库。如果已保存了该账本ID，则调用setUnderConstructionFlag(ledgerID)方法，保存账本构造标识的键值对，用于标记该通道账本还处于构造中的状态。其中，键为[]byte("underConstructionLedgerKey")，值为[]byte(ledgerID)，以便崩溃重启时恢复标识的账本。

Create()方法继续调用openInternal(ledgerID)方法，创建Peer节点账本对象lgr（kv-Ledger类型）。该方法通过kvledger.Provider对象分别创建blockStore账本数据存储对象（含有区块存储对象与隐私数据存储对象）、vDB状态数据库对象和historyDB历史数据库对象，基于上述对象调用newKVLedger()方法，创建Peer节点账本对象（kvLedger类型），用于管理本地节点上的账本数据。接着，通过kvLedger对象调用l.recoverDBs()方法，以恢复不同步的状态数据库与历史数据库，具体过程见下面的newKVLedger()函数分析。

然后，Create()方法调用kvLedger对象的lgr.CommitWithPvtData()方法，提交区块与隐私数据对象（BlockAndPvtData类型）到账本中。该对象的Block字段封装了创世区块genesisBlock，被提交到区块数据文件中，建立区块索引信息至区块索引数据库。如果存在合法的隐私数据，则保存到隐私数据库。同时，更新状态数据库versionedDB与历史数据库historyDB。

最后，调用provider.idStore.createLedgerID(ledgerID，genesisBlock)方法，保存该账本ID的键值对至idStore数据库。其中，键是[]byte("l")+[]byte(ledgerID)，值是序列化后封装的创世区块字节数组。同时，删除idStore数据库中该账本的构造状态标识键值对，说明已经创建了指定的节点账本对象。

至此，kvledger.Provider对象调用Create()方法创建Peer节点账本对象的流程结束。

（2）newKVLedger()函数

newKVLedger()函数用于创建新的Peer节点账本对象，如代码清单7-5所示。

代码清单7-5　newKVLedger()函数的源码示例

core/ledger/kvledger/kv_ledger.go文件

func newKVLedger(ledgerID string, blockStore *ledgerstorage.Store,

 versionedDB privacyenabledstate.DB, historyDB historydb.HistoryDB,

 stateListeners ledger.StateListeners) (*kvLedger, error) {

 ……

 // 利用状态数据库初始化交易管理器

 var txmgmt txmgr.TxMgr

 txmgmt = lockbasedtxmgr.NewLockBasedTxMgr(ledgerID, versionedDB, stateLis-teners) // 创建交易管理器

 // 创建kvLedger对象，封装了账本数据存储对象、交易管理器（含状态数据库）和历史数据库

 l := &kvLedger{ledgerID, blockStore, txmgmt, historyDB, &sync.RWMutex{}}

 ccEventListener := versionedDB.GetChaincodeEventListener() // 获取链码事件监听器

 logger.Debugf("Register state db for chaincode lifecycle events: %t", ccEvent-Listener != nil)

 if ccEventListener != nil {

 // 为链码生命周期事件注册状态数据库

 cceventmgmt.GetMgr().Register(ledgerID, ccEventListener)

 }

 // 恢复不同步的状态数据库和历史数据库

 if err := l.recoverDBs(); err != nil {

 panic(fmt.Errorf('Error during state DB recovery:%s', err))

 }

 return l, nil

}

newKVLedger()函数首先调用lockbasedtxmgr.NewLockBasedTxMgr()方法，创建指定账本上的交易管理器txmgmt（LockBasedTxMgr类型），封装了本地的状态数据库versionedDB，用于存储当前有效交易的状态数据（即世界状态，world state）。同时，该方法也调用valimpl.NewStatebasedValidator(txmgr，db)方法，创建了交易管理器的验证器txmgr.validator（DefaultImpl类型），封装了基于versionedDB的内部交易验证器（Validator类型）与自身的交易管理器txmgr。这样，Peer节点账本对象就能通过交易管理器txmgr上的验证器，基于已更新的状态数据库versionedDB，对当前提交到账本的交易读集合执行MVCC检查。

接着，构造指定账本（ledgerID）的Peer节点账本对象（kvLedger类型），封装了账本数据存储对象blockStore（包括区块存储对象与隐私数据存储对象）、交易管理器txmgmt（含状态数据库）和历史数据库对象historyDB。

然后，调用recoverDBs()方法恢复状态数据库与历史数据库，通过检查数据库中保存的最新区块号（即账本高度）来判断数据库的同步情况，如代码清单7-6所示。如果发现状态数据库、历史数据库与账本数据存储对象上保存的账本高度不一致，则以账本数据存储对象上保存的账本高度与账本数据为标准来恢复状态数据库或历史数据库。

至此，newKVLedger()函数创建Peer节点账本对象的流程结束。

代码清单7-6　recoverDBs()方法的源码示例

core/ledger/kvledger/kv_ledger.go文件

func (l *kvLedger) recoverDBs() error {

 logger.Debugf("Entering recoverDB()")

 // 如果账本数据存储对象中不存在任何数据，则无需恢复

 info, _ := l.blockStore.GetBlockchainInfo() // 获取账本数据存储对象上最新的区块链信息

 if info.Height == 0 { // 若账本高度为0，则意味着没有区块数据

 logger.Debug("Block storage is empty.")

 return nil

 }

 lastAvailableBlockNum := info.Height - 1 // 获取最新区块号，即区块高度减1

 // 构造恢复对象列表（包含状态数据库和历史数据库）

 recoverables := []recoverable{l.txtmgmt, l.historyDB}

 recoverers := []*recoverer{}

 for _, recoverable := range recoverables {

 // 检查两个数据库对象是否同步

 recoverFlag, firstBlockNum, err := recoverable.ShouldRecover(lastAvailable-BlockNum)

 if err != nil {

 return err

 }

 if recoverFlag { // 若需要同步更新恢复，则添加到恢复对象列表

 recoverers = append(recoverers, &recoverer{firstBlockNum, recoverable})

 }

 }

 if len(recoverers) == 0 { // 不需要同步更新恢复

 return nil

 }

 if len(recoverers) == 1 { // 只有1个数据库需要恢复，重新提交缺失的区块

 return l.recommitLostBlocks(recoverers[0].firstBlockNum, lastAvailable-BlockNum, recoverers[0].recoverable)

 }

 // 若两个数据库都需要同步更新恢复，则按照数据库中区块缺失数量较多的区块号进行恢复

 // 第1个数据库需要恢复的区块少于第2个，交换两者

 if recoverers[0].firstBlockNum > recoverers[1].firstBlockNum {

 recoverers[0], recoverers[1] = recoverers[1], recoverers[0]

 }

 // 第1个数据库需要恢复的数据库区块多于第2个

 if recoverers[0].firstBlockNum != recoverers[1].firstBlockNum {

 // 先将第1个数据库更新同步恢复成与第2个数据库区块高度一样

 if err := l.recommitLostBlocks(recoverers[0].firstBlockNum, recoverers[1].firstBlockNum-1,

 recoverers[0].recoverable); err != nil {

 return err

 }

 }

 // 将两个需要恢复的数据库都更新同步到指定的区块号高度

 return l.recommitLostBlocks(recoverers[1].firstBlockNum, lastAvailableBlockNum,

 recoverers[0].recoverable, recoverers[1].recoverable)

}

（3）recoverDBs()方法

在recoverDBs()方法中，kvLedger对象（如图7-2所示）调用l.blockStore.GetBlockchain-Info()方法，获取区块链信息与最新区块号lastAvailableBlockNum。接着，调用Should-Recover()函数，检查状态数据库与历史数据库保存的账本高度是否为最新的lastAvailable-BlockNum，并将不同步的数据库对象添加到数据库恢复对象集合recoverers（[]*recoverer类型）中。最后，检查需要恢复的数据库对象集合数量，分情况同步恢复指定的数据库。

如果recoverers集合数量为0个，则两个数据库都已经达到最新的账本高度，不需要同步恢复。

如果recoverers集合数量为1个，则kvLedger对象调用recommitLostBlocks()方法，提交缺失的数据集合到需要同步的数据库对象上。recommitLostBlocks()方法首先遍历指定区块号范围{firstBlockNum，lastBlockNum}中的区块号blockNumber，调用kvLedger账本对象的l.GetPvtDataAndBlockByNum()方法，获取指定区块号blockNumber对应的账本数据blockAndPvtdata（BlockAndPvtData类型，包含区块与隐私数据）。接着，调用CommitLost-Block(blockAndPvtdata)方法，提交该账本数据到状态数据库或历史数据库，如此循环处理，直至提交同步完指定区块号范围中的所有账本数据集合，具体如下。

 [image:]

图7-2　kvLedger类型示意图

·状态数据库：调用LockBasedTxMgr.CommitLostBlock()方法，添加缺失的状态数据（7.1.5节）。该方法首先调用txmgr.ValidateAndPrepare(blockAndPvtdata，false)方法，验证交易数据的有效性，并将有效交易设置到数据更新批量操作中，但不执行MVCC检查（doMVCCValidation参数设置为false），这是因为从区块账本中获取的区块已经验证过了，即在区块元数据中保存了验证合法的交易过滤器（Block-MetadataIndex_TRANSACTIONS_FILTER索引项），可以直接读取有效交易保存至数据更新批量操作变量中。接着，调用txmgr.Commit()方法，将其封装的数据更新批量操作（包含有效交易的隐私数据、隐私数据哈希值与公共数据）提交到状态数据库。

·历史数据库：调用historyDB.CommitLostBlock()→historyDB.Commit()方法以添加有效交易数据，基于区块元数据BlockMetadataIndex_TRANSACTIONS_FILTER索引项，解析并获取txsFilter交易验证码列表，用于过滤获取区块内的有效交易（ENDORSER_TRANSACTION类型），再将该交易的相关信息（名字空间ns、键writeKey、区块号blockNo与交易序号tranNo）构造成新的组合键，与值[]byte{}构成键值对，然后提交更新到历史数据库（5.4.2节）。

如果recoverers集合的数据库数量为2个，则比较两个数据库需要恢复的起始区块号firstBlockNum，将恢复较多数据的数据库对象交换至recoverers[0]。接着，调用recommit-LostBlocks()方法将两个数据库上的账本高度同步一致（以recoverers[1]数据库对象的账本高度为准），再将两个数据库同步更新至账本数据存储对象上的最新账本高度。

至此，recoverDBs()方法同步状态数据库与历史数据库的流程结束。
7.1.2　idStore数据库

Peer节点账本提供者kvledger.Provider对象在NewProvider()函数中调用了openIDStore(ledgerconfig.GetLedgerProviderPath())方法，用于创建idStore数据库（LevelDB）并指定其数据库文件路径（/var/hyperledger/production/ledgersData/ledgerProvider），打开数据库实例返回数据库句柄，再封装到idStore数据库对象中。

idStore数据库通过调用createLedgerID(ledgerID，genesisBlock)方法，保存指定账本ID的键值对。其中，键为[]byte("l")+[]byte(ledgerID)，值为账本创世区块genesisBlock序列化封装后的字节数组。通常，如果idStore数据库中存在账本ID，则说明指定通道上的Peer节点账本对象创建成功。另外，idStore数据库提供了ledgerIDExists()方法，用于判断idStore数据库中是否成功创建了指定的账本ID，同时，还提供了getAllLedgerIds()方法，用于获取所有已经创建成功的账本ID列表。

同时，idStore数据库还负责维护账本的构造状态标识键值对。其中，键为[]byte("under-ConstructionLedgerKey")，值为[]byte(ledgerID)，用于标识指定通道上的Peer节点账本对象是否还在构造中。系统崩溃故障使得数据库或区块数据文件可能只保留了部分账本数据，那么，重启Peer节点时需要重新构造账本，以确保账本中的数据一致性。
7.1.3　区块数据文件与隐私数据库

kvledger.Provider对象在NewProvider()方法中调用ledgerstorage.NewProvider()函数，用于创建账本数据存储对象提供者（ledgerstorage.Provider类型），封装了区块数据存储对象提供者（blkStoreProvider字段）与隐私数据存储对象提供者（pvtdataStoreProvider字段），具体说明如下。

·blkStoreProvider：该函数调用fsblkstorage.NewProvider()方法，创建基于文件系统的区块数据存储对象提供者（FsBlockstoreProvider类型），设置默认的账本数据目录（/var/hyperledger/production/ledgersData/chains，其中，通道账本的区块数据文件保存在该目录/chains下以通道名称命名的子目录中，区块索引数据库保存在该目录/index下）与最大区块文件字节数（默认为64MB），同时还根据指定路径创建了区块索引数据库（LevelDB），其默认提供6种区块索引模式，如表7-3所示，支持快速检索指定区块、交易等的文件位置指针。同时，blkStoreProvider还负责创建区块数据存储对象blockStore，用于管理区块数据文件，保存与访问区块数据等。

·pvtdataStoreProvider：该函数调用pvtdatastorage.NewProvider()方法，并设置默认的数据库路径（/var/hyperledger/production/ledgersData/pvtdataStore），创建隐私数据库（LevelDB）用于保存隐私数据。同时，pvtdataStoreProvider还负责创建隐私数据存储对象pvtdataStore用于管理隐私数据。

表7-3　区块索引类型与编码组合键列表

 [image:]

注：编码组合键中blockNum与txNum需要调用EncodeOrderPreservingVarUint64()函数转换为指定格式的字节数组。

Peer节点账本提供者kvledger.Provider对象在其自身的openInternal()方法中调用provider.ledgerStoreProvider.Open()方法，创建指定通道上的账本数据存储对象，如代码清单7-7所示。该方法调用blkStoreProvider.OpenBlockStore()方法，创建区块数据存储对象block-Store（fsBlockStore类型），基于现有区块数据文件检查与更新区块检查点信息，建立区块索引信息与索引检查点信息，并基于上述参数创建更新区块文件管理器，用于执行查询与保存区块等操作。接着，调用pvtdataStoreProvider.OpenStore()方法，创建隐私数据存储对象pvtdataStore（pvtdatastorage.store类型），更新设置隐私数据库中最近提交到账本的区块号，并初始化相关标志位。然后，基于blockStore与pvtdataStore构造本地节点的账本数据存储对象store（ledgerstorage.Store类型），执行store.init()方法以初始化账本数据存储对象。该方法先初始化隐私数据存储对象，然后同步更新区块数据存储对象与隐私数据存储对象上的账本数据，如代码清单7-8所示。

 [image:]

图7-3　FsBlockstoreProvider类型示意图

代码清单7-7　Open()方法创建账本数据存储对象的源码示例

core/ledger/ledgerstorage/store.go文件

// 打开或创建账本数据存储对象（包括区块存储对象、隐私数据存储对象）

func (p *Provider) Open(ledgerid string) (*Store, error) {

 var blockStore blkstorage.BlockStore

 var pvtdataStore pvtdatastorage.Store

 var err error

 // 创建指定账本的区块存储对象

 if blockStore, err = p.blkStoreProvider.OpenBlockStore(ledgerid); err != nil {

 return nil, err

 }

 // 创建指定账本的隐私数据存储对象

 if pvtdataStore, err = p.pvtdataStoreProvider.OpenStore(ledgerid); err != nil {

 return nil, err

 }

 // 构造并初始化账本的区块存储对象

 store := &Store{blockStore, pvtdataStore, &sync.RWMutex{}}

 if err := store.init(); err != nil {

 return nil, err

 }

 return store, nil

}

type Store struct {

 blkstorage.BlockStore // 区块存储对象

 pvtdataStore pvtdatastorage.Store // 交易隐私数据存储对象

 rwlock *sync.RWMutex // 读写同步锁

}

代码清单7-8　init()方法初始化账本数据存储对象的源码示例

core/ledger/ledgerstorage/store.go文件

func (s *Store) init() error {

 var initialized bool

 var err error

 // 初始化隐私数据存储对象

 if initialized, err = s.initPvtdataStoreFromExistingBlockchain(); err != nil || initialized {

 return err

 }

 return s.syncPvtdataStoreWithBlockStore() // 同步数据

}

store.init()方法首先调用initPvtdataStoreFromExistingBlockchain()方法，基于区块数据存储对象blockStore调用s.BlockStore.GetBlockchainInfo()方法，获取最新的区块链信息bcInfo。接着，基于隐私数据存储对象pvtdataStore调用s.pvtdataStore.IsEmpty()方法，获取自身isEmpty标志位并设置为pvtdataStoreEmpty。

如果pvtdataStore不包含任何隐私数据（pvtdataStoreEmpty为true），并且blockStore上存在账本数据（即bcInfo.Height大于0），则通过pvtdataStore调用InitLastCommitted-Block(bcInfo.Height-1)方法，基于最新的账本区块号（即账本高度减1）初始化隐私数据存储对象pvtdataStore，添加标识最新区块号的键值对，键为lastCommittedBlkkey（[]byte{1}），值为经过proto.EncodeVarint(blockNum)方法编码的最新区块号blockNum。同时，设置隐私数据存储对象pvtdataStore上的isEmpty标志位为false，更新最近提交的区块号lastCommittedBlock为blockNum。这样，区块数据存储对象与隐私数据存储对象就完全同步了。

否则，store.init()方法继续调用s.syncPvtdataStoreWithBlockStore()方法，同步区块数据存储对象与隐私数据存储对象上的账本数据，如代码清单7-9所示。该方法调用s.pvtdata-Store.HasPendingBatch()方法，检查隐私数据存储对象的batchPending标志位，判断是否仍然存在等待提交确认的隐私数据。如果不存在任何相关记录，则不需要同步数据，直接返回即可。否则，继续获取区块存储对象的账本高度bcInfo.Height与隐私数据存储对象的账本高度pvtdataStoreHt（最近提交区块号lastCommittedBlock+1），比较两者的大小，以判断区块数据文件与隐私数据库是否同步。

代码清单7-9　syncPvtdataStoreWithBlockStore()方法的源码示例

core/ledger/ledgerstorage/store.go文件

func (s *Store) syncPvtdataStoreWithBlockStore() error {

 var pendingPvtbatch bool

 var err error

 // 检查是否存在等待提交确认的隐私数据

 if pendingPvtbatch, err = s.pvtdataStore.HasPendingBatch(); err != nil {

 return err

 }

 if !pendingPvtbatch {

 return nil

 }

 var bcInfo *common.BlockchainInfo

 var pvtdataStoreHt uint64

 if bcInfo, err = s.GetBlockchainInfo(); err != nil { // 获取当前的区块链信息

 return err

 }

 if pvtdataStoreHt, err = s.pvtdataStore.LastCommittedBlockHeight(); err != nil { // 获取账本高度

 return err

 }

 if bcInfo.Height == pvtdataStoreHt {

 return s.pvtdataStore.Rollback() // 回滚恢复隐私数据

 }

 if bcInfo.Height == pvtdataStoreHt+1 {

 return s.pvtdataStore.Commit() // 确认提交了隐私数据

 }

 return fmt.Errorf("This is not expected. blockStoreHeight=%d, pvtdataStore-Height=%d", bcInfo.Height, pvtdataStoreHt)

}

由5.4.2节CommitWithPvtData()方法的分析可知，通常，账本数据存储对象在提交账本时，先通过隐私数据存储对象pvtdataStore调用Prepare()方法，将隐私数据提交到隐私数据库中等待确认，并添加等待提交确认了标志位pendingCommitKey的键值对。接着，区块数据存储对象blockStore提交新区块到账本区块文件中。如果提交成功，则隐私数据存储对象pvtdataStore调用Commit()方法，执行提交隐私数据的确认操作，删除pendingCommitKey标识的键值对，并添加lastCommittedBlkkey键值对以记录最近成功提交的区块号。否则，调用Rollback()方法，执行隐私数据库回滚操作。

因此，对于区块存储对象的账本高度bcInfo.Height与隐私数据存储对象的账本高度pvtdataStoreHt，store.init()方法将继续处理如下两种情况。

（1）bcInfo.Height与pvtdataStoreHt相同的情况

这可能是节点崩溃造成区块数据存储对象blockStore还未成功提交新区块，同时隐私数据存储对象pvtdataStore还存在等待提交确认的隐私数据的情况。因此，可通过隐私数据存储对象pvtdataStore调用s.pvtdataStore.Rollback()方法，执行数据库回滚操作，从隐私数据库中删除需要回滚的隐私数据，其范围包括指定区块号（lastCommittedBlock+1）以后的所有数据，确保区块数据存储对象blockStore与隐私数据存储对象pvtdataStore上的数据保持同步。其中，隐私数据都是以pvtDataKeyPrefix（[]byte{2}）+version（blockNum+tranNum）为键，其版本version是用Height结构（含区块号与交易序号）标识的。接着，删除pendingCommitKey（[]byte{0}）键值对，清除隐私数据等待提交确认的标志位。

（2）bcInfo.Height比pvtdataStoreHt大1的情况

这种情况下，区块数据存储对象blockStore提交了新区块，且隐私数据存储对象pvt-dataStore还没有对等待提交的隐私数据进行确认。因此，调用s.pvtdataStore.Commit()方法确认提交了隐私数据，实际上只是删除了pendingCommitKey键值对，并清除等待提交确认的标志位，同时添加最近提交区块号lastCommittedBlkkey的键值对。

1.区块数据存储对象

（1）创建区块数据存储对象

区块数据存储对象提供者调用blkStoreProvider.OpenBlockStore()方法，以创建区块数据存储对象blockStore（fsBlockStore类型，如图7-4所示）。该方法首先调用leveldb-Provider.GetDBHandle(ledgerid)方法，创建指定通道账本（ledgerid，即数据库名称）上的LevelDB区块索引数据库句柄（DBHandle类型），并与账本ID（ledgerid）构建键值对，保存在blkStoreProvider.leveldbProvider对象（leveldbhelper.Provider类型）的数据库句柄列表dbHandles（map[string]*DBHandle类型）中，以支持快速索引不同通道账本上的区块索引数据库句柄。区块索引数据库用于存储当前账本区块的相关索引信息，包括区块的文件位置指针、交易的文件位置指针、交易验证码等，目前区块索引数据库支持6种索引模式。接着，调用newFsBlockStore()方法以创建区块数据存储对象blockStore，同时调用newBlockfileMgr()函数创建区块文件管理器（blockfileMgr类型），用于管理区块文件与区块索引数据库，并执行具体的区块数据操作。

区块数据文件都是以blockfile_000000、blockfile_000001等字符串编号命名的，且文件名的后缀编号是逐渐递增的。同时，使用文件位置指针（fileLocPointer类型）封装区块数据所在的区块文件名后缀编号与位置指针（文件起始偏移量与占用字节数），如代码清单7-10所示。区块在保存到区块数据文件之前调用proto.Buffer类型的EncodeVarint()方法与Encode-RawBytes()方法，对区块数据中的整型对象与字节数组对象分别进行编码。因此，区块在区块数据文件中的保存格式是先存储经过proto.EncodeVarint(uint64(blockBytesLen))方法编码的区块数据长度，再存储按照上述方法编码后的区块数据字节数组blockBytes。同时，从区块数据文件中读取指定的区块数据时，必须同样按照上述格式进行解码，并解析为原始的区块结构对象。

代码清单7-10　fileLocPointer类型、locPointer类型与serializedBlockInfo类型源码示例

common/ledger/blkstorage/fsblkstorage/blockindex.go文件

// 文件位置指针

type fileLocPointer struct {

 fileSuffixNum int // 文件名后缀编号

 locPointer // 位置指针

}

// 位置指针

type locPointer struct {

 offset int // 文件偏移量

 bytesLength int // 占用字节数

}

common/ledger/blkstorage/fsblkstorage/block_serialization.go文件

// 序列化区块结构信息

type serializedBlockInfo struct {

 blockHeader *common.BlockHeader // 区块头部

 txOffsets []*txindexInfo // 交易索引信息列表

 metadata *common.BlockMetadata // 区块元数据

}

 [image:]

图7-4　区块数据存储对象fsBlockStore类型示意图

①创建区块文件管理器

newBlockfileMgr()函数用于创建区块文件管理器（blockfileMgr类型），用于管理底层的区块数据文件与区块索引数据库，负责执行区块、交易等数据的存储与查询操作，并从区块索引数据库中获取最新的区块检查点信息。如果不存在区块检查点信息，则扫描定位到默认账本目录下指定通道账本的最新区块数据文件上，构造并保存最新的区块检查点信息。如果当前通道账本上存在更新的区块数据，则对该区块数据建立区块索引信息与索引检查点信息，并更新同步到区块索引数据库上。

区块检查点信息用于保存最近一次提交到账本中的区块相关信息，包括最新区块的文件名后缀编号latestFileChunkSuffixNum、最新区块文件的字节数latestFileChunksize、是否为空链的标志位isChainEmpty与最新的区块号lastBlockNumber。同时。索引检查点信息用于保存最近一次建立区块索引的区块号。通常情况下，区块文件管理器添加新区块时，按照区块数据文件、区块检查点信息、建立区块索引和索引检查点信息的顺序进行更新，然后再更新区块文件管理器自身的索引检查点信息与区块链信息（包含账本高度等）。

注意，区块文件管理器上区块索引管理器（blockIndex类型）的index.db字段与db字段在初始化时被设置为同一个区块索引数据库句柄对象indexStore（DBHandle类型），如代码清单7-11所示。

代码清单7-11　newBlockfileMg()函数的源码示例

common/ledger/blkstorage/fsblkstorage/blockfile_mgr.go文件

// 创建区块文件管理器

func newBlockfileMgr(id string, conf *Conf, indexConfig *blkstorage.IndexConfig, indexStore *leveldbhelper.DBHandle) *blockfileMgr {

 logger.Debugf("newBlockfileMgr() initializing file-based block storage for ledger: %s ", id)

 rootDir := conf.getLedgerBlockDir(id) // 获取账本区块数据文件目录

 _, err := util.CreateDirIfMissing(rootDir)

 ……

 // 初始化区块文件管理器

 mgr := &blockfileMgr{rootDir: rootDir, conf: conf, db: indexStore}

 cpInfo, err := mgr.loadCurrentInfo() // 读取区块检查点信息

 ……

 if cpInfo == nil { // 检查区块检查点信息

 logger.Info('Getting block information from block storage')

 if cpInfo, err = constructCheckpointInfoFromBlockFiles(rootDir); err != nil {

 panic(fmt.Sprintf("Could not build checkpoint info from block files: %s", err))

 }

 logger.Debugf("Info constructed by scanning the blocks dir = %s", spew.Sdump(cpInfo))

 } else {

 logger.Debug('Synching block information from block storage (if needed)')

 syncCPInfoFromFS(rootDir, cpInfo) // 从文件系统同步区块检查点信息

 }

 err = mgr.saveCurrentInfo(cpInfo, true) // 保存区块检查点信息

 ……

 // 创建指定区块文件的写文件流

 currentFileWriter, err := newBlockfileWriter(deriveBlockfilePath(rootDir, cpInfo.latestFileChunkSuffixNum))

 ……

 // 截取文件，删除超过最近校验过的区块信息部分

 err = currentFileWriter.truncateFile(cpInfo.latestFileChunksize)

 ……

 mgr.index = newBlockIndex(indexConfig, indexStore) // 创建区块索引信息管理器

 mgr.cpInfo = cpInfo // 更新最新的区块检查点信息

 mgr.currentFileWriter = currentFileWriter // 更新写文件流

 mgr.cpInfoCond = sync.NewCond(&sync.Mutex{}) // 创建检查点条件（事件）变

 量，用于等待或通知事件

 bcInfo := &common.BlockchainInfo{ // 构造区块链信息对象

 Height: 0,

 CurrentBlockHash: nil,

 PreviousBlockHash: nil}

 if !cpInfo.isChainEmpty { // 存在更新的区块信息

 mgr.syncIndex() // 建立区块索引信息

 lastBlockHeader, err := mgr.retrieveBlockHeaderByNumber(cpInfo.lastBlock-Number) // 获取最新区块头部

 ……

 lastBlockHash := lastBlockHeader.Hash() // 计算最新区块头哈希值

 previousBlockHash := lastBlockHeader.PreviousHash // 获取前一个区块头哈希值

 bcInfo = &common.BlockchainInfo{ // 构造区块链信息

 Height: cpInfo.lastBlockNumber + 1, // 设置区块高度

 CurrentBlockHash: lastBlockHash,

 PreviousBlockHash: previousBlockHash}

 }

 mgr.bcInfo.Store(bcInfo) // 存储区块链信息

 return mgr // 返回区块文件管理器

}

newBlockfileMgr()函数首先获取Peer节点本地默认的账本区块文件目录（/var/hyper-ledger/production/ledgersData/chains）下指定通道的区块数据文件目录rootDir（该账本目录以账本ID命名，如系统通道ID默认为“testchainid”），并调用util.CreateDirIfMissing()方法以创建该目录，用于存放该通道账本上的区块数据文件。

接着，newBlockfileMgr()函数构造区块文件管理器mgr（blockfileMgr类型），指定当前通道的区块数据文件目录rootDir、区块文件配置（包括本地默认账本目录与最大区块文件字节数，即64MB）、区块索引数据库句柄indexStore等。同时，调用loadCurrentInfo()方法，从区块索引数据库中获取当前账本的区块检查点信息cpInfo（checkpointInfo类型），即键blkMgrInfoKey（[]byte("blkMgrInfo")）对应的值，同时检查并更新区块检查点信息cpInfo。

