

 Linux C编程从入门到精通

 	
 第1章 Linux基础

 	
 第2章 在Linux中编写C语言代码

 	
 第3章 Linux编程进阶

 	
 第4章 Linux的文件编程

 	
 第5章 Linux的流编程

 	
 第6章 Linux的进程

 	
 第7章 Linux的线程

 	
 第8章 Linux的信号和进程间通信

 	
 第9章 Linux的管道、命名管道和进程间通信

 	
 第10章 Linux的System V IPC进程通信

 	
 版权

 第1章 Linux基础

Linux是一套免费使用和自由传播的类UNIX操作系统，它已发展成为现今世界上最流行的一种操作系统。Linux不仅仅能在PC机上运行，随着嵌入式系统的发展，它已经被广泛地应用于各种场合。

1.1 Linux的起源、发展和分类

Linux从1991年问世到现在已经有20多年的历史，它从一个架构简单的系统内核发展到了现在结构完整、功能丰富的多版本操作系统，本小节将介绍其起源发展和分类。

1.1.1 Linux的起源、特点和版本号

1．起源

Linux 操作系统是一种类 UNIX 操作系统，它最早是由芬兰人 Linus Torvalds 设计的。

在Linux诞生之前，为了教学和研究的需要，阿姆斯特丹Vrije大学的计算机科学家Andrew S. Tanwnbaum以UNIX为蓝本开发了Minix作为一个教育工具。1991年初，Linus 开始在一台386sx 兼容微机上学习Minix 操作系统。通过学习，他逐渐不满足Minix 系统的现有性能，并开始酝酿开发一个新的免费操作系统，这很快就在Minix新闻组得到了响应。

到了 1991年的 10月5日，Linus 在 comp.os.minix 新闻组上发布消息，正式向外宣布 Linux 内核系统（Free minix-like kernel sources for 386-AT：0.02 版）的诞生。1991年11月，Linux 0.10 版本推出；0.11 版本随后在 1991年12月推出。当 Linux 非常接近于一种稳定可靠的系统时，Linus决定将0.13版本改称为0.95版本。后来，在1994年3月，终于出现了带有独立宣言意味的 Linux 1.0 版本。Linux 1.0 已经是一个功能完备的操作系统了，其内核写得紧凑高效，可以充分发挥硬件的性能，在4MB内存的80386机器上也表现得非常好。

事实上，Linux系统是全世界各地成千上万志愿者设计和实现的，其目的是建立不受任何商品化软件版权制约的、全世界都能自由使用的类UNIX操作系统。在Linux操作系统的设计过程中，借鉴了很多UNIX的思想，但源代码是全部重写的。目前Linux操作系统可以运行在 x86、Aplpa、MIPS、Power Mac、ARM 等类型的计算机上。从功能上来看，它既可以作为普通的桌面操作系统，也可以作为中小型的网络操作系统，甚至还可以作为大型网络的操作系统。

2．特点

Linux具有以下特点。

● Linux 是一个免费软件。Linux 是作为开放源码的免费软件的代表，正是由于这一点，来自全世界的无数程序员参与了Linux的修改和编写工作，程序员可以根据自己的兴趣和灵感对其进行改变。这让 Linux 吸收了无数程序员的精华，不断壮大。

● 完全兼容 POSIX 1.0 标准。POSIX 是基于 UNIX 的第一个操作系统国际标准，这使得可以在Linux下通过相应的模拟器运行常见的DOS、Windows程序。

注意：关于POSIX，将在1.1.5小节中进行介绍。

● 多用户、多任务系统。Linux 支持多用户，各个用户对于自己的文件设备有自己特殊的权利，保证了各用户之间互不影响。多任务则是现在操作系统最主要的特点，Linux中多个程序可以同时独立地运行。

● 良好的用户界面。Linux 向用户提供了两种界面：文本界面和图形用户界面。Linux的传统用户界面是基于文本的命令行界面，即Shell。它既可以联机使用，又可存在文件上脱机使用。

● Linux 还为用户提供了图形用户界面。可以利用鼠标、菜单、窗口、滚动条等对图形用户界面进行操作。Linux 给用户呈现一个直观、易操作、交互性强的友好的图形化界面。Linux 的图形用户界面最近几年有很大的改进。在图形用户界面下，几乎可以完成全部的工作。

● 支持多种文件系统。Linux 能支持多种文件系统。目前支持的文件系统有 EXT、EXT2、EXT3、XIAFS、ISOFS、HPFS、MSDOS、UMSDOS、 PROC、NFS、XFS、SYSV、MINIX、SMB、UFS、NCP、VFAT、NTFS、AFFS等。

● 丰富的网络功能。完善的内置网络功能是 Linux 的一大特点。 Linux 在通信和网络功能方面优于其他操作系统。其他操作系统不包含如此紧密地和内核结合在一起的连接网络的能力，而且通信和网络相关功能缺乏灵活性。

● 可靠的系统安全。Linux 采取了许多安全技术措施，包括对读和写进行权限控制、带保护的子系统、审计跟踪、核心授权等，这为网络多用户环境中的用户提供了必要的安全保障。

● 良好的可移植性。Linux 是一种可移植的操作系统，能够在从微型计算机到大型计算机的任何环境中和任何平台上运行。可移植性为运行Linux的不同计算机平台与其他任何机器进行准确而有效的通信提供了手段，不需要另外增加特殊的和昂贵的通信接口。

3．版本号

任何一个软件都有版本号，例如微软的 Windows 7，Office 2007 等，Linux 也不例外。Linux的版本号又分为两部分：内核（Kernel）与发行套件（Distribution）版本。

Linux的内核是系统的心脏，内核包括了几百万行代码，是运行程序和管理硬件设备的核心程序。没有内核，就不能运行程序，但内核不是操作系统的全部。Linux初学者常会把内核版本与发行套件版本弄混，实际上内核版本指的是在Linus领导下的开发小组开发出的系统内核的版本号。Linux的每个内核版本为类似x.y.zz-www的一组数字。其中，x.y为Linux的主版本号，zz为次版本号，www代表发行号（注意，它与发行版本号无关）。当内核功能有一个飞跃时，主版本号升级，如 Kernel 2.2、Kernel 2.4、Kernel 2.6 等。内核增加了少量补丁时，常常会升级次版本号，如 Kernle 2.6.15、Kernel 2.6.20 等。当然还有更复杂的版本号系统，如2.6.20-32等。通常，若y为奇数，表示此版本为测试版，系统会有较多漏洞，主要用途是提供给用户测试。随着每一次对系统的小的bug的修正，zz会增加。编写本书时，Linux的内核最新稳定版本号是3.0.3（主版本号3.0表明它是可以使用的稳定版本）。

一般而言，一个基本的Linux只是包含了Linux内核和GNU软件的一些基本的系统软件和实用工具（Utilities），这样一个操作系统仅仅能够让那些Linux专家完成一些很基本的系统管理任务，若要满足普通用户的办公或基于视窗的应用开发等需求，则还需要在系统中加入GNOME、KDE等桌面环境以及相应的办公应用软件（如Office）等。因此一些组织或厂家将Linux系统内核与GNU软件（系统软件和工具）整合起来，并提供一些安装界面和系统设定与管理工具，这样就构成了一个发行套件，例如最常见的 Ubuntu，Fedora等。实际上发行套件就是Linux的一个大软件包而已，通常包括C语言及C++的编译器、Perl 脚本解释程序、Shell 命令解释器、图形用户界面以及众多的应用程序等。相对于内核版本，发行套件的版本号随发布者的不同而不同，与系统内核的版本号是相对独立的。因此把Ubuntu、Fedora等直接说成是Linux是不确切的，它们是Linux的发行版本，更确切地说，应该叫做“以Linux为核心的操作系统软件包”。根据GPL准则，这些发行版本虽然都源自一个内核，并都有自己各自的贡献，但都没有自己的版权。Linux的各个发行版本，都是使用Linus主导开发并发布的同一个Linux内核，因此在内核层不存在兼容性问题。至于每个版本都不一样的感觉，只是在发行版本的最外层才有所体现，而绝不是本身，也不是内核不统一或不兼容。

目前Linux的发行版很多，其中比较流行的国外版本有Ubuntu、Fedora、Slackware、Debian、OpenSUSE和Mandriva等；国内的有红旗Linux和TurboLinux等。

例如最新的 Ubuntu 的内核版本表示如下（可以通过在终端中输入“uname -a”命令来查看）。

alloeat@Ubuntu:～$ uname -a

Linux Ubuntu 3.2.0-27-generic-pae #43-Ubuntu SMP Fri Jul 6 15:06:05 UTC 2012 i686

i686 i386 GNU/Linux

而其发行套件版本号则表示如下（可以通过“sudo lsb_release -a”命令来查看。需要注意的是，执行这个命令需要超级用户权限）。

Distributor ID: Ubuntu

Description:　Ubuntu 12.04 LTS

Release:　　12.04

Codename:　　precise

1.1.2 Linux的结构

Linux 既是一个操作系统的名称，也是一个操作系统内核的名称。一个完整的 Linux操作系统由Linux内核、Shell、文件系统和实用工具组成，如图1.1所示。

 [image: figure_0016_0001]

 图1.1 Linux 的结构

1．Linux内核

内核是 Linux 操作系统的心脏，是运行程序和管理磁盘、打印机等硬件设备的核心程序。

2．Shell

Shell 是系统的用户界面，提供了一种用户与内核进行交互操作的接口。它接收用户输入的命令并把它送入内核去执行。

实际上Shell应该是一个命令解释器，它解释由用户输入的命令并且把它们送到内核。不仅如此，Shell有自己的编程语言，用于对命令进行编辑，它允许用户编写由Shell命令组成的程序。Shell编程语言具有普通编程语言的很多特点，比如它也有循环结构和分支控制结构等，用这种编程语言编写的Shell程序与其他应用程序具有同样的效果。

除了 Shell 之外，Linux 同样提供了像 Windows 那样的可视的命令输入界面，即 XWindow 的图形用户界面（GUI）。它提供了很多窗口管理器，其操作就像 Windows 操作一样，有窗口、图标和菜单，所有的管理都是通过鼠标控制。现在比较流行的窗口管理器是KDE和GNOME。

注意：X Window 的实质是 Linux 实用工具的一种，请参考“Linux 的实用工具”小节。

每个 Linux 系统的用户可以拥有自己的用户界面或 Shell，用以满足他们自己特有的需求。

同Linux本身一样，Shell也有多种不同的版本，下面是目前主流的Shell。

● Bourne Shell：是贝尔实验室开发的。

● BASH：是 GNU 的 Bourne Again Shell，是 GNU 操作系统上默认的 Shell。

● Korn Shell：是对 Bourne Shell 的发展，大部分内容与 Bourne Shell 兼容。

● C Shell：是 SUN 公司 Shell 的 BSD 版本。

3．Linux的文件结构

文件结构是文件存放在磁盘等存储设备上的组织方法，其主要体现在对文件和目录的组织上。

目录为文件管理提供了一个方便而有效的途径，用户可以从一个目录切换到另一个目录，而且可以设置目录和文件的权限，设置文件的共享程度。在Linux系统中，用户可以设置目录和文件的权限，以便允许或拒绝其他人对其进行访问。Linux目录采用多级树形结构，用户可以浏览整个系统，可以进入任何一个已授权进入的目录，访问其中的文件。

文件结构的相互关联性使共享数据变得容易，几个用户可以访问同一个文件。Linux是一个多用户系统，系统本身的驻留程序存放在以根目录开始的专用目录中，有时被指定为系统目录。

4．Linux的实用工具

Linux操作系统通常都提供一系列叫做实用工具的应用程序，这些实用工具包括与用户进行人机交互的 X Window、计算器、浏览器等，主要是用于增加系统可用性。和 Windows把这些工具（主要是 X Windows）集合到一起不能分离不同，Linux 的实用工具都可以让用户自定义。整体来说，Linux的实用工具可分为如下三类。

● 编辑器。用于编辑文件，Linux 常见的编辑器有 Ed、Ex、Vi 和 Emacs。Ed 和 Ex是行编辑器，Vi和Emacs是全屏幕编辑器。

● 过滤器。用于接收数据并过滤数据，Linux 的过滤器读取从用户文件或其他地方的输入，检查和处理数据，然后输出结果。从这个意义上说，它们过滤了经过它们的数据。Linux 有不同类型的过滤器，一些过滤器用行编辑命令输出一个被编辑的文件。另外一些过滤器是按模式寻找文件并以这种模式输出部分数据。还有一些执行字处理操作，检测一个文件中的格式，输出一个格式化的文件。过滤器的输入可以是一个文件，也可以是用户从键盘键入的数据，还可以是另一个过滤器的输出。过滤器可以相互连接，因此一个过滤器的输出可能是另一个过滤器的输入。在有些情况下，用户可以编写自己的过滤器程序。

● 交互程序。交互程序允许用户发送信息或接收来自其他用户的信息，交互程序是用户与机器的信息接口。Linux是一个多用户系统，它必须和所有用户保持联系。信息可以由系统上的不同用户发送或接收。信息的发送有两种方式，一种方式是与其他用户一对一地链接进行对话，另一种是一个用户对多个用户同时链接进行通信，即所谓广播式通信。

1.1.3 Linux操作系统的分类

前面介绍过，Linux的关键是Linux内核，可以将相同内核通过不同的“包装”生成不同的Linux操作系统，这种包装好的Linux操作系统通常被称为发行版。发行版为许多不同的目的而制作, 包括对不同计算机结构的支持。对一个具体区域或语言的本地化实时应用和嵌入式系统，甚至许多版本故意只加入免费软件。目前，正在开发的Linux发行版超过300个，最普遍使用的发行版有大约12个。

现在市场上存在的Linux发行版种类非常多，但是通常来说可以根据包管理系统或者X Window 系统来进行分类。

1．根据包管理系统分类

Linux操作系统中所安装的软件通常都是以包的形式存在的。通常来说，包中除了可执行文件之外，其中还包括了该包的依赖关系、设置文件等。

所谓依赖关系，就是指Linux软件运行所必须的其他条件，比如说软件A在运行的时候需要相应的库a，如果此时没有安装库，则软件A就不能正常运行，通常将这种情况称为软件A的依赖关系没有满足。

由于Linux中软件和库都非常多，并且一个库可能涉及多个软件，所以Linux提供了相应的包管理系统来对这些包进行管理，目前市场占有率最高的两个包管理软件是 RPM包管理软件和Deb包管理软件。

bRPM 包管理软件的全称是 Red Hat Package Manager，它是 Red Hat 公司设计的一套包管理软件，其中包括了软件的可执行程序、相关的配置文件等。用解压缩工具解开 RPM包即可以看到其中的内容，但是如果安装RPM包则需要使用相应的包管理工具。

RPM 的包管理工具可以提供包的安装、卸载、查询、打包等功能，在打好的包里面有可执行程序以及相应的安装、依赖关系，以下是几个常用的RPM包操作命令。

● rpm -vih file.rpm：安装一个 RPM 包。

● rpm -e file.rpm：卸载一个 RPM 包。

● rpm -qpR file.rpm：查看 RPM 包的依赖关系。

● rpm -q file：查询系统已安装的 RPM 包。

下面是使用RPM包管理工具的常见发行版。

● Red Hat。是美国 RedHat 公司的产品，是相当成功的一个 Linux 发行版本，也是目前使用最多的Linux发行版本。Red Hat最早由Bob Young和Marc Ewing在1995年创建。原来的 Red Hat 版本早已停止技术支持，目前 Red Hat 的 Linux 分为两个系列，其中一个是由Red Hat公司提供收费技术支持和更新的Red Hat Enterprise Linux 系列；另一个是由社区开发的免费的 Fedora Core 系列。Red Hat 因其易于安装而闻名，在很大程度上减轻了用户安装程序的负担，其中 RedHat 提供的图形界面安装方式与Windows系统的软件安装方式非常类似，这对于那些Windows用户而言，几乎可以像安装 Windows 系统一样轻松安装 Red Hat 发行套件。

● 红旗 Linux。是由北京中科红旗软件技术有限公司开发的一系列 Linux 发行版，包括桌面版、工作站版、数据中心服务器版、HA集群版和红旗嵌入式Linux等产品。

和RPM包管理系统相对应的是Deb包管理系统，Deb的包也是由源代码包和二进制包组成的，其详细说明如下。

● 源代码包。包括一个描述源代码包的 .dsc 文件，一个包含 gzip-tar 归档压缩格式的未经修改源码的 .orig.tar.gz 文件，一个包含对源代码作 Debian 特有修改的 .diff.gz 文件。可以使用 dpkg-source 打包和解压 debian 源码文档。详见联机手册。

● 二进制包。以.deb 扩展名来表示，这些文件通常称为 DEB 文件，其中包含可执行文件、文档、配置文件和版权信息及其他一些东西。可以使用Debian的dpkg工具解包（安装）。但除去版权信息（和 changelog.Debian 文件）外，二进制包也可以是空的，这种软件包作为过渡包或关联包（也称虚拟包），它们唯一的作用是用于满足依赖性。

一般而言，用户只和二进制包打交道，只有在某些特殊情况下才会求助于源代码包，Debian软件包命名遵循下列约定。

<foo>_<版本号>-<Debian修订号>.deb

Deb包管理系统同样提供了相应的命令，用于管理操作。常用的命令说明如下。

● apt 命令：用于从源列表（可以是 CD、网络等）下载 Deb 包。

● dpkg 命令：通过数据库来对系统中的软件进行管理，这个数据库位于/var/lib/dpkg目录中。

● aptitude 命令：提供图形界面对软件包进行管理，功能较为强大，甚至可以通过终端远程登录运行，如图1.2所示。

 [image: figure_0020_0002]

 图1.2 aptitude 命令的运行界面

● synaptic：新立得软件包管理器，这是一个运行在 X Window 环境中的包管理软件，用户可以进行图形化的操作。

● gdebi 和 gdebi-gtk：gdebi 是一个命令行的包管理软件，gdebi-gtk 是其对应的图形化版本。

● dselect：在终端运行的一个图形化软件包管理工具，其功能实现类似 synaptic，但是能在终端中运行，如图1.3所示。

采用Deb包管理系统的发行版最常见的是Debian和Ubuntu。

● Debian 是一款能安装在计算机上使用的操作系统。操作系统就是能让计算机工作 的一系列基本程序和实用工具。由于 Debian 采用了 Linux Kernel （Linux 操作系统的核心），但是大部分基础的操作系统工具都来自于 GNU 工程，因此又称为 GNU/Linux。Debian GNU/Linux 附带了超过 29 000 个软件包，这些预先编译好的软件被包装成一种良好的格式，以便于在机器上进行安装。让 Debian 支持其他内核的工作也正在进行，最主要的就是 Hurd。Hurd 是一组在微内核（例如Mach）上运行的提供各种不同功能的守护进程。

 [image: figure_0021_0003]

 图1.3 dselect 的运行界面

● Ubuntu 是一个以桌面应用为主的 Linux 操作系统，其名称来自非洲南部祖鲁语或豪萨语的“Ubuntu”一词（译为吾帮托或乌班图），意思是“人性”、“我的存在是因为大家的存在”，是非洲传统的一种价值观，类似华人社会的“仁爱”思想。Ubuntu基于Debian发行版和GNOME桌面环境。它与Debian的不同在于它每6个月会发布一个新版本。Ubuntu的目标在于为一般用户提供一个最新的、同时又相当稳定的主要由免费软件构建而成的操作系统。Ubuntu具有庞大的社区力量，用户可以方便地从社区获得帮助。

注意：实际上还存在其他的包管理系统，在此不再过多叙述，有兴趣的读者可以自行去查阅相应的书籍。

2．根据 X Window 系统进行分类

X Window 即 X Windows 图形用户接口，是一种计算机软件系统和网络协议，它提供了一个基础的图形用户界面（GUI）、丰富的输入设备驱动，并且能提供网络连接，其中软件的编写使用了广义的命令集。它创建了一个硬件抽象层，允许设备独立性和重用方案的任何计算机上实现。

Linux的内核并不像Windows系统那样直接集成了用户能够使用的图形化界面，而X Window即是实现这种功能的应用软件，可以分为KDE和GNOME两大类。

KDE 是 K 桌面环境（Kool Desktop Environment）的缩写，这是一种著名的运行于 Linux、UNIX 以及 FreeBSD 等操作系统上的自由图形工作环境，整个系统采用的都是由 TrollTech 公司所开发的 Qt 程序库（现在属于诺基亚公司），具有以下特点。

● 提供了一个美观的现代化桌面。

● 提供了一个具有完整的网络透明性的桌面。

● 提供了一个方便的集成帮助系统，它提供了对 KDE 桌面及其应用程序帮助的一致化访问途径。

● 所有的 KDE 应用程序都具有统一的视觉观感。

● 具有标准化的菜单、工具栏、键盘绑定、颜色样式等。

● 国际化支持，KDE 已拥有 60 余种语言的翻译。

● 集中化组织的对话框系统，由具体的桌面配置来运作。

● 大量优秀的 KDE 应用程序。

使用 KDE 作为 X Window 系统的常见 Linux 发行版包括 KUbuntu、Fedora、Mint、openSUSE、Mandriva、Debian等。

GNOME 是另外一种能在 Linux 操作系统上运行的 X Window 应用软件，是 GNU 计划的一部分。它是一种让使用者容易操作和设置电脑环境的工具，目标是基于免费软件，为UNIX或者类UNIX操作系统构造一个功能完善、操作简单以及界面友好的桌面环境，是GNU计划的正式桌面。GNOME可以运行在包括GNU/Linux（通常叫做Linux）、Solaris、HP-UX、BSD 和 Apple's Darwin 系统上。GNOME 拥有很多强大的特性，如高质量的平滑文本渲染、首个国际化和可用性支持，并且包括对反向文本的支持（注: 有些国家的文字是从右向左排版的）。

采用 GNOME 作为默认 X Window 的 Linux 发行版并不太多，但是在绝大部分发行版上都可以自行安装，图1.4 是一个使用 GNOME 作为 X Window 应用界面的 Ubuntu 的运行界面。

注意：通常来说，X Window 只是作为 Linux 操作系统人机交互的一个应用软件，用户可以根据自己的兴趣爱好等实际情况来自行安装对应的 X Window。X Window 和其他应用软件在理论上关系不大，但是在实际应用中，由于图形库等依赖关系，一些软件在GNOME上支持得比KDE上好或者差等情况都可能出现，最典型的例子就是在第2章中介绍的VIM和EMACS。

3．本书所选择Linux发行版

本书选择发行版本号为 12.04、内核版本号为 3.2.0-27、X Window 为 GNOME 2 的Ubuntu系统来介绍Linux下的C语言编程。在实际应用中，由于本书所涉及的大部分知识都只与Linux内核和GCC库相关，所以对于绝大多数发行版而言都是适用的。

 [image: figure_0023_0004]

 图1.4 使用 GNOME 的 Ubuntu 操作系统

注意：本书并不涉及Linux的图形编程以及其他的应用软件等深层次的应用。

1.1.4 Linux中的几个术语

在Linux中，有几个术语是Linux下的C语言程序员必须了解的，如GNU、GPL、POSIX 和 ISO C。

1．GNU

GNU 是“GNU's Not UNIX”的缩写，其发音为“Guh-NOO”，原意为非洲牛羚。GNU最开始由Richard Stallman建立于1983年，目的是为了实现一个符合UNIX系统接口标准、软件丰富且可以自由使用的软件库，因此GNU计划可以分别开发不同的操作系统部件。GNU 计划采用了部分当时已经可自由使用的软件，例如 TeX 排版系统和 X Window 视窗系统等，同时也开发了大批其他的免费软件。

1985年Richard Stallman 又创立了免费软件基金会（FSF，Free Software Foundation）其目的是为GNU计划提供技术、法律以及财政支持。尽管GNU计划大部分时候是由个人自愿无偿贡献的，但FSF有时还是会聘请程序员帮助编写。当GNU计划开始逐渐获得成功时，一些商业公司开始介入开发和技术支持，其中最著名的就是之后被 Red Hat 兼并的 Cygnus Solutions。

到1990年，GNU计划已经开发出的软件包括了一个功能强大的编辑器Emacs、GCC （GNU Compiler Collection，GNU编译器集合，也是本书所使用的编译器）以及大部分UNIX系统的程序库和工具，唯一依然没有完成的重要组件就是操作系统的内核。

GNU 包含以下 3 个协议条款。

● GPL：GNU 通用公共许可证（GNU General Public License）。

● LGPL：GNU 较宽松公共许可证 （GNU Lesser General Public License），也被称为 GNU Library General Public License （GNU 库通用公共许可证）。

● GFDL：GNU 自由文档许可证（GNU Free Documentation License ）。

2．GPL

GPL并非由免费软件基金会所发表，亦非使用GNU通用公共授权的软件的法定发布条款，只有GNU通用公共授权英文原文的版本才具有此等效力。

GPL 要求在发布软件的同时必须发布源代码，并且允许任何用户能够以源代码的形式将软件复制或者发布给别的用户。如果一个软件使用了遵循 GPL 的任何软件的全部或者一部分，则该软件也必须遵循GPL。

需要注意的是，GPL并不是免费软件的代名词，其支持商业化的收费软件。

3．POSIX

POSIX 是可移植的 UNIX 操作系统接口（Portable Operating System Interface of UNIX）的缩写，其由 IEEE（Institute of Electrical and Electronic Engineering）所开发，由 ANSI 和ISO标准化。

POSIX 的最初开发目的是为了提高 UNIX 环境下应用程序的可移植性，但是随着其发展，POSIX 现在并不局限于 UNIX 环境，许多其他的操作系统，包括 Linux 和 Windows，也支持POSIX的部分或者全部。

4．ISO C

C 语言是由 Dennis M. Ritchie 在 1973年设计和实现的，并且在 1978年通过《The C Programming Language》一书将 C 语言推向全世界。

美国国家标准局（ANSI）在 1988年10月颁布 ANSI 标准 X3.159-1989（即 ANSI C标准)），随后国际标准（ISO）在 1989年左右采纳 ANSI C 标准，并且将其定义为 ISO/IEC 9899:1990，这就是 ISO C。

随着计算机技术的不断发展，ISO C 的版本号也在随之发展，到目前为止最新的 ISO C 版本号是 ISO/IEC 9899:1999，也就是 C99。

1.2 Linux的Shell

Shell，俗称壳（用来区别于核），是指“提供给使用者使用的界面”的软件（命令解析器），类似于 DOS 下的 command.com。它接收用户命令，然后调用相应的应用程序。同时它又是一种程序设计语言。作为命令语言，它交互式解释和执行用户输入的命令，或者自动地解释和执行预先设定好的一连串的命令；作为程序设计语言，它定义了各种变量和参数，并提供了许多在高级语言中才具有的控制结构，包括循环和分支。

Shell并不是Linux独有的东西，Windows下也同样有。Shell也不仅仅是以命令行形式出现的，其实 X Windows 也是 Shell 的一种，不过在本小节中所特指的 Shell 是 Linux下以命令行形式提供的。

Shell 基本上是一个命令解释器，接收用户命令，然后调用相应的应用程序来执行这些命令。

1.2.1 常见的Shell

常见的Shell包括ash、bash、ksh、csh和zsh，共5种，简要介绍如下。

● ash：ash 是由 Kenneth Almquist 编写的，是 Linux 中占用系统资源最少的一个小Shell，它只包含24个内部命令，因而使用起来很不方便。

● bash：bash 是 Linux 系统默认使用的 Shell，它由 Brian Fox 和 Chet Ramey 共同完成，是 Bourne Again Shell 的缩写，一共有 40 个内部命令。Linux 之所以使用它作为默认的Shell，是因为它有以下的特色：可以使用类似DOS中doskey的功能，用上下方向键查阅和快速输入并修改命令；自动通过查找匹配的方式，给出以某字符串开头的命令；包含了自身的帮助功能，只要在提示符下面键入help就可以得到相关的帮助。

● ksh：是 Korn Shell 的缩写，由 Eric Gisin 编写，共有 42 条内部命令。该 Shell 最大的优点是几乎和商业发行版的ksh完全相容，这样就可以在不用花钱购买商业版本的情况下尝试商业版本的性能了。

● csh：它是在 Linux 操作系统中应用比较多的 Shell，由以 William Joy 为代表的共计47位作者编成，共有52个内部命令，该Shell其实是指向/bin/tcsh的Shell。也就是说，csh其实就是tcsh。

● zch：这是 Linux 最大的 Shell 之一，由 Paul Falstad 完成，共有 84 个内部命令。如果只是一般的用途，是没有必要安装这样的Shell。

可以在终端下使用相应的命令来查看当前Linux操作系统中使用的Shell，Ubuntu中默认使用的Shell是bash。

alloeat@Ubuntu:/$ echo $SHELL

/bin/bash

1.2.2 Shell和终端

和 Linux 内核类似，Shell 仅仅提供了一个计算机和用户进行交互的内核，而其具体的命令行输入输出交流要通过终端来完成，在Linux操作系统中，用户也可以自定义终端来完成相应的工作，Ubuntu1 2.04发行版自带的终端是 Terminal，其运行界面如图1.5所示。

 [image: figure_0026_0005]

 图1.5 终端运行界面

1.2.3 Shell的工作方式

Shell 既可以作为命令行提供给用户控制内核完成相应的任务，也可以作为一种编程语言供开发者使用。

1．命令行工作方式

在命令行工作方式下，Shell 识别并且对用户输入的字符串进行响应，以完成相应的工作，这种工作方式通常也被称为“交互式”的工作方式。当用户有输入的时候，Shell才对其做出相应的响应。

2．编程语言工作方式

Shell 同样可以用作编程语言，在 Linux 中存在一种特殊的可执行文件，其内容是一系列由各种命令组成的纯文本文件（脚本文件），通常用于完成某些步骤比较多的复杂工作，或者是重复性比较强的工作。Shell 可以对这些文件进行识别，并且按照设定自动执行相应的动作，这种工作方式通常也被称为“非交互式”的工作方式，不需要用户输入，Shell会自动做出相应的动作。

注意：Shell还可以用于配置用户的环境，这通常会在Shell的初始化文件中完成，这些配置包括设置窗口属性、快捷键等。

1.2.4 Shell的启动

Shell在启动的时候，先读取/etc/bash.bashrc文件对整个Linux操作系统进行配置，然后读取$HOME/.bashrc文件对当前用户进行配置。如果这两个文件有冲突，则以后者为准。和Shell相关的文件如下所示。

● .bash_profile 文件：该文件只能被登录用户对应的 Shell 所读取，而操作系统内未登录的Shell只读取.bashrc文件。

● .bashrc 文件：该文件被启动的所有 Shell 所读取。

● .bash_logout 文件：bash 退出时执行该文件。

如果用户安装了多个Shell，则可以在用户管理的相关目录文件中进行设置。

1.2.2 小节中介绍的终端实际上是一个虚拟终端，是在 X Window 中运行的。如果想要进入完整的“真实终端”，可以使用“Ctrl+Alt+Fn”（Fn 为 F1～F6 快捷键）。

在启动Ubuntu操作系统的时候，会自动启动7个终端，其中1～6号终端均是直接运行的一个“真实终端”，而第7 号终端会给 X Window 使用，如果想要从 1～6 号终端切换到 X Window 下，按下快捷键“Alt + F7”即可。

1.3 Shell的使用基础

由于在C语言开发中常常需要和Shell打交道，本小节将简要介绍Shell的基本使用方法，终端的运行界面可以参考图1.5，以下仅仅给出在其中进行操作的相应字符串。

1.3.1 Shell命令的标准格式

Shell和用户交互是以字符串形式存在的命令和命令输出反馈的方式进行的，在Linux命令行中输入的第一个字符串必须是一个命令的名字，第二个字符串是命令的选项或参数，命令行中的每个字符串必须由空格键或Ta键隔开，格式如下。

$ 命令 选项 参数

或者

命令 选项 参数

提示符“$”和“#”可区分用户的不同权限，“$”表示普通用户权限，而“#”代表的是root用户（超级用户）权限。选项是包括一个或多个字母的代码，它前面有一个减号（减号是必要的，Linux用它来区别选项和参数），选项可用于改变命令执行的动作的类型。

注意：在Ubuntu操作系统中，用户不能直接使用root权限，只能通过sudo命令来暂时获得root权限。

命令行实际上是一个可以编辑的文本缓冲区，在按回车键之前，可以对输入的文本进行编辑。例如，可以利用“BackSpace”键删除刚键入的字符，可以进行整行删除，还可以插入字符。用户在输入命令（尤其是复杂命令）时，若出现输入错误，无须重新输入整个命令，只要利用编辑操作，即可改正错误。

利用向上的箭头键可以重新显示刚执行的命令，利用这一功能可以重复执行以前执行过的命令，而无须重新键入该命令。

一个标准的Shell命令和命令的反馈输出如下（这是用ls命令查看当前文件夹下文件列表的执行结果）。

alloeat@Ubuntu:/$ ls

bin cdrom etc host initrd.img.old lost+found mnt proc run selinux sys usr vmlinuz

boot devhome initrd.img lib media opt root sbin srv tmp var vmlinuz.old

1.3.2 Shell的通配符

在Shell中除使用普通字符外，还可以使用一些具有特殊含义和功能的字符，称为通配符，在使用它们时应注意其特殊的含义和作用范围。

Shell 的通配符主要用于模式匹配，如文件名匹配、路径名搜索、字串查找等。常用的通配符有“*”、“?”和括在方括号“[]”中的字符序列等。用户可以在作为命令参数的文件名中包含这些通配符，构成一个所谓的“模式串”，以在执行过程中进行模式匹配。这3个通配符的含义分别如下。

● “*”代表任意长度的字串。例如，“L*”匹配以 L 开头的任意字串。但应注意，文件名中的圆点（.）和路径名中的斜线（/）必须是显式的，即不能用通配符替代它们。例如，“*”不能匹配.c，而“.*”才可以匹配.c。

● “?”代表任何单个字符。

● “[]”指定了模式串匹配的字符范围，只要文件名中“[]”处的字符在指定的范围之内，那么这个文件名就与该模式串匹配。方括号中的字符范围可以由字符串组成，也可以由表示限定范围的起始字符、终止字符及中间连字符（-）组成。例如，f [a-d] 与 f [abcd]的作用相同。

Shell 把与命令行中指定的模式串相匹配的所有文件名都作为命令的参数，形成最终的命令，然后再执行这个命令。如果目录中没有与指定的模式串相匹配的文件名，那么Shell将使用此模式串本身作为参数传给命令（这正是命令中出现特殊字符的原因所在）。

表1.1列举了这些通配符的具体实例及含义。

 表1.1 通配符使用实例

 [image: figure_0029_0006]

需要注意的是，中间连字符（-）仅在方括号内有效，表示字符范围。若在方括号外面，就成为普通字符了，而“*”和“?”则只在方括号外有效，若出现在方括号之内，它们也失去通配符的功能，成为普通字符了。例如，模式 L[*?]abc 中只有一对方括号是通配符，而“*”和“?”均为普通字符，因此，它匹配的字串只能是L*abc和L?abc。

【例1.1】是一个使用“*”通配符来让“ls”命令只显示当前文件夹中文件名中带“exam”，扩展名为“.c”的文件的命令和对应输出。

【例1.1】“*”通配符应用实例。

alloeat@Ubuntu:～/chapter4Exam$ ls

copytest.txt　exam3write.c～　examaccess.c～　　　examcopy　examfcntl.c

exammkdir.c～　examtest　examvim.c

exam1open　　　exam4read.c　　examchdirgetcwd　　examcp.c　examlseek

examopendir　examumask　foo

exam1open.c　　exam4read.c～　examchdirgetcwd.c　examcp.c～　examlstat

examopendir.c　examumask.c　lseektest.txt

exam1open.c～　　exam5lseek.c　examchdirgetcwd.c～　examcpoy　examlstat.c

examopendir.c～　examumask.c～　renamebar

exam2create.c　exam5lseek.c～　examchmod　　　　examdup　examlstat.c～

examrename　examutime　testdir

exam2create.c～　examaccess　　examchmod.c　　　examdup.c　exammkdir

examrename.c　examutime.c　thpic.c

exam3write.c　　examaccess.c　examchmod.c～　　　examfcntl　exammkdir.c

examrename.c～　examutime.c～

alloeat@Ubuntu:～/chapter4Exam$ ls exam*.c

exam1open.c　　exam4read.c　examchdirgetcwd.c　examdup.c　　exammkdir.c

examumask.c

exam2create.c　exam5lseek.c　examchmod.c　　　examfcntl.c　examopendir.c

examutime.c

exam3write.c　examaccess.c　examcp.c　　　　examlstat.c　examrename.c

examvim.c

1.3.3 Shell中的引号

在Shell中可以使用的引号包括单引号、双引号和反引号3种。

1．单引号

由单引号括起来的字符都作为普通字符使用。特殊字符用单引号括起来以后，也会失去原有意义，而只作为普通字符解释。例如，下面的一系列命令：

alloeat@Ubuntu:～/chapter4Exam$ string='$PATH'

alloeat@Ubuntu:～/chapter4Exam$ echo $string

$PATH

可见，单引号中的“$”保持了其本身的含义，作为普通字符出现，而在一般情形下，“$”符号的含义是引用变量的值，PATH本身是一个Linux系统中的环境变量，其值是一系列的目录，当用户运行某个程序时，Linux在这些目录下进行搜寻。可以使用下面的命令查看变量PATH的值。

#echo $PATH

2．双引号

双引号的作用与单引号类似，区别在于它没有那么严格。单引号告诉Shell忽略所有的特殊字符，而双引号只要求忽略大多数特殊字符。具体来说，不会忽略括在双引号中的3 种特殊字符，即$、\和` ，即双引号会解释字符串的特别意义，而单引号则直接使用字符串。如果使用双引号将字符串赋给变量并反馈它，实际上与直接反馈变量并无差别。如果要查询包含空格的字符串，经常会用到双引号。

看看【例1.2】中的应用实例。

【例1.2】双引号应用实例。

alloeat@Ubuntu:/$ x=* //定义字符变量 x

alloeat@Ubuntu:/$ echo $x //显示 x 的值

bin boot cdrom dev etc home host initrd.img initrd.img.old lib lost+found media mnt

opt proc root run sbin selinux srv sys tmp usr var vmlinuz vmlinuz.old

alloeat@Ubuntu:/$ echo '$x' //单引号

$x

alloeat@Ubuntu:/$ echo "$x" //双引号

*

从【例1.2】中，可以清楚地看出无引号、单引号和双引号之间的区别。

● 第一种情况，显示变量 x 的值。由于 x 的值，即字符“*”匹配了当前目录（root目录）下的所有文件名，故显示变量x的值时，会显示当前目录的所有文件名。

● 第二种情况，使用了单引号。单引号中的字符保持其本身的含义，这种情况最简单。

● 最后一种情况，使用了双引号。双引号告诉 Shell 在引号内照样进行变量名替换，所以Shell把$x替换为*，因为双引号中不做文件名替换（忽略掉了非特殊字符），所以就把“*”作为要显示的值传递给echo命令，作为echo命令的参数。

另外，从例子中还可以看到Shell赋值的先后次序：Shell先进行变量替换，然后进行文件名替换，最后把这些替换值作为参数传递给命令。

3．反引号

反引号“`”字符所对应的键一般位于键盘的左上角，不要将其同单引号“'”混淆。反引号括起来的字串被Shell解释为命令行。在执行时，Shell首先执行该命令行，并以它的标准输出结果取代整个反引号（包括两个反引号）部分。例如：

alloeat@Ubuntu:/$ pwd

/

alloeat@Ubuntu:/$ string="current directory is `pwd`"

alloeat@Ubuntu:/$ echo $string

current directory is /

Shell执行echo命令时，首先执行`pwd`中的命令pwd，并使用输出结果“/”取代`pwd`部分，最后输出替换后的整个结果。

利用反引号的这种功能可以进行命令置换，即把反引号括起来的执行结果赋值给指定变量。再例如：

alloeat@Ubuntu:/$ today=`date`

alloeat@Ubuntu:/$ echo today is $today

today is 2012年08月03日 星期五 16:58:54 CST

另外，反引号还可以嵌套使用。但需要注意的是，嵌套使用时内层的反引号必须用反斜线（\）将其转义。

1.3.4 Shell中的注释符

在Shell编程或Linux的配置文档中，经常要对某些正文行进行注释，以增加程序的可读性。在 Shell 中以字符 “# ”开头的正文行表示注释行。

1.4 Linux的常用命令

在 Shell 中，用户需要通过使用适当的命令来完成相应的操作，本小节将介绍 Linux中的部分常用命令。

1.4.1 文件操作命令

文件操作是Linux系统里最基本也是最常用的操作，本节列举了Linux中经常执行的一些普通文件操作命令。

1．显示文件列表

显示指定工作目录中所包含内容的命令是ls。要说明的是，ls命令列出的是文件的名字，而不是文件的内容。该命令的使用方式如下。

ls [选项] [文件目录列表]

ls命令中的常用选项如表1.2所示。

 表1.2 ls 命令选项说明

 [image: figure_0032_0007]

 续表

 [image: figure_0033_0008]

由于Linux支持多种文件类型，每一类用一个字符来表示，具体说明如表1.3所示。

 表1.3 Linux 中的文件类型说明符

 [image: figure_0033_0009]

文件类型后的字符表示文件的权限，权限由3个字符串组成，这3个字符串分别表示该文件所有者的权限、组中其他人的权限和系统中其他人的权限。每个字符串又由3个字符组成，依次表示对文件的读（用字符r表示）、写（用字符w表示）和执行（用字符x表示）权限。当用户没有相应的权限时，该权限的对应位置用短线“-”来表示。 例如：

drwxr-x---

表示的含义是：d表示该文件是目录；目录拥有者的权限是rwx（表示有读、写和执行权限）；组中其他人对该目录的权限是 r-x（表示有读和执行权限，没有写权限），系统中其他人对该目录的权限是---（表示读、写和执行权限都没有）。

【例1.3】是一个使用“ls”命令来显示当前根目录下文件列表的应用实例。

【例1.3】ls查看文件列表应用实例。

alloeat@Ubuntu:/$ ls

bin　dev　host　　　lib　　mnt　root　selinux　tmp　vmlinuz

boot　etc　initrd.img　lost+found　opt　run　srv　usr　vmlinuz.old

cdrom　home　initrd.img.old　media　　proc　sbin　sys　var

【例1.4】是一个使用“ls”命令查看非当前目录下文件列表的应用实例。

【例1.4】ls查看非当前目录下文件列表。

alloeat@Ubuntu:/$ ls /usr

bin games include lib lib32 local sbin share src

【例1.5】是一个用长格式查看根目录下usr子目录下的内容的应用实例。

【例1.5】ls长格式查看应用实例。

alloeat@Ubuntu:/$ ls -l /usr

总用量 176

drwxr-xr-x 2 root root 65536 8月2 18:13 bin

drwxr-xr-x 2 root root 4096 8月2 10:17 games

drwxr-xr-x 39 root root 16384 6月18 21:10 include

drwxr-xr-x 238 root root 49152 8月2 10:18 lib

drwxr-xr-x 5 root root 4096 6月14 18:38 lib32

drwxr-xr-x 11 root root 4096 6月18 14:05 local

drwxr-xr-x 2 root root 12288 8月2 10:15 sbin

drwxr-xr-x 370 root root 12288 6月25 21:07 share

drwxr-xr-x 16 root root 4096 7月25 17:57 src

用长格式查看目录内容时，每行表示一个文件或目录的信息。每行信息依次为文件类型与权限、连接数、文件属主、文件属组、文件大小、建立或最近修改的时间、名字。

2. 查找文件

在Linux系统中，可以使用find命令来查找文件，标准使用格式如下。

find [目录列表] [匹配标准]

find命令有两个参数，即目录列表和匹配标准，其说明如下。

● 目录列表：希望查询文件或文件集的目录列表，目录间用空格分隔。

● 匹配标准：希望查询的文件的匹配标准或说明，详细的说明如表1.4所示。

 表1.4 find 命令的匹配标准参数说明

 [image: figure_0035_0010]

【例1.6】是在目录“home/alloeat/chapter4Exam/”中查找exam5lseek.c文件，命令及响应如下所示。

【例1.6】find查找特定文件的应用实例。

alloeat@Ubuntu:/$ find home/alloeat/chapter4Exam/exam5lseek.c

home/alloeat/chapter4Exam/exam5lseek.c

当要查找某个文件而不知道该文件的全名时，只要知道这个文件包含的若干字母，就可以用查找命令以及通配符进行查找。

【例1.7】是一个在/dev目录下，查找包含“usb”字符串的文件的应用实例。

【例1.7】find查找包含特定字符串文件应用实例。

alloeat@Ubuntu:/$ find /dev -name usb* -print

/dev/usb

/dev/input/by-id/usb-RAPOO_RAPOO_2.4G_Wireless_Device-mouse

/dev/input/by-id/usb-RAPOO_RAPOO_2.4G_Wireless_Device-if01-mouse

/dev/input/by-id/usb-RAPOO_RAPOO_2.4G_Wireless_Device-if01-event-mouse

/dev/input/by-id/usb-RAPOO_RAPOO_2.4G_Wireless_Device-event-mouse

/dev/input/by-id/usb-RAPOO_RAPOO_2.4G_Wireless_Device-event-kbd

/dev/usbmon4

/dev/usbmon3

/dev/usbmon2

/dev/bus/usb

/dev/usbmon1

/dev/usbmon0

3．显示文本文件内容

显示文本文件内容的命令是cat命令，用来将文件的内容显示到终端上。该命令的使用方式如下。

cat [选项] 文件列表

cat命令中的选项详细说明如表1.5所示。

 表1.5 cat命令选项说明

 [image: figure_0036_0011]

【例1.8】是使用cat命令来显示C语言文件exam5lseek.c的应用实例，在每一行之前加上了行编号。

【例1.8】cat命令显示文件内容应用实例。

alloeat@Ubuntu:～/chapter4Exam$ cat -n exam5lseek.c

1　#include <stdio.h>

2

3　int main(int argc,char *argv[])

4　{

5　int temp,seektemp,i,j;

6　FILE *fp;　　　//文件指针

7　char wbuf[17] = "this is a test!\r\n";

8　if(argc!= 2)

9　{

10　　printf("run error!\n");

11　　return 1;　　　　　　//如果参数不正确则退出

12　}

13　fp = fopen(*(argv+1),w);　//打开文件

14　//　temp = fputs(wbuf,fp);　//写入数据

15　//　seektemp = lseek(fileID,0,SEEK_CUR);　　//获得当前的偏移量

16　for(i=0;i<10;i++)

17　{

18　　j = sizeof(wbuf) * (i+1);　　　//计算下一次的偏移量

19　　fseek(fp,j,SEEK_SET);

20　　temp = fputs(wbuf,fputs);　//写入数据

21　}

22　fclose(fp);

23　return 0;

24　}

25

cat 命令还可以用于将两个文件连接到一起，并将结果放到另外一个文件中去。【例1.9】给出了一个将一个C语言文件和一个文本文件连接起来将其内容存放到一个新的文本文件中去的实例。

【例1.9】用cat连接文件应用实例。

alloeat@Ubuntu:～/chapter4Exam$ cat exam5lseek.c copytest.txt > cattest.txt

alloeat@Ubuntu:～/chapter4Exam$ cat copytest.txt

dup call successed!

s is a test!

this is a test!

this is a test!

this is a test!

this is a test!

this is a test!

this is a test!

this is a test!

this is a test!

this is a test!

alloeat@Ubuntu:～/chapter4Exam$ cat cattest.txt

#include <stdio.h>

int main(int argc,char *argv[])

{

int temp,seektemp,i,j;

FILE *fp;　　　//文件指针

char wbuf[17] = "this is a test!\r\n";

if(argc!= 2)

{

printf("run error!\n");

return 1;　　　　　　　　//如果参数不正确则退出

}

fp = fopen(*(argv+1),w);　//打开文件

//　temp = fputs(wbuf,fp);　//写入数据

//　seektemp = lseek(fileID,0,SEEK_CUR);　　//获得当前的偏移量

for(i=0;i<10;i++)

{

j = sizeof(wbuf) * (i+1);　　　//计算下一次的偏移量

fseek(fp,j,SEEK_SET);

temp = fputs(wbuf,fputs);　//写入数据

}

fclose(fp);

return 0;

}

dup call successed!

s is a test!

this is a test!

this is a test!

this is a test!

this is a test!

this is a test!

this is a test!

this is a test!

this is a test!

this is a test!

