

 JSP应用与开发技术（第3版）

 	
 第1章　JSP与Web技术概论

 	
 第2章　JSP的开发和运行环境

 	
 第3章　JSP基本语法

 	
 第4章　JSP内置对象

 	
 第5章　Cookie及会话追踪

 	
 第6章　JavaBean和表单处理

 	
 第7章　JSP中的文件操作

 	
 第8章　应用JDBC进行数据库开发

 	
 第9章　JSP与JavaBean应用实例

 	
 第10章　Servlet基础

 	
 第11章　使用Servlet过滤器和监听器

 	
 第12章　JSTL标准标签库

 	
 第13章　自定义标签库

 	
 第14章　网上书店

 	
 第15章　调查问卷管理系统

 	
 第16章　Web应用开发实践

 	
 附录　实验

 第1章　JSP与Web技术概论

本章主要对JSP与Web技术进行概要介绍，并为读者提出了一些学习JSP的建议。为了让读者在开始学习之前能对JSP技术有一个清晰与完整的概念，本章首先介绍了Web应用程序开发基础知识，还介绍了静态网页和动态网页技术，通过JSP技术原理以及与其他主流动态网页技术的比较，进一步了解JSP技术是一种功能强大、可以实现跨平台操作的动态网页开发技术；然后通过编写一个简单的JSP页面实例，让读者对JSP技术有一个直观的感性认识；最后介绍了软件编程体系和企业应用开发架构。本章对JSP知识体系的剖析，有助于读者学习和掌握JSP知识体系中的各个模块，对JSP技术有一个总体了解。

本章学习目标

 	◎　掌握Web应用程序开发基础知识

 	◎　了解静态网页与动态网页技术

 	◎　了解网站数据库技术

 	◎　掌握JSP的基本概念

 	◎　掌握JSP的知识体系

 	◎　了解软件编程体系

 	◎　了解企业应用开发架构

 	◎　了解JSP的学习之路

1.1　Web应用程序开发基础知识

WWW（World Wide Web）即全球广域网，也称为万维网。它是一种基于超文本和HTTP的、全球性的、动态交互的、跨平台的分布式图形信息系统，是建立在Internet上的一种网络服务，为浏览者在Internet上查找和浏览信息提供了图形化的、易于访问的直观界面，其中的文档及超级链接将Internet上的信息节点组织成一个互为关联的网状结构。万维网并不等同互联网，万维网只是互联网提供的服务之一。

从表现形式上来看，基于Web的应用程序是许多网页的集合，这些网页可以与其他网页进行交互，也可以与Web服务器上的其他各种资源（如数据库或Web服务）进行交互。

为了规范这种Web页面之间的交互流程，保证客户端和服务器端之间能很好地通信，在网络上必须采用一个规范性的协议（HTTP通信协议）来定义各种Web应用上的服务细节。

1.1.1　HTTP通信协议概述

HTTP（Hypertext Transfer Protocol）通信协议是目前在Internet上应用最广泛的通信协议之一。HTTP通信协议允许客户端向服务器提出基于HTTP格式的“请求”（Request），而服务器解析请求和完成请求的处理后，将根据实际的处理结果向请求端传回基于HTTP的“回应”（Response）。根据HTTP通信协议，客户端和服务器端的交互主要由以下四个步骤组成。

（1）当客户端向Web服务器发出请求时，Web服务器将会为该客户开启一个新的连接。

（2）通过这个连接，用户（服务请求端）可以将HTTP请求通过网络，传送给Web服务器。

（3）当Web服务器收到HTTP请求时，将根据请求内容进行相应的处理，并将处理结果包装成HTTP回应。

（4）服务器会将HTTP回应传送给用户。只要用户接收到HTTP回应，Web服务器就会关闭同客户端的连接，从而结束本次通信。

图1-1说明了客户端与Web服务器通信的整个流程，从图中可以看到，HTTP通信协议用来规范在客户端和服务器之间的数据传输格式，更重要的是，HTTP通信协议定义了从客户端发送HTTP请求到服务器端返回HTTP响应的整个流程。

 [image:]
 图1-1　客户端（客户）与服务器端（Web服务器）之间的交互关系

1.1.2　传统的Web应用程序

目前，大多数的Web应用程序都是基于HTTP通信协议的，即一个典型的基于Web的服务器和客户端应用程序必须具备“接受客户端的请求”和“将处理结果回应给客户端”这两种能力。

在Web开发的起步阶段，程序员是用CGI（Common Gateway Interface，公共网关接口）程序来编写Web应用程序组件的，即Web服务器之间及客户端和服务器之间是通过CGI来互相交换信息。当客户端向Web服务器送出一个HTTP请求时，Web服务器将根据其中的CGI内嵌服务程序，执行如下动作：

[image:]　如果客户端请求的内容是静态的HTML网页数据（即这些数据不是从数据库等数据源动态获取生成），Web服务器将会根据事先编写好的处理程序自行处理，产生回应信息并返回。

[image:]　如果涉及动态数据（如查询在服务器上的数据），则由内嵌的CGI程序负责处理，处理结束后，CGI程序会先把结果回送给Web服务器，再由Web服务器传回用户端。

整个流程如图1-2所示。

 [image:]
 图1-2　CGI程序基本运行流程

从实际的运行效果来看，虽然CGI程序能在一定程度上解决客户端与服务器端之间的交互问题，但是基于CGI程序本身的特点，这样的开发模式隐含了一些可能导致系统效率降低和项目可维护性变差的缺点。

[image:]　从运行方式上来看，CGI程序属于“操作系统进程”，因此对于每个HTTP的请求，服务器端都必须对应地开启一个CGI的服务，这加重了系统整体资源负担。

[image:]　CGI程序通常不具有“平台独立性”，它甚至可以用多种语言来编写，如果转换到其他系统平台，程序可能要做适当的改写或重写。

[image:]　最为重要的是，CGI无法很好地形成一种通用的规范。事实上，不同类型的服务器CGI代码往往从请求风格到服务方式，都是不同的。

在实际的应用中，以上三个特点确实影响到Web应用程序的执行性能，因此需要一个能够取代CGI的Web开发技术，来满足“低负载、高重用和规范统一”等通用要求。

JSP技术恰好可以完美地取代CGI程序，Java的“平台无关性”可以保证用JSP编写出来的代码能够在多个平台之间很好地迁移。同时，JSP语言是基于Java虚拟机的，不会对系统产生严重的资源负载。而且，不同平台上的Java语言及其虚拟机均采用了同一类标准（基于Java的标准），因此，JSP可以满足“规范统一”这个要求。

1.1.3　Web结构

Web主要由两个部分组成，其结构如图1-3所示：提供Web信息服务的服务器端网站及向网站提出信息内容浏览要求的客户端浏览器。服务器端网站存放包含各种形态的多媒体信息网页，客户端主要包含各种可以浏览网页内容的浏览器软件，目前通用的浏览软件为Windows操作系统的Internet Explorer（IE）浏览器。

 [image:]
 图1-3　Web结构

了解Web结构的初步概念后，下面继续针对其中几个重要的技术内容进行讲解。

1. 客户端与浏览器

要打开和浏览网络上的网页文件，必须通过浏览器程序，如IE、Netscape等。而使用浏览器打开网页的这一端，称为客户端。因为网站为上线用户提供打开网页的服务，因此用户也可称为客户。

浏览器的功能主要是解释HTML文件中的内容，若HTML中同时含有客户端执行的描述语言，例如VBScript或JavaScript，则浏览器同样会对其进行解释的操作，最后将整份网页的执行结果呈现在用户的浏览器窗口中。

2. 服务器端与服务器

与客户端相比，提供浏览网页服务的一方称作“服务器端”，而用来放置这些网页信息的计算机，则称为服务器。

服务器的功能并不只是单纯地存放网页信息，任何可提供网络服务的计算机都是服务器。例如，提供网页信息的称为网页服务器，而提供文件上传与下载功能的则称为文件服务器。

3. 通信协议

在网络上要能彼此互通信息就必须遵循一定的沟通方式，这些沟通方式即所谓的通信协议，表1-1所示为WWW中较为常用的通信协议。

 表1-1　WWW常用通信协议

 [image:]

只有双方都使用相同的通信协议，才能建立起连接通道。

4. 全球资源定位器—— URL

URL的英文全称为Uniform Resource Locator（全球资源定位器），是对可以从互联网上得到的资源的位置和访问方法的一种简洁的表示，是互联网上标准资源的地址。互联网上的每个文件都有一个唯一的URL，它包含的信息指出文件的位置及浏览器应该怎么处理它。当用户想要打开位于远程网站主机上的网页时，必须指定其URL位置，也就是通常所讲的网址，它从左到右由下述部分组成。

[image:]　Internet资源类型（scheme）：指出WWW客户程序用来操作的工具。如“http://”表示WWW服务器，“ftp://”表示FTP服务器，“gopher://”表示Gopher服务器，而“new:”表示Newgroup新闻组。

[image:]　服务器地址（host）：指出WWW页所在的服务器域名。

[image:]　端口（port）：有时需要，对某些资源的访问来说，需给出相应的服务器提供端口号。

[image:]　路径（path）：指明服务器上某资源的位置（其格式与DOS系统中的格式一样，通常由“目录／子目录／文件名”这样的结构组成）。与端口一样，路径并非总是需要的。

URL地址格式排列为：scheme://host:port/path。例如，http://www.oracle.com/technetwork/java/index.html就是一个典型的URL地址。当浏览器接收了用户输入的一个网址后，便会根据其中所提供的信息，向服务器提出网页浏览请求。

1.2　静态网页与HTML

HTML称为超文本标记语言，是一种用于开发静态网页的技术语言，主要提供创建网页文件所需的标准语法，以及描述网页数据的呈现方式，其中包含超级链接、图形或声音影像等多媒体内容。

静态网页主要由各种规范数据展现格式的标签组成，图1-4所示为显示“JSP动态网页技术”的HTML网页文件jsp.html在浏览器上的显示结果。

 [image:]
 图1-4　静态网页在浏览器中的显示示例

使用记事本打开并查看这份网页的HTML如下：

 [image:]

可以看到，其内容由各种HTML标签组成，这些标签各有其特定的意义。例如，…表示其中包含的文字要以粗体的外观显示，<i>…</i>则是将其中包含的文字设置为斜体格式。

由于HTML大量使用于网页的建构当中，因此编写HTML的相关软件也发展得相当成熟，网页设计人员几乎可以不用了解HTML标签即能设计出各种出色的网页。当然，学习JSP网页程序设计，了解HTML是不可缺少的必备知识。在本书后面的内容中，对于HTML与JSP的相关应用，将会有详细的介绍。

静态网页的HTML技术对于文件内容的展示，表现得相当称职。用户在浏览网页的时候，可以轻松查看网页设计者预先设计好的内容，网页一旦设计完成，内容就不会再变动，无论使用的网页浏览器、浏览用户的身份如何不同，他们所见到的内容都是相同的。

在Web发展初期，HTML所建构的静态网页的确达到了信息传递的主要目的。然而随着Web网站各种应用服务的快速增长，静态网页单向呈现信息的特性，很快便无法满足实际的应用需求。尤其是越来越多的商业活动在网络上进行，网站与用户的互动需求开始浮现，如何创建出更加吸引用户的网站内容，这对静态网页的发展提出了新的要求。

一个购物网站根据到访的用户身份显示出不同的信息，以提供个性化的网页内容；一个门户网站也可能根据用户的习惯，将其喜好的信息内容显示在每次访问的首页。为了满足这些需求，具备动态特性的交互式网页开始出现，CGI、ASP及JSP便是用于建构动态网页的相关技术，在下一节的内容当中，我们继续来介绍这一方面的相关概念。

1.3　交互式动态网页技术

由于静态HTML网页不能与网站用户进行互动，因此出现了各种提供交互式功能的网页技术。本节将介绍交互式网页的概念，同时说明交互式网页技术领域的主流技术JSP与其他动态网页技术。

1.3.1　动态网页的程序语言

HTML网页只能够提供各种静态的多媒体信息，却不能与联机用户进行数据交换等动态交流。为了让网页根据用户不同的行为作出动态响应，因此产生了内嵌于HTML网页的程序语言，这一类程序语言依解释方式的不同，可以区分为两类：客户端Script语言和服务器端网页语言。下面分别对这两种网页语言进行说明。

1.3.2　在客户端执行的网页语言

在客户端执行的网页语言内嵌在HTML中，而包含这类客户端执行程序的网页扩展名同样是.htm。当浏览器向服务器请求打开网页时，服务器会将整份网页传送至客户端，由浏览器进行网页程序解释操作，并且将结果显示在浏览器窗口中，其过程如图1-5所示。

 [image:]
 图1-5　在客户端执行的网页语言

该过程说明如下：

（1）用户通过浏览器指定URL，向网页服务器请求特定的网页内容。

（2）服务器加载指定的HTML网页，返回至客户端的网页浏览器进行解释。

（3）浏览器取得HTML文件，解释其中的HTML及Script网页程序代码。

（4）显示HTML网页。

在客户端执行的网页语言可在网页中产生动态的效果，如各类网页特效，同时也能够在客户端与服务器端之间作数据交换时，先行处理一些事前的准备操作。例如，一般提供会员登录功能的网页，通常都会利用客户端的Script提供输入数据的校验功能，当用户输入不正常的数据（如不合法的身份证信息）时，登录网页的操作将会失败，相关的资料则无法返回至服务器端进行处理。

客户端的Script语言，可以直接在浏览器这一端完成一些工作，而不需要将所有的工作都返回至服务器端，这样可以降低服务器的负担并提高执行的效率，为一些大型网站减轻负担提供了很好的解决方案。

目前可以提供动态网页的Script语言有两种，分别是JavaScript和VBScript。其中，JavaScript最初是由Netscape发展出来的一种Script。用户需特别注意的是，JavaScript是一种独立使用在前端网页的脚本语言，与本书后面内容中所要探讨的结合JSP的Java语言完全没有关系，只是后来Netscape与Sun（Java与JSP的创造者）合作之后，这种网页语言才被改名为JavaScript，尽管在语法上与Java类似，但两者不能混为一谈。

JavaScript内嵌于网页上，与HTML相互混用创造动态的网页效果。目前，普遍使用的浏览器均支持这一种网页语言，它是一种很简单的程序语言，可以很有效地完成一些在客户端进行的网页工作。该网页语言的另一种用途在于提供网页动画效果，用户可以在许多网站看到由JavaScript创建的动态网页。

VBScript是另一种被广泛使用的网页语言，与JavaScript进行同样的客户端操作。这种语言以Visual Basic为基础发展而来，只有微软本身的浏览器支持这种脚本语言。尽管目前用户所使用的浏览器几乎都是微软的IE，但是由于JavaScript已是客户端网页语言的通用标准，同时也具备较强大的功能，因此建议读者还是以JavaScript为主要的学习对象。

Script虽然能够达到与用户互动的目的，但是在功能上却有非常大的限制，其中最大的缺陷在于其无法集成服务器上的资源，如文件操作与数据库存取等。

具备Script的网页只能算是单纯的动态网页，在客户端浏览器进行动态效果，服务器一旦将网页送出，就无法再与其沟通，因此无法达到真正的互动行为。同时，基于安全上的考虑，用户也无法通过客户端Script进行各种服务器的操作，于是服务器端网页语言便被开发出来以解决相关的问题。

1.3.3　在服务器端执行的网页语言

在服务器端执行的网页语言特点为必须由服务器中的解释器来做解释的操作，最后再将解释后的结果以HTML的格式传送至客户端，直接显示在浏览器中。服务器端网页语言的出现，真正实现了让用户通过网络与网站进行沟通的目的，整个服务器端网页的运行过程如下：

（1）用户通过浏览器指定URL，向网页服务器请求特定的网页内容。

（2）服务器加载指定的JSP网页，通过解释器解读其中的JSP程序代码，创建HTML网页，然后返回至客户端的网页浏览器进行解释。

（3）浏览器取得JSP文件，解释其中的HTML及Script网页程序代码。

（4）显示网页。

在上述过程中，用户可以发现，服务器端的网页语言与HTML静态网页最大的差异在于第（2）步，这个部分通过执行JSP程序代码创建HTML网页，因此在不同条件的情况下，网站得以利用同一份JSP网页文件，输出完全不同的网页内容，甚至动态产生Script程序代码，其步骤流程如图1-6所示。

 [image:]
 图1-6　在服务器端执行的网页语言

可以用于产生交互式动态网页的技术有好几种，比较著名的有CGI、微软的ASP、新版的ASP.NET和本书所要探讨的主题—— JSP。其中，CGI属于比较早期的服务器端动态技术，目前使用此项技术所构建的网站依然不在少数，然而由于其不易学习和效率不高的特性，在ASP和JSP等技术出现之后，已逐渐淡出用户的视线。

ASP是微软开发的新一代服务器端网页语言，其英文全称为Active Server Pages（动态服务器网页），因其简单易用的优点吸引了不少网站建构技术人员采用，然而由于其功能过于单一，只能使用简单的内置对象，因而尽管结合COM技术得以延伸其结构格局，但程序设计的复杂度也因此增加。

ASP.NET是微软集成.NET平台发展而来的服务器端网页语言，使用.NET提供的类别库与对象导向理论建构的服务器端动态网页，不仅功能强大，紧密结合.NET平台，而且在性能上也有相当出色的表现，近年来已经成为最热门的动态网页技术之一。

JSP是一种以Java为基础的服务器端网页语言，本书对于这一技术将有详细的介绍。

无论何种服务器端的网页技术，都有其学习的价值。而在几种主流技术之中，ASP.NET无疑是JSP最为强大的竞争技术，尤其是近几年ASP.NET因其集成微软.NET平台与强大的对象导向网页开发技术，更将动态网页的发展推向了一个崭新的高度。然而JSP除了集成Java平台，同样具备高性能与功能强大的特色之外，其另外一项优势在于Java具有强大的跨平台能力。

网络本身是一种混杂各种技术平台的开放式环境，无论何种网络平台，JSP几乎都可以在其上不受制约地顺畅运行。虽然已有一些机构致力于将ASP移植到其他非Windows平台，然而在短期内，ASP还只能被限制在Windows的.NET平台上运行。同时，Java语言的成功与强大的功能，使得JSP能够提供比ASP更为广泛的网页功能。

1.4　网站数据库技术

JSP网站开发离不开数据库编程，与数据库交互几乎是每个大型动态网站必备的功能。通过访问数据库，可以使一个动态网站所能呈现的内容范围比静态网站广泛得多。所以，掌握数据库编程技术是网站开发的基础。

JSP页面访问数据库操作基本流程是用户浏览器向Web服务器发出HTTP请求，例如请求读取某个JSP页面，Web服务器在接收到请求后解析该JSP文件，如果其中含有数据库操作的代码，则Web服务器会连接相应的数据库，并执行需要的SQL语句，如插入、修改或删除等。数据库操作完成后，数据库服务器会将结果返回给Web服务器（如果需要的话），Web服务器再根据这些结果生成相应的页面，最后将这个页面及其他一些必要的文件，如图片文件、CSS文件等，一起发送给用户端，这一过程称为HTTP响应。要注意的是，这里的Web服务器和数据库服务器在物理上可以是同一台服务器，也可以是相距非常远的两台或多台服务器，这要根据具体的应用来决定。图1-7所示是这一过程的形象描述。

一般情况下，网站开发所需要了解的数据库技术也不是很多，因为网站只是在运行过程中需要访问相应的数据库，进行插入、修改及删除等基本操作，对数据库更复杂的维护通常不是通过网页来完成的，数据库本身有自己的维护方法和操作界面。

JSP网页主要提供用户与服务器端数据库的操作存取功能，同时也是数据库内容的展示界面。客户端浏览器、服务器JSP网页与数据库三者形成一个交互式的数据库网站，其流程说明如下：

（1）用户通过浏览器指定URL，向网页服务器请求特定的网页内容。

（2）服务器加载指定的JSP网页，通过解释器解读其中的JSP程序代码。

（3）JSP根据其运算逻辑，存取数据库内容，建立所需的内容信息。

（4）处理好的数据用以创建HTML网页，返回至客户端的网页浏览器进行解释。

（5）浏览器取得JSP文件，解释其中的HTML及Script网页程序代码。

（6）显示网页。

 [image:]
 图1-7　JSP页面访问数据库的过程

当服务器里的网页包含存取数据库的程序代码时，服务器先完成数据库的存取工作，然后再交由解释引擎将JSP程序作解释操作，并将解释后的结果送回给浏览器。通过以上介绍，用户可以了解到，仅仅通过客户端技术并没有办法创建真正的交互式网页，只有使用服务器端执行的网页语言，并与数据库系统的结合，才能真正将请求付诸实现。

1.5　JSP与相关技术

JSP是由Sun Microsystems公司倡导的、许多公司参与建立的一种动态网页技术标准。JSP技术用Java语言作为脚本语言，JSP网页为整个服务器端的Java库单元提供了一个接口来服务于HTTP的应用程序。

在传统的网页HTML文件（*.htm，*.html）中加入Java程序片段（Scriptlet）和JSP标记（Tag），就构成了JSP网页（*.jsp）。Web服务器在遇到访问JSP网页的请求时，首先执行其中的程序片段，然后将执行结果以HTML格式返回给客户。程序片段可以操作数据库、重新定向网页及发送E-mail等，这就是建立动态网站所需要的功能。所有程序操作都在服务器端执行，网络上传送给客户端的仅是得到的结果，对客户浏览器的要求最低，可以实现无Plugin、无ActiveX、无Java Applet，甚至无Frame。

1.5.1　什么是JSP

JSP是基于Java的技术，用于创建可支持跨平台及Web服务器的动态网页。从构成情况来看，JSP页面代码一般由普通的HTML语句和特殊的基于Java语言的嵌入标记组成，所以它具有Web和Java功能的双重特性。

JSP 1.0规范是1999年9月推出的，当年12月又推出了1.1规范。此后JSP又经历了几个版本，本书介绍的技术基于JSP 2.0规范。

为了让读者对JSP技术有一个直观的认识，先来看一个非常简单的JSP页面及其运行效果。以下是HelloWorld.jsp的源代码。程序运行效果如图1-8所示。

 [image:]

JSP是一种动态网页技术标准，可以将网页中的动态部分和静态的HTML相分离。用户可以使用平常得心应手的工具并按照平常的方式来书写HTML语句。然后，将动态部分用特殊的标记嵌入即可，这些标记常常以“＜%”开始并以“%＞”结束。

同HTML及ASP等语言相比，JSP虽然在表现形式上同它们的差别并不大，但是它提供了一种更为简便、有效的动态网页编写手段。而且，由于JSP程序同Java语言有着天然的联系，所以在众多基于Web的架构中，都可以看到JSP程序。

由于JSP程序增强了Web页面程序的独立性、兼容性和可重用性，所以，与传统的ASP、PHP网络编程语言相比，它具有以下特点：

[image:]　JSP的执行效率比较高。由于每个基于JSP的页面都被Java虚拟机事先解析成一个Servlet，服务器通过网络接收到来自客户端HTTP的请求后，Java虚拟机解析产生的Servlet将开启一个“线程”（Thread）来提供服务，并在服务处理结束后自动销毁这个线程，如图1-9所示，这样的处理方式将大大提高系统的利用率，并能有效地降低系统的负载。

 [image:]
 图1-8　HelloWorld.jsp运行效果

 [image:]
 图1-9　Web服务器使用Servlet提供服务的示意图

[image:]　编写简单。由于JSP是一项基于Java语言和HTML元素的技术，所以只要熟悉Java和HTML的程序员都可以开发JSP。

[image:]　跨平台。由于JSP运行在Java虚拟机之上，所以它可以借助于Java本身的跨平台能力，在任何支持Java的平台和操作系统上运行。

[image:]　JSP可以嵌套在HTML或XML网页中。这样不仅可以降低程序员开发页面显示逻辑效果的工作量，更能提供一种比较轻便的方式来同其他Web程序交互。

1.5.2　JSP技术原理

JSP文件的执行方式是“编译式”，并非“解释式”，即在执行JSP页面时，是把JSP文件先翻译为Servlet形式的Java类型的字节码文件，然后通过Java虚拟机来运行。所以从本质上来讲，运行JSP文件最终还是要通过Java虚拟机，不过根据JSP技术的相关规范，JSP语言必须在某个构建于Java虚拟机之上的特殊环境中运行，这个特殊环境就是Servlet Container（通常被译为Servlet容器），而且，每个JSP页面在被系统调用之前，必须先被Servlet容器解析成一个Servlet文件。

图1-10显示了整个JSP的运行流程。每次Servlet容器接收到一个JSP请求时，都会遵循以下步骤。

 [image:]
 图1-10　JSP运行流程

（1）Web容器接收JSP页面的访问请求时，它将把该访问请求交给JSP引擎去处理。每个JSP页面在第一次被访问时，JSP引擎先将它翻译成一个Servlet源程序，接着再把这个Servlet源程序编译成Servlet的class类文件，Servlet容器查询所需要加载的JSP文件是否已经被解析成Servlet文件，如果没有在Servlet容器里找到对应的Servlet文件，容器将根据JSP文件新创建一个Servlet文件。反之，如果在容器里有此Servlet文件，容器则比较两者的时间，如果JSP文件的时间要晚于Servlet文件，则说明此JSP文件已被重新修改过，需要容器重新生成Servlet文件，反之容器将使用原先的Servlet文件。

（2）Web容器编译好的Servlet文件被加载到Servlet容器中，执行定义在该JSP文件里的各项操作。

（3）Servlet容器生成响应结果，并返回给客户端。

（4）JSP文件结束运行。

从JSP的工作原理和运作流程上来看，JSP程序既能以Java语言的方式处理Web程序里的业务逻辑，又可以处理基于HTML协议的请求，它是集众多功能于一身的。

不过，在编写程序的过程中，不能过多地在JSP代码里混杂提供显示功能和提供业务逻辑的代码，而是要把JSP程序定位到“管理显示逻辑”的角色上。

当服务器第一次接收到对某个页面的请求时，JSP引擎就开始进行上述的处理，将被请求的JSP文件编译成Class文件。在后续对该页面再次进行请求时，若页面没有进行任何改动，服务器只需直接调用Class文件执行即可。所以当某个JSP页面第一次被请求时，会有一些延迟，而再次访问时会感觉快了很多。如果被请求的页面经过修改，服务器将会重新编译这个文件，然后执行。

1.5.3　JSP本质与Servlet

严格来说，JSP是一种集成技术，以Java平台为基础，提供一种简便的方式，让Java技术能够轻易运用于构建动态网页内容。

Java为了产生与用户互动的动态网页内容，开发出一种名为Servlet的应用技术。Servlet是一种纯粹以Java语言编写，符合标准规范的Java应用程序，在网站服务器运行的时候被加载，在客户端浏览器针对服务器提出内容要求时，作出动态响应。

尽管Servlet应用程序产生动态网页的功能相当强大，但是却不容易开发。JSP就是为了克服这个障碍而发展出来的一种服务器端网页技术，其本身是一个内容混杂HTML标签与Java语言的纯文本文件。当浏览器请求JSP网页时，文本文件在网站服务器被编译成为Servlet加载，然后产生动态的网页内容，如图1-11所示。

 [image:]
 图1-11　Servlet执行过程

由于JSP本身被设计得非常容易学习与使用，因此Java动态网页技术得以快速发展并且被广泛应用，程序开发人员只需学习基础Java语法及相关的JSP对象，便可以轻松完成动态网页的创建与设计。

1.5.4　JSP与JavaBean

让JSP如此出色的原因，除了Servlet之外，另外一点便是其运用JavaBean的能力。JavaBean是一种组件技术，为Java应用程序提供一种极具灵活性的设计模型，它将程序依功能分开，包装成为一种称为JavaBean的程序组件，让其可以被外部JSP网页重复使用以提供所需的功能，同时还可以扩充JSP网页的功能，维持简洁易于维护的JSP网页程序代码。

使用JSP设计动态网页并不困难，然而当网站的复杂度开始增加时，用户在必须面对如何有效管理与切割程序内容等，以及在提供强大功能的同时，保有网页程序设计的灵活性与容易维护的程序代码等。

如图1-12所示，JavaBean用来包装网页程序逻辑及其相关功能，并且通过网页作引用，而网页本身则负责数据收集和内容展示。

 [image:]
 图1-12　JavaBean流程

JavaBean本身是一种包含特定功能的Java程序组件，当一个JSP网页需要此项功能时，直接引用相关的JavaBean组件即可；而JavaBean最重要的概念在于将程序逻辑与创建网页界面的程序代码分开，网页只负责数据的收集及页面元素放置的处理，而JavaBean组件则是包含重要的程序逻辑运算。如此一来，JSP网页将更容易维护与建构，JavaBean同时也是建构商业级JSP网页程序最为重要的核心。

1.6　软件编程体系简介

目前，在应用开发领域中主要分为两大编程体系，一种是基于浏览器的B/S（Browser/Server）结构，另一种是C/S（Client/ Server）结构。应用程序开发体系如图1-13所示。

 [image:]
 图1-13　应用程序开发体系

开发基于C/S结构项目，其传统的开发环境有VB、VC及Delphi等，随着Java体系及.NET体系的普及，目前更流行.NET编程体系和Java编程体系。

开发基于B/S结构项目，目前主要采用三种服务器端语言：JSP（Java Server Pages）、PHP（Personal Home Page）和ASP.NET。这三种语言构成三种常用应用开发组合：JSP+Oracle体系、PHP+MySQL体系及ASP.NET+SQL Server体系。

软件开发涉及的语言虽然很多，但学习起来是有规律可循的。图1-13最下面的方框将目前常用的开发语言分成两大语系：Basic语系和C语系。语系中的所有的流程控制语句都是一样的，常用的函数也大同小异。所以只要精通其中任何一门语言，该语系中的其他语言也就比较容易掌握了。

1.6.1　C/S结构编程体系

2000年以前，C/S结构占据开发领域的主流，随着B/S结构的发展，C/S结构主流地位逐步被B/S结构取代，目前在整个开发领域中，C/S结构的应用大概占到40%的份额。C/S结构应用程序的最大特点是每个用户端需要安装程序，所有用户端程序和中心服务器进行信息交互；优点是用户端程序一致，比较方便控制，服务器端和用户本地的数据很容易进行交互，通信速度比较快；缺点是每个用户都需要安装客户端，比较烦琐，而且不能很好地跨操作系统平台。

C/S结构通常用于具有固定的用户端或者少量的用户端，并且是对安全性要求比较高的应用，如银行信息管理系统、邮局信息管理系统和飞机票火车票售票系统等。

传统的C/S结构通常使用PowerBuilder、Delphi、Visual Basic、Visual C++、JBuilder作为开发环境，使用SQL Server、Oracle或者DB2作为数据库支持。随着时间的发展及版本的更新，主流的C/S开发环境开始向.NET和Java两大主流体系转变，目前大部分C/S结构应用都使用VB.NET、VC#.NET及Java开发。其中，VB.NET和VC#.NET只是描述的语言不一样，设计思想和开发环境全部一样，因此只要掌握其中一个，就可以满足开发要求。

VB.NET是从Visual Basic发展而来的，Visual Basic曾经具有开发领域世界第一的程序员数量，因此非常多的C/S应用采用VB.NET开发环境。

1.6.2　B/S结构编程体系

B/S结构编程语言分成浏览器端编程语言和服务器端编程语言。浏览器端包括HTML（Hypertext Markup Language，超文本标记语言）、CSS（Cascading Style Sheets，层叠样式表单）、JavaScript语言和VBScript语言。

所谓浏览器端编程语言，就是这些语言都是被浏览器解释执行的。HTML和CSS是由浏览器解释的，JavaScript语言和VBScript语言也是在浏览器上执行的。

为了实现一些复杂的操作，如连接数据库、操作文件等，需要使用服务器端编程语言。目前主要是3P（ASP.NET、JSP和PHP）技术。ASP.NET是微软公司推出的，在这三种语言中是使用最为广泛的一种。JSP是Sun公司推出的J2EE（Java 2 Enterprise Edition，Java2企业版）核心技术中重要的一种。PHP在1999年下半年和2000年用得非常广泛，因为Linux+PHP+MySQL（一种中小型数据库管理系统）构成了全免费而且非常稳定的应用平台，这三种语言是目前应用开发体系的主流。

数据库支持是必需的，目前应用领域的数据库系统全部采用关系型数据库（Relation Database Management System，RDBMS）。在企业级的开发领域中，主要采用三大厂商的关系数据库系统：微软公司的SQL Server、Oracle公司的Oracle和IBM公司的DB2。

1.7　企业应用开发架构

在构建企业级应用时，通常需要大量的代码，这些代码一般分布在不同的计算机上，划分代码运行在不同计算机上的理论就是多层设计理论。

企业级应用系统通常分为两层、三层和N层架构。

1.7.1　两层架构

传统的两层应用包括用户接口和后台程序，后台程序通常是一个数据库，用户接口直接同数据库进行对话。实现上，通常使用JSP、ASP或者VB等技术编写这类软件，结构如图1-14所示。

 [image:]
 图1-14　两层应用架构

两层应用架构显示逻辑层一般由HTML、JSP、ASP实现，通过JSP和ASP直接和数据库相连。

1.7.2　三层架构

在两层应用架构中，应用程序直接同数据库进行对话。三层架构在用户接口代码和数据库中间加入了一个附加的逻辑层，通常这个层叫作“商务逻辑层”，如图1-15所示。

 [image:]
 图1-15　三层应用架构

1.7.3　N层架构

如果某个应用超过3个独立的代码层，那么这个应用叫作N层应用，而不再叫四层或者五层等名称，而是统称为N层，如图1-16所示。

 [image:]
 图1-16　N层应用架构

1.7.4　开发架构比较

两层架构的优点是开发过程比较简单，利用服务器端的程序直接访问数据库，部署起来比较方便。缺点是程序代码维护起来比较困难，程序执行的效率比较低，用户容量比较少。

三层架构基本解决了两层架构的缺点，将显示部分和逻辑流程控制分开，利用服务器应用程序实现显示部分，利用商务逻辑层实现程序的流程控制，分层使维护变得方便一些，而且执行效率也有所提高，但是相对部署起来比较困难。

根据实际需要，会进一步细化每一层，或者添加一些层，就形成了N层架构。和三层架构一样，组件化的设计使维护相对容易，但是部署相对困难。

1.7.5　J2EE简介

目前，Java2平台有3个版本，它们是适用于小型设备和智能卡的Java 2平台Micro版（Java 2 Platform Micro Edition，J2ME）、适用于桌面系统的Java 2平台标准版（Java 2 Platform Standard Edition，J2SE）、适用于创建服务器应用程序和服务的Java 2平台企业版（Java 2 Platform Enterprise Edition，J2EE）。本节主要介绍J2EE。

J2EE是一种利用Java 2平台来简化企业解决方案的开发、部署和管理相关复杂问题的体系结构。J2EE技术的基础就是核心Java平台或Java 2平台的标准版，J2EE不仅巩固了标准版中的许多优点，例如，“编写一次、随处运行”的特性，方便存取数据库的JDBC API、CORBA技术，以及能够在Internet应用中保护数据的安全模式等，同时还提供了对EJB（Enterprise JavaBeans）、Java Servlets API、JSP及XML技术的全面支持。其最终目的就是成为一个能够使企业开发者大幅缩短投放市场时间的体系结构。

需要指出的是，J2EE并非一个产品，而是一系列的标准。因此，从整体上讲，J2EE是使用Java技术开发企业级应用的一种事实上的工业标准（Sun公司出于其自身利益的考虑，至今没有将Java及其相关技术纳入标准化组织的体系）。它是Java技术不断适应和促进企业级应用过程中的产物。Sun公司推出J2EE的目的是克服传统Client/Server模式的弊病，迎合Browser/Server架构的潮流，为应用Java技术开发服务器端应用提供一个平台独立的、可移植的、多用户的、安全的和基于标准的企业级平台，从而简化企业应用的开发、管理和部署。各个平台开发商按照J2EE规范分别开发了不同的J2EE应用服务器，J2EE应用服务器是J2EE企业级应用的部署平台。由于它们都遵循了J2EE规范，因此，使用J2EE技术开发的企业级应用可以部署在各种J2EE应用服务器上。目前在市场上可以看到很多实现了J2EE的产品，如BEA WebLogic、IBM WebSphere及开源的JBoss等。

J2EE使用多层的分布式应用模型，应用逻辑按功能划分成组件，各个应用组件根据它们所在的层分布在不同的机器上。事实上，Sun公司设计J2EE的初衷正是为了解决两层模式（Client/Server）的弊端，在传统模式中，客户端担当了过多的角色而显得臃肿，第一次部署的时候比较容易，但难以升级或改进，可伸展性也不理想，而且经常基于某种专有的协议（通常是某种数据库协议），使得重用业务逻辑和界面逻辑非常困难。现在J2EE的多层企业级应用模型将两层化模型中的不同层面切分成许多层，一个多层化应用能够为不同的服务提供一个独立的层，图1-17所示是J2EE典型的四层结构。J2EE的四层结构的分别是：

[image:]　运行在客户端机器上的客户层组件。

[image:]　运行在J2EE服务器上的Web层组件。

[image:]　运行在J2EE服务器上的业务层组件。

[image:]　运行在数据库服务器上的EIS（Enterprise Information System，企业信息系统）层组件。

下面分别对图1-17中的四层结构进行说明。

（1）J2EE应用程序组件。J2EE组件是具有独立功能的软件单元，它们通过相关的类和文件组装成J2EE应用程序，并与其他组件交互。J2EE说明书中定义了以下J2EE组件：应用客户端程序和Applet是客户层组件；Java Servlet和JavaServer Pages（JSP）是Web层组件；Enterprise Java Beans（EJB）是业务层组件。

（2）客户层组件。J2EE应用程序可以是基于Web方式的，也可以是基于传统方式的。

（3）Web层组件。J2EE Web层组件可以是JSP页面或Servlet。按照J2EE规范，静态的HTML页面和Applet不算是Web层组件。如图1-18所示，Web层可能包含某些JavaBean对象来处理用户输入，并把输入发送给运行在业务层上的Enterprise Bean来进行处理。

 [image:]
 图1-17　J2EE四层模型

 [image:]
 图1-18　Web层

（4）业务层组件。业务层代码的逻辑用来满足银行、零售、金融等特殊商务领域的需要，由运行在业务层上的Enterprise Bean进行处理。图1-19所示表明了一个Enterprise Bean如何从客户端程序接收数据，进行处理（如果必要的话），并发送到EIS层存储，这个过程也可以逆向进行。

 [image:]
 图1-19　J2EE服务层

有三种企业级的Bean：会话（Session）Bean，实体（Entity）Bean和消息驱动（Message-Driven）Bean。会话Bean表示与客户端程序的临时交互。当客户端程序执行完后，会话Bean和相关数据就会消失。相反，实体Bean表示数据库表中一行永久的记录。当客户端程序中止或服务器关闭时，就会有潜在的服务保证实体Bean的数据得以保存。消息驱动Bean结合了会话Bean和JMS的消息监听器的特性，允许一个业务层组件异步接收JMS消息。

（5）企业信息系统层。企业信息系统（EIS）层处理企业信息系统软件，包括企业基础建设系统，如企业资源计划（ERP）、大型机事务处理、数据库系统以及其他的遗留信息系统。例如，J2EE应用组件可能为了数据库连接需要访问企业信息系统。

 注意

 有些书中也把J2EE分为客户端机器、J2EE服务器和数据库服务器三层。J2EE Web层组件可以是JSP页面或Servlet。按照J2EE规范，静态的HTML页面和Applet不算是Web层组件。

1.8　JSP知识体系及学习之路

JSP技术本身并不复杂，但是由于JSP是一种综合技术，它涉及许多其他的技术，这些技术组合起来形成了JSP知识体系，整个的JSP知识体系是比较庞大的。

1.8.1　JSP知识体系

JSP的知识体系如图1-20所示。

Java和HTML是JSP学习中非常重要的基础，如果仅仅懂得JSP的一些语法但对Java的基础知识不了解，那么要开发一个高级的动态网站也是相当困难的。JSP之所以被越来越多的人接受，一个很重要的原因是它依靠Java的强大优势。可以说，如果只是使用了JSP的基本功能来制作一个网站，那么这个JSP网站也许跟ASP网站十分类似。前面讲过，JSP最终是要编译成Java Servlet来执行的，而Servlet从本质上说就是一个Java类，整合内部逻辑的JavaBean也是一个Java类，所以，了解Java语言对开发一个动态网站至关重要。当然，网站开发也只是使用Java语言中的部分内容，像Swing和Applet等知识用得特别少，用户也不需要对其进行了解，但是熟悉基本的语法、逻辑控制及面向对象等概念还是很有必要的。

如果读者已经掌握这些基础知识，意味着JSP的学习之路要轻松很多。如果没有这些基础，就需要花一些时间来学习这些基础知识。

 [image:]
 图1-20　JSP知识体系图

1.8.2　JSP程序员学习路径

如何成为一个成功的JSP程序员？一个常见的错误是把JSP当作简化的Java（事实上，JSP是简化的Servlet）。JSP是一个衔接技术，并且成功地连接用户需要理解的其他技术。如果已经知道Java、HTML和JavaScript，这意味着学习JSP将会比较简单。要成为一个成功的JSP程序员，可参考下面的步骤。

（1）保证理解HTML/XHTML。用户需要了解HTML基础，特别是在HTML布局中Form和Table的使用。XHTML不久将代替HTML，学习XHTML的基础是一个好主意。许多程序员通过集成开发环境学习HTML。因为大多数集成开发环境会产生混乱的HTML语法，所以花时间学习手工写作HTML是很有必要的。因为我们经常会使用JSP和HTML混合编程，精通HTML语法是重要的，所以必须能流利地写HTML。

（2）开始学习Java。开始学习Java，理解Java基础是很重要的。集中精力在Java的工作细节，学习Java的逻辑，也在JavaBean上花时间。学习Applet是好的，但JSP的大多数应用将不使用小程序。

（3）学习JavaScript。学习怎么用JavaScript在HTML中验证输入的Form元素，也学习JavaScript怎么能在HTML页内修改Form的元素。最后要求从HTML页内的事件中触发JavaScript Function。Javascript是一种基于网页的客户端脚本技术，这种技术的核心思想是增加用户与浏览器的交互，增加用户在使用网页应用时的体验。

（4）学习安装和配置一种Servlet容器。推荐以Tomcat开始，它可以很好地运行JSP程序。学习技术的最好方法就是一边学习一边实践。为了运行开发的JSP和Servlet实例，要建立一个测试和运行环境。Tomcat是JSP规范和Servlet规范的参考实现，因此建议读者在学习阶段使用它作为运行环境。另外，许多JSP程序员也使用Tomcat，在遇到问题时，将容易获得帮助。

（5）开始学习JSP基本语法。JSP的基本语法包括JSP脚本元素、JSP指令元素、JSP动作元素等几个基本的组成部分，这一部分知识是JSP区别于其他技术的主要内容。

（6）学习JDBC。JSP大多数应用将使用数据库，JDBC被用于数据库连接。经常忽略的一个事实就是，每个JDBC Driver所支持的东西是相当不同的。了解并熟悉在JSP工程上被使用的JDBC Driver的细节很重要。

（7）学习Servlet。JSP API是建立在Servlet API基础之上的，为了更深入地理解JSP，需要学习Servlet。另外，在高级的JSP应用开发中，Servlet的应用很多，因此作为一个高级的JSP程序员，Servlet的知识是必备的。通过全面深入地学习Servlet，将会真正理解JSP应用在Servlet容器上的运行原理，理解JSP页面和Servlet响应客户端请求的整个过程，此时会将产生一种豁然开朗的感觉。

（8）学习开源框架。框架（framework）是一个可复用的设计，它是由一组抽象类及其实例间协作关系来表达的。其实框架就是某种应用的半成品，就是一组组件，供用户选用完成自己的系统。简单说就是别人搭好舞台，你来表演。而且，框架一般是成熟的、不断升级的软件。框架一般处在低层应用平台（如J2EE）和高层业务逻辑之间。

此时，你已经成为了熟练的JSP程序员。但仍然有很多知识需要学习，如DHTML、XML、Java证书、JSP Tag Libraries或表达式语言，这根据想要建造什么类型的网站来决定。

这些训练是JSP的核心。读者不必学完上面所有的内容，这取决于在工程中分配到什么任务和已经有什么知识。但要成为一个资深的Web程序员，所学的东西远远不止这些。

1.9　小结

JSP是目前最为流行的基于Java Servlet的Web开发技术之一，其底层以Java语言为支撑，基于Servlet技术，具有很好的开放性、可移植性和可扩展性。本章介绍了Web应用程序开发基础知识，动态网站开发技术的现状，JSP、ASP和PHP等几种主要动态网页技术，以及软件编程系统，并概括了开发一个动态网站所需要掌握的一些必备知识，为后续章节的学习打下基础。

1.10　习题

一、选择题

1. 通过Internet发送请求消息和响应消息使用（　　）网络协议。

A. FTP

B. TCP/IP

C. HTTP

D. DNS

2. Web应用程序使用的三层体系结构包括（　　）。

A. 表示层、逻辑层和业务层

B. 表示层、逻辑层和数据层

C. 逻辑层、业务层和数据层

D. 表示层、业务层和数据层

3. 以下关于HTML说法正确的是（　　）。

A. HTML是一种Web客户和Web服务器之间的通信协议

B. HTML是一种标记语言

C. HTML文件能被Windows的文本编辑器解析

D. 浏览器不可以解析HTML

4. 以下（　　）不是HTML的标记？

A. <html>

B. <body>

C. <% %>

D.

5. 与JSP同类型的技术有（　　）。

A. JavaScript

B. Java

C. ASP.NET

D. C#

6. 以下文件名后缀中，只有（　　）不是动态网页的后缀。

A. jsp

B. html

C. aspx

D. PHP

7. 以下关于Servlet和JSP的叙述中，正确的是（　　）。

A. JSP和Servlet都是Java

B. Servlet是Java平台下实现的基本技术

C. 在Servlet中，需要用Java代码向客户端输出返回信息

D. 以上都不对

8. JSP页面经过转译之后，将创建一个（　　）文件。

A. applet

B. servlet

C. application

D. server

9. http协议默认使用（　　）。

A. 8080端口

B. 7001端口

C. 80端口

D. 25端口

10. 在JDK的工具包中，用来编译Java源文件的工具是（　　）。

A. Javac

B. Javap

C. Java

D. Javah

二、判断题

1. 静态网页*.htm中可以嵌入脚本代码，如JavaScript、VBScript程序段等，但这些程序段不可能在服务器端运行，只能在客户端运行。

（　　）

2. 动态网页是在服务器端被执行，其中嵌入的代码只能在服务器端运行，不能在客户端浏览器中运行。

（　　）

3. JSP文件可以单独运行。

（　　）

4. JSP是解释型语言。

（　　）

5. JSP是以Servlet程序方式运行的，而ASP是由ASP引擎解释执行的。

（　　）

三、填空题

1. 组成Web结构的两个主要部分，分别是　　　及　　　。

2. 试举例目前网络上通用的三种通信协议名称：　　　、　　　、　　　。

3. 目前在客户端运行的两种主要动态Script语言分别是　　　、　　　。

4. JSP的发展，主要在于提供一种简化服务器端程序　　　的开发技术。

5. JSP网页程序，通过　　　的引用，以组件化的方式进行建构。

6. JSP页面由　　　和嵌入其中的　　　所组成。

7. MVC设计模式将应用程序分为模型、　　　和　　　。

8. JSP的实质就是　　　。

四、问答题

1. 说明客户端与服务器端在网络结构中所扮演的角色。

2. 解释超链接的定义。

3. 解释URL与通信协议的差异。

4. 解释HTML的定义。

5. 简述客户端与服务器端网页语言的不同。

6. 描述HTML网页、JavaScript网页及JSP网页运作上的差异。

7. 说明Java相关技术——Servlet、JavaBean及JSP之间的关联与运作。

8. 什么是B/S模式？什么是C/S模式？试举例说明。
第2章　JSP的开发和运行环境

开发基于JSP的动态网站，首先需要建立JSP的开发和运行环境。MyEclipse是在Eclipse基础上加上自己的插件开发而成的功能强大的企业级集成开发环境，主要用于Java、Java EE及移动应用的开发。MyEclipse的功能非常强大，支持也十分广泛，尤其是对各种开源产品的支持相当有力。Java EE是Enterprise Edition的企业版本。这些工具系统是理想的完整Java开发IDE，可以用来开发HTML、JSP等web程序。目前流行的JSP运行服务器有Apache Tomcat、WebLogic和Resin等，由于Tomcat是常见的开源免费软件，因此本书的案例全部使用Tomcat来测试运行。

本章学习目标

 	◎　了解JSP的开发和应用平台

 	◎　掌握Eclipse Java EE开发环境的搭建

 	◎　掌握MyEclipse的开发环境

 	◎　了解IDEA等JSP开发环境

2.1　JSP的开发和应用平台介绍

JSP基于Java Servlet技术，是Servlet 2.1 API的扩展，因此，支持Servlet的新版本平台都支持JSP。这样的平台现在越来越多，要学习JSP和Servlet开发，首先必须准备一个符合Servlet 2.1/2.2和JSP 3.0或更高规范的开发环境。

除了开发工具之外，还要安装一个支持Java Servlet的Web服务器，或者在现有的Web服务器上安装Servlet软件包。目前，许多Web服务器都自带一些必要的软件。

到现在为止，Apache Gercnimo、BEA、CAS、IBM、JBoss和NEC等厂家的产品都支持JSP技术和Java Servlet。

2.1.1　Caucho公司的Resin平台

Resin平台是由Caucho公司发布的JSP平台，通过http://www.caucho.com/可以访问Resin平台的首页。根据http://www.caucho.com/提供的测试结果，Resin平台是迄今为止最快的商业JSP平台。

Resin提供了最快的JSP/Servlet运行平台。在Java和JavaScript的支持下，Resin可以为任务灵活选用合适的开发语言。Resin的XSL语言（XML stylesheet language）可以使形式和内容相分离。

如果选用JSP平台作为Internet商业站点的支持，那么速度、价格和稳定性都要考虑到。Resin十分出色，表现更成熟，很具备商业软件的要求，从网站下载的就是完整版本。

Resin的特性包括以下方面：

[image:]　支持JSP和在服务器端编译的JavaScript。

[image:]　比mod_perl、mod_php更快，比Tomcat快3倍。

[image:]　自动的Servlet/Bean编译。

[image:]　支持Servlet、XSL Filtering。

[image:]　支持IIS、Apache、Netscape和其他内置了HTTP/1.1的Web服务器。

[image:]　XSLT和XPath1.0引擎。

[image:]　企业级的共享软件（基于一个开放源码的协议）。

2.1.2　Apache公司的Tomcat平台

Tomcat是Apache Jakarta软件组织的一个子项目，是一个JSP/Servlet容器，它是在Sun公司的JSWDK（Java Server Web Development Kit）基础上发展起来的，也是一个JSP和Servlet规范的标准实现，使用Tomcat可以体验JSP和Servlet的最新规范。经过多年的发展，Tomcat具备了很多商业Java Servlet容器的特性，并被一些企业用于商业方面。

Tomcat是Servlet 2.2和JSP 1.1规范的官方参考实现。Tomcat既可以单独作为小型Servlet、JSP测试服务器，也可以继承Apache Web服务器。直到2000年，Tomcat还是唯一支持Servlet 2.2和JSP 1.1规范的服务器，但现在已经有许多其他服务器宣布对这方面的支持。

Tomcat和Apache一样是免费的。但是，Tomcat服务器的安装和配置有些麻烦，和其他商业级的Servlet引擎相比，配置Tomcat的工作量显然要多一些。2010年6月29日，Apache基金会发布了Tomcat 7的首个版本。Tomcat 7最大的改进是其对Servlet 3.0和Java EE 6的支持。在http://tomcat.apache.org/上列出了所有Tomcat版本的下载和其他信息，读者可以访问其网站了解更多信息。

2.1.3　BEA公司的WebLogic平台

BEA公司的WebLogic平台是一个基于Java的功能强大的电子商务套件，它提供了许多功能强大的中间件，以方便编程人员编写JSP、Servlet等电子商务应用，可以为企业提供一个完整的商务应用解决方案，是为超大型电子商务应用系统而设计的。它采用CORBA（公共对象）的系统结构，提供基于分布式的JSP应用系统。CORBA的核心是ORB（对象请求中介），ORB的作用就像一个中间人，使各个对象能够互递请求。尽管ORB是在Client/Server环境中工作，但是与ORB一起工作的对象，既可以是客户，又可以是服务器，具体视实际情况而定。将ORB、IDL和接口存储库连接起来，就是一个基本的CORBA模型。由于BEA公司的WebLogic平台是针对超大型电子商务应用系统而设计的，读者可以访问http://www.bea.com/了解更多信息。

对于开发人员，可以从http://www.bea.com/免费下载一套完整的WebLogic，并得到一个限制了IP的license，用于学习和开发这个套件的代码。如果需要正式投入使用，则必须支付一定的费用获得无限制的License。一般网站开发人员可以轻易地得到WebLogic用于学习开发。

2.1.4　IBM WebSphere Application Server平台

WebSphere Application Server基于Java的应用环境，用于建立、部署和管理Internet和Intranet Web应用程序。这一整套产品进行了扩展，以适应Web应用服务器的需要，范围从简单到高级直到企业级。

IBM WebSphere Application Server是一种功能完善、开放的Web应用程序服务器，是IBM电子商务计划的核心部分，具有以下特性：

[image:]　基于Java和Servlet的Web应用程序运行环境，包含为Web站点提供服务所需要的一切，如项目管理、连接数据库、Java Servlet代码生成器、Bean和Servlet开发工具、HTML编译器、网站发布等，为开发Servlet和Java Bean提供了多种向导。WebSphere Performance Pack作为网络优化管理工具，可以减少网络服务器的拥挤现象，扩大容量，提高Web服务器性能。

[image:]　运行时可以协同并扩展Apache、Netscape、IIS和IBM的HTTP Web服务器，因此可以成为强大的Web应用服务器。

[image:]　包含eNentworkDispatcher、WebTrafficeExpress代理服务器和AFS分布式文件系统，可以提供伸缩的Web服务器环境。其基本工作过程是：客户发出请求后，由Http Server将Servlet调用请求交给Application Server，由Application Server和Java Servlet Engine执行用户调用的Servlet进行数据库连接，将SQL请求发送给数据库进行处理；数据库将结果返回Application Server；Servlet生成动态页面后，将处理结果交给Http Server，Http Server将页面返回给用户。由于Websphere面向专业人员，所以要完全掌握的话有一定的难度。

在http://www-306.ibm.com/software/webservers/appserv/was/上有关于WebSphere Application Server的相关信息，读者可访问网站了解更多信息。

2.2　Eclipse Java EE集成开发环境

JSP开发环境主要包括JavaBean和Servlet等Java类的开发环境与JSP页面的开发环境，Java类的编译需要JDK的支持。前面介绍了JSP的多个开发和应用平台，它们有各自的优点，也适用于不同的开发环境。本书程序都是使用免费开源的强大工具平台开发和运行的，本章选择的软件是最新版的JDK1.9+Eclipse Java EE+Tomcat 9.0集成开发环境，以及MyEclipse 2018开发环境，下面介绍它们的安装和配置步骤。

2.2.1　安装和配置JDK

在Oracle公司的网站上可以免费下载JDK安装软件，下载网址：

 http://www.oracle.com/ technetwork/java/index.html

打开此网址，找到下载位置，如图2-1所示，选中Java SE Development Kit 9.0.1，下载JDK的Windows版本，这里选择下载jdk-9.0.1_windows-x64.exe。注意，选中Accept License Agreement后才可以下载。

 [image:]
 图2-1　下载jdk-9.0.1_windows-x64_bin.exe

下载完成后，直接双击下载软件即可执行安装。按照安装指示进行即可，安装过程如下：

（1）进入Java（TM） SE Development Kit 9.0.1（64-bit）安装向导，如图2-2所示，单击“下一步”按钮。

（2）选择JDK的安装路径，单击“更改”按钮可以选择JDK的安装路径，也可以使用默认安装路径，如图2-3所示，然后单击“下一步”按钮。

 [image:]
 图2-2　安装向导

（3）选择JRE的安装路径，单击“更改”按钮可以选择JRE的安装路径，也可以使用默认安装路径，如图2-4所示，然后单击“下一步”按钮。

 [image:]
 图2-3　选择JDK安装路径

 [image:]
 图2-4　选择JRE安装路径

（4）显示安装进度，如图2-5所示。

（5）安装成功，如图2-6所示，单击“关闭”按钮。

 [image:]
 图2-5　安装进度

 [image:]
 图2-6　安装成功

安装完成后，需要做一些配置工作，以使JDK能正常运行。按照以下步骤来配置JDK。

（1）右击“计算机”｜“属性”｜“高级系统设置”｜“环境变量”选项，如图2-7所示。

 [image:]
 图2-7　设置环境变量

（2）在“系统变量”列表中查看是否有Path变量，单击“编辑”按钮，弹出“编辑系统变量”对话框，在“变量值”文本框中添加路径C:\Program Files\Java\jdk-9.0.1\bin;，完成后单击“确定”按钮，如图2-8所示。如果没有Path变量，单击“系统变量”选项组中的“新建”按钮。

 [image:]
 图2-8　编辑系统变量

（3）在“系统变量”列表中新建一个名为JAVA_HOME的变量，“变量值”为C:\Program Files\Java\jdk-9.0.1。在“系统变量”列表中新建一个名为classpath的变量，“变量值”为C:\Program Files\Java\jdk-9.0.1\lib，如图2-9所示。

 [image:]
 图2-9　新建系统变量

（4）设置完成后，按Windows图标键+R打开“运行”命令，输入cmd，然后按Enter键，打开“命令提示符”，在“命令提示符”中输入java -version，然后按Enter键，即可看到JDK版本，如图2-10所示。

 [image:]
 图2-10　查看JDK版本

2.2.2　Tomcat服务器

1. Tomcat简介与下载

Tomcat服务器是开放源代码的Web应用服务器，是目前比较流行的Web应用服务器之一。Tomcat是Apache软件基金会（Apache Software Foundation）的Jakarta项目中的一个核心项目，由Apache、Sun和其他公司及个人共同开发而成。由于有了Sun公司的参与和支持，最新的Servlet和JSP规范总是能在Tomcat中得到体现。因为Tomcat技术先进、性能稳定，而且免费，因而深受Java爱好者的喜爱并得到了部分软件开发商的认可，成为目前比较流行的Web应用服务器。

Tomcat运行时占用的系统资源小，扩展性好，支持负载平衡与邮件服务等开发应用系统常用的功能；而且它还在不断的改进和完善中，任何一个感兴趣的程序员都可以更改它或在其中加入新的功能。

目前Tomcat最新版本为9.0.7，Apache Tomcat 9.x是目前的开发焦点。它在汲取了Tomcat 8.0.x优点的基础上，实现了对于Servlet 3.0、JSP 2.2和EL 2.2等特性的支持。除此以外的改进如下：Web应用内存溢出侦测和预防；增强了管理程序和服务器管理程序的安全性；一般CSRF保护；支持Web应用中的外部内容的直接引用；重构（Connectors，Lifecycle）及很多核心代码的全面梳理。

由于Tomcat是Apache系列的产品，所以可以在http://tomcat.apache.org/网站里找到最新的安装程序，如图2-11所示。本书用的是Tomcat 9.0.7，可下载安装该版本服务器。

 [image:]
 图2-11　Apache Tomcat下载界面

2. Tomcat安装

下载完成后，可以按以下步骤安装Tomcat服务器。

（1）双击打开apache-tomcat-9.0.7.exe安装程序，显示如图2-12所示的选择安装向导界面，单击Next按钮。

（2）弹出“接受协议”对话框，单击I Agree按钮，接受安装协议，如图2-13所示。

 [image:]
 图2-12　Tomcat安装向导

 [image:]
 图2-13　“接受协议”对话框

（3）弹出图2-14所示的“自定义安装”对话框。其中，默认选项是把Tomcat加载到“开始”菜单的“程序”组中，并安装Tomcat的说明文档。如果选中Examples选项，系统会安装Tomcat自带的实例程序；如果选中Host Manager选项，系统会安装Tomcat自带的Web应用程序。读者可以自行选择这两项，建议全部选中。这样，在安装结束后，就可以运行Tomcat自带的实例程序，并查看其中的代码。设置完成后，单击Next按钮。

（4）设置配置选项，如图2-15所示。该对话框可以设置服务器的端口号及管理服务器所需的用户名和密码。设置完成后，单击Next按钮。

 [image:]
 图2-14　“自定义安装”对话框

 [image:]
 图2-15　设置配置选项

（5）选择安装虚拟机路径，可以使用默认路径，如图2-16所示。注意：Tomcat 9.0.7需要Java SE 8.0或者更高版本的JRE。选择路径后，单击Next按钮。

（6）设置安装路径，如图2-17所示。单击Browse按钮，可以选择安装路径。本书采用默认的路径。在完成设置安装路径后，单击Install按钮。

 [image:]
 图2-16　选择安装虚拟机路径

 [image:]
 图2-17　设置安装路径

（7）进入如图2-18所示的安装进度界面。

（8）安装完毕后弹出如图2-19所示的对话框，单击Finish按钮完成Tomcat的安装，并启动Tomcat服务器。服务器启动后，会在桌面的右下角显示服务器图标，如图2-20所示。

（9）在浏览器中输入http://loaclhost:8080，显示如图2-21所示，说明Tomcat安装成功。

 [image:]
 图2-18　安装进度界面

 [image:]
 图2-19　安装完成

 [image:]
 图2-20　Tomcat服务器已启动

 [image:]
 图2-21　Tomcat安装成功图

3. Tomcat安装文件夹

Tomcat安装完成后，其安装目录下包含bin、conf、lib、logs、temp、webapps、work等子目录，如图2-22所示。

各个子目录简介如下：

（1）bin目录。主要存放Tomcat的命令文件。

（2）conf目录。存放Tomcat的配置文件，如server.xml和tomcat-users.xml。server.xml是Tomcat的主要配置文件，其中包含Tomcat的各种配置信息，如监听端口号、日志配置等。如果要修改Tomcat默认的端口号8080，找到如下这段代码即可更改。

 <Connector port="8080" protocol="HTTP/1.1"

 connectionTimeout="20000"

 redirectPort="8443" />

 [image:]
 图2-22　Tomcat安装文件夹内容

把8080改成想用的端口号就可以了。tomcat-users.xml中定义了Tomcat的用户。对于Tomcat的配置及管理有专门的应用程序，所以不推荐直接修改这些配置文件。

（3）logs目录。存放日志文件。

（4）temp目录。主要存放Tomcat临时文件。

（5）webapps目录。存放应用程序实例，待部署的应用程序保存在此目录。

（6）work目录。存放JSP编译后产生的class文件。

4. Tomcat的启动、停止、配置

单击“任务栏”｜“开始”｜“程序”｜Apache Tomcat 7.0 Tomcat 7｜Configure Tomcat命令，弹出如图2-23所示的对话框，根据业务需要配置Tomcat服务器。

5. Tomcat解压缩版安装说明

（1）打开https://tomcat.apache.org/download-90.cgi，单击Binary Distributions｜Core｜zip，进行下载，如图2-24所示，下载后进行校验，防止下载文件损坏导致安装失败。

 [image:]
 图2-23　Tomcat服务器配置对话框

 [image:]
 图2-24　下载apache-tomcat-9.0.7.zip

（2）解压。单击下载的apache-tomcat-9.0.7.zip进行解压，解压后目录如图2-25所示。

（3）配置。配置Java环境变量，参考2.2.1节内容。

（4）测试。单击根目录bin目录下的startup.bat，打开的命令行界面，如图2-26所示，显示Server startup则正常启动。打开http://127.0.0.1:8080，若显示如图2-27所示界面，则说明Tomcat安装成功。单击运行根目录下bin目录中的shutdown.bat，即可停止运行。

 [image:]
 图2-25　解压后目录

 [image:]
 图2-26　命令行界面

 [image:]
 图2-27　Tomcat安装成功

6. Tomcat的部署

Web应用程序能以项目形式存在或打包为war文件。不管哪一种形式，都可以通过将其复制到webapps目录下进行部署。例如，有一个Web应用程序名为myApp的Web项目，将该Web应用程序文件夹复制到webapps下，启动Tomcat后，通过URL就可以访问http://localhost:8080/myApp/xxx.jsp，其中xxx.jsp为项目下的JSP文件。

2.2.3　Eclipse Java EE开发环境搭建

虽然所有的Java和JSP代码都可以通过文本编辑器（如记事本）来编写，但为了提高开发效率，还需要类似于Visual Studio的集成开发环境。

Eclipse Java EE作为一款Java的开发集成软件，拥有即时编译和运行便捷等特性，是开发Java类代码的方便利器。

1. 安装Eclipse Java EE

Eclipse Java EE是开源软件，可以从http://www.eclipse.org/downloads/网站下载相应文件。安装步骤具体如下。

（1）将Eclipse的集合软件包eclipse-inst-win64.exe下载到本地，打开后选择适用于开发Web应用程序的Eclipse IDE for Java EE Developers进行在线下载和安装，如图2-28所示。在下载过程中，需保证稳定的网络环境，以保证成功下载相关的组件并组装，图2-29所示为在线安装Eclipse IDE界面。

 [image:]
 图2-28　Eclipse下载页面

 [image:]
 图2-29　在线安装Eclipse IDE

（2）接受Eclipse官方安装协议，单击Accept按钮，如图2-30所示。

 [image:]
 图2-30　接受安装协议

（3）选择安装路径，并选择是否创建快捷方式，默认为选中状态，单击Launch按钮，如图2-31所示。

（4）安装成功后启动程序并选择工作空间，如果不想每一次启动时都询问工作空间，可以选中Use this as the default and do not ask again复选框，然后单击Launch按钮，如图2-32所示。

 [image:]
 图2-31　选择安装路径

 [image:]
 图2-32　选择工作空间

（5）成功启动Eclipse，如图2-33所示。

 [image:]
 图2-33　成功启动Eclipse主界面

2. 配置Eclipse Java EE

配置Eclipse Java EE的步骤如下。

（1）安装成功后，在eclipse的安装目录下找到eclipse.exe，双击打开Eclipse，选择一个工作空间，或者使用默认的工作空间，如图2-32所示。设置完毕后，单击Launch按钮。

（2）选择Window|Preferences命令，配置所安装的JRE。打开如图2-34所示的配置对话框，通过Add、Edit等按钮将已有的JRE路径添加至Java|Installed JREs中。

（3）配置Server。如图2-35所示，通过单击Add按钮添加Server|Runtime Environments。这里选择Apache Tomcat v9.0。通过Browse查找Apache Tomcat v9.0的安装路径，如图2-36所示。单击Finish按钮后，配置完成。

 [image:]
 图2-34配置JRE

 [image:]
 图2-35　配置Server选择Apache Tomcat v9.0

 [image:]
 图2-36　查找Apache Tomcat v9.0的路径

3. 采用Eclipse Java EE开发JSP代码

采用Eclipse Java EE开发JSP代码的步骤如下。

（1）新建一个Dynamic Web项目，如图2-37所示。输入项目名为webtest，如图2-38所示。

 [image:]
 图2-37　新建一个Dynamic Web项目

 [image:]
 图2-38　新建一个Web项目webtest

（2）单击Next按钮，配置Java源文件的目录src，其中src目录内存放Java源文件代码，编译输出目录为build/classes，如图2-39所示。设置完毕后，单击Next按钮。

（3）配置Web文件目录。WebContent文件夹用来保存Web（如JSP文件、HTML文件等）文件，如图2-40所示。设置完毕后，单击Finish按钮。

 [image:]
 图2-39　配置Java源文件目录

 [image:]
 图2-40　配置Web文件目录WebContent

（4）创建第一个JSP文件HelloWorld.jsp。选中项目webtest，或者文件夹WebContent，右击，在弹出的快捷菜单中选择JSP File命令，弹出新建JSP文件对话框，如图2-41所示，输入文件名HelloWorld.jsp，单击Next按钮。

（5）选择是否使用已有的文件模板，这里选择默认选项，如图2-42所示。

 [image:]
 图2-41　新建JSP文件对话框

 [image:]
 图2-42　应用JSP模板

（6）单击Finish按钮，依据模板建好的文件自动产生JSP文件的代码，如图2-43所示。

 [image:]
 图2-43　自动生成的JSP文件代码

（7）在<body>标签中插入Java代码<%out.print（"JSP Hello World!"）;%>，然后右击HelloWorld.jsp文件，在弹出的快捷菜单中选择Run as | Run On Server命令，运行第一个JSP程序。由于是第一次执行，所以会定义一个新的Server，如图2-44所示，自动选择Tomcat v9.0 Server。如果再次运行，就会默认选中Choose an existing Server。

可以看到，大多数代码是HTML元素，用来控制字体等格式，而在以下语句里，采用了out.print方法，输出了一串字符串。

 [image:]
 图2-44　定义一个新的Server

 <%out.print("JSP Hello World!"); %>

从这段简单的JSP代码里，可以看到JSP程序里采用的是HTML+Java的开发模式，即用HTML元素来控制页面输出的风格与格式，而用Java代码来控制页面输出的内容。

（8）程序运行结果如图2-45所示。

 [image:]
 图2-45　HelloWorld.jsp的运行结果

图2-45说明已经成功地通过Eclipse Java EE开启了Tomcat，在IE地址栏中输入http://localhost:8080/webtest/HelloWorld.jsp，同样也可以看到如图2-45所示的JSP程序运行效果。

 注意

 在运行程序之前，关闭Eclipse Java EE之外的Tomcat服务器。因为如果在Eclipse Java EE中启动Tomcat，外部的Tomcat服务器也处于Started状态，就会出现错误对话框，提示8080等端口已经被占用，如图2-46所示。出现这种问题需要关闭外部的Tomcat服务器。如果不是此原因造成的，可以尝试修改Tomcat的端口号。

 [image:]
 图2-46　Tomcat服务器端口号被占用

2.3　MyEclipse开发环境

MyEclipse企业级工作平台（MyEclipse Enterprise Workbench，简称MyEclipse）是对Eclipse IDE的扩展，利用它可以在数据库和Java EE的开发、发布及应用程序服务器的整合方面极大地提高工作效率。它是功能丰富的Java EE集成开发环境，包括完备的编码、调试、测试和发布功能，完整支持HTML、Struts、JSP、CSS、Javascript、Spring、SQL、Hibernate等技术。MyEclipse是一个十分优秀的用于开发Java、J2EE的Eclipse插件集合，其功能非常强大，支持也十分广泛，尤其是对各种开源产品的支持十分有力。MyEclipse可以支持JavaServlet、AJAX、JSP、JSF、Struts、Spring、Hibernate、EJB3、JDBC数据库链接工具等多项功能。可以说，MyEclipse几乎是囊括了目前所有主流开源产品的专属Eclipse开发工具。如今，MyEclipse已经更新到了功能更为强大的MyEclipse 2017 Stable 2.0版本（更新说明详见http://www.myeclipsecn.com/learningcenter/myeclipse-update/2017-stable-2-0/）。

2.3.1　MyEclipse简介与下载

MyEclipse是一个专门为Eclipse设计的商业插件和开源插件的完美集合，为Eclipse提供了一个大量私有和开源的Java工具的集合，在很大程度上解决了各种开源工具不一致的问题，并大大提高了Java和JSP应用开发的效率。MyEclipse的实际价值来自其发布的大量可视化开发工具和实用组件。例如，CCS/JS/HTML/XML的编辑器帮助创建EJB和Struts项目的向导，并产生项目的所有主要的组件（如Action/Session Bean/Form等）。此外，还包含编辑Hibernate配置文件和执行SQL语句的工具。MyEclipse包含大量由其他组织开发的开源插件，Genuitec增强了这些插件的功能并且撰写了很多使用文档，以便于开发者学习。MyEclipse插件对加速Eclipse的流行起到很重要的作用，并大大简化了复杂Java和JSP应用程序的开发。

Genuitec开发的MyEclipse企业版插件提供更多功能，年费需要几十到几百美元。

简单而言，MyEclipse是Eclipse的插件，也是一款功能强大的Java EE集成开发环境，支持代码编写、配置、测试及除错，MyEclipse 6.0以前的版本需先安装Eclipse。MyEclipse 6.0以后的版本安装时不需安装Eclipse。MyEclipse官方中文网为广大Java开发者提供最专业的Java IDE MyEclipse中文信息、MyEclipse免费下载、MyEclipse正版购买、MyEclipse开发资源（教程／视频）、MyEclipse技术交流等全面的产品服务。登录MyEclipse官方中文网站http://www.myeclipsecn.com/，进入下载界面，选择一种方式进行最新版下载，如图2-47所示（这里选择的是“2017 Stable 2.0安装包下载”）。

 [image:]
 图2-47　MyEclipse下载方式选择界面

2.3.2　MyEclipse安装与使用

1. MyEclipse安装

解压压缩包并双击安装文件myeclipse-2017-2.0-offline-installer-windows即开始安装，具体安装步骤如下。

（1）双击myeclipse-2017-2.0-offline-installer-windows文件，进行参数传送后，弹出如图2-48所示的对话框。安装MyEclipse的组件准备好后，弹出如图2-49所示的对话框。

 [image:]
 图2-48　MyEclipse Installation Wizard

（2）单击Next按钮，弹出如图2-50所示的对话框，单击选中I accept the terms of the license agrement复选框。

（3）单击Next按钮，弹出如图2-51所示的对话框。单击Change按钮，可以选择MyEclipse安装路径，这里选用默认路径。

（4）单击Next按钮，弹出如图2-52所示的对话框，根据自己的电脑系统情况选择32 bit或64 bit，这里选择64bit。

 [image:]
 图2-49　Preparing for Installation对话框

 [image:]
 图2-50　“选择协议”对话框

 [image:]
 图2-51　选择MyEclipse安装路径

 [image:]
 图2-52　选择64bit

（5）单击Next按钮后弹出安装对话框，单击对话框中的Install按钮后，开始安装，弹出如图2-53所示的安装进度对话框。经过几分钟后，安装完成，对话框如图2-54所示。