如果区块检查点信息cpInfo为nil，则可能是新创建的空账本或写入区块时出现了崩溃故障等原因，没有及时保存该区块检查点信息。因此，调用constructCheckpointInfoFromBlockFiles()方法，重新扫描当前通道的区块账本目录rootDir下最新的完整区块数据文件，并基于该文件保存的最新完整区块数据来构造区块检查点信息cpInfo。

其中，constructCheckpointInfoFromBlockFiles()方法首先调用retrieveLastFileSuffix()方法，遍历当前通道的区块数据文件目录rootDir下的所有区块数据文件，解析文件名（如blockfile_000000、blockfile_000001等）并比较文件名后缀编号，以获取当前最大（即最新）的区块文件名后缀编号lastFileNum。接着，调用scanForLastCompleteBlock()方法扫描该区块数据文件，遍历其保存的所有区块数据并进行统计，以获取最新区块数据的序列化字节数组lastBlockBytes、最新区块的文件偏移量endOffsetLastBlock及其包含的区块数量numBlocksInFile。如果numBlocksInFile是0且最新区块文件的编号大于0，则说明可能发生过系统崩溃（crash）等故障。那么，调用scanForLastCompleteBlock()方法，扫描区块文件名后缀编号为lastFileNum-1的倒数第二个区块文件，以获取当前保存完整的最新区块数据字节数组lastBlockBytes，并调用deserializeBlock()方法解析获取最新的区块结构及其区块号lastBlockNumber，重新构造当前通道账本的最新区块检查点信息cpInfo。如果lastFileNum为0并且最新区块文件中的区块数量numBlocksInFile为0，则将空链标志位cpInfo.isChainEmpty设置为true。

如果当前通道账本中存在区块检查点信息cpInfo，则调用syncCPInfoFromFS()方法，获取区块的相关信息并更新区块检查点信息。

syncCPInfoFromFS()方法首先获取最新区块文件的字节数size，并与cpInfo.latestFile-Chunksize比较是否一致。若两者相同，则说明cpInfo已经保存了最新的区块检查点信息，此时直接返回即可。否则，说明当前通道区块文件发生了更新，需要重新计算最新的区块检查点信息。因此，该方法调用scanForLastCompleteBlock()方法，基于cpInfo上次保存的文件名后缀编号cpInfo.latestFileChunkSuffixNum扫描至当前最新的区块文件，以获取当前最新的区块文件偏移量endOffsetLastBlock与发生更新的区块数量numBlocks。然后，更新区块检查点信息cpInfo，设置最新区块文件的字节数cpInfo.latestFileChunksize为endOffsetLastBlock。如果发生更新的区块数量numBlocks为0，则说明只是在最新区块文件上更新了区块数据，并没有生成新的区块文件，此时直接退出即可。如果cpInfo.isChainEmpty标志位为true，则说明是第一次更新设置区块检查点信息，此时将cpInfo.last-BlockNumber区块号设置为numBlocks-1。否则，更新cpInfo.lastBlockNumber增加指定区块数量（numBlocks）。最后，设置空链标志位isChainEmpty为false，表示当前通道账本中存在更新的区块数据。

至此，newBlockfileMgr()函数更新完成区块检查点信息cpInfo，并调用mgr.saveCurrent-Info(cpInfo，true)方法更新到区块索引数据库。

接着，newBlockfileMgr()函数调用newBlockfileWriter()函数，基于cpInfo.latestFileChunk-SuffixNum创建对应的区块文件流currentFileWriter（blockfileWriter类型）。同时，根据cp-Info.latestFileChunksize调用currentFileWriter.truncateFile()方法以截取文件，删除超过最新校验正确的区块信息的多余字节部分，以保证区块账本文件系统与区块检查点信息保持一致。

然后，newBlockfileMgr()函数调用newBlockIndex(indexConfig，indexStore)函数，创建区块索引信息管理器mgr.index（blockIndex类型），遍历indexConfig索引配置对象包含的6种索引配置方式，并设置到索引项映射表indexItemsMap中。同时，基于索引配置对象index-Config与区块索引数据库句柄indexStore构造区块索引信息管理器对象（blockIndex类型），返回后设置到区块文件管理器mgr.index中。

newBlockfileMgr()函数继续设置更新区块文件管理器mgr上的区块检查点信息cpInfo、最新区块文件流currentFileWriter与检查点条件变量cpInfoCond。

如果cpInfo.isChainEmpty标志位为false，则说明当前存在更新的区块数据，那么调用syncIndex()方法，建立与同步新的区块索引信息，其范围包括从上次建立索引的区块号（由索引检查点信息进行保存）开始，直到当前区块检查点信息保存的最新区块号结束。接着，对上述区块号范围内的区块文件所包含的全部区块对象，循环构造对应的区块索引信息blockIdxInfo（blockIdxInfo类型），封装了区块头哈希值、区块号、区块位置指针、交易索引信息列表（含交易ID与位置指针）、区块元数据等，并调用mgr.index.indexBlock()方法以建立区块索引数据，并保存到区块索引数据库中（以账本ID隔离账本数据），同时保存索引检查点信息，记录最近建立区块索引的区块号。然后，基于cpInfo.lastBlockNumber从区块文件中获取最新区块的区块头lastBlockHeader，以获取最新的区块头哈希值last-BlockHash和前一个区块的区块头哈希值previousBlockHash，再基于上述对象构造当前最新的区块链信息bcInfo（BlockchainInfo类型），设置最新的账本区块链高度（cpInfo.lastBlockNumber+1）。

最后，调用mgr.bcInfo.Store(bcInfo)方法，更新区块文件管理器上的区块链信息。

至此，区块文件管理器的创建流程结束。

②建立并同步区块索引信息syncIndex()方法

区块文件管理器利用自身的syncIndex()方法，对指定区块号范围内的所有区块数据建立索引数据信息，并同步更新到区块索引数据库中。其中，指定区块号范围是指最近一次建立区块索引的区块号（保存在索引检查点信息中）与区块检查点信息保存的最新区块号之间的区块号集合，如代码清单7-12所示。

代码清单7-12　区块文件管理器的syncIndex()方法源码示例

common/ledger/blkstorage/fsblkstorage/blockfile_mgr.go文件

func (mgr *blockfileMgr) syncIndex() error {

 ……

 // 获取最近建立区块索引的区块号

 if lastBlockIndexed, err = mgr.index.getLastBlockIndexed(); err != nil {

 ……

 indexEmpty = true // 不存在对应的索引值

 }

 ……

 endFileNum := mgr.cpInfo.latestFileChunkSuffixNum // 获取最新区块文件名后缀编号

 startingBlockNum := uint64(0)

 if !indexEmpty {

 // 检查两者是否一致，若相同则不需要同步索引

 if lastBlockIndexed == mgr.cpInfo.lastBlockNumber {

 logger.Debug("Both the block files and indices are in sync.")

 return nil

 }

 logger.Debugf("Last block indexed [%d], Last block present in block files [%d]", lastBlockIndexed, mgr.cpInfo.lastBlockNumber)

 var flp *fileLocPointer

 // 根据区块号获取区块文件位置指针

 if flp, err = mgr.index.getBlockLocByBlockNum(lastBlockIndexed); err != nil {

 return err

 }

 startFileNum = flp.fileSuffixNum

 startOffset = flp.locPointer.offset

 skipFirstBlock = true // 跳过第一个区块

 startingBlockNum = lastBlockIndexed + 1

 } else {

 logger.Debugf("No block indexed, Last block present in block files=[%d]", mgr.cpInfo.lastBlockNumber)

 }

 logger.Infof("Start building index from block [%d] to last block [%d]", starting-BlockNum, mgr.cpInfo.lastBlockNumber)

 var stream *blockStream

 if stream, err = newBlockStream(mgr.rootDir, startFileNum, int64(startOffset), endFileNum); err != nil { // 创建区块文件流

 return err

 }

 var blockBytes []byte

 var blockPlacementInfo *blockPlacementInfo

 if skipFirstBlock { // 如果跳过第一个区块，则读取第一个区块并不进行任何处理

 // 获取下一个区块字节数组与位置信息

 if blockBytes, _, err = stream.nextBlockBytesAndPlacementInfo(); err != nil {

 return err

 }

 ……

 }

 blockIdxInfo := &blockIdxInfo{}

 for {

 // 获取下一个区块字节数组和文件位置信息

 if blockBytes, blockPlacementInfo, err = stream.nextBlockBytesAndPlacementInfo(); err != nil {

 return err

 }

 if blockBytes == nil { // 若为空，则同步完毕

 break

 }

 info, err := extractSerializedBlockInfo(blockBytes)

 // 提取构造序列化区块信息

 ……

 // 校正交易偏移量

 numBytesToShift := int(blockPlacementInfo.blockBytesOffset - blockPlace-mentInfo.blockStartOffset)

 for _, offset := range info.txOffsets {

 offset.loc.offset += numBytesToShift

 }

 // 根据实际存储在文件系统中的信息更新索引信息

 blockIdxInfo.blockHash = info.blockHeader.Hash()

 blockIdxInfo.blockNum = info.blockHeader.Number

 blockIdxInfo.flp = &fileLocPointer{fileSuffixNum: blockPlacementInfo.fileNum,

 locPointer: locPointer{offset: int(blockPlacementInfo.blockStartOffset)}}

 blockIdxInfo.txOffsets = info.txOffsets

 blockIdxInfo.metadata = info.metadata

 logger.Debugf("syncIndex() indexing block [%d]", blockIdxInfo.blockNum)

 // 建立对应的区块索引信息，并更新到区块索引数据库中

 if err = mgr.index.indexBlock(blockIdxInfo); err != nil {

 return err

 }

 if blockIdxInfo.blockNum%10000 == 0 {

 logger.Infof("Indexed block number [%d]", blockIdxInfo.blockNum)

 }

 }

 logger.Infof("Finished building index. Last block indexed [%d]", blockIdxInfo.blockNum)

 return nil

}

syncIndex()方法首先调用mgr.index.getLastBlockIndexed()方法，从区块索引数据库中获取最近一次建立索引保存的区块号，即与键indexCheckpointKey（[]byte("indexCheckpoint-Key")）对应的最近索引区块号lastBlockIndexed，将其作为索引检查点信息。

接着，syncIndex()方法比较lastBlockIndexed与区块检查点mgr.cpInfo.lastBlockNumber是否一致。如果两者相同，则说明索引检查点信息已经同步。否则，继续执行同步操作，调用mgr.index.getBlockLocByBlockNum(lastBlockIndexed)方法。如果当前区块索引管理器index支持按照区块号进行索引（存在IndexableAttrBlockNum索引配置项），则从区块索引数据库中获取最新区块的文件位置指针flp（fileLocPointer类型）。该对象封装了fileSuffix-Num文件名后缀编号与locPointer位置指针（包含文件偏移量offset与区块占用的字节数bytesLength）。这样，syncIndex()方法就能正确设置建立区块索引的初始信息，如起始区块文件名后缀编号startFileNum、文件内偏移量startOffset、skipFirstBlock标志位（true）与起始区块号startingBlockNum（lastBlockIndexed+1）。因此，当前待建立区块索引信息的区块号范围是{startingBlockNum，mgr.cpInfo.lastBlockNumber}。

这样，基于区块数据文件路径mgr.rootDir、起始区块文件名后缀编号startFileNum、起始文件偏移量startOffset、区块检查点信息的最新区块文件后缀编号endFileNum等参数，syncIndex()方法调用newBlockStream()方法，构造指定范围的区块文件流stream（block-Stream类型）。同时，检查skipFirstBlock标志位，即根据起始区块位置决定是否跳过第1个区块（创世区块）。

然后，syncIndex()方法建立区块文件处理循环，通过区块文件流stream依次遍历{start-Offset，endFileNum}范围内区块文件包含的区块数据，解析建立区块索引信息并更新至区块索引数据库。该方法先调用nextBlockBytesAndPlacementInfo()方法，按照区块数据长度与区块数据字节数组的保存格式，获取下一个区块字节数组blockBytes与区块位置信息blockPlacementInfo（包含区块文件号、起始文件偏移量和结束文件偏移量）。接着，调用extractSerializedBlockInfo(blockBytes)方法解析获取序列化区块信息info（serializedBlock-Info类型），即通过调用proto.Buffer类型的DecodeVarint()方法与DecodeRawBytes()方法，解码区块数据字节数组blockBytes中包含的整型对象与字节数组对象，包括区块头部blockHeader、交易索引信息列表txOffsets（[]*txindexInfo类型，含交易ID与locPointer位置指针）、区块元数据metadata等。然后，校正交易的文件偏移量offset.loc.offset，即增加区块数据长度字节数numBytesToShift。同时，基于上述参数构造当前区块的索引信息blockIdxInfo，封装区块头哈希值blockHash、区块号blockNum、文件位置指针flp、交易索引信息列表txOffsets、区块元数据metadata等。最后，调用indexBlock(blockIdxInfo)方法，按照区块索引配置将当前区块的索引信息保存到区块索引数据库中。

其中，indexBlock()方法依次检查区块索引管理器index中indexItemsMap映射表配置的合法索引类型，对建立的索引信息添加字符串前缀进行编码，如表7-3所示，具体说明如下。

·IndexableAttrBlockHash：按照区块头哈希值blockHash检索区块的文件位置指针flpBytes，编码组合键为'h'+blockHash。

·IndexableAttrBlockNum：按照区块号blockNum检索区块的文件位置指针flpBytes，编码组合键为'n'+blockNum。

·IndexableAttrTxID：遍历交易索引信息列表txOffsets中的交易对象，按照交易ID（txID）检索交易的文件位置指针txFlpBytes，编码组合键为't'+txID。

·IndexableAttrBlockNumTranNum：遍历交易索引信息列表txOffsets中的交易对象，按照区块号（blockNum）与交易序号（txNum）检索交易的文件位置指针txFlpBytes，编码组合键为'a'+blockNum+txNum。

·IndexableAttrBlockTxID：按照区块交易ID（txID）检索区块的文件位置指针flpBytes，编码组合键为'b'+txID。

·IndexableAttrTxValidationCode：按照交易ID（txID）检索交易验证码txsfltr.Flag(idx)字节数组，编码组合键为'v'+txID。

实际上，indexBlock()方法调用的是batch.Put()方法，将编码后的区块索引信息键值对依次添加到更新批量操作batch（UpdateBatch类型）中，最后添加索引检查点键值对到batch中，封装当前的区块号blockIdxInfo.blockNum。接着，执行index.db.WriteBatch()方法，将batch同步更新到区块索引数据库中。注意，WriteBatch()方法会自动添加数据库名称（账本ID/通道ID）前缀重新构造组合键，以实现从逻辑上隔离不同通道账本上的索引信息。

如此循环执行上述操作，直到处理完毕所有指定区块号范围内区块文件包含的全部区块数据。至此，syncIndex()方法就对更新的区块数据建立了区块索引信息并完成同步，使得区块索引数据库中保存的索引检查点信息、区块检查点信息与区块数据文件一致。

（2）添加区块数据

区块数据存储对象blockStore调用AddBlock()→blockfileMgr.addBlock()方法，将新的区块数据添加到指定通道账本上的最新区块数据文件中。通常，区块文件管理器fileMgr提交账本的顺序是先提交区块数据至区块数据文件，接着保存区块检查点信息，然后建立区块索引更新到区块索引数据库，并保存索引检查点信息，最后更新区块文件管理器上的区块检查点信息与区块链信息，如代码清单7-13所示。

代码清单7-13　区块文件管理器的addBlock()方法源码示例

common/ledger/blkstorage/fsblkstorage/blockfile_mgr.go文件

func (mgr *blockfileMgr) addBlock(block *common.Block) error {

 // 比较区块数据的区块号与当前账本高度

 if block.Header.Number != mgr.getBlockchainInfo().Height {

 ……

 }

 blockBytes, info, err := serializeBlock(block) // 序列化封装区块对象字节数组

 ……

 blockHash := block.Header.Hash() // 获取区块头哈希值

 txOffsets := info.txOffsets // 交易索引信息列表

 currentOffset := mgr.cpInfo.latestFileChunksize // 获取最新区块文件偏移量

 ……

 blockBytesLen := len(blockBytes) // 计算区块字节数组长度

 // 序列化区块字节数组长度

 blockBytesEncodedLen := proto.EncodeVarint(uint64(blockBytesLen))

 // 计算总长度

 totalBytesToAppend := blockBytesLen + len(blockBytesEncodedLen)

 // 检查是否需要创建新的区块数据文件

 if currentOffset+totalBytesToAppend > mgr.conf.maxBlockfileSize {

 mgr.moveToNextFile() // 移动到下一个区块数据文件

 currentOffset = 0

 }

 // 将区块字节数长度添加到区块文件中

 err = mgr.currentFileWriter.append(blockBytesEncodedLen, false)

 if err == nil { // 若没有错误，则继续添加区块数据字节数组

 err = mgr.currentFileWriter.append(blockBytes, true)

 }

 if err != nil { // 若存在错误，则截取多余的文件数据，恢复到原来的文件位置

 truncateErr := mgr.currentFileWriter.truncateFile(mgr.cpInfo.latestFile-Chunksize)

 ……

 }

 // 更新区块检查点信息并设置添加新区块信息

 currentCPInfo := mgr.cpInfo

 newCPInfo := &checkpointInfo{

 // 最新文件名后缀编号

 latestFileChunkSuffixNum: currentCPInfo.latestFileChunkSuffixNum,

 latestFileChunksize: currentCPInfo.latestFileChunksize + totalBytes-ToAppend, // 最新区块文件字节数

 isChainEmpty: false, // 链不为空，存在更新的区块数据

 lastBlockNumber: block.Header.Number} // 最新区块号

 // 保存区块检查点信息

 if err = mgr.saveCurrentInfo(newCPInfo, false); err != nil {

 // 若保存出现错误，则截取文件恢复到原来的位置

 truncateErr := mgr.currentFileWriter.truncateFile(currentCPInfo.latestFileChunksize)

 ……

 }

 // 更新区块文件的位置指针

 blockFLP := &fileLocPointer{fileSuffixNum: newCPInfo.latestFileChunkSuffixNum}

 blockFLP.offset = currentOffset // 当前文件位置指针

 for _, txOffset := range txOffsets {

 // 更新每个交易文件位置偏移量都加上区块长度字节数

 txOffset.loc.offset += len(blockBytesEncodedLen)

 }

 mgr.index.indexBlock(&blockIdxInfo{ // 建立区块索引信息，保存到区块索引数据库中

 blockNum: block.Header.Number, blockHash: blockHash,

 flp: blockFLP, txOffsets: txOffsets, metadata: block.Metadata})

 // 更新区块文件管理器的区块检查点信息和区块链信息

 mgr.updateCheckpoint(newCPInfo)

 mgr.updateBlockchainInfo(blockHash, block)

 return nil

}

addBlock()方法首先检查比较添加区块的区块号block.Header.Number和当前账本的区块链高度mgr.getBlockchainInfo().Height，若两者相同，则调用serializeBlock(block)方法，通过proto.Buffer类型的EncodeVarint()方法与proto.EncodeRawBytes()方法对区块数据block中的整型对象与字节数组对象进行重新编码，以获取区块字节数组blockBytes与序列化区块数据对象info（serializedBlockInfo类型）。

接着，addBlock()方法调用proto.EncodeVarint(uint64(blockBytesLen))方法，将区块字节数长度blockBytesLen序列化编码为blockBytesEncodedLen，计算区块文件中保存区块数据的总长度totalBytesToAppend为blockBytesLen+len(blockBytesEncodedLen)，再计算当前文件位置偏移量currentOffset与totalBytesToAppend的和，以判断是否超过了当前区块数据文件的最大字节数mgr.conf.maxBlockfileSize（默认为64MB）。如果超过了最大的区块文件字节数配置，则调用mgr.moveToNextFile()方法，更新当前的区块检查点信息cpInfo（最新区块文件名后缀编号latestFileChunkSuffixNum增1），并保存至区块索引数据库，再将mgr.currentFileWriter当前文件写入流移动到下一个新的区块数据文件。同时，调用mgr.updateCheckpoint(cpInfo)方法更新区块文件管理器mgr.cpInfo自身的区块检查点信息，并调用mgr.cpInfoCond.Broadcast()方法，广播唤醒所有等待该同步条件变量的程序，通知已向账本中提交了新区块。此时，addBlock()方法继续调用mgr.currentFileWriter.append(blockBytes，true)方法，将区块数据blockBytes同步写入当前最新的区块数据文件。如果出现了写入错误，则调用mgr.currentFileWriter.truncateFile()方法，根据区块检查点信息中保存的mgr.cpInfo.latestFileChunksize，截取错误的多余字节数据，恢复至最近的区块检查点状态。

然后，addBlock()方法创建新的区块检查点信息newCPInfo（checkpointInfo类型），封装了最新的区块号lastBlockNumber、最新区块的文件偏移量endOffsetLastBlock与最新区块文件编号lastFileNum，并设置其空链标志位isChainEmpty为false。接着，调用saveCurrentInfo(newCPInfo，false)方法，将区块检查点信息newCPInfo保存到区块索引数据库中。如果保存操作出现了错误，则调用mgr.currentFileWriter.truncateFile()方法截取错误的多余字节数据，并恢复至最近的区块检查点状态。同时，构造区块数据文件的位置指针blockFLP（file-LocPointer类型），包含最新的区块文件名后缀编号与当前文件偏移量，然后校正交易索引信息列表txOffsets中每个交易的文件位置偏移量，即在原有数值上增加区块数据长度字节数blockBytesEncodedLen，并基于上述参数构造区块索引信息对象（blockIdxInfo类型）。最后，调用mgr.index.indexBlock()方法，按照区块索引配置建立当前区块的索引信息，保存至区块索引数据库并更新索引检查点信息。

最后，addBlock()方法调用mgr.updateCheckpoint(newCPInfo)方法，更新区块文件管理器中的区块检查点信息。该方法调用mgr.cpInfoCond.Broadcast()方法，广播唤醒等待该同步条件变量的程序，通知有新区块提交至账本。接着，调用mgr.updateBlockchainInfo(blockHash，block)方法，构造最新的区块链信息newBCInfo（BlockchainInfo类型），以封装最新的账本区块链高度、当前区块头哈希值、前一个区块头哈希值等，再调用mgr.bcInfo.Store(newBCInfo)方法，以原子操作的方式更新区块文件管理器底层的区块链信息对象bcInfo。

至此，区块数据存储对象添加新区块数据的流程结束。

（3）查询区块与交易数据

blockStore区块数据存储对象提供了RetrieveBlocks()、RetrieveBlockByHash()、Retrieve-BlockByNumber()、RetrieveBlockByTxID()等查询接口，如代码清单7-14所示。这些方法的调用过程都非常类似，区别在于编码不同的查询组合键以查询区块索引数据库，如表7-3所示。

代码清单7-14　区块数据存储对象BlockStore接口的源码示例

common/ledger/blkstorage/blockstorage.go文件

type BlockStore interface {

 // 添加区块

 AddBlock(block *common.Block) error

 // 获取区块链信息

 GetBlockchainInfo() (*common.BlockchainInfo, error)

 // 根据区块起始号获取区块

 RetrieveBlocks(startNum uint64) (ledger.ResultsIterator, error)

 // 根据区块头哈希值获取区块

 RetrieveBlockByHash(blockHash []byte) (*common.Block, error)

 // 根据区块号获取区块结构

 RetrieveBlockByNumber(blockNum uint64) (*common.Block, error)

 // 根据交易ID获取交易对象

 RetrieveTxByID(txID string) (*common.Envelope, error)

 // 根据区块序号和交易序号获取交易对象

 RetrieveTxByBlockNumTranNum(blockNum uint64, tranNum uint64) (*common.Enve-lope, error)

 // 根据交易ID获取区块

 RetrieveBlockByTxID(txID string) (*common.Block, error)

 // 根据交易ID获取交易验证码

 RetrieveTxValidationCodeByTxID(txID string) (peer.TxValidationCode, error)

 // 关闭

 Shutdown()

}

①RetrieveBlockByNumber()方法

RetrieveBlockByNumber()方法调用区块文件管理器的blockfileMgr.retrieveBlockBy-Number()方法，以获取指定区块号的区块数据，如代码清单7-15所示。

代码清单7-15　区块文件管理器的retrieveBlockByNumber()方法源码示例

common/ledger/blkstorage/fsblkstorage/blockfile_mgr.go文件

// 获取指定区块号的区块数据对象

func (mgr *blockfileMgr) retrieveBlockByNumber(blockNum uint64) (*common.Block, error) {

 logger.Debugf("retrieveBlockByNumber() - blockNum = [%d]", blockNum)

 if blockNum == math.MaxUint64 {

 blockNum = mgr.getBlockchainInfo().Height - 1

 }

 // 根据区块号获取该区块在区块文件中的位置

 loc, err := mgr.index.getBlockLocByBlockNum(blockNum)

 if err != nil {

 return nil, err

 }

 return mgr.fetchBlock(loc) // 获取指定的区块数据对象

}

retrieveBlockByNumber()方法首先比较请求区块号blockNum是否等于math.MaxUint64。若两者相同，则设置blockNum为最新区块号，即账本高度mgr.getBlockchainInfo().Height-1。

接着，调用mgr.index.getBlockLocByBlockNum(blockNum)方法，基于区块号blockNum构造查询组合键（'n'+blockNum），通过区块索引管理器index（blockIndex类型）查询区块索引数据库，获取并解析指定区块的文件位置指针loc（fileLocPointer类型）。

然后，调用mgr.fetchBlock(loc)方法获取指定文件位置的区块数据对象。该方法先调用mgr.fetchBlockBytes()方法，即基于指定区块文件路径、区块文件名后缀编号、文件偏移量等创建指定文件位置的区块文件流stream，并调用stream.nextBlockBytes()方法，获取指定的区块数据字节数组blockBytes。接着，调用deserializeBlock(blockBytes)方法，通过proto.Buffer类型的DecodeVarint()方法与DecodeRawBytes()方法，解码区块数据中的整型对象与字节数组对象，以获取区块数据的头部、数据与元数据字段，重新构造成原始的区块数据对象block（common.Block类型）。

至此，区块数据存储对象的retrieveBlockByNumber()方法根据区块号获取指定区块数据的流程结束。

②RetrieveBlocks()方法

RetrieveBlocks()方法调用区块文件管理器的blockfileMgr.retrieveBlocks()→newBlock-Itr()方法，构造指定起始区块号的区块数据迭代器（blocksItr类型），并设置该对象上的区块文件管理器、区块检查点保存的最新区块号等。

③RetrieveBlockByHash()方法

RetrieveBlockByHash()方法调用区块文件管理器的blockfileMgr.retrieveBlockByHash()方法，根据区块头哈希值获取指定的区块数据。类似于retrieveBlockByNumber()方法，retrieve-BlockByHash()方法调用mgr.index.getBlockLocByHash(blockHash)方法，基于区块头哈希值blockHash构造查询组合键（'h'+blockHash），通过区块索引管理器index查询区块索引数据库，获取并解析指定区块的文件位置指针loc。接着，调用mgr.fetchBlock(loc)方法，获取指定文件位置的区块数据对象。

④RetrieveTxByID()方法

RetrieveTxByID()方法调用区块文件管理器的blockfileMgr.retrieveTransactionByID()方法，根据交易ID获取指定的交易数据。类似于retrieveBlockByNumber()方法，retrieve-TransactionByID()方法调用mgr.index.getTxLoc(txID)方法，基于交易ID（即txID）构造查询组合键（'t'+txID），从区块索引数据库中查询获取指定交易数据的文件位置指针loc。接着，调用mgr.fetchTransactionEnvelope(loc)方法，获取指定文件位置的交易数据对象。该方法首先调用mgr.fetchRawBytes()方法，获取指定位置的交易数据字节数组txEnvelopeBytes，再通过proto.Buffer类型的DecodeVarint()方法解码交易数据字节数n，最后调用putil.GetEnvelopeFromBlock(txEnvelopeBytes[n：])方法，解析出交易数据对象（Envelope类型），并跳过前面保存的交易数据字节数。

⑤RetrieveTxByBlockNumTranNum()方法

RetrieveTxByBlockNumTranNum()方法调用区块文件管理器的blockfileMgr.retrieveTran-sactionByBlockNumTranNum()方法，根据区块号与交易序号获取指定的交易数据。类似于retrieveTransactionByID()方法，retrieveTransactionByBlockNumTranNum()方法调用mgr.index.getTXLocByBlockNumTranNum(blockNum，tranNum)方法，基于区块号blockNum与交易序号tranNum构造查询组合键（'a'+blockNum+tranNum），从区块索引数据库中查询获取该交易数据的文件位置指针loc。接着，调用mgr.fetchTransactionEnvelope(loc)方法，获取指定文件位置的交易数据对象。

⑥RetrieveBlockByTxID()方法

RetrieveBlockByTxID()方法调用区块文件管理器blockfileMgr.retrieveBlockByTxID()方法，根据交易ID获取指定的区块数据。类似于retrieveBlockByNumber()方法，retrieve-BlockByTxID()方法调用mgr.index.getBlockLocByTxID(txID)方法，基于交易ID（即txID）构造查询组合键（'b'+txID），从区块索引数据库中查询获取该区块数据的文件位置指针loc。接着，调用mgr.fetchBlock(loc)方法，获取指定文件位置的区块对象。