4. 查找文件内容

查找文件内容的命令是grep命令。该命令的使用方式如下。

grep [选项] [查找模式] [文件名 1，文件名 2，……]

grep命令选项的说明如表1.6所示。

 表1.6 grep命令选项说明

 [image: figure_0039_0012]

【例1.10】是在【例1.6】所给出的C语言文件中查找printf字符串的实例。

【例1.10】grep查找字符串应用实例。

alloeat@Ubuntu:～/chapter4Exam$ grep printf -n exam5lseek.c

10:　printf("run error!\n");

5．排序

sort命令的功能是对文件中的各行进行排序。sort命令有许多非常实用的选项，这些选项最初是用来对数据库格式的文件内容进行各种排序操作的。实际上，sort命令可以被看作是一个非常强大的数据管理工具，用来管理内容类似数据库记录的文件。sort命令将逐行对文件中的内容进行排序，如果两行的首字符相同，该命令将继续比较这两行的下一字符，如果还相同，将继续进行比较。该命令的使用方式如下。

sort　[选项] 文件

sort命令对指定文件中所有的行进行排序，并将结果显示在标准输出上。如不指定输入文件或使用“- ”，则表示排序内容来自标准输入。

sort排序是根据从输入行抽取的一个或多个关键字进行比较来完成的。排序关键字定义了用来排序的最小的字符序列。默认情况下以整行为关键字，按ASCII字符顺序进行排序。sort命令中的选项说明如表1.7所示。

 表1.7 sort命令选项说明

 [image: figure_0040_0013]

【例1.11】是一个使用sort命令对文件中各行进行排序后输出的应用实例。

【例1.11】使用sort命令文件排序输出应用实例。

alloeat@Ubuntu:～/chapter4Exam$ cat -n Examsort.txt

1　23214

2　daf

3　ewr

4　42

5　123425

6　2435326

7　tihwir

8　3242

9　0234

10　-=123

11　13445

alloeat@Ubuntu:～/chapter4Exam$ sort Examsort.txt |cat -n

1　0234

2 -=123

3 123425

4 13445

5 23214

6 2435326

7 3242

8 42

9 daf

10 ewr

11 tihwir

6．比较有序文件

如果想对两个有序的文件进行比较，可以使用comm命令。该命令的使用方式如下。

comm [-123] file1 file2

comm命令是对两个已经排好序的文件进行比较。其中file1和file2是已排序的文件。comm读取这两个文件，然后生成3列输出：仅在file1中出现的行；仅在file2中出现的行；在两个文件中都存在的行。如果文件名用“-””，则表示从标准输入读取。选项 1、2 或 3 不显示相应的列。例如：

comm -12：只显示在两个文件中都存在的行。

comm -23：只显示在第一个文件中出现而未在第二个文件中出现的行。

comm -123：则什么也不显示。

7．文件内容比较

diff命令的功能为逐行比较两个文本文件，列出其不同之处。它对给出的文件进行系统的检查，并显示出两个文件中所有不同的行，不要求事先对文件进行排序。该命令的使用方式如下。

diff [选项] file1 file2

diff命令告诉用户，为了使两个文件file1和file2一致，需要修改它们的哪些行。如果用 “- ”表示 file1 或 file2，则表示标准输入。如果 file1 或 file2 是目录，那么 diff 将使用该目录中的同名文件进行比较。通常，输出由下述形式的行组成。

n1 a n3，n4

n1，n2 d n3

n1，n2 c n3，n4

字母（a、d 和 c）之前的行号（n1，n2）是针对 file1 的，其后面的行号（n3，n4）是针对 file2 的。字母 a、d 和 c 分别表示附加、删除和修改操作。

在上述形式的每一行的后面跟随受到影响的若干行，以 “＜” 开头的行属于第一个文件，以 “＞” 开头的行属于第二个文件。

diff 能区别块、字符设备文件以及管道文件（FIFO），diff不会把它们与普通文件进行比较。

如果 file1 和 file2 都是目录，则 diff 会产生很多信息。如果一个目录中只有一个文件，则产生一条信息，指出该目录路径名和其中的文件名。

diff命令的选项说明如表1.8所示。

 表1.8 diff命令选项说明

 [image: figure_0042_0014]

注意：diff命令常常用于对比文件经过修改前后的异同。

8．文件复制命令

Linux中的cp命令用于复制文件或目录，该命令是最重要的文件操作命令，该命令的使用方式如下。

cp [选项] 源文件或目录 目标文件或目录

cp命令把指定的单个源文件复制到目标文件，或把多个源文件复制到目标目录中。

cp命令的选项说明如表1.9所示。

 表1.9 cp命令选项说明

 [image: figure_0042_0015]

注意：如果指定的目标文件名是一个已存在的文件名时，用 cp 命令复制文件后，这个文件就会被新复制的源文件覆盖。因此，为防止用户在不经意的情况下用cp命令破坏另一个文件，在使用 cp 命令复制文件时，最好使用-i 选项。

9．移动和重命名文件

在Linux系统中，移动文件可使用mv命令。mv命令还可修改文件名，即把源文件以一个新文件名移动到另一个新的目录中去。该命令的使用方式如下。

mv [选项] 源文件名 目标文件名

mv [选项] 源目录名 目标目录名 2

mv [选项] 文件列表 目录

mv命令的选项说明如表1.10所示。

 表1.10 mv命令选项说明

 [image: figure_0043_0016]

10．文件内容统计

wc 命令的功能为统计指定文件中的字节数、字数和行数, 并将统计结果显示输出。该命令使用方式如下。

wc [选项] 文件列表

wc 命令统计给定文件中的字节数、字数和行数。如果没有给出文件名，则从标准输入读取。wc同时也给出所有指定文件的总统计数。字是由空格字符分开的最大字符串。

wc命令的选项说明如表1.11所示。

 表1.11 wc命令选项说明

 [image: figure_0043_0017]

【例1.12】是一个使用wc命令来统计C语言文件信息的应用实例。

【例1.12】使用wc命令统计文件信息应用实例。

alloeat@Ubuntu:～/chapter4Exam$ wc exam5lseek.c

25 60 638 exam5lseek.c

1.4.2 目录操作命令

Linux系统以文件目录的方式来组织和管理系统中的所有文件。所谓文件目录就是将所有文件的说明信息采用树型结构组织起来，即常说的目录。

Linux的目录结构等相关知识将在第4章中进行详细介绍，本小节将介绍对目录进行操作的命令。

1．创建目录

在Linux系统中建立新目录的命令是mkdir。该命令的使用方式如下。

mkdir [选项] 目录

mkdir命令的选项说明如表1.12所示。

 表1.12 mkdir命令选项说明

 [image: figure_0044_0018]

【例1.13】是一个使用mkdir命令在当前目录中建立一个dir3目录，并且将其权限设置为只有文件拥有者才能读写和执行的应用实例。

【例1.13】使用mkdir命令创建目录应用实例。

alloeat@Ubuntu:～/Exammkdir$ ls

dir1 dir2

alloeat@Ubuntu:～/Exammkdir$ mkdir -p -m 700 dir3

alloeat@Ubuntu:～/Exammkdir$ ls -l

总用量 12

drwxrwxr-x 2 alloeat alloeat 4096 8月4 10:42 dir1

drwxrwxr-x 2 alloeat alloeat 4096 8月4 10:42 dir2

drwx------ 2 alloeat alloeat 4096 8月4 10:43 dir3

2．删除目录

与创建目录对应的是删除目录，rmdir 命令用来删除目录。一般情况下要删除的目录必须为空目录，如果所给的目录不为空，系统会报告错误。该命令的使用方式如下。

rmdir [选项] 目录列表

rmdir命令的选项说明如表1.13所示。

 表1.13 rmdir命令选项说明

 [image: figure_0045_0019]

3．显示当前工作目录

显示当前工作目录的命令是pwd命令，该命令的使用方式如下。

pwd

【例1.14】是一个使用pwd命令来显示当前工作目录的应用实例。

【例1.14】使用pwd命令显示当前工作目录应用实例。

alloeat@Ubuntu:～/Exammkdir$ pwd

/home/alloeat/Exammkdir

4．改变当前工作目录

在Linux系统中使用cd命令改变当前工作目录。该命令的使用方式如下。

cd [directory]

该命令将当前目录改变至directory所指定的目录。若没有指定directory，则回到用户的主目录。为了改变到指定目录，用户必须拥有对指定目录的执行和读权限。该命令可以使用通配符。

【例1.15】是一个使用cd命令在多个目录路径下切换的应用实例。

【例1.15】使用cd命令切换目录路径应用实例。

alloeat@Ubuntu:～/Exammkdir$ ls

dir1 dir2 dir3

alloeat@Ubuntu:～/Exammkdir$ cd dir1

alloeat@Ubuntu:～/Exammkdir/dir1$ cd ../dir2

alloeat@Ubuntu:～/Exammkdir/dir2$ cd ..

alloeat@Ubuntu:～/Exammkdir$ cd /

alloeat@Ubuntu:/$ ls

bin　dev　host　　　lib　　mnt　root　selinux　test　var

boot　etc　initrd.img　lost+found　opt　run　srv　tmp　vmlinuz

cdrom　home　initrd.img.old　media　　proc　sbin　sys　usr　vmlinuz.old

5．链接文件的命令

链接文件的命令是 ln 命令，该命令在文件之间创建链接。这种操作实际上是给系统中已有的某个文件指定另外一个可用于访问它的名称。对于这个新的文件名，可以为之指定不同的访问权限，以控制对信息的共享和安全性的问题。如果链接指向目录，用户就可以利用该链接直接进入被链接的目录，而不用输入一长串的路径名。而且，即使删除这个链接，也不会破坏原来的目录。该命令的使用方式如下。

ln [选项] 源文件或目录 [链接名]

ln命令的选项说明如表1.14所示。

 表1.14 ln命令选项说明

 [image: figure_0046_0020]

链接有两种，一种被称为硬链接（Hard Link），另一种被称为符号链接（Symbolic Link）。硬链接的意思是一个文件可以有多个名称。而符号链接的方式则是产生一个特殊的文件，该文件的内容是指向另一个文件的位置。建立硬链接时，链接文件和被链接文件必须位于同一个文件系统中，并且不能建立指向目录的硬链接。而对符号链接，则不存在这个问题。默认情况下，ln产生硬链接。

注意：Linux的链接类似于Windows中的快捷方式。

6．改变文件或目录权限

在Linux系统中，用户设定文件权限，控制其他用户不能访问、修改文件。但在系统应用中，有时需要让其他用户使用某个原来其不能访问的文件或目录，这时就需要重新设置文件的权限，使用的命令是 chmod 命令。并不是谁都可改变文件和目录的访问权限，只有文件和目录的所有者才有权限修改其权限，另外超级用户可对所有文件或目录进行权限设置。该命令的使用方式如下。

chmod [who] [+ | - | =] [mode] 文件名

chmod命令中的操作对象who可是表1.15中的任何一个选项或者它们的组合。

 表1.15 chmod命令who选项说明

 [image: figure_0047_0021]

chmod函数的操作符号说明如表1.16所示。

 表1.16 chmod命令操作符号说明

 [image: figure_0047_0022]

mode 所表示的权限可以是表1.17 中字母的任意组合。

 表1.17 chmod命令mode选项说明

 [image: figure_0047_0023]

 续表

 [image: figure_0048_0024]

在一个命令行中可给出多个权限方式，其间用逗号隔开。例如：

chmod g+r，o+r example

这个命令将使同组和其他用户对文件 example 有读权限。

文件和目录的权限还可用八进制数字模式来表示。首先了解用数字表示的属性的含义：0 表示没有权限，1 表示可执行权限，2 表示可写权限，4 表示可读权限，然后将其相加。所以数字属性的格式应为3个从0到7的八进制数，其顺序是（u）（g）（o）。例如，如果想让某个文件的属主有读，写两种权限，需要把4（可读）+2（可写）＝6（读/写）。

数字设定法的一般形式如下。

chmod [mod] 文件名

【例1.16】是一个使用chmod命令来修改文件chmodtest.txt的权限的实例。

【例1.16】使用chmod命令修改文件权限应用实例。

设定文件chmodtest.txt 的属性为：文件属主（u）增加执行权限，与文件属主同组用户（g）和其他用户（o）增加读权限。

alloeat@Ubuntu:～/Exammkdir$ ls chmodtest.txt -l

-rw-rw-r-- 1 alloeat alloeat 16 8月4 10:59 chmodtest.txt

alloeat@Ubuntu:～/Exammkdir$ chmod u+x chmodtest.txt

alloeat@Ubuntu:～/Exammkdir$ ls chmodtest.txt -l

-rwxrw-r-- 1 alloeat alloeat 16 8月4 10:59 chmodtest.txt

alloeat@Ubuntu:～/Exammkdir$ chmod go+w chmodtest.txt

alloeat@Ubuntu:～/Exammkdir$ ls chmodtest.txt -l

-rwxrw-rw- 1 alloeat alloeat 16 8月4 10:59 chmodtest.txt

7．改变文件或目录的属主和属组

chown命令用来更改某个文件或目录的属主和属组。这个命令也很常用。例如，root用户把自己的一个文件拷贝给用户 alloeat，为了让用户 alloeat 能够存取这个文件，root用户应该把这个文件的属主设为alloeat。否则，用户alloeat无法存取这个文件。该命令的使用方式如下。

chown [选项] 用户或组 文件

chown 将指定文件的拥有者改为指定的用户或组。用户可以是用户名或用户 ID。组可以是组名或组 ID。文件是以空格分开的要改变权限的文件列表，支持通配符。chown命令的选项说明如表1.18所示。

 表1.18 chown命令选项说明

 [image: figure_0049_0025]

1.4.3 其他常用命令

在Linux的实际使用中，通常还会涉及一些其他的命令，本小节对这些命令进行简要的介绍。

1．帮助命令

对于绝大部分Linux终端用户和C语言程序员而言，经常需要查询一些命令或者函数具体使用方法，此时可以使用Linux自带的man帮助命令。

只要在命令man后，输入想要获取帮助的命令的名称（例如ls），man就会列出一份完整的说明，其内容包括命令语法、各选项的意义以及相关命令等。该命令使用方式如下。

man [选项] 命令名称

man命令的常用选项说明如表1.19所示。

 表1.19 man命令选项说明

 [image: figure_0049_0026]

【例1.17】是使用man命令显示“ls”命令和“exit”函数使用方法的部分内容。

【例1.17】man帮助命令应用实例。

LS(1)　　　　　　　　　　　　　　　User　Commands

LS(1)

NAME

ls - list directory contents

SYNOPSIS

ls [OPTION]... [FILE]...

DESCRIPTION

List information about the FILEs (the current directory by default).

Sort entries

alphabetically if none of -cftuvSUX nor --sort is specified.

Mandatory arguments to long options are mandatory for short options too.

-a, --all

do not ignore entries starting with .

-A, --almost-all

do not list implied . and ..

--author

with -l, print the author of each file

-b, --escape

print C-style escapes for nongraphic characters

--block-size=SIZE

scale sizes by SIZE before printing them. E.g., '--block-size=M' prints

sizes in

units of 1,048,576 bytes. See SIZE format below.

-B, --ignore-backups

Manual page ls(1) line 1 (press h for help or q to quit)

以下为exit函数的帮助手册。

EXIT(3)　　　　　　　　　　　　Linux　Programmer's　Manual

EXIT(3)

NAME

exit - cause normal process termination

SYNOPSIS

#include <stdlib.h>

void exit(int status);

DESCRIPTION

The　exit() function causes normal process termination and the value of status

& 0377 is

returned to the parent (see wait(2)).

All functions registered with atexit(3) and on_exit(3) are called, in the

reverse　order

of　their　registration.　(It is possible for one of these functions to use

atexit(3) or

on_exit(3) to register an additional function to be executed during exit

processing; the

new registration is added to the front of the list of functions that

remain to be

called.) If one of these functions does not return (e.g., it calls _exit(2),

or kills

itself with a signal), then none of the remaining functions is called, and

further exit

processing (in particular, flushing of stdio(3) streams) is abandoned. If

a function

has been registered multiple times using atexit(3) or on_exit(3), then it

is called as

many times as it was registered.

All open stdio(3) streams are flushed and closed. Files created by

tmpfile(3) are

removed.

The C standard specifies two constants, EXIT_SUCCESS and EXIT_FAILURE,

that may be

passed to exit() to indicate successful or unsuccessful termination,

respectively.

RETURN VALUE

Manual page exit(3) line 1 (press h for help or q to quit)

注意：在man的帮助页面上，可以使用“q”快捷键退出帮助页，可以使用向上翻页、向下翻页等快捷键进行翻页。man 命令对于 C 语言程序员而言相当重要，读者应该重视并且经常使用这个命令。

2．Shell帮助命令

help命令用于查看所有Shell命令。用户可以通过该命令寻找Shell命令的用法，只需在所查找的命令后输入 help 命令，就可以看到所查命令的内容了。例如，输入 cd –help便可查看cd命令的使用方法。

info 命令用来获取相关命令的详细使用方法，例如，info ls 可以获取如何使用 ls 的详细信息。

【例 1.18】是在 Ubuntu 12.04 发行版自带 Shell 中使用 help 命令的实例。

【例1.18】help命令应用实例。

GNU bash，版本 4.2.24(1)-release (i686-pc-linux-gnu)

这些 Shell 命令是内部定义的。请输入'help' 以获取一个列表.

输入'help 名称' 以得到有关函数'名称'的更多信息.

使用'info bash' 来获得关于 Shell 的更多一般性信息

使用'man -k' 或'info' 来获取不在列表中的命令的更多信息.

名称旁边的星号 (*) 意味着该命令被禁用.

job_spec [&]　　　　　　　　history [-c] [-d 偏移量] [n]或 history

->

((表达式))　　　　　　　if命令; then命令; [elif命令; then ▒>

.文件名 [参数]　　　　　　jobs [-lnprs] [任务声明 ...]或 jobs -x >

:　　　　　　　　　　kill [-s 信号声明 | -n信号编号 | -▒>

[参数...]　　　　　　　　let参数 [参数 ...]

[[表达式]]　　　　　　　local [option] 名称[=值] ...

alias [-p] [名称[=值] ...]　　　　logout [n]

bg [任务声明 ...]　　　　　　mapfile [-n 计数] [-O起始序号] [-s计>

bind [-lpvsPVS] [-m 键映射] [-f文件名] >　popd [-n] [+N | -N]

break [n]　　　　　　　　printf [-v var] 格式 [参数]

builtin [Shell 内嵌 [参数 ...]]　　　pushd [-n] [+N | -N | 目录]

caller [表达式]　　　　　　　pwd [-LP]

case 词 in [模式 [|模式]...)命令 ;;].>　read [-ers] [-a 数组] [-d分隔符] [-i ▒>

cd [-L|[-P [-e]]] [dir]　　　　　　readarray [-n 计数] [-O起始序号] [-s

▒>

command [-pVv] 命令 [参数 ...]　　　readonly [-aAf] [name[=value] ...] or

readonl>

compgen [-abcdefgjksuv] [-o 选项]　[-A动▒>　return [n]

complete [-abcdefgjksuv] [-pr] [-DE] [-o 选▒>　select NAME [in 词语 ... ;] do命令;

done>

compopt[-o|+o选项][-DE][名称 ...]　　set[-abefhkmnptuvxBCHP][-ooption-name]

[-->

continue [n]　　　　　　　　shift [n]

coproc [名称]命令 [重定向]　　　shopt [-pqsu] [-o] [选项名 ...]

declare [-aAfFgilrtux] [-p] [name[=value] ...]>　source 文件名 [参数]

dirs [-clpv] [+N] [-N]　　　　　　suspend [-f]

disown [-h] [-ar] [任务声明 ...]　　　test [表达式]

echo [-neE] [参数 ...]　　　　　time [-p] 管道

enable [-a] [-dnps] [-f 文件名] [名称 ...>　times

eval [参数 ...]　　　　　　　trap [-lp] [[参数]信号声明 ...]

exec [-cl] [-a 名称] [命令 [参数 ...]] [> 真

exit [n]　　　　　　　　　type [-afptP]名称 [名称 ...]

export　[-fn]　[名称 [=值] ...] 或　export　-p　typeset　[-aAfFgilrtux]　[-p]

name[=value] ...

伪　　　　　　　　　　ulimit [-SHacdefilmnpqrstuvx] [限制]

fc [-e编辑器名] [-lnr] [起始] [终结] >　umask [-p] [-S] [模式]

fg [任务声明]　　　　　　　unalias [-a] 名称 [名称 ...]

for名称 [in词语 ...] ; do命令; done　unset [-f] [-v] [名称 ...]

for ((表达式1;表达式2;表达式3)); >　until 命令; do命令; done

function名称 {命令 ; }或 name () {命>　variables - 一些 Shell变量的名称和▒>

getopts选项字符串名称 [参数]　　wait [编号]

hash [-lr] [-p 路径名] [-dt] [名称 ...]　while命令; do命令; done

help [-dms] [模式 ...]　　　　　{ 命令 ; }

3．文件查找命令

和find命令不同，whereis命令用来定位可执行文件、源代码文件、帮助文件在文件系统中的位置。例如，最常用的ls命令在/bin目录中。如果希望知道某个命令在哪一个目录中，可以用whereis命令来查询。该命令的使用方式如下。

whereis [选项] 命令名

whereis命令的常用选项说明如表1.20所示。

 表1.20 whereis命令选项说明

 [image: figure_0053_0027]

【例1.19】是一个使用whereis命令来查找“ls”命令位置的应用实例。

【例1.19】whereis查找命令应用实例。

alloeat@Ubuntu:～/Exammkdir$ whereis ls

ls: /bin/ls /usr/share/man/man1/ls.1.gz

4．切换当前用户命令

Linux是一种多用户操作系统，如果所有用户共享一个账号，会造成许多麻烦。因此在 Linux 中每个用户都有自己的账号，各个用户的账号可以根据需要分配不同的权限。Linux提供了与之相关的用户操作命令。

su命令用来切换用户身份，该命令的使用方式如下。

su [选项] user

除root外，其他用户切换身份时，需输入密码。su命令的常用选项说明如表1.21所示。

 表1.21 su命令选项说明

 [image: figure_0053_0028]

 续表

 [image: figure_0054_0029]

sudo命令用来以系统管理员的身份执行指令，该命令的使用方式如下。

sudo [选项] 命令

以系统管理者的身份执行指令，也就是说，经由 sudo 所执行的指令就好像是 root 亲自执行。sudo命令的常用选项说明如表1.22所示。

 表1.22 sudo命令选项说明

 [image: figure_0054_0030]

【例1.20】是一个使用sudo命令来切换当前用户的实例。

【例1.20】使用sudo命令切换当前用户的应用实例。

alloeat@Ubuntu:～/Exammkdir$ sudo -s

[sudo] password for alloeat:

root@Ubuntu:～/Exammkdir#

5．关机和重启命令

由于Linux是多用户、多任务的操作系统，因此在切断计算机电源之前，必须先关闭Linux系统。决不能不执行关机进程就切断计算机电源，这样做会导致保存在内存缓冲区的磁盘数据来不及写回磁盘，从而破坏文件系统。本节介绍一下与关机和重启计算机有关的命令。

shutdown 命令可以安全地关闭或重启 Linux 系统，它在系统关闭之前给系统上的所有登录用户提示一条警告信息。该命令还允许用户指定一个时间参数，可以是一个精确的时间，也可以是从现在开始的一个时间段。精确时间的格式是hh:mm，表示小时和分钟；时间段由“+”和分钟数表示。系统执行该命令后，会自动进行数据同步工作。该命令使用方式如下。

shutdown [选项] [时间] [警告信息]

shutdown命令的常用选项说明如表1.23所示。

 表1.23 shutdown命令选项说明

 [image: figure_0055_0031]

注意：关机命令需要root权限。

halt 是最简单的关机命令，其实际上是调用 shutdown -h 命令。执行 halt 时，杀死应用进程，文件系统写操作完成后就会停止内核。该命令的使用方式如下。

halt [选项]

halt命令的常用选项说明如表1.24所示。

 表1.24 halt命令选项说明

 [image: figure_0055_0032]

注意：halt命令同样需要超级用户权限。

reboot命令用来重新启动计算机。该命令的使用方式如下。

reboot [选项]

reboot命令的常用选项说明如表1.25所示。

 表1.25 reboot命令选项说明

 [image: figure_0056_0033]

第2章 在Linux中编写C语言代码

Linux作为一个操作系统，一项重要的功能就是要支持用户编程。传统的UNIX下的程序开发语言是C语言，C语言是一种平台适应性强、易于移植的语言。Linux是用C语言写成的。反过来，Linux又为C语言提供了很好的支持，C语言编译工具gcc、调试工具gdb属于最早开发出来的一批自由软件。因此Linux与C语言形成了完美的结合，为用户提供了一个强大的编程环境，本章将介绍在Linux中编写C语言程序的流程和具体方法。

2.1 Linux中C语言程序开发流程和工具介绍

2.1.1 C语言程序开发流程

在Linux中开发一个C语言应用程序的流程如图2.1所示，其中每个环节的详细说明如下。

● 需求分析，算法设计。先根据应用代码要实现的功能进行需求分析，并且根据需求设计出相应的算法。

● 程序代码编辑。在文本编辑器中输入 C 程序源代码并保存。

● 编译。把源程序编译成目标程序，并且检查其中的语法错误，如果其中有语法错误，则需要返回修改程序代码，然后再次编译。

● 功能逻辑调试。语法没有错误并不代表程序代码就没有错误，此时的代码并不一定能实现预先设定的功能，必须进行相应的功能逻辑测试，以确定达到了预定的目标，此时可能会借助一些调试工具或者调试手段。如果没能达到预期的目标则需要返回程序代码编辑阶段修改代码。

● 链接并生成可执行文件。在确定代码编写已经没有问题之后，需要通过链接生成对应的可执行文件。

 [image: figure_0058_0034]

 图2.1 Linux 中的C语言程序开发流程

2.1.2 C语言的开发工具

Linux 为软件开发者提供了强大的 C 语言开发环境和丰富的开发维护工具，熟悉并掌握这些工具是进行 Linux 平台软件开发的必要条件。

● 编辑工具。Linux 系统提供了许多文本编辑程序，比较常用的有vim和emacs 等。此外，本书所介绍的Ubuntu等发行版，还自带了gedit等编辑器，它们都可以用来编辑C语言源程序。

● 编译工具。Linux带有功能强大的符合ANSI C标准的编译系统gcc，利用gcc可以编译C/C++语言源程序。

● 调试工具。利用 Linux 带的调试工具 gdb，可以调试C语言程序。

● 维护工具。make 程序可以对程序源文件进行有效的管理。

● 集成开发环境（IDE）。如果读者在 Windows 系统中做过开发，则一定不会对 IDE 感到陌生。在 Linux下也有许多 IDE 可以用来开发 C 程序，如CodeBlocks、CodeLite、Anjuta、Eclipse 等。其中CodeBlocks、CodeLite 与 Windows 系统中的 VisualStudio界面非常类似，比较容易上手。

Linux还提供了其他一些可以用于辅助设计和调试的工具，读者可以仔细研究。

2.2 Linux中的C语言编译器gcc

gcc（GNU C Compiler）是 GNU 推出的功能强大、性能优越的多平台编译器，使用gcc可以编译C和C++源代码，编译出的目标代码质量非常好，编译速度也很快。本节主要讨论gcc的安装与使用方法。

2.2.1 gcc的安装

在 Ubuntu 12.04 中，gcc 是已安装好的，但是其还缺少常用的头文件和库文件，所以还需要安装build-essential这个包，可以在联网状态下使用如下命令来安装这个包。

$ sudo apt-get install build-essential

其中，apt-get是Ubuntu中的软件管理命令，它可以安装、删除、更新系统中的软件包。Install是安装软件包，build-essential是待安装的软件包名称。由于安装软件需要root权限，因此系统会提示输入密码。在输入密码后，系统会自动安装编译所需要的相关文件。系统在安装build-essential时，会把程序文件放入以下几个目录。

● /usr/lib。大部分的编译程序放在这个目录。在这里由编译时需要的可执行程序，还有一些特定版本的库文件与头文件等。

● /usr/bin/gcc。指的是编译程序，即实际在命令行中执行的程序。这个目录可供各个版本的gcc使用，只要用不同的编译程序目录来安装就可以。

● /usr/include。这个目录及其子目录中包含程序所需要的头文件。缺少头文件，gcc在编译时会出现找不到头文件的错误。

在安装完成之后，可以使用“gcc-v”命令来查看gcc的版本号。

alloeat@Ubuntu:～$ gcc –v

使用内建 specs。

COLLECT_GCC=gcc

COLLECT_LTO_WRAPPER=/usr/lib/gcc/i686-linux-gnu/4.6/lto-wrapper

目标：i686-linux-gnu

配置为：../src/configure　--v　--with-pkgversion=’Ubuntu/Linaro　4.6.3-1Ubuntu5’

--with-bugurl=file:///usr/share/doc/gcc-4.6/README.Bugs

--enable-languages=c,c++,fortran,objc,obj-c++　--prefix=/usr　--program-suffix=-4.6

--enable-shared　--enable-linker-build-id　--with-system-zlib　--libexecdir=/usr/lib

--without-included-gettext　　　　　　　　　--enable-threads=posix

--with-gxx-include-dir=/usr/include/c++/4.6　　--libdir=/usr/lib　　--enable-nls

--with-sysroot=/　　　--enable-clocale=gnu　　　--enable-libstdcxx-debug

--enable-libstdcxx-time=yes--enable-gnu-unique-object --enable-plugin --enable-objc-gc

--enable-targets=all　--disable-werror　--with-arch-32=i686　--with-tune=generic

--enable-checking=release　　--build=i686-linux-gnu　　-–host=i686-linux-gnu

--target=i686-linux-gnu

线程模型：posix

gcc版本 4.6.3 (Ubuntu/Linaro 4.6.3-1Ubuntu5)

注意：由于gcc仍然处于不断完善与更新之中，每隔几个月就会有新的稳定发行版本产生，用户可以通过访问http://www.gnu.org/software/gcc/来了解gcc的最近发展，下载最新的软件套件。

2.2.2 gcc的使用

gcc对C语言的处理需要经过如下4个步骤。

● 预处理。这—步需要分析各种命令，如#define、#include、#if 等。Gcc 调用 cpp程序来进行预处理工作。

● 编译。这一阶段根据输入文件产生汇编语言。由于通常是立即调用汇编程序，所以其输出一般不保存在文件中。Gcc调用ccl进行编译工作。

● 汇编。这一步将汇编语言用作输入，产生具有.o 扩展名的目标文件。Gcc 调用 as进行汇编工作。

● 链接。这一阶段中，各目标文件被放在可执行文件的适当位置上，该程序引用的函数也放在可执行文件中（对使用共享库的程序稍有不同）。Gcc 调用链接程序1d来完成最终的任务。

和大多数shell命令一样，gcc的基本使用方式如下。

gcc [选项] 文件名

gcc可以通过选项对程序的生成进行全面控制，每个选项可以有多种取值，在此只对其中常用部分进行介绍，其余的参数可以参考gcc手册或其他专门资料。Gcc的常用选项如表2.1所示。

 表2.1 gcc常用选项说明

 [image: figure_0060_0035]

 续表

 [image: figure_0061_0036]

gcc的命令选项可以组合使用，不过在使用时，每个命令选项都要有一个自己的连字符“-”。如果采用简写的方式，很可能使命令的含义完全不同。

在Linux下生成的可执行文件没有固定的扩展名。任何符合Linux要求的文件名，只要文件的访问属性中有可以执行的属性，该文件就是可以执行的。因此，在使用上面介绍的-o filename 参数时，如果是生成链接后的可执行文件，filename 变量可以取任意一个符合Linux要求的文件名。

gcc命令中的第2部分是一个输入给gcc命令的文件。gcc按照命令选项的要求对输入文件进行处理，形成结果输出文件。输入的文件不一定是 C 的源代码文件，还可能是预处理文件、目标文件等。如何确定输入文件的类型，gcc是通过输入文件的扩展名来确定的。表2.2是gcc与C相关的输入文件扩展名命名规范。

 表2.2 gcc文件扩展名规范

 [image: figure_0061_0037]

【例2.1】gcc编译器应用实例1。

【例2.1】是使用gcc来对一个C语言文件进行编译的应用实例，这个C语言文件被命名为ExamHello.c，使用cat命令可以查看该文件的内容：

alloeat@Ubuntu:～/chapter2Exam$ cat -n Examhello.c

1　#include　<stdio.h>

2

3　int main(void)

4　{

5　printf("This is a gcc test!\n");

6　return 0;

7　}

此时可以使用gcc命令对这个文件进行编译，然后运行。

alloeat@Ubuntu:～/chapter2Exam$ gcc Examhello.c -o Examhello

alloeat@Ubuntu:～/chapter2Exam$./Examhello

This is a gcc test!

在实际的开发过程中经常遇到应用代码比较复杂的情况，此时通常采用将主函数和其他函数放在不同文件中的方法。除了主程序之外，每个函数都由函数声明（函数头）和函数实现（函数体）两部分组成。函数的声明一般放在头文件（.h）中，而函数的定义文件放在实现文件中（.c）。gcc可以很容易地把多个源文件编译成目标代码并链接起来，如【例2.2】所示。

【例2.2】gcc编译器应用实例2。

这是使用另外一个C语言文件来存放输出函数的实例，在当前工作目录下建立一个C语言文件，其内容如下。

alloeat@Ubuntu:～/chapter2Exam$ cat -n Examhellosun.c

1　#include <stdio.h>

2

3　void sunprintf(void)

4　{

5　printf("this is a test from anthor .c!/n");

6　}

然后建立一个.h头文件，其内容如下。

alloeat@Ubuntu:～/chapter2Exam$ cat -n Examhello.h

1

2 void sunprintf(void);

在Examhello.c文件声明对应的头文件。

alloeat@Ubuntu:～/chapter2Exam$ cat -n Examhello.c

1 #include <stdio.h>

2　#include "Examhello.h"

3

4　int main(void)

5　{

6　printf("This is a gcc test!\n");

7　return 0;

8　}

9

可以使用如下的命令来对这两个C语言文件进行编译。

alloeat@Ubuntu:～/chapter2Exam$ gcc Examhello.c Examhellosun.c -o Examhello

2.3 Linux中的代码编辑器vim

在Linux中开发C语言应用代码，首先需要编写源代码，此时需要一个代码编辑器，在Linux中最常见的代码编辑器包括vimm、emacs、gedit等。

注意：代码编辑器的实质就是一个文本编辑器，只不过增加了一些代码编辑的辅助功能，例如关键字高亮，补齐等。

本书采用vimm作为代码编辑器，它是vim的功能加强升级版，是UNIX/Linux下最基本的文本编辑器，工作在字符模式下，由于不需要图形界面，它成为效率很高的文本编辑器。尽管在Linux上也有很多图形界面的编辑器可用，但vim在系统和服务器管理应用中的功能是那些图形编辑器所无法比拟的。

vim 是“Vimsual Interface”的简称，它在 Linux 上的地位就像 Edit 程序在 DOS 上一样。它可以执行输入、输出、删除、查找、替换、块操作等众多文本操作，而且用户可以根据自己的需要对其进行定制，这是其他编辑器所没有的。

2.3.1 启动与退出vim

在 Linux 终端命令提示符下输入 vim（或 vim 文件名），即可启动 vim 编辑器。

vimm filename

或者

vimm

按Enter键执行该命令，系统便会自动打开文件名为filename参数指定的文件的vimm编辑界面，其初始界面如图2.2所示，它也可以通过在 X Windows 下的相应操作来打开一个图形化的操作界面。

 [image: figure_0064_0038]

 图2.2 vimm的操作界面

当使用“vimm文件名”形式的命令时，若进行编辑的是当前工作目录下已存在的文件，启动vimm后便可看到该文件中的内容；若是当前目录下不存在的文件，则系统首先创建该文件，再使用vimm进行编辑。

要退出vimm，必须先按Esc键回到命令行模式，然后键入“：”，此时光标会停留在最下面一行（底行模式），再键入“q”，最后按下Enter键即可退出。

vimm 拥有三种工作模式：命令行模式（command mode）、插入模式（input mode）与底行模式（last line mode）。三种模式下的功能可描述如下。

● 命令行模式：也叫做“普通模式”，它是启动 vim 编辑器后的初始模式。在该模式下，主要是使用隐式命令（命令不显示）来实现光标的移动、复制、粘贴、删除等操作。但是在该模式下，编辑器并不接受用户从键盘输入的任何字符来作为文档的编辑内容。

● 插入模式：在该模式下，用户输入的任何字符都被认为是编辑到某一个文件的内容，并直接显示在vim的文本编辑区。

● 底行模式：在该模式下，用户输入的任何字符都会在 vim 的最下面一行显示，按Enter键后便会执行该命令。

使用vim编辑器，首先必须能够熟练掌握各种工作模式下的功能，以及各种工作模式间的切换，图2.3所示为vim三种工作模式间的切换方法。

 [image: figure_0065_0039]

 图2.3 vim三种工作模式间的切换

从图2.2中可以看到，命令行模式是vim编辑器的初始模式，从该模式下可以实现到任何模式的切换。而插入模式和底行模式之间不能相互切换，因为在插入模式下，任何输入的字符都被认为是编辑到某一个文件的内容，而不是命令；而在底行模式下，任何输入的字符都被看作是底行命令（尽管可能是不合法的），二者都必须先通过命令行模式才能进入对方，即需要先按Esc键回到初始模式。

下面向读者介绍各种工作模式下的常用命令。

2.3.2 vim的命令行模式

命令行模式是进入vim后的初始模式，在该模式下主要是使用方向键来移动光标的位置，并通过相应的命令来进行文字的编辑。在插入模式下按Esc键，或是在底行模式下按Esc键，或是在底行模式下执行了错误的命令，vim都会自动回到命令行模式。本节介绍命令行模式中常用的操作命令，由于这些命令比较多，在此仅做简单介绍，用户在使用时也可以查阅帮助文档。

1．移动光标

在命令行模式下，一般通过使用上、下、左、右4个方向键来移动光标的位置。但是在有些情况下，例如使用telnet远程登录时，方向键就不能使用，必须用命令行模式下的光标移动命令。这些命令及作用如表2.3所示。

 表2.3 移动光标的常用命令

 [image: figure_0066_0040]

2．复制和粘贴

复制和粘贴是在编辑文档时最常用的操作之一，可以大大节约用户重复输入的时间。vim的命令行模式下常用的复制和粘贴命令如表2.4所示。

 表2.4 复制粘贴的常用命令

 [image: figure_0067_0041]

3．删除

vim编辑器中的删除操作可以是一次删除一个字符，也可以是一次删除多个字符，或者整行字符，vim命令行模式常用的删除命令如表2.5所示。

 表2.5 删除文本的常用命令

 [image: figure_0067_0042]

4. 其他命令

命令行模式下其他常用的命令包括字符替换、撤销操作、符号匹配等命令，这些也是在使用vim时经常遇到的命令，其操作说明如表2.6所示。

 表2.6 其他常用命令

 [image: figure_0068_0043]

2.3.3 vim的插入模式

插入模式是vim编辑器最简单的模式，因为在此模式下没有那些繁琐的命令，用户从键盘输入的任何有效字符都被看作是写进当前正在编辑的文件中的内容，并显示在vim的文本编辑区。

也就是说，只有在插入模式下，才可以进行文字的输入操作。表2.7所示为从命令行模式切换至插入模式的几个常用命令。当在插入模式下时，可以按Esc键回到命令行模式。

 表2.7 命令行模式切换至插入模式的命令

 [image: figure_0068_0044]

2.3.4 vim的底行模式

vim 的底行模式也叫“最后行模式”，是指可以在界面最底部的一行输入控制操作命令，主要用来进行一些文字编辑的辅助功能，例如字串搜寻、替代、保存文件以及退出vim 等。不同于命令行模式，底行模式下输入的命令都会在最底部的一行中显示，按下Enter键vim便会执行底行的命令了。

在命令行模式下输入冒号“：”，或者是使用“？”和“/”键，就可以进入底行模式了。比起命令行模式的诸多操作命令，底行模式的操作命令就少多了，如表2.8所示。

 表2.8 底行模式下的常用命令

 [image: figure_0069_0045]

2.3.5 vim的应用实例

这是一个使用vim编写【例2.1】中应用代码的实例，其详细操作步骤如下。

（1）使用下列命令打开或者创造一个名为Examhello.c的文件，进入如图2.4所示的编辑状态。

alloeat@Ubuntu:～/chapter2Exam$ vim Examhello.c

 [image: figure_0070_0046]

 图2.4 开始编辑状态

（2）按下a，进入编辑模式，输入如【例2.1】所示的代码，如图2.5所示。

 [image: figure_0070_0047]

 图2.5 编辑状态

（3）按Esc键结束编辑，然后使用“;”快捷键进入底行模式，输入“wq”保存文件并且退出。

此时完成了文件的编辑，即可以调用gcc对文件进行编译。

注意：在gcc编译过程中，其错误会定义到具体的行号，为了方便查找错误对应的行，可以在底行模式使用“set nu”命令在每一行前添加行号，如图2.6所示。

 [image: figure_0071_0048]

 图2.6 添加行号

2.4 Linux中的调试环境gdb

从图2.1中可以看到，在实际开发过程中，程序除了语法正确之外，还必须符合设计者的逻辑意图。如果结果不正确，则可以通过相应的调试环境来跟踪调试，本小节将介绍Linux中最常用的gdb调试环境。

Linux包含了一个gdb的调试程序，gdb是一个用来调试C程序的强大的调试器，它使程序员能在程序运行时观察程序的内部结构和内存的使用情况。gdb提供了以下一些功能。

● 监视程序中变量的值。

● 设置断点以使程序在指定的代码行上停止执行。

● 一行行地执行代码。

在命令行上键入gdb并按回车键就可以运行gdb了。如果一切正常，gdb将被启动并且在屏幕上会看到类似如下的内容。

alloeat@Ubuntu:～/chapter2Exam$ gdb

GNU gdb (Ubuntu/Linaro 7.4-2012.04-0Ubuntu2) 7.4-2012.04

Copyright (C) 2012 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>

This is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law. Type "show copying"

and "show warranty" for details.

This GDB was configured as "i686-linux-gnu".

For bug reporting instructions, please see:

<http://bugs.launchpad.net/gdb-linaro/>.

(gdb)

2.4.1 gdb功能简介

gdb是功能强大的调试器，支持的调试命令非常丰富，可以实现不同的功能。这些命令包括从文件装入的简单命令到允许检查所调用的堆栈内容的复杂命令。表2.9列出了使用gdb调试时会用到的一些命令。如果想了解gdb的详细使用，可以参考gdb的帮助文档。

 表2.9 gdb的基本命令

 [image: figure_0072_0049]

2.4.2 gdb的调用

通常来说，调用gdb只需要使用一个参数。

gdb <可执行程序名>

如果程序运行时产生了段错误，会在当前目录下产生核心内存映象 core 文件，可以在指定执行文件的同时为可执行程序指定一个core文件。

gdb <可执行文件名> core

除此之外，还可以为要执行的文件指定一个进程号。

gdb <可执行文件名> <进程号>

【例2.3】gcc编译器应用实例1。

【例2.3】是一个使用gdb来为【例2.1】指定进程号的应用实例。

alloeat@Ubuntu:～/chapter2Exam$ gdb Examhello 2000

GNU gdb (Ubuntu/Linaro 7.4-2012.04-0Ubuntu2) 7.4-2012.04

Copyright (C) 2012 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>

This is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law. Type "show copying"

and "show warranty" for details.

This GDB was configured as "i686-linux-gnu".

For bug reporting instructions, please see:

<http://bugs.launchpad.net/gdb-linaro/>...

Reading symbols from /home/alloeat/chapter2Exam/Examhello...(no debugging symbolsfound)...done.

Attaching to program: /home/alloeat/chapter2Exam/Examhello, process 2000

ptrace: 没有那个进程.

/home/alloeat/chapter2Exam/2000: 没有那个文件或目录

(gdb)

首先，gdb 会寻找一个文件名为 2000 的文件，如果找不到，则把调试程序的进程号设成2000。

当gdb运行时，把任何一个不带选项前缀的参数都作为一个可执行文件或core文件，或者要与被调试的程序相关联的进程号。不带任何选项前缀的参数和前面加了-se或-c选项的参数效果一样。gdb 把第一个前面没有选项说明的参数看作前面加了-se 选项，也就是需要调试的可执行文件，并从此文件里读取符号表。如果有第二个前面没有选项说明的参数，将被看作是跟在-c选项后面，也就是需要调试的core文件名。

如果不希望看到gdb开始的提示信息，可以用gdb--silent执行调试工作，通过更多的选项，开发者可以按自己的喜好定制gdb的行为。

输入gdb--help或-h可以得到gdb启动时的所有选项提示。gdb命令行中的所有参数都被按照排列的顺序传给gdb，除非使用了-x参数。

gdb的许多选项都可以用缩写形式代表，可以用-h查看相关缩写。在gdb中也可以采取任意长度的字符串代表选项，只要保证gdb能唯一地识别此参数就行。

表2.10列出了gdb一些最常用的参数选项。

 表2.10 gdb常用的参数选项

 [image: figure_0074_0050]

2.4.3 gdb运行模式的选择

可以用许多模式来运行 gdb，例如，采用“批模式”或“安静模式”。这些模式都是在gdb运行时在命令行中通过选项来指定的。

表2.11列出了gdb运行模式的相关选项。

 表2.11 gdb运行模式选项

 [image: figure_0074_0051]

2.4.4 gdb应用实例

下面是一个使用gdb对【例2.1】生成的代码进行进行调试的应用实例。

（1）运行“gdb+待调试的可执行文件名称”命令来启动调试，如图2.7所示。

 [image: figure_0075_0052]

 图2.7 开始调试

（2）使用“b”快捷键在程序开始处设置断点，然后使用“run”开始调试，如图2.8所示。

 [image: figure_0075_0053]

 图2.8 启动程序调试

（3）使用“n”进行下一条语句执行，其间还可以使用其他命令来观察相应的变量运行情况。
第3章 Linux编程进阶

在Linux操作系统中进行C语言编程，必须对Linux系统有足够的了解，包括代码的运行机制、内存的分配机制、系统调用和库函数等，本章将介绍这些基础知识。

3.1 Linux如何执行一个程序

Linux中的程序是一个在磁盘上的可执行文件，内核调用exec函数先将这个可执行文件调入存储器中，然后执行它。这个程序的执行实例被称为进程，在Linux中每个进程都对应一个唯一的非负数字标识符，称为进程ID。

对于一个进程而言，有8种方式可以使得其终止，具体说明如下。

● 从 main 函数中使用 return 语句返回。

● 调用 exit 函数终止进程。

● 调用_exit 或者_Exit 函数终止进程。

● 最后一个线程从其启动例程返回。

● 最后一个线程调用了 pthread_exit 函数。

● 调用 abort 函数。

● 接到一个信号并且终止。

● 最后一个线程对取消请求作出了响应。

这些方式的前5种为正常终止一个进程，后3种是异常终止，图3.1是Linux操作系统启动和终止一个应用程序的示意。

总之，在Linux操作系统中，内核使程序执行的唯一方法是调用一个exec函数，进程自愿终止的唯一方法是显式或者隐式地调用_exit 或者_Exit，又或者使用一个外部信号来使得该进程终止。

通常来说，在Linux中运行一个用户自行设计的可执行文件的流程可以简单用图3.2来表示。

 [image: figure_0077_0054]

 图3.1 Linux 中启动和终止应用程序示意图

 [image: figure_0077_0055]

 图3.2 用户程序的运行过程

3.2 Linux的程序存储空间

首先需要明确的是，本小节所讨论的程序空间是指用户的 C 语言代码编译生成的可执行文件，而不是C语言源代码。

这些可执行文件的存储空间可以分为如下几个部分。

● 正文段。存放了处理器执行的机器指令，通常来说，正文段是可以共享的，所以包括Shell、gcc在内的程序在存储器中只需有一个副本。通常来说正文段也是只读的，这是为了防止程序的可执行代码被意外修改。

● 初始化数据段。初始化数据段通常又被称为数据段，其包含了程序中需要进行初始化的变量值。例如，如下的变量声明。

int counter = 0;

//counter被初始化为0，然后存放在初始化数据段中

//通常来说这些变量会是全局变量

//因为非全局变量会在调用时候再分配空间并进行初始化

● 非初始化数据段。非初始化数据段是和初始化数据段对应的，用来存放不需要初始化（其实是被自动初始化为0或者空指针）的变量，这个段又被称为BSS段。

● 栈。这个段用于存放自动变量以及每次函数调用时需要保存的信息。

● 堆。用于动态存储分配，这个段位于非初始化数据段和栈之间，在很多场合下这个段和栈一起被合称为堆栈段。

注意：对于一个可执行文件而言，其通常还有若干其他类型的段，例如，包含了符号表的段、包含了gdb调试信息的段和包含了动态共享库链接表的段等，但是这些段并不会在进程调用的时候被装入存储区中去。

在Shell命令行，可以使用size命令来查看一个可执行文件的正文段、数据段和BSS段的长度信息，其单位是字节。

alloeat@ubuntu:～/chapter3Exam$ size exam18

text　data　BSS　dec　　hex　filename

1582　264　　8　1854　　73e　exam18

图3.3是Linux中对于这些段的典型布置方式，正文段通常从0x0804800地址单元开始，而栈底则位于0xC0000000之下，从高地址向低地址方向增长。

 [image: figure_0079_0056]

 图3.3 Linux 中典型的段的分配方式

3.3 Linux C的main函数

在Linux中，C语言文件生成的可执行文件被exec调用，然后总是从main函数开始执行，第1章中所给出的main函数都是不带参数的，但是Linux下main函数的标准格式说明如下。

int main(int argc, char *argv[])

在main函数的两个参数中，argc必须是整型变量，表示命令行参数的个数；argv必须是指向字符串的指针数组，这些指针分别指向各个命令行参数。

当Linux使用exec函数来启动一个C语言文件生成的可执行文件的时候，其在调用main 函数之前，首先调用一个特殊的启动例程，并且将此启动例程指定为程序的起始位置，这个启动例程将从内核取得该可执行文件的命令行参数和环境变量值，然后传递给main函数。

当用户要运行一个可执行文件时，在Linux命令行下输入文件名，再输入实际参数即可把这些实参传送到main函数中去。

Linux命令行的一般形式如下。

可执行文件名 参数 参数……;

但是应该注意的是，main 的两个形参和命令行中的参数在位置上不是一一对应的。因为main的形参只有两个，而命令行中的参数个数原则上未加限制。argc参数表示了命令行中参数的个数（注意：可执行文件名本身也算一个参数），argc 的值是在输入命令行时由系统按实际参数的个数自动赋予的。例如，有如下命令行。

gcc hello.c -o hello

由于文件名gcc本身也算一个参数，所以共有4个参数，因此argc取得的值为4。argv参数是字符串指针数组，其各元素值为命令行中各字符串（参数均按字符串处理）的首地址。指针数组的长度即为参数个数。数组元素初值由系统自动赋予。在上面的命令中，agv数组的第1 个元素指向的字符串为“gcc”，第2 个元素指向的字符串为“hello.c”，第3个元素指向的字符串为“-o”，第4个元素指向的字符串为“hello”。

注意：main 函数的参数可以省略在应用过程中的参数输入读取步骤。例如，如果需要打开一个文件，可以直接在命令行中将文件名传递给应用代码，而不需要在应用代码中调用相应的输入代码等待用户输入。在实际使用中，如果不需要传递参数，也常常可以省略掉 main 函数的参数直接写为 int main(void)。

此外，main 函数也带有返回值，默认的返回值类型为 int，在一般的程序中，main函数的返回值类型 int 可以省略不写，返回值会直接传递给 Linxu 内核，如果 main 函数的最后没有写 return 语句，gcc 会自动在生成的目标文件中加入以下语句。

return 0;

表示程序正常退出，main 函数的返回值可以将执行的相应结果反馈给内核。例如，可以使用一个多判断语句分别返回不同的int值。

【例3.1】是一个main函数的参数应用实例，分别输出传递给main函数的参数的个数以及参数内容。

【例3.1】main函数的参数应用实例。

#include <stdio.h>

int main(int argc,char *argv[]) //第一个存放参数的个数，第二个缓冲区存放参数

{

unsigned int i=0;

printf("%d\n",argc);

for(i=0;i<argc;i++)

{

printf("%s\n",argv[i]);

}

return 0;

}

将文件保存为exam1main.c，在终端中使用gcc编译，并且带命令行运行，可以看到如下的输出结果。

alloeat@ubuntu:～/chapter3Exam$ gcc exam1main.c -o exammain

alloeat@ubuntu:～/chapter3Exam$./exammain this is a test!

5

./exammain

this

is

a

test!

其中，第一行是gcc的编译命令行，其使用-o参数将exam1main.c文件编译成一个可执行文件 exammain。然后执行，传递给 main 函数的参数字符串是“this is a test！”，这个参数字符串包括了4个字符串，然后算上可执行文件本身的字符串，所以argc的数目是5。

3.4 Linux的出错处理

在程序运行中，常常会出现各种错误，这些错误可能是在调用函数时由于逻辑问题产生的，也有可能是打开文件时发现文件不存在而产生的，所以在进行相应的设计时必须要考虑到对错误的时间的处理。在Linux中，如果调用的函数出现出错事件，往往会返回一个负值，并且此时整型变量errno常常会被设置为一个含有附加信息的值。

Linux在errno.h文件中定义了常用的错误常量，这些错误说明如下所示。

E2BIG：参数太长。

EACCES：权限不够。

EADDRINUSE：地址已经被使用。

EADDRNOTAVAIL：无效的地址。

EAFNOSUPPORT：被请求的地址不合法。

EAGAIN：临时资源不够。

EALREADY：连接已经建立。

EBADE：非法的交换。

EBADF：文件描述符不正确。

EBADFD：文件描述符状态不正确。

EBADMSG：消息出错。

EBADR：请求描述符错误。

EBADRQC：不正确的请求码。

EBADSLT：插槽错误。

EBUSY：资源/设备忙。

ECANCELED：取消操作。

ECHILD：没有子进程。

ECHRNG：通道数溢出。

ECOMM：通信中发送出错。

ECONNABORTED：连接中止。

ECONNREFUSED：拒绝连接。

ECONNRESET：连接复位。

EDEADLK：避免资源死锁。

EDEADLOCK：同步资源死锁。

EDESTADDRREQ：缺少目的地址。

EDOM：函数数学参数错误。

EDQUOT：磁盘空间超限额。

EEXIST：文件存在。

EFAULT：地址错误。

EFBIG：文件太大。

EHOSTDOWN：服务器已经关闭。

EHOSTUNREACH：不能连接到服务器。

EIDRM：移除标识符。

EILSEQ：非法的字节顺序。

EINPROGRESS：操作进程已经存在。

EINTR：中断服务字函数。

EINVAL：参数不合法。

EIO：输入/输出错误。

EISCONN：socket已经连接。

EISDIR：这是一个目录。

EISNAM：这是一个命名类型文件。

EKEYEXPIRED：密钥已经过期。

EKEYREJECTED：服务不允许使用这个密钥。EKEYREVOKED：密钥已经被停止使用。

EL2HLT：2级停机。

EL2NSYNC：2级未同步。

EL3HLT：3级停机。

EL3RST：3级重启。

ELIBACC：不能连接需要的共享库。

ELIBBAD：连接到一个不能使用的共享库。

ELIBMAX：尝试连接多个共享库。

ELIBSCN：库区域出错。

ELIBEXEC：库路径错误。

ELOOP：符号连接级别太多。

EMEDIUMTYPE：媒体类型错误。

EMFILE：尝试打开多个文件。

EMLINK：尝试多个链接。

EMSGSIZE：消息过长。

EMULTIHOP：多次尝试。

ENAMETOOLONG：文件名过长。

ENETDOWN：网络服务已经关闭。

ENETRESET：网络连接已经中止。

ENETUNREACH：没有网络连接。

ENFILE：系统中打开的文件过多。

ENOBUFS：没有足够的缓冲空间。

ENODATA：流同步没有可获得消息源。

ENODEV：没有这个设备。

ENOENT：没有这个文件或者目录。

ENOEXEC：exec格式错误。

ENOKEY：不能获得需要的密钥。

ENOLCK：不能获得必需的锁。

ENOLINK：连接错误。

ENOMEDIUM：没有媒体。

ENOMEM：空间不够。

ENOMSG：没有相应类型的消息。

ENONET：计算机没有连接到网络。

ENOPKG：包尚未安装。

ENOPROTOOPT：不支持的协议。

ENOSPC：没有多余的磁盘空间。

ENOSR：流文件没有找到源。

ENOSTR：不是流文件

ENOSYS：没有提供这个函数。

ENOTBLK：需要一个块设备。

ENOTCONN：Socket未连接。

ENOTDIR：这不是一个目录。

ENOTEMPTY：目录非空。

ENOTSOCK：不是一个 Socket（套接字）。

ENOTSUP：不支持这样的操作。

ENOTTY：不合法的I/O操作。

ENOTUNIQ：网络名称错误。

ENXIO：在对应地址没有找到设备。

EOPNOTSUPP：不支持在Socket上进行对应的操作。

EOVERFLOW：变量的数据类型不支持这么大的数据。

EPERM：不允许操作。

EPFNOSUPPORT：不支持这样的协议族。

EPIPE：管道错误。

EPROTO：协议错误。

EPROTONOSUPPORT：不支持这样的协议。

EPROTOTYPE：Socket协议类型错误。

ERANGE：结果太大。

EREMCHG：远程地址已经修改。

EREMOTE：目标不在本机。

EREMOTEIO：远程I/O错误。

ERESTART：中断服务系统需要重启。

EROFS：系统文件只读。

ESHUTDOWN：传输端点已经关闭，不能发送。

ESPIPE：不合法的查找。

ESOCKTNOSUPPORT：不支持这种Socket类型。

ESRCH：没有这种进程。

ESTALE：文件句柄过期。

ESTRPIPE：流管道错误。

ETIME：计时器耗尽。

ETIMEDOUT：连接超时。

ETXTBSY：文本文件忙。

EUCLEAN：结构需要被清除。

EUNATCH：找不到协议驱动。

EUSERS：用户太多。

EWOULDBLOCK：操作被阻塞。

EXDEV：不恰当的链接。

EXFULL：交换空间满。

在 Linux 系统中，errno 的定义如下，其可以是一个包含出错编号的整数，也可以是一个返回出错编号指针的函数。

extern int errno；

对于errno而言，其有如下两条规则。

● 如果没有出错，则 errno 的值并不会被一个例程清除，因此可以当函数返回值指明出错的时候，再去检查errno的值。

● 任何一个函数都不会把 errno 的设置为 0。

Linux使用strerror和perror函数来输出相应的出错信息，这两个函数的标准调用格式说明如下：

#include <string.h>

char *strerror(int errnum);

#include <sdtio.h>

void perror(const char *msg);

strerror 函数的返回值是一个指向消息字符串的指针，这个消息字符串即为出错信息的字符串；而peeror函数没有返回值，其输出如下。

“由 msg 指针指向的字符串”+ “：”+“ ”+“回车换行”

【例3.2】是strerror函数和peeror函数的应用实例，其分别调用strerror函数输出一个 EACCES错误值对应的错误提示，调用 perror函数给出一个带调用执行文件名的错误提示。

【例3.2】strerror和peeror函数应用实例。

#include <string.h>'

#include <stdio.h>

#include <errno.h>

int main(int argc, char *argv[])

{

fprintf(stderr, "EACCES: %s\n", strerror(EACCES));

errno = ENOSPC;　//传递错误标号

perror(argv[0]);　//打印出错应用代码

return 0;

}

将文件保存为exam2error.c，在终端中使用gcc编译，并且带命令行运行，可以看到如下的输出。

alloeat@ubuntu:～/chapter3Exam$ gcc exam2error.c -o examerror

alloeat@ubuntu:～/chapter3Exam$./examerror

EACCES: Permission denied

./examerror: No space left on device

其中，第一行是gcc的编译命令行，其使用-o参数将exam2error.c文件编译成一个可执行文件examerror。然后执行，输出的第三行给出的是EACCES这个错误提示符给出的错误提示内容，而第四行则是给出了产生错误的可执行文件名称“./examerror”和对应ENOSPC的错误提示。

3.5 Linux C的标准输入和输出函数

在实际应用中，Linux的C语言代码需要和用户进行通信，此时可以使用printf函数和scanf函数，它们被称为标准输入输出函数。

3.5.1 标准输出函数printf

printf函数用于将格式化数据输出，其标准调用格式如下。

#include <stdio.h>

int printf(const char *format, ...);

其参数 format 是一个字符串，包含字符、字符序列和格式说明。其中，字符部分与字符序列按原样输出；而格式说明以%开始，格式说明使跟随的相同序号的数据按格式说明转换和输出。如果数据的数量多于格式说明，多于的数据将被忽略，如果格式说明多于数据，结果将是随机的。如果输出成功，函数的返回值为输出的字符数目，如果输出失败，则返回一个负数。

printf 函数的格式说明结构为：%_flags_width_.precision_{b|B|l|L}_type，各个部分的的说明如下。

● type 用来说明参数是字符、字符串、数字或指针，如表3.1所示。

 表3.1 printf函数的type参数

 [image: figure_0086_0057]

● b、B、l、L 用于 type 之前，说明整型 d、i、u、o、x、X 与 char 或 long 转换。

● flags 是标记，其用法如表3.2所示。

 表3.2 printf函数中flags参数的作用

 [image: figure_0087_0058]

● width 是域宽，只能是一个非负数，用来表示输出字符的最小个数，如果打印字符较少则使用空格填充，在前面加负号则表示在域中使用左对齐，加0则表示用0填充。如输出的字符个数大于域的宽度，仍然会输出全部的字符。“*”表示后续整数参数提供域的宽度，前面加b，表示后续参数是无符字符。

● precision 精度，对于不同类型意义不同，可能引起截尾或者舍入，如表3.3所示。

 表3.3 printf函数的precision精度

 [image: figure_0087_0059]

3.5.2 标准输入函数scanf

和printf函数相对，标准输入函数scanf用于用户向程序输入数据，其标注调用格式如下。

#include <stdio.h>

int scanf(const char *format, ...);

其参数结构和printf完全相同，因此可以参考上一小节，如果函数调用成功则返回指定的输入项数，若输入出错，或在任意变换前已至文件尾端则返回EOF。

3.5.3 标准输入/输出函数应用实例

【例3.3】是printf和scanf函数的应用实例，代码提示用户输入a、b两个整数，然后输出相乘的结果，接着要求输出一个字符串后输出。

【例3.3】标准输入输出函数应用实例。

#include <stdio.h>

int main(void)　//没有参数

{

int a,b,sum;

char str[30]; //存放字符串

printf("please input a,b!\n");

scanf("%d%d",&a,&b);　//输入两个整数

sum = a * b;　　　//计算乘积

printf("the sum is %d\n",sum);　//输出计算结果

printf("please input the string\n");

scanf("%s",str);

printf("the string is %s\n",str);　//打印刚刚输入的字符串

return 0;

}

将文件保存为exam3IO.c，在终端中使用gcc编译，并且带命令行运行，可以看到如下的输出结果。

alloeat@ubuntu:～/chapter3Exam$ gcc -g exam3IO.c -o examIO

alloeat@ubuntu:～/chapter3Exam$./examIO

please input a,b!