 [image:]
 图2-53　安装进度对话框

 [image:]
 图2-54　安装完成

（6）单击Finish按钮，弹出如图2-55所示的对话框。在该对话框中选择工作区路径，可以使用默认值，选择后单击OK按钮。该软件为未激活的状态，单击图2-56中的Continue按钮，试用5天，弹出如图2-57所示的MyEclipse开发主界面。可以使用菜单项对该开发工具进行设置。

 [image:]
 图2-55　工作区选择

 [image:]
 图2-56　单击Continue试用软件

（7）在MyEclipse中配置Tomcat。选择菜单栏中的Window | Preferences选项。在弹出的对话框左边选择Servers | Runtime Environments选项，显示出MyEclipse所有的Tomcat配置信息，如图2-58所示，用户可以修改MyEclipse Tomcat 8.5的Port Number:8080。如果不用MyEclipse自带的Tomcat 8.5，在图2-58所示对话框左边选择Add | Tomcat | Apache Tomcat vx.x，选择添加版本，单击Next | Browse按钮，选择路径，单击Finish按钮即可完成配置，配置完成后的对话框如图2-59所示。

 [image:]
 图2-57　开发主界面

 [image:]
 图2-58　在MyEclipse中配置Tomcat

2. MyEclipse的使用

（1）选择菜单栏中的File | New | Web Project命令，命名项目名称为ch02，如图2-60所示。

 [image:]
 图2-59　配置完成后的对话框

 [image:]
 图2-60　新建项目

（2）单击Finish按钮，项目建成，项目界面如图2-61所示。完成后，在Workspace栏会生成一些默认的目录。

 [image:]
 图2-61　项目界面

[image:]　src目录：存放Java源文件。

[image:]　WebRoot目录：是Web应用顶层目录。

[image:]　EMTA-INF目录：存放系统描述信息。

[image:]　WEB-INF目录：由以下部分组成。①lib目录，存放.jar或.zip文件。②web.xml，Web应用初始化配置文件。③JSP文件，动态页面的JSP文件。

（3）在WebRoot目录上单击右键，在弹出的菜单中选择New | JSP（Advanced Templates）命令，弹出对话框，写一个FileName，如HelloWorld.jsp，单击Finish按钮，一个JSP文件就建好了，如图2-62所示。

 [image:]
 图2-62　创建一个JSP文件

（4）在MyEclipse编辑器中进行编程，插入简单的Java代码。找到<body></body>中间的部分，插入如下代码：

 <%out.print("JSP Hello World!"); %>

（5）Web Project的部署。JSP程序可以通过上方工具栏中的工具进行运行。单击如图2-63所示的Manage Deployments按钮。弹出对话框，选择当前的Project Name（如ch02），然后单击Add按钮，如图2-64所示。

 [image:]
 图2-63　部署Web Project

 [image:]
 图2-64　部署Web Project ch02

（6）启动Tomcat。单击工具栏上的启动按钮，选择Tomcat服务器，如图2-65所示。稍等片刻，Tomcat服务启动完毕。在下方的Console中可以看到Tomcat启动成功的信息。如果要在浏览器中运行.jsp页面，Tomcat必须处于启动状态，如图2-66所示。

 [image:]
 图2-65　启动Tomcat

 [image:]
 图2-66　Tomcat已启动

或者右键选中项目，单击Run As | MyEclipse Server Application选项，选择一个已经存在的Server，或手动定义新Server，如图2-67所示，即可启动本项目的第一个程序index.jsp。

 [image:]
 图2-67　选择Server启动本项目的第一个程序

（7）运行HelloWorld.jsp程序。在浏览器中输入http://localhost:8080/ch03/HelloWorld.jsp，就可以看到其页面执行结果，如图2-68所示。

 [image:]
 图2-68　HelloWorld.jsp的执行结果

2.4　其他JSP开发环境

除了MyEclipse企业级工作平台的开发环境外，另外还有很多优秀的JSP开发环境。例如，近几年新兴的IDEA（IntelliJ IDEA）是Java语言开发的集成环境，在业界被公认为是最好的Java开发工具之一，尤其在智能代码助手、代码自动提示、重构、J2EE支持、Ant、JUnit、CVS整合、代码审查、创新的GUI设计等方面，可以说其功能是超常的，同样支持Java Web应用的开发。

另外，特别针对于.jsp文件，可以使用notepad++、UltraEdit、Adobe Dreamweaver等进行编辑，这些软件可以大大提高开发效率，一定程度上弥补了MyEclipse开发环境中对Web前台界面开发不友好的缺陷，读者可以尝试采用其他编辑工具进行.jsp文件的编写开发。

2.4.1　IDEA开发环境

IntelliJ IDEA是一种商业化销售的Java集成开发环境（Integrated Development Environment，IDE）工具软件，提供Apache 2.0开放式授权的社区版本及专有软件的商业版本，开发者可根据需要选择下载使用。最初版于2001年1月时推出，当时是少数使用前阶代码浏览及代码重构的Java集成开发环境之一。

在2010年的Infoworld报告中，比较当时市面上的主流Java集成开发环境还有Eclipse、IntelliJ、NetBeans、JDeveloper，IntelliJ IDEA获得该媒体实测中的最高评分。

2014年12月，Google宣布其旗下专用于发展Android操作系统的首版Android Studio，即基于IntelliJ IDEA的社区版本发展而成，用以取代原来提供Android开发者使用的Eclipse ADT。开发者除了可直接下载Android Studio外，原IntelliJ IDEA用户也可下载其相关插件来进行开发程序。

IntelliJ IDEA对个别编程语言所开发的集成环境，如AppCode、Clion、PhpStorm、PyCharm、RubyMine、WebStorm和MPS等，皆可由插件的方式加载IntelliJ IDEA来使用。

IntelliJ IDEA创建项目界面如图2-69所示。

 [image:]
 图2-69　IntelliJ IDEA创建项目界面

2.4.2　Adobe Dreamweaver

Adobe Dreamweaver（前称Macromedia Dreamweaver，原本由Macromedia公司所开发）是Adobe公司的网站开发软件。它使用所见即所得的接口，也有HTML编辑的功能。现在有Mac和Windows两种系统的版本。

Dreamweaver由MX版本开始，使用Opera软件公司的排版引擎Presto作为网页预览。由CS4版本开始，转用WebKit排版引擎（即Google Chrome和Apple Safari浏览器所用的排版引擎）作为网页预览。Dreamweaver允许用户在已经安装的网页浏览器中预览网页。

Adobe Dreamweaver CS6运行界面如图2-70和图2-71所示。

 [image:]
 图2-70　Adobe Dreamweaver CS6工作视图

 [image:]
 图2-71　Adobe Dreamweaver CS6创建项目界面

2.4.3　UltraEdit编辑器

UltraEdit（原名UltraEdit-32）是用于Microsoft Windows上的一套商业性文本编辑器，由IDM Computer Solutions在1994年创造。UltraEdit有很强大的编程功能，支持宏、语法高亮度显示和正则表达式等功能。文件在标签中可以被浏览和编辑。安装需要约30MB的磁盘空间。UltraEdit也支持以Unicode和Hex编辑的模式。官方网站提供30天试用版本的软件下载。

UltraEdit工作界面如图2-72所示。

 [image:]
 图2-72　UltraEdit工作界面

2.5　小结

本章讲述了JSP的开发和应用平台，以及本书所用的开发和运行环境，详细讲述了Eclipse Java EE集成开发环境安装与配置步骤。Eclipse Java EE开发JSP动态网站需要JDK的支持，通过讲解JSP运行环境的搭建，创建一个简单的实例，告诉读者如何进行JSP项目的开发，这些都是进行JSP编程的基础。MyEclipse是一个比较常用的Java开发平台，是一款功能强大的Java EE集成开发环境，支持代码编写、配置、测试及除错，本章详细讲述了MyEclipse集成开发环境安装与配置步骤。另外，本章还详细介绍了与JSP网站开发和运行环境相关的几款软件的安装与配置方法，具体包括JDK和Tomcat。

如何综合集成开发环境和Web服务器开发、配置及运行代码，是进行JSP编程的基础，希望读者能通过对本章的学习，熟练掌握使用以上几种开发平台开发和运行JSP程序。如需了解其他软件，可以参考相关书籍或资料。

2.6　习题

一、选择题

1. WebContent文件夹用来保存的文件是（　　）。

A. jsp文件和html文件

B. class文件和jar文件

C. web文件和java文件

D. 以上都不对

2. 在Web应用程序的目录结构中，在WEB-INF文件夹外的文件为（　　）。

A. .jsp文件

B. .class文件

C. jar文件

D. web.xml文件

3. Tomcat服务默认使用的端口号，可以在（　　）文件中修改。

A. server.xml

B. web.xml

C. context.xml

D. admin.xml

4. 当多个用户请求同一个JSP页面时，Tomcat服务器为每个客户启动一个（　　）。

A. 进程

B. 线程

C. 程序

D. 服务

5. 在本机上安装了Tomcat服务器，使用的均为默认安装选项，将自己编写的test.jsp文件放在Tomcat安装目录\webapps\examples中，那么在本机的浏览器中要访问test.jsp文件，应使用的URL地址为（　　）。

A. http://localhost:8080/examples/test.jsp

B. http://localhost:8080/webapps/examples/test.jsp

C. http://localhost:8080/test.jsp

D. http://localhost /examples/test.jsp

二、判断题

1. JDK是一个Eclipse插件，一定要针对Eclipse版本来选择相应版本的JDK，否则可能导致Eclipse无法正常使用。

（　　）

2. 由于Tomcat本身内含一个HTTP服务器，它可以被视作一个单独的Web服务器。

（　　）

3. 在Eclipse开发环境中，Java文件代码的编译输出目录为WEB-INF。

（　　）

4. 如果要在浏览器中运行JSP页面，Tomcat必须处于启动状态。

（　　）

5. 安装MyEclipse以前，需先安装Eclipse。

（　　）

三、填空题

1. 除了开发工具之外，还要安装一个支持Java Servlet的　　　，或者在现有的Web服务器上安装　　　软件包。

2. Tomcat的全局配置文件是　　　。

3. WEB-INF目录由以下部分组成。　　　目录：存放.jar或.zip文件。web.xml：Web应用初始化配置文件。

4. 在Eclipse的开发项目中，src目录用来存放　　　。

5. Tomcat是由Apache开发的一个　　　容器，实现了对Servlet和JSP的支持。

四、问答题

1. 为什么在客户端双击.jsp文件不能运行JSP？

2. JSP是否支持JavaScript语言？

3. 安装JDK有什么用？是否需要掌握JDK的命令使用方法？

4. Tomcat服务器有什么优点？
第3章　JSP基本语法

本章主要介绍JSP的基本语法。JSP语法分为脚本元素（Scripting Elements）、指令元素（Directive Elements）和动作元素（Action Elements）三种。JSP页面由JSP元素（Elements）和模板数据（Template Data）组成。JSP元素是指由JSP引擎直接处理的部分，这一部分必须符合JSP语法，否则会导致编译错误。模板数据是不需要经过JSP应用服务器特殊处理的、直接发送到客户端的所有非元素的其他内容，如静态的HTML代码内容。

对JSP基本语法的学习是后面深入了解和全面掌握JSP的基础，本章从JSP文件的基本结构开始，结合一些小实例介绍上述三种元素。

本章学习目标

 	◎　掌握JSP的脚本元素：隐藏注释、声明、表达式

 	◎　掌握JSP的指令元素：page、include

 	◎　了解JSP的指令：taglib

 	◎　掌握JSP的动作元素：<jsp:include>、<jsp:forward>、<jsp:param>

 	◎　掌握include指令和<jsp:include>的区别

 	◎　掌握JSP的动作元素：<jsp:useBean>、<jsp:getProperty>和<jsp:setProperty>

 	◎　了解JSP的动作元素：<jsp:plugin>

 [image:]
 本章案例源代码下载

3.1　JSP文件的结构

在传统的网页HTML（*.htm、*.html）中加入Java程序片段，就构成了JSP网页（*.JSP）。Web服务器在遇到访问JSP网页的请求时，首先执行其中的程序片段，然后将执行结果以HTML格式返回给客户端。

3.1.1　创建第一个JSP文件

以下是一段简单的JSP程序，其中包含了最基本的Java语法及重要的JSP网页结构。

【例3-1】第一个JSP程序（helloJSP.jsp）。

 [image:]

在浏览器中查看并刷新此网页，其结果如图3-1所示。

 [image:]
 图3-1　helloJSP.jsp执行结果

这个实例的程序代码可以分为两个部分：HTML标签和Java程序代码。程序代码中符号<%…%>之间的内容，便是由Java程序片段所构建的JSP网页程序代码，剩下的则是HTML标签，第一行是JSP指令元素。

在JSP网页中撰写Java程序代码，必须放在<%…%>所包含的区域中，与HTML标签进行区分，如下面的代码：

 <%

 Java程序代码 …

 %>

<%…%>里的程序代码是JSP网页提供交互功能的程序模块，JSP网页服务器负责编译这些程序代码，并且将执行结果结合其中的HTML创建一份单纯的HTML网页，返回给客户端的浏览器进行显示。

原始JSP网页中<%…%>区域里的Java程序代码被编译，转换成纯粹的HTML标签文字，重新建立只包含HTML的网页内容，然后传送至前台，由浏览器进行最后的转换工作，并显示JSP网页执行后的结果。

3.1.2　分析JSP文件的组成元素

helloJSP.jsp网页实例的结构非常简单，本小节将继续针对程序内容进行解释。

（1）page指令。

 <%@ page contentType="text/html; charset=GBK" %>

这行代码为page指令，page是JSP指令元素的一种，在本章3.3.1节将为大家详细介绍该元素。

（2）批注。

 <%--这是声明一个变量 --%>

 <%/*这是声明一个方法*/%>

 <%// JSP程序代码%>

在程序执行的过程中，上述<%…%>区域里的批注内容都将被忽略。批注在程序中可有可无，然而为了程序日后便于维护，为程序加上良好的批注，是一个优秀的程序员必须养成的好习惯。

（3）数据输出。out对象进行指定字符串的输出。out是JSP中的默认对象，主要用来输出数据到客户端网页上。println则是out对象提供将字符串等数据输出网页的方法，接受一个特定类型的参数，并且将参数的内容输出到网页上；且其中每一行完整的程序语句，均必须以分号（;）作为结束。

 <%

 out.println("Hello JSP ");

 out.println("欢迎使用 JSP交互式动态网页!!");

 %>

下面的这行代码使用的是表达式，也是脚本元素的一部分，在表达式中调用count()方法，计算访问该页面的人数，并在页面上输出结果。

 <%= "您是第" + count() + "个客人!" %>

（4）声明。

 [image:]

这段代码表示的是声明，这里声明了一个公有的变量number，还声明了一个共有的方法count()。声明是脚本元素的一部分，在3.2节中将详细为读者介绍脚本元素。

3.2　JSP的脚本元素

JSP语句中的JSP脚本元素（Scripting Elements）用来插入一些Java语言程序代码，这些Java语言的程序代码将出现在由当前JSP页面生成的Servlet中，用来实现一些功能。它包括隐藏注释、HTML注释、声明、脚本代码和表达式等内容。

3.2.1　隐藏注释

JSP语句中的隐藏注释（Hidden Comment）镶嵌在JSP程序的源代码中，使用隐藏注释的目的并不是提醒用户，而是为了：

[image:]　使程序设计人员和开发人员阅读程序方便，增强程序的可读性。

[image:]　在增强程序可读性的同时，又顾及程序系统的安全性。如果用户通过Web浏览器查看该JSP页面，将看不到隐藏注释的内容。

[image:]　隐藏注释写在JSP程序代码中，但不发送到客户端。

JSP语法格式如下：

 <%-- comment --%>

或

 <%-- 注释 --%>

隐藏注释标记的字符在JSP编译时会被忽略，它在希望隐藏或者注释JSP程序时是非常有用的。JSP编译器不会对<%--和--%>之间的语句进行编译，且该语句也不会显示在客户端的浏览器中。

【例3-2】隐藏注释（hidden-comment.jsp）。

 <%@ page contentType="text/html; charset=GBK"%>

 <html>

 <head>

 <title>隐藏注释示例</title>

 </head>

 <body>

 <h1>隐藏注释测试</h1>

 <%-- 这行注释将不显示在客户端的浏览器上 --%>

 </body>

 </html>

将此程序执行后，在浏览器上显示如图3-2所示的结果。查看源文件，注释的语句没有显示出来。

 [image:]
 图3-2　hidden-comment.jsp页面运行结果

3.2.2　HTML注释

HTML注释又称为显式注释，用户能够在客户端看到注释内容。HTML注释形式如下：

 <!-- 注释语句[<%=表达式%>] -->

例如：

 <!-- HTML注释，用户将会看到本段注释内容-->

【例3-3】HTML注释（html-notes.jsp）。

 <%@ page contentType="text/html; charset=GBK"%>

 <html>

 <head>

 <title>HTML注释</title>

 </head>

 <body>

 <!-- This file displays the user login screen -->

 未显示上一行的注释。

 </body>

 </html>

JSP语法中的HTML注释和HTML语言本身十分相似，它们都可以通过在某一JSP页面中右击，然后在弹出的快捷菜单中选择“查看源文件”命令查看其代码。

将此程序执行后，可在浏览器上显示如图3-3所示的结果。查看源文件，注释的语句会显示出来。

【例3-4】比较两种注释方式（comparison-notes.jsp）。

 <%@ page contentType="text/html; charset=GBK"%>

 <html>

 <head>

 <title>要多加练习</title>

 </head>

 <body>

 <!--This page was loaded on <%= (new java.util.Date()).toLocaleString() %> -->

 在源文件中包括当前时间。

 <%=(new java.util.Date()).toLocaleString()%>

 </body>

 </html>

将此程序执行后，可在浏览器上显示如图3-4所示的结果。查看源文件，HTML注释中的时间会计算出结果并显示出来。

 [image:]
 图3-3　html-notes.jsp页面运行结果

 [image:]
 图3-4　comparison-notes.jsp页面运行结果

由于Scriptlets包含Java代码，所以Java中的注释规则在Scriptlets中也适用。常用的Java注释使用“//”表示单行注释，使用“/*　　*/”表示多行注释。例如：

 [image:]

也可以这样：

 [image:]

3.2.3　声明

JSP中的声明（Declaration）用来定义一个或多个合法的变量（包括普通变量和类变量）和方法，并不输出任何的文本到输出流，声明的变量和方法将在JSP页面初始化时被初始化。

JSP声明的语法格式如下：

 <%! declaration; [declaration;] ... %>

或

 <%! 声明; [声明;] ... %>

例如：

 <%! int a=1; %>

 <%! int b; %>

 <%! String s="test"; %>

JSP语法中的声明语句用来声明将要在JSP中使用的变量和方法。变量和方法必须要声明，否则就会出错。可以一次声明多个变量和方法，只要以“;”结尾即可，而且必须保证这些声明在Java中是合法的。

在声明方法或变量时，应注意以下方面：

[image:]　声明必须以“;”结尾，在这一点上与JSP语法中的Scriptlet语句有同样的规则，但是JSP语法中的表达式不能以“;”结尾。

[image:]　可以直接使用在<%@ page %>中被包含进来的已经声明的变量和方法，不需要对它们重新进行声明。

[image:]　一个声明仅在一个页面中有效，对于一些在每个页面都用得到的声明，最好把它们写成一个单独的文件，然后用<%@ include %>或<jsp:include >语句把该文件及文件中的各个元素包含进来。

[image:]　由于声明不会有任何输出，因此它们往往和JSP表达式或Scriptlet结合在一起使用。

例如下面代码定义了变量a和变量b：

 <%!

 int a= 2;

 int b= 3;

 %>

输出a与b的乘积为：

 <%= a*b %>

JSP的变量可以分为局部变量和全局变量，在JSP中声明变量时，要注意变量的定义域。

[image:]　在程序片段中声明的变量，即在<%…%>中声明的变量是JSP的局部变量，它们对外部函数是不可见的。

[image:]　在<%！…%>中声明的变量是全局变量，这种变量在整个JSP页面内都有效。因为JSP引擎将JSP页面编译成Java文件时，将这些变量作为类的成员变量，这些变量的内存空间直到服务器关闭后才释放。

[image:]　在<%！…%>中声明的方法在整个JSP页面内有效，但是在该方法内定义的变量只在该方法内有效。

【例3-5】比较局部变量和全局变量的不同之处（welcome.jsp）。

 [image:]

执行此程序，并且不断地刷新页面，可以看到全局变量Num随着刷新不断增大，而局部变量count始终是1，可在浏览器上显示如图3-5所示的结果。

 [image:]
 图3-5　welcome.jsp页面运行结果

【例3-6】方法的声明（dec-method.jsp）。

在这个实例中声明计算圆的面积和周长的两种方法，根据从表单提交圆的半径调用这两种方法进行计算。

 [image:]

在表单中输入半径的值，单击“开始计算”按钮，程序执行显示结果，如图3-6和图3-7所示。

 [image:]
 图3-6　输入半径为3

 [image:]
 图3-7　dec-method.jsp页面计算并显示结果

3.2.4　脚本代码

JSP中的脚本代码（Scriptlets）是一段Java程序代码，这些代码在请求处理时在服务器端按顺序执行，脚本代码中如果使用了out对象，则会在客户端显示输出内容。

脚本代码的语法格式如下：

 <% code fragment %>

或

 <% 代码 %>

一个Scriptlet能够包含多个JSP语句、方法、变量、表达式。有了Scriptlet，用户可以进行以下操作：

[image:]　声明将要用到的变量。

[image:]　编写JSP表达式。

[image:]　使用任何隐含的对象和任何用<jsp:useBean>声明过的对象。

[image:]　编写JSP语句（如果使用Java语言，这些语句必须遵从Java Language Specification，即Java语言规范）。

[image:]　填写任何文本和HTML标记，注意JSP元素必须在Scriptlet之外。

当JSP收到客户的请求时，Scriptlet就会被执行，如果Scriptlet有显示的内容，这些显示的内容就可以存放在out对象中。

 <%

 String t = "test";

 out.println(t);

 %>

Scriptlet中的代码将被照搬到Servlet内，而Scriptlet前面和后面的静态HTML代码将被转换成println语句。这就意味着，Scriptlet内的Java语句并非一定要完整，没有关闭的块将影响Scriptlet外的静态HTML。

【例3-7】程序scriptlets.jsp混合了静态HTML代码和Scriptlet，程序运行结果如图3-8所示。

 [image:]
 图3-8　scriptlets.jsp页面运行结果

 [image:]

 注意

 •　如果要在Scriptlet内部使用字符“%>”，必须写成“%＼>”。

 •　脚本段内不能定义方法，与声明不同，这是因为JSP引擎会把脚本段内的代码放到Servlet的方法内，而方法是不能被嵌套定义的。

3.2.5　表达式

JSP能够计算表达式（Expression），并向JSP页面输出表达式的运算结果。其语法格式如下：

 <%= expression %>

或

 <%= 表达式 %>

表达式元素表示的是一个在Java脚本语言中被定义的Java表达式，在运行后被自动转换成字符串，然后插入到表达式所在JSP文件的位置显示。表达式在运行时进行计算（页面被请求时），因此可以访问和请求有关的全部信息。例如：

 <%= new java.util.Date() %>//输出系统当前时间

 <%= "Hello" %> //输出Hello

 <%= 1＋3＋5 %> //输出9

在JSP页面中使用表达式时应注意以下两点：

[image:]　不能用分号（;）作为表达式的结束符，这一点与Scriptlet不同，同样的表达式用在Scriptlet中时，就需要以分号来作为一个Scriptlet语句的结尾。

[image:]　有时表达式也能作为其他JSP元素的属性值，一个表达式能够变得很复杂，它可能由一个或者多个表达式组成，这些表达式的顺序是从左到右。

 注意

 •　JSP的表达式中没有分号，除非在加引号的字符串部分才使用分号。

 •　表达式实际上是被转换成out.println()方法中的内容。如<%= "hello world "%>相当于JSP页面中的<%out.println（"hello world "）; %>。

3.3　JSP指令元素

JSP的指令元素描述了JSP页面转换成JSP容器所能执行的Java代码的控制信息，如JSP页面所使用的语言、导入的Java类、网页的编码方式和指定错误处理页面等。JSP的指令元素独立于JSP页面接受的任何请求，且不产生任何页面输出信息。

指令元素的语法格式如下：

 <%@ 指令名 属性1="值1" 属性2="值2" …属性n="值n"%>

例如，用户常在每个JSP页头加上一个指定页面语言和编码方式的指令：

 <%@ page language="java" contentType="text/html; charset=gb2312"%>

JSP中包括page、include和taglib三种指令。

3.3.1　page指令

page指令用来定义JSP页面中的全局属性，它描述与页面相关的一些信息。page指令的位置一般在JSP页面的开头，放在其他位置也是可行的，在一个JSP页面中可以有多个page指令。其语法格式如下：

 [image:]

page指令语法中各属性的含义如下。

（1）language="java"

JSP中仅定义了一个language属性值Java，表示脚本的语法必须符合Java语法规范。该属性的默认值即为Java，所以可以不指定该属性。

（2）extends="package.class"

标明JSP编译时需要加入的Java Class的全名，但是得慎重使用，除非用户对Java非常熟悉，因为它会限制JSP的编译能力。

（3）import="{package.class | package.* },..."

import属性用于导入JSP页面中将要使用的Java类，一个import属性导入一个或多个Java类的定义，中间用逗号分隔，例如：

 <%@ page import="java.util.Vector, java.util.Calendar" %>

或

 <%@ page import="java.util.Vector" %>

 <%@ page import="java.util.Calendar " %>

另外有些Java类是默认导入的，不需要用户特别指定，例如：

 java.lang.*

 javax.servlet.*

 javax.servlet.jsp.*

 javax.servlet.http.*

（4）session="true | false"

设定客户是否需要HTTP Session，如果它为true，那么session是有用的；如果它为false，那么用户就不能使用session对象，以及定义scope=session的<jsp:useBean>元素。默认值是true。

例如：

 <%@ page session="false" %>

 <%= session.getId() %>

由于session被设置为false，无法使用session对象，因此该实例代码运行时将产生异常。

（5）buffer="none | 8kb | sizekb"

buffer的大小被out对象用于处理执行后的JSP对客户浏览器的输出，默认值是8KB。如果设置为none，则不使用缓冲区。

例如，设置页面缓冲区的大小为64KB：

 <%@ page buffer="64kb" %>

禁用缓冲区：

 <%@ page buffer="none" %>

（6）autoFlush="true | false"

设置如果buffer溢出，是否需要强制输出，如果其值被定义为true（默认值），输出正常；如果它被设置为false，这个buffer溢出就会导致一个意外错误的发生。如果用户把buffer设置为none，那么就不能把autoFlush设置为false。

（7）isThreadSafe="true | false"

设置JSP文件是否能多线程使用，默认值是true。也就是说，JSP能够同时处理多个用户的请求，如果设置为false，一个JSP一次只能处理一个请求。

（8）info="text"

一个文本在执行JSP时将会被逐字加入JSP中，能够使用Servlet.getServletInfo方法取回。使用方法如下：

 <%@ page info="要设置的字符串信息"%>

（9）errorPage="relativeURL"

设置处理异常事件的JSP文件。

（10）isErrorPage="true | false"

isErrorPage属性设置此JSP页面是否为错误处理页面，默认值为false。如果设置为true，则表明在该页面中可以获取异常对象exception，并通过该对象取得从发生错误的页面传出的错误信息，获取错误信息的常用方法如下：

 <%=exception.getMessage()%>

（11）contentType="mimeType [;charset=characterSet]" | "text/html

contentType属性指定返回浏览器的内容类型，可用的属性值有text/plain（纯文本页面）、text/html（纯文本的HTML页面）、text/xml（XML页面）、applcation/x-msexcel（Excel文件）和application/msword（Word文件）等。contentType中可以同时指定返回页面中所使用的字符编码，如charset=gbk等。常用格式如下：

 <%@ page contentType="text/html; charset=gb2312"%>

 注意

 无论把<%@ page %>指令放在JSP文件的哪个地方，它的作用范围都是整个JSP页面。不过，为了JSP程序的可读性，以及养成良好的编程习惯，最好还是把它放在JSP文件的顶部。

下面通过几个简单的实例来设置page指令。

【例3-8】中文编码示例（setCharset.jsp）。

contentType的设置对于JSP网页的中文显示有非常大的影响，JSP网页默认的编码方式并没有办法识别中文，因此用户会发现网页内容的中文部分将呈现乱码。想要正常显示中文，contentType属性的charset项目必须设置为GB2312。

 <html>

 <head>

 <title>演示page指令charset设置</title>

 </head>

 <body>

 <%

 out.println("Hello，欢迎使用JSP 2.x 技术 !! ");

 %>

 </body>

 </html>

在网页开始的地方并没有设置page指令，其执行结果如图3-9所示。

从浏览结果可以很明显地看出，标题栏和网页内容均呈现乱码。下面将上述page指令的设置程序片段<%@ page contentType="text/html; charset=gb2312"%>加入网页开始的地方。重新浏览网页，这时中文部分已经能正常显示，如图3-10所示。

 [image:]
 图3-9　setCharset.jsp执行结果

 [image:]
 图3-10　添加中文编码后的网页执行结果

contentType是网页最常使用的指令，为了正常显示中文，这个指令的设置是必要的。

【例3-9】setInfo.jsp简单示范info属性的设置方式。

 [image:]

程序代码设置info属性为说明字符串，再引用getServletInfo()方法，取得此说明字符串，并且将其输出到网页上，如图3-11所示。

 [image:]
 图3-11　setInfo.jsp执行结果

【例3-10】出错页面pageError.jsp如何从error.jsp中获取发生的错误信息。

pageError.jsp程序中设置了出错处理页面为errorPage="error.jsp"，在页面运行过程中一旦遇到异常，就自动跳转到error.jsp中处理异常。在error.jsp中利用isErrorPage="true"将其设置为错误页面，可以在该页面中处理捕捉到的异常。

pageError.jsp程序代码如下：

 [image:]

error.jsp代码如下：

 [image:]

由于IE浏览器在出现错误时会将默认的错误页面替代返回的错误页面，因此必须先在IE中将该功能屏蔽才能看到运行效果。打开IE浏览器，然后在IE中选择“工具”|“Internet选项”菜单命令，在弹出的“Internet选项”对话框中单击打开“高级”选项卡，如图3-12所示，取消选中“显示友好HTTP错误信息”复选框，然后单击“确定”按钮，完成设置，运行效果如图3-13所示。

 [image:]
 图3-12　屏蔽IE默认错误页面的设置

 [image:]
 图3-13　出现异常的返回页面

<%@ page %>指令作用于整个JSP页面，同样包括静态的包含文件。但是<%@ page %>指令不能作用于动态的包含文件，如<jsp:include>。

可以在一个页面中使用多个<%@ page %>指令，但是其中的属性只能用一次，不过也有例外，那就是import属性。因为import属性和Java中的import语句类似（import语句引入的是Java语言中的类），所以此属性就能多用几次。

3.3.2　include指令

JSP中的include指令用来包含一个静态的文件，在解析当前页面时，这个文件中的代码会被复制到当前页面中。其语法格式如下：

 <%@ include file="relative url" %>

其中，file="filename"这个被包含文件的路径名一般来说是指相对路径，不需要什么端口、协议和域名，例如"conn.jsp"、"/beans/calendar.jsp"等。如果路径是以文件名或目录名开头，那么这个路径就是正在使用的JSP文件的当前路径；如果这个路径以“/”开头，那么这个路径主要是参照JSP应用的上下关系路径。

<%@ include %>指令将会在JSP程序代码被编译时，插入一个包含文本或者源代码的文件一起进行编译。使用<%@ include %>指令语句去包含某个文本或程序代码文件的过程是静态的，静态包含的具体含义是指这个被包含的文件将会被完整地插入到原来的主JSP文件中去，这个由主JSP文件包含的文件可以是JSP文件、HTML文件、文本文件或者是一段Java代码等。如果<%@ include %>指令包含的文件是JSP文件，则该JSP文件将会被主JSP文件一起编译执行。

include指令将会在JSP编译时插入一个文件，而这个包含过程是静态的。所谓静态的是指file属性值不能是一个变量。例如，下面为file属性赋值的方式是不合法的。

 <%String url="header.htmlf";%>

 <%@include file="<%=url%>"%>

也不可以在file所指定的文件后添加任何参数，下面这行代码也是不合法的。

 <%@ include file="query.jsp?name=browser"%>

如果只是用include来包含一个静态文件，那么这个包含的文件所执行的结果将会插入到JSP文件中放<% @ include %>的地方。一旦包含文件被执行，那么主JSP文件的过程将会被恢复，继续执行下一行。但是要注意，在这个包含文件中不能使用<html>、</html>、<body>、</body>标记，因为这将会影响在原JSP文件中同样的标记，有时会导致错误。

一旦引用了include指令，加载的外部文件内容将成为当前网页的一部分。下面示范include指令操作。使用include指令有一点必须特别注意：当文件的内容包含中文时，Tomcat会显示为乱码；在外部文件中加入page指令，即可将中文正确显示出来。

【例3-11】文件include.jsp中静态包含了4个文件：HTML文件include_html.html、文本文件include_txt.txt、JSP文件include_jsp.jsp、JSP代码include_code.cod。执行结果如图3-14所示。

 [image:]
 图3-14　include.jsp中静态包含了4个文件的执行结果

include.jsp代码如下：

 <%@ page contentType="text/html; charset=gb2312" language="java"%>

 <html>

 <head>

 <title>Include指令示例</title>

 </head>

 <body>

 <p>插入HTML文件：<%@ include file="include_html.html"%>

 <p>插入文本文件：<%@ include file="include_txt.txt"%>

 <p>插入JSP文件，显示现在的日期时间：<%@include file="include_jsp.jsp"%>

 <p>插入JSP代码：<%@ include file="include_code.cod"%>

 </body>

 </html>

include_html.html代码如下：

 <%@ page contentType="text/html; charset=gb2312" %>

 这是插入的HTML文件

include_txt.txt代码如下：

 <%@ page contentType="text/html; charset=gb2312" %>

 <%="这是插入的文本文件"%>

include_jsp.jsp代码如下：

 <%@ page contentType="text/html; charset=gb2312"%>

 <%@ page import="java.util.*"%>

 <%=new Date().toString()%>

 <%="这是插入的JSP文件的内容"%>

include_code.code代码如下：

 <%@ page contentType="text/html; charset=gb2312" %>

 <% String s="这是插入执行代码的内容";

 out.print(s);

 %>

include指令只能加载指定的外部文件，而且不能进行传递参数操作，后面将要说明action element有一个与此类似的指令，可以突破这些限制。如果外部文件只包含单纯的静态内容，使用include指令是理所当然的选择。include指令将会在JSP编译时插入被包含文件的内容，被包含的文件内容常常是代码片段，因此代码片段的扩展名最好以f（fragment的第一个字母）结尾，例如，.htmlf、.jspf等。这么做的好处是避免JSP编辑器对该文件内容进行语法检查。

【例3-12】文件static_include.jsp中静态包含了两个文件：header.htmlf和footer.jspf。执行结果如图3-15所示。

 [image:]
 图3-15　static_include.jsp中静态包含了2个文件的执行结果

static_include.jsp代码如下：

 <%@ page contentType="text/html; charset=GBK" %>

 <%@ page import="java.util.Calendar" %>

 <%@ page import="java.text.SimpleDateFormat" %>

 <%@ include file="template/header.htmlf" %>

 <h3>本页面使用include指令，导入了header.htmlf和footer.jspf</h3>

 <%@ include file="template/footer.jspf" %>

header.htmlf代码如下：

 <%@ page contentType="text/html; charset=GBK" %>

 <html>

 <head>

 <title>

 Include指令示例

 </title>

 </head>

 <body>

 <hr>

footer.jspf代码如下：

 <%@ page contentType="text/html; charset=GBK" %>

 <hr>

 <%

 Calendar cal = Calendar.getInstance();

 SimpleDateFormat formatter = new SimpleDateFormat("yyyy-MM-dd");

 %>

 <P align=center>今天：<%=formatter.format(cal.getTime())%>

 <hr>

 </body>

 </html>

使用include指令可以把一个复杂的JSP页面分成若干简单的部分，这样大大增加了JSP页面的管理性。当要对页面进行更改时，只需要更改对应的部分就可以。

3.3.3　taglib指令

taglib指令用来定义一个标签库及其自定义标签的前缀，其语法格式如下：

 <%@ taglib uri=" tagLibraryURI" prefix=" tagPrefix" %>

其中，属性uri（Uniform Resource Identifier，统一资源标识符）用来唯一地确定标签库的路径，并告诉JSP引擎在编译JSP程序时如何处理指定标签库中的标签；属性prefix定义了一个指示使用此标签库的前缀。例如：

 <%@ taglib uri="http://www.jspcentral.com/tags" prefix="public" %>

 <public:loop>

 …

 </public:loop>

在上边的代码中，uri=http://www.jspcentral.com/tags说明了使用的标签库所在的路径，<public:loop>说明了要使用public标签库中的loop标签，如果这里不写public，就是不合法的。定义标签时，不能使用jsp、jspx、java、javax、servlet、sun和sunw作为前缀，这些前缀是JSP保留的。在使用自定义标签之前必须使用<% @ taglib %>指令，并且可以在一个页面中多次使用，但是前缀只能使用一次。

3.4　JSP动作元素

JSP动作元素（Action Element）和JSP指令元素不同，它是在客户端请求时动态执行的，是通过XML语法格式的标记来实现控制Servlet引擎行为的。JSP动作元素是一种特殊标签，并且以前缀jsp和其他的HTML标签相区别，利用JSP动作元素可以实现很多功能，包括动态地插入文件、重用JavaBean组件、把用户重定向到另外的页面、为Java插件生成HTML代码等。JSP定义了几个预设的Action Element标签，如表3-1所示。

 表3-1　JSP预设Action Element标签

 [image:]

表3-1中第一部分的操作元素是在JSP网页中使用JavaBean及属性值存取的元素，这一部分在第6章中会有详细的说明。第三部分是JSP 2.0规格里新增的与XML有关的元素，本章接下来的部分将针对一般性的Action Element的使用方式进行说明。

3.4.1　<jsp:include>

<jsp:include>动作元素可以用来包含其他静态和动态页面。JSP有两种不同的包含方式：编译时包含和运行时包含。编译时包含只是将静态文件内容加到JSP页面中，其优点是速度快，如前面提到的<%@ include file="" %>指令。运行时包含指被包含的文件在运行时被JSP容器编译执行，<jsp:include>的包含就是运行时包含，同时支持编译时包含。

<jsp:include>有带参数和不带参数两种语法格式，分别如下：

 <jsp:include page="relative URL" flush="true|false"/>

和

 <jsp:include page="relative URL" flush="true|false">

 <jsp:param name="attributeName" value="attributeValue"/>

 <jsp:param …

 </jsp:include>

其中，relative URL指代被包含文件的相对路径；属性flush为true时，表示实时输出缓冲区。<jsp:param>用于在包含文件时传递一些参数，一个<jsp:include>中可以包含一个或多个<jsp:param>动作元素。

下面通过一个具体的例子来阐述<jsp:include>动作元素的用法。

【例3-13】文件jsp_include.jsp静态包含文件static.html，动态包含文件action.jsp。

jsp_include.jsp代码如下：

 [image:]

其中，方法String request.getParameter（"parameterName"）以字符串的形式返回客户端传来的某一个请求参数的值，该参数名由parameterName指定。当传递给此方法的参数名没有实际参数与之对应时，返回null。

static.html代码如下：

 [image:]

action.jsp代码如下：

 [image:]

jsp_include.jsp执行时，它所静态包含的文件static.html显示的表单出现在页面的上方，而它动态包含的文件action.jsp出现在页面的下方，实际上包含进来的是action.jsp的执行结果。此时并未提交数据，所以a1和a2都显示为null，程序执行的结果如图3-16所示。当在表单中输入数据并单击login按钮提交后，页面下方的a1和a2显示输入的数据，说明参数传递已经成功，程序执行的结果如图3-17所示。从图中可以看出，action.jsp的内容是动态变化的，它的内容由a1和a2参数决定，而static.html文件的内容是不变的。

 [image:]
 图3-16　jsp_include.jsp的执行结果

 [image:]
 图3-17　jsp_include.jsp提交数据后的执行结果

如果通过超级链接跳转到action.jsp，页面的执行结果如图3-18所示，因为超级链接中并没有传递参数，所以a1和a2都显示为null。

 [image:]
 图3-18　通过超级链接跳转到action.jsp页面的执行结果

由于<jsp:include>也可以包含静态文件，所以文件jsp_include.jsp中的代码<%@ include file="static.html"%>改为<jsp:include page="static.html" flush="true"/>，执行结果是一样的。

如果把【例3-12】中的<%@include%>改为<jsp:include>，则页面不能显示<%=formatter.Format（cal.getTime()）%>的计算结果，正说明了两种包含的区别。

 注意

 •　使用操作元素的单行语句，必须在该元素语句后加上斜线（/）。

 •　与使用<%@ include %>的注意事项相同，被包含的文件中不要重复出现某些HTML标记，以免出错。

JSP中include指令与include动作的区别如下：

[image:]　include指令是指把其他页面的Java代码（源码）加进来，跟本页面的代码合并在一起，相当于把源代码从原页面复制到本页面中来，然后再编译。由于本页面在编译时已经包含了别的文件的源代码，所以以后其他页面更改时，本页面并不理会，因为已经编译过了。

[image:]　include动作是指两个页面的代码运行完以后，再把包含的那个页面运行后的HTML结果页面，加到本页面运行后的HTML结果页面中来，所以是运行时包含，并且还可以传递参数给被包含的页面。

表3-2列出了include指令与include动作的主要区别。

 表3-2　include指令与include动作的主要区别

 [image:]

3.4.2　<jsp:forward>

<jsp:forward>用于在服务器端结束当前页面的执行，并从当前页面跳转到其他指定页面，转向的目标页面可以是静态的HTML页面、JSP文件或Servlet类。这个元素的使用语法和<jsp:include>类似。

<jsp:forward>既可以带参数，也可以不带参数，它们的语法格式分别如下：

 <jsp:forward page="pageURL"/>

和

 <jsp:forward page="pageURL">

 <jsp:param name="attributeName" value="attributeValue"/>

 <jsp:param …

 </jsp:forward>

【例3-14】usingForward.jsp重定向到页面forwardTo.jsp，可以很清楚地了解<jsp:forward>操作元素的使用方法与功能。

usingForward.jsp代码如下：

 [image:]

使用<jsp:forward>元素将网页重定向到程序forwardTo.jsp，且不传递任何参数。

forwardTo.jsp代码如下：

 [image:]

执行结果如图3-19所示，其中地址栏显示为usingForward.jsp，但是由于指令<jsp:forward>执行的关系，显示的却是forwardTo.jsp网页的内容，并且指令<jsp:forward>后面的文字“此行代码将不能显示！”没有显示出来。

<jsp:forward>操作典型的使用就是登录，如进行权限验证的页面。当验证通过后，就把页面forword到登录成功页面；当验证不通过时，就把页面forword到登录页面。

 [image:]
 图3-19　usingForward.jsp执行结果

【例3-15】login.jsp是用户登录界面，checklogin.jsp是登录验证界面，如果验证成功，它把页面forword到success.jsp页面；如果不成功，它把页面forword到login.jsp页面进行重新验证。

login.jsp代码如下：

 [image:]

checklogin.jsp代码如下：

 [image:]

success.jsp代码如下：

 <%@page contentType="text/html;charset=gb2312"%>

 登录成功

 欢迎你，

 <%=request.getParameter("user") %>

login.jsp执行的结果如图3-20所示，输入正确的用户名和密码，单击login按钮提交后，经checklogin.jsp验证，验证成功，它把页面forword到success.jsp页面，如图3-21所示。如果输入错误的用户名和密码，checklogin.jsp把页面forword到login.jsp页面进行重新验证，如图3-22所示。输入的用户名作为参数，通过checklogin.jsp传递给login.jsp和success.jsp。

 [image:]
 图3-20　login.jsp执行结果

 [image:]
 图3-21　验证成功forword到sucess.jsp的执行结果

在页面重定向的过程中，图3-21和图3-22地址栏中的地址并没有发生变化，这样防止用户跳过登录验证页面而直接进入到其他网页。另外，由于地址不变，就不会产生新的request，可以在页面重定向的时候不传递参数，而使用request.getParameter（"name"），注意此参数名是name，就是表单中的用户名，程序执行的结果是一样的。读者可以更改程序代码，查看运行结果，体会forword的含义。在4.3.2节，通过forword和sendRedirect的比较，读者将能更加清楚地理解重定向的本质。

 [image:]
 图3-22　验证失败forword到login.jsp的执行结果

3.4.3　<jsp:param>

<jsp:param>元素主要用来传递参数给JSP程序，而由程序取得参数值，在程序中便是一个变量值。此操作元素的语法如下：

 <jsp:param name="attributeName" value="attributeValue"/>

<jsp:param>元素在使用时必须要设置其name属性，表示传递参数的名称，并通过value属性来设置该参数的值。JSP操作元素和HTML不同，要设置元素的属性则必须加上双引号，否则执行时会出现错误。

使用<jsp:param>元素来传递参数，在JSP程序中则是以如下的程序代码来取得此参数的值，这与取得用户输入数据的方式相同，是通过使用预设对象request的getParameter()方法来取得<jsp:param>所设置的参数值。

 request.getParameter("attributeName ");

<jsp:param>操作元素的使用必须配合<jsp:include>、<jsp:forward>及<jsp:plugin>等元素，在加载外部程序或是网页转换的时候，传递参数给另一个JSP程序。

3.4.4　<jsp:useBean>、<jsp:setProperty>和<jsp:getProperty>动作

1. <jsp:useBean>

<jsp:useBean>用来加载JSP页面中使用的JavaBean，其语法格式如下：

 <jsp:useBean

 id="beanInstanceName"

 scope="page|request|session|application"

 class="package.class"

 ></useBean>

其中，id指定该JavaBean的实例变量的名称，scope指定该Bean变量的有效范围。page指只在当前JSP页面中有效；request指在任何执行相同请求的JSP文件中使用Bean，直到页面执行完毕；session指从创建该Bean开始，在相同session下的JSP页面中可以使用该Bean；application指从创建该Bean开始，在相同application下的JSP页面中可以使用该Bean。class属性指定Bean的类路径和类名，不可接受动态值，不能是抽象的，表3-3说明了这些属性的用法。

 表3-3　<jsp:useBean>的属性和用法

 [image:]

 注意

 包含Bean的类文件应该放到服务器正式存放Java类的目录下，而不是保留给修改后能够自动装载的类的目录。

【例3-16】<jsp:useBean>动作实例useBean.jsp代码如下：

 [image:]

useBean.jsp运行结果如图3-23所示。

<jsp:useBean>的bean属性用于指定Bean的名字，可以接受动态值。beanName属性必须与type属性结合使用，不能与Class属性同时使用。

【例3-17】<jsp:useBean>动作实例useBeanBeanName.jsp代码如下：

 [image:]

useBeanBeanName.jsp运行结果如图3-24所示。

 [image:]
 图3-23　useBean.jsp运行结果

 [image:]
 图3-24　useBeanBeanName.jsp运行结果

2. <jsp:setProperty>

<jsp:setProperty>用于设置Bean的属性值。语法格式如下：

 [image:]

<jsp:setProperty>动作用来设置已经实例化的Bean对象的属性，它有以下两种用法。

（1）可以在<jsp:useBean>元素的外面（后面）使用<jsp:setProperty>。

 <jsp:useBean id="myName" ... />

 ...

 <jsp:setProperty name="myName" property="someProperty" ... />

此时，不管<jsp:useBean>是找到了一个现有的Bean，还是新创建了一个Bean实例，<jsp:setProperty>都会执行。

（2）把<jsp:setProperty>放入<jsp:useBean>元素的内部。

 <jsp:useBean id="myName" ... >

 ...

 <jsp:setProperty name="myName" property="someProperty" ... />

 </jsp:useBean>

此时，<jsp:setProperty>只有在新建Bean实例时才会执行，如果使用现有实例，则不执行<jsp:setProperty>。

<jsp:setProperty>动作有4个属性，这4个属性及其用法如表3-4所示。

 表3-4　<jsp:setProperty>的属性和用法

 [image:]

<jsp:setProperty>元素使用Bean给定的set方法，在Bean中设置一个或多个属性值。在使用这个元素之前必须首先使用<jsp:setProperty>声明此Bean。因为<jsp:useBean>和<jsp:setProperty>是联系在一起的，同时使用Bean实例的名字也应当相匹配。就是说，在<jsp:setProperty>中的name值应当和<jsp:useBean>中的id值相同，且大小写敏感。

可以使用以下方法来设定<jsp:setProperty>属性值：

[image:]　通过用户输入的所有值（被作为参数存储在request对象中）来匹配Bean中的属性。

[image:]　通过用户输入的指定值来匹配Bean中指定的属性。

[image:]　在运行时使用一个表达式来匹配Bean的属性。

每一种设定属性值的方法都有其特定的语法，使用时应注意以下几个方面：

[image:]　在Bean中的属性名字必须和request对象中的参数名一致。

[image:]　如果request对象的参数值中有空值，那么对应的Bean属性将不会设定任何值。同样，如果Bean中有一个属性没有与之对应的request参数值，那么这个属性同样也不会设定。

[image:]　如果Bean属性和request参数的名字不同，那么用户就必须得指定property和param，如果它们同名，那么只需要指明property即可。

[image:]　如果参数值为空（或未初始化），则对应的Bean属性不用被设定。

如果用户使用了property="*"，那么Bean的属性没有必要按HTML表单中的顺序排序，只要名称正确就可以了。

【例3-18】<jsp:setProperty>的属性和用法，useBeanParam.jsp代码如下：

 [image:]

useBeanParam.jsp运行结果如图3-25所示。

 [image:]
 图3-25　useBeanParam.jsp运行结果

3. <jsp:getProperty>

使用<jsp:getProperty>可获取Bean的属性值，并在页面中显示。其语法格式如下：

 <jsp:getProperty name="beanInstanceName" property=

 "propertyName" />

<jsp:getProperty>语法属性的含义如下。

（1）name="beanInstanceName"

Bean的名字由<jsp:useBean>指定。

（2）property="propertyName"

指定Bean的属性名，例如：

 <jsp:useBean id="calendar" scope="page" class="employee.Calendar" />

 <jsp:getProperty name="calendar" property="username" />

<jsp:getProperty>元素可以获得Bean的属性值，并可以将其使用或显示在JSP页面中。在使用<jsp:getProperty>之前，必须有由<jsp:useBean>所创建的Bean对象。

使用<jsp:getProperty>元素时注意以下限制：首先不能使用<jsp:getProperty>来检索一个已经被索引了的属性；其次，能够和JavaBean组件一起使用<jsp:getProperty>，但是不能与Enterprise Bean（企业级Bean）一起使用。

在Sun公司的JSP参考中提到，如果使用<jsp:getProperty>来检索的值是空值，那么将会产生NullPointerException；如果使用程序段或表达式来检索值，那么在浏览器上出现的将是null（空值）。

【例3-19】通过一个用户注册的例子来具体介绍这三个动作元素的使用方法，因为使用之前先要创建一个JavaBean，在ch03项目中建立一个名为TestBean的Java类（关于JavaBean的概念及具体的创建方法，会在第6章详细介绍）。

TestBean.java代码如下：

 [image:]

从面向对象角度来看，这个TestBean类代表了用户，它具有用户名、用户密码、年龄等属性。这个JavaBean的方法都是setProperty()和getProperty()类型的，主要用来配合JSP页面中的<jsp:setProperty>和<jsp:getProperty>动作元素。这些方法在Eclipse开发环境中可以自动生成，不需要一个一个写出来，具体方法在后面章节中会介绍。创建这个类的实例可以代表一个一个不同的用户。

用户登录文件register.html的代码如下：

 [image:]

register.jsp显示注册成功的用户的提交信息，代码如下：

 [image:]

register.jsp文件使用<jsp:useBean>、<jsp:setProperty>和<jsp:getProperty>这3个动作元素来处理用户填写的信息，并将结果显示在页面上。

程序register.html执行结果如图3-26所示，输入注册信息并提交。成功后，注册信息通过register.jsp页面显示出来，如图3-27所示。

 [image:]
 图3-26　register.html的执行结果

 [image:]
 图3-27　register.jsp的执行结果

在本例中，register.jsp中的代码<jsp:useBean id="user" scope="page" class="ch03.TestBean" />指定在本页面中使用JavaBean，此JavaBean的类为ch03.TestBean，id为user。

在register.html中表单的参数名和TestBean.java中的属性名完全一样，所以在register.jsp中可以通过<jsp:setProperty name="user" property="*" />把用户从表单提交的数据传递给TestBean的对象user。

在register.jsp中，可以通过user.getUserName()方法获得用户名信息，也可以通过<jsp:getProperty name="user" property="userName" />获得JavaBean的属性，两种方法的执行结果是一样的。

为了理解<jsp:getProperty>的使用，并演示form参数和JavaBean属性的关系，把【例3-19】做以下两种更改。

（1）把register.html中表单参数userName改为xingming（即和JavaBean的属性名不一致），修改后的代码如下：

 <td>姓名：<input name="xingming" type="text"></td>

其他代码保持不变，把它保存为register2.html。重新执行程序，可以看到，由于表单参数xingming和Bean属性名不一致，使用<jsp:setProperty name="user" property="*" />指令为JavaBean设置属性时并没有设置xingming属性，所以造成user.getUserName()方法返回空的结果。程序执行结果如图3-28所示。

此时需要更改register.jsp，代码如下：

 <jsp:setProperty name="user" property="userName" param="xingming"/>

 <jsp:setProperty name="user" property="*" />

而其他的两个属性没有任何变化，所以依然用<jsp:setProperty name="user" property="*" />即可。把更改过的文件保存为register2.jsp，然后register2.html把信息提交给register2.jsp处理。

 <form method="get" action="register2.jsp">

再次执行程序，输入一些信息并提交，这次可以把form的参数和Bean的属性进行重新映射，程序执行结果如图3-29所示。

 [image:]
 图3-28　测试form参数和Bean属性不一致的执行结果

 [image:]
 图3-29　测试form参数和Bean属性一致的执行结果

（2）把register2.jsp中的

 <jsp:setProperty name="user" property="userName" param="xingming"/>

改为

 <jsp:setProperty name="user" property="userName" value="xingming"/>

重新执行程序，输入数据并提交，可以看出，不管在表单中输入的用户名是什么，在执行register.jsp后，用户名信息都是xingming。程序执行结果如图3-30所示。

通过上面的两个实例，读者应该能够理解param和value标记的作用了。

需要注意的是，<jsp:setProperty>元素使用Bean给定的set()方法，在Bean中设置一个或多个属性值，是按照设置的先后顺序来确定的，再把【例3-19】做以下两种更改。

（1）register.html保持不变，此时需要更改register.jsp，代码如下：

 <jsp:setProperty name="user" property="age" value="30"/>

 <jsp:setProperty name="user" property="*" />

把更改过的文件保存为register3.jsp。然后register.html把信息提交给register3.jsp处理。

 <form method="get" action="register3.jsp">

再次执行程序，输入一些信息并提交。注意，此次填写年龄为25，form的参数和Bean的属性进行重新映射。程序执行结果如图3-31所示。

 [image:]
 图3-30　测试value属性的执行结果

 [image:]
 图3-31　测试属性先后设置的执行结果

（2）register.html保持不变，把register3.jsp的两行代码顺序交换，代码如下：

 <jsp:setProperty name="user" property="*" />

 <jsp:setProperty name="user" property="age" value="30"/>

把更改过的文件保存为register4.jsp，然后register.html把信息提交给register4.jsp处理。

 <form method="get" action="register4.jsp">

再次执行程序，输入一些信息并提交。注意，此次填写年龄仍然为25，form的参数和Bean的属性进行重新映射。程序执行结果如图3-32所示。比较这两次程序执行的结果发现，年龄的值第一次是从表单提交得来的数据，而第二次是固定值30，这与set方法设置的先后顺序有关。

 [image:]
 图3-32　代码顺序交换后的执行结果

3.4.5　<jsp:plugin>

<jsp:plugin>操作元素的功能在于从JSP网页中加载Java Applet或JavaBean程序组件，与HTML的<Applet>与<Object>标签有着类似的功能。这个元素有许多属性设置，以下是此元素的使用语法。

 <jsp:plugin

 type="bean|applet"

 code="classFileName"

 codebase="classFileDirectoryName"

 name="instanceName"

 align="left|right|top|middle|bottom"

 width="width"

 height="height"

 hspace="horizontalSpace"

 vspace="verticalSpace"

 archive="archiveURL,…"

 >

 <jsp:params>

 <jsp:param name="propertyName" value="propertyValue"/>

 …

 </jsp:params>

 <jsp:fallback>text message</jsp:fallback>

 </jsp:plugin>

<jsp:plugin>元素的属性如表3-5所示。

 表3-5　<jsp:plugin>元素属性

 [image:]

【例3-20】演示<jsp:plugin>元素的用法。使用<jsp:plugin>加载两个Java Applet程序，其中一个Applet程序将指定的图片显示在窗口中，另一个Applet程序则会取得几个<jsp:param>所设置的参数，并将参数的内容输出到窗口中。

showmsg.java代码如下：

 [image:]

为了演示<jsp:plugin>，设计一个名称为howmsg的applet，主要是用来取得JSP网页中所设置的各个参数：msg1、msg2及msg3。然后将这些参数的内容显示在该Applet在网页中所显示的区域中。

usingPlugin.jsp代码如下：

 [image:]

程序代码引用<jsp:plugin>，将上述程序showmsg.java编译的Applet组件showmsg.class加载至网页当中，<jsp:plugin type = "applet" code = "ch03/showmsg.class" height = "200" width = "200">表示在JSP页面中插入Applet类型的小程序，该小程序的字节码文件"ch03/showmsg.class"存放在与JSP页面相同的目录下，小程序在浏览器的显示为高200像素，宽200像素大小。<jsp:params>语句依次设置每个要传递给Applet程序的参数，分别是3个程序语言的名称，其执行结果如图3-33所示。

 [image:]
 图3-33　usingPlugin.jsp执行结果

3.5　小结

本章介绍了JSP编程中的一些重要语法，掌握这些语法是读者进行JSP开发的基本要求。JSP原始代码中包含了JSP元素和Template data两类。Template data指的是JSP引擎不处理的部分，即标记<%…%>以外的部分，例如代码中的HTML内容等，这些数据会被直接传送到客户端的浏览器。JSP元素则是指由JSP引擎直接处理的部分，这一部分必须符合JSP语法，否则会导致编译错误。

本章集中介绍的JSP语法包括脚本元素、指令元素和动作元素三个主要元素。脚本元素包括声明（Declaration）、表达式（Expression）、脚本代码（Scriptlet），指令元素包括page指令、include指令和taglib指令，动作元素包括<jsp:include>、<jsp:param>、<jsp:forward>、<jsp:useBean>、<jsp:getProperty>、<jsp:setProperty>和<jsp:plugin>动作。与Bean相关的几种语法的使用方法将在第6章中专门进行讲解。熟练使用这些语法是必须的，因此读者应该多加练习，观察不同用法所产生的效果上的差异。对于本章给出的实例，建议读者自己输入文件并观察执行结果。

3.6　习题

一、选择题

1. 在JSP中，要定义一个方法，需要用到（　　）元素。

A. <%=　%>

B. <%　%>

C. <%@　%>

D. <%!　%>

2. 在J2EE的一个JSP文件中，有表达式<%=2+3 %>，它将输出（　　）。

A. 2+3

B. 5

C. 2

D. 不会输出，因为表达式是错误的

3. 在JSP中，（　　）动作用于将请求转发给其他JSP页面。

A. forward

B. include

C. useBean

D. setProperty

4. 要设置某个JSP页面为错误处理页面，以下page指令正确的是（　　）。

A. <%@ page errorPage="true"%>

B. <%@ page isErrorPage="true"%>

C. <%@ page extends="javax.servlet.jsp.JspErrorPage"%>

D. <%@ page info="error"%>

5. 当浏览器第二次访问以下JSP网页时的输出结果是什么？（　　）。

 [image:]

A. a=0　b=0

B. a=1　b=1

C. a=2　b=1

D. a=2　b=2

6. 关于<jsp:include>，下列说法不正确的是（　　）。

A. 它可以包含静态文件

B. 它可以包含动态文件

C. 当它的flush属性为true时，表示缓冲区满时，将会被清空

D. 它的flush属性的默认值为true

7. 在JSP中，对＜jsp:setProperty＞标记描述正确的是（　　）。

A. <jsp:setProperty>和<jsp:getProPerty>必须在一个JSP文件中搭配出现

B. 就如同session.setAttribute()一样，来设计属性值

C. 和<jsp:useBean>动作一起使用，来设置bean的属性值

D. 就如同request.setAttribute()一样，来设置属性值

8. 在myjsp.jsp中，关于下面的代码说法错误的是（　　）。

 <%@ page language="java" import="java.util.*" errorPage="error.jsp" isErrorPage="false" %>

A. 该页面可以使用exception对象

B. 该页面发生异常会转向error.jsp

C. 存在errorPage属性时，isErrorPage是必须的属性值，且一定为false

D. error.jsp页面一定要有isErrorPage属性，且值为true

9. 下列（　　）不是JSP中的注释符？

A. <!--注释内容-->

B. /*注释内容*/

C. //注释内容

D. /**注释内容**/

10. J2EE中在JSP中要使用user包中的User类，则以下写法正确的是（　　）。

A. <jsp:useBean id="user"class="user.User"scope="page"/>

B. <jsp:useBean class="user.Use.class"/>

C. <jsp:useBean name="user"class="user.User"/>

D. <jsp:useBeam id="user"class="user"import="user.*"/>

二、判断题

1. 在page指令中，import参数允许重复使用多次。

（　　）

2. <!--　-->中可以使用<% %>动态输出注释内容，同时<%--　--%>中也可以使用<% %>，因为预览JSP页面时没有报错。

（　　）

3. 当page标识的isThreadSafe属性设为true时，JSP只可以接受一个用户访问。

（　　）

4. <jsp:include page="body.jsp?name=tom&password=123" />可用于在JSP页面中包含body.jsp文件，并传递两个参数name和password。

（　　）

5. <%@ include file=”URL” %>允许包含动态文件和静态文件，但是这两种包含文件的结果是不同的。如果文件是静态文件，那么这种包含仅仅是把包含文件的内容加到JSP文件中去，这个被包含的文件不会被JSP编译执行。相反地，如果被包含文件是动态文件，那么这个被包含文件会被JSP编译器执行。

（　　）

三、填空题

1. JSP有3个指令元素：　　　、　　　、　　　。

2. JSP的脚本元素包含以下4个部分：　　　、　　　、　　　、　　　。

3. 动作元素<jsp:setProperty>的作用为　　　。

4. <jsp:forward>的作用是　　　。

5. 在JSP页面中可以声明方法，但是仅在　　　内有效。

四、简答题

1. 如何在HTML网页中嵌入JSP程序代码？怎样来定义JSP中的声明区与程序区？

2. 请说明JSP中有哪3个指令元素，以及这3个指令的主要用途。

3. JSP中include指令与include动作的区别是什么？

4. JSP网页可以使用的特殊操作元素有哪些？其中<jsp:forward>与<jsp:param>操作元素各有什么功能？

五、编程题

1. 编写一个JSP程序，计算10!，并显示出结果。要求先声明计算阶乘的方法，再调用该方法，最后在页面上输出结果。

（进阶要求：通过表单提交一个正整数，然后计算它的阶乘。）

2. 在JSP页面中编写静态包含文件。要求程序包含两个文件，主文件静态包含一个能够计算数据的算数平方根的页面。

3. 编写动态包含页面并传递数据。要求程序包含两个文件，主文件加载次文件，并将随机产生的0~1之间的数据传递给它，并且在页面上显示出来。

（进阶要求：把动态包含改为动态重定向，比较两者之间的区别。）

4. 计算三角形的面积。要求由用户输入三角形的三条边，判断这三条边是否能构成一个三角形，若能构成三角形，则输出三角形的面积。
第4章　JSP内置对象

为了方便Web程序的开发，JSP规范要求JSP脚本语言支持一组常见的不需要在使用之前声明的对象，这些对象通常被叫作“内置对象”或“隐藏对象”。这些对象不需要预先声明就可以在脚本代码和表达式中使用。在每一个JSP页面中可以使用的内置对象有9个：request、response、out、session、application、pageContext、config、page和exception。本章将分别介绍这些内置对象的使用方法。

本章学习目标

 	◎　了解和掌握request请求对象方法

 	◎　了解和掌握response响应对象方法

 	◎　了解和掌握out输出对象方法

 	◎　了解和掌握session会话对象方法

 	◎　了解和掌握application应用程序对象方法

 	◎　了解pageContext页面上下文对象方法

 	◎　了解config配置对象方法

 	◎　了解page页面对象方法

 	◎　了解exception例外对象方法

 [image:]
 本章案例源代码下载

4.1　JSP内置对象概述

Java程序的功能主要是由Java包下的各个类在运行期所产生的对象所提供，并且应用这些对象组织构建程序所需的功能。从本节开始，将介绍如何使用JSP的内置对象构建JSP网页。JSP提供了9个预设的对象，我们将其称为内置对象。这些对象内置在JSP网页环境之下，因此用户不需要引用这些对象所属的包，便可以直接在JSP网页中使用这些对象。

表4-1列出了JSP的9个预设对象，以及各个对象是从何类衍生而成的，并作简略的功能说明。

 表4-1　JSP内置对象

 [image:]

表4-1中简述了衍生的基础类与对象功能，根据对象的特点，下面进一步说明这些对象之间的关联。

（1）request与response对象。JSP网页能够具备与用户互动的功能，关键在于request对象与response对象所提供的功能，request让服务器取得用户在网页表单中所输入的数据内容，response则提供服务器端程序响应客户端信息所需的功能。

request与response对象是学习构建JSP网页交互功能最重要的两个内置对象，它们与HTML窗体标签有着相当密切的关系。下面章节将会对其有详细的说明与范例介绍。

（2）out对象。JSP是一种动态的网页，其与HTML这一类静态文件的最大不同，在于同一网页经过程序运算得以根据各种条件及情况进行呈现。out对象在这一方面提供相关的支持，服务器端利用out对象将所要输出的内容，在传送至网页的时候动态写入客户端。

（3）session与application对象。application与session这两个对象基本上被用于记录和处理JSP网页之间的共享数据。

由于互联网本身是一种无联机状态的应用程序，当网页文件从网站服务器传送至客户端的浏览器之后，客户端和服务器端之间没有任何联机状态存在，这个先天的缺陷让网页无法存储应用程序运行期间所需的共享数据，application与session对象就是用来解决这类问题的。

（4）config、pageContext及page对象。这3个对象被用于存取JSP网页程序运行阶段的各种信息内容。其中，config包含JSP网页文件被编译成为Servlet之后的相关信息，pageContext则是提供系统运行期间各种信息内容的存取操作功能，page代表目前正在运行的JSP网页对象。

JSP服务器端应用程序可以运用这3个对象，存取网页运行期间的各种环境信息，同时将当前网页当作对象进行操作。本章最后对这几个对象将会有详细的说明与探讨。

（5）exception对象。exception为JSP提供用于处理程序运行错误的异常对象，此对象搭配功能强大的异常处理机制，运用于JSP网页的程序除错与异常处理。

4.2　request对象

request对象主要用于接收客户端通过HTTP协议连接传输到服务器端的数据。在客户端的请求中如果有参数，则该对象就有一个参数列表，它通常是HttpServletRequest的子类，其作用域就是一次request请求。

4.2.1　request对象常用方法

request对象包括很多方法，它的主要方法及对应的说明如表4-2所示。

 表4-2　request对象的主要方法

 [image:]

4.2.2　request对象应用实例

request对象包括很多方法，其中最主要的有getParameter（String name）、getParameterValues（String name）、getParameterNames()等方法，下面通过实例分别加以说明。

1. String getParameter（String name）

[image:]　用表单和超链接、<jsp:param>传递参数的时候，使用getParameter（String name）接收传递的参数。

[image:]　返回给定参数的值，当传递给此方法的参数名没有实际参数与之对应时，返回null。

[image:]　使用getParameter（String name）取得的值都是字符串类型，需要转换为需要的类型。

【例4-1】request对象应用实例。在requestInfo.jsp页面中输入用户名和密码，在showInfo.jsp页面中将输入的用户名和密码显示出来。

requestInfo.jsp页面的代码如下：

 <%@ page contentType="text/html; charset=GBK"%>

 <html>

 <head>

 <title>使用Request对象</title>

 </head>

 <body bgcolor="#ffc7c7">

 <form name="form1" method="post" action="showInfo.jsp">

 <p align="center">用户名：<input type="text" name="username"></p>

 <p align="center">密 码 ：<input type="password" name="password">

 </p>

 <p align="center"><input type="submit" name="Submit" value="提交">

 <input name="cancel" type="reset" id="cancel" value="取消">

 </p>

 </form>

 </body>

 </html>

showInfo.jsp页面的代码如下：

 [image:]

在这个实例中，requestInfo.jsp页面将表单中用户输入的信息提交给showInfo.jsp页面，showInfo.jsp页面利用getParameterNames()和getParameter（String name）这两个方法获取表单中传过来的参数名称和参数值。程序运行结果如图4-1和图4-2所示。

 [image:]
 图4-1　requestInfo.jsp页面运行结果

 [image:]
 图4-2　showInfo.jsp页面运行结果

通常客户端向服务器端提交数据的时候，有多种数据提交机制，最常用的就是get方法和post方法。get传送的数据量较小，不能大于2KB。get是把参数数据队列加到提交表单的action属性所指的URL中，值和表单内各个字段一一对应，在URL中可以看到；post传送的数据量较大，一般被默认为不受限制。post是通过http post机制，将表单内各个字段与其内容放置在html header内一起传送到action属性所指的URL地址，但用户看不到这个过程。这两种方式的参数都可以用request来获得。

本例中采用post来提交数据，有两种方法可以使客户端通过get方法来提交数据。

（1）如直接在浏览器中输入地址来获取JSP文件，则默认使用的提交方法是get方法：

 http://localhost:8080/ch04/request/requestInfo.jsp

如果此时有数据传递给服务器，则可以采用以下方法：

 http://localhost:8080/ch04/request/requestInfo.jsp?name1=value1$name2=value2...