⑦RetrieveTxValidationCodeByTxID()方法

RetrieveTxValidationCodeByTxID()方法调用区块文件管理器的blockfileMgr.retrieve-TxValidationCodeByTxID()方法，根据交易ID获取指定的交易验证码。实际上，该方法调用mgr.index.getTxValidationCodeByTxID(txID)方法，基于交易ID（即txID）构造查询组合键（'v'+txID），查询区块索引数据库获取交易验证码，检查后返回查询结果。

2.隐私数据存储对象

（1）创建隐私数据存储对象

账本数据存储对象在provider.ledgerStoreProvider.Open()方法中调用p.pvtdataStore-Provider.OpenStore(ledgerid)方法，创建指定通道（ledgerid）上的隐私数据存储对象pvtdata-Store（pvtdatastorage.store类型）。

该方法调用p.dbProvider.GetDBHandle(ledgerid)方法，创建LevelDB隐私数据库句柄dbHandle（DBHandle类型），并与账本ID（ledgerid）构造键值对，保存在pvtdataStore-Provider.dbProvider对象的数据库句柄列表dbHandles中。接着，基于dbHandle与账本ID（ledgerid）调用s.initState()方法，初始化隐私数据存储对象pvtdataStore。其中，s.init-State()方法获取隐私数据库中最近提交账本的区块号s.lastCommittedBlock，即键last-CommittedBlkkey（[]byte{1}）对应的值。如果没有找到，则说明没有保存任何隐私数据，并设置s.isEmpty标志位为true与最近提交区块号s.lastCommittedBlock为0。同时，检查隐私数据库中是否存在等待提交确认的隐私数据，即是否存在与键pendingCommitKey（[]byte{0}）关联的键值对，并将结果设置到s.batchPending标志位上。

至此，账本数据存储对象已创建并初始化隐私数据存储对象pvtdataStore。

（2）添加隐私数据

由于保存隐私数据和区块数据在账本中是同步操作的，采用了原子操作的方式添加数据，因此，隐私数据添加操作被设计成两阶段操作，即先调用Prepare()方法，准备隐私数据保存到隐私数据库中，再提交区块数据并进行判断。如果区块数据提交成功，则调用Commit()方法确认提交隐私数据。否则，调用Rollback()方法回滚隐私数据库。

Peer节点通过账本数据存储对象ledgerstorage.Store调用CommitWithPvtData()方法提交区块与隐私数据（BlockAndPvtData类型），如代码清单7-16所示。

代码清单7-16　CommitWithPvtData()方法的源码示例

core/ledger/ledgerstorage/store.go文件

// 提交区块与隐私数据对象

func (s *Store) CommitWithPvtData(blockAndPvtdata *ledger.BlockAndPvtData) error {

 s.rwlock.Lock()

 defer s.rwlock.Unlock()

 var pvtdata []*ledger.TxPvtData

 for _, v := range blockAndPvtdata.BlockPvtData {

 pvtdata = append(pvtdata, v) // 添加隐私数据列表pvtdata

 }

 // 将隐私数据更新到数据库中，并等待进一步操作确认Commit或回滚Rollback

 if err := s.pvtdataStore.Prepare(blockAndPvtdata.Block.Header.Number, pvtdata); err != nil {

 return err

 }

 // 添加区块数据

 if err := s.AddBlock(blockAndPvtdata.Block); err != nil {

 s.pvtdataStore.Rollback() // 添加失败，回滚数据

 return err

 }

 return s.pvtdataStore.Commit() // 确认数据提交成功

}

CommitWithPvtData()方法首先调用s.pvtdataStore.Prepare()方法，遍历交易隐私数据列表pvtData（[]*ledger.TxPvtData），调用batch.Put()方法添加隐私数据键值对到批量更新操作batch中。其中，键为pvtDataKeyPrefix（即[]byte{2}）+version.NewHeight(blockNum，tranNum).ToBytes()，blockNum为区块号，tranNum为区块内交易序号。同时，将pending-CommitKey（即[]byte{0}）键值对添加到batch中，然后同步batch更新到隐私数据库，设置batchPending标志位为等待提交（true）。

接着，调用s.AddBlock(blockAndPvtdata.Block)方法，向区块数据文件中提交区块数据。如果提交区块失败，则调用s.pvtdataStore.Rollback()方法回滚隐私数据库，构造隐私数据库上的范围查询迭代器，指定范围为指定区块号（lastCommittedBlock+1）以后的所有区块交易数据，并将待删除的隐私数据键添加到pendingBatchKeys列表中，其中，隐私数据键前缀为pvtDataKeyPrefix（即[]byte{2}）。然后，遍历pendingBatchKeys列表，调用batch.Delete()方法，将待删除的隐私数据键值对添加到batch中，同时将pending-CommitKey键值对的删除操作添加到batch中，并同步batch更新到隐私数据库中，清除batchPending标志位（false）。

如果提交区块成功，则调用s.pvtdataStore.Commit()方法确认提交隐私数据。实际上就是变更标志位信息，将pendingCommitKey键值对的删除操作添加到batch中，将last-CommittedBlkkey（[]byte{1}）与最近提交成功的区块号committingBlockNum编码字节数组构成键值对，并添加到batch中，最后同步batch更新至隐私数据库。另外，清除batchPending标志位与isEmpty标志位为false，更新最新提交区块号s.lastCommittedBlock为committingBlockNum。

至此，隐私数据存储对象pvtdataStore添加隐私数据的流程结束。

Fabric 1.2与1.3还保存了隐私数据的过期信息记录并及时清理过期数据（5.4.2节）。

（3）查询隐私数据

pvtdataStore隐私数据存储对象调用GetPvtDataByBlockNum(blockNum uint64，filter ledger.PvtNsCollFilter)方法，查询获取指定区块号blockNum上符合过滤器filter要求的隐私数据集合（[]*ledger.TxPvtData），如代码清单7-17所示。

代码清单7-17　GetPvtDataByBlockNum()方法的源码示例

core/ledger/pvtdatastorage/store_impl.go文件

// 获取与指定区块号关联的隐私数据集合

func (s *store) GetPvtDataByBlockNum(blockNum uint64, filter ledger.PvtNsColl-Filter) ([]*ledger.TxPvtData, error) {

 logger.Debugf("Get private data for block [%d], filter=%#v", blockNum, filter)

 if s.isEmpty {

 return nil, &ErrOutOfRange{"The store is empty"}

 }

 // 检查请求的区块号是否超过最近成功提交的区块号

 if blockNum > s.lastCommittedBlock {

 return nil, &ErrOutOfRange{fmt.Sprintf("Last committed block=%d, block requested=%d", s.lastCommittedBlock, blockNum)}

 }

 var pvtData []*ledger.TxPvtData

 // 获取范围查询的起始键与结束键

 startKey, endKey := getKeysForRangeScanByBlockNum(blockNum)

 logger.Debugf("Querying private data storage for write sets using startKey=%#v, endKey=%#v", startKey, endKey)

 itr := s.db.GetIterator(startKey, endKey) // 构造数据库范围查询数据迭代

 器，请求获取数据

 defer itr.Release() // 使用完毕后释放迭代器

 var pvtWSet *rwset.TxPvtReadWriteSet

 var err error

 for itr.Next() { // 迭代数据查询结果

 bNum, tNum := decodePK(itr.Key()) // 解析区块号与交易序号

 // 解析隐私数据读写集

 if pvtWSet, err = decodePvtRwSet(itr.Value()); err != nil {

 return nil, err

 }

 logger.Debugf("Retrieved private data write set for block [%d] tran [%d]", bNum, tNum)

 filteredWSet := TrimPvtWSet(pvtWSet, filter) // 过滤隐私数据

 pvtData = append(pvtData, &ledger.TxPvtData{SeqInBlock: tNum, WriteSet: filteredWSet})

 }

 return pvtData, nil

}

GetPvtDataByBlockNum()方法首先检查参数的合法性，如请求的区块号blockNum不应该大于最新提交的区块号，再调用getKeysForRangeScanByBlockNum(blockNum)方法，构造指定查询区块号中交易的起始键startKey与结束键endKey，即编码组合键pvtData-KeyPrefix（[]byte{2}）+version.NewHeight(blockNum，tranNum).ToBytes()，blockNum为区块号，tranNum为区块内交易序号。其中，startKey起始键中的交易号为0，endKey结束键中的交易号为math.MaxUint64（264-1），这就意味着要获取该区块号内所有交易的隐私数据集合。接着，基于startKey与endKey构造隐私数据库上的范围查询迭代器itr，使用itr.Next()方法遍历隐私数据查询结果，解析结果中的隐私数据读写集pvtWSet（TxPvt-ReadWriteSet类型），并调用TrimPvtWSet(pvtWSet，filter)方法，利用filter过滤器参数筛选出符合指定名字空间与隐私数据集合名称的filteredWSet集合。然后，将交易序号tNum与过滤后的隐私数据读写集filteredWSet重新构造为交易隐私数据（TxPvtData类型），并添加到过滤后的交易隐私数据列表pvtData（[]*ledger.TxPvtData）中。如此循环处理完毕所有的数据查询结果，并返回交易隐私数据列表pvtData。Fabric 1.2与1.3会主动过滤掉过期的隐私数据。

至此，pvtdataStore隐私数据存储对象查询隐私数据的流程结束。

3.获取区块与隐私数据

coordinator模块调用GetPvtDataAndBlockByNum(seqNum uint64，peerAuthInfo common.SignedData)方法，查询并获取指定区块号seqNum对应的区块与隐私数据，并且请求数据节点的认证信息peerAuthInfo必须满足指定隐私数据集合的访问权限策略，如代码清单7-18所示。

代码清单7-18　coordinator模块的GetPvtDataAndBlockByNum()方法源码示例

gossip/privdata/coordinator.go文件

// 根据区块号与节点认证信息（签名数据）获取对应的区块与隐私数据

func (c *coordinator) GetPvtDataAndBlockByNum(seqNum uint64, peerAuthInfo common.SignedData) (*common.Block, util.PvtDataCollections, error) {

 blockAndPvtData, err := c.Committer.GetPvtDataAndBlockByNum(seqNum)

 if err != nil {

 return nil, nil, fmt.Errorf("cannot retrieve block number %d, due to %s", seqNum, err)

 }

 seqs2Namespaces

 aggregatedCollections(make(map[seqAndDataModel]map[string][]*rwset.Colle-ctionPvtReadWriteSet))

 data := blockData(blockAndPvtData.Block.Data.Data)

 _, err = data.forEachTxn(make(txValidationFlags, len(data)), func(seqInBlock uint64, chdr *common.ChannelHeader, txRWSet *rwsetutil.TxRwSet, _ []*peer.Endorsement) {

 item, exists := blockAndPvtData.BlockPvtData[seqInBlock]

 if !exists {

 return

 }

 for _, ns := range item.WriteSet.NsPvtRwset {

 for _, col := range ns.CollectionPvtRwset {

 cc := common.CollectionCriteria{

 Channel: chdr.ChannelId,

 TxId: chdr.TxId,

 Namespace: ns.Namespace,

 Collection: col.CollectionName,

 }

 sp, err := c.CollectionStore.RetrieveCollectionAccessPolicy(cc)

 if err != nil {

 logger.Warning("Failed obtaining policy for", cc, ":", err)

 continue

 }

 isAuthorized := sp.AccessFilter()

 if isAuthorized == nil {

 logger.Warning("Failed obtaining filter for", cc)

 continue

 }

 if !isAuthorized(peerAuthInfo) {

 logger.Debug("Skipping", cc, "because peer isn't authorized")

 continue

 }

 seqs2Namespaces.addCollection(seqInBlock, item.WriteSet.Data-Model, ns.Namespace, col)

 }

 }

 })

 if err != nil {

 return nil, nil, errors.WithStack(err)

 }

 return blockAndPvtData.Block, seqs2Namespaces.asPrivateData(), nil

}

coordinator.GetPvtDataAndBlockByNum()方法首先通过coordinator模块调用c.Comm-itter.GetPvtDataAndBlockByNum(seqNum)方法，实际上是通过账本提交器上kvLedger对象的账本数据存储对象ledgerstorage.Store，调用该对象的GetPvtDataAndBlockByNum()方法。该方法分别调用s.RetrieveBlockByNumber(blockNum)方法与s.getPvtDataByNumWithout-Lock(blockNum，filter)方法，获取指定区块号seqNum对应的区块数据与隐私数据，并重新构造成区块与隐私数据对象blockAndPvtData（BlockAndPvtData类型）。

接着，coordinator.GetPvtDataAndBlockByNum()方法遍历区块中的交易数据，调用for-EachTxn()方法，过滤出有效交易数据的区块内交易序号seqInBlock及通道头部chdr，并对该交易调用自定义方法consumer()。该方法先获取并遍历指定交易序号seqInBlock对应的隐私数据读写集blockAndPvtData.BlockPvtData[seqInBlock]，基于该隐私数据的名字空间、集合名称、通道ID等信息，构造隐私数据集合标准对象cc（CollectionCriteria类型）。同时，通过coordinator模块调用c.CollectionStore.RetrieveCollectionAccessPolicy(cc)方法，利用LSCC系统链码从账本中获取指定集合名称的隐私数据集合对象sp（SimpleCollection类型）。该对象包含指定的隐私数据集合名称name、隐私数据配置信息conf、隐私数据集合访问权限策略accessPolicy、成员组织列表memberOrgs。然后，调用sp.AccessFilter()方法，生成对应的节点过滤器方法isAuthorized，用于验证数据请求节点的认证信息peerAuthInfo参数是否满足该隐私数据集合的访问权限策略。如果该数据请求节点通过了认证检查，则将当前隐私数据读写集添加到seqs2Namespaces列表（aggregatedCollections类型）中。

最后，coordinator.GetPvtDataAndBlockByNum()方法返回获取的区块数据blockAndPvt-Data.Block，并调用seqs2Namespaces.asPrivateData()方法，将获取的隐私数据集合元素逐个转换为TxPvtData结构的隐私数据对象，并添加至隐私数据列表（[]*ledger.TxPvtData类型）。
7.1.4　区块索引数据库

区块文件管理器blockfileMgr通过区块索引信息管理器index（blockIndex类型）管理区块索引数据库（LevelDB），负责维护指定账本中的区块索引信息与索引检查点信息，在提交区块与主动同步索引（如故障崩溃恢复时创建区块数据存储对象，对现存区块数据建立索引）时调用indexBlock()方法，为指定的区块构建区块索引信息。实际上，区块索引数据库都保存在同一个LevelDB数据库中，Peer节点上的默认存放路径是/var/hyperledger/production/ledgersData/chains/index，Orderer节点上的默认存放路径是/var/hyperledger/production/orderer/index。每个通道账本上的区块索引信息在区块索引数据库中都是通过数据库名称（账本ID/通道ID）来实现逻辑隔离的，区块索引数据库上存储的主要信息具体如下。

·区块检查点信息：封装了最近区块文件名后缀编号latestFileChunkSuffixNum、最新区块文件字节数latestFileChunksize、标识空链isChainEmpty、最新区块号last-BlockNumber等。添加区块成功时会同步保存最新的区块检查点信息的键值对。其中，键blkMgrInfoKey为[]byte("blkMgrInfo")；

·区块索引信息：添加区块或主动同步索引时，都会对更新的区块数据建立区块索引信息，按照区块索引配置分别基于区块号、区块头哈希值、交易ID、交易序号等添加相应的前缀构造组合键，以账本中指定的区块或交易文件位置信息、交易验证码等作为值，构成键值对保存到区块索引数据库中，目前支持6种区块信息索引方式，以实现在区块文件中快速检索区块、交易等信息；

·索引检查点：将[]byte("indexCheckpointKey")与当前已建立区块索引数据的区块号构成键值对，保存至区块索引数据库。
7.1.5　状态数据库

状态数据库保存了最新的有效交易执行结果读写集（实际上只保存了写集合，读集合是为了过滤出有效交易），其状态数据表示通道上指定键的最新值，即“世界状态（world state）”，支持LevelDB数据库与CouchDB数据库。状态数据库是基于键值对（k，ver，val）描述状态数据的，其中，键为k，版本为ver，值为val。版本ver是用Height类型（包含区块号与交易序号）进行标识的。状态数据库目前可提供三种查询方式，即查询单个键数据、查询多个键数据以及查询指定范围内的数据。CouchDB数据库可以支持更为复杂的富查询方式。

1.创建状态数据库

kvledger.Provider对象在NewProvider()方法中调用privacyenabledstate.NewCommon-StorageDBProvider()方法，根据配置中启用的CouchDB数据库标志位，分别通过state-couchdb类型数据库或stateleveldb类型数据库调用NewVersionedDBProvider()方法，创建状态数据库提供者vdbProvider（CommonStorageDBProvider类型）。同时，指定配置的数据库文件路径（LevelDB数据库默认是/var/hyperledger/production/ledgersData/stateLeveldb，CouchDB数据库提供指定服务地址、用户名与密码等配置参数），打开数据库实例返回数据库句柄，并保存在vdbProvider对象中。

接着，调用provider.recoverUnderConstructionLedger()→openInternal()方法，实际上是通过调用provider.vdbProvider.GetDBHandle(ledgerID)→CommonStorageDB.GetDBHandle()方法来创建状态数据库vDB（CommonStorageDB类型）的。该方法通过状态数据库提供者vdbProvider调用p.VersionedDBProvider.GetDBHandle(ledgerID)方法，创建指定通道账本（ledgerID）上的数据库对象vdb（statecouchdb.VersionedDB类型或stateleveldb.versionedDB类型），并基于该对象调用NewCommonStorageDB()函数，创建状态数据库vDB（Common-StorageDB类型）。然后，将状态数据库vDB作为参数传递给newKVLedger()方法调用执行，以用于创建本地Peer节点账本（kvLedger类型）。其中，newKVLedger()方法调用lock-basedtxmgr.NewLockBasedTxMgr()方法，将状态数据库vDB封装到交易管理器txtmgmt（LockBasedTxMgr类型）中，同时作为交易管理器自身的内部交易验证器的底层数据库，用于访问状态数据库以获取最新的状态数据，验证交易读数据的有效性，从而标记交易的有效性。

至此，Peer节点账本kvLedger对象就能通过交易管理器txtmgmt来管理账本上的状态数据库。

2.添加状态数据

5.4.2节介绍了状态数据库添加状态数据的流程。其中，Peer节点账本kvLedger对象通过交易管理器调用LockBasedTxMgr.ValidateAndPrepare()方法，验证并准备区块与隐私数据，更新交易管理器中验证过的数据更新批量操作batch。接着，调用LockBasedTxMgr.Commit()→txmgr.db.ApplyPrivacyAwareUpdates()方法，添加有效交易的状态数据到状态数据库中，包括公共数据、隐私数据哈希值与隐私数据。

3.查询与修改状态数据

Peer节点账本kvLedger对象可以调用NewQueryExecutor()方法，创建状态数据库的查询执行器（lockBasedQueryExecutor类型，实现了QueryExecutor接口），支持查询与修改状态数据库中的状态数据（公共数据与隐私数据）。实际上，查询执行器对象包含的helper字段对象（queryHelper类型）在创建时封装了kvLedger对象的交易管理器（LockBasedTxMgr类型）。因此，查询执行器可以通过交易管理器访问本地的状态数据库，查询并返回公共数据与隐私数据。同时，helper对象利用自身的rwsetBuilder字段对象保存公共数据读数据与隐私数据读数据哈希值。注意，QueryExecutor接口中的Execute-Query()方法与ExecuteQueryOnPrivateData()方法目前只支持CouchDB数据库的富查询方式。

如图7-5所示，Endorser背书节点上创建的交易模拟器（lockBasedTxSimulator类型）包含查询执行器（lockBasedQueryExecutor类型）以及交易读写集构建器rwsetBuilder（RWSetBuilder类型）等，其自身的rwsetBuilder对象同时也是查询执行器helper对象上的rwsetBuilder对象，如代码清单7-19所示，采用了较为复杂的嵌套数据结构，分开管理公有数据（含公共数据与隐私数据哈希值）与隐私数据。交易模拟器通过自身的rwsetBuilder对象保存交易模拟执行过程中的公共数据写数据、隐私数据写数据以及隐私数据写数据哈希值，而不是直接提交到状态数据库。其中，数据的删除操作与增加操作的区别在于IsDelete删除标志位，删除操作的IsDelete标志位是true并且值是nil。因此，交易模拟器在模拟执行完毕后，可以通过自身的rwsetBuilder对象重新获取模拟执行中保存的所有结果读写集（公开数据、隐私数据哈希值以及隐私数据）。只有经过Committer功能模块验证交易之后，才能将其中的有效交易数据提交到状态数据库中。

代码清单7-19　交易模拟器lockBasedTxSimulator类型的源码示例

core/ledger/kvledger/txmgmt/txmgr/lockbasedtxmgr/lockbased_tx_simulator.go文件

type lockBasedTxSimulator struct {

 lockBasedQueryExecutor // 查询执行器

 rwsetBuilder *rwsetutil.RWSetBuilder // 模拟执行结果读写集构建器

 writePerformed bool // 支持写入的标志位

 pvtdataQueriesPerformed bool // 支持隐私数据查询的标志位

}

// 创建交易模拟器

func newLockBasedTxSimulator(txmgr *LockBasedTxMgr, txid string) (*lockBasedTx-Simulator, error) {

 // 构造新的读写集合构建器RWSetBuilder对象

 rwsetBuilder := rwsetutil.NewRWSetBuilder()

 helper := &queryHelper{txmgr: txmgr, rwsetBuilder: rwsetBuilder}

 // 构造查询帮助类

 logger.Debugf("constructing new tx simulator txid = [%s]", txid)

 return &lockBasedTxSimulator{lockBasedQueryExecutor{helper, txid}, rwsetBuilder, false, false}, nil

}

（1）查询状态数据

QueryExecutor查询状态数据接口如表7-4所示。

 [image:]

图7-5　lockBasedTxSimulator类型与RWSetBuilder类型示意图

表7-4　QueryExecutor查询状态数据接口功能表

 [image:]

查询状态数据库时需要对特定的键进行编码，规则如下：

·查询隐私数据时，调用derivePvtDataNs(namespace，collection)方法，基于名字空间与集合名称构造编码组合键，即namespace+nsJoiner("$$")+pvtDataPrefix("p")+coll-ection；

·如果状态数据库采用LevelDB数据库，则查询底层数据库时应调用constructCom-positeKey(ns，k)方法，添加名字空间构造编码组合键，即[]byte(ns)+compositeKey-Sep（即[]byte{0x00}）+[]byte(k)。

如果状态数据库采用CouchDB数据库，则访问底层数据库时会调用couchdb.Construct-NamespaceDBName(vdb.chainName，namespace)方法，将名字空间namespace（通常是调用的链码名称）转换为符合命名规范要求的字符串（只允许小写字母等），再将通道名称ID与转换后的名字空间通过下划线（_）拼接成数据库名称namespaceDBName，然后基于该名称获取其指定的数据库实例以执行数据操作。

查询状态数据库包括三种基本的查询方式，即查询单个键状态数据、查询多个键状态数据集合、查询指定范围的状态数据集合。

1）查询单个键的状态数据与查询多个键的状态数据集合

对于公共数据查询的GetState()方法，查询执行器利用helper对象，根据名字空间ns和键key从本地的状态数据库中查询指定的状态数据versionedValue，并解析保存的值val与版本ver。接着，通过helper对象调用h.rwsetBuilder.AddToReadSet(ns，key，ver)方法，将读数据的键key与版本ver构造成读数据对象（KVRead类型），将键key与该对象构成键值对，添加到rwsetBuilder对象上指定名字空间ns中的公共数据读集合pubRwBuilder-Map[ns].readMap（map[string]*kvrwset.KVRead类型）中。

GetStateMultipleKeys()方法首先获取状态数据集合versionedValues，遍历其中的状态数据，调用GetState()方法依次读取并构造公共数据读数据，再逐个添加到rwsetBuilder对象的公共数据读集合中。

对于隐私数据查询GetPrivateData()方法，查询执行器利用helper对象，根据名字空间ns、集合名称coll和键key从本地的状态数据库中读取指定的隐私数据versionedValue，并解析保存的值val与版本ver。接着，计算该隐私数据键key对应的键哈希值keyHash。接着，利用helper对象根据名字空间ns、集合名称coll和键哈希值keyHash从本地的状态数据库中读取指定的隐私数据哈希值版本hashVersion，并比较hashVersion与ver中的Height结构对象所包含的区块号以及交易序号是否相同。如果没有通过检查，则报错返回，读取隐私数据失败。否则，继续通过helper对象调用h.rwsetBuilder.AddToHashedReadSet(ns，coll，key，ver)方法，利用newPvtKVReadHash(key，version)方法计算键哈希值KeyHash（SHA256哈希算法），并构造读数据哈希值kvReadHash（KVReadHash类型）。然后，将键key与kvReadHash构成键值对，再添加到rwsetBuilder对象上指定名字空间ns与集合名称coll中的隐私数据哈希值读集合pubRwBuilderMap[ns].collHashRwBuilder[coll].read-Map（map[string]*kvrwset.KVRead类型）中。

GetPrivateDataMultipleKeys()方法首先调用h.txmgr.db.GetPrivateDataMultipleKeys()方法，获取指定的隐私数据集合versionedValues，接着遍历其中的隐私数据，类似于GetPrivateData()方法，解析保存的值与版本，再调用h.rwsetBuilder.AddToHashedReadSet()方法，构造隐私数据读数据哈希值，并逐个添加到rwsetBuilder对象上的隐私数据哈希值读集合中。

最后，返回从状态数据库中读取的数据或数据集合。

2）查询指定范围的状态数据集合

①公共数据

GetStateRangeScanIterator()查询方法返回指定范围的公共数据查询结果迭代器，通过查询执行器的helper对象调用q.helper.getStateRangeScanIterator()→newResultsItr()函数，构造查询结果迭代器对象itr（resultsItr类型），同时，将itr添加到helper对象自身的迭代器列表h.itrs（[]*resultsItr）中，如代码清单7-20所示。

代码清单7-20　newResultsItr()函数创建查询结果迭代器的源码示例

core/ledger/kvledger/txmgmt/txmgr/lockbasedtxmgr/helper.go文件

func newResultsItr(ns string, startKey string, endKey string,

 db statedb.VersionedDB, rwsetBuilder *rwsetutil.RWSetBuilder, enableHashing bool, maxDegree uint32) (*resultsItr, error) {

 // 创建状态数据库的范围查询迭代器

 dbItr, err := db.GetStateRangeScanIterator(ns, startKey, endKey)

 ……

 itr := &resultsItr{ns: ns, dbItr: dbItr}

 if rwsetBuilder != nil {

 itr.rwSetBuilder = rwsetBuilder

 itr.endKey = endKey

 itr.rangeQueryInfo = &kvrwset.RangeQueryInfo{StartKey: startKey}

 resultsHelper, err := rwsetutil.NewRangeQueryResultsHelper(enableHashing, maxDegree)

 ……

 itr.rangeQueryResultsHelper = resultsHelper

 }

 return itr, nil

}

查询结果迭代器对象（resultsItr类型）如图7-6所示，具体说明如下。

·dbItr（statedb.ResultsIterator类型）：LevelDB类型或CouchDB类型数据库的查询迭代器；

·rwSetBuilder（rwsetutil.RWSetBuilder类型）：用于保存模拟执行结果的读写集构建器，支持查询与写入数据操作；

·rangeQueryInfo（RangeQueryInfo类型）：保存数据查询范围的信息。其中，StartKey字段与EndKey字段分别用于标识查询范围的起始键与结束键（不包含Endkey对应的值）。ItrExhausted字段是查询结果已经迭代完毕的标志位。ReadsInfo字段包括RangeQueryInfo_RawReads原始读集合（包含QueryReads对象，即[]*KVRead读数据集合）与RangeQueryInfo_ReadsMerkleHashes读集合梅克尔树哈希值（包含Query-ReadsMerkleSummary对象）两种类型；

·rangeQueryResultsHelper（RangeQueryResultsHelper类型）：使用pendingResults字段（[]*kvrwset.KVRead类型）保存指定查询范围内的读数据集合与mt字段（merkle-Tree类型）保存对应哈希值的梅克尔树，同时，默认开启hashingEnabled标志位（true），并且最大节点数maxDegree默认为50个。其中，梅克尔树merkleTree结构对象负责维护梅克尔树的节点哈希值字典tree（map[MerkleTreeLevel][]Hash类型），每个层级都会保存一个节点哈希值列表（[]Hash类型），在初始化时指定每个层级的最大节点数maxDegree，并且最高层级maxLevel默认初始化设置为1。

 [image:]