34

45

the sum is 1530

please input the string

test!

the string is test!

其中，第一行是gcc的编译命令行，使用-o参数将exam3IO.c文件编译成一个可执行文件examIO。然后执行，分别输入需要的数据并且输出。

注意：printf和scanf其实都是Linux中的标准流操作函数，不仅仅能用于和用户的交互，关于它们的进一步的说明可以参考第5章。

3.6 Linux C的内存分配

Linux操作系统提供了3个用于存储空间动态分配的函数和一个用于释放内存空间的函数，这4个函数详细说明如下。

● malloc 函数：给进程分配指定字节数的存储区，此存储中的初始值不为 0。

● calloc 函数：为指定个数的具有指定长度的对象分配存储空间，该空间中每一位都被初始化为0。

● realloc 函数：更改以前分配区的长度（可以增加，也可以减少）。当增加分配区长度时，可能需要将以前分配区的内容迁移到另外一个足够大的区域，然后在尾部提供增加的存储区，而新增加的区间内的初始化值不确定。

● free 函数：用于释放其参数指针指向的存储空间，这些空间会被送入系统的可用存储区池，可以被以上3个函数再次分配。

这4个函数的标准调用格式说明如下，3个分配函数如果调用成功，则返回一个指向分配区的非空指针，否则返回空指针，而free函数没有返回值。

#include <stdlib.h>

void *malloc(size_t size);

void *calloc(size_t nobj,size_t size);

void *realloc(void *ptr,size_t newsize);

void free(void *ptr);

内存分配函数所返回的指针一定是适当对齐的，从而使得这些存储空间可以应用于任何数据对象，并且由于其返回值均为通用指针void*，当用户使用它们的时候，通常是不需要进行类型转换的。

这3个内存分配函数中，realloc函数使得用户可以增加或者减少以前分配的内存空间的长度。例如，可以使其减少使用固定长度的数组，从而节省了内存所必须的内存空间。但是需要注意的是，其最后一个参数newsize是新分配的存储区长度，而不是分配后存储区的总长度，如果ptr指向一个空指针，则realloc函数的功能和malloc是完全相同的。

另外这3个函数通常都是通过调用sbrk系统调用来实现的，该系统调用的标准化格式说明如下。

#include <unistd.h>

int brk(void *addr);

void *sbrk(intptr_t increment);

注意：在使用完内存空间之后必须立即释放，否则可能导致内存泄漏，这是Linux系统开发中最常见的问题之一。如果以前分配的一片内存不再需要使用或无法访问，但是却并没有释放它，那么对于该进程来说，会因此导致总可用内存的减少，这时就出现了内存泄漏。

【例3.22】将会介绍内存分配函数malloc的应用实例。

3.7 Linux C的系统调用和库函数

Linux内核提供了一些内建的函数，可以用来完成一些系统级别的功能，这样的函数叫做“系统调用”，英文是 System Call。执行这些函数时需要从用户空间转换到内核空间。

系统调用的相关声明可以在 syscall.h 中找到，如下所示（基于 ubuntu 12.04）。

#define SYS__llseek __NR__llseek

#define SYS__newselect __NR__newselect

#define SYS__sysctl __NR__sysctl

#define SYS_access __NR_access

#define SYS_acct __NR_acct

#define SYS_add_key __NR_add_key

#define SYS_adjtimex __NR_adjtimex

#define SYS_afs_syscall __NR_afs_syscall

#define SYS_alarm __NR_alarm

#define SYS_bdflush __NR_bdflush

#define SYS_break __NR_break

#define SYS_brk __NR_brk

#define SYS_capget __NR_capget

#define SYS_capset __NR_capset

#define SYS_chdir __NR_chdir

#define SYS_chmod __NR_chmod

#define SYS_chown __NR_chown

#define SYS_chown32 __NR_chown32

#define SYS_chroot __NR_chroot

#define SYS_clock_adjtime __NR_clock_adjtime

#define SYS_clock_getres __NR_clock_getres

#define SYS_clock_gettime __NR_clock_gettime

#define SYS_clock_nanosleep __NR_clock_nanosleep

#define SYS_clock_settime __NR_clock_settime

#define SYS_clone __NR_clone

#define SYS_close __NR_close

#define SYS_creat __NR_creat

#define SYS_create_module __NR_create_module

#define SYS_delete_module __NR_delete_module

#define SYS_dup __NR_dup

#define SYS_dup2 __NR_dup2

#define SYS_dup3 __NR_dup3

#define SYS_epoll_create __NR_epoll_create

#define SYS_epoll_create1 __NR_epoll_create1

#define SYS_epoll_ctl __NR_epoll_ctl

#define SYS_epoll_pwait __NR_epoll_pwait

#define SYS_epoll_wait __NR_epoll_wait

#define SYS_eventfd __NR_eventfd

#define SYS_eventfd2 __NR_eventfd2

#define SYS_execve __NR_execve

#define SYS_exit __NR_exit

#define SYS_exit_group __NR_exit_group

#define SYS_faccessat __NR_faccessat

#define SYS_fadvise64 __NR_fadvise64

#define SYS_fadvise64_64 __NR_fadvise64_64

#define SYS_fallocate __NR_fallocate

#define SYS_fanotify_init __NR_fanotify_init

#define SYS_fanotify_mark __NR_fanotify_mark

#define SYS_fchdir __NR_fchdir

#define SYS_fchmod __NR_fchmod

#define SYS_fchmodat __NR_fchmodat

#define SYS_fchown __NR_fchown

#define SYS_fchown32 __NR_fchown32

#define SYS_fchownat __NR_fchownat

#define SYS_fcntl __NR_fcntl

#define SYS_fcntl64 __NR_fcntl64

#define SYS_fdatasync __NR_fdatasync

#define SYS_fgetxattr __NR_fgetxattr

#define SYS_flistxattr __NR_flistxattr

#define SYS_flock __NR_flock

#define SYS_fork __NR_fork

#define SYS_fremovexattr __NR_fremovexattr

#define SYS_fsetxattr __NR_fsetxattr

#define SYS_fstat __NR_fstat

#define SYS_fstat64 __NR_fstat64

#define SYS_fstatat64 __NR_fstatat64

#define SYS_fstatfs __NR_fstatfs

#define SYS_fstatfs64 __NR_fstatfs64

#define SYS_fsync __NR_fsync

#define SYS_ftime __NR_ftime

#define SYS_ftruncate __NR_ftruncate

#define SYS_ftruncate64 __NR_ftruncate64

#define SYS_futex __NR_futex

#define SYS_futimesat __NR_futimesat

#define SYS_get_kernel_syms __NR_get_kernel_syms

#define SYS_get_mempolicy __NR_get_mempolicy

#define SYS_get_robust_list __NR_get_robust_list

#define SYS_get_thread_area __NR_get_thread_area

#define SYS_getcpu __NR_getcpu

#define SYS_getcwd __NR_getcwd

#define SYS_getdents __NR_getdents

#define SYS_getdents64 __NR_getdents64

#define SYS_getegid __NR_getegid

#define SYS_getegid32 __NR_getegid32

#define SYS_geteuid __NR_geteuid

#define SYS_geteuid32 __NR_geteuid32

#define SYS_getgid __NR_getgid

#define SYS_getgid32 __NR_getgid32

#define SYS_getgroups __NR_getgroups

#define SYS_getgroups32 __NR_getgroups32

#define SYS_getitimer __NR_getitimer

#define SYS_getpgid __NR_getpgid

#define SYS_getpgrp __NR_getpgrp

#define SYS_getpid __NR_getpid

#define SYS_getpmsg __NR_getpmsg

#define SYS_getppid __NR_getppid

#define SYS_getpriority __NR_getpriority

#define SYS_getresgid __NR_getresgid

#define SYS_getresgid32 __NR_getresgid32

#define SYS_getresuid __NR_getresuid

#define SYS_getresuid32 __NR_getresuid32

#define SYS_getrlimit __NR_getrlimit

#define SYS_getrusage __NR_getrusage

#define SYS_getsid __NR_getsid

#define SYS_gettid __NR_gettid

#define SYS_gettimeofday __NR_gettimeofday

#define SYS_getuid __NR_getuid

#define SYS_getuid32 __NR_getuid32

#define SYS_getxattr __NR_getxattr

#define SYS_gtty __NR_gtty

#define SYS_idle __NR_idle

#define SYS_init_module __NR_init_module

#define SYS_inotify_add_watch __NR_inotify_add_watch

#define SYS_inotify_init __NR_inotify_init

#define SYS_inotify_init1 __NR_inotify_init1

#define SYS_inotify_rm_watch __NR_inotify_rm_watch

#define SYS_io_cancel __NR_io_cancel

#define SYS_io_destroy __NR_io_destroy

#define SYS_io_getevents __NR_io_getevents

#define SYS_io_setup __NR_io_setup

#define SYS_io_submit __NR_io_submit

#define SYS_ioctl __NR_ioctl

#define SYS_ioperm __NR_ioperm

#define SYS_iopl __NR_iopl

#define SYS_ioprio_get __NR_ioprio_get

#define SYS_ioprio_set __NR_ioprio_set

#define SYS_ipc __NR_ipc

#define SYS_kexec_load __NR_kexec_load

#define SYS_keyctl __NR_keyctl

#define SYS_kill __NR_kill

#define SYS_lchown __NR_lchown

#define SYS_lchown32 __NR_lchown32

#define SYS_lgetxattr __NR_lgetxattr

#define SYS_link __NR_link

#define SYS_linkat __NR_linkat

#define SYS_listxattr __NR_listxattr

#define SYS_llistxattr __NR_llistxattr

#define SYS_lock __NR_lock

#define SYS_lookup_dcookie __NR_lookup_dcookie

#define SYS_lremovexattr __NR_lremovexattr

#define SYS_lseek __NR_lseek

#define SYS_lsetxattr __NR_lsetxattr

#define SYS_lstat __NR_lstat

#define SYS_lstat64 __NR_lstat64

#define SYS_madvise __NR_madvise

#define SYS_madvise1 __NR_madvise1

#define SYS_mbind __NR_mbind

#define SYS_migrate_pages __NR_migrate_pages

#define SYS_mincore __NR_mincore

#define SYS_mkdir __NR_mkdir

#define SYS_mkdirat __NR_mkdirat

#define SYS_mknod __NR_mknod

#define SYS_mknodat __NR_mknodat

#define SYS_mlock __NR_mlock

#define SYS_mlockall __NR_mlockall

#define SYS_mmap __NR_mmap

#define SYS_mmap2 __NR_mmap2

#define SYS_modify_ldt __NR_modify_ldt

#define SYS_mount __NR_mount

#define SYS_move_pages __NR_move_pages

#define SYS_mprotect __NR_mprotect

#define SYS_mpx __NR_mpx

#define SYS_mq_getsetattr __NR_mq_getsetattr

#define SYS_mq_notify __NR_mq_notify

#define SYS_mq_open __NR_mq_open

#define SYS_mq_timedreceive __NR_mq_timedreceive

#define SYS_mq_timedsend __NR_mq_timedsend

#define SYS_mq_unlink __NR_mq_unlink

#define SYS_mremap __NR_mremap

#define SYS_msync __NR_msync

#define SYS_munlock __NR_munlock

#define SYS_munlockall __NR_munlockall

#define SYS_munmap __NR_munmap

#define SYS_name_to_handle_at __NR_name_to_handle_at

#define SYS_nanosleep __NR_nanosleep

#define SYS_nfsservctl __NR_nfsservctl

#define SYS_nice __NR_nice

#define SYS_oldfstat __NR_oldfstat

#define SYS_oldlstat __NR_oldlstat

#define SYS_oldolduname __NR_oldolduname

#define SYS_oldstat __NR_oldstat

#define SYS_olduname __NR_olduname

#define SYS_open __NR_open

#define SYS_open_by_handle_at __NR_open_by_handle_at

#define SYS_openat __NR_openat

#define SYS_pause __NR_pause

#define SYS_perf_event_open __NR_perf_event_open

#define SYS_personality __NR_personality

#define SYS_pipe __NR_pipe

#define SYS_pipe2 __NR_pipe2

#define SYS_pivot_root __NR_pivot_root

#define SYS_poll __NR_poll

#define SYS_ppoll __NR_ppoll

#define SYS_prctl __NR_prctl

#define SYS_pread64 __NR_pread64

#define SYS_preadv __NR_preadv

#define SYS_prlimit64 __NR_prlimit64

#define SYS_process_vm_readv __NR_process_vm_readv

#define SYS_process_vm_writev __NR_process_vm_writev

#define SYS_prof __NR_prof

#define SYS_profil __NR_profil

#define SYS_pselect6 __NR_pselect6

#define SYS_ptrace __NR_ptrace

#define SYS_putpmsg __NR_putpmsg

#define SYS_pwrite64 __NR_pwrite64

#define SYS_pwritev __NR_pwritev

#define SYS_query_module __NR_query_module

#define SYS_quotactl __NR_quotactl

#define SYS_read __NR_read

#define SYS_readahead __NR_readahead

#define SYS_readdir __NR_readdir

#define SYS_readlink __NR_readlink

#define SYS_readlinkat __NR_readlinkat

#define SYS_readv __NR_readv

#define SYS_reboot __NR_reboot

#define SYS_recvmmsg __NR_recvmmsg

#define SYS_remap_file_pages __NR_remap_file_pages

#define SYS_removexattr __NR_removexattr

#define SYS_rename __NR_rename

#define SYS_renameat __NR_renameat

#define SYS_request_key __NR_request_key

#define SYS_restart_syscall __NR_restart_syscall

#define SYS_rmdir __NR_rmdir

#define SYS_rt_sigaction __NR_rt_sigaction

#define SYS_rt_sigpending __NR_rt_sigpending

#define SYS_rt_sigprocmask __NR_rt_sigprocmask

#define SYS_rt_sigqueueinfo __NR_rt_sigqueueinfo

#define SYS_rt_sigreturn __NR_rt_sigreturn

#define SYS_rt_sigsuspend __NR_rt_sigsuspend

#define SYS_rt_sigtimedwait __NR_rt_sigtimedwait

#define SYS_rt_tgsigqueueinfo __NR_rt_tgsigqueueinfo

#define SYS_sched_get_priority_max __NR_sched_get_priority_max

#define SYS_sched_get_priority_min __NR_sched_get_priority_min

#define SYS_sched_getaffinity __NR_sched_getaffinity

#define SYS_sched_getparam __NR_sched_getparam

#define SYS_sched_getscheduler __NR_sched_getscheduler

#define SYS_sched_rr_get_interval __NR_sched_rr_get_interval

#define SYS_sched_setaffinity __NR_sched_setaffinity

#define SYS_sched_setparam __NR_sched_setparam

#define SYS_sched_setscheduler __NR_sched_setscheduler

#define SYS_sched_yield __NR_sched_yield

#define SYS_select __NR_select

#define SYS_sendfile __NR_sendfile

#define SYS_sendfile64 __NR_sendfile64

#define SYS_sendmmsg __NR_sendmmsg

#define SYS_set_mempolicy __NR_set_mempolicy

#define SYS_set_robust_list __NR_set_robust_list

#define SYS_set_thread_area __NR_set_thread_area

#define SYS_set_tid_address __NR_set_tid_address

#define SYS_setdomainname __NR_setdomainname

#define SYS_setfsgid __NR_setfsgid

#define SYS_setfsgid32 __NR_setfsgid32

#define SYS_setfsuid __NR_setfsuid

#define SYS_setfsuid32 __NR_setfsuid32

#define SYS_setgid __NR_setgid

#define SYS_setgid32 __NR_setgid32

#define SYS_setgroups __NR_setgroups

#define SYS_setgroups32 __NR_setgroups32

#define SYS_sethostname __NR_sethostname

#define SYS_setitimer __NR_setitimer

#define SYS_setns __NR_setns

#define SYS_setpgid __NR_setpgid

#define SYS_setpriority __NR_setpriority

#define SYS_setregid __NR_setregid

#define SYS_setregid32 __NR_setregid32

#define SYS_setresgid __NR_setresgid

#define SYS_setresgid32 __NR_setresgid32

#define SYS_setresuid __NR_setresuid

#define SYS_setresuid32 __NR_setresuid32

#define SYS_setreuid __NR_setreuid

#define SYS_setreuid32 __NR_setreuid32

#define SYS_setrlimit __NR_setrlimit

#define SYS_setsid __NR_setsid

#define SYS_settimeofday __NR_settimeofday

#define SYS_setuid __NR_setuid

#define SYS_setuid32 __NR_setuid32

#define SYS_setxattr __NR_setxattr

#define SYS_sgetmask __NR_sgetmask

#define SYS_sigaction __NR_sigaction

#define SYS_sigaltstack __NR_sigaltstack

#define SYS_signal __NR_signal

#define SYS_signalfd __NR_signalfd

#define SYS_signalfd4 __NR_signalfd4

#define SYS_sigpending __NR_sigpending

#define SYS_sigprocmask __NR_sigprocmask

#define SYS_sigreturn __NR_sigreturn

#define SYS_sigsuspend __NR_sigsuspend

#define SYS_socketcall __NR_socketcall

#define SYS_splice __NR_splice

#define SYS_ssetmask __NR_ssetmask

#define SYS_stat __NR_stat

#define SYS_stat64 __NR_stat64

#define SYS_statfs __NR_statfs

#define SYS_statfs64 __NR_statfs64

#define SYS_stime __NR_stime

#define SYS_stty __NR_stty

#define SYS_swapoff __NR_swapoff

#define SYS_swapon __NR_swapon

#define SYS_symlink __NR_symlink

#define SYS_symlinkat __NR_symlinkat

#define SYS_sync __NR_sync

#define SYS_sync_file_range __NR_sync_file_range

#define SYS_syncfs __NR_syncfs

#define SYS_sysfs __NR_sysfs

#define SYS_sysinfo __NR_sysinfo

#define SYS_syslog __NR_syslog

#define SYS_tee __NR_tee

#define SYS_tgkill __NR_tgkill

#define SYS_time __NR_time

#define SYS_timer_create __NR_timer_create

#define SYS_timer_delete __NR_timer_delete

#define SYS_timer_getoverrun __NR_timer_getoverrun

#define SYS_timer_gettime __NR_timer_gettime

#define SYS_timer_settime __NR_timer_settime

#define SYS_timerfd_create __NR_timerfd_create

#define SYS_timerfd_gettime __NR_timerfd_gettime

#define SYS_timerfd_settime __NR_timerfd_settime

#define SYS_times __NR_times

#define SYS_tkill __NR_tkill

#define SYS_truncate __NR_truncate

#define SYS_truncate64 __NR_truncate64

#define SYS_ugetrlimit __NR_ugetrlimit

#define SYS_ulimit __NR_ulimit

#define SYS_umask __NR_umask

#define SYS_umount __NR_umount

#define SYS_umount2 __NR_umount2

#define SYS_uname __NR_uname

#define SYS_unlink __NR_unlink

#define SYS_unlinkat __NR_unlinkat

#define SYS_unshare __NR_unshare

#define SYS_uselib __NR_uselib

#define SYS_ustat __NR_ustat

#define SYS_utime __NR_utime

#define SYS_utimensat __NR_utimensat

#define SYS_utimes __NR_utimes

#define SYS_vfork __NR_vfork

#define SYS_vhangup __NR_vhangup

#define SYS_vm86 __NR_vm86

#define SYS_vm86old __NR_vm86old

#define SYS_vmsplice __NR_vmsplice

#define SYS_vserver __NR_vserver

#define SYS_wait4 __NR_wait4

#define SYS_waitid __NR_waitid

#define SYS_waitpid __NR_waitpid

#define SYS_write __NR_write

#define SYS_writev __NR_writev

这些系统调用都对应一个具体的数字，Liunx内核通过位于0x80中断来管理这些系统调用，而这些系统调用对应的数字和相应的参数都在被调用的时候送到对应寄存器里。

注意：系统调用的数字实际上是一个序列号，表示其在系统中的数组sys_call_table[]中的位置。

在具体的使用中，Liunx为这些系统调用在标准C函数库中设置了一个具有相同名字的函数，用户可以通过相应的调用方法来对这些函数进行调用，然后该函数使用系统所需要的技术调用相应的内核服务。所以从应用角度上来说，可以将这些系统调用看做 C 语言函数。

另外，Linux还提供了一些通用库函数供用户调用，但是虽然这些函数可以调用一个或者多个内核的系统调用，但是它们并不是内核的入口点，例如atoi函数等。

从操作系统的角度来看，系统调用和库函数的实现方法有重大的区别，但是从用户（Linux 下 C 程序员）的角度来看它们是一样的。在很多实际应用中，应用程序会调用系统调用或者库函数，而库函数又会调用系统调用，如图3.4所示。

 [image: figure_0098_0060]

 图3.4 Linux 中库函数和系统调用的关系

注意：系统调用通常只提供一种最小的接口，而库函数通常会提供比较复杂的功能。在必要的时候，用户可以自行替换或者修改库函数，但是不能替换或者修改系统调用。

3.8 Linux库函数的说明和应用实例

本小节是一些Linux的C语言库函数说明和实例。

3.8.1 平方根函数

平方根函数可以求一个数的平方根，其标准调用格式说明如下，它们分别对应于不同类型的参数。如果操作成功则返回数的平方根值，失败则返回对应的错误编码。

#include <math.h>

double sqrt(double x);

float sqrtf(float x);

long double sqrtl(long double x);

【例3.4】是平方根函数的应用实例，其从键盘输入n个实型数据，然后分别求其平方根并且返回。

【例3.4】平方根函数应用实例。

//用键盘输入整数n，然后输出n个实型数，求n个实型数的平方根

#include <stdio.h>

#include <math.h>

int main(void)

{

int n,i;

float x,y;

scanf("%d",&n); //等待输入

for(i=0;i<n;i++) //循环

{

scanf("%f",&x); //输入 n 个数据

y = sqrtf(x); //求平方根

printf("%f *****%f\n",x,y); //打印输出

}

return 0;

}

将文件保存为exam4sqrt.c，在终端中使用gcc编译，并且带命令行运行，可以看到如下的输出。

alloeat@ubuntu:～/chapter3Exam$ gcc exam4sqrt.c -lm -o examsqrt　//编译生成可执行文件

alloeat@ubuntu:～/chapter3Exam$./examsqrt　//调用可执行文件

3　　　//输入参数数目

49　　//参数1

49.000000 *****7.000000　//输出平方根

56

56.000000 *****7.483315

23

23.000000 *****4.795832

输出行的相关解释如注释部分。

注意：如果程序中使用 math.h 头文件定义的相应数学库函数，在使用 gcc 编译程序时，根据需要使用-lm关键字来定位数学库的位置。

3.8.2 随机数产生函数

实际应用常常需要使用随机数来作为输入，此时可以使用 rand 随机数函数，其标准调用格式如下。

#include<stdlib.h>

int rand (void);

调用成功之后返回一个0～RAND_MAX之间的整型数据，其中RAND_MAX在stdlib.h头文件中有定义，默认值是 2 147 483 647。

需要注意的是，rand函数的内部实现是用线性同余法完成的，其并不是真正的随机数，只不过是因为其周期特别长，所以在一定的范围里可看成是随机的。

在调用此函数产生随机数前，必须先调用srand函数来初始化随机数种子，如果未设随机数种子，rand函数在调用时会自动将随机数种子设为1。另外一个需要注意的是，rand函数产生的是假随机数，每次执行时是相同的；若要不同，则需要调用srand函数不同的随机数种子来初始化该函数。

srand函数的标准调用格式如下，其中seed为初始化参数，srand函数没有返回值。

#include <stdlib.h>

void srand(unsigned int seed);

注意：在Linux系统中，通常使用getpid()或者time(0)的返回值作为srand函数的参数。

【例3.5】是rand函数和srand函数应用实例，其中使用time(0)作为srand的参数，对rand函数进行了初始化操作，然后调用rand函数产生了10个随机数并且输出。

【例3.5】随机数产生函数应用实例。

//产生10个介于1到10之间的随机数

#include <stdlib.h>

#include <stdio.h>

int main(void)

{

int i,j;

srand((int)time(0)); //调用 srand 初始化种子

for(i=0;i<10;i++)

{

j = 1+(int)(10.0 * rand()/RAND_MAX + 1.0); //产生随即数

printf("%d\n",j);

}

}

将文件保存为 exam5rand.c，在终端中使用 gcc 编译，并且带命令行运行，可以看到如下的输出结果。

alloeat@ubuntu:～/chapter3Exam$ gcc exam5rand.c -o exam5rand　//编译生成可执行文件

alloeat@ubuntu:～/chapter3Exam$./exam5rand　//可执行文件

11　//十个随机数

10

8

8

10

5

3

9

6

6

3.8.3 大小写字母测试函数

大小写字母测试函数isupper可以用于测试一个字符是否为大写字母，其标准调用格式说明如下。

#include <ctype.h>

int isupper(int c);

当输入参数c是一个大写字母的时候，返回这个值，否则返回0。

【例3.6】是大小写字母测试函数的应用实例，代码从键盘读入一行字符串，然后测试这行字符串中是否有大写字母，并且将其中的大写字母返回。

【例3.6】大小写字母测试函数应用实例。

//测试键盘输入的字符是否大写

#include <stdio.h>

#include <ctype.h>

int main(void)

{

char c;

while((c=getchar())!='\n')　//如果没换行则继续输入

{

if(isupper(c))

{

printf("%c is an uppercase char\n",c);　//打印字符

}

}

}

将文件保存为exam6isupper.c，在终端中使用gcc编译，并且带命令行运行，可以看到如下的输出结果。

alloy@ubuntu:～/chapter3Exam$ gcc exam6isupper.c -o examisupper //编译生成可执行文件

alloy@ubuntu:～/chapter3Exam$./examisupper //执行

AGCETdare //输入字符串

A is an uppercase char //打印大写字母

G is an uppercase char

C is an uppercase char

E is an uppercase char

T is an uppercase char

命令行的输出说明可以参考注释部分。

注意：还有一些类似的函数可以用于测试某个输入值，这些说明如下，其都需要引用ctype.h头文件。

int isalnum(int c);　　//测试待测试参数是否为字母或数字

int isalpha(int c);　　//测试待测试参数是否为字母

int isascii(int c);　　//测试待测试参数是否为ASCII编码字符

int isblank(int c);　　//测试待测试参数是否空白

int iscntrl(int c);　　//测试待测试参数是否为控制字符

int isdigit(int c);　　//测试待测试参数是否为十进制数字

int isgraph(int c);　　//测试待测试参数是否为空格之外的可打印字符

int islower(int c);　　//测试待测试参数是否为小写字母

int isprint(int c);　　//测试待测试参数是否为可打印字符，包括空格

int ispunct(int c);　　//测试待测试参数是否为标点符号

int isspace(int c);　　//测试待测试参数是否为空格

int isxdigit(int c);　　//测试待测试参数是否为十六进制字符

3.8.4 系统时间和日期函数

在Linux系统的应用中，经常需要获得当前的时间信息，Linux内核提供了一些相应函数用于实现相关操作，其标准调用格式说明如下。

#include <time.h>

char *asctime(const struct tm *tm);

char *asctime_r(const struct tm *tm, char *buf);

char *ctime(const time_t *timep);

char *ctime_r(const time_t *timep, char *buf);

struct tm *gmtime(const time_t *timep);

struct tm *gmtime_r(const time_t *timep, struct tm *result);

struct tm *localtime(const time_t *timep);

struct tm *localtime_r(const time_t *timep, struct tm *result);

time_t mktime(struct tm *tm);

int gettimeofday(struct timeval *tv, struct timezone *tz);

int settimeofday(const struct timeval *tv, const struct timezone *tz);

各个函数的说明如下。

（1）asctime函数。将参数timeptr所指的tm结构中的信息转换成真实世界所使用的时间日期表示方法，然后将结果以字符串形式返回。此函数已经由时区转换成当地时间，字符串格式类似于“Wed Jun 30 21:49:08 1993/n”。该函数的参数值是 tm 指针指向的存储空间，返回值是表示目前当地的时间日期的字符串。

注意：若再调用相关的时间日期函数，此字符串可能会被破坏。此函数与 ctime 的不同处在于传入的参数的结构不同。

asctime函数中涉及的tm时间信息结构体说明如下。

struct tm

{

int tm_sec; //秒

int tm_min; //分钟

int tm_hour; //小时

int tm_mday; //日期

int tm_mon; //月份

int tm_year; //年份

int tm_wday; //星期

int tm_yday; //从 1月1日开始到当前日期编号

int tm_isdst;

//夏令时标识符，实行夏令时的时候，tm_isdst为正。不实行夏令时的时候，

//tm_isdst为0；不了解情况时，tm_isdst()为负

};

（2）asctime_r函数。是asctime函数的一个扩展，提供了一个缓冲器buf用于存放返回值，该缓冲区的长度不能低于26个字节。

（3）ctime函数。将参数timep所指的time_t结构中的信息转换成真实世界所使用的时间日期表示方法，然后将结果以字符串形式返回。此函数已经由时区转换成当地时间，字符串格式类似于“Wed Jun 30 21 :49 :08 1993/n”。若再调用相关的时间日期函数，此字符串可能会被破坏。

（4）char *ctime_r 函数。和 ctime 函数功能相同，也是提供了一个缓冲区用于存放返回值。

（5）gmtime函数。将所指的time_t结构中的信息转换为真实世界所使用的时间日期表示方法，然后将结果返回到tm结构体中。

（6）gmtime_r函数。和gmtime函数类似，同时提供了一个由result指针指向的内存空间用于存放返回值。

（7）localtime函数。取当地目前时间和日期，其将参数timep所指的结构体中的信息转换为真实世界所使用的时间日期表示方法，然后返回。

（8）localtime_r函数。和localtime函数类似，同时提供了一个由result指针指向的内存空间用于存放返回值。

（9）mktime函数。将参数tm所指向的结构体数据转换为从1970年1月1日0时0分0秒开始所经历的秒数，然后返回。

（10）gettimeofday。获取当前时间和时区信息，这个需要超级用户的权限，tv参数用于指向存放返回的时间信息的缓冲区，其结构说明如下。

struct timeval {

time_t　tv_sec;　// 秒

suseconds_t tv_usec;　// 微秒

};

而tz用于存放相应的时钟信息，说明如下。

struct timezone {

int tz_minuteswest;

int tz_dsttime;

};

（ 11 ） settimeofday。设置当前时间和时区信息，其参数和使用方法可以参考gettimeofday。

【例3.7】和【例3.8】是时间相关函数的应用代码。

【例3.7】系统时间函数应用实例1。

//打印系统的当前时钟

#include <time.h>

#include <stdio.h>

int main(void)

{

time_t timetemp;　　//定义一个时间结构体变量

char *wday[] = {"Sun","Mon","Tue","Wed","Thu","Fri","Sat"};

struct tm *p;　　//结构体指针

time(&timetemp);　　//获得时间参数

printf("%s",asctime(gmtime(&timetemp)));

p = localtime(&timetemp);

printf("%d:%d:%d:\n",(1900+p->tm_year),(1+p->tm_mon),p->tm_mday);

printf("%s　%d:%d:%d\n",wday[p->tm_wday],p->tm_hour,p->tm_min,p->tm_sec);

return 0;

}

代码首先调用gmtime函数获得当前的时间的秒数，然后使用asctime函数将该秒数转换为正常的显示格式并显示。将文件保存为 exam7time.c，在终端中使用 gcc 编译，并且带命令行运行，可以看到如下的输出结果。

alloeat@ubuntu:～/chapter3Exam$ gcc exam7time.c -o examtime //编译生成可执行文件

alloeat@ubuntu:～/chapter3Exam$./examtime ..//运行

Fri Jun 29 11:40:08 2012 .//以下为时间信息

2012:6:29:

Fri 19:40:8

命令行的输出说明参考注释部分。

【例3.8】系统时间函数应用实例2。

//获得秒和微秒时间，现实和Greenwich的时间差，并且测试运行这段程序所需要的时间

#include <sys/time.h>

#include <unistd.h>

#include <stdio.h>

int main(void)

{

struct timeval time1,time2;

struct timezone timez;

gettimeofday(&time1,&timez); //获得当前的时间

printf("tv_sec; %d\n",time1.tv_sec); //秒

printf("tv_usec; %d\n",time1.tv_usec); //毫秒

printf("tz_minuteswest; %d\n",timez.tz_minuteswest);

printf("tz_dsttime; %d\n",timez.tz_dsttime);

gettimeofday(&time2,&timez);

printf("time2_usec-time1_usec; %d\n",(time1.tv_usec - time2.tv_usec));

//计算程序执行的时间

return 0;

}

代码首先调用gettimeofday获得当前的时间信息，然后将这些时间信息分门别类地输出，最后测试了本身的执行时间。将文件保存为exam8gettime.c，在终端中使用gcc编译，并且带命令行运行，可以看到如下的输出结果。

alloeat@ubuntu:～/chapter3Exam$ gcc exam8gettime.c -o examgettime //编译可执行文件

alloeat@ubuntu:～/chapter3Exam$./examgettime //执行

tv_sec; 1340971380 //时间信息

tv_usec; 157707

tz_minuteswest; -480

tz_dsttime; 0

time2_usec-time1_usec; -57 //运行时间

命令行的输出说明参考注释部分。

3.8.5 系统登录用户名操作函数

如果要获得当前Liunx的登录用户，可以使用getenv函数，其标准调用格式说明如下。

#include <stdlib.h>

char *getenv(const char *name);

getenv函数可以用来取得参数name环境变量的内容，其参数name为环境变量的名称，如果该变量存在，则会返回指向该内容的指针。环境变量的格式为name＝value，如果执行成功则返回指向该内容的指针，找不到符合的环境变量名称则返回NULL。

【例3.9】是getenv函数的应用实例，获取系统登录用户名并且打印。

【例3.9】获取系统登录用户名函数应用实例。

//获取当前的登录用户名

#include <stdio.h>

#include <stdlib.h>

int main()

{

char *p;

if((p = getenv("USER"))) //如果不是则返回 NULL

{

printf("USER=%s\n",p); //打印用户名

}

return 0;

}

将文件保存为exam9getenv.c，在终端中使用gcc编译，并且带命令行运行，可以看到如下的输出结果。

alloeat@ubuntu:～/chapter3Exam$ mv exam9.c exam9getenv.c //生成可执行文件

alloeat@ubuntu:～/chapter3Exam$ gcc exam9getenv.c -o examgetenv

alloeat@ubuntu:～/chapter3Exam$./examgetenv //执行可执行文件

USER=alloeat //获得用户名

命令行的输出说明参考注释部分。

当需要修改当前登录用户相关信息的时候，可以使用setenv函数，其标准格式化调用方法说明如下。

#include <stdlib.h>

int setenv(const char *name, const char *value, int overwrite);

getenv函数可以用来改变或增加环境变量的内容，其参数name为环境变量名称字符串，参数 value 则为变量内容，参数 overwrite 用来决定是否要改变已存在的环境变量：如果overwrite不为0，而且该环境变量原已有内容，则原内容会被改为参数value所指的变量内容。另外，如果overwrite为0，且该环境变量已有内容，则参数value会被忽略。当该函数执行成功则返回0，有错误发生时返回-1。

可以使用unsetenv函数从系统删除一个登录用户，其标准调用格式说明如下。

#include <stdlib.h>

int unsetenv(const char *name);

name是当前待删除的登录用户名，当执行成功时返回0，否则返回-1。

【例3.10】是setenv函数和unsetenv函数的应用实例。

【例3.10】修改系统登录用户名函数应用实例。

#include <stdlib.h>

#include <stdio.h>

int main(void)

{

char *p;

if(p=getenv("USER")) //获得当前的用户

{

printf("USER = %s\n",p); //输出当前用户

}

setenv("USER","test",1); //增加用户 test

printf("USER = %s\n",getenv("USER")); //再次获取当前用户

unsetenv("USER"); //删除用户

printf("USER=%s\n",getenv("USER")); //输出

return 1;

}

将文件保存为exam10setenv.c，在终端中使用gcc编译，并且带命令行运行，可以看到如下的输出结果。

alloeat@ubuntu:～/chapter3Exam$ gcc exam10setenv.c -o examsetenv //编译

alloeat@ubuntu:～/chapter3Exam$./examsetenv

USER = alloeat　//输出当前的用户

USER = test　//输出切换后的用户

USER=(null)　//删除用户

命令行的输出说明参考注释部分。

注意：更多关于用户管理的知识，将在第6章介绍。

3.8.6 单字符输出函数

当只需要在标准输出设备（通常是显示器）输出一个字符的时候，可以不使用 printf函数，而是使用putchar函数，其标准调用格式说明如下。

#include <stdio.h>

int putchar(int c);

参数c是标准的待输出字符，如果输出成功，函数返回输出成功的字符，即参数c。若输出失败则返回EOF。

注意：putchar函数其实质上是putc(c,stdout)，相关的知识将在第5章中进行详细的介绍。

【例3.11】是使用putchar函数输出几个字符的应用实例。

【例3.11】字符输出函数应用实例。

#include <stdio.h>

#include <ctype.h>

int main(void)

{

putchar(toupper('a'));

putchar('\n');

putchar(toupper('1'));

putchar('\n');

putchar(toupper('A'));

putchar('\n');

putchar(toupper(0x34));

putchar('\n');

putchar(toupper(0x61));

putchar('\n');

return 0;

}

将文件保存为exam11putchar.c，在终端中使用gcc编译，并且运行，可以看到如下的输出结果。

alloeat@ubuntu:～/chapter3Exam$ gcc exam11putchar.c -o exam11putchar//编译可执行文件

alloeat@ubuntu:～/chapter3Exam$./exam11putchar //调用可执行文件

A　　//输出相应的字符

1

A

4

A

命令行的输出说明可以参考注释部分。

3.8.7 求“不大于”整数函数

如果需要求一个不大于浮点数参数的整数，此时可以使用floor系列函数，其标准调用格式说明如下：

#include <math.h>

double floor(double x);

float floorf(float x);

long double floorl(long double x);

函数的参数是对应类型的数据，其返回值是一个接近浮点数最近的整数，【例 3.12】是floor系列函数的应用实例。

【例3.12】“不大于”整数函数应用实例。

//返回不大于参数的整数

#include <stdio.h>

#include <math.h>

int main(void)

{

float a,b;

unsigned char temp;

a =-3.56;

b = 2.45;　　　　　　　//给浮点数a、b赋初值

printf("the var lower a is %f\n",floor(a));

printf("the var lower b is %f\n",floor(b));

return 0;

}

将文件保存为exam12floor.c，在终端中使用gcc编译，并且运行，可以看到如下的输出结果。

alloeat@ubuntu:～/chapter3Exam$ gcc exam12floor.c -lm -o examfloor //编译

alloeat@ubuntu:～/chapter3Exam$./examfloor //可执行文件

the var lower a is -4.000000 //输出数据

the var lower b is 2.000000

命令行的输出说明可以参考注释部分。

3.8.8 “拆分”浮点数函数

在某些应用中，要将一个浮点数分别拆分为整数部分和小数部分，此时可以使用modf系列函数，这些函数的标准调用格式说明如下。

#include <math.h>

double modf(double x, double *iptr);

float modff(float x, float *iptr);

long double modfl(long double x, long double *iptr);

函数的第一个参数x为待拆分的浮点数，iptr指针指向的是拆分后的整数部分，浮点数的小数部分通过函数返回。

modf系列函数的应用实例如【例3.13】所示。

【例3.13】“拆分浮点数”函数应用实例。

//拆分浮点数

#include <stdio.h>

#include <math.h>

int main(void)

{

float a,b,dint,ddec;

a = 5.125;

b = -1.25;

dint = modff(a,&ddec);

//将a的整数部分放入ddec数组中，小数部分返回到dint中

printf("The dint is %f\n",dint);

printf("The ddec is %f\n",ddec);

dint = modff(b,&ddec);

//将b的整数部分放入ddec数组中，小数部分返回到dint中

printf("The dint is %f\n",dint);

printf("The ddec is %f\n",ddec);

}

将文件保存为exam13modf.c，在终端中使用gcc编译，并且运行，可以看到如下的输出结果。

alloeat@ubuntu:～/chapter3Exam$ gcc exam13modf.c-lm-o exammodf //编译生成可执行文件

alloeat@ubuntu:～/chapter3Exam$./exammodf //执行

The dint is 0.125000 //分别输出整数部分和小数部分

The ddec is 5.000000

The dint is -0.250000

The ddec is -1.000000

命令行的输出说明可以参考注释部分。

3.8.9 字符串转换函数

某些应用的输入是一些字符串，这些字符串代表了一些需要参与运算的数值，但是在C代码中其不能直接参与运算，必须使用相应的字符串转换函数，这些转换函数的标准调用格式说明如下：

#include <stdlib.h>

int atoi(const char *nptr);

long atol(const char *nptr);

long long atoll(const char *nptr);

long long atoq(const char *nptr);

指针nptr指向待转换的字符串数字，函数的返回值为转换后得到的数据，函数会在遇到不可识别的字符时结束，并且转换的时候会自动忽略空白字符。

【例3.14】是字符串转换函数的应用实例。

【例3.14】“字符串转换”函数应用实例1。

#include <stdio.h>

#include <stdlib.h>

#define TRUE　1

#define FALSE 0

int main(void)

{

unsigned char temps1[]="23";

unsigned char temps2[]="321K";

unsigned char temps3[]="-32";

int temp = 0;

printf("%s\n",temps1);

temp = atoi(&temps1[0]);　　//将temps1字符串的值转换为整数，存放在temp中

printf("%d\n",temp);　　　//输出temp中存放的整数

printf("%d\n",(temp*2));　　//将temp中存放的整数*2后输出

printf("%s\n",temps2);

temp = atoi(&temps2[0]);　　//将temps2中的数据转化为整型

printf("%d\n",temp);

printf("%s\n",temps3);

temp = atoi(&temps3[0]);

printf("%d\n",temp);

return 0;

}

将文件保存为exam14atoi.c，在终端中使用gcc编译，并且运行，可以看到如下的输出结果。

alloeat@ubuntu:～/chapter3Exam$ gcc exam14atoi.c -o examatoi //编译

alloeat@ubuntu:～/chapter3Exam$./examatoi //执行

23　//输出不同的数据

23

46

321K

321

-32

-32

命令行的输出说明可以参考注释部分。

除了将字符串转换为整型和长型的相应函数之外，还有将字符串转换为 double 类型的函数atof，其标准调用格式说明如下，应用实例如【例3.15】所示。

#include <stdlib.h>

double atof(const char *nptr);

【例3.15】“字符串转换”函数应用实例2。

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

unsigned char temps1[]="-2.25";

unsigned char temps2[]=".05";

unsigned char temps3[]="1e-2";

double temp = 0;

printf("%s\n",temps1);

temp = atof(&temps1[0]);　　//将temps1字符串的值转换为浮点数，存放在temp中

printf("%2.3f\n",temp);　　　//输出

printf("%2.3f\n",(temp*4));　　//将temp中存放的数*4后输出

printf("%s\n",temps2);

temp = atof(&temps2[0]);　　//将temps2中的数据转化为浮点数

printf("%2.3f\n",temp);

printf("%s\n",temps3);

temp = atof(&temps3[0]);

printf("%2.3f\n",temp);　　　//将temp中的数据输出

return 0;

}

将文件保存为exam15atof.c，在终端中使用gcc编译，并且运行，可以看到如下的输出结果。

alloeat@ubuntu:～/chapter3Exam$ gcc exam15atof.c -o examatof //编译

alloeat@ubuntu:～/chapter3Exam$./examatof //执行

-2.25 //输出

-2.250

-9.000

.05

0.050

1e-2

0.010

命令行的输出说明可以参考注释部分。

3.8.10 字符串复制函数

如果需要将一个字符串复制到一个指定区域，则可以使用 memccpy 函数，其标准调用格式说明如下。

#include <string.h>

void *memccpy(void *dest, const void *src, int c, size_t n);

参数dest是指向目的缓存区的指针，src是指向源缓冲区的指针，c是遇到之后停止复制的字符，n是最大的复制个数，函数将最多n个字符的数据从源缓冲区复制到目的缓冲区，如果遇到字符c则停止。

【例3.16】是字符串复制函数的应用实例。

【例3.16】字符串复制函数应用实例。

#include <stdio.h>

#include <string.h>

int main(void)

{

char *temps1="hello world!";

char temps2[20];

char *temp;

temp=memccpy(&temps2[0],temps1,'o',20);

//将temps1中的字符复制到temps2中，直到找到了字符o或者到了20个字节

if(temp)　　　　　　　　//判断是否找到了字符o

{

*temp='\0';　　　　　　　//如果找到了字符o

printf("Char found: %s.\n",&temps2[0]);　//输出找到了字符

}

else

{

printf("Char not found.\n");　　　//否则输出没有找到字符

}

printf("%s\n",&temps2[0]);　　　　　//输出temps2的值

temp=memccpy(&temps2[0],temps1,'\0',20);

//将temps1中的字符复制到temps2中，直到遇到停止符或者到了20个字节

if(temp)

{　　　　　　　　　//判断temp的值

*temp='\0';

printf("Char found: %s.\n",&temps2[0]);　　//输出找到了字符

}

else

{

printf("Char not found.\n");　　　　　//否则输出没有找到字符

}

printf("%s\n",&temps2[0]);　　　　　　//输出temps2的值

return 0;

}

将文件保存为exam16memccpy.c，在终端中使用gcc编译，并且运行，可以看到如下的输出结果。

alloeat@ubuntu:～/chapter3Exam$ gcc exam16memccpy.c -o exammemccpy //编译

alloeat@ubuntu:～/chapter3Exam$./exammemccpy //执行

Char found: hello. //没有找到 hello 字符串

hello

Char found: hello world!. //找到了字符串

hello world!

命令行的输出说明可以参考注释部分。

3.8.11 字符串长度计算函数

在实际应用中，常常需要知道该字符串的长度，如果需要计算一个字符串的长度，可以使用strlen函数，其标准调用格式说明如下。

#include <string.h>

size_t strlen(const char *s);

参数s是字符串缓冲区的起始位置，当调用成功之后，返回字符串s的字符长度，但是不包括结束字符NULL，【例3.17】是strlen函数的应用实例。

【例3.17】字符串复制函数应用实例。

#include <stdio.h>

#include <string.h>

int main(void)

{

char temps1[] ="";

char temps2[14]="hello world!";

char *temps3="hello world";

float a = 1234.55613;

int temp;

temp = strlen(&temps1[0]);　　//计算temps1的长度

printf("%d\n",temp);　　　//输出结果

temp = strlen("hello world!");　//直接计算hello world的长度

printf("%d\n",temp);

temp = strlen(&temps2[0]);　　//计算temps2的长度

printf("%d\n",temp);

temp = strlen(temps3);　　　//计算temps3的长度

printf("%d\n",temp);

sprintf(&temps1[0],"%f",a);　　//将浮点数a使用sprintf函数导入temps1字符串

temp = strlen(&temps1[0]);　　//计算temps1的长度

printf("%d\n",temp);

return 0;

}

将文件保存为 exam17strlen.c，在终端中使用 gcc 编译，并且运行，可以看到如下的输出结果。

alloeat@ubuntu:～/chapter3Exam$ gcc exam17strlen.c -o examstrlen //编译

alloeat@ubuntu:～/chapter3Exam$./examstrlen .//执行

0 //输出各个字符串的长度

12

12

11

11

命令行的输出说明可以参考注释部分。

3.8.12 字符串连接函数

当需要将两个字符串连接到一起的时候，可以使用strcat系列函数，其标准调用格式说明如下。

#include <string.h>

char *strcat(char *dest, const char *src);

char *strncat(char *dest, const char *src, size_t n);

函数把src所指向的字符串连接到dest字符串中，并且将结果存放在dest指向的空间中，而strncat的参数n用来说明最多连接src中的n个字符（需要确定src中是否有n个字符），strncat函数的实现方法如下，其调用了strlen函数来获得dest的长度，当调用成功之后函数返回一个指向dest缓冲区的指针。

char* strncat(char *dest, const char *src, size_t n)

{

size_t dest_len = strlen(dest);

size_t i;

for (i = 0 ; i < n && src[i] != '\0' ; i++)

dest[dest_len + i] = src[i];

dest[dest_len + i] = '\0';

return dest;

}

【例3.18】是字符串连接函数的应用实例。

【例3.18】字符串连接函数应用实例。

#include <stdio.h>

#include <string.h>

int main(void)

{lk

char temps1[]="this is a ";

char temps2[]="c program.";

char *temp;

printf("%s\n",temps1);　　　//输出temps1字符串

printf("%s\n",temps2);　　　//输出temps2字符串

temp = strcat(temps1,temps2);　//将temps2连接到temps1中，送到temp中

printf("%s\n",temp);　　　//输出temp字符串

printf("%s\n",temps1);　　//输出temps1字符串

return 0;

}

将文件保存为 exam18strcat.c，在终端中使用 gcc 编译，并且运行，可以看到如下的输出结果。

alloeat@ubuntu:～/chapter3Exam$ gcc exam18strcat.c -o examstrcat //编译

alloeat@ubuntu:～/chapter3Exam$./examstrcat //执行

this is a //输出的字符串

c program.

this is a c program.

this is a c program.

命令行的输出说明可以参考注释部分。

3.8.13 字符串复制函数

如果需要将一个字符串复制到一个指定缓冲区中，可以使用strcpy系列函数，其标准调用格式说明如下。

#include <string.h>

char *strcpy(char *dest, const char *src);

char *strncpy(char *dest, const char *src, size_t n);

函数将指针src所指向的字符串复制到指针dest所指向的空间，如果复制成功，则返回一个存放字符串空间的指针（dest）。函数strncpy的参数n同样用来说明最大复制字符数，和3.8.12小节中介绍strncat函数类似，其实现方法可以参考如下代码。

char * strncpy(char *dest, const char *src, size_t n)

{

size_t i;

for (i = 0; i < n && src[i] != '\0'; i++)

dest[i] = src[i];

for (; i < n; i++)

dest[i] = '\0';

return dest;

}

【例3.19】是strcpy函数的应用实例。

【例3.19】字符串复制函数应用实例。

#include <stdio.h>

#include <string.h>

main()

{

char temps1[]="";

char temps2[]="this is a c program.";

char temps3[20];

char temps4[20];

char *temp;

printf("%s\n",temps1);　　　//输出temps1字符串

printf("%s\n",temps2);　　　//输出temps2字符串

temp = strncpy(temps1,temps2,strlen(temps2)+2);

//将temps2字符串长度个字节复制到temps1中

printf("%s\n",temp);　　　//输出temp字符串

printf("%s\n",temps1);　　　//输出temps1字符串

printf("%s\n",temps2);　　　//输出temps2字符串

temp = strncpy(temps3,temps1,30);　//将最大长度为30个字节的字符串复制到temps1中

printf("%s\n",temp);　　　//输出temp字符串

printf("%s\n",temps3);　　　//输出temps1字符串

temp = strncpy(temps4,temps3,10);　//将最大长度为10个字节的字符串复制到temps1中

printf("%s\n",temp);　　　//输出temp字符串

printf("%s\n",temps4);　　　//输出temps1字符串

return 0;

}

将文件保存为exam19strncpy.c，在终端中使用gcc编译，并且运行，可以看到如下的输出结果。

alloeat@ubuntu:～/chapter3Exam$ gcc exam19strncpy.c -o examstrncpy //编译

alloeat@ubuntu:～/chapter3Exam$./examstrncpy //执行

//第一个字符串是空白

this is a c program.

ths is a c proggram.

ths is a c proggram.

hs is a c proggram.

ths is a c proggram.

ths is a c proggram.

ths is a c～?

ths is a c～?

命令行的输出说明可以参考注释部分。

3.8.14 字符串比较函数

如果需要对两个字符串进行比较操作，可以使用 strcmp 系列函数，其标准调用格式说明如下。

#include <string.h>

int strcmp(const char *s1, const char *s2);

int strncmp(const char *s1, const char *s2, size_t n);

参数s1和s2分别存放待比较的字符串，strncmp函数的参数n用来说明比较两个字符串的前n个字符，如果s1>s2，则函数返回值大于0，如果s1<s2，则返回值小于0，如果相等，则返回值等于0。

【例3.20】是strcmp函数的应用实例。

【例3.20】字符串复制函数应用实例。

#include <stdio.h>

#include <string.h>

int main(void)

{

char *temps1="Hello, Programmers!";

char *temps2="Hello, programmers!";

char *temps3="Programmers!";

char *temps4="Hello, programmers!";

int　temp;

temp=strcmp(temps1,temps2);　//比较字符串temps1和temps2

if(!temp)　　　　　//如果temp等于0

{

printf("temps1 and temps2 are identical\n");　//两个字符串相等

}

else if(temp<0)　　　　　　　//temps1小于temps2

{

printf("temps1 less than temps2\n");

}　　　　　　　　　　//temps1大于temps2

else

{

printf("temps1 greater than temps2\n");

}

temp=strcmp(temps3,temps4);　//比较字符串temps3和temps4

if(!temp)　　　　　//如果temp等于0

{

printf("temps3 and temps4 are identical\n");　//两个字符串相等

}

{

printf("temps3 less than temps4\n");

}　　　　　　　　　　//temps1大于temps2

else

{

printf("temps3 greater than temps4\n");

}

return 0;

}

将文件保存为exam20strcmp.c，在终端中使用gcc编译，并且运行，可以看到如下的输出结果。

alloeat@ubuntu:～/chapter3Exam$ gcc exam20strcmp.c -o examstrcmp //编译

alloeat@ubuntu:～/chapter3Exam$./examstrcmp //执行

temps1 less than temps2 //比较结果

temps3 greater than temps4

命令行的输出说明可以参考注释部分。

3.8.15 字符串查找函数

当需要在字符串中查找另一个字符串的时候，可以使用strstr函数，其标准调用格式说明如下。

#include <string.h>

char *strstr(const char *haystack, const char *needle);

函数在haystack指向的字符串中查找参数needle指向的字符串。如果查找到相应的字符串，则返回相应子字符串的起始位置，否则返回NULL空字符串。

【例3.21】是strstr函数的应用实例。

【例3.21】字符串查找函数应用实例。

#include <stdio.h>

#include <string.h>

main()

{

char *temps1="Hello, Programmers!";

char *temps2="world";

char *temps3="Hello, programmers!";

char *temps4="Programmers!";

char *temp;

printf("%s\n",temps1);　　　//输出temps1

printf("%s\n",temps2);　　　//输出temps1

temp=strstr(temps1,temps2);　　//在temps1中查找temps2字符串

if(temp)　　　　　　//如果查找到字符串temps2

{

printf("%s\n",temp);　　　//输出所在的位置

}

else

{

printf("Not Found!\n");　　//输出没有找到

}

printf("%s\n",temps3);　　　//输出temps4

printf("%s\n",temps4);　　　//输出temps4

temp=strstr(temps3,temps4);　　//在temps3中查找temps4字符串

if(temp)　　　　　　//如果查找到字符串temps4

{

printf("%s\n",temp);　　　//输出所在的位置

}

{

printf("Not Found!\n");　　//输出没有找到

}

return 0;

}

将文件保存为exam21strstr.c，在终端中使用gcc编译，并且运行，可以看到如下的输出结果。

alloeat@ubuntu:～/chapter3Exam$ gcc exam21strstr.c -o examstrstr //编译

alloeat@ubuntu:～/chapter3Exam$./examstrstr //运行

Hello, Programmers! //输出运行结果

world

Not Found!