从上面可以看到，通过get方法传递数据的时候，只要将需要传递的数值放在URL地址后面，之间通过?隔开。这种方法多用在超级链接中，当传递数据较少的时候，可以直接通过链接来传递数据。

（2）get方法提交表单数据。

如把【例4-1】requestInfo.jsp中的<form name="form1" method="post" action="showInfo.jsp">的post改为get，在输入数据提交的时候地址栏中显示http://localhost:8080/ch04/request/showInfo.jsp?username=majianhong&password=123&Submit=%CC%E1%BD%BB。其中，Submit后面的数据是该按钮的显示值，因为经过了编码，所以显示的是各种符号。从地址链接可以看到，通过get方法提交数据，会将所有数据都放在URL地址后面，当表单数据比较多的时候，会显得很难看。通过get方法提交，会将一些隐藏信息显示出来，比如密码password=123。

其实通过表单传递参数，采用getParameter（String name）接受传递参数的实例在第3章已经介绍过，如【例3-6】。

通过表单输入数据的代码如下：

 <form action="dec-method.jsp" method="get" name="form">

 <input type="text" name="radius">

 <input type="submit" name="submit" value="开始计算">

 </form>

通过

 String str = request.getParameter("radius");

得到输入数据。

由于使用getParameter（String name）取得的值都是字符串类型，所以采用代码

 double r;

 r = Double.parseDouble(str);

来转换数据类型。

由于在传递参数时，在表单中采用的方法method="get"，此时运行如下程序会发现在地址栏中显示所输入的数据：

 http://localhost:8080/ch04/Script/dec-method.jsp?radius=3

如果在页面中采用超级链接的方法，使用如下代码：

 超级链接传递参数

那么得到此超级链接所传递的参数，同样也可采用以下方法：

 String str = request.getParameter("radius");

采用超级链接所传递的参数也是采用getParameter（String name）取得值。

通过<jsp:param>传递参数，同样使用getParameter（String name）接收传递的参数。

2. Enumeration getParameterNames()

[image:]　返回值类型：枚举类型Enumeration。

[image:]　得到客户端提交的所有参数的名称。

如【例4-1】中的通过循环可获取客户端提交的所有参数的名称：

 [image:]

3. void setCharacterEncoding（String chaen）

在form表单中采用post方式提交请求时，需要设置request对象的编码方式，保证能够正确地取到数据。例如：

 <%request.setCharacterEncoding("gb2312");%>

关于解决汉字乱码问题将在6.5.2节介绍。

4. String [] getParameterValues（String name）

[image:]　使用getParameterValues()能够取出变量的多个值，返回值类型为字符串数组String[]。

[image:]　主要用于获取复选框的值或是下拉列表带multiple属性的值。

【例4-2】读取复选框数据。在hobby.html页面中选中多个选项，在hobbyInfo.jsp页面中将所选内容显示出来。

hobby.html页面的代码如下：

 [image:]

hobbyInfo.jsp页面的代码如下：

 [image:]

程序运行结果如图4-3和图4-4所示。

 [image:]
 图4-3　hobby.html页面运行结果

 [image:]
 图4-4　hobbyInfo.jsp页面运行结果

【例4-3】读取带multiple属性的下拉列表中的数据。在city.html页面中选中多个下拉列表选项，在cityInfo.jsp页面中将所选内容显示出来。

city.html页面的代码如下：

 [image:]

cityInfo.jsp页面的代码如下：

 [image:]

程序运行结果如图4-5和图4-6所示。

 [image:]
 图4-5　city.html页面运行结果

 [image:]
 图4-6　cityInfo.jsp页面运行结果

【例4-4】在request.jsp中利用request对象的一些方法，回显系统信息。

request.jsp页面的代码如下：

 [image:]

程序运行结果如图4-7所示。

 [image:]
 图4-7　request.jsp回显系统信息

4.3　response对象

response对象用于将服务器端数据发送到客户端以响应客户端的请求。response对象实现HttpServletResponse接口，可对客户的请求做出动态的响应，向客户端发送数据，如Cookie、HTTP文件头信息等，一般是HttpServlet.Response类或其子类的一个对象。

4.3.1　response对象常用方法

response对象的主要方法及说明如表4-3所示。

 表4-3　response对象的主要方法及说明

 [image:]

4.3.2　response对象应用实例

1. public void setContentType（String type）动态响应contenType属性

当一个用户访问一个JSP页面时，如果该页面用page指令设置页面的contentType属性是text/html，那么JSP引擎将按照这种属性值作出反映。如果要动态改变这个属性值来响应客户，需要使用response对象的setContentType（string s）方法来改变contentType的属性值。

设置输出数据的类型如下。

[image:]　text/html：网页。

[image:]　text/plain：纯文本。

[image:]　application/x-mse xcel：Excel文件。

[image:]　application/msword：Word文件。

【例4-5】创建setContentType.jsp页面，应用setContentType改变contentType的属性值。

setContentType.jsp的代码如下：

 [image:]

在浏览器中输入http://localhost:8080/ch04/ response/setContentType.jsp，运行结果如图4-8所示。

分别单击word、excel按钮，则会采用不同的方式打开或保存setContentType.jsp文件，如图4-9所示。

如果想以其他类型显示文件，只需修改response.setContentType（String contentType）;中的contentType参数的相应类型即可。

 [image:]
 图4-8　setContentType.jsp运行结果

 [image:]
 图4-9　用Word方式或Excel方式打开setContentType.jsp文件

2. 设置刷新public void setHeader（Stringname, String value）

setHeader可以设置HTTP应答报文的首部字段和值；利用setHeader()方法可以设置页面的自动刷新。例如：

 reponse.setHeader("Refresh","5"); //5秒种后自动刷新本页面

 reponse.setHeader("Refresh", "5;URL=http://www.163.com");//5秒种后自动跳转到新页面

【例4-6】在refresh.jsp页面中控制页面的刷新频率，动态设置网页刷新。

refresh.jsp的代码如下：

 [image:]

运行结果如图4-10所示，可以看到页面每一秒钟刷新一次，显示新的时间和随机数。

 [image:]
 图4-10　refresh.jsp运行结果

3. void sendRedirect（String redirectURL）将客户端重定向到指定的URL

在某些情况下，当响应客户时，需要将客户重新引导至另一个页面，可以使用response的sendRedirect（URL）方法实现客户的重定向。

sendRedirect和<jsp:forward>的区别如下：

[image:]　response.sendredirect()会在客户端呈现跳转后的URL地址，这种跳转称为客户端跳转。使用response.sendredirect()方法将重定向的URL发送到客户端，浏览器再根据这个URL重新发起请求。所以用这个方法时，在浏览器地址栏上会看到新的请求资源的地址。并且这时的request和response都与第一次的不一样了，因为产生了新的request和response。

[image:]　使用<jsp:forward>完全是在服务器上进行，浏览器地址栏中的地址保持不变，这种跳转称为服务器端跳转。所以使用这个方法时没有产生新的request和response，因为request没有变，在同一个请求内，可以用request来传递参数。

[image:]　response.sendRedirect()方法想带参数的话，在地址中写成xxx.jsp?param1=aaa&...这种形式传递参数。<jsp:forward>能够使用<jsp:param/>标签向目标文件传送参数和值，目标文件必须是一个动态的文件，能够处理参数。

[image:]　<jsp:forward>后面的语句不会被执行，也不会继续发送到客户端；response.sendRedirect()方法后面的语句会继续执行，除非语句前面有return。

[image:]　<jsp:forward>是在服务器的内部进行转换，只发送给客户端最后转到的页面，速度会比较快；response.sendRedirect()方法需要服务器与客户端之间的往返，可以转到任何页面，包括网络有效域名，但速度比较慢。

【例4-7】页面重定向实例。在sendRedirect.jsp中输入用户名，然后重定向到redirect.jsp页面，显示输入的用户名。

sendRedirect.jsp的代码如下：

 [image:]

redirect.jsp的代码如下：

 [image:]

在浏览器中输入http://localhost:8080/ch04/response/sendRedirect.jsp，在表单中输入数据后单击login按钮，会发现地址栏中的地址变为http://localhost:8080/ch04/response/redirect.jsp?sendname =xxx，说明已经跳转到其他的URL。

如果把上例中的页面重定向语句response.sendRedirect（"redirect.jsp?sendname=" + name）；改为<jsp:forward page="redirect.jsp"/>不用传递参数name，在redirect.jsp中采用String sendname =request.getParameter（"name"）；即可得到输入的用户名。注意，在这里参数名为name，和表单项的名字一致，说明request没有改变，在同一个请求内。但是如果采用response.sendRedirect()重定向必须传递参数，否则得到null值，因为产生了新的request对象。

另外，response.sendRedirect()方法后面的语句会继续执行，可以看到控制台上输出的文字，程序执行结果如图4-11所示。当然如果改为<jsp:forward page="redirect.jsp"/>，则控制台上不会显示，如图4-11所示文字。

 [image:]
 图4-11　页面重定向运行结果

4. 设定状态显示码的方法void setStatus（int n）

当服务器对请求进行响应时，发送的首行被称为状态行。

response的状态行包括3位数字的状态代码，下面是对5类状态代码的简单描述。

[image:]　1**（1开头的3位数字）：主要是实验性质的。

[image:]　2**：用来表示请求成功。

[image:]　3**：用来表示在请求满足之前应该采取进一步的行动。

[image:]　4**：当浏览器做出无法满足的请求时，返回该状态码。

[image:]　5**：用来表示服务器出现的问题。

一般情况下页面中不需要修改状态行，在服务器处理页面时一旦出现问题，服务器会自动响应，并发送响应的状态行代码。因此了解状态代码能够便于程序调试。通过状态代码提示能够快速查找出程序出现的问题。

状态码及其说明如表4-4所示。

 表4-4　状态代码表

 [image:]

【例4-8】设置响应的状态行示例。在setStatus.jsp中将几个超级链接链接到不同的页面，根据设置的状态码显示不同的页面状态。

setStatus.jsp的代码如下：

 <%@ page contentType="text/html; charset=GB2312"%>

 <html>

 <body bgcolor=cyan>

 <p>单击下面的超级链接：

 状态行请求超时

 状态行请求成功

 状态表示服务器内部错误

 </body>

 </html>

status1.jsp的代码如下：

 [image:]

status2.jsp的代码如下：

 [image:]

status3.jsp的代码如下：

 <%@ page contentType="text/html; charset=GB2312"%>

 <html>

 <body>

 <%

 response.setStatus(500);

 %>

 </body>

 </html>

程序执行结果如图4-12所示。

5. void addCookie（Cookie cookie）

添加一个Cookie对象，用来保存客户端的用户信息。可以通过request对象的getCookie()方法获得这个Cookie。Cookie可以保存用户的个性化信息，从而对下一次访问提供方便。

 [image:]
 图4-12　程序执行过程

【例4-9】创建responseCookie.jsp页面，通过response对象对Cookie进行操作。

responseCookie.jsp的代码如下：

 [image:]

responseCookie.jsp在第一次执行时由于没有创建Cookie对象，所以显示如图4-13所示。

当刷新页面后，会显示所创建的Cookie对象的名cookietest和它的值，即上次访问的时间，每次刷新都会把当前时间和上次访问时间显示出来，如图4-14所示。关于Cookie的内容请参考第5章的详细介绍。

 [image:]
 图4-13　responseCookie.jsp第一次执行时的效果

 [image:]
 图4-14　responseCookie.jsp刷新之后的效果

4.4　out对象

out对象是javax.servlet.jsp.JspWriter的一个对象，它能把信息发送给客户端的浏览器。out对象常用的方法是print()和println()，两者都在浏览器上显示信息。out对象最主要的功能在于将特定的数据内容搭配JSP程序代码动态输出至客户端的浏览器网页，在前面章节的范例中，已经初步介绍了如何使用这个对象进行文本输出，这一节将进一步说明out对象的相关特性。

4.4.1　out对象方法成员与数据输出

除了使用println()方法外，out对象也提供了一些用来控制输出的相关方法成员。表4-5列出了其中比较常用的方法。

 表4-5　out对象的常用方法

 [image:]

表4-5中将这些方法分成两大类，其中一类用于控制缓冲区的行为；另一类则是数据的输出操作。缓冲区是一种数据暂存的应用概念，用以存储暂时性的数据内容。下面首先介绍与数据输出相关的方法成员。

关于数据输出的方法成员包含newLine、print和println，其中newLine在网页中输出一个新行，例如下面的程序代码：

 out.newLine() ;

这一行程序代码输出一行空白，当网页的输出内容必须以行空白作分隔时，可以使用这个方法进行输出。

print()和println()这两个方法成员被引用时均接受一个特定类型的参数，并且将这个参数输出至网页上，例如下面的程序代码：

 out.print("Hello JSP") ;

 out.println("Hello JSP") ;

其中第1行程序代码将Hello JSP直接输出至网页上，第2行则在输出Hello JSP之后，紧接着加上一个断行，但这个换行符在浏览器中会被忽略，要想真正在页面中实现换行，就需要在输出内容的最后加上换行标签
。除了字符串，其他种类的数据类型也能够被当作参数输出至网页。

JSP程序利用out对象将网页内容输出时，都要和客户端做一次连接，并且会为此消耗不少的资源；因此可以将要输出的内容放在一个固定大小的缓冲区中，等到缓冲区满时再一次将内容送往客户端，这就要将autoFlush设为true，否则缓冲区满时将产生IOException错误。设置代码如下：

 <%@ page autoFlush="true"%>

 注意

 out.print()方法与out.println()方法的区别是：out.print()方法在输出完毕后并不结束该行，而out.println()方法在输出完毕后会结束当前行，下一个输出语句将在下一行开始输出。

4.4.2　缓冲区操作

缓冲区是JSP将数据输出至浏览器之前，用来暂时存储数据的一块区域，顾名思义，这块区域提供一种数据输出的缓冲机制，让数据从服务器真正送出到客户端浏览器之前能够有重新调整的机会。

如图4-15所示是缓冲区操作的说明图示，其中JSP网页在将数据传送至浏览器之前，会被存放在预先定义的缓冲区里面，最后才被整批输出至客户端的浏览器。

内置对象中的out对象和response对象，均提供控制缓冲区的方法，这些方法的行为相当类似，下面介绍out对象操作缓冲区的方式。

 [image:]
 图4-15　缓冲区操作

表4-5列举的out对象方法成员，与缓冲区作业有关的有6个方法。其中前3个成员clear、clearBuffer和flush用于清空缓冲区内容，后3个成员则用来取得缓冲区目前的状态，它们分别为getBufferSize、getRemaining和isAutoFlush。下面针对这几个方法成员进行较为详细的说明。

clear()与clearBuffer()方法均用于清空缓冲区的暂存数据内容，其差异主要是在引用clear方法时，缓冲区必须存在存储的数据，否则系统会引发一个IOException异常，而clearBuffer()方法比较单纯，只负责清除操作而不在乎是否存在任何数据。

flush()是另外一个具备清空缓冲区数据内容功能的成员，在引用该方法时，系统会进一步将所清空的数据内容输出到网页，因此若是想将存储的数据内容清空输出至网页，使用这个方法是比较合适的。

除了清空缓冲区的操作外，还可以利用另外3个方法成员取得缓冲区当前的状态：getBufferSize()返回一个表示当前缓冲区大小的整数值；而getRemaining()所返回的整数值则是当前缓冲区中剩余的空间大小；IsAutoFlush()用来设置当数据存储量大于缓冲区剩余空间时，是否清空其中的数据内容，是则返回值为true，否则返回值为false。

4.4.3　out对象应用实例

【例4-10】在outBuffer.jsp页面中实现out对象对缓冲区的操作。

outBuffer.jsp的代码如下：

 [image:]

程序代码out.println（"JSP程序设计
"）；设置要输出的字符串为JSP动态网页，此字符串会被先存入缓冲区，clearBuffer()方法清空缓冲区的数据，因此字符串JSP动态网页最后并不会显示在用户的浏览器上。程序最后的out.close()关闭输出流，所以hello也不会显示在用户的浏览器上。

程序代码out.println（"清华出版社
"）；设置要输出的字符串为“清华出版社”，flush()方法直接将缓冲区中的内容输出。out.getBufferSize()和out.getRemaining()方法输出缓冲区的存储容量与剩余空间大小，其运行结果如图4-16所示。

以上的运行结果反映了方法clearBuffer()的运行效果，引用此方法之前的内容均没有被显示出来，甚至标题栏文字也消失了。为了更清楚地进行说明，通过“查看”|“源文件”，打开如图4-17所示的网页源文件。

 [image:]
 图4-16　outBuffer.jsp运行结果

 [image:]
 图4-17　outBuffer.jsp源文件

现在将程序代码中引用方法clearBuffer()的这一行程序代码批注掉，如：

 //out.clearBuffer();

此时重新浏览此范例，得到的输出结果如图4-18所示，所有的文字均已输出到了网页上。

值得注意的是，下面这一行代码设置了此范例标题栏的HTML：

 <TITLE>演示 out 对象缓冲区的操作</TITLE>

由于缓冲区中所存储的数据包含HTML标签，因此引用clearBuffer()方法同样会将其内容清除，由于此次已将clearBuffer()方法批注掉，因此图中的标题已经出现，用户可以对比上述的输出结果以了解其中的差异。

 [image:]
 图4-18　取消清除缓冲区后的运行结果

【例4-11】创建outExample.jsp页面，实现out对象对数据的输出操作。

outExample.jsp的代码如下：

 [image:]

程序运行结果如图4-19所示。

 [image:]
 图4-19　outExample.jsp运行结果

4.5　session对象

session（会话）对象是类javax.servlet.Httpsession的一个对象。session是从客户端连接服务器开始，直到与服务器断开连接为止。session对象用于保存每个与服务器建立连接的客户端的信息，session的ID保存于客户端的Cookie中，这个sessionID标识唯一的用户，与其他用户的sessionID不同。接下来针对session的概念与其中数据的处理方式进行讨论。

4.5.1　session的概念

session存在于服务器端，当客户端用户向服务器提出请求打开网页时，若该网页中包含了为用户建立session的程序代码，则session便会产生。这个session可用来存放属于该用户的数据，且每一份网页都可以使用这个session中的内容，不过由于每一个session都是独立的，且其中数据内容互不相干，对不同的用户来说，网页所读取的数据也就不同。如图4-20所示为session数据存取的方式。

 [image:]
 图4-20　session数据存取方式示意图

在服务器内部可能会由于有多个不同的用户同时上线而建立多个session，这样，当用户向服务器提出请求时，服务器端会用以下方法来辨别该用户属于哪一个session：当服务器为某一用户建立session之后，会给session一个用于识别的字符串，此字符串数据还会被传送到客户端并记录在浏览器的Cookie中，当用户再度向服务器提出请求时，此字符串数据便会一并传送，这样，服务器端在收到此字符串数据后，再与各session的标识符串进行对比后，便可知道用户拥有哪一份session数据。

4.5.2　session对象的ID

当一个客户首次访问服务器上的一个JSP页面时，JSP引擎产生一个session对象，同时分配一个String类型的ID号，JSP引擎同时将这个ID号发送到客户端，存放在Cookie（Cookie是Web服务器保存在用户硬盘上的一段文本）中，这样session对象和客户之间就建立了一一对应的关系。当客户再访问连接该服务器的其他页面时，不再分配给客户新的session对象，直到客户关闭浏览器后，服务器端该客户的session对象才取消，并且和客户的会话对应关系消失。当客户重新打开浏览器再连接到该服务器时，服务器为该客户再创建一个新的session对象。

采用getId()方法返回session对象在服务器端的编号。每生成一个session对象，服务器都会给它一个编号，并且该编号不会重复，这样服务器才能根据编号来识别session，并且正确地处理某一特定的session及其提供的服务。

4.5.3　session的有效期限

session和application相同，有其存在的期限，当以下4种情况发生其一时，session与其中的数据便会清空。

[image:]　用户关闭当前正在使用的浏览器程序。

[image:]　关闭网页服务器。

[image:]　用户未向服务器提出请求超过预设的时间，Tomcat服务器预设为30分钟。

[image:]　运行程序结束session。

简要介绍了session之后，接下来将进一步讨论使用session内置对象处理session中数据的方式。

4.5.4　访问session中的数据

session对象是由HttpSession接口衍生而来的，在该接口下提供了访问session数据的方法。

1. 建立session变量

在JSP中不需要特别设置程序代码来建立用户session，当程序使用了session对象时，便会自动建立session，而下面这行语句便是在session中新增变量数据的方式：

 session.setAttribute("变量名称",变量内容)

变量内容可为字符串或者其他对象类型，接着再来看看如何使用这个方法在session中设置变量数据：

 <%

 session.setAttribute("id","编号"); //设置字符串

 session.setAttribute("expire",new Date(86400*10)); //设置日期

 session.setAttribute("level",new Integer(3)); //设置整数

 %>

上面的代码在session中建立了3个变量数据：id、expire与level，用户在当前浏览器中打开各个网页都能访问这些变量数据，不过如果是打开了另一个浏览器窗口，或者用户是其他联机的用户，将无法取得其中的内容。

2. 返回session中的变量

在session中设置了变量数据后，在其他各个网页中便可使用getValue读取其中的内容，此方法所返回的数据类型为对象（Object）类型，语法如下：

 session.getAttribute("变量名称")

3. 返回所有session中的变量名称

getValueNames()方法可以取出session中所有变量的名称，其结果为一个枚举类的实例。语法如下：

 session.getAttributeNames()

4. 清除session中的变量

removeValue()方法可以清除session中的变量数据，语法如下：

 session. removeAttribute("变量名称")

5. 结束session

对于已经建立的session，可使用invalidate()方法将其结束，语法如下：

 session.invalidate()

本小节介绍了JSP存取session数据的方式，下面接着介绍一些session特性的设置与常用的方法。

4.5.5　其他session对象的常用方法

除了访问session中数据的基本方法外，在session对象下还有一些很常用的方法，例如取得session标识符串、设置或取得系统预设结束session的时间等，如表4-6所示。

 表4-6　session对象的常用方法

 [image:]

4.5.6　session对象应用实例

【例4-12】存取session对象数据。sessionInfo.jsp用来输入用户的信息，sessionData.jsp读取输入信息并设置session内容变量，usingSession.jsp取得session变量。

sessionInfo.jsp的代码如下：

 <%@ page contentType="text/html; charset=gb2312" %>

 <html>

 <body>

 <form method=post action=sessionData.jsp>

 <table>

 <tr><td>输入用户名：</td>

 <td><input type=text name=name></td>

 </tr>

 <tr><td>输入性别：</td>

 <td><input type=text name=sex></td>

 </tr>

 <tr colspan=2><td><input type=submit value=提交></td></tr>

 </table>

 </body>

 </html>

sessionData.jsp的代码如下：

 <%@ page language="java" contentType="text/html; charset=gb2312"%>

 <%

 request.setCharacterEncoding("gb2312");

 %>

 <html>

 <head>

 <title>设置 session 数据</title>

 </head>

 <body>

 <%

 String name = request.getParameter("name");

 String sex = request.getParameter("sex");

 session.setAttribute("name", name);

 session.setAttribute("sex", sex);

 %>

 显示已设置的session 数据内容

 </body>

 </html>

sessionInfo.jsp程序代码中引用了session对象的setAttribute()方法，在session中存入2笔变量数据：name和sex接下来显示网页usingSession.jsp的超级链接，其中包含取得此session数据内容的程序代码。

usingSession.jsp的代码如下：

 [image:]

这个网页主要是取得前一个网页记录在session中的数据，然后在网页中显示出来，程序代码取得session中的变量值，依序显示了session中的变量名称及其内容。在这里不像以前那样在页面之间跳转时参数要经过传递才能正确显示，此例采用session保存用户的信息，非常方便。

当用户单击sessionData.jsp网页超级链接时，由于均属于同一个session，因此usingSession.jsp网页就取得了sessionData.jsp网页所设置的session数据内容，如图4-21所示。

现在重新打开一个新的浏览器窗口，然后直接输入usingSession.jsp网页的网址进行浏览，由于这是一个全新的session，而且没有经过第一个网页的设置，因此这个session并没有包含任何数据内容，如图4-22所示。

 [image:]
 图4-21　设置并获取session数据

 [image:]
 图4-22　直接查看usingSession.jsp的运行结果

 注意

 session.getValue()方法所返回的数据类型为对象（Object）类型，可以根据程序的需要转换为其他数据类型。

【例4-13】引用session对象方法，显示session对象中部分属性值。此例中包含了两个程序sessionMethod.jsp和sessionMethodInfo.jsp。使用表4-6中的方法来取得与session有关的信息。其中，isNew()方法会判断session是否为新建的，并返回布尔值true或false。新建session的意义是指程序调用session对象在服务器端建立session，而尚未将此session的信息记录到客户端的Cookie中。

sessionMethod.jsp的代码如下：

 [image:]

在浏览器中打开http://localhost:8080/ch04/session/sessionMethod.jsp，则返回session为新建的信息true，如图4-23所示。

 [image:]
 图4-23　sessionMethod.jsp的运行结果

sessionMethodInfo.jsp的代码如下：

 [image:]

当通过超级链接链接到sessionMethodInfo.jsp时，isNew()方法返回false，表示这是一个已经存在的session。除此之外，代表session身份的标识符串也相同，表示这两个页面是同一个session，如图4-24所示。session1对象user1的取值为null，是由于在sessionMethod.jsp页面中采用了session.removeAttribute（"user1"）；删除了与user1相关联的属性，而user2的值不变。

 [image:]
 图4-24　sessionMethodInfo.jsp的运行结果

如果把session.removeAttribute（"user1"）;换成session.invalidate();，则跳转到sessionMethodInfo.jsp页面时会产生一个新的session对象，如图4-25所示。和前面两个图比较，除了新建session为true之外，标识符串也不相同，session对象的value都为null，表示这是一个全新的session。

关闭浏览器，然后将其重新打开，查看sessionMethod.jsp，也会产生一个全新的session，如图4-26所示。

 [image:]
 图4-25　结束session后sessionMethodInfo.jsp的运行结果

 [image:]
 图4-26　重新打开浏览器获取新session数据

【例4-14】创建sessionCount.jsp页面，统计访问站点的用户数目。

sessionCount.jsp的代码如下：

 [image:]

程序运行结果如图4-27所示。由于采用if（session.isNew()）来判断是否是一个新的用户，所以在每个页面刷新时计数器并不会增加，只有开启一个新的浏览器窗口才会计数。

 [image:]
 图4-27　sessionCount.jsp统计访问站点的用户数

 [image:]
 图4-28　session计数器为null

另外需要注意的是，如果在执行本程序时不是新开启一个浏览器，会出现如图4-28所示的界面，显示计数器为null。这是由于if（session.isNew()）判断此时不是一个新的session对象，所以并没有将Num变量值存入session。通过<%=session.getAttribute（"Num"）%>读取session对象的值是null。

4.6　application内置对象

application对服务器而言，可以视为一个所有联机用户共享的数据存取区，application中的变量数据在程序设置其值时被初始化，而当关闭网页服务器，或者超过预设时间而未有任何用户联机时将自动消失，图4-29所示说明了application的意义。

 [image:]
 图4-29　application对象示意图

对于每一个联机浏览网页的用户来说，application对象用于存储其共享数据，无论是网站中任何一份网页，用户存取的数据内容均相同，可以将其视为传统应用程序中的全局共享数据。需要注意以下几个方面：

[image:]　application对象保存了一份应用系统中的公有数据，一旦创建了application对象，除非服务器关闭，否则application对象将一直保存，并为所有客户共享。

[image:]　服务器启动后就会自动创建application对象，当客户在所访问的网站的各个页面之间浏览时，这个application对象都是同一个，直到服务器关闭。但是与session不同的是，所有客户的application对象都是同一个，即所有客户共享这个内置的application对象。

[image:]　在JSP服务器运行时，仅有一个application对象，它由服务器创建，也由服务器自动清除，不能被用户创建和清除。

4.6.1　存取application中的数据

application对象是通过ServletContext接口衍生而来的，利用此对象所提供的各种方法，便可处理application的数据，下面说明存取application中数据的方式。

1. 建立application变量

除了系统预设的application变量外，要在application中建立变量数据必须使用setAttribute()方法，建立application变量的语法如下：

 application.setAttribute("变量名称",变量内容)

其中“变量内容”可为字符串或者其他对象类型，下面是设置application变量数据的实例：

 [image:]

上述代码会在application中建立3个变量数据：id、expire与level。这3个application变量存在于系统当中，各个网页均能访问其内容。

2. 返回application中的变量

在设置了application中的变量数据之后，接着在各个网页中便可利用getAttribute()方法来取得所设置的application变量内容，使用语法如下：

 application.getAttribute("变量名称")

此方法返回的数据内容为对象（Object）类型，若在网页中加入下面的程序代码，则会在浏览器上显示objApp变量存储的内容。

 [image:]

3. 删除application变量

要删除application中的变量数据，必须引用removeAttribute()，语法如下：

 application.removeAttribute("变量名称")

4. 返回所有application变量

getAttributeNames()方法会返回application中所有变量名称的集合对象，数据类型为Enumeration。

getAttributeNames()语法如下：

 application.getAttributeNames()

4.6.2　使用application对象取得信息

application对象除了可设置application中的变量数据外，还可用来取得服务器或网页的信息，用来取得这些信息的常用方法如表4-7所示。

 表4-7　使用application对象获取信息的常用方法

 [image:]

这些方法成员的使用方式相当直接，这里不再进行示范说明，与session的方式相同，其中的差异在于两者变量存在的有效范围，用户可以自行在JSP网页中进行引用，以了解其返回的结果。

4.6.3　application对象应用实例

【例4-15】存取application对象数据。

把【例4-12】稍作更改。将sessionData.jsp改为applicationData.jsp，采用application.setAttribute()方法设置两个application变量，usingSession.jsp改为usingApplication.jsp，采用application.getAttribute()方法获得两个变量的数据内容（代码不再详述）。

首先在浏览器中输入http://localhost:8080/ch04/application/usingApplication.jsp，结果如图4-30所示，表示未设置application变量。

在applicationInfo.jsp中输入数据，浏览applicationData.jsp网页，其中设置了application变量，并且显示超级链接，单击超级链接，将出现usingApplication.jsp，显示设置好了的数据内容，如图4-31所示。

 [image:]
 图4-30　直接查看usingApplication.jsp的运行结果

 [image:]
 图4-31　设置并获取application变量

由于application代表整个网站应用程序的共享数据，因此若是重新启动浏览器，当再次查看usingApplication.jsp时，将会看到相同的结果。

【例4-16】创建applicationCount.jsp页面，利用applicatin对象实现简单页面计数器。

applicationCount.jsp的代码如下：

 [image:]

在浏览器中输入http://localhost:8080/ch04/application/applicationCount.jsp，并不断刷新，会看到计数器不断增加。重新开启新的浏览器窗口，计数器也会增加。程序运行结果如图4-32所示。

当然，如果把本例中的application改为sesssion，刷新页面也能实现页面计数器。但是开启新的浏览器，会重新从0开始计数，这就说明了session和apllication的作用域是不同的。但是，一般session做计数器是记录访问的用户数而不是访问的次数。

 [image:]
 图4-32　applicationCount.jsp执行结果

比较【例4-16】和【例4-14】会发现，用application实现的计数器时，Num采用局部变量；而用session实现的计数器，Num采用全局变量。

通过以上比较，读者应该能够掌握session对象和application的区别。

在JSP中application可以在整个应用运行期间保存共享数据，实现用户间数据的共享；application对象是应用程序级的，如果application中不存在String name，则通过方法Object getAttribute（String name）获得的对象是null；在同一个网站下的任何地方都可以对application对象进行操作，主要操作有两个，即下面的两个方法：Object getAttribute（String name），从application对象中提取指定的对象；void setAttribute（String name, Object value），将对象添加到application对象中。下面通过一个小的应用实例来实现用户间数据的共享。

【例4-17】application对象常用方法实现共享留言板。此例包括3个程序，代码分别如下。

inputMessage.jsp代码如下：

 [image:]

checkMessage.jsp代码如下：

 [image:]

showMessage.jsp代码如下：

 [image:]

通过运行inputMessage.jsp输入用户和留言信息，运行效果如图4-33所示。单击“留言”按钮，checkMessage.jsp把用户输入的信息及时间等保存在Vector对象v中，并且通过application.setAttribute（"message", v）；保存在application对象中，显示留言成功，如图4-44所示。经过多位用户留言，通过“查看留言板”，showMessage.jsp通过application.getAttribute （"message"）；取出所有留言信息，并通过循环显示所有用户的留言信息，如图4-35所示。

 [image:]
 图4-33　inputMessage.jsp输入信息

 [image:]
 图4-34　checkMessage.jsp留言成功

 [image:]
 图4-35　showMessage.jsp显示所有留言

4.7　其他JSP内置对象

除了以上介绍的5种常见的内置对象外，也经常使用其他内置对象，本节分别介绍它们的方法和应用。

4.7.1　pageContext对象

pageContext对象衍生于javax.servlet.jsp.PageContext类，该对象可以得到当前页面中所有其他的JSP隐含对象，如getRequest()、getResponse()、getOut()和getSesison()等，并提供了处理JSP各个对象与属性的方法。

pageContext对象用于访问页面有效属性的方法及对应的说明，如表4-8所示。

 表4-8　pageContext对象访问页面内有效属性的方法

 [image:]

pageContext对象访问所有范围的属性操作与上面的方法类似，只是多了一个输入参数，例如设置变量值可以用setAttribute（String name, Object obj, int scope），其中，scope取值可以为PAGE_SCOPE、REQUEST_SCOPE、SESSION_SCOPE和APPLICATION_SCOPE，分别代表页内有效、请求有效、会话有效和应用有效。pageContext对象还可以实现页面重定向和包含页面等功能。

【例4-18】创建pagecontext1.jsp和pagecontex2.jsp页面，验证属性的作用域。

pagecontext1.jsp的代码如下：

 [image:]

在浏览器中输入http://localhost:8080/ch04//other/pagecontext1.jsp?name=test向pagecontext1.jsp传递参数，运行结果如图4-36所示。

 [image:]
 图4-36　pagecontext1.jsp的运行结果

pagecontex2.jsp的代码如下：

 [image:]

通过超级链接跳转到pagecontext2.jsp查看显示结果，如图4-37所示。

通过比较图4-36和图4-37，可以看出各属性的作用域。关闭浏览器，直接打开pagecontext2.jsp，结果会看到如图4-38所示。

 [image:]
 图4-37　跳转到pagecontext2.jsp的运行结果

 [image:]
 图4-38　直接运行pagecontext2.jsp的结果

由此得出如下结论：

[image:]　pageContext.setAtrribute（"useName",name）设置的属性在当前页面有效。

[image:]　pageContext.getSession().setAtrribute（"session Value",name）设置的属性在session中有效。

[image:]　pageContext.getServletContext().setAttribute（"sharevalue",name）设置的属性是对所有页面共享的。

4.7.2　config对象

config对象是类javax.servlet.ServletConfig的一个对象，它标识Servlet的配置。config对象主要用来取得服务器的配置信息，在JSP页面通过JSP Container进行初始化时被传递。使用config对象，在修改需要在Web服务器中处理的变量时，不需要逐一修改JSP文件，而只需修改相应属性文件的内容，这样就大大简化了网络维护工作，而且能够避免由于忘记修改一些文件而造成的错误。config对象的常用方法及对应的说明如表4-9所示。

 表4-9　config对象的常用方法及说明

 [image:]

【例4-19】创建config.jsp页面，利用config对象的方法，使用Servlet配置的初始值。

前面【例4-16】所示的计数器有一个缺陷，就是每当应用服务器关闭后再启动时，计数器就会从0开始重新计数。解决这个问题的办法就是在应用服务器死机后设置计数的初始值。

config.jsp的代码如下：

 [image:]

在config.jsp中利用config.getInitParameter（"counter"）方法获取Web服务器上初始参数counter的值。通过web.xml文件设置初始参数。

web.xml的代码如下：

 [image:]

从上面的配置可以看出，counter的初始值是1000，并且为config.jsp做了一个映射。运行这个JSP页面，在浏览器中输入http://localhost:8080/ch04/other/config_counter，结果如图4-39所示。

 [image:]
 图4-39　config.jsp运行及刷新后的结果

 注意

 这里必须输入http://localhost:8080/ch04/other/config_counter。如果在浏览器里使用http://localhost:8080/ch04/other/config.jsp来访问，那么不能得到counter的参数。原因是当通过前一种方式访问config.jsp时，它是作为一个Servlet组件来运行的，而后者不一样。有关Servlet的内容请参考第10章。

【例4-20】利用config对象的方法，使用Servlet配置的多个初始值。

homepage.jsp的代码如下：

 [image:]

通过web.xml文件设置初始参数，增加如下代码：

 [image:]

从上面的配置可以看出，email、phone、qq的初始值是分别是service@zzu.edu.cn、0371-63888069、12345，并且为homepage.jsp做了一个映射。运行这个JSP页面，在浏览器中输入http://localhost:8080/ch04/homepage.jsp，结果如图4-40所示。

 [image:]
 图4-40　homepage.jsp运行的结果

4.7.3　page对象

page对象代表了正在运行的由JSP文件产生的类对象，此对象在JSP中并不常用，用户只需了解其意义即可。

page对象是指向当前JSP程序本身的对象，有点像类中的this。page对象其实是java.lang.Object类的实例对象，它可以使用Object类的方法，如hashCode()、toString()等方法。page对象在JSP程序中的应用不是很广泛，但是java.lang.Object类还是十分重要的，因为JSP内置对象的很多方法的返回类型是Object，需要用到Object类的方法，读者可以参考相关的文档，这里就不详细介绍。

4.7.4　exception对象

exception对象是类java.lang.Throwable的一个对象，是为JSP提供用于处理程序运行错误的异常对象，可以配合page指令一起使用。参考【例3-10】，通过指定某一个页面为错误处理页面，把所有的错误都集中到那个页面进行处理，可以使整个系统的健壮性得到加强，也可以使程序的流程更加简单明晰。exception对象的常用方法及对应的说明如表4-10所示。

 表4-10　exception对象的常用方法及说明

 [image:]

 注意

 必须在isErrorPage="true"的情况下才可以使用exception对象。

4.8　小结

Java提供了预设的内置对象并内置在JSP网页环境中，而且提供了编写JSP所需的基本功能。目前JSP中有9个隐含对象，分别是request、response、out、session、application、pageContext、config、page和exception。使用这些对象可以方便地访问请求、响应或会话等信息。

request内置对象代表了客户端的请求信息，主要用于接受客户端通过HTTP协议传送给服务器端的数据。

response对象实现HttpServletResponse接口，可对客户的请求做出动态的响应，向客户端发送数据，如Cookie、HTTP文件头信息等。

out对象主要用于将特定的数据内容搭配JSP程序代码动态输出至客户端的浏览器。out方法成员可以分为两大类，分别是控制缓冲区和数据的输出操作。

session是服务器端上线用户数据的存取区，存放的是用户的个别数据，每一个上线用户所使用的session是独立的。session对象所存储的数据，会在用户离线或是应用程序关闭时消失。

application对象可以被视为一个所有联机用户可共享数据的存取区，其类似于在一般的应用程序中，存储整个应用程序所共享的数据。

本章除了以上介绍的5种常见的内置对象外，还介绍了内置对象pageContext、config、page和exception。

JSP内置对象可以在JSP页面中直接使用，而不用使用<jsp:useBean>来生成，生成这些对象的工作将由服务器自动处理。

到本章为止，JSP的语法都讲完了，读者可以尝试开发一些简单的JSP应用程序，以后的章节将讨论一些高级话题，为开发高质量的程序做准备。

4.9　习题

一、选择题

1. 在J2EE中，下列（　　）语句可以获取页面请求中的一个单选框的选项值（单选框的名字为name）。

A. response.getParameter（"name"）;

B. request.getAttribute（"name"）;

C. request.getParameter（"name"）;

D. request.getParameters（"name"）;

2. 在J2EE中，request对象的（　　）方法可以获取页面请求中一个表单控件对应多个值时的用户的请求数据。

A. String getParameter（String name）

B. String[] getParameter（String name）

C. String getParameterValuses（String name）

D. String[] getParameterValues（String name）

3. 以下对象中作用域最大的是（　　）。

A. request

B. session

C. application

D. page

4. 在JSP页面中，能够完成输出操作的内置对象是（　　）。

A. out

B. response

C. request

D. config

5. 要在session对象中保存属性，可以使用以下（　　）语句。

A. session.getAttribute（"key","value"）;

B. session.setAttribute（"key","value"）;

C. session.setAtrribute（"key"）;

D. session.getAttribute（"key"）;

6. 需要删除session中的某个属性key，可以调用下面的（　　）方法。

A. remove（"key"）

B. removeAttribute（"key"）

C. invalidate()

D. logout()

7. 在J2EE中，假如HttpSession的getLasAccessTime()方法返回值为x，getCreationTime()方法返回值为y，则为x－y（　　）。

A. 两个连续请求之间间隔的最长时间

B. 最近的两个连续请求之间的时间间隔

C. 最后使用session发送请求的时间和session创建时间的间隔

D. 最后使用session发送请求的时间

8. 以下代码能否编译通过，假如能编译通过，运行时得到的输出结果是（　　）。

 <%

 request.setAttribute("count",new Integer(0));

 Integer count = request.getAttribute("count") ;

 %>

 <%=count %>

A. 编译不通过

B. 可以编译运行，输出0

C. 编译通过，但运行时抛出ClassCastException

D. 可以编译通过，但运行无输出

9. 现在session中没有任何属性，阅读下面2个JSP中的代码，将分别输出（　　）。

 [image:]

A. null，异常信息

B. null，null，

C. 异常信息，异常信息

D. 异常信息，null

10. Form表单提交的信息中含有"name= svse"，阅读下面的JSP，a.jsp将输出（　　）。

接受该请求的JSP：

 <%

 response.sendRedirect(“a.jsp");

 %>

a.jsp包含如下代码

 <%=request.getParameter(“name") %>

A. null

B. 什么都不输出

C. 异常信息

D. svse

二、判断题

1. <jsp:forward ... >标记的page属性值是相对的URL地址，只能用静态的URL地址。

（　　）

2. 利用response对象的sendRedirect方法只能实现本网站内的页面跳转，但不能传递参数。

（　　）

3. contentType属性用来设置JSP页面的MIME类型和字符编码集，取值格式为“MIME类型”或“MIME类型;charset=字符编码集”，response对象调用addHeader方法修改该属性的值。

（　　）

4. 在J2EE中，重定向到另一个页面，可以用request.sendRedirect（"http://www.jb-aptech.com.cn"）。

（　　）

5. 应用application对象能在不同用户之间共享数据。

（　　）

三、填空题

1. 当客户端请求一个JSP页面时，JSP容器会将请求信息包装在　　　对象中。

2. 已知文件look.jsp的路径为c:/myjsp/inc，文件login.jsp的路径为c:/myjsp。若使用response的重定向方法由look.jsp跳转到login.jsp中，则正确的写法为　　　。

3. 当getParameter()方法的参数部分指定的输入控件不存在时，该方法的返回值为　　　。

4. 列表框的name属性值为"city"，并且允许多选，若要一次读取所有的选中项并存放于数组str中，则对应的java语句为　　　。

5. 给定一个JSP程序源码如下：

 <jsp:include page = "test.jsp"flush = "true">

 <jsp:param name = "location"value = "beijing"/>

 </jsp:include>

在test.jsp中加入　　　代码片段可以输出参数location的值。

四、简答题

1. JSP中的内建对象包含哪些？试简述这些对象在JSP中的主要功能。

2. response重定向方法sendRedirect()和动作元素<jsp:forward>的区别是什么？

3. application与session对象存储数据变量的方式有何区别？

4. 请说明session对象的生命周期在哪些状况下会结束。

五、编程题

1. 编写一个简单的网上测试系统。要求由2个页面组成，第1个页面显示试题，例如单选题，如图4-41所示。第2个页面获取考生提交的选择，统计考生得分并显示。

2. 信息的保存和获取。

例如简单的网上购物，将购买者的姓名、商品名保存在session对象中，实现一个Web目录下的页面对session对象中信息的共享。要求创建3个页面，第1个页面输入用户的姓名，第2个页面输入购买商品名的名称，第3个页面实现结账处理。

3. 简单的用户登录。

用户通过输入用户名和密码（假设用户名和密码都是admin）进入用户或管理员页面，拒绝绕过登录页面直接进入用户或管理员页面。

要求创建4个文件，第1个是用户登录页面，此页面输入用户名和密码以及登录类型，如图4-42所示。

第2个文件对提交信息进行检查，如果输入正确，则根据登录类型分别进入管理员或普通用户页面，用重定向的方法实现跳转到这两个页面。如果输入有误，则弹出警示对话框，如图4-43所示，让用户重新输入信息。

第3个文件是管理员页面，显示管理员成功登录的信息。

第4个文件是普通用户页面，显示普通用户成功登录的信息。

4. 采用application对象实现一个简单的聊天室。

要求采用application对象记录所有用户的留言信息并在页面上显示出来，如图4-44所示。

 [image:]
 图4-41　网上测试单选题

 [image:]
 图4-42　用户登录页面

 [image:]
 图4-43　警示对话框

 [image:]
 图4-44　显示聊天内容

第5章　Cookie及会话追踪

Cookie是一种应用较久的技术了，早在HTML刚刚出现的时候，在每个独立的页面之间没有办法记录和标识不同的用户，后来人们就发明了Cookie技术，当用户访问网页时，它能够在访问者的机器上创立一个文件，我们把它叫作Cookie，写一段内容进去，来标识不同的用户。如果下次用户再访问这个网页的时候，它又能够读出这个文件里面的内容，这样网页就知道上次这个用户已经访问过该网页了。

虽然现在网页的制作技术比起几年前已经发展了许多。不过有些时候，Cookie还是能够帮用户很多忙。本章就来介绍一下如何在写JSP文件的时候，用JSP操作Cookie。

本章学习目标

 	◎　了解Cookie的基本概念

 	◎　掌握在JSP中创建Cookie的方法

 	◎　掌握在JSP中读写Cookie的方法

 	◎　掌握设置Cookie存在期限的方法

 	◎　了解Cookie的安全问题

 [image:]
 本章案例源代码下载

5.1　Cookie的概念和特性

Cookie是设计交互式网页的一项重要技术，它可以将一些简短的数据存储在用户的计算机上，这些存放在用户计算机上的变量数据，称为Cookie。当浏览器向服务器提出网页浏览请求时，服务器根据存储在用户计算机上的Cookie内容，针对此浏览器显示其专门的内容。

5.1.1　什么是Cookie

Cookie原意是指就着牛奶一起吃的点心。然而，在互联网内，Cookie这个词有了完全不同的意思。那么Cookie到底是什么呢？Cookie是小量信息，由网络服务器发送出来以存储在网络浏览器上，从而下次这位独一无二的访客又回到该网络服务器时，可从该浏览器读回此信息。让浏览器记住这位访客的特定信息，如上次访问的位置、花费的时间或用户首选项（如样式表），这是很有用的。Cookie是一个存储在浏览器目录的文本文件，当浏览器运行时，存储在RAM中。一旦用户从该网站或网络服务器退出，Cookie也可存储在计算机的硬驱上。当访客结束其浏览器对话时，即终止所有的Cookie。Cookie是在HTTP协议下，服务器或脚本可以维护客户工作站上信息的一种方式。

目前有些Cookie是临时的，有些则是持续的。临时的Cookie只在浏览器上保存一段规定的时间，一旦超过规定的时间，该Cookie就会被系统清除。持续的Cookie则保存在用户的Cookie文件中，下一次用户返回时，仍然可以对它进行调用。在Cookie文件中保存Cookie，有些用户担心Cookie中的用户信息被一些别有用心的人窃取，而造成一定的损害。其实，网站以外的用户无法跨过网站来获得Cookie信息。如果因为这种担心而屏蔽Cookie，肯定会因此拒绝访问许多站点页面。因为，当今有许多Web站点开发人员使用Cookie技术，例如Session对象的使用就离不开Cookie的支持。

Cookie必须在HTML文件的内容输出之前设置；不同的浏览器（如Netscape Navigator、Internet Explorer）对Cookie的处理不一致，使用时一定要考虑；客户端用户如果设置禁止Cookie，则Cookie不能建立。一个浏览器能创建的Cookie数量最多为300个，并且每个不能超过4KB，每个Web站点能设置的Cookie总数不能超过20个。

Cookie是由Web服务器保存在用户浏览器（客户端）上的小文本文件，它可以包含有关用户的信息。无论何时用户链接到服务器，Web站点都可以访问Cookie信息。通过让服务器读取它原先保存到客户端的信息，网站能够为浏览者提供一系列的方便，例如在线交易过程中标识用户身份、安全需求不高的场合避免用户重复输入名字和密码、门户网站的主页制定、有针对性地投放广告等。

Cookie数据存储的功能由浏览器本身所提供，因此，Cookie功能必须有浏览器的支持才能实现，一般通用的浏览器（如IE）都支持此功能。

当用户打开的网页中包含Cookie程序代码，此时服务器端会建立Cookie数据，然后将这个Cookie传送到客户端用户的计算机上，图5-1所示为Cookie示意图。

 [image:]
 图5-1　Cookie示意图

当Cookie的数据传送至客户端的计算机后，便存储在浏览器当中，此时服务器端的网页都可以访问这个Cookie的数据内容，而当用户关闭浏览器的时候，Cookie的数据便会消失。

若服务器在建立Cookie时设置了Cookie的存在时间期限，则用户在关闭浏览器后，Cookie的数据会以文本文件存储在用户的计算机上，只要在设置的时间期限内，当用户连接网页时，服务器端的网页均可使用先前Cookie的内容，等过了所设置的期限，Cookie中的数据便会自动被删除。

5.1.2　Cookie的常见用途

Cookie最根本的用途是帮助Web站点保存有关访问者的信息。更概括地说，Cookie是一种保持Web应用程序连续性（即执行“状态管理”）的方法。浏览器和Web服务器除了在短暂的实际信息交换阶段以外总是断开的，而用户向Web服务器发送的每个请求都是单独处理的，与其他所有请求无关。然而在大多数情况下，都有必要让Web服务器在用户请求某个页面时对其进行识别。例如，购物站点上的Web服务器跟踪每个购物者，以便站点能够管理购物车和其他与用户相关的信息。因此Cookie的作用就类似于名片，它提供了相关的标识信息，可以帮助应用程序确定如何继续执行。Cookie是用户浏览某网站时，网站存储在用户机器上的一个小文本文件，它记录了用户的用户ID、密码、浏览过的网页、停留的时间等信息，当用户在某个网站注册后，就会收到一个唯一用户ID的Cookie。当用户再次来到该网站时，网站通过读取Cookie，这个用户ID会自动返回，服务器对它进行检查，确定它是否为注册用户且选择了自动登录，这样，用户无须给出明确的用户名和密码，就可以访问服务器上的资源；网站可以使用Cookie记录用户的意愿。对于简单的设置，网站可以直接将页面的设置存储在Cookie中完成定制。然而对于更复杂的定制，网站只需将一个唯一的标识符发送给用户，由服务器端的数据库存储每个标识符对应的页面设置做出相应的动作，如在页面显示“欢迎你”的标语等。

几乎所有的网站设计者在进行网站设计时都使用了Cookie，因为他们都想给浏览网站的用户提供一个更友好的、人文化的浏览环境，同时也能更加准确地收集访问者的信息。Cookie的常见用途如下。

（1）网站浏览人数管理。

由于代理服务器、缓存等的使用，唯一能帮助网站精确统计来访人数的方法就是为每个访问者建立一个唯一的ID。使用Cookie，网站可以完成以下工作：测定多少人访问过；测定访问者中有多少是新用户（即第一次来访），多少是老用户；测定一个用户多久访问一次网站。

通常情况下，网站设计者是借助后台数据库来实现以上目的的。当用户第一次访问该网站时，网站在数据库中建立一个新的ID，并把ID通过Cookie传送给用户。用户再次来访时，网站把该用户ID对应的计数器加1，得到用户的来访次数或判断用户是新用户还是老用户。

（2）按照用户的喜好定制网页外观。

现在许多网站上都有新用户注册这一项，注册以后，等到下次再访问该站点时，会自动识别用户，并且向用户问好，是不是觉得很亲切？有的网站设计者为用户提供了改变网页内容、布局和颜色的权利，允许用户输入自己的信息，然后通过这些信息对网站的一些参数进行修改，以定制网页的外观。当然这种作用只是表面现象，更重要的是，网站可以利用Cookie跟踪统计用户访问该网站的习惯，比如：什么时间访问，访问了哪些页面，在每个网页的停留时间，等等。利用这些信息，一方面可以为用户提供个性化的服务，另一方面也可以作为了解用户行为的工具，对于网站经营策略的改进有一定参考价值。例如，用户在某家航空公司站点查阅航班时刻表，该网站可能就创建了包含用户旅行计划的Cookies，也可能它只记录了用户在该站点上曾经访问过的Web页，在用户下次访问时，网站根据用户的情况对显示的内容进行调整，将用户所感兴趣的内容放在前列。这是高级的Cookie应用。目前Cookie最广泛的是记录用户登录信息，这样下次访问时可以不需要输入自己的用户名、密码了——当然这种方便也存在用户信息泄露的问题，尤其在多个用户共用一台电脑时很容易出现这样的问题。

（3）在电子商务站点中实现诸如“购物篮”等功能。

可以使用Cookie记录用户的ID，这样当用户在“购物篮”中放了新东西时，网站就能记录下来，并在网站的数据库里对应着用户的ID记录。当用户“买单”时，网站通过ID检索数据库中用户的所有选择，就能知道用户的“购物篮”里有些什么。

在一般事例中，网站的数据库能够保存的有用户所选择的内容、浏览过的网页、在表单里填写的信息等；而包含有用户唯一ID的Cookie则保存在用户的电脑里。

Cookies给网站和用户带来的好处非常多：

[image:]　Cookie能使站点跟踪特定访问者的访问次数、最后访问时间和访问者进入站点的路径。

[image:]　Cookie能告诉在线广告商其广告被点击的次数，从而可以更精确地投放广告。

[image:]　Cookie有效期限未到时，能使用户在不输入密码和用户名的情况下进入曾经浏览过的一些站点。

[image:]　Cookie能帮助站点统计用户个人资料以实现各种各样的个性化服务。

5.2　在JSP中使用Cookie

Cookie实质是服务器端与客户端之间传送的普通HTTP头，可以保存也可以不保存在客户的硬盘上。如果保存，是每个文件大小不超过4KB的文本文件，多个Cookie可保存到同一个文件中。从编程角度来看，在JSP中，Cookie就是Java提供的一个类。

5.2.1　创建Cookie

Cookie是由Javax.servlet.http.Cookie类所衍生出来的对象，建立Cookie的语法如下：

 Cookie objCookie = new Cookie(indexValue,stringValue)

从上面的语法可以看出，一个Cookie对象必须包含一个特定的indexValue索引值与字符串类型的数据内容stringValue，例如：

 Cookie c = new Cookie("mycookie","Cookie Test");

建立了Cookie之后，该Cookie数据还必须传送到客户端，用addCookie()方法发送一个HTTP Header。传送的方式为response.addCookie（objCookie）。

response对象与request对象均提供与Cookie相关的方法成员，利用这些成员，用户可以很方便地访问指定的Cookie内容。上述的程序片段利用response的addCookie()方法将指定的Cookie对象传送至客户端。

5.2.2　读写Cookie

1. 写Cookie

对Cookie进行操作首先是将Cookie保存到客户端。在JSP编程中，利用response对象通过addCookie()方法将Cookie写入客户端。其语法格式如下：

 response.addCookie(cookie);

例如：

 <%//从提交的HTML表单中获取用户名

 String username=request.getParameter(name);

 Cookie user_name=new Cookie("cookie_name",username);//创建一个Cookie

 response.addCookie(user_name);

 %>

2. 读Cookie

将Cookie保存到客户端，就是为了以后得到其中保存的数据。调用HttpServletRequest的getCookies得到一个Cookie对象的数组。其语法格式如下：

 Cookie[] 数组变量名＝request.getCookies();

在客户端传来的Cookie数据类型都是数组类型，因此要得到其中某一项指定的Cookie对象，需要遍历数组来找。JSP将调用request.getCookies()从客户端读入Cookie，getCookies()方法返回一个HTTP请求头中的内容对应的Cookie对象数组。用户只需要用循环访问该数组的各个元素，调用getName()方法检查各个Cookie的名字，直至找到目标Cookie，然后对该Cookie调用getValue()方法取得与指定名字关联的值，可通过如下代码实现：

 [image:]

5.2.3　Cookie中的主要方法

在JSP中，通过Cookie.setXXX设置各种属性，使用Cookie.getXXX读出Cookie的属性，Cookie的主要方法及其说明如表5-1所示。

 表5-1　Cookie的主要方法及其说明

 [image:]

5.2.4　操作Cookie的常用方法

下面介绍几个操作Cookie的常用方法，这些方法虽然简单，但是在使用Cookie时很有用。

1. 设置Cookie的存在期限

Cookie可以保持登录信息到用户下次与服务器会话，换句话说，下次访问同一网站时，用户会发现不必输入用户名和密码就已经登录了（当然，不排除用户手工删除Cookie）。而还有一些Cookie在用户退出会话的时候就被删除了，这样可以有效保护个人隐私。

Cookie在生成时会被指定一个Expire值，这就是Cookie的生存周期，在这个周期内Cookie有效，超出周期Cookie就会被清除。有效周期的时间以秒为单位，时间设置越大，表示Cookie对象的有效时间越长，如果把有效周期设置为0，则表示此Cookie对象存放在浏览器后将立即失效，如果把有效周期设置为任意一个负数，则当浏览器关闭后，此Cookie对象立即失效。在默认情况下，Cookie是随着用户关闭浏览器而自动消失的，不过，Cookie也可以设置其存在的期限，让用户在下次打开网页时，服务器端仍然能够取得同样一个Cookie中的数据内容。

下面的代码使用setMaxAge()方法设置Cookie对象login在一天之内都是有效的：

 <%

 Cookie login = new Cookie("today","true");

 login.setMaxAge(86400);

 response.addCookie(login);

 %>

如果希望Cookie能够在浏览器退出时自动保存下来，则可以用下面的LongLivedCookie类来取代标准的LongLivedCookie类。LongLivedCookie类的代码如下：

 [image:]

如果不设置过期时间，则表示这个Cookie生命周期为浏览器会话期间，只要关闭浏览器，Cookie就会消失。这种生命期为浏览会话期的Cookie被称为会话Cookie。会话Cookie一般不保存在硬盘上，而是保存在内存里。如果设置了过期时间，浏览器就会把Cookie保存到硬盘上，关闭后再次打开浏览器，这些Cookie依然有效，直到超过设定的过期时间。存储在硬盘上的Cookie可以在不同的浏览器进程间共享，比如两个IE窗口。而对于保存在内存的Cookie，不同的浏览器有不同的处理方式。

2. 删除Cookie

要删除某一个客户端的Cookie，必须使用前面的sexMaxAge()方法，并将Cookie的存在期限设为0，语法如下：

 Cookie名称.setMaxAge(0)

下面的代码在JSP中删除一个Cookie：

 <%

 Cookie killMyCookie = new Cookie("mycookie", null);

 killMyCookie.setMaxAge(0);

 killMyCookie.setPath("/");

 response.addCookie(killMyCookie);

 %>

3. 获取指定名字的Cookie值

下面的代码可以获取指定名字的Cookie值：

 [image:]

本节介绍了在JSP中使用Cookie，用户若能善用以Cookie来存储客户端数据这样的一个方式，将会使得在设计交互式网页时更能得心应手！

5.3　Cookie对象的应用实例

前面介绍了JSP读写Cookie信息的基础知识，但是还没有涉及具体的应用，下面通过两个具体的实例来帮助读者进一步学习。

【例5-1】在JSP中使用Cookie。该实例有writeCookie.jsp和readCookie.jsp两文件。其中writeCookie.jsp用于写入Cookie，readCookie.jsp用于读取Cookie。

writeCookie.jsp写一个Cookie到客户端，代码如下：

 [image:]

执行结果如图5-2所示。

 [image:]
 图5-2　writeCookie.jsp的执行结果

readCookie.jsp代码如下：

 [image:]

readCookie.jsp必须注意两个问题：一是读入Cookie数组时需要判断是否为null，如果为空就不能进行下一步的操作，只能显示出Cookie为空的错误信息；二是对Cookie数组的长度进行判断，如果Cookie.length==0，说明该客户端浏览器不支持Cookie。

在写完Cookie的10分钟之内，readCookie.jsp页面的执行结果如图5-3所示。超过10分钟，该Cookie就会被浏览器删除。

如果没有执行writeCookie.jsp，而直接执行readCookie.jsp，那么将显示“没有Cookie”字样，如图5-4所示。

 [image:]
 图5-3　readCookie.jsp的执行结果

 [image:]
 图5-4　直接执行readCookie.jsp的结果

【例5-2】Cookie的作用是在客户端保存用户的信息，供用户下一次访问服务器的程序时使用。本例由包括个程序，CookieJSP.jsp创建并保存Cookie，ShowCookie.jsp取得客户端所有Cookie信息，并在页面上显示。

CookieJSP.jsp代码如下：

 [image:]

注意：如果不设置Cookie的保存时间，Cookie不会保存在硬盘内。

ShowCookie.jsp的代码如下所示：

 [image:]

CookieJSP.jsp的运行结果如图5-5所示。

单击“显示Cookie值”链接，执行结果如图5-6所示。

 [image:]
 图5-5　CookieJSP.jsp的运行结果

 [image:]
 图5-6　ShowCookie.jsp的执行结果

在地址栏中输入http://localhost:8080/ch05/CookieJSP.jsp?name=tom，然后单击“显示Cookie值”链接，执行结果如图5-7所示。

打开另一个浏览器，直接输入http://localhost:8080/ch05/ShowCookie.jsp地址访问Cookie的值，如图5-8所示。

 [image:]
 图5-7　输入name后ShowCookie.jsp的执行结果

 [image:]
 图5-8　直接运行ShowCookie.jsp的执行结果

刷新http://localhost:8080/ch05/ShowCookie.jsp页面，结果如图5-9所示。

 [image:]
 图5-9　刷新ShowCookie.jsp的执行结果

从上述执行结果可见，同一台机器的不同客户端访问都可以访问服务器保存在本地机器的Cookie。新开启的页面中未保存JSESSIONID的信息。

JSESSIONID就是客户端用来保存sessionid的变量，一般对于Web应用来说，客户端变量都会保存在Cookie中，JSESSIONID也不例外。不过与一般的Cookie变量不同，JSESSIONID是保存在内存Cookie中的，在一般的Cookie文件中是看不到。内存Cookie在打开一个浏览器窗口的时候会创建，在关闭这个浏览器窗口的时候也同时销毁。这也就解释了为什么session变量不能跨窗口使用，要跨窗口使用就需要手动把JSESSIONID保存到Cookie里面。

只有通过JSESSIONID才能使session机制起作用，而JSESSIONID又是通过Cookie来保存的。如果用户禁用了Cookie，可以通过URL重写来实现JSESSIONID的传递。JESSIONID通过这样的方式从客户端传递到服务器端，从而标识session。这样在用户禁用Cookie的时候也可以传递JSESSIONID来使用session，只不过需要每次都把JSESSIONID作为参数跟在URL后面传递。这样很麻烦，每次请求一个URL都要判断Cookie是否可用，如果禁用了Cookie，还要从URL里解析出JSESSIONID，然后跟在处理完后转到的URL后面，以保持JSESSIONID的传递。这些问题Sun已经想到了，所以提供了两个方法来使事情变得简单：response.encodeURL()和response.encodeRedirectURL()。这两个方法会判断Cookie是否可用，如果禁用了会解析出URL中的JSESSIONID，并连接到指定的URL后面，如果没有找到JSESSIONID会自动生成一个。这两个方法在判断是否要包含JSESSIONID的逻辑上会稍有不同。在调用response.sendRedirect之前，应该先调用response.encodeURL()或encodeRedirectURL()方法，否则可能会丢失sesssion信息。

【例5-3】服务器使用URL重写。jsessionid1.jsp利用了response对象内的encodeURL方法，将URL做了一个编码动作。jsessionid2.jsp显示sessionID。

jsessionid1.jsp代码如下：

 [image:]

jsessionid2.jsp代码如下：

 [image:]

如果Cookie没有禁用，在浏览器地址栏中看到的地址是这样的：http://localhost:8080/ch05/jsessionid2.jsp；如果禁用了Cookie，则看到：http://localhost:8080/ch05/jsessionid2.jsp;jsessionid=989A54B6B8DAD17453C36C79C32748EE，如图5-10所示。

 [image:]
 图5-10　禁用Cookie时jsessionid1.jsp的执行结果

注意，JSESSIONID跟一般的URL参数传递方式是不同的，不是作为参数跟在“？”后面，而是紧跟在URl后面用“；”来分隔。

【例5-4】应用Cookie保留用户提交的信息。这个例子包含3个文件，usingCookie.html文件是一个HTML表单，其中布置了几种可供用户选取及输入个人数据的表单选项。usingCookie.jsp网页取得上述表单传送过来的变量数据，并将这些数据存入Cookie当中，然后将网页定向responseCookie.jsp。responseCookie.jsp网页程序会取得稍早存储在Cookie中的用户数据，并加以变化输出至浏览器。

usingCookie.html代码如下：

 [image:]

usingCookie.jsp代码如下：

 [image:]

responseCookie.jsp代码如下：

 [image:]

查看usingCookie.html网页，在表单中输入所需资料信息，单击“发送资料”按钮，如图5-11所示。在表单中输入的数据被存储至Cookie当中，接下来转至responseCookie.jsp，将Cookie数据取出并在浏览器中显示，如图5-12所示。

在第4章学习了session对象，通常采用session对象来保存用户的信息，可以在多个页面之间跳转时保持有效，而此例采用Cookie对象来保存用户的信息。usingCookie.jsp把用户信息存入Cookie当中，responseCookie.jsp读取Cookie中的用户数据，可以得到和session对象同样的效果。

 [image:]
 图5-11　提交用户信息

 [image:]
 图5-12　应用Cookie保存用户信息

另外，可以在usingCookie.jsp中使用setMaxAge()方法设置Cookie对象的存在期限。这样Cookie对象就会保存在硬盘中的Cookies文件夹中，用户可以不用从usingCookie.html登录，直接打开responseCookie.jsp就可以读取Cookie中的用户数据。不论浏览器是否关闭，或者服务器是否重启，只要该文件还存在，就会一直保留用户的信息。Cookie和session的关系以及Cookies和session有什么本质区别请大家查阅相关资料，这里不再详述。

在此例中还存在一个问题，就是如果输入的用户名是中文的话会出现乱码，虽然在第6章有解决中文乱码的方法，但是在这里并不适用。若想解决乱码问题，可以采用如下方法。

使用java.net.URLEncoder.encode()对要传递的中文进行编码，在传参数之前先把参数进行转码，java.net.URLEncoder.encode（param）;取值时用语句java.net.URLDecoder.decode（param）;再转回中文。

把usingCookie.jsp中创建Cookie的代码

 Cookie nameCookie = new Cookie("name", strname);

改为：

 Cookie nameCookie = new Cookie("name", java.net.URLEncoder.encode(strname));

把responseCookie.jsp中显示用户名的代码

 <font color="<%=color%>" size="5"><%=name%>

改为：

 <font color="<%=color%>" size="5"><%=java.net.URLDecoder.decode(name)%>

即可解决中文乱码问题。

5.4　会话与会话追踪

session，中文经常翻译为“会话”，其本来的含义是指有始有终的一系列动作或消息，比如打电话时从拿起电话拨号到挂断电话这中间的一系列过程可以称之为一个session。有时候可以看到这样的话“在一个浏览器会话期间……”，这里的“会话”一词用的就是其本义，是指从一个浏览器窗口打开到关闭这个期间；如果说“用户在一次会话期间……”这样一句话，它指用户的一系列动作，比如从登录到选购商品，再到结账离开这样一个网上购物的过程，然而有时候也可能仅仅是指一次连接。session的含义很多，其中的差别只能靠上下文来推断。session tracking（会话追踪）是指一类用来在客户端与服务器之间保持状态的解决方案，简单地说，当一个客户在多个页面间切换时，服务器会保存该用户的信息。

5.5　实现会话追踪的4种方式

会话追踪的实现方式有下列4种方式：

（1）使用持续Cookies（Persistent Cookies）。

（2）重写包含额外参数的URL（URL Rewriting）。

（3）建立含有数据的隐藏表单字段（Hidden Form Field）。

（4）使用内建session对象。

前3种会话追踪方式是传统的做法，每种做法都有缺点。最后1种方法是目前最常用，也是最有效的解决方案，因此在本节中将把讨论重心放在第4种会话追踪方式上，然而为求彻底了解会话追踪的机制，还是先将传统的会话追踪方式做一番介绍。

5.5.1　Cookies和URL重写

Cookie是一个小小的文本文件，它是将会话信息记录在这个文本文件内，每个页面都去Cookie中提取以前的会话信息。用户请求到达服务器后，先从Cookie中取出会话信息。这样就实现了会话追踪，前面章节已经介绍过，不再赘述。

虽然Cookie强大且持续性高，但是由于有些用户因为担心Cookie对个人隐私的威胁，会关闭Cookie，一旦如此，便无法利用Cookie来达到会话追踪的功能。

URL重写是利用get方法，在URL的尾部添加一些额外的参数来达到会话追踪（session tracking）的目的，服务器将这个标识符与它所存储的有关会话的数据关联起来。URL看起来如【例5-3】所示：http://localhost:8080/ch05/jsessionid2.jsp;jsessionid=989A54B6B8DAD17453C36C 79C32748EE。

使用URL重写的优点是Cookie被禁用或者根本不支持的情况下依旧能够工作。但也有很多缺点：

[image:]　必须对所有指向某用户的网站的URL进行编码。

[image:]　所有页面必须动态生成。

[image:]　不能使用预先记录下来的URL进行访问，或者从其他网站链接进行访问。

5.5.2　隐藏表单字段

隐藏表单字段的方法，是利用HTML内的Hidden属性，把客户端的信息，在用户不察觉的情形下，偷偷地随着请求一起传送给服务器处理，这样一来，就可以进行会话跟踪的任务了。然后将重要的用户信息，如ID之类独一无二的数据，以隐藏字段的方式传送给服务器。隐藏字段的优点在于session数据传送到服务器端时，并不用像get方法，会将session数据暴露在URL之上。不过这种做法还是有它的缺点：一旦session数据存储在隐藏字段中，仍然有暴露数据的危机，因为只要用户直接查看HTML的源文件，session数据将会暴露无遗。这将造成安全上的漏洞，特别当用户数据是依赖于用户ID、密码来取得的时候，将会有被盗用的危险。

5.5.3　使用内建session对象

传统的会话追踪方式使用比较麻烦，JSP使用内建的session对象可以非常方便地实现会话追踪，JSP的会话机制基于Cookie或URL重写技术，融合了这两种技术的优点，当客户端允许使用Cookie时，内建session对象使用Cookie进行会话追踪，如果客户端禁用Cookie，则选择使用URL重写。

（1）获取session对象。例如把购物车作为属性存储在session中，在其他JSP页面中可以通过session再获得购物车。

 //在JSP 页面中可以直接使用session

 ShoppingCart cart = (ShoppingCart)session.getAttribute("cart");

内建的session对象是javax.servlet.http.HttpSession类的实例，如果在JavaBean或者Servlet中使用session就需要先从当前的request对象中取得，例如：

 //得到用户session和购物篮

 HttpSession session = request.getSession();

 ShoppingCart cart = (ShoppingCart)session.getAttribute("cart");

（2）读写session中的数据。向session中存入对象使用setAttribute方法，通过getAttribute方法读取对象。从session返回的值注意要转换成合适的类型，要注意检查结果是否为null。例如下面一段代码：

 HttpSession session = request.getSession();

 SomeClass value = (SomeClass)session.getAttribute("someID");

 if (value == null) {

 value = new SomeClass(...);

 session.setAttribute("someID", value);

 }

 doSomethingWith(value);

（3）废弃session数据。调用removeAttribute废弃session中的值，即移除与名称关联的值。调用invalidate废弃整个session，即废弃当前的session。如果用户注销离开站点，注意废弃与用户相关联的所有session。

（4）session的生命周期。由于没有办法知道HTTP客户端是否不再需要session，因此每个session都关联一个时间期限使它的资源可以被回收。

（5）服务器使用URL重写。session默认使用Cookie技术进行会话追踪，如果客户端不接受Cookie的时候，服务器可以利用URL重写的方式将sessionID作为参数附在URL后面，此时须利用response对象内的encodeURL或encodeRedirectURL方法，这两个方法首先判断Cookies是否被浏览器支持；如果支持，则参数URL被原样返回，sessionID将通过Cookies来维持。否则返回带有sessionID的URL。同时需要注意的是，将session的ID以URL的编码方式进行时，需将每一页都编码，才能保留住session的ID。如果遇到没有编码的URL，则无法进行会话跟踪。

（6）内建session对象使用示例。下面是一个记录同一用户到站次数的计数器，该实例包含一个文件sessionCounter.jsp。sessionCounter.jsp的完整程序代码如下：

 [image:]

sessionCounter.jsp记录单一用户每次光临的次数。首先，从session内取出accessCount的值，如果值为null，代表用户第一次光临，就将accessCount设为0，将heading设为“Welcome,Newcomer”；如果值不为null，则把accessCount的值加1，将heading设为“Welcome Back”。

sessionCounter.jsp的初次执行结果如图5-13所示。sessionCounter.jsp的多次执行结果如图5-14所示。

 [image:]
 图5-13　sessionCounter.jsp的初次执行效果

 [image:]
 图5-14　sessionCounter.jsp的多次执行效果

5.6　内建session对象的生命周期

内建session对象和Cookie一样拥有特定的生命周期。一般来说，内建session对象在一段时间没有作用就会自动失效，也就是服务器会自动控管session的失效时间。除此之外，也可以利用HttpSession类的setMaxInactiveInterval()方法来设定内建session对象的过期时间，服务器就会将session的资源释放掉。另外也可以使用HttpSession类的invalidate()方法，session不论设定多久的时间为过期，都将立即失效。

5.6.1　在web.xml中配置内建session对象的过期时间

session在一段时间没有作用就会自动失效，也就是服务器会自动管控session失效的时间，不过时间的长短通常因JSP容器的不同而异，每个JSP容器所设定session失效的时间各有所不同，但是当设计者有特别需求时，也可以自己手动设定session过期时间。以tomcat为例，用户可以在web.xml中配置内建session对象的过期时间为30分钟。

web.xml具体代码如下：

 [image:]

5.6.2　设置内建session对象的过期时间

在服务器上，通过为在站点上的用户创建一个内建seesion对象保存该用户的信息。当用户第一次访问站点时，分配给用户一个session对象和一个单独的会话ID，这个ID是唯一的。在接下来的请求中，会话ID标识了这个用户，session对象作为请求的一部分发送给Servlet，Servlet能从session对象中读取信息，或者为其添加信息。

一个session可以利用isNew()方法来得知是否为一个新的session。所谓“新”的session，意思是说：它已被服务器产生，但是客户端尚未被告知。

由于没有办法知道HTTP客户端是否不再需要session，因此每个session都关联一个时间期限使它的资源可以被回收。setMaxInactiveInterval()和getMaxInactiveInterval()方法访问超时时间。当客户端完成一个（组）完整的交互过程后，可以使用invalidate()方法使服务器端的session失效，并清除session数据。

下面的实例将介绍如何手动控制session的过期时间，以节省服务器资源的方法，该实例包含了一个sessionLife.jsp文件。设定session在10秒内不活动则失效，然后利用手动的方式计算session在服务器中存在的时间，如果超过20秒则删除，代码如下：

 [image:]

在sessionLife.jsp实例中，使用一些设定session的生命周期所需的方法，如isNew、invalidate、getCreationTime、getLastAccessedTime和setMaxInactiveInterval。

先判定session是否为新的session，如果是新的session，设定session多久不活动则失效，本例设为10秒：

 session.setMaxInactiveInterval(10);

在这里需要注意的是，在web.xml中，<session-timeout>30</session-timeout>的单位是分钟，session.setMaxInactiveInterval（10）的单位是秒。

sessionLife.jsp一开始执行效果如图5-15所示。若开始执行后10秒内，不刷新页面，session将自动移除，如图5-16所示，观察两图发现两者的sessionID不同。