图7-6　resultItr类型示意图

·resultsItr.Next()方法

resultsItr.Next()方法通过LevelDB或CouchDB数据库迭代器，调用itr.dbItr.Next()方法，获取下一个查询结果queryResult（statedb.QueryResult类型）。接着，调用itr.updateRange-QueryInfo(queryResult)→itr.rangeQueryResultsHelper.AddResult()方法，将查询结果versionedKV更新到rangeQueryResultsHelper对象上。该方法基于查询结果的键versionedKV.Key与版本versionedKV.Version构造读数据对象（KVRead类型），添加到rangeQueryResultsHelper对象的helper.pendingResults读集合中。如果检查发现开启了helper.hashingEnabled标志位（默认初始化为true），并且当前helper.pendingResults读集合数据个数超过了最大数量helper.maxDegree（默认为50个），则调用helper.processPendingResults()方法，序列化封装读集合数据并计算对应的哈希值hash，再调用helper.mt.update(hash)→merkleTree.update()方法，将该哈希值hash添加到梅克尔树对应层级的节点哈希值列表中，如代码清单7-21与代码清单7-22所示。最后，resultsItr.Next()方法基于queryResult对象（包含名字空间、键与值等）构造查询数据结果（KV类型）。

代码清单7-21　AddResult()方法的源码示例

core/ledger/kvledger/txmgmt/rwsetutil/query_results_helper.go文件

// 添加查询结果，如果读集合数量超过maxDegree，则更新梅克尔树哈希值结构

func (helper *RangeQueryResultsHelper) AddResult(kvRead *kvrwset.KVRead) error {

 logger.Debug("Adding a result")

 helper.pendingResults = append(helper.pendingResults, kvRead)

 if helper.hashingEnabled && uint32(len(helper.pendingResults)) > helper.maxDegree {

 logger.Debug("Processing the accumulated results")

 if err := helper.processPendingResults(); err != nil {

 return err

 }

 }

 return nil

}

代码清单7-22　processPendingResults()方法的源码示例

core/ledger/kvledger/txmgmt/rwsetutil/query_results_helper.go文件

// 处理等待提交的KVReads结果集合，计算哈希值并更新梅克尔树

func (helper *RangeQueryResultsHelper) processPendingResults() error {

 var b []byte

 var err error

 if b, err = serializeKVReads(helper.pendingResults); err != nil {

 return err

 }

 helper.pendingResults = nil // 重置结果KVReads集合

 hash, err := bccspfactory.GetDefault().Hash(b, hashOpts) // 计算哈希值

 if err != nil {

 return err

 }

 helper.mt.update(hash) // 更新梅克尔树

 return nil

}

如代码清单7-23所示，merkleTree.update()方法首先将当前读集合数据的哈希值next-LeafLevelHash放入第1层（leafLevel）的节点哈希值列表m.tree[leafLevel]中，从下向上逐渐增加层级，以循环迭代整个梅克尔树。如果发现当前层级的节点哈希值数目不大于最大数量maxDegree（默认为50个），则不需要合并当前层级上的节点哈希值，直接跳出返回。否则，调用computeCombinedHash()函数，重新计算当前层级的节点哈希值列表的组合哈希值nextLevelHash，并调用delete(m.tree，currentLevel)函数以删除当前层级的哈希值列表，同时将原哈希值nextLevelHash添加到高一个层级nextLevel的节点哈希值列表m.tree[nextLevel]中。接着，检查nextLevel层级是否超过预设的最高层级maxLevel（默认为1）。如果nextLevel大于maxLevel，则重新设置maxLevel为nextLevel。然后，更新当前层级currentLevel为nextLevel，继续循环处理，直到当前层级的节点哈希值数量不大于预设的最大数量maxDegree为止。

代码清单7-23　梅克尔树merkleTree类型的update()方法更新节点哈希值的源码示例

core/ledger/kvledger/txmgmt/rwsetutil/query_results_helper.go文件

// 更新梅克尔树节点哈希值并递归构建更高层级的节点

func (m *merkleTree) update(nextLeafLevelHash Hash) error {

 logger.Debugf("Before update() = %s", m)

 defer logger.Debugf("After update() = %s", m)

 // 在当前梅克尔树层级上添加节点哈希值

 m.tree[leafLevel] = append(m.tree[leafLevel], nextLeafLevelHash)

 currentLevel := leafLevel // 设置当前层级

 for {

 currentLevelHashes := m.tree[currentLevel] // 获取当前层级哈希值

 // 检查当前层级节点数是否小于或等于最大节点数

 if uint32(len(currentLevelHashes)) <= m.maxDegree {

 return nil

 }

 // 重新计算组合节点哈希值

 nextLevelHash, err := computeCombinedHash(currentLevelHashes)

 if err != nil {

 return err

 }

 // 删除当前层级哈希值列表，因为都合并到了新的节点哈希值中

 delete(m.tree, currentLevel)

 nextLevel := currentLevel + 1 // 计算高一个层级nextLevel

 // 设置高一个层级的节点哈希值项

 m.tree[nextLevel] = append(m.tree[nextLevel], nextLevelHash)

 // 如果nextLevel大于最大层级maxLevel，则更新最大层级maxLevel

 if nextLevel > m.maxLevel {

 m.maxLevel = nextLevel

 }

 // 设置当前层级为高一个层级nextLevel，继续循环

 currentLevel = nextLevel

 }

}

事实上，梅克尔树merkleTree初始化时默认设置最高层级maxLevel为1，一旦发现当前层级上节点哈希值的数量超过预设的最大数量maxDegree，就重新计算当前层级所有节点的组合哈希值，并添加到高一个层级的哈希值列表中，同时，删除当前层级的哈希值列表，将当前层级更新为高一个层级，再更新最高层级maxLevel。因此，梅克尔树merkleTree只会维护1个层级的节点哈希值列表，退化为单层的梅克尔树结构。

·queryHelper.done()方法

查询执行器提供Done()方法调用自身helper对象的q.helper.done()→queryHelper.done()方法，用于在查询数据结束后释放占用的迭代器资源，并返回查询结果，如代码清单7-24所示。该方法遍历查询迭代器列表h.itrs，通过包含的查询迭代器调用itr.rangeQueryResults-Helper.Done()→RangeQueryResultsHelper.Done()方法，以处理查询结果，返回查询结果的读数据集合results或者对应的梅克尔树摘要对象hash。

代码清单7-24　queryHelper.done()方法的源码示例

core/ledger/kvledger/txmgmt/txmgr/lockbasedtxmgr/helper.go文件

func (h *queryHelper) done() {

 if h.doneInvoked {

 return

 }

 // 函数退出时，解锁并关闭所有迭代器

 defer func() {

 h.txmgr.commitRWLock.RUnlock()

 h.doneInvoked = true // 完成查询结果更新，可以使用该查询帮助类实例queryHelper

 for _, itr := range h.itrs { // 关闭所有迭代器

 itr.Close()

 }

 }()

 // 遍历所有迭代器，更新模拟器执行结果

 for _, itr := range h.itrs {

 if h.rwsetBuilder != nil {

 // 获取查询读集合，并计算哈希值更新到梅克尔树中

 results, hash, err := itr.rangeQueryResultsHelper.Done()

 if err != nil {

 h.err = err

 return

 }

 if results != nil {

 // 设置结果迭代器中范围查询信息的数据读集合

 itr.rangeQueryInfo.SetRawReads(results)

 }

 if hash != nil {

 // 更新结果迭代器中范围查询信息的梅克尔树哈希值

 itr.rangeQueryInfo.SetMerkelSummary(hash)

 }

 // 添加到范围查询集合中，更新相关字典和键列表

 h.rwsetBuilder.AddToRangeQuerySet(itr.ns, itr.rangeQueryInfo)

 }

 }

}

接着，queryHelper.done()方法检查返回结果。如果存在合法的读集合查询结果results（不为nil），则通过自身的rangeQueryInfo结构对象调用SetRawReads(results)方法，保存查询的读集合results（[]*KVRead）至范围查询信息对象（RangeQueryInfo_RawReads类型）中。如果存在合法的梅克尔树摘要对象hash（不为nil），则通过自身的rangeQueryInfo结构对象调用SetMerkelSummary(hash)方法，保存对应的梅克尔树摘要对象hash（QueryReads-MerkleSummary类型）至范围查询信息对象（RangeQueryInfo_ReadsMerkleHashes类型）中。

最后，queryHelper.done()方法调用h.rwsetBuilder.AddToRangeQuerySet()方法，保存查询结果至rwsetBuilder对象中。该方法先构造范围查询组合键key（rangeQueryKey类型），封装起始键startKey、结束键endKey与迭代结束标志位itrExhausted。接着，检查rwsetBuilder对象上指定名字空间ns中的公共数据范围查询结果列表nsPubRwBuilder[ns].rangeQueriesMap（map[rangeQueryKey]*kvrwset.RangeQueryInfo类型），如果该列表中不存在与指定组合键key关联的键值对，则将查询结果itr.rangeQueryInfo对象保存到nsPubRw-Builder.rangeQueriesMap[key]中，同时，将key保存至对应的范围查询键列表nsPubRw-Builder.rangeQueriesKeys（[]rangeQueryKey类型）中。

当queryHelper.done()方法退出时，自动关闭所有的查询迭代器，释放交易管理器的commit-RWLock读写锁，设置doneInvoked标志位为true以表示调用已经完成，同时允许其他查询调用checkDone()方法以检查doneInvoked标志位，从而可以正常调用查询执行器。

·RangeQueryResultsHelper.Done()方法

RangeQueryResultsHelper.Done()方法负责计算读集合的哈希值并更新梅克尔树对象，再返回查询结果的读数据集合或者对应的梅克尔树摘要对象，如代码清单7-25所示。

代码清单7-25　RangeQueryResultsHelper.Done()方法源码示例

core/ledger/kvledger/txmgmt/rwsetutil/query_results_helper.go文件

func (helper *RangeQueryResultsHelper) Done() ([]*kvrwset.KVRead, *kvrwset.QueryReadsMerkleSummary, error) {

 if !helper.hashingEnabled || helper.mt.isEmpty() {

 return helper.pendingResults, nil, nil

 }

 if len(helper.pendingResults) != 0 {

 logger.Debug("Processing the pending results")

 if err := helper.processPendingResults(); err != nil {

 return helper.pendingResults, nil, err

 }

 }

 helper.mt.done() // 计算哈希值并更新梅克尔树

 return helper.pendingResults, helper.mt.getSummery(), nil

}

RangeQueryResultsHelper.Done()方法检查相关标志位。如果查询迭代器没有启用梅克尔树哈希值（helper.hashingEnabled为false，实际上默认为true）或者梅克尔树为空（helper.mt.isEmpty()为true），即只有1个层级结构，且不存在任何节点哈希值列表，则直接返回查询结果的读集合helper.pendingResults。

如果查询迭代器存在合法的读集合helper.pendingResults（读数据个数不为0），则调用helper.processPendingResults()方法，序列化读集合结果并计算其哈希值hash，然后调用helper.mt.update(hash)方法，将hash更新到merkleTree（梅克尔树）中的节点哈希值列表。最后，返回查询结果的读集合helper.pendingResults。

接着，调用helper.mt.done()方法，计算最新的节点哈希值并更新梅克尔树，如代码清单7-26所示。该方法先从梅克尔树leafLevel层级（默认为1）开始，归并梅克尔树当前层级上的节点哈希值列表，以确保每个层级上的节点数不超过1个，再归并到高一个层级的节点哈希值列表中，循环执行整个归并过程，直至梅克尔树的最高层级maxLevel。如果最高层级的节点哈希值数量大于默认的最大数量maxDegree，则合并最高层级的哈希值列表，并计算组合哈希值，再保存至梅克尔树中最高层级的节点哈希值列表中。

最后，返回helper.pendingResults查询结果的读集合与helper.mt.getSummery()返回的梅克尔树摘要对象（QueryReadsMerkleSummary类型）。其中，梅克尔树摘要对象包含每个层级的最大节点数MaxDegree、梅克尔树最高层级MaxLevel、最高层级的节点哈希值字节数组列表MaxLevelHashes。

代码清单7-26　梅克尔树merkleTree类型的done()方法源码示例

core/ledger/kvledger/txmgmt/rwsetutil/query_results_helper.go文件

// 循环处理梅克尔树合并层级上的节点哈希值列表直到最高层级

func (m *merkleTree) done() error {

 logger.Debugf("Before done() = %s", m)

 defer logger.Debugf("After done() = %s", m)

 currentLevel := leafLevel // 设置当前层级

 var h Hash

 var err error

 for currentLevel < m.maxLevel { // 如果当前层级小于最高层级，则会一直循环执行合并过程

 currentLevelHashes := m.tree[currentLevel] // 获取当前层级的节点哈希值列表

 switch len(currentLevelHashes) {

 case 0: // 没有任何节点哈希值

 currentLevel++ // 直接跳过本层级

 continue // 直接跳到下一个循环

 case 1: // 1个节点哈希值

 h = currentLevelHashes[0] // 获取节点哈希值

 default: // 超过1个节点哈希值，需要合并节点哈希值列表

 if h, err = computeCombinedHash(currentLevelHashes); err != nil {

 return err

 }

 }

 delete(m.tree, currentLevel) // 删除当前层级的哈希值列表

 currentLevel++

 m.tree[currentLevel] = append(m.tree[currentLevel], h) // 添加新哈希值

 }

 finalHashes := m.tree[m.maxLevel] // 记录最高层级的节点哈希值列表

 if uint32(len(finalHashes)) > m.maxDegree { // 检测是否超过最大节点数

 delete(m.tree, m.maxLevel)

 m.maxLevel++

 combinedHash, err := computeCombinedHash(finalHashes) // 计算哈希值

 if err != nil {

 return err

 }

 m.tree[m.maxLevel] = []Hash{combinedHash} // 设置最高层级的节点哈希值列表

 }

 return nil

}

②隐私数据

GetPrivateDataRangeScanIterator()方法将返回指定查询范围内的隐私数据查询结果迭代器，实际上是调用lockBasedQueryExecutor查询执行器的q.helper.getPrivateDataRange-ScanIterator()方法。该方法首先调用checkDone()方法，检查doneInvoked标志位是否允许执行查询操作，通过检查后调用h.txmgr.db.GetPrivateDataRangeScanIterator()→Common-StorageDB.GetStateRangeScanIterator()方法，根据隐私数据的名字空间namespace与集合名称collection获取LevelDB或CouchDB数据库的范围查询迭代器。其中，指定隐私数据的组合名字空间（即namespace+nsJoiner("$$")+pvtDataPrefix("p")+collection）、起始键startKey与结束键endKey等。

以LevelDB数据库为例，GetStateRangeScanIterator()方法首先基于参数namespace名字空间、起始键startKey与结束键endKey，分别构造范围查询的起始组合键compositeStartKey为[]byte(namespace)+compositeKeySep（即[]byte{0x00}）+[]byte(startKey)，以及结束组合键com-positeEndKey为[]byte(namespace)+compositeKeySep（即[]byte{0x00}）+[]byte(endKey)。如果endKey为空字符串，则结束组合键设置为[]byte(namespace)+compositeKeySep（[]byte{0x00}）+lastKeyIndicator（即byte(0x01)），表示查询从起始组合键开始的所有数据。接着，调用vdb.db.GetIterator(compositeStartKey，compositeEndKey)方法，构造该数据库的查询迭代器dbItr，并调用newKVScanner(namespace，dbItr)函数，构造隐私数据范围查询结果迭代器（stateleveldb.kvScanner类型）。

此时，隐私数据范围查询结果迭代器可以调用kvScanner.Next()方法，构建循环并迭代每个数据查询结果。该方法先调用scanner.dbItr.Next()方法以获取下一个数据对象，解析获得键dbKey与值dbVal，调用splitCompositeKey()函数，利用分隔符compositeKeySep（即[]byte{0x00}）解析组合键dbKey获得原始的键key，并调用statedb.DecodeValue()方法，解析值dbVal获得原始的值value与版本version（Height类型）。最后，构造返回的隐私数据查询结果（statedb.VersionedKV类型），封装组合键（CompositeKey类型，包含名字空间scanner.namespace与原始的键key）与值（VersionedValue类型，包含原始的值value与版本version）。这样，就可以通过隐私数据范围查询结果迭代器（kvScanner类型）依次获取所有的查询数据结果。

类似的，CouchDB数据库返回隐私数据的范围查询迭代器（statecouchdb.kvScanner类型），同样可以调用kvScanner.Next()方法，迭代获取查询的每个数据结果。

（2）修改状态数据

TxSimulator修改状态数据的接口及其功能如表7-5所示。

表7-5　TxSimulator修改状态数据接口功能表

 [image:]

交易模拟器（lockBasedTxSimulator类型）对象实现了修改状态数据接口，包括公共数据与隐私数据的写入类操作与删除类操作。

①公共数据

SetState()方法可写入指定名字空间和键的公共数据。该方法通过交易模拟器调用s.rwset-Builder.AddToWriteSet(ns，key，value)方法，基于key与value构造写数据（KVWrite类型），并与键key构成键值对，接着将其保存到rwsetBuilder对象上指定名字空间ns中的公共数据写集合pubRwBuilderMap[ns].writeMap（map[string]*kvrwset.KVWrite类型）上。

SetStateMultipleKeys()方法可循环调用SetState()方法，支持写入指定名字空间和多个键的公共数据集合。

DeleteState()方法可删除指定名字空间和键的公共数据，实际上是调用SetState(ns，key，nil)方法执行删除操作，不同之处在于其键值对中的值设置为nil，构造写数据（KVWrite类型）时设置删除标志位IsDelete为true，以表示删除操作。同样，该方法可通过交易模拟器调用s.rwsetBuilder.AddToWriteSet()方法，将上述写数据保存到rwsetBuilder对象的公共数据写集合中。

②隐私数据

SetPrivateData()方法的处理流程类似于公共数据的SetState()方法，不同的是调用s.rwset-Builder.AddToPvtAndHashedWriteSet(ns，coll，key，value)方法，基于key与value调用newPvt-KVWriteAndHash()函数以构造写数据kvWrite（KVWrite类型，包含正常的键key与值value）与kvWriteHash（KVWriteHash类型，包含使用SHA-256算法计算的键哈希值keyHash与值哈希值valueHash）。接着，将键key与kvWrite构成键值对，保存到rwsetBuilder对象上指定名字空间ns和集合名称coll中的隐私数据写集合pvtRwBuilderMap[ns].collPvtRwBuilders[coll].writeMap中。同时，将键key与kvWriteHash构成键值对，保存到rwsetBuilder对象上指定名字空间ns和集合名称coll中的隐私数据哈希值写集合pubRwBuilderMap[ns].collHashRw-Builder[coll].writeMap中。

SetPrivateDataMultipleKeys()方法循环调用SetPrivateData()方法，支持写入指定名字空间、集合名称和多个键的隐私数据集合。

DeletePrivateData()方法同样可调用SetPrivateData()方法执行删除操作，不同的是其键值对中的值设置为nil，构造写数据（KVWrite类型）时设置删除标志位IsDelete为true，以表示删除操作。

另外，Fabric 1.3还增加了状态元数据（封装链码的背书策略等）的查询与修改接口，包括GetStateMetadata()、SetPrivateDataMetadata()等，其处理过程类似于上述状态数据。同时，还支持CouchDB数据库分页查询，增加了GetStateByRangeWithPagination()等方法，执行query命令时支持设置bookmark（标记查询起始位置，第一次执行分页查询时不设置）与pagesize（每次分页查询结果所包含的记录数量）。
7.1.6　历史数据库

历史数据库（historyleveldb.historyDB类型）用于记录交易中每个状态数据的历史信息，保存在LevelDB类型数据库中，每个状态数据的历史信息都可使用{ns，key，blcoknum，trannum}来表示，包括名字空间、写入状态数据的键、区块号与区块内的交易序号。历史信息实际存储的值是空字节数组[]byte{}。

1.创建历史数据库

kvledger.Provider对象在NewProvider()方法中调用historyleveldb.NewHistoryDBPro-vider()→leveldbhelper.NewProvider()方法，创建历史数据库提供者historydbProvider（History-DBProvider类型），并指定配置的数据库文件路径（Peer节点上默认是/var/hyperle-dger/production/ledgersData/historyLeveldb），同时打开LevelDB数据库，获取数据库句柄并保存在historydbProvider.dbProvider对象中。接着，kvledger.Provider对象调用openInternal()方法创建Peer节点账本kvLedger对象，并调用provider.historydbProvider.GetDBHandle(ledgerID)方法，创建指定通道账本（ledgerID）上的历史数据库historyDB（historyDB类型），封装了指定数据库名称（账本ID）与底层LevelDB数据库句柄。

2.添加历史数据

通常，kvLedger对象可调用l.historyDB.Commit(block)方法，遍历区块中的所有交易数据，过滤出经过Endorser背书的有效交易，并构造键值对提交到历史数据库（5.4.2节）。其中，键是用分隔符[]byte{0x00}依次分割历史数据信息（ns，writeKey，blockNo+tranNo）字节数组并构造成组合键compositeHistoryKey，值为emptyValue，即空字节数组[]byte{}。
7.1.7　transient隐私数据库

Fabric 1.1.0实验新特性允许链码使用支持隐私数据的API，在智能合约执行中获取与保存隐私数据，并由Endorser背书节点通过Gossip消息协议发送给组织内的其他节点，交由transient对象保存到本地缓存隐私数据的transient隐私数据库（LevelDB），相当于账本隐私数据库的“缓存”。接着，Committer记账节点在成功提交区块与隐私数据到账本后，将从本地的transient隐私数据库中删除已提交的交易列表所关联的隐私数据读写集。同时，在区块号达到指定配置区块高度（默认为1000）的整数倍且超过指定配置区块高度时，清理transient隐私数据库中提交不成功的孤儿记录（orphan entries）并删除指定高度以下的隐私数据，只保留当前账本高度指定配置高度以内的隐私数据读写集。

transient隐私数据存储对象（transientstore.store类型）实现了privdata.TransientStore接口，并且绑定了通道账本ID与transient隐私数据库句柄，如代码清单7-27所示，其所提供的方法具体如下。

·Persist()：添加保存隐私数据。该方法构造了隐私数据读写集的组合键，将指定交易ID与区块高度的隐私数据存储到transient隐私数据库中，同时，构造和保存按照高度索引与按照交易ID索引的两种隐私数据索引组合键，以用于清理指定的隐私数据读写集。

·GetTxPvtRWSetByTxid()：获取指定交易ID关联的隐私数据读写集。根据指定交易ID，构造范围查询结果迭代器的起始组合键与结束组合键，并提交给transient隐私数据库以获取查询结果迭代器，并通过iterator.Next()方法迭代获取查询的隐私数据结果。

·PurgeByTxids()：删除交易ID列表关联的隐私数据读写集。

·PurgeByHeight()：删除指定区块高度以下的隐私数据读写集。

代码清单7-27　TransientStore接口与store类型的源码示例

gossip/privdata/coordinator.go文件

type TransientStore interface {

 // 保存指定交易ID与区块高度的隐私数据

 Persist(txid string, blockHeight uint64, privateSimulationResults *rwset.TxPvt-ReadWriteSet) error

 // 获取指定交易ID的交易隐私数据

 GetTxPvtRWSetByTxid(txid string, filter ledger.PvtNsCollFilter) (transient-store.RWSetScanner, error)

 // 删除指定交易ID列表关联的隐私数据

 PurgeByTxids(txids []string) error

 // 删除指定区块高度以下的隐私数据

 PurgeByHeight(maxBlockNumToRetain uint64) error

}

core/transientstore/store.go文件

type store struct { // 实现TransientStore接口

 db *leveldbhelper.DBHandle // transient隐私数据库句柄

 ledgerID string // 账本ID

}

1.创建transient隐私数据存储对象

coordinator模块（实现了ledgerResources接口）负责验证交易与提交数据、获取本地隐私数据与拉取缺失的隐私数据等，通过TransientStore字段对象管理本地的transient隐私数据存储对象。Peer节点创建新链时调用createChain()方法，初始化指定通道上的Gossip消息模块，同时创建transient对象，如代码清单7-28所示。

代码清单7-28　createChain()方法创建transient隐私数据存储对象的源码示例

core/peer/peer.go文件

……

var transientStoreFactory = &storeProvider{}

type storeProvider struct {

 transientstore.StoreProvider

 sync.Mutex

}

……

// 创建新链对象

func createChain(cid string, ledger ledger.PeerLedger, cb *common.Block) error {

 ……

 store, err := transientStoreFactory.OpenStore(bundle.ConfigtxValidator().ChainID()) // 创建transient隐私数据存储对象

 ……

 // 创建隐私数据集合存储对象

 simpleCollectionStore := privdata.NewSimpleCollectionStore(&collectionSupport{

 PeerLedger: ledger,

 })

service.GetGossipService().InitializeChannel(bundle.ConfigtxValidator().ChainID(), ordererAddresses, service.Support{

 Validator: validator, // 交易验证器

 Committer: c, // 账本提交器

 Store: store, // transient隐私数据存储对象

 Cs: simpleCollectionStore, // 隐私数据集合存储对象

 })

 ……

}

createChain()方法首先通过transientStoreFactory工厂对象（storeProvider类型）调用transientStoreFactory.OpenStore(bundle.ConfigtxValidator().ChainID())方法，利用通道配置对象bundle调用bundle.ConfigtxValidator().ChainID()方法获取通道ID。

接着，OpenStore()方法调用transientstore.NewStoreProvider()方法，创建transient隐私数据存储对象提供者（storeProvider类型），构造指定数据库文件路径（默认为/var/hyper-ledger/production/transientStore）上的LevelDB数据库对象，并将其封装为底层隐私数据库用于临时保存本地的隐私数据。接着，调用sp.StoreProvider.OpenStore(ledgerID)方法获取数据库句柄dbHandle（DBHandle类型），并基于该对象与账本ID（通道ID）构造transient隐私数据存储对象store（transientstore.store类型）。

同时，createChain()方法基于本地的Peer节点账本kvLedger对象，调用privdata.New-SimpleCollectionStore()方法创建隐私数据集合存储对象simpleCollectionStore，负责从账本状态数据库中获取指定链码的隐私数据集合配置数据，解析隐私数据集合的访问权限策略，以创建相应的过滤器方法用于验证过滤节点的认证信息。

然后，createChain()方法将store与simpleCollectionStore封装到服务支持对象（service.Support类型）中，作为参数传递给Gossip服务实例的InitializeChannel()方法调用执行，如代码清单7-29所示。

代码清单7-29　InitializeChannel()方法初始化transient对象的源码示例

gossip/service/gossip_service.go文件

func (g *gossipServiceImpl) InitializeChannel(chainID string, endpoints []string, support Support) {

 g.lock.Lock()

 defer g.lock.Unlock()

 ……

 storeSupport := &DataStoreSupport{ // 构造数据存储支持对象

 TransientStore: support.Store, // transient隐私数据存储对象

 Committer: support.Committer,

 }

 dataRetriever := privdata2.NewDataRetriever(storeSupport)

 fetcher := privdata2.NewPuller(support.Cs, g.gossipSvc, dataRetriever, chainID)

 coordinator := privdata2.NewCoordinator(privdata2.Support{

 CollectionStore: support.Cs,

 Validator: support.Validator,

 TransientStore: support.Store,

 Committer: support.Committer,

 Fetcher: fetcher,

 }, g.createSelfSignedData())

 g.privateHandlers[chainID] = privateHandler{

 support: support,

 coordinator: coordinator,

 distributor: privdata2.NewDistributor(chainID, g),

 }

 g.chains[chainID] = state.NewGossipStateProvider(chainID, servicesAdapter, coor-dinator)

 ……

}

InitializeChannel()方法先创建存储支持对象storeSupport（DataStoreSupport类型），封装了service.Support服务支持对象中的transient隐私数据存储对象store及账本提交器。接着，调用privdata2.NewDataRetriever(storeSupport)方法构造dataRetriever对象（dataRetriever类型）用于获取隐私数据，再执行privdata2.NewPuller()方法，基于dataRetriever与simple-CollectionStore等参数创建Fetcher组件（puller类型），以用于拉取隐私数据。

同时，Fetcher组件在创建时将通过comm模块上的ChannelDeMultiplexer对象创建channel通道，并获取返回的msgChan通道。其中，channel通道注册的消息过滤器可以过滤出隐私数据类消息（PrivateReq类型、PrivateRes类型与PrivateData类型），并转发给msgChan通道。接着，执行go p.listen()以建立消息处理循环监听消息，并调用handleRequest()方法与handleResponse()方法，分别处理PrivateReq类型的隐私数据请求消息与PrivateRes类型的隐私数据响应消息。

然后，InitializeChannel()方法调用privdata2.NewCoordinator()方法，创建coordinator模块对象，包含Support对象提供支持模块。其中，该对象的CollectionStore字段设置为隐私数据集合存储对象simpleCollectionStore，TransientStore字段设置为transient隐私数据存储对象store，Fetcher字段设置为Fetcher组件。同时，coordinator模块设置保留区块高度transientBlockRetention默认为1000（peer.gossip.pvtData.transientstoreMaxBlockRetention配置项）。接着，将coordinator模块注册到Gossip服务器实例指定通道上的privateHandler隐私数据处理句柄与state模块中，用于管理本地通道上的账本数据，支持验证交易与提交账本、获取本地隐私数据与拉取缺失的隐私数据等操作。

至此，transient隐私数据存储对象创建完毕。

2.添加隐私数据

Endorser背书节点模拟执行完毕后，可调用distributePrivateData()→gossipServiceImpl.DistributePrivateData()方法，将隐私数据分发到通道内符合条件的其他Peer节点上，同时，将其保存到本地transient对象管理的transient隐私数据库中。

gossipServiceImpl.DistributePrivateData()方法首先获取privateHandlers字典中指定通道（chainID）上的隐私数据处理句柄handler，调用handler.distributor.Distribute()方法，基于隐私数据构造PrivateData类型的隐私数据消息，并分发到通道内授权的其他节点上（6.5.2节）。接着，通过注册在handler对象上的coordinator模块调用handler.coordinator.StorePvtData(txID，privData)方法，将与指定交易（txID）关联的隐私数据privData（rwset.TxPvtReadWriteSet类型）保存到本地的transient隐私数据库中。