Hello, programmers!

Programmers!

Not Found!

命令行的输出说明可以参考注释部分。

3.8.16 内存分配函数

【例3.22】是内存分配函数malloc的应用实例，其中还调用了getpagesize函数来获取内存分页的大小，其标准调用格式说明如下。

#include <unistd.h>

int getpagesize(void);

getpagesize函数没有调用参数，其返回值是内存分页的大小，需要注意的是这是Linux系统的分页大小，不一定与硬件分页大小相同。

【例 3.22】的应用实例模拟了一个手机的通讯录存储空间的增加情况，该通信录的结构体定义为 struct co，其中各个分量说明如下。

● index：编号。

● name：姓名。

● MTel：手机号码。

● Tel：座机号码。

【例3.22】内存分配函数应用实例。

//在内存中添加一个单元

#include <stdio.h>

#include <stdlib.h>

#include <ctype.h>

struct co

{

int index;

char name[8];

char MTel[12];

char Tel[12];

};

int x;

int main(void)

{

struct co *p;

char ch;

printf("do you add a user? Y/N\n");

ch =getchar();

if(ch == 'y'||ch == 'Y')

{

p = (struct co *)malloc(sizeof(struct co));

p->index = ++x;

printf("User name:");

scanf("%s",p->name);

printf("Mobile:");

scanf("%s",p->MTel);

printf("Home Tel:");

printf("intex:%d\n name:%s\n MoveTel:%s\n

HomeTel:%s\n",p->index,p->name,p->MTel,p->Tel);

}

printf("page size=%d\n",getpagesize());

}

将文件保存为exam22malloc.c，在终端中使用gcc编译，并且运行，可以看到如下的输出结果。

alloeat@ubuntu:～/chapter3Exam$ gcc exam22malloc.c -o exammalloc //编译

alloeat@ubuntu:～/chapter3Exam$./exammalloc//运行

do you add a user? Y/N //是否增加一个通信录目录

y //是

User name:alloy

Mobile:13810001000

Home Tel:01082342333

intex:1

name:alloy

MoveTel:13810001000

HomeTel:01082342333

page size=4096 //内存分页大小

命令行的输出说明可以参考注释部分。

3.8.17 内存映射函数

为了提高对文件的读写速度（有关文件操作的相应知识将在第3章中介绍），可以使用mmap函数，其将指定的文件映射到了内存区域中，通过对该内存区域的操作即可以实现对该文件的操作，mmap函数的标准调用格式说明如下。

#include <sys/mman.h>

void *mmap(void *addr, size_t length, int prot, int flags,int fd, off_t offset);

mmap 函数的各个参数说明如下，如果函数调用成功则返回文件映射区间的实际地址，否则返回MAP_FAILED（-1）。

● addr：指定映射存储区的起始位置，通常将其设置为 0，此时系统将选择映射区的起始位置。

● length：映射字节数。

● port：说明映射区域的保护方式，如表3.4所示。

 表3.4 port映射区的保护方式

 [image: figure_0123_0061]

● flags：影响映射区间的相应属性，其说明如表3.5所示。

 表3.5 映射区的属性

 [image: figure_0123_0062]

● fd：被映射的文件描述符，通常来说可以用 open（打开文件）等函数返回。

● offset：映射字节在文件中的偏移量。

【例3.23】是mmap函数的应用实例，其使用mmap将/etc/passwd文件映射到内存区域，然后进行相应的操作。

【例3.23】内存映射函数应用实例。

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

#include <unistd.h>

#include <sys/mman.h>

int main(void)

{

int fd;

void *start;

struct stat sb;

fd = open("/etc/passwd",O_RDONLY);

//fd = open("/etc/passwd",O_RDONLY);

fstat(fd,&sb);

start = mmap(NULL,sb.st_size,PROT_READ,MAP_PRIVATE,fd,0);

if(start==MAP_FAILED) //判断是否成功

{

return 0;

}

printf("%s",start);

munmap(start,sb.st_size);　　//解除映射

close(fd);

}

将文件保存为exam23mmap.c，在终端中使用gcc编译，并且运行，可以看到如下的输出结果，输出行的说明如注释所示。

alloeat@ubuntu:～/chapter3Exam$ gcc exam23mmap.c -o exammmap //编译

alloeat@ubuntu:～/chapter3Exam$./exammmap //运行

//以下为输出的passwd文件

root:x:0:0:root:/root:/bin/bash

daemon:x:1:1:daemon:/usr/sbin:/bin/sh

bin:x:2:2:bin:/bin:/bin/sh

sys:x:3:3:sys:/dev:/bin/sh

sync:x:4:65534:sync:/bin:/bin/sync

games:x:5:60:games:/usr/games:/bin/sh

man:x:6:12:man:/var/cache/man:/bin/sh

lp:x:7:7:lp:/var/spool/lpd:/bin/sh

mail:x:8:8:mail:/var/mail:/bin/sh

news:x:9:9:news:/var/spool/news:/bin/sh

uucp:x:10:10:uucp:/var/spool/uucp:/bin/sh

proxy:x:13:13:proxy:/bin:/bin/sh

www-data:x:33:33:www-data:/var/www:/bin/sh

backup:x:34:34:backup:/var/backups:/b

list:x:38:38:Mailing List Manager:/var/list:/bin/sh

irc:x:39:39:ircd:/var/run/ircd:/bin/sh

gnats:x:41:41:Gnats Bug-Reporting System (admin):/var/lib/gnats:/bin/sh

nobody:x:65534:65534:nobody:/nonexistent:/bin/sh

libuuid:x:100:101::/var/lib/libuuid:/bin/sh

syslog:x:101:103::/home/syslog:/bin/false

colord:x:102:105:colord colour management daemon,,,:/var/lib/colord:/bin/false

messagebus:x:103:107::/var/run/dbus:/bin/false

lightdm:x:104:108:Light Display Manager:/var/lib/lightdm:/bin/false

avahi-autoipd:x:105:112:Avahi autoip daemon,,,:/var/lib/avahi-autoipd:/bin/false

avahi:x:106:113:Avahi mDNS daemon,,,:/var/run/avahi-daemon:/bin/false

usbmux:x:107:46:usbmux daemon,,,:/home/usbmux:/bin/false

kernoops:x:108:65534:Kernel Oops Tracking Daemon,,,:/:/bin/false

pulse:x:109:119:PulseAudio daemon,,,:/var/run/pulse:/bin/false

rtkit:x:110:122:RealtimeKit,,,:/proc:/bin/false

speech-dispatcher:x:111:29:Speech

Dispatcher,,,:/var/run/speech-dispatcher:/bin/sh

hplip:x:112:7:HPLIP system user,,,:/var/run/hplip:/bin/false

saned:x:113:123::/home/saned:/bin/false

alloeat:x:1000:1000:alloyInRunning:/home/alloeat:/bin/bash

whoopsie:x:114:125::/nonexistent:/bin/false

gdm:x:115:126:Gnome Display Manager:/var/lib/gdm:/bin/false

sshd:x:116:65534::/var/run/sshd:/usr/sbin/nologin

ftp:x:117:128:ftp daemon,,,:/srv/ftp:/bin/false
第4章 Linux的文件编程

Linux中的文件是指以计算机的存储设备为载体的信息的集合，而负责管理和存储文件信息的软件机制称为文件管理系统，简称文件系统，其用于在磁盘上组织文件。文件系统由3部分组成：与文件管理有关的软件、被管理的文件以及实施文件管理所需的数据结构。本章将介绍Linux的文件系统、文件相关基础知识以及如何使用C语言对Linux中的文件进行操作，包括建立、打开、关闭文件，向文件写入和读出数据等。

4.1 Linux文件系统简介

从系统角度来看，文件系统是对文件存储器空间进行组织和分配，负责文件存储，并对存入的文件进行保护和检索的系统。其负责为用户建立文件，存入、读出、修改、转储文件，控制文件的存取，当用户不再使用时撤销文件等操作。

不同的操作系统，其支持的文件系统和文件格式不同，可能存在将某些文件放到另外一个系统中就打不开、看不到等情况，如图4.1所示。

 [image: figure_0126_0063]

 图4.1 不同的操作系统支持不同的文件系统

4.1.1 Linux文件系统基础

和DOS或者Windows操作系统类似，Linux采用了目录树的形式来管理所有的文件和目录（在Linux中目录其实也是一个文件，这点将在后面中介绍）。和DOS或Windows不同的是，Linux的树型目录中只有唯一的一个根目录“/”（称为根，root），其他目录都是这个根目录衍生的子目录，图4.2和图4.3分别是DOS/Windows和Linux的目录树文件结构示意图。

 [image: figure_0127_0064]

 图4.2 DOS/Windows的目录树文件结构示意图

 [image: figure_0127_0065]

 图4.3 Linux 的目录树文件结构示意图

注意：在Linux中，所有的内容都被看成文件，包括硬件和目录。所有的操作都可以归结为对文件的操作，Linux可以像操作普通文件一样来对磁盘文件、串口、键盘、显示器、打印机以及其他的设备进行操作。

Linux的文件系统是目录和文件的一种层次结构，目录的起点称为根（root），其名字是一个字符“/”。目录（Directory）是一个包含目录项的文件，在逻辑上，可以认为每个目录项都包含一个文件名，同时还包含说明该文件属性的信息。通过这种树型等级结构，用户可以浏览整个系统，可以进入任何一个已授权进入的目录并且访问相应的文件。

在Ubuntu的图形化界面Gnome中，文件系统也是以文件夹形式存在的，每一个文件夹对应一个目录，如图4.4所示，这些目录内存放的内容说明如下。

 [image: figure_0127_0066]

 图4.4 Ubuntu的文件系统

● bin：存放系统启动时需要的执行文件和一些用户常用的命令，例如 cp、ls、cat等。

● boot：存放系统内核以及启动管理器，类似 grub。

● cdrom：Ubuntu 系统安装光盘镜像的挂载位置，这个目录根据用户的实际情况而存在，有些系统中可能没有。

● dev：设备文件目录，在其中存放了相应的设备信息。

● etc：存放相应的系统配置文件。

● home：用户主目录，在其中按照用户名存放了当前系统中存在用户的个人文件和信息，类似Windows中“我的文档”。

● lib：存放着系统最基本的动态链接共享库，其作用类似于 Windows 中的.dll 文件。

● lib64：这是 lib 目录的 64 位版本，当使用 64 位的操作系统时会存在这个目录，并且将对应的64位库函数存放于其中。

● lost+found：存放在文件系统修复时恢复的文件。

● media：用于存放 Ubuntu 系统加载的各种媒体，例如光盘、软盘等。在其他 Linux操作系统中可能不存在。

● mnt：用户临时挂载其他的文件系统，如挂接 U 盘、CDROM 等。

● opt：用于存放安装时“可选”的程序，例如各种图形界面 KDE、Gnome 等。

● proc：系统内存的映射虚拟目录，可以通过直接访问这个目录来获取系统信息，它存在于内存中而不是硬盘上。

● root：root 用户的主工作目录，类似 home。

● run：存放的是自系统启动以来描述系统信息的文件，某些 Linux 中这个目录可能位于var下。

● sbin：存放系统级的可执行文件，类似 bin，但是这些文件只能让 root 用户而不能让普通用户使用。

● selinux：存放提供强制访问控制的相应文件，在某些 Linux 中可能不存在。

● srv；存放提供一些特定服务的文件。

● sys；存放系统信息相关文件。

● tmp：存放临时文件。

● usr：存放普通用户的应用程序、文档、程序等。

● var：存放在时间、大小、内容上会经常变化的文件。

注意：和 Windows 用户自己建立相应的文件夹来对所有的文件进行分门别类的管理不同，Linux提供了相应的文件夹来主动对文件进行分类管理。

Linux的文件是个简单的字节数据序列，所以在Linux中对于文本文件和二进制文件的结构和访问方法是一样的。Linux的文件是由一系列块（Block）组成，每个块可能含有512、1 024、2 048 或 4 096 个字节，具体由系统实现决定，在同一个文件系统的块大小是相同的。当使用较大块的时候，由于每次磁盘操作可以传输更多的数据，操作所花的时间较少，所以可以提高磁盘和内存间数据的传输率。但是相对地，由于块太大，存储的有效容量也将会下降，也就是说会浪费一些存储空间。

Linux 的文件系统由 4 部分组成：引导块、超级块、索引节点表（innode table）和数据块，各个部分的详细说明如下。

● 引导块：用于存放文件系统的引导程序，引导程序用于系统引导或启动操作系统。如果一个文件系统不存放操作系统，其引导块将为空。

● 超级块：用来描述该文件系统管理的资源，其包含空闲索引节点表和空闲数据块表，用于具体说明文件系统的资源使用情况。

● 索引节点表：用来存储文件的控制信息，每个节点对应一个文件。

● 数据块：是磁盘上存放数据的磁盘块，包括目录文件和数据。

图4.5是Linux文件系统组织结构的示意。

 [image: figure_0129_0067]

 图4.5 Linux 文件系统组织结构

这4个部分中最重要的是超级块和索引节点表，它们都是用于描述当前文件系统状态的组成。

超级块用于描述Linux文件系统的资源状态，包括文件系统的大小、空闲单元位置信息等。超级块在文件系统对文件的管理中起着至关重要的作用，其由如下字段构成。

● 文件系统的容量信息，如 inode 数目、数据块数目、保留块数目和块的大小等。

● 文件系统中空闲块的数目。

● 文件系统中部分可用的空闲块表。

● 空闲块表中下一个空闲块号。

● 索引节点表的大小。

● 文件系统中空闲索引节点表数目。

● 文件系统中部分空闲索引节点表。

● 空闲索引节点表中下一个空闲索引节点号。

● 超级块的锁字段，用于保证对存储单元的互斥操作。

● 空闲块表的锁字段和空闲索引节点的锁字段。

● 超级块是否被修改的标志。

● 其他字段，存放了文件系统是否完整的标志。

注意：Linux在关机的时候要求先将缓冲区数据写回文件系统，并且卸载（Unmount）该文件系统，如果没有卸载文件系统就关机，则很可能导致数据丢失。而在Linux启动的时候在挂载（Mount）一个文件系统之前首先会检查其超级块中的相应字段，如果上次没有进行卸载操作，则需要对该文件系统完整性作检查（fsck）。

超级块给出的是文件系统的相关信息，而一个文件信息则是由索引节点表（inode）来给出，每个文件都有自己的索引节点表，在其中包含了该文件数据在磁盘上存储的位置信息、操作权限、文件所有者、操作时间等信息。

索引节点表平时存储在磁盘上，在需要进行操作的时候读入内存。通常，存储在磁盘上的索引节点表称作磁盘索引节点，而把其在内存中的映像称作内存索引节点表。

索引节点表由如下字段构成。

● 文件类型：Linux 的文件可以分为普通文件、目录文件、链接文件、设备文件、管道文件等。将在下一个小节对此进行详细介绍。

● 文件链接数：记录了引用该文件的目录表项数，即记录了有多少个文件名指向该文件。

● 文件属主标识：指出该文件的所有者 ID。

● 文件属主的组标识：指出该文件所有者属组的 ID。

● 文件的访问权限：系统将用户分为文件属主、同组用户和其他用户三类，每类用户可能获得对文件的一种或几种访问权限。要特别指出的是，目录文件的执行权限是指修改目录的权力。

● 文件的存取时间：包括文件最后一次被修改的时间、最后一次被访问的时间和最后一次修改索引节点的时间。

● 文件的长度：以字节表示的文件长度。

● 文件的数据块指针：文件操作的当前位置指针。

在索引节点表中并不包含文件的名称，文件名的信息是存放在目录文件中，其具体存放方式将在下一小节中介绍。

在Linux中的stat.h头文件中使用一个结构体来定义索引节点表的相应字段，其说明如下。

#ifndef _ALPHA_STAT_H

#define _ALPHA_STAT_H

//32位的索引节点表的字段结构体定义

struct stat {

unsigned int st_dev;　//文件所在位置的设备号

unsigned int st_ino;　//文件的索引节点号

unsigned int st_mode; //文件的类型

unsigned int st_nlink; //连接到该文件的其他文件数量

unsigned int st_uid;　//文件所属用户

unsigned int st_gid;　//文件用户所在组

unsigned int st_rdev;　//如果是设备文件，则保存设备号，否则无效

long　st_size;　//文件长度，如果是设备文件则为0

unsigned longst_atime;　//最近一次访问文件时间

unsigned longst_mtime;　//最近修改文件时间

unsigned longst_ctime;　//最近一次对文件状态进行修改的时间

unsigned int st_blksize;　//文件系统的块大小

unsigned int st_blocks;　//文件所分配的块数

unsigned int st_flags;　//文件的用户定义标志

unsigned int st_gen;　//文件产生编号

};

//以下是64位系统的一些关于索引节点表的定义，增加了一些项

//修改了一些项，可以参考上一个结构体

struct stat64 {

unsigned longst_dev;

unsigned longst_ino;

unsigned longst_rdev;

long　st_size;

unsigned longst_blocks;

unsigned int st_mode;

unsigned int st_uid;

unsigned int st_gid;

unsigned int st_blksize;

unsigned int st_nlink;

unsigned int __pad0;

unsigned longst_atime;

unsigned long　st_atime_nsec;

unsigned longst_mtime;

unsigned longst_mtime_nsec;

unsigned longst_ctime;

unsigned long　st_ctime_nsec;

long　__unused[3];

};

#endif

文件描述符（File Descriptor）是 Linux 用于标识一个特定进程正在访问的文件，当打开一个文件或者创建一个文件，系统将返回一个文件描述符供其他操作引用，它可以用来标识其对应的特定文件。通常来说，文件描述符是一个小的非负整数。

在 Linux 中，每个进程都可以拥有最多 1 024 个文件描述符，并且有自己的文件描述符表，其中前3项对于一般的进程是固定的，并且是由系统自动打开的，说明如下。

● 文件描述符 0：标准输入文件，对于一般进程来说是键盘。

● 文件描述符 1：标准输出文件，一般是输出到显示器。

● 文件描述符 2：标准错误输出文件，一般也是输出到屏幕。

用户程序不用执行文件打开操作就可直接使用这3个描述符，其在头文件中的定义如下。

#define STDIN_FILENO 0　//标准输入

#define STDOUT_FILENO1　//标准输出

#define STDERR_FILENO2　//标准错误输出

4.1.2 Linux文件类型介绍

文件系统对文件的管理不仅仅是结构上的，同时还对文件属性进行了说明和管理。文件的属性包括文件类型、文件长度、文件所有者、文件的许可权、文件最后的修改时间等。用户可以设置目录和文件的权限，以便允许或拒绝其他人对其进行访问。

在终端的根目录下使用 ls -l 命令，可以看到相应的文件属性说明如下。

alloy@alloy-VirtualBox:～$ cd /

alloy@alloy-VirtualBox:/$ ls -l

总用量 92

drwxr-xr-x　2 root root　4096 2012-06-13 11:59 bin

drwxr-xr-x　3 root root　4096 2012-06-13 12:02 boot

drwxr-xr-x　2 root root　4096 2012-06-12 22:29 cdrom

drwxr-xr-x　15 root root　4060 2012-06-13 16:21 dev

drwxr-xr-x 139 root root 12288 2012-06-13 16:21 etc

drwxr-xr-x　3 root root　4096 2012-06-12 22:32 home

lrwxrwxrwx　　1　root　root　　32　2012-06-12　22:38　initrd.img　->

boot/initrd.img-4.0.0-12-generic

drwxr-xr-x　20 root root　4096 2012-06-13 11:59 lib

drwxr-xr-x　2 root root　4096 2012-06-13 11:59 lib64

drwx------　2 root root 16384 2012-06-12 22:24 lost+found

drwxr-xr-x　6 root root　4096 2012-06-13 16:21 media

drwxr-xr-x　4 root root　4096 2012-06-13 15:17 mnt

drwxr-xr-x　3 root root　4096 2012-06-12 23:03 opt

dr-xr-xr-x 144 root root　0 2012-06-13 16:21 proc

drwx------　5 root root　4096 2012-06-13 16:18 root

drwxr-xr-x　20 root root　760 2012-06-13 16:21 run

drwxr-xr-x　2 root root　4096 2012-06-13 12:02 sbin

drwxr-xr-x　2 root root　4096 2011-06-22 02:45 selinux

drwxr-xr-x　2 root root　4096 2011-10-13 00:47 srv

drwxr-xr-x　13 root root　0 2012-06-13 16:21 sys

drwxrwxrwt　12 root root　4096 2012-06-13 18:17 tmp

drwxr-xr-x　11 root root　4096 2012-06-12 23:57 usr

drwxr-xr-x　13 root root　4096 2012-06-13 16:21 var

lrwxrwxrwx　　1　root　root　　　29　2012-06-12　22:38　vmlinuz　->

boot/vmlinuz-4.0.0-12-generic

从输出结果可以看到文件类型、文件属性、用户名、用户所在组、文件大小、修改时间、文件名等信息，其中类似“drwxr-xr-x”的项说明了文件的类型和属性，它包含了10位字符，可以分为4组，如图4.6所示，详细说明如下。

 [image: figure_0133_0068]

 图4.6 文件类型和属性

● 第1 组：第1 位，表示文件的类型，包括普通文件、目录文件、管道文件等。

● 第2 组：2～4 位，表示文件所有者（User）的权限，分别为读、写、执行。

● 第3 组：5～7 位，表示文件所有者的同组用户（Group）的权限，分别为读、写、执行。

● 第4 组：8～10 位，表示其他组用户（Other）的权限，同样分别为读、写、执行。

第一位是文件的类型说明，其由stat结构体中st_mode来确定，标志符和对应的文件类型以及在stat中定义的关键字如表4.1所示。

 表4.1 文件类型说明

 [image: figure_0133_0069]

 续表

 [image: figure_0134_0070]

1．普通文件

普通文件也称正规文件，是Linux系统中最常见的一类文件，其特点是不包含文件系统的结构信息，包括图形文件、数据文件、文档文件、声音文件等。普通文件按其内部结构又可为文本文件和二进制文件两种。

● 文本文件。是字符（ASCII 码）组成的文件，它是以行为基本结构的信息存储文件，是Linux系统中使用最多的一种文件类型，它的内容是用户可以直接读到的数据，如数字、字母等。通常来说，Linux 的系统配置文件基本上都属于这种文件类型，可以使用cat命令直接查看。

● 二进制文件。按信息在内存中的格式表示的文件，其通常不能直接查看，而必须使用相应的软件来查看。通常来说，Linux 中的可执行文件（不包括脚本、文本方式的批处理文件）基本都属于这种文件类型，可以运行。

2．目录文件

在前面介绍过，Linux中的目录也是以文件存在的，称为目录文件。目录文件是文件系统中一个目录所包含的目录项组成的文件。用户可以读取但是不能修改该目录文件的内容，只允许系统对其进行修改。

目录文件在文件名与索引节点之间的转换起到桥梁作用，是文件系统树型文件结构的关键，由文件名和索引节点号构成。

Linux的文件系统对文件管理是通过索引节点来进行的，目录文件只不过提供了文件名和索引节点之间的转换手段。为了保证文件系统层次的完整性，目录文件是由系统来管理的，用户只能读目录文件，而不允许直接写目录文件。每个目录文件的前2项是2个特设的文件“.”和“..”。其中“.”对应于该目录文件本身的索引节点，而“..”则对应于其父目录的索引节点。如果一个目录中只包含“.”和“..”文件，则该目录为空目录。

当用户访问某个文件时，系统需要找到它所对应的索引节点。目录文件建立了文件名和索引节点号之间路径的路线，【例4.1】是对目录a下名称为b的文件的访问流程。

【例4.1】文件b的路径为“../a/b”，要从当前目录开始，到达其父目录，再到达其父目录的子目录a，然后访问文件b，其详细操作步骤如下。

（1）检索当前目录的索引节点。

（2）通过当前目录的索引节点，找到当前文件，查出父目录“..”。

（3）检索“..”的索引节点。

（4）通过父目录“..”的索引节点，检索父目录文件，查出文件“a”的索引节点号。

（5）检索“a”的索引节点。

（6）利用“a”的目录索引节点中的信息，检索“a”目录文件，查到“b”的索引节点号。

（7）检索文件“b”的索引号。

（8）访问文件“b”。

由于在系统的内存中存在内存索引节点表，所以上述操作的速度会很快。

3．链接文件

链接文件又称符号链接文件，它是一种特殊的文件，实际上是指向一个真实存在的文件的链接。链接文件提供了共享文件的一种方法，在链接文件中不是通过文件名实现文件共享，而是通过链接文件中所包含的指向文件的指针来实现对文件的访问。普通用户可以建立链接文件，并通过其指针访问它所指向的那个文件。使用链接文件可以访问普通文件，还可以访问目录文件和不具有普通文件实态的其他文件。也就是说，链接文件可以在不同的文件系统之间建立一种链接关系。根据链接对象的不同，链接文件又可以分为硬链接文件和符号链接文件。

4．管道文件

管道文件主要用于在进程间传递数据，它是Linux进程间的一种通信机制。管道是进程间传递数据的“媒介”，一个进程将数据写入管道的一端，另一个进程从管道另一端读取数据。通常管道是建立在高速缓存中的。采用先进先出的规则处理其中的数据，管道文件又可以分为有名管道和无名管道两种。

5．设备文件

Linux将设备也看做文件，和文件具有相同的操作方法，这种文件被称为设备文件。设备文件是为操作系统与I/O设备提供连接的一种文件，分为字符设备文件和块设备文件，分别对应于字符设备和块设备，这些文件通常存放在dev目录中，参考4.1.1小节。

注意：Linux 中存在一个目录 /dev/null。所有放入这一目录的设备数据都将不存在，可以把这个放入操作看成是删除。

● 字符设备（character device）。这是一个顺序的数据流设备，对这种设备的读写是按字符进行的，而且这些字符连续地形成一个数据流。字符设备不具备缓冲区，所以对这种设备的读写是实时的，如串口终端、磁带机等。

● 块设备（block device）。是一种具有一定结构的随机存取设备，对这种设备的读写是按块进行的，它使用缓冲区来存放暂时的数据，待条件成熟后，从缓存一次性写入设备或从设备中一次性读出放入到缓冲区，如磁盘和文件系统等。

【例 4.2】是串口和硬盘对应设备文件的信息，可以看到/dev/tty 的文件类型显示为字符“c”，/dev/hda1文件类型显示为字符“b”。

【例4.2】

ls -l /dev/tty

crw-rw-rw- 1 root tty 5, 0 04-19 08:29 /dev/tty

ls -l /dev/hda1

brw-r----- 1 root disk 3, 1 2006-04-19 /dev/hda1

6．套接字文件

套接口（Socket）文件主要用于在不同计算机的进程间进行通信，也称为套接字。

套接口是操作系统内核中的一个数据结构，它是网络中的节点进行相互通信的门户。套接口有 3 种类型：流式套接口、数据报套接口和原始套接口。流式套接口也就是 TCP套接口（或称面向连接的套接口），数据报套接口也就是UDP套接口（或称无连接的套接口），原始套接口用“SOCK_RAW”表示。

流式套接口定义了一种可靠的面向连接的服务，实现了无差错，无重复的顺序数据传输。数据报套接口定义了一种无连接的服务，数据通过相互独立的报文进行传输，是无序的，并且不保证可靠、无差错。原始套接口允许对低层协议（如，IP或ICMP协议）直接访问，主要用于新的网络协议实现的测试等。

4.2 Linux的基本文件操作函数

Linux通过相应的文件I/O函数来完成对文件的操作，这些函数通常被称为“不带缓冲的 I/O”，这是因为它们对文件的读写都是调用 Linux 内核的系统调用来实现的。Liux的基本文件操作函数包括：open（打开文件）、read（读文件）、write（写文件）、iseek（设置文件指针）和close（关闭文件）。

4.2.1 打开文件函数

open函数用于在Linux中打开一个文件。如果该文件不存在，则先创建该文件，然后打开。如果操作成功则返回文件对应的文件描述符，如果操作失败则返回“-1”。

open函数的标准调用格式说明如下。

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

int open (const char *pathname, int flags) ;　　　//打开一个现有的文件

int open (const char *pathname, int flags, mode_t mode) ;

//如果打开的文件不存在，则先创建它

open函数的各个参数和应用实例说明如下。

1．pathname参数

pathname 是一个指针变量，用于传递包含了路径的完整文件名称，其典型的应用实例如“/dev/log”。

2．flags参数

flags是一个int类型的变量，用于指定文件的打开方式，常用的有如下3种标志。

● 只读：关键字 O_RDONLY，通常定义为 0。

● 只写：关键字 O_WRONLY，通常定义为 1。

● 读写：关键字 O_RDWR，通常定义为 2。

在对一个文件进行相应的操作时，还必须注意文件本身的权限，对一个文件进行操作权限不够的操作将会返回一个错误，例如，对只读文件进行写操作。

需要注意的是flags参数中，以上3个参数是必须有且是唯一的，也就是说这些关键字之间不能用“OR”来连接，只能选择其中一个。此外flags还可以使用表4.2所示的可选参数。

 表4.2 flags 的其他可选参数

 [image: figure_0137_0071]

表4.2给出的标志都可以混合使用，各标志之间用“|”符号连接。其实第二个参数为int 型参数，该数的每位都对应一个操作，符号“|”是将它们按位或，即加起来，使得需要操作的位被置“1”。

注意：上面介绍的标志中有一些可以在文件打开后用 fcntl 函数进行修改，具体用法参考后续章节。

3．mode参数

如果仅仅是需要打开一个文件，可以不使用open函数的第三个参数，但是如果充分考虑到文件可能不存在，再打开之前就需要创建，此时则需要使用mode参数。

mode的参数值及含义如表4.3所示。

 表4.3 mode参数说明

 [image: figure_0138_0072]

mode 参数支持“或”运算，也就是说可以同时使用如表4.3 中的一个或几个参数，其间可以使用“|”关键字来直接连接，或者对其对应的值进行计算之后获得最后的数值直接调用。

4．Open函数的应用实例

【例4.3】是open函数的应用实例，代码调用open函数在当前的工作目录下以读写打开方式来打开一个名为“examtest”的文件。如果该文件不存在，则创建该文件，创建该文件的时候使用 S_IRWXU 关键字来确定该文件的读写操作权限。open 函数将 examtest的文件描述符返回给一个int类型的变量temp，然后使用printf函数将该描述符输出，并且使用close函数关闭文件（close文件的说明将在下一个小节给出）。

【例4.3】open函数应用实例。

#include <unistd.h>

#include <stdlib.h>

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

#include <stdio.h>

int main(void)

{

int temp;

temp = open("./examtest",O_RDWR|O_CREAT,S_IRWXU);　//创建文件

printf("%d\n",temp);　//输出文件描述符

temp = close(temp);　//关闭文件

printf("%d\n",temp);　//输出关闭文件的返回值

exit(0);

}

将文件保存为exam3open.c，在终端中使用gcc编译，并且运行，可以看到如下的输出结果。

alloeat@ubuntu:～/chapter4Exam$ gcc -g exam3open.c -o exam1open

alloeat@ubuntu:～/chapter4Exam$./exam1open

3

0

alloeat@ubuntu:～/chapter4Exam$

其中，第一行是gcc的编译命令行，使用-g参数和-o参数将exam1open.c文件编译成一个带gdb调试信息的可执行文件exam1open。然后执行此文件，由于在文件夹中不存在文件examtest，所以创建了该文件并且打开，返回文件描述符3，然后调用close函数关闭文件。

注意：任何被打开的文件在操作完成之后都需要关闭，否则容易出现错误。

在Gnome图形界面中可以查看文件examtest的相应基本属性和权限，如图4.7和图4.8所示。

4.2.2 关闭文件函数

close函数用于关闭一个已经打开的文件。如果关闭成功，返回0，否则返回-1。

close函数的标准调用格式说明如下。

#include <unistd.h>

int close (int fd);

需要注意的是，当对文件进行打开和关闭操作时，还会对其相关信息产生相应的影响。

● 当打开一个文件时，该文件描述中的引用计数器值加 1。而关闭一个文件时，该文件描述中的引用计数器值减1。当引用计数器的值减为0的情况下，系统调用close函数时不仅将释放该文件的描述符，而且也将释放该文件所占的描述表项。

 [image: figure_0140_0073]

 图4.7 examtest文件的基本属性

 [image: figure_0140_0074]

 图4.8 examtest文件的权限

● 关闭一个文件时也释放该进程加在该文件上的所有记录锁。当一个进程终止时，它所有的打开文件都由内核自动关闭。很多程序都使用这一功能来关闭文件，而是不显式地用close关闭打开的文件。

● 当关闭的不是一个普通文件时，可能会产生一些其他的影响。例如，关闭管道文件的一端时，将影响到管道的另一端。

close函数的参数说明和应用实例说明如下。

1．close参数说明

close的参数为文件描述符。通常来说，这个符号为其他函数的返回值，例如open函数等的返回值。

2．close的应用实例

close函数的应用实例可以参考【例4.3】。

4.2.3 创建文件函数

create函数用于在Linux中创建一个文件。如果文件创建成功则返回该文件对应的文件描述符，如果出错则返回-1。

create函数的标准调用格式说明如下。

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

int creat(const char *pathname, mode_t mode);

create函数的各个参数和应用实例说明如下。

1．pathname参数说明

create函数的pathname参数使用方法和open函数的pathname参数应用方法完全相同，可以参考4.2.1节。

2．mode参数说明

create函数的mode参数使用方法和open函数中mode参数也完全相同，可以参考4.2.1节。

注意：create 函数其实等同于 int open(const char *pathname, O_WRONLY|O_CREAT | O_TRUNC, mode_t mode)。

3．create的应用实例

【例4.4】是create函数的应用实例，应用代码使用main函数参数集合的第二个参数来作为即将创建的文件的pathname参数，然后在当前目录下建立一个属性为S_IRWXU的文件。

【例4.4】create函数应用实例。

//建立一个文件，文件名由argv的第二个参数给出

#include <fcntl.h>

#include <stdio.h>

int main(int argc,char *argv[])

{

int temp;

if (argc!=2) //如果参数不是可执行文件和待创建的文件两项

{

printf("run error\n");　　//执行错误

return 1;　　　　　　//退出

}

temp = creat(*(argv+1),S_IRWXU); //参数字符串的第二个字符串作为文件名

printf("%d\n",temp);

return 0;

}

将文件保存为exam4create.c，在终端中使用gcc编译，并且运行，可以看到如下的输出结果。

alloy@ubuntu:～/chapter4Exam$ gcc exam4create.c -o examcreate

alloy@ubuntu:～/chapter4Exam$./examcreate createtest.txt

3

alloy@ubuntu:～/chapter4Exam$

其中，第一行是gcc的编译命令行，其使用-o参数将exam2create.c文件编译成一个可执行文件exam2create。然后执行，其中将参数createtest.txt传递给可执行文件作为新创建的文件名称，当文件被创建之后，返回文件描述符3。

注意：create函数返回新建文件的文件描述符，新建的文件都是以只写方式打开的。

4.2.4 写文件函数

write 函数用于向一个已经打开的文件写入数据。如果操作成功则返回已经写入的数据字节数，如果操作失败则返回-1。

write函数的标准调用格式说明如下。

#include <unistd.h>

ssize_t write (int fd, void *buf, size_t count);

write函数的返回值通常与参数count的值相同，否则表示出错。write出错的最常见原因是磁盘已满，或者超过了文件长度限制。

注意：对于普通文件而言，写操作从文件的当前偏移量处开始。如果在打开该文件时，指定了O_APPEND选择项，则在每次写操作之前，将文件偏移量设置在文件的当前结尾处。在一次成功写之后，该文件偏移量增加实际写的字节数。关于O_APPEND选择项的相关说明可以参见4.2.5节。

write函数的各个参数和应用实例说明如下。

1．fd参数说明

fd参数是待写入文件的文件描述符，其通常是通过open、create等函数获得的。

2．buf参数说明

buf是一个指向写入缓冲区的指针，待写入数据必须存放在该缓冲区内。

3．count参数说明

count表示本次操作将要写入文件的数据的字节数。

4．write的应用实例

【例4.5】是write函数的应用实例，代码首先打开参数字符串指定的文件，如果没有则创建这个文件，然后向该文件写入一个字符串“this is a test！”，该字符串存放在缓冲区wbuf中。

【例4.5】write函数应用实例。

#include <fcntl.h>

#include <stdio.h>

int main(int argc,char *argv[])

{

int fileID,temp;

char wbuf[15] = "this is a test!";

fileID = open(*(argv+1),O_RDWR|O_CREAT,S_IRWXU);

//打开文件，如果没有则创建

printf("%d\n",fileID); //打印文件描述符

temp = write(fileID,wbuf,15); //使用文件描述符调用文件

printf("%d\n",temp);

close(fileID);

return 0;

}

将文件保存为exam5write.c，在终端中使用gcc编译，并且运行，可以看到如下的输出结果。

alloy@ubuntu:～/chapter4Exam$ gcc exam5write.c -o examwrite

alloy@ubuntu:～/chapter4Exam$./examwrite writetest.txt

3

15

alloy@ubuntu:～/chapter4Exam$ cat writetest.txt

this is a test!alloy@ubuntu:～/chapter4Exam$

其中，第一行是gcc的编译命令行，其使用-o参数将exam3write.c文件编译成一个可执行文件 exam3write。然后执行，其中将执行参数 writetest.txt 传递给可执行文件作为新创建文件的名称，当文件被创建之后，返回文件描述符3。write函数通过该文件描述符将位于wbuf缓冲区中的数据写入到文件中。

4.2.5 文件偏移定位函数

在上一小节中提到了文件偏移量的概念，在Linux中，每个打开的文件都有一个与其相关联的当前文件偏移量（也叫文件指针），它通常是一个非负整数，用以度量从文件开始处计算的字节数。通常，读、写操作都从当前文件偏移量处开始，并使偏移量增加所读写的字节数。

1seek函数来指定文件偏移量的位置，从而实现文件的随机存取，如果操作成功则返回新的文件偏移量，如果出错则返回-1。

lseek函数的标准调用格式说明如下。

#include <sys/types.h>

#include <unistd.h>

off_t lseek(int fds, off_t offset, int whence);

lseek函数的各个参数和应用实例说明如下。

1．fds参数说明

fds参数是待写入文件的文件描述符，其通常是通过open、create等函数获得的。

2．offset参数说明

offset是文件偏移量，指的是每一次对文件的读写操作所需移动的距离，单位为字节。offset的取值可正可负，正值指的是向前移，负值指的是向后移。

注意：对于普通文件而言，offset 通常都是正值，所以在使用的时候最好能先测试其值，以确保取值正确。

3．whence参数说明

Whence参数有3种不同的取值.

● SEEK_SEK：将偏移量设置为文件开始位置之后的 offset 个字节。

● SEEK_CUR：将偏移量设置为当前偏移量之后的 offset 个字节。

● SEEK_END：将偏移量设置为当前文件长度加上 offset 个字节。

lseek函数允许将文件的设置偏移量为超过文件结束符（EOF）处。在下一次调用write函数时，可以将文件的长度延伸到所需的长度，并用无意义的字符填充这个空隙。如果随后用 read 函数读取这个空隙间的数据，将得到无意义的值，直到这个文件数据块被真正写回到磁盘上，再读取这个空隙间的数据将得到0。这是因为，当在文件尾之后执行write函数时，Linux 系统并不存储无用的数据块。在 read 函数读到该数据块时，系统为 read函数产生一个全为0的数据块，返回给read函数。如果用read函数读文件尾或文件尾之后的数据，则产生0作为read的返回值。

另外，由于lseek成功执行时返回新的文件偏移量，为此可以用下列方式确定一个打开文件的当前位移量。

off_t currpos;　　　　/*定义变量currpos的数据类型为off_t */

currpos = lseek (fd, 0, SEEK_CUR);　/*offset值为0*/

注意：以上方法可用来确定所涉及的文件是否可以设置偏移量。如果文件描述符引用的是一个管道或FIFO，则lseek返回-1，并将errno设置为EPIPE。

4．lseek的应用实例

【例4.6】是lseek函数的应用实例，应用代码首先打开参数字符串指定的文件，如果没有则打开这个文件，然后对该文件连续写入字符串“this is a test！”和回车换行，该字符串存放在缓冲区wbuf中，在每次写入之前都需要将文件偏移量移动到下一次待写入的位置。

【例4.6】lseek函数应用实例。

#include <fcntl.h>

#include <stdio.h>

int main(int argc,char *argv[])

{

int temp,seektemp,i,j;

int fileID;

char wbuf[17] = "this is a test!\r\n";

if(argc!= 2)

{

printf("run error!\n");

return 1;　　　　　//如果参数不正确则退出

}

fileID = open(*(argv+1),O_RDWR|O_CREAT,S_IRWXU);

temp = write(fileID,wbuf,sizeof(wbuf));　//写入数据

seektemp = lseek(fileID,0,SEEK_CUR);　　//获得当前的偏移量

for(i=0;i<10;i++)

{

j = sizeof(wbuf) * (i+1);　　　//计算下一次的偏移量

seektemp = lseek(fileID,j,SEEK_SET);

temp = write(fileID,wbuf,sizeof(wbuf));　//写入数据

}

close(fileID);

return 0;

}

将文件保存为exam6lseek.c，在终端中使用gcc编译，并且运行，可以看到如下的输出结果。

alloy@ubuntu:～/chapter4Exam$ gcc -g exam6lseek.c -o examlseek

alloy@ubuntu:～/chapter4Exam$./examlseek lseektest.txt

其中，第一行是gcc的编译命令行，其使用-o参数将exam4lseek.c文件编译成一个可执行文件examlseek。然后执行，其中将执行参数lseektest.txt传递给可执行文件作为新创建文件的名称，返回对应的文件描述符。write函数通过该文件描述符将位于wbuf缓冲区中的数据写入到文件中，然后调用lseek函数移动对应的偏移量，再次调用write函数写入数据。

使用cat命令打开lseektest.txt文件，可以看到写入其中的字符串。

alloy@ubuntu:～/chapter4Exam$ cat lseektest.txt

this is a test!

this is a test!

this is a test!

this is a test!

this is a test!

this is a test!

this is a test!

this is a test!

this is a test!

this is a test!

this is a test!

注意：在写入字符串的时候必须使用\r\n作为回车换行。

4.2.6 读文件函数

read函数用于从一个已打开的Linux文件中读取指定长度的数据，如果操作成功，则返回读到的字节数。如果已经到达了文件的末端则返回0；如果出错则返回-1。

read函数的标准调用格式说明如下。

#include <unistd.h>

ssize_t read (int fd, void *buf, size_t count) ;

通常来说，read 函数的读操作从文件的当前偏移量处开始，在成功返回之前，该偏移量增加实际读得的字节数。但是，如下的几种情况可使实际读到的字节数少于要求读的字节数。

● 当读普通文件时，在读到要求字节数之前已到达了文件末尾。例如，若在到达文件末尾之前还有30个字节，而要求读100个字节，则read返回30，下一次再调用read时，它将返回0（已到达文件末尾）。

● 当从终端设备读时，通常一次最多读一行。

● 当从网络读取时，网络中的缓冲机构可能造成返回值小于所要求读的字节数。

● 某些面向记录的设备（例如，磁带），一次最多返回一个记录。

read函数的各个参数和应用实例说明如下。

1．fd参数说明

fd参数是待读出文件的文件描述符，其通常是通过open、create等函数获得的。

2．buf参数说明

存放读出数据的缓冲区的指针。

3．count参数说明

count是待读取的数据长度，如果count为0，则read函数返回0并且没有其他结果。如果 count 大于 32 767，则结果不能确定。

注意：在32位系统中，count是一个32位的变量，而在64位系统中这是一个64位的变量。

4．read的应用实例

【例4.7】是read函数的应用实例，应用代码首先打开参数字符串1指定的文件作为源文件，然后打开参数字符串2指定的文件作为目的文件，然后调用read函数从源文件将数据读出，并写入到目的文件中。

【例4.7】read函数应用实例。

#include <fcntl.h>

#include <unistd.h>

#include <stdio.h>

#define PERMS 0666

#define DUMMY 0

#define MAXSIZE 1024

int main(int argc, char *argv[])

{

int sourcefileID, targetfileID; //目标文件和源文件的描述符

int readNO = 0; //读出的字符数

char WRBuf[MAXSIZE]; //定义缓冲区

if(argc!=3) //如果命令行参数不正确

{

printf("run error\n");

return 1;

}

if((sourcefileID=open(*(argv+1),O_RDONLY,DUMMY))==-1) //如果源文件打开失败

{

printf("Source file open error!\n");

return 2;

}

if((targetfileID=open(*(argv+2), O_WRONLY|O_CREAT, PERMS))==-1)

//如果目标文件打开失败

{

printf("Target file open error!\n");

return 3;

}

while((readNO=read(sourcefileID, WRBuf, MAXSIZE))>0) //如果读出来的数据大于 0

if(write(targetfileID, WRBuf,readNO)!=readNO) //如果写入的数据和读出的数据不同

{

printf("Target file write error!\n"); //写数据错误

return 4;

}

close(sourcefileID);

close(targetfileID); //关闭文件

return 0;

}

将文件保存为 exam7read.c，在终端中使用 gcc 编译，并且运行，可以看到如下的输出结果。

alloeat@ubuntu:～/chapter4Exam$ gcc -g exam7read.c -o examcopy

alloeat@ubuntu:～/chapter4Exam$./examcopy lseektest.txt copytest.txt

其中，第一行是gcc的编译命令行，其使用-o参数将exam7read.c文件编译成一个可执行文件examlcopy。然后执行，其中将执行参数lseektest.txt传递给可执行文件作为读出数据的源文件，将copytest.txt作为写入数据的目的文件。

使用cat命令打开copytest.txt文件，可以看到在【例4.6】中写入lseektest.txt文件的字符串已经被复制到其中。

alloeat@ubuntu:～/chapter4Exam$ cat copytest.txt

this is a test!

this is a test!

this is a test!

this is a test!

this is a test!

this is a test!

this is a test!

this is a test!

this is a test!

this is a test!

this is a test!

4.3 Linux的高级文件操作函数

Linux的基本文件操作函数是围绕文件的普通I/O操作来进行的，包括打开、关闭、创建和读写文件。本小节将讨论Linux文件系统的其他特征和文件的性质，以及对这些属性进行相关操作的函数。

4.3.1 文件状态操作函数

在4.1.1小节中已经介绍过，Linux使用了一个结构体stat来存放文件的相应属性，而stat、fstat和lstat函数用于获得文件的这个属性结构体，如果成功返回0，否则返回-1。

stat、fstat和lstat函数的标准调用格式说明如下。

#include <sys/types.h>

#include <sys/stat.h>

int stat(const char *pathname, struct stat *sbuf);

int fstat(int fd, struct stat *sbuf);

int lstat(const char *pathname,, struct stat *sbuf);

stat函数和lstat函数使用文件的路径作为参数来标识需要获取其属性的文件，而fstat函数使用文件对应的描述符来标识需要获取其属性的文件。lstat函数和stat函数的区别在于：如果目标文件是一个符号链接的时候，lstat返回的是该符号链接的有关信息，而stat返回的是符号链接所引用的文件信息。

注意：可以简单地将符号链接和符号链接对应文件关系理解为 Windows 中的快捷方式和快捷方式对应的文件。

stat系列函数的参数和应用实例说明如下。

1．pathname参数说明

目标文件的路径，可以是绝对路径或者相对路径，在stat和lstat函数中使用。

2．fd参数说明

目标文件的文件描述符，通常由其他函数返回，在fstat函数中使用。

3．sbuf参数说明

指向存放目标文件状态结构体的目标指针。

4．stat系列函数的应用实例

【例4.8】是lstat函数的应用实例，lstat函数根据命令参数传递的字符串打开对应的文件并且返回对应的文件类型。

【例4.8】lstat函数应用实例。

//这是一个使用lstat函数来获得当前文件类型的应用实例

#include <fcntl.h>

#include <sys/stat.h>

#include <stdio.h>

int main(int argc, char *argv[])

{

int　　　i;

struct stat　buf;

char　*ptr;

for (i = 1; i < argc; i++)　//命令行参数作为输出参数

{

printf("%s: ", argv[i]);

if (lstat(argv[i], &buf) < 0)

{

printf("lstat error");

continue;

}

if (S_ISREG(buf.st_mode))　//判断文件类型

ptr = "regular";

else if (S_ISDIR(buf.st_mode))

ptr = "directory";

else if (S_ISCHR(buf.st_mode))

ptr = "character special";

else if (S_ISBLK(buf.st_mode))

ptr = "block special";

else if (S_ISFIFO(buf.st_mode))

ptr = "fifo";

else if (S_ISLNK(buf.st_mode))

ptr = "symbolic link";

else if (S_ISSOCK(buf.st_mode))

ptr = "socket";

else

ptr = "** unknown mode **";

printf("%s\n", ptr);

}

return 0;

}

将文件保存为 exam8lstat.c，在终端中使用 gcc 编译，并且运行，可以看到如下的输出结果。

alloeat@ubuntu:～/chapter4Exam$ gcc -g exam8lstat.c -o examlstat

alloeat@ubuntu:～/chapter4Exam$./examlstat examlstat.c

examlstat.c: regular

其中，第一行是gcc的编译命令行，其使用-o参数将exam8lstat.c文件编译成一个可执行文件examlstat。然后执行，其中执行参数examlstat.c是目标文件，其返回值为regular，说明这是一个普通文件。

4.3.2 时间相关函数

stat系列函数返回的是文件的属性状态，而如果要对文件相应的时间信息进行操作，可以使用 utime 函数。函数调用成功后将返回 0，并且自动更新文件的特性修改时间st_ctime；否则返回-1。

在Linux系统中，每个文件都有3个对应的时间信息，如表4.4所示，其分别对应stat结构体中如下3个字段。

unsigned longst_atime;　//最近一次访问文件时间

unsigned longst_mtime;　//最近的修改文件时间

unsigned longst_ctime;　//最近一次对文件状态进行修改的时间

 表4.4 文件的时间信息

 [image: figure_0151_0075]

st_atime和st_ctime这两个时间的主要区别在于：前者是最后一次对文件本身进行修改操作的时间，而后者是对文件的索引节点 innode 进行操作的时间；前者受到相应的函数（例如，write）的影响，后者的改变则不一定要涉及对文件内容的操作，只需要修改了文件的状态（例如，文件的访问权限等）则会产生。

注意：可以利用utime函数来改变一个文件的访问时间和修改时间，但是没有函数可以改变文件的特性修改时间，因为inode是由系统来维护的。

utime函数的标准调用格式说明如下。

#include <sys/types.h>

#include <utime.h>

int utime(const char *pathname,const struct utimebuf *times);

utime函数的各个参数和应用实例说明如下。

1．pathname参数说明

目标文件的路径参数。

2．times参数说明

times用于存放utime返回的时间信息，是utime函数使用的一个数据结构，其说明如下。

struct utimbuf

{

time_t actime;

time_t modtime;

}

● actime：文件的访问时间。

● modtime：文件的修改时间。

需要注意的是，这两个时间值都是日历时间，也就是自标准时间（1970年1月1日00:00:00起到当前所经过的秒数）。

如果times是空指针，文件的访问时间和修改时间均设置为当前时间。此时，要么进程的有效用户ID必须等于文件的用户ID，要么进程必须有该文件的写权限。

如果times不是空指针，它为指向utimebuf结构的指针，并且用times值更新文件的访问时间和修改时间。在这种情形下，要么进程的有效用户ID必须等于文件的用户ID，要么必须是超级进程。仅具有文件的写权限是不够的。

3．utime函数应用实例

【例4.9】是utime函数的应用实例，应用代码使用stat函数获得文件的时间信息，然后使用带O_TRUNC参数的open函数将文件打开，并且截断为0（长度，其实质是清空文件的所有内容），然后使用utime函数复位文件最后访问和修改时间。

【例4.9】utime函数应用实例。

#include <stdio.h>

#include <fcntl.h>

#include <utime.h>

int main(int argc, char *argv[])

{

int　　　　i, fd;

struct stat　　statbuf;

struct utimbuf　timebuf;

for (i = 1; i < argc; i++) {

if (stat(argv[i], &statbuf) < 0)　//获得当前的时间

{

printf("arg is error\n"); //参数错误

continue;

}

if ((fd = open(argv[i], O_RDWR | O_TRUNC)) < 0) //截断文件

{

printf("open file error\n");　//文件打开失败

continue;

}

close(fd);

timebuf.actime　= statbuf.st_atime;

timebuf.modtime = statbuf.st_mtime;　//恢复时间

if (utime(argv[i], &timebuf) < 0)　//复位时间

{

printf("reset time error\n");　//复位时间失败

continue;

}

}

return 0;

}

将文件保存为 exam9utime.c，在终端中使用 gcc 编译，并且针对【例 4.6】生成的lseektest.txt 文件进行操作，操作完成之后使用 ls 命令来查看文件对应的属性，可以看到如下的输出结果。

alloeat@ubuntu:～/chapter4Exam$ gcc exam9utime.c -o examutime

alloeat@ubuntu:～/chapter4Exam$ ls -l lseektest.txt

-rwx------ 1 alloeat alloeat 187 6月23 16:25 lseektest.txt

//操作前文件的长度和最后修改时间

alloeat@ubuntu:～/chapter4Exam$ ls -lu lseektest.txt

-rwx------ 1 alloeat alloeat 187 6月23 16:25 lseektest.txt

//操作前文件的最后访问时间

alloeat@ubuntu:～/chapter4Exam$ date

2012年06月23日 星期六 19:12:01 CST

//当前时间

alloeat@ubuntu:～/chapter4Exam$./examutime lseektest.txt

//对文件进行操作

alloeat@ubuntu:～/chapter4Exam$ ls -l lseektest.txt

-rwx------ 1 alloeat alloeat 0 6月23 16:25 lseektest.txt

//操作后文件的长度和最后修改时间——长度为0且最后修改时间不变

alloeat@ubuntu:～/chapter4Exam$ ls -lu lseektest.txt

-rwx------ 1 alloeat alloeat 0 6月23 16:25 lseektest.txt

//操作后文件的的长度和最后访问时间——长度为0且最后访问时间不变

alloeat@ubuntu:～/chapter4Exam$ ls -lc lseektest.txt

-rwx------ 1 alloeat alloeat 0 6月23 19:12 lseektest.txt

//操作后文件的状态修改时间设置为当前时间

alloeat@ubuntu:～/chapter4Exam$ cat lseektest.txt

alloeat@ubuntu:～/chapter4Exam$

//使用cat命令打印文件

实例的输出说明参考注释部分。

注意：Linux另外还提供了一个与utime功能相同的函数utimes，但它比utime具有更高的时间解析度，utimes可以将文件的访问和修改时间设置至微秒级，其结构如下，读者可以自行查询相应的资料学习该函数的应用方法。

#include <sys/time.h>

int utime(const char *pathname,const struct timeval values[2]);

4.3.3 文件的访问权限说明

对于Linux中的文件来说，其必须由系统中的某个进程来进行操作，而和一个进程相关的ID有6个或者更多，包括实际用户ID、实际组ID、有效用户ID、有效组ID、附加组ID、保存的设置用户ID和保存的设置组ID，其说明如下。

● 实际用户 ID 和实际组 ID：用于表示当前 Linux 的登录用户，其在登录时由口令文件中的登录项获得，通常来说在整个会话过程中这个登录用户并不会改变，但是如果在Ubuntu等环境下使用类似sudo的命令可以暂时改变。

● 有效用户 ID、有效组 ID 和附加组 ID：用于确定每个文件的访问权限，其保存在stat结构体的st_mode分量中，如表4.5所示。

 表4.5 文件的访问权限位

 [image: figure_0154_0076]

注意：表4.5和表4.3基本相同，只是4.3多了与S_IRWXU相关的项目。

● 保存的设置用户 ID 和保存的设置组 ID：保存了包含有效用户 ID 和有效组 ID 的一个副本，在后续章节中将进行详细介绍。

通常来说，有效用户ID和实际用户ID是相同的，而有效组ID和实际组ID也是相同的，而每个文件都有一个所有者和一个组所有者，所有者存放在stat结构中的st_uid分量中，而组所有者则存放在st_gid分量中。

注意：在4.2节的open函数、create函数等示例中，并没有涉及到新建文件的用户ID和组ID操作，此时Linux内核以当前创建文件进程的有效用户ID和有效组ID作为文件的相应用户ID和组ID。

4.3.4 测试文件访问权限函数

从4.3.3节可知，文件的用户ID和组ID与当前进程的用户ID和组ID未必相同，此时如果希望对文件进行操作，则需要先测试该文件的相应权限。可以使用access函数来进行测试，当测试成功（拥有相应权限）时返回0，否则返回-1。

access函数的标准调用格式说明如下。

#include <unistd.h>

int access(const char *pathname,int mode);

access函数的各个参数和应用实例说明如下。

1．pathname参数说明

目标文件的路径，可以是绝对路径或者相对路径。

2．mode参数说明

mode 用于标识当前检查的文件权限类别，其说明如下。需要注意的是，这个参数是不能采用“|”来连接这些选项的，只能选择其中一个作为当前的access函数的mode参数。

● R_OK：检验调用进程是否有读访问权限。

● W_OK：检验调用进程是否有写访问权限。

● X_OK：检验调用进程是否有执行访问权限。

● F_OK：检验规定的文件是否存在。

3．access函数应用实例

【例4.10】是access函数的应用实例，应用代码首先检查参数是否正确，然后分别使用了4个参数来检查对应文件的属性，并且打印显示对应的检查结果。

【例4.10】access函数应用实例。

#include <fcntl.h>

#include <stdio.h>

int main(int argc,char *argv[])

{

int temp;

if(argc != 2)　//参数错误

{

printf("run error!\n");

return 1;

}

temp = access(*(argv+1),F_OK);　//测试文件是否存在

if(temp == -1)

{

printf("file is not exist!\n");　//文件不存在

return 2;

}

temp = access(*(argv+1),R_OK);　//测试文件是否能读

if(temp == 0)

{

printf("file can be read!\n");

}

else

{

printf("file can not be read!\n");

}

temp = access(*(argv+1),W_OK);　//测试文件是否能写

if(temp == 0)

{

printf("file can be write!\n");

}

else

{

printf("file can not be write!\n");

}

temp = access(*(argv+1),X_OK);　　//测试文件是否能执行

if(temp == 0)

{

printf("file can be run!\n");

}

else

{

printf("file can not be run!\n");

}

return 0;

}

将文件保存为 exam10access.c，在终端中使用 gcc 编译，并且针对【例 4.6】生成的lseektest.txt文件进行检查，看到如下的输出结果。

alloeat@ubuntu:～/chapter4Exam$ gcc exam10access.c -o examaccess

alloeat@ubuntu:～/chapter4Exam$./examaccess lseektest.txt

file can be read!

file can be write!

file can be run!