 [image:]
 图5-15　sessionLife.jsp的执行结果

不断刷新页面，当过了20秒后，session被置无效，执行结果如图5-17所示。

 [image:]
 图5-16　session在10秒内不活动则失效

 [image:]
 图5-17　session在20秒之后，被置无效

5.7　利用session存取功能实现简单购物车

我们在这里构造一个简单的购物程序，产品及购物车信息都保存在session中。在选择商品界面选择商品并把它们添加到购物车，购物车可以更改。此例中用到了JavaBean。首先，从JavaBean开始。在此例中，JSP调用JavaBean采用new实例化对象，可以和第6章中JavaBean的使用做一下对比，体会在JSP中如何来使用JavaBean。

Product是产品信息类，Product.java代码如下：

 [image:]

CartItem是购物车Item类，CartItem.java代码如下：

 [image:]

Cart是购物车类，Cart.java代码如下：

 [image:]

产品展示页面ShowProducts.jsp代码如下：

 [image:]

ShowProducts.jsp运行效果如图5-18所示。

 [image:]
 图5-18　ShowProducts.jsp运行效果

购物车页面Buy.jsp代码如下：

 [image:]

 [image:]

用户可以继续购物，添加到购物车中，也可以“删除”或者修改“购买数量”，运行效果如图5-19所示。最后确定下单，查看产品订单如图5-20所示。代码和Buy.jsp类似，不再赘述。

 [image:]
 图5-19　购物车运行效果

 [image:]
 图5-20　订单展示效果

5.8　小结

Cookie是设计交互式网页的一项重要技术，它可以将一些简短的数据存储在用户的计算机上，这些存放在用户计算机上的变量数据，称为Cookie。当浏览器向服务器提出网页浏览请求时，服务器根据存储在用户计算机上面的Cookie内容，针对此浏览器显示其专门的内容。

HTTP是无状态的协议，用户每次读取Web页面时，服务器都打开信息的会话，而且服务器也不会自动维护用户的上下文信息，那么要怎么才能实现网上商店中的购物车呢？session就是一种保存上下文信息的机制，它是针对每个用户的，变量的值保存在服务器端，通过sessionID来区分不同的客户。session是以Cookie或URL重写为基础的，默认使用Cookie来实现，系统会创造一个名为JSESSIONID的输出Cookie，叫作session Cookie，以区别Persistent Cookies，也就是通常所说的Cookie。注意session Cookie是存储于浏览器内存中的，并不是写到硬盘上的，这也就是刚才看到的JSESSIONID。通常情况下是看不到JSESSIONID的，但是当把浏览器的Cookie禁止后，Web服务器会采用URL重写的方式传递sessionId，就可以在地址栏看到sessionid= KWJHUG6JJM65HS2K6之类的字符串。

具体来说，Cookie机制采用的是在客户端保持状态的方案，而session机制采用的是在服务器端保持状态的方案。同时，由于在服务器端保持状态的方案在客户端也需要保存一个标识，所以session机制可能需要借助于Cookie机制来达到保存标识的目的，但实际上还有其他选择。

通常session Cookie是不能跨窗口使用的，当用户新开了一个浏览器窗口进入相同页面时，系统会赋予用户一个新的SessionID，这样信息共享的目的就达不到了，此时可以先把sessionID保存在Persistent Cookie中，然后在新窗口中读出来，就可以得到上一个窗口sessionID了，这样通过和Persistent Cookie的结合就实现了跨窗口的session tracking（会话跟踪）。在一些Web开发的书中，往往只是简单地把session和Cookie作为两种并列的HTTP传送信息的方式，session Cookie位于服务器端，Persistent Cookie位于客户端，可是session又是以Cookie为基础的，明白两者之间的联系和区别，我们就不难选择合适的技术来开发Web Service了。

本章介绍了Cookie的概念和会话与会话追踪，并给出了例子加以说明。Cookie和session是设计交互式网页的一项重要技术，希望读者可以更加深入地了解掌握。

5.9　习题

一、选择题

1. 在Web程序中，Cookie和session的信息保存位置分别是（　　）。

A. Cookie保存在客户端，session保存在服务器端

B. Cookie和session都保存在客户端

C. Cookie和session都保存在服务器端

D. Cookie保存在服务器端，session保存在客户端

2. 有关会话跟踪技术描述不正确的是（　　）。

A. Cookie是Web服务器发送给客户端的一小段信息，客户端请求时，可以读取该信息发送到服务器端

B. 关闭浏览器意味着会话ID丢失，但所有与原会话关联的会话数据仍保留在服务器上，直至会话过期。

C. 在禁用Cookie时可以使用URL重写技术跟踪会话。

D. 隐藏表单域将字段添加到HTML表单并在客户端浏览器中显示。

3. J2EE中，Servlet API为使用Cookie，提供了（　　）类。

A. Javax.servlet.http.Cookie

B. Javax.servlet.http.HttpCookie

C. Javax.servlet. Cookie

D. Javax.servlet.http. HttpCookie

4. 带有名为myCookie的Cookie存在于客户计算机上，服务器发送有同名的一个Cookie。这会导致（　　）。

A. 新Cookie重写到老的Cookie

B. 新Cookie被拒绝

C. 作为复制存储新Cookie

D. 抛出一个异常

5. 不能在不同用户之间共享数据的方法是（　　）。

A. 通过Cookie

B. 利用文件系统

C. 利用数据库

D. 通过ServletContext对象

6. 获取一个Cookie[]可以通过（　　）。

A. request.getCookies()

B. request.getCookie()

C. response.getCookies()

D. response.getCookie()

7. 发送Cookie可以（　　）。

A. 使用new Cookie语句

B. 调用response.addCookie方法

C. 使用Cookie的setMaxAge方法

D. setCookie方法

8. 将Cookie保存到客户端，就是为了以后得到其中保存的数据。以下说法错误的是（　　）。

A. 调用HttpServletRequest的getCookies得到一个Cookie对象的数组

B. 在客户端传来的Cookie数据类型都是数组类型，因此要得到其中某一项指定的Cookie对象，需要遍历数组来找。

C. 在客户端传来的Cookie数据类型都是枚举类型，因此要得到其中某一项指定的Cookie对象，需要指定元素位置来找。

D. JSP将调用request.getCookies()从客户端读入Cookie，getCookies()方法返回一个HTTP请求头中的内容对应的Cookie对象。

9. Cookie调用getValue()方法取得（　　）。

A. 与指定名字关联的值

B. 从客户端读入Cookie

C. 检查各个Cookie的名字

D. 检查各个Cookie的值

10. 下面的代码使用setMaxAge()方法设置Cookie对象login在一天之内都是有效的是（　　）。

A. login.setMaxAge（3600）;

B. login.setMaxAge（86400）;

C. login.setMaxAge（1）;

D. login.setMaxAge（7200）;

二、判断题

1. 当用户关闭浏览器的时候，Cookie的数据便会消失。

（　　）

2. Cookie实质是服务器端与客户端之间传送的普通HTTP头，可以保存也可以不保存在客户的硬盘上。

（　　）

3. Cookie在生成时就会被指定一个Expire值，这就是Cookie的生存周期，在这个周期内Cookie有效，超出周期Cookie就会被清除。

（　　）

4. 使用Cookie的目的就是为用户带来方便，为网站带来增值，但是事实上Cookie会造成严重的安全威胁。

（　　）

5. Cookie中的内容大多数经过了加密处理，因此在我们看来只是一些毫无意义的字母数字组合，只有服务器的CGI处理程序才知道它们真正的含义。

（　　）

6. URL重写是利用get的方法，在URL的尾部添加一些额外的参数来达到会话追踪（session tracking）的目的。

（　　）

7. 可以手动控制session的过期时间，以节省服务器资源。

（　　）

8. session默认使用Cookie技术进行会话追踪。

（　　）

9. 内建session对象和Cookie的生命周期一样长。

（　　）

10. Cookie既可以保存在硬盘上，也可以保存在内存里。

（　　）

三、填空题

1. Cookie数据存储的功能由　　　所提供，因此，Cookie功能都必须要有浏览器的支持才行。

2. response对象的addCookie（Cookie cookie）方法添加一个　　　对象，用来保存客户端的用户信息。

3. 用request的　　　方法可以获得这个Cookie。

4. 用response对象的　　　方法可以将Cookie对象写入客户端。

5. 要删除某一个客户端的Cookie，必须使用前面的sexMaxAge()方法，并将Cookie的存在期限设为　　　。

6. 实现会话追踪的4种方式分别是　　　、　　　、　　　、　　　。

7. 通过session的　　　方法可以设置session访问超时时间。

8. sessionID将通过　　　来维持。

9. 　　　是用来会话追踪最常用的方法。

四、简答题

1. 简述Cookie的概念与使用方式。

2. 查看自己计算机上Cookie文件的保存位置。浏览网页，运行本书的例子，看是否会把信息记录在此位置？文件是如何命名的？文件的内容是什么？

3. Cookie的常见用途有哪些？

4. Cookie与session有何不同？

五、编程题

1. 理解并掌握Cookie的作用及利用Cookie实现用户的自动登录功能，如图5-21所示。

 [image:]
 图5-21　应用Cookie保存用户信息

当服务器判断该用户是首次登录时，会自动跳转到登录页面等待用户登录，并填入相关信息。通过设置Cookie的有效期限来保存用户的信息。关闭浏览器后，验证是否能够自动登录，若能登录则打印欢迎信息，否则跳转到登录页面。

2. 通过设置内建session对象的过期时间，使用户提交的信息保存300秒，超时后，让用户重新登录。用户提交信息如图5-22所示，保存到session中，并在有效期限内刷新页面，显示用户的提交信息，如果超过预设时间则弹出对话框，如图5-23所示，确定后返回提交信息页面。

 [image:]
 图5-22　用户提交信息

 [image:]
 图5-23　刷新页面，显示用户的提交信息

第6章　JavaBean和表单处理

JavaBean是一种可重用组件技术，可以将内部动作封装起来，用户不需要了解其如何运行，只需要知道如何调用及处理对应的结果即可。在动态网站开发应用中，使用JavaBean可以简化JSP页面的设计与开发，提高代码可读性，从而提高网站应用的可靠性和可维护性。本章首先讲解了JSP的设计模式——非MVC模式（Model1）和MVC模式（Model2），然后介绍了JavaBean的基础知识，以及如何在动态网站开发中创建与使用JavaBean，并举例说明JavaBean技术如何应用在表单上。

本章学习目标

 	◎　掌握JSP的两种设计模式

 	◎　掌握如何创建一个JavaBean

 	◎　掌握使用JavaBean技术处理表单

 [image:]
 本章案例源代码下载

6.1　非MVC模式（Model1）

在基于JSP的B/S程序开发中，可以采用不同的程序模式。非MVC模式（Model1）是一种最初级的模式，它以JSP文件为中心。在这种模式中，JSP页面不仅负责表现逻辑，也负责控制逻辑。非MVC模式有两种结构。项目中只有JSP页面组成的Web应用程序和JSP + JavaBean技术组成的Web应用程序。

6.1.1　Model1的特点

最简单的方法就是直接使用JSP文件开发所有功能。这种模式对于初学者来说，逻辑比较简单，容易理解，但是不容易实现复杂的页面功能，而且当功能复杂时，代码的可读性差。这种结构的优点是简单，可以快速地搭建原型，适合涉及几个JSP页面的非常小型的应用。但它也有非常多的缺点：

[image:]　HTML和Java强耦合在一起。JSP页面中HTML与大量的Java代码交织在一起，不但给页面设计带来极大困难，而且给阅读代码、理解程序带来干扰。

[image:]　极难维护与扩展。在JSP页面中直接嵌入访问数据的代码及SQL语句，会使数据库的任何改动都必须打开所有的JSP页面进行维修，当有几十个甚至几百个JSP页面时，改动的工作量非常大。

[image:]　不方便调试。业务逻辑与HTML代码，甚至JavaScript代码强耦合在一起，极难定位错误。

现在网上很多开源的JSP代码都是这种结构，不过在实际项目中应该少用或根本不使用这种结构，因为此结构完全没有体现出JSP技术的强大优势。

JSP + JavaBean技术组成的应用程序模式中，JSP页面不仅负责表示逻辑，也负责控制逻辑，而业务逻辑则由JavaBeans来实现，如图6-1所示。在专业书籍中这种方式被称为逻辑耦合在页面中。这种处理方式对一些规模很小的项目，如一个简单的留言簿，没什么太大的坏处。实际上，人们开始接触一些新的东西（例如用JSP访问数据库），往往喜欢别人能提供一个包含这一切的单个JSP页面，因为这样就可以在一个页面上把握全局，便于理解。这种结构的优点如下：

 [image:]
 图6-1　JSP + JavaBean技术组成的应用程序模式

[image:]　纯净的JSP页面。因为业务逻辑和数据库操作已经从JSP页面中剥离出来，JSP页面中只需嵌入少量的Java代码甚至不使用Java代码。

[image:]　可重用的组件。设计良好的JavaBean可以重用，甚至可以作为产品销售，在团队协作的项目中，可重用的JavaBean将会大大减少开发人员的工作量，加快开发进度。

[image:]　方便进行调试。因为复杂的操作都封装在一个或者多个JavaBean中，错误比较容易定位。

[image:]　易维护易扩展。系统的升级或者更改往往集中在一组JavaBean中，而不用编辑所有的JSP页面。

6.1.2　Model1的应用范围

Model1模式的表现逻辑和控制逻辑全部逻辑耦合在页面中，这种处理方式比较适用于一些规模很小只有几个简单页面的项目。用Model1模式开发大型项目时，程序流向由一些互相能够感知的页面决定，当页面很多时，要清楚地把握其流向将是很复杂的事情，当用户修改一页时，可能会影响相关的很多页面，大有牵一发而动全局的感觉，使得程序的修改与维护变得异常困难；还有一个问题就是程序逻辑开发与页面设计纠缠在一起，既不便于分工合作也不利于代码的重用，这样的程序其健壮性和可伸缩性都不好。

6.2　MVC编程模式（Model2）

为了克服Model1的缺陷，人们引入了三层模型，术语称作MVC模式（Model2）。Model2架构是基于模型视图控制器（Model-View-Controller，MVC）的设计模式，这种模式比较适合构建复杂的应用程序。

6.2.1　什么是MVC模式

Model2的结构如图6-2所示，用户通过提交请求与Controller组件（通常表现为Servlets）交互。接着Controller组件实例化Model组件（通常表现为JavaBeans或者类似技术），并且根据应用的逻辑操纵它们。Model被创建后，Controller就要确定为用户显示的View（常常表现为JSP），同时View与Model交互操作，获得并显示相关数据。在下一个请求被提交到Controller重复上述操作之前，View可以修改Model的状态。

 [image:]
 图6-2　Model2的结构

Model2模式引入了“控制器”这个概念，控制器一般由Servlet来担任，客户端的请求不再直接送给一个处理业务逻辑的JSP页面，而是送给这个控制器，再由控制器根据具体的请求调用不同的事务逻辑，并将处理结果返回到合适的页面。因此，这个Servlet控制器为应用程序提供了一个进行前后端处理的中枢。一方面为输入数据的验证、身份认证、日志及实现国际化编程提供了一个合适的切入点，另一方面也提供了将业务逻辑从JSP文件分离的可能。业务逻辑从JSP页面分离后，JSP文件蜕变成一个单纯完成显示任务的东西，这就是常说的View。而独立出来的事务逻辑变成人们常说的Model，再加上控制器本身，就构成了MVC模式。实践证明，MVC模式为大型程序的开发及维护提供了巨大的便利。

MVC设计模式很清楚地划定了程序员与设计者的角色界限。换句话说，从商业逻辑上拆解了数据。这种模式让设计者集中于设计应用程序的显示部分，而让开发者集中于开发驱动应用程序功能所需的组件。

6.2.2　MVC模式在Web编程中的应用

MVC模式有多种变异，不过它们都是基于相同的基础结构：应用程序的数据模型（Model）、代码显示（View），以及程序控制逻辑（Controller）是存在其中的独立但相互能通信的组件。模型组件描述并处理应用程序数据，视图指的是用户接口，它反映的是模型数据并把它递交给用户。控制器是将视图上的行为（例如按下Submit按钮）映射到模型上的操作（例如，检索用户详细信息）。模型更新后，视图也被更新，用户就能够完成更多行为。MVC模式使代码易懂而且使代码更容易重用。另外，在很多工程中视图经常要被更新，MVC模式将模型和控制器与这些所做的更改独立开来。

MVC模式是一种非常理想化的设计模式，应用MVC模式完成两个以上项目的人都有同样的体会，它们已经对以前的工作方法进行了彻底的改造。工作模式的改变要付出很大的代价，但现在有现成的技术架构可以采用，省去了在项目中自己开发、摸索。开源Apache Struts framework提供了实现MVC设计模式最好的工具。

6.3　剖析JavaBean

在开发JSP网页程序的过程中，如果需要的应用程序功能已经存在于其他网页中，最快的方法便是重复使用相同的程序代码，将内容复制到新的网页中，或是直接将其加载。

当应用程序的规模越来越大，复制程序代码的做法很快就会造成程序代码维护上的困难，为了维持不同版本功能的完整性与一致性，每次修改原始版本的程序代码其复本的程序代码必须一并改动，当一份程序代码同时应用于数十甚至于数百个网页内容时，对于JSP网页系统来说无异于一场灾难。

解决程序代码重复使用问题的方法很多，其中一个比较简单的方式便是将其写成子程序网页，其他的程序设计人员只需引用这个网页即可获得相同的功能而不需重新开发。当相同的功能需要调整时，只需修改子程序即可将所做的改变直接应用到使用此子程序的所有网页上。

利用前面章节所讨论的include指令，也可轻易解决一部分程序代码共享的问题。这对于小型的应用程序来说或许已经足够，然而当用户开发大规模的JSP网页系统程序时，事情就没有这么简单了。其中一个最大的问题在于如何将制作好的功能程序提供给其他程序开发人员，同时避免被不当修改，以至于衍生出难以维护的版本。

JSP网页取得外部文件，并且将其嵌入当前的网页中，由于显露在外的程序代码非常容易被更改，因此很快便导致了各种不同版本的产生，如图6-3所示。

为了彻底解决程序代码重复使用的问题，同时建立牢固的商业级应用程序，组件化的程序技术被发展起来，以提供这一方面相关问题的最佳解决方案。

 [image:]
 图6-3　引用外部文件

6.3.1　什么是JavaBean

JavaBean从本质上来说是一种Java类，它通过封装属性和方法成为具有独立功能、可重复使用的，并且可与其他控件通信的组件对象。

将JavaBeans按功能分类，可分为“可视化的JavaBeans”和“非可视化的JavaBeans”两类。可视化的JavaBeans就是在画面上可以显示出来的JavaBeans。通过显性接口接收数据并根据接收的信息将数据显示在画面上，这就是可视化JavaBeans的功能。一般用到的组件大部分都是可视化的。

非可视化的JavaBeans，就是没有GUI图形用户界面的JavaBeans。在JSP程序中常用来封装事务逻辑、数据库操作等，可以很好地实现业务逻辑和前台程序（如JSP文件）的分离，使系统具有更好的健壮性和灵活性。

用户可把JavaBean想象为功能特定且可重复使用的子程序，当应用程序需要提供相同的特定功能时，只需直接引用编译好的JavaBean组件即可，而不需编写重复的程序代码，如图6-4所示。

 [image:]
 图6-4　JavaBean运行示意图

图6-4为JavaBean运行示意图，JavaBean经过编译成为类文件，它由原始程序代码产生，然后由网页所引用。这个过程是单向的，使用JavaBean的网页并不能修改已编译后的类文件，因此也可以保证所有的网页使用的都是同一个版本，同时由于类文件是编译过的组件，因此非常容易被其他的应用程序所引用。

通常用户并不需要知道JavaBean的内部是如何运作的，而只需知道它提供了哪些方法供用户使用。这如同在看电视时并不需要知道电视是怎么将画面显示出来的，只需要知道按下哪个按钮可以切换频道，或是调整画质即可。

大型的JSP应用系统非常依赖JavaBean组件，它们用来封装所有包含运算逻辑的程序代码，画面数据的输出与展示的部分则交由网页程序来处理，如此一来，当JSP网页需要JavaBean组件的功能时，只需在网页中直接引用此组件即可，以达到简化JSP程序结构、程序代码重复使用的目的，同时也能够提供应用程序扩充与修改的更大灵活性。

6.3.2　JavaBean的特征

标准的JavaBean类必须满足以下3个条件。

（1）JavaBean必须是一个public的类。

（2）该类必须包含没有任何参数的构造函数。例如一个Java类名为UserBean，则这个类必须包含public UserBean()这个不带有参数的构造函数，如果没有创建构造函数，系统会自动生成一个无参数的构造函数。

（3）该类必须有属性接口。也就是说，每个属性都要有get()和set()的属性操作方法。例如，描述一个用户的类UserBean，它的用户属性名为userName，那么这个类中必须同时包含getUserName()和setUserName()这两个方法。

【例6-1】下面是一个JavaBean文件，文件名为UserBean.java。

 [image:]

这里再来详细介绍一下这个JavaBean的结构。对于动态网站开发应用中，最常用的JavaBean类是描述各种业务对象的Java类，例如一个网上书店系统可能包含用户、图书、用户订单和订单条目等业务对象，在设计时经常为每个业务对象制作一个对应的JavaBean类。这里的UserBean类就是针对用户来设计的。UserBean.java中最重要的两个部分是属性和方法，它包括userName（用户名）、pwd（密码）、name（真实姓名）、gender（性别）、age（年龄）、email（电子邮件）、tel（固定电话）和mphone（手机）这8个属性，同时每个属性都有get()和set()两个对应的方法，因此这个类总共有16种方法。当然，根据需要，JavaBean还可以添加其他的方法。

6.3.3　创建一个JavaBean

现在具体介绍如何在MyEclipse（或Eclipse）中创建一个JavaBean。以6.3.2节中的UserBean.java为例来说明如何操作。

（1）打开需要创建JavaBean的项目工程test，新建一个类名为UserBean，Package路径为jsp.test的Java类。这时MyEclispe（或Eclipse）左侧窗口中显示项目树结构，同时，MyEclispe（或Eclipse）会自动打开新建的Java类，文件内容如图6-5所示。

（2）在UserBean.java文件中输入前面所描述的8个属性，而且每个属性都是私有的（private），这样保证只有JavaBean本身可以直接调用修改这些属性，外部类只能调用get和set属性方法来获取或修改JavaBean的属性，修改结果如图6-6所示。

 [image:]
 图6-5　UserBean类的默认内容

 [image:]
 图6-6　加入属性后的UserBean类

（3）创建JavaBean类的方法。使用MyEclipse（或Eclipse）这样的集成开发工具来编写JavaBean，用户不需要手动输入类的方法，只需要确定类的属性后使用开发工具的菜单功能就可以完成。具体方法是单击“源代码”|“生成Getters and Setters……”命令，弹出如图6-7所示的对话框。单击Select All按钮，程序会自动选中所有属性的get()和set()方法，窗口下面会提示16 of 16 selected。

（4）单击OK按钮，MyEclipse（或Eclipse）会自动生成所有属性的get()和set()方法，如图6-8所示，用户可以根据需要，添加其他方法。对于UserBean.java类不需要其他的方法。至此整个JavaBean的创建过程就结束了。

 [image:]
 图6-7　生成Getters and Setters对话框

 [image:]
 图6-8　自动生成get()和set()方法

6.4　在JSP中使用JavaBean

在JSP中使用JavaBean最直接的方式就是在page指令中引入JavaBean，接着实例化JavaBean，然后就可以使用。

在JSP中有3个与JavaBean操作相关的标准标签，分别是<jsp:userBean>、<jsp:setProperty>和<jsp:getProperty>，可以使用它们引用并读取／设置JavaBean的属性值。

6.4.1　调用JavaBean

<jsp:useBean>标签可以定义一个具有一定生存范围，以及一个唯一ID的JavaBean实例。这样JSP就可以通过这个ID来识别JavaBean，也可以通过id.method类似的语句来操作JavaBean。

<jsp:useBean>标签的常用格式如下：

 <jsp:useBean id="name" class="classname" scope="page|request|session|application" />

在执行过程中，<jsp:useBean>首先会尝试寻找已经存在的具有相同ID和scope值的JavaBean实例，如果没有就会自动创建一个新的实例。

6.4.2　访问JavaBean属性

<jsp:getProperty>标签可以得到JavaBean的属性值，并将它们转换为java.lang.String类型，最后放置在隐含的Out对象中。<jsp:getProperty>标签和<jsp:useBean>标签一起使用，可以获取JavaBean中一个或多个属性值。

<jsp:getProperty>标签的常用格式如下：

 <jsp:getProperty name="name" property="propertyName" />

<jsp:getProperty>标签中的name和property属性与<jsp:setProperty>标签中的基本类似。

6.4.3　设置JavaBean属性

<jsp:setProperty>标签和<jsp:useBean>标签一起使用，可以给JavaBean设置一个或多个属性值。

<jsp:setProperty>标签的常用格式如下：

 <jsp:setProperty name="beanName" last_syntax />

其中，name属性代表了已经存在的并且具有一定生存范围（scope）的JavaBean实例，这是通过<jsp:useBean>标签设置的JavaBean的ID属性。last_syntax代表4种不同的语法形式：

[image:]　property="*"

[image:]　property="propertyName"

[image:]　property="propertyName" param="parameterName"

[image:]　property="propertyName" value="propertyValue"

6.4.4　JavaBean的生命周期

<jsp:useBean>动作元素是JSP的精华之一，这个元素使得JSP成为具有强大扩充性和易维护性的体系结构。

Bean的生命周期是一个很重要的概念，分为page、request、session和application这4种类型。通过设置Bean的scope属性值，可以使不同的程序需求拥有不同的生命周期。

在C语言等传统的程序设计语言中，变量的生命周期分为“全局变量”和“局部变量”两种。“局部变量”是指变量的生命周期在固定的区域内，当程序执行完这个区域后，则该变量就被释放而不存在了，且不能被区域外的程序所引用。“全局变量”是指变量的生命周期与整个程序的执行周期一致，而且不分区域，可被所有的程序引用。与此概念类似，Bean的scope属性就是用来限制一个Bean的有效区域与生命周期。然而由于Web应用程序的客户端／服务器结构，使得Bean的scope属性远比传统程序设计语言复杂。下面将对Bean的不同scope属性值进行说明，并比较它们之间的差异性。

1. page范围

page范围的JavaBean的生命周期是最短的，当一个网页由JSP程序产生并传送到客户端后，属于page范围的JavaBean也将被清除，至此生命周期告终。

当客户端发出请求给Web服务器后，对应客户端请求的JSP程序被执行。如果执行期间使用了JavaBean，则产生这个JavaBean的实例化对象，并通过get/set类的方法来存取JavaBean内部的属性值。当JSP程序执行完成，并把结果网页传送给客户端后，属于page范围的JavaBean对象就会被清除，结束了它的生命周期。当有新的请求产生时，属于page范围的JavaBean都会产生新的实例化对象。

【例6-2】建立一个名为具有计算访客人数功能的JavaBean类Counter，在程序中定义一个名为setCounter()的方法来设置属性值Count，并且定义取得属性的方法getCounter()，代码如下：

 [image:]

接下来建立另外一个使用Counter组件的JSP网页usingCounter.jsp，其代码如下：

 [image:]

运行结果如图6-9所示。当用户重复单击“刷新”按钮，会发现计数器的值不会增加，这是由于单击“刷新”按钮后该JavaBean对象即刻消失，然后再重新建立一个新的JavaBean对象，因此计数器的值永远保持为1，不会更新。

2. request范围

request类型的生命周期除了该网页之外，若该网页中使用到了<jsp:include>或<jsp:forward>操作指令，则其生命周期延伸至被include进来的页面或forward出去的网页。request范围的JavaBean的生命周期与JSP程序的request对象同步。当一个JSP程序通过forward操作将request对象传送到下一个JSP程序时，属于request范围的JavaBean也将会随着request对象送出，因此由forward操作所串联起来的JSP程序可以共享相同的JavaBean。

 [image:]
 图6-9　usingCounter.jsp运行结果

JSP内置对象request有两个存取其他对象的方法：setAttribute()和getAttribute()。如果一个JavaBean对象被设置为request范围，JSP引擎会把<jsp:useBean>标签中的ID属性值当作索引值，通过setAttribute()方法将新产生的JavaBean对象放置在request对象中，当下一个JSP程序通过forward程序取得由前面传来的request对象时，可以通过getAttribute()方法和索引值获取这个Bean对象。整个过程虽然很复杂，但是这些过程都被JSP引擎所实现了，用户只需要使用<jsp:useBean>标签就可以了，而不必关心背后的复杂过程。下面使用一个范例来说明。

【例6-3】创建页面setRequest.jsp。

 [image:]

程序将count对象的生命周期定义为request类型。程序将网页转移至request.jsp网页。

当网页request.jsp开始运行时，首先会建立一个生命周期为request的count对象，并读取count属性值，此时的count值等于1，接着网页重新导向至request.jsp。

 [image:]

而在request.jsp这个网页程序中，因为request的周期尚未结束，所以在setRequest.jsp中的count值会延续到request.jsp这个页面中。当程序运行时便会根据上一页所传来的count值做加1操作，因此在request.jsp中所取得的count属性值为2。运行结果如图6-10所示。

若将setRequest.jsp中的<jsp:forward>改为<jsp:include>，则setRequest.jsp的内容会先被显示出来，而后才会显示request.jsp中的数据，结果如图6-11所示。

 [image:]
 图6-10　setRequest.jsp运行结果

 [image:]
 图6-11　修改后setRequest.jsp运行结果

值得注意的是，仅仅可以通过forward操作将JavaBean对象传递给下一个JSP程序使用，而重定向sendRedirect是不能这样做的。因为重定向是将URL送到客户端后，再由客户端重新发出请求至新的URL，因此无法将request对象传递出去，也就无法把Bean对象送到下一个JSP程序中处理了。

3. session范围

由于HTTP协议是无状态的通信协议，在Web服务器端没有直接的方法可以维护每个客户端的状态，因此必须使用一些技巧来跟踪使用者。属于session范围的JavaBean的生命周期可以在一个使用者的会话期间存在。

【例6-4】创建usingCounter_session.jsp，代码在usingCounter.jsp基础上将其中的scope属性设为session，运行结果如图6-12所示。

 [image:]
 图6-12　usingCounter_session.jsp运行结果

 [image:]

由于生命期设为session，因此每次在另一个新的浏览窗口中运行相同的程序，新浏览窗口中的计数值都是从头开始算起的，这说明了每一个联机都将产生独立的JavaBean对象。

4. application范围

application范围的JavaBean的生命周期是4类范围类别中最长的一个，当application范围的JavaBean被实例化后，除非是特意将它删除，否则application范围的生命周期可以说是和JSP引擎相当。当某个JavaBean属于application范围时，所在同一个JSP引擎下的JSP程序都可以共享这个JavaBean。换句话说，只要有一个JSP程序将JavaBean设置为application范围，则在相同JSP引擎下的Web应用程序都可以通过这个JavaBean来交换信息。

修改scope属性，将其设置为application，重新运行【例6-4】，每一次同一个用户浏览更新其画面，计数器会不断累加。

如果打开一个新的浏览窗口浏览此网页，会发现计数值并不会从头开始计算，由于设置JavaBean对象的生命周期为application，所以每一个联机都共享同一个JavaBean。（运行画面同【例6-4】，用户可以自行尝试）。

6.4.5　类型自动转换规则

在程序执行过程中，有时会遇到需要将数据转换为特定类型的情况。使用<jsp:setProperty>设置Bean属性值时，它的Value属性值都是字符串类型，系统会根据Bean中对应的属性类型进行转换。注意，如果将表达式的值设置为Beans属性的值，表达式值的类型必须和Beans的属性类型一致。如果将字符串设置为Beans属性的值，这个字符串会自动被转化为Beans的属性类型。例如，使用request对象的getParameter()方法或者getParammeterValues()方法从表单中得到的数据，可能是字符串类型或是字符串数组，在实际应用中常常需要得到其他类型，这就需要将字符转换为需要的类型。表6-1所示为数据类型之间的转换方法。

 表6-1　数据类型的转换方法

 [image:]

6.5　使用JavaBean处理表单数据

标签<form>所构成的表单区块，可以取得用户在其中的特定属性中输入的数据内容，在进行指定的逻辑运算之后，产生符合条件需求的网页内容，并重新将结果返回给浏览器，其整个过程如图6-13所示。

 [image:]
 图6-13　HTML表单与JSP的应用

图6-13中左半部分为浏览器解释网页的部分，右半部分则是Tomcat服务器，当用户在提供JSP网页的网页表单中输入数据之后，重新返回至Tomcat启动数据处理网页，其中的JSP程序代码进行数据的处理运算，同时输出结果网页至浏览器中。

在整个过程中，处理数据网页、原始数据网页及结果输出网页，可以是同一份JSP网页文件或是不同的JSP文件，这要依据JSP程序开发人员的设计而定，其中的细节在本书以后的章节中会针对各个部分逐步进行说明、探讨。

JSP网页通过HTML表单属性的辅助，取得用户输入的数据内容，依据用户的需求与特定运算逻辑，在同一份JSP文件中展现不同的网页结果，达到与用户互动的目的，因此HTML表单属性标签对JSP而言是相当重要的，没有窗口对象的辅助，动态网页的技术将成为空谈。

表单是网页服务器赖以取得客户端数据的网页元素。表单可以很简单，例如一个仅包含用户账号与密码的登录表单，或是复杂如设置用户数据的会员注册网页。无论何种形式的表单，JSP通过取得用户填入其中的数据内容，进行特定的逻辑运算，然后响应适当的信息，从而达到能够创建与用户进行交互的网页的目的。

6.5.1　JSP处理与form相关的常用标签简单实例

request对象为网页服务器端程序中，用以取得客户端表单属性内容数据的主要核心对象，表单与request对象搭配，创建交互式的动态网页。

request对象使用得最为频繁，同时也是最重要的方法成员，GetParameter()是用以取得表单属性数据的最简单方法，引用此方法的语法如下：

 request.GetParameter(strName)

该方法接收一个参数strName，代表所要取得的表单属性名称。下面用一个范例进行说明。

【例6-5】本范例包含两个文件，usingGetParameter.jsp和usingGetParameter.html，其中usingGetParameter.html让用户输入个人信息，服务器在取得这些信息之后，利用usingGetParameter.jsp将其一一输出。

usingGetParameter.html的代码如下：

 [image:]

usingGetParameter.html提供用户数据的输入画面，在这个输入表单中定义了3个文字输入的属性，名称分别为name、tel和emai，程序当中会以这3个名称作为变量数据的来源。

form标签的action属性被设为usingGetParameter.jsp，为处理表单数据的网页程序。当用户填写数据完毕，单击“确定”按钮，网页重新定向至usingGetParameter.jsp，并且针对其中的属性数据进行处理。

usingGetParameter.jsp的代码如下：

 [image:]

引用request对象的getParameter()方法取得各网页参数的数据，程序代码则是显示这些数据的内容。其运行结果如图6-14所示。

接下来利用另外一个完整的范例进行说明，使用JSP+JavaBean形式处理表单。

【例6-6】本范例包含两个文件：showInfo.jsp和show.java。其中，showInfo.jsp让用户输入个人信息，服务器取得这些信息之后，利用show.java这个JavaBean中的方法将其——输出。

 [image:]
 图6-14　getParameter()方法运行结果

showInfo.jsp的代码如下：

 [image:]

showInfo.jsp提供用户数据的输入画面，在这个输入表单中的定义了5个属性，名称分别为name、password、sex、age和habit，程序当中会以这5个名称作为变量数据的来源。

页面首次运行效果和提交后运行效果分别如图6-15和图6-16所示。

 [image:]
 图6-15　showInfo.jsp首次运行结果

 [image:]
 图6-16　信息提交后运行结果

show.java的代码如下：

 [image:]

 [image:]

6.5.2　设置中文编码

前面讲述的范例运作得很好，但是它有一个很重大的缺陷，就是无法处理中文数据，重新运行范例，输入中文内容，会看到类似如图6-17所示的结果，其中的中文均变成了乱码。

为了避免出现这种情况，必须设置request对象的编码格式，使用setCharacterEncoding()方法可以解决该问题。此方法接收一个代表编码格式的标识符串，简体中文的编码为GB2312，在usingGetParameter.jsp网页的开始处加入以下程序代码：

 <%request.setCharacterEncoding("GB2312") ; %>

完成设置之后，重新运行范例程序，得到如图6-18所示的正确结果。

 [image:]
 图6-17　输入中文显示乱码

 [image:]
 图6-18　正确显示中文

6.6　小结

在JSP程序中，使用JavaBeans封装事务逻辑、数据库操作等，可以很好地实现业务逻辑和前台程序（如JSP文件）的分离，使系统具有更好的健壮性和灵活性。本章介绍了JavaBean的基本概念及使用方法。使用JavaBean可以简化JSP页面的设计与开发，提高程序的可读性与可维护性。本章还介绍了在MyEclispe（或Eclipse）中快速创建JavaBean的方法，以及如何解决中文乱码问题。

6.7　习题

一、选择题

1. <jsp:useBean>声明对象的默认有效范围为（　　）。

A. page

B. session

C. Application

D. request

2. 编写JavaBean就是编写一个Java类，所以只要会写类就能编写一个Bean，一个完整JavaBean在类的命名上需要遵守以下规则，其中错误的是（　　）。

A. 类中方法的访问属性必须是public的

B. 对于boolean类型的成员变量，允许使用is代替get

C. 类中如果有构造方法，那么这个构造方法也是public的，并且是无参数的

D. 在JavaBean中定义属性时，应该定义成public

3. 关于JavaBean的说法，正确的是（　　）。

A. JavaBean的具体类可以不是public的

B. JavaBean可以只提供一个带参数的构造器

C. jsp:userBean可以向HTML标记一样不关闭

D. JavaBean可以保存状态

4. 下边不是MVC中的组成部分的是（　　）。

A. JavaBean

B. FrameWork

C. JSP

D. Servlet

5. 下面正确使用JavaBean的方式的是（　　）。

A. <jsp:useBean id="address" class="AddressBean" />

B. <jsp:useBean name="address" class="AddressBean"/>

C. <jsp:useBean bean="address" class="AddressBean" />

D. <jsp:useBean beanName="address" class="AddressBean" />

6. 在JSP中使用<jsp:getProperty>标记时，不会出现的属性是（　　）。

A. name

B. property

C. value

D. 以上皆不会出现

7. 在JSP中调用JavaBean时不会用到的标记是（　　）。

A. <javabean>

B. <jsp:useBean>

C. <jsp:setProperty>

D. <jsp:getProperty>

8. 关于JavaBean正确的说法是（　　）。

A. Java文件与Bean所定义的类名可以不同，但一定要注意区分字母的大小写

B. 在JSP文件中引用Bean，其实就是用<jsp:useBean>语句

C. 被引用的Bean文件的文件名后缀为.java

D. Bean文件放在任何目录下都可以被引用

9. test.jsp文件中有以下代码：

 <jsp:useBean id=”user” scope=”__” type=”com.UserBean”>

要使user对象可以作用于整个应用程序，下划线中应添入（　　）。

A. page

B. request

C. session

D. application

10. 下面错误设置Bean属性值的方法的是（　　）。

A. <jsp:setProperty name="beanInstanceName" property= "*" />

B. <jsp:setProperty name="beanInstanceName" property="propertyName"/>

C. <jsp:setProperty name="beanInstanceName" property="propertyName" param="parameterName" />

D. <jsp:setProperty name="beanInstanceName" property="*" value="{string | <%=expression %>}"/>

二、判断题

1. 在MVC模式中，因为Servlet负责创建JavaBean，所以JavaBean的构造函数可以带有参数，除了保留get和set规则外，还可以有其他功能的函数。

（　　）

2. Bean文件放在任何目录下都可以被引用。

（　　）

3. get请求处理的数据量大小不受到限制。

（　　）

4. <jsp:getProperty>必须出现在其对应的<jsp:usebean>标签之后。

（　　）

5. 相同的Javabean只会实例化一次。

（　　）

三、填空题

1. Javabean是一种　　　类，通过封装　　　和　　　成为具有某种功能或者处理某个业务的对象，简称Bean。

2. 在Tomcat中，所有编译好的JavaBean都需要放在某个应用目录下的　　　目录之下。

3. JSP开发网站的两种模式分为　　　和　　　。

4. 如果你想使用JavaBean设计一个网站计数器，那么该Bean的scope应当设为　　　。

5. 按功能JavaBean可以分为　　　和　　　。

四、问答题

1. 试说明什么是JavaBean。

2. 试说明如何在JSP网页中载入JavaBean。

3. JavaBean对象可声明哪些不同的生命周期？

4. JavaBean程序除了必须要有一个无传入值的建构式之外，还有哪些特色？

五、编程题

要求编写两个JSP页面：input.jsp和show.jsp。编写一个名字为car的JavaBean，其中car由Car.class类负责创建。

input.jsp页面提供一个表单。其中表单允许用户输入汽车的牌号、名称和生产日期，该表单将用户输入的信息提交给当前页面，当前页面调用名字为car的Bean，并使用表单提交的数据设置car的有关属性的值。要求在input.jsp提供一个超链接，以便用户单击这个超链接访问show.jsp页面。

show.jsp调用名字为car的Bean，并显示该Bean的各个属性的值。

编写的Car.java应当有汽车号码、名称和生产日期的属性，并提供相应的getXXX和setXXX方法，来获取和修改这些属性的值。
第7章　JSP中的文件操作

文件可以永久地存储信息。从本质上讲，文件就是存放在盘上的一系列数据的集合。应用程序如果想长期保存数据，就必须将数据存储到文件中，这就涉及文件的操作。而在编写网站应用程序的过程中，有许多地方要对文件进行操作。本章将要对JSP中文件操作的应用做一些介绍，如读写文件、上传和下载文件、创建和删除目录等。

本章学习目标

 	◎　了解JSP中的数据流

 	◎　了解File类

 	◎　掌握文件相关的操作，如读写、上传和下载文件及创建和删除目录等

 	◎　了解使用SmartUpload和Commons FileUpload上传包

 [image:]
 本章案例源代码下载

7.1　数据流和File类

JSP网页结合Java类库中的I/O类，可以轻易开发出具备文件存取功能的网页程序。

7.1.1　数据流

我们知道，多数程序在不获取外部数据的情况下不能顺利完成目标。数据从一个输入源获得，程序的结果被送到输出目的地，这些源和目的地被广泛地定义。例如一个网络连接器、内存缓冲区或磁盘文件可以被输入／输出类熟练地操作，这些外设都由相同的抽象体流（Stream）来处理。流，是一个生产或消费信息的逻辑实体。流通过输入／输出系统与物理设备相连。尽管与之相连的实际的物理设备各不相同，但所有的流都以同样的方式运转。

JSP定义了两种数据流，即字节流和字符流。

字节流类为处理字节式输入／输出提供了丰富的环境，其处理单元为1个字节，操作字节和字节数组。一个字节流可以和其他任何类型的对象并用，包括二进制数据。这样的多功能性使得字节流对很多类型的程序都很重要。字节流以InputStream（输入流）和OutputStream（输出流）为顶层。InputStream是一个定义了流式字节输入模式的抽象类，该类的所有方法在出错条件下引发一个IOException异常。OutputStream是定义了流式字节输出模式的抽象类，该类的所有方法返回一个void值，并且在出错情况下引发一个IOException异常。

字符流提供了处理任何类型输入／输出操作的足够功能，字符流处理的单元为2个字节的Unicode字符，分别操作字符、字符数组或字符串。字符流以Reader和Writer为顶层。Reader是定义Java的流式字符输入模式的抽象类，该类的所有方法在出错情况下都将引发IOException异常。Writer是定义流式字符输出的抽象类，所有该类的方法都返回一个void值并在出错条件下引发IOException异常。

7.1.2　File类

除了一些流式操作的类外，还有一些用于文件系统操作的类，即File类。Java内建的用来操作文件目录的File类，提供新增、删除与修改等操作文件相关功能所需的方法成员。也就是说，File类没有指定信息怎样从文件读取或向文件存储，它描述了文件本身的属性。File对象用来获取或处理与磁盘文件相关的信息，例如权限、时间、日期和目录路径。另外，File还浏览子目录层次结构。JSP网页在使用File类之前，必须建立File类的实体对象，同时指定对象所要操作的文件实体路径。然而这并非是绝对的，在某些并非针对特定文件对象的操作之下，可直接使用File类。用来生成File对象的构造函数如下：

 File(String directoryPath)

 File(String directoryPath,String filename)

 File(File dirObj,String filename)

其中，directoryPath是文件的路径名，filename是文件名，dirObj是一个指定目录的File对象。第一个构造函数通过全路径，即路径文件名来创建对象，pathname可以是绝对路径也可以是相对路径。第二个构造函数通过父目录和文件名来创建对象，filename是不含路径的文件名。第三个构造函数也是通过父目录和文件名来创建对象，但父目录由一个File对象提供。

File类位于命名空间Java.io，因此在JSP网页使用File类之前，必须利用以下的程序代码将此命名空间载入：

 <%@ page import ="Java.io.*" %>

 注意

 文件的路径有两种形式，即绝对路径和相对路径。绝对路径包含它所指定的文件的完整路径信息，根据绝对路径就可以唯一定位一个文件。而相对路径是针对“其他某个路径”而言的，这个路径和相对路径共同定位一个文件的位置。

File类提供了许多的成员，File类对象通过引用这些成员，可以很方便地取得特定文件目录的性质，如表7-1所示是几个常用的属性成员。

 表7-1　File类的属性

 [image:]

这些方法包含一些常见的文件特性，例如查看文件是否只读或是只写的canRead与canWrite，取得文件名称的getName与文件大小长度的length，等等。

由于File对象本身仅仅只是参考一个特定的路径，因此上述的路径及文件参数也可能代表一个不存在的文件，在进行文件的操作之前，可以利用exists()方法查看文件是否存在，以判断是否进行相关的文件操作，这一点非常重要，若是尝试存取一个不存在的文件，会让系统产生一个错误的例外对象。

下面的范例演示一个查看文件相关性质的JSP网页实例。

【例7-1】查看文件内容（usingFile.jsp），代码如下：

 [image:]

程序建立了3个文件对象：myDir、myFile和mynotExistFileFile，这3个对象分别代表一个目录，以及两个文件，接着引用上述表中的各种方法，查看其属性内容，并且将结果输出于网页上。

上述File类的方法都相当简单，这里不再将其用法全数列出，用户可以自行尝试运行，可在C盘下创建文件夹ch07\theFile，运行此范例结果如图7-1所示。如果文件夹没创建，会显示false。

 [image:]
 图7-1　usingFile.jsp运行结果

一般文件的维护操作包含了新增、删除及列举等操作，File类本身也提供了相关功能的方法成员，如表7-2所示。

 表7-2　文件维护方法

 [image:]

表7-2中所列举的方法包含了文件与目录的创建、删除与重新命名等。File对象不仅仅代表一个文件，而且可以参考至一个实体目录，因此可以看到表中的方法成员，同时包含了文件夹操作所需的功能。

7.2　读写文本文件

读写文件是文件操作最基本的内容。读写文本文件所需的功能主要由两个类所提供：FileWriter及FileReader。其中FileWriter()负责将数据写入文件，FileReader()则用以读取文件中的数据。

利用FileReader类读取文件内容数据之前，必须建立一个FileReader对象，然后引用其提供的方法成员读取文件的数据内容。建立FileReader对象必须输入指定操作的文件完整路径名称或是File对象，语法如下：

 FileReader myFileReader = new FileReader(strFileName) ;

 FileReader myFileReader = new FileReader(objFile) ;

将数据写入文本文件之前，如同File类，必须先建立FileWriter对象，同时传入所要操作的文件完整路径名称字符串，语法如下：

 FileWriter myFileWriter = new FileWriter(fileName)

 FileWriter myFileWriter = new FileWriter(myFile)

这一段程序代码建立一个参考路径文件fileName的写入文件对象，允许应用程序将文本数据写入其中，还可以利用另外一个版本的方法建立所需的对象，这个方法只需传入上述讨论File类时所用的文件对象myFile，即可建立用以编辑的写入文件对象。

【例7-2】编写一个读写文本文件的例子readwritefile.jsp，本例将先创建一个test.txt文件，并写入几句话，然后再读取文件中的数据，并且把它们显示到浏览器中。代码如下：

 [image:]

程序运行结果如图7-2所示。

 [image:]
 图7-2　程序运行结果

7.3　文件的浏览

【例7-3】编写一个浏览当前目录中文件与子目录的例子browserFile.jsp，执行后，会在浏览器中输出当前目录中的所有文件和子目录，并对文件和子目录进行统计。在该例中将调用java.io类，这个类提供了对文件和路径的抽象，在JSP中对文件的操作都是以它为核心展开的。代码如下：

 [image:]

在代码中获得了当前目录中所有文件的File对象数组，然后通过for语句循环输出获得的文件和子目录名。运行结果如图7-3所示。

 [image:]
 图7-3　程序运行结果

7.4　创建和删除目录

【例7-4】编写一个有关目录的创建与删除的例子Directory.jsp。本例的效果是，如果没有目录文件就创建一个新的目录文件，如果目录文件存在就删除该目录文件。代码如下：

 [image:]

在本例中，首先检查text目录是否存在，如果uploadFile目录不存在，则在当前目录中建立一个text目录，其结果如图7-4所示；如果uploadFile目录已经存在，则uploadFile目录将会被删除，其结果如图7-5所示。

 [image:]
 图7-4　创建目录

 [image:]
 图7-5　删除目录

7.5　文件的上传和下载

要实现文件上传，必须先了解上传文件的HTTP请求。【例7-5】示范了如何上传文件，以及把HTTP请求的原始数据写入文件。用文本编辑器查看该文件即可了解请求的格式，在此基础上就可以提取出上传文件的名字、文件内容及原本混合在一起的其他信息。

【例7-5】编写一个简单的页面uploadfile.jsp，提供一个表单，用户从这里选择文件并把文件上传到服务器。页面显示如图7-6所示。代码如下：

 [image:]
 图7-6　uploadfile.jsp页面

 [image:]

在uploadfile.jsp页面中，需要注意的是：

 <FORM METHOD="POST" ACTION="uploadfile1.jsp" ENCTYPE="multipart/form-data">

在该语句中，ENCTYPE="multipart/form-data"表示以二进制的方式传递提交的数据。

现在创建处理信息的页面uploadfile1.jsp，实现获取文件里面的信息并保存在指定的文件夹upload内的功能，代码如下：

 [image:]

 [image:]

代码中首先获取了上传文件的相关属性信息和文件内容，然后将获取的信息转换为指定格式的文件保存在服务器上。用request对象获取相关信息。然后在保存文件之前使用if（checkFile.exists()）判断上传文件是否存在，使用if（!fileDir.exists()）判断保存的文件目录是否存在，判断结束后，使用fileOut.write（dataBytes,startPos,（endPos-startPos））语句保存文件信息。文件保存成功后，页面显示效果如图7-7所示。

 [image:]
 图7-7　上传文件成功

让一个已知文件类型直接提示浏览者下载，而不是用它相关联的程序打开。以下用例子说明如何操作。创建两个jsp页面共同完成该功能，一个Downfile.jsp页面主要显示指定文件夹upload中要下载的文件对象，可以由客户选择其中之一；另一个文件Downfile1.jsp从服务器获取相关下载信息，把数据输出到客户端。

Downfile.jsp的代码如下：

 [image:]

在该文件中，使用创建的File对象调用list()方法，将指定文件夹upload中所有文件显示并可以选择下载保存。

Downfile1.jsp的代码如下：

 [image:]

运行结果如图7-8所示，可右键单击“下载”链接，从弹出的菜单中可选择“目标另存为”选项，选择文件的保存的路径如图7-9所示。

 [image:]
 图7-8　Downfile.jsp页面

 [image:]
 图7-9　文件下载对话框

7.6　使用jspSmartUpload上传包

JSP本身并没有内建的机制可以直接在网页上制作文件上传功能，因此必须寻求其他的解决方案。对此，网络提供了足够的支持，有几个现成包可以直接使用，其中比较著名的有jspSmart所提供的jspSmartUpload包。

首先介绍如何安装所需的包，从网站上下载jspsmartupload.jar这个文件，将此文件放到网站WEB-INF\lib的文件夹下，接下来就可以在JSP网页当中使用此包。

在网页当中引用包的时候，必须以下式将其载入：

 <%@page import="com.jspsmart.upload.*" %>

上传文件的类是一种JavaBean组件，在使用前要先实例化，代码如下：

 <jsp:useBean id="theSmartUpload"

 class="com.jspsmart.upload.SmartUpload" />

这段语法声明网页当中将以id值theSmartUpload为名称，引用SmartUpload这个组件，进行文件上传操作。

jspSmartUpload提供了相当丰富的功能，其中最简单的方式便是引用SmartUpload类的方法成员，其中包含了3个步骤：初始化、上传和存储文件。

1. 初始化SmartUpload对象

在引用SmartUpload之前，必须对其进行初始化，方法initialize()用来完成初始化操作，语法如下（其中的theSmartUpload为SmartUpload的名称，pageContext则是初始化过程所需的对象）：

 theSmartUpload.initialize(pageContext) ;

初始化完成之后，就可以开始准备上传文件的操作。在此之前，还必须引用setTotalMaxFileSize()方法，设置所允许的文件大小，下面的程序代码设置一个最大为10MB的上传限制。

 theSmartUpload.setTotalMaxFileSize(10*1024*1024) ;

2. 上传

初始化完成之后，紧接着直接调用upload()，开始进行上传操作，其语法如下：

 theSmartUpload.upload() ;

需要注意的是，这个方法没有任何参数，它将表单上所有指定的文件直接上传。

3. 存储文件

存储文件是上传的最后一个步骤，save()用来指定上传之后文件所要保存的位置，其语法如下（其中的fileSavePath代表上传之后的文件所要存储的位置）：

 fileCount=theSmartUpload.save(fileSavePath) ;

save()方法完成文件的存储工作之后，便会返回一个表示上传文件数目的整数值，上式的fileCount用来存储这个值。

了解相关的基础用法，接下来要说明上传文件的表单，通常必须提供一个文件地址框，让用户输入所要上传的文件名称及完整路径，然后进行上传。一般来说，HTML文件输入方块标签，便可以提供所需的功能，如：

 <input type=file name=File1 size=50 />

最后必须注意的是，用来容纳文件标签的表单，其编码格式必须设置为multipart/form-data，才能在文件传输的过程中进行正确的编码，如：

 <form action=actionpage enctype="multipart/form-data" >

【例7-6】现在来看看一个简单的范例，其中演示了最简单的文件上传功能（注：该代码运行前需要在C盘上创建upload文件夹）。

文件上传（FileUpload.html）代码如下：

 <html>

 <head>

 <title>jspSmartUpload</title>

 <meta http-equiv="Content-Type" content="text/html; charset=gb2312">

 </head>

 <body>

 upload file

 <form action="upload.jsp" method="post" enctype="multipart/form-data">

 <table><tr><td>name:

 <input type="file" name="file2" size="20"></td></tr>

 <tr><td><input type="submit" value="上传"></td></tr>

 </table>

 </form>

 </body>

 </html>

upload.jsp代码如下：

 <%@ page contentType="text/html; charset=gb2312" language="java" import="java.sql.*" errorPage="" %>

 <%@ page import="com.jspsmart.upload.*"%>

 <jsp:useBean id="mySmartUpload" scope="page" class="com.jspsmart.upload.SmartUpload" />

 <html>

 <head>

 <title>上载附件 </title>

 <meta http-equiv="Content-Type" content="text/html; charset=gb2312">

 </head>

 <body>

 <%

 //上载附件

 try

 {

 mySmartUpload.initialize(pageContext);

 mySmartUpload.service(request,response);

 mySmartUpload.upload();

 String fn=mySmartUpload.getFiles().getFile(0).getFileName();

 mySmartUpload.save("c:\\upload");//文件保存的目录为upload

 out.println("已经成功上传了文件");

 }

 catch(Exception e)

 {%>重新上传<%

 e.printStackTrace();

 }

 %>

 继续上传

 </body>

 </html>

运行结果如图7-10和图7-11所示。

 [image:]
 图7-10　FileUpload.html页面

 [image:]
 图7-11　文件上传对话框

7.7　使用CommonsFileUpload上传包

使用jspSmartupload上传过大文件或者多文件的时候，可能出现CPU或内存占用过高的问题，并且只有重新启动容器才能恢复正常，所以这里给读者推荐另一种上传包Apache Commons FileUpload。使用Commons-FileUpload组件实现文件上传，需要导入两个jar包：在网站http://commons.apache.org/fileupload/下载commons-fileupload-1.3.3-bin.zip，得到commonsfileupload-1.3.3.jar；在网站http://commons.apache.org/io/下载commons-io-2.6-bin.zip，得到commons-io-2.6.jar。

Commons FileUpload提供了相当丰富的功能，其中最简单的方式便是采用以下方法进行文件的操作。

（1）DiskFileItemFactory：设置磁盘空间，保存临时文件。这只是一个具类。

 DiskFileItemFactory factory=new DiskFileItemFactory();

（2）ServletFileUpload：文件上传的核心类，此类接收request，并解析reqeust。

 ServletFileUpload upload=new ServletFileUpload(factory);

（3）进行文件解析后放在List中，因为这个类库支持多个文件上传，因此会把结果保存在List中。

 List<FileItem>fileList=upload.parseRequest(request);

（4）获取上传文件，进行分析。

 File remoteFile = new File(new String(fileItem.getName().getBytes(),"UTF-8"));

【例7-7】现在来看一个简单的范例，其中演示了FileUpload最简单的文件上传功能。

Commons-FileUpload.html代码如下：

 [image:]

FileUpload.jsp代码如下：

 [image:]

运行结果如图7-12和图7-13所示。

 [image:]
 图7-12　Commons-FileUpload.html页面

 [image:]
 图7-13　文件上传对话框

7.8　小结

通过本章的学习，读者可以了解到文件操作是网站编程的重要内容之一。在编写网站应用程序的过程中，有许多地方要对文件进行操作。本章介绍了文件存储数据的相关知识、数据流和File类及文件的相关操作，如读写文本文件、文件的浏览、文件的上传和下载数据等内容。通过本章的学习，读者应该掌握文件存储数据的相关知识、数据流和File类，以及文件操作的应用。

7.9　习题

一、选择题

1. 在Web应用程序的目录结构中，在WEB-INF文件夹中的lib目录是放（　　）的。

A. .jsp文件

B. .class文件

C. .jar文件

D. web.xml文件

2. java.io.File对象的（　　）方法可以新建一个文件。

A. delete()

B. createFile()

C. mkdir()

D. createNewFile()

3. 在JSP应用程序中要求删除所有photo目录中的的文件，但是保留文件夹，下列代码中空缺位置最适合的选项为（　　）。

 [image:]

A. files[i].isFile()

B. files[i].isDirectory()

C. !files[i].isFile()

D. ! files[i].isDirectory()

4. 下列File对象的（　　）方法能够判断给定路径下的文件是否存在。

A. canRead()

B. canWrite()

C. exists()

D. isDirectory()

5. BufferedReader除处理Reader类中的方法外，还提供了public String readLine()方法，该方法读入一行文本，这里的“一行”指字符串以“\n”或（　　）做结尾。

A. \t

B. \f

C. \r

D. \p

二、判断题

1. File类直接处理文件和文件系统，它并不涉及文件的读写操作。

（　　）

2. 创建一个File对象，就会在某个物理路径下创建一个文件或目录。

（　　）

3. 使用Java的输出流写入数据的时候，就会开启一个通向目的地的通道，这个目的地可以是文件，但不能是内存或网络连接等。

（　　）

4.“纯文本”类的信息，一般使用字符流来进行处理。

（　　）

5. InputStream抽象类的read方法出错后一定会抛出一个IOException异常。

（　　）

三、填空题

1. Java中有4个“输入／输出”的抽象类，分别是　　　、　　　、　　　和　　　。

2. 从网站下载jspsmartupload.jar文件，将此文件放到网站的　　　文件夹底下。

3. 字节流类为处理字节式输入／输出提供了丰富的环境，其处理单元为　　　个字节；字符流提供了处理任何类型输入／输出操作的功能，字符流处理的单元为　　　个字节的Unicode字符。

四、问答题

1. JSP网页使用File类之前，将哪个命名空间载入？

2. 试说明如何利用File类进行文件目录的操作。

3. 简述文件存取操作的操作过程。

五、编程题

1. 创建两个文件selectContent.jsp和writeFile.jsp，首先使用selectContent.jsp中的表单输入存放路径、保存的文件名和将要写入文件的文件内容信息，提交后，由writeFile.jsp文件负责将内容写到指定的文件中，同时放到指定的路径下。运行结果如图7-14和图7-15所示。

 [image:]
 图7-14　selectContent.jsp页面

 [image:]
 图7-15　提交成功后的结果

2. 创建两个文件selectFile.jsp和readContent.jsp。首先使用selectFile.jsp中的表单输入存放路径和将要读取的文件名，提交后，由readContent.jsp文件负责将文件读出并显示在页面上。运行结果如图7-16和图7-17所示。

 [image:]
 图7-16　selectFile.jsp页面

 [image:]
 图7-17　提交成功后的结果

第8章　应用JDBC进行数据库开发

与数据库交互是Web应用程序的一个重要的组成部分。JSP使用JDBC（Java DataBase Connectivity）技术来实现与数据库的连接。JDBC提供了JSP操作数据库的各种接口程序，所以JDBC数据库编程对Web开发是非常重要的。很多数据库管理系统提供JDBC驱动程序，JSP可以直接利用它访问数据库。有一些数据库管理系统没有提供JDBC驱动程序，JSP可以通过Sun公司的JDBC-ODBC桥来实现对它们的访问。本章主要介绍在JSP中如何实现数据库的连接和访问。同时，为了提高数据库访问效率，也将介绍一种常见的技术——数据库连接池。数据库连接池通过统一管理一定数量的数据库连接来满足动态网站中所发送的数据库请求，并提高数据库的连接与断开等执行效率。本章最后还介绍了二进制文件在数据库中的存取方法和经常使用的分页技术。

本章学习目标

 	◎　了解JDBC的用途、体系结构和驱动器类型

 	◎　了解JDBC连接数据库的方法

 	◎　掌握JDBC访问数据的过程

 	◎　掌握Statement接口及相关常用方法

 	◎　掌握PreparedStatement接口及相关常用方法

 	◎　了解CallableStatement接口

 	◎　掌握ResultSet处理结果集

 	◎　了解使用JDBC连接其他数据库

 	◎　掌握连接池的原理及如何配置

 	◎　熟悉从数据库中存取各种二进制文件

 	◎　熟悉分页技术

 [image:]
 本章案例源代码下载

8.1　JDBC概述

JDBC是一种可用于执行SQL语句的Java API（Application Programming Interface，应用程序设计接口），它由一些Java语言编写的类和页面组成。JDBC为数据库应用开发人员、数据库前台工具开发人员提供了一种标准的应用程序设计接口，使开发人员可以用纯Java语言编写完整的数据库应用程序。

8.1.1　JDBC的用途

简单地说，JDBC主要有3种作用，分别是与数据库连接、发送SQL语句和处理语句执行结果。同时，JDBC是一种低级的API接口，它直接调用SQL语句，功能简单，在它的基础上可以建立起一些高级的API接口，高级API接口往往使用更为方便且便于理解。通过JDBC，可以很方便地向各种关系数据发送SQL语句并获得执行结果。换句话说，有了JDBC API，就不必为访问MySQL、SQL Server或Oracle等数据库专门编写一个程序，程序员只需调用JDBC API编写一个程序就够了，只要保证所使用的SQL语法在各种数据库中都支持就可以了。JDBC对Java程序员而言是API，对实现与数据库连接的服务提供商而言是接口模型。作为API，JDBC为程序开发提供标准的接口，并为数据库厂商及第三方中间件厂商实现与数据库的连接提供了标准方法。

8.1.2　JDBC的典型用法

JDBC支持两层模型，也支持三层模型访问数据库。

如图8-1所示，在两层模型中，一个Java Applet或者一个Java应用直接同数据库连接。这就需要与数据库进行连接的JDBC驱动器。用户的SQL语句被传送给数据库，而这些语句执行的结果将被返回给用户。数据库可以在同一计算机上，也可以在另一台计算机上通过网络进行连接，这称为Client/Server结构，用户的计算机作为Client，运行数据库的计算机作为Server。这个网络可以是Intranet，例如连接全体员工的企业内部网，当然也可以是Internet。

 [image:]
 图8-1　两层模型

如图8-2所示，在三层模型中，命令将被发送到服务的“中间层”，而“中间层”将SQL语句发送到数据库。数据库处理SQL语句并将结果返回“中间层”，然后“中间层”将它们返回给用户。MIS管理员发现三层模型很有吸引力，因为“中间层”可以控制访问并协同更新数据库。另一个优势就是如果有一个“中间层”，用户就可以使用一个易用的高层的API，这个API可以由“中间层”转换成底层的调用。而且，在许多情况下，三层模型可以提供更好的性能。

 [image:]
 图8-2　三层模型

到目前为止，“中间层”通常还是用C或C++实现，以保证其高性能。但随着优化编译器的引入，将Java的字节码转换成高效的机器码，用Java来实现“中间层”将越来越实际。而JDBC是允许从一个Java“中间层”访问数据库的关键。

8.1.3　JDBC的体系结构

现在应用程序与数据库进行信息交换已经非常普遍，因此，一种程序设计语言对数据库开发能力的支持直接影响着该语言的流行程度。在JDK 1.1版本之前，Java语言提供的对数据库访问支持的能力是很弱的，编程人员不得不使用ODBC（Open DataBase Connectivity）函数调用，这使得Java程序的跨平台发布能力受到很大的限制。JDBC的出现使Java程序对各种数据库的访问能力大大增强。通过使用JDBC，开发人员可以很方便地将SQL语句传送给几乎任何一种数据库。JDBC的体系结构如图8-3所示。

 [image:]
 图8-3　JDBC的体系结构

由图8-3可以看出，JDBC API的作用就是屏蔽不同的数据库驱动程序之间的差别，使得程序设计人员有一个标准的、纯Java的数据库程序设计接口，为在Java中访问任意类型的数据库提供技术支持，而驱动程序管理器（Driver Manager）则为应用程序加载数据库驱动程序。数据库驱动程序是与具体的数据库相关的，用于向数据库提交SQL请求。

8.1.4　驱动器类型

要通过JDBC来存取某一特定的数据库，必须有相应的JDBC驱动程序，它往往是由生产数据库的厂家提供，是连接JDBC API与具体数据库之间的桥梁。

通常，Java程序先使用JDBC API与JDBC驱动程序Manager交互，由JDBC驱动程序Manager载入指定的JDBC驱动程序，以后就可以通过JDBC API来存取数据库。

JDBC驱动程序是用于特定数据库的一套实施了JDBC接口的类集，共有4种类型的JDBC驱动程序。

1. JDBC-ODBC桥驱动程序

JDBC-ODBC桥驱动程序能使客户端通过JDBC调用连接到一个使用ODBC驱动程序的数据库。使用这类驱动程序需要每个客户端计算机都安装数据库对应的ODBC驱动程序，但该ODBC驱动程序不一定要与Java兼容。

如图8-4所示显示了通过JDBC-ODBC桥连接Java和数据库的过程。

2. 部分本地API Java驱动程序

部分本地API Java驱动程序将JDBC调用转换为特定的数据库调用，与JDBC-ODBC桥驱动程序一样，这类驱动程序也要求客户端计算机安装相应的二进制代码。所以这类驱动程序不太适合于使用数据库的Applet。

Native API驱动程序利用客户机上的本地代码库与数据库进行直接通信，通信过程如图8-5所示。

 [image:]
 图8-4　JDBC-ODBC桥驱动程序

 [image:]
 图8-5　本地API驱动程序

3. JDBC纯网络Java驱动程序

JDBC纯网络Java驱动程序能将JDBC的调用转换为独立于数据库的网络协议，这种类型的驱动程序特别适合具有中间件的分布式应用，但目前这类驱动程序的产品不多。

如图8-6所示显示了JDBC纯网络Java驱动程序与数据库的通信过程。

4. 本地协议的纯Java驱动程序

本地协议的纯Java驱动程序能将JDBC调用转换为数据库直接使用的网络协议，它不需要安装客户端软件，它是100%的Java程序，使用Java Sockets来连接数据库，所以特别适合于通过网络使用后台数据库的Applet。后面介绍的程序主要使用这类驱动程序。

如图8-7所示显示了本地协议驱动程序与数据库的通信过程。

 [image:]
 图8-6　JDBC网络驱动程序

 [image:]
 图8-7　本地协议驱动程序

8.1.5　安装驱动器

安装JDBC非常容易，本书以MySQL为例，安装步骤如下。

（1）MySQL的驱动程序称为Connector/J，目前的版本为5.7.20，可以在MySQL的官方网站上免费下载，其网址为http://www.mysql.com/downloads/connector/j/。下载的压缩包名为mysql-connector-java-5.1.44.zip，将其解压缩至硬盘，目录下名为mysql-connector-java-5.1.44-bin.jar的文件就是JDBC驱动。

（2）将mysql-connector-java-5.1.44-bin.jar文件复制到%TOMCAT_HOME%/common/lib目录下，例如C:\Program Files（x86）\Apache Software Foundation\Tomcat 7.0\lib目录。

（3）将C:\Program Files（x86）\Apache Software Foundation\Tomcat 7.0\lib\ mysql-connector-java-5.1.44-bin.jar写入CLASSPATH，具体方法可参照前面介绍的Tomcat运行环境的配置。这样可以保证在JSP页面或Servlet等Java类中顺利地调用JDBC程序，而且所有的网站应用都可以共享这个文件。

8.2　JDBC连接数据库的方法

JDBC提供了连接数据库的几种方法，即直接通信、通过JDBC驱动程序通信及通过ODBC通信。

1. 与数据源直接通信

使用JDBC和数据库已制定的协议时，可使用一个驱动程序直接与数据源通信，这个驱动程序既可以是自己建立的，也可以是一个公用的程序。直接通信实现起来非常复杂，但尽管如此，实现JDBC最有效的方法还直接通信。

从本质上说，直接通信就是使用它的协议创建一个直接与数据库通信的驱动程序，这样，只要客户机使用了同样的协议，就可以访问多种类型的数据库。但直接通信要求数据库文件为二进制格式，且能直接对文件进行读／写操作，这就大大影响了系统的安全性。

用直接通信方法连接Java和数据库的过程如图8-8所示。

2. 通过JDBC驱动程序通信

通过JDBC驱动程序通信比直接通信要容易，但采用这种方法首先必须编写一个实际的JDBC驱动程序，这个驱动程序可以实现在JDBC API中定义的不同接口，以便与属于数据库的专有驱动程序通信，如图8-9所示。

3. 与ODBC数据源通信

JDBC通过JDBC-ODBC桥与ODBC数据源相连，从而实现Java与数据库的连接，这是一种最容易且最常用的实现方法。

 [image:]
 图8-8　与数据源直接通信

 [image:]
 图8-9　通过JDBC驱动程序与数据源通信

8.3　使用JDBC操作数据库

JDBC的接口分为两个层次：一是面向程序开发人员的JDBC API，另一是底层的JDBC Driver API。JDBC接口如图8-10所示。

 [image:]
 图8-10　JDBC接口

Java DataBase Connectivity（JDBC）是一个标准的Java API，由一组类和接口组成，Java应用程序开发人员使用它来访问数据库和执行SQL语句。JDBC API主要包括6种接口，如表8-1所示。

 表8-1　JDBC API接口说明

 [image:]

8.3.1　使用JDBC访问数据库的过程

JDBC访问数据库可以分为连接数据库和操作数据库两个步骤。图8-11显示了一个用简单的JDBC模型进行连接、执行和获取数据的过程。

 [image:]
 图8-11　简单JDBC模型访问数据库的过程

1. JDBC连接数据库

JDBC连接数据库分为加载驱动程序和建立连接两个步骤。

（1）加载驱动程序。为了与特定的数据源或者数据库相连，JDBC必须加载相应的驱动程序。驱动程序可以是JDBC-OBDC Bridge驱动程序、JDBC到通过网络协议的驱动程序，或者是由数据库厂商提供的驱动程序。可以通过设置Java属性中的sql.driver来指定驱动程序列表，这个属性是一系列用冒号隔开的driver类的名称，JDBC按照列表搜索驱动程序，并使用第一个能成功与给定的URL相连的驱动程序。在搜索驱动程序列表时，JDBC跳过那些包含不可信任代码的驱动程序，除非它与要打开的数据库来自于同一个服务器主机。也可以不设置sql.driver属性，而使用Class.forName方法显示加载一个驱动程序，例如：

 String driverName="com.mysql.jdbc.Driver ";

 Class.forName(driverName);

上面的语句直接加载了MySQL数据库的驱动程序，由驱动程序负责向DriverManager登记。在与数据库相连接时，DriverManager试图使用此驱动程序。

（2）建立连接。DriverManager类的getConnection()方法用于建立与某个数据源的连接，例如：

 String url="jdbc:mysql://localhost/sql_test";

 Connection con=DriverManager.getConnection(url);

上面的语句用来与URL对象指定的数据源建立连接，若连接成功，则返回一个Connection类的对象con。以后对这个数据源的操作都是基于con对象的。GetConnection()方法是DriverManager类中的静态方法，所以使用时不用生成DriverManager类的对象，直接使用类名DriverManager调用就可以了。

前面使用的getConnection()方法是最简单的建立连接的方法，它除数据源名外没有给出任何附加信息，在小型数据库（例如Access）中，这种方法是适用的。但是在大型数据库中，建立连接需要给出用户名和密码，有另一个getConnection()方法用于这种情况：

 getConnection(String url,String user,String password);