StorePvtData()方法首先获取账本高度height，通过coordinator模块上的transient对象调用c.TransientStore.Persist(txID，height，privData)→store.Persist()方法，以保存隐私数据，并创建3个组合键，同时添加相应的键值对到transient隐私数据库的更新批量操作dbBatch中，具体如下。

·调用createCompositeKeyForPvtRWSet()方法，创建隐私数据读写集的组合键com-positeKeyPvtRWSet，即使用compositeKeySep（即byte(0x00)）分隔符分别连接[]byte("P")[0]、[]byte(txid)、[]byte(uuid)与util.EncodeOrderPreservingVarUint64(blockHeight)函数返回的编码字节数组，以构造组合键。同时，将模拟结果的隐私数据读写集序列化封装后的privateSimulationResultsBytes字节数组作为值。

·调用createCompositeKeyForPurgeIndexByHeight()方法，创建按照高度索引的隐私数据组合键，用于清理隐私数据，即使用compositeKeySep（即byte(0x00)）分隔符分别连接[]byte("H")[0]、util.EncodeOrderPreservingVarUint64(blockHeight)函数返回的编码字节数组、[]byte(txid)与[]byte(uuid)，构造组合键compositeKeyPurge-IndexByHeight，同时，将emptyValue（即空字节数组[]byte{}）作为值。

·调用createCompositeKeyForPurgeIndexByTxid()方法，创建按照交易ID索引的隐私数据索引组合键用于清理隐私数据，即使用compositeKeySep（即byte(0x00)）分隔符分别连接[]byte("T")[0]、[]byte(txid)、[]byte(uuid)与util.EncodeOrderPreserving-VarUint64(blockHeight)函数返回的编码字节数组，构造组合键compositeKeyPurge-IndexByTxid，同时，将emptyValue（即空字节数组[]byte{}）作为值。

然后，Persist()方法调用s.db.WriteBatch(dbBatch，true)方法，将数据库更新批量操作dbBatch同步到transient隐私数据库中，同时添加数据库名称dbName前缀构造组合键，以隔离不同通道上的数据。

至此，transient隐私数据存储对象添加隐私数据的流程结束。

除了Persist()方法，Fabric 1.2与1.3还提供了PersistWithConfig()方法，用于保存隐私数据及其集合配置信息对象（TxPvtReadWriteSetWithConfigInfo类型），封装了隐私数据、背书时账本高度位置、隐私数据集合配置信息等，并添加了前缀nilByte（即byte('\x00')）用于构造键值对，以区别1.1版本保存隐私数据的内容格式，该方法保存的其它内容及其组合键与Persist()方法相同。

代码清单7-30　transient隐私数据存储对象的Persist()方法源码示例

core/ledger/kvledger/kv_ledger_provider.go文件

// 保存隐私数据到transient隐私数据库

func (s *store) Persist(txid string, blockHeight uint64,

 privateSimulationResults *rwset.TxPvtReadWriteSet) error {

 logger.Debugf("Persisting private data to transient store for txid = %s", txid)

 dbBatch := leveldbhelper.NewUpdateBatch()

 // 生成随机UUID，以避免不同Endorser背书节点发送的交易对象发生冲突

 uuid := util.GenerateUUID()

 compositeKeyPvtRWSet := createCompositeKeyForPvtRWSet(txid, uuid, block-Height) // 创建隐私数据读写集组合键

 // 序列化封装模拟结果隐私数据读写集

 privateSimulationResultsBytes, err := proto.Marshal(privateSimulationResults)

 ……

 // 添加到数据库更新批量操作中

 dbBatch.Put(compositeKeyPvtRWSet, privateSimulationResultsBytes)

 // 创建根据高度索引的组合键

 compositeKeyPurgeIndexByHeight := createCompositeKeyForPurgeIndexByHeight(block-Height, txid, uuid)

 dbBatch.Put(compositeKeyPurgeIndexByHeight, emptyValue)

 // 创建根据交易ID索引的组合键

 compositeKeyPurgeIndexByTxid := createCompositeKeyForPurgeIndexByTxid(txid, uuid, blockHeight)

 dbBatch.Put(compositeKeyPurgeIndexByTxid, emptyValue)

 return s.db.WriteBatch(dbBatch, true)

}

3.获取隐私数据

（1）根据交易ID获取隐私数据

transient对象提供了GetTxPvtRWSetByTxid(txid string，filter ledger.PvtNsCollFilter)方法，用于从transient隐私数据库中获取与指定交易ID（txid）关联的隐私数据集合，并利用过滤器filter过滤查询结果，返回隐私数据范围查询结果迭代器（RwsetScanner类型），如代码清单7-31所示。该方法首先调用createTxidRangeStartKey(txid)方法，构造与指定交易txid关联的范围查询起始组合键startKey，即[]byte("P")[0]+byte(0x00)+[]byte(txid)+byte(0x00)，再调用createTxidRangeEndKey(txid)方法，构造与指定交易txid关联的范围查询结束组合键endKey，即[]byte("P")[0]+byte(0x00)+[]byte(txid)+byte(0xff)。接着，调用s.db.GetIterator(startKey，endKey)方法，添加前缀[]byte(dbName)+dbNameKeySep（即[]byte{0x00}）构造起始组合键sKey与结束组合键eKey，再调用h.db.GetIterator(sKey，eKey)方法构造transient隐私数据库的查询迭代器，并封装为Iterator结构迭代器返回iter。然后，GetTxPvtRWSetByTxid()方法基于交易ID（txid）、隐私数据读写集结果迭代器iter与隐私数据过滤器filter，构造隐私数据范围查询结果迭代器对象（RwsetScanner类型），提供Next()方法用于迭代访问与交易ID关联的隐私数据查询结果。

代码清单7-31　GetTxPvtRWSetByTxid()方法的源码示例

core/transientstore/store.go文件

func (s *store) GetTxPvtRWSetByTxid(txid string, filter ledger.PvtNsCollFilter) (RWSet-Scanner, error) {

 logger.Debugf("Getting private data from transient store for transaction %s", txid)

 startKey := createTxidRangeStartKey(txid) // 起始键Key

 endKey := createTxidRangeEndKey(txid) // 结束键Key

 iter := s.db.GetIterator(startKey, endKey)

 return &RwsetScanner{txid, iter, filter}, nil

}

如代码清单7-32所示，RwsetScanner.Next()方法首先调用scanner.dbItr.Next()方法，通过数据库范围查询迭代器获取下一个查询结果，检查查询结果的合法性之后，解析获得键值对dbKey与dbVal。接着，调用splitCompositeKeyOfPvtRWSet(dbKey)方法，从键dbKey中解析出区块高度blockHeight，并将值dbVal解析为交易隐私数据读写集txPvtRWSet（rwset.TxPvtReadWriteSet类型）。然后，调用pvtdatastorage.TrimPvtWSet(txPvtRWSet，scanner.filter)方法，利用自带的过滤器scanner.filter从上述交易隐私数据txPvtRWSet中过滤出符合指定名字空间与集合名称的交易隐私数据filteredTxPvtRwSet。最后，基于blockHeight与filteredTxPvtRwSet构造隐私数据模拟结果（EndorserPvtSimulationResults类型），包含符合要求的交易隐私数据。

Fabric 1.2与1.3则提供了RwsetScanner.NextWithConfig()方法用于获取下一个查询结果。该方法解析对应的值并获取第一个元素dbVal[0]，如果是nilByte（即byte('\x00')），则采用1.2版本以后的键值对保存格式进行解析，利用自带过滤器scanner.filter过滤出符合指定名字空间与集合名称的交易隐私数据及其集合配置信息对象，否则，按照1.1版本保存键值对的格式解析与过滤隐私数据，最后都封装为EndorserPvtSimulationResultsWithConfig结构对象返回。

代码清单7-32　RwsetScanner类型的Next()方法源码示例

core/transientstore/store.go文件

func (scanner *RwsetScanner) Next() (*EndorserPvtSimulationResults, error) {

 if !scanner.dbItr.Next() {

 return nil, nil

 }

 dbKey := scanner.dbItr.Key()

 dbVal := scanner.dbItr.Value()

 _, blockHeight := splitCompositeKeyOfPvtRWSet(dbKey)

 txPvtRWSet := &rwset.TxPvtReadWriteSet{}

 if err := proto.Unmarshal(dbVal, txPvtRWSet); err != nil {

 return nil, err

 }

 filteredTxPvtRWSet := pvtdatastorage.TrimPvtWSet(txPvtRWSet, scanner.filter)

 return &EndorserPvtSimulationResults{

 ReceivedAtBlockHeight: blockHeight,

 PvtSimulationResults: filteredTxPvtRWSet,

 }, nil

}

（2）根据隐私数据摘要信息（PvtDataDigest类型）获取隐私数据集合

根据6.3.6节的分析，Fetcher组件通过dataRetriever对象调用CollectionRWSet(dig*gossip2.PvtDataDigest)方法，从transient隐私数据存储对象管理的transient隐私数据库或者隐私数据存储对象pvtdataStore管理的隐私数据库中，获取指定隐私数据摘要dig关联的隐私数据集合。实际上，dataRetriever对象包含数据存储支持对象store字段（DataStoreSupport类型），封装了transient隐私数据存储对象与账本提交器（LedgerCommitter类型，包含本地Peer节点账本kvLedger对象）。因此，Fetcher组件可以通过dataRetriever对象同时访问transient隐私数据存储对象（transient隐私数据库）与隐私数据库，如代码清单7-33所示。

代码清单7-33　CollectionRWSet()方法的源码示例

gossip/privdata/dataretriever.go文件

func (dr *dataRetriever) CollectionRWSet(dig *gossip2.PvtDataDigest) []util.PrivateRWSet {

 filter := map[string]ledger.PvtCollFilter{

 dig.Namespace: map[string]bool{

 dig.Collection: true,

 },

 }

 pRWsets := []util.PrivateRWSet{}

 height, err := dr.store.LedgerHeight()

 ……

 if height <= dig.BlockSeq {

 ……

 }

 // 检查当前账本高度与隐私数据摘要的区块号

 if err != nil || height <= dig.BlockSeq {

 // 从transient隐私数据库中获取隐私数据

 it, err := dr.store.GetTxPvtRWSetByTxid(dig.TxId, filter)

 ……

 for {

 res, err := it.Next()

 ……

 if res == nil {

 return pRWsets

 }

 rws := res.PvtSimulationResults

 ……

 pRWsets = append(pRWsets, dr.extractPvtRWsets(rws.NsPvtRwset, dig.Namespace, dig.Collection)...)

 }

 } else {

 // 从账本隐私数据库中获取隐私数据

 pvtData, err := dr.store.GetPvtDataByNum(dig.BlockSeq, filter)

 ……

 for _, data := range pvtData {

 if data.WriteSet == nil {

 logger.Warning("Received nil write set for collection", dig.Collec-tion, "namespace", dig.Namespace)

 continue

 }

 pRWsets = append(pRWsets, dr.extractPvtRWsets(data.WriteSet.NsPvtRwset, dig.Namespace, dig.Collection)...)

 }

 }

 return pRWsets

}

CollectionRWSet()方法首先调用dr.store.LedgerHeight()→LedgerCommitter.LedgerHeight()方法，获取当前账本高度height，并比较height与隐私数据摘要的请求区块号dig.Block-Seq。注意，账本高度比最新区块号大1，这里分为如下两种情况进行处理。

①height小于或等于dig.BlockSeq

如果height小于或等于dig.BlockSeq，则说明与当前请求区块号对应的隐私数据尚未成功提交至账本上的隐私数据库中。因此，Fetcher组件需要通过dataRetriever对象查询transient隐私数据库，以获取指定的隐私数据集合。

CollectionRWSet()方法通过transient对象调用dr.store.GetTxPvtRWSetByTxid(dig.TxId，filter)方法，获取与指定交易dig.TxId关联的隐私数据范围查询结果迭代器it（RwsetScanner类型），并通过filter参数用指定的名字空间与集合名称进行过滤。接着，循环调用it.Next()方法，迭代访问隐私数据模拟执行结果res（EndorserPvtSimulationResults类型），然后调用dr.extractPvtRWsets()方法，遍历查询结果中的隐私数据res.PvtSimulationResults（不为nil），过滤出符合摘要信息dig中指定名字空间与集合名称的隐私数据读写集（PrivateRWSet类型），并添加到隐私数据列表pRWsets（[]util.PrivateRWSet类型）中。如此循环处理完毕所有的查询结果数据，再返回查询结果pRWsets。

②height大于dig.BlockSeq

如果height大于dig.BlockSeq，则说明当前账本上的隐私数据库中已经保存了所请求的隐私数据。因此，Fetcher组件可以通过dataRetriever对象查询隐私数据存储对象pvtdataStore管理的隐私数据库，获取与指定摘要信息关联的隐私数据集合。

CollectionRWSet()方法继续调用dr.store.GetPvtDataByNum(dig.BlockSeq，filter)→kv-Ledger.GetPvtDataByNum()方法，利用Fetcher组件上账本提交器封装的本地Peer节点账本kv-Ledger对象，通过包含的隐私数据存储对象pvtdataStore访问隐私数据库，获取指定区块号dig.BlockSeq关联的隐私数据集合pvtData（[]*ledger.TxPvtData类型），同样利用filter参数过滤掉不符合指定名字空间与集合名称要求的隐私数据。接着，遍历pvtData中的数据对象，调用dr.extractPvtRWsets()方法，以过滤出符合摘要信息dig指定名字空间与集合名称的隐私数据读写集（PrivateRWSet类型），并添加到结果隐私数据列表pRWsets（[]util.PrivateRWSet类型）中。当所有的数据都处理完毕后返回查询结果pRWsets。

至此，PrivateDataRetriever.CollectionRWSet()方法根据摘要信息获取隐私数据集合的流程执行结束。

4.清理隐私数据

transient隐私数据存储对象需要及时清理本地transient隐私数据库中的过期数据，以保持数据的时效性。Committer记账节点成功提交区块与隐私数据到账本后，如果存在有效的隐私数据，则先调用PurgeByTxids()方法，从当前本地transient隐私数据库中删除指定交易ID列表privateInfo.txns所关联的隐私数据，表示相应的隐私数据已经提交处理完毕。同时，如果当前提交账本的区块号达到指定配置区块高度c.transientBlockRetention（默认为1000）的整数倍，并且超过指定配置区块高度，则调用PurgeByHeight(seq-c.transientBlockRetention)方法，删除本地transient隐私数据库指定高度以下的隐私数据，只保留当前账本指定最近配置区块高度c.transientBlockRetention以内的隐私数据读写集，如代码清单7-34所示。

代码清单7-34　coordinator模块StoreBlock()方法中清理隐私数据的源码示例

gossip/privdata/coordinator.go文件

func (c *coordinator) StoreBlock(block *common.Block, privateDataSets util.PvtData-Collections) error {

 ……

 if len(blockAndPvtData.BlockPvtData) > 0 {

 if err := c.PurgeByTxids(privateInfo.txns); err != nil {

 logger.Error("Purging transactions", privateInfo.txns, "failed:", err)

 }

 }

 seq := block.Header.Number

 if seq%c.transientBlockRetention == 0 && seq > c.transientBlockRetention {

 err := c.PurgeByHeight(seq - c.transientBlockRetention)

 if err != nil {

 logger.Error("Failed purging data from transient store at block", seq, ":", err)

 }

 }

}

（1）PurgeByTxids()方法

transient隐私数据存储对象提供了PurgeByTxids()方法，用于根据交易ID列表清理已经提交到账本的隐私数据，如代码清单7-35所示。

代码清单7-35　PurgeByTxids()方法根据交易ID列表清理隐私数据的源码示例

core/transientstore/store.go文件

func (s *store) PurgeByTxids(txids []string) error {

 logger.Debug("Purging private data from transient store for committed txids")

 dbBatch := leveldbhelper.NewUpdateBatch()

 for _, txid := range txids {

 startKey := createPurgeIndexByTxidRangeStartKey(txid)

 endKey := createPurgeIndexByTxidRangeEndKey(txid)

 iter := s.db.GetIterator(startKey, endKey)

 for iter.Next() {

 compositeKeyPurgeIndexByTxid := iter.Key()

 uuid, blockHeight := splitCompositeKeyOfPurgeIndexByTxid(compositeKeyPurgeIndexByTxid)

 compositeKeyPvtRWSet := createCompositeKeyForPvtRWSet(txid, uuid, block-Height)

 dbBatch.Delete(compositeKeyPvtRWSet)

 compositeKeyPurgeIndexByHeight := createCompositeKeyForPurgeIndexByHeight(blockHeight, txid, uuid)

 dbBatch.Delete(compositeKeyPurgeIndexByHeight)

 dbBatch.Delete(compositeKeyPurgeIndexByTxid)

 }

 iter.Release()

 }

 return s.db.WriteBatch(dbBatch, true)

}

PurgeByTxids()方法遍历交易ID列表txids，分别调用createPurgeIndexByTxidRange-StartKey()方法与createPurgeIndexByTxidRangeEndKey()方法，构造范围查询的起始键start-Key与结束键endKey，调用s.db.GetIterator(startKey，endKey)方法，构造transient隐私数据库上的隐私数据范围查询结果迭代器iter（Iterator类型）。

接着，PurgeByTxids()方法建立内层循环，并执行iter.Next()方法迭代访问每个结果数据，调用iter.Key()方法获取隐私数据的键compositeKeyPurgeIndexByTxid，基于该对象调用splitCompositeKeyOfPurgeIndexByTxid()方法，解析获取该隐私数据的uuid与block-Height，并构造如下两个组合键，添加对应的删除操作到transient隐私数据库的更新批量操作dbBatch（UpdateBatch类型）上，具体如下。

·调用createCompositeKeyForPvtRWSet()方法，构造组合键compositeKeyPvtRWSet，即利用compositeKeySep（即byte(0x00)）分隔符分别连接[]byte("P")[0]、[]byte(txid)、[]byte(uuid)与util.EncodeOrderPreservingVarUint64(blockHeight)函数返回的编码字节数组以构造组合键；

·调用createCompositeKeyForPurgeIndexByHeight()方法，创建按照高度索引的隐私数据组合键compositeKeyPurgeIndexByHeight，用于清理指定区块高度的隐私数据，即利用compositeKeySep（即byte(0x00)）分隔符分别连接[]byte("H")[0]、util.EncodeOrderPreservingVarUint64(blockHeight)函数返回的编码字节数组、[]byte(txid)与[]byte(uuid)以构造组合键。

然后，PurgeByTxids()方法调用dbBatch.Delete(compositeKeyPurgeIndexByTxid)方法，添加组合键compositeKeyPurgeIndexByTxid对应的删除操作到数据库的更新批量操作dbBatch中。这样，与该交易相关的所有隐私数据记录都将被标记为删除操作。

最后，当内层循环处理完毕当前交易关联的所有隐私数据对象时，PurgeByTxids()方法将调用iter.Release()方法，释放范围查询结果迭代器iter占用的资源，继续处理txids列表中的下一个交易。如此循环处理，直到txids列表中的所有交易被处理完毕为止，最后调用s.db.WriteBatch(dbBatch，true)方法，将更新批量操作dbBatch同步到底层的transient隐私数据库，以删除所有相关的隐私数据记录。

至此，PurgeByTxids()方法删除指定交易ID列表关联隐私数据的流程结束。

（2）PurgeByHeight()方法

transient隐私数据存储对象的PurgeByHeight()方法清理指定区块高度以内的隐私数据的代码如代码清单7-36所示。

代码清单7-36　PurgeByHeight()方法根据区块高度清理隐私数据的源码示例

core/transientstore/store.go文件

func (s *store) PurgeByHeight(maxBlockNumToRetain uint64) error {

 logger.Debugf("Purging orphaned private data from transient store received prior to block [%d]", maxBlockNumToRetain)

 startKey := createPurgeIndexByHeightRangeStartKey(0)

 endKey := createPurgeIndexByHeightRangeEndKey(maxBlockNumToRetain - 1)

 iter := s.db.GetIterator(startKey, endKey)

 dbBatch := leveldbhelper.NewUpdateBatch()

 for iter.Next() {

 compositeKeyPurgeIndexByHeight := iter.Key()

 txid, uuid, blockHeight := splitCompositeKeyOfPurgeIndexByHeight(compositeKeyPurgeIndexByHeight)

 compositeKeyPvtRWSet := createCompositeKeyForPvtRWSet(txid, uuid, block-Height)

 dbBatch.Delete(compositeKeyPvtRWSet)

 compositeKeyPurgeIndexByTxid := createCompositeKeyForPurgeIndexByTxid(txid, uuid, blockHeight)

 dbBatch.Delete(compositeKeyPurgeIndexByTxid)

 dbBatch.Delete(compositeKeyPurgeIndexByHeight)

 }

 iter.Release()

 return s.db.WriteBatch(dbBatch, true)

}

PurgeByHeight()方法分别调用createPurgeIndexByHeightRangeStartKey()方法与create-PurgeIndexByHeightRangeEndKey()方法，构造起始键startKey（账本高度为0）与结束键endKey（账本高度为seq-c.transientBlockRetention-1），仅保留transient隐私数据库中当前账本最近指定配置区块高度c.transientBlockRetention以内的隐私数据读写集。其中，seq是当前区块数据的区块号。接着，通过transient存储对象调用s.db.GetIterator(startKey，endKey)方法，构造transient隐私数据库的隐私数据范围查询结果迭代器iter（Iterator类型）。

然后，PurgeByHeight()方法构建循环调用iter.Next()方法，迭代访问每个结果数据，先调用iter.Key()方法获取隐私数据的键compositeKeyPurgeIndexByHeight，再基于该对象调用splitCompositeKeyOfPurgeIndexByHeight()方法，解析出该隐私数据的txid、uuid与blockHeight，并构造如下两个组合键，添加对应的删除操作到transient隐私数据库的更新批量操作dbBatch（UpdateBatch类型）上，具体说明如下。

·调用createCompositeKeyForPvtRWSet()方法，构造组合键compositeKeyPvtRWSet，即利用compositeKeySep（即byte(0x00)）分隔符分别连接[]byte("P")[0]、[]byte(txid)、[]byte(uuid)与util.EncodeOrderPreservingVarUint64(blockHeight)函数返回的编码字节数组，以构造组合键；

·调用createCompositeKeyForPurgeIndexByTxid()方法，创建按照交易ID索引的隐私数据组合键compositeKeyPurgeIndexByTxid，用于清理指定交易ID的隐私数据，即使用compositeKeySep（即byte(0x00)）分隔符分别连接[]byte("T")[0]、[]byte(txid)、[]byte(uuid)与util.EncodeOrderPreservingVarUint64(blockHeight)函数返回的编码字节数组，以构造组合键。

然后，PurgeByHeight()方法调用dbBatch.Delete(compositeKeyPurgeIndexByHeight)方法，添加与该组合键compositeKeyPurgeIndexByHeight对应的删除操作到dbBatch中。

最后，当循环处理完毕指定区块高度内的所有隐私数据对象时，调用iter.Release()方法释放迭代器资源，再调用s.db.WriteBatch(dbBatch，true)方法，将dbBatch同步更新到底层的transient隐私数据库，以删除所有相关的隐私数据记录。

至此，PurgeByHeight()方法删除指定区块高度以内隐私数据的流程结束。

5.远程获取缺失隐私数据

如5.2.2节分析，Committer记账节点调用StoreBlock()方法，提交到账本前会检查缺失的隐私数据，通过Gossip消息模块从其他Peer节点拉取缺失的隐私数据，如代码清单7-37所示。该方法首先获取本地的隐私数据信息对象privateInfo，封装了当前缺失的隐私数据键列表missingKeys（map[txAndSeqInBlock][]rwSetKey类型）。如果存在缺失的隐私数据，并且处于请求重试操作的时间阈值retryThresh（默认为60秒）内，则通过coordinator模块调用c.fetchFromPeers()方法，发送PrivateReq类型的隐私数据请求消息到拥有隐私数据的背书节点上，请求获取缺失的隐私数据读写集。

代码清单7-37　StoreBlock()方法获取缺失隐私数据的源码示例

gossip/privdata/coordinator.go文件

func (c *coordinator) StoreBlock(block *common.Block, privateDataSets util.PvtData-Collections) error {

 ……

 // 获取隐私数据信息

 privateInfo, err := c.listMissingPrivateData(block, ownedRWsets)

 ……

 }

 retryThresh := viper.GetDuration("peer.gossip.pvtData.pullRetryThreshold")

 ……

 start := time.Now()

 limit := start.Add(retryThresh)

 // 检查是否存在缺失的隐私数据

 for len(privateInfo.missingKeys) > 0 && time.Now().Before(limit) {

 // 从其他Peer节点获取隐私数据

 c.fetchFromPeers(block.Header.Number, ownedRWsets, privateInfo)

 time.Sleep(pullRetrySleepInterval)

 }

 ……

 for seqInBlock, nsRWS := range ownedRWsets.bySeqsInBlock() {

 rwsets := nsRWS.toRWSet()

 logger.Debugf("Added %d namespace private write sets for block [%d], tran [%d]", len(rwsets.NsPvtRwset), block.Header.Number, seqInBlock)

 blockAndPvtData.BlockPvtData[seqInBlock] = &ledger.TxPvtData{

 SeqInBlock: seqInBlock,

 WriteSet: rwsets,

 }

 }

 for missingRWS := range privateInfo.missingKeys {

 blockAndPvtData.Missing = append(blockAndPvtData.Missing, ledger.Missing-PrivateData{

 TxId: missingRWS.txID,

 Namespace: missingRWS.namespace,

 Collection: missingRWS.collection,

 SeqInBlock: int(missingRWS.seqInBlock),

 })

 }

 ……

}

（1）fetchFromPeers()方法

coordinator模块的fetchFromPeers()方法首先遍历privateInfo.missingKeys列表，对于每个缺失隐私数据的键对象k，构造对应的缺失隐私数据的摘要信息dig（PvtDataDigest类型），封装了隐私数据的交易ID、交易序号、集合名称、名字空间、区块号等信息。同时，将dig添加到dig2src字典（map[*gossip2.PvtDataDigest][]*peer.Endorsement类型）中。其中，dig2src字典负责将隐私数据的摘要信息映射到提供该隐私数据的背书节点privateInfo.sources[k]上。

接着，通过coordiantor模块调用c.fetch(dig2src)→puller.fetch()方法，利用Fetcher组件从指定的远程Peer节点拉取请求的隐私数据元素列表fetchedData（[]*gossip2.PvtData-Element）。

然后，遍历fetchedData列表中的隐私数据元素element，解析获取隐私数据摘要信息dig（即element.Digest），遍历该对象消息负载element.Payload中的隐私数据读写集rws，计算其哈希值并转换为字符串hash（使用SHA256哈希算法），再构造对应的隐私数据读写集的键对象key（rwSetKey类型）。如果key存在于privateInfo.missingKeys列表中，则将key及其隐私数据读写集rws保存至现存的隐私数据列表ownedRWsets中。同时，从privateInfo.missingKeys列表中删除该键对象key，并调用key.toTxPvtReadWriteSet(rws)方法，将对应的隐私数据读写集rws转换为TxPvtReadWriteSet结构对象，同时，指定其名字空间key.namespace、集合名称key.collection与隐私数据读写集rws。最后，调用c.TransientStore.Persist()方法，将转换后的隐私数据读写集保存到本地的transient隐私数据库中。

如此循环处理fetchedData列表中的所有隐私数据元素，至此，fetchFromPeers()方法从远程节点获取本地缺失隐私数据的流程结束。

代码清单7-38　fetchFromPeers()方法的源码示例

gossip/privdata/coordinator.go文件

func (c *coordinator) fetchFromPeers(blockSeq uint64, ownedRWsets map[rwSetKey][]byte, privateInfo *privateDataInfo) {

 dig2src := make(map[*gossip2.PvtDataDigest][]*peer.Endorsement)

 privateInfo.missingKeys.foreach(func(k rwSetKey) {

 logger.Debug("Fetching", k, "from peers")

 dig := &gossip2.PvtDataDigest{

 TxId: k.txID,

 SeqInBlock: k.seqInBlock,

 Collection: k.collection,

 Namespace: k.namespace,

 BlockSeq: blockSeq,

 }

 dig2src[dig] = privateInfo.sources[k]

 })

 fetchedData, err := c.fetch(dig2src)

 ……

 for _, element := range fetchedData {

 dig := element.Digest

 for _, rws := range element.Payload {

 hash := hex.EncodeToString(util2.ComputeSHA256(rws))

 key := rwSetKey{

 txID: dig.TxId,

 namespace: dig.Namespace,

 collection: dig.Collection,

 seqInBlock: dig.SeqInBlock,

 hash: hash,

 }

 if _, isMissing := privateInfo.missingKeys[key]; !isMissing {

 logger.Debug("Ignoring", key, "because it wasn't found in the block")

 continue

 }

 ownedRWsets[key] = rws

 delete(privateInfo.missingKeys, key)

 c.TransientStore.Persist(dig.TxId, blockSeq, key.toTxPvtReadWrite-Set(rws))

 logger.Debug("Fetched", key)

 }

 }

}

（2）fetch()方法

coordiantor模块调用Fetcher组件fetch(dig2src dig2sources)方法，用于从远程节点上获取指定的缺失隐私数据集合（[]*proto.PvtDataElement类型），如代码清单7-39所示。

代码清单7-39　fetch()方法的源码示例

gossip/privdata/pull.go文件

func (p *puller) fetch(dig2src dig2sources) ([]*proto.PvtDataElement, error) {

 dig2Filter, err := p.computeFilters(dig2src) // 计算节点过滤器列表

 ……

 // 获取发送Peer节点列表

 allFilters := dig2Filter.flattenFilterValues()

 members := p.waitForMembership()

 logger.Debug("Total members in channel:", members)

 members = filter.AnyMatch(members, allFilters...)