其中，第一行是gcc的编译命令行，其使用-o参数将exam10access.c文件编译成一个可执行文件 examaccess。然后执行，其中执行参数 lseektest.txt 是目标文件，可以看到这个文件是可以被当前用户读、写和运行的。

4.3.5 umask函数

在Linux中，每个文件都必须由一个对应的进程来创建，每一个进程都对应—个文件创建屏蔽字，称为umask。文件创建屏蔽字与文件权限字一样是一个位串，并且与文件权限位一一对应。每当进程创建一个新文件或新目录时，它所指定的文件访问权限位将受到文件创建屏蔽字umask的影响，以确定其函数。

例如，如果umask的值为007（即其他用户的所有访问权限位为1），则表示新创建文件的其他用户访问权限位均为 0，即其他用户没有任何访问权限，即使创建函数中指定mode参数允许这种权限也不能访问。

表4.6是以八进制给出的umask文件创建屏蔽字说明。

 表4.6 umask文件创建屏蔽字说明

 [image: figure_0157_0077]

使用umask命令可以获得当前Shell中默认的umask值，并且修改这个值，如下列命令行所示。

alloeat@ubuntu:～/chapter4Exam$ umask　//取得当前的umask值

0002

alloeat@ubuntu:～/chapter4Exam$ umask -S //以符号形式打印

u=rwx,g=rwx,o=rx

alloeat@ubuntu:～/chapter4Exam$ umask 0001　//修改当前的umask值

alloeat@ubuntu:～/chapter4Exam$ umask　　//取当前的umask值

0001

alloeat@ubuntu:～/chapter4Exam$ umask -S　//以符号形式打印

u=rwx,g=rwx,o=rw

在Shell命令行中，可以使用umask命令来修改当前的文件屏蔽字。同样，在应用代码中，也可以使用umask来修改文件屏蔽字，umask函数的标准调用格式说明如下，其返回值是修改之前的文件屏蔽字。

#include <sys/types.h>

#include <sys/stat.h>

mode_t umask(mode_t cmask);

umask函数的参数和应用实例说明如下。

1．cmask参数说明

cmask参数是新设定的文件屏蔽字值，其实质上是表4.5中9个常量中的一个或者几个按位或的结果。

2．umask函数应用实例

【例4.11】是umask函数的应用实例，应用代码首先使用define关键字定义了一个文件操作权限的字符串，然后使用umask函数对当前的文件屏蔽字值进行了修改，在修改前后分别使用create函数来创建了两个文件。

【例4.11】umask函数应用实例。

#include <fcntl.h>

#include <stdio.h>

#define RWRWRW (S_IRUSR|S_IWUSR|S_IRGRP|S_IWGRP|S_IROTH|S_IWOTH)

int main(void)

{

umask(0);

if (creat("foo", RWRWRW) < 0)

printf("creat error for foo\n");

umask(S_IRGRP | S_IWGRP | S_IROTH | S_IWOTH);

if (creat("bar", RWRWRW) < 0)

printf("creat error for bar\n");

return 0;

}

将文件保存为exam11umask.c，在终端中使用gcc编译，然后运行之，并且可以在Shell中使用对应的命令来查看相应的状态，其输出如下。

alloeat@ubuntu:～/chapter4Exam$ gcc exam11umask.c -o examumask

//编译生成对应的文件

alloeat@ubuntu:～/chapter4Exam$ umask　//查看当前的文件屏蔽字

0002

alloeat@ubuntu:～/chapter4Exam$./examumask　//执行文件

alloeat@ubuntu:～/chapter4Exam$ ls -l foo bar　//查看对应的文件属性

-rw------- 1 alloeat alloeat 0　6月24 19:00 bar

-rw-rw-rw- 1 alloeat alloeat 0　6月24 19:00 foo

alloeat@ubuntu:～/chapter4Exam$ umask　//查看文件屏蔽字是否已经修改

0002

相应的输出说明参考注释部分。

4.3.6 chmod函数和fchmod函数

umask函数只能在文件创建时候确定文件的相应权限，如果需要修改一个已经存在文件的权限，用户可以使用chmod函数或者fchomd函数，前者可以对任何指定文件进行操作，而后者必须使用文件描述符对一个已经打开的文件进行操作。

chmod和fchmod函数的标准调用格式说明如下。操作成功返回0，否则返回-1。

#include <sys/types.h>

#include <sys/stat.h>

int chmod(const char * filename, mode_t mode);

int fchmod(int fd, mode_t mode);

chmod和fchmod函数的各个参数和应用实例说明如下。

注意：在调用chmod函数或者fchmod函数的时候，进程的有效用户ID必须等于文件所有者的 ID，或者该进程必须具有超级用户的权限，关于进程权限的相关知识可以参考第6章。

1．pathname参数说明

目标文件的路径，可以是绝对路径或者相对路径，在chmod函数中使用。

2．fd参数说明

目标文件的文件描述符，在fchmod函数中使用。

3．mode参数说明

和umask函数类似，chmod和fchmod函数的mode参数也是表4.5中的9个文件访问权限位的组合，其可以总结为表4.7所示的内容。

 表4.7 chmod/fchmod 函数的 mode 参数

 [image: figure_0159_0078]

注意：关于“粘住位”的使用说明，读者可以参阅相应的书籍。

4．chmod函数应用实例

【例4.12】是chmod函数的应用实例，应用代码使用chmod函数来修改了【例4.11】创建的两个文件的权限。

【例4.12】chmod函数应用实例

//这是一个使用chmod函数来修改文件的权限的实例

#include <fcntl.h>

#include <stdio.h>

int main(void)

{

struct statstatbuf; //取文件状态

if (stat("foo", &statbuf) < 0)

{

printf("stat error for foo");

}

if (chmod("foo", (statbuf.st_mode & ～S_IXGRP) | S_ISGID) < 0) //修改 foo 文件权限

{

printf("chmod error for foo");

}

if (chmod("bar", S_IRUSR | S_IWUSR | S_IRGRP | S_IROTH) < 0) //修改 bar 文件权限

{

printf("chmod error for bar");

}

return 0;

}

将文件保存为exam12chmod.c，在终端中使用gcc编译，然后运行之，并且可以在Shell中使用对应的命令来查看相应的状态，其输出如下。

alloeat@ubuntu:～/chapter4Exam$ gcc exam12chmod.c -o examchmod

alloeat@ubuntu:～/chapter4Exam$./examchmod

alloeat@ubuntu:～/chapter4Exam$ ls -l foo bar

-rw-r--r-- 1 alloeat alloeat 0 6月24 19:00 bar

-rw-rwSrw- 1 alloeat alloeat 0 6月24 19:00 foo

其中，第一行是gcc的编译命令行，其使用-o参数将exam12chmod.c文件编译成一个可执行文件 examchmod。执行后使用 ls -l 命令来查看 bar 和 foo 文件的权限，读者可以与【例4.9】的输出进行对比。

注意：如果需要修改文件的用户ID和用户组ID，可以使用chown、fchown和lchown函数，读者可以自行参阅相应的手册。

4.3.7 rename函数

在实际应用中，可能需要对一个文件进行改名操作，此时可以使用 rename 函数，rename函数的标准调用格式说明如下，如果操作成功返回0，否则返回-1。

#include <stdio.h>

int rename(const char *oldname, const char *newname);

rename函数的各个参数和应用实例说明如下。

1．oldname参数

文件的旧文件名称，带路径。

2．newname参数

文件的新文件名称，同样带路径。

需要注意的是，rename 函数既可以对文件进行操作，也可以对目录进行操作（前面说过，Linux中的目录其实质也是一个文件），rename函数的参数说明可以总结成表4.8。

 表4.8 rename 函数参数总结

 [image: figure_0161_0079]

3．rename函数应用实例

【例4.13】是rename函数的应用实例，应用代码将第二个命令行参数给出的文件名修改为第三个参数指定的文件名。

【例4.13】rename函数应用实例。

#include <fcntl.h>

#include <stdio.h>

int main(int argc,char *argv[])

{

int temp;

if(argc != 3)//如果不是3个参数，则报错

{

perror("arg num is wrong\n");　//输出参数错误

return 1;

}

temp = rename(*(argv+1),*(argv+2));//将前者修改为后者

if(temp == -1)　　//如果出错

{

perror("rename error\n");　　　//改名出错

}

else

{

printf("rename OK\n");

}

return 0;　//退出

}

将文件保存为 exam13rename.c，在终端中使用 gcc 编译，然后运行之，并且可以在Shell中使用对应的命令来查看相应的状态，其输出如下。

alloeat@ubuntu:～/chapter4Exam$ gcc exam13rename.c -o examrename

//使用gcc编译生成可执行文件

alloeat@ubuntu:～/chapter4Exam$./examrename bar renamebar

//将例4.9生成的bar文件改名为renamebar文件

rename OK

//改名成功

alloeat@ubuntu:～/chapter4Exam$ ls -l renamebar

//使用ls命令来查看文件状态

-rw-r--r-- 1 alloeat alloeat 0 6月24 19:00 renamebar

命令行输出的说明参考注释部分。

4.3.8 文件的其他高级操作函数

除了以上给出的相应函数外，Linux还有一些其他的文件操作函数。

1．dup和dup2

每一个打开的文件所对应的文件描述符不是唯一的，同一个文件可能对应着多个文件描述符，而dup函数和dup2函数都可以用来复制文件描述符。

dup 和 dup2 函数的标准调用格式说明如下，如果操作成功返回新的文件描述符，否则返回-1。

#include <unistd.h>

int dup (int fd);

int dup2 (int fd, int fd2);

由dup返回的新文件描述符一定是当前可用文件描述符中的最小数值。用dup2则可以用fd2参数指定新描述符的数值。如果fd2已经打开，则先将其关闭。如若fd等于fd2，则dup2返回fd2，而不关闭它。通常使用这两个系统调用来重定向一个已打开的文件描述符。

【例4.14】是dup函数的应用实例，应用代码使用open打开一个文件，并且获得该文件的文件描述符，然后使用dup函数获得新的文件描述符。

【例4.14】dup函数应用实例。

#include <stdio.h>

#include <unistd.h>

#include <fcntl.h>

#include <sys/stat.h>

#include <sys/types.h>

int main(int argc, char * argv[])

{

int fileID;

if(argc!=2)

{

printf("arg error\n"); //参数错误

return 1;

}

if((fileID = open(argv[1],O_WRONLY|O_CREAT,0644))==-1)

{

printf("open %s error\n",argv[1]); //打开函数错误

return 2;

}

printf("the old fileID is %d\n",fileID);

if(fileID = dup(fileID)==-1) //获得新的文件描述符

{

printf("dup error\n"); //dup 函数操作错误

return 3;

}

printf("dup call successed!\n");//dup 操作成功

printf("the new fileID is %d\n",fileID); //打印新的文件描述符

close(fileID);

return 0;

}

将文件保存为exam14dup.c，在终端中使用gcc编译，然后运行之，并且可以在Shell中使用对应的命令来查看相应的状态，其输出如下。

alloeat@ubuntu:～/chapter4Exam$ gcc exam14dup.c -o examdup

alloeat@ubuntu:～/chapter4Exam$./examdup copytest.txt

the old fileID is 3

dup call successed!

the new fileID is 0

第一行是调用gcc对exam14dup.c文件进行编译并且生成examdup文件，然后调用该文件对copytest.txt文件进行打开操作，此时open函数返回的文件描述符是3，调用dup复制了一个新的文件描述符0。

2．fcntl函数

fcntl函数提供了进一步管理低级文件描述符的各种手段，用它可以对已打开的文件描述符执行各种控制操作，包括修改打开文件的性质、复制文件描述符、操作文件锁等。fcntl函数的标准调用格式说明如下。如果调用成功，其返回值根据 cmd 参数来决定，如果调用失败则返回-1。

#include <sys/types.h>

#include <unistd.h>

#include <fcntl.h>

int fcntl(int fd, int cmd, int arg)

fcntl函数的fd参数是打开的需要进行操作的文件的文件描述符，而cmd参数决定了fcntl的功能和返回值，其说明如表4.9所示。

 表4.9 fcntl 函数的 cmd 参数说明

 [image: figure_0164_0080]

fcntl函数的第三个参数arg可能是一个整数，也可能是一个如下的结构体，其和cmd参数具体相关。

struct flock{

long　l_start;　　　/* 块开始处的偏移量starting offset */

long　l_len;　　　/*块长 */

long　l_pid;　　　/*锁的属主（进程）*/

long　l_type;　　　/*锁的类型：读/写等*/

long　l_whence;　　　/* 块开始处的类型 */

};

注意：在cmd取值为F_GETFL关键字的时候，fcntl函数将返回文件状态标志，如表4.10所示。

 表4.10 ftcnl函数返回的文件状态标志

 [image: figure_0165_0081]

【例4.15】是fcntl函数的应用实例，其对参数字符串指定的文件打印文件标志说明。

【例4.15】fcntl函数应用实例。

#include <stdio.h>

#include <fcntl.h>

#include <stdlib.h>

int main(int argc, char *argv[])

{

int val;

if (argc != 2)

{

printf("input argc error!\n");　//判断输入参数

}

if ((val = fcntl(atoi(argv[1]), F_GETFL, 0)) < 0)

{

printf("fcntl error for fd %d", atoi(argv[1]));

}

switch (val & O_ACCMODE)

{

case O_RDONLY:　//只读

printf("read only\n");

break;

case O_WRONLY:　//只写

printf("write only\n");

break;

case O_RDWR:　//读写

printf("read write\n");

break;

default:

printf("unknown access mode\n");

}

if (val & O_APPEND)　//写时追加

{

printf(", append\n");

}

if (val & O_NONBLOCK)　//非阻塞

{

printf(", nonblocking\n");

}

#if defined(O_SYNC)

if (val & O_SYNC)　//等待数据和属性写完成

{

printf(", synchronous writes\n");

}

#endif

#if !defined(_POSIX_C_SOURCE) && defined(O_FSYNC)

if (val & O_FSYNC)　//等待写完成

{

printf(", synchronous writes");

}

#endif

putchar('\n');

return 0;

}

将文件保存为exam15fcntl.c，在终端中使用gcc编译，然后运行之，并且可以在Shell中使用对应的命令来查看相应的状态，其输出如下。

alloeat@ubuntu:～/chapter4Exam$ gcc exam15fcntl.c -o examfcntl

alloeat@ubuntu:～/chapter4Exam$./examfcntl copytest.txt

read write

alloeat@ubuntu:～/chapter4Exam$./examfcntl /home

read write

alloeat@ubuntu:～/chapter4Exam$./examfcntl /dev/cpu

read write

第一行是调用gcc对exam15fcntl.c文件进行编译，并且生成examfcntl文件，然后调用该文件对不同的文件进行权限判断。

3．truncate和ftruncate函数

可以调用truncat 或者ftruncat 函数来对文件的长度进行修改，其会影响到stat 结构体中的st_size分量。truncat和ftruncat函数的标准调用格式说明如下，如果调用成功返回0，否则返回-1。

#include <unistd.h>

int truncate(char *pathname, size_t len);

int ftruncate(int fd, size_t len);

其中的参数len用于指定要将文件截取到的长度，pathname参数对应的是文件名路径，而fd参数对应的是文件描述符。

4．remove函数

在某些时候需要删除文件系统中的某个文件，此时可以调用remove函数，其标准调用格式说明如下，如果调用成功返回0，否则返回-1。

#include <stdio.h>

int remove(const char *pathname);

remove的参数是需要删除的文件对应的名称，

注意：还可以使用remove函数来解除对一个文件或者目录的链接，读者可以参考相应的手册。

4.4 目录文件操作

如 4.1.2 节所示，Linux 中存在多种特殊文件，例如管道文件、设备文件等，而目录文件是这些特殊文件中最常用的，本小节将介绍目录文件的基本操作函数。

4.4.1 mkdir和rmdir函数

mkdir 函数用于在文件系统中建立一个目录，其会自动地在目录中创建“.”和“..”目录项，其标准调用格式说明如下。

#include <sys/types.h>

#include <sys/stat.h>

#include <unistd.h>

int mkdir(const char *pathname, mode_t mode);

其中pathname为目录的带路径名称，mode为目录的权限，可以参考表4.5或表4.7。需要注意的是，对于目录来说最少要设置一个执行权限位，以允许用户访问该目录中的文件。

这个新创建目录的用户ID被设置为调用进程的有效用户ID，其组ID则为父目录的组ID或者进程的有效组ID。在新建一个目录之后，mkdir将更新该目录的st_atime、st_ctime和st_mtime，同时更新其父目录的st_ctime和st_mtime。

注意：由 pathname 指定的新目录的父目录必须存在，并且调用进程必须具有该父目录的写权限以及pathname涉及的各个分路径目录的搜索权限。

rmdir函数用于在文件系统中删除一个目录，但是这个目录必须是空目录（只包括“.”和“..”文件项），其标准调用格式说明如下，如果调用成功返回0，否则返回-1。

#include <unistd.h>

int rmdir(const char *pathname);

其中pathname为目录的带路径名称。

需要注意的是，如果此调用使目录的链接计数成为0，并且也没有其他进程打开此目录，则释放由此目录占用的空间。如果在链接计数达到0时，有一个或几个进程打开了此目录，则在此函数返回前删除最后一个链接。另外，在此目录中不能再创建新文件。但是在最后一个进程关闭它之前并不释放此目录（即使某些进程打开该目录，它们在此目录下，也不能执行其他操作，因为为了使rmdir函数成功执行，该目录必须是空的）。

【例4.16】是使用mkdir函数建立一个文件夹，然后调用rmdir将其删除的实例。

【例4.16】mkdir和rmdir函数应用实例。

#include <fcntl.h>

#include <stdio.h>

int main(int argc,char *argv[])

{

int temp;

if(argc!=2)

{

perror("argc is wrong!\n");

return 2;　　//参数错误，退出

}

temp = mkdir(*(argv+1),S_IRWXU|S_IRGRP|S_IXOTH); //必须最少指定一个执行权限位

if(temp == -1)

{

printf("new dir error\n");

return 3;　//退出

}

temp = rmdir(*(argv+1));　//删除刚刚建立的文件夹

if(temp == 0)

{

printf("del done\n");　//删除完成

}

return 0;

}

将文件保存为exam16mkdir.c，在终端中使用gcc编译，然后使用gdb调试工具来跟踪调试，其输出如下。

alloeat@ubuntu:～/chapter4Exam$ gcc -g exam16mkdir.c -o exammkdir

//使用gcc编译文件，带上了-g参数以生成gdb调试文件

alloeat@ubuntu:～/chapter4Exam$ gdb exammkdir

//启动gdb调试exammkdir

GNU gdb (Ubuntu/Linaro 7.4-2012.04-0ubuntu2) 7.4-2012.04

Copyright (C) 2012 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>

This is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law.　Type "show copying"

and "show warranty" for details.

This GDB was configured as "i686-linux-gnu".

For bug reporting instructions, please see:

<http://bugs.launchpad.net/gdb-linaro/>...

Reading symbols from /home/alloeat/chapter4Exam/exammkdir...done.

(gdb) b main

//在程序启动位置设置断点

Breakpoint 1 at 0x804847d: file exammkdir.c, line 7.

(gdb) run dirtest

//启动调试exammkdir，在run之后的参数将传递给argv参数

//使用dirtest作为新的文件夹名称

Starting program: /home/alloeat/chapter4Exam/exammkdir dirtest

Breakpoint 1, main (argc=2, argv=0xbffff6f4) at exammkdir.c:7

7　　　if(argc!=2)

(gdb) n

12　　　temp = mkdir(*(argv+1),S_IRWXU|S_IRGRP|S_IXOTH);

//必须最少指定一个执行权限位

(gdb) n

13　　　if(temp == -1)

(gdb) n

//在这个地方可以在文件系统中看到对应的文件夹

18　　temp = rmdir(*(argv+1));　//删除刚刚建立的文件夹

(gdb) n

19　　if(temp == 0)

(gdb) n

21　　　printf("del done\n");　//删除完成

(gdb) n

del done

23　　return 0;

(gdb) n

24　　}

(gdb)

命令输出行的相关说明参考注释部分，在Gnome图形界面中可以查看该文件夹dirtest的相应基本属性和权限，如图4.9和图4.10所示。

 [image: figure_0170_0082]

 图4.9 dirtest文件夹的基本属性

 [image: figure_0170_0083]

 图4.10 dirtest文件夹的权限

4.4.2 chdir、fchdir和getcmd函数

在Linux中，每个进程都一个对应的工作目录，也就是常说的工作路径，例如：

/home/alloeat/chapter4Exam

进程可以调用chdir函数或者fchdir函数来修改当前的工作目录，chdir函数和fchdir函数的标准调用格式说明如下，如果成功返回0，如果出错则返回-1。

#include <unistd.h>

int chdir (const char *patnname);

int fchdir (int fd);

在chdir函数和fchdir函数中，分别使用目录的路径以及目录的文件描述符来作为参数。

注意：调用chdir函数的进程必须有pathname所有路径分量的执行权限，并且pathname指定的路径长度不能超过PATH_MAX，其路径分量不能超过NAME_MAX。

在某些应用中，用户需要获取当前工作目录的完整路径（绝对路径），此时可以使用getcwd 函数，其标准调用格式说明如下。如果调用成功，返回当前的目录路径，如果调用失败，则返回空指针NULL。

#include <unistd.h>

char *getcwd (char *buf, size_t size);

getcwd函数的参数buf是用于存放路径的缓冲区地址，而size存放的是缓冲区长度（单位是字节）。

getcwd函数从当前工作目录（即“.”目录项）开始，用“..”目录项找到其上一级的目录，然后读其目录项，直到该目录项中的inode编号数与工作目录inode编号数相同，这样就找到了其对应的文件名。按照这种方法，逐层上移，直到遇到根，这样就得到了当前工作目录的绝对路径名。

【例4.17】是chdir函数和getcmd函数的应用实例，应用代码调用mkdir函数在指定的文件夹下建立一个新的文件夹，然后使用chdir将工作目录切换到该文件夹下，最后打印输出当前的工作目录，然后在该工作目录下建立一个新的目录。

【例4.17】chdir和getcmd函数应用实例。

#include <stdio.h>

int main(int argc,char *argv[])

{

unsigned char temp;

char npath[200];　　　//当前的路径

if(argc != 3)

{

perror("arg is wrong!\n");　//参数错误

return 1;　//退出

}

temp = mkdir(*(argv+1),S_IRUSR|S_IWUSR|S_IXUSR);　　　//新建一个目录

if(temp == -1)　//如果创建失败

{

printf("create dir failed!/n");　//输出创建目录失败信息

}

temp = chdir(*(argv+1));　　　//切换目录

printf("%d\n",temp);

if(getcwd(npath,200) == NULL)　　　//如果没有获得当前的路径

{

printf("getwd error\n");

}

else

{

printf("CWD = %s\n",npath);

}

temp = mkdir(*(argv+2),S_IRWXU|S_IRGRP|S_IXOTH);

//再建立一个文件夹

return 0;

}

将文件保存为examch17dirgetcwd.c，在终端中使用gcc编译，然后运行，其输出如下。

alloeat@ubuntu:～/chapter4Exam$ gcc exam17chdirgetcwd.c -o examchdirgetcwd

//编译应用代码

alloeat@ubuntu:～/chapter4Exam$./examchdirgetcwd testdir testchilddir

//先建立testdir文件夹，然后在其中建立testchildir字文件夹

0　//chdir函数的返回值

CWD = /home/alloeat/chapter4Exam/testdir

//切换后的工作路径

alloeat@ubuntu:～/chapter4Exam$ ls testdir

testchirddir

alloeat@ubuntu:～/chapter4Exam$ ls -l testdir

总用量 4

drwxr----x 2 alloeat alloeat 4096　6月25 21:14 testchirddir

//使用ls查看新建立的文件夹属性

命令行输出说明可以参考注释部分。

4.4.3 opendir、closedir和readdir函数

在Linux系统中，对目录有访问权限的用户都可以对目录进行读操作，但是只有操作系统内核才有权限对目录进行写操作，本小节将介绍3个对目录进行操作的函数。

opendir函数用于打开一个目录，其标准调用格式说明如下。

#include <sys/types.h>

#include <dirent.h>

DIR *opendir (const char *pathname);

函数的参数是目录的完整路径名。如果操作成功，函数返回一个 DIR 类型的指针，如果操作失败则返回NULL。DIR指针是一个内部结构，本节所介绍的3个函数用它来保存正被读的目录的有关信息，其具体结构将在后续章节中进行介绍。

和文件操作相同，打开的目录在操作完成之后也必须进行关闭操作，此时可以调用closedir函数，其标准调用格式说明如下。

#include <sys/types.h>

#include <dirent.h>

int closedir (DIR *dp);

其中参数dp是一个指向待关闭目录的DIR类型指针。如果操作成功，返回0，否则返回“-1”。

对目录的读操作可以通过调用readdir函数来完成，其标准调用格式说明如下。

#include <sys/types.h>

#include <dirent.h>

struct dirent *readdir (DIR *dp);

函数同样使用 DIR 类型指针来指向等待读操作的目录，若操作成功返回一个 dirent类型的指针，若在目录尾或出错则返回NULL。

参数dp指向要读取的目录，函数返回值为指向dirent结构体的指针。dirent定义在头文件<dirent.h>中。

struct dirent

{

ino_t d_ino;　　　　/*i-node number*/

char d_name[NAME_MAX + 1];　/*null-terminated filename*/

}

其中 d_ino 用于表示该目录的节点号，d_name 用于存放此目录链接的文件名。当目录中没有更多链接时，其值为0。

【例4.18】是调用以上3个函数对指定目录进行遍历操作，以得到目录中各种类型的文件数目的应用实例。

【例4.18】opendir、closedir和readdir函数应用实例。

#include <stdio.h>

#include <fcntl.h>

#include <dirent.h>

#include <limits.h>

#include <sys/stat.h>

//调用文件名

typedef int Myfunc(const char *, const struct stat *, int);

static Myfunc　myfunc;

static int　　myftw(char *, Myfunc *);

static int　　dopath(Myfunc *);

static long　nreg, ndir, nblk, nchr, nfifo, nslink, nsock, ntot;

char*path_alloc(int* size);

int main(int argc, char *argv[])

{

int　　ret;

if (argc != 2)

{

printf("arg error!\n");　//参数错误

}

ret = myftw(argv[1], myfunc);　　/* 遍历操作 */

ntot = nreg + ndir + nblk + nchr + nfifo + nslink + nsock;

if (ntot == 0)

ntot = 1;　　/* 避免除数为0 */

printf("regular files　= %7ld, %5.2f %%\n", nreg,

nreg*100.0/ntot);

printf("directories　= %7ld, %5.2f %%\n", ndir,

ndir*100.0/ntot);

printf("block special　= %7ld, %5.2f %%\n", nblk,

nblk*100.0/ntot);

printf("char special　= %7ld, %5.2f %%\n", nchr,

nchr*100.0/ntot);

printf("FIFOs　　= %7ld, %5.2f %%\n", nfifo,

nfifo*100.0/ntot);

printf("symbolic links = %7ld, %5.2f %%\n", nslink,

nslink*100.0/ntot);

printf("sockets　　= %7ld, %5.2f %%\n", nsock,

nsock*100.0/ntot);

return ret;

}

char*path_alloc(int* size)

{

char *p = NULL;

if(!size) return NULL;

p = malloc(256);

if(p)

*size = 256;

else

*size = 0;

return p;

}

#define FTW_F　1　　/* 目录之外的文件 */

#define FTW_D　2　　/* 目录 */

#define FTW_DNR　3　　/* 不能进行读操作的目录 */

#define FTW_NS　4　　/* 不能使用state操作的文件 */

static char　*fullpath;　　/* 文件的全路径名 */

static int myftw(char *pathname, Myfunc *func)

{

int len;

fullpath = path_alloc(&len);　/* 动态为路径分配内存空间 */

/* ({Prog pathalloc}) */

strncpy(fullpath, pathname, len);　/* 保护 */

fullpath[len-1] = 0;　　　　/* 如果内存越界 */

return(dopath(func));

}

static int dopath(Myfunc* func)

{

struct stat　　statbuf;

struct dirent*dirp;

DIR　　　　*dp;

int　　　　ret;

char　　*ptr;

if (lstat(fullpath, &statbuf) < 0) /* state操作出现错误 */

return(func(fullpath, &statbuf, FTW_NS));

if (S_ISDIR(statbuf.st_mode) == 0) /* 不是目录 */

return(func(fullpath, &statbuf, FTW_F));

if ((ret = func(fullpath, &statbuf, FTW_D)) != 0)

return(ret);

ptr = fullpath + strlen(fullpath); /* 指向路径的末位 */

*ptr++ = '/';

*ptr = 0;

if ((dp = opendir(fullpath)) == NULL)　/* 不能读目录 */

return(func(fullpath, &statbuf, FTW_DNR));

while ((dirp = readdir(dp)) != NULL) {

if (strcmp(dirp->d_name, ".") == 0　||

strcmp(dirp->d_name, "..") == 0)

continue;　　/* 忽略掉字符 */

strcpy(ptr, dirp->d_name);/*连接名称字符 */

if ((ret = dopath(func)) != 0)　/* 递归调用 */

break;　/* time to leave */

}

ptr[-1] = 0; /* 删除 */

if (closedir(dp) < 0)

{

printf("can't close directory %s\n", fullpath);

}

return(ret);

}

static int myfunc(const char *pathname, const struct stat *statptr, int type)

{

switch (type) {

case FTW_F:

switch (statptr->st_mode & S_IFMT) {

case S_IFREG:nreg++;　　break;

case S_IFBLK:nblk++;　　break;

case S_IFCHR:nchr++;　　break;

case S_IFIFO:nfifo++;　break;

case S_IFLNK:nslink++;　break;

case S_IFSOCK:　nsock++; break;

case S_IFDIR:

printf("for S_IFDIR for %s\n", pathname);

}

break;

case FTW_D:

ndir++;

break;

case FTW_DNR:

printf("can't read directory %s\n", pathname);

break;

case FTW_NS:

printf("stat error for %s\n", pathname);

break;

default:

printf("unknown type %d for pathname %s\n", type, pathname);

}

return(0);

}

将文件保存为examch18examopendir.c，在终端中使用gcc编译，然后运行，其输出如下。

alloeat@ubuntu:～/chapter4Exam$ gcc exam18opendir.c -o examopendir

//编译应用程序代码

alloeat@ubuntu:～/chapter4Exam$./examopendir /etc　//对etc进行遍历操作

can't read directory /etc/ppp/peers/

can't read directory /etc/chatscripts/

can't read directory /etc/cups/ssl/

can't read directory /etc/ssl/private/　　//由于权限不够，不能读取对应的文件夹

regular files　=　1816, 59.27 %　　//输出各个文件的比例

directories　=　316, 10.31 %

block special　=　　0,　0.00 %

char special　=　　0,　0.00 %

FIFOs　　=　　0,　0.00 %

symbolic links =　932, 30.42 %

sockets　　=　　0,　0.00 %

//由于上一次存在权限问题没有能对某些文件夹进行读取

//再次使用sudo权限运行该应用

alloeat@ubuntu:～/chapter4Exam$ sudo ./examopendir /etc

[sudo] password for alloeat:　//输入sudo密码

//输出整个文件夹下的文件统计

regular files　=　1821, 59.30 %

directories　=　316, 10.29 %

block special　=　　0,　0.00 %

char special　=　　0,　0.00 %

FIFOs　　=　　0,　0.00 %

symbolic links =　934, 30.41 %

sockets　　=　　0,　0.00 %
第5章 Linux的流编程

第4章介绍的文件操作方式通常被称为不带缓冲的I/O，这是因为每次调用相应的函数（如 read、write 等）对文件进行操作的时都会调用内核的系统调用，由于每次都要通过内核对文件直接进行这样的操作，所以操作效率较低。本章将介绍另外一种对文件的操作方式：流编程；其首先对文件所映射的流进行操作，然后分阶段将相应的数据写入文件中，能极大地提高相应的操作效率。

5.1 Linux流操作基础

Linux提供了大量的流操作库函数以供读者使用，这些库函数又被称为标准I/O库，这是因为这些库函数是跨操作系统平台的，并且是属于 ISO C 的组成部分（第4章介绍的文件I/O函数只是基于POSIX的）。

5.1.1 流和文件的关系

文件的I/O函数都是针对文件描述符进行操作，当调用open或者其他函数打开一个文件时，即返回一个文件描述符fd，然后针对该文件描述符来进行后续的I/O操作。但是由于其需要多次反复调用对应的系统调用，效率很低。表5.1是在某系统中调用read函数时使用不同缓冲区长度（size_t nbytes）来读取 103 316 352 字节的文件所需要花费的时间。

 表5.1 不同缓冲区长度下的读文件效率举例

 [image: figure_0178_0084]

 续表

 [image: figure_0179_0085]

从表5.1 可以看到选择一个合适缓冲区的重要性。而流 I/O 函数的操作则是围绕流（Stream）进行的，当使用流 I/O 库打开或创建一个文件时，可以使一个流与一个文件相结合，接下来的操作过程就与基于文件描述符的I/O操作过程十分相似：对流进行读写、定位操作等，最后关闭流。

图5.1是流、文件、基于流的I/O操作和基于文件的I/O操作的关系。

 [image: figure_0179_0086]

 图5.1 文件和流

从图5.1中可以看到，所谓的带缓冲和不带缓冲是相对而言的。

不带缓冲的文件I/O操作也不是直接对文件进行的，只不过在用户层没有缓存区，所以被称为不带缓冲的I/O，但对于Linux内核来说，还是进行了缓冲。当用户调用不带缓冲的I/O函数写数据到文件中的时候（即，对磁盘存储区进行读写），Linux内核会先将数据写入到内核中所设的缓冲储存区。假如该缓冲储存区的长度是 50 个字节，调用 write函数进行写操作时，如果每次写入长度为10个字节，则需要调用5次write函数，而在这个过程中数据还是在内核的缓冲区中，并没有写入到磁盘。当50个字节已经写满的时候才进行实际的I/O操作，把数据写入到磁盘上。

带缓冲的 I/O 是在用户层建立了另一个缓存区（即，流缓冲区）。假设流缓存的长度同样也是50字节，当调用对应的写入库函数时会将数据写入到这个流缓存区里面，然后一次性进入内核缓存区，此时再使用系统调用将数据写入到文件（实质是磁盘空间）上，从而减少了系统调用。

总之，带缓冲和不带缓冲的I/O函数的单向数据（只有写入没有读出）流向如图5.1所示，可以总结如下。

● 不带缓冲：数据→内核缓存区→磁盘。

● 带缓冲：数据→流缓存区→内核缓存区→磁盘。

5.1.2 流的结构和操作流程

从5.1.1节可以知道，流操作函数的对象不是文件描述符，而是一个流缓冲区。当打开一个流时，返回一个指向FILE对象的指针。该对象通常是一个结构体，它包含了为管理该流需要的所有信息，包括用于实际I/O的文件描述符、指向流缓存的指针、缓存的长度、当前在缓存中的字符数、出错标志等，该结构体说明如下。

struct file {

struct list_head　　f_list;

struct dentry　　*f_dentry;

struct vfsmount　　*f_vfsmnt;

struct file_operations　*f_op;

atomic_t　　　f_count;

unsigned int　　　f_flags;

mode_t　　　　f_mode;

loff_t　　　　f_pos;

unsigned long　　f_reada, f_ramax, f_raend, f_ralen, f_rawin;

struct fown_struct　f_owner;

unsigned int　　　f_uid, f_gid;

int　　　　f_error;

unsigned long　　f_version;

void　　　　*private_data;

struct kiobuf　　*f_iobuf;

long　　　　f_iobuf_lock;

};

用户的应用代码没有必要对 FILE 对象进行检验，在实际应用中也不需要了解FILE的结构，用户只需要知道为了引用一个流，需将FILE指针作为参数传递给对应的函数即可。

流操作的流程如图5.2所示。需要注意的是，和基于文件的操作类似，在操作之后关闭流，否则容易导致数据丢失。

 [image: figure_0181_0087]

 图5.2 流操作流程

注意：通常来说，用户可以简单地把流看做一块由系统分配的内存缓冲区，在该缓冲区中存放了文件对应的数据。

5.1.3 标准流介绍

在4.1.1节中介绍了Linux有3个标准文件，分别为标准输入、标准输出和标准错误输出。Linux操作系统对这3个标准文件预定义了3个标准流，可以通过相应的指针调用，其说明如下。

#define STDIN_FILENO 0

//标准输入，对应标准流指针stdin

#define STDOUT_FILENO 1

//标准输出，对应标准流指针stdout

#define STDERR_FILENO 2

//标准错误输出，对应标准流指针stderr

需要注意的是，这3个标准流都是自动打开和自动关闭的。

5.2 流的打开和关闭

在对流进行操作之前，必须先打开流，在操作完成之后，必须关闭流。

打开流的过程实际上是建立一个缓冲区，并且将这个缓冲区和对应的文件相关联的过程。Linux提供了fopen系列函数来完成相应的工作，其标准调用格式说明如下。

#include <stdio.h>

FILE *fopen(const char *path, const char *mode);

FILE *fdopen(int fd, const char *mode);

FILE *freopen(const char *path, const char *mode, FILE *stream);

这3个函数的区别说明如下，当调用成功之后返回一个FILE类型的文件指针，否则返回一个NULL指针。

● fopen 函数：打开一个指定的文件。

● freopen 函数：在一个指定的流上打开一个指定的文件，若该流已经打开，则先关闭该流，若该流已经定向，则立刻进行重定向操作。此函数一般用于将一个指定的文件打开为一个预定义的流：标准输入流、标准输出流或标准出错流。

● fdopen 函数：打开一个由文件描述符所指定的流。此函数常用于由创建管道和网络通信通道函数获得的描述符，因为这些特殊类型的文件不能使用标准 I/O 的fopen 函数打开。使用时，首先必须调用设备专用函数以获得一个文件描述符，然后用fdopen使一个标准I/O流与该描述符相结合。

流打开函数的参数说明如下。

● path 参数：文件的路径。

● fd 参数：文件的文件描述符。

● stream 参数：指定的流。

● mode 参数，流的打开方式，其类似 4.2.1 节介绍的 open 函数的 mode 参数，用于说明流的打开模式和权限，详细说明如表5.2所示。

 表5.2 mode参数说明

 [image: figure_0182_0088]

在表5.2中，使用关键标识符“b”来作为mode类型的参数，用于区别二进制文件和文本文件，但是由于Linux内核并不对这两种类型文件进行区分，所以其并没与实际的意义。另外，对于 fdopen 函数来说，由于在获得描述符的时候该描述符已经被打开，所以如果使用“w”或者“wb”参数的时候并不截断该文件。另外，“a”或者“ab”参数也不能用于创建一个文件，因为如果使用一个描述符来引用一个文件，则文件必须已经存在。

针对表5.2中的各种情况，表5.3给出了打开一个流的6种不同方式。

 表5.3 打开一个流的6种不同方式

 [image: figure_0183_0089]

注意：在指定使用“w”或“a”创建一个新文件的时候，并不能指定该文件的相应权限。如果需要对该文件进行相应的权限设置，必须调用open或create函数。

当完成对一个流的操作之后，需要调用相应的函数将其关闭，Linux提供了fclose函数用于该操作，其标准调用格式说明如下。

#include <stdio.h>

int fclose(FILE *fp);

fclose函数的参数是一个指向流的指针，当调用成功的之后返回0，否则返回EOF。EOF是一个定义为-1的宏。

说明：EOF 也是 THE END OF THE FILE 的缩写，通常用来表示已经到达文件的结束，将在后续章节中进一步对其介绍。

当调用fclose函数的时候，将会把流中的数据写入对应文件中，并且清除整个缓冲区。如果应用代码不调用该函数，在调用exit函数返回的时候，系统也会自动地调用fclose函数完成对应的操作。

【例5.1】是fopen和fclose函数的应用实例，应用代码先调用fopen打开字符串参数1所指向的文件，如果没有该文件则创建，然后关闭这个流。

【例5.1】fopen函数和fclose函数应用实例。

#include <stdio.h>

int main(int argc, char *argv[])

{

FILE　*fp;

int　iflag;

if(argc<=1)　//如果参数不正确

{

printf("usage: %s filename\n",argv[0]);

return 1;

}

fp=fopen(argv[1],"a+b");　　　　//如果没有指定文件，则建立文件

if(fp==NULL)

{

printf("Open　file %s failed!", argv[1]);

return 2;

}

printf("Open file %s succeed!\n",argv[1]);

iflag=fclose(fp);　　　　　　//关闭文件

if(iflag==0)

{

printf("Close file %s succeed!\n",argv[1]);

return 0;

}

else

{

printf("Close file %s failed! ", argv[1]);

return 3;

}

}

将文件保存为 exam1fopenfclose.c，在终端中使用 gcc 编译，并且运行，可以看到如下的输出结果。

alloeat@ubuntu:～/chapter5Exam$ gcc exam1fopenfclose.c -o examfopenfclose //编译

alloeat@ubuntu:～/chapter5Exam$./examfopenfclose　//调用，但是没有带字符串参数

usage: ./examfopenfclose filename　//提示输出文件名称

alloeat@ubuntu:～/chapter5Exam$./examfopenfclose fopentest.txt　//打开对应的文件

Open file fopentest.txt succeed!　//打开流成功

Close file fopentest.txt succeed!　//关闭流成功

命令行输出说明可以参考注释部分。

5.3 流的缓冲方式和缓冲区设置

5.3.1 流的缓冲方式

和基于文件的I/O方式比起来，基于流的I/O方式的最大特点就是其先对缓冲区进行操作，从而可以大大地提高效率。但是当使用fopen系列函数打开一个流的时候，并没有指定这个流对应的缓冲方式和缓冲区大小，因为这是由Linux内核来分配的。

缓冲方式是指流在什么时候使用内核的写入/读出系统调用来对文件进行操作，其有3种类型的缓冲方式。

● 全缓冲。在这种缓冲方式下，直到缓冲区被填满，才使用系统调用进行操作。对于读操作来说，直到读入内容的字节数等于缓冲区大小或者文件已经到达结尾，才进行实际的I/O操作，将外存文件内容读入缓冲区。对于写操作来说，直到缓冲区被填满，才进行实际的I/O操作，将缓冲区内容写到外存文件中。磁盘文件通常是全缓冲的。在Linux内核中使用宏定义_IO_FULL_BUF来表示全缓冲，通常来说，在一个流上进行第一次读写操作的时候，会调用malloc内存分配函数来为流分配一块内存作为缓冲区域，参考3.5节。

● 行缓冲。在这种缓冲方式下如果遇到换行符，使用系统调用进行操作。对于读操作来说，遇到换行符‘\n’才进行 I/O 操作，将所读内容读入缓冲区。对于写操作来说，遇到换行符‘\n’才进行 I/O 操作，将缓冲区内容写到外存中。由于缓冲区的大小是有限的，所以当缓冲区被填满时，即使没有遇到换行符‘\n’，也同样会进行实际的I/O操作。标准输入流stdin和标准输出流stdout默认都是行缓冲的。在使用行缓冲的时候有两个限制。第一，每一行对应的缓冲区的长度是固定的（MAXLINE），如果这个缓冲区已经被写满，即使还没有遇到换行符，也会调用系统调用进行工作；第二，在Linux内核要求获得数据的时候，将立即完成一次数据的写入或者读出。

● 无缓冲。在这种缓冲方式下没有缓冲区，不进行缓冲，数据会立即读入或者输出到外存文件和设备上。标准出错 stderr 是无缓冲的，这样保证错误提示和输出能够及时反馈给用户，供用户排除错误。

Linux的流缓冲具有以下两个特征。

● 当且仅当输入和输出不涉及交互式设备的时候，才是全缓冲的。如果涉及了终端设备，大部分将是行缓冲。

● 标准出错绝对不是全缓冲的。

前面介绍过，Linux中的流最终都是需要对应到具体的文件的（需要注意的是，标准输出设备、输入设备等在 Linux 中也是以文件形式存在的），所以每一个流都有其对应的文件描述符，可以对流调用fileno函数来获得流对应的文件描述符，其标准调用格式说明如下。

#include <stdio.h>

int fileno(FILE *stream);

【例5.2】是一个打印3个标准流和一个关联到普通文件的流缓冲状态的实例。

【例5.2】打印流缓冲状态应用实例。

#include <stdio.h>

#include <stdlib.h>

#if defined(MACOS)

#define _IO_UNBUFFERED　__SNBF

#define _IO_LINE_BUF　__SLBF

#define _IO_file_flags　_flags

#define BUFFERSZ(fp)　(fp)->_bf._size

#else

#define BUFFERSZ(fp)　((fp)->_IO_buf_end - (fp)->_IO_buf_base)

#endif

void　pr_stdio(const char *, FILE *);

int main(void)

{

FILE　*fp;

printf("pls enter some str\n");　//提示输入部分字符

if (getchar() == EOF)　//如果EOF错误

{

perror("getchar error");

}

fputs("one line to standard error\n", stderr);

pr_stdio("stdin",　stdin);

pr_stdio("stdout", stdout);

pr_stdio("stderr", stderr);　//输出相应的缓冲类型

perror("fopen error");

if (getc(fp) == EOF)

perror("getc error");

pr_stdio("/etc/motd", fp);

exit(0);

}

//缓冲输出函数

void　pr_stdio(const char *name, FILE *fp)

{

printf("stream = %s, ", name);　//打印缓冲名称

if (fp->_IO_file_flags & _IO_UNBUFFERED)

printf("unbuffered");

else if (fp->_IO_file_flags & _IO_LINE_BUF)

printf("line buffered");

else /* if neither of above */

printf("fully buffered");

printf(", buffer size = %d\n", BUFFERSZ(fp));

}

将文件保存为exam2buf.c，在终端中使用gcc编译，并且运行，可以看到如下的输出结果。

alloeat@ubuntu:～/chapter5Exam$ gcc exam2buf.c -o exambuf　//编译

alloeat@ubuntu:～/chapter5Exam$./exambuf　//运行

pls enter some str　//提示输入字符串以打开缓冲

this is a test for buf

one line to standard error

stream = stdin, line buffered, buffer size = 1024　//标准输入

stream = stdout, line buffered, buffer size = 1024　//标准输出

stream = stderr, unbuffered, buffer size = 1　//错误

stream = /etc/motd, fully buffered, buffer size = 4096　//全缓冲

命令行输出说明可以参考注释部分。

5.3.2 流的缓冲区设置方式

如果需要对Linux内核提供的流缓冲状态进行修改，可以使用setbuf系列函数，其标准调用格式说明如下。

#include <stdio.h>

void setbuf(FILE *stream, char *buf);

int setvbuf(FILE *stream, char *buf, int mode, size_t size);

void setbuffer(FILE *stream, char *buf, size_t size);

void setlinebuf(FILE *stream);

这4个函数都必须在流成功打开之后再调用，setbuf函数没有返回值，setvbuf函数如果调用成功返回0，否则返回一个非0的值，其参数说明如下。

● stream 参数：流指针，指向一个打开的流。

● buf参数：在setbuf函数中，指向一个长度为BUFSIZ的缓冲区，BUFSIZ是在stdio.h中定义的一个宏，其长度为 8 192 字节。在 setvbuf 函数中，缓冲区的大小由 size确定。

● mode 参数：缓冲类型，包括_IOFBF（全缓冲）、_IOLBF（行缓冲）和_IONBF（不带缓冲）。

● size 参数：缓冲区的大小。

对于setbuf函数来说，没有mode和size参数，所以其设定的流通常是全缓冲的。若这个流和终端设备相关，则有可能设置为行缓冲，同时可以通过将buf设置为NULL来关闭缓冲。

对于setvbuf函数来说，通过设置mode和size则可以选择相应的缓冲方式和缓冲区大小，如果设置一个流带缓冲，但是buf被设置为NULL，则Linux内核会自动将其缓冲区大小设置为BUFSIZ。表5.4是以上两个函数的总结。

 表5.4 setbuf和setvbuf总结

 [image: figure_0188_0090]

setbuffer函数将流设置为全缓冲方式，但是其可以指定缓冲区的大小。

setlinebuf函数则是将流设置为行缓冲方式。

注意：最好在将流打开但还未对流执行其他操作时设定流的属性。因为对流的各种操作都是和缓冲区的属性紧密相关的，改变缓冲区的属性会对所执行的操作产生意想不到的影响。

【例5.3】是使用setbuf对标准输入设备进行缓冲设置的实例。

【例5.3】设置缓冲区相应状态。

#include <stdio.h>

#include <stdlib.h>

#define SIZE 512　　　　//定义缓冲区大小

int main(void)

{

char buf[SIZE];　　　　//缓冲区

if(setvbuf(stdin, buf, _IONBF, SIZE)!=0)　//将标准输入的缓冲类型设为无缓冲

{

perror("set stdin error!\n");

exit(1);

}

printf("Set stdin successful!\n");

printf("stdin is ");　　　　//打印缓冲区信息

if(stdin->_flags & _IO_UNBUFFERED)　//判断标准输入流对象的缓冲区类型

{

printf("unbuffered\n");

}

else if(stdin->_flags & _IO_LINE_BUF)

{

printf("line-buffered\n");

}

else

{

printf("fully-buffered\n");

}

printf("buffer size is %d\n", stdin->_IO_buf_end - stdin->_IO_buf_base);

//打印缓冲区的大小

printf("file discriptor is %d\n", fileno(stdin));　//输出文件描述符

{

//将标准输入的缓冲类型设为全缓冲，缓存区大小为512

perror("error!\n");

exit(1);　//出错退出

}

printf("OK, change successful!\n");

printf("stdin is ");　　　　//打印缓冲区信息

if(stdin->_flags & _IO_UNBUFFERED)　//判断标准输入流对象的缓冲区类型

{

printf("unbuffered\n");

}

else if(stdin->_flags & _IO_LINE_BUF)

{

printf("line-buffered\n");

}

else

{

printf("fully-buffered\n");

}

printf("buffer size is %d\n", stdin->_IO_buf_end - stdin->_IO_buf_base);

//打印缓冲区的大小

printf("file discriptor is %d\n", fileno(stdin));　//输出文件描述符

}

将文件保存为exam3setbuf.c，在终端中使用gcc编译，并且运行，可以看到如下的输出。

alloeat@ubuntu:～/chapter5Exam$ gcc exam3setbuf.c -o examsetbuf　//编译

alloeat@ubuntu:～/chapter5Exam$./examsetbuf　//执行

Set stdin successful!　//设置标准输入流成功

stdin is unbuffered　//标准输入流无缓冲

buffer size is 1　//缓冲size说明

file discriptor is 0　//文件描述符

OK, change successful!　//修改缓冲方式

stdin is fully-buffered　//全缓冲

buffer size is 512　//缓冲区大小

file discriptor is 0　//文件描述符

命令行输出说明可以参考注释部分。

5.4 流的读写

对流的操作其主要目的就是对流所指定的文件操作，所以流的读写是流最重要也是最常见的操作，对流的读写操作可以按照操作的缓冲区大小分为3种。

● 字符读写：每次读写一个字符数据，如果流是带缓存的，则由流 I/O 函数处理所有缓存。

● 行读写：当遇到换行符的时候，则将流中换行符之前的内容送到缓冲区中，即每次读写一行。

● 块（结构）读写：以块（结构）为单位进行读写。

除了以上3种方式之外，还有一种格式化的读写操作方式，将在5.6小节中进行详细介绍。

5.4.1 字符读写

字符读写方式每次从流中读出或者向流中写入一个字符的数据，可以调用 getc 系列函数来进行字符读操作，其标准调用格式说明如下。

#include <stdio.h>

int fgetc(FILE *stream);

int getc(FILE *stream);

int getchar(void);