例如：

 String Name="root";

 String Password="123456";

 Connection con=DriverManager.getConnection("jdbc:mysql://localhost/sql_test ",name,Password);

【例8-1】用下面的例子测试数据是否连接成功。首先将本章的db.txt导入到MySQL中，使用命令：

 source 绝对路径\db.txt

创建testconnection.jsp页面，如果连接正常，页面将显示“连接数据库成功”。

 [image:]

2. JDBC操作数据库

JDBC连接数据库之后，即可对数据库中的数据进行操作，操作步骤如下。

（1）执行SQL语句。建立数据库连接后，就能够向数据库发送SQL语句了。JDBC提供了Statement类来发送SQL语句，Statement类的对象用createStatement()方法创建；SQL语句发送后，返回的结果通常存放在一个ResultSet类的对象中，ResultSet可以看作是一个表，这个表包含由SQL返回的列名和相应的值，ResultSet对象中维持了一个指向当前行的指针，通过一系列的getXXX方法可以检索当前行的各个列，并显示出来。

（2）检索结果。对比ResultSet对象进行处理后，才能将查询结果显示给用户。ResultSet对象包括一个由查询语句返回的表，这个表中包含所有的查询结果。对ResultSet对象的处理必须逐行进行，ResultSet.next方法使指针下移一行。而对每一行中的各个列，则可以按任何顺序进行处理。ResultSet类的getXXX方法可将结果集中的SQL数据类型转换为Java数据类型，如getInt、getString等。

（3）关闭连接。在对象使用完毕后，应关闭连接。

8.3.2　使用Statement执行SQL语句

java.sql包下有两个非常重要的接口—— Statement与ResultSet，其中Statement定义运行SQL指令所需的方法成员，如果运行的SQL是一种Select类型的指令，ResultSet将封装Statement运行SQL指令之后所返回的数据内容，用户通过ResultSet取得SQL叙述返回的数据内容。

JSP网页在使用Statement的功能之前，必须先取得其对象，而Statement类型的对象则是通过引用Connection接口类型对象的方法成员createStatement()所产生的。

图8-12说明了Statement与ResultSet类型对象在整个JSP网页当中所扮演的角色。

 [image:]
 图8-12　Statement与ResultSet对象

JSP网页通过SQL的引用，可以进行各种数据库的操作，其中包含了修改数据库结构和数据内容的更新与查询。修改数据库结构包含了新增与删除数据表、变更数据表内容、修改字段等；数据查询与更新则是根据选择条件从数据库中取出部分数据，或是新增、删除、修改数据内容。

Statement主要提供运行SQL指令运行的方法，以及设置运行SQL后所返回ResultSet类型对象的属性，如表8-2所示。

 表8-2　Statement对象的方法

 [image:]

1. executeQuery()方法

executeQuery()方法用于执行产生单个结果集的SQL语句，如Select语句。executeQuery()方法在Statement接口中的完整声明如下：

 ResultSet executeQuery(String sql)throws SQLException;

【例8-2】下面的testExecuteQuery.jsp中使用executeQuery()方法访问student中的数据，并显示返回的结果集，结果如图8-13所示。

 [image:]
 图8-13　testExecuteQuery.jsp运行结果

testExecuteQuery.jsp的代码如下：

 [image:]

2. executeUpdate()方法

executeUpdate()方法运行给定的SQL语句，可以是Insert、Update或Delete语句；或不返回任何内容的SQL语句，例如Create Table和Drop Table。Insert、Update或Delete语句的效果是修改表中零行或多行中的一列或多列。executeUpdate()的返回值是一个整数，指示受影响的行数（即更新计数）。对于Create Table或Drop Table等不操作行的语句，executeUpdate()的返回值总为零。executeUpdate()用于更新表的时间更多，因为表只需要创建一次，但经常被更新。

executeUpdate()方法在Statement接口中的完整声明如下：

 int executeUpdate(String sql)throws SQLException;

【例8-3】下面的testExecuteUpdate.jsp中，使用executeUpdate()方法访问student中的数据，并更新student表，运行结果如图8-14所示。

 [image:]
 图8-14　testExecuteUpdate.jsp运行结果

testExecuteUpdate.jsp的代码如下：

 [image:]

3. execute()方法

execute()方法用于执行返回多个结果集、多个更新计数或二者组合的语句。execute()方法应该仅在语句能返回多个ResultSet对象、多个更新计数或ResultSet对象与更新计数的组合时使用。当执行某个已存储过程或动态执行未知SQL字符串（即应用程序程序员在编译时未知）时，有可能出现多个结果的情况，尽管这种情况很少见。execute()方法可以执行查询语句，也可以执行修改语句。

execute()方法在Statement接口中完整的声明如下：

 boolean execute(String sql)throws SQLException;

【例8-4】下面的testExecute.jsp中使用execute()方法访问student中的数据，在表单文本框中输入想要执行的SQL语句，提交后，如果SQL语句正确，页面将执行并返回结果。例如，输入select * from student，运行结果如图8-15和图8-16所示。

 [image:]
 图8-15　testExecute.jsp页面显示

 [image:]
 图8-16　提交SQL语句运行结果

testExecute.jsp的代码如下：

 [image:]

4. executeBatch()方法

executeBatch()方法用于成批地执行SQL语句，但不能执行返回值是ResultSet结果集的SQL语句，例如select。

executeBatch()方法在Statement接口中完整的声明如下：

 int[] executeBatch(String sql)throws SQLException;

为了配合该操作还有两个辅助方法。

[image:]　addBatch()：向批处理中加入一个更新语句。

[image:]　clearBatch()：清空批处理中的更新语句。

【例8-5】下面的testExecuteBatch.jsp中使用executeBatch()方法访问student中的数据，执行多条SQL语句，提交后，如果SQL语句正确，页面将按照顺序执行各个语句并返回结果，运行结果如图8-17所示。

testExecuteBatch.jsp的代码如下：

 [image:]
 图8-17　testExecuteBatch.jsp运行结果

 [image:]

8.3.3　PreparedStatement接口

PreparedStatement接口继承自Statement，可作为在给定连接上执行SQL语句的包容器。

1. 与Statement的异同

PreparedStatement与Statement在两方面有所不同：

[image:]　PreparedStatement实例包含已编译的SQL语句，这就是使语句“准备好”。

[image:]　包含于PreparedStatement对象中的SQL语句可具有一个或多个IN参数。IN参数的值在SQL语句创建时未被指定。相反，该语句为每个IN参数保留一个问号（?）作为占位符。每个问号的值必须在该语句执行之前，通过适当的setXXX方法来提供。

由于PreparedStatement对象已预编译过，所以其执行速度要快于Statement对象。因此，多次执行的SQL语句经常创建为PreparedStatement对象，以提高效率。

作为Statement的子类，PreparedStatement继承了Statement的所有功能。另外它还添加了一整套方法，用于设置发送给数据库以取代IN参数占位符的值。同时，execute()、executeQuery()和executeUpdate()这3种方法已被更改，以使之不再需要参数。这些方法的Statement形式（接受SQL语句参数的形式）不应该用于PreparedStatement对象。

2. 创建PreparedStatement对象

以下代码（其中con是Connection对象）创建包含带两个IN参数占位符的SQL语句的PreparedStatement对象。

 PreparedStatement pstmt = con.prepareStatement("UPDATE test SET a = ? WHERE b = ?");

pstmt对象包含语句UPDATE test SET a = ? WHERE b = ?，它已发送给DBMS，并为执行做好了准备。

3. 传递IN参数

在执行PreparedStatement对象之前，必须设置每个问号（?）的参数值。可以通过调用setXXX方法来完成，其中XXX是与该参数对应的类型。例如，如果参数具有Java类型long，则使用的方法就是setLong。setXXX方法的第1个参数要设置给该参数的序数位置，第2个参数设置给该参数的值。例如，以下代码将第1个参数设为1，第2个参数设为8。

 pstmt.setLong(1,1);

 pstmt.setLong(2,8);

一旦设置了给定语句的参数值，就可用它多次执行该语句，直到调用clearParameters()方法清除它为止。

在连接的默认模式下（启用自动提交），当语句完成时将自动提交或还原该语句。

如果基本数据库和驱动程序在语句提交之后仍保持这些语句的打开状态，则同一个PreparedStatement可执行多次。如果这一点不成立，那么试图通过使用PreparedStatement()对象代替Statement对象来提高性能是没有意义的。

4. IN参数中数据类型的一致性

setXXX方法中的XXX是Java类型，它是一种隐含的JDBC类型（一般为SQL类型），因为驱动程序将把Java类型映射为相应的JDBC类型，并将该JDBC类型发送给数据库。例如，以下代码将PreparedStatement对象pstmt的第2个参数设置为4，Java类型为short。

 pstmt.setShort(2,4);

驱动程序将4作为JDBC SMALLINT发送给数据库，它是Javashort类型的标准映射。

程序员的责任是确保将每个IN参数的Java类型映射为与数据库所需的JDBC数据类型兼容的JDBC类型。不妨考虑数据库需要JDBC SMALLINT的情况。如果使用方法setByte，则驱动程序将JDBC TINYINT发送给数据库。这是可行的，因为许多数据库可从一种类型转换为另一种与之相关的类型，并且通常TINYINT可用于SMALLINT适用的任何地方。然而，对于要适用于尽可能多的数据库的应用程序，最好使用与数据库所需的确切JDBC类型相应的Java类型。如果所需的JDBC类型是SMALLINT，则使用setShort代替setByte，这将使应用程序的可移植性更好。

5. 使用setObject()方法

程序员可使用setObject()方法显式地将输入参数转换为特定的JDBC类型。该方法可以接受第三个参数，用来指定目标JDBC类型。将JavaObject发送给数据库之前，驱动程序将把它转换为指定的JDBC类型。

如果没有指定JDBC类型，驱动程序就会将JavaObject映射到其默认的JDBC类型，然后将它发送到数据库，这与常规的setXXX方法类似。以上情况，驱动程序在将值发送到数据库之前，会把该值的Java类型映射为适当的JDBC类型。二者的差别在于setXXX方法使用从Java类型到JDBC类型的标准映射，而setObject()方法使用从JavaObject类型到JDBC类型的映射。

SetObject()方法允许接受所有Java对象的能力，使应用程序更为通用，并可在运行时接受参数的输入。这种情况下，应用程序在编译时并不清楚输入类型。通过使用setObject()方法，应用程序可接受所有Java对象类型作为输入类型，并将其转换为数据库所需的JDBC类型。

6. 将JDBC NULL作为IN参数发送

setNull()方法允许程序员将JDBC NULL值作为IN参数发送给数据库。但要注意，仍然必须指定参数的JDBC类型。

当把Java null值传递给setXXX方法时（如果它接受Java对象作为参数），也把JDBC NULL发送到数据库。但仅当指定JDBC类型时，setObject()方法才能接受null值。

7. 发送大的IN参数

setBytes()和setString()方法能够发送无限量的数据。但是，有时程序员更喜欢用较小的块传递大型的数据，这可以通过将IN参数设置为Java输入流来完成。当语句执行时，JDBC驱动程序将重复调用该输入流，读取其内容并将它们当作实际参数数据传输。

JDBC提供了3种将IN参数设置为输入流的方法：setBinaryStream()方法用于含有未说明字节的流，setAsciiStream()方法用于含有ASCII字符的流，而setUnicodeStream()方法用于含有Unicode字符的流。因为必须指定流的总长度，所以这些方法所采用的参数比其他的setXXX方法要多一个。这很有必要，因为一些数据库在发送数据之前需要知道其总的传送大小。

【例8-6】下面给出一个使用PreparedStatement执行SQL语句的完整实例，创建页面testPrepared Statement.jsp，运行结果如图8-18所示。

 [image:]
 图8-18　testPreparedStatement.jsp运行结果

testPreparedStatement.jsp的代码如下：

 [image:]

8.3.4　CallableStatement对象

CallableStatement对象为所有的DBMS提供了一种以标准形式调用存储过程的方法。存储过程存储在数据库中。对存储过程的调用是CallableStatement对象所含的内容。这种调用是用一种换码语法来写的，有两种形式：一种形式带结果参数，另一种形式不带结果参数。结果参数是一种输出（OUT）参数，是存储过程的返回值。两种形式都可带有数量可变的输入（IN参数）、输出（OUT参数）或输入和输出（INOUT参数）参数。问号将用作参数的占位符。

1. 调用存储过程的语法

在JDBC中调用存储过程的语法如下所示。注意，方括号表示其间的内容是可选项；方括号本身并不是语法的组成部分。

 {call 过程名[(?, ?, ...)]}

返回结果参数过程的语法如下：

 {? = call 过程名[(?, ?, ...)]}

不带参数存储过程的语法如下：

 {call 过程名}

通常，创建CallableStatement对象的用户应当知道所用的DBMS是支持存储过程的，并且知道这些过程都是什么。然而，如果需要检查，多种DatabaseMetaData方法都可以提供这样的信息。例如，如果DBMS支持存储过程的调用，则supportsStoredProcedures()方法将返回true，而getProcedures()方法将返回对存储过程的描述。

CallableStatement继承Statement的方法（用于处理一般的SQL语句），还继承了PreparedStatement的方法（用于处理IN参数）。CallableStatement中定义的所有方法都用于处理OUT参数或INOUT参数的输出部分：注册OUT参数的JDBC类型（一般SQL类型）、从这些参数中检索结果，或者检查所返回的值是否为JDBC NULL。

2. 创建CallableStatement对象

CallableStatement对象用Connection方法prepareCall()创建。下面是创建CallableStatement的实例，其中含有对存储过程getTestData的调用。该过程有两个变量，但不含结果参数。

 CallableStatement cstmt = con.prepareCall("{call getTestData(?, ?)}");

其中，“?”占位符为IN、OUT或INOUT参数，取决于存储过程getTestData。

3. IN和OUT参数

将IN参数传给CallableStatement对象是通过setXXX方法完成的，该方法继承自Prepared Statement。所传入参数的类型决定了所用的setXXX方法（例如，用setFloat来传入float值等）。

如果存储过程返回OUT参数，则在执行CallableStatement对象以前必须先注册每个OUT参数的JDBC类型（这是必需的，因为某些DBMS要求JDBC类型）。注册JDBC类型是用registerOutParameter()方法来完成的。语句执行完后，CallableStatement的getXXX方法将取回参数值。正确的getXXX方法是为各参数所注册的JDBC类型对应的Java类型。换句话说，registerOutParameter()方法使用的是JDBC类型（因此它与数据库返回的JDBC类型匹配），而getXXX将之转换为Java类型。

例如，下述代码先注册OUT参数，执行由cstmt所调用的存储过程，然后检索在OUT参数中返回的值。GetByte方法从第1个OUT参数中取出一个Java字节，而getBigDecimal()方法从第2个OUT参数中取出一个BigDecimal对象（小数点后面带3位数）。

 CallableStatement cstmt = con.prepareCall("{call getTestData(?, ?)}");

 cstmt.registerOutParameter(1, java.sql.Types.TINYINT);

 cstmt.registerOutParameter(2, java.sql.Types.DECIMAL, 3);

 cstmt.executeQuery();

 byte x = cstmt.getByte(1);

 java.math.BigDecimal n = cstmt.getBigDecimal(2, 3);

CallableStatement与ResultSet不同，它不提供用增量方式检索大OUT值的特殊机制。

4. INOUT参数

既支持输入又接受输出的参数（INOUT参数）除了调用registerOutParameter()方法外，还要求调用适当的setXXX方法（该方法是从PreparedStatement继承来的）。setXXX方法将参数值设置为输入参数，而registerOutParameter()方法将它的JDBC类型注册为输出参数。setXXX方法提供一个Java值，而驱动程序先把这个值转换为JDBC值，然后将它送到数据库中。

这种IN值的JDBC类型和提供给registerOutParameter()方法的JDBC类型应该相同。然后，要检索输出值，就要用对应的getXXX方法。例如，Java类型为byte的参数应该使用方法setByte来赋输入值。应该为registerOutParameter()提供类型为TINYINT的JDBC类型，同时应使用getByte()来检索输出值。

例如，下面代码假设有一个存储过程reviseTotal，其唯一参数是INOUT。SetByte()方法把此参数设为25，驱动程序将它作为JDBC TINYINT类型发送到数据库中。接着，registerOutParameter()方法将该参数注册为JDBC TINYINT。执行完该存储过程后，将返回一个新的JDBC TINYINT值。getByte()方法将把这个新值作为Java byte类型检索。

 CallableStatement cstmt = con.prepareCall("{call reviseTotal(?)}");

 cstmt.setByte(1, 25);

 cstmt.registerOutParameter(1, java.sql.Types.TINYINT);

 cstmt.executeUpdate();

 byte x = cstmt.getByte(1);

5. 先检索结果后检索OUT参数

由于某些DBMS的限制，为了实现最大的可移植性，建议先检索由执行CallableStatement对象所产生的结果，然后再用CallableStatement.getXXX方法来检索OUT参数。

如果CallableStatement对象返回多个ResultSet对象（通过调用execute()方法），在检索OUT参数前应先检索所有的结果。这种情况下，为确保对所有的结果都进行了访问，必须对Statement的getResultSet()、getUpdateCount()和getMoreResults()方法进行调用，直到不再有结果为止。

检索完所有的结果后，就可用CallableStatement.getXXX方法来检索OUT参数中的值了。

6. 检索作为OUT参数的NULL值

返回到OUT参数中的值可能会是JDBC NULL。当出现这种情形时，将对JDBC NULL值进行转换以使getXXX方法所返回的值为null、0或false，这取决于getXXX方法类型。对于ResultSet对象，要知道0或false是否源于JDBC NULL的唯一方法，可用方法wasNull进行检测。如果getXXX方法读取的最后一个值是JDBC NULL，则该方法返回true，否则返回flase。

【例8-7】调用存储过程完整案例（无参）。

将db1.txt导入ch08数据库中，创建了一个student1表，并且创建了一个sqy1的存储过程。代码如下：

 BEGIN

 insert into student1(stuID,name,address,birthday) values("1","2","3","4");

 SELECT * from student1;

 END

创建testCallableStatement1.jsp文件，应用调用无参的存储过程。代码如下：

 [image:]

运行程序之前，在数据库中查找到student1表有9行数据，如图8-19所示；运行之后，插入新的一行，变成10行数据，如图8-20所示。

 [image:]
 图8-19　程序运行前

 [image:]
 图8-20　程序运行后

【例8-8】调用存储过程完整案例（有参）。

将db2.txt导入ch08数据库中，创建一个student表，同时创建了一个sqy的存储过程。代码如下：

 BEGIN

 insert into student(stuID,name,address,birthday) values(stuID2,name2,address2,birthday2);

 SELECT * from student;

 END

创建testCallableStatement2.jsp文件，调用有参的存储过程。代码如下：

 [image:]

运行程序之前，在数据库中查找到student表有2行数据，如图8-21所示；运行之后，插入新的一行，变成3行数据，如图8-22所示。

 [image:]
 图8-21　程序运行前

 [image:]
 图8-22　程序运行后

8.3.5　使用ResultSet处理结果集

ResultSet类型的对象由于是一个数据集合，必须考虑到指针的移动，以便从该集合对象中取得所要的数据，所以在ResultSet接口中所定义的方法大都是用来控制指针移动的，如表8-3所示。

 表8-3　ResultSet对象的方法

 [image:]

Statement和ResultSet接口所产生的对象分别是用来运行各类SQL指令和控制查询所返回的数据集合。这两个对象将配合其生成接口中所提供的方法，构成了JSP与数据库交互的基础。

当用任何一种Statement来进行JDBC操作的时候，都可以用不同的参数来确定结果集返回的状态，包括可读可写和游标的指向类型。

[image:]　Statement语句：

 createStatement(int resultSetType, int resultSetConcurrency)

[image:]　PreparedStatement语句：

 preparedStatement(String sql, int resultSetType, int resultSetConcurrency)

[image:]　CallableStatement语句：

 preparedCall(String sql, int resultSetType, int resultSetConcurrency)

参数说明如下。

[image:]　resultSetType：

•　ResultSet.TYPE_FORWARD_ONLY（结果集不可滚动）

•　ResultSet.TYPE_SCROLL_INSENSITIVE（结果集可滚动，但对底层数据变化不敏感）

•　ResultSet.TYPE_SCROLL_SENSITIVE（结果集可滚动，但对底层数据变化敏感）

[image:]　resultSetConcurrency：

•　ResultSet.CONCUR_READ_ONLY（结果集不可更新）

•　ResultSet.CONCUR_UPDATABLE（结果集可更新）

1. 使用可滚动结果集

当需要在结果集中任意移动游标时，应该使用可滚动的结果集。

【例8-9】以下代码实现了可滚动结果集的各种方法的使用，创建页面testScrollResultset.jsp。

 [image:]

 [image:]

2. 使用可更新结果集

当需要在更新结果集中的数据并存到数据库中时，使用可更新的结果集。

【例8-10】以下代码实现了可更新结果集的各种方法的使用，创建页面testUpdateResultset.jsp。

 [image:]

 [image:]

8.4　Java与SQL的数据类型转换

Java和SQL各自有一套自己定义的数据类型（JSP的数据类型实际上就是Java的数据类型），要在JSP程序和数据库管理系统之间正确地交换数据，必然要将二者的数据类型进行转换。但这种转换并不是要求绝对相同，例如Java只提供变长度的数组，而不提供固定长度的数组，SQL语言却二者都支持，解决方法是将SQL中的定长数组也看成是变长的。再如SQL语言中没有Java中的String类型，却可以用各种CHAR、VARCHAR数据类型来代替。表8-4说明了SQL语言中的各种数据类型在Java中的默认表示。

 表8-4　SQL到Java数据类型影射表

 [image:]

表8-5说明了Java语言中的各种数据类型在SQL中的默认表示。

 表8-5　Java到SQL数据类型影射表

 [image:]

8.5　使用JDBC连接不同的数据库

JDBC对各种数据库的访问，不同之处在于连接数据库。连接数据库之后的各种操作，基本上是相同的。这里列出JDBC与当前流行的各种数据库的连接方法，所使用的各种驱动程序在各数据库厂商的网站或是Sun公司的网站上都可以下载。

8.5.1　连接Oracle数据库

JDBC使用thin模式连接Oracle数据库，连接代码如下：

 //载入驱动程序类别

 Class.forName("oracle.jdbc.driver.OracleDriver").newInstance();

 String url="jdbc:oracle:thin:@localhost:1521:orcl"; //orcl为数据库的SID

 //数据库用户名

 String user="test";

 //数据库密码

 String password="test";

 //获得Connection对象

 Connection dbConn= DriverManager.getConnection(url,user,pass word);

8.5.2　连接DB2数据库

JDBC连接DB2数据库的代码如下：

 //载入驱动程序类别

 Class.forName("com.ibm.db2.jdbc.app.DB2Driver").newInstance();

 String url="jdbc:db2://localhost:5000/test"; //test为数据库名

 //数据库用户名

 String user="admin";

 //数据库密码

 String password="123456";

 //获得Connection对象

 Connection dbConn = DriverManager.getConnection(url,user,password);

8.5.3　连接SQL Server数据库

JDBC连接SQL Server数据库的代码如下：

 //载入驱动程序类别

 Class.forName("com.microsoft.jdbc.sqlserver.SQLServerDriver").newInstance();

 String url="jdbc:microsoft:sqlserver://localhost:1433;DatabaseName=test"; //test为数据库名

 //数据库用户名

 String user="sa";

 //数据库密码

 String password="123456";

 //获得Connection对象

 Connection dbConn = DriverManager.getConnection(url,user,password);

8.5.4　连接Sybase数据库

JDBC连接Sybase数据库的代码如下：

 Class.forName("com.sybase.jdbc.SybDriver").newInstance();

 String url =" jdbc:sybase:Tds:localhost:5007/test"; //test为数据库

 Properties sysProps = System.getProperties();

 //数据库用户名

 SysProps.put("user","admin");

 //数据库密码

 SysProps.put("password","123456");

 //获得Connection对象

 Connection dbConn = DriverManager.getConnection(url, SysProps);

8.5.5　连接Access数据库

JSP连接Access数据库非常简单，只是JSP不能直接去访问Access数据库，在连接之前需要建立Access数据库对应的一个数据源。建立Access数据库中数据源的方法与建立SQL Server数据库中数据源的方法基本一致。假设建立的一个Access数据库对应的数据源的名称是test，可以通过下面的代码实现对这个数据源的访问，从而实现对Access数据库的操作。

 //载入驱动程序类别

 Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

 Connection dbConn = DriverManager.getConnection("jdbc:odbc:test"); //test为数据源的名称

8.6　连接池

在Web应用程序中，数据库连接是一种重要的资源，对数据库连接的管理能显著影响到整个应用程序的可伸缩性和健壮性。数据库连接池负责分配、管理和释放数据库连接，它允许应用程序重复使用一个现有的数据库连接，而不是再重新建立一个；释放空闲时间超过最大空闲时间的数据库连接，从而避免因为没有释放数据库连接而引起的数据库连接遗漏，这样可以显著提高对数据库操作的性能。

8.6.1　连接池的实现原理

对于访问量非常高的系统来说，每次创建一个连接都会消耗一定的资源，这样会大大降低系统的访问效率。为了解决这个问题，可以事先创建好一定数量的连接放入连接池中提供给用户使用，用户使用完后把连接返回连接池。下面介绍连接池的创建和管理。

（1）创建连接池。首先要创建一个静态的连接池。这里的“静态”是指池中的连接是在系统初始化时就分配好的，并且不能够随意关闭。Java提供了很多容器类用来构建连接池，例如Vector、Stack等。在系统初始化时，根据配置创建连接并放置在连接池中，以后所使用的连接都是从该连接池中获取的，这样就可以避免连接随意建立、关闭造成的开销。

（2）分配、释放策略。创建好连接池后，需要提供一套自定义的分配、释放策略以保证数据库连接的有效复用。当客户请求数据库连接时，首先看连接池中是否有空闲连接（这里的空闲是指目前没有分配出去的连接），如果存在空闲连接则把连接分配给客户，并作相应处理；若连接池中没有空闲连接，就在已经分配出去的连接中，寻找一个合适的连接给客户，此时该连接在多个客户间复用。当客户释放数据库连接时，可以根据该连接是否被复用，进行不同的处理。如果连接没有使用者，就放入到连接池中，而不是被关闭。

分配、释放策略对于有效复用连接非常重要。Reference Counting（引用记数）是一种在复用资源方面应用得非常广泛的方法，这里将该方法运用到对于连接的分配释放上。使用连接池时，为每一个数据库连接保留一个引用记数，用来记录该连接的使用者的个数。在具体的实现上，可以采用两级连接池：空闲池和使用池。空闲池中存放目前还没有分配出去被使用的连接，一旦一个连接被分配出去，那么就会放入到使用池中，并且增加引用记数。这样做可以更高效地使用连接，一旦空闲池中的连接被全部分配出去，就可以根据相应的策略从使用池中挑选出一个正在使用的连接用来复用，而不是随意拿出一个连接去复用。策略可以根据需要去选择，比较简单的做法是复用引用记数最小的连接。Java的面向对象特性，使得可以灵活地选择不同的策略（提供一个不同策略共用的抽象接口，各个具体的策略都实现这个接口，这样对于策略的处理逻辑就和策略的实现逻辑分离）。

（3）配置策略。数据库连接池中到底要放置多少个连接，连接耗尽后该如何处理，这是配置策略需要解决的问题。在一般情况下，配置策略在开始时就根据具体的应用需求，给出一个初始的连接池中连接的数目以及一个连接池可以扩张到的最大连接数目。

8.6.2　在Tomcat上配置数据源与连接池

前面概括介绍了连接池的管理策略，下面通过一个具体的实例来介绍如何配置Tomcat服务器的连接池。这里以Tomcat 5.5连接MySQL数据库为例。

【例8-11】配置Tomcat的连接池。

（1）配置Server.xml文件。先打开\tomcat\conf目录下的Server.xml文件，然后在其</host>标签前面添加以下代码。

 [image:]

在上面的代码中，详细地配置了连接池连接的数据源的属性，其中各属性的含义如下。

[image:]　path：指定路径。这里设定的是/CATALINA_HOME/webapps下的DBTest目录。

[image:]　docBase：指定应用程序文件根目录。

[image:]　reloadable：设定当网页被更新时是否重新编译。

[image:]　maxActive：设定连接池的最大数据库连接数。将值设为0，表示没有连接数限制。

[image:]　maxIdle：设定数据库连接的最大空闲时间，超过此空闲时间，数据库连接将被标记为不可用，然后被释放。将值设为0表示没有限制。

[image:]　maxWait：设定最大建立连接等待时间，如果超过此时间将接到异常。将值设为–1表示没有限制。

[image:]　username：访问数据库的用户名。

[image:]　password：访问数据库的密码。

[image:]　driverClassName：数据库的JDBC驱动程序名称。

[image:]　url：数据库连接串。

（2）配置web.xml文件。将server.xml文件配置好之后还需要配置web.xml文件。首先在DBTest文件夹下创建一个WEB-INF文件夹、一个lib文件夹、一个class文件夹，然后在WEB-INF文件夹内创建web.xml文件。代码如下：

 [image:]

其中各属性的含义如下。

[image:]　description：对被引用的资源的描述。

[image:]　res-ref-name：引用的资源名称。

[image:]　res-type：引用的资源的类型，这里是前面配置的数据源。

（3）编写测试页面。创建一个test.jsp页面来测试数据库连接是否成功，代码如下：

 [image:]

在Tomcat中配置好数据源后，Tomcat会将这个数据源绑定到JNDI名称空间，然后通过Context.lookup()方法来查找到这个数据源，找到数据源之后，使用getConnection()方法创建一个数据库连接，之后就可以像使用JDBC那样操作数据库了。需要注意的是，对数据库访问完毕后要注意释放资源，尤其是Context资源，将数据库连接返回连接池，同时如果释放了ctx，那么rs、stmt和cnn都将不可用。此程序的运行结果如图8-23所示。

 [image:]
 图8-23　test.jsp页面运行结果

8.6.3　配置连接池时需要注意的问题

数据库连接池在初始化时将创建一定数量的数据库连接放到连接池中，这些数据库连接的数量是由最小数据库连接数来设定的。无论这些数据库连接是否被使用，连接池都将一直保证至少拥有这么多的连接数量。连接池的最大数据库连接数量限定了这个连接池能占有的最大连接数，当应用程序向连接池请求的连接数超过最大连接数量时，这些请求将被加入到等待队列中。数据库连接池的最小连接数和最大连接数的设置要考虑到下列几个因素。

（1）最小连接数是连接池一直保持的数据库连接，所以如果应用程序对数据库连接的使用量不大，将会有大量的数据库连接资源被浪费。

（2）最大连接数是连接池能申请的最大连接数，如果数据库连接请求超过此数，后面的数据库连接请求将被加入到等待队列中，这会影响之后的数据库操作。

（3）如果最小连接数与最大连接数相差太大，那么最先的连接请求将会获利，之后超过最小连接数量的连接请求等价于建立一个新的数据库连接，这些大于最小连接数的数据库连接在使用完之后不会马上被释放，而是被放到连接池中等待重复使用或是空闲超时后被释放。

8.7　存取二进制文件

在二进制文件内存储的是二进制数据流，它把数据在内存中存储的形式原样输出到磁盘上。在实际应用中，有很多文件都是以二进制格式保存的，例如*.java文件、*.obj文件、*.jpg文件和*.jar文件等。在Java中以字节流InputStream和OutputStream来读写二进制数据和字符数据，它们包含在java.io.*包中，使用起来非常简单。

8.7.1　图像文件存取到数据库的过程

在Web应用程序中经常需要存储或显示一些图片，HTML语言可以实现静态显示图片资料，而要动态显示图片资料时，就要采用相关的数据库访问技术来实现。在JSP编程环境中解决办法很多，最常用的一种方法是在数据库中保存相应的图片资料的名称，然后在JSP中建立相应的数据源，利用数据库访问技术处理图片信息。在静态标记的基础上，略加修改就可以用以下的标记语言实现动态图片资料的显示。

如果图像是以二进制数据格式存储在数据库中的，就不能使用上面的方法来读取了。下面介绍如何将图片以二进制数据格式存储到数据库中并将其读出。

1. 将图像以二进制数据格式存储到数据库中

【例8-12】在bin_db中创建一个命名为bindata的数据表，给这个表添加两个字段：filename（char）和binfile（longblob），然后创建一个selectImage.html页面，用来提交图片的信息。代码如下：

 [image:]

下面再创建一个testimage.jsp页面，用来实现存储图片的操作。代码如下：

 [image:]

在上面的这段代码中，首先要获取表单提交过来的图片的参数，并将图片数据转化为字符输入流，然后写入数据库中。

程序运行结果如图8-24和图8-25所示。

 [image:]
 图8-24　selectImage.jsp页面运行结果

 [image:]
 图8-25　testimage.jsp页面运行结果

2. 从数据库中读出图像

上面介绍了如何将图片以二进制数据格式存储到数据库中，下面介绍如何从数据库中将图像读出并显示在浏览器中。

【例8-13】创建一个showImage.jsp页面。代码如下：

 [image:]

在上面的代码中，首先使用setContentType来设定图片在浏览器中的显示格式，代码如下：

 response.setContentType("image/jpeg"); //设置返回图像的类型

在输入并显示图像时用到了ServletOutputStream类。首先用Response对象的方法getOutputStream()获得ServletOutputStream的实例，这样就可以利用ServletOutputStream的write()方法向输出流中写入返回页面的内容；在获取从数据库中取得的二进制输入流时，使用了ResultSet类的getBinaryStream()方法。getBinaryStream()用来获得二进制的输入流，其参数为int类型，用来指定当前结果集中的列的索引，代码如下：

 [image:]

然后创建一个byte数组用作缓冲，并使用ServletOutputStream对象的write()方法结合for循环语句将图像输出并显示在浏览器中，代码如下：

 [image:]

程序运行结果如图8-26、图8-27、图8-28所示。

 [image:]
 图8-26　showImage.jsp页面运行结果

 [image:]
 图8-27　文件不存在运行结果

 [image:]
 图8-28　文件存在的运行结果

8.7.2　声音文件存取到数据库的过程

有时候需要在数据库中存储声音文件，例如音乐网站需要在数据库内存储大量的声音文件。和存储图像类似，数据库中可以保存声音文件的URL地址，也可以直接将声音文件以二进制数据格式存储到数据库中。下面就介绍如何将声音文件以二进制数据格式保存到数据库中，并将其从数据库中读取出来。

1. 将声音文件存储到数据库中

【例8-14】创建selectSound.jsp页面和一个writeSound.jsp文件，添加如下代码：

 [image:]

上面是个选择声音文件的页面，尽量选择文件不是很大的wav格式或者wmv格式的。writeSound.jsp文件代码如下：

 [image:]

在上边的这段代码中，首先要获取表单提交过来的声音参数，并将声音数据转化为字符输入流，代码如下：

 String filepath=request.getParameter("filepath");

 File file = new File(filepath); //获取表单传过来的声音的url

 FileInputStream fin = new FileInputStream(file); //获取声音文件并转化为单字符的字符输入流

然后使用PreparedStatement对象的setBinaryStream()方法为要插入数据的字段设定values值，最后调用execute()方法执行SQL语句，代码如下：

 String sql="insert into bindata(filename,binfile) values('"+filename+"',?)"; //插入记录的sql语句

 PreparedStatement pstmt=conn.prepareStatement(sql); //创建PreparedStatement对象

 pstmt.setBinaryStream(1,fin,fin.available()); //将字符输入流in存储到pstmt对象中

在上面的代码中，主要使用了FileInputStream类、PreparedStatement类，并结合SQL插入记录语句实现了将声音文件存储到数据库中。

2. 从数据库中读取声音文件

上面介绍了如何将声音文件存储到数据库中，下面介绍如何从数据库中读取声音文件。声音文件的读取与普通二进制文件的读取原理是相同的，只是普通二进制文件可以直接输出到浏览器中，而声音文件则需要在网页内添加多媒体播放器才能播放。

【例8-15】创建一个readSound.jsp页面，然后为其添加以下代码。

 [image:]

 [image:]

在上面的代码中，首先使用SQL语句查询出文件名为filename值的声音文件数据，如果文件存在将保存到结果集rs中，相关代码如下：

 String sql="select * from bindata where filename='"+filename+"'";

 stmt=conn.createStatement();

 rs=stmt.executeQuery(sql);

为了实现播放声音文件，这里将读出的文件保存到此应用程序的根目录下。首先使用Application对象的getRealPath()方法获取此应用程序的根目录，相关代码如下：

 String rootPath = application.getRealPath("/");//获取当前应用程序的根目录

接下来在应用程序的根目录下创建一个filename文件，用来保存从数据库中读取的声音数据，相关代码如下：

 File f=new File(rootPath+filename);//在应用程序根目录下输出读取的声音文件

然后使用FileOutputStream类和InputStream类将从数据库中读取的数据写入到刚刚创建的call.wav文件中，相关代码如下：

 [image:]

接下来在网页中插入一个合适的播放器用来播放此声音文件（这里使用Windows Media Player 9），并设置好其参数及要播放文件的名称。需要注意的是，播放文件最好保存在此应用程序的根目录下，这样网页中的播放器才能找到这个声音文件，相关代码如下：

 <param name="Filename" value="<%=filename %>">

这里主要介绍的是如何从数据库中读取声音文件。关于如何在网页中播放声音文件，请读者参照HTML中多媒体知识。运行此应用程序，单击播放器的播放按钮即可播放该声音文件，运行结果如图8-29和图8-30所示。

 [image:]
 图8-29　readSound.jsp页面运行结果

 [image:]
 图8-30　文件存在后页面运行结果

8.7.3　视频文件存取到数据库的过程

现在很多网站都需要从数据库中存储、读取视频文件，如新闻网站需要在页面上播放新闻采访视频、一些电影网站需要存储和读取电影视频文件等，下面介绍如何在数据库中存储和读取视频文件。

1. 将视频文件存储到数据库中

【例8-16】创建selectVideo.jsp页面（和上面的selectSound.jsp类似）和一个writeVideo.jsp文件，添加以下代码。在运行程序前找一个视频文件。

 [image:]

writeVideo.jsp页面主要功能是将提交的视频存放到数据库中，代码如下：

 [image:]

如果存放成功，结果如图8-31和图8-32所示。

 [image:]
 图8-31　selectVideo.jsp页面

 [image:]
 图8-32　成功提交视频文件结果

存储视频文件的实现原理与存储声音文件、普通二进制文件相同，只是要存储到数据库中的文件格式不同。在上边的这段代码中向数据库中存储了一个.wmv格式的视频文件。

2. 从数据库中读取视频文件

将视频文件存储到数据库中之后，如何从数据库中读取视频文件呢？视频文件的读取和声音文件的读取是相同的，就是首先将视频数据从数据库中读取出来，并保存在一个视频文件中，然后再使用合适的播放器在网页中播放即可。下面就以上一小节存储的视频文件为例，介绍如何读取视频文件。

【例8-17】创建一个readVideo.jsp页面，为其添加以下代码。

 [image:]

 [image:]

上述代码是将视频文件从数据库中读取出来并保存到此应用程序根目录下的zly.wmv文件中，也就是将从数据库中读取的二进制数据转化为.wmv格式的视频文件，实现方法和声音文件的实现方法是完全相同的，这里不再赘述。接下来要在网页中添加播放器来播放此视频文件，这里添加的播放器和播放声音文件的播放器一样，使用的都是Windows Media Player 9，但是要注意，设置播放器的大小要比声音文件的大一些，否则页面中看不到视频播放窗口。其相关代码如下：

 [image:]

程序运行结果如图8-33和图8-34所示。

 [image:]
 图8-33　readVideo.jsp页面运行结果

 [image:]
 图8-34　视频文件存在后页面运行结果

8.7.4　保存图片文件路径到数据库的存取图片过程

由于受文件大小和数据库尺寸问题的影响，大部分情况下，数据库表中不会直接保存图片、声音和视频的内容，而是将这些资源文件利用第7章的上传文件的方法，上传到服务器中的某个文件夹中保存，数据库表中只保存文件的路径和名字，将来读取时，可以根据路径读取文件。接下来，以图片为例，演示操作过程。

1. 将图片上传到指定路径中，并且存储图片信息到数据库中

【例8-18】在file_db中创建一个命名为filedata的数据表，再给这个表添加两个字段：filename（char）和path（char），然后创建一个Commons-FileUpload.html页面，用来提交图片的信息，代码如下：

 [image:]

下面再创建一个upload.jsp页面，用来实现上传图片和存储图片信息到数据库的操作，代码如下：

 [image:]

在上边的这段代码中，首先要获取表单提交过来的图片的参数，并将图片上传到指定的路径upload文件夹中，然后将图片名称和存放的路径写入数据库中。

程序运行结果如图8-35和图8-36所示。

 [image:]
 图8-35　选择图片文件

 [image:]
 图8-36　上传和保存信息

2. 根据数据库中图片的路径信息将图片读出来

下面介绍如何从数据库中将图片信息读出并显示在浏览器中。

【例8-19】创建一个openImage.jsp页面，添加以下代码：

 [image:]

根据文件名字，在数据库中搜索信息，找到图片路径。“路径+图片名字”作为标记中src属性的值，就能打开图片。程序运行结果如图8-37所示。

 [image:]
 图8-37　显示图片

8.8　实现分页显示

分页显示是针对数据库所进行的操作。本章所使用的是MySQL数据库，所建立的数据库的名称是ch08，就以创建的student表为分页数据。

8.8.1　分页显示技术的优劣比较

1. 使用游标定位，丢弃不属于页面的数据

这是一种最简单的分页显示实现技术，在每个页面先查询得到所有的数据行，接着使用游标定位到结果集中页面对应的行数，读取并显示该页面的数据，然后关闭数据库连接，丢弃该页面之外的结果集数据。该分页技术适用于数据量较少的查询，但对于数据量大的查询操作来说效率非常低，因为这种操作需要返回所有的数据行，从而浪费了大量的内存资源。

2. 使用缓存结果集，一次查询所有数据

目前比较广泛使用的分页方式是将查询结果存在Httpsession或状态Bean中，翻页的时候从缓存中取出一页数据显示。该方法能减少数据库的连接次数，节省数据库连接资源，但有两个主要的缺点：一是用户可能看到的是过期数据；二是在数据量非常大时，第一次查询遍历结果集会耗费很长时间，并且缓存的数据也会占用大量内存，效率明显下降。

3. 使用数据库提供的定位集的SQL语句，返回特定行的数据

在用户的分页查询请求中，将获取的查询请求的行范围作为参数，通过这些参数生成SQL查询语句，然后每次请求获得一个数据库连接对象并执行SQL查询，把查询结果返回给用户，最后释放所有的数据库访问资源。该方式无论对内存资源的占用还是对数据库资源的占用都是最合理的，是效率最高的一种实现方式，但是由于不同数据库对应的定位行集SQL语句的语法差异很大，如果需要改变Web应用所使用的后台数据库，就得修改程序中所有特定于数据库的定位行集SQL语句。

8.8.2　分页显示的JavaBean实现

下面将介绍第三种技术实现分页显示。目前各类数据库都提供了分页查询语句，根据它们提供的SQL语法，可以获取符合条件的数据集中的N个连续数据。下面来看一下常见的几个数据库的分页查询语句，它们的目的都是从数据库表words中的第M条数据开始取N条记录。

1. SQL Server数据库的分页查询语句

从数据库表中的第M条记录开始取N条记录，利用Top关键字进行查询。注意，如果Select语句中既有top，又有order by，则是从排序好的结果集中选择。查询语句的语法如下：

 [image:]

例如，在数据表words（主键为WordsID）中，从第8条记录开始查询20条记录，查询语句如下：

 [image:]

2. Oracle数据库的分页语句

在Oracle数据库中，可以使用ROWNUM来限制结果集的大小和起始位置。从数据库表中第M条记录开始查询N条记录，查询语句的语法如下：

 SELECT * FROM (

 SELECT ROWNUM r,t1.* From 表名称 t1 where rownum < M + N) t2

 where t2.r >= M

例如，在数据表words（主键为WordsID）中，从第8条记录开始查询20条记录，查询语句的语法如下：

 [image:]

3. MySQL数据库的分页语句

MySQL数据库的分页查询语句最简单，它通过使用LIMIT函数实现，从数据表中第M条记录开始查询N条记录，查询语句的语法如下：

 SELECT * FROM 表名称 LIMIT M-1,N

例如，在数据表words（主键为WordsID）中，从第8条记录开始检索20条记录，查询语句的语法如下：

 select * from words limit 7,20

【例8-20】以MySQL数据库为例，利用它提供的分页查询语句介绍一个通用的分页显示类，任何用到分页显示的页面都可以调用这个类。这个类的名称是pagination.java，代码如下：

 [image:]

 [image:]

在pagination.java中，通过查询获得所有要显示的数据信息，然后将要显示页面的所有数据保存到Vector集合类中，这样在JSP页面只要显示这个集合类中的数据就可以了。这个类中各个方法具有以下功能：

[image:]　public Collection getPage()方法获得每页需要显示的内容集合。

[image:]　public int countRows()方法获取记录的总数。

[image:]　public int countPages()方法获取页面的总数。

在DBStudent.java中，实现封装student表格数据集的相关函数，主要代码如下：

 [image:]

paginationTest.jsp页面的显示效果如图8-38所示。

 [image:]
 图8-38　paginationTest.jsp页面的效果

pagination Test.jsp代码如下：

 [image:]

 [image:]

8.9　小结

本章主要介绍了在动态网站中如何进行数据库的连接和访问，其中重点介绍了JDBC、JSP连接数据库的方法、数据库连接池的应用和一些数据库的基本类中的方法操作数据库，包括statement、preparestatement、resultset等。

接下来介绍了如何将图像、声音、视频及一些大文本文件存储到数据库中，并且从数据库中读取出来。这些文件的存取不是像数据库中普通数据（如int、String）那样实现的，而是通过文件流的操作来实现的，主要应用的是FileInputStream和FileOutputStream这两个类来实现。

最后，介绍了分页技术。当需要在一个页面上显示所有的数据信息，而要显示的数据信息条目又非常多时，浏览它们将会非常不方便。分页显示技术很好地解决了这个问题，将要显示的数据信息分页面显示，在每个页面显示一定数量的数据信息，这样用户查看起来将会非常方便。

8.10　习题

一、选择题

1. 创建JSP应用程序时，配置文件web.xml应该在程序下的（　　）目录中。

A. admin

B. servlet

C. WEB-INF

D. WebRoot

2. Oracle数据库的JDBC驱动程序类名及完整包路径为（　　）。

A. jdbc.driver.oracle.OracleDriver

B. jdbc.oracle.driver.OracleDriver

C. driver.oracle.jdbc.OracleDriver

D. oracle.jdbc.driver.OracleDriver

3. 请选出微软公司提供的连接SQL Server 2000的JDBC驱动程序（　　）。

A. oracle.jdbc.driver.OracleDriver

B. sun.jdbc.odbc.JdbcOdbcDriver

C. com.microsoft.jdbc.sqlserver.SQLServerDriver

D. com.mysql.jdbc.Driver

4. 下述选项中不属于JDBC基本功能的是（　　）。

A. 与数据库建立连接

B. 提交SQL语句

C. 处理查询结果

D. 数据库维护管理

5. 在JSP中，便用Resultset对象的next()方法移动光标时，如果超过界限，会抛出异常，该异常通常是（　　）。

A. InterruptedException

B. AlreadyBoundException

C. SQLException

D. NetException

6. cn是Connection对象，创建Statement对象的方法是（　　）。

A. Statement st=new Statement();

B. Statement st=cn.createStatement()

C. Statement st=cn Statement();

D. Statement st=DriverMange.createStatement()

7. 查询数据库得到的结果集中，游标最初定位在（　　）。

A. 第一行

B. 第一行的前面

C. 最后一行

D. 最后一行的后面

8. 在JDBC中，下列接口不能被Connection创建的是（　　）。

A. Statement

B. PreparedStatement

C. CallableStatement

D. RowsetStatement

9. Class.forName（"sun.jdbc.odbc.JdbcOdbcDriver"）;加载的驱动是（　　）。

A. JDBC-ODBC桥连接驱动

B. 部分Java编写本地驱动

C. 本地协议纯Java驱动

D. 网络纯Java驱动

10. 下列代码生成了一个结果集：

 conn=DriverManager.getConnection(uri,user,password);

 stmt=conn.createStatement(ResultSet.TYPE_SCROLL_SENSITIVE,

 ResultSet.CONCUR_READ_ONLY);

 rs=stmt.executeQuery("select * from book");

 rs.first();rs. previous();

下面对该rs描述正确的是（　　）。

A. rs.isFirst()为真

B. .rs.ifLast()为真

C. rs.isAfterLast()为真

D. rs.isBeforeFirst()为真

二、判断题

1. 使用JDBC-ODBC桥效率会有所降低。

（　　）

2. Statement对象提供了int executeUpdate（String sqlStatement）方法，用于实现对数据库中数据的添加、删除和更新操作。

（　　）

3. 数据库服务与Web服务器需要在同一台计算机上。

（　　）

4. 使用数据库连接池配置烦琐，一般不宜使用。

（　　）

5. JDBC构建在ODBC基础上，为数据库应用开发人员、数据库前台工具开发人员提供了一种标准，使开发人员可以用任何语言编写完整的数据库应用程序。

（　　）

三、填空题

1. JSP应用程序配置文件的根元素为　　　。

2. JDBC的主要任务是：　　　、　　　、　　　。

3. 如果想创建一个不敏感可滚动并且不可更新的结果集，参数选择　　　和　　　。

4. 在可更新的结果集中插入一条新记录，首先需要将游标移动到一个可更新行，则该行为调用　　　函数。

5. Class.forName（"sun.jdbc.odbc.JdbcOdbcDriver"）;是　　　数据库的加载驱动语句。

四、问答题

1. 试说明Statement与ResultSet接口的意义，以及它们生成的对象在JSP程序处理数据库时，分别扮演着什么样的角色。

2. 试举例说明Statement运行SQL指令的3种方法成员。

3. 说明如何一次运行多段SQL语句。

五、编程题

1. 使用本章的数据库ch08中student表的结构，创建3个页面selectStudent.jsp、byNumber.jsp和byName.jsp，通过JSP页面对student表进行名字和学号的查询。运行效果如图8-39、图8-40、图8-41所示。

 [image:]
 图8-39　selectStudent.jsp页面

 [image:]
 图8-40　byNumber.jsp页面

2. 使用本章数据库ch08中student表的结构通过JSP页面对student表进行添加、删除和修改。添加JSP页面处理功能：添加新学生、修改和删除选中的学生信息，如图8-42所示（或者自行设计界面）。

 [image:]
 图8-41　byName.jsp页面

 [image:]
 图8-42　演示页面

第9章　JSP与JavaBean应用实例

前面章节介绍了JSP、JavaBean和JDBC，其中JSP负责用户界面，JavaBean封装业务逻辑，JDBC用来连接数据库，应用这些技术，已经足以开发一个中小型规模的项目。留言板是一种功能比较简单，但又比较实用的小数据库模块。在一般的系统中，都可以见到留言板的身影，它为用户提供了极为方便的服务。本章将以商品管理系统为例，介绍JSP+JavaBean技术在实际项目中的应用。按照商品管理系统的设计实现，包括数据库设计、模块设计和页面编程实现等方面。

本章学习目标

 	◎　初步了解功能模块开发的过程

 	◎　掌握使用JSP模式创建小型模块

 	◎　加深第8章连接数据库的应用

 [image:]
 本章案例源代码下载

9.1　需求和设计

需求分析就是描述系统的需求，通过定义系统中的关键域类来建立模型。分析的根本目的是在开发者和提出需求的人之间建立一种理解和沟通机制，因此，商品系统的需求分析也应该是开发人员和用户（或者客户）一起完成的。

9.1.1　功能介绍

商品管理系统主要有9个功能页面。功能包括：增加商品、删除商品、更改商品信息、查看所有商品、增加类别、删除类别、更改类别信息、查看所有类别和按类别搜索商品。

9.1.2　文件结构

整个系统模块包括19个页面和6个Java文件。从功能上说，整个模块可以分为商品管理和类别管理模块，所有静态框架页面和JSP页面分属于这两大模块，而6个Java文件为这两个模块所共有。表9-1和表9-2列出了各文件所对应的功能。

 表9-1　商品管理系统中Java文件列表

 [image:]

 表9-2　商品管理系统中用户主要页面文件列表

 [image:]

9.1.3　数据库设计

在系统的数据库设计中，首先要创建系统数据库，然后在数据库中创建需要的表和字段。建立的数据库的名称是jspdev，在这个数据库管理系统中要建立两个数据表。

（1）商品信息表（products）：用于存放商品记录。

（2）商品类别表（category）：用于存放商品类别。

这两张数据表的字段说明如表9-3和表9-4所示。

 表9-3　商品信息表（products）

 [image:]

 表9-4　商品类别表（category）

 [image:]

9.2　使用JavaBean封装数据库的访问

整个商品管理系统中JSP页面不直接操作数据库，通过JavaBean封装JDBC对数据库的操作，这么做的好处是将来对JDBC的一些操作进行扩展修改比较方便。

本系统采用数据库连接池进行数据库的统一管理，同时在数据库操作上进行了封装，方便程序开发时与数据库的交互。数据库访问类（DataBaseConnection.java）的主要功能是提供对数据库的连接和操作，对数据库的各种操作都通过它执行。其他对数据库操作的各个类以及JSP页面中对数据库的操作都需要调用它，它是整个模块操作数据库的唯一接口。

DataBaseConnection.java的代码如下：

 [image:]

每个数据库表都对应这一个或者两个JavaBean提供对数据表进行操作和相关的方法。例如：Product.java针对表user所创建的程序，每个属性对应get和set方法。

 [image:]

项目其他相关完整的JavaBean程序，这里不再赘述。本书余下部分，都将只介绍主要的代码，如需其他代码，读者可在资料下载链接中查看相关内容。

9.3　项目页面实现

从上面系统设计可知，本系统的界面共分为9个功能页面。图9-1所示为整个系统的首页面。

根据这些整体关系的设计，下面对每一个部分给出主要界面的设计及其相关代码。

（1）增加商品页面的设计与实现。增加商品界面对应的数据库表是products，根据这个表的字段信息，可知界面中需要填入的商品信息包括商品ID、产品名称、产品价格、厂商、描述和类别（从类别表中查询出的相关类别清单）。增加商品信息后的界面设计如图9-2所示。

 [image:]
 图9-1　网站首页

 [image:]
 图9-2　增加商品信息后的页面

实现增加商品页面的是addProduct.jsp和addProduct_do.jsp。在该界面中可知，增加商品时需要填写商品的基本信息，如名称、价格等，在用户单击“提交”按钮保存填入的数据时，页面需要将这些页面的表单提取出来。在本页面的处理时，将JSP页面的提交对象Request作为参数，传进Product.java类中，在执行添加新商品之前，需要在客户端检验是否所有的数据都输入，一旦有空缺的则不允许添加，然后在根据表Products组合Insert语句。执行代码如下：

 [image:]

addProduct.jsp设计添加商品表单和验证数据是否为空的代码如下：

 [image:]

 [image:]

addProduct_do.jsp执行插入的代码片段如下：

 [image:]

（2）删除商品页面。删除商品界面首先需要将所有的商品查询出来，然后逐个删除商品。删除商品界面设计如图9-3所示。

 [image:]
 图9-3　删除商品页面

实现删除商品页面的是deletProduct.jsp和deletProduct_do.jsp。需要删除哪个商品，就单击商品清单该商品最后的“删除”，删除后，将刷新页面，可继续删除或单击“返回”按钮。删除的时候，会执行ProductBean.java中的对应函数。执行代码如下：

 [image:]

deleteProduct.jsp设计商品删除清单代码如下：

 [image:]

deleteProduct _do.jsp执行删除的代码片段如下：

 [image:]

（3）更改商品信息页面。更改商品界面需要先将所有的商品查询出来，然后逐个更改商品。更改商品界面设计如图9-4和图9-5所示。

 [image:]
 图9-4　modifyProduct.jsp页面

 [image:]
 图9-5　modifyProduct_pro.jsp页面

实现更改商品页面的是modifyProduct.jsp、modifyProduct_pro.jsp和modifyProduct_do.jsp。需要更改哪个商品，就单击商品清单最后的“更改”按钮，打开该商品的信息表单，进行更改后，单击“提交”按钮。更改的时候，会执行ProductBean.java中的对应函数。执行代码如下：

 [image:]

modifyProduct.jsp展示更改商品清单页面，代码如下：

 [image:]

modifyProduct_pro.jsp具体更改一个商品的页面，主要代码如下：

 [image:]

modifyProduct_do.jsp执行更改代码如下：

 [image:]

（4）查看所有商品页面。查询所有商品的清单和详细信息，页面如图9-6所示。

 [image:]
 图9-6　商品详细信息列表

实现查看所有商品页面的是viewProduct.jsp。查询的时候，会执行ProductBean.java中的对应函数，执行代码如下：

 [image:]

viewProduct.jsp显示所有商品详细信息清单页面，代码如下：

 [image:]

（5）增加类别页面。增加类别界面对应的数据库表是Category，根据这个表的字段信息，可知界面中需要填入的类别信息包括类别ID、类别名称和描述。增加类别界面设计如图9-7所示，增加成功后显示如图9-8所示信息。

 [image:]
 图9-7　增加类别界面

 [image:]
 图9-8　增加成功的提示信息

实现增加类别页面的是addCategory.jsp和addCategory_do.jsp。在该界面中可知，增加商品时需要填写类别的基本信息，在用户单击“提交”按钮保存填入的数据时，页面需要将这些页面的表单提取出来。在本页面的处理时，将JSP页面的提交对象Request作为参数，传进Category.java类中，取参数的方法与添加商品时取出参数的方法相似。在执行添加新类别之前，需要在客户端检验是否所有的数据都输入，如有空缺的，不允许添加，然后在根据表Category组合Insert语句。执行代码如下：

 [image:]

addCategory.jsp设计添加商品表单和验证数据是否为空，代码如下：

 [image:]

addCategory_do.jsp执行插入的代码片段如下：

 <%@ page contentType="text/html; charset=gb2312" language="java" import="product.*,java.util.*,java.io.*"

 errorPage="error.jsp" %>

 <%request.setCharacterEncoding("gb2312"); %>

 <html>

 <head>

 <title>Untitled Document</title>

 <meta http-equiv="Content-Type" content="text/html; charset=gb2312">

 </head>

 <jsp:useBean id="category" class="product.Category" scope="page">

 <jsp:setProperty name="category" property="*"/>

 </jsp:useBean>

 <jsp:useBean id="categoryBean" class="product.CategoryBean" scope="page"/>

 <body>

 <%

 categoryBean.addCategory(category);

 session.setAttribute("msg", "success");

 response.sendRedirect("index.jsp");

 %>

 </body>

 </html>

（6）删除类别页面。删除类别界面首先需要将所有的类别查询出来，然后逐个删除类别。删除类别界面设计如图9-9所示。

 [image:]
 图9-9　删除类别页面

实现删除类别页面的是deleteCategory.jsp和deleteCategory_do.jsp。需要删除哪个类别，就单击类别清单最后的“删除”按钮。删除后，将刷新页面，可继续删除或单击“返回”按钮。删除的时候，会执行CategoryBean.java中的对应函数。代码如下：

 [image:]

deleteCategory.jsp设计类别删除清单，主要代码如下：

 [image:]

（7）更改类别信息页面。更改类别界面需要先将所有的类别查询出来，然后逐个更改类别。更改类别界面设计如图9-10和图9-11所示。

 [image:]
 图9-10　更改类别页面

 [image:]
 图9-11　更改一个类别的表单

实现更改类别页面的是modifyCategory.jsp、modifyCategory_pro.jsp和modifyCategory_ do.jsp。需要更改哪个类别，就单击类别清单最后的“更改”按钮，打开该类别的信息表单，进行更改后，单击“提交”按钮。更改的时候，会执行CategoryBean.java中的对应函数。代码如下：

 [image:]

modifyCategory.jsp展示更改类别清单页面，主要代码如下：

 [image:]

modifyCategory_pro.jsp具体更改一个商品的页面，主要代码如下：

 [image:]

modifyCategory_do.jsp执行更改主要代码如下：

 [image:]

（8）查看所有类别页面。查询所有类别的清单和详细信息，页面如图9-12所示。

 [image:]
 图9-12　显示所有类别的清单

实现查看所有类别页面的是ViewCategory.jsp。查询的时候，会执行ViewCategory.java中的对应函数，其代码如下：

 [image:]

viewCategory.jsp显示所有类别详细信息清单页面，主要代码如下：

 [image:]

（9）搜索功能。根据输入的类别，搜索该类别下的所有商品信息清单。实现按类别搜索页面的是searchProductByCategory.jsp。查询时，会执行ProductBean.java中的对应函数。代码如下：

 [image:]

searchProductByCategory.jsp执行搜索页面，主要代码如下：

 [image:]

9.4　小结

本章介绍了一个简单的商品管理系统，该系统在功能上提供了相关的查询、添加、修改和删除功能。

本系统在开发过程中的最大特色如下：

（1）根据各个模块的功能需要，设计编写了功能完善的JavaBean组件，使得整个系统界面和功能的设计思路非常清晰，而且易于维护和扩展。

（2）使用了DataBaseConnection.java方便管理，使编写JavaBean组件时可以很方便地调用数据库操作的函数。

（3）操作流程的简单，并且清晰化。
第10章　Servlet基础

Sun公司以Java Servlet为基础，推出了Java Server Page。JSP具有Java Servlet的几乎所有优点，当一个客户请求一个JSP页面时，JSP引擎根据JSP页面生成一个Java文件，即一个Servlet。本章主要介绍Servlet的基础知识，然后在Servelt的生命周期中介绍了实现Servlet生命周期的接口和方法，通过开发和部署一个Servlet，介绍如何创建和配置一个Servlet，并对Servlet常用接口进行了简单介绍，然后重点讲解了HttpServletRequest和HttpServletResponse接口、RequestDispatcher接口及HttpSession接口的使用。

本章学习目标

 	◎　了解如何实现Servlet接口来编写Servelt

 	◎　掌握GenericServlet和HttpServlet抽象类

 	◎　掌握ServletRequest和ServletResponse接口

 	◎　掌握HttpServletRequest和HttpServletResponse接口

 	◎　掌握ServletConfig接口

 	◎　掌握HttpSession接口

 	◎　掌握ServletContext接口

 	◎　掌握RequestDispatcher对象

 	◎　理解Servlet的异常处理

 [image:]
 本章案例源代码下载

10.1　Servlet介绍

Servlet是1997年Sun和其他厂商为了将Java浏览器端的Applet技术扩展到Web服务器端提出的技术，得到了广泛的应用。Servlet技术是基于Java编程语言的Web服务器端编程技术，主要用于在Web服务器端获得客户端的访问请求信息和动态生成对客户端的响应消息。同时，Servlet技术也是JSP技术的基础。

10.1.1　什么是Servlet

Servlet是一个基于Java技术的Web组件，用来扩展以请求／响应为模型的服务器的能力，提供动态内容。Servlet与平台无关，可被编译成字节码，动态地载入并有效地扩展主机的处理能力。Servlet被容器管理，能被编译成字节码被Web服务调用。容器也被称之为引擎，是支持Servlet功能的Web服务的扩展。Servlet之间的通信是通过客户端请求被容器执行成request/response对象进行的。

Servlet容器是Web服务器或应用服务器的一部分，服务器能够支持网络的请求／响应，基于请求解析MIME，基于响应格式化MIME。Servlet容器是Servlet的运行环境，管理和维护Servlet的整个生命周期。Servlet容器必须支持HTTP协议，负责处理客户请求、把请求传送给适当的Servlet并把结果返回给客户。

使用Servlet的基本流程如图10-1所示。

（1）客户端向Web服务器发起一个HTTP请求。

（2）Web服务器接收该请求，并交给Servlet容器。Servlet容器可以在主机的同一个进程、不同的进程或其他的Web服务主机的进程中启动来处理这个请求。

（3）Servlet容器根据Servlet的配置文档确定需要调用的Servlet，并把request对象、response对象传给它。

（4）Servlet通过request对象获取客户请求信息和其他相关信息，并用特定的方法处理请求，生成送回给客户端的数据。Servlet处理完请求后把要返回的信息放入response对象。

（5）Servlet完成了请求的处理后，Servlet引擎就会刷新response，并把控制权返还给Web服务器。

 [image:]
 图10-1　Servlet基本流程示意图

10.1.2　Servlet技术特点

Servlet是用Java编写的，所以它与平台无关。这样，Java编写一次就可以在任何平台上运行，同样可以在服务器上实现。Servlet还有一些CGI脚本所不具备的独特优点：

[image:]　Servlet是持久的。Servlet只需Web服务器加载一次，而且可以在不同请求之间保持服务（例如一次数据库连接）。与之相反，CGI脚本是短暂的、瞬态的。每一次对CGI脚本的请求，都会使Web服务器加载并执行该脚本。一旦这个CGI脚本运行结束，它就会被从内存中清除，然后将结果返回到客户端。CGI脚本的每一次使用，都会造成程序初始化过程（例如连接数据库）的重复执行。

[image:]　Servlet是可扩展的。由于Servlet是用Java编写的，它就具备了Java的所有优点。Java是健壮的、面向对象的编程语言，它很容易扩展以适应用户的需求。Servlet自然也具备了这些特征。

[image:]　Servlet是安全的。从外界调用一个Servlet的唯一方法就是通过Web服务器。这提供了高水平的安全性保障，尤其是在用户的Web服务器有防火墙保护的时候。

10.1.3　JSP与Servlet的关系

Servlet是服务器端运行的一种Java应用程序。当浏览器端有请求则将其结果传递给浏览器。在JSP中使用到的所有对象都将被转换为Servlet或者非Servlet的Java对象，然后被执行，所以执行JSP实际上与执行Servlet是一样的。简单地说，JSP实际上是为了让Servlet的开发显得相对容易而采取的脚本语言形式，JSP中的内置对象与Servlet API对应关系如图10-2所示。

 [image:]
 图10-2　JSP中的内置对象与Servlet API的对应关系

Servlet与JSP相比，有以下几点区别。

[image:]　编程方式不同：JSP是为了解决Servlet中相对困难的编程技术而开发的技术，因此，JSP在程序的编写方面比Servlet要容易得多。Servlet严格遵循Java语言的编程标准，而JSP则遵循脚本语言的编制标准。

[image:]　Servlet必须在编译以后才能执行：JSP并不需要另外进行编译，JSP容器会自动完成这一工作，而Servlet在每次修改代码之后都需要编译完才能执行。

[image:]　运行速度不同：由于JSP容器将JSP程序编译成Servlet的时候需要一些时间，所以JSP的运行速度比Servlet要慢一些，不过，如果JSP文件能毫无变化地重复使用，它在第一次以后的调用中运行速度就会和Servlet一样了。这是因为JSP容器接到请求以后会确认传递过来的JSP是否有改动，如果没有改动的话，将直接调用JSP编译过的Servlet类，并提供给客户端解释执行；如果JSP文件有所改变，JSP容器将它重新编译成Servlet，然后再提交给客户端。

[image:]　Servlet用来写业务逻辑层是很强大的，但是对于写表示层就很不方便。JSP则主要是为了方便写表示层而设计的。

10.1.4　Servlet的工作原理

Servlet是javax.Servlet包中HttpServlet类的子类，运行在Web服务器的Servlet容器里，这个Servlet容器从属于Java虚拟机，可以根据Servlet的生命周期的规范，负责执行Servlet对象的初始化、运行和卸载等动作。Servlet在容器中从创建到删除的过程被称为Servlet的生命周期。

Servlet的生命周期如图10-3所示，可分为5个阶段。

 [image:]
 图10-3　Servlet生命周期

（1）装载Servlet。在下列情形下Servlet容器加载Servlet：Servlet容器启动时自动加载某些Servlet；在Servlet容器启动后，客户首次向Servlet发出请求；Servlet的类文件被更新后，重新加载Servlet。

（2）实例化一个Servlet实例对象。

（3）调用Servlet的init()方法进行初始化。

（4）服务。容器收到对该Servlet的请求，则调用该Servlet对象的service()方法处理请求。

（5）卸载。当服务器端不再需要该Servlet时，服务器调用destroy()方法卸载该Servlet，释放Servlet运行时占用的资源。

当多个客户请求一个Servlet时，引擎为每个客户启动一个线程，那么Servlet类的成员变量被所有的线程共享。init()方法只在Servlet第一次被请求加载的时候被调用一次，当有客户再请求Servlet服务时，Web服务器将启动一个新的线程，在该线程中，调用service()方法响应客户的请求。在各个阶段中，服务阶段是最重要的阶段，service()方法才是真正处理业务的阶段。

10.1.5　Servlet常用接口和类

本节主要介绍Servlet需要用到的主要接口和类，接口和类的UML类图如图10-4所示。

Servlet是创建Web应用程序的基本模块，Servlet API包含两个包：javax.Servlet和javax.Servlet.http。javax.Servlet包含用于JSP页面的javax.Servlet.jsp包和用于JSP定制标记的javax.Servlet.jsp.tagext包。

 [image:]
 图10-4　Servlet API中主要接口和类的UML类图

Servlet的类和接口可以根据作用进行分类，如表10-1所示。

 表10-1　Servlet的类和接口分类

 [image:]

10.2　开发部署一个简单的Servlet

Servlet程序必须通过Servlet引擎来启动运行，并且存储目录有特殊要求，通常需要存储在<WEB应用程序目录>\WEB-INF\classes\目录中。Servlet程序必须在Web应用程序的web.xml文件中进行注册和映射其访问路径，才可以被Servlet引擎加载和被外界访问。

下面以MyEclipse为开发环境，开发部署一个简单的Servlet。

（1）右击工程ch10的src目录，在弹出的快捷菜单中单击New | Servlet命令，即可创建一个Servlet文件，如图10-5所示。

（2）弹出Create a new Servlet对话框，创建一个新的Servlet类。输入Servlet所在的Java包名和Servlet文件名，指定创建Servlet所需实现的方法，如图10-6所示。

 [image:]
 图10-5　新建一个Servlet文件

 [image:]
 图10-6　输入Servlet的包名和程序名

（3）单击Next按钮，进入如图10-7所示对话框，可以进一步指定创建Servlet的逻辑名、URL映射、描述信息等内容。

（4）完成配置后，单击Finish按钮，便在src目录下的com包中创建了一个TestServlet.java文件。查看文件内容，填入输出的代码。如图10-8所示，可以看到包含Servlet框架的Java文件。

（5）查看Servlet的配置信息web.xml文件，根据需要修改内容，如图10-9所示。

 [image:]
 图10-7　配置Servlet的信息

（6）在MyEclipse下选中此Java文件，单击右键，在弹出的菜单中选择运行方式Run as，然后在弹出对话框中单击MyEclipse Server Application选项，选择Tomcat发布。

 [image:]
 图10-8　TestServlet.java代码

 [image:]
 图10-9　web.xml配置信息

或者在Tomcat服务器下直接发布该工程，启动Tomcat，通过在浏览器中输入“http://服务器名：端口号／工程名／servlet映射路径”，来访问产生的Servlet。输入：

 http://localhost:8080/ch10/Test

会在页面上显示运行信息，如图10-10所示。

 [image:]
 图10-10　TestServlet运行结果

10.2.1　创建Servlet文件

创建一个Servlet，通常需要以下4个步骤。

（1）继承HttpServlet抽象类。

（2）重载适当的方法，如覆盖（或称为重写）doGet()方法或doPost()方法。

（3）如果有HTTP请求信息的话，获取该信息。可通过调用HttpServletRequest类对象的以下3个方法获取。

 [image:]

（4）生成HTTP响应。HttpServletResponse类对象生成响应，并将它返回到发出请求的客户机上。它的方法允许设置“请求”标题和“响应”主体。“响应”对象还含有getWriter()方法以返回一个PrintWriter类对象。使用PrintWriter的print()方法和println()方法以编写Servlet响应来返回给客户机，或者直接使用out对象输出有关HTML文档内容。

来看一下按照上述步骤创建的Servlet类，如程序TestServlet.java的代码如下：

 [image:]

在Servlet中，主要方法是service()，当客户端请求到来时，Servlet容器将调用Servlet实例的service()方法对请求进行处理。在service()方法中，首先通过ServletResponse类中的getWriter()方法调用得到一个PrintWriter类型的输出流对象out，然后调用out对象的println()方法向客户端发送字符串。最后关闭out对象。HttpServlet还提供了doPost()和doGet()方法，参数和返回值与service()方法一样。只是service()方法可以针对客户端的任何请求类型（GET和POST），而doPost()和doGet()方法只能分别对应客户端的POST方式请求和GET方式的请求。

Servlet容器调用Servlet实例对请求的处理过程，如图10-11所示。

 [image:]
 图10-11　Servlet容器调用Servlet实例处理请求的过程

10.2.2　Servlet的配置文件

在创建一个Web工程时，会在页面目录下的WEB-INF中创建整个工程的Web配置文件web.xml文件。

前面创建的Servlet类TestServlet.java会自动在web.xml中生成配置信息。

下面将详细介绍如何在web.xml文件中对Servlet进行配置。

1. Servlet的名称、类和其他选项的配置

在web.xml文件中配置Servlet时，必须指定Servlet的名称、Servlet类的路径，可选择性地给Servlet添加描述信息和指定在发布时显示的名称，代码如下：

 [image:]

Description元素描述的是Servlet的描述信息，display-name元素描述的是发布时Servlet的名称，Servlet-name元素描述的是Servlet的名称，Servlet-class是Servlet类的路径。