 ……

 members = randomizeMemberList(members) // 随机置换成员列表

 var res []*proto.PvtDataElement

 var peer2digests peer2Digests

 itemsLeftToCollect := len(dig2Filter)

 for itemsLeftToCollect > 0 && len(members) > 0 {

 peer2digests, members = p.assignDigestsToPeers(members, dig2Filter)

 logger.Debug("Matched", len(dig2Filter), "digests to", len(peer2digests), "peer(s)")

 subscriptions := p.scatterRequests(members, peer2digests)

 responses := p.gatherResponses(subscriptions)

 for _, resp := range responses {

 logger.Debug("Got empty response for", resp.Digest)

 if len(resp.Payload) == 0 {

 continue

 }

 delete(dig2Filter, *resp.Digest)

 itemsLeftToCollect--

 }

 res = append(res, responses...)

 }

 return res, nil

}

fetch()方法首先调用Fetcher组件的p.computeFilters(dig2src)方法，遍历dig2src字典获取对应的节点过滤器列表dig2Filter字典（digestToFilterMapping类型）。该字典负责映射隐私数据摘要信息对象（PvtDataDigest类型）到对应的隐私数据集合过滤器对象（collection-RoutingFilter类型），封装了符合隐私数据访问权限策略的节点过滤器anyPeer与背书节点过滤器endorser，用于过滤出符合要求的待发送节点。

接着，fetch()方法调用dig2Filter.flattenFilterValues()方法，将所有Peer节点过滤器包含的endorser过滤器与anyPeer过滤器都添加到节点过滤器列表allFilters中（[]filter.Routing-Filter类型）。同时，调用Fetcher组件的p.waitForMembership()方法，先通过当前的Gossip-Channel对象调用gc.GetMembership()→gossipDiscoveryImpl.GetMembership()方法，获取节点列表，再筛选出所有符合条件（如指定节点与本地节点属于同一个组织、本地保存有指定节点的合法身份证书信息与合法StateInfo消息等）的节点列表members。然后，调用filter.AnyMatch(members，allFilters...)方法，遍历members列表与allFilters列表，过滤筛选出符合任意一个过滤器要求的节点列表，并设置到members，最后调用randomizeMember-List(members)函数随机置换members列表中的节点。

如果dig2Filter节点过滤器字典与members待发送节点列表同时都存在对象（个数不是0），则建立消息处理循环，发送请求缺失隐私数据的消息，同时接收回复的隐私数据请求响应消息，再删除dig2Filter字典中对应的隐私数据摘要信息键值对，表示已完成该对象的请求操作，如此循环处理，直到dig2Filter字典中所有的隐私数据摘要对象都被处理完毕为止。其中，该消息处理循环的执行步骤具体如下。

1）fetch()方法首先调用Fetcher组件的p.assignDigestsToPeers(members，dig2Filter)方法，基于dig2Filter节点过滤器字典从members节点列表中过滤出符合条件的待发送节点，保存到peer2digests字典中，用于记录从指定节点请求的隐私数据摘要信息列表。该方法先遍历dig2Filter字典中的隐私数据摘要dig及其集合过滤器collectionFilter，依次调用filter.First(members，collectionFilter.endorser)方法与filter.First(members，collectionFilter.anyPeer)方法，以获取第一个成功匹配两个过滤器的Peer节点对象selectedPeer，并构造对应的remotePeer结构节点对象（包含节点selectedPeer.PKIID与通信连接端点selectedPeer.Endpoint）。同时，在res列表（map[remotePeer][]proto.PvtDataDigest类型）中将请求的隐私数据摘要对象dig添加到与该节点selectedPeer对应的需要请求的隐私数据摘要对象列表中。然后，assignDigestsToPeers()方法遍历参数members列表中的节点，构造对应的remotePeer结构节点对象peer，并检查res列表中是否存在相应的隐私数据摘要集合res[peer]。如果不存在该对象，则将节点peer添加到noneSelectedPeers节点列表。最后，将res列表与未被选中的noneSelectedPeers节点列表同时返回给fetch()方法的peer2digests与members变量。

2）接着，fetch()方法通过Fetcher组件调用p.scatterRequests(members，peer2digests)方法，发送PrivateReq类型的隐私数据请求消息到指定节点请求获取隐私数据。该方法遍历参数peer2digests列表中的每个节点peer及其请求的隐私数据摘要集合digests，构造PrivateReq消息（封装了隐私数据摘要信息digests），并将其作为消息内容Content字段封装成GossipMessage类型消息msg，指定了消息标签GossipMessage_CHAN_ONLY、通道ID、消息随机数Nonce等。同时，构造消息订阅者列表subscriptions（[]util.Subscription类型），即先遍历隐私数据摘要集合msg.GetPrivateReq().Digests中的摘要信息dig，调用dig.Hash()方法计算哈希值hash，再调用p.pubSub.Subscribe(hash，responseWaitTime)方法构造主题为hash的消息订阅请求对象sub（subscription类型），并添加到消息订阅请求列表subscriptions中。如果超过了指定的等待时间responseWaitTime（默认5秒），则自动取消该消息订阅请求。然后，通过Fetcher组件调用p.Send(msg，peer.AsRemotePeer())方法，将PrivateReq消息发送给指定的远程节点。当循环处理完毕peer2digests列表中的所有隐私数据摘要对象之后，返回subscriptions消息订阅请求列表。

同时，远程Peer节点接收到PrivateReq消息之后，先经过消息过滤器处理，然后交由Fetcher组件的handleRequest()方法进行处理（6.3.6节）。该方法通过Fetcher组件调用p.createResponse()方法，从本地transient隐私数据存储对象（封装了transient隐私数据库）与本地账本的隐私数据库中获取请求的隐私数据集合（7.1.7节），基于该对象构造PrivateRes类型的隐私数据响应消息，并进一步封装为GossipMessage类型消息，最后调用message.Respond()方法回复给请求节点。

3）本地节点fetch()方法通过Fetcher组件调用p.gatherResponses(subscriptions)方法，收集消息订阅请求列表关联的响应消息。该方法先遍历消息订阅请求列表subscriptions中的消息订阅请求对象sub，执行goroutine启动监听线程sub.Listen()，以捕获订阅对象绑定通道c上的响应消息。

如果本地节点接收到PrivateRes消息，则过滤该消息后交由Fetcher组件的handle-Response()方法进行处理（6.3.6节）。该方法遍历PrivateRes消息中的隐私数据摘要对象并计算其哈希值hash，通过Fetcher组件调用p.pubSub.Publish(hash，el)方法，发布指定主题（哈希值hash）的消息通知订阅对象，并将PrivateRes消息放入对应主题的订阅对象通道c中，通知有响应消息el到达。同时，gatherResponses()方法将该PrivateRes消息放入private-Elements通道中（容量为消息订阅列表包含的订阅对象个数）。

如此循环处理完毕subscriptions列表中的所有订阅消息请求，再调用sync.WaitGroup对象的wg.Wait()方法，等待所有goroutine结束时触发wg.Done()方法，直至达到指定数量，即消息订阅请求列表包含的请求个数。最后，关闭privateElements通道，将其包含的所有PrivateRes消息el添加到res消息列表（[]*proto.PvtDataElement类型）中，再将该列表返回到fetch()方法的responses变量中。

4）最后，fetch()方法遍历PrivateRes消息列表responses中的消息resp，检查过滤掉空消息（消息负载长度为0），删除dig2Filter字典中指定隐私数据摘要resp.Digest的对应项，并递减计数器itemsLeftToCollect，表示本节点已经成功获取了该项缺失的隐私数据。如此处理完所有相应的消息之后，再将responses列表添加到res结果消息列表（[]*proto.PvtDataElement类型）中，跳转到循环开始处继续处理剩余的缺失隐私数据。

至此，循环处理完毕所有缺失的隐私数据，fetch()方法返回接收到的隐私数据消息结果列表res。

（3）computeFilters()方法

computeFilters(dig2src)方法遍历dig2src字典（dig2sources类型，即map[*gossip2.PvtData-Digest][]*peer.Endorsement类型），根据每个隐私数据摘要对象digest与提供隐私数据的背书节点列表sources，计算获取对应的节点过滤器字典（digestToFilterMapping类型，即map[proto.PvtDataDigest]collectionRoutingFilter类型），如代码清单7-40所示。digestToFilter-Mapping类型与dig2sources类型示意图如图7-7所示。

 [image:]

图7-7　digestToFilterMapping类型与dig2sources类型示意图

代码清单7-40　Fetcher组件的computeFilters()方法源码示例

gossip/privdata/pull.go文件

func (p *puller) computeFilters(dig2src dig2sources) (digestToFilterMapping, error) {

 filters := make(map[proto.PvtDataDigest]collectionRoutingFilter)

 for digest, sources := range dig2src {

 collection, err := p.cs.RetrieveCollectionAccessPolicy(fcommon.Collection-Criteria{

 Channel: p.channel,

 TxId: digest.TxId,

 Collection: digest.Collection,

 Namespace: digest.Namespace,

 })

 ……

 f := collection.AccessFilter()

 ……

 anyPeerInCollection, err := p.PeerFilter(common.ChainID(p.channel), func(peer-Signature api.PeerSignature) bool {

 return f(fcommon.SignedData{

 Signature: peerSignature.Signature,

 Identity: peerSignature.PeerIdentity,

 Data: peerSignature.Message,

 })

 })

 ……

 sources := sources

 endorserPeer, err := p.PeerFilter(common.ChainID(p.channel), func(peerSigna-ture api.PeerSignature) bool {

 for _, endorsement := range sources {

 if bytes.Equal(endorsement.Endorser, []byte(peerSignature.Peer-Identity)) {

 return true

 }

 }

 return false

 })

 ……

 filters[*digest] = collectionRoutingFilter{

 anyPeer: anyPeerInCollection,

 endorser: endorserPeer,

 }

 }

 return filters, nil

}

computeFilters()方法首先构造隐私数据集合标准对象（CollectionCriteria类型），包含通道ID、隐私数据摘要对象的交易ID、集合名称与名字空间等，并将其作为参数传递给Fetcher组件，调用隐私数据集合存储对象（simpleCollectionStore类型）的p.cs.Retrieve-CollectionAccessPolicy()方法，获取隐私数据集合对象collection（SimpleCollection类型），封装了该隐私数据集合对象的访问权限策略（目前支持签名策略）、成员列表（按照MSP-Principal类别解析签名身份实体对象）等。

接着，调用隐私数据集合对象的collection.AccessFilter()方法，生成隐私数据集合访问权限策略的验证方法f，用于过滤出满足指定访问权限策略的节点。

然后，调用Fetcher组件的p.PeerFilter()→gossipServiceImpl.PeerFilter()方法，构造指定通道（p.channel）上符合自定义过滤器方法（即访问权限策略的验证方法f）的节点过滤器anyPeerInCollection。该方法先调用g.chanState.getGossipChannelByChainID(channel)方法，获取指定通道上的GossipChannel通道gc，并调用gc.PeerFilter()→gossipChannel.PeerFilter()方法，基于自定义过滤器方法messagePredicate参数创建该通道的节点过滤器方法，该方法的原型是func(member discovery.NetworkMember)bool。因此，当验证节点member是否满足要求时，该过滤器方法先根据该节点PKI-ID获取其身份证书对象peer-Identity与StateInfo消息msg，再基于该身份证书对象peerIdentity、消息负载msg.Payload与签名msg.Signature构造节点签名对象（PeerSignature类型），并作为参数传递给自定义过滤器messagePredicate。该方法基于节点签名对象构造对应的签名数据对象（SignedData类型），再调用前面生成的隐私数据集合访问权限策略的验证方法f，验证该签名数据对象是否满足指定隐私数据集合访问权限策略的要求，从而验证指定节点member是否能够满足指定的隐私数据集合成员访问策略。

类似的，computeFilters()方法同样调用Fetcher组件的p.PeerFilter()方法构造节点过滤器endorserPeer。其中，自定义过滤器方法遍历提供隐私数据的背书节点信息列表sources中的节点信息对象endorsement，基于字节比较其身份证书信息与需要验证的节点签名对象（PeerSignature类型）的节点身份证书信息。若两者一致，则验证成功。如果背书节点信息列表sources中的所有对象都不能匹配，则验证失败。

最后，computeFilters()方法基于anyPeerInCollection与endorserPeer构造与当前隐私数据摘要对象digest对应的隐私数据集合过滤器对象（collectionRoutingFilter类型），并添加到filters节点过滤器字典中。

如此循环处理完毕dig2src字典中的所有隐私数据摘要对象，computeFilters()方法返回filters节点过滤器列表到fetch()方法继续处理。

另外，Fabric 1.2与1.3提供了隐私数据集合配置历史数据库（LevelDB，保存在/var/hyperledger/production/ledgersData/configHistory中），用于辅助dataRetriever组件执行CollectionRWSet()→fromLedger()方法，根据所在区块号与名字空间获取指定的隐私数据集合配置对象。同时，Fabric 1.2与1.3还提供了PvtdataExpiry类别的隐私数据过期信息跟踪数据库（LevelDB，保存在/var/hyperledger/production/ledgersData/bookkeeper中），用于跟踪隐私数据的过期信息（包含过期区块号、提交区块号、隐私数据名字空间与集合名称等），以辅助交易管理器过滤掉自身的数据更新批量操作对象batch中过期的隐私数据及其哈希值，从而不被更新到状态数据库中。

除此之外，Fabric 1.3还提供了MetadataPresenceIndicator类别的元数据跟踪数据库（LevelDB，保存在/var/hyperledger/production/ledgersData/configHistory中），用于跟踪已经设置状态元数据的账本数据库名字空间，以检查指定名字空间中是否存在状态元数据（封装了key级别的背书策略），从而获取指定的状态元数据，其中，键为名字空间（链码名称）字节数组，值为[]byte{}。
7.2　安全服务模块

Fabric提供了多种安全服务机制以保证系统的安全运行与访问，确保不被非法身份实体在不授权的情况下侵入访问账本数据，具有非常专业的安全体系，有兴趣的读者可以参考专业资料[29]进行研究。本节主要介绍MSP（成员关系服务模块）与BCCSP（区块链密码服务模块）。
7.2.1　MSP（成员关系服务模块）

1.功能概述

MSP（Membership Service Provider）是Fabric架构重要的系统抽象组件，为客户端、Peer节点、Orderer节点等提供PKI数字证书以管理组织成员身份，从而有效控制资源实体（组织、成员等）的认证、授权、撤销等身份权限操作。这种基于数字证书的方式可以有效地支持Fabric成员关系服务（Membership Service），而不需要修改交易处理组件的核心代码。因此，能够提升Fabric与一般交易系统的兼容性，使得Fabric可以灵活地在许可的区块链网络上认证、授权和管理资源实体（组织、成员等）身份。

Fabric基于PKI体系为每个成员签发数字证书，可以用根CA的私钥签发新的合法证书，包括中间CA证书和普通用户证书等。中间CA同样可以利用私钥签发新证书，签发证书就是一个信任背书的过程，从根CA证书到最终用户证书之间信任背书路径上的所有证书构成了证书信任链。同时，PKI体系提供CRL（Certificate Revocation List，证书撤销列表）等，用于管理证书的失效时间与有效性。

MSP组件默认基于X.509标准生成标准证书格式（参考RFC5280文档[17]），可以通过CRL检查证书是否过期失效。目前，默认采用FABRIC类型的MSP组件，即基于BCCSP组件提供的密码安全服务套件。

本章主要介绍MSP组件初始化的流程与验证MSP组件身份证书有效性的流程。

2.本地MSP组件的初始化流程

Peer节点启动时调用mspmgmt.LoadLocalMspWithType()函数，初始化本地MSP组件，如代码清单7-41所示。LoadLocalMspWithType()函数包含4个输入参数，即MSP组件配置文件位置、BCCSP配置项、MSP ID名称与MSP类型（默认为FABRIC类型）。该方法首先调用msp.GetLocalMspConfigWithType()→GetLocalMspConfig()函数，构造MSP组件配置对象conf，再调用GetLocalMSP().Setup(conf)方法创建本地MSP组件，并且根据conf配置信息初始化MSP组件的内部数据结构。

代码清单7-41　LoadLocalMspWithType()函数的源码示例

msp/mgmt/mgmt.go文件

func LoadLocalMspWithType(dir string, bccspConfig *factory.FactoryOpts, mspID, mspType string) error {

 ……

 // 创建MSP组件配置对象

 conf, err := msp.GetLocalMspConfigWithType(dir, bccspConfig, mspID, mspType)

 ……

 return GetLocalMSP().Setup(conf) // 创建并初始化MSP组件

}

Orderer节点启动时调用mspmgmt.LoadLocalMsp()函数，初始化本地MSP组件。如代码清单7-42所示，LoadLocalMsp()方法包含3个输入参数，即MSP组件配置文件位置、BCCSP配置项与MSP ID名称。该方法首先调用msp.GetLocalMspConfig()函数，构造MSP组件配置对象conf，接着调用GetLocalMSP().Setup(conf)方法创建本地MSP组件，然后根据conf配置信息初始化MSP组件的内部数据结构。

代码清单7-42　LoadLocalMsp()函数的源码示例

msp/mgmt/mgmt.go文件

func LoadLocalMsp(dir string, bccspConfig *factory.FactoryOpts, mspID string) error {

 ……

 // 创建MSP组件配置对象

 conf, err := msp.GetLocalMspConfig(dir, bccspConfig, mspID)

 ……

 return GetLocalMSP().Setup(conf) // 创建并初始化MSP组件

}

（1）获取本地MSP组件配置对象

如代码清单7-43所示，GetLocalMspConfig()函数用于获取本地MSP组件配置对象。

代码清单7-43　GetLocalMspConfig()方法的源码示例

msp/configbuilder.go文件

// 获取MSP组件配置对象

func GetLocalMspConfig(dir string, bccspConfig *factory.FactoryOpts, ID string) (*msp.MSPConfig, error) {

 signcertDir := filepath.Join(dir, signcerts) // 签名者身份证书文件路径

 keystoreDir := filepath.Join(dir, keystore) // 私钥存储文件路径

 // 基于私钥文件位置构建BCCSP配置对象

 bccspConfig = SetupBCCSPKeystoreConfig(bccspConfig, keystoreDir)

 // 基于BCCSP配置对象初始化默认的BCCSP组件

 err := factory.InitFactories(bccspConfig)

 ……

 // 读取签名者身份证书文件（PEM格式）列表

 signcert, err := getPemMaterialFromDir(signcertDir)

 ……

 // 基于第1个身份证书构建签名者身份实体信息

 sigid := &msp.SigningIdentityInfo{PublicSigner: signcert[0], PrivateSigner: nil}

 return getMspConfig(dir, ID, sigid) // 构造MSP配置对象

}

GetLocalMspConfig()函数根据传入的参数，包括私钥文件路径keystoreDir（默认是/etc/hyperledger/fabric/msp/keystore）与BCCSP配置项，重新构造BCCSP对象配置项bccsp-Config。接着，调用factory.InitFactories()→setFactories()→initBCCSP()函数，基于默认配置（软件实现SW类型和SHA2-256哈希算法）构造全局默认的BCCSP对象defaultBCCSP。initBCCSP()函数先读取配置路径下的私钥文件，构造私钥存储对象，设置密码安全级别与密码函数族类型以构造BCCSP实例（如sw.impl类型），并添加到全局BCCSP工厂对象字典bccspMap（map[string]bccsp.BCCSP类型）中。然后，根据BCCSP配置类型获取对应的BCCSP对象，并设置给defaultBCCSP对象。这样，BCCSP对象就可以独立管理本地节点的私钥对象，对消息实现签名等操作。

接着，GetLocalMspConfig()函数调用getPemMaterialFromDir(signcertDir)函数，读取指定身份证书路径signcertDir（默认是/etc/hyperledger/fabric/msp/signcerts）上所有的签名者身份证书文件列表signcert（X.509标准证书PEM格式），构造签名身份信息对象sigid（SigningIdentityInfo类型），并将第1个身份证书文件signcert[0]作为sigid.PublicSigner公钥字段，将sigid.PrivateSigner私钥字段设置为nil。

最后，GetLocalMspConfig()函数调用getMspConfig()函数，构造FABRIC类型的MSP组件配置对象（FabricMSPConfig类型），并将该对象序列化后封装成MSP组件配置对象（MSPConfig类型），具体如下。

·基本属性：MSP ID名称、签名者身份实体信息sigid等；

·合法证书：CA证书、Admin证书、中间CA证书、CRL可撤销证书、TLS认证CA证书、中间CA证书等；

·MSP组件的节点组织单元对象（FabricNodeOUs类型）：包含Client、Peer等组织单元标识对象（FabricOUIdentifier类型），封装了信任的组织单元身份证书列表与标识符；

·MSP组件密码配置对象（FabricCryptoConfig类型）：包含签名哈希函数族（SHA2）和用于生成身份标识符ID的哈希函数（SHA256）。

（2）创建本地MSP组件

GetLocalMSP()函数在第一次调用执行时调用msp.New()→newBccspMsp()方法，其参数BCCSP对象选项newOpts默认采用FABRIC类型的MSP组件，且设置为MSPv1_0版本，并创建MSP组件实例mspInst（bccspmsp类型，实现了MSP接口）。同时，将mspInst设置为全局变量localMsp，设置MSP组件的内部构建方法internalSetupFunc()为theMsp.setupV1()方法，以及内部验证组织单元身份方法internalValidateIdentityOusFunc()为the-Msp.validateIdentityOUsV1()方法，如代码清单7-44与代码清单7-45所示。后面再次调用GetLocalMSP()函数时，会直接获取本地的全局变量localMsp作为返回值。

代码清单7-44　GetLocalMSP()函数的源码示例

msp/mgmt/mgmt.go文件

// 获取本地MSP组件对象

func GetLocalMSP() msp.MSP {

 ……

 lclMsp = localMsp // 获取全局变量

 if lclMsp == nil { // 如果不存在该对象，则重新创建

 ……

 mspInst, err := msp.New(newOpts) // 创建新的MSP组件

 ……

 switch mspType {

 case msp.ProviderTypeToString(msp.FABRIC): // FABRIC类型

 lclMsp, err = cache.New(mspInst)

 ……

 case msp.ProviderTypeToString(msp.IDEMIX):

 lclMsp = mspInst

 ……

 }

 localMsp = lclMsp // 设置全局变量，即本地MSP组件

 }

 ……

}

代码清单7-45　newBccspMsp()函数的源码示例

msp/mspimpl.go文件

func newBccspMsp(version MSPVersion) (MSP, error) {

 mspLogger.Debugf("Creating BCCSP-based MSP instance")

 bccsp := factory.GetDefault()

 theMsp := &bccspmsp{}

 theMsp.version = version

 theMsp.bccsp = bccsp

 switch version {

 case MSPv1_0: // 默认版本

 theMsp.internalSetupFunc = theMsp.setupV1

 theMsp.internalValidateIdentityOusFunc = theMsp.validateIdentityOUsV1

 case MSPv1_1:

 theMsp.internalSetupFunc = theMsp.setupV11

 theMsp.internalValidateIdentityOusFunc = theMsp.validateIdentityOUsV11

 default:

 return nil, errors.Errorf("Invalid MSP version [%v]", version)

 }

 return theMsp, nil

}

（3）初始化MSP组件

defaultBCCSP对象的Setup()方法基于参数解析出MSP组件配置对象（FabricMSP-Config类型），将其作为参数传递给内部构建方法（即bccspmsp.setupV1()方法）执行调用，并依次调用msp.preSetupV1()方法和msp.postSetupV1()方法初始化本地MSP组件，具体说明如下。

·msp.preSetupV1()方法：设置MSP组件的密码配置对象（CryptoConfig类型）、X.509证书验证选项、根CA证书和中间CA证书相关的身份实体列表、Admin身份实体列表、CRL可撤销证书列表、本地签名者实体、TLS认证的CA证书和中间CA证书、组织单元ID列表等。其中，调用finalizeSetupCAs()方法遍历所有中间CA证书集合构造信任证书验证链，并设置MSP组件的证书信任树内部节点字典certifica-tionTreeInternalNodesMap（map[string]bool类型），如代码清单7-46所示。其中，键是身份证书文件（DER格式）转换后的字符串，值是boolean类型，true则意味着证书是证书信任树上的一个内部节点，false意味着证书对应着证书树上的一个叶子节点。因此，按照PKI推荐的分层结构，Fabric推荐由证书信任树上的叶子节点来签名MSP组件实体资源的证书，否则就是不合法的。

·msp.postSetupV1()方法：遍历Admin身份实体列表并验证，实际上是调用Admin身份实体所属MSP组件（即bccspmsp对象）的Validate()方法，检查对象类型的合法性（identity类型），检查通过后调用bccspmsp对象的validateIdentity()方法，验证指定身份实体证书的有效性。

代码清单7-46　finalizeSetupCAs()方法的源码示例

msp/mspimplsetup.go文件

func (msp *bccspmsp) finalizeSetupCAs(config *m.FabricMSPConfig) error {

 ……

 // 标记证书信任树内部节点，默认为false

 msp.certificationTreeInternalNodesMap = make(map[string]bool)

 // 遍历所有中间CA证书

 for _, id := range append([]Identity{}, msp.intermediateCerts...) {

 // 构造信任证书验证链

 chain, err := msp.getUniqueValidationChain(id.(*identity).cert, msp.getValidityOptsForCert(id.(*identity).cert))

 ……

 // chain[0]此时属于被签发的证书，不能算作内部节点

 for i := 1; i < len(chain); i++ {

 // 设置MSP组件证书信任树内部节点字典

 msp.certificationTreeInternalNodesMap[string(chain[i].Raw)] = true

 }

 }

 ……

}

至此，本地MSP组件初始化完毕。

3.验证身份证书的有效性

bccspmsp对象的validateIdentity()方法用于验证指定身份对象（identity类型）是否属于MSP组件的有效身份对象，即验证其身份证书的有效性，如代码清单7-47所示，必须满足三个条件，具体如下。

·身份证书符合X.509证书标准，且存在该证书到根CA证书或中间CA证书可验证的证书路径。validateIdentity()方法调用getCertificationChainForBCCSPIdentity()方法，获取该身份证书的证书验证链validationChain，即构造其到根CA证书池的认证签发路径上的证书所组成的有序证书链；

·身份证书不属于CRL（证书撤销列表）。validateIdentity()方法调用validateIdentity-AgainstChain()方法检查该身份证书是否属于MSP组件的CRL列表，从而基于证书验证链validationChain判断该身份证书的有效性；

·身份证书至少包含一个MSP组件的组织单元。validateIdentity()方法调用internal-ValidateIdentityOusFunc()→validateIdentityOUsV1()方法，验证身份证书的组织单元与MSP组件包含的组织单元是否存在交集。

代码清单7-47　validateIdentity()方法的源码示例

msp/mspimplvalidate.go文件

// 验证指定身份实体的合法性

func (msp *bccspmsp) validateIdentity(id *identity) error {

 // 获取该身份证书的证书链

 validationChain, err := msp.getCertificationChainForBCCSPIdentity(id)

 ……

 // 验证该身份证书是否属于CRL证书撤销列表

 err = msp.validateIdentityAgainstChain(id, validationChain)

 ……

 // 验证该身份证书的组织单元

 err = msp.internalValidateIdentityOusFunc(id)

 ……

}

（1）验证证书合法性与证书路径

getCertificationChainForBCCSPIdentity()方法可调用getValidationChain()方法，获取该身份证书的证书验证链，如代码清单7-48所示。

代码清单7-48　getValidationChain()方法的源码示例

msp/mspimpl.go文件

// 获取证书验证链

func (msp *bccspmsp) getValidationChain(cert *x509.Certificate, isIntermediate-Chain bool) ([]*x509.Certificate, error) {

 validationChain, err := msp.getUniqueValidationChain(cert, msp.getValidityOpts-ForCert(cert)) // 获取证书验证选项

 if err != nil {

 return nil, errors.WithMessage(err, "failed getting validation chain")

 }

 // 检验证书链长度至少为2，因为不是根CA证书

 if len(validationChain) < 2 {

 return nil, errors.Errorf("expected a chain of length at least 2, got %d", len(validationChain))

 }

 parentPosition := 1

 if isIntermediateChain {

 parentPosition = 0

 }

 // 检查parent证书是否为证书树的一个叶子节点

 if msp.certificationTreeInternalNodesMap[string(validationChain[parentPosition].Raw)] {