函数如果调用成功则返回即将读取的下一个字符，如果已经到达文件结束或者出错则返回EOF，其参数是一个指向流的指针stream。

前两个函数中，参数fp表示所要读入字符的文件，它们的区别是getc可被实现为宏，而fgetc则不能实现为宏。这说明了以下几点。

● getc 的参数不应当是具有副作用的表达式。

● 因为 fgetc 一定是个函数，所以可以得到其地址。这就允许将 fgetc 的地址作为一个参数传送给另一个函数。

● 调用 fgetc 所需时间很可能长于调用 getc 所需的时间，因为调用函数通常所需的时间长于调用宏。事实上，在<stdio.h>头文件中，getc 便是以宏定义的形式实现的，其编码具有较高的工作效率。

第三个函数getchar只能用来从标准输入流中输入数据，其作用相当于调用以stdin为参数的getc函数，即getc(stdin)。

另外，这 3 个函数以 unsigned char 类型转换为 int 的方式返回下一个字符。说明为不带符号字符类型的理由是，即使最高位为1也不会使返回值为负。要求整型返回值的理由是：这样就可以返回所有可能的字符值再加上一个已发生错误或已到达文件尾端的指示值。在<stdio.h>中，常数 EOF 被要求是一个负值，其值经常是-1。这就意味着不能将这 3个函数的返回值存放在一个字符变量中，以后还要将这些函数的返回值与常数EOF相比较。

对应按字符读，Linux内核同样提供了按字符写函数，其标准调用格式说明如下。

#include <stdio.h>

int fputc(int c, FILE *stream);

int putc(int c, FILE *stream);

int putchar(int c);

函数调用成功则返回输出字符c，若出错则为EOF，其参数说明如下。

● c 参数：需要输出的字符。

● stream 参数：接收输出的流指针。

与输入函数一样，putchar(c) 等同于 putc(c, stdout)。putc 可被实现为宏，而 fputc 则不能实现为宏。

【例5.4】是对流进行字符读写的应用实例，应用代码按照字符从标准输入读入字符，然后将其按照字符输出到标准输出。

【例5.4】字符读写应用实例。

#include <stdio.h>

#include <errno.h>

int　main(void)

{

int　c;

printf("pls enter some str,CTRL+D for stop\n");　//输出提示符

while ((c = getc(stdin)) != EOF)　　//如果没有接收到EOF

{

if (putc(c, stdout) == EOF)　//如果输出到EOF

{

perror("output error");

}

}

if (ferror(stdin))

perror("input error");

return 0;

}

将文件保存为exam4fputfget.c，在终端中使用gcc编译，并且运行，可以看到如下的输出结果。

alloeat@ubuntu:～/chapter5Exam$ gcc exam4fputfget.c -o examfputfget //编译

alloeat@ubuntu:～/chapter5Exam$./examfputfget　//运行

pls enter some str,CTRL+D for stop　//提示输入

test　//输入

test　//输出

命令行输出说明可以参考注释部分。

注意：在Linux操作系统中，可以使用CTRL+D来输入EOF符号。

5.4.2 行读写

行读写方式每次从流中读出或者写入一行的数据，读入行可以使用gets系列函数，其标准调用格式说明如下。

#include <stdio.h>

char *fgets(char *s, int size, FILE *stream);

char *gets(char *s);

fgets函数用于从流stream中读出一行数据，并且送到由s指定的缓冲区中，缓冲区大小由size参数说明，函数一直读到遇到下一个换行符或者读完了n-1个字符；如果需要读入行超过了n-1个字符，则只返回一个不完整的行，但是这个缓冲区总是以NULL结尾，下一次读取会继续执行；如果操作成功则返回缓冲区，如果已经到达文件结尾或者出错则返回NULL。

fget函数和fgets函数功能类似，不过其是从标准输入流读取数据。

注意：在实际使用中，并不推荐使用fgets函数，这是因为该函数不能指定缓冲区的的大小，在实际使用中容易造成缓冲区溢出。

和读入行相对，Linux内核也提供了相应的写入行的puts系列函数，其标准调用格式说明如下。

#include <stdio.h>

int fputs(const char *s, FILE *stream);

int puts(const char *s);

函数fputs用于将一个以NULL为结束的字符串去掉NULL然后写到指定的流。需要注意的是，该函数并不要求每次输出一行，因为其并不要求在NULL之前必须是换行符。如果调用成功则返回一个非负值，如果出错则返回EOF。

puts函数先将一个以NULL结束的字符串去掉NULL，然后写入到标准输出，然后再写一个换行符。

注意：虽然puts并不像gets那样容易导致错误，但是还是应该尽量避免使用这个函数，因为其涉及第二次写入一个换行符的问题。

【例5.5】用fputs函数重写【例5.4】应用实例。

【例5.5】字符读写应用实例。

#include "stdio.h"

#include "errno.h"

#include "stdlib.h"

#define MAXLINE 4096

int main(void)

{

char buf[MAXLINE];

printf("pls enter some str,CTRL+D for stop\n"); //输出提示符

while (fgets(buf, MAXLINE, stdin) != NULL)

{

if (fputs(buf, stdout) == EOF)

{

perror("output error");

}

}

if (ferror(stdin))

{

perror("input error");

}

exit(0);

}

将文件保存为exam5fputs.c，在终端中使用gcc编译，并且运行，可以看到如下的输出结果，其输出说明参考【例5.4】。

alloeat@ubuntu:～/chapter5Exam$ gcc exam5fputs.c -o exam5fputs

alloeat@ubuntu:～/chapter5Exam$./exam5fputs

pls enter some str,CTRL+D for stop

qrewhtlj

qrewhtlj

tewrt

tewrt

^C

使用流缓冲读写对效率的提升是巨大的，表5.5是一个使用相应的流缓冲读写操作的结果，可以和表5.1进行对比。

可以看到使用流缓冲函数的读写效率远远高于使用文件I/O函数进行读写，但是需要说明的是系统CPU时间差别并不大，这是因为最终都是需要调用系统内核调用。

注意：表5.5中的最后一列是测试用代码的文本空间字节数，即为gcc编译产生的机器指令数目，从中可以看到使用getc和putc的版本和使用fgetc、fputc的版本在文本空间长度方面大体相同，虽然getc和putc是通过宏定义来实现的，但是在gcc的库调用中是把宏扩展为函数调用的。

 表5.5 使用流缓冲读写的效率

 [image: figure_0194_0091]

5.4.3 二进制读写

在读写操作中，如果需要操作的区域多于一个字符或者多于一行，使用字符读写和行读写都比较麻烦，并且如果在一行数据中包括了 NULL 字符也会导致行操作的中止，此时可以使用二进制（按块/结构）读写函数。

Linux提供的二进制读写函数fread和fwrite的标准调用格式说明如下。

#include <stdio.h>

size_t fread(void *ptr, size_t size, size_t nmemb, FILE *stream);

size_t fwrite(const void *ptr, size_t size, size_t nmemb,FILE *stream);

fread函数用于执行直接输出操作，其参数ptr是指向读取数据的缓冲区的指针，size是读取对象的大小，nmemb表示欲读取的对象的个数，fp是指向要读取的流的FILE结构指针，其返回值为读的对象数，如果出错或到达文件尾端，则此返回值可以少于nmemb。在这种情况，应调用ferror或feof判断究竟是那一种情况（参见5.4.4小节）。

fwrite 函数用于执行直接输入操作，参数 ptr 是指向存放将要输入数据的缓冲区的指针，size 是写入对象的大小，nmemb 表示欲写入的对象的个数，fp 是指向要写入的流的FILE结构指针，其返回值为写入的对象数，如果返回值少于所要求的nmemb，则出错。

fread和fwrite函数有如下两种常见的用法。

● 读或写一个二进制数组。例如，将一个浮点型数组的第2 至第5 个元素写入一个文件内，其代码结构说明如下。

float data[10];

if (fwrite(&data[2], sizeof(float), 4, fp) != 4)

printf("fwrite error!\n");

其中，指定size为每个数组元素的长度，nmemb为欲写的元素数。

● 读或写一个结构，其代码结构说明如下。

struct

{

short count;

long total;

char name[NAME_SIZE];

} item;

if (fwrite(&item, sizeof(item), 1, fp) != 1)

printf ("fwrite error!\n");

其中，指定size为结构的长度，nmemb为1（要写的对象数）。

将这两个例子结合起来就可读或写一个结构体数组。为了做到这一点，size应当是该结构体的sizeof，而nmemb应是该数组中的元素数。

注意：fread 函数和 fwrite 函数的最大问题是其只能用于读在同一系统上已经写入的数据，这是因为在一个系统上写入的数据可能需要在另外一个系统上运行，从而因为结构体偏移量和存储方式等原因导致出现错误。

【例5.6】是使用fread和fwirte函数把【例4.6】所创建的lseektest.txt文件中的数据复制到一个新的txt文件的实例。

【例5.6】二进制读写应用实例。

#include　<stdio.h>

#include　<stdlib.h>

#include　<errno.h>

int main(int argc,char *argv[])

{

FILE *fp1, *fp2;　　//流指针

char buf[1024];　　//缓冲区

int n;

if(argc <=2)　//如果参数错误

{

perror("the arg error\n!");　//输出参数错误信息

}

if ((fp1 = fopen(*(argv+1), "rb")) == NULL)

//以只读方式打开源文件，读的开始位置为文件开头

{

perror("fail to open source file\n");

exit(1);　//出错退出

}

if ((fp2 = fopen(*(argv+2), "wb")) == NULL)

//以只写方式打开目标文件，写的开始位置为文件结尾

{

perror("fail to open des file\n");

exit(2);　　//出错退出

}

//开始复制文件，文件可能很大，缓冲一次装不下，所以使用一个循环进行读写

while ((n = fread(buf, sizeof(char), 1024, fp1)) > 0)

{

//读源文件，直到将文件内容全部读完

if (fwrite(buf, sizeof(char), n, fp2) == -1)

{

//将读出的内容全部写到目标文件中去

perror("fail to write\n");

exit(3);　/*出错退出*/

}

}

if(n == -1)

{

//如果因为读入字节小于0而跳出循环，则说明出错了

perror("fail to read\n");

exit(4);　/*出错退出*/

}

fclose(fp1);　/*操作完毕，关闭源文件和目标文件*/

fclose(fp2);

return 0;

}

将文件保存为exam6fread.c，在终端中使用gcc编译，并且运行，可以看到如下的输出结果。

alloeat@ubuntu:～/chapter5Exam$ gcc exam6fread.c -o examfread //编译

alloeat@ubuntu:～/chapter5Exam$./examfread lseektest.txt fwr.txt .

//执行，参数1是源文件，参数2是目标文件

alloeat@ubuntu:～/chapter5Exam$ cat fwr.txt //输出目标文件内容

this is a test!

this is a test!

this is a test!

this is a test!

this is a test!

this is a test!

this is a test!

this is a test!

this is a test!

this is a test!

this is a test!

命令行输出说明可以参考注释部分。

5.4.4 流的出错处理

Fgets、gets、putc、fread等函数如果调用失败会返回EOF，但是由于EOF既用于报告文件结束，也用于报告随机出现的错误。因此，为了区分究竟是错误返回还是文件结束返回，有时还需要调用ferror函数来确定是否存在错误，调用feof函数检查是否遇到文件结束。

在大多是应用中，Liunx内核都为流（FILE）对象提供了两个标志符。

● 出错标志：当读写文件出错时该指示器被设置为真（非 0），否则为假（0）。

● 文件结束标志：当已经到达到文件尾时该指示器被设置为真。

Linux内核同样提供了ferror和feof两个函数用于检查这两个标志位，其标准调用格式说明如下。

#include <stdio.h>

int feof(FILE *stream);

int ferror(FILE *stream);

foef函数和ferror函数的参数都是一个指定的流指针，如果其测试标志位为真（非0）则返回非0值，否则返回0。

在确定了错误之后，可以调用clearerr函数来清除错误，其标准调用格式说明如下。

其中参数是需要清除错误的流对应的指针，没有返回值。

#include <stdio.h>

void clearerr(FILE *stream);

【例5.7】是一个调用相应函数对流出错进行处理的实例。

【例5.7】出错处理应用实例。

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char *argv[])

{

int i;

FILE *fp;

if(argc<=1)　//参数错误

{

printf("usage: %s file \n",argv[0]);

exit(0);

}

fp=fopen(argv[1],"w");

//打开文件，但是因为文件为空所以无法读取

fgetc(fp);

printf("%d \n",ferror(fp));　//输出错误信息

fputs("abcdefgh",fp);　//向文件中写入一些数据

fclose(fp);

fp=fopen(argv[1],"r");　//再次打开文件

fseek(fp,0,SEEK_END);

//使用fseek定位到文件末尾，将在下一小节中介绍该函数

fgetc(fp);　//读入

if(feof(fp))　//如果到了末尾输出

{

printf("file end\n");

}

clearerr(fp); //清除当前错误

printf("%d %d\n",ferror(fp),feof(fp));　//再次打印错误信息

fclose(fp);

return 0;

}

将文件保存为exam7ferr.c，在终端中使用gcc编译，并且运行，可以看到如下的输出。

alloeat@ubuntu:～/chapter5Exam$ gcc exam7ferr.c -o examferr　//编译

alloeat@ubuntu:～/chapter5Exam$./examferr ferrtest.txt　//执行

1　//打开错误标志位

file end　//文件末尾标志位

0 0　//输出两个标志位的值

命令行输出说明可以参考注释部分。

5.4.5 流的冲洗

在使用流的时候，内核在系统内核中开辟了一块缓冲区用于相应的操作。在关闭流或者操作完成之后，应该将缓冲区的数据清空，这种清空可以是将流的内容完全丢掉，也可以是将其保存到流对应的文件中，这个过程叫做流的冲洗。Linux内核同样提供了相应的函数fflush和_fpurge来完成流的冲洗，其标准调用格式如下。

#include <stdio.h>

int fflush(FILE *stream);

#include <stdio.h>

#include <stdio_ext.h>

void __fpurge(FILE *stream);

fflush将参数stream指定流的缓冲区中尚未写入文件的数据强制性地保存到文件中。如果调用成功时，则返回值为0；如果调用失败，则返回EOF。

_fpurge 函数则用于将缓冲区中的数据完全清除，由于使用较少，这个函数定义在<stdio_ext.h>中。

注意：流的冲洗在调用fclose函数来关闭这个流，或者一个进程使用exit、return函数来正常终止的时候是会自动进行，并不需要用户特意进行。但是，如果有其他特定的需求，也可以由用户调用以上函数手动完成。

5.5 流的定位

和在 4.2.4 小节中介绍的文件偏移量类似，流在操作中也存在偏移量的概念。Linux内核提供了如下3种方式来对流进行定位操作。

● 使用 ftell 和 fseek 函数：其缺点是必须假设偏移量可以放到一个长整型中。

● 使用 ftello 和 fseeko 函数：其使用了 off_t 数据类型替代了长整型。

● 使用 fgetpos 和 setpos 函数：使用一个抽象数据类型 fpos_t 来记录文件的位置，该数据类型可以定义为一个文件位置所需要的长度。

5.5.1 ftell和fseek函数

函数ftell和fseek的标准调用格式说明如下。

#include <stdio.h>

int fseek(FILE *stream, long offset, int whence);

long ftell(FILE *stream);

fseek函数用于修改fp所指的文件偏移量，其中参数fp是流结构指针；参数whence指明参数offset的偏移起点，其参考值和lseek函数相同，如表5.6所示；参数offset是流的偏移值，其可以是一个正值也可以是一个负值。如果函数调用成功则返回“0”，否则返回一个非“0”值。

 表5.6 whence参数取值选项

 [image: figure_0199_0092]

如果fseek函数调用成功，其将清除流的文件结束标志位（参考5.4.5节）。如果该流是输出流并且缓冲的数据还未写至相关联的文件，fseek将导致未写出的数据被写至文件。因此，对于以更新方式（“+”）打开的文件而言，调用 fseek 之后，在此文件上的下一个操作既可以是输入，也可以是输出。

fseek 函数允许将文件位置设置为超过文件的当前文件尾，如果之后在此新文件位置写入了数据，则后续从原文件后与新写入的数据之间的空隙中读出的字节将用0填充，直至此空隙写入实际的数据为止。

ftell 函数的参数是需要操作的流指针，如果其调用成功，返回 fp 指定流的当前文件位置，它是从文件开始的字节数，否则失败则返回-1。

针对ftell函数和fseek函数，Linux还提供了rewind函数用于将偏移量设定到流的起始部分，其标准调用格式说明如下。

#include <stdio.h>

void rewind(FILE *stream);

rewind 函数的参数是需要操作的流对应的指针，没有返回值，其等价于fseek(fp,0L,SEEK_SET)。

【例5.8】是fseek函数的应用实例，它通过流操作向一个文件中写入了部分数据。

【例5.8】fseek函数应用实例。

#include <stdio.h>

int main(int argc,char *argv[])

{

int temp,seektemp,i,j;

FILE *fp;　　　//文件指针

char wbuf[17] = "this is a test!\r\n";

if(argc!= 2)

{

printf("run error!\n");

return 1;　　　　　　//如果参数不正确则退出

}

fp = fopen(*(argv+1),"a+b");　//打开文件

for(i=0;i<10;i++)

{

j = sizeof(wbuf) * (i+1);　　　//计算下一次的偏移量

fseek(fp,j,SEEK_SET);

temp = fputs(wbuf,fp);　//写入数据

}

fclose(fp);

return 0;

}

将文件保存为exam8fseek.c，在终端中使用gcc编译，并且运行，可以看到如下的输出结果。

alloeat@ubuntu:～/chapter5Exam$ gcc exam8fseek.c -o exam8fseek　//编译

alloeat@ubuntu:～/chapter5Exam$./exam8fseek　//调用出错，因为没有文件名参数

run error!

alloeat@ubuntu:～/chapter5Exam$./exam8fseek fseektest.txt　//传递文件名参数

alloeat@ubuntu:～/chapter5Exam$ cat fseektest.txt　//查看文件

this is a test!

this is a test!

this is a test!

this is a test!

this is a test!

this is a test!

this is a test!

this is a test!

this is a test!

this is a test!　//写入的数据

alloeat@ubuntu:～/chapter5Exam$./exam8fseek fseektest.txt　//再次调用

alloeat@ubuntu:～/chapter5Exam$ cat fseektest.txt //查看文件

this is a test!

this is a test!

this is a test!

this is a test!

this is a test!

this is a test!

this is a test!

this is a test!

this is a test!

this is a test!

this is a test!

this is a test!

this is a test!

this is a test!

this is a test!

this is a test!

this is a test!

this is a test!

this is a test!

this is a test!　//写入数据增加

命令行输出说明可以参考注释部分。

5.5.2 ftello和fseeko函数

对于二进制文件而言，其文件偏移量可以简单地用一个长整型数据来确定。但是，在文本文件中其当前位置就不一定能以简单的字节偏移量来度量，这是因为虽然Linux并不区分二进制文件和文本文件，但是在其他的操作系统中这两个文件的存放格式是可能不同的，此时可以使用一个off_t类型的数据类型，并且使用ftello和fseeko函数。这两个函数除了偏移量的数据类型不同之外，其他方面与 fseek、ftell 函数完全相同，其标准调用格式说明如下。

#include <stdio.h>

int fseeko(FILE *stream, off_t offset, int whence);

off_t ftello(FILE *stream);

5.5.3 fgetpos和fsetpos函数

fgetpos和fsetpos两个函数同样可以用于定位流的操作。fgetpos可以得到读写指针的位置，而fsetpos可以定位读写指针的位置，其标准调用格式如下。

#include <stdio.h>

int fgetpos(FILE *stream, fpos_t *pos);

int fsetpos(FILE *stream, fpos_t *pos);

在这两个函数中，参数fp是流指针，pos为指向fpos_t的指针，pos_t是一个存放指针位置的记录类型。如果操作成功则返回0，如果出错则返回非0值。

这两个函数和ftell、fseek 函数的主要区别在于其使用fpos_t结构来存放偏移值，这是一个抽象的结构体，可以在多种不同的操作系统中进行具体定义。

【例5.9】是fgetpos函数的应用代码，其在【例5.8】的基础上，在每次写入的时候调用fgetpos函数来获取当前的偏移量，并且将其打印输出的实例。

【例5.9】fgetpos函数应用实例。

#include <stdio.h>

int main(int argc,char *argv[])

{

int temp,seektemp,i,j;

FILE *fp;　　　//文件指针

fpos_t ps;　　//偏移量指针

char wbuf[17] = "this is a test!\r\n";

if(argc!= 2)

{

printf("run error!\n");

return 1;　　　　　　　　//如果参数不正确则退出

}

fp = fopen(*(argv+1),"a+b");　//打开文件

for(i=0;i<10;i++)

{

j = sizeof(wbuf) * (i+1);　　　//计算下一次的偏移量

fseek(fp,j,SEEK_SET);

temp = fputs(wbuf,fp);　//写入数据

fgetpos(fp,&ps);　//获得当前的偏移量

printf("current file end position is %ld \n",ps);　//打印偏移量输出

}

fclose(fp);

return 0;

}

将文件保存为exam9fgetpos.c，在终端中使用gcc编译，并且运行，可以看到如下的输出结果。

alloeat@ubuntu:～/chapter5Exam$ gcc exam9fgetpos.c -o examfgetpos //编译

alloeat@ubuntu:～/chapter5Exam$./examfgetpos fgetposttest.txt //执行

current file end position is 21 //以下输出的是每次文件的偏移量

current file end position is 39

current file end position is 57

current file end position is 75

current file end position is 93

current file end position is 111

current file end position is 129

current file end position is 147

current file end position is 165

current file end position is 183

命令行输出说明可以参考注释部分。

5.6 流的格式化输出和输入

除了按字符、行和二进制的流输入输出方式之外，还可以使用流的格式化输入输出方式，其特点可以将输入输出规格化为一定的组织结构，然后输出。

putc、gets等I/O函数除了将数据分解成字符或者行之外，并不对所操作的数据进行解释。但有时对数据进行解释却是必要的，因为在Linux内核中数据的表示与用户习惯的阅读形式是不同。例如，十进制数10在计算机内部的32位表示如下。

00000000000000000000000000001010

但是，当这个数在打印机上输出或者在终端屏幕上显示时，它必须转换为ASCII字符“1”和“0”，这两个字符在计算机内部有完全不同的表示。

1：00110001

0：00110000

类似地，为了从键盘读入十进制整数10，人们习惯的十进制数表示必须转换为计算机可处理的内部表示。

格式化 I/O 函数能够自动完成这种数据外部格式和内部格式的转换工作．并且能够对输入输出数据进行数据类型、精度、位置等格式控制，它们是标准I/O库中使用最频繁的函数。

所有格式化I/O函数的调用方法都是简单的，它们都通过一个格式字符串来对其余参数进行格式描述。但是，格式字符中的转换区分符则由于子格式本身的复杂性而五花八门，因为它们要描述每一种数据类型（整数、浮点数、十进制数、八进制数、十六进制数、字符、字符串等），要描述数据的精度（单精度、双精度、短整数、长整数等），要描述数据的外部形式（指数形式、定点形式、左对齐、右对齐、是否有前缀0、是否有正号或负号等）以及字节宽度等。

5.6.1 格式化输出

Linux内核提供了4个printf系列函数用于流的格式化输出，其标准调用格式说明如下。

#include <stdio.h>

int printf(const char *format, ...);

int fprintf(FILE *stream, const char *format, ...);

int sprintf(char *str, const char *format, ...);

int snprintf(char *str, size_t size, const char *format, ...);

printf函数用于将格式化的数据写入到标准输出（在第3章已经有过介绍），fprintf函数则用于将格式化的数据写入到一个由 stream 指针指向的流。如果这两个函数操作成功则返回输出的字符数，如果操作失败则返回一个负值。

sprintf函数用于将格式化的数据写入到str指向的缓冲区数组，并且在末尾加上一个NULL，而snprintf则可以使用size参数来指定这个缓冲区数组的大小，超过该大小的数据将被丢弃。如果这两个函数操作成功，则返回存入数组的字符数，如果编码出错则返回一个负值。

这4个函数的format参数用于说明格式化数据的格式化方法，将在5.6.3小节中进行介绍。

注意：Linux内核还提供了vprintf等4个对应的变体函数，读者可以自行查阅相应的帮助手册。

5.6.2 格式化输入

和printf系列函数对应，Linux内核同样提供了相应的scanf系列格式化输入函数对输入的字符串进行分析，并且将其转化为指定类型的变量，格式化之后的个参数包括了对应的变量的地址，用转换结果来初始化这些变量，其标准调用格式说明如下。

#include <stdio.h>

int scanf(const char *format, ...);

int fscanf(FILE *stream, const char *format, ...);

int sscanf(const char *str, const char *format, ...);

scanf 函数用于从标准输入设备中按照format 提供的格式读取数据，fscanf用于从一个流按照format提供的格式读取数据，而sscanf则从str指定的字符缓冲区中读取数据。如果调用成功则返回输入的项数，如果输入出错或者到达文件结尾则返回EOF。

注意：Linux内核同样提供了vscanf系列变体函数以供调用。

5.6.3 格式化参数

printf系列函数的格式化参数format的标准组成部分说明如下。

%[flags][fldwidth][precision][lenmodifier]convtype

表5.7给出了printf系列函数中format参数的详细说明。

和printf系列函数类似，scanf函数除了是从输入流读取数据并将值存储至对应的参数所指的地址中之外，也用类似的方式使用格式字符串 format 来控制格式转换，并且许多转换区分符也是相同的，但其与printf函数系列有两点重要的区别。

● 输入转换区分符的语法虽然与 printf 函数中的语法类似，但它们的解释主要是面向自由格式的输入和简单的模式匹配，而不是针对格式化的固定域。例如，大部分scanf转换都跳过输入文件中的空白字符（包括空格符、制表符、换行符等），并且对于数值转换没有对应输出转换那样精度。此外，输入格式字符串中的普通非空白字符预期精确地匹配输入流中的字符，但当匹配失效时并不认为是流输入错误（匹配失败不设置流的错误指示器）。

● scanf 系列函数中位于 format 参数之后的所有其他参数都应当是指针，所读入的值将存储在指针所指对象之中。

scanf系列函数使用的格式字符串format由以下3类成分组成。

● 一至多个连续的空白符：包括空格符、制表符“\t”、水平制表符“\v”、换行符“\r”和走纸符“\f”。对于这种类型的字符，scanf系列函数将直接跳过一直到遇到一个未读过的非空白字符或者遇到文件尾。需要注意的是，输入流中的空白字符不必完全与格式字符串中的空白符相同。

 表5.7 printf系列函数中format参数详细说明

 [image: figure_0206_0093]

 续表

 [image: figure_0207_0094]

● 普通字符（不包括“％”和空白符）：用于指明必须出现在输入流中的字符，它必须完全与输入流中的下一字符相匹配，如果不匹配将导致匹配失败。

● 转换区分符：格式字符串中的转换区分符指导下一个输入域的转换。输入域定义为输入流中非空白字符组成的字符序列，其长度直至遇到—个不合适的字符或者到达指定的域宽为止。转换后的结果存储在对应的参数中，除非转换区分符指明了禁止赋值标志“*”。大部分转换区分符通常都忽略输入中的空白字符。这意味着％d 将一直读输入，直至发现一个数字序列。如果所期望的字符没有出现，该转换将失败且scanf将立即返回。

注意：一定要区分术语“空白符”、“空格符”的“空字符”。空白符包括空格符、制表符“\t”、水平制表符“\v”、换行符“\r”和走纸符“\f”，即isspace函数返回值为真的字符；空格符只指一个空格“”；空字符是null（即“\0”）字符。

scanf系列函数的格式化参数format的标准组成部分说明如下。

%[*][fldwidth] [lenmodifier]convtype

表5.8是scanf函数的format格式说明。

 表5.8 scanf函数的format格式说明

 [image: figure_0207_0095]

 续表

 [image: figure_0208_0096]

表5.9是各种输入转换字符类型的说明。

 表5.9 输入转换字符说明

 [image: figure_0208_0097]

 续表

 [image: figure_0209_0098]

5.6.4 格式化输入输出应用实例

【例5.10】是一个调用sprintf函数将rand函数产生的10个随机数写入一个字符串数组的应用实例。

【例5.10】格式化输出应用实例1。

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

char s[64];　//字符数组

int offset = 0;　//偏移量

int i;

srand(time(0));　//使用time的返回值来对rand函数进行初始化

for(i=0;i<10;i++)

{

offset+=sprintf(s+offset,"%d,",rand()%100);　//格式化写入数据到s字符数组中

}

s[offset-1] ='\n';

printf(s);　//打印缓冲区

exit(0);

}

将文件保存为exam10sprintf.c，在终端中使用gcc编译，并且运行，可以看到如下的输出结果。

alloeat@ubuntu:～/chapter5Exam$ gcc exam10sprintf.c -o examsprintf //编译

alloeat@ubuntu:～/chapter5Exam$./examsprintf //运行

79,62,23,5,23,31,31,40,12,22 //缓冲区内存放的 10 个随机数

命令行输出说明可以参考注释部分。

【例5.11】是一个标准化的流输入输出应用实例。

【例5.11】格式化输出应用实例2。

#include <stdio.h>

int main(void)

{

int i=23;

char filename[]="file.txt";

printf("Processing of '%s' is %d %% finished. Please be patient.\n",filename, i);

printf("%s \n",filename,i);

printf("%s is finished. %d %s\n",filename);

return 0;

}

将文件保存为 exam11printf.c，在终端中使用 gcc 编译，并且运行，可以看到如下的输出结果。

alloeat@ubuntu:～/chapter5Exam$ gcc exam11printf.c -o examprintf　//编译

alloeat@ubuntu:～/chapter5Exam$./examprintf　//调用

Processing of 'file.txt' is 23 % finished. Please be patient　//输出.

file.txt

file.txt is finished. 23 崈)橇[image: figure_0000_0001]?t)1鰨?　//最后一段是乱码，因为是个随机的值

命令行输出说明可以参考注释部分。

5.7 临时文件

Linux内核允许用户建立并且使用临时文件，临时文件给应用程序提供了一种以文件形式暂存数据的手段，它可以存放计算的中间结果，也可以在关键操作之前用于备份数据。

Linux提供了函数tmpnam、tempnam和tmpfile用于该操作，其标准调用格式说明如下。

#include <stdio.h>

char *tmpnam(char *s);

char *tempnam(const char *dir, const char *pfx);

FILE *tmpfile(void);

tmpnam函数用于产生一个与系统中已经存在的文件名不相同的临时文件名，每次调用它的时候都会产生一个新的带路径的完整新文件名。如果其参数s不是空指针，tmpnam函数会将该文件名存储于s所指向的缓冲区，并且将一个指向该缓冲区的指针作为函数返回值返回。如果其参数s为NULL，tmpnam返回值指向的字符串是静态分配的，下一次调用tmpnam会覆盖前一次的内容，这个值即为临时文件的带路径文件名。因此，如果在一个应用中需要多次调用tmpnam函数，应该使得参数s为非空。

注意：s参数指向的字符串大小应当至少不小于L_tmpnam。在同一个进程内，tmpnam至多可以调用 TMP_MAX 次，并且每一次调用生成的临时文件名各不相同，TMP_MAX在头文件 stdio.h 中定义，通常来说其值是大于 10 000 的。

tempnam函数的功能与tmpnam相同，不同的是它可以指定临时文件存放的目录以及文件名的前缀，dir参数给出目录的路径，pfx参数给出文件名前缀。

tempnam依次测试下述条件来确定目录路径名。

● 如果定义了环境变量 TMPDIR，用它的位作为目录（即，它可以覆盖 dir 参数）。

● 如果 dir 参数指向一个合法的目录字符串，用它作为目录。

● 如果 dir 参数是空指针或者指向一个非法目录路径名，使用<stdio.h>中宏变量P_tmpdir定义的目录；这个宏变量定义默认的临时文件目录。

● 如果 P_tmpdir 定义的目录不可访问，使用事先定义的目录，通常是/tmp。

另外，有许多程序员喜欢以某种打头字符序列来命名临时文件名，这就需要使用pfx参数。这个参数可以是空指针，也可以指向1～5个字符的字符串。

tempnam函数用malloc为所返回的文件路径名分配存储空间。由于这片空间是动态分配的，因此该函数是可重入的。不过，当不再需要它时，调用进程应当用 free来释放它。

【例5.12】是tempnam函数的应用实例，其创建了一个临时文件并且写入一个数据，然后读出。

【例5.12】tmpnam函数应用实例。

#include "stdio.h"

#include "errno.h"

#include "stdlib.h"

#define MAXLINE 4096　　　　//行最大字符数

//创建一个临时文件，写入一行数据，然后读出来

int main(void)

{

char　name[L_tmpnam], line[MAXLINE];

FILE　*fp;

printf("%s\n", tmpnam(NULL));　　//第一个临时文件的名称

tmpnam(name);　　　　　//第二个临时文件的名称

printf("%s\n", name);

if ((fp = tmpfile()) == NULL)　　//创建临时文件

{

perror("tmpfile error");

}

fputs("this is a test of tempfile!\n", fp);　//写入临时文件

rewind(fp);

//将偏移量设置为文件的起始位置

if (fgets(line, sizeof(line), fp) == NULL)

{

perror("fgets error");

}

fputs(line, stdout);　　　　　　//将写入的数据输出到标准设备

exit(0);

}

将文件保存为exam12tmpname.c，在终端中使用gcc编译，并且运行，可以看到如下的输出结果。

alloeat@ubuntu:～/chapter5Exam$ gcc exam12tmpname.c -o examtmpname //编译

alloeat@ubuntu:～/chapter5Exam$./examtmpname //编译

/tmp/file7brodH //第一个临时文件

/tmp/fileGe8HUs //第二个临时文件

this is a test of tempfile!

命令行输出说明可以参考注释部分。

tmpfile 函数用于创建一个临时二进制文件（类型为 wb+）。需要注意的是，Linux 内核并不区分二进制文件和文本文件，这个被创建的文件会在文件关闭或者应用程序结束时候自动被删除。该函数没有参数，调用成功则返回临时文件的指针，如果出错则返回一个NULL指针。

tmpfile函数的执行过程其实是先调用tepnam产生一个带路径的文件名，然后创建该文件并且立刻unlink。【例5.13】是tmpfile函数的应用实例，其利用tmpfile函数创建并打开一个临时文件并且写入一行数据，随后将它读出并写至标准输出。

【例5.13】tmpfile函数应用实例。

#include <stdio.h>

#include <errno.h>

#include <stdlib.h>

int main()

{

FILE *tempfp;

char line[256];

tempfp = tmpfile();　//获得文件名

if(tempfp == NULL)　//如果是空，则出错退出

{

perror("tmpfile error!\n");

return 1;

}

printf("Opened a temporary file OK!\n");

fputs("One line of output \n",tempfp);

rewind(tempfp);　//指向文件起始位置

if(fgets(line, sizeof(line),tempfp)==NULL)

{

printf("fgets error!\n");

return 2;

}

fputs(line, stdout);

return 0;

}

将文件保存为exam13tmpfile.c，在终端中使用gcc编译，并且运行，可以看到如下的输出结果。

alloeat@ubuntu:～/chapter5Exam$ gcc exam13tmpfile.c -o examtmpfile　//编译

alloeat@ubuntu:～/chapter5Exam$./examtmpfile　//运行

Opened a temporary file OK!　//输出

One line of output

命令行输出说明可以参考注释部分。
第6章 Linux的进程

进程是操作系统结构的基础，是一个正在执行的程序实例。进程是Linux操作系统操作最重要和最基础的组成部分，本章将详细介绍Linux进程的操作方法。

6.1 Linux进程基础

进程的概念起源于20世纪60年代，目前已成为各种操作系统和并发程序设计中非常重要的概念。可以说，用户在操作系统中所做的每一件事，都是通过进程实现的。例如，在第5章中调用fopen和fclose函数来打开和关闭一个流，这个实例的执行过程，就是一个进程。

进程通常被定义为程序执行时候的一个实例。例如，如果Linux上有多个用户同时运行VIM，此时就有存在多个独立的进程，虽然它们都对应一个可执行代码。

6.1.1 Linux进程及其执行过程

Linux是一个多用户多任务的操作系统。多用户是指多个用户可以在同一时间使用同一台计算机系统；多任务是指Linux可以同时执行几个任务，它可以在还未执行完一个任务时又执行另一项任务，Linux内核管理着多个用户的请求和多个任务。

大多数系统都只有一个处理器实体（这里把多核处理器看做一个处理器）和一个内存段实体，但一个系统可能有多个二级存储磁盘和多个输入/输出设备。操作系统管理这些资源，并在多个用户间共享资源。当用户提出一个请求时，给用户造成一种假象，好像系统只被用户独自占用。而实际上操作系统监控着一个等待执行的任务队列，这些任务包括用户作业、操作系统任务、邮件和打印作业等。操作系统根据每个任务的优先级为每个任务分配合适的时间片。每个时间片大约都有零点几秒，虽然看起来很短，但实际上已经足够计算机完成成千上万条指令。每个任务都会被系统运行一段时间，然后挂起，系统转而处理其他任务，过一段时间以后再回来处理这个任务，直到某个任务完成，从任务队列中去除。

Linux系统上所有运行的任务都可以是一个进程。每个用户任务和每个系统管理都可以称之为进程，Linux用分时管理方法使所有的任务共同分享系统资源。我们讨论进程的时候，不会去关心这些进程究竟是如何分配的，或者内核是如何管理分配时间片的，我们所关心的是如何去控制这些进程，让它们能够很好地为用户服务。

进程的一个比较正式的定义是：在自身的虚拟地址空间运行的一个单独的程序。进程与程序是有区别的，进程是动态的，程序是静态的，进程不是程序，虽然它根据程序产生。程序只是一个静态的命令集合，不占系统的运行资源；而进程是一个随时都可能发生变化的、动态的、使用系统运行资源的程序，而且一个程序可以启动多个进程。

1．进程的4个要素

在Linux中，一个进程必须具有以下4个要素。

● 要有一段程序代码供该进程运行。

● 拥有专用的系统堆栈空间。

● 拥有一个由 tsak_struck 结构来实现的进程控制块。

● 拥有独立的存储空间。

2．进程的关系和分类

Linux系统中所有进程都是相互联系的，程序创建的进程之间具有父/子关系，而自进程之间具有兄弟关系。

Linux内核创建了进程标号为0以及进程标号为1（关于进程标号将在下一小节进行介绍）的进程，其中进程标号为1的进程是一个初始化进程（init），Linux中的所有进程都是有其衍生而来的。在Shell下执行程序启动的进程则是Shell进程的子进程。当然我们启动的进程可以再启动自己的子进程。这样形成了一棵进程树，每个进程都是树中的一个节点，其中树的根是init。

进程的关系描述通常需要包括以下几个部分。

● p_opptr（祖先，original partent）：其指向创建进程 P 的进程的描述符，如果父进程不存在则指向进程init的描述符。所以当一个Shell用户启动一个后台进程并从Shell退出的时候，后台进程将变成init的子进程。

● p_pptr（父进程，parent）：指向进程的父进程，其值通常和 p_opptr 一致，但是也可能不同。

● p_cptr（子进程，child）：指向进程年龄最小的子进程的描述符，即进程上一次创建的进程的描述符。

● p_ysptr（弟进程，younger sibling）：指向在本进程创建之后由父进程创建的进程。

● p_osptr（兄进程，older sibling）：指向在本进程创建之前由父进程创建的进程。

图6.1是进程亲属关系的示意图。

 [image: figure_0216_0099]

 图6.1 5个进程之间的关系

3．进程的类型

Linux操作系通常包括3种不同类型的进程，每种进程都有自己的特点和属性。

● 交互进程：由一个 Shell 启动的进程，其既可以在前台运行，也可以在后台运行。

● 批处理进程：这种进程和终端没有联系，是一个进程序列。

● 守护进程：Linux 系统启动时启动的进程，并在后台运行。

4．进程的状态

进程在其生存周期内可能处于以下状态中。需要注意的是，这些状态是互斥的，也就是说在同一时刻进程只能位于其中一个状态，在task_struct结构的状态域中使用不同关键字来定义这些状态。

● 可运行状态（TASK_RUNNING）：占用处理器执行或者准备执行。

● 可中断的等待状态（TASK_INTERRUPTIBLE）：进程被挂起或者睡眠，当某些条件变成真的时候才退出这种等待状态，这些条件包括硬件中断、进程正在等待的系统资源被释放、传递一个信号等，退出等待状态之后的进程会回到TASK_RUNNING状态。

● 不可中断的等待状态（TASK_UNINTERRUPTIBLE）：和上一个状态类似，其差别是当接收到信号的时候并不能退出这个等待状态。

● 暂停状态（TASK_STOPPING）：进程的执行被暂停。通常来说，当进程接收到SIGSTOP、SIGTTIN或SIGTTOU信号后，进入暂停状态。需要注意的是，如果一个进程被另外一个进程监控的时候，任何信号都可以把这个进程置于TASK_STOPPEN状态。

● 僵尸状态（TASK_ZOMBIE）：进程的执行已经被终止，但是父进程还没有使用wait系列系统调用已返回相应的信息，此时内核不能丢弃包含在该进程中的相应数据，因为父进程还可能需要这些数据。

进程在这几种状态之间相互转化，但这些状态对于用户是透明的，这个切换的过程也常常被称为进程的调度。

进程是一个随执行过程不断变化的实体。和程序要包含指令和数据一样，进程也包含程序计数器和所有处理器寄存器的值。同时它的堆栈中存储着如子程序参数、返回地址以及变量之类的临时数据。当前的执行程序（或者说进程）包含着当前处理器中的活动状态。在多处理操作系统中，进程具有独立的权限与职责。如果系统中某个进程崩溃，不会影响到其余的进程。每个进程运行在各自的虚拟地址空间中，通过一定的通讯机制，它们之间才能发生联系。

6.1.2 Linux进程的描述符和标识符

在Linux中有很多进程在同时运行，要区别这些进程可以使用两种方式：进程描述符的地址或者进程标识符。对于一个系统中的每个独立的进程来说，其对应的进程描述符的地址以及进程标识符都是唯一的。

1．进程描述符

为了对进程进行管理，Linux内核必须了解每个进程当前的执行状态，这些状态包括进程的优先级、进程的运行状态、进程分配的地址空间等。为了达到这个目的，Linux内核提供了一个 task_struct 类型的结构体进程描述符（process descriptor）来存放这些相关信息。

Linux 内核提供了一个数组 task 用于存放进程描述符，其包含指向系统中所有task_struct结构的指针。这意味着系统中的最大进程数目受task数组大小的限制，其默认值一般为512。创建新进程时，Linux将从系统内存中分配一个task_struct结构，并将其加入task数组。当前运行进程的结构用current指针来指示。

以下是一个进程描述符的主要结构及其说明。

struct task_struct {

volatile long state;

//进程的运行时状态，-1代表不可运行，0代表可运行，>0代表已停止。

unsigned int flags;

//flags是进程当前的状态标识，具体说明如下：

//0x00000002表示进程正在被创建。

//0x00000004表示进程正准备退出。

//0x00000040 表示此进程被 fork 出，但是并没有执行 exec。

//0x00000400 表示此进程由于其他进程发送相关信号而被杀死 。

unsigned int rt_priority;

//进程的运行优先级

truct list_head tasks;

//list_head结构体

struct mm_struct *mm;

//进程内存使用的相关情况

int exit_state;

int exit_code, exit_signal;

pid_t pid;

//进程标识号

pid_t tgid;

//进程组号

struct task_struct *real_parent;

//real_parent是该进程的“亲生父亲”，不管其是否被“寄养”

struct task_struct *parent;

//parent是该进程现在的父进程，有可能是“继父”

struct list_head children;

//children指的是该进程孩子的链表，可以得到所有子进程的进程描述符

struct list_head sibling;

//sibling该进程兄弟的链表，也就是其父亲的所有孩子的链表。用法与children相似

struct task_struct *group_leader;

//主线程的进程描述符

struct list_head thread_group;

//进程所有线程的链表

处理器 time_t utime, stime;

//进程相关时间

struct timespec start_time;

struct timespec real_start_time;

//进程启动时间

char comm[TASK_COMM_LEN];

//这个是该进程所有线程的链表

int link_count, total_link_count;

//文件系统信息计数

struct thread_struct thread;

//特定处理器中的状态

struct fs_struct *fs;

//文件系统相关信息的结构体

struct files_struct *files;

//打开的文件相关信息的结构体

struct signal_struct *signal;

struct sighand_struct *sighand;

//信号相关信息的句柄

unsigned long timer_slack_ns;

unsigned long default_timer_slack_ns;

//松弛时间值，用来规定select()和poll()的超时时间，单位是纳秒

};

2．进程标识符

进程标识符（process ID）是进程描述符中最重要的组成部分，其是一个在当前 Linux系统中唯一的非负整数，用于标识和对应唯一的进程。

Linux 内核使用了 pid_t 类型的数据来存放进程的进程标识符，这个数据类型的实质是一个32位的无符号整型数据。进程标识符被顺序编号，通常是前一个进程的进程标识符的值加1。进程标识符是可以重复使用的，当一个进程被回收之后，过一段时间，其标识符则可以被再次使用。为了和 16 位处理器架构的应用系统相兼容，Linux 内核上通常允许使用的进程标识符是0～32767。

在Linux中，有如下几个特殊的进程标识符，其对应一些特殊的进程。

● 进程标识符 0：对应的是交换进程（swapper），其用于执行多进程的调用。

● 进程标识符 1：对应的是初始化进程（init），在自举过程结束时由内核调用，其对应的文件是/sbin/init，负责Linux的启动工作，这个进程在系统运行过程中是不会终止的，可以说当前操作系统中的所有进程都是由这个进程衍生而来的。

● 进程标识符 2：对应页守护进程（pagedaemon），用于虚拟存储系统的分页操作。

使用命令 ps-aux 可以查看系统中当前正在运行的进程的标识符以及其他一些信息，以下列出了开始的几个进程。

USER　PID　%处理器 %MEM　VSZ　RSS TTY　STAT START　TIME COMMAND

root　　1　0.0　0.0　3632　1972 ?　　Ss　Jul02　0:00 /sbin/init

root　　2　0.0　0.0　0　0 ?　　S　Jul02　0:00 [kthreadd]

root　　3　0.0　0.0　0　0 ?　　S　Jul02　0:05 [ksoftirqd/0]

root　　6　0.0　0.0　0　0 ?　　S　Jul02　0:00 [migration/0]

root　　7　0.0　0.0　0　0 ?　　S　Jul02　0:02 [watchdog/0]

root　　8　0.0　0.0　0　0 ?　　S　Jul02　0:00 [migration/1]

root　　10　0.0　0.0　0　0 ?　　S　Jul02　0:05 [ksoftirqd/1]

可以使用getpid系列函数来获得当前进程的进程标识符，其标准调用格式说明如下。

#include <sys/types.h>

#include <unistd.h>

pid_t getpid(void);

pid_t getppid(void);

getpid函数用于获得当前调用进程的进程标识符，getppid用于获得当前调用进程的父进程的进程标识符。

6.1.3 Linux进程的用户

与4.4.3小节中介绍的Linux中的文件访问权限类似，进程也有对应的实际用户ID、实际组ID、有效用户ID、有效组ID。对于这些用户来说，每个进程同样存在一个相应的标识符，Linux提供了相应的函数用于获取这些标识符，其标准调用格式说明如下。

#include <unistd.h>

#include <sys/types.h>

uid_t getuid(void);

uid_t geteuid(void);

gid_t getgid(void);

gid_t getegid(void);

以上4个函数的说明如下。

● getuid：返回进程的实际用户标识符。

● geteuid：返回调用进程的有效用户标识符。

● getgid：返回调用进程的实际组标识符。

● getegid：返回调用进程的有效组标识符。

注意：uid_t和gid_t的数据类型和pid_t类似。

【例6.1】是一个使用相应函数获得对应的标识符的应用实例。

【例6.1】获取对应标识符应用实例。

#include <sys/types.h>

#include <unistd.h>

#include <stdio.h>

main()

{

printf("The current process ID is %d\n",getpid());　//进程标识符

printf("The father process ID is %d\n",getppid());　//父进程标识符

printf("The user true ID is %d\n",getuid());　//实际用户标识符

printf("The valid user ID is%d\n",geteuid());　//有效用户标识符

printf("The group ID is %d\n",getgid());　　//实际组标识符

printf("The valid group ID is %d\n",getegid()); //有效组标识符

return 0;

}

将文件保存为exam1getid.c，在终端中使用gcc编译，并且运行，可以看到如下的输出结果。

alloeat@ubuntu:～/chapter6Exam$ gcc exam1getid.c -o exam1getid　//编译

alloeat@ubuntu:～/chapter6Exam$./exam1getid　//运行

The current process ID is 5086　//进程标识符

The father process ID is 4386　//父进程标识符

The user true ID is 1000　//以下为相应的标识符

The valid user ID is1000

The group ID is 1000

The valid group ID is 1000

命令行输出说明可以参考注释部分。

6.1.4 Linux进程的调度

在Linux系统中，进程有两种运行模式：用户模式和系统模式。用户模式的权限比系统模式下的权限小很多。对于一般的进程，都是部分时间运行于用户模式，部分时间运行于系统模式。进程通过系统调用在这两种模式之间切换。当系统调用发生时，进程将由用户模式切换到系统模式继续执行；当系统调用返回时，进程将由系统模式切换回用户模式。

在Linux系统中，进程不能被抢占。只要能够运行，它们就不会被停止。当进程必须等待某个系统事件时，它才决定释放处理器。进程常因为执行系统调用需要等待。由于处于等待状态的进程还可能占用处理器时间，所以Linux采用了预加载调度策略。在此策略中，每个进程只允许运行很短的时间（200ms），当这个时间用完之后，系统将选择另一个进程来运行，原来的进程必须等待—段时间以继续运行，这段时间称为时间片。

可运行进程是一个只等待处理器资源的进程。Linux使用基于优先级的简单调度算法来选择下一个运行进程。当选定新进程后，系统必须将当前进程的状态，处理器中的寄存器以及上下文状态保存到task_struct结构中。同时它将重新设置新进程的状态，并将系统控制权交给此进程。为了将处理器时间合理地分配给系统中每个可执行进程，调度管理器必须将这些时间信息也保存在task_struct中。

在task_struct结构中保存的调度信息如表6.1所示。

 表6.1 进程调度信息

 [image: figure_0221_0100]

6.1.5 Linux中进程执行的流程

图6.2是Linux中一个标准进程从开始建立到取消的详细过程，6.2节将按照这个步骤详细地介绍Linux中进程操作的相关知识。

 [image: figure_0222_0101]

 图6.2 Linux中进程的执行过程

6.2 Linux的进程控制

Linux的进程控制包括进程的创建、执行新的应用、内存的退出和销毁等操作，这些控制通常来说都是通过相应的函数调用来实现的。

6.2.1 进程的创建

在Linux内核中，创建进程是对进程进行操作的基础，创建一个新进程的唯一方法是由某个已存在的进程调用 fork 或 vfork 函数，被创建的新进程称为子进程（child process），已存在的进程称为父进程（father process）。

1．调用fork函数创建进程

fork函数的实质是一个系统调用（和write函数类似），其作用是创建一个新的进程，当一个进程调用它，完成后就出现两个几乎一模一样的进程，其中由 fork 创建的新进程被称为子进程，而将原来的进程称为父进程。子进程是父进程的一个拷贝，即子进程从父进程得到了数据段和堆栈段的拷贝，这些需要分配新的内存。而对于只读的代码段，通常使用共享内存的方式访问。

用户通常在有如下需求的时候使用fork函数。

● 一个进程希望复制自身，从而使得父子进程能同时执行不同段的代码，通常来说这种应用会涉及网络服务：父进程等待远端的一个请求或者应答，当收到这个请求或者应答的时候调用fork创建一个子进程来完成处理，而自己继续等待远端的请求或者应答。

● 进程想执行另外一个程序，例如在 Shell 中调用用户所生成应用程序。

fork函数的标准调用格式说明如下。

#include <unistd.h>

pid_t fork(void);

fork函数被调用一次，但返回两次。

● 对于父进程而言：函数的返回值是子进程的进程标识符，因为一个进程的子进程可以多于一个，所以没有一个函数使一个进程可以获得其所有子进程的进程标识符，必须通过这种方式来收集。

● 对于子进程而言：函数的返回值是 0，一个进程只会有一个父进程，所以子进程总是可以调用getppid来获得其父进程的进程标识符，所以不需要在这里返回父进程的进程标识符。

● 如果出错，则返回值为-1。

当fork函数返回后，子进程和父进程都从调用fork函数的下一条语句开始执行，【例6.2】是一个fork函数的应用实例。

注意：当 fork 函数返回之后，父进程还是子进程先执行是随机的，这个取决于具体的调度算法。如果需要确定让其中一个先运行，可以使用sleep等函数让其中一个“休眠”一段时间，但是这个时间长度是不确定的。

【例6.2】fork函数应用实例1。

#include <sys/types.h>

#include <unistd.h>

#include <stdio.h>

#include <stdlib.h>

int main (void)

{

int count = 0;

pid_t pid;　　//此时仅有一个进程

pid = fork();　//此时已经有两个进程在同时运行

if(pid < 0)

{

printf("error in fork!");

exit(1);　//fork出错，退出

}

else if(pid==0)

printf("I　am　the　child　process,　the　count　is　%d,　my　process　ID　is

%d\n",count,getpid());

else

printf("I　am　the　parent　process,　the　count　is　%d,　my　process　ID　is

%d\n",++count,getpid());

return 0;

}

应用代码调用 fork 函数创建一个新的进程，并且分别打印进程的进程标识符，将文件保存为exam2fork.c，在终端中使用gcc编译，并且运行，可以看到如下的输出结果。

alloeat@ubuntu:～/chapter6Exam$ gcc exam2fork.c -o exam2fork //编译

alloeat@ubuntu:～/chapter6Exam$./exam2fork //执行

I am the parent process, the count is 1, my process ID is 5645 //打印父进程标识符

I am the child process, the count is 0, my process ID is 5646 //打印子进程标识符

命令行输出说明可以参考注释部分。

通常来说，fork所创建的子进程将会从父进程中拷贝父进程的数据空间、堆和堆栈，并且和父进程一起共享正文段（参考 3.2 节）。需要注意的是，子进程所拷贝的仅仅是一个副本，和父进程相应部分是完全独立的。【例6.3】是一个相应的应用实例，其中可以看到子进程对变量的修改并不会影响到父进程。

【例6.3】fork函数应用实例2。

#include <sys/types.h>

#include <unistd.h>

#include <stdio.h>

#include <stdlib.h>

#include <errno.h>

int　glob = 6;　//外部变量

char　buf[] = "write to stdout\n";　//缓冲区

int　main(void)

{

int　var;　//内部变量

pid_t　pid;　//文件标识符

var = 88;

if (write(STDOUT_FILENO, buf, sizeof(buf)-1) != sizeof(buf)-1)

{

perror("write error");

}

printf("before fork\n");　//没有冲洗标准输出

if ((pid = fork()) < 0)　//如果调用失败

{

perror("fork error");

}

else if (pid == 0)

{　　　　　　//子进程

glob++;　　　//修改变量

var++;

}

else

{

sleep(2);　　//父进程

printf("pid = %d, glob = %d, var = %d\n", getpid(), glob, var);

exit(0);

}

应用代码调用fork函数创建了一个新的进程，并且在子进程中修改了变量glob和var的值，然后分别打印该值进行比较，将文件保存为exam3fork.c，在终端中使用gcc编译，并且运行，可以看到如下的输出结果。

alloeat@ubuntu:～/chapter6Exam$ gcc exam3fork.c -o exam3fork　//编译

alloeat@ubuntu:～/chapter6Exam$./exam3fork　//执行

write to stdout　//写标注输出

before fork

pid = 5941, glob = 7, var = 89　//子进程数据，已经改变

pid = 5940, glob = 6, var = 88　//子进程数据，没有改变

命令行输出说明可以参考注释部分。

前面介绍了在调用 fork 函数之后，子进程将会复制父进程的相应内存空间。除此之外，父进程的所有打开的文件描述符也会被复制到子进程中，此时父进程和子进程的每个打开的文件描述符会共享一个同一个文件表项。