2. 初始化参数

Servlet可以配置一些初始化参数，例如下面的代码：

 [image:]

这段代码指定参数number的值为100。在Servlet中可以在init()方法体中通过getInitParameter()方法访问这些初始化参数。

3. 启动装入优先权

启动装入优先权通过<load-on-startup>元素指定，例如下面的代码：

 [image:]

在这段代码中，ServletOne类先被载入，ServletTwo类则后被载入，而ServletThree类可在任何时间内被载入。

4. Servlet的映射

在web.xml配置文件中可以给一个Servlet做多个映射，因此，可以通过不同的方法访问这个Servlet。例如下面的代码：

 [image:]

通过上述代码的配置，若请求的路径中包含/Test，则会访问逻辑名为Test的Servlet。代码如下：

 [image:]

通过上述配置，若请求的路径中包含/Two/a或/Two/b等符合/Two/*的模式，则同样会访问逻辑名为OneServlet的Servlet。

 注意

 在web.xml文件中所有元素出现的次序是有严格限制的，<Servlet>元素必须出现在<Servlet-mapping>元素之前。

10.3　Servlet实现相关的接口和类

Servlet声明的语法格式如下：

 public interface Servlet

这个接口是所有Servlet必须直接或间接实现的接口，Servlet接口的基本目标是提供生命期方法init()、service()和destroy()方法。

[image:]　init()方法

init（ServletConfig config） throws ServletException方法由Servlet容器调用，指示将该Servlet放入服务。Servlet容器仅在实例化Servlet之后调用init()方法一次。在Servlet可以接收任何请求之前，init()方法必须成功完成。

如果init()方法抛出ServletException或者未在Web服务器定义的时间段内返回，那么Servlet容器无法将Servlet放入服务。该方法包含Servlet的配置和初始化参数的ServletConfig对象。如果发生妨碍Servlet正常操作的异常，则throws ServletException。

init()方法有两种重载的方式，如表10-2所示。

 表10-2　init()方法重载形式一览表

 [image:]

[image:]　service()方法

当一个Servlet对象被初始化后，该对象就活动在容器内，在容器的协助下，接收请求和发送响应。在javax.Servlet.Servlet包里，定义了原型为void service（ServletRequest request，ServletRespone response）的方法，该方法有ServletRequest和ServletResponse两个类型的参数，它们分别是“接收请求”和“响应回复”的句柄。

[image:]　destroy()方法

服务器可以从内存中移除已经加载的Servlet，也可以在所有的线程都完成以后或超过了设定的期限时卸载Servlet。在将Servlet卸载之前，调用destroy()方法。该方法是HttpServlet的方法，可以在Servlet中直接继承该方法，一般不需要重写。方法描述为public destroy()。

destroy()方法可以通过Servlet容器的垃圾处理器回收资源，并释放其所占的资源和内存，特别是不能被Java垃圾回收机制回收的资源。

[image:]　getServletConfig()方法

getServletConfig()方法返回ServletConfig对象，该对象包含此Servlet的初始化和启动参数。返回的ServletConfig对象是传递给init()方法的对象。

ServletConfig接口的实现负责存储ServletConfig对象，以便此方法可以返回该对象。

[image:]　getServletInfo()方法

getServletInfo()方法返回包含Servlet信息的String，比如作者、版本和版权。此方法返回的字符串应该是纯文本，不应该是任何种类的标记（比如HTML、XML等）。

10.3.1　GenericServlet

GenericServlet声明的语法格式如下：

 public abstract class GenericServlet implements Servlet,ServletConfig,java.io.Serializable

GenericServlet提供了对Servlet接口的基本实现，当创建普通的和HTTP无关的操作时可以通过继承该类创建新的Serlvet。要编写用于Web上的HTTP Servlet，需要扩展javax.Servlet.http.HttpServlet。GenericServlet是个抽象类，它的service()方法是一个抽象方法，GenericServlet的派生类必须直接或者间接地实现这个方法。

[image:]　init()方法

在GenericServlet类中定义了两个重载的init()方法，如表10-3所示。

 表10-3　init()方法重载形式一览表

 [image:]

init（ServletConfig config）方法是Servlet接口中inti()方法的实现。在这个方法中首先将ServletConfig对象保存在一个临时变量中，然后调用不带参数的init()方法。在编写继承GenericServlet的Servelt类时，仅需重写不带参数的init()方法，如果覆盖了init（ServletConfig config）方法，那么在子类的该方法中需要添加super.init（config）。

10.3.2　HttpServlet

HttpServlet声明的语法格式如下：

 public abstract class HttpServlet extends GenericServlet implements java.io.Serializable

HttpServlet类是抽象类，继承自GenericServlet类，用于快速开发应用于HTTP协议的Servlet类，提供了Servlet接口中具体HTTP的实现。一般用户自定义的Servlet都要扩展该类。

HttpServlet类中提供了两个service()重载方法：

[image:]　public void service（ServletRequest req, ServletResponse res）throws ServletException, java.io.IOException：将接收的req和res转换为HttpServletRequest和HttpServletResponse类型，并分发给受保护的Service方法。

[image:]　protected void service（HttpServletRequest req, HttpServletResponse resp）throws ServletException，java.io.IOException：接收来自public service方法的标准HTTP请求，并将它们分发给此类中定义的doXXX方法。

HttpServlet的子类至少必须重写一个方法，该方法通常是以下方法之一。

[image:]　doGet()：处理HTTP的get请求，从HTTP服务器上取得资源。

[image:]　doPost()：处理HTTP的post请求，主要用于发送HTML文本中form的内容。

[image:]　doHead()：处理header请求。

[image:]　doOptions()：该操作自动决定支持什么HTTP方法。

[image:]　doPut()：处理HTTP的put请求，模仿FTP发送资源。

[image:]　doTrace()：处理HTTP的trace请求。

[image:]　doDelete()：处理HTTP的delete请求，从服务器上移出一个URL。

这7个方法都是受保护类型的方法。

当容器收到一个HttpServlet类请求时，该对象中的方法被调用顺序为：

（1）调用public的service()方法。

（2）在把参数分别转换为HttpServletRequest和HttpServletResponse后，这个public的service()方法调用protected的service()方法。

（3）根据HTTP请求方法的类型，protected的service()方法调用doXXX方法之一。

通常在编写HttpServlet的派生类时，不需要覆盖service()、doTrace()和doDelete()方法。一般只要把具体逻辑放在doPost()和doGet()方法的任一个中，然后在另一个方法里调用这个方法就可以了。

10.3.3　Servlet实现相关实例

【例10-1】通过继承GenericServlet实现Servlet。编写一个Servlet，继承GenericServlet，利用GenericServlet类中通过的init()方法和destroy()方法的默认实现，仅实现service()方法。具体过程如下。

（1）编写HelloServlet.java，代码如下：

 [image:]

（2）在web.xml中配置Servlet，代码如下：

 [image:]

（3）在Tomcat服务器下测试Servlet，在浏览器地址栏输入

 http://localhost:8080/ch10/Hello

可以看到HelloServlet的信息，如图10-12所示。

 [image:]
 图10-12　HelloServlet运行结果

【例10-2】通过继承HttpServlet实现Servlet。HttpServlet类提供了对HTTP协议的支持，因此仅需从HttpServlet中派生一个子类，在子类中完成相应的功能就可以了。

编写WelcomeServlet类，继承HttpServlet，重写doGet()方法。

（1）编写WelcomeServlet.java，代码如下：

 [image:]

（2）在web.xml中配置Servlet，代码如下：

 [image:]

（3）编写辅助测试的页面welcome.html，代码如下：

 [image:]

（4）在Tomcat服务器下测试Servlet，在浏览器地址栏输入

 http://localhost:8080/ch10/welcome. html

可以看到welcome.html的信息。在文本框中输入JSP，如图10-13所示。单击“提交”按钮，显示如图10-14所示界面。

 [image:]
 图10-13　welcome.html页面

 [image:]
 图10-14　通过get方法提交后的响应信息

如果在WelcomeServlet.java中没有重写doPost()方法，并且在welcome.html页面中提交表单数据的方法是post，即改写

 <form action="Welcome" method="post">

那么在浏览器中依然输入相同的地址打开welcome.html页面，输入用户名JSP，单击“提交”按钮后，看到如图10-15所示界面。

 [image:]
 图10-15　WelcomeServlet没有重写doPost()方法，处理post请求时运行结果

如果在WelcomeServlet.java中重写doPost()方法，在welcome.html页面中提交表单数据的方法是post，那么Servlet会在doPost()方法中直接调用doGet()方法对post请求进行处理，所以在浏览器中输入相同的地址打开welcome.html页面，输入用户名JSP，单击“提交”按钮后，就可以看到如图10-14所示界面。

10.4　Servlet请求和响应相关

10.4.1　HttpServletRequest接口

HttpServletRequest声明的语法格式如下：

 public interface javax.Servlet.http.httpServletRequest implements ServletRequest

Servlet是请求驱动，Web容器收到一个对Servlet的请求时，就把这个请求封装成一个HttpServletRequest对象，然后把对象传给Servlet的相应服务方法。获取客户端信息主要是通过调用ServletRequest接口或者子接口HttpRequest提供的方法。接口中的主要方法及其作用如表10-4所示。

 表10-4　HttpServletRequest接口的方法及其作用

 [image:]

 （续表）

 [image:]

 （续表）

 [image:]

10.4.2　HttpServletResponse接口

HttpServletResponse声明的语法格式如下：

 public interface javax.Servlet.http.HttpServletResponse implements ServletResponse

HttpServletResponse接口存放在javax.Servlet.http包内，它代表了对客户端的HTTP响应。HttpServletResponse接口给出了响应客户端的Servlet方法。它允许Serlvet设置内容长度和回应的MIME类型，并且提供输出流ServletOutputStream。HttpServletResponse接口的主要方法和作用如表10-5所示。

 表10-5　HttpServletResponse接口的方法及其作用

 [image:]

10.4.3　Servlet请求和响应相关实例

Web容器收到一个对Servlet的请求时，就把这个请求封装成一个HttpServletRequest对象，然后把对象传给Servlet的相应服务方法。HttpServletResponse代表了容器对客户端的HTTP响应。

【例10-3】应用HttpServletRequest和HttpServletResponse。

（1）编写Servlet名字HttpReqResServlet.java，代码如下：

 [image:]

可以使用HttpServletRequest和HttpServletResponse的对象对请求和响应的内容进行获取和更改。

（2）在web.xml文件中配置该Servlet，代码如下：

 [image:]

（3）在Tomcat服务器上测试，在浏览器地址栏输入

 http://localhost:8080/ch10/Request Response

可以看到HttpReqResServlet的信息，如图10-16所示。

 [image:]
 图10-16　HttpReqResServlet运行结果

10.5　Servlet配置相关

环境API接口ServletConfig和ServletContext可以获得Servlet执行环境的相关数据。ServletConfig对象接收Servlet特定的初始化参数，而ServletContext接收Webapp初始化参数。ServletConfig用作配置Servlet，这两个类都在javax.Servlet包中。

10.5.1　ServletConfig接口

ServletConfig声明的语法格式如下：

 public interface javax.Servlet.ServletConfig

ServletConfig接口用于配置Servlet。Servlet配置包括Servlet名字、Servlet的初始化参数和Servlet上下文。Servlet引擎通过init（ServletConfig config）方法和GenericServlet. getServletConfig()方法获得ServletConfig对象。

ServletConfig接口的主要方法及其作用如表10-6所示。

 表10-6　ServletConfig对象的方法及其作用

 [image:]

10.5.2　获取Servlet配置信息的例子

下面通过例子来说明如何在Servlet中获取自身信息、服务器端信息、客户端信息。

【例10-4】获取Servlet自身的信息。

（1）编写Servlet实例ServletInfo.java，代码如下：

 [image:]

（2）在web.xml文件中配置该Servlet，代码如下：

 [image:]

<servlet>元素内部使用<init-param>子元素来为ServletInfo配置初始化参数。在ServletInfo.java的init()方法中通过Enumeration paramNames = getInitParameterNames();获得所有参数名字，进而根据名字获取每个参数的值。

 [image:]
 图10-17　ServletInfo运行结果

（3）在Tomcat服务器下测试，在浏览器地址栏输入

 http://localhost:8080/ch10/showServletInfo

可以看到ServletInfo的信息，如图10-17所示。

【例10-5】获取服务器信息。在Servlet实例中可以获取服务器端信息，并在客户端显示。

（1）编写Servlet实例ServerInfoServlet.java，代码如下：

 [image:]

（2）在web.xml文件中配置该Servlet，代码如下：

 [image:]

（3）在Tomcat服务器下测试，在浏览器地址栏输入

 http://localhost:8080/ch10/ServerInfo

可以看到ServerInfoServlet的信息，如图10-18所示。

 [image:]
 图10-18　ServerInfoServlet运行结果

10.6　Servlet中的会话追踪

会话是客户端发送请求，服务器返回响应的连接时间段。会话管理是Servlet最有用的属性之一，它简单地将无状态的HTTP协议转换成高度集成的无缝活动线程，这使得Web应用程序感觉上就像一个应用程序。Servlet引擎为每个连接分配了一个唯一的ID，并且在建立会话时将它分配给客户端，然后客户端将该ID发送给所有后续请求的服务器，通知会话结束。因此这种引擎可以将每个请求映射到特定的会话。

javax.Servlet.http.HttpSession接口是Servlet提供会话追踪的解决方案。HttpSession对象存放在服务器端，只是对Cookie和URL重写技术的封装应用，所以要求服务器支持Cookie，可以全局切换到URL重写。会话追踪（session-tracking）是基于存储在浏览器内存中（而非写到磁盘中）的Cookie。

10.6.1　HttpSession接口

HttpSession是java.servelt.http包中的接口，它封装了会话的概念。其声明的语法格式如下：

 public interface javax.Servlet.http.HttpSession

HttpSession接口常用的方法如表10-7所示。

 表10-7　HttpSession接口的方法

 [image:]

HttpSession进行会话控制的过程中使用的方法如下。

（1）获得一个HttpSession实例对象。使用HttpServletRequest的getSession()方法访问HttpSession对象。如果系统没有找到与请求关联的会话ID，true表示返回新会话，false表示方法返回null。语法格式如下：

 HttpSession session = request.getSession();

在后台，系统从Cookie或URL重写附加的数据中提取出用户ID。以ID为key，遍历之前创建的HttpSession对象内建的散列表。如果找不到匹配的会话ID，系统重新创建一个新的会话。默认情况下（不禁用Cookie）还会创建一个名为JSESSIONID，值为唯一标识用户表示会话ID的输出Cookie。因为调用getSession()方法会影响到后面的响应，所以只能在发送任何文档内容到客户端之前调用getSession()方法。

（2）访问和设置与会话相关联的信息，维护会话的状态。使用HttpSession的getAttribute()方法和setAttribute（String key，Object value）方法读取并设置当前请求会话数据（即对散列表的操作），维护会话的状态。语法格式如下：

 public Object getAtrribute (string name);

 public void setAttribute(String name,Object value);

setAttribute()方法会替换任何之前的属性。如果不想被替换，则需要在设置之前使用removeArrtibute（String key）方法移除该属性。

（3）废弃会话数据。

[image:]　只移除自己编写的Servlet创建的数据：removeArrtibute（String key）方法。

[image:]　（在Web应用程序中）删除整个会话：可以用invalidate()方法注销用户。

[image:]　（在Web服务器中）将用户从系统中注销并且删除所有与该会话关联的会话：logout()方法。

[image:]　会话超时时间间隔。getMaxInactiveInterval()方法和setMaxInactiveInterval()方法读取并设置在没有访问的情况下，会话保存的最长时间，秒为单位。负数表示会话从不超时，超时由服务器来维护。

10.6.2　HttpSession应用实例

【例10-6】Session主要用来传递页面的数据。开发一个使用HttpSession管理会话的Servlet例子。

（1）编写Servlet实例SessionServlet.java，代码如下：

 [image:]

 [image:]

（2）在web.xml文件中配置该Servlet，代码如下：

 [image:]

（3）在Tomcat服务器下测试，在浏览器地址栏输入

 http://localhost:8080/ch10/getSession

执行结果如图10-19所示，进入登录页面。输入登录信息后，单击“确定”按钮提交数据，返回结果如图10-20所示。

 [image:]
 图10-19　TestHttpSession的运行结果

 [image:]
 图10-20　登录成功后的界面

10.7　Servlet上下文

10.7.1　ServletContext接口

ServletContext声明的语法格式如下：

 public interface javax.Servlet .ServletContext

ServletContext接口定义了一个Servlet的环境对象，通过这个对象，Servlet引擎向Servlet提供环境信息。一个Servlet的环境对象必须与它所驻留的主机是一一对应的，在一个处理多个虚拟主机的Servlet引擎中，每一个虚拟主机都必须被视为一个单独的环境。Servlet可以通过ServletConfig.getServletContext()方法和GenericServlet.getServletContext()方法获得ServletContext对象。ServletContext对象是服务器上一个Web应用的代表，它的多数方法是用来获取服务器端信息。该接口的主要方法如表10-8所示。

 表10-8　ServletContext接口的方法

 [image:]

10.7.2　ServletContext接口的应用实例

在Web开发中常常需要统计某个页面的访问次数，可以使用ServletContext对象来保存访问的次数。在一个Web应用程序中只有一个ServletContext对象，并且它可以被Web应用程序中所有Servlet访问，因此可以在ServletContext对象中保存共享信息。

使用ServletContext对象的setAttribute()方法可以把共享信息保存到对象中，使用getAttribute()方法获得共享信息。

【例10-7】统计某一个具体页面的计数器。

（1）编写Servlet实例ServletContextServlet.java，代码如下：

 [image:]

（2）在web.xml文件中配置该Servlet，代码如下：

 [image:]

（3）在Tomcat服务器下测试，在浏览器地址栏输入

 http://localhost:8080/ch10/counter

运行结果如图10-21所示，进入登录页面。如果刷新图10-21页面，访问次数会增加到2。如果再打开一个浏览器访问这个页面，访问次数是3。交替刷新两个页面，访问次数会交替增加，说明ServletContext中保存的属性是多个客户端共享的。不同Web应用程序具有不同的ServletContext，因此不能在不同的Web应用程序间利用ServletContext共享属性。每次服务器重启后ServletContext会被初始化。

 [image:]
 图10-21　ServletContextServlet运行结果

10.8　Servlet协作

Servlet协作主要是RequestDispatch接口，它可以把一个请求转发到另一个Servlet。

10.8.1　RequestDispatcher

RequestDispatcher声明的语法格式如下：

 public interface javax.Servlet. RequestDispatcher

定义接收来自客户端的请求并将它们发送到服务器上的任何资源（比如Servlet、HTML文件或JSP文件）对象。Servlet容器可创建RequestDispatcher对象，该对象被用作包装位于特定路径上的服务器资源或通过特定名称给定的服务器资源的包装器。

在Servlet中，使用下面3种方法可以得到RequestDispatcher对象。

[image:]　利用ServletContext接口中的getRequestDispatcher（String path）方法：

 ServletConfig config = getServletConfig();

 ServletContext context = config.getServletContext();

 RequestDispatcher dispatcher = context.getRequestDispatcher(String path);

[image:]　利用ServletContext接口中的getNamedDispatcher（String path）方法：

 RequestDispatcher dispacher=

 getServletConfig().getServletContext().getNamedDispatcher (String path);

[image:]　利用ServletRequest接口中的getRequestDispatcher（String path）方法：

 RequestDispatcher dispatcher = request.getRequestDispatcher(String path);

RequestDispatcher接口有两个最重要的方法：forward()和include()，它们用来实现对页面的动态转发或者包含。

10.8.2　forward()控制页面跳转

public void forward（ServletRequest request, ServletResponse response）throws ServletException,java.io.IOException方法将请求从一个Servlet转发到服务器上的另一个资源（Servlet、JSP文件或HTML文件）。此方法允许一个Servlet对请求进行初步处理，并使另一个资源生成响应。在将响应提交到客户端之前（在刷新响应正文输出之前），应该调用forward()。如果已经提交了响应，则此方法抛出IllegalStateException。在转发之前，自动清除响应缓冲区中未提交的输出。

其中，参数request和response必须是传入调用的Servlet service()方法的对象，或者是包装它们的ServletRequestWrapper或ServletResponseWrapper类的子类。

【例10-8】应用forward()控制页面跳转。

（1）编写Servlet实例ForwardServlet.java，代码如下：

 [image:]

ServletContext接口中getRequestDispatcher的参数路径必须以“/”开始，是相对于当前Servlet上下文根。

（2）在web.xml文件中配置该Servlet，代码如下：

 [image:]

（3）编写跳转页面forward.html，代码如下：

 <html>

 <head>

 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">

 <title> ForwardServlet </title>

 </head>

 <body>

 <h2>test RequestDispatcher </h2>

 </body>

 </html>

（4）在Tomcat服务器下测试，在浏览器地址栏输入

 http://localhost:8080/ch10/forward

就跳转到根目录下的forward.html文件，如图10-22所示，地址栏中的地址变为http://localhost:8080/ch10/forward.html，结果显示的是forward.html的内容。

 [image:]
 图10-22　ForwardServlet的运行结果

10.8.3　include()控制页面包含

include()方法用于在响应中包含其他资源（Servlet、JSP页面或HTML文件）的内容。即请求转发后，原先的Servlet还可以继续输出响应信息，转发的Servlet对请求做出响应并加入原先Servlet的响应对象中。

【例10-9】应用include()控制页面包含。

（1）编写Servlet实例IncludeServlet.java，代码如下：

 [image:]

（2）在web.xml文件中配置该Servlet，代码如下：

 [image:]

（3）编写跳转页面forward.html，代码与10.8.2节【例10-8】的代码相同。

（4）在Tomcat服务器下测试，在浏览器地址栏输入

 http://localhost:8080/ch10/include，

就会转到根目录下的forward.html文件，如图10-23所示。

 [image:]
 图10-23　IncludeServlet的运行结果

地址栏中的地址依然是Servelt的地址，没有变化。响应结果是TestInclude.java中输出的“<h2>Include:</h2>
”和forward.html的混合内容。

forward()方法和include()方法的区别如下。

[image:]　forward()方法：调用后在响应中的没有提交的内容被自动消除。

[image:]　include()方法：使原先的Servlet和转发到的Servlet都可以输出响应信息。

10.9　Servlet异常相关

在Servlet中有两种异常处理机制：声明式异常处理和程序式异常处理。

10.9.1　声明式异常处理

声明式异常处理是在web.xml文件中声明对各种异常的处理方法，这是通过<error-page>元素来声明的。<error-page>有两个子元素：子元素<error-code>指定HTTP协议的错误代码；子元素<location>指定用于响应HTTP错误代码的资源路径，该路径相对于Web应用程序根路径的位置，必须以“/”开头。

声明异常处理的方法如下：

（1）编写产生异常的Servlet。

（2）编写错误处理页面。

（3）配置<error-page>元素。

（4）运行。如果直接在Tomcat服务器下运行，需要进行如图10-24所示的设置。

 [image:]
 图10-24　在tomcat服务器下运行声明式异常的设置

利用< error-page >元素可以声明两种类型的错误处理：指定对HTTP错误代码的处理，对程序中产生的Java异常的处理。

【例10-10】HTTP错误代码的处理。

HTTP协议中定义了对客户端响应的状态编码：4XX状态码表示客户端错误，5XX状态码表示服务器错误。

（1）编写专门处理HTTP错误的Servlet进行响应，以HttpErrHandlerServlet.java为例，代码如下：

 [image:]

（2）在web.xml中对HTTP401错误和404错误指定相应的错误处理页面，代码如下：

 [image:]

（3）在Tomcat服务器下测试，在浏览器地址栏输入

 http://localhost:8080/ch10/1.jsp

运行结果如图10-25所示。

 [image:]
 图10-25　错误发生时的处理页面

【例10-11】声明式处理java.io.IOException异常。

（1）编写抛出java.io.IOException异常的Servlet，以IOExceptionServlet.java为例，代码如下：

 [image:]

（2）在web.xml文件中部署这个Servlet，代码如下：

 [image:]

（3）编写处理错误的JSP文件。IOException.jsp代码如下所示：

 [image:]

（4）在Tomcat服务器下测试，在浏览器地址栏中输入

 http://localhost:8080/ch10/IOError

运行结果如图10-26所示。

 [image:]
 图10-26　声明式处理java.io.IOExceptionServlet异常

10.9.2　程序式异常处理

在javax.Servlet包中定义了两个异常类：ServletException和UnavailableException。

1. javax.Servlet.ServletException类

ServletException类定义了一个通用的异常，常用在init()、service()和doXX()方法中抛出异常，它提供了4个构造方法和1个获得异常原因的方法。

[image:]　public ServletException()方法是构造一个新Servlet异常。

[image:]　public ServletException（java.lang.String message）方法用指定的消息构造一个新的Servlet异常，这个消息被写入服务器日志或显示给用户。

[image:]　public ServletException（java.lang.String message,java.lang.Throwable rootCause）方法可以使得在一个Servlet异常中包含根原因的异常，同时包含一个消息描述。根原因异常就是在Servlet执行时有一个异常阻碍了Servelt的正常操作。

[image:]　public ServletException（java.lang.Throwable rootCause）方法可以使得在一个Servlet异常中包含根原因的异常。

[image:]　public java.lang.Throwable getRootCause()方法返回造成这个ServletException的原因，即返回根原因的异常。

2. javax.Servlet.UnavailableException类

UnavailableException类是ServletException类的子类，当Servlet或者Filter暂时或永久不能用时就会抛出这个异常。它提供了两个构造方法和两个实例方法。

[image:]　public UnavailableException（java.lang.String msg）方法用一个给定的消息构造一个新的异常，说明Servlet永久不可用。

[image:]　public UnavailableException（java.lang.String msg, int seconds）方法用一个给定的消息构造一个新的异常，说明Servlet永久不可用。seconds指明Servlet不可用的时间，单位是秒。当seconds参数值为负数或零时，表示Servlet不知过多久可用。

[image:]　public int getUnavailableSeconds()方法返回Servlet预期的暂时不可用的时间，单位是秒。如果返回的是负数，说明Servlet永久不可用或不知多久才能用。

[image:]　public boolean isPernanent()方法返回一个布尔值，说明Servlet是否永久不可用。true表示Servlet永久不可用；false表示Servlet可用或暂时不可用。

可以将请求封装到一个请求中，然后利用RequestDispatcher转发给一个异常处理Servlet进行统一处理。这样，在同一个Web应用中，多个Servlet抛出的异常相同时，就可以统一进行处理。

【例10-12】使用RequestDispatcher来处理异常。

（1）编写处理异常的Servlet，以ExceptHandleServlet.java为例，代码如下：

 [image:]

其中，在service()方法中，利用request对象的getAttribute()方法获取属性javax.servlet.error.request_uri和javax.servlet.error.exception，从而获得抛出异常的Servlet位置和异常对象。

（2）编写抛出异常的Servlet，以Exception.java为例，代码如下：

 [image:]

其中，在Servlet的doGet()方法中，进行除法运算，用0作为除数，产生ArithmeticException异常。利用respons对象的setAttribute()方法存储属性javax.servlet.error.request_uri和javax.servlet.error.exception。利用Request对象的getRequestDispatcher()方法获得RequestDispatcher对象，然后调用RequestDispatcher对象的forward()方法将请求转发给ExceptionHandler。

（3）在web.xml文件中部署这两个Servlet，代码如下：

 [image:]

（4）在Tomcat服务器下测试，在浏览器地址栏中输入

 http://localhost:8080/ch10/excep

运行结果如图10-27所示。

 [image:]
 图10-27　Exception抛出异常，ExceptHandleServlet对错误原因进行分析

10.10　Servlet 3.0注解

Servlet 3.0是Servlet规范的最新版本。本节主要介绍了Servlet 3.0引入的若干重要新特性，包括异步处理、新增的注解支持、可插性支持等。

Servlet 3.0是Java EE6规范的一部分。Servlet 3.0提供了注解（Annotation），使得不再需要在web.xml文件中进行Servlet的部署描述，简化了开发流程。

10.10.1　开发Servlet 3.0程序的所需要的环境

开发Servlet 3.0的程序需要一定的环境支持。MyEclipse 10和Tomcat 7都提供了对Java EE6规范的支持。Tomcat需要Tomcat 7才支持Java EE6，Tomcat 7需要使用JDK1.6以上的版本。

如果使用的MyEclipse的版本较低，例如MyEclipse 8.5，没有提供Java EE6的支持，可以到Oracle官方网站下载Java EE6的SDK进行安装，或者将Tomcat 7的解压目录下lib文件夹中的annotations-api.jar、el-api.jar、jasper.jar、jasper-el.jar、jsp-api.jar、servlet-api.jar文件引用到项目路径下（例如：先建一个Java EE5的Web项目，然后把Tomcat 7的解压目录下lib文件夹中的annotations-api.jar、el-api.jar、jasper.jar、jasper-el.jar、jsp-api.jar、servlet-api.jar文件引入到项目中，再删除Java EE5的库引用，最后从Tomcat 7解压目录下的conf文件夹中把web.xml模板复制到项目，替换掉原来的web.xml）。

10.10.2　开发Servlet 3.0程序

（1）创建一个Web Project，并选择J2EE Specification Level为Java EE6，如图10-28所示。

（2）创建一个Servlet，输入Servlet所在的Java包名和Servlet的文件名，然后单击Next按钮，如图10-29所示。

 [image:]
 图10-28　创建一个Web Project

 [image:]
 图10-29　输入Servlet名称和所在包名

（3）取消Generate/Map web.xml file复选框的选中状态，单击Finish按钮完成Servlet的创建工作，如图10-30所示。

（4）查看Servlet培植信息的web.xml文件，在web.xml文件中没有任何关于这个Servlet的描述信息，如图10-31所示。

Servlet 3.0的部署描述文件web.xml的顶层标签<web-app>有一个metadata-complete属性，该属性指定当前的部署描述文件是否是完全的。如果设置为true，则容器在部署时将只依赖部署描述文件，忽略所有的注解（同时也会跳过web-fragment.xml的扫描，即禁用可插性支持）；如果不配置该属性，或者将其设置为false，则表示启用注解支持（和可插性支持）。

 [image:]
 图10-30　取消web.xml的映射

 [image:]
 图10-31　web.xml代码内容

（5）使用注解描述Servlet。Servlet 3.0提供了注解，使得不再需要在web.xml文件中进行Servlet的部署描述。下面用Servlet3.0提供的注解来描述TestServlet3，代码如下：

 [image:]

在Tomcat 7下发布该工程，启动Tomcat，通过在浏览器中输入http://服务器名:端口号/工程名/servlet映射路径，来访问产生的Servlet。输入

 http:// localhost:8080/ch10/test3

会在页面上显示运行结果，如图10-32所示。

 [image:]
 图10-32　TestServlet3运行结果

在Servlet 3.0中，可以使用@WebServlet注解将一个继承于javax.servlet.http.HttpServlet的类标注为可以处理用户请求的Servlet。该注解将会在部署时被容器处理，容器将根据具体的属性配置将相应的类部署为Servlet。该注解具有表10-9给出的一些常用属性，这些属性均为可选属性，但是value或者urlPatterns通常是必需的，且二者不能共存，如果同时指定，通常是忽略value的取值。

 表10-9　注解@WebServlet的属性

 [image:]

如下加注解的一个AnnoServlet代码：

 @WebServlet(

 urlPatterns = {"/Anno"}, asyncSupported = true,

 loadOnStartup = -1, name = "AnnoServlet",

 displayName = "ss", initParams = {@WebInitParam(name = "username", value = "jsp")}

)

 public class AnnoServlet extends HttpServlet{ … }

这样配置之后，就可以不必在web.xml中配置相应的<servlet>和<servlet-mapping>元素了，容器会在部署时根据指定的属性将该类发布为Servlet。它的等价的web.xml配置形式如下：

 [image:]

@WebInitParam该注解通常不单独使用，而是配合@WebServlet等注解使用。它的作用是为Servlet指定初始化参数，@WebInitParam的一些常用属性如表10-10所示。

 表10-10　@WebInitParam的常用属性

 [image:]

10.11　Servlet应用实例

本节通过一个留言板模块来介绍Servlet的使用。留言板几乎是每个网站都提供的功能。

【例10-13】采用JSP+JavaBean+Servlet实现留言板。

在留言时，用户需要输入留言的标题、留言者的姓名、留言者的E-mail和留言内容。留言板界面如图10-33所示。

 [image:]
 图10-33　留言板界面

除了在数据库里保存留言者的输入信息之外，往往还需要保存留言的具体时间，所以需要创建一个保存留言的表。代码如下：

 create database liuyan;

 use liuyan;

 create table message(title varchar(100),name varchar(20),time datetime,content

 varchar(2000),mail varchar(50));

这个表的名字为message，除了Date的值自动生成外，其他的值需要留言者输入。

在这个例子中使用Servlet接收HTTP请求，然后执行连接数据库的操作。操作完成后，如果需要，则操作结果保存在HTTP请求中，然后把视图派发到用于显示的JSP。

（1）留言板主页面index.jsp的代码如下：

 [image:]

（2）表示留言板的JavaBean文件MessageVO.java的代码如下：

 [image:]

（3）用来保存留言的AddMessageServlet.java的代码如下：

 [image:]

 [image:]

（4）用于获得留言板信息的ViewMessageServlet.java的代码如下：

 [image:]

 [image:]

（5）显示留言的JSP页面viewMessages.jsp的代码如下：

 [image:]

（6）Servlet的配置信息如下：

 [image:]

在留言板页面输入信息，如图10-34所示，地址栏中显示URL地址为

 http://localhost:8080/ch10/index.jsp

单击“提交留言”按钮，发布留言，如图10-35所示，并且地址栏中显示URL地址为

 http://localhost:8080/ch10/ AddMessageServlet

 [image:]
 图10-34　输入留言

 [image:]
 图10-35　提交留言

提交留言后转向保存留言的Servlet-AddMessageServlet，由于AddMessageServlet.java中的代码：

 RequestDispatcher dispatcher =request.getRequestDispatcher("/ViewMessageServlet");

 dispatcher.forward(request, response);

所以添加完留言就转向了Servlet- ViewMessageServlet，而ViewMessageServlet.java中的代码：

 request.setAttribute("messages", ret);

 RequestDispatcher dispatcher = equest.getRequestDispatcher

 ("viewMessages.jsp");

 dispatcher.forward(request, response);

又把页面转向了显示留言的页面viewMessages.jsp，所以添加完留言和查看留言都是viewMessages.jsp页面显示的内容。再添加一条留言，然后通过超级链接查看所有留言，如图10-36所示。

 [image:]
 图10-36　查看留言

注意，直接执行viewMessages.jsp是不能显示留言的，因为只有在ViewMessageServlet.java文件中采用代码：

 request.setAttribute("messages", ret);

在viewMessages.jsp中才能使用：

 Collection messages = (Collection) request.getAttribute("messages");

在此留言板中，客户端请求首先发送到Servlet，Servlet通过JDBC连接数据库，执行数据库操作。操作完成后用JavaBean封装执行的结果，然后把结果保存到请求对象中，最后把视图派发到用于显示的JSP页面。JSP页面读取Servlet的执行结果进行显示。

在这种MVC的开发模式中，JSP用于显示，它充当了视图的角色；Servlet用于执行业务逻辑，它相当于控制器的角色；JavaBean用于表示数据，相当于模型的角色。这种模式层次关系清楚，开发页面也易于维护，建议在项目中优先考虑。

10.12　小结

本章内容较多。首先对Servlet的概念、特点和工作原理进行了介绍，然后部署了一个简单的Servlet。根据Servlet API的分类，分别对各类Servlet API的功能、方法进行介绍，并且都举例进行了具体应用，每个例子给出了详细的开发执行步骤。最后给出了一个采用MVC模式开发的留言板的例子，涉及多方面的知识，请读者仔细体会。

10.13　习题

一、选择题

1. 下面Servlet的（　　）方法用来为请求服务，在Servlet生命周期中，Servlet每被请求一次它就会被调用一次。

A. service()

B. init()

C. doPost()

D. destroy()

2. Servlet可以在以下（　　）三个不同的作用域存储数据。

A. HttpServletRequest、HttpServletResponse、HttpSession

B. HttpServletRequest、HttpSession、ServletContext

C. HttpServletResponse、HttpSession、ServletContext

D. HttpServletRequest、HttpServletResponse、ServletContext

3. 在J2EE中，Servlet从实例化到消亡是一个生命周期。下列描述正确的是（　　）。

A. 在典型的Servlet生命周期模型中，每次Web请求就会创建一个Servlet实例，请求结束Servlet就消亡了

B. init()方法是容器调用的Servlet实例，此方法仅一次

C. 在容器把请求传送给Servlet之后，和在调用Servlet实例的doGet或者doPost方法之前，容器不会调用Servlet实例的其他方法

D. 在Servlet实例在service()方法处理客户请求时，容器调用Servlet实例的init()方法一定成功运行了

4. 在J2EE中，给定某Servlet的代码如下，编译运行该文件，以下陈述正确的是（　　）。

 [image:]

A. 编译该文件时会提示缺少doGet()或者dopost()方法，编译不能够成功通过

B. 编译后，把Servlet1.class放在正确位置，运行该Servlet，在浏览器中会看到输出文字：hello!

C. 编译后，把Servlet1.class放在正确位置，运行该Servlet，在浏览器中看不到任何输出的文字

D. 编译后，把Servlet1.class放在正确位置，运行该Servlet，在浏览器中会看到运行期错误信息

5. 下面是IP地址为222.22.49.189Web服务器上，ch应用下的一个Servlet部署文件的片段：

 [image:]

访问此Servlet的URL地址是（　　）。

A. http://222.22.49.189:8080/ch/helpHello

B. http://222.22.49.189:8080/ch/helpHello.java

C. http://222.22.49.189:8080/helpHello

D. /helpHello

6. 在Web应用的部署描述文件中，下面（　　）选项能够将com.example.LoginServlet servlet映射为/utils/LoginServlet。

 [image:]

7. 在Web容器中，以下（　　）和（　　）类别的实例分别代表HTTP请求与响应对象。

A. HttpRequest

B. HttpServletRequest

C. HttpServletResponse

D. HttpPrintWriter

二、判断题

1. 不能给一个Servlet映射多个访问路径。

（　　）

2. JSP技术是在Servlet之后产生的，它以Servlet为核心技术，是Servlet技术的一个成功应用。

（　　）

3. 实现转发需要两个步骤，首先在Servlet中要得到RequestDispatcher对象，然后在调用该对象的forward方法实现转发。

（　　）

三、填空题

1. 在Servlet中有两种异常处理机制：　　　和　　　。

2. 如果某个类要成为Servlet，则它应该继承　　　、　　　或　　　接口或类。

3. Servlet的生命周期又一系列事件组成，把这些事件按照先后顺序排序　　　、　　　、　　　、　　　、　　　。

四、简答题

1. 简述Servlet和JSP的关系。

2. 简述Servlet的生命周期。

3. 简述HttpSession接口的功能和使用方法。

4. 简述开发一个Servlet所需要的步骤。

五、编程题

1. 编写一个HTML页面和一个Servelt，实现利用Servelt()的doPost()方法读取HTML文件中Form表单内容。

2. 编写一个利用HttpSession接口的用户登录的Servlet，当用户已经登录时，返回欢迎信息，否则转向登录页面。
第11章　使用Servlet过滤器和监听器

在Web应用中，基于Servlet技术的过滤器可以在客户端发起基于JSP的Web请求被提交给业务逻辑前，对这些请求执行一些特定的操作。监听器的主要目的是给Web应用增加事件处理机制，以便更好地监视和控制Web应用状态的变化。

本章学习目标

 	◎　理解过滤器和监听器的执行过程和作用

 	◎　掌握过滤器和监听器的开发和部署方法

 [image:]
 本章案例源代码下载

11.1　过滤器在Web开发中的应用

过滤器（Filter）是在Servlet 2.3规范中引入的新功能，并在Servlet 2.4规范中得到增强。Servlet过滤器是一种Web组件，它们拦截请求和响应，以便查看、提取或以某种方式操作客户机和服务器之间交换的数据。

11.1.1　过滤器概述

对Web应用来说，过滤器就是驻留在服务器端、在源数据和目的数据间、对Web请求和Web响应的头属性（Header）和内容体（Body）进行操作的一种特殊Web组件，如图11-1所示。

 [image:]
 图11-1　过滤器

当Web容器收到一个对资源的请求时，容器将判断是否有过滤器与这个资源相关。如果有，容器把这个请求发给过滤器进行处理，过滤器处理请求后再把请求发送给目标资源。当目标资源对请求做出响应时，响应也会被容器先转发给过滤器，在过滤器中对响应内容进行处理，然后响应被发送到客户端。

在一个Web应用程序中，可以部署多个过滤器，这些过滤器组成一个过滤器链。过滤器链中的每个过滤器都有特定的操作，请求和响应在浏览器和目标资源之间按照部署描述符中声明的过滤器顺序，在过滤器之间进行传递，如图11-2所示。

 [image:]
 图11-2　多个过滤器组成的过滤器链

在请求资源时按照过滤器链中过滤器的顺序依次对请求进行处理，并将请求沿过滤器链传递给下个过滤器，直到传递到目标资源；发送响应则是按照过滤器链相反的方向对响应进行处理和传递，直到把响应传到客户端为止。过滤器并不是必须把请求传送到下一个过滤器，它可以根据处理结果直接给客户端发送响应，也可以将请求转发给另外一个目标资源。

11.1.2　Filter API

与过滤器开发相关的接口和类包含在javax.servlet和javax.servlet.http包中，主要的接口和类如表11-1所示。

 表11-1　Filter API常用接口和类及其说明

 [image:]

11.1.3　Filter接口

所有的过滤器在开发中必须实现javax.servlet.Filter接口，并且提供一个公开的不带参数的构造方法。接口定义了init()、doFilter()和destroy() 3个方法，和Servelt接口类似，这3个方法分别对应Servlet过滤器生命周期中的初始化、响应和销毁3个阶段。

（1）public void init （FilterConfig config） throws ServletException

Web容器调用init()方法，说明过滤器正被嵌入到Web容器中去。容器只在实例化过滤器时才会调用该方法一次。初始化方法必须在被调用做过滤工作前正确完成。容器为这个方法传递一个FilterConfig对象，其中包含着在部署描述符中配置的与过滤器相关的初始化参数。

（2）public void doFilter （ServletRequest req,ServletResponse res,FilterChain chain）throws java.io.IOException,ServeltException

doFilter()方法实现了过滤器对请求和响应的操作功能。每当请求和响应经过过滤器链时，容器都要调用一次该方法。FilterChain参数对于正确的过滤器操作至关重要，FilterChain对象代表了多个过滤器形成的过滤器链。为了将请求／响应沿过滤器链继续传送，在每个过滤器的doFilter()方法中必须调用FilterChain对象的doFilter()方法。

Web容器将请求对象（ServletRequest）、响应对象（ServletResponse）和过滤器的链接对象（FilterChain）3个参数传递到该方法。在过滤器中处理的ServletRequest和ServletResponse对象，最终要传递到被过滤的Servlet或JSP，所以在doFilter()方法中可以通过对ServletRequest的操作在Servlet运行之前改变Web请求的头信息或内容，通过对ServletResponse的操作在Servlet运行之后改变响应结果。

过滤器的doFilter()方法实现中，任何出现在FilterChain的doFilter()方法之前的代码都被看作为预处理过滤器逻辑，在这一阶段，进入的请求是可用的，可以在这里对请求进行修改，但不能修改响应信息，因为Web资源的响应处理还没有发生。任何出现在FilterChain的doFilter()方法之后的代码构成了过滤器逻辑的后期处理，在这一阶段中，外发的Web资源的响应信息已经处理完毕，可以在这里修改响应信息，此时修改请求没有任何意义，因为请求已经处理完毕。

需要注意的是，过滤器的一个实例可以同时服务于多个请求，因此，特别需要注意多线程的同步问题。

（3）public void destroy()

Web容器调用destroy()方法表示过滤器生命周期结束。在这个方法中，释放过滤器使用的资源。

与开发Servlet不一样，Filter接口没有提供可以继承的相应实现类，要开发过滤器只能直接实现Filter接口。

11.1.4　FilterConfig接口

当容器对Filter对象进行初始化时，容器调用Filter的init()方法，并传入一个实现FilterConfig接口的对象。Filter可使用该对象获得一些有用的信息。FilterConfig接口包含以下方法。

[image:]　public String getFilterName()：获得过滤器的名称信息，该名称是在部署描述符中说明的。

[image:]　public String getInitParamter（String name）：获得过滤器的初始化字符串，初始化字符串也是在部署描述符中说明的。如果这个参数不存在，该方法将返回null。

[image:]　public Enumeration getInitParamterNames()：获得一个枚举器，以遍历过滤器的所有初始化字符串。如果过滤器没有初始化参数，此方法返回一个空的枚举集合。

[image:]　public ServletContext getServletContext()：获得过滤器所在Web应用的Servlet上下文对象引用。

11.1.5　FilterChain接口

javax.servlet.FilterChain接口由容器实现，容器将其实例作为参数传入过滤器对象的doFilter()方法中。过滤器对象使用FilterChain对象调用过滤器链中的下一个过滤器或者是调用目标资源。FilterChain接口仅定义一个方法：public void doFilter（ServletRequest req, ServletResponse res），该方法用于将请求／响应继续沿过滤器链向后传送给下一个过滤器。如果调用该方法的过滤器是链中最后一个，那么目标资源被调用。

11.1.6　编写过滤器类

【例11-1】编写一个简单的过滤器。

过滤器开发的第一步是编写过滤器类。利用MyEclipse来开发一个名字叫TestFilter.java的过滤器，它实现了Filter接口。具体过程如下。

（1）MyEclipse中不可以直接创建过滤器。在MyEclipse中新建一个Java类，如图11-3所示。

（2）单击Add按钮，弹出对话框，在Choose interface文本框中输入Filter，并选择匹配的类型javax.servlet，如图11-4所示。

 [image:]
 图11-3　在Eclipse中新建Java类

 [image:]
 图11-4　选择已实现的接口

（3）单击OK按钮返回Create a new Java Class对话框，然后单击Finish按钮，就可以看到创建的过滤器框架，如图11-5所示。

 [image:]
 图11-5　过滤器框架

（4）过滤器框架中包含了Filter生命周期的3个方法。修改doFilter()方法，完成TestFilter的编写。过滤器TestFilter.java的代码如下。为了让读者了解过滤器运行时的工作情况，这里在语句chain.doFilter（req, res），前面添加out.println（"before doFilter()"），在后面添加out.println（"after doFilter()"）。

 [image:]

11.1.7　过滤器的部署

在创建过滤器之后必须将它添加到部署描述符中，这样容器才会将过滤器投入到服务中去。配置工作由以下两部分组成。

1. 声明过滤器

<filter>元素用于在Web应用中声明一个过滤器。<filter>元素的结构如图11-6所示。

 [image:]
 图11-6　<filter>元素的结构

其中，<description>元素为filter指定一个文本描述；<display-name>元素为filter指定一个简短的名字，这个名字可以被一些工具所显示；<icon>元素为filter指定一个图标，在图形界面中可用它表示该filter；<filter-name>元素为过滤器指定一个名字，该元素不能为空；< filter-class>元素用于指定过滤器完整限定类名；<init-param>元素用于为过滤器指定初始化参数，它的子元素<param-name>指定参数的名字，子元素< param-value>指定参数的值。

以下是一个<filter>元素的示例。

 [image:]

对部署描述符中声明的每一个过滤器，Servlet容器只创建一个实例。并且，同一个过滤器实例上可以运行多个线程同时为多个请求服务。与Servlet类似，也要注意线程安全的问题。

2. 设置过滤器映射<filter-mapping>

<filter-mapping>元素用于指定过滤器关联的URL样式或者Servlet。<filter-mapping>结构如图11-7所示。

 [image:]
 图11-7　<filter-mapping>元素的结构

其中，<filter-name>子元素的值必须是<filter>元素中声明过的过滤器的名字；子元素<url-pattern>和<servlet-name>可以选择一个设置，<url-pattern>元素为过滤器关联的URL，<servlet-name>元素为过滤器对应的Servlet，当用户访问<url-pattern>元素上指定的资源或<servlet-name>元素指定的Servlet时，这个过滤器才会被容器调用；最多可以有4个<dispatcher>元素，<dispatcher>元素指定过滤器对应的请求方式，有4种请求方式：REQUEST、INCLUDE、FORWARD和ERROR，默认是REQUEST。

[image:]　REQUEST：当用户直接访问页面时，Web容器将调用过滤器。除此之外，不会调用该过滤器。

[image:]　INCLUDE：用户访问的目标资源是通过RequestDispatch的include()方法访问时，容器会调用过滤器。除此之外，不会调用该过滤器。

[image:]　FORWARD：用户访问的目标资源是通过RequestDispatch的forward()方法访问时，容器会调用过滤器。除此之外，不会调用该过滤器。

[image:]　ERROR：在目标资源是通过声明式异常处理机制调用时，容器会调用过滤器。

使用<servlet-name>元素将过滤器连接到一个Servlet中：

 [image:]

当用户访问myServlet.java时，容器就会调用LogFilter过滤器。

使用<url-pattern>将过滤器映射到某个URL模式：

 [image:]

当用户访问JSP文件时，容器就会调用LogFilter过滤器，并且要求满足用户直接访问JSP页面或者通过RequestDispatch的include()方法访问时，容器就会调用过滤器LogFilter。

使用<url-pattern>将过滤器映射到某个URL模式的方法会获得更大的灵活性，它使开发人员将过滤器应用于一组Servlet、JSP或任何静态资源。

在映射过滤器时，应高度重视元素<servlet-mapping>的顺序。一旦顺序颠倒，完全可能形成与设计时完全不同的结果。根据如下部署描述符，用<servlet-mapping>元素先定义Filter1，然后定义Filter2，最后定义Filter3，那么过滤器链中过滤器的顺序就确定了，如图11-8所示。

 [image:]
 图11-8　有顺序的过滤器链

代码如下：

 [image:]

在11.1.6节中，完成了过滤器开发的第一步：编写过滤器类。运行过滤器必须在部署描述符中编译和部署过滤器。为了能成功测试过滤器，第二步编写一个测试页test.jsp，内容如下：

 <%@ page contentType="text/html;charset=GB2312" %>

 JSP测试网页

第三步编译和部署过滤器。编写WEB-INF\web.xml文件，对过滤器进行配置。web.xml文件的详细内容如下：

 [image:]

当用户访问test.jsp页面时，容器就会调用SimpleFilter，运行结果如图11-9所示。

 [image:]
 图11-9　调用过滤器TestFilter的运行结果

从结果中看出，在输出before doFilter()后，执行chain.doFilter（req, res）;语句，目标资源被调用，在响应中输出“JSP测试网页”，然后返回过滤器的doFilter()方法中，继续执行chain.doFilter（req, res）；后面的语句，输出after doFilter()。

11.1.8　对请求数据进行处理的过滤器

【例11-2】使用过滤器校验表单数据。

在Web应用中，常要求用户注册成功后才能使用。有时用户在注册时输入不合法。在过滤器中拦截客户端请求，获得输入的参数数据，对输入参数数据的合法性进行校验，将不合法的请求重新定位到一个错误页面。

（1）开发3个jsp页面：CheckForm.jsp、CheckFormSuccess.jsp和CheckFormFail.jsp。

CheckForm.jsp的代码如下：

 [image:]

CheckFormSuccess.jsp的代码如下：

 [image:]

CheckFormFail.jsp的代码如下：

 [image:]

（2）编写过滤器类。过滤器类的名字为CheckFormFilter.java，代码如下：

 [image:]

（3）在web.xml文件中添加配置过滤器CheckFormFilter，代码如下：

 [image:]

（4）验证过滤器CheckFormFilter的运行结果。启动Tomcat服务器，在地址栏中输入

 http://localhost:8080/ch11/CheckForm.jsp

返回页面如图11-10所示，在页面中输入信息，提交数据后，因为年龄不在1~100范围内不合法，返回界面如图11-11所示。

 [image:]
 图11-10　在表单中输入中文数据

 [image:]
 图11-11　输入表单数据非法返回页面

如果输入数据合法返回页面如图11-12所示。

 [image:]
 图11-12　输入表单数据合法返回页面

【例11-3】使用过滤器改变请求的编码。

在应用开发中，经常使用过滤功能对客户端的请求进行统一编码。

当没有指定request的编码方式时，从客户端得到的数据是ISO-8859-1编码的。如果客户端提交的数据中包含中文，那么使用request. getParameter()得到提交的参数值会显示为乱码。如实例CheckForm.jsp就存在输入中文显示乱码的问题。部署在Tomcat服务器上后，启动服务器，在地址栏中输入

 http://localhost:8080/ ch11/CheckForm.jsp

运行结果如图11-13所示，输入中文数据并提交后，返回的页面如图11-14所示，在姓名的文本框中出现了乱码。

 [image:]
 图11-13　在表单中输入中文数据

 [image:]
 图11-14　提交中文数据出现乱码

解决办法之一就是开发一个过滤器对请求进行统一编码，一次性解决所有页面请求的编码转换问题，步骤如下：

（1）编写CheckForm.jsp和CheckFormSuccess.jsp页面。

（2）编写过滤器类。过滤器类的名字为Encoding.java，代码如下：

 [image:]

（3）在web.xml文件中配置过滤器EncodingFilter。为了保证过滤器EncodingFilter在CheckFormFilter之前处理请求，必须在过滤器CheckFormFilter之前配置过滤器EncodingFilter。

 [image:]

（4）重启Tomcat服务器，在地址栏中输入

 http://localhost:8080/ch11/CheckForm.jsp

运行结果如图11-15所示。页面中中文数据可以正常显示，图11-14中的中文乱码问题在过滤器EncodingFilter的处理下得以解决。

 [image:]
 图11-15　配置过滤器EncodingFilter后的返回页面

11.1.9　过滤器新增@WebFilter注解

@WebFilter用于将一个类声明为过滤器，该注解将会在部署时被容器处理，容器将根据具体的属性配置将相应的类部署为过滤器。该注解具有表11-2给出的一些常用属性。这些属性中value、urlPatterns、servletNames三者必需至少包含一个，且value和urlPatterns不能共存，如果同时指定，通常忽略value的取值；其他属性均为可选属性。

 表11-2　@WebFilter的常用属性

 [image:]

使用@WebFilter注解声明Filter：

 @WebFilter(servletNames={" test.jsp"},filterName= {"SimpleFilter" })

 public class TestFilter implements Filter {...}

容器部署过滤器SimpleFilter，根据声明对访问test.jsp的请求进行过滤，它等价于web.xml文件中的配置形式：

 [image:]

11.2　Servlet监听器

Servlet 2.3提供了对ServletContext和HttpSession对象状态变化（事件）的监听器，Servlet 2.4则增加了对ServletRequest对象状态变化（事件）的监听器。Servlet监听器是Web应用程序事件模型的一部分，Servlet监听器用于监听一些Web应用中重要事件的发生，监听器对象可以在事情发生前、发生后，Servlet容器就会产生相应的事件，Servlet监听器用来处理这些事件。

11.2.1　监听器接口

Servlet API中定义了8个监听器，根据监听对象的类型和范围可以分为3类：ServletContext事件监听器、HTTPSession事件监听器和ServletRequest事件监听器。8个监听器接口及其说明如表11-3所示。

 表11-3　Servlet API中的8个监听器接口

 [image:]

11.2.2　ServletRequestListener接口

javax.servlet.ServletRequestListener接口主要监听request内置对象的创建和销毁事件。当request请求准备到达Web应用的第一个Servlet程序或过滤器时，request内置对象创建，触发了request内置对象创建事件。当request内置对象超出作用范围而失效时，触发request对象销毁事件。接口中定义了两个事件处理方法，分别是requestInitialized()和requestDestroyed()。

[image:]　public void requestInitialized（ServletRequestEvent sre）：当产生的request准备进入Web应用作用范围事件时，侦听此事件的侦听器被激活，此方法被执行。

[image:]　Public void requestDestroyed（ServletRequestEvent sre）：当产生的request准备超出Web应用作用范围事件时，侦听此事件的侦听器被激活，此方法被执行。

ServletRequestEvent是一个事件类，其中有两个关键方法。

[image:]　ServletContext getServletContext()：返回当前Web应用的上下文对象。

[image:]　ServletRequest getServletRequest()：返回当前请求对应的ServletRequest对象。

【例11-4】用ServletRequestListener接口实现一个监听器，把用户请求资源的URI登记在日志文件中。

（1）编写TestListener.java，代码如下：

 [image:]

（2）在web.xml添加如下代码部署监听器：

 [image:]

（3）测试在地址栏中输入

 http://localhost:8080/ch11/test.jsp

侦听结果保存在C:\requestLog.txt中。

（4）查看运行结果C:\requestLog.txt文件，如图11-16所示。

 [image:]
 图11-16　requestLog.txt文件记录的监听器TestListener侦听的日志

11.2.3　ServletRequestAttributeListener接口

实现javax.servlet.ServletRequestAttributeListener接口的监听器，主要侦听request属性的变化，包括添加新的属性、删除一个已有的属性、修改一个已有的属性值事件。接口定义了3个事件处理方法，分别是attributeAdded()、attributeRemoved()、attributeReplaced()。

[image:]　attributeAdded（ServletRequestAttributeEvent srae）：当上下文中添加了新的request属性事件时，监听器被激活，这个方法被执行。例如JSP页面使用request.setAttribute（"userName","Tom"）会激活此方法。

[image:]　void attributeRemoved（ServletRequestAttributeEvent srae）：当删除了一个已有的request属性时，监听器被激活，这个方法被执行。例如JSP页面使用request.removeAttribute（"userName"）会激活此方法。

[image:]　void attributeReplaced（ServletRequestAttributeEvent srae）：当删除了一个已有的request属性时，监听器被激活，这个方法被执行。例如JSP页面使用request.removeAttribute（"userName"）会激活此方法。

11.2.4　ServletContextListener接口

在Web应用程序启动时需要执行一些初始化任务，可以编写实现ServletContextListener接口的监听器类。

在ServletContextListener接口中定义了两个事件处理方法，分别是contextInitialize()和contextDestroyed()。

[image:]　public void contextInitialized（ServletcontextEvent sce）：在Web应用程序初始化阶段，Servlet容器调用ServletContextListener对象的该方法，通知侦听器ServletContext对象进入初始化阶段。该方法在Web应用程序中的所有过滤器或Servlet初始化之前，应该通知所有ServletContextListener关于上下文初始化的信息。

[image:]　public void contextDestroyed（ServletContextEvent sce）：在Web应用的结束阶段，Servlet容器会调用ServletContextListener对象的本方法，通知侦听器ServletContext对象进入销毁阶段。在通知所有ServletContextListener上下文销毁之前，所有Servlet和过滤器都已销毁。

ServletContextListener整个工作过程如图11-17所示。

[image:]　启动Servlet容器时，Servlet容器为每个包含Servlet的Web应用实例化一个ServletContext对象。

[image:]　启动Servlet容器时，Servlet容器还根据部署描述符，为每个Web应用实例化各种侦听器。

[image:]　容器向其下所有Web应用的ServletContextlistener侦听器发送contextInitialized事件消息。

[image:]　当Servlet容器关闭时，Servlet容器向容器中所有应用的ServletContextlistener侦听器发送contextDestroyed事件消息。

 [image:]
 图11-17　ServletContextListener工作过程

在上述两个事件中，Web容器通过ServletcontextEvent对象来通知实现了ServletContextListener接口的监听器发生的事件的具体信息，监听器可以利用ServletcontextEvent对象来得到ServletContext对象。

ServletContextEvent是一个事件类。当Web应用程序启动或关闭时，Servlet容器将事件包装成ServletContextEvent对象，并将该对象作为参数传递给ServletContext对象的侦听器类的两个方法。

ServletContextEvent对象提供了一个getServletContext()方法，侦听器可以用它来获得对触发该事件的ServletContext对象的引用：

 public ServletContext getServletContext();

11.2.5　ServletContextAttributeListener接口

ServletContext的属性是由Web应用程序中所有的Servlet共享的。为保证属性在整个Web应用范围内的一致性，有必要监视ServletContext对象任何属性的改变。ServletContextAttributeListener侦听器就是为了这一目的而设立的。该侦听器是一个实现了接口ServletContextAttributeListener的Java类。

ServletContextAttributeListener接口共提供了以下3种方法：

[image:]　public void attributeAdded（ServletContextAttributeEvent scab）：通知向Servlet上下文中添加了一个新属性。在添加属性之后调用该方法。

[image:]　public void attributeRemoved（ServletContextAttributeEvent scab）：通知现有属性已从Servlet上下文中移除。在移除属性之后调用该方法。

[image:]　public void attributeReplaced（ServletContextAttributeEvent scab）：通知已替换Servlet上下文中的一个属性。在替换属性之后调用该方法。

各方法的调用过程如图11-18所示。

 [image:]
 图11-18　ServletContextAttributeListener接口各方法的调用过程

[image:]　当调用ServletContext对象的setAttribute()方法将某个属性绑定到ServletContext对象时，容器会调用侦听器的attributeAdded()方法。

[image:]　当调用ServletContext对象的setAttribute()方法改变已经绑定到ServletContext对象的某个属性值时，容器会调用侦听器的这个方法。

[image:]　当调用ServletContext对象的removeAttribute()方法将某个属性从ServletContext对象中删除时，容器会调用侦听器的这个方法。

在上述3个事件中，容器通过传递ServletContextAttributeEvent对象来通知侦听器发生事件的具体信息。

ServletContextAttributeEvent类是一个事件类。当Servlet容器捕获对ServletContext属性的操作事件时，它将事件包装成一个ServletContextAttributeEvent对象，并将该对象作为参数传递给属性侦听器类的3个方法。ServletContextAttributeEvent类继承自ServletContextEvent类。

【例11-5】开发一个对ServletContext及其属性进行监听的程序。

（1）编写ContextListener.java，代码如下：

 [image:]

（2）在web.xml部署监听器，代码如下：

 [image:]

（3）编写测试JSP页面testContext.jsp，代码如下：

 [image:]

在testContext.jsp中对ServletContext执行3次属性的操作，执行结果保存在C:\test.txt中。

（4）查看运行结果C:\test.txt文件，如图11-19所示。

 [image:]
 图11-19　test.txt文件内容

11.2.6　HttpSessionAttributeListener接口

实现javax.servlet.http.HttpSessionAttributeListener接口的监听器，侦听session属性的变化，包括session属性的创建、销毁和修改事件。接口中声明3种方法attributeAdded()、attributeRemoved()和attributeReplaced()。

[image:]　public void attributeAdded（HttpSessionBindingEvent hsbe）：当添加一个新的session属性时，监听器被激活。此方法被调用。

[image:]　public void attributeRemoved（HttpSessionBindingEvent hsbe）：当一个已有的session属性被删除后，监听器被激活。此方法被调用。

[image:]　public void attributeReplaced（HttpSessionBindingEvent hsbe）：当一个session属性值被修改时，监听器被激活。此方法被调用。

监听事件类HttpSessionBindingEvent接口中主要方法有以下3种。

[image:]　public HttpSession getSession()：获得当前发生变化的Session对象。

[image:]　public String getName()：获得当前发生变化的Session属性名。

[image:]　public Object getValue()：获得当前发生变化的Session属性值。如果发生的是修改属性事件，则返回的是旧属性值。

【例11-6】开发一个对HttpSessionAttribute进行监听的程序。

（1）编写ContextListener.java，代码如下：

 [image:]

（2）在web.xml部署监听器，代码如下：

 [image:]

（3）编写测试JSP页面SessionAttributeListener.jsp，代码如下：

 [image:]

在SessionAttributeListener.jsp中对SessionAttribute执行属性的操作，执行结果在C:\SessionAttribute.txt中。

（4）查看运行结果C:\SessionAttribute.txt文件，如图11-20所示。

 [image:]
 图11-20　SessionAttributeListener侦听日志

11.2.7　HttpSessionBindingListener接口

如果一个对象实现了HttpSessionBindingListener接口，当该对象被绑定到Session中或从Session中删除时，Servlet容器会通知该对象，该对象在接收到通知后做初始化操作或清除状态操作。

HttpSessionBindingListener接口提供了以下两种方法。

[image:]　public void valueBound（HttpSessionBindingEvent event）：当对象正在被绑定到Session中，Servlet容器通知对象它将被绑定到某个会话并标识该会话。

[image:]　public void valueUnbound（HttpSessionBindingEvent event）：当从Session中删除对象时，Servlet容器通知对象要从某个会话中取消对它的绑定并标识该会话。

在上述事件中，容器通过HttpSessionBindingEvent对象来通知侦听器发生的事件的具体信息。该侦听器利用HttpSessionBindingEvent对象访问与它相联系的HttpSession对象。javax.servlet.http.HttpSessionBindingEvent类提供了两种方法。

[image:]　public HttpSessionBindingEvent（HttpSession session, String name）：构造一个事件，通知对象它已经被绑定到会话，或者已经从会话中取消了对它的绑定。要接收该事件，对象必须实现HttpSessionBindingListener。

[image:]　public HttpSessionBindingEvent（HttpSession session, String name, Object value）：构造一个事件，通知对象它已经被绑定到会话，或者已经从会话中取消了对它的绑定。要接收该事件，对象必须实现HttpSessionBindingListener。

【例11-7】利用HttpSessionBindingListener接口编写一个在线人数统计的程序。

用户登录成功后，显示欢迎信息，并同时显示当前在线的总人数和用户名单。当一个用户退出登录或Session超时时，从在线用户名单中删除该用户，同时将在线的总人数减1。在程序的开发中，利用一个实现了HttpSessionBindingListener接口的监听器，当对象被绑定到Session或从Session中被删除时，更新当前在线的用户名单。具体步骤如下。

（1）编写用户的登录界面Login.html，代码如下：

 [image:]

（2）编写UserList.java、User.java、OnlineUserServlet.java和LogoutServlet.java。其中，UserList.java用来存储和获取在线用户的列表，并且这个用户列表对于所有的页面来说都是同一个。User.java表示登录的用户，实现了HttpSessionBindingListener接口。OnlineUserServlet.java用于向用户显示欢迎信息、当前在线用户列表和在线用户数。Logout.java用于退出登录。

UserList.java的代码如下：

 [image:]

UserList类中的构造方法是私有的，避免了外部利用该类的构造方法直接创建多个实例，确保自行实例化并向整个系统提供仅此一个实例。静态方法getInstance()可以返回在类加载时创建的对象UserList类的对象。对于静态方法getInstance()，可以直接通过类名来调用。UserList类中定义了一个私有Vector类型的变量vector，在构造方法中对vector进行初始化，然后存放String类型的对象。因为Vector是同步的所以采用Vector来保存用户列表，而不用ArrayList，因为ArrayList在被多线程进行访问时不是同步的。

User.java的代码如下：

 [image:]

User类实现了HttpSessionBindingListener接口，表示登录的用户。利用UserList类的静态方法getInstance()获得UserList类的对象，当User对象加入到Session中时，valueBound()方法就会被Servlet容器调用来将用户的名字保存到UserList对象中；当User对象被从Session中删除时，valueUnbound()方法被Servlet容器调用，从UserList对象中删除该用户。

OnlineUserServlet.java的代码如下：

 [image:]

根据从Session中得到的名为user的属性对象是否为空，判断此次用户是否登录。如果user对象不为null，那么接着判断在同一个会话中用户是否换了一个用户名登录。如果登录user对象为null或者同一个会话中用户登录名换了，就用当前用户登录的用户名创建一个User对象，利用session.setAttribute（"user",user）将user对象绑定到Session中，此时，Servlet容器也会调用User对象的valueBound()方法，将这个用户的名字保存到userList中。

LogoutServlet.java的代码如下：

 [image:]

在用户退出登录时，调用HttpSession对象的invalidate()方法，使Session失效，并删除了绑定到这个Session中的User对象，Servlet容器就会调用这个User对象的valueUnbound()方法从UserList中删除此用户。

（3）修改部署文件web.xml，代码如下：

 [image:]

（4）测试运行在线人数统计程序。运行Tomcat服务器，在浏览器地址栏中输入

 http://localhost:8080/ch11/login.html

在显示的登录界面中输入用户名和密码后，显示如图11-21所示界面。如果再打开一个浏览器并进入登录界面，再次输入用户名和密码登录后，显示如图11-22所示界面。

 [image:]
 图11-21　只有一个用户在线

 [image:]
 图11-22　两个用户在线

 注意

 这里的在线人数统计程序只能统计用户使用“退出登录”方式退出的在线人数，如果用户采用关闭浏览器的方式退出，那么在服务器端的Session中，这个用户依然存在，直到此Session超时，所以统计人数不够精确。

11.2.8　监听器新增@WebListener注解

@WebListener注解将类声明为监听器，被@WebListener标注的类必须实现以下至少一个接口：ServletContextListener、ServletContextAttributeListener、ServletRequestListener、ServletRequestAttributeListener、HttpSessionListener、HttpSessionAttributeListener等。@WebListener注解有可选属性value，类型是String，用于描述监听器的信息。

 @WebListener("This is only a demo listener")

 public class SimpleListener implements ServletContextListener{...}

如此，则不需要在web.xml中配置<listener>标签了。它等价的web.xml中的配置形式如下：

 <listener>

 <listener-class>footmark.servlet.SimpleListener</listener-class>

 </listener>

11.3　小结

本章介绍了Web过滤器和监听器的应用和开发方法。在Web服务器上，除了可以部署JSP、Servlet外，还可以部署过滤器和事件监听程序（广义上也可被称为Servlet）。

过滤器主要对客户端的请求和响应进行统一处理。常见过滤器有对用户请求进行统一认证、对用户发送的数据进行过滤或替换、对用户的访问请求进行记录和审核、对响应内容进行压缩、对请求和响应进行加密解密处理、触发资源访问事件等。

Web监听程序主要监听各种事件，当事件触发后在后台自动执行某些操作。它们监听的对象包括Web应用的上下文信息（ServletContext）、Servlet会话信息（session）和Servlet请求信息（Request）等。

11.4　习题

一、选择题

1. 在web.xml文件中，有下列代码：

 [image:]

Hello.jsp文件的代码如下：

 [image:]

访问Hello.jsp文件，过滤器LogFilter过滤的文件有（　　）。

A. Hello.jsp

B. helpHello.jsp

C. login.jsp

D. date.jsp

2. 下列不属于监听器接口ServletContextAttributeListener提供的方法的是（　　）。

A. public void attributeAdded（ServletContextAttributeEvent event）

B. public void attributeRemoved（ServletContextAttributeEvent event）

C. public void attributeReplaced（ServletContextAttributeEvent event）

D. public void valueBound（HttpSessionBindingEvent event）

3. 下列不属于Servlet2.3提供的监听器的是（　　）。

A. ServletContext对象状态变化（事件）的监听器

B. HttpSession对象状态变化（事件）的监听器

C. HttpServletRequest对象状态变化（事件）的监听器

D. HttpServletResponse对象状态变化（事件）的监听器

4. 为了实现对下列test.jsp代码动作的监听，需要定义的监听器必须实现（　　）接口。文件代码如下：

 <%

 getServletContext().setAttribute("userName","hellking");

 getServletContext().removeAttribute("userName");

 request.getSession.setAttribute("user","hellking");

 %>

A. ServletContextListener

B. ServletContextAttributeListener

C. HttpSessionAttributeListener

D. HttpSessionBindingListener

E. ServletRequestAttributeListener

5. 某Servlet程序的片段如下，用户在浏览器地址栏中输入正确的请求URL并按Enter键后，在控制台上显示的结果是（　　）。

 [image:]

A. get

B. post

C. getpost

D. postget

二、判断题

1. 部署过滤器的工作内容，实际就是在Web应用的web.xml文件中配置过滤器。

（　　）

2. 在web.xml文件中部署监听器，用<listener>注册监听器，用<listener-mapping>映射监听器。

（　　）

3. 如果使指定的IP访问JSP时报错，并告知用户不能访问，可以使用监听器。

（　　）

4. @WebFilter注解用于将一个类声明为过滤器，该注解将会在部署时被容器处理，容器将根据具体的属性配置把相应的类部署为过滤器。

（　　）

三、填空题

1. 对Web应用来说，　　　就是驻留在服务器端，在源数据和目的数据间对Web请求和Web响应的头属性（Header）和内容体（Body）进行操作的一种特殊Web组件。

2. 过滤器对象使用　　　对象调用过滤器链中的下一个过滤器或者是目标资源。

3. 在J2EE中，使用Servlet过滤器时，需要在web.xml通过　　　元素将过滤器映射到Web资源。

4. 在一个Filter中，处理filter业务的是　　　方法。

四、简答题

1. 什么是过滤器？什么是监听器？分别应用在哪些方面？

2. Filter接口、FilterConfig接口和FilterChain接口的功能分别是什么？提供的方法有哪些？

3. ServletContextListener接口、ServletContextAttributeListener接口和HttpSessionBinding Listener接口的功能分别是什么？提供的方法有哪些？

4. JSP乱码如何解决，列举几种解决方案？

5. 如何编写并配置过滤器？举例说明。

6. 如何编写并配置监听器？举例说明。

五、编程题

1. 编写一个过滤器LogFilter.java，对Request请求进行过滤，记录请求的访问时间戳、从请求获取远程地址、从请求获取远程主机名、客户请求的资源URI、客户用的浏览器，并记录到日志文件中。