 // ture意味着该证书是证书树的内部节点，false意味着该证书是证书树的叶子节点

 // MSP实体资源证书必须被证书信任树上的叶子节点签名，中间层节点签名的证书会被认为是非法证书

 return nil, errors.Errorf("invalid validation chain. Parent certificate should be a leaf of the certification tree [%v]", cert.Raw)

 }

 return validationChain, nil

}

getValidationChain()方法首先调用msp.getValidityOptsForCert(cert)方法，获取证书验证选项，再将其与证书cert作为参数，调用getUniqueValidationChain()→cert.Verify()方法（x509库），获取证书验证链列表validationChains，即构建从指定证书cert到根CA证书池证书的证书链来验证其真实性。其中，该链的第一个证书对象是cert，并且最后一个证书对象来自根CA证书池。

接着，getUniqueValidationChain()方法会返回validationChains证书验证链列表中的第一个证书验证链对象validationChains[0]，并确保该对象至少包含2个证书（cert证书与根证书）。

最后，getUniqueValidationChain()方法读取certificationTreeInternalNodesMap字典中该证书索引对应的值（true或false），来判断该parent证书是否为MSP证书信任树中的一个叶子节点（false），从而判断上级CA签名cert证书的合法性。

（2）验证CRL（证书撤销列表）

validateIdentityAgainstChain()方法通过MSP对象调用validateCertAgainstChain()方法，验证当前证书是否属于CRL（证书撤销列表），如代码清单7-49所示。

代码清单7-49　validateIdentityAgainstChain()方法的源码示例

msp/mspimplvalidate.go文件

// 基于证书验证链验证该证书是否已经失效

func (msp *bccspmsp) validateCertAgainstChain(cert *x509.Certificate, validationChain []*x509.Certificate) error {

 // 获取对该证书的签发CA证书（即parent节点）使用者密钥标识符SKI

 SKI, err := getSubjectKeyIdentifierFromCert(validationChain[1]) //

 ……

 // 遍历MSP组件证书撤销列表CRL

 for _, crl := range msp.CRL {

 // 获取与CRL对应的颁发机构密钥标识符AKI

 aki, err := getAuthorityKeyIdentifierFromCrl(crl)

 ……

 // 检查比较AKI与SKI是否匹配

 if bytes.Equal(aki, SKI) {

 // 遍历CRL被撤销的证书列表

 for _, rc := range crl.TBSCertList.RevokedCertificates {

 // 若被指定证书序列号匹配上，则说明该证书可能被撤销

 if rc.SerialNumber.Cmp(cert.SerialNumber) == 0 {

 // 检查是否由parent节点validationChain[1]签名

 err = validationChain[1].CheckCRLSignature(crl)

 if err != nil {

 // 若为不合法签名，则跳过继续遍历CRL

 mspLogger.Warningf("Invalid signature over the identified CRL, error %+v", err)

 continue

 }

 // 说明该证书已经正式撤销

 return errors.New("The certificate has been revoked")

 }

 }

 }

 }

 return nil

}

validateCertAgainstChain()方法首先获取上级签发CA证书的使用者密钥标识符SKI，遍历MSP组件所有的证书撤销列表msp.CRL，获取每个CRL的颁发机构密钥标识符AKI。接着，基于字节比较SKI与AKI是否相同。若两者匹配，则继续检查该CRL中每个撤销证书的序列号rc.SerialNumber。如果该序列号与指定身份证书的序列号cert.SerialNumber相同，则调用CheckCRLSignature()方法，继续检查上级签发CA节点是否为该CRL的签名者。如果确定仍然是同一个签名者，则说明指定身份证书cert已经撤销。

（3）验证MSP组件的组织单元

如代码清单7-50所示，validateIdentityOUsV1()方法可检查指定身份实体对象的组织单元与MSP组件的组织单元是否存在交集。该方法首先遍历该身份实体的id.GetOrganiza-tionalUnits()方法，获取其组织单元标识列表（[]*OUIdentifier类型），对于其中的每个组织单元标识对象OU，在MSP组件的组织单元标识列表msp.ouIdentifiers[OU.Organizational-UnitIdentifier]中获取对应的组织单元证书标识符ID列表certificationIDs。接着，遍历certificationIDs列表并获取证书标识符ID（即certificationID），将其与指定的证书标识符ID（即OU.CertifiersIdentifier）进行比较。若两者匹配一致，则说明指定身份实体中存在属于MSP组件的组织单元。

代码清单7-50　validateIdentityOUsV1()方法的源码示例

msp/mspimplvalidate.go文件

// 检查指定身份实体证书的组织单元与MSP组件的组织单元是否存在交集

func (msp *bccspmsp) validateIdentityOUsV1(id *identity) error {

 if len(msp.ouIdentifiers) > 0 {

 found := false

 // 遍历identity组织单元标识列表

 for _, OU := range id.GetOrganizationalUnits() {

 certificationIDs, exists := msp.ouIdentifiers[OU.OrganizationalUnit-Identifier]

 if exists {

 // 遍历证书标识符ID列表

 for _, certificationID := range certificationIDs {

 // 比较两者的证书标识符ID是否匹配

 if bytes.Equal(certificationID, OU.CertifiersIdentifier) {

 found = true // 若匹配成功，则设置标志位并跳出

 break

 }

 }

 }

 }

 if !found { // 若没有找到，则报错

 ……

 }

 return nil

}

Fabric 1.3中还增加了IDEMIX类型的MSP组件，采用了零知识证明的方法以提供身份验证与隐私保护功能（http://eprint.iacr.org/2016/663.pdf），这使得在不披露被验证者身份信息的情况下，向验证方证明自己的合法身份并完成交易，具有不可链接性（linkability），即无法从单个身份执行的多个交易中分析出是由同一个身份实体提交的，以实现真正意义上的匿名隐私保护特性，同时，提供Fabric CA（1.3以上版本，适用于生产环境）与idemixgen工具（适用于开发环境）作为发行者（Issuer）创建配置文件，为用户提供凭证（credential）。
7.2.2　BCCSP（区块链密码服务模块）

BCCSP（Blockchain Cryptographic Service Provider）为Fabric其他模块（如MSP组件等）提供密码服务套件，包括加密、解密、签名与验证、哈希函数等方法，如代码清单7-51所示。目前，BCCSP模块提供了PKCS11类型和SW类型两种基本实现。其中，PKCS11（Public-Key Cryptography Standards）类型是基于HSM（Hardware Security Modules）硬件安全模块（https://github.com/miekg/pkcs11）的加密服务实现，属于通用的接口标准，利用pkcs11库提供的上下文对象pkcs11.Ctx在SessionHandle基础上支持密码服务，SW类型是基于软件的加密服务实现的，直接使用crypto库下的包支持密码服务。同时，BCCSP模块可提供对应的两类工厂对象，其他模块则基于这两类工厂对象调用对应的密码服务接口。

代码清单7-51　BCCSP接口的源码示例

bccsp/bccsp.go文件

// BCCSP区块链密码服务提供者

type BCCSP interface {

 KeyGen(opts KeyGenOpts) (k Key, err error)

 KeyDeriv(k Key, opts KeyDerivOpts) (dk Key, err error)

 KeyImport(raw interface{}, opts KeyImportOpts) (k Key, err error)

 GetKey(ski []byte) (k Key, err error)

 Hash(msg []byte, opts HashOpts) (hash []byte, err error)

 GetHash(opts HashOpts) (h hash.Hash, err error)

 Sign(k Key, digest []byte, opts SignerOpts) (signature []byte, err error)

 Verify(k Key, signature, digest []byte, opts SignerOpts) (valid bool, err error)

 Encrypt(k Key, plaintext []byte, opts EncrypterOpts) (ciphertext []byte, err error)

 Decrypt(k Key, ciphertext []byte, opts DecrypterOpts) (plaintext []byte, err error)

}

MSP组件调用factory.InitFactories(config*FactoryOpts)→factory.setFactories(config*Factory-Opts)函数，初始化BCCSP对象配置及其工厂对象，如代码清单7-52所示。

代码清单7-52　setFactories()函数的源码示例

bccsp/factory/pkcs11.go文件

// 设置BCCSP工厂对象

func setFactories(config *FactoryOpts) error {

 if config == nil { // 检查默认选项

 config = GetDefaultOpts() // 默认使用SW类型

 }

 if config.ProviderName == "" {

 config.ProviderName = "SW" // 默认使用SW类型

 }

 if config.SwOpts == nil {

 config.SwOpts = GetDefaultOpts().SwOpts // 默认使用SwOpts选项

 }

 bccspMap = make(map[string]bccsp.BCCSP) // 初始化factory工厂对象列表

 if config.SwOpts != nil { // SW类型BCCSP对象

 f := &SWFactory{}

 err := initBCCSP(f, config) // 设置到全局BCCSP工厂对象字典中

 ……

 }

 if config.Pkcs11Opts != nil { // PKCS11类型BCCSP对象

 f := &PKCS11Factory{}

 err := initBCCSP(f, config)

 ……

 }

 if config.PluginOpts != nil { // 其他插件类型

 f := &PluginFactory{}

 err := initBCCSP(f, config)

 ……

 }

 var ok bool

 // 根据BCCSP配置类型名称获取BCCSP对象，并设置全局默认BCCSP对象defaultBCCSP

 defaultBCCSP, ok = bccspMap[config.ProviderName]

 if !ok {

 factoriesInitError = errors.Errorf("%s\nCould not find default '%s' BCCSP", factoriesInitError, config.ProviderName)

 }

 return factoriesInitError

}

setFactories()函数默认使用SW类型实现，如代码清单7-53所示。

代码清单7-53　GetDefaultOpts()函数的源码示例

bccsp/factory/opts.go文件

func GetDefaultOpts() *FactoryOpts {

 return &FactoryOpts{

 ProviderName: "SW",

 SwOpts: &SwOpts{

 HashFamily: "SHA2",

 SecLevel: 256,

 Ephemeral: true,

 },

 }

}

setFactories()函数根据配置参数config分别创建SW类型、PKCS11类型以及其他类型的BCCSP工厂对象f，并调用initBCCSP(f，config)→f.Get(config)方法初始化相应类型的BCCSP对象。

以SW类型为例，setFactories()函数调用sw.New()方法，生成SW类型的BCCSP实例对象（sw.impl类型），再根据BCCSP接口中的密码服务类型，分别创建对应接口的密码服务提供者字典，如keyGenerators密钥生成算法提供者字典等。接着，初始化密码种类、密码级别（长度）等，如SHA256、ECDSAP384等。这样，当其他模块调用BCCSP对象接口请求服务时，只需要指定相应的密钥、密钥选项或哈希选项等参数，sw.impl类型实例对象就会根据接口名称与参数类型，从密码服务提供者列表中获取对应的密码服务方法以供调用，如代码清单7-54所示。

代码清单7-54　impl类型（SW实现类型）的源码示例

bccsp/sw/impl.go文件

type impl struct {

 conf *config

 ks bccsp.KeyStore

 keyGenerators map[reflect.Type]KeyGenerator

 keyDerivers map[reflect.Type]KeyDeriver

 keyImporters map[reflect.Type]KeyImporter

 encryptors map[reflect.Type]Encryptor

 decryptors map[reflect.Type]Decryptor

 signers map[reflect.Type]Signer

 verifiers map[reflect.Type]Verifier

 hashers map[reflect.Type]Hasher

}

7.3　Events事件模块

7.3.1　创建事件服务器

Peer节点启动时调用事件生产者producer.NewEventsServer()方法，创建了事件服务器（EventsServer类型），并设置给全局的事件服务器变量globalEventsServer，调用initialize-Events()函数，以初始化事件生产者的事件处理器gEventProcessor对象（eventProcessor类型），该类型示意图如图7-8所示。

gEventProcessor事件处理器调用addInternalEventTypes()→AddEventType()函数，注册内部事件类型及其事件处理句柄列表到eventConsumers列表（map[pb.EventType]handlerList类型，其中，handlerList定义了处理句柄列表的接口类型）中，具体如下。

·EventType_BLOCK：创建区块事件及其处理句柄列表（genericHandlerList类型，实现了handlerList接口）；

·EventType_CHAINCODE：创建链码事件及其处理句柄列表（chaincodeHandlerList类型，实现了handlerList接口）；

·EventType_REJECTION：创建拒绝事件及其处理句柄列表（genericHandlerList类型）；

·EventType_FILTEREDBLOCK：创建过滤区块事件及其处理句柄列表（genericHandler-List类型）。

 [image:]

图7-8　事件处理器eventProcessor类型示意图

其中，eventConsumers事件列表用于注册与查找指定事件类型的事件处理句柄列表，以处理对应的事件消息。同时，该事件处理句柄封装了事件订阅Peer节点的gRPC连接通信流（请求调用Chat()服务建立连接获取的），可以将事件消息处理结果发送给事件订阅节点。

实际上，initializeEvents()函数执行go gEventProcessor.start()，建立了事件消息处理循环，并监控当前节点上gEventProcessor事件处理器的eventChannel通道（默认能缓冲100个事件消息，peer.events.buffersize配置项）。一旦从该通道捕获到新的事件消息，则检查事件类型是否已经注册在eventConsumers事件列表中。如果存在对应的注册事件类型，则循环遍历与该事件类型关联的事件处理句柄列表handlerList，检查其中的事件处理句柄与事件订阅Peer节点的连接会话情况。如果发现存在没有过期的会话（即会话时间不为0，且未超过该消息创建者的身份证书失效时间），则通过该事件处理句柄封装的服务器通信流Chat-Stream将该事件消息发送给事件订阅Peer节点。
7.3.2　订阅与发布事件

1.订阅事件

以block-listener工具监听网络事件为例（examples/events/block-listener/block-listener.go），该工具的main()方法首先调用createEventClient()函数，创建Event_Block类型区块事件的适配器adapter对象（Adapter类型），封装了notfy通道（chan*pb.Event_Block类型）用于通知接收的合法消息。接着，调用consumer.NewEventsClient()方法，基于适配器adapter创建事件客户端对象obcEHClient（EventsClient类型），并调用obcEHClient.Start()方法启动事件客户端，将adapter适配器封装的感兴趣事件（EventType_BLOCK类型）注册到事件服务器上，等待接收区块事件消息。同时，将过滤类型正确的消息发送到adapter的notfy通道消息上，以通知main()方法有新事件到达，如图7-9所示。

事件客户端EventsClient.Start()方法先调用ec.adapter.GetInterestedEvents()方法，基于adpater对象封装的区块事件，创建感兴趣事件ies（Interest类型，包括EventType_BLOCK事件类型）。接着，调用ehpb.NewEventsClient(conn)方法，创建新的临时事件客户端serverClient，执行serverClient.Chat()服务接口与事件服务器建立gRPC连接，返回eventsChatClient结构对象（封装了Chat()服务的通信客户端流）设置为ec.stream。然后，基于上述感兴趣事件ies与当前时间戳，构造注册配置对象regConfig（RegistrationConfig类型），并通过事件客户端调用ec.register(regConfig)方法，注册本节点订阅的相关事件。

该方法首先调用ec.RegisterAsync()方法，根据配置对象构造注册事件（Event类型）。该事件封装了Event_Register类型注册事件对象、本地创建者身份信息、时间戳等。接着，调用ec.send()方法对注册事件进行签名，构造签名注册事件signedEvt（SignedEvent类型），并通过客户端流调用ec.stream.Send(signedEvt)方法将消息发送给事件服务器。然后，register()方法会启动goroutine，执行ec.stream.Recv()方法以等待接收响应消息。如果接收的消息是Event_Register类型，则注册成功。否则，注册失败，退出并关闭regChan通道。最后，register()方法使用select语句阻塞等待regChan通道消息或注册操作执行超时。实际上，正常情况下会接收到回复的Event_Register类型注册事件消息。

 [image:]

图7-9　block-listener工具监听网络事件时序图

如果接收到正常的响应消息，则EventsClient.Start()方法继续执行go ec.process-Events()，建立消息处理循环，如代码清单7-55所示。该方法先调用ec.stream.Recv()方法，等待接收事件服务器转发的感兴趣事件消息。如果读取完毕或存在错误，则调用adapter适配器的ec.adapter.Disconnected()方法以断开连接。否则，调用ec.adapter.Recv()方法等待接收消息，过滤出指定事件类型（Event_Block类型）的消息并发送到adapter.notfy通道，以通知外层程序收到了合法的订阅事件消息。

同时，block-listener工具的main()方法进入消息处理循环，使用select语句阻塞等待adapter的notfy通道消息，接收到合法的区块事件消息后，循环遍历区块中的交易数据，解析出有效交易（ENDORSER_TRANSACTION类型）中的链码事件，并打印链码事件。

代码清单7-55　事件客户端的processEvents()方法源码示例

events/consumer/consumer.go文件

func (ec *EventsClient) processEvents() error {

 defer ec.stream.CloseSend()

 for {

 in, err := ec.stream.Recv() // 等待接收消息

 if err == io.EOF { // 读取完毕

 if ec.adapter != nil {

 ec.adapter.Disconnected(nil) // 断开连接

 }

 return nil

 }

 if err != nil { // 存在错误

 if ec.adapter != nil {

 ec.adapter.Disconnected(err)

 }

 return err

 }

 if ec.adapter != nil {

 cont, err := ec.adapter.Recv(in) // 接收事件

 if !cont {

 return err

 }

 }

 }

}

2.发布事件

例如，Committer记账节点在提交完毕区块与隐私数据到账本后，执行lc.postCommit()→producer.CreateBlockEvents()方法，创建区块事件bevent（Event_Block类型，封装了区块头部、元数据和所有交易数据），并调用producer.Send(bevent)方法，将该区块事件发送至gEventProcessor.eventChannel通道。接着，gEventProcessor.start()中的消息处理循环从eventChannel通道中捕获新的事件消息e，检查其事件类型eType的合法性以及其是否注册在eventConsumers事件列表中，遍历与该事件类型关联的事件处理句柄列表hl。如果存在事件处理句柄h与远程Peer节点的连接会话没有过期，则通过该事件处理句柄调用h.SendMessage()→d.ChatStream.Send()方法，将该订阅事件消息发送给订阅事件的Peer节点客户端，如代码清单7-56所示。

代码清单7-56　eventProcessor事件处理器的start()方法源码示例

events/producer/events.go文件

func (ep *eventProcessor) start() {

 logger.Info("Event processor started")

 for {

 e := <-ep.eventChannel // 阻塞等待事件

 var hl handlerList

 eType := getMessageType(e) // 分析事件类型

 ep.Lock()

 // 获取对应的事件处理句柄列表

 if hl, _ = ep.eventConsumers[eType]; hl == nil {

 logger.Errorf("Event of type %s does not exist", eType)

 ep.Unlock()

 continue

 }

 ep.Unlock()

 now := time.Now()

 hl.foreach(e, func(h *handler) { // 遍历事件处理句柄对象

 if hasSessionExpired(now, h.sessionEndTime) {

 ……

 go h.Stop()

 return

 }

 if e.Event != nil {

 h.SendMessage(e) // 发送事件消息

 }

 })

 }

}

7.3.3　注册与注销事件

当事件服务客户端调用Chat()方法请求服务时，Peer节点事件服务器globalEvents-Server会调用Chat()方法处理该服务请求，如代码清单7-57所示。该方法基于stream参数（包含gRPC事件服务器流）生成新的事件处理句柄handler（handler类型），创建消息处理循环，并调用stream.Recv()方法等待接收消息。如果接收到正常消息in，则调用handler.HandleMessage()方法进行处理，如代码清单7-58所示。

代码清单7-57　EventsServer事件服务器的Chat()方法源码示例

events/producer/producer.go文件

func (p *EventsServer) Chat(stream pb.Events_ChatServer) error {

 handler := newEventHandler(stream) // 创建新的事件处理句柄handler

 defer handler.Stop()

 for {

 in, err := stream.Recv() // 等待接收消息

 if err == io.EOF { // 接收结束

 logger.Debug("Received EOF, ending Chat")

 return nil

 }

 if err != nil { // 若接收发生错误，那么退出时应停止处理句柄

 e := fmt.Errorf("error during Chat, stopping handler: %s", err)

 logger.Error(e.Error())

 return e

 }

 err = handler.HandleMessage(in) // 正常处理消息

 if err != nil {

 logger.Errorf("Error handling message: %s", err)

 return err

 }

 }

}

代码清单7-58　HandleMessage()方法的源码示例

events/producer/handler.go文件

func (d *handler) HandleMessage(msg *pb.SignedEvent) error {

 evt, err := d.validateEventMessage(msg) // 验证事件消息的合法性，并返回事件对象

 if err != nil {

 return fmt.Errorf("event message validation failed: [%s]", err)

 }

 // 分析事件类型

 switch evt.Event.(type) {

 case *pb.Event_Register: // 注册事件

 eventsObj := evt.GetRegister() // 获取注册事件消息

 // 注册感兴趣事件列表

 if err := d.register(eventsObj.Events); err != nil {

 return fmt.Errorf("could not register events %s", err)

 }

 case *pb.Event_Unregister: // 注销事件

 eventsObj := evt.GetUnregister() // 获取注销事件消息

 // 注销感兴趣事件列表

 if err := d.deregister(eventsObj.Events); err != nil {

 return fmt.Errorf("could not unregister events %s", err)

 }

 case nil:

 default:

 return fmt.Errorf("invalid type from client %T", evt.Event)

 }

 // 返回已接收的消息

 if err := d.ChatStream.Send(evt); err != nil {

 return fmt.Errorf("error sending response to %v: %s", msg, err)

 }

 return nil

}

handler.HandleMessage()方法通过handler事件处理句柄，调用d.validateEventMessage(msg)方法验证事件消息的合法性，具体如下。

·检查消息创建者身份证书的有效时间（不能为0且未过期），通过检查后将其设置为事件处理句柄handler的会话过期时间d.sessionEndTime；

·调用BindingInspector()方法以检查证书哈希值的正确性；

·调用id.SatisfiesPrincipal()方法，以检查消息创建者的身份信息是否符合指定的MSP-Principal结构角色类型（MEMBER）的要求，包括MSP ID名称是否一致（是否属于同一个组织）、证书有效性等；

·调用id.Verify()方法以验证事件消息中签名的真实性。

如果通过了上述检查，则handler.HandleMessage()方法继续分析事件消息的类型，并分别进行处理，具体如下。

·Event_Register类型：注册感兴趣事件的事件处理句柄。调用evt.GetRegister()方法，基于接收消息解析获取注册事件对象（Event_Register类型，含有事件列表[]*Interest），通过handler事件处理句柄调用d.register(eventsObj.Events)方法，将该注册事件对象注册到handler上，遍历该消息所包含事件列表中的事件并调用registerHandler()函数。该函数从gEventProcessor.eventConsumers列表中获取指定事件消息类型ie.EventType关联的事件处理句柄列表hl，并基于该事件消息与事件处理句柄对象调用hl.add()→genericHandlerList.add()或chaincodeHandlerList.add()方法，将事件处理句柄添加到自身的事件处理句柄列表中，封装了Chat()服务的gRPC事件服务器流。同时，将该事件消息及其类型更新到handler处理句柄的感兴趣事件列表interestedEvents（map[string]*pb.Interest类型）中。此时，客户端就可以正常接收生产者发送的指定事件消息；

·Event_Unregister类型：注销感兴趣事件的事件处理句柄。调用evt.GetUnRegister()方法获取注册事件对象（Event_Unregister类型，含有事件列表[]*Interest），通过handler事件处理句柄调用d.deregister(eventsObj.Events)方法以注销事件对象，即遍历该消息所包含事件列表中的事件并调用deRegisterHandler()函数。该函数从gEventProcessor.eventConsumers列表中获取指定事件消息类型ie.EventType关联的事件处理句柄列表hl，并基于该事件消息与事件处理句柄对象调用hl.del()→genericHandlerList.del()或chaincodeHandlerList.del()方法，从自身的事件处理句柄列表中删除该事件处理句柄。同时，将该事件消息及其类型从handler处理句柄的感兴趣事件列表interestedEvents中删除。

然后，handler处理句柄对象调用d.ChatStream.Send()方法，将该事件消息回复给请求客户端，通知该消息已经处理完毕。

至此，handler.HandleMessage()方法执行完毕。

Fabric 1.3.0之后废弃了EventHub事件服务器，只保留本地Peer节点的DeliverEvents事件服务器提供区块或过滤区块事件服务。
7.4　小结

本章介绍了Hyperledger Fabric中公共功能模块的设计与实现机制，包括账本数据存储模块、安全服务模块、Events事件模块等。

账本数据存储模块提供了Peer节点账本的底层数据库与文件系统，包括idStore数据库、区块数据文件、隐私数据库、区块索引数据库、状态数据库、历史数据库以及transient隐私数据库，负责保存不同类型与用途的数据。本章介绍了上述数据存储对象的创建过程，分析了添加、查询或删除数据的底层细节。

安全服务模块是非常专业的知识体系。本章介绍了本地MSP组件的初始化流程、验证身份证书的有效性等，同时介绍了BCCSP区块链密码服务模块，提供密码服务套件用于加密与解密、签名与验证签名、计算哈希值等操作。

Events事件模块提供了Hyperledger Fabric系统相关事件（区块、过滤区块等）的订阅与发布服务，支持Fabric功能模块之间进行事件消息的异步通信。
附录A　Hyperledger Fabric配置文件

A.1　orderer.yaml配置文件

代码清单A-1　Orderer服务节点orderer.yaml配置文件

orderer.yaml文件

Orderer排序节点配置

通用配置

General:

 # LedgerType：提供给orderer的账本类型。目前存在两种非生产环境账本类型可用于测试目的

 # - ram：内存中的账本，其内容在重启后会丢失

 # - json：简单的文件账本，其将区块以JSON格式文件写入磁盘

 # - file： 生产环境的基于文件的账本

 LedgerType: file

 ListenAddress: 127.0.0.1 # 监听地址：服务绑定用于监听的IP地址

 ListenPort: 7050 # 监听端口：服务绑定用于监听的端口号

 TLS:

 Enabled: false # 是否启用TLS认证

 PrivateKey: tls/server.key # Orderer签名私钥位置

 Certificate: tls/server.crt # Orderer身份证书位置

 RootCAs:

 - tls/ca.crt # 信任的根CA证书位置

 ClientAuthEnabled: false # 是否对客户端启用TLS证书认证

 ClientRootCAs: # 客户端根CA证书位置

 LogLevel: info # 设置日志级别

 # 日志格式

 LogFormat: '%{color}%{time:2006-01-02 15:04:05.000 MST} [%{module}] %{short-func} -> %{level:.4s} %{id:03x}%{color:reset} %{message}'

 # GenesisMethod：提供创世区块的方式，包括provisional和file两种方式。provisional方式

 # 是利用GenesisProfile参数生成一个新的创世区块

 # file方式则是直接读取GenesisFile文件生成创世区块。

 GenesisMethod: provisional # 提供创世区块的方式

 GenesisProfile: SampleInsecureSolo # 使用参数初始化创世区块

 GenesisFile: genesisblock # 使用创世区块文件初始化区块

 LocalMSPDir: msp # MSP配置默认路径

 LocalMSPID: DEFAULT # MSP名称

 Profile:

 Enabled: false # 是否启用Go profiling服务

 Address: 0.0.0.0:6060 # 服务地址

 # BCCSP：为区块链加密服务提供者选择加密实现方法或库，包括SW（软件实现）或PKCS11（硬件安全

 模块）等

 BCCSP:

 SW:

 Hash: SHA2 # 哈希算法函数库

 Security: 256 # 安全级别（长度）

 FileKeyStore:

 KeyStore: # 本地密钥文件路径

 Authentication:

 TimeWindow: 15m # 当前服务器时间与客户端请求消息中的客户端时间

 # 之间允许的差值

File Ledger部分

FileLedger:

 # Location：存储区块文件位置。

 # 注意：如果该项未被设置，则将在Orderer每次重启时指定临时位置并使用Prefix指定账本前缀

 Location: /var/hyperledger/production/orderer

 # 当在一个临时位置中生成账本目录时使用该前缀。否则，该值可以被忽略掉

 Prefix: hyperledger-fabric-ordererledger

RAM Ledger部分

RAMLedger:

 HistorySize: 1000 # RAM账本保留的最大区块数量，采用FIFO（先进先

 # 出）的替换策略

Kafka部分

Kafka:

Fabric采用Sarama库实现的Kafka共识组件

 # Kafka未就绪时Orderer的重试配置，如果没有可用的Broker服务器时就需要重试

 Retry:

 # 重试分为快速重试和慢重试两个阶段，首先进行周期性地快速重试，超时失败后仍然未就绪则自

 # 动转入慢重试阶段，再执行周期性地慢重试直到成功或超时失败

 ShortInterval: 5s # 快速重试阶段retry周期时间

 ShortTotal: 10m # 快速重试阶段总时间

 LongInterval: 5m # 慢重试阶段retry周期时间

 LongTotal: 12h # 慢重试阶段总时间

 NetworkTimeouts: # Sarama网络相关超时时间

 DialTimeout: 10s # 拨号通信连接超时时间

 ReadTimeout: 10s # 获取消息超时时间

 WriteTimeout: 10s # 写入消息超时时间

 Metadata: # 元数据参数

 RetryBackoff: 250ms # 重试退避时间

 RetryMax: 3 # 重试最大次数

 Producer: # 发送消息到Kafka集群的超时时间

 RetryBackoff: 100ms # 重试退避时间

 RetryMax: 3 # 重试最大次数

 Consumer: # 从Kafka集群读取消息时的超时时间

 RetryBackoff: 2s # 重试退避时间

 Verbose: false # 是否打开连接到Kafka集群客户端的日志记录

 # 用于Kafka客户端的TLS相关设置

 TLS:

 Enabled: false # 若设置为true则打开TLS，默认不开启

 PrivateKey: # Orderer使用的PEM编码的签名私钥

 #File: path/to/PrivateKey # 从文件中读取私钥，私钥文件路径

 Certificate: # PEM编码的Kafka身份证书

 #File: path/to/Certificate # 从文件中读取证书，证书文件路径

 RootCAs: # PEM编码的可信签名者的根CA证书，用于验证来自Kafka集群

 # 的证书

 #File: path/to/RootCAs # 用于从文件中读取证书，根CA证书文件路径

 Version: # Kafka版本号，默认0.10.2.0

Debug:# Debug调试配置

 BroadcastTraceDir: # 若设置则记录每个发送到Broadcast服务的请求到指定文件中

 DeliverTraceDir: # 若设置则记录每个发送到Deliver服务的请求到指定文件中

A.2　core.yaml配置文件

代码清单A-2　Peer节点core.yaml配置文件

core.yaml文件

LOGGING日志部分：定义Peer服务的日志记录级别和输出日志消息格式

logging:

 # 定义默认的日志级别。对于含有子命令的命令，默认配置同样应用到所有子命令上。合法的日志级别

 # 是大小写不敏感的字符串，包括如下6个级别：

 # CRITICAL | ERROR | WARNING | NOTICE | INFO | DEBUG

 # 这里指定的日志等级可以被各种方法指定，下面从强到弱将其列岀：

 # 1. --logging-level=<level>命令行选项覆盖所有其他说明

 # 2.环境变量CORE_LOGGING_LEVEL定义成一个非空字符串，则应用到所有peer命令

 # 3.本文件定义的Level配置值

 # 若不存在上述任何方法提供的默认级别，则peer模块日志记录级别默认设置为INFO(common/flogg-

 ing/logging.go)

 # 默认全局日志记录级别

 level: info

 # 默认模块日志记录级别，覆盖全局配置

 cauthdsl: warning

 gossip: warning

 grpc: error

 ledger: info

 msp: warning

 policies: warning

 peer:

 gossip: warning

 # 默认输出日志的格式

 format: '%{color}%{time:2006-01-02 15:04:05.000 MST} [%{module}] %{shortfunc} -> %{level:.4s} %{id:03x}%{color:reset} %{message}'

Peer部分：包括通用配置、gossip配置、events配置、tls配置等

peer:

 # 通用配置

 id: jdoe # peer节点ID号

 # 网络ID：dev或test

 networkId: dev

 # 监听地址

 listenAddress: 0.0.0.0:7051

 # Peer节点链码服务监听网络地址

 # chaincodeListenAddress: 0.0.0.0:7052

 # Peer节点对外的服务地址

 address: 0.0.0.0:7051

 # 是否通过编程方式自动探测对外服务绑定的地址，这种情况很适合于Docker容器

 addressAutoDetect: false

 # 最大进程数，用于runtime.GOMAXPROCS(n)的设置。如果n<1，则不会改变当前设置

 gomaxprocs: -1

Peer服务器与客户端的Keepalive设置

keepalive:

 minInterval: 60s # 客户端发送消息最小周期时间

 client: # 与其他Peer节点通信

 interval: 60s # 发送消息时间周期

 timeout: 20s # 等待响应超时时间

 deliveryClient: # 与Orderer节点进行通信

 interval: 60s # 发送消息时间周期

 timeout: 20s # 等待响应超时时间

 # Gossip相关配置

 gossip:

 bootstrap: 127.0.0.1:7051 # 启动节点后默认连接的初始节点

 useLeaderElection: true # 是否动态选举Leader节点

 orgLeader: false # 是否指定本节点为组织Leader主节点

 endpoint: # 本节点端点

 maxBlockCountToStore: 100 # 缓存在内存中的最大区块数量

 maxPropagationBurstLatency: 10ms # 消息保存最大时间，若超时则转发给其他peer节点

 maxPropagationBurstSize: 10 # 能缓存的最大消息数量，若超过则推送消息到其他

 # peer节点

 propagateIterations: 1 # 消息被推送到远程peer节点的次数

 propagatePeerNum: 3 # 选择推送消息到达的peer节点数量

 pullInterval: 4s # 拉取消息的周期

 pullPeerNum: 3 # 拉取消息的Peer节点数量

 requestStateInfoInterval: 4s # 从Peer节点拉取状态信息消息的周期

 publishStateInfoInterval: 4s # 推送状态信息消息到Peer节点的周期

 stateInfoRetentionInterval: # 状态信息消息可以保存直到过期的超时时间

 publishCertPeriod: 10s # AliveMsg消息包含证书的时间

 skipBlockVerification: false # 是否跳过验证区块消息，默认为false

 dialTimeout: 3s # gRPC连接拨号的超时时间

 connTimeout: 2s # 建立连接超时时间

 recvBuffSize: 20 # 接收消息的缓冲区大小

 sendBuffSize: 200 # 发送消息的缓冲区大小

 digestWaitTime: 1s # 处理摘要消息前的等待时间

 requestWaitTime: 1s # 处理移除Nonce数据前的等待时间

 responseWaitTime: 2s # 结束拉取数据处理前的等待时间

 aliveTimeInterval: 5s # AliveMsg消息的时间周期间隔

 aliveExpirationTimeout: 25s # AliveMsg消息的超时过期时间

 reconnectInterval: 25s # 断开连接后重连的时间间隔

 externalEndpoint: # Peer节点外部端点。

 # Leader主节点选举模块配置

 election:

 startupGracePeriod: 15s # 在启动Leader选举期间，Peer节点选举等待的时间

 membershipSampleInterval: 1s # Gossip成员关系采样的时间间隔用于检查稳定性

 leaderAliveThreshold: 10s # Peer节点决定选举的等待时间

 leaderElectionDuration: 5s # 在Peer节点声明自身为Leader的等待时间

 # 隐私数据配置

 pvtData:

 pullRetryThreshold: 60s # 从其他Peer节点拉取数据直到被提交时（隐私数据

 # 被删除），隐私数据的最大保存时间

 # transientstoreMaxBlockRetention定义了当前账本高度与transient存储对象保存

 # 的隐私数据之间的最大高度差

 transientstoreMaxBlockRetention: 1000

 pushAckTimeout: 3s # 推送隐私数据等待响应消息的超时时间

 # EventHub配置

 events:

 address: 0.0.0.0:7053 # 事件服务监听地址

 buffersize: 100 # 能缓冲的事件总数量

 # 生产者发送事件的超时时间

 timeout: 10ms

 timewindow: 15m # Peer节点当前时间和指定在注册事件中的客户端时间

 # 之间可接受的差值

keepalive:

 minInterval: 60s # 客户端发送消息的最小周期时间

 # TLS配置

 tls:

 enabled: false # 默认不开启TLS验证

 clientAuthRequired: false # 需要客户端证书，双向TLS验证

 cert:

 file: tls/server.crt # 服务身份证书

 key:

 file: tls/server.key # 服务签名私钥

 rootcert:

 file: tls/ca.crt # 信任的根CA证书

 clientRootCAs:

 files:

 - tls/ca.crt # 信任的客户端根CA证书

 clientCert:

 file:

 authentication:

 timewindow: 15m # 当前服务器时间与客户端请求消息中的客

 # 户端时间之间允许的差值

 fileSystemPath: /var/hyperledger/production # Peer存储数据的文件系统路径（例如账本）

 # BCCSP区块链加密提供者选择使用的加密实现库

 BCCSP:

 Default: SW # 默认BCCSP配置为SW类型（软件实现），

 # 也可以选择PKCS（硬件安全模块）

 SW:

 Hash: SHA2 # 哈希算法为SHA2

 Security: 256 # 安全级别256位

 FileKeyStore: # 私钥位置，如果为空，则默认设置为'msp-

 # ConfigPath'/keystore

 KeyStore:

 mspConfigPath: msp # Peer节点上MSP本地配置文件路径

 localMspId: DEFAULT # 本地MSP名称

 # Delivery服务相关配置

 deliveryclient:

 reconnectTotalTimeThreshold: 3600s # delivery服务重连总时间

localMspType: bccsp # 本地默认MSP类型

 profile: # 只用在非生产环境中与Go剖析工具配合使

 # 用。生产环境中应该禁用

 enabled: false

 listenAddress: 0.0.0.0:6060

 handlers: # 定义处理句柄

 authFilters: # 定义了拒绝或转发来自客户端提交的提案

 -

 name: DefaultAuth # 工厂方法名称

 name: ExpirationCheck # 该过滤器检查X.509证书是否过期

 decorators: # 添加或改变链码的输入参数

 -

 name: DefaultDecorator # 工厂方法名称

 validatorPoolSize: # 并行执行交易验证的goroutine数量

VM section VM部分

vm:

 # vm管理系统的端点，通常是下面中的一个：

 # unix:// /var/run/docker.sock

 # http:// localhost:2375

 # https:// localhost:2376

 endpoint: unix:// /var/run/docker.sock # Docker Daemon地址，默认是本地套接字

 # 用于设置docker的tls配置

 docker:

 tls:

 enabled: false # 是否打开TLS认证

 ca:

 file: docker/ca.crt # CA证书

 cert:

 file: docker/tls.crt # TLS身份证书

 key:

 file: docker/tls.key # 私钥

 # 打开或关闭链码容器的标准输出或错误流以用于调试

 attachStdout: false

 # Docker容器创建的参数

 hostConfig:

 NetworkMode: host # host意味着链码容器使用主机网络命名空间

 Dns: # DNS服务器

 # - 192.168.0.1

 LogConfig: # 日志配置采用JSON格式文件

 Type: json-file

 Config:

 max-size: "50m" # 最大50MB

 max-file: "5" # 最多5个文件

 Memory: 2147483648 # 内存容量2GB

Chaincode section 链码部分

chaincode:

 peerAddress: # 若链码端点解析失败则启用这个配置

 # id通常是通过环境变量来提供的，动态标记链码信息

 id:

 path: # ID的path部分是在安装链码时提供的

 name: # name用于其他所有请求，可以是任意字符

 # 串值

 # 通用builder本地编译环境，适合于大多数链码类型，是一个Docker镜像

 builder: $(DOCKER_NS)/fabric-ccenv:$(ARCH)-$(PROJECT_VERSION)

 golang:

 # Go语言的链码部署生成镜像的基础Docker镜像

 runtime: $(BASE_DOCKER_NS)/fabric-baseos:$(ARCH)-$(BASE_VERSION)

 dynamicLink: false # 是否启用动态链接

 car:

 # car格式的链码部署生成镜像的基础Docker镜像

 runtime: $(BASE_DOCKER_NS)/fabric-baseos:$(ARCH)-$(BASE_VERSION)

 java:

 # Java语言的链码部署生成镜像的基础Docker镜像

 Dockerfile: |

 from $(DOCKER_NS)/fabric-javaenv:$(ARCH)-$(PROJECT_VERSION)

 node:

 # node.js语言的链码部署生成镜像的基础Docker镜像

 runtime: $(BASE_DOCKER_NS)/fabric-baseimage:$(ARCH)-$(BASE_VERSION)

 # 启动链码容器并等待注册消息达到的超时时间

 startuptimeout: 300s

 # 执行链码命令超时时间

 executetimeout: 30s

 # 执行链码模式，选项是dev/net

 # dev - 处于开发模式，用户在本地机器上从命令行启动运行链码进行调试

 # net - 处于net模式，在一个Docker容器中运行链码

 mode: net

 # Peer与链码之间的心跳消息时间，若值小于或等于0，则意味着关闭

 keepalive: 0

系统链码白名单，

并在chaincode/importsysccs.go中注册

 system:

 cscc: enable

 lscc: enable

 escc: enable

 vscc: enable

 qscc: enable

 rscc: disable

 systemPlugins: # 系统链码插件

 # example configuration:

 # - enabled: true

 # name: myscc

 # path: /opt/lib/myscc.so

 # invokableExternal: true

 # invokableCC2CC: true

 # 链码容器日志配置

 logging:

 level: info # 默认日志级别

 shim: warning # shim模块日志级别

 format: '%{color}%{time:2006-01-02 15:04:05.000 MST} [%{module}] %{shortfunc} -> %{level:.4s} %{id:03x}%{color:reset} %{message}'

 # 链码容器日志格式

Ledger部分

ledger:

 # 设置区块链的整体配置

 blockchain:

 state: # 状态数据库配置

 stateDatabase: goleveldb # 状态数据库类型

 couchDBConfig: # CouchDB配置

 couchDBAddress: 127.0.0.1:5984 # CouchDB数据库服务地址

 username: # CouchDB用户名

 password: # CouchDB密码

 maxRetries: 3 # 出错后重试的次数

 maxRetriesOnStartup: 10 # 启动出错的重试次数

 requestTimeout: 35s # CouchDB请求超时

 queryLimit: 10000 # 返回每个查询的最大记录数量

 maxBatchUpdateSize: 1000 # 每个CouchDB bulk块更新batch的记录数量

 warmIndexesAfterNBlocks: 1 # 每次提交1个区块就执行warm索引操作

 history:

 enableHistoryDatabase: true # 是否启用历史数据库

Metrics部分

metrics:

 enabled: false # 是否打开metrics测量服务器

 reporter: statsd # 目前支持statsd和prom

 interval: 1s # 报告测量数据的时间周期

 statsdReporter:

 address: 0.0.0.0:8125 # statsd服务器连接地址

 flushInterval: 2s # 推送测量数据到statsd服务器的时间周期

 flushBytes: 1432 # 每个推送测量请求消息的最大字节数，intranet推

 # 荐1432个字节，internet推荐512个字节

 promReporter:

 listenAddress: 0.0.0.0:8080 # prometheus服务器连接地址

附录B　e2e_cli示例相关文件情况

用户可以安装tree命令，查看crypto-config目录下当前网络组织成员结构及其证书、私钥等文件情况。

[root@localhost e2e_cli]# tree -a ./crypto-config

./crypto-config

├── ordererOrganizations

│ └── example.com

│ ├── ca

│ │ ├── 07606df0424af9d53de8c3fb5b236cb70bfb04b34cae46bbf0bfbed24b3e51ea_sk

│ │ └── ca.example.com-cert.pem

│ ├── msp

│ │ ├── admincerts

│ │ │ └── Admin@example.com-cert.pem

│ │ ├── cacerts

│ │ │ └── ca.example.com-cert.pem

│ │ └── tlscacerts

│ │ └── tlsca.example.com-cert.pem

│ ├── orderers

│ │ └── orderer.example.com

│ │ ├── msp

│ │ │ ├── admincerts

│ │ │ │ └── Admin@example.com-cert.pem

│ │ │ ├── cacerts

│ │ │ │ └── ca.example.com-cert.pem

│ │ │ ├── keystore

│ │ │ │ └── 3aec9a010c57deef69af7aab718cf07310ca73cfc67c9e27bedbc1e343e99d26_sk

│ │ │ ├── signcerts

│ │ │ │ └── orderer.example.com-cert.pem

│ │ │ └── tlscacerts

│ │ │ └── tlsca.example.com-cert.pem

│ │ └── tls

│ │ ├── ca.crt

│ │ ├── server.crt

│ │ └── server.key

│ ├── tlsca

│ │ ├── 7778350b2e621d374db26e2313057388c41b63773ebce80b64bbdb06807b8a1c_sk

│ │ └── tlsca.example.com-cert.pem

│ └── users

│ └── Admin@example.com

│ ├── msp

│ │ ├── admincerts

│ │ │ └── Admin@example.com-cert.pem

│ │ ├── cacerts

│ │ │ └── ca.example.com-cert.pem

│ │ ├── keystore

│ │ │ └── fb3ff03ede85291a71fffd4c576f569168b4f0b5b8c13fdc4eec05732509f2cf_sk

│ │ ├── signcerts

│ │ │ └── Admin@example.com-cert.pem

│ │ └── tlscacerts

│ │ └── tlsca.example.com-cert.pem

│ └── tls

│ ├── ca.crt

│ ├── client.crt

│ └── client.key

└── peerOrganizations

 ├── org1.example.com

 │ ├── ca

 │ │ ├── ca.org1.example.com-cert.pem

 │ │ └── eb7d1cf0b6114150d7994400af9dfdcf5412b7b11a216ab4ecdcc8a4591346b4_sk

 │ ├── msp

 │ │ ├── admincerts

 │ │ │ └── Admin@org1.example.com-cert.pem

 │ │ ├── cacerts

 │ │ │ └── ca.org1.example.com-cert.pem

 │ │ ├── config.yaml

 │ │ └── tlscacerts

 │ │ └── tlsca.org1.example.com-cert.pem

 │ ├── peers

 │ │ ├── peer0.org1.example.com

 │ │ │ ├── msp

 │ │ │ │ ├── admincerts

 │ │ │ │ │ └── Admin@org1.example.com-cert.pem

 │ │ │ │ ├── cacerts

 │ │ │ │ │ └── ca.org1.example.com-cert.pem

 │ │ │ │ ├── config.yaml

 │ │ │ │ ├── keystore

 │ │ │ │ │ └── 443f311e72dd07d5c2941e819ba84d239db7a59b45a6d818f1667e94af9cdc0f_sk

 │ │ │ │ ├── signcerts

 │ │ │ │ │ └── peer0.org1.example.com-cert.pem

 │ │ │ │ └── tlscacerts

 │ │ │ │ └── tlsca.org1.example.com-cert.pem

 │ │ │ └── tls

 │ │ │ ├── ca.crt

 │ │ │ ├── server.crt

 │ │ │ └── server.key

 │ │ └── peer1.org1.example.com

 │ │ ├── msp

 │ │ │ ├── admincerts

 │ │ │ │ └── Admin@org1.example.com-cert.pem

 │ │ │ ├── cacerts

 │ │ │ │ └── ca.org1.example.com-cert.pem

 │ │ │ ├── config.yaml

 │ │ │ ├── keystore

 │ │ │ │ └── 5b70fe1315cfff9293a558e88507c5752333b16c65c836be02ab337063819073_sk

 │ │ │ ├── signcerts

 │ │ │ │ └── peer1.org1.example.com-cert.pem

 │ │ │ └── tlscacerts

 │ │ │ └── tlsca.org1.example.com-cert.pem

 │ │ └── tls

 │ │ ├── ca.crt

 │ │ ├── server.crt

 │ │ └── server.key

 │ ├── tlsca

 │ │ ├── 9bf57185b40e461f8ed81bded116a409a0c457853e23a744571236b7584eff4f_sk

 │ │ └── tlsca.org1.example.com-cert.pem

 │ └── users

 │ ├── Admin@org1.example.com

 │ │ ├── msp

 │ │ │ ├── admincerts

 │ │ │ │ └── Admin@org1.example.com-cert.pem

 │ │ │ ├── cacerts

 │ │ │ │ └── ca.org1.example.com-cert.pem

 │ │ │ ├── keystore

 │ │ │ │ └── 050cc31fb5daccbdec9a7fb99fc948e4b358d8d996539f4b369366ba626abd81_sk

 │ │ │ ├── signcerts

 │ │ │ │ └── Admin@org1.example.com-cert.pem

 │ │ │ └── tlscacerts

 │ │ │ └── tlsca.org1.example.com-cert.pem

 │ │ └── tls

 │ │ ├── ca.crt

 │ │ ├── client.crt

 │ │ └── client.key

 │ └── User1@org1.example.com

 │ ├── msp

 │ │ ├── admincerts

 │ │ │ └── User1@org1.example.com-cert.pem

 │ │ ├── cacerts

 │ │ │ └── ca.org1.example.com-cert.pem

 │ │ ├── keystore

 │ │ │ └── e7baff19364c5bed3ebf4dbf892f6d7111c17c9b695e9bddcc7276d56e8671d1_sk

 │ │ ├── signcerts

 │ │ │ └── User1@org1.example.com-cert.pem

 │ │ └── tlscacerts

 │ │ └── tlsca.org1.example.com-cert.pem

 │ └── tls

 │ ├── ca.crt

 │ ├── client.crt

 │ └── client.key

 └── org2.example.com

 ├── ca

 │ ├── 06e87578ba744d17dd44a6f7729405b9b551d4d0aeab41539c64a6aa7121e85d_sk

 │ └── ca.org2.example.com-cert.pem

 ├── msp

 │ ├── admincerts

 │ │ └── Admin@org2.example.com-cert.pem

 │ ├── cacerts

 │ │ └── ca.org2.example.com-cert.pem

 │ ├── config.yaml

 │ └── tlscacerts

 │ └── tlsca.org2.example.com-cert.pem

 ├── peers

 │ ├── peer0.org2.example.com

 │ │ ├── msp

 │ │ │ ├── admincerts

 │ │ │ │ └── Admin@org2.example.com-cert.pem

 │ │ │ ├── cacerts

 │ │ │ │ └── ca.org2.example.com-cert.pem

 │ │ │ ├── config.yaml

 │ │ │ ├── keystore

 │ │ │ │ └── 2c0d825a68742d10d0932062fc437a7729ed535eb7a7a3c075253e5edc99b6d9_sk

 │ │ │ ├── signcerts

 │ │ │ │ └── peer0.org2.example.com-cert.pem

 │ │ │ └── tlscacerts

 │ │ │ └── tlsca.org2.example.com-cert.pem

 │ │ └── tls

 │ │ ├── ca.crt

 │ │ ├── server.crt

 │ │ └── server.key

 │ └── peer1.org2.example.com

 │ ├── msp

 │ │ ├── admincerts

 │ │ │ └── Admin@org2.example.com-cert.pem

 │ │ ├── cacerts

 │ │ │ └── ca.org2.example.com-cert.pem

 │ │ ├── config.yaml

 │ │ ├── keystore

 │ │ │ └── db15f8b1d8aa7536f11e3bb3c56c7fa7b463118b036d6c697e1b94c27875668a_sk

 │ │ ├── signcerts

 │ │ │ └── peer1.org2.example.com-cert.pem

 │ │ └── tlscacerts

 │ │ └── tlsca.org2.example.com-cert.pem

 │ └── tls

 │ ├── ca.crt

 │ ├── server.crt

 │ └── server.key

 ├── tlsca

 │ ├── e5f58302c1498132c5f7e8d7d90438002fd68b28c18867bf0187567628d8927d_sk

 │ └── tlsca.org2.example.com-cert.pem

 └── users

 ├── Admin@org2.example.com

 │ ├── msp

 │ │ ├── admincerts

 │ │ │ └── Admin@org2.example.com-cert.pem

 │ │ ├── cacerts

 │ │ │ └── ca.org2.example.com-cert.pem

 │ │ ├── keystore

 │ │ │ └── 6011727a6a505d6feaf19287dd1cabae44d3542736f51c59ce2111d5d7f5cba7_sk

 │ │ ├── signcerts

 │ │ │ └── Admin@org2.example.com-cert.pem

 │ │ └── tlscacerts

 │ │ └── tlsca.org2.example.com-cert.pem

 │ └── tls

 │ ├── ca.crt

 │ ├── client.crt

 │ └── client.key

 └── User1@org2.example.com

 ├── msp

 │ ├── admincerts

 │ │ └── User1@org2.example.com-cert.pem

 │ ├── cacerts

 │ │ └── ca.org2.example.com-cert.pem

 │ ├── keystore

 │ │ └── 227f7c458ebba6c095ec8334af256e2b916f2bf98f44a17de39663870d24b2e3_sk

 │ ├── signcerts

 │ │ └── User1@org2.example.com-cert.pem

 │ └── tlscacerts

 │ └── tlsca.org2.example.com-cert.pem

 └── tls

 ├── ca.crt

 ├── client.crt

 └── client.key

109 directories, 107 files

参考文献

[1]　Satoshi Nakamoto.Bitcoin：A Peer-to-Peer Electronic Cash System[EB/OL].http://bitcoin.org/bitcoin.pdf.2008.

[2]　乔纳森·H特纳社会宏观动力学[M].北京：北京大学出版社，2016.

[3]　梅兰妮·斯万.区块链：新经济蓝图及导读[M].北京：新星出版社，2016.

[4]　中国工业和信息化部.中国区块链技术和应用发展白皮书（2016）[R].2016.

[5]　中国电子技术标准化研究院.中国区块链技术和产业发展论坛标准：区块链参考架构（CBD-Forum-001-2017）[R].2017.

[6]　中国电子技术标准化研究院中国区块链技术和产业发展论坛标准：区块链数据格式规范（CBD-Forum-002-2017）[R].2017.

[7]　Back A.Hashcash-A Denial of Service Counter-Measure[C]//USENIX Technical Conference.2002.

[8]　M Pease，R Shestak，L Lamport.Reaching Agreement in the Presence of Faults[J].Jounal of the Association for Computing Machinery.Vol 27，No 2，April 1980：228-234.

[9]　Castro M，Liskov B.Practical Byzantine fault tolerance[C]//OSDI.1999，99：173-186.

[10]　腾讯科技（深圳）有限公司.TrustSQL对接开发指南[EB/OL].https://trustsql.qq.com/chain_oss/developer_installation_guide.html，2017.

[11]　Nick Szabo.Smart Contracts：Building Blocks for Digital Markets[EB/OL].http://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart_contracts_2.html，1996.

[12]　Wiki.Block hashing algorithm[EB/OL].http://en.bitcoin.it/wiki/Block_hashing_algorithm.2018.

[13]　Ethereum Wiki.Patricia Tree[EB/OL].http://github.com/ethereum/wiki/wiki/Patricia-Tree.2018.

[14]　杨保华，陈昌.区块链：原理、设计与应用[M].北京：机械工业出版社，2017.

[15]　张增骏，等.深度探索区块链：Hyperledger技术与应用[M].北京：机械工业出版社，2018.

[16]　袁勇，王飞跃.区块链技术发展现状与展望[J].自动化学报，2016(4)：481-494.

[17]　Network Working Group.Internet X.509 Public Key Infrastructure Certificate and Certificate Revo-cation List(CRL)Profile(RFC5280)[R].May 2008.

[18]　Hyperledger.超级账本Fabric项目[EB/OL].https://github.com/hyperledger/fabric.

[19]　Bitcoin.比特币项目[EB/OL].https://github.com/bitcoin/bitcoin.

[20]　Ethereum.以太坊项目[EB/OL].https://github.com/ethereum.

[21]　Antonopoulos，Andreas M.Mastering Bitcoin：unlocking digital cryptocurrencies.O扲eilly Media，Inc，2014.

[22]　Hajnal A，Milner E C，Szemeredi E.A cure for the telephone disease[J].Canad.Math Bull，1972(15)：447-450.

[23]　Binh Nguyen.Hyperledger Fabric v1.0 Deep Dive[R].IBM，2017.

[24]　Elli Androulaki，etc.Hyperledger Fabric：A Distributed Operating System for Permissioned Block-chains[EB/OL].https://arxiv.org/abs/1801.10228,30 Jan 2018.

[25]　Kostas Christidis.A Kafka-based Ordering Service for Fabric[EB/OL].https://docs.google.com/document/d/1vNMaM7XhOlu9tB_10dKnlrhy5d7b1u8lSY8a-kVjCO4/edit,27 April 2017.

[26]　中国工业和信息化部信息中心.2018年中国区块链产业白皮书[EB/OL].http://www.miit.gov.cn/n1146290/n1146402/n1146445/c6180238/part/6180297.pdf，2018年5月.

[27]　Fabric官方手册[EB/OL].http://hyperledger-fabric.readthedocs.io/en/latest/index.html,2018.

[28]　腾讯科技（深圳）有限公司.TrustSQL在线开发文档[EB/OL].https://baas.trustsql.qq.com/web/trust_blockchain/doc/v1.0/index.shtml,2018.

[29]　张明德，刘伟.PKI/CA与数字证书技术大全[M].电子工业出版社.2015.

[30]　中国信息通信研究院，可信区块链推进计划.区块链白皮书（2018年）[EB/OL].http://www.caict.ac.cn/kxyj/qwfb/bps/201809/P020180905517892312190.pdf.2018年9月.

[31]　Parth Thakkar，Senthil Nathan N，Balaji Viswanathan.Performance Benchmarking and Optimizing Hyperledger Fabric Blockchain Platform[EB/OL].https://arxiv.org/pdf/1805.11390.pdf.2018.

[32]　袁勇，倪晓春，曾帅，王飞跃.区块链共识算法的发展现状与展望[J].自动化学报.2018(11).
EPUB/cover.xhtml
[image: Cover]

EPUB/cover.jpg
EMESHTTHyperledger Fabricty#ik5H . IHBMAETIH, MWLAHFT
BROERRITESSTRRIE
smiT WERBREETHyperledger FabriciZHIS RE, MHHRRFAHLN LRUBFLIFUES

Hyperledger Fabric

BEA 4

Mgt 5L PRE

FHO%

HYPERLEDGER FABRIC INTERNALS

ARCHITECTURE DESIGN AND IMPLEMENTATION PRINCIPLES

) BB T b AR A

‘China Machine Press