图6.3是父进程和子进程共享文件的示意。

 [image: figure_0226_0102]

 图6.3 父进程和子进程对文件的共享

如图6.3所示，fork所创建的子进程和父进程一起共享同一个文件的偏移量，此时如果父进程和子进程同时对同一个文件进行写操作且没有任何形式的同步操作，则会出现写文件的混乱。【例6.4】则是使用父进程和子进程同时写一个文件所导致的混乱实例，应用代码将参数argv[1]中指定的文件中的内容读出，然后写入到argv[2]中所指定的文件中去，如果该文件不存在，则创建文件。

【例6.4】fork函数应用实例3。

#include <sys/types.h>

#include <unistd.h>

#include <fcntl.h>

#include <stdio.h>

int rfd, wfd;　//读文件描述符和写文件描述符

char c;

int main(int argc, char*argv[])

{

if(argc!=3)　//如果参数不正确

{

printf("Usage %s sourcesfiel destfile. \n",argv[0]);

return 1;

}

if((rfd=open(argv[1], O_RDONLY))==-1)　//如果打开文件失败

{

printf("openf file %s failed.\n",argv[1]);

return 2;

}

if((wfd=creat(argv[2],S_IRWXU))==-1)　//如果创建文件失败

{

printf("create file %s failed.\n",argv[2]);

return 3;

}

fork();　//创建子进程

for(;;)

{

if(read(rfd,&c,1)!=1)　//如果读不出数据则返回

{

return 4;

write(wfd,&c,1);　//写入数据

}

return 0;

}

应用代码在调用 fork 创建了一个子进程之后没有做任何同步操作，然后同时对文件进行写操作，一直到读到源文件尾。将文件保存为exam4fork.c，在终端中使用gcc编译，并且运行，可以看到如下的输出结果。

alloeat@ubuntu:～/chapter6Exam$ gcc exam4fork.c -o exam4fork　//编译

alloeat@ubuntu:～/chapter6Exam$./exam4fork lseektest.txt forktest.txt　//执行

alloeat@ubuntu:～/chapter6Exam$ cat lseektest.txt　//查看源文件内容

this is a test!

this is a test!

this is a test!

this is a test!

this is a test!

this is a test!

this is a test!

this is a test!

this is a test!

this is a test!

this is a test!

alloeat@ubuntu:～/chapter6Exam$ cat forktest.txt　//查看写入文件内容

ti sats! et

ti sats!

ti sats!

ti sats!

ti sats!

hsi　et　//一片混乱

alloeat@ubuntu:～/chapter6Exam$./exam4fork lseektest.txt forktest.txt　//再次执行

alloeat@ubuntu:～/chapter6Exam$ cat forktest.txt　//再次查看文件内容

this is a test!

this is a test!

this is a test!

this is a test!

this is a test!

this is a test!

this is a test!

ti sats!t

ti sats!　//还是混乱，而且与上一次不同

命令行输出说明可以参考注释部分，其将第4章【例4.6】生成的lseektest.txt文件打开，并且将其内容写入到一个新建的forktest.txt文件中，由于没有同步子进程和父进程的执行顺序，所以出现了混乱。

通常来说，可以采取如下两种方法在fork函数之后处理文件描述符。

● 父进程等待子进程执行完成。在这种情况下，父进程无须对文件描述符进行任何操作，而当子进程操作完成之后，文件的偏移量已经进行了相应更新。

● 父进程和子进程各自执行其对应的程序段。在这种情况下父进程和子进程关闭掉其不需要的文件描述符，以防止干扰到另外一方。

父进程和子进程之间既有相同的特性，也有区别。父进程和子进程的相同之处如下。

● 实际用户 ID、实际组 ID、有效用户 ID、有效组 ID 相同。

● 附加组 ID 相同。

● 进程组 ID 相同。

● 会话 ID 相同。

● 控制终端相同。

● 设置用户 ID 标志和设置组 ID 标志相同。

● 当前工作目录相同。

● 根目录相同。

● 文件模式创建屏蔽字相同。

● 信号屏蔽和安排相同。

● 针对任一打开文件描述符在执行时关闭标志相同。

● 环境相同。

● 连接的共享存储段相同。

● 存储映射相同。

● 资源限制相同。

父进程和子进程的区别如下。

● fork 函数的返回值不同。

● 进程 ID 不同。

● 子进程的 tms_utime、tms_atime、tms_cutime 以及 tms_ustime 均被设置为 0。

● 子进程不会继承父进程的文件锁。

● 子进程的未处理闹钟会被清除。

● 子进程的未处理信号集为空。

注意：以上给出了部分尚未介绍或本书不涉及的参数，读者可以自行查阅相关资料。

通常来说，fork函数在调用过程中不会产生错误，如果出现错误，将一定会是如下两种情况中的一种，关于errno值的概念可以参考第3章的3.4小节。

● 当前的进程数已经达到了系统规定的上限，这时 errno 的值被设置为 EAGAIN。

● 系统内存不足，这时 errno 的值被设置为 ENOMEM。如果出现这种错误，则说明系统已经没有可以分配的内存，这种情况在Linux操作系统中通常不会出现。

注意：在大多数时候fork函数会和exec系列函数搭配使用，在创建一个进程之后用于执行另外一段代码，exec系列函数将在下一小节中进行介绍。

2．调用vfork函数创建进程

在使用fork函数创建一个新进程之后，可以不使用exec系列函数来执行新的程序。如果要执行新的程序则必须手动调用exec系列函数，在这种情况下可以使用vfork函数。vfork函数在创建完一个新的进程之后自动实现exec系列函数的功能，其标准调用格式说明如下。

#include <sys/types.h>

#include <unistd.h>

pid_t vfork(void);

函数的返回和fork函数类似，父进程中返回子进程的进程号，在子进程中返回0，若出错则返回-1。

fork与vfork之间的区别如下。

● fork 要拷贝父进程的数据段，而 vfork 则不需要完全拷贝父进程的数据段，在子进程没有调用exec系列函数或exit函数之前，子进程与父进程共享数据段。

● vfork 函数会自动调用 exec 系列函数去执行另外一个程序。

● fork 不对父子进程的执行次序进行任何限制，而在 vfork 调用中，子进程先运行，父进程挂起，直到子进程调用了exec系列函数或exit之后，父子进程的执行次序才不再有限制。

【例6.5】是一个vfork函数的应用实例，其分别利用子进程和父进程对一个count变量进行计数并且输出，用于展示父进程和子进程共享一个数据段。

【例6.5】vfork函数应用实例1。

#include <sys/types.h>

#include <unistd.h>

#include <stdio.h>

#include <stdlib.h>

int main (void)

{

int count = 1;

int child;

printf("Before create son, the father's count is:%d\n", count); //创建子进程之前

if(!(child = vfork()))　//创建子进程

{

//由于子进程会首先执行，以下为子进程执行过程

int i;

for(i = 0; i < 100; i++)

{

printf("This is son, The i is: %d\n", i);　//反复输出打印结果

if(i == 70)

exit(1);

}

printf("This is son, his pid is: %d and the count is: %d\n", getpid(),

++count);

exit(1);　//退出子进程

}

else

{　//父进程执行区

printf("After son, This is father, his pid is: %d and the count is: %d, and

the child is: %d\n", getpid(), coun, child);

}

return 0;

}

将文件保存为exam5vfork.c，在终端中使用gcc编译，并且运行，可以看到如下的输出结果。

alloeat@ubuntu:～/chapter6Exam$ gcc exam5vfork.c -o examvfork　//编译

alloeat@ubuntu:～/chapter6Exam$./examvfork　//执行

Before create son, the father's count is:1　//开始子进程

This is son, The i is: 0　//打印计数

This is son, The i is: 1

This is son, The i is: 2

This is son, The i is: 3

This is son, The i is: 4

This is son, The i is: 5

………………

This is son, The i is: 65

This is son, The i is: 66

This is son, The i is: 67

This is son, The i is: 68

This is son, The i is: 69

This is son, The i is: 70

After son, This is father, his pid is: 8781 and the count is: 1, and the child is:

8782

命令行输出说明可以参考注释部分。

【例6.6】是使用vfork函数改写【例6.3】的应用实例，由于vfork会自动让子进程先运行，所以不需要父进程调用sleep函数阻止自身运行。

【例6.6】vfork函数应用实例2。

#include <sys/types.h>

#include <unistd.h>

#include <stdio.h>

#include <stdlib.h>

#include <errno.h>

int　glob = 6;　　//全局变量

int　main(void)

{

int　var;　　//内部变量

pid_t　pid;　//进程标识符

var = 88;

printf("before vfork\n");　　//父进程，准备调用vfork函数

if ((pid = vfork()) < 0)　　//如果调用失败

{

perror("vfork error");　//报错

}

else if (pid == 0)　　　//以下是子进程

{

glob++;　　//这是一个父进程中的全局变量

var++;

_exit(0);　　//退出

}

//以下回到父进程

printf("pid = %d, glob = %d, var = %d\n", getpid(), glob, var);

exit(0);

}

将文件保存为exam6vfork.c，在终端中使用gcc编译，并且运行，可以看到如下的输出结果。

alloeat@ubuntu:～/chapter6Exam$ gcc exam6vfork.c -o examvfork2　//编译

alloeat@ubuntu:～/chapter6Exam$./examvfork2　//运行

before vfork

pid = 8926, glob = 7, var = 89　//输出相应的值

命令行输出说明可以参考注释部分。

可以看到在实例中子进程对变量glob和var进行操作，改变了父进程中的变量值，这是因为vfork函数所创建的子进程是在父进程的内存空间中运行的。

注意：在【例6.6】的子进程退出中，调用了_exit函数而不是exit函数，这是因为其不冲洗相应的缓冲区，这点将在6.2.3小节中介绍。

6.2.2 进程的执行

在使用fork函数创建一个进程之后，往往需要调用exec系列函数来执行另外一个程序。当进程调用 exec 系列函数的时候，该进程执行的程序被立即替换为新的程序，而新程序则从main函数开始执行，并且立刻替换掉了当前进程的正文段、数据段、堆和堆栈。需要注意的是，其进行标识符和进程描述符是不会改变的。

exec系列函数的标准调用格式说明如下。

#include <unistd.h>

int execl(const char *path, const char *arg, ...);

int execv(const char *path, char *const argv[]);

int execle(const char *path, const char *arg, ..., char * const envp[]);

int execlp(const char *file, const char *arg, ...);

int execvp(const char *file, char *const argv[]);

int execvpe(const char *file, char *const argv[],char *const envp[]);

这6个函数如果调用成功都没有返回值，如果出错则返回-1，其参数说明如下。

● 参数 pathname：指出一个可执行目标文件的路径名。

● 参数 filename：指出可执行目标文件的文件名。

● 参数 arg0：作为约定，同 pathname 一样指出目标文件的路径名。

● 参数 argv：是一个字符指针数组，由它指出该目标程序使用的命令行参数表。按约定，第一个字符指针指向与pathname或filename相同的字符串，最后一个指针指向一个空字符串，其余的指向该程序执行时所带的命令行参数。

● 参数 envp：与 argv 一样，也是一个字符指针数组，由它指出该目标程序执行时的进程环境，它也以一个空指针结束。

事实上，这6个函数中只有execve函数才是真正意义上的系统调用，其他都是在此基础上经过包装的库函数。exec函数族的作用是根据指定的文件名找到可执行文件，并用它来取代调用进程的内容。换句话说，就是在调用进程内部执行一个可执行文件。这里的可执行文件既可以是二进制文件，也可以是任何Linux中可执行的脚本文件。图6.4是这6个exec系列函数之间的关系。

 [image: figure_0233_0103]

 图6.4 6个exec系列函数之间的关系

1．exec系列函数的区别和详解

exec系列函数主要区别如下。

● execl 函数、execv 函数、execle 函数、execve 函数使用 pathname 参数，取路径名作为参数；而execlp函数和execvp函数取文件名作为参数。

● execl 函数、execle 函数、execlp 函数中的“l”字符表示“list”，其要求将新程序的每个命令行参数都说明为一个单独的、以空指针为结尾的参数表；execv函数、execve函数和execvp函数中的“v”字符表示为“vector”，其要求先构造一个指向各个参数的指针属主，然后将该数组地址作为其参数。

execl、execel和execlp这3个函数用于表示命令行参数的一般方式如下。

char *arg0, char *arg1,....char *argn,(char *)0

需要注意的是，在命令行参数使用了一个将常数0强制转换为空指针的字符指针来作为结尾。因为如果进行强制转换，则其会被解释为整型参数从而出错。

execle和execve函数中的最后一个字符“e”表示可以向新的进程传递一个环境变量envp，其命令参数可以说明如下。

char *arg0, char *arg1,....char *argn,(char *)0,char *envp[]

环境变量指的是一组值，从Linux用户登录后就一直存在，很多应用程序需要依靠它来确定系统的一些细节。最常见的环境变量是路径（PATH），其指明了应到哪里去搜索相应的应用程序，如/bin。另外，HOME也是比较常见的环境变量，其指明了用户在系统中的个人目录。环境变量一般以字符串“XXX=xxx”的形式存在，XXX 表示变量名，xxx表示变量的值。

【例6.7】是使用envp参数传递环境变量的应用实例，在第3章的3.3节中介绍了Linux中标准main函数使用方法，但实际上其是去掉了main函数参数列表中最后的环境变量参数 envp 的，因为这是一个自动传递的值，在本实例中使用 printf 函数将对应的参数值都打印出来。

【例6.7】exec系列函数的环境变量应用实例。

#include <stdio.h>

int main(int argc, char *argv[], char *envp[])

{

printf("This is argc\n%d\n", argc);　//首先打印参数的个数

printf("This is argv\n");　//以下打印参数列表

while(*argv)　//如果不为空，则输出这些字符串

{

printf("%s\n", *(argv++));

}

printf("This is envp\n");　//以下是envp字符串参数

while(*envp)　//输出envp参数

{

printf("%s\n", *(envp++));

}

return 0;

}

将文件保存为exam7execmain.c，在终端中使用gcc编译，并且运行，可以看到如下的输出结果，命令行说明可以参考注释部分。

alloeat@ubuntu:～/chapter6Exam$ gcc exam7execmain.c -o examexecmain　//编译

alloeat@ubuntu:～/chapter6Exam$./examexecmain exam7execmain.c test1 test2　//执行

This is argc　//参数个数

4

This is argv　//打印参数值，包括执行命令

./examexecmain

exam7execmain.c

test1

test2

This is envp //以下为使用 envp 传递进去的环境变量值

TERM=xterm-color

SHELL=/bin/bash

XDG_SESSION_COOKIE=0c9a27deea706b97c581ce8300000007-1341918985.343380-1534018509

SSH_CLIENT=192.168.1.101 53175 22

OLDPWD=/home/alloeat/chapter5Exam

SSH_TTY=/dev/pts/3

USER=alloeat

LS_COLORS=rs=0:di=01;34:ln=01;36:mh=00:pi=40;33:so=01;35:do=01;35:bd=40;33;01:c d=40;33;01:or=40;31;01:su=37;41:sg=30;43:ca=30;41:tw=30;42:ow=34;42:st=37;44:ex=01;32:*.tar=01;31:*.tgz=01;31:*.arj=01;31:*.taz=01;31:*.lzh=01;31:*.lzma=01;31:*.tlz=0 1;31:*.txz=01;31:*.zip=01;31:*.z=01;31:*.Z=01;31:*.dz=01;31:*.gz=01;31:*.lz=01;31:*.xz=01;31:*.bz2=01;31:*.bz=01;31:*.tbz=01;31:*.tbz2=01;31:*.tz=01;31:*.deb=01;31:*. rpm=01;31:*.jar=01;31:*.war=01;31:*.ear=01;31:*.sar=01;31:*.rar=01;31:*.ace=01;31:*.zoo=01;31:*.cpio=01;31:*.7z=01;31:*.rz=01;31:*.jpg=01;35:*.jpeg=01;35:*.gif=01;35:*.bmp=01;35:*.pbm=01;35:*.pgm=01;35:*.ppm=01;35:*.tga=01;35:*.xbm=01;35:*.xpm=01;35:*.tif=01;35:*.tiff=01;35:*.png=01;35:*.svg=01;35:*.svgz=01;35:*.mng=01;35:*.pcx=01;35:*.mov=01;35:*.mpg=01;35:*.mpeg=01;35:*.m2v=01;35:*.mkv=01;35:*.webm=01;35:*.ogm=01;35:*.mp4=01;35:*.m4v=01;35:*.mp4v=01;35:*.vob=01;35:*.qt=01;35:*.nuv=01;35:*.wm v=01;35:*.asf=01;35:*.rm=01;35:*.rmvb=01;35:*.flc=01;35:*.avi=01;35:*.fli=01;35:*.f lv=01;35:*.gl=01;35:*.dl=01;35:*.xcf=01;35:*.xwd=01;35:*.yuv=01;35:*.cgm=01;35:*.em f=01;35:*.axv=01;35:*.anx=01;35:*.ogv=01;35:*.ogx=01;35:*.aac=00;36:*.au=00;36:*.fl ac=00;36:*.mid=00;36:*.midi=00;36:*.mka=00;36:*.mp3=00;36:*.mpc=00;36:*.ogg=00;36:*.ra=00;36:*.wav=00;36:*.axa=00;36:*.oga=00;36:*.spx=00;36:*.xspf=00;36:

MAIL=/var/mail/alloeat

PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games

LC_MESSAGES=zh_CN.UTF-8

LC_COLLATE=zh_CN.UTF-8

PWD=/home/alloeat/chapter6Exam

LANG=zh_CN.UTF-8

SHLVL=1

HOME=/home/alloeat

LANGUAGE=zh_CN:en

LOGNAME=alloeat

LC_CTYPE=zh_CN.UTF-8

SSH_CONNECTION=192.168.1.101 53175 192.168.1.100 22

LESSOPEN=| /usr/bin/lesspipe %s

LESSCLOSE=/usr/bin/lesspipe %s %s

_=./examexecmain

注意：可以看到，如果不使用envp参数来传递相应的环境参数，则exec系列函数会使用当前的环境变量作为参数。

2．exec系列函数总结

exec系列函数中的字母“p”表示该函数使用filename作为参数，并且使用PATH环境变量来寻找可执行文件；字母“l”表示该函数使用参数表作为参数；字母“v”表示该函数使用一个 argv 变量作为参数；字母“e”表示使用 envp 数组作为环境变量，而不是使用当前的环境变量，表6.2是exec函数之间的区别和比较。

 表6.2 exec函数之间的比较

 [image: figure_0236_0104]

在 exec 系列函数执行之后，不仅进程的描述符、标识符没有发生改变，该进程的如下特征也将保留。

● 进程标识符和父进程标识符。

● 实际用户 ID、实际组 ID。

● 附加组 ID。

● 进程组 ID。

● 会话 ID。

● 闹钟剩余时间。

● 控制终端。

● 当前工作目录。

● 根目录。

● 文件模式创建屏蔽字。

● 文件锁。

● 进程信号屏蔽。

● 未处理信号。

● 资源限制。

● tms_utime、tms_stime、tms_cutime 以及 tms_cstime。

注意：在执行exec系列函数前后，实际用户ID和实际组ID是保持不变的，而有效ID是否改变则取决于所执行程序文件的设置用户ID位和设置组ID位是否设置。如果新程序的设置用户ID位已经被设置，则有效用户ID会变成程序文件所有者的ID，否则有效用户ID不变，组ID的处理方式类似。

3．exec系列函数的应用实例

【例6.8】是使用fork函数建立一个子进程，然后在子进程中使用execl函数调用一个命令的实例，应用代码打印当前的时间和日期信息。

【例6.8】exec系列函数的应用实例1。

#include <stdio.h>

#include <unistd.h>

#include <stdlib.h>

int main(void)

{

pid_t pid;　//进程标识符

printf("**This is a test for exec series fun**\n"); //打印提示符

if(fork()==0)　//创建一个子进程

{

execl("/bin/date","/bin/date",(char*)0);　//使用execl函数调用date命令

exit(0);　//退出

}

else

{

sleep(2);　//主进程休眠

}

exit(0);

}

将文件保存为exam8exec.c，在终端中使用gcc编译，并且运行，可以看到如下的输出结果，命令行说明可以参考注释部分。

alloeat@ubuntu:～/chapter6Exam$ gcc exam8exec.c -o exam8exec　//编译

alloeat@ubuntu:～/chapter6Exam$./exam8exec　//执行

This is a test for exec series fun　//开始进入子函数

2012 年 07 月 11 日 星期三 15:02:47 CST　//打印当前的时间

【例6.9】是另外一个exec系列函数应用实例，其用于监视一个指定文件，如果该文件被修改，则建立一个副本。

【例6.9】exec系列函数的应用实例2。

#include <stdio.h>

#include <sys/types.h>

#include <unistd.h>

#include <sys/stat.h>

#include <fcntl.h>

int main(int argc, char *argv[])

{

int fd;　//文件描述符

int stat,pid;　//进程描述符，其本质是int类型的

struct stat stbuf;　//一个stat结构的结构体

time_t old_time=0;　//文件上一次修改时间

if(argc!=3)　//判断参数个数

{

fprintf(stderr,"Usage: %s watchfile copyfile \n", argv[0]);

return 1;

}

if((fd=open(argv[1],O_RDONLY))==-1)　//打开文件失败

{

fprintf(stderr,"Watchfile: %s can't open \n", argv[1]);

return 2;

}

fstat(fd, &stbuf);　//文件信息结构体

old_time=stbuf.st_mtime;　//获得文件相应的时间参数

while(1)

{

fstat(fd, &stbuf);　//读文件信息

if(old_time!=stbuf.st_mtime)　//比较时间参数

{

while((pid=fork())==-1);　//启动一个新进程来完成相应的操作

if(pid==0)

execl("/bin/cp","/bin/cp",argv[1],argv[2],(char*)0);

return 3;

}

wait(&stat);

old_time=stbuf.st_mtime;

}

else

{

sleep(30);　//主进程阻塞30秒

}

}

return 0;

}

将文件保存为exam9exec.c，在终端中使用gcc编译，并且运行，可以看到如下的输出结果。

alloeat@ubuntu:～/chapter6Exam$ gcc exam9exec.c -o exam9exec

alloeat@ubuntu:～/chapter6Exam$./exam9exec exammain.c

Usage: ./exam9exec watchfile copyfile

6.2.3 进程的退出

当一个进程执行完成之后必须要退出，退出时内核会进行一系列的操作，包括冲洗缓冲区等。在Linux中一共有8种进程的退出方法，其中包括5种正常的方法和3种异常退出，可以参考第3章的3.1小节。

通常来说Linux的应用代码会调用exit系列函数来退出一个进程，其标准调用格式说明如下。

#include <stdlib.h>

#include <unistd.h>

void exit(int status);

void _exit(int status);

void _Exit(int status);

exit 系列函数没有返回值，其使用一个称为终止状态（exit status）的整型变量作为参数，Linux 内核会对这个终止状态进行检查。当异常终止时，Linux 内核会直接产生一个终止状态字，描述异常终止的原因，可以通过wait或者waitPid函数（将在下一小节进行介绍）来获得终止状态字。父进程也可以通过检查终止状态来获得子进程的状态。如果是以下3种状态，则Linux会认为该进程的终止状态是未定义。

● 在调用 exit 系列函数的时候不带终止状态。

● main 函数执行了一个无返回值的 return 语句。

● main 函数的返回值不是一个整型。

如果main函数的返回值定义为整型并且main函数是执行到最后一条语句返回，则该进程的终止状态是0。

注意：在main函数中调用return语句返回时，绝大多数情况下等效于调用exit系列函数。

exit函数与_exit函数最大的区别在于：前者在调用之前要检查文件的打开情况，把文件缓冲区中的内容写回文件；而后者直接使进程停止运行，清除其使用的内存空间，并销毁其在内核中的各种数据结构。

【例 6.10】是一个利用 printf 函数读到换行符才会从缓冲区读取数据的特性来对 exit函数和_exit函数进行比较的应用实例。

【例6.10】exit函数和_exit函数区别的应用实例。

#include <sys/types.h>

#include <unistd.h>

#include <stdio.h>

#include <stdlib.h>

#include <errno.h>

int main(void)

{

pid_t pid;

if ((pid = fork())==-1)　//如果创建子进程失败

{

perror ("failed to create a new process\n");　//创建子进程出错信息

exit(0);

}

else if(pid==0)　//子进程

{

printf("This is child process, output begin\n");

printf("This child process, content in buffer");

//这个地方没有换行符，所以不写出数据

exit(0);　//退出，强制清空，会输出上面未完成数据

}

else　//父进程

{

printf("\nparent process, output begin\n");

printf("parent process, content in buffer");　//同样没有换行符

_exit(0);　//_exit函数会直接丢弃相应的数据

}

return 0;

}

将文件保存为exam10exit.c，在终端中使用gcc编译，并且运行，可以看到如下的输出结果。

alloeat@ubuntu:～/chapter6Exam$ gcc exam10exit.c -o exam10exit //编译

alloeat@ubuntu:～/chapter6Exam$./exam10exit　//运行

parent process, output begin

This is child process, output begin

This child process, content in buffer

命令行说明可以参考注释部分。

在一个进程退出的时候，可能存在如下两种状态。

● 其父进程恰好忙于处理其他事务，不能接收子进程的终止状态。如果此时子进程完全消失了，那么当父进程处理完其他事务后想要检查子进程情况时，就没有可用的信息了。所以Linux内核为每个已结束的进程保留一定的信息，一般至少包含进程标识符、终止状态字、进程处理器时间等信息，在任何时候父进程都可以通过调用waitt或者waitpid函数得到相应的数据。在此之后，Linux内核再将保存这些信息的数据结构释放。通常把这种已经结束，但其父近程尚未检查其终止状态的进程称为僵尸进程。

● 如果父进程可能先于子进程结束，此时 init 进程就会自动成为该子进程的父进程。通常的实现机制是，当一个进程结束时，系统逐一检查所有的活动进程，如果某进程的父进程是这个被结束的进程，系统就将这个活动进程的父进程标识符置为1，即init的进程标识符，这样就保证了每个进程都有它的父进程。

注意：由以上可知，当调用exit系列函数或者return函数返回的时候，其实进程并没有真正完全消失，其还在继续占用部分资源。如果这种僵尸进程过多，则会大大影响系统的性能，在下一小节中将介绍如何处理僵尸进程。

6.2.4 进程的销毁

在上一节中介绍过，当一个进程使用exit系列函数退出的时候，其会在内存中保留部分数据以供父进程查询。同时其也会产生一个终止状态字，Linux 内核接着会发出一个SIGCHLD 信号以通知父进程，因为子进程的结束对于父进程是异步的，因而这个SIGCHLD信号对于父进程也是异步的，父进程可以不响应。也可以调用wait函数或waitpid函数进行处理。

父进程对于退出之后的子进程的默认状态是不处理的，事实上在以前给出的实例中也都没有处理，但是这样会导致系统中的僵尸进程过多浪费系统资源。

wait和waitpid函数的标准调用格式说明如下。

#include <sys/types.h>

#include <sys/wait.h>

pid_t wait(int *status);

pid_t waitpid(pid_t pid, int *status, int options);

在调用wait或waitpid函数之后，可能存在如下3种情况。

● 如果该父进程的所有子进程都还在运行，阻塞父进程自身，以等待子进程的运行结束。

● 如果有一个子进程已经结束，父进程取得该子进程的终止状态，并且立即返回。

● 如果该父进程没有任何子进程，则立即出错返回。

1．wait函数

wait 函数如果调用成功则返回子进程的标识符，如果失败则返回-1。其中参数 status是一个整型指针，可以用于存放子进程的终止状态，也可以定义为一个空指针。

wait函数和waitpid函数不同，在有一个子进程终止之前，wait函数让父进程阻塞以等待子进程退出，而waitpid有一个参数可以让父进程不阻塞（将在下一个小节中介绍）。并且，如果在一个父进程有多个子进程的情况下，如果其中有一个子进程退出则会返回该子进程的进程标识符。表6.3是wait函数返回的终止状态的宏。

 表6.3 wait函数返回的宏

 [image: figure_0242_0105]

【例6.11】是使用wait函数来打印exit函数返回状态的实例，其分别使用abort函数和除数为0制造了两个异常退出的子进程，以打印其状态。

【例6.11】wait函数应用实例。

#include <sys/types.h>

#include <sys/wait.h>

#include <unistd.h>

#include <stdio.h>

#include <errno.h>

#include <stdlib.h>

//一个输出exit状态的函数，参数是status

void pr_exit(int status)

{

if (WIFEXITED(status))

printf("normal termination, exit status = %d\n",

WEXITSTATUS(status));

else if (WIFSIGNALED(status))

printf("abnormal termination, signal number = %d%s\n",

WTERMSIG(status),

#ifdef　WCOREDUMP

WCOREDUMP(status) ? " (core file generated)" : "");

#else

"");

#endif

else if (WIFSTOPPED(status))

printf("child stopped, signal number = %d\n",

WSTOPSIG(status));

}

//主函数

int main(void)

{

pid_t　pid;　//进程标识符

int　status;

if ((pid = fork()) < 0)　//创建子进程失败

perror("fork error");

}

else if (pid ==0)　//进入子进程

{

exit(7);　//退出

}

if (wait(&status) != pid)　//等待创建的这个子进程结束，通过判断pid确定其是否结束

{

perror("wait error");

}

pr_exit(status);　//打印状态

if ((pid = fork()) < 0)　//再次创建新进程

{

perror("fork error");

}

else if (pid == 0)　　//另外一个子进程

{

abort();　　//调用abort函数产生一个信号

}

if (wait(&status) != pid)

{

perror("wait error");

}

pr_exit(status);　　//打印状态

if ((pid = fork()) < 0)　//继续创建一个子进程

{

perror("fork error");

}

else if (pid == 0)

{

status /= 0;　　　//通过除数为0来产生一个错误事件

}

if (wait(&status) != pid)

{

perror("wait error");

}

pr_exit(status);

exit(0);

}

将文件保存为 exam11wait.c，在终端中使用 gcc 编译，并且运行，可以看到如下的输出结果。

alloeat@ubuntu:～/chapter6Exam$ gcc exam11wait.c -o examwait　//编译

exam11wait.c: 在函数‘main’中:　//以下为除数为0的警告，不用处理

exam11wait.c:64:10: 警告：被零除 [-Wdiv-by-zero]

alloeat@ubuntu:～/chapter6Exam$./examwait //运行

normal termination, exit status = 7 //以下分别为 3 个子进程的返回

abnormal termination, signal number = 6 (core file generated)

abnormal termination, signal number = 8 (core file generated)

命令行说明可以参考注释部分。

2．waitpid函数

在使用 wait 函数的时候，如果父进程的任何一个子进程返回，wait 函数则会返回，而waitpid函数则可以通过参数来指定需要等待的子进程。

waitpid函数的参数pid用于对子进程进行相应的筛选，其详细说明如下。

● pid > 0：只等待进程 ID 为 pid 的子进程，不管其他已经有多少子进程运行结束退出了，只要指定的子进程还没有结束，waitpid就一直等待下去。

● pid = -1：等待任何一个子进程退出，没有任何限制，此时 waitpid 等价于 wait。

● pid = 0：等待同一个进程组中的任何子进程，如果某一子进程已经加入了别的进程组，waitpid则不会对它做任何处理。

● pid < -1：等待一个指定进程组中的任何子进程，这个进程组的 ID 等于 pid 的绝对值。

waitpid函数的参数options用于进一步控制waitpid函数的操作，其可以是0，也可以是WNOHANG和WUNTRACED两个选项之一，或者是使用“|”符号连接的或操作，这两个关键字定义如下。

● WNOHANG：如果由 pid 指定的子进程并不是立即可用的，则 waitpid 函数不阻塞，此时返回0。

● WUNTRACED：如果某实现支持作业控制，而由 pid 指定的任意子进程已经处于暂停状态，并且未报告过，返回其状态。

对于waitpid函数而言，如果指定的进程或者进程组不存在，或者参数pid指定的进程不是父进程所调用的子进程，都将出错。

总体而言，waitpid函数提供了wait函数所没有的如下3个功能。

● 能够等待指定的一个进程结束。

● 能够不阻塞父进程而获得子进程状态。

● 支持作业控制（读者可以自行查阅相关的资料）。

【例6.12】是waitpid函数的一个应用实例，主程序嵌套创建了子进程和孙进程，然后子进程退出成为僵尸进程，而孙进程休眠2秒之后再退出。

【例6.12】waitpid函数应用实例。

#include <sys/types.h>

#include <sys/wait.h>

#include <stdio.h>

#include <errno.h>

#include <stdlib.h>

int main(void)

{

pid_t pid;

if((pid=fork())<0)　//创建子进程失败

{

perror("fork error.\n");　//提示创建子进程失败

exit(0);

}

else if(pid==0)　//进入子进程

{

if((pid=fork())<0)　//在子进程中继续创建一个子进程

{

perror("fork error.\n");

exit(0);

}

else if(pid>0)　//当前创建子进程的父进程，即第二个进程

{

exit(0);

}

sleep(2);

printf("second child, parent pid=%d \n", getppid());

exit(0);

}

if(waitpid(pid, NULL, 0)!=pid)　//判断到底是那个进程退出了

{

perror("waitpid error.\n");

exit(0);

}

exit(0);

}

将文件保存为exam12waitpid.c，在终端中使用gcc编译，并且运行，可以看到如下的输出结果，其中命令行说明可以参考注释部分。

alloeat@ubuntu:～/chapter6Exam$ gcc exam12waitpid.c -o examwaitpid　//编译

alloeat@ubuntu:～/chapter6Exam$./examwaitpid　.//运行

alloeat@ubuntu:～/chapter6Exam$ second child, parent pid=1　//输出

注意：综上所述，wait系列函数的作用主要是完全销毁进程，以释放内存并获得进程的退出状态。除了wait函数和waitpid函数之外，Linux内核还提供了wait3、wait4和waitid等函数，读者可以自行参与相应的手册。

6.3 Linux进程的其他操作

本小节将介绍Linux的一些其他进程操作。

6.3.1 更改用户ID和组ID

在6.1.1节中介绍过，和文件类似，进程也有对应的实际用户ID等属性。与某一个进程相关联的ID至少有6个，它们是实际用户ID、实际组ID、有效用户ID、有效组ID、保存的设置用户ID和保存的设置组ID。通常情况下，有效用户ID等于实际用户ID，有效组ID等于实际组ID。这些ID都和进程的安全性息息相关，其中最关键并且最常用的是进程的用户ID和用户组ID，【例6.1】给出了如何获得进程的相应ID的函数应用实例。

在Linux操作系统中，从安全性出发，通常是给一个进程最小的权限（即，最小特权least privilege 模型），但是这种权限有可能在访问系统资源或者进行一些操作的时候因为没有足够的权限失败，此时可以通过更换进程的用户ID或组ID，使得新的ID具有适合的特权或访问权限。相反，当需要降低其特权或阻止其对某些资源进行访问时，也需要更换用户ID或组ID，从而使得新ID不具有相应特权或访问这些资源的能力。Linux内核提供了一系列相应函数来完成相应的功能。

1．setuid函数和setgid函数

setuid函数和setgid函数分别用于设置实际用户ID、有效用户ID，设置实际组ID、有效组ID，其标准调用格式说明如下。

#include <sys/types.h>

#include <unistd.h>

int setuid(uid_t uid);

int setgid(gid_t gid);

函数的参数即为期望设置的目标ID，如果函数调用成功返回0，若出错则返回-1。

需要注意的是，并不是每个用户ID都有权限修改一个进程的这些参数的，其必须遵循如下的规则（同时针对于用户ID和组ID）。

● 若进程具有超级用户特权，则 setuid 函数将实际用户 ID、有效用户 ID 以及保存的设置用户ID设置为uid（对于setgid则为gid）。

● 若进程没有超级用户特权，但是 uid 等于实际用户 ID 或保存的设置用户 ID，则setuid只将有效用户ID设置为uid（对于setgid则为gid）。不改变实际用户ID和保存的设置用户ID。

● 如果上面两个条件都不满足，则 errno 设置为 EPERM，并返回出错。

此外，关于Linux内核所维护的3个用户ID，还需要注意如下几点。

● 只有超级用户进程可以更改实际用户 ID。通常，实际用户 ID 是在用户登录时，由login(1)程序设置的，而且决不会改变它。因为login是一个超级用户进程，当它调用setuid时，设置所有3个用户ID。

● 仅当对程序文件设置了设置用户 ID 位时，exec 函数设置有效用户 ID。如果设置用户ID位没有设置，则exec函数不会改变有效用户ID，而将其维持为原来的值。任何时候都可以调用setuid，将有效用户ID设置为实际用户ID或保存的设置用户ID。当然，不能将有效用户ID设置为任一随机值。

● 保存的设置用户 ID 是由 exec 从有效用户 ID 复制的。在 exec 按文件用户 ID 设置了有效用户ID后，即进行这种复制，并将此副本保存起来。

表6.4给出了修改这3个用户ID的不同方法。

 表6.4 修改3个用户ID的不同方法

 [image: figure_0247_0106]

2．setregid函数和setregid函数

setregid函数和setregid函数用于交换实际用户ID和有效用户ID的值，其标准调用格式说明如下。

#include <sys/types.h>

#include <unistd.h>

int setreuid(uid_t ruid, uid_t euid);

int setregid(gid_t rgid, gid_t egid);

如果函数调用成功则返回“0”，若出错则返回“-1”。

参数ruid和rgid表示实际用户ID和实际组ID，euid和egid表示有效用户ID和有效组ID。setreuid和setregid的作用很简单：一个非特权用户总能交换实际用户（或组）ID和有效用户（或组）ID。这就允许一个设置用户ID程序转换成只具有用户的普通许可权，以后又可再次转换回设置用户ID所得到的额外许可权。

3．seteuid函数和setegid函数

seteuid函数和setegid函数用于更改有效用户ID和有效组ID，其标准调用格式说明如下。

#include <sys/types.h>

#include <unistd.h>

int seteuid (uid_t euid);

int setegid (gid_t egid);

如果函数调用成功返回0，若出错则返回-1，其参数是希望设置的值。

4．小结

图6.5是关于以上介绍的各个函数的一个总结。

 [image: figure_0248_0107]

 图6.5 设置不同用户ID的函数

注意：本小节中所提到的一切操作都适用于各个组ID。

6.3.2 进程组、会话和特性

在Linux中，可以把若干个进程组合成一个集合，而这些集合又可以再组成集合，这就引出进程组和会话的概念。进程组和会话都有一些特性，其中控制终端是最重要的特性之一。

1．进程组

进程组是若干个进程的集合，每个进程除了有一个进程ID之外，还隶属于一个进程组。每个进程组有一个唯一的进程组ID。进程组ID类似于进程ID——它是一个正整数，并可存放在pid_t的数据类型中。函数getpgrp返回调用进程的进程组ID。

#include <sys/types.h>

#include <unistd.h>

pid_t getpgrp (void);

函数没有参数，当调用它的时候，返回调用进程的进程组ID。

每个进程组都有一个组长进程leader。组长进程leader的标识是其进程组ID等于其进程 ID。该进程组组长可以创建一个进程组，也可以创建该组中的进程，然后终止。只要在某个进程组中有一个进程存在，则该进程组就存在，这与其组长进程是否终止无关。从进程组创建开始到其中最后一个进程离开为止的时间区间称为进程组的生命期。某个进程组中的最后一个进程可以终止，也可以参加另一个进程组。

进程调用 setpgid 可以参加一个现存的组或者创建一个新进程组（下一节中将说明用setsid也可以创建一个新的进程组）。

#include <sys/types.h>

#include <unistd.h>

int setpgid (pid_t pid, pid_t pgid)；

若调用成功则返回0，出错则返回-1。

函数将 pid 进程的进程组 ID 设置为 pgid。如果这两个参数相等，则将 pid 指定的进程变成进程组组长。

一个进程只能为它自己或它的子进程设置进程组 D。在它的子进程中调用了 exec 之后，它就不能再改变该子进程的进程组ID了。

如果pid是0，则使用调用者的进程ID。另外，如果pgid是0，则将pid指定的进程ID作为进程组ID。

在大多数作业控制Shell中，在调用fork函数之后调用此函数，使父进程设置其子进程的进程组ID，然后使子进程设置其自己的进程组ID。这些调用中有一个是冗余的，但这样做可以保证父、子进程在进一步操作之前，子进程都进入了该进程组。如果不这样做，那么就产生一个竞态条件，因为它依赖于哪一个进程先执行。

在讨论信号时，将说明如何将一个信号送给一个进程（由其进程ID标识）或送给一个进程组（由进程组 ID 标识）。同样，waitpid 则可被用来等待一个进程或者指定进程组中的一个进程。

2．会话

会话是若干个进程组的集合，会话可包含多个进程组，但只能有一个前台进程组。

图6.6是一个会话的示意，其由3个进程组组成，其中进程proc1和proc2属于同一个后台进程组，进程proc3、proc4、proc5属于同一个前台进程组，Shell进程本身属于一个单独的进程组。

这些进程组的控制终端相同，它们属于同一个进程组。当用户在控制终端输入特殊的控制键（例如，Ctrl+C）时，内核会发送相应的信号（例如，SIGINT）给前台进程组的所有进程。各进程、进程组、会话的关系如图6.6所示。

这种安排通常是由Shell的管道线将几个进程编成一组的。例如，图6.6中的安排可能是由下列形式的Shell命令形成的。

 [image: figure_0250_0108]

 图6.6 一个会话的示意

procl | proc2 &

proc3 | proc4 | proc5

进程调用setsid函数就可建立一个新对话期，setsid的函数原型如下。

#include <sys/types.h>

#include <unistd.h>

pid_t setsid (void);

若调用成功则返回进程组ID，若出错则返回-1。

如果调用此函数的进程不是一个进程组的组长进程leader，则此函数创建一个新的会话期，其结果说明如下。

● 此进程变成该新会话期的会话期首进程（session leader，会话期首进程是创建该会话期的进程）。此进程是该新会话期中的唯一进程。

● 此进程成为一个新进程组的组长进程。新进程组 ID 是此调用进程的进程 ID。

● 此进程没有控制终端（下一节讨论控制终端）。如果在调用 setsid 之前此进程有一个控制终端，那么这种联系也会被解除。

如果此调用进程已经是一个进程组的组长，则此函数返回出错。为了保证不处于这种情况，通常先调用fork，然后使其父进程终止，而子进程则继续。因为子进程继承了父进程的进程组ID，而其进程ID则是新分配的，两者不可能相等，所以这就保证了子进程不是一个进程组的组长。

【例6.13】给出了一个从会话和进程组的角度来分析Linux系统登录和执行命令的过程的实例。

【例6.13】Linux系统登录过程分析应用实例。

getty 或 telnetd 进程在打开终端设备之前调用 setsid 函数创建一个新的会话，该进程称为会话首进程（Session Leader），该进程的 ID 也可以看作 session 的 ID，然后该进程打开终端设备作为这个会话中所有进程的控制终端。在创建新会话的同时也创建了一个新的进程组，该进程是这个进程组的组长进程（Process GroupLeader），该进程的ID也是进程组的ID。

在登录过程中，getty或telnetd进程变成login，然后变成Shell，但仍然是同一个进程，仍然是SessionLeader。

由 shell 进程 fork 出的子进程本来具有和 shell 相同的会话期、进程组和控制终端，但是 Shell 调用setpgid函数将作业中的某个子进程指定为一个新进程组的Leader，然后调用Setpgid将该作业中的其他子进程也转移到这个进程组中。如果这个进程组需要在前台运行，就调用 tcsetpgrp 函数（随后将向读者介绍）将它设置为前台进程组，由于一个session只能有一个前台进程组，所以Shell所在的进程组就自动变成后台进程组。

在图6.6所示的例子中，proc3、proc4、proc5被Shell放到同一个前台进程组，其中有一个进程是该进程组的Leader，Shell调用wait等待它们运行结束。一旦它们全部运行结束，Shell就调用tcsetpgrp函数将自己提到前台继续接受命令。但是注意，如果proc3、proc4、proc5中的某个进程又fork出子进程，子进程也属于同一进程组。但是Shell并不知道子进程的存在，也不会调用 wait 等待它结束。换句话说，proc3 | proc4 | proc5 是 Shell的作业，而这个子进程不是，这是作业和进程组在概念上的区别。一旦作业运行结束，Shell就把自己提到前台，如果原来的前台进程组还存在（如果这个子进程还没终止），则它自动变成后台进程组。

3．会话和进程组的特性

每个会话都有一个控制终端，这是会话最重要的特性之一。当用户登录Linux系统时，将自动建立控制终端（Controlling Terminal）。对控制终端进行读写的方法是打开文件/dev/tty（设备文件）。在内核中，此特殊文件是控制终端的同义词。通常情况下，对于标准输入、标准输出以及标准出错，程序都要与控制终端实现交互。

会话和进程组有一些其他特性，如图6.7所示。

● 一个会话可以有一个单独的控制终端。这通常是在其上登录的终端设备（终端登录情况）或伪终端设备（网络登录情况）。

● 建立与控制终端连接的会话首进程，被称之为控制进程（Controlling Process）。

● 一个会话期中的几个进程组可被分成一个前台进程组（ Foreground Process Group）以及一个或几个后台进程组（Background Process Group）。

● 如果一个会话期有一个控制终端，则它有一个前台进程组，其他进程组则为后台进程组。

● 无论何时键入中断键（通常是 Delete 或 Ctrl+C）或退出键（常常是 Ctrl+\），就会造成将中断信号或退出信号送至前台进程组的所有进程。

● 如果终端界面检测到调制解调器已经断开连接，则将挂断信号送至控制进程（会话期首进程）。

 [image: figure_0252_0109]

 图6.7 进程组和会话的特性

如果在一个会话中仅有一个前台进程组，那么就需要有一种方法来通知内核哪一个进程组是前台进程组。这样，终端设备驱动程序就能了解将终端输入和终端产生的信号送到何处，如图6.7所示。

相关的系统调用为tcgetpgrp和tcsetpgrp。tcgetpgrp返回前台进程组的ID，函数原型如下。

#include <sys/types.h>

#include <unistd.h>

pid_t tcgetpgrp (int fd);

函数如果调用成功则返回前台进程组ID，若出错则返回-1。

tcsetpgrp用于将某一进程组设置为前台进程组，函数原型如下。

#include <sys/types.h>

#include <unistd.h>

int tcsetpgrp (int fd, pid_t pgrpid);

函数如果调用成功则返回0，若出错则返回-1。

函数tcgetpgrp返回前台进程组ID，它与在文件上打开的终端相关。

如果进程有一个控制终端，则该进程可以调用 tcsetpgrp 将前台进程组 ID 设置为pgrpid。pgrpid值应当是在同一会话期中的一个进程组的ID。fd必须引用该会话期的控制终端。大多数应用程序并不直接调用这两个函数，它们通常由作业控制shell调用。

6.3.3 system函数

Linux内核提供了大量的现成的命令以供用户调用，如果要把这些现成的命令嵌入到用户的应用程序中去，可以使用system函数，其标准调用格式说明如下。

#include <stdlib.h>

int system(const char *command);

system函数的参数是需要调用的命令字符串，由于system函数内部调用了fork函数、exec函数和waitpid函数，所以可能存在如下3种返回值。

● 如果fork失败或者waitpid返回除EINTR之外的出错，则system返回-1，而且errno中设置了错误类型。

● 如果 exec 函数调用失败（表示不能执行 shell），则其返回值如同 shell 执行了命令exit (127)一样，即返回值为 127。

● 如果所有 3 个函数（fork、exec 和 waitpid 函数）调用都成功，并且 system 的返回值是shell的终止状态。

system函数的执行步骤说明如下。

● 调用 fork 函数产生子进程。

● 子进程调用/bin/sh-c cmdstring 来执行参数 cmdstring 字符串所代表的命令。

● 执行完成 cmdstring 命令后随即返回原调用的进程。

需要注意的是，在调用system期间，SIGCHLD信号会被暂时搁置，SIGINT和SIGQUIT信号则会被忽略，关于信号的相关知识将会在下一章中介绍。【例6.14】是system函数的应用实例，其分别调用了“date”和“who”命令进行相应的操作。

【例6.14】system函数应用实例。

#include <stdio.h>

#include <sys/types.h>

#include <sys/wait.h>

#include <stdlib.h>

#include <errno.h>

int main()

{

int status;

if((status=system("date"))<0)　//获得时间信息

{

perror("system error .\n");　//调用出错

exit(0);

}

printf("exit status = %d \n",status);

if((status=system("nosuchcommand"))<0) //如果没有这个命令

{

printf("system error");

exit(0);

}

printf("exit status =%d \n",status); //打印对应状态

if((status=system("who; exit 44"))<0) //调用who函数

{

perror("system　error");　//打印错误信息

exit(0);

}

printf("exit status=%d\n",status);　//打印退出状态

exit(0);

}

将文件保存为exam14system.c，在终端中使用gcc编译，并且运行，可以看到如下的输出结果，其中命令行说明可以参考注释部分。

alloeat@ubuntu:～/chapter6Exam$ gcc exam14system.c -o examsystem　//编译

alloeat@ubuntu:～/chapter6Exam$./examsystem　//运行

2012 年 07 月 13 日 星期五 15:21:16 CST　.//date的输出

exit status = 0　//返回状态

sh: 1: nosuchcommand: not found　//找不到该命令

exit status =32512　//返回状态

alloeat　pts/0　　2012-07-02 13:32 (:0.0)　//who命令的输出

alloeat　pts/2　　2012-07-10 13:33 (192.168.1.101)

alloeat　pts/3　　2012-07-10 19:16 (192.168.1.101)

exit status=11264

6.3.4 进程会计

在Linux操作系统中，有些时候需要对当前的进程状态进行统计，例如获得所使用的CPU 时间总量、用户 ID、组 ID、启动时间等，这种功能被称为进程会计（ ProcessAccounting），本小节将介绍Linux下的这个命令以及对应的函数。

1．accton命令

accton函数可以用于对应的进程统计，但是在Ubuntu中其是不自带的，需要用户自己手动安装，如下所示。

alloeat@ubuntu:～/chapter6Exam$ accton

程序“accton”尚未安装。 您可以使用以下命令安装：

sudo apt-get install acct

alloeat@ubuntu:～/chapter6Exam$ sudo apt-get install acct

[sudo] password for alloeat:

正在读取软件包列表... 完成

正在分析软件包的依赖关系树

正在读取状态信息... 完成

下列【新】软件包将被安装：

acct

升级了 0 个软件包，新安装了 1 个软件包，要卸载 0 个软件包，有 0 个软件包未被升级。

需要下载 94.9 kB 的软件包。

解压缩后会消耗掉 393 kB 的额外空间。

获取：1 http://cn.archive.ubuntu.com/ubuntu/ precise/main acct i386 6.5.5-1ubuntu1

[94.9 kB]

下载 94.9 kB，耗时 0 秒 (164 kB/s)

Selecting previously unselected package acct.

(正在读取数据库 ... 系统当前共安装有 288088 个文件和目录。)

正在解压缩 acct (从 .../acct_6.5.5-1ubuntu1_i386.deb) ...

正在处理用于 doc-base 的触发器...

Processing 1 added doc-base file...

Registering documents with scrollkeeper...

正在处理用于 install-info 的触发器...

正在处理用于 man-db 的触发器...

正在处理用于 ureadahead 的触发器...

正在设置 acct (6.5.5-1ubuntu1) ...

Turning on process accounting, file set to '/var/log/account/pacct'.

* Done.

使用 accton –V 命令，可以查看这个命令的版本号并且退出。

alloeat@ubuntu:～/chapter6Exam$ accton -V

accton: GNU Accounting Utilities (release 6.5.5)

使用 accton –h 命令，可以查看这个命令的相应帮助信息。

alloeat@ubuntu:～/chapter6Exam$ accton -h

Usage: accton [OPTION] on|off|ACCOUNTING_FILE

Turns process accounting on or off, or changes the file where this

info is saved.

OPTIONS:

-h, --help　　Show help and exit

-V, --version　Show version and exit

ARGUMENTS:

on　　　Activate process accounting and use default file

off　　　Deactivate process accounting

ACCOUNTING_FILE　Activate (if not active) and save information in

this file

The system's default process accounting file is '/var/log/account/pacct'.