2. 编写一个监听器ContextListener.java，监听Web应用的启动和停止，并记录到日志文件中。
第12章　JSTL标准标签库

在JSP2.0之后，EL正式成为JSP规范的一部分，并增加了新的特性。EL语法简单、使用方便，在JSP页面中使用EL表达式语言，可以简化对变量和对象的访问。

JSP标准标签库（JSP Standard Tag Library，简称JSTL）是一套预先定义好、协助程序设计人员简化JSP网页制作的标签函数库，包含了各种网页运作所需的运用，例如循环、条件控制、输出／输入、文本格式化及数据库访问操作等均为其涵盖范围。用户如果使用JSTL，可以先到Jakarta Project网站上下载JSTL并安装。JSP 2.0规范支持JSTL技术。

本章学习目标

 	◎　了解EL表达式的前提条件，掌握EL表达式与EL隐含对象的基本用法

 	◎　了解JSTL基本概念

 	◎　掌握JSTL运行环境的配置

 	◎　了解和掌握核心标记库中所有标签的使用

 	◎　了解和掌握数据库标签中标签的使用

 	◎　了解i18n中标签的使用

 	◎　了解函数标签的使用

 [image:]
 本章案例源代码下载

12.1　EL表达式语言

EL是表达式语言（Expression Language）的简称，是JSP 2.0增加的技术规范。用户可以选择直接在JSP网页当中使用EL替代Java进行数据的存取操作。

EL有其专门的一套语法，包含了两项基本要素：变量与运算符。EL另外还有一组内建的预先定义隐含对象（implicit variables），它们以Java集合对象的形态出现，其中存储了网页的各种信息，包含session、cookie和网页传输过程中所使用的参数值。

12.1.1　EL与EL隐含对象

所有EL都以$定界，内容包括在{ }中，格式如下：

 ${EL expression }

EL表达式可以写在HTML标记的标记体内，也可以写在标记属性值内。EL表达式由容器解释和执行。也可以使用转义字符“\”，把“${ }”当作普通字符串，容器不对其解释和执行。

1. EL表达式中的常量和变量

EL表达式中的常量直接书写。

对于EL而言，变量是一个存储了特定数据内容的符号，EL可以直接对其进行访问，或是结合运算符在进行必要的运算之后输出。

【例12-1】创建一个JSP文件ConstantVarible.jsp，EL中使用常量和变量，程序代码如下：

 [image:]

程序中设置了两个数值变量firstNum和secondNum；直接输出一个指定的数值100，接下来输出这两个变量的内容，然后输出两个变量相加之后的结果。输出两个字符串：firstNum及secondNum，以单引号标示其为静态的字符串数据而非变量。EL指定的变量如果找不到，会返回一个null值，变量可以进一步结合各种运算符进行运算。需要注意字符串常量与变量之间的分别，必须通过单引号对其进行区分，一个以上的EL可以合并输出，其效果就如同串接2个字符串所得到的内容一样。ConstantVarible.jsp运行结果如图12-1所示。

 [image:]
 图12-1　ConstantVarible.jsp运行结果

2. EL隐含对象

EL本身内建了11个隐含对象，用户可以通过这些对象，取得特定的网页信息，表12-1列举了可用的隐含对象。

 表12-1　EL可用的隐含对象

 [image:]

表12-2列举其对等的对象存取方式，表中每一列中的左右两种方式对于JSP而言完全相同。

 表12-2　EL对象与request对象存取

 [image:]

initParam与下面的语句相等。

 ServletContext.getInitParameter(String name)

【例12-2】通过EL读取JSP页面上下文信息、表单文字属性内容、请求报头、Cookie信息，EL中使用常量和变量。程序代码如下。

el.jsp源代码：

 [image:]

InternalObject.jsp源代码：

 [image:]

InternalObject.jsp中第7、8、9行分别引用pageContext各种成员，取得与网页本身有关的信息；第12行引用了queryString取得参数内容。第15、16、17行列举了指定的标头相关信息。第19、20行通过Cookie对象，分别取得Cname这个由前一个网页所设置的Cookie内容。运行结果如图12-2所示。

 [image:]
 图12-2　【例12-2】运行结果

3. EL运算符

EL提供了进行逻辑运算所需的相关运算符，其中包含了算术运算符、关系运算符及逻辑运算符等。表12-3对EL所包含的运算符进行了说明。

 表12-3　EL所包含的运算符

 [image:]

（1）运算符（.）与方括号（[]）。

EL可以通过点运算符（.）或是方括号（[]），来检索对象的属性或者集合的元素。以隐含对象param为例：

 ${ param.name }

 ${ param["name"] }

其中第1行与第2行的意思均相同：用来取得param对象参数集合当中，名称为name的参数值。

（2）算术运算符。

算术运算符主要被使用在数值数据的数学运算中，EL提供了5个算术运算符，其含义和语法基本同Java语言。算术运算符相当于数学四则运算的功能，其中模数运算符%，用以取得两数相除之后所得到的余数。

（3）关系运算符。

EL提供了6个作为比较运算的关系运算符，它们被使用于两个指定的数据中进行比对运算。==运算符，相当于Java中的equals()方法，用来判断两个字符串对象是否相同。

（4）逻辑运算符。

逻辑运算符用来进行两个表达式的逻辑运算，并且返回true或false的结果，EL总共包含了3个逻辑运算符。

（5）empty运算符。

empty被用来判断指定的值是否为null或是空值，并且返回一个代表判断结果的Boolean值。如下式：

 ${empty A}

其中的A为所要判断的值。empty的运算规则：若是判断值A为null，返回true的运算结果，若是A的值为空的字符串、数组或是集合对象，也返回true的结果，除此之外，一律返回false。

（6）条件式三元运算符。

三元运算符针对特定判断式的运算结果决定返回的值，以下为其语法：

 ${A?B:C}

其中A为判断式。如果A的结果为true，返回B，否则返回C值的结果。

（7）运算符优先级。

EL运算符的优先级（由上到下，从左到右）参见表12-4。

 表12-4　运算符优先级

 [image:]

12.1.2　在EL中访问JSP隐含对象的getXXX()方法

在EL表达式中访问JSP隐含对象的getXXX()方法的基本语法如下：

 ${pageContext.JSP隐含对象名.XXX}

例如要访问request隐含对象中的getRequestURI()方法，在EL表达式中写为：

 ${pageContext,request.requestURI}

例如要调用session.isNew()方法，在EL表达式中写为：

 ${ pageContext.session.new}

12.1.3　用EL访问JavaBean中的属性

EL表达式通过“.”算符访问JavaBean中的属性，基本语法为：

 ${JavaBean名.属性名}

“.”运算符实际上是调用JavaBean中的getXXX()方法。

【例12-3】用EL访问JavaBean的属性，程序代码如下。

ELJavaBean.java源代码：

 [image:]

ELJavaBean.jsp源代码：

 [image:]

ELJavaBean.jsp的生成一个JavaBean对象，并将属性值20180509写入JavaBean对象，然后把生成的JavaBean对象写入Session作用范围内；最后用EL表达式从Session作用范围读取JavaBean对象，并用“.”运算符在页面显示personID属性的值。运行结果如图12-3所示。

 [image:]
 图12-3用EL访问JavaBean的属性

12.2　JSTL标签库简介

JSTL虽然是JSP网页技术的一环，但是与JSP不同的是，JSTL本身并非是由Sun公司所开发出来的。相反地，Sun在制定其标准之后，便直接开放提供给外界进行开发，而目前提供相关标准开发应用的最主要的组织为Apache的Jakarta Project。2003年11月发布JSTL1.1，目前最新版本是Apache Standard Taglib 1.2.5，此版本支持JSTL1.2版本。

使用JSTL实现动态JSP页面的最大特点在于简单，避免了使用脚本片段带来的许多问题，Web应用开发人员利用JSTL可以取代直接嵌入页面的代码片段，提高程序可读性和可维护性。

JSTL包含5类标准标记库：核心标记库、格式标记库、XML标记库、SQL标记库和函数标记库。在使用这些标记库以前，需要使用taglib指令的prefix和uri属性来指定要使用的标记库，如表12-5所示。其中，prefix指定的前缀就是在JSP页面中将要使用的标记前缀，例如<c:out>就表示使用核心标记库中的out标记完成指定的页面输出操作。

 表12-5　JSTL标签函数库

 [image:]

12.3　设置JSTL运行环境

12.3.1　JSTL的安装

Sun公司的JSTL页面（http://java.sun.com/products/jsp/jstl）提供JSTL规范文档和相关实现的下载。Apache Jakarta项目是JSTL标准的一种实现，具体下载网址为：http://www.apache.org/dist/jakarta/taglibs/standard/。Windows系统下软件包对应的下载文件名为jakarta-taglibs-application-current.zip。

Jakarta JSTL的实现是一些JAR文件，如果在Web应用中使用JSTL，就需要在Web应用的WEB-INF\lib目录下包含JSTL的JAR文件。将jstl.jar和standard.jar复制到Tomcat网站根目录下的文件夹WEB-INF\lib当中，并将tld目录复制到Tomcat的WEB-INF目录下，重新启动Tomcat之后，就可以开始使用JSTL了。

修改Web应用的配置文件web.xml中定义对应标记库描述文件的URI。

 [image:]

至此，就完成了JSTL的安装配置。

在使用JSTL之前，必须引用taglib指令声明网页所使用的标签种类，语法如下：

 <%@taglib prefix=tabName uri=uriString %>

其中包含两个属性的设置，prefix代表标签种类的前缀词，uri则是标签的URI，这段程序代码的prefix属性值设置为tabName，表示所要使用的标签，uriString则是对应此标签的URI。

12.3.2　JSTL应用示例

【例12-4】创建一个JSP文件jstl.jsp，在JSP文件中使用JSTL标记，程序代码如下。

 <%@ page contentType="text/html;charset=GBK" %>

 <%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c" %>

 <html>

 <head>

 <title>示例JSTL的运行</title>

 </head>

 <body>

 <c:out value="恭喜你，第一次成功使用JSTL!"/>

 </body>

 </html>

运行结果如图12-4所示。

 [image:]
 图12-4　jstl.jsp的运行结果

12.4　使用核心标签

核心标签提供了一般性的语言功能，例如变量、循环、条件控制及基本输入与输出、URL相关操作等，这种标签以字母c为前缀词。例如下面的程序片段：

 <c:out value = outputString />

程序中的<c:out>用以输出特定的数据内容并且将其显示在网页上，标签开头的字符c表示为核心（core）标签。

表12-6列出了常用的核心标签。

 表12-6　核心标签

 [image:]

表12-6列出了JSTL中可用的核心标签，根据功能分为4大类。

要使用核心标记库，必须先使用taglib指令导入它，其语法格式如下：

 <%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c" %>

12.4.1　表达式操作

JSTL核心标记库中的表达式操作标记常用于JSP页面中，可以对属性对象变量进行增加和删除、对变量的值进行显示以及对异常进行处理等。JSTL核心库中提供4个表达式操作标签，分别是<c:out>、<c:set>、<c:remove>和<c:catch>。

1. <c:out>标签

<c:out>标签可以将指定的数据显示到客户端的网页上，它的作用类似于脚本中<%=　%>的作用。<c:out>的语法如下：

[image:]　未包含主体（body）。

 <c:out value= "value" [escapeXml= "{true|false}"] [default= "默认值"] />

[image:]　包含主体（body）。

 <c:out value= "value" [escapeXml= "{true|false}"]>

 默认值

 </c:out>

其中，<c:out>有3个属性，分别是value、escapeXml和default。每个属性的详细含义如表12-7所示。

 表12-7　<c:out>属性

 [image:]

【例12-5】Cout.jsp中显示了使用<c:out>的例子，代码如下：

 <%@ page contentType="text/html;charset=GBk" %>

 <%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>

 <html>

 <head>

 <title>JSTL -- c:out </title>

 </head>

 <body bgcolor="#FFFFFF">

 <c:out>

 <%

 pageContext.setAttribute("myVar", "属性：页内有效");

 request.setAttribute("myVar", "属性：请求有效");

 session.setAttribute("myVar", "属性：会话有效");

 java.io.Reader reader1 = new java.io.StringReader("<h2>含有特殊字符的文本</h2>");

 pageContext.setAttribute("myReader1", reader1);

 java.io.Reader reader2 = new java.io.StringReader("含有特殊字符的文本");

 pageContext.setAttribute("myReader2", reader2);

 %>

 <c:out value="常量字符串输出:"/><c:out value="郑州 2018"/>

 <c:out value="表达式输出："/><c:out value="${2018+100}"/>

 <c:out value="默认值输出："/>

 <c:out value="${param.name}" default="没有输入name参数"/>

 <c:out value="重名属性输出:"/><c:out value="${myVar}"/>

 <c:out value="特殊字符输出："/>

 <!-- 将会输出特殊标记 -->

 (escapeXml=true) : <c:out value="${myReader1}"/>

 <!-- 将会输出红色字符串 -->

 (escapeXml=false): <c:out value="${myReader2}" escapeXml="false"/>

 </body>

 </html>

部署到Tomcat下，运行结果如图12-5所示。

 [image:]
 图12-5　Cout.jsp的运行结果

 注意

 [image:]　<c:out>标记可使用“.”访问对象的属性，而<%= %>必须使用对象的方法，如：

 <%request.setAttribute("customer",new Person());%>

 [image:]　表达式${customer.address}的输出代码如下：

 <c:out value="${customer.address}"/>

2. <c:set>标签

<c:set>主要用来将某特定值设置给一个属于特定范围的变量或是目标对象的属性，这些值被设置之后存储在变量或是对象当中，并进一步被使用于其他的运算。

<c:set>的语法如下。

[image:]　语法1：将value的值存储至范围为scope的varName变量之中。

 <c:set value="value" var="varName" [scope="{ page|request|session|application }"]/>

[image:]　语法2：将本体内容的数据存储至范围为scope的varName变量之中。

 <c:set var="varName" [scope="{ page|request|session|application }"]>

 本体内容

 </c:set>

[image:]　语法3：将value的值存储至target对象的属性中。

 < c:set target="target" property="propertyName" value="value" />

[image:]　语法4：将本体内容的数据存储至target对象的属性中。

 <c:set target="target" property="propertyName">

 本体内容

 </c:set>

3. <c:remove>标签

标记<c:remove>用于在特定范围中删除指定的变量。如果没有指定范围，则依次从页内有效、请求有效、会话有效和应用有效范围中查找变量，在第一个找到的范围内删除该变量。

<c:remove>的语法如下：

 <c:remove var="varName"

 [scope="{page|request|session|application}"]/>

【例12-6】SetRemove.jsp中示范了<c:set>和<c:remove>的使用，代码如下：

 [image:]

首先用<c:set>在page、request、session这3个范围内设置属性number的值分为2、3、4，然后使用<c:remove var="number" scope="page" />删除page范围的属性值，最后使用<c:remove var= "number"/>删除所有设置的属性。运行结果如图12-6所示。

 [image:]
 图12-6　SetRemove.jsp的运行结果

4. <c:catch>标签

<c:catch>标签可以用来取得网页发生错误时的错误信息，同时进行适当的处理，避免网页出现无法理解的内容。

<c:catch>标签的语法如下：

 <c:catch var="varName">

 嵌入的其他标记，可以多个

 </c:catch>

使用var属性来保存抛出的异常，以便在后续代码中使用捕捉到的异常。var属性指定的变量是page范围内有效，并且当没有异常抛出时，该变量就不存在。

【例12-7】Catch.jsp示范了<c:catch>的使用，代码如下：

 [image:]

当a[i]正确时，进行正常的运算并输出b值。如果a[i]不存在，就会产生异常。程序运行结果如图12-7所示。

 [image:]
 图12-7　Catch.jsp的运行结果

12.4.2　建立URL

JSTL核心标签中与URL有关的标签有4个，分别是<c:url>、<c:param>、<c:import>和<c:redirect>，其中，<c:param>作为其他3个标签的参数设置，主要功能是在URL后面附加参数。

1. <c:url>标签

<c:url>标签将一个URL格式化为一个字符串，并可保存到一个变量中。用户可以通过<c:url>标签，在JSP网页动态指定一个网址字符串。

<c:url>标签的语法如下。

[image:]　语法1：无本体内容。

 <c:url value="value" [context="context"] [var="varName"]

 [scope="{page|request|session|application}"]/>

[image:]　语法2：在本体内容指定数字符串。

 <c:url value="value" [context="context"] [var="varName"]

 [scope="{page|request|session|application}"]>

 <c:param> subtags

 </c:url>

<c:url>标签主要用于生成一个URL，它同时提供了4个属性，可供进一步设置URL的相关特性：value表示待定向资源的URL，除了value必须指定之外，其他3个属性均是选择性的；context表示当使用相对路径访问外部context时，用来指定一个外部资源名字；var表示参数名字，如果有指定，URL资源的内容将被输出至指定的变量；scope表示var参数范围，var变量只在这个范围里面有效。<c:param>标签放在<c:url＞主体内容当中，可用来设置连接所要传递的参数内容。

2. <c:param>标签

<c:param>标签主要用于将参数传递给所包含的文件。

<c:param>标签的语法如下。

[image:]　语法1：将属性值指定给value属性。

 <c:param name="name" value="value"/>

[image:]　语法2：将属性值指定给本体内容。

 <c:param name="name">

 parameter value

 </c:param>

在<c:param>标签语法中，可以将值指定给value属性或是本体内容。设置好的标签值运用在<c:url>标签中，或用在说明网页重新定向操作的标签<c:rdirect>中。当用户在使用<c:param>标签时，必须指定name的属性，否则标签将不会有任何操作，若是value指定为null，则会输出一个空值。

【例12-8】URL.jsp示范了<c:url>、<c:param>的应用，代码如下：

 [image:]

本例展示了<c:url>不带参数和带<c:param>参数的使用，运行结果如图12-8所示。

3. <c:import>标签

<c:import>标签功能类似于<jsp:import>标记，但是功能更强大。<jsp:import>标记通常只能导入同一个JSP容器内的资源，而<c:import>标记用于导入一个外部或内部资源的内容，外部资源可以通过Web容器作支持的某种协议（如HTTP、FTP等）进行访问。另外，<jsp:import>标记的作用是自动将导入的内容插入到JSP中，而<c:import>标记除了可以自动插入内容外，还可以将内容保存到String或Reader对象中。

 [image:]
 图12-8　URL.jsp的运行结果

<c:import>标签的语法如下。

[image:]　语法1：载入数据内容直接嵌入标签或是输出成为String对象。

 <c:import url="url" [context="context"] [var="varName"]

 [scope="{page|request|session|application}"] charEncoding="charEncoding"]>

 可选的<c:param> 字标签

 </c:import>

[image:]　语法2：载入数据内容直接输出成Reader对象。

 <c:import url= "url" [context="context"] varReader="varReaderName"

 [charEncoding="charEncoding"]>

 body content where varReader is consumed by another action

 </c:import>

<c:import>标签的语法提供两种形式：第1种语法将载入的文件内容存储在指定的字符串变量当中，第2种语法则直接输出成为一个IO对象Reader。除了url，<c:import>标签的属性均为选择性的，除非使用第2种语法，则必须指定用来存储载入内容的Reader对象属性varReader。

其中标签的属性都是String类型：url表示载入资源的URL，contex表示网站外部内容的设置值，var表示输出的范围变量名称，scope表示var的范围，charEncoding表示载入文件的字符编码，varReader表示输出的Reader对象名称。url和varReader是必选属性，其余均为可选属性。

4. <c:redirect>标签

<c:redirect>标签可以按照客户端的要求，重新定向至一个指定的URL地址，这个地址可以是绝对地址也可以为相对地址。<c:redirect>标记可以将浏览器重定向到一个新的URL。与response对象的sendRedirect()方法相比，<c:redirect>可以自动执行URL重写，并且支持不同Web应用的相对URL，除此之外，还可通过使用<c:param>标记支持URL参数。

<c:redirect>标签的语法如下。

[image:]　语法1：无主体内容。

 <c:redirect url="value" [context="context"]/>

[image:]　语法2：指定搜寻字符串参数的主体内容。

 <c:redirect url="value" [context="context"]/>

 <c:param> 子标签

 </c:redirect>

在<c:redirect>的语法当中，url参数代表要重新定向的URL地址。在网页中设置<c:redirect>标签并且指定了其url参数后，网页运行时，将重定向此url所代表的目标地址。

【例12-9】Redirect.jsp示范了使用<c: redirect >进行页面重定向，代码如下：

 [image:]

部署到Tomcat后，在地址栏中输入

 http://localhost: 8080/ch12/Redirect.jsp

运行结果如图12-9所示，此时地址栏是重定向为http://localhost: 8080/ch12/Cout.jsp。

 [image:]
 图12-9　Redirect.jsp的运行结果

12.4.3　条件控制

Web应用的JSP页面内容通常是动态的，依据不断变化的应用数据动态生成页面内容。JSTL核心标记库中的条件控制标签用于完成这种功能，通过条件控制程序流程显示相关内容。JSTL核心标记库有4个条件控制标签，分别是<c:if>、<c:choose>、<c:when>和<c:otherwise>。

1. <c:if>标签

<c:if>标签用于进行条件判断，只有当其test属性指定的Boolean表达式值为true时才会处理其本体的内容，否则不执行。

<c:if>标签的语法格式如下。

[image:]　语法1：不包含本体内容。

 <c:if test="testCondition"

 var="varName" [scope="{page|request|session|application}"]/>

[image:]　语法2：包含本体内容。

 <c:if test="testCondition"

 [var="varName"] [scope="{page|request|session|application}"]>

 body content

 </c:if>

在<c:if>标签的语法中，test表示表达式的条件，是boolean类型；var表示test表达式运行后的结果，是String类型；scope表示var的范围，是String类型。语法1中不包含主体内容，如果程序只是想要取得判断结果，使用这种语法；语法2的标记体中放要运行的内容。

2. <c:choose>标签、<c:when>标签和<c:otherwise>标签

<c:choose>标签用来处理多个可选条件下的选择。<c:choose>标签需要和<c:when>、<c:otherwise>标签配套使用，并且<c:when>和<c:otherwise >必须依附在<c:choose>标签下。在整个判断区块当中，<c:when>标签必须写在<c:otherwise>之前，当test判断式成立的时候，将运行对应的程序区段；若所有<c:when>标签的条件式均不成立，<c:otherwise>标签的内容将被运行。

上述3个标签的语法如下：

 <c:choose>

 <c:when test="testCondition1">

 body content

 </c:when>

 …

 <c:when test="testCondition2">

 body content

 </c:when>

 <c:otherwise>

 conditional block

 </c:otherwise>

 </c:choose>

【例12-10】IfChooseWhenO.jsp示范了使用条件控制4个标签，并根据时间显示问候语，代码如下：

 [image:]

运行结果如图12-10所示。

 [image:]
 图12-10　IfChooseWhenO.jsp运行结果

12.4.4　迭代—运行循环

JSP页面开发经常需要使用循环或迭代来生成大量的表示代码（如HTML表格或列表）。JSTL核心标记库中提供<c:forEach>和<c:forTokens>两个标记满足这个需求，其中<c:forEach>标签用来浏览某种特定的对象集合或是项目内容，<c:forTokens>标签则提供解析用特定标记符号分隔的字符串内容的功能。

1. <c:forEach>标签

<c:forEach>标签是一种迭代器，可针对指定的对象集合内容循序浏览一遍。

<c:forEach>标签语法如下。

[image:]　语法1：迭代对象集合内容。

 <c:forEach [var="varName"] items="collection" [varStatus="varStatusName"]

 [begin="begin"] [end="end"] [step="step"]>

 体内容

 </c:forEach>

[image:]　语法2：迭代特定次数。

 <c:forEach [var="varName"] [varStatus="varStatusName"] begin="begin" end="end" [step="step"]>

 体内容

 </c:forEach>

语法1中可直接列举指定的集合对象，语法2中则是针对特定的内容进行重复次数的运行操作。其中，属性var是可选的，可以用来保存当前的循环变量，如果是循环固定次数，循环变量的值就是循环的索引；如果是枚举集合中的所有元素，循环变量的值就是集合的当前成员。

在枚举集合元素时，使用items属性来指定集合对象。集合对象可以是以下几种类型：Array、java.util.Collection、java.util.Iterator、java.util.Enumeration、java.util.Map和由逗号分隔的字符串；varStatus为目前对象的相关内容信息，存储了迭代成员的状态值，例如索引（index）、计数（count）、是否为首笔（first）及是否为末笔（last）。

【例12-11】在ForEach.jsp中使用循环、枚举集合元素和元素状态信息对象，代码如下：

 [image:]

在循环时，可以分别使用begin、end和step属性来指定循环的开始、结束和步长，默认步长为1。

在枚举集合元素时，也可以使用begin、end和step属性来指定枚举的范围，这时需要注意，集合元素的编号（也称元素的索引）是从0开始的。

部署到Tomcat后，运行结果如图12-11所示。

 [image:]
 图12-11　ForEach.jsp的运行结果

2. <c:forTokens>标签

<c:forTokens>标签用于浏览指定分隔符字符串中所有成员。

<c:forTokens>标签语法如下：

 <c:forTokens items="stringOfTokens" delims="delimiters" [var="varName"]

 [varStatus="varStatusName"] [begin="begin"] [end="end"] [step="step"]>

 本体内容

 </c:forTokens>

<c:forTokens>语法内容与<c:forEach>很相似：多了一个用来设置字符串的分隔标识符的delims属性，delims属性可以同时指定有多个分隔字符；由于<c:forTokens >专门用来处理字符串数据，因此items内容必须是字符串。

【例12-12】在ForTokens.jsp中使用<c:forTokens>处理字符串“红|橙,黄|绿,青|蓝,紫”，使用delims属性指定分别指定分隔字符为'|'和','两种情况并显示结果，代码如下：

 [image:]

部署到Tomcat后，运行结果如图12-12所示。

 [image:]
 图12-12　ForTokens.jsp的运行结果

12.5　使用JSTL的数据库标签

在Web应用中，常需要访问关系数据库来获取动态数据。尽管对于Web应用的设计要求数据库操作的处理应该在业务逻辑层内，但是在某些情况下，需要在JSP页面直接访问数据库。利用JSTL提供的数据库标签可以轻易查询和更新数据库的数据。JSTL中与SQL有关的标签的功能如表12-8所示。

 表12-8　JSTL中与SQL有关的标签

 [image:]

要使用SQL标记库，必须先使用taglib指令导入它，其语法格式如下：

 <%@taglib prefix= "sql" uri="http://java.sun.com/jsp/jstl/sql" %>

使用SQL标签访问数据库的主要步骤如下：

（1）指定数据源。

（2）进行查询或更新操作。

（3）对返回的结果进行处理。

12.5.1　指定数据源

SQL标记访问数据库步骤1：指定数据源。在对数据库进行操作前，需要先确定要操作的数据库。SQL标记使用数据源（类型为javax.sql.DataSource）来指定操作的数据库。数据源对象提供物理数据源的连接。在执行任何数据库操作之前，必须先定义数据源。

使用<sql:setDataSource>标记来指定数据源，其语法如下：

 <sql:setDataSource

 { dataSource="dataSource" | url="jdbcUrl"

 [driver="driverClassName"]

 [user="userName"]

 [password="password"] }

 [var="varName"]

 [scope="{page|request|session|application}"] />

其中，URL属性用于指定连接的url，Driver属性用于指定驱动程序，dataSource属性为数据源。

下面的代码示范了通过<sql:setDataSource>标签设置数据来源：

 <sql:setDataSource dataSource=" jdbc:mysql://localhost/DBName, com.mysql.jdbc.Driver " />

不使用dataSource的设置方式如下：

 <sql:setDataSource driver=" com.mysql.jdbc.Driver " url=" jdbc:mysql://localhost/DBName "/>

当一个网页中包含上述之一的<sql:setDataSource>标签设置，则会与数据源名称为Wdata的数据库建立联机。

user属性和password属性则分别用于指定用户名和密码。scope属性指定该设置的有效范围。如果使用了var属性，则只是将该数据源保存到一个变量中。

12.5.2　进行查询或更新操作

SQL标记访问数据库步骤2：进行查询或更新操作。

1. <sql:update>标签

<sql:update>标签进行数据库的更新操作，如创建表、插入和删除记录等。

<sql:update>标签的语法格式如下。

[image:]　语法1：

 [image:]

[image:]　语法2：将更新语句放到标记本体中。

 [image:]

其中，属性sql用于指定需要执行的SQL语句，包括Create、Drop、Insert、Update和Delete语句；可选属性var指定修改操作影响的数据记录行数，该变量可以指定有效范围；如果没有设置默认数据源，还需要使用属性dataSource来指定数据源。

利用<sql:update>标签将SQL语句传送至数据库引擎进行数据的更新操作，var变量保存数据更新的条数。

【例12-13】在Updata.jsp中，运用两次<sql:update>标签更新数据，第一次仅包含更新的SQL语句，把执行后受到影响的记录数存储在变量中并用<c:out>显示出来；第二次在SQL语句中使用两个问号参数，这两个参数的值由接下来的参数标签提供，同时也把执行后受到影响的记录数存储在变量中并显示出来。代码如下：

 [image:]

当数据库的情况如图12-13所示时，Updata.jsp运行结果如图12-14所示。

 [image:]
 图12-13　数据库liuyan中message表的内容

 [image:]
 图12-14　Updata.jsp的运行结果

2. <sql:query>标签

<sql:query>标签可以执行一个数据库查询，并且将结果存储在由var属性指定的变量中，该变量还可以使用scope属性来指定有效范围。

<sql:query>标签的语法格式如下。

[image:]　语法1：将查询语句作为属性值。

 [image:]

[image:]　语法2：将查询语句放在标记本体中。

 <sql:query varvar="varName" [dataSource="dataSource"]

 [scope="{page|request|session|application}"]

 [maxRows＝"rowMax"]

 [startRow＝"startRow"]

 查询语句

 </sql:query>

[image:]　语法3：包含指定搜寻参数与选择性参数的本体内容。

 <sql:query var="varName"

 [scope="{page|request|session|application}"]

 [dataSource="dataSource"]

 [maxRows="maxRows"]

 [startRow="startRow"]>

 查询语句

 [<sql:param>]

 </sql:query>

其中，sql属性指定需要执行的SQL查询语句，属性var指定存储查询结果对象的变量名，scope属性指定有效范围。属性maxRows用于指定查询结果的最大行数，如果没有指定或值为-1，表示没有大小限制。属性startRow值指定查询结果的一个开始行的索引，查询结果包含的行是以该索引对应行开始的所有行，查询结果的第一行索引为0，属性startRow默认值为0。

【例12-14】在Query.jsp中使用数据库标签进行数据库操作。在两次查询中，第一次查询仅使用SQL查询语句作为属性，第二次查询将SQL查询语句放在标记本体中。代码如下：

 [image:]

运行结果如图12-15所示。

 [image:]
 图12-15　Query.jsp的运行结果

12.5.3　对返回的结果进行处理

SQL标记访问数据库步骤3：处理返回的结果。如果前面执行的是查询操作，则会将返回的结果保存在一个Result类型的变量中（返回的结果一般是一个二维表）。该变量一般有如下几个属性。

[image:]　rows：以字段名称当作索引的查询结果。

[image:]　rowsByIndex：以数字当作索引的查询结果。

[image:]　columnNames：字段名称。

[image:]　rowCount：返回结果的行数。

[image:]　limitedByMaxRows：查询是否有最大行数限制是boolean型。

<sql:query>查询的结果一般是一个二维表，假如保存在变量x中，并且该表中有3个字段name、sex、score。则输出该表信息的方法如下：

[image:]　使用rows属性。

 <sql:query sql="select * from test" var="x" />

 <c:forEach items="${x.rows}" var="temp">

 ${temp.name}、${temp.sex}、${temp.score}

 </c:forEach>

[image:]　使用rowsByIndex属性。

 <sql:query sql="select * from test" var="x"/>

 <c:forEach items="${x.rowsByIndex}" var="temp">

 ${temp[0]}、 ${temp[1]} 、 ${temp[2]}

 </c:forEach>

[image:]　使用columnNames属性输出各列的名称。

 <sql:query sql="select * from test" var="x" />

 <c:forEach items="${x.columnNames}" var="temp">

 ${temp}

 </c:forEach>

[image:]　使用rowCount属性输出返回结果的行数。

 <sql:query sql="select * from test" var="x" />

 ${x.rowCount}

12.5.4　其他SQL标签库的标签

1. 动态地设定变量的标签

<sql:param>和<sql:dateParam>标记用来动态地设定变量。

<sql:param>的语法如下：

 <sql:param value=”value”>

假如SQL指令需要一些动态变量，可以写成如下形式：

 <sql:query var="result">

 select * from user where userid='${userid}'

 </sql:query>

将上面的语句改成如下形式：

 <sql:query var="result">

 select * from user where userid=？

 <sql:param value=${userid}>

 </sql:query>

<sql:dateParam>只是用来设置日期相关的参数，如timeStamp、date、time。语法如下：

 <sql: dateParam value="value" [type="type"]>

2. 事物处理标签

单个事务需要多条SQL语句才能执行，这些SQL语句要么全部执行要么一个也不执行，这时可以使用<sql:transaction>标记。

<sql:transaction>标记语法如下：

 [image:]

其中，dataSource属性为数据源，isolation表示事物隔离的级别。

12.6　i18n与国际化

随着电子商务及其他Web应用的普及，世界各地的客户能够使用本地语言访问各种组织提供的Web应用服务，也就是针对特定语言和地区来定义应用。i18n相关标签用于进行国际化语言的转换作业，同时提供日期与数值等数据类型的格式转换标签。相关标签如表12-9所示。

 表12-9　i18n相关标签

 [image:]

要使用i18n标记库，必须先使用taglib指令导入它，其语法格式如下：

 <%@ taglib uri="http://java.sun.com/jsp/jstl/fmt" prefix="fmt" %>

12.6.1　国际化设置标签

国际化设置标签中包含两个标签：一个是设定语言区域的<fmt:setLocale>，另一个则是设定请求字符串编码的<fmt:requestEncoding>。

1. <fmt:setLocale>标签

<fmt:setLocale>标签用来设置用户的语言地区。

<fmt:setLocale>标签的语法如下：

 <fmt:setLocale value ="｛II|II-CC｝" [variant="variant"]

 [scope="{page|request|session|application}"]/>

value是不可省略的属性，代表所要指定的区域代号。value值由II两个小写字母所组成的语言代码表示，例如zh，或者由II-CC组成的语言－国家代码表示，如zh-CN（中文－中国）。

默认情况下，i18n标记依据浏览器的设定来确定本地属性值。使用<fmt:setLocale>标记会覆盖浏览器本地属性设置。

2. <fmt:requestEncoding>标签

<fmt:requestEncoding>标签用来设置字符串的编码。网页只有经过正确的编码，进行请求响应的过程中，传递的参数内容才能正常显示。<fmt:requestEncoding>标签的具体作用和request内置对象的setCharacterEncoding()方法的功能完全相同。

<fmt:requestEncoding>标签的语法如下：

 <fmt:requestEncoding [value="charsetName"]/>

value属性代表所要指定的编码方式字符串，如果没有设定value属性，则它会自动去寻找合适的编码方式。默认的编码格式为ISO-8859-1，对于非ISO-8859-1的字符（如中文），需要显式指定字符集编码。

12.6.2　消息标记库

消息标记库主要作用是获取系统设定的语言资源。使用这些标记可以轻易地使Web应用支持国际化。消息标记库包含3个标记，即<fmt:bundle>、<fmt:setBundle>和<fmt:message>。

首先来看看单一语系的网页内容如何利用消息标记库中的标签进行国际化。一般来说，支持国际间不同文化区域语系的网页功能，是通过提供其关联的资源文件来达到目的的，图12-16说明了其中的过程。

 [image:]
 图12-16　国际化网页示意图

其中的JSP网页同时支持英文与中文内容转换，系统提供两个资源文件A与B以存储网页所要显示的中文及英文语系内容。A为中文化内容的资源文件；B则是英文化内容的资源文件。当浏览器提出网页浏览要求时，网页根据浏览器所属的区域语系，取得其相关的资源文件，正确地显示符合此语系的网页内容。

1. <fmt:bundle>标签

<fmt:bundle>主要用来取得资源文件的内容，将其显示在网页上。

<fmt:bundle>标签的语法如下：

 [image:]

其中，basename属性设置要使用资源的名称，不包含文件本身的扩展名。如果basename为null、空或找不到资源文件时，在网页上会产生???<key>???的错误信息。prefix指定<fmt:bundle>标签当中key值的预设前缀。

2. <fmt:setBundle>标签

<fmt:setBundle>标签是设置默认的资源文件，当指定的资源文件不存在时，直接套用默认的资源文件。

<fmt:setBundle>标签的语法如下：

 <fmt:setBundle basename="basename" [var="varName"]

 [scope="{page|request|session|application}"]/>

其中，若basename为null、空或者无法找到资源文件时，在网页上会产生???<key>???错误信息。var表示指定变量的名称，还可以存储所要读取的资源文件内容。scope表示var变量的JSP范围。

basename设定要使用的资源文件，如果没有设定var，那么设定好的资源文件会成为默认的资源文件。在同一个网页或同一个属性范围内，<fmt:message>可以直接使用此资源文件。相反，如果设定var，那么会将资源文件存储到varName中。当使用<fmt:message>时，必须使用bundle这个属性来指定。例如：

 <fmt:setBundle basename="Myrescource" scope="session" var="myResource"/>

 <fmt:message key="str" bundle="${myResource}">

如果没有指定var，则只需写成：

 <fmt:setBundle basename="MyResource" scope="session"/>

 <fmt:message key="str"/>

3. <fmt:message>标签

<fmt:message>标签主要用于从指定的资源中把指定的关键字获取出来。

<fmt:message>标签的语法如下。

[image:]　语法1：无本体内容。

 <fmt:message key="messagekey" [bundle="resourseBundle"]

 [var="varname"][scope="page|request|session|application"]/>

[image:]　语法2：包含指定信息参数的本体内容。

 <fmt:message key="messagekey" [bundle="resourseBundle"] [var="varname"]

 [scope="page|request|session|application"] >

 <fmt:param />

 </fmt:message>

[image:]　语法3：包含指定选择性信息参数与key值的本体内容。

 [image:]

其中，key表示索引，bundle表示使用的数据来源，var用来存储国际化信息，scope表示var变量的JSP范围。

当<fmt:bundle>标签指定了资源文件来源，<fmt:message>便可以用来将其中的内容取出，资源文件的结构是一种键／值对，key为所要取得的键，而此键所对应的值则是显示在网页上的内容。若key为null或空，在网页上产生？？？？的错误信息，若找不到资源文件，在网页上会产生???<key>???的错误信息。如果<fmt:message>没有key属性，那么<fmt:message>将会自动从本体内容中寻找关键字，再从关键字中寻找对应的结果，显示在页面中。bundle属性则是指定使用的资源文件，var和scope用来存储要显示的信息。如果有var属性，该标记不会把结果显示在页面中，而是将结果存储在varname中，若要显示标记，则需使用<c:out>或${}EL表达式。

如果资源文件接受外部参数，则可以在<fmt:message>当中指定<fmt:param>标签，将参数传递至资源文件进行处理，最后取得处理完成的结果，并且将其显示在网页上。

12.6.3　数字、日期格式化

数字、日期格式化共包含6个标签，即<fmt:formatNumber>、<fmt:parseNumber>、<fmt:formatDate>、<fmt:parseDate>、<fmt:setTimeZone>和<fmt:timeZone>，分别用来解析或格式化数字、日期以及货币等。一般用于将数字、日期等转换成指定地区或自定义的显示格式。

1. 设置时区

<fmt:timeZone>和<fmt:setTimeZone>都是与时区相关，<fmt:timeZone>标签用以将标签的本体内容转换为特定时区适用的格式，而<fmt:setTimeZone>标签则是将指定的时区存储于指定的范围变量。

<fmt:timeZone>标签的语法如下：

 <fmt:timeZone value="timeZone">

 body content

 </fmt:timeZone>

<fmt:timeZone>针对标签当中的本体内容进行格式化，其唯一的属性是value，代表使用的时区。使用这个标签，时区设置的影响将只对本体内容有效。另外一个标签<fmt:setTimeZone>可以将时区的设置信息存储在指定的变量里面，其语法如下：

 <fmt:setTimeZone value="timeZone" [var="varName"]

 [scope="{page|request|session|application}"]/>

var属性用来存储时区的设置，当然这个属性是选择性的，而scopde是变量的有效范围。

2. 格式化数字

<fmt:formatNumber>标签将指定的数值格式化，用来表现货币或是百分比等其他特定的数值形态。语法如下。

[image:]　语法1：不包含本体内容。

 <fmt:formatNumber value="numericValue"

 [type="{number|currency|percent}"]

 [pattern="customPattern"]

 [currencyCode="currencyCode"]

 [currencySymbol="currencySymbol”]

 [groupingUsed="{true|false}"]

 [maxIntegerDigits="maxIntegerDigits"]

 [minIntegerDigits="minIntegerDigits"]

 [maxFractionDigits="maxFractionDigits"]

 [minFractionDigits="minFractionDigits"]

 [var="varName"]

 [scope="{page|request|session|application}"]/>

[image:]　语法2：本体内容为待格式化的数据。

 <fmt:formatNumber [type="{number|currency|percent}"]

 [pattern="customPattern"]

 [currencyCode="currencyCode"]

 [currencySymbol="currencySymbol"]

 [groupingUsed="{true|false}"]

 [maxIntegerDigits="maxIntegerDigits"]

 [minIntegerDigits="minIntegerDigits"]

 [maxFractionDigits="maxFractionDigits"]

 [minFractionDigits="minFractionDigits"]

 [var="varName"]

 [scope="{page|request|session|application}"]>

 待格式化的数字

 </fmt:formatNumber>

各属性的含义如表12-10所示。

 表12-10　<fmt:formatNumber>的属性

 [image:]

<fmt:parseNumber>标签用来解析格式化的数值数据，一个特定格式的数值，通过其解析之后，将转换成为单纯的数值数据，例如1 000 000被解析成为数字1000000。<fmt:parseNumber>标签的语法如下。

[image:]　语法1：无本体内容。

 <fmt:parseNumber value="numericValue"

 [type="{number|currency|percent}"]

 [pattern="customPattern"]

 [parseLocale="parseLocale"]

 [integerOnly="{true|false}”]

 [var="varName"]

 [scope="{page|request|session|application}"]/>

[image:]　语法2：包含本体内容。

 <fmt:parseNumber [type="{number|currency|percent}"]

 [pattern="customPattern"]

 [parseLocale="parseLocale"]

 [integerOnly="{true|false}"]

 [var="varName"]

 [scope="{page|request|session|application}"]>

 numeric value to be parsed

 </fmt:parseNumber>

<fmt:parseNumber>标签的属性如表12-11所示。

 表12-11　<fmt:parseNumber>标签的属性

 [image:]

3. 格式化日期

<fmt:formatDate>标签以指定的时区格式化显示日期对象。

<fmt:formatDate>标签的语法如下：

 [image:]

其中，value指定需要格式化显示的日期和时间。type指定给定的数据处理方式为日期、时间，还是日期、时间都处理。dateStyle和timeStyle指定日期和时间的显示格式。Pattern属性指定自定义格式，如dd/MM/yy等。timeZone指定时区，如果没有指定，默认使用本地属性中的时区。

<fmt:parseDate>标签可以将字符串表示的日期和时间解析成日期对象（java.util.Date）。

<fmt:parseDate>标签的语法如下：

 [image:]

其中，value属性指定需要解析成日期对象的字符串。该属性可以省略，由本体来指定要解析的内容。解析结果可以使用属性var指定的变量存储。变量的有效范围由scope指定。如果没有var属性，解析结果会输出到JSP页面，否则不会输出。属性parseLocale指定本地属性的值。

12.7　函数标签

函数标签是一组提供字符串维护操作功能的标签库，这些功能涵盖了应用程序处理字符串所需的能力，例如字符串的解析、分割与置换等，如表12-12所示。

 表12-12　函数标签

 [image:]

为了方便说明，将所有的函数标签分为几个大类，其中字符串提供解析字符串内容的功能，获取子字符串则用来取得字符串当中的特定子字符串，字符串调整可以改变字符串本身的组成。

12.8　小结

在EL表达式内可完成基本的算术运算、逻辑运算、访问作用范围变量等。使用EL表达式可以简化JSP页面中的代码。

JSP Standard Tag Library（简称JSTL）是一种标签函数库，为JSP网页技术的一环，被用来协助程序设计人员简化JSP网页制作，由Sun制定其规格，并由外界进行开发。JSTL规格包含了各种网页运作所需的运用，例如循环、流程控制、输出／输入、文本格式化，甚至涵盖XML文件处理及数据库存取操作。JSTL提供了5种形式的标签函数库：核心标签、i18n国际化格式标签、SQL标签、XML标签及函数标签。

JSTL所需的两个文件为jstl.jar和standard.jar，可从网址http://www.apache.org/dist/jakarta/taglibs/standard下载。引用taglib指令声明网页所要使用的标签种类，语法为：<%@taglib prefix=tabName uri=uriString %>。

核心标签中包含在表达式操作、建立URL、条件控制、迭代运行循环的标签。数据库标签可以指定数据源，对数据库中的数据进行查询和更新，以及对返回结果进行处理等。i18n与国际化标签用于进行国际化语言的转换作业，同时提供日期与数值等数据类型的格式转换标签。函数标签是一组提供字符串维护操作功能的标签库，这些功能涵盖了应用程序处理字符串所需的能力，例如字符串的解析、分割与置换等。

12.9　习题

一、选择题

1. 给定程序片段：

 <% String value = "beanvalue"; %>

 <% request.setAttribute ("com.example.bean", value); %>

 <%--插入代码处--%>

在第3行插入EL表达式（　　），能够计算并输出"beanValue"。

A. ${bean}

B. ${value}

C. ${beanValue}

D. ${com.example.bean}

E. ${requestScope["com.example.bean"]}F. ${request.get（"com.example.bean"）.toString()}

2. 假定在Web应用中，请求参数productID包含产品的标识符，下面（　　）和（　　）两个EL表达式能够计算productID的值。

A. ${product ID}

B. ${param.productID}

C. ${params.productID}

D. ${params.productID[1]}

3. 用户的会话对象中存在属性cart，以下（　　）和（　　）两条语句能够将该属性从session中删除。

A. ${cart = null}

B. <c:remove var="cart" />

C. <c:remove var="${cart}" />

D. <c:remove var="cart" scope="session" />

E. <c:remove scope="session">cart</c:remove>

F. <c:remove var="${cart}" scope="session" />

G. <c:remove scope="session">${cart}</c:remove>

4. 在JSP页面中，开发人员需要构建如下的动态代码:

 [image:]

下面JSTL的结构能够实现相同的功能的是（　　）。

 [image:]

二、判断题

1. JSTL代码片段<c:import url="foo.jsp"/>能够实现导入其他web资源的功能。

（　　）

2. <fmt:setLocale>是用于设置本地属性的JSTL标记。

（　　）

3. SQL标记库中的标记<sql:query>是用来修改数据库中的记录。

（　　）

三、填空题

1. 假定在Web应用中，请求参数productID包含产品的标识符，能够计算productID值的EL表达式是　　　。

2. JSTL的全称是　　　。

3. JSTL提供的标签分为5大类，分别是　　　、　　　、　　　、　　　和　　　。

4. 在JSTL核心标签当中，网页数据的存取操作行为是由　　　、　　　与　　　等3个标签所设置的。

5. 在与URL有关的标签中，　　　用来设置一个超级链接。

6. 流程控制标签用来控制程序运行的流程，　　　搭配　　　与　　　，来进行多重判断。

7. <c:forEach>标签通过属性值　　　、　　　与　　　控制循环的间隔数及起始与结束值。

8. <c:out>标签中使用　　　属性表示要输出的内容。

9. <c:set>标签的作用是　　　。

10. 标识EL语法元素的符号为　　　。

11. EL中的三元运算符为　　　。

12. 与存活期范围有关的4个隐含对象分别是　　　、　　　、　　　及　　　。

13. 隐含对象　　　与　　　，可直接用来存取表单传递的参数。

14. 系统初始化数据存放于WEB-INF文件夹的　　　，隐含对象　　　可用来对其进行访问。

四、简答题

1. 请简述JSTL与一般的JSP技术有何差异。

2. JSTL标签的分类主要有哪几种？请简单说明。

3. 使用JSTL有何优点？

4. 在Tomcat中安装使用JSTL的步骤有哪些？

5. <c:if>和<c:choose>这两种标签都可以用来进行流程判断，请说明它们的差异及用法。

6. 说明如何使用JSTL所提供的<sql:setDataSource>标签设置联机信息。

7. 在EL中访问变量的值可以使用如下的EL元素：${变量名}，如果没有指定变量的有效范围，JSP容器会依次到哪几个范围内查找该变量？

8. 说明如何运用隐含对象取得表单参数。

五、编程题

1. 使用JSTL标准标记库中的标记输出1~100的数字之和。

提示：本程序所使用的JSTL核心标记库的URI为http://java.sun.com/jsp/jstl/core。

2. 使用标准标签库中的<c:foreach>标签、<c:if>标签和<c:out>标签列出1~100中能被2整除不能被3整除的数字。
第13章　自定义标签库

JSP中的标签库技术可以让用户定制自己的标签。在第3章中介绍了JSP的动作元素，动作元素本质上是一段Java代码，在JSP页面被转换为Servlet期间，JSP容器遇到动作元素的标签，就用预先定义的对应于该标签的Java代码来代替它。同样，自定义标签实际上是一个实现了特定接口的Java类，定义了执行该标签操作的具体逻辑。然后再定义标签库描述文件，并把该文件导入到Web部署描述符中，该文件定义了一组标签与标签类的对应关系。最后就可以在JSP页面中导入并使用自定义的标签。在运行时，标签将被相应的代码所替换。标签的集合构成了标签库。

本章学习目标

 	◎　掌握传统标签的开发

 	◎　掌握简单标签的开发

 	◎　掌握标签库描述符文件的编写

 [image:]
 本章案例源代码下载

13.1　自定义标签体系介绍

标签库API定义在javax.servlet.jsp.tagext包中，其中主要接口和类如图13-1所示。

 [image:]
 图13-1　标签库中各个接口与类之间的关系示意图

开发自定义标签的核心就是要编写标签处理器类，一个标签对应一个标签处理器类，很多标签处理器的集合构成一个标签库。所有的标签处理器类都要实现JspTag接口。这个接口是在JSP 2.0中新增加的一个标识接口，它没有任何方法，主要是作为Tag和SimpleTag接口的共同基类。在JSP 2.0之前，所有的标签处理器类都要实现Tag接口，这样的标签称为传统标签（Classic Tag）。后来为了简化标签的开发，JSP 2.0规范又定义了一种新类型的标签，称为简单标签（Simple Tag），其对应的处理器类要实现Simple Tag接口。

13.1.1　标签的形式

在介绍标签库API之前，先看一下自定义标签的4种形式。

[image:]　空标签：

 <title/>

[image:]　带有属性的空标签：

 <title length="20" />

[image:]　带有内容的标签：

 [image:]

[image:]　带有内容和属性的标签：

 [image:]

13.1.2　标签类相关接口和类

1. Tag接口

javax.servlet.jsp.tagext.Tag接口定义了所有传统标签处理器需要实现的基本方法。Tag接口中的方法如表13-1所示，Tag接口中定义的常量如表13-2所示。

 表13-1　Tag接口中的方法

 [image:]

 表13-2　Tag接口中的常量

 [image:]

下面结合生命周期讨论标签的处理过程。传统标签的生命周期如图13-2所示。

（1）容器在创建一个新标签处理器实例后，通过setPageContext()方法设置标签的页面上下文，然后使用setParent()方法设置这个标签的上一级标签，如果该标签没有上一级嵌套，设置为null。

（2）设置标签的属性，通过标签处理器的setXXX()方法实现。如果没有定义属性，就不用调用此方法。

 [image:]
 图13-2　Tag的生命周期

（3）调用doStartTag()方法，该方法可以返回EVAL_BODY INCLUDE或者SKIP_BODY。如果返回EVAL_BODY_INCLUDE，则将标签体输出到当前的输出流中；如果返回SKIP_BODY，则忽略标签体。

（4）调用doEndTag()方法，该方法可以返回EVAL_PAGE或者SKIP_PAGE。如果返回EVAL_PAGE，则执行JSP页面的余下部分；如果返回SKIP_PAGE，则忽略JSP页面的余下部分。

（5）容器会缓存标签处理器实例，一旦遇到同样的标签，则重复使用缓存的标签处理器实例。

（6）调用release()方法，释放标签处理器实例占用的任何资源。

2. IterationTag接口

javax.servlet.jsp.tagext.IterationTag接口继承自Tag接口，它新增了一个方法和一个用作返回值的常量，主要用于控制对标签体的重复处理。新增的方法和常量如表13-3所示。

 表13-3　IterationTag接口新增的方法和常量

 [image:]

3. BodyTag接口

javax.servlet.jsp.tagext.BodyTag接口继承自IterationTag接口，它新增了两个方法和一个用作返回值的常量。实现该接口的标签处理器可以在其内部对标签体执行后的内容进行处理Body Tag接口。新增的方法和常量如表13-4所示。

 表13-4　BodyTag接口新增的方法和常量

 [image:]

Javax.servlet.jsp.tagext.BodyContent是一个抽象类，关于该类的详细信息，可参看JSP的API文档。

实现BodyTag接口的标签处理器的生命周期，如图13-3所示。

 [image:]
 图13-3　BodyTag的生命周期

（1）容器在创建标签处理器的实例后，设置标签的页面上下文时调用setPageContext()方法。然后，设置这个标签的上一级标签时调用setParent()方法，如果该标签没有上一级标签，则设置为null。

（2）设置标签的属性，调用标签处理器的setXXX()方法。如果没有定义属性，就会跳过此步骤。

（3）调用doStartTag()方法，该方法可以返回EVAL_BODY_INCLUDE、SKIP_BODY或EVAL_BODY_BUFFERED值。如果返回EVAL_BODY_INCLUDE，则执行标签体；如果返回EVAL_BODY_BUFFERED，而标签体不为空，则进入第（4）步；如果返回SKIP_BODY，则忽略标签体。

（4）设置标签处理器的bodyContent属性，调用setBodyContent()方法，接着为标签体的执行做准备调用dolnitBody()方法。

（5）标签体执行完后，doAfterBody()方法被调用，该方法可以返回EVAL_BODY_AGAIN或SKIP_BODY。如果返回EVAL_BODY_AGAIN，则重复执行标签体；如果返回SKIP_BODY，则不再执行标签体。

（6）调用doEndTag()方法，该方法可以返回EVAL_PAGE或者SKIP_PAGE。如果返回EVAL_PAGE，则执行JSP页面的余下部分；如果返回SKIP_PAGE，则忽略JSP页面的余下部分。

（7）容器会缓存标签处理器实例，一旦遇到同样的标签，则重复使用缓存的标签处理器实例。

（8）当需要释放标签处理器实例时，release()方法才被调用。

为了简化标签处理器的开发，在javax.servlet.jsp.tagext包中还提供了TagSupport和BodyTagSupport两个实现类，TagSupport类实现了IterationTag接口，BodyTagSupport类继承自TagSupport，实现了BodyTag接口。

【例13-1】下面示例定义了HelloTag.java这个类，它继承于TagSupport这个父类。

 [image:]

在HelloTag类中，它的doStartTag()方法什么都没做直接返回SKIP_BODY，表示忽略开始和结束标签之间的body内容，在doEndTag()方法中通过pageContext.getOut()得到页面输出对象，并且调用该对象的write()方法往页面中写入相应的输出信息，在调用pageContext.getOut()时有可能发生I/O异常，因此要捕捉该异常。最后该方法返回EVAL_PAGE，表示继续解析该标签之后的网页内容。

13.1.3　标签库描述文件

对于上一节中标签处理器类HelloTag.java，如果希望能通过标签运行它，必须在自定义标签库的描述文件mytag.tld中进行部署，代码如下：

 [image:]

其中，第一行为XML文件的版本和编码说明，在taglib元素中包含了版本元素声明和所有自定义的标签元素。元素<body-content>的值为empty，表示该<demo>标签为空标签，即没有标签体。

标签库描述文件定义了标签与标签类的对应关系，它是.XML格式的文档，简称TLD。TLD包含库的所有信息及库中的每个标签，TLD文件以.tld为后缀。当标签库部署在JAR文件中时，标签库描述文件必须放在META-INF目录或其子目录下；当标签库直接部署到Web应用程序中时，标签库描述文件必须放在WEB-INF目录或其子目录下，但不能放在/WEB-INF/classes或/WEB-INF/lib目录下。

<taglib>元素是标签库描述符的根元素，表13-5说明了taglib根元素中所包含的子元素及其含义。

 表13-5　根元素taglib的子元素

 [image:]

在tag元素中定义了具体的标签与标签类的对应关系以及相应的一些特征值。表13-6说明了tag元素的子元素及其含义。

 表13-6　tag元素的子元素

 [image:]

其中，

[image:]　name元素：规定了在网页中引用该标签时用的名称，使用时必须完全匹配。

[image:]　tag-class元素：指定了JSP容器用哪个Java类来解析该标签。

[image:]　body-content元素：指定了标签体的类型。它可以有以下几种选择，empty表示该标签无具体内容即为空标签；JSP表示该标签内容将作为JSP格式解析；scriptless表示标签内容不包含任何脚本或脚本元素；tagdependent表示把正文内容解析为非JSP，如SQL语句。

[image:]　attribute元素：指定了该标签具有的属性，一个tag元素可以包含多个attribute元素。表13-7说明了attribute元素的子元素及其含义。

 表13-7　attribute元素的子元素

 [image:]

13.1.4　在Web部署描述符中引入标签库文件

容器在解析页面中的自定义标签时会到Web部署描述符中寻找该标签库的TLD文件，因此需要在web.xml中把标签库文件引入，代码如下：

 [image:]

在web.xml的根元素<web-app>下通过<jsp-config>元素指定要引入的标签库。一个标签库对应一个<taglib>元素，对于一个应用来说可以存在多个标签库。其中，<taglib-uri>元素指定在JSP页面中使用的自定义标签的URI名字，JSP页面通过此名字在JSP指令引入自定义标签；<taglib-location>元素指定了该名字所对应的TLD文件存放的位置。

13.1.5　在页面中使用标签

在标签库定义完成后，就可以在JSP页面中引用自定义标签了。

【例13-2】定义一个JSP页面hello.jsp，在该页面引用自定义标签。代码如下：

 [image:]

在JSP文件中通过taglib指令引入了标签库<%@ taglib uri="/MyTag" prefix="dt"%>，标签库的URI为"/MyTag"。JSP容器在解析此页面时会自动到web.xml文件中找到该URI所对应的TLD文件。prefix的值my表示该页面中所有以my为前缀的标签<my:标签名>都用URI为/MyTag所对应的TLD文档中的标签类解析。

hello.jsp页面在Tomcat下运行之后界面如图13-4所示。可以看到用自定义空标签<hello/>在浏览器上输出欢迎信息。

 [image:]
 图13-4　hello.jsp运行结果

JSP容器解析hello.jsp的过程如下：

（1）客户通过浏览器访问JSP容器中的hello.jsp页面。

（2）容器在解析页面时通过taglib指定引入了/MyTag所对应的标签库，在处理JSP代码过程中遇到<my:hello/>这个标签时通过前缀dt定位到了应该找/MyTag所对应的标签库。

（3）在web.xml文件中给出了这种对应关系，于是在WEB-INF目录下的mytaglib.tld文件中找到了hello标签所定义的标签类comHelloTag.java。

（4）执行该类的doStartTag()和doEndTag()方法，得到如图13-4所示的界面。

13.1.6　标签在Web页面中的作用

标签可以很好地解决表示层“动态”和“静态”代码之间的矛盾，即通过在JSP页面中嵌入标签，标明应该在JSP页面里某位置显示文字，而通过定义支持标签的Java代码，动态地在显示JSP文件时在标签位置上设置适当的文字。

JavaBean是一个类，一个JavaBean实例通过具体的方法实现相应的逻辑功能，并且为外部操作提供接口，外部JSP通过这些接口可以方便地使用它实现逻辑功能，这样就实现了代码的重用以及逻辑功能与页面显示层分离，它的好处就是把业务逻辑和数据库操作从JSP页面中分离出来，从而使JSP页面更纯净，方便进行调试，易于维护和扩展。设计良好的JavaBean可以重用，甚至可以作为产品销售。

自定义标签其实也是一个类，它封装了相应的逻辑功能，和JavaBean很类似，但是它们之间存在很大的区别：JavaBean通过提供接口供外部操作调用实现逻辑功能，而自定义标签是通过标签的形式为外部操作实现逻辑功能。

13.2　传统标签的开发

在这一节中，通过几个例子来了解一下自定义传统标签的开发方法。

13.2.1　带属性标签的开发

【例13-3】开发一个带属性的自定义标签<myfont>，通过属性设置网页上字体的显示。

（1）编写标签处理类AttributeTag.java。将编写好的AttributeTag.java源文件放到src\com目录下，代码如下：

 [image:]

开发自定义标签带属性时，为自定义标签添加属性，要在相应的标签类中定义同名的属性字段和该字段的setter方法。<myfont>标签中6个属性都有默认值，在JSP页面中没有定义属性值时，自动用默认值处理。

AttributeTag extends TagSupport重写了doStartTag()和doEndTag()方法。当JSP引擎遇到标签开头时，调用doStartTag()方法，返回EVAL_BODY_INCLUDE表示标签的体内容正常执行。JSP引擎遇到标签结尾时，调用doEndTag()方法，返回EVAL_PAGE表示JSP网页可以继续正常执行，如果返回SKIP_PAGE时，则表示JSP网页不再继续执行。

（2）在TLD文件MyTaglib.tld中配置<myfont>标签，代码如下：

 [image:]

在MyTaglib.tld文件中，新增标签<myfont>，标签处理类是com.AttributeTag。元素<body-content>中是JSP，表示如果体内容有JSP程序，JSP程序就会被编译执行。<required>值为true，表示color属性的值一定要设置。

（3）在web.xml文件中配置标签库信息，代码如下：

 [image:]

容器根据web.xml中设定的环境找到对应的TLD，而这个对应就是利用<taglib>中的<taglib-uri>和<taglib-location>实现的。

（4）编写测试页面attitudeTag.jsp，代码如下：

 [image:]

web.xml文件中指定了标签库引用，在attitudeTag.jsp中可以直接写<%@ tagliburi="/mytag" prefix="my" %>。Prefix指定自定义标签库的别名。

（5）启动Tomcat，在浏览器的地址栏中输入

 http://localhost:8080/ch13/attributeTag.jsp

运行结果如图13-5所示。

 [image:]
 图13-5　attributeTag.jsp运行结果

13.2.2　带Body标签的开发

BodyTag有一个实现类BodyTagSupport，开发带标签体的自定义标签时，直接继承类BodyTagSupport。

【例13-4】开发一个自定义标签循环在页面中显示时间。

（1）编写BodyTag.java，将编好的BodyTag.java源文件放到src\com目录下，代码如下：

 [image:]

其中，每次计算完body时，都会调用doAfterBody()方法。Counts参数指定循环的次数，如果Counts大于1就继续计算body，否则返回SKIP_BODY不再计算body，接着就调用doEndTag()方法。

（2）在TLD文件中配置<loop>标签，编辑WEB-INF目录下的mytag.tld文件，配置自定义标签<loop>标签，代码如下：

 [image:]

其中，元素<body-content>中必须是jsp；counts为标签<loop>的属性，它和BodyTag中定义的属性int counts必须一致；元素<required>中true表示此属性是必需的。

（3）在web.xml文件中配置标签库信息，配置代码与13.2.1中web.xml文件的内容相同，不再赘述。

（4）编写测试页面BodyTag.jsp，将编好的BodyTag.jsp文件放在/WebContent下面，代码如下：

 [image:]

其中，taglib指令的URI属性值为"/mytag"，和mytag.tld文件中设置的<uri>元素内容一致，通过web.xml文件中对TLD的配置信息，JSP容器通过TLD能找到自定义标签的处理器。

（5）启动Tomcat，在浏览器的地址栏中输入

 http://localhost:8080/ch13/ BodyTag.jsp

运行结果如图13-6所示。

 [image:]
 图13-6　BodyTag.jsp运行结果

可以看出，这个标签具有迭代输出BodyContent的功能。运行时服务器的控制台也会打印出如下内容：

 doAfterBody1

 doEndTag

 doStartTag

 setBodyContent

 doInitBody

 doAfterBody3

 doAfterBody2

 doAfterBody1

 doEndTag

打印的内容反映了容器调用标签中方法的执行顺序，doAfterBody()方法在每次循环完成后都会调用，其他方法只被调用一次。

13.2.3　嵌套标签的开发

程序开发中，常常需要多个标签嵌套完成一个任务，这样标签就存在了父子关系。用户可以开发出和流程控制相关的标签，比如以下脚本。

 <%

 switch(k+j){

 case 1 : System.out.println("in case 1"); break;

 case 2 : System.out.println("in case 2");break;

 default : System.out.println("in dafault");

 }

 %>

脚本代码中，Switch语句的switch、case和default就可以开发为嵌套的自定义标签<switch>、<case>和<default>，实现在JSP页面中流程的控制。

【例13-5】开发<switch>、<case>和<default>标签，其中<switch>为父标签，<case>和<default>为子标签。

（1）开发3个标签处理器类：SwitchTag.java、CaseTag.java和DefaultTag.java。

SwitchTag.java的代码如下：

 [image:]

其中，subTagvalue为属性，是boolean类型，用于判断子标签是否已经执行。

CaseTag.java的代码如下：

 [image:]

子标签处理器CaseTag在执行前都会调用父标签处理器的getPermission()方法，判断是否有符合条件的子标签，如果有就调用SwitchTag对象的subTagSucceeded()方法通知父标签，并执行标签体，否则不执行。

DefaultTag.java的代码如下：

 [image:]

（2）在TLD文件MyTaglib.tld中配置<switch>、<case>和<default>标签，代码如下：

 [image:]

（3）在web.xml文件中配置标签库信息，配置代码与13.2.1中web.xml文件的内容相同，不再赘述。

（4）编写测试页面switchTag.jsp，代码如下：

 [image:]

（5）启动Tomcat，在浏览器的地址栏中输入

 http://localhost:8080/ch13/switchTag.jsp? language=Chinese

运行结果如图13-7所示。更换参数language的值可以看到不同的输出内容。

 [image:]
 图13-7　switchTag.jsp运行结果

13.2.4　迭代标签的开发

在程序开发中迭代输出集合中的元素是经常性的操作。在JSP页面中如果没有迭代标签，经常会用下面的脚本来实现向网页上循环输出内容。

 [image:]

针对上面的While语句，可以开发一个迭代标签<iterator>完成类似功能。

迭代标签类的doAfterBody()方法根据不同的情况返回EVAL_BODY_BUFFERED或SKIP_BODY常量，以通知JSP容器是继续循环解析标签body部分还是往下运行。

【例13-6】通过<iterate>标签展示迭代标签的开发过程。这个标签的主要目的是遍历HashMap中的所有key-value对，并输出其value值。标签有两个属性，map表示要遍历的Map对象，element表示每次迭代当前value值存放在page范围中的名称，这个名称在标签body中会使用。

（1）编写标签处理器IteratorTag.java，代码如下：

 [image:]

其中，map和element两个变量分别用来存储标签中的两个属性值，JSP容器在解析时会自动地为其赋值。

在doStartTag()方法中获取了map的所有key值组成的Iterator对象，并把这个对象保存到变量it中，以备以后遍历时调用，每次取得的value值以element属性所对应的值保存在page范围内，以备在每次迭代的标签体中访问。在此方法中取得第一个元素，并调用setAttribute()方法，把元素保存到pageContext对象中。

doAfterBody()方法被循环调用实现剩下元素的迭代，也就意味着标签体被重复执行。

在doEndTag()方法中继续遍历it对象，然后取出当前key值所对应的value值，并以element名称保存到page范围中，直到遍历结束返回SKIP_BODY，在doEndTag()方法中输出所有body部分的内容。

在JSP页面中使用<iterate>标签时，在该标签体内就可以从pageContext对象中得到集合中的元素。

（2）在TLD文件MyTaglib.tld中配置< iterate >标签，代码如下：

 [image:]

其中，<attribute>中设置了map和element两个变量。

（3）在web.xml文件中配置标签库信息，配置代码与13.2.1中web.xml文件的内容相同，不再赘述。

（4）编写测试页面iterateTag.jsp，代码如下：

 [image:]

iterateTag.jsp页面中定义了一个HashMap对象，然后把这个对象赋值到了<my:iterate>标签的map属性中，并且指定了element属性的名称为year，在每次遍历的过程中通过<%=pageContext.getAttribute（"year"）%>语句获取存放在page范围内的名字，即year在h中所对应的value值。

（5）启动Tomcat，在浏览器的地址栏中输入

 http://localhost:8080/ch13/iterateTag.jsp

运行结果如图13-8所示。

 [image:]
 图13-8　iterateTag.jsp运行结果

13.3　Simple标签的开发

为了简化标签的开发，在JSP 2.0的规范中新定义了一种简单类型标签，这种标签响应的接口是SimpleTag，SimpleTag有个实现类javax.servlet.jsp.tagext.SimpleTagSupport，简单标签的标签类都继承于这个实现类，该标签类没有繁多的doStartTag()和doEndTag()等方法，只有一个doTag()方法，在这个方法中即可进行相应的业务逻辑处理。

13.3.1　SimpleTag接口

javax.servlet.jsp.tagext.SimpleTag接口用来定义简单标记处理程序的接口，该接口定义了5个方法，如表13-8所示。

 表13-8　SimpleTag接口中的方法

 [image:]

实现了SimpleTag接口的标签处理器的生命周期如图13-9所示。

 [image:]
 图13-9　实现SimpleTag接口的标签处理器的生命周期

（1）容器在创建标签处理器实例后调用setJspContext()方法来设置JspContext。当标签被嵌套，调用setParent()方法设置它的上一级标签，如果没有嵌套则不会调用此方法。而在传统标签的处理中，无论标签是否被嵌套setParent()方法都会被调用。

（2）调用标签处理器的setter()方法设置标签的属性。当没有属性时，跳过此步骤。

（3）调用标签处理器的setJspBody()方法设置标签体。当没有标签体时，跳过此步骤。

（4）容器调用doTag()方法，通过此方法完成标签处理器对标签和标签体的处理。

新的标记处理程序实例每次都由容器通过调用提供的无参数构造方法创建。与经典标记处理程序不同，简单标记处理程序从不被JSP容器缓存和重用。

13.3.2　Simple标签的开发示例

【例13-7】从HelloWorld标签开始，标签类需要实现SimpleTag接口。

（1）编写helloSimpleTag.java，代码如下：

 [image:]

（2）在TLD文件MyTaglib.tld中配置< welcome >标签，代码如下：

 [image:]

（3）在web.xml文件中配置标签库信息，配置代码与13.2.1中web.xml文件的内容相同，不再赘述。

（4）编写测试页面iterateTag.jsp，代码如下：

 <%@ page contentType="text/html;charset=GB2312"%>

 <%@ taglib uri="/mytag" prefix="my"%>

 <%

 String hello = request.getParameter("Name");

 %>

 <h3>hello

 <my:welcome name="<%=hello%>"></my:welcome>

 欢迎您！

 </h3>

（5）启动Tomcat，在浏览器的地址栏中输入

 http://localhost:8080/ch13/helloSimpleTag.jsp? Name=jsp

运行结果如图13-10所示。

 [image:]
 图13-10　helloSimpleTag.jsp运行结果

13.4　小结

本章详细介绍了自定义标签的开发。标签库提供了建立可重用代码块的简单方式，本质上标签就是为了代码的可重用。

自定义标签技术是从JSP 1.1开始增加，在JSP 2.0规范中增强了自定义标签。自定义标签开发包括开发自定义标签处理类和编写标签描述文件。自定义标签的开发可以采用传统标签开发方式，也可以采用Simple标签开发。SimpleTag的生命周期比传统的标签简单，开发起来方便。

13.5　习题

一、选择题

1. 在动态Web页面使用自定义标签，需要编写的文件有（　　）。

A. tag文件

B. tld文件

C. dtd文件

D. .xml文件

E. java文件

F. jsp文件

2. 所有的标签处理器类都要实现（　　）接口。这个接口是在JSP 2.0中新增加的一个标识接口，它没有任何方法，主要是作为基类。

A. JspTag

B. Tag

C. SimpleTag

D. BodyTag

3. 作为IterationTag接口中doAfterBody()方法的常量返回值，表示请求重复执行标签体的是（　　）。

A. EVAL_BODY_INCLUDE

B. EVAL_BODY_ AGAIN

C. SKIP-BODY

D. EVAL-PAGE

E. EVAL_BODY_BUFFERED

F. SKIP-PAGE

二、判断题

1. 在web.xml的根元素<web-app>下通过<jsp-config>元素指定要引入的标签库。

（　　）

2. public static final int EVAL-BODY- INCLUDE作为doStartTag()方法的返回值，表示标签体要被执行，执行结果输出到当前的输出流中。

（　　）

3. public static final int EVAL-PAGE作为doStartTag()方法的返回值，表示忽略标签体。

（　　）

三、填空题

1. 在J2EE中，标签库中文件（*.tld）存放在　　　目录下。

2. 在J2EE中，若要在JSP正确使用标签<x:getKing/>，在jsp中声明的taglib指令为：<%@taglib uri="/WEB-INF/myTags.tld"prefix="　　　"%>。

四、简答题

1. 创建自定义标签有哪几种方式？如何使用自定义标签？

2. 列举编写自定义标签的步骤。

五．编程题

1. 使用Tag接口编写一个输出welcome的自定义标签。

2. 通过继承TagSupper类实现输出welcome的自定义标签。

3. 通过继承BodyTagSupport类实现welcome的迭代输出。

4. 进行算术运算，把结果显示在页面上，如图13-11所示。标签类MyBody.java采用带Body的标签实现，JSP页面body.jsp使用自定义标签。

 [image:]
 图13-11　带body的标签

第14章　网上书店

JSP+JavaBean使用起来比较方便，但对一些复杂的应用JSP页面就会变得很复杂。前面几章已经介绍了Servlet具备的一些天生的优势，用它做流程控制，配合JSP/JavaBean，即使系统比较复杂，仍具有清晰的结构。本章使用JSP+Servlet+JavaBean的MVC模式来开发一个网上书店系统。

本章学习目标

 	◎　理解和掌握JavaBean在MVC模式中的作用和使用

 	◎　理解和掌握Servlet在MVC模式中的作用和使用

 	◎　掌握编写MVC结构的Web应用程序基础

 [image:]
 本章案例源代码下载

14.1　快乐购书网介绍

本章以MVC模式，基于JSP+JavaBean+Servlet方式实现了一个简单的网上购书系统——快乐购书网。在整个系统中，JSP页面调用JavaBean执行业务逻辑；JavaBean执行业务逻辑时可以连接数据库，也可以作为值对象在Servlet和JSP之间传递数据；Servlet可以作为控制器或过滤器。

快乐购书网系统是网上进行图书销售管理的电子商务系统，本系统只关注图书浏览、购物车管理、订单处理等内容。这些内容是每一个网上书店系统都不可缺少的。此系统中还有许多可以扩展的空间，读者可以通过所掌握的知识，在此基础上完善此系统，使其成为一个优秀的网上购书系统。

14.2　系统需求和设计

快乐购书网系统的核心功能：

[image:]　浏览图书。客户选择自己要购买的图书，放入购物车。

[image:]　购物车管理。客户可以对购物车进行修改、查询和删除。

[image:]　订单处理。客户完成购物进行结账时，将购物车中的图书生成订单，然后使用信用卡支付。

[image:]　计数器。记录当前成功在本站点成功购书的人次。

14.3　数据库表设计

数据库采用mySQL作为数据库服务器，表的设计和初始化数据库的SQL语句如下。

Database.sql是在数据库中操作的SQL语句：

 [image:]

为了简化系统，仅采用一个book表来存放图书书目的详细信息，每个字段的详细内容如表14-1所示。

 表14-1　book表

 [image:]

14.4　JSP页面开发

本系统包括的主要JSP页面如表14-2所示。

 表14-2　系统中JSP页面

 [image:]

在本系统中所有JSP页面的head和foot都一样，所以把它们提取出来作为单独的文件，以便修改，改动时仅需要修改head.html和end.html文件。

1. index.jsp

index.jsp是进入网站的首页。在Tomcat服务器下发布系统后，在浏览器地址栏中输入

 http://localhost:8080/ch16/index.jsp

便会看到首页，如图14-1所示。

 [image:]
 图14-1　网站的首页index.jsp

在首页可以看到库存图书的信息，包括图书名、价格和作者。可以选择图书将其直接加入购物车，也可以单击图书的名字查看选择的图书的详细信息。

代码中使用<jsp:useBean>指令实例化了类BookDBAO，然后通过BookDBAO的对象bookDB的getBooks()方法获得所有书目信息，再通过迭代访问所有书目对象。

2. bookdetails.jsp

查看图书详细信息的页面bookdetails.jsp，在浏览器的地址栏输入

 http://localhost:8080/ch16/bookdetails.jsp?bookId=206

可以看到图书Java Intermediate Bytecodes的详细信息，如图14-2所示。

 [image:]
 图14-2　查看图书详细信息页面

在页面bookdetails.jsp的代码中，使用通过对象bookDB的getBookDetails（bookId）获得对应的图书的详细信息。

14.5　JavaBean开发

本系统中采用JavaBean把逻辑处理和对数据库的访问都封装起来了，共分为两大类，如表14-3所示。

 表14-3　系统中JavaBean

 [image:]

14.5.1　使用Java Bean封装数据库的访问

1. BookDBAO.java

类BookDBAO实现对数据库访问的封装，Servlet通过该类访问数据库，获取Connection对象的方法（getConnection）和释放数据库连接的方法（releaseConnection）。

BookDBAO在程序第一次被访问时（ServletContextListener事件发生）被实例化，并被所有用户共享，为了确保当前获得的Connection对象当前处于空闲状态，实现同步访问，在BookDBAO的方法getConnection()与releaseConnection()前边都加上了synchronized关键字。BookDBAO在监听器ContextListener中实例化。

2. BookDetails.java

BookDetails.java是记录图书详细信息的javaBean，在BookDBAO中使用到了此类。

此外，Constants.java是数据库连接的配置文件，代码如下：

 [image:]

其中的dbdriver和dburl全都被定义为静态。

14.5.2　购物车JavaBean

1. ShoppingCart.java

ShoppingCart.java封装了对购物车进行操作的业务逻辑：定义了一个HashMap类型的私有变量来保存放到购物车的书目，可以对购物车中保存的图书进行增加、删除、清空和获取信息等操作。

2. ShoppingCartItem.java

ShoppingCartItem.java对购物车中保存的每一项图书进行数量的统计和计算。

14.6　Servlet开发

快乐购书网系统中采用了3种Servlet：普通Servlet、监听器Listener、过滤器Filter，具体如表14-4所示。

 表14-4　系统中的Servlet

 [image:]

14.6.1　普通Servlet开发

1. HeadServlet.java

HeadServlet.java的功能类似head.html，让所有的页面具有相同的head。

2. ShowCartServlet.java

ShowCartServlet.java可以对购物车进行修改和清空操作，运行效果如图14-3所示，响应产生一个页面，页面显示购物清单，可选中某本图书的名字查看详细信息、进行结账、继续购物。

 [image:]
 图14-3　购物车清单

订单处理模块包括两个Servlet类：CashierServlet.java和ReceiptServlet.java，主要有以下功能：接收客户付款；完成交易，显示致谢信息。

3. CashierServlet.java

CashierServlet.java中对用户名和信用卡进行输入。客户单击“结账”链接，即进入CashierServlet页面，在页面中输入信用卡用户名和信用卡号，单击“提交”按钮进行付款。该页面的显示效果如图14-4所示。

 [image:]
 图14-4　客户付款对话框

4. ReceiptServlet.java

ReceiptServlet.java可以显示致谢信息、更新存货和结束会话。

如图14-4所示，客户输入信用卡号和密码，单击“提交”按钮发送到ReceiptServlet.java处理。因为ReceiptServlet.java配置过滤器OrderFilter.java，所以客户提交的信息经过OrderFilter.java处理后才到达ReceiptServlet.java，处理结果如图14-5所示。

 [image:]
 图14-5　完成购物

在如图14-5所示的完成购物页面中，看到了第几个成功购书的顾客数量，主要是通过过滤器HitCounterFilter.java完成的记数。

5. CatalogServlet.java

CatalogServlet.java的运行结果响应产生一个页面，如图14-6所示。CatalogServlet.java从Servlet上下文中获取BookDBAO对象，然后迭代显示购物车内的所有物品，也可以进行购物车的清空和删除操作。

 [image:]
 图14-6　购物车详情

14.6.2　Listener开发

整个系统中用到了一个监听器：ContextListener.java。ContextListener.java对ServletContext进行监听，当监听事件发生时，BookDBAO在程序第一次被访问时就实例化BookDBAO，同时会初始化Counter；当监听到程序运行结束，从Servlet上下文中删除BookDBAO对象，关闭数据库连接。

14.6.3　Filter开发

1. SetCharacterEncodingFilter.java

SetCharacterEncodingFilter.java对请求编码进行改变，从而一次性解决所有页面请求编码的转换问题。为了保证在JavaBean或其他Servlet在处理请求之前对请求编码，尽量先部署该过滤器。

2. CharResponseWrapper.java

javax.servlet.HttpServeltResponseWrapper提供HttpServletResponse接口的便捷实现，希望根据Servlet适配响应的开发人员可以子类化该接口。此类实现Wrapper或Decorator模式。默认情况下，方法通过包装的响应对象调用。

/bookreceipt的响应信息在到达客户端之前也要流经过滤器，并把计数器的值插入其中，过滤器要修改响应，必须在响应返回到客户端之前捕捉到这个响应，其方法是将一个替代流（stand-in stream）传递给产生响应的Servlet，这个替代流的作用是防止Servlet完成时关闭响应流，并且允许过滤器修改Servlet的响应。CharResponseWrapper.java扩展了HttpServeltResponseWrapper包装类。

CharResponseWrapper重载了getWriter和getOutputStream方法。这种对响应流进行包装的方式是包装器模式（Wrapper）或者装饰模式（Decorator）的实现。

3. OrderFilter.java

过滤器OrderFilter.java可以在客户付款进入ReceiptSerVlet.java前，将客户的订单写入log。

4. HitCounterFilter.java

请求到达BookStoreServlet页面之前，要经过过滤器HitCounterFilter.java；相应地，返回到客户端也要经过过滤器。在请求到达/bookreceipt之前，计数器计数加1，并在响应返回客户端之前，向输出流中插入计数器信息。

14.7　其他bean类——Util

1. Counter.java

Counter.java利用synchronized方法进行记数，代码如下：

 [image:]

2. Currency.java

Currency.java用来格式化本地货币的显示方式，代码如下：

 [image:]

14.8　部署描述符

所有的Servlet、Listener、Filter都需要在web.xml文件的部署描述符中部署，进行定义和映射，然后才能在Tomcat服务器下使用。

快乐购书网的web.xml文件内容如下：

 [image:]

 [image:]

14.9　小结

本章使用JSP+Servlet+JavaBean的MVC模式来开发一个网上书店系统，构建了结构清晰、高质量的Web应用程序。

同时也可以注意到，使用Servlet开发的页面是多么的糟糕，大量的HTML代码嵌在Servlet类中，这就意味着改变页面的显示就需要修改和重新编译Servlet源文件。因为页面设计人员与编写Servlet代码的开发人员极有可能不是同一个人，更新基于Servlet的Web应用程序是非常棘手的事情。部分页面采用的JSP直接开发，与采用Servlet开发的页面形成了鲜明的对比。但如果将Servlet与JSP结合使用，JSP负责页面显示，Servlet负责流程控制，非常适用大型复杂的项目。

所以在进行Web程序设计时，一定要做好规划，理解JSP、JavaBean和Servlet在整个MVC模式程序设计中的作用，进而开发出结构清晰、低耦合、高质量的Web系统。

14.10　习题

采用MVC模式编写用户登录验证程序。系统中的文件可参考表14-5。

 表14-5　用户登录模块划分

 [image:]

第15章　调查问卷管理系统

如果使用纸质的调查问卷，不仅统计结果非常困难烦琐，而且不方便实时更新修改整个调查问卷的内容。网络与计算机的发展使得很多应用都能够电子化，设计调查问卷与统计问卷结果也是如此。本章将介绍基于数据库的JSP调查问卷管理系统，使用它可以方便快捷地创建自己的调查问卷，并自动获得问卷的统计结果，操作十分简便。

本章学习目标

 	◎　掌握系统需求分析的过程

 	◎　掌握系统设计过程

 	◎　掌握数据库设计过程

 	◎　理解和掌握JavaBean在MVC模式中的作用和应用

 	◎　理解和掌握Servlet在MVC模式中的作用和应用

 	◎　掌握编写MVC模式的Web应用程序的方法

 [image:]
 本章案例源代码下载

15.1　系统介绍

调查问卷管理系统是使用JSP+JavaBean+Servlet技术开发的、基于MySQL数据库的管理系统。用户可以通过该系统创建自己的调查问卷，为调查问卷添加需要调查的问题，问题以单项选择题的形式出现，选项个数最多可以达到100个。调查问卷中的问题个数没有限制，用户可以根据自己的需要任意添加。系统中的所有用户是调查问卷的目标群体，在实际应用中，只要为每个参与调查问卷的用户提供一个可以访问本系统的账号即可。

15.2　系统需求分析

从系统的使用者来看，共有两种用户：一般用户和系统管理员。一般用户在申请了创建调查问卷的权限后可以创建自己的调查问卷供其他用户填写，并具有管理自己创建的所有调查问卷的权限。系统管理员的主要职责是管理一般用户、批准一般用户的创建申请、管理系统中的所有调查问卷及创建自己的调查问卷。

系统的需求分析如下。

（1）用户管理。系统用户包括一般用户和系统管理员。一般用户的用户管理（个人管理）包括修改密码和申请调查问卷管理权限（即创建调查问卷的权限）两部分。系统管理员的用户管理除了修改个人密码外，还包括创建用户、批准用户调查问卷管理权限和重置其他用户密码等功能。

（2）调查问卷管理。调查问卷管理主要包括调查问卷的创建、修改与列表。一般用户和系统管理员都具有调查问卷管理的权限。一般用户可以管理所有由自己创建的调查问卷，系统管理员不仅可以管理所有由自己创建的调查问卷，同时还可以管理系统中所有用户创建的所有调查问卷。调查问卷按时效性又可以分为尚未开始的未发布调查问卷、正在进行中的当前调查问卷和已经完成的历史调查问卷。一般用户在申请了创建调查问卷的权限并获得批准后，可以进行调查问卷内容的管理，并且可以管理的调查问卷总数与申请获批准的权限数一致。系统管理员没有权限的限制，可以任意创建调查问卷。为了安全起见，调查问卷一旦创建，即使是系统管理员也不能将其删除。

（3）问卷问题管理。用户填写调查问卷从本质上来说是填写问卷中的每一个问题，即问卷的问题才是问卷信息的主要载体，所有结果信息都是从问题的答案中统计得到的。问卷问题管理主要包括添加、修改和删除问卷的问题，调查问卷问题的回答填写及结果统计，等等。

15.3　系统功能结构

调查问卷管理系统从功能模块上看，主要包括用户管理、调查问卷管理和问卷问题管理3大部分，如图15-1示。

 [image:]
 图15-1　系统功能结构

15.4　数据库设计

初步了解调查问卷管理系统的功能模块后，下一步需要进行数据库设计。对于这个系统，从功能模块来看，主要集中了用户管理、调查问卷管理和问卷问题管理3大类。因此，从数据库设计角度出发，共需要创建3个表，分别是用户表voteuser、调查问卷表vote和问题表question。

15.4.1　数据库逻辑结构设计

根据系统的需求分析和功能模块划分，系统有两类用户：一般用户和系统管理员。两类用户都具有用户登录与密码管理功能，一般用户还有申请调查问卷管理权限的功能，系统管理员则可以批准调查问卷管理权限、创建用户和重置用户密码。因此需要用户数据实体，用以记录用户信息。系统需要进行调查问卷管理及问题管理，因此也需要创建它们相应的实体。

[image:]　用户数据实体：负责存储系统用户（一般用户和系统管理员）的个人信息，主要包括用户名、用户密码、用户级别、用户创建的调查问卷列表、调查问卷权限和申请待批准的调查问卷管理次数等。

[image:]　调查问卷数据实体：负责存储所有调查问卷的信息，包括调查问卷题目、描述、创建时间、起始时间、结束时间、创建者和备注等。

[image:]　问题数据实体：存储用户添加的所有问题，包含所属调查问卷、问题题目、问题的答案（选项）个数、问题的答案列表、回答问题的用户数及回答问题的用户名列表。

15.4.2　数据库表的设计

1. 用户表voteuser

用户表voteuser负责存储系统用户（一般用户和系统管理员）的个人信息，用户级别字段用来区别用户是一般用户还是系统管理员。为了在查询用户创建的所有调查问卷时不去搜索整个调查问卷表，要把用户所创建的调查问卷的ID连接成一个字符串存储在用户表的用户调查问卷列表属性中。另外，一般用户必须先申请创建调查问卷的权限，并在获得批准后才能进行调查问卷的创建操作，要创建一个新的调查问卷必须再申请一次，所以调查问卷权限属性用来记录用户获得批准的创建调查问卷的次数。同时，调查问卷申请属性用来表示用户正在申请待批准的调查问卷管理次数。表15-1所示是用户表voteuser所有属性的详细列表，包括属性的数据类型、是否为空和注释。

 表15-1　用户表voteuser

 [image:]

2. 调查问卷表vote

调查问卷表vote负责存储所有调查问卷的信息。调查问卷起始时间是问卷生效的时间，即能被其他一般用户所看到的起始时间；调查问卷结束时间是问卷的截止时间，过了结束时间之后，问卷将不能被其他用户访问。表15-2所示是调查问卷表vote所有属性的详细列表，包括属性的数据类型、是否为空和注释。

 表15-2　调查问卷表vote

 [image:]

3. 问题表question

问题表question可以说是调查问卷管理系统中操作最频繁的表。它要存储用户添加的所有问题，一个调查问卷可能会有10个或更多的问题，因此问题表的记录个数往往远大于调查问卷表vote的记录数。其中，问题的答案列表属性answers将各个答案用间隔号“|”连接起来，回答问题的用户名列表answerUsers同样也使用“|”将用户名连接起来。表15-3所示是问题表question所有属性的详细列表，包括属性的数据类型、是否为空和注释。

 表15-3　问题表question

 [image:]

15.4.3　数据库相关脚本

根据数据库的设计编写对数据库操作的SQL语句。Database.sql是在数据库中操作的SQL语句，其代码如下：

 [image:]

15.5　系统实现

15.5.1　JavaBean

在数据库设计完成后，就可以进行JavaBean的设计了。调查问卷管理系统中使用到的Java类分为bean、database和util 3种，分别代表JavaBean、Servlet、数据库连接和访问类及其他相关Java类，如表15-4和表15-5所示。这一节将着重介绍3个JavaBean类，包括它们的成员变量、get和set方法及添加、修改和删除记录等方法。

 表15-4　JavaBean表

 [image:]

 表15-5　util表

 [image:]

1. 用户类AdminUser.java

为用户表voteuser创建对应的JavaBean类AdminUser.java，其package路径为jsp.bean。

为了将注意力集中在调查问卷及问题管理上，将用户表和对应的JavaBean设计得尽可能简洁，只保留了必需的功能属性。用户可以根据网站应用的具体需要，添加诸如用户E-mail、是否在线和是否被禁用等属性。上述代码中的getAdminUserByUserName()方法用来获得指定用户名所对应的用户记录，功能相当于在数据库表中查询用户名所对应的具体用户。

2. 调查问卷类vote.java

为调查问卷表vote建立名为vote.java的JavaBean类，其package路径也为jsp.bean。

3. 问题类question.java

为问题表question建立对应的JavaBean类question.java，其package路径也为jsp.bean。

15.5.2　Servlet

Servlet用以实现系统的逻辑功能。系统中采用了两种Servelt：普通Servelt和过滤器Filter，如表15-6所示。本节以用户管理相关的Servlet进行详细描述，其他Servlet实现代码类似。

 表15-6　Servlet表

 [image:]

所有的Servlet、Listener、Filter都需要在web.xml文件的部署描述符中部署，进行定义和映射，然后才能在Tomcat服务器下使用。

在web.xml文件中配置servlet，具体代码如下：

 [image:]

在web.xml文件中配置filter，代码如下：

 [image:]

15.5.3　系统界面

本章使用MyEclipse来开发调查问卷管理系统，在新建工程时将网站程序目录，也就是整个系统的根目录命名为vote。在网站程序vote目录下有WEB-INF目录、META-INF目录、JSP页面和图片目录。下面先来看一下根目录下的文件，如表15-7所示。

 表15-7　界面设计文件表

 [image:]

图15-2所示是用户创建调查问卷的主界面，用户必须申请创建调查问卷的权限并在获批准后才能进入这个页面。主界面基本上分为两部分，左侧部分是用户面板，系统管理员面板包括当前用户、当前调查问卷、用户管理和调查问卷管理4类。右侧部分显示具体页面内容。图15-2中的右侧页面就是单击左侧菜单中的“创建调查问卷”链接显示的内容。

 [image:]
 图15-2　创建调查问卷界面

图15-3所示是进入调查问卷修改页后的界面。页面底部给出了添加问题和删除问题等按钮。在后面的功能模块实现部分将详细介绍这些操作方法。

 [image:]
 图15-3　问题管理按钮分布

15.5.4　用户管理

开发JSP页面一般都是从用户登录功能入手，因为网站应用的很多功能常常需要访问者是登录用户。在这一小节中，将分别介绍调查问卷管理系统中一般用户和系统管理员的个人管理。两种用户都具有用户登录与密码管理功能，一般用户还有申请调查问卷管理权限的功能，系统管理员则可以批准调查问卷管理权限、创建用户和重置用户密码。

1. 用户登录与密码管理

（1）用户登录。login.jsp是网站的登录页面。一般用户在访问网站根目录时会转向index.jsp文件，这里index.jsp称为欢迎文件。index.jsp会对用户是否已经登录做检查，如果用户还没有登录，那么就跳转到login.jsp页面。实现跳转的代码如下：

 [image:]

上述代码通过读取sesssion会话中的adminLogin参数来判断用户是否登录。其实在用户登录的Servlet中设定当用户登录成功时，在session会话中存入一个变量，变量名为adminLogin，取值为true。

另外，在Web服务器中可以配置欢迎文件，也可以在具体的网站应用中配置欢迎文件。最简单的配置方法是修改WEB-INF目录下的web.xml文件。在web.xml中可以找到如下代码（这里只设定了一个欢迎文件index.jsp，用户可以根据需要设置多个，服务器在找不到第一个页面时会依次请求各个页面，直到找到一个存在的页面为止）。

 [image:]

（2）用户密码修改。一般用户和系统管理员都可以修改自己的密码，在进入系统主页面之后，单击左侧用户面板的“修改密码”链接后就可以进行操作了。如图15-4所示是用户修改密码的操作界面。

 [image:]
 图15-4　用户修改密码界面

为了减轻服务器端进行数据合法性检查的负担，在用户修改密码页modifyPwd.jsp中添加JavaScript来检查用户输入信息的合法性。通过JavaScript可以在客户端进行一部分的数据合法性检查，这样减少了用户与服务器的交互次数，密码检查的具体代码如下：

 [image:]

上面的JavaScript对用户输入的3个密码值进行了多次检查。每个密码值不能为空，且长度大小要符合要求，两次输入的新密码也要完全相同。关于旧密码是否与数据库中的数据匹配，则需要在发送了修改密码请求后进行检查。

2. 申请调查问卷管理权限

一般用户在创建调查问卷之前必须进行调查问卷管理权限的申请，而且申请一次获得批准后只具备创建一个调查问卷的权限。如果一般用户要创建多个调查问卷，则需要进行多次申请。

applyVote.jsp是一般用户申请调查问卷管理权限的页面，在左侧用户面板可以找到这个页面的链接。如图15-5所示是一般用户申请调查问卷管理权限的页面。

 [image:]
 图15-5　一般用户申请调查问卷管理权限页面

一般用户在单击“确定”按钮后就发送了申请权限的请求。

applyVote()方法首先对操作用户进行了核实，当用户存在时，修改用户实例中的applyVote成员变量。applyVote变量存储一般用户申请调查问卷管理权限的次数。当修改操作执行完毕后，如果成功执行，则更新session会话中的用户实例信息，如果执行失败，则提示相应的错误信息。一般用户可以在左侧的用户管理面板中查看自己的申请次数与获准次数。如图15-6所示是一般用户管理面板中的当前用户部分。

 [image:]
 图15-6　一般用户管理面板

3. 批准调查问卷管理权限

一般用户在进行了调查问卷的管理权限申请后，系统管理员就可以在自己的用户管理中看到一般用户的最新申请。viewVoteApplication.jsp显示最新的调查问卷申请，只有系统管理员可以访问该页的内容。下面这段代码用在该JSP页面中，这样只允许userRank（用户级别）为1的用户访问，一般用户的用户级别为0，所以不能访问该页面。

 [image:]

系统管理员单击某个用户记录的“批准申请”按钮时会进入如图15-7所示的批准界面。

假设系统管理员单击了Ll用户的申请，则可以从图15-8中看到申请者的账号、未获批准的申请次数和待确定的批准次数。系统管理员在文本框中输入一个小于或等于未获准的申请次数后，单击“确定”按钮，用户请求将被传递给AdminServlet处理。AdminServlet中的approveVote()方法负责批准用户的权限申请。

 [image:]
 图15-7　系统管理员查看最新调查问卷管理申请页面

 [image:]
 图15-8　系统管理员批准一般用户的调查问卷管理申请

approveVote()方法首先对申请用户进行了验证，然后对批准次数变量voteCount进行了合法性检查，如果系统管理员输入的批准次数正确无误，那么就调用用户JavaBean中的modifyAdminUser()方法进行数据记录更新操作，否则提示用户相应的错误信息。

4. 创建用户

系统管理员可以进行创建用户操作，新创建的用户可以是一般用户也可以是系统管理员。如图15-9所示是系统管理员的添加用户页面。为了安全考虑，管理员必须先输入自己的登录密码来进行二次验证，然后再指定新用户的用户ID、用户级别及用户密码等。

在这个例子中没有用户注册功能，所有的用户都是由系统管理员添加的，这在用户数量非常多的情况下显然是不方便的。用户在建设自己的网站时，可以根据情况决定是否开发用户注册功能，总体上实现方法比较简单，与管理员的添加用户方法很相似。

 [image:]
 图15-9　添加用户页面

5. 重置用户密码

在实际应用中，管理员常常需要为一般用户重置密码，不管是在初始化用户时，还是在用户忘记了自己的密码时。在本系统中，系统管理员可以浏览所有系统用户，并选择相应的用户进行重置密码。如图15-10所示是用户概览页面，该页面将所有用户进行分页显示，每页显示20个用户，每页用户数可以在页面中进行设置。

 [image:]
 图15-10　用户概览页面

单击要重置密码的用户所对应的“编辑”按钮，进入用户密码重置页面，如图15-11所示。这时，管理员不需要知道该用户的原始密码，就可以直接进行新密码的设定。

 [image:]
 图15-11　修改用户密码页面

15.5.5　调查问卷管理

在介绍了基本的用户管理后，再来讨论系统的核心功能——调查问卷管理。调查问卷管理分为单个问卷的内容管理与所有问卷的列表管理。单个调查问卷的管理包括问卷的创建、修改与预览等。所有问卷的列表管理可以分为一般用户的列表管理和系统管理员的列表管理。一般用户只能管理所有由自己创建的调查问卷，而系统管理员则可以管理系统中所有的调查问卷。

1. 调查问卷内容管理

单个调查问卷的内容管理主要是指调查问卷的创建与修改，考虑到安全因素，系统不提供调查问卷的删除功能。

（1）创建调查问卷。创建调查问卷是调查问卷管理的第一步。系统管理员随时都可以创建调查问卷，而一般用户必须在申请了调查问卷管理权限并获得批准后才能创建调查问卷。在确定了要调查的主题及主要内容后，就可以进行调查问卷的设计。首先，需要为调查问卷起一个高度概括又形象的题目，然后对这个调查问卷的主题进行简要解释或简介，接着需要根据调查对象的实际情况确定调查问卷的起始时间和结束时间，同时，还可以将调查问卷的其他注意事项记录到备注中。调查问卷管理系统的一个好处就是调查问卷的起始时间和结束时间由系统自动控制，只要设定好问卷的起始时间和结束时间，那么调查问卷就会在特定的时间生效或结束。一般在新建问卷时将起始时间设定得尽量靠后，这样用户有足够的时间进行问卷设计，当完成问卷设计后可以再修改起始时间。如图15-12所示是创建调查问卷的JSP页面。

当用户在表单中输入相应的信息并单击“创建调查问卷”按钮后，页面会跳转到VoteServlet.java，该Servlet中的addVote()方法将对表单数据进行处理。

 [image:]
 图15-12　创建调查问卷页面

在addVote()方法中，Servlet从表单中获取各个传递过来的参数后，对调查问卷的创建者createUser进行验证，判断其是否是注册用户。然后对用户输入的起始时间startDate和结束时间endDate进行格式检查，在日期时间格式检查时调用了checkDate()函数。正确的日期格式应满足2018-07-01 23:59:59，startDate和endDate不但要满足格式要求，还必须是一个确实存在的时间，不能出现2018-02-31这样的日期。checkDate()函数的代码在前文已给出，用户可以参考。另外，开始时间与结束时间还必须符合逻辑规律，即结束时间必须在开始时间和当前系统时间之后。在对这些数据进行合法性检查后，调用调查问卷JavaBean中的添加记录方法，并将新生成的voteId添加到用户的userVote属性中。userVote属性用于存储所有由该用户创建的调查问卷的ID，这样不用通过搜索调查问卷表vote，就可以很快地确定用户所创建的调查问卷总数及具体的问卷ID。在所有操作都正常进行后，由于用户实例的userVote属性已经改变，需要将session会话中的用户实例adminUser进行更新，这样可以使操作的结果马上体现出来。

（2）修改调查问卷。在了解了创建调查问卷的实现方法后，修改调查问卷就变得容易多了。只要在调查问卷没有结束之前，用户可以在任何时间对调查问卷进行修改，但调查问卷结束之后，任何人包括系统管理员再也不能对调查问卷进行修改。关于调查问卷的起始时间，在问卷已经开始后也不能修改，没有开始的问卷的起始时间只能修改成将来的时间，不能修改为过去的时间。具体的实现方法与创建调查问卷比较相似，在此不再一一介绍。如图15-13所示是用户修改调查问卷内容的页面。

2. 调查问卷列表管理

调查问卷按时效性可以分为尚未开始的未发布调查问卷、正在进行的当前调查问卷和已经完成的历史调查问卷。调查问卷的状态由起始时间、结束时间和系统当前时间的比较得到，这个方法可以在vote的JavaBean中找到，代码如下：

 [image:]
 图15-13　修改调查问卷页面

 [image:]

getVoteStatus()方法借用了字符串比较函数compareTo()对起始时间、结束时间和当前系统时间进行比较，然后确定调查问卷属于进行中、未发布和已结束3种状态中的哪一种。在userVote.jsp和allVote.jsp两个JSP页面中会调用getVoteStatus()函数来获取调查问卷的状态。userVote.jsp是某个用户创建的所有调查问卷的列表管理页面，allVote.jsp是系统管理员的所有调查问卷列表管理的页面。如图15-14所示就是allVote.jsp的显示结果，用户可以通过右上角或右下角的下拉菜单来选择要显示的调查问卷的种类。下拉菜单的代码如下：

 <select onChange="javascript:window.location='userVote.jsp?voteType='+this.options

 [this.selectedIndex].value;" size=1 name=voteType>

 <option value="-1" selected>==请选择显示调查问卷的种类==</option>

 <option value="0"> | 用户当前调查问卷</option>

 <option value="1"> | 用户未发布调查问卷</option>

 <option value="2"> | 用户历史调查问卷</option>

 <option value="3"> | 用户所有调查问卷</option>

 </select>

由于单个用户与系统管理员的调查问卷列表管理十分相似，在这里着重介绍单个用户的列表管理的实现方法，用户可以根据单个用户的实现方法来类推系统管理员列表管理的实现方法。

 [image:]
 图15-14　所有调查问卷列表管理页面

在userVote.jsp中实现不同状态的调查问卷的列表显示主要依靠voteType变量。用户使用右上角或右下角的下拉菜单都会改变session中voteType变量的取值。JSP页面又根据voteType的取值来决定调用的方法。调用不同函数的JSP页面代码如下：

 [image:]

上面的代码出现了4个JavaBean的方法，分别是getUnvalidVoteByCreateUser()、getOldVoteByCreateUser()、getAllVoteByCreateUser()和getCurrentVoteByCreateUser()，它们分别代表尚未发布的调查问卷、历史过期的调查问卷、用户的所有调查问卷和用户的当前调查问卷。这4种方法的具体代码如下：

 [image:]

 [image:]

15.5.6　问题管理

目前为止，只是介绍了调查问卷的非实质部分，或者说是宏观部分。调查问卷的主要内容是所包含的各种问题及问题的多种选项答案，与调查对象直接相关的也是问题的具体设计。在这一节将介绍问题管理，具体包括如何为调查问卷添加、修改、删除和预览问题，以及调查对象填写调查问卷的实现方法和问卷结果的统计。

1. 问题设计管理

问题设计管理主要是从问卷设计者的角度来看如何对问卷的所有问题进行管理，包括添加问题、修改问题和删除问题3种操作，而且这3个操作都是针对某个具体调查问卷进行的。

（1）添加问题。addQ.jsp是添加问题的JSP页面，其显示结果如图15-15所示。由于问题的答案个数可能不是常见的3个或4个，页面中有两个按钮可以控制问题选项的个数。用户可以单击“增加一个选项”按钮来添加新的选项，或选中选项前的复选框并单击“删除一个选项”按钮来删除无用的选项，选项个数最大为100。在用户设计好选项之后，单击“添加问题”按钮提交请求，页面跳转到VoteServlet.java中进行处理。

 [image:]
 图15-15　添加问题页面

Servlet中的addQuestion()方法负责处理添加问题请求。addQuestion()方法的难点在于如何处理问题的选项。由于用户设计问题时选项的个数是不确定的，所以addQuestion()方法需要适应问题选项的变化。首先，使用request对象的getParameterValues方法获取一个变量名的所有取值，即获取问题的所有选项内容。然后用checkCHN()方法对问题的选项内容进行循环检查，保证其格式符合要求。因为用户可能将选项前面的“选中删除”复选框选中（选中即表示用户想删除该选项），所以获得的answers字符串数组中可能有无用的选项内容，还需要对chkAppIt类型的变量进行判断，如果该类变量的值为null（空），那么说明用户没有将选项对应的“选中删除”复选框选中。最后，如果有效选项的个数超过两个，那么就调用Question JavaBean的方法进行添加问题操作。

（2）修改问题。在实际的问卷设计中，不可能一次性将所有问题设计完整，常常需要对问题及选项进行多次的改动。在调查问卷管理系统中要修改一个问题非常简单，其操作内容与添加问题大致相同，在此不再详细介绍。如图15-16所示是某个问卷所包含的问题列表。单击每个问题下面的“修改此问题”按钮来修改该问题。要注意的是，为了保持问题内容的一致性，当调查问卷已经开始接受其他用户的填写时，任何人都不能再对问题进行修改了，如果确实有需要，只能删除该问题并重新添加，这样也会导致所有用户的填写信息一起被删除。

 [image:]
 图15-16　问卷所包含的问题列表

（3）删除问题。当不需要问卷中的某些问题时，可以将这些问题删除。在图15-16中，可以看到每个问题下面有“删除此问题”按钮，单击该按钮，会弹出一个对话框，提示删除操作不可恢复，用户是否确定要删除此问题。单击“确定”按钮后，页面会跳转到Servlet进行处理。

（4）预览问卷。一般在发布调查问卷之前，需要对自己设计的调查问卷有个全面的了解。viewVote.jsp文件可以对调查问卷进行预览，只要输入合法的voteId参数即可。如图15-17所示是一个调查问卷的预览页面，由于是问卷设计者看到的页面，所以问题的选项不能进行选择，只能查看。最终呈现给填写用户的问卷与这个预览页面相差无几。

 [image:]
 图15-17　预览问卷

2. 问题填写管理

在设计完调查问卷和所有下属问题后，就可以更改问卷的起始时间并将其发布。当调查问卷的状态从未发布变为正在进行时，调查问卷会出现在页面左侧用户面板的当前调查问卷栏里。其他用户在单击该调查问卷的链接后就可以进入调查问卷的填写页面。

（1）填写调查问卷。vote.jsp是调查问卷的填写页面。如图15-18所示是一个调查问卷的显示页面。用户在填写时只要选中相应的选项并单击“提交”按钮提交就可以了。要注意的是，这是用户第一次访问该调查问卷，即用户还没有填写过该问卷，当用户填写过后，那么页面会显示不同的结果，如图15-19所示，即页面上不再出现单选按钮，而是直接显示用户的选项答案。

 [image:]
 图15-18　正在填写调查问卷

 [image:]
 图15-19　已经填写过调查问卷

下面来看看vote.jsp文件的部分代码：

 [image:]

 [image:]

上面代码中最主要是对问题选项是否可选择的处理。此外使用了jsp.util.ParseString类对问题所有选项内容的属性answers进行处理，这个类的功能是将字符串分解成一组单个选项字符串并存入向量，例如answerVector向量。同时，调用Quesiton.java的getUserChoice()方法得到当前用户选择该问题的哪个答案选项。如果getUserChoice()返回值不是-1，那么用户就填写过该问题。getUserChoice()方法的源代码如下：

 [image:]

getUserChoice()方法先将一个问题的所有回答者及回答者的选项转换成一个向量，然后在这个向量中查找当前用户名与问题所有选项序号（1到问题选项个数）的合并字符串，如果找到，例如，在第i个选项序号时找到，则说明当前用户在回答该问题时曾经选择了第i个选项。

（2）查看调查问卷结果。最后，来看一下如何获取调查问卷的统计结果。voteResult.jsp用于显示调查问卷的统计结果，在问卷结束之前，信息是实时更新的，所以需要实时地去统计结果。每个用户在登录之后都可以查看当前调查问卷的统计结果，不管用户是否填写过该调查问卷。如图15-20所示是一个调查问卷的统计结果显示。

 [image:]
 图15-20　查看调查问卷统计结果

问卷统计方法的代码如下所示：

 [image:]

统计结果的显示主要在于确定蓝色条码长度，因此需要统计出每个问题各个选项的选择人数。上面代码中使用Question.java的getStatistics()方法来获取每个选项的选择人数，并存储在一个向量中，例如resultVector。如果一个问题有10个选项，那么resultVector的大小就是10，然后针对每个选项，使用公式90*count/total+1计算出该选项对应的蓝色条码的显示长度，最终将统计结果用图片与文字显示出来就可以了。getStatistics()方法的源代码如下：

 [image:]

上述方法主要在于使用所有选项序号进行循环匹配，如果找到匹配的，就将该选项序号对应的选择人数加1，最终将所有选项的选择人数存储在一个向量中并返回。

15.6　小结

本章介绍了调查问卷管理系统的具体实现方法，包括用户管理、调查问卷管理和问卷问题管理3大部分。首先从总体角度对系统进行了全面分析，包括系统需求分析、功能结构，数据库设计。其次，系统实现了JavaBean和Servlet，设计了系统界面，将JSP、Servlet和JavaBean结合使用。最后，从用户管理、调查问卷管理和问题管理这3个功能模块出发，分别介绍了各个功能模块中的子功能和具体实现方法。通过本章的学习，读者可以巩固JSP动态网站开发的一般流程，并对一些常见网站功能的实现方法有所了解。
第16章　Web应用开发实践

科研管理系统是应用于各个科研院所及高校等研究机构进行科研项目管理、科研成果管理及绩效考核管理等全方位科研管理的一套信息化系统。在过去很长时间里，很多高校对科研一直采用传统的手工操作方式，办公效率低，科研信息闭塞，申报成功率不高，项目的跟踪管理松弛，这样的科研管理已无法满足科研水平提高的内在要求，本章将使用JSP+JavaBean+Servlet的MVC模式来开发一个实验室科研信息管理系统。

本章学习目标

 	◎　理解和掌握JavaBean在MVC模式中的作用和应用

 	◎　理解和掌握Servlet在MVC模式中的作用和应用

 	◎　掌握编写MVC模式的Web应用程序的方法

 	◎　掌握系统需求分析的过程

 	◎　掌握系统设计过程

 	◎　了解数据库设计过程

 [image:]
 本章案例源代码下载

16.1　系统介绍

本章以MVC模式，基于JSP+JavaBean+Servelt方式实现一个简单的信息发布平台——实验室科研信息系统。在整个系统中，JSP页面调用JavaBean执行业务逻辑；JavaBean执行业务逻辑时可以连接数据库，也可以作为值对象在Servlet和JSP之间传递数据；Servlet可以作为控制器或过滤器。

实验室科研信息系统是发布实验室内部新闻和科研信息的系统，本系统只关注内部新闻、科研信息、人员信息等内容，这些内容是一个信息发布系统必需的。此系统中还有许多可以扩展的空间，读者可以通过所掌握的知识，在此基础上完善此系统，使其成为一个优秀的信息发布系统。

16.2　系统需求分析

实验室科研信息系统的设计目的：将一个实验室的内部新闻、科研成果信息和实验室人员信息等发布到网上。用户可以通过这个系统了解此实验室的相关信息；管理员可以通过此系统对新闻、科研信息、实验室人员信息等内容进行添加、修改、删除等管理操作。

系统的需求分析如下。

[image:]　系统用户类型：普通游客和管理员用户。管理员需要登录；游客无须登录就可以通过友好的用户界面在自己的权限范围内使用此系统；管理员要成功登录系统后，才可以在自己的权限范围内使用此系统。

[image:]　普通游客：直接浏览系统提供的信息，如可以直接浏览内部新闻、直接浏览实验室科研信息、直接浏览实验室老师和学生的相关信息。

[image:]　管理员用户：管理平台信息，如对内部新闻进行管理、对科研成果信息进行管理、对实验老师信息和学生信息进行管理、对管理员等进行管理。

16.3　系统功能结构

信息发布平台——实验室科研信息系统主要实现将实验室相关信息发布到网上，系统管理员可以对发布的信息进行管理。由此可将系统划分为3大功能模块，如图16-1所示。

 [image:]
 图16-1　系统结构

16.4　系统功能描述

普通游客和管理员用户通过本系统可以根据操作要求进行不同的操作。下面详细描述系统需要实现的具体功能。

16.4.1　游客用户浏览模块

实验室科研信息系统首页如图16-2所示，系统首页展示了游客用户可以浏览的所有功能，并提供相应链接。

 [image:]
 图16-2　实验室科研信息系统首页

1. 游客用户浏览新闻

游客用户可以单击导航栏上的“新闻”链接，就可以直接浏览实验室发布的所有新闻。页面如图16-3所示。

 [image:]
 图16-3　游客用户浏览新闻

2. 游客用户浏览在研项目信息

游客用户可以单击导航栏上的“在研项目”链接，就可以直接浏览实验室发布的所有在研项目信息。页面如图16-4所示。

 [image:]
 图16-4　游客用户浏览在研项目信息

3. 游客用户浏览研究成果

游客用户可以单击导航栏上的“研究成果”链接，就可以直接浏览实验室发布的所有研究成果信息。页面如图16-5所示。

4. 游客用户浏览老师信息

游客用户可以单击导航栏上的“老师信息”链接，就可以直接浏览实验室发布的所有实验室老师信息。页面如图16-6所示。

5. 游客用户浏览学生信息

游客用户可以单击导航栏上的“学生信息”链接，就可以直接浏览实验室发布的实验室所有在籍学生信息。页面如图16-7所示。

 [image:]
 图16-5　游客用户浏览研究成果

 [image:]
 图16-6　游客用户浏览老师信息

 [image:]
 图16-7　游客用户浏览学生信息

16.4.2　管理员登录模块

游客用户不需要登录就可以浏览系统发布的信息；管理员必须登录成功后，才可以管理相关信息。实验室科研信息系统首页如图16-1所示，可以直接登录，或者通过管理员登录页面进行登录，如图16-8所示。输入管理员用户名admin，密码admin，登录成功后，跳转到后台管理页面，如图16-9所示，可以对内部新闻、科研成果、老师和学生、管理员等信息进行管理。

 [image:]
 图16-8　管理员登录页面

 [image:]
 图16-9　管理员登录成功

16.4.3　管理员管理模块

管理员登录成功后，可以对内部新闻、在研项目、老师和学生信息及管理员信息等进行查看、修改、增加、删除等管理操作。

1. 管理内部新闻模块

管理员通过左侧功能菜单“新闻管理”下面的“查看所有新闻”超级链接，可以查看实验室的所有新闻。并且被查看的每条新闻，可以通过“编辑”或“删除”选项对某条新闻进行修改操作，如图16-10所示。如果选择编辑某条新闻，可以修改被选择新闻的标题和内容，如图16-11所示。修改成功后，系统会提示“新闻修改成功”。如果选择删除某条新闻，会有一个警示窗口弹出，要求进一步确认是否删除；确认删除后，删除成功，系统会提示“新闻已删除”。

 [image:]
 图16-10　查看所有新闻

 [image:]
 图16-11　编辑新闻

管理员通过功能菜单“添加新闻”超级链接，可以在系统中添加一条实验室的新闻，包括新闻标题和内容，如图16-12所示。添加成功，系统会提示“新闻添加成功”。

 [image:]
 图16-12　添加新闻

2. 管理在研项目信息模块

管理员通过功能菜单“在研项目管理”下面的“查看项目”超级链接，可以查看实验室的所有在研项目。并且被查看的每条在研项目，可以通过“编辑”或“删除”选项对某个项目信息进行修改操作，如图16-13所示。如果选择编辑某个项目，可以修改被选择项目的标题和内容，如图16-14所示。修改成功后，系统会提示“项目修改成功”。如果选择删除某个项目信息，会有一个警示窗口弹出，要求进一步确认是否删除；确认删除后，删除成功，系统会提示“项目已删除”。

 [image:]
 图16-13　查看所有项目

 [image:]
 图16-14　编辑项目

管理员通过功能菜单“添加项目”超级链接，可以在系统中添加一个实验室的在研项目，包括项目标题和内容，如图16-15所示。添加成功，系统会提示“项目添加成功”。

 [image:]
 图16-15　添加项目

3. 管理研究成果模块

管理员通过功能菜单“研究成果管理”下面的“查看成果”超级链接，可以查看实验室的所有研究成果。并且被查看的每条研究成果，可以通过“编辑”或“删除”选项进行修改操作。如果选择编辑某个研究成果信息，可以修改此研究成果的标题和内容。修改成功后，系统会提示“研究成果修改成功”。如果选择删除某个研究成果信息，会有一个警示窗口弹出，要求进一步确认是否删除；确认删除后，系统会提示“研究成果已删除”。

管理员通过功能菜单“添加研究成果”超级链接，可以在系统中添加一项实验室的在研项目，包括项目标题和内容。添加成功，系统会提示“研究成果添加成功”。

4. 管理老师信息模块

管理员通过功能菜单“团队管理”下面的“查看老师”超级链接，可以查看实验室的所有老师信息。并且被查看的每位老师信息，可以通过“编辑”或“删除”选项进行修改操作，如图16-16所示。如果选择编辑某位老师信息，可以修改被选择老师的姓名、性别、职称、照片、简介等信息，如图16-17所示。修改成功后，系统会提示“老师修改成功”。如果选择删除某位老师信息，会有一个警示窗口弹出，要求进一步确认是否删除；确认删除后，删除成功，系统会提示“老师已删除”。

 [image:]
 图16-16　查看所有老师信息

 [image:]
 图16-17　编辑老师信息

管理员通过功能菜单“添加老师”超级链接，可以在系统中添加一个实验室的老师信息，包括老师的姓名、性别、职称、图片、简介等信息，如图16-18所示。添加成功，系统会提示“老师添加成功”。

 [image:]
 图16-18　添加老师信息

5. 管理学生信息模块

管理员通过功能菜单“团队管理”下面的“查看学生”超级链接，可以查看实验室所有在籍学生的信息。并且被查看的每个学生信息，可以通过“编辑”或“删除”选项进行修改操作。修改成功后，系统会提示“学生修改成功”。如果选择删除某个学生信息，会有一个警示窗口弹出，要求进一步确认是否删除；确认删除后，删除成功，系统会提示“学生已删除”。

管理员通过功能菜单“添加学生”超级链接，可以在系统中添加一个实验室在籍学生的信息，包括学生的姓名、性别、年级、照片等信息。添加成功，系统会提示“学生添加成功”。

6. 管理管理员信息模块

通过功能菜单“安全管理”下面的“管理员列表”超级链接，可以查看本系统的所有管理员信息。并且被查看的每个管理员信息，可以通过“编辑”或“删除”选项进行修改操作。修改成功后，系统会提示“管理员修改成功”。如果选择删除某个管理员信息，会有一个警示窗口弹出，要求进一步确认是否删除；确认删除后，删除成功，系统会提示“管理员已删除”。

管理员通过功能菜单“添加管理员”超级链接，可以在系统中添加一个系统管理员信息，包括管理员的用户名、密码等信息。添加成功，系统会提示“管理员添加成功”。

16.5　数据库设计

16.5.1　数据库逻辑结构设计

根据系统的需求分析和功能模块划分，系统有两类用户：游客用户和管理员用户。游客用户无须登录就可以浏览发布的信息；管理员用户需要登录成功后，才能进行信息的管理操作，因此需要管理员数据实体，用以记录管理员信息。系统需要发布新闻、在研项目、研究成果、老师信息、学生信息，因此也需要创建相应的实体。

[image:]　管理员数据实体：记录管理员的用户名和密码，包括管理员登录系统验证时必需的信息。

[image:]　新闻数据实体：记录新闻的信息，包括新闻的编号、标题、内容和添加时间。

[image:]　在研项目数据实体：记录在研项目的信息，包括在研项目的编号、项目名称、项目起始时间、项目简介。

[image:]　研究成果数据实体：记录研究成果的信息，包括研究成果的编号、研究成果名称、研究起止时间、成果简介。

[image:]　老师信息数据实体：记录老师的信息，包括老师编号、姓名、性别、职称、相关图片和个人简介。

[image:]　学生信息数据实体：记录学生的信息，包括学生编号、姓名、性别、年级、相关图片。

16.5.2　数据库表的设计

数据库使用MySQL作为数据库服务器。连接数据库服务器的用户名为root，口令为root，新建数据库的所有权限都赋给此用户。

数据库系统中需要建立7张表。每张表以及其中字段的详细内容如表16-1~表16-7所示。

 表16-1　管理员（admin）表

 [image:]

 表16-2　新闻信息（news）表

 [image:]

 表16-3　在研项目（project）表

 [image:]

 表16-4　研究成果（achievement）表

 [image:]

 表16-5　老师信息（teacher）表

 [image:]

 表16-6　学生信息（student）表

 [image:]

 表16-7　入学时间（grade）表

 [image:]

16.5.3　数据库相关脚本

根据数据库的设计编写对数据库操作的SQL语句。Database.sql是在数据库中操作的SQL语句：

 [image:]

16.6　系统实现

16.6.1　模块公用类

数据库操作类和分页显示类为整个系统不同模块提供公共服务。

1. 数据库操作类

数据库连接类（DataProcess.java）的主要功能是连接数据库，它提供的方法能够返回一个数据库连接对象，也可以返回SQL语句的执行结果，系统中所有与数据库相关的操作都要调用到这个类，这样不仅使系统代码更加简洁，而且提高了安全性。在移植数据库或改变系统环境时，仅需要修改这个类。

2. 分页显示类

信息过多时，在JSP页面查看这些信息将会变得非常不方便。为了分页显示发布的信息，创建用于分页显示的类Pageable.java。

16.6.2　JavaBean

与7个数据库实体对应，整个系统建立7个JavaBean代表这个实体，并且建立了7个Java类分别用于管理者对应的JavaBean类。7个JavaBean以及它们管理类的名称和作用如表16-8所示。在此仅以News.java为例，详细讲解JavaBean的实现细节。

 表16-8　JavaBean表

 [image:]

1. News.java

News.java类用于记录实验室内部新闻信息。News.java类代码如下：

 [image:]

 [image:]

 [image:]

2. News_Manager.java

News_Manager.java可以提供对news数据表进行操作的功能。将对news操作的添加、修改、删除等方法都封装到这个类中，各功能页面通过调用它提供的方法实现对news数据表的操作。代码如下：

 [image:]

16.6.3　Servlet

Servlet用以实现系统的逻辑功能。系统中采用了2种Servelt：普通Servelt和过滤器Filter，如表16-9所示。本节仅以内部新闻相关的Servlet进行详细描述，其他Servlet实现代码类似。

 表16-9　Servlet表

 [image:]

1. 部署描述符web.xml

所有的Servlet、Listener、Filter都需要在web.xml文件的部署描述符中部署，进行定义和映射，然后才能在Tomcat服务器下使用。

本系统的web.xml文件部分内容如下：

 [image:]

2. EncodingFilter.java

EncodingFilter.java对请求编码进行改变，从而一次性解决所有页面请求编码的转换问题。为了保证在JavaBean或其他Servlet在处理请求之前对请求编码，尽量先部署该过滤器。

3. EditNewsServlet.java

EditNewsServlet的do方法中处理请求request，根据请求生成响应response，实现修改新闻的目的。

4. AddNewsServlet.java

AddNewsServlet的do方法中处理请求request，生成响应response，实现添加新闻的目的。

16.6.4　自定义标签

JSP中的标签库技术可以让用户定制自己的标签，以完成系统实现中的特殊要求。本节以显示新闻列表为例进行介绍，本节共定义了3个自定义标签，如表16-10所示。

 表16-10　自定义标签

 [image:]

1. 自定义标签news

（1）标签处理类NewsTag4guest.java继承了TagSupport类，用于在平台首页显示新闻信息。将编写好的NewsTag4guest.java源文件放到/taglib目录下，代码如下：

 [image:]

 [image:]

（2）在TLD文件Mytag.tld中配置<news>标签，代码如下：

 [image:]

（3）在web.xml文件中配置标签库信息，代码如下：

 [image:]

自定义标签news4news的实现与自定义标签newstag类似，都用于显示新闻，并且对新闻仅能浏览，不可以编辑和删除。其实现可参考自定义标签newstag的实现，不再赘述。

2. 自定义标签newstag

（1）标签处理类NewsTag.java继承了TagSupport类，用于在管理员查看新闻列表时，显示新闻信息，并且根据需要可以编辑、删除新闻。将编写好的NewsTag.java源文件放到taglib目录下，具体实现代码如下：

 [image:]

 [image:]

（2）在TLD文件Mytag.tld中配置<news>标签，代码如下：

 [image:]

（3）在web.xml文件中配置标签库信息，代码如下。

 [image:]

16.6.5　前台界面的实现

前台界面主要指游客可以浏览的页面，包括系统首页、新闻浏览页面、在研项目浏览页面、研究成果浏览页面、老师信息浏览页面、学生信息浏览页面等，每个页面如表16-11所示。

 表16-11　前台界面

 [image:]

1. 系统首页（index.jsp）

系统首页实现效果如图16-2所示。首页采用了自定义标签显示新闻，核心代码如下：

 [image:]

在首页中显示在研项目，代码如下：

 [image:]

2. 学生信息浏览页面（member.jsp）

学生信息浏览页面的效果如图16-7所示。页面的部分代码如下：

 [image:]

3. 其他页面

新闻浏览页面、在研项目浏览页面、研究成果浏览页面的实现核心代码可以参看系统首页的方法，在此不再赘述。

老师信息浏览页面的实现与学生信息浏览页的实现类似，可以参看学生信息浏览页的实现完成老师信息浏览页面的实现，在此不再赘述。

16.6.6　后台管理页面的实现

后台管理页面是管理员成功登录后，进行系统信息管理的一组页面，包括登录页面和对新闻、在研项目、研究成果、教师、学生信息进行管理的页面。在此以新闻管理页面组为例，给出其详细实现方法，如表16-12所示。所有页面均在guanli目录下建立。

 表16-12　后台新闻管理页面

 [image:]

1. 后台登录页面（login.jsp）

管理员登录页面效果如图16-8所示。

2. 后台首页（index.jsp）

后台首页页面效果如图16-9所示。这个页面由框架分割成左右两部分，页面左侧显示功能菜单，提供管理员所有功能的列表（LeftFrame.jsp）；右侧显示某个功能的具体内容（RightFrame.jsp）。

3. 管理员查看新闻页面（news/news_list.jsp）

管理员单击左侧功能菜单中的“查看所有新闻”选项，在右侧区域显示新闻列表页面。效果如图16-10所示。实现代码时，使用了自定义标签。

4. 管理员编辑新闻页面（news/edit_news.jsp）

管理员查看新闻时，单击某条新闻后面的“编辑”按钮，就可以跳转到news/edit_news.jsp页面，编辑被选中新闻的标题和内容，效果如图16-11所示。

管理员添加新闻的页面（news/add_news.jsp）的代码实现和编辑新闻页面类似，差别在于添加新闻页面的form表单中，内容为空白。

5. 管理员删除新闻页面（news/delete_news.jsp）

管理员查看新闻时，单击某条新闻后面的“删除”按钮，会有一个警示窗口弹出，要求进一步确认是否删除，确认删除后，删除成功，系统会提示“新闻已删除”。

16.7　小结

本章使用JSP+JavaBean+Servlet的MVC模式开发了一个信息发布系统，构建了结构清晰、低耦合、高质量的Web系统。

系统中，将JSP、Servlet和JavaBean结合使用：JSP负责页面显示，实现用户看到并与之交互的界面；Servlet负责流程控制，接受用户的输入并调用模型和视图去完成用户的需求，并确定用哪个视图来显示返回的数据；JavaBean表示企业数据和业务规则。在系统的代码实现中，采用了自定义标签，自定义标签用在JSP页面中，将Java代码从HTML中剥离，便于美工维护页面，减少了JSP页面中的脚本，减少了维护成本，提供了可重用的功能组件。

本章详细讲解了信息发布系统的开发过程，并给出了部分源代码。在整个开发过程中，根据各个模块的功能需求，设计编写了功能完善的组件，使得整个系统界面和功能的设计思路清晰，系统易于维护和扩展，操作流程清晰。

16.8　习题

采用MVC模式编写用户登录验证程序，系统中的文件可参考表16-13提示。

 表16-13　用户登录模块划分

 [image:]

附录　实验

实验一　JSP应用开发基础（一）

【实验目的】

（1）掌握HTML基本语法。

（2）掌握CSS基本语法。

（3）掌握JavaScript。

（4）掌握MyEclipse集成开发环境的配置。

【实验环境与设备】

已经接入局域网的网络实验室，机器上装有Opera12以上版本浏览器等。

【实验内容】

（1）设计静态表单HTML页面并进行CSS页面样式控制，包括一个HTML文件research.html和一个CSS文件style.css，在research.html页面头部使用<link href="style.css" rel="stylesheet"type="text/css" />引用CSS文件，效果如图F-1所示。

（2）把下面一段代码补充成一个完整的程序，并调试通过。在第一个页面利用JavaScript函数CreateWindow()创建一个新页面。

 [image:]

 [image:]
 图F-1　静态表单HTML页面

（3）从键盘输入一个数，然后输出星期几，HTML页面执行后效果如图F-2所示。

 [image:]
 图F-2　程序执行结果

（4）判断男女生，运行后效果如图F-3所示。

（5）用Javascript做个简单的计算器，类似效果如图F-4所示。

 [image:]
 图F-3　程序执行结果

 [image:]
 图F-4　程序结果

（6）学习安装配置一种JSP开发工具。参照helloWorld.jsp，稍加改动，在页面上输出你的姓名和学号信息，在安装配置好的JSP服务器上成功调试。

实验二　JSP应用开发基础（二）

【实验目的】

（1）掌握JSP基本语法。

①脚本元素（SCRIPTING）。

[image:]　隐藏注释（Hidden Comment）

 <%-- 这是客户端不可见的注释 --%>

[image:]　声明（Declaration）

 <%!这是声明%>

[image:]　脚本段（ScriptLets）

 <%这是脚本段 %>

[image:]　表达式（Expression）

 <%=这是表达式 %>

②指令元素（DIRECTIVE）。

[image:]　<%@ page %>

[image:]　<%@ include %>

③动作元素（ACTION）。

[image:]　<jsp:forward>

[image:]　<jsp:include>

[image:]　<jsp:param>

[image:]　<jsp:getProperty>

[image:]　<jsp:setProperty>

[image:]　<jsp:useBean>

（2）掌握JSP常用的9种内置对象中的request、response、out、session、application对象的基本使用方法，如图F-5所示。

 [image:]
 图F-5　JSP常用的9种内置对象

【实验环境与设备】

（1）已经接入局域网的网络实验室，装有IE浏览器的计算机等。

（2）JSP运行环境已经搭建成功。

【实验内容】

（1）编写一个JSP程序，计算1！+2！+3！+4！+5！并显示结果。要求先声明计算阶乘的方法，再调用该方法，最后在页面上输出结果。

进阶要求：通过表单提交一个正整数，然后计算它的阶乘和。例如：输入3，就计算1！+2！+3！。

（2）在JSP页面中静态包含文件。要求程序包含两个文件，主文件静态包含一个能够计算1~1000的完数的页面（如果一个正整数刚好等于它的真因子之和，这样的正整数为完数。例如，6=1+2+3，因此6就是一个完数）。

（3）动态包含页面并传递数据。要求程序包含两个文件，主文件加载次文件，并将随机产生的50~100之间的数据传递给它，并且在页面上显示两个信息：该数据及其平方根。

进阶要求：把动态包含改为动态重定向，比较两者之间的区别。

（4）本题包括4个JSP程序：one.jsp、two.jsp、three.jsp、error.jsp。

one.jsp具体要求如下：要求one.jsp页面有一个表单，用户使用该表单可以输入一个1~100的整数，并提交给下一个页面；如果输入的整数在50~100之间（不包括50）之一，就转向three.jsp；如果在1~50之间就转向two.jsp；如果输入的值不符合要求就转向error.jsp。要求forward标记在实现页面转向时，使用param子标记将整数传递到two.jsp或three.jsp页面，将有关输入错误传递到error.jsp页面。

two.jsp、three.jsp和error.jsp的具体要求如下：要求two.jsp和three.jsp能输出one.jsp传递过来的值，并显示一幅图像，该图像的宽和高刚好是one.jsp页面传递过来的值。error页面能显示有关抛出的错误信息（程序中使用的图片，可自行准备）。

JSP页面效果示例如图F-6、图F-7、图F-8所示。

 [image:]
 图F-6　one.jsp运行效果

 [image:]
 图F-7　two.jsp运行效果

在one.jsp中输入a，提交后，会跳入error页面，如图F-9所示。

 [image:]
 图F-8　three.jsp的运行效果

 [image:]
 图F-9　error.jsp运行效果

（5）编写两个JSP页面：input.jsp和result.jsp。input.jsp页面提交一个数字给result.jsp页面，result.jsp页面使用response对象做出动态响应。

input.jsp的具体要求：input.jsp提供表单，用户在表单中输入一个数字，提交给result.jsp页面。

result.jsp的具体要求：result.jsp页面首先使用request对象获得input.jsp页面提交的数字，然后根据数字的大小作出不同的响应。如果数字小于0，response对象的调用setContentType （String s）方法将contentType属性的值设置为text/plain，同时输出数字的平方；如果数字大于等于0并且小于100，response对象的调用setContentType（String s）方法将contentType属性的值设置为application/msword，同时输出数字的立方；如果数字大于等于100，response对象调用setStatus（int n）方法将状态行的内容设置为404；如果用户在input.jsp页面输入了非数字，response对象调用sendRedirect（URL url）方法将用户的重定向到input.jsp页面。

JSP页面效果示例如图F-10~图F-13所示。

 [image:]
 图F-10　input.jsp运行效果

 [image:]
 图F-11　输入小于0的数据时result.jsp运行效果

 [image:]
 图F-12　输入大于等于0并且小于100的数据时result.jsp运行效果

 [image:]
 图F-13　输入大于等于100的数据时result.jsp运行效果

（6）猜数字游戏。本题包括5个JSP程序：inputGuess.jsp、resultGuess.jsp、small.jsp、large.jsp和success.jsp。

inputGuess.jsp的具体要求如下：用户请求inputGuess.jsp时，随机分配给该用户一个1~100之间的数。该页面同时负责将这个数字存在用户的session对象中。该页面提供表单，用户可以使用该表单输入自己的猜测，并提交给resultGuess.jsp页面。

resultGuess.jsp的具体要求如下：resultGuess.jsp页面负责判断inputGuess.jsp提交的猜测数字是否和用户的session对象中存放的那个数字相同，如果相同就将用户重定向到success.jsp；如果不相同就将用户重定向到large.jsp或small.jsp。

small.jsp和large.jsp的具体要求如下：small.jsp和large.jsp页面提供表单，用户可以使用该表单继续输入自己的猜测，并提交给result.jsp页面。

success.jsp的具体要求如下：success.jsp页面负责显示用户成功的消息，并负责输出用户session对象中的数据。

JSP页面效果示例如图F-14~图F-17所示。

 [image:]
 图F-14　输入猜测数据inputGuess.jsp运行效果

 [image:]
 图F-15　猜大了large.jsp运行效果，此次猜25

 [image:]
 图F-16　猜小了small.jsp运行效果

 [image:]
 图F-17　猜成功了success.jsp的运行效果

（7）使用Cookie记录用户名和密码。本题包括4个JSP程序：login.jsp、check.jsp、succ.jsp、failure.jsp。

login.jsp运行效果如图F-18所示。用户输入用户名和密码，如果选择了保存信息的时间，则下次登录网站时不用再填写表单。确认后，信息提交到check.jsp，check.jsp判断用户输入信息的正确性，如用户名为tom，密码123，将验证信息保存到Cookie，登录成功，跳转到succ.jsp，如图F-19所示。此时如果新打开一个浏览器，然后直接打开succ.jsp页面，会提示已登录，说明Cookie起到了自动登录的作用，如图F-20所示，注意图F-19和图F-20的地址栏的地址是不同的；若输入的信息没有通过验证，则check.jsp跳转到failure.jsp，如图F-21所示。若用户在login.jsp页面输入用户名和密码，选择了不保存信息，提交信息后，如果信息输入正确，本次可以成功登录。但是如果新打开一个浏览器，然后直接打开succ.jsp页面，则提示未登录，如图F-22所示，说明Cookie未保存登录信息。

 [image:]
 图F-18　longin.jsp运行效果

 [image:]
 图F-19　check.jsp验证登录信息成功后跳转到succ.jsp页面

 [image:]
 图F-20　Cookie保存了登录信息后直接打开succ.jsp页面

 [image:]
 图F-21　check.jsp验证登录信息失败跳转到failure.jsp页面

 [image:]
 图F-22　Cookie未保存登录信息直接打开succ.jsp页面

实验三　JSP应用开发进阶

【实验目的】

（1）掌握表单数据获得和传递处理。

（2）掌握JavaBean的创建，使用JavaBean技术处理表单。

（3）掌握JSP中文件的基本读写操作。

【实验环境与设备】

（1）已经接入局域网的网络实验室，装有IE浏览器的计算机等。

（2）提供相应的安装软件JDK、Eclipse 3.2、Tomcat 5.5。

【实验内容】

（1）利用表单传递数据，此题目包含01.html、01.jsp、02.jsp、03.jsp、04.jsp共5个程序。如图F-23~F-27所示分别是这5个程序运行后的截图。编写程序代码实现截图效果。

 [image:]
 图F-23　01.html

 [image:]
 图F-24　02.jsp

 [image:]
 图F-25　03.jsp

 [image:]
 图F-26　04.jsp

 [image:]
 图F-27　01.jsp

（2）编写程序formSample.jsp，显示如图F-28所示表单，填入信息后提交给本页面，以表格的形式显示提交信息，结果如图F-29所示。

 [image:]
 图F-28　formSample.jsp

 [image:]
 图F-29　表单提交结果

（3）利用JavaBean实现简单的计算器，创建calculate.jsp页面，页面中表单数据和计算用JavaBean处理，如图F-30所示。

（4）利用JavaBean创建购物车程序，创建页面cart.jsp，页面第一次运行如图F-31所示，当选择商品后，单击add按钮，进入如图F-32所示界面；当选择商品后，单击remove按钮，所选商品将从上面列表中去掉，如图F-33所示。

 [image:]
 图F-30　calculate.jsp

 [image:]
 图F-31　没选商品的界面

 [image:]
 图F-32　选择商品后的界面

 [image:]
 图F-33　删除选中商品后的界面

（5）编写两个JSP页面：writeData.jsp和readData.jsp。

writeData.jsp页面使用Java程序，将一个int型数据、一个long型数据、一个char型数据、一个String型数据和一个double型数写入到名字为javaData.data的文件中。readData.jsp将写的数据读出来，结果如图F-34所示和图F-35所示。

 [image:]
 图F-34　writeData.jsp

 [image:]
 图F-35　readData.jsp

实验四　JSP数据库编程基础

【实验目的】

（1）复习数据库操作的基础。

（2）用JDBC进行数据库开发。

（3）掌握JSP+JavaBean模式的开发。

【实验环境与设备】

（1）已经接入局域网的网络实验室，装有IE浏览器的计算机等。

（2）提供相应的安装软件JDK、Eclipse 3.2、Tomcat 5.5。

【实验内容】

（1）设有一图书馆数据库，包括3个表：图书表、读者表、借阅表。完成以下习题。

①创建一个图书馆数据库。

②在图书馆数据库中创建3个表：

[image:]　图书（书号，书名，作者，出版社，单价）。

[image:]　读者（读者号，姓名，性别，电话）。

[image:]　借阅表（读者号，书号，借出日期，应还日期）。

③给图书表增加一列ISBN，数据类型为CHAR（10）。

④删除图书表中新增的列ISBN。

⑤向读者表加入一个新读者，该读者的信息为：

 (200197,wangxiao,m,8832072,computer)

⑥向图书表中加入一个图书信息，内容为：

 (TP316,book,Au,beijing,30);

⑦向借阅表插入一个借阅记录，表示读者wangxiao借阅了一本书，图书号为TP316，借出日期为当天的日期，归还日期为空值。

⑧读者wangxiao在借出上述图书后10天归还该书。

⑨ 当读者wangxiao按期归还图书时，删除上述借阅记录。

⑩查询既不是机械工业出版社也不是科学出版社出版的图书信息。

（2）创建用户表，能完成用户登录验证和用户注册功能，如图F-36~图F-39所示。

 [image:]
 图F-36　login.jsp

 [image:]
 图F-37　登录成功界面

 [image:]
 图F-38　注册界面

 [image:]
 图F-39　注册成功界面

（3）创建用户留言模块，页面有登录、注册、查看留言列表、查看详细留言、发布留言、安全退出等功能。先创建数据库，数据库中至少要有users和words两个表，其他可以自行设计。

 [image:]

（4）使用JavaBean技术设计一个网上聊天室。数据库设计以下3个表。

①Users数据表：保存聊天室的用户资料。

②chat数据表：保存聊天记录。

③userlist数据表：保存在线用户信息。

创建用户模块和管理员模块。用户模块可以包含用户登录、发送聊天信息、聊天信息显示、在线用户列表显示、用户退出和聊天室页面等。管理员模块可以包含管理员登录、聊天管理页面、禁止用户进入等。

实验五　Servlet技术实验

【实验目的】

（1）掌握Servlet的编写与配置。

（2）理解Servlet的生命周期。

（3）掌握过滤器的使用。

（4）掌握常见监听器的使用。

（5）掌握MVC模式。

【实验环境与设备】

（1）已经接入局域网的网络实验室，装有IE浏览器的计算机等。

（2）提供相应的安装软件JDK、Eclipse 3.2、Tomcat 5.5。

【实验内容】

（1）实现一个简单的HelloServlet，要求在IE中显示Hello XXX字符串。

①编写Servlet。

②配置servlet。

③练习怎样访问servlet。

编写Servlet：通过继承HttpServlet类创建自己的servlet类；在servlet类的doGet()方法中输出自己的信息；将生成的HelloServlet.java类编译成HelloServlet.class类。

（2）使用过滤器过滤IP地址。

①编写过滤器IPFilter.java。

②编辑web.xml文件，部署IPFilter过滤器。

③实现效果如图F-40所示。

 [image:]
 图F-40　使用过滤器过滤IP地址

（3）写一个Servlet上下文侦听器，在Web应用启动时，激活一个定时器，此定时器每隔20秒钟在后台显示“20秒间隔……”信息。当关闭Web应用时，将关闭定时器。

①编写一个类MyTask.java。

②编写一个监听器ContextListener.java。

③编辑web.xml文件，部署侦听器。

（4）计算等差、等比数列的和。

①视图。视图由两个JSP页面组成：inputData.jsp和showResult.jsp。inputData.jsp页面提供一个表单，用户可以输入等差数列的首项、公差、求和项数，也可以输入等比数列的首项、公比和求和项数。inputData.jsp页面将用户输入的有关数据提交给一个名字为computerSum的servlet对象，computerSum负责计算等差数列的和以及等比数列的和。showResult.jsp页面可以显示等差数列和等比数列的求和结果。

②数据模型。模型Series.java可以存储等差数列的和也可以存储等比数列的和。将Series.java保存到D:\user\yourservlet\user\yourbean目录中。

③控制器。提供一个名字为computerSum的servlet对象（HandleSum.java类的实例），computerSum负责计算等差数列和等比数列的和，将有关数据存储到数据模型Javabean中，然后请求showResult.jsp显示。

④配置文件。编写如下的web.xml文件，并保存到..\WEB-INF目录中。

web.xml：

 [image:]

⑤视图效果。inputData.jsp效果如图F-41所示。

 [image:]
 图F-41　输入数据

showResult.jsp效果如图F-42所示。

 [image:]
 图F-42　显示数据

实验六　Web应用开发

【实验目的】

（1）掌握系统需求分析的过程。

（2）掌握系统设计过程。

（3）了解数据库设计过程。

（4）掌握简单的Web程序开发。

【实验环境与设备】

（1）已经接入局域网的网络实验室，装有IE浏览器的计算机等。

（2）提供相应的安装软件JDK、Eclipse 3.2、Tomcat 5.5、MySQL数据库。

【实验内容】

根据下列要求，编写Web程序。

（1）系统功能。登录成功后，诊所职员可以通过宠物医院系统使用下列功能：

①浏览诊所的兽医及他们的专业特长。

②添加、浏览、更新宠物主人的信息。

③添加、浏览、更新宠物信息。

④浏览、添加宠物的访问历史记录。

（2）系统模块。系统模块如图F-43所示。

 [image:]
 图F-43　系统模块

（3）数据库设计。数据库的设计如表F-1所示。

 表F-1　系统用表

 [image:]

EPUB/cover.jpg
& EHIEMTRAD. BFIRM. JWSEER

JSP
B SFRHA

(553hR)

DEL FFEEH £ R
B M EwiE K B EER

EPUB/cover.xhtml
[image: Cover]