Report bugs to <bug-acct@gnu.org>

使用 accton –on 命令即可打开进程会计功能，其会在 var/log/account/的 pacct 文件中保存相应的进程信息。

lloeat@ubuntu:～/chapter6Exam$ accton -on

accton: invalid option -- 'o'

Usage: accton [OPTION] on|off|ACCOUNTING_FILE

Try 'accton --help' for more information.

alloeat@ubuntu:～/chapter6Exam$ accton on

Turning on process accounting, file set to the default '/var/log/account/pacct'.

accton: Operation not permitted

alloeat@ubuntu:～/chapter6Exam$ sudo accton on

Turning on process accounting, file set to the default '/var/log/account/pacct'.

alloeat@ubuntu:～/chapter6Exam$

在开始统计相应的信息之后，使用lastcomm命令可以看到如下的进程信息。

alloeat@ubuntu:～/chapter6Exam$ lastcomm

cat　　　　alloeat　pts/2　0.00 secs Fri Jul 13 20:30

ls　　　　　alloeat　pts/2　0.00 secs Fri Jul 13 20:30

dconf worker　　X alloeat　__　　1.94 secs Fri Jul 13 20:20

bash　　　F　alloeat　pts/2　0.00 secs Fri Jul 13 20:29

bash　　　F　alloeat　pts/2　0.00 secs Fri Jul 13 20:29

python　　　　alloeat　pts/2　0.08 secs Fri Jul 13 20:29

sudo　　　S　alloeat　pts/3　0.00 secs Fri Jul 13 20:29

accton　　S　root　pts/3　0.00 secs Fri Jul 13 20:29

accton　　　　root　pts/3　0.00 secs Fri Jul 13 20:29

accton　　　　alloeat　pts/3　0.00 secs Fri Jul 13 20:29

acctonalloeat pts/3 0.00 secs Fri Jul 13 20:28

acctonalloeat pts/3 0.00 secs Fri Jul 13 20:28

acctonalloeat pts/3 0.00 secs Fri Jul 13 20:28

acctonalloeat pts/3 0.00 secs Fri Jul 13 20:27

acctonalloeat pts/3 0.00 secs Fri Jul 13 20:27

acctonalloeat pts/3 0.00 secs Fri Jul 13 20:26

pythonalloeat __0.15 secs Fri Jul 13 20:25

dbus-daemonF X alloeat __0.00 secs Fri Jul 13 20:25

udisks-helper-a Sroot__0.00 secs Fri Jul 13 20:21

python　　　　alloeat　__　　0.16 secs Fri Jul 13 20:20

使用 accton off 可以关闭进程会计。

alloeat@ubuntu:～/chapter6Exam$ accton off

Turning off process accounting.

accton: Operation not permitted

2．acct函数

除了accton命令之外，Linux内核还提供了一个函数acct用于实现相同的功能，其标准调用格式说明如下。

#include <unistd.h>

int acct(const char *filename);

该函数的参数是一个用于记录进程信息的文件名称，如果调用成功返回0，如果调用失败则返回-1并设置相应的错误标志。

注意：进程的相应信息是以一个结构体的格式记录在相应的文件中的，这个头文件会被定义在sys/acct.h文件中，读者可以自行参考相应的书籍。

6.3.5 进程时间

本小节介绍如何测量一个进程的运行时间。

在Linux中有两种不同的时间计算方式。第一种是日历时间，这是自1970年1月1日0时0分0秒以来国际标准时间（UTC）所经过的秒数累积值，使用time_t数据类型表示这种时间值；第二种是进程时间（CPU时间），是用于度量进程所使用的中央处理器的资源，其单位是时钟滴答，使用数据类型clock_t来表示这种时间值。

当需要测量一个进程的执行时间的时候，Linux内核通常会使用如下3个时间值。

● 时钟时间：又称为墙上时钟时间（Wall Clock Time），是进程运行的时间总量，其值与系统中同时运行的进程数有关。

● 用户 CPU 时间：执行用户指令所用的时间。

● 系统 CPU 时间：为该进程执行内核程序所经历的时间。

1．time命令

可以使用time加上需要测量运行时间的命令来获得相应的执行时间，其示例说明如下。

alloeat@ubuntu:～/chapter6Exam$ time ./examgetpid

The current process ID is 22053

The father process ID is 4386

The user true ID is 1000

The group ID is 1000

real　0m0.001s

user　0m0.000s

sys　0m0.000s

alloeat@ubuntu:～/chapter6Exam$ time date

2012 年 07 月 13 日 星期五 21:59:12 CST

real　0m0.002s

user　0m0.000s

sys　0m0.000s

2．如何取得时钟滴答数

在前面提到的进程时间是按照时钟滴答来计算的，但是时钟滴答和具体的系统相关，一秒钟可能是50、60或100个滴答，可以使用sysconf函数来取得当前系统的时钟滴答数，其标准调用格式如下。

#include <unistd.h>

long sysconf(int name);

其中参数 name 有很多可选项，当需要获得时钟滴答数的时候应该使用_SC_CLK_TCK宏定义作为参数，函数的返回值即为时钟的滴答数。

3．time函数

在Linux中，用户可以调用times函数来计算当前进程自身的以及已经终止的进程的执行时间，其标准调用格式说明如下。

#include <sys/times.h>

clock_t times(struct tms *buf);

函数的参数是指向tms结构体的指针，当函数调用成功的时候返回该进程执行所耗费的墙上时钟执行时间（单位是滴答），如果执行失败则返回-1。

【例6.15】是一个使用times函数测量参数命令执行时间的实例。

【例6.15】time函数应用实例。

struct tms {

clock_t tms_utime;　//用户时间

clock_t tms_stime;　//系统时间

clock_t tms_cutime; //子进程时间

clock_t tms_cstime; //子进程系统时间

};

#include <sys/types.h>

#include <sys/wait.h>

#include <sys/times.h>

#include <stdio.h>

#include <errno.h>

#include <stdlib.h>

#include <unistd.h>

static void　pr_times(clock_t, struct tms *, struct tms *);

static void　do_cmd(char *);

void pr_exit(int status);

//主函数

int main(int argc, char *argv[])

{

int　　　i;

setbuf(stdout, NULL);

for (i = 1; i < argc; i++)

{

do_cmd(argv[i]);　//每个命令参数依次执行

}

exit(0);

}

//执行并且对cmd命令计时

static void do_cmd(char *cmd)

{

struct tms　tmsstart, tmsend;　//时间结构体

clock_t　　start, end;

int　　　status;

printf("\ncommand: %s\n", cmd);　//输出对应的命令

if ((start = times(&tmsstart)) == -1)　//时间出错

{

perror("times error");

}

if ((status = system(cmd)) < 0) //执行命令

{

perror("system() error");

}

if ((end = times(&tmsend)) == -1) //结束值

{

perror("times error");

}

pr_times(end-start, &tmsstart, &tmsend);

pr_exit(status);　//打印退出状态

}

//一个输出exit状态的函数，参数是status

void pr_exit(int status)

{

if (WIFEXITED(status))

printf("normal termination, exit status = %d\n",

WEXITSTATUS(status));

else if (WIFSIGNALED(status))

printf("abnormal termination, signal number = %d%s\n",

WTERMSIG(status),

#ifdef　WCOREDUMP

WCOREDUMP(status) ? " (core file generated)" : "");

#else

"");

#endif

else if (WIFSTOPPED(status))

printf("child stopped, signal number = %d\n",

WSTOPSIG(status));

}

//时间统计函数

static void pr_times(clock_t real, struct tms *tmsstart, struct tms *tmsend)

{

static long　　　clktck = 0;

if (clktck == 0)　　//第一次获得时间

if ((clktck = sysconf(_SC_CLK_TCK)) < 0)

{

perror("sysconf error");

}

//以下为时间输出

printf("　real:　%7.2f\n", real / (double) clktck);

printf("　user:　%7.2f\n",(tmsend->tms_utime　-　tmsstart->tms_utime)　/(double) clktck);

printf("　sys:　%7.2f\n",(tmsend->tms_stime　-　tmsstart->tms_stime)　/(double) clktck);

printf("　childuser:　%7.2f\n",(tmsend->tms_cutime-tmsstart->tms_cutime)/ (double) clktck);

printf("　child sys:　%7.2f\n",(tmsend->tms_cstime - tmsstart->tms_cstime)/ (double) clktck);

}

将文件保存为exam15protime.c，在终端中使用gcc编译，并且运行，可以看到如下的输出结果。

alloeat@ubuntu:～/chapter6Exam$ gcc exam15protime.c -o examprotime

alloeat@ubuntu:～/chapter6Exam$./examprotime ls date gcc

command: ls

exam10exit　　exam2fork.c　　exam8exec.c　examexec21　　examexit.c～

exammain.c　examwait

exam10exit.c　　exam3fork　　　exam91exec　examexec21.c～　　examfork

exammain.c～　examwaitpid

exam11wait.c　exam3fork.c　　exam91exec.c　examexec22　　examfork1.c～

examprotime　examwaitpid.c～

exam12waitpid.c　exam4fork　　　exam92exec　examexec22.c～　　examfork2

examsystem　forktest.txt

exam14system.c　exam4fork.c　　exam92exec.c　examexecmain　　examfork2.c～

examsystem.c　lseektest.txt

exam15protime.c　exam5vfork.c　exam9exec　examexecwatch　examfork2.txt

examvfork　pstest.txt

exam1getid　　exam6vfork.c　　exam9exec.c　examexecwatch.c～　examgetpid

examvfork2

exam1getid.c　exam7execmain.c　examexec1　examexit　　　examgetpid.c～

examvfork2.c～

exam2fork　　　exam8exec　　　examexec1.c～　examexit.c　　　exammain

examvfork.c～

real:　0.01

user:　0.00

sys:　0.00

child user:　0.00

child sys:　0.00

normal termination, exit status = 0

command: date

2012 年 07 月 13 日 星期五 21:29:58 CST

real:　0.00

user:　0.00

sys:　0.00

child user:　0.00

child sys:　0.00

normal termination, exit status = 0

command: gcc

gcc:致命错误：没有输入文件

编译中断。

real:　0.00

user:　0.00

sys:　0.00

child user:　0.00

child sys:　0.00

normal termination, exit status = 4
第7章 Linux的线程

线程有时被称为轻量级进程（Lightweight Process，LWP），是程序执行流的最小单元。一个标准的线程由线程标识符、当前指令指针（PC）、寄存器集合和堆栈等组成，它是进程中的一个实体，是被系统独立调度和分派的基本单位。线程自己不拥有系统资源，只拥有一点在运行中必不可少的资源，但它可与同属一个进程的其他线程共享进程所拥有的全部资源，本章将介绍Linux中的线程。

7.1 Linux线程基础

第6章中介绍的典型的Linux进程可以看作只有一个控制线程，所以这个进程在同一时刻只能做一件事情。如果使用线程，则可以使得这个进程在“同一时刻”能够同时完成多个任务，这种方式有如下的优点。

● 提高应用程序响应。这对图形界面的程序尤其重要，当一个操作耗时很长时，整个系统都会等待这个操作，此时程序不会响应键盘、鼠标、菜单的操作，而使用多线程技术，将耗时长的操作（Time Consuming）置于一个新的线程，可以避免这种尴尬的情况。

● 使多处理器系统更加有效。操作系统会保证当线程数不大于处理器数目时，不同的线程运行于不同的处理器上。

● 改善程序结构。一个既长又复杂的进程可以考虑分为多个线程，成为几个独立或半独立的运行部分，这样会利于对程序的理解和修改。

7.1.1 线程的运行方式

线程包含了表示进程内执行环境所必需的信息，这些信息包括线程标识符（线程ID）、一组寄存器值、栈、调度优先级和策略、信号屏蔽字，errno 变量以及线程私有数据。进程的所有信息对该进程的所有线程都是共享的，包括可执行的程序文本、程序的全局内存、堆内存、栈和文件描述符。

在第6章介绍过，在传统的Linux或Unix系统中，很多程序需要使用多个进程来完成工作。例如，许多关键的服务器应用程序有一个监听进程在不停地运行，等待客户请求到来。当一个请求到达时，这个监听进程创建（fork）一个新的进程为这个请求服务，因为对请求进行服务经常包括一些I/O操作，其可能阻塞进程。

在一个应用程序中使用多个进程有着一些明显的缺点。

● 由于fork是一个花销很大的系统调用，所以创建这些进程增加了一些基本的开销。

● 由于每个进程都有它自己的地址空间，它必须使用进程间通信的手段，例如，消息传递或者共享内存。

● 要把这些进程分配到不同的机器或处理器上去运行，以及在进程之间传递信息、等待进程的完成、收集结果等都需要额外的开销。

在Linux创建新的线程的时候，会有一个控制线程用于控制新线程的相应工作，称之为主线程或者控制线程，如图7.1所示。

 [image: figure_0264_0110]

 图7.1 线程的控制

7.1.2 线程的标识符

和进程标识符类似，每一个线程都有一个在进程中唯一的线程标识符（线程ID），其用一个数据类型pthread_t来表示，该数据类型在Linux中其实就是一个无符号长整型数据。

Linux提供了两个函数用于对线程标识符的操作，其标准调用格式说明如下。

#include <pthread.h>

pthread_t pthread_self(void);

pthread_self函数用于获得线程自身的线程标识符，其返回值是线程自身的线程标识符。

pthread_equal函数用于比较两个线程标识符，其标准调用格式说明如下。

#include <pthread.h>

int pthread_equal(pthread_t tid1, pthread_t tid2);

函数的两个参数分别是需要比较的两个线程的标识符，如果相等则返回一个非0值，否则返回0。

注意：关于线程标识符的应用实例将在下一节中介绍。

7.1.3 用户态线程和核心态线程

用户态线程在管理上不需要内核的参与，所以通常又叫做“协作式多任务”。在进程内的这些线程统一由用户程序来切换，所以每一个线程在执行完任务后，调用任务切换功能，并向其发送信号，任务切换完成。线程对处理器资源的占用也切换到其他线程。通常，用户态线程在线程切换时要比内核线程的速度快，不过在几个比较成功的内核态线程库中，线程切换的速度也相当快。虽然用户态线程有许多灵活性和快速的特性，但是也存在一个严重的问题，即进程中的一个线程可能独占整个时间片，导致其他线程得不到处理器时间而无法运行。例如，当一个线程由于磁盘I/O而阻塞时，其他线程同样也不能运行。另外，用户态线程不能发挥多处理器机器（SMP）的性能。

内核态线程是由内核来管理的，在每一个时间片内，内核负责调度进程内的线程。由于内核参与了用户态进程的调度，所以就涉及了内核态与用户态上下文的切换。通常所说的内核态线程切换速度慢就是由于这个原因导致的。但是，使用内核态线程的一个明显的好处是进程内的一个线程不会独占整个进程的处理器时间。这样，如果一个线程由于磁盘I/O而阻塞，其他线程仍可以利用处理器时间运行。使用核心态线程的另外一个好处是可以充分发挥SMP系统的性能，而且随着系统处理器数量的增多，应用程序运行的速度明显加快。

7.1.4 编译带线程的代码

用gcc编译多线程程序时，必须与pthread函数库连接。在终端编译使用下列命令。

gcc –lpthread

上述编译命令把程序与pthread函数库相连。

如果使用 CodeBlocks，则需要在单击菜单 Settings→Compiler and debugger，在弹出的对话框中，选择 Linker settings 标签页，再单击 Link libraries 标签下方的 Add 按钮，在弹出的对话框中输入pthread，然后单击“确定”按钮保存，如图7.2所示。

 [image: figure_0266_0111]

 图7.2 odeBlocks中编译线程代码设置

7.2 线程的操作

线程的操作包括线程的创建、退出和终止、阻碍和分离、取消和清理等，本节将详细介绍这些操作。

7.2.1 线程的创建

在Linux中，可以调用pthread_create函数创建一个新的线程，其标准调用格式说明如下。

#include <pthread.h>

int pthread_create (pthread_t *thread, pthread_attr_t *attr, void *(*start_routine)

(void *), void *arg);

函数的各个参数说明如下，如果创建成功则返回0，否则返回错误编号。

● thread：线程的标识符。需要说明的是，这个参数并不是由用户所确定的，用户只需要声明一个pthread_t类型的数据变量，并且将其传递给pthread_create函数，函数在创建新线程的同时会将新线程的标识符放到这个变量中。

● attr：指定线程的属性，其详细信息将在 7.4 节中介绍，也可以将其设置为 NULL。

● start_routine：用于指定开始运行的函数，新创建的线程是从这个函数开始运行的，用户需要指定这个函数。

● arg：这是函数 start_routine 所需要的参数，这是一个无类型指针。如果需要传递的参数不止一个，则需要将这些参数都放到一个结构中，然后将这个结构的地址传给arg。

注意：pthread_create 函数在调用失败之后会返回对应的错误编码，每个线程都会提供errno的副本。

【例7.1】是一个调用pthread_create来创建线程并且打印其线程标识符的应用实例。

【例7.1】创建并且线程标识符应用实例。

#include <stdio.h>

#include <pthread.h>

#include <stdlib.h>

pthread_t ntid;　//线程号

//打印标识符的函数

void　printids(const char *s)

{

pid_t　pid;　//进程标识符

pthread_t　tid;　//线程标识符

pid = getpid();

tid = pthread_self();　//分别获得进程和线程标识符

printf("%s pid %u tid %u (0x%x)\n", s, (unsigned int)pid,

(unsigned int)tid, (unsigned int)tid);

//打印线程和进程标识符

}

//线程中开始运行的函数

void *thr_fn(void *arg)

{

printids("new thread: ");

return((void *)0);

}

//主函数

int　main(void)

{

int　　err;

err = pthread_create(&ntid, NULL, thr_fn, NULL); //创建一个线程

if (err != 0)　//如果出错则打印错误编号

{

printf("can't create thread: %s\n", strerror(err));

}

printids("main thread:");　//打印主线程号

sleep(1);

exit(0);

}

将文件保存为exam1getpthreadID.c，在终端中使用gcc编译，并且运行，可以看到如下的输出结果。

alloeat@ubuntu:～/chapter7Exam$ gcc exam1getpthreadID.c -o getphreadID -lpthread

alloeat@ubuntu:～/chapter7Exam$./getphreadID //运行

main thread: pid 3090 tid 3075831488 (0xb75576c0)　//主线程标识符

new thread:　pid 3090 tid 3075828544 (0xb7556b40)　//新建线程标识符

命令行输出说明可以参考注释部分。

【例7.1】有如下两个特点。

● 需要处理主进程和新建的子进程之间的竞争。首先是主线程需要休眠，如果主线程不休眠其就可能退出，这样新线程还没运行整个进程就可能已经终止了，这种行为特征依赖于Linux的线程实现和调度算法。

● 新线程并不是通过 thread 参数来获得相应的进程标识符的，而是通过 pthread_self函数获得，这是因为虽然新的线程会把线程标识符存放在thread参数中，但是由于新线程的运行时间并不确定，所以可能出现该变量还没有初始化就已经被调用的情况，从而导致错误。

7.2.2 线程的退出

进程可以调用exit系列函数退出当前进程，线程也可以通过如下3种方式退出，在不终止整个进程的情况下停止线程的控制流。

● 线程只是从启动例程中返回，返回值是线程的退出码。

● 线程可以被同一个进程中的其他线程终止。

● 线程调用 pthread_exit 函数退出。

Linux内核提供了pthread_exit函数用于主动退出线程，其标准调用格式说明如下。

#include <pthread.h>

void pthread_exit(void *retval);

pthread_exit 函数没有返回值，其参数 retval 是线程的终止状态。其与 pthread_create函数的 start_routine 参数类似，都是由用户先指定并且传递给函数的一个参数，在pthread_exit函数完成之后可以调用这个参数来获得进程的退出状态。

【例7.2】是pthread_exit函数的应用实例。

【例7.2】退出线程应用实例。

#include <stddef.h>

#include <stdio.h>

#include <unistd.h>

#include <pthread.h>

void print_message(char*ptr);　//打印字符串

//主函数

int main()

{

pthread_t thread1, thread2;

char *msg1="This is the frist thread!\n";

char *msg2="This is the second thread!\n";　//两个字符串

pthread_create(&thread1,NULL, (void *)(&print_message), (void *)msg1);

pthread_create(&thread2,NULL, (void *)(&print_message), (void *)msg2);

//创建两个线程并且休眠

sleep(1);

return 0;

}

void print_message(char *ptr)

{

int retval;

printf("Thread ID: %lx\n", pthread_self());　//打印进程标号

printf("%s",ptr);

pthread_exit(&retval);

}

将文件保存为exam2threadexit.c，在终端中使用gcc编译，并且运行，可以看到如下的输出结果。

alloeat@ubuntu:～/chapter7Exam$ gcc exam2threadexit.c -o threadexit -lpthread

//编译

alloeat@ubuntu:～/chapter7Exam$./threadexit　//运行

Thread ID: b7596b40　//两个线程不同的线程ID

This is the frist thread!

Thread ID: b6d95b40

This is the second thread!

命令行输出说明可以参考注释部分。

7.2.3 线程的阻塞

如果当一个线程已经执行完成之后，可以被其他的线程来阻塞挂起，然后等待指定的线程调用pthread_exit，以从启动例程中返回或者被取消。Linux内核可以调用pthread_join函数来完成对线程的阻塞，其标准调用格式说明如下。

#include <pthread.h>

int pthread_join(pthread_t thread, void **retval);

参数thread是一个线程标识符，用于指定要等待其终止的线程；参数retval用于存放其他线程的返回值，对于每一个可连接的线程都必须调用该函数一次。任何线程都不能对相同的线程调用此函数。如果调用成功，函数返回0，否则返回一个非零值。

【例7.3】是一个使用phtread_join函数来实现线程阻塞的实例，其使用phread_join函数来等待两个线程结束，以保证完成工作之后主进程才会退出。

【例7.3】阻塞线程应用实例1。

#include <stddef.h>

#include <stdio.h>

#include <unistd.h>

#include <pthread.h>

void print_msg(char *ptr);

//主函数

int main()

{

pthread_t thread1, thread2;

int i,j;

void *retval;

char *msg1="This is the frist thread\n";

char *msg2="This is the second thread\n";　//存放两个字符串

pthread_create(&thread1,NULL, (void *)(&print_msg), (void *)msg1);

pthread_create(&thread2,NULL, (void *)(&print_msg), (void *)msg2);

//创建两个线程

pthread_join(thread1,&retval);

pthread_join(thread2,&retval);

return 0;

}

//打印信息函数，线程从这个函数开始运行

void　print_msg(char *ptr)

{

int i;

for(i=0;i<10;i++)

printf("%s\n",ptr);　//连续输出10个字符串

}

将文件保存为exam3pthreadjoin.c，在终端中使用gcc编译，并且运行，可以看到如下的输出结果。

alloeat@ubuntu:～/chapter7Exam$ gcc exam3pthreadjoin.c -o phreadjoin -lpthread

//编译

alloeat@ubuntu:～/chapter7Exam$./phreadjoin //运行

This is the frist thread　//线程1输出

//省略8行

This is the frist thread

This is the second thread　//线程2输出

//省略8行

This is the second thread

命令行输出说明可以参考注释部分。

【例7.4】是另外一个使用pthread_join的实例，其用于获取已经终止的线程的退出码。

【例7.4】阻塞线程应用实例2。

#include <stdio.h>

#include <pthread.h>

#include <stdlib.h>

//线程1的启动函数

void *thr_fn1(void *arg)

{

printf("thread 1 returning\n");

return((void *)1);

}

//线程2的启动函数

void *thr_fn2(void *arg)

{

printf("thread 2 exiting\n");

pthread_exit((void *)2);

}

//主函数

int　main(void)

{

int　　　err;

pthread_t　　tid1, tid2;

void　　　*tret;

//创建线程1

err = pthread_create(&tid1, NULL, thr_fn1, NULL);

if (err != 0)

{

printf("can't create thread 1: %s\n", strerror(err));

}

//创建线程2

err = pthread_create(&tid2, NULL, thr_fn2, NULL);

if (err != 0)

{

printf("can't create thread 2: %s\n", strerror(err));

}

//阻塞线程1

err = pthread_join(tid1, &tret);

if (err != 0)

{

printf("can't join with thread 1: %s\n", strerror(err));

}

//退出并且打印线程1的退出状态

printf("thread 1 exit code %d\n", (int)tret);

//阻塞线程2

err = pthread_join(tid2, &tret);

if (err != 0)

{

printf("can't join with thread 2: %s\n", strerror(err));

}

//退出并且打印线程2的退出状态

printf("thread 2 exit code %d\n", (int)tret);

exit(0);

}

将文件保存为exam4pthreadjoinexit.c，在终端中使用gcc编译，并且运行，可以看到如下的输出结果。

alloeat@ubuntu:～/chapter7Exam$　gcc　exam4pthreadjoinexit.c　-o　pthreadjoinexit

-lpthread //编译

alloeat@ubuntu:～/chapter7Exam$./pthreadjoinexit //运行

thread 1 returning　//线程1的退出状态

thread 1 exit code 1

thread 2 exiting　//线程2的退出状态

thread 2 exit code 2

命令行输出说明可以参考注释部分。

7.2.4 线程的取消和清理

在Linux操作系统中，线程可以通过调用pthread_cancel函数来请求取消同一进程中的其他线程，该函数的标准调用格式说明如下。

#include <pthread.h>

int pthread_cancel(pthread_t thread);

函数的参数是需要取消线程的线程标识符，当操作成功的时候返回0，否则会返回对应的错误编号。

【例7.5】是一个pthread_cancel函数的应用实例。

【例7.5】线程取消的应用实例。

#include <pthread.h>

#include <stdio.h>

#include <stdlib.h>

void* thread_func(void *arg)　　// 线程函数

{

int *val = arg;

printf("Hi, I'm a thread!\n");

if (NULL!=arg)

{　　　　//如果参数不为空，打印参数内容

while(1)

printf("argument set: %d\n", *val);

}

}

int main(void)

{

pthread_t tid;　　　　// 线程ID

int t_arg = 10;　　　　// 给线程传入的参数值

if (pthread_create(&tid, NULL, thread_func, &t_arg))　// 创建线程

perror("Fail to create thread");

sleep(1);　　　　　　　// 睡眠1秒，等待线程执行

printf("Main thread!\n");

pthread_cancel(tid);　　　　　//取消线程

return 0;

}

将文件保存为exam5pthreadcancel.c，在终端中使用gcc编译，并且运行，可以看到如下的输出结果。

alloeat@ubuntu:～/chapter7Exam$gccexam5pthreadcancel.c-opthreadcancel-lpthread

alloeat@ubuntu:～/chapter7Exam$./pthreadcancel

argument set: 10

argument set: 10

argument set: 10

argument set: 10

argument set: 10

argument set: 10

argument set: 10

argument set: 10

argument set: 10

Main thread!

程序在函数thread_func()内，对参数判断成功后加入了一个死循环，会不断打印出参数的值，然后进行了取消线程的操作。程序创建线程后，会不断打印线程收到的参数。主线程在等待1秒后，调用pthread_cancel()函数取消了线程，之后主线程也运行结束，程序退出。

在调用pthread_cancel取消了一个线程之后，需要调用相应的函数对进程退出之后的环境进行清理，这些函数被称为线程清理处理程序（Thread Cleanup Handler），线程可以建立多个清理处理程序，这些函数的标准调用格式说明如下。

#include <pthread.h>

void pthread_cleanup_push(void (*routine)(void *),void *arg);

void pthread_cleanup_pop(int execute);

pthread_cleanup_push 函数将子程序 routine 连同它的参数 arg 一起压入当前线程的cleanup 处理程序的堆栈。当前线程调用 pthread_exit 或者通过 pthread_cancel 终止执行时，堆栈中的处理程序将按照与压栈时相反的顺序依次调用。

而函数pthread_cleanup_pop从线程的cleanup处理程序堆栈中弹出最上面的一个处理程序并执行它。

这两个函数都没有返回值。

需要注意的是，其实真正对线程执行清理工作的是在pthread_cleanup_push中作为参数传递进去的routine函数，其参数通过arg传递进去，其在线程执行如下动作的时候被调用。

● 调用 pthread_exit 函数的时候。

● 响应取消请求的时候。

● 用非 execute 参数调用 pthread_cleanup_pop 的时候。

如果 execute 参数被置为 0 的时候，清理函数将不会被调用。无论在哪种情况下，pthread_cleanup_pop都将删除pthread_cleanup_push调用建立的清理处理程序。

【例7.6】是线程清理处理函数的应用实例。

【例7.6】线程的清理应用实例。

#include <stdio.h>

#include <pthread.h>

#include <unistd.h>

#include <errno.h>

//清理函数，用于输出相应的参数

void *clean(void *arg)

{

printf("cleanup :%s \n",(char *)arg);

return (void *)0;

}

//线程1的启动函数

void *thr_fn1(void *arg)

{

printf("thread 1 start \n");

//格式化清理参数

pthread_cleanup_push((void*)clean,"thread 1 first handler");

pthread_cleanup_push((void*)clean,"thread 1 second hadler");

printf("thread 1 push complete \n");

if(arg) //如果 arg 不为 0，返回

{

return((void *)1);

}

pthread_cleanup_pop(0);

pthread_cleanup_pop(0);//调用清理函数

return (void *)1;

}

//线程2的启动函数，参考fn1

void *thr_fn2(void *arg)

{

printf("thread 2 start \n");

pthread_cleanup_push((void*)clean,"thread 2 first handler");

pthread_cleanup_push((void*)clean,"thread 2 second handler");

printf("thread 2 push complete \n");

if(arg)

{

pthread_exit((void *)2);

}

pthread_cleanup_pop(0);

pthread_cleanup_pop(0);

pthread_exit((void *)2);

}

//主函数

int main(void)

{

int err;

pthread_t tid1,tid2;　//线程标识符

void *tret;

//创建线程1

err=pthread_create(&tid1,NULL,thr_fn1,(void *)1);

if(err!=0)　//如果创建出错

{

perror("create pthread 1 error\n");

return -1;

}

err=pthread_create(&tid2,NULL,thr_fn2,(void *)1);

if(err!=0)

{

perror("create pthread 2 error \n");

return -1;

}

err=pthread_join(tid1,&tret);　//阻塞线程1以等待结束

if(err!=0)

{

perror("join thread1 error \n");

return -1;

}

printf("thread 1 exit code %d　\n",(int)tret);

err=pthread_join(tid2,&tret);　//阻塞线程2

if(err!=0)

{

perror("join thread2 error ");

return -1;

}

printf("thread 2 exit code %d　\n",(int)tret);

return 1;

}

将文件保存为exam6pthreadclean.c，在终端中使用gcc编译，并且运行，可以看到如下的输出结果。

alloeat@ubuntu:～/chapter7Exam$ gcc exam6pthreadclean.c -o pthreadclean -lpthread

alloeat@ubuntu:～/chapter7Exam$./pthreadclean

thread 2 start

thread 2 push complete

cleanup :thread 2 second handler

cleanup :thread 2 first handler

thread 1 start

thread 1 push complete

thread 1 exit code 1

thread 2 exit code 2

7.2.5 线程分离

在Linux中，线程一般有分离和非分离两种状态。在默认的情况下，线程是非分离状态的，父线程维护子线程的某些信息并等待子线程结束，在没有显示调用join的情况下，子线程结束时，父线程维护的信息可能没有得到及时释放。如果父线程中大量创建非分离状态的子线程（在Linux系统中使用pthread_create函数），可能会出现堆栈空间不足的错误，其出错的返回值是 12。而对分离线程来说，不会有其他的线程等待它的结束，它运行结束后，线程终止，资源及时释放。

在Linux内核中，可以调用pthread_detach函数来实现线程的分离，其标准调用格式说明如下。

#include <pthread.h>

int pthread_detach(pthread_t thread);

其参数是需要分离的线程标识符，如果函数调用成功则返回0，如果调用失败则返回错误编号。

【例7.7】是pthread_detach函数的应用实例。

【例7.7】线程的分离应用实例

#include <errno.h>

#include <pthread.h>

#include <stdlib.h>

#include <stdio.h>

#include <unistd.h>

//线程入口函数

void *func(void *arg)

{

int i = *(int *)(arg);

printf("I'am worker:%d\n",i);

}

int main(void)

{

//线程id

pthread_t tid;

int j;

//创建大量线程

int count = 10000;//多次循环

for(j=0 ; j < count ; j++)

{

//线程参数

int * p = &(j);

//创建线程

int ret= pthread_create(&tid, NULL, func, (void*)p);

if(ret)//创建失败

{

printf("create thread error:%d\n",ret);

}

else//创建成功

{

//分离线程，回收线程的stack占用的内存

pthread_detach(tid);

}

}

return 0;

}

将文件保存为exam7detach.c，在终端中使用gcc编译，并且运行，可以看到如下的输出结果。

alloeat@ubuntu:～/chapter7Exam$ gcc exam7detach.c -o detach -lpthread

alloeat@ubuntu:～/chapter7Exam$./detach

I'am worker:9990

I'am worker:9990

I'am worker:9990

I'am worker:9990

I'am worker:9990

I'am worker:9990

I'am worker:9990

I'am worker:9990

I'am worker:9990

I'am worker:9992

I'am worker:9992

I'am worker:9992

7.2.6 函数比较

从这小节可以看到，线程的操作和进程的相应操作有相似之处，如表7.1所示。

 表7.1 线程和进程操作函数比较

 [image: figure_0279_0112]

7.3 线程的私有数据处理

每个线程都有一些属于自己的数据，当线程对这些数据进行操作的时候可以独立地访问它们，而不用担心其他线程和自己争夺所有权，这种数据被称为线程私有数据（或线程特定数据），其是存储和查询与某个线程相关的数据的一种机制。

线程的私有数据机制的引入是为了解决以下两个问题。

● 有些时候是需要维护每个线程的数据，因为线程标识符并不是一个小而连续的整数，所以不能简单地分配一个线程数据数组。

● 线程私有数据提供了让基于进程的接口适应多线程环境的机制。

Linux内核提供了很多对线程私有数据的操作函数。

7.3.1 创建键函数

在分配线程私有数据之前，需要创建和该数据相关联的键，这个键用于获取对线程私有数据的访问权，用户可以使用 pthread_key_create 函数来创建一个键，其标准调用格式说明如下。

#include <pthread.h>

int pthread_key_create(pthread_key_t *key, void(*dest_routine(void *)));

函数 pthread_key_create 用于创建一个对进程中的所有线程都可见的关键字，该关键字可以通过函数pthread_setspecific和pthread_getspecific来读取和设置。

当创建一个关键字时，进程中的所有线程的这个关键字的值都为NULL，当创建一个线程时，这个线程的所有的关键字的值都为NULL。

如果pthread_key_create执行成功，则返回0，并在参数key中保存新创建的关键字的ID，如果调用失败则返回其他值。

除了创建键以外，pthread_key_create可以选择为该键关联一个析构函数，当线程退出的时候，如果数据地址已经被置为一个非 NULL 的值，则会调用这个析构函数，该函数的唯一参数就是该数据地址。

线程可以为线程私有数据分配多个键，每个键都可以有一个析构函数与其关联，各个键的析构函数可以互不相同。

7.3.2 取消键关联函数

对于用户而言，可以调用 pthread_key_delete 来取消键与线程私有数据值之间的关联关系，其标准调用格式说明如下。

#include <pthread.h>

int pthread_key_delete(pthread_key_t key);

其参数key为需要取消键的标号，如果调用成功则返回0，如果调用失败则返回错误编号。

需要注意的是，在调用这个函数的时候并不会激活与键关联的析构函数，要释放任何与键对应的线程私有数据值的内存空间。

7.3.3 解决键冲突函数

有些线程可能看到某个键值，而其他的线程看到的则是另外一个不同的值。这是一种竞争，如果需要解决这种竞争可以使用pthread_once函数。

#include <pthread.h>

void * pthread_once_t once_control=PTHREAD_ONCE_INIT;

int pthread_once(pthread_once_t *once_control, void (*init_routine)(void));

pthread_once函数用于保证某些初始化代码至多只能执行一次，参数once_control指向静态的或外部的变量，这个变量初始化为PTHREAD_ONCE_INIT。

当第一次调用ptbread_once时，系统将记录已经执行了初始化。后面再调用pthread_once时，如果参数once_control相同，那么就什么也不做；该函数的返回值一定是0。

7.3.4 键关联函数

当创建键之后，可以通过调用 pthread_setspecific 函数来实现函数关联，其标准调用格式说明如下。

#include <pthread.h>

int pthread_setspecific(pthread_key_t key, const void *pointer);

函数pthread_setspecific指定由参数pointer指定的指针指向由参数key指定的关键字。每一个线程都有一个互相独立的指针，这个指针指向一个特定的关键字。

7.3.5 线程私有数据地址获取函数

可以通过 pthread_setspecific 函数来获取线程私有数据的地址，其标准调用格式说明如下。

#include <pthread.h>

void * pthread_getspecific(pthread_key_t key);

函数pthread_getspecific用来获取由pthread_setspecific设置的关键字指针。如果调用成功，则返回一个指向最近一次使用pthread_setspecific设定的指向线程关键字的指针。

如果没有线程私有数据和键关联，此函数将返回一个空指针，可以根据其返回值来确定是否要调用键关联函数。

7.3.6 私有数据处理应用实例

【例7.8】是私有数据处理的应用实例，这是一个典型的使用静态变量来累加调用结果的库函数的例子，这种累加表现为将返回的字符串连接起来。

【例7.8】私有数据应用实例。

#include <stddef.h>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <pthread.h>

#if 0　//预定义

char * str_accumulate(char *s)

{

static char accu[1024]={0};

strcat(accu,s);

return accu;

}

#endif

static pthread_key_t str_key;

static pthread_once_t str_alloc_key_once=PTHREAD_ONCE_INIT;

static void str_alloc_key();

static void str_alloc_destroy_accu(void *accu);

char * str_accumulate(const char *s)

{

char *accu;

pthread_once(&str_alloc_key_once,str_alloc_key);

accu=(char *)pthread_getspecific(str_key);

if(accu==NULL)

{

accu=malloc(1024);

if(accu==NULL) return NULL;

accu[0]=0;

pthread_setspecific(str_key,(void *)accu);

printf("Thread %lx : allocating buffer at %p\n",pthread_self(),accu);

}

strcat (accu,s);

return accu;

}

static void str_alloc_key()

{

pthread_key_create(&str_key,str_alloc_destroy_accu);

printf("Thread %lx : allocated key %d\n",pthread_self(), str_key);

}

static void str_alloc_destroy_accu(void *accu)

{

printf("Thread %lx : freeing buffer at %p\n",pthread_self(),accu);

free(accu);

}

void *process(void *arg)

{

char *str;

str=str_accumulate("Result of ");

str=str_accumulate((char *)arg);

str=str_accumulate(" thread");

printf("Thread %lx: \"%s\" \n",pthread_self(),str);

return NULL;

}

//主函数

int main(int argc, char *argv[])

{

char *str;

pthread_t th1,th2;

str=str_accumulate("Result of ");

pthread_create(&th1,NULL,process,(void *)"first");

pthread_create(&th2,NULL,process,(void *)"second");

str=str_accumulate("initial thread");

printf("Thread %lx :\"%s\"\n",pthread_self(),str);

pthread_join(th1,NULL);

pthread_join(th2,NULL);

return 0;

}

将文件保存为exam8pthreadodata.c，在终端中使用gcc编译，并且运行，可以看到如下的输出结果。

alloeat@ubuntu:～/chapter7Exam$ gcc exam8pthreadodata.c -o pthreadowndata -lpthread

alloeat@ubuntu:～/chapter7Exam$./pthreadowndata

Thread b75706c0 : allocated key 0

Thread b75706c0 : allocating buffer at 0x8131008

Thread b75706c0 :"Result of initial thread"

Thread b756fb40 : allocating buffer at 0xb6400468

Thread b756fb40: "Result of first thread"

Thread b756fb40 : freeing buffer at 0xb6400468

Thread b6d6eb40 : allocating buffer at 0xb6400468

Thread b6d6eb40: "Result of second thread"

Thread b6d6eb40 : freeing buffer at 0xb6400468

7.4 线程的属性

在前面调用 pthread_create 函数的时候，其传入的参数都是空指针，而不是一个指向pthread_attr_t结构的指针。其实在实际应用中，可以对线程的属性进行相应的操作，线程的属性说明如下。

typedef struct

{

int detachstate;

int　　schedpolicy;

struct　sched_param　schedparam;

int　　inheritsched;

int　　scope;

size_t　guardsize;

int　　stackaddr_set;

void　*stackaddr;

size_t　stacksize;

} pthread_attr_t;

在该结构中，datachstate 表示线程的拆卸状态，schedpolicy 表示线程的调度策略，schedparam表示线程的调度参数，inheritsched表示线程的继承性，scope表示线程的作用域，stackaddr表示线程堆栈的位置，stacksize表示线程堆栈的大小。

7.4.1 线程属性对象的初始化和销毁函数

在使用一个线程属性对象之前，必须对其进行初始化，pthread_attr_init函数完成对线程属性对象初始化。在使用完一个线程属性对象后，必须对其进行销毁，pthread_attr_destroy函数完成对线程属性对象的销毁，其标准调用格式说明如下。

#include <pthread.h>

int pthread_attr_init(pthread_attr_t *attr);

int pthread_attr_destroy(pthread_attr_t *attr);

函数pthread_attr_init和pthread_attr_destroy都只有一个参数，此参数为指向线程属性对象的指针。

这两个函数在调用成功时返回0，失败时返回-1。

7.4.2 线程堆栈大小相关函数

函数 pthread_attr_setstacksize 和 pthread_attr_getstacksize 分别用来设置和得到线程堆栈的大小，这两个函数的原型如下所示。

#include <pthread.h>

int pthread_attr_setstacksize(pthread_attr_t *attr, size_t stacksize);

int pthread_attr_getstacksize(const pthread_attr_t *attr, size_t *stacksize);

这两个函数具有两个参数，第一个是指向属性对象的指针，第二个是堆栈大小或指向堆栈大小的指针。

这两个函数在成功调用时返回0，失败时返回-1。

7.4.3 线程堆栈地址函数

函数pthread_attr_setstackaddr和pthread_attr_getstackaddr分别用来设置和得到线程堆栈的位置，这两个函数的原型如下所示。

#include <pthread.h>

int pthread_attr_setstackaddr(pthread_attr_t *attr, void *stack_addr);

int phread_attr_getstackaddr(const pthread_attr_t *attr, void **stackaddr);

这两个函数具有两个参数，第一个是指向属性对象的指针，第二个是堆栈地址或指向堆栈地址的指针。

这两个函数在成功调用时返回0，失败时返回-1。

7.4.4 线程的拆卸状态函数

函数pthread_attr_setdetachstate和pthread_attr_getdetachstate分别用来设置和得到线程的拆卸状态，这两个函数的原型如下所示。

#include <pthread.h>

int pthread_attr_setdetachstate(pthread_attr_t *attr, int detachstate);

int phread_attr_get detachstate(const pthread_attr_t *attr, int* detachstate);

这两个函数具有两个参数，第一个是指向属性对象的指针，第二个是拆卸状态或指向拆卸状态的指针。拆卸状态可能的值是PTHREAD_CREATE_JOINABLE或是PTHREAD_CREATE_DETACHED，默认值是前者。

在可联合的状态中，另外一个线程可以通过pthread_join函数来同步线程的终止，而且可以恢复线程的终止代码。但是有一些线程的资源在线程退出后并不会释放，这样其他线程在创建时可以重新利用这些资源。

在脱离状态下，线程的资源在线程结束后立刻释放，而且不能用pthread_join函数来同步线程的终止。

这两个函数在成功调用时返回0，失败时返回-1。

7.4.5 线程的作用域函数

函数pthread_attr_setscope和pthread_attr_getscope分别用来设置和得到线程的作用域，这两个函数的原型如下所示。

#include <pthread.h>

int pthread_attr_setscope(pthread_attr_t *attr, int scope);

int phread_attr_getscope(const pthread_attr_t *attr, int *scope);

这两个函数具有两个参数，第一个是指向属性对象的指针，第二个是作用域或指向作用域的指针。作用域控制线程是否在进程内或在系统级上竞争资源，可能的值是PTHREAD_SCOPE_PROCESS 或是 PTHREAD_SCOPE_SYSTEM。系统默认值为PTHREAD_SCOPE_SYSTEM。

这两个函数在成功调用时返回0，失败时返回-1。

7.4.6 线程的继承调度函数

继承调度的意思是当新创建一个线程时，线程的调度策略和调度参数是由schedpolicy和schedparam属性指定，还是从创建它的父线程那里继承。函数pthread_attr_setinheritsched和pthread_attr_getinheritsched分别用来设置和得到线程的继承调度，这两个函数的原型如下所示。

#include <pthread.h>

int pthread_attr_setinheritsched(pthread_attr_t *attr, int inherit);

int phread_attr_getinheritsched (const pthread_attr_t *attr, int *inherit);

这两个函数具有两个参数，第一个是指向属性对象的指针，第二个是继承调度或指向继承调度的指针。继承调度可能的值是PTHREAD_EXPLICIT_SCHED或是PTHREAD_INHERIT_SCHED，分别对应上面两种情况。系统的默认值为PTHREAD_EXPLICIT_SCHED。

这两个函数在成功调用时返回0，失败时返回-1。

7.4.7 线程的调度策略函数

函数pthread_attr_setschedpolicy和pthread_attr_getschedpolicy分别用来设置和得到线程的调度策略，这两个函数的原型如下所示。

#include <pthread.h>

int pthread_attr_setschedpolicy (pthread_attr_t *attr, int policy);

int pthread_attr_getschedpolicy (const pthread_attr_t *attr, int * policy);

这两个函数具有两个参数，第一个是指向属性对象的指针，第二个是调度策略或指向调度策略的指针。调度策略可能的值是SCHED_FIFO（先进先出）、SCHED_RR（轮转法），或是SCHED_OTHER（其他未定义）。调度策略的默认值是SCHED_OTHER。

调度策略SCHED_RR和SCHED_FIFO仅仅对有超级用户权限的进程有效。

这两个函数在成功调用时返回0，失败时返回-1。

7.4.8 线程的调度参数函数

函数pthread_attr_setschedparam和pthread_attr_getschedparam分别用来设置和得到线程的调度参数，这两个函数的原型如下所示。

#include <pthread.h>

int pthread_attr_setschedparam (pthread_attr_t *attr,const struct sched_param

*param);

int pthread_attr_getschedpolicy (const pthread_attr_t *attr, struct sched_param

*param);

这两个函数具有两个参数，第一个是指向属性对象的指针，第二个参数是sched_param结构或指向该结构的指针。结构sched_param在文件/usr/include/bits/sched.h中定义，具体如下所示。

struct sched_param

{

int sched_priority;

};

结构 sched_param 的子成员 sched_priority 控制一个优先权值，大的优先权值对应高的优先权。系统默认的调度参数是优先级0。

如果线程的调度策略是 SCHED_OTHER，那么这个参数就可以忽略。只有当线程的调度策略是SCHED_RR或者SCHED_FIFO时，这个参数才有用。

这两个函数在成功调用时返回0，失败时返回-1。

7.4.9 线程属性应用实例

【例7.9】是关于线程属性的应用实例，其调用pthread_create创建一个线程，然后在创建的线程中，分别调用线程属性相关函数得到线程的各个属性，并将它们打印输出。

【例7.9】线程属性应用实例。

#include <stdio.h>

#include <errno.h>

#include <pthread.h>

#include <unistd.h>

void *my_thread(void *arg)

{

int retval=0;

pthread_attr_t attr;

struct sched_param param;

size_t　　stacksize;

int　　detachstate;

int　　scope;

int　　inherit;

int　　policy;

if(pthread_attr_init(&attr)==0)

{

if(pthread_attr_getstacksize(&attr,&stacksize)==0)

{

printf("StackSize: %d\n",stacksize);

}

if(pthread_attr_getdetachstate(&attr, &detachstate)==0)

{

if(detachstate==PTHREAD_CREATE_JOINABLE)

{

printf("DetachState :PTHREAD_CREATE_JOINABLE\n");

}

if(detachstate==PTHREAD_CREATE_DETACHED)

{

printf("DetachState :PTHREAD_CREATE_DETACHED\n");

}

}

if(pthread_attr_getscope(&attr, &scope)==0)

{

if(scope==PTHREAD_SCOPE_PROCESS)

{

printf("Scope :PTHREAD_SCOPE_PROCESS\n");

}

if(detachstate==PTHREAD_SCOPE_SYSTEM)

{

printf("Scopee :PTHREAD_SCOPE_SYSTEM\n");

}

}

if(pthread_attr_getinheritsched(&attr, &inherit)==0)

{

if(inherit==PTHREAD_INHERIT_SCHED)

{

printf("InheritSched:PTHREAD_INHERIT_SCHED\n");

}

if(inherit==PTHREAD_EXPLICIT_SCHED)

{

printf("InheritSched:PTHREAD_EXPLICIT_SCHED\n");

}

}

if(pthread_attr_getschedpolicy(&attr, &policy)==0)

{

if(policy==SCHED_FIFO)

{

printf("SchedPolicy:SCHED_FIFO\n");

}

if(policy==SCHED_RR)

{

printf("SchedPolicy:SCHED_RR\n");

}

else

{

printf("SchedPolicy:SCHED_OTHER\n");

}

if(pthread_attr_getschedparam(&attr, ¶m)==0)

{

printf("SchedPriority:%d\n",param.sched_priority);

}

pthread_attr_destroy(&attr);

}

pthread_exit(&retval);

}

}

int main(void)

{

int　　　　count;

pthread_t　thread;

int　　*retval;

if(pthread_create(&thread,NULL,my_thread,(void *)NULL)!=0)

{

printf("Count not create thread! \n");

return -1;

}

if(pthread_join(thread,(void **)(&retval))!=0)

{

printf("No thread to join! \n");

return -2;

}

return 0;

}

将文件保存为exam9pthreadodata.c，在终端中使用gcc编译，并且运行，可以看到如下的输出结果。

alloeat@ubuntu:～/chapter7Exam$ gcc exam9pthreadstat.c -o pthreadstat-lpthread

alloeat@ubuntu:～/chapter7Exam$./pthreadstat

StackSize: 8388608

DetachState :PTHREAD_CREATE_JOINABLE

Scopee :PTHREAD_SCOPE_SYSTEM

InheritSched:PTHREAD_INHERIT_SCHED

SchedPolicy:SCHED_OTHER

SchedPriority:0

7.5 线程的同步方式

当多个控制线程共享相同的内存时，需要确保每个线程看到一致的数据视图。如果每个线程使用的变量都是其他线程不会读取或者修改的，就不会存在一致性问题，否则就需要注意同步问题。

通常来说，用户可以使用互斥量或者同步变量方式来解决线程的同步问题，在本节将介绍互斥锁的使用方法，而同步变量的使用方法可以参考7.6节。

7.5.1 互斥锁

互斥锁是一个简单的锁定命令，它可以用来锁定对共享资源的访问。对于线程来说，整个地址空间都是共享的资源，所以线程的任何资源都是共享的资源。互斥锁具有以下3个主要特点。

● 原子性：把一个互斥锁定为一个原子操作，这意味着操作系统（或 pthread 函数库）保证了如果一个线程锁定了一个互斥锁，没有其他线程在同一时间可以成功锁定这个互斥锁。

● 唯一性：如果一个线程锁定 f 互斥锁，在它解除锁定之前，没有其他线程可以锁定这个互斥量。

● 非繁忙等待：如果一个线程已经锁定了一个互斥锁，第二个线程又试图去锁定这个互斥锁，则第二个线程将被挂起（不占用任何CPU资源），直到第一个线程解除对这个互斥锁的锁定为止，这时第二个线程则被唤醒并继续执行，同时锁定这个互斥锁。

Linux内核提供了相应的函数来完成对应的操作。

1．pthread_mutex_init函数

pthread_mutex_init用来初始化一个由参数mutex指向的互斥锁，这个互斥锁的属性由参数attr指定，或者通过将attr指定为NULL而使用默认的属性，其标准调用格式说明如下。

#include <pthread.h>

pthread_mutex_t fastmutex=PTHREAD_MUTEX_INITIALIZER;

pthread_mutex_t recmutex=PTHREAD_RECURSIVE_MUTEX_INITIALIZER_NP;

pthread_mutex_t errchkmutex=PTHREAD_ERRORCHECK_MUTEX_INITIALIZER_NP;

int pthread_mutex_init(pthread_mutex_t *mutex, const pthread_mutex_attr *attr);

上面3个常量是常用的处理互斥锁的常量。

不会出现多个线程同时初始化同一个互斥锁的情形，一个互斥锁在使用期间一定不会被重新初始化。

如果pthread_mutex_init执行成功，则返回0，并将新创建的互斥锁的ID值放到参数mutex中。如果执行失败，那么将返回一个错误编号。

2．thread_mutex_destroy函数

pthread_mutex_destroy函数用于解除由参数mutex指向的互斥锁的任何状态，其标准调用格式说明如下。

#include <pthread.h>

int pthread_mutex_destroy(pthread_mutex_t *mutex)

需要注意的是，储存互斥锁的内存并不被释放，如果pthread_mutex_destroy执行成功则返回0；如果执行失败，那么将返回一个错误编号。

3．pthread_mutex_lock函数

pthread_mutex_lock函数可以用于锁定由参数mutex指向的互斥锁，其标准调用格式说明如下。

#include <pthread.h>

int pthread_mutex_lock(pthread_mutex_t *mutex);

如果mutex已经被锁定，那么当前调用的线程将阻塞，直到互斥锁被其他线程释放（阻塞线程按照线程优先级等待)。当pthread_mutex_lock返回时，说明互斥锁已经被当前线程成功加锁。

如果pthread_mutex_lock执行成功则返回0，返回其他的值说明发生了错误。

4．pthread_mutex_trylock函数

pthread_mutex_trylock函数用于尝试给由参数mutex指定的互斥锁加锁，其标准调用格式说明如下。

#include <pthread.h>

int pthread_mutex_trylock(pthread_mutex_t *mutex);

该函数是 pthread_mutex_lock 的非阻塞版本。pthread_mutex_lock 在给一个互斥锁加锁时，如果互斥锁已经被锁定，那么pthread_mutex_lock将一直阻塞，不会立即返回。而使用 pthread_mutex_trylock 给一个互斥锁加锁时，如果互斥锁已经被锁定，那么pthread_mutex_trylock调用将返回错误。否则，互斥锁将被调用者加锁。

如果pthread_mutex_trylock执行成功则返回0，返回其他值意味着出现错误。

5．pthread_mutex_unlock函数

可以使用pthread_mutex_unlock函数给由参数mutex指定的互斥锁解锁，其标准调用格式说明如下。

#include <pthread.h>

int pthread_mutex_unlock(pthread_mutex_t *mutex);

互斥锁必须处于加锁状态，而且调用本函数的线程必须是给互斥锁加锁的同一个线程才能给互斥锁解锁。如果有其他线程在等待互斥锁，那么有核心的调度程序决定哪个线程将获得互斥锁并脱离阻塞状态。

如果pthread_mutex_unlock执行成功，则返回0。返回其他值意味着出现错误。

6．互斥锁应用实例

【例 7.10】是线程同步的应用实例，一个线程从共享的缓冲区中读数据，另一个线程向共享的缓冲区中写数据，使用一个互斥锁来对共享的缓冲区进行访问控制。

【例7.10】使用互斥锁进行线程同步应用实例。

#include <stddef.h>

#include <stdio.h>

#include <unistd.h>

#include <pthread.h>

#include <stdlib.h>

#define FALSE 0

#define TRUE 1

void readfun();

void writefun();

char buffer[256];

int buffer_has_item=0;

int retflag=FALSE;

pthread_mutex_t mutex;

int main(void)

{

pthread_t reader;

pthread_mutex_init(&mutex,NULL);

pthread_create(&reader,NULL,(void *)&readfun,NULL);

writefun();

exit(0);

}

void readfun(void)

{

while(1)

{

if(retflag)

{

return;

}

pthread_mutex_lock(&mutex);

if(buffer_has_item==1)

{

printf("%s",buffer);

buffer_has_item=0;

}

pthread_mutex_unlock(&mutex);

}

return;

}

void writefun(void)

{

int i=0;

while(1)

{

if(i==10)

{

retflag=TRUE;

return;

}

pthread_mutex_lock(&mutex);

if(buffer_has_item==0)

{

sprintf(buffer,"This is %d\n",i++);

buffer_has_item=1;

}

pthread_mutex_unlock(&mutex);

}

return;

}

将文件保存为exam10pthreadsyn1.c，在终端中使用gcc编译，并且运行，可以看到如下的输出结果。

alloeat@ubuntu:～/chapter7Exam$ gcc exam10pthreadsyn1.c -o pthreadsyn1 -lpthread

alloeat@ubuntu:～/chapter7Exam$./pthreadsyn1

This is 0

This is 1

This is 2

This is 3

This is 4

This is 5

This is 6

This is 7

This is 8

This is 9

7.5.2 条件变量

在程序中使用互斥锁虽然可以解决一些资源竞争的问题，但是互斥锁只有两种状态，这使得它的用途非常有限。

Linux还提供了另外一种同步机制，即条件变量。条件变量是对互斥锁的补充，它允许线程阻塞，并等待另一个线程发送的信号。当收到信号时，阻塞的线程就被唤醒并试图锁定与之相关的互斥锁。

下面是Linux线程库中处理条件变量的一些函数。

1．pthread_cond_init函数

pthread_cond_init函数用于初始化由参数cond指定的条件变量，其标准调用格式说明如下。

#include <pthread.h>

int pthread_cond_init(pthread_cond_t *cond, const pthread_cond_attr *attr);

这个条件变量的属性由参数attr指定。如果参数attr为NULL，那么就使用默认的属性设置。

多线程不能同时初始化同一个条件变量。如果一个条件变量正在使用，它不能被重新初始化。

如果 pthread_cond_init 执行成功，则返回 0，并将新创建的条件变量的 ID 放在参数cond中，如果返回其他的值意味着有错误。

2．pthread_cond_destroy函数

pthread_cond_destroy函数用于来清除由参数cond指向的条件变量的任何状态，其标准调用格式说明如下。

#include <pthread.h>

int pthread_cond_destroy(pthread_cond_t *cond);

需要注意的是，储存条件变量的内存空间不会被释放。如果函数pthread_cond_destroy执行成功则返回0，返回其他值则意味着出现错误。

3．pthread_cond_wait函数

函数原型如下。

#include <pthread.h>

int pthread_cond_wait(pthread_cond_t *cond, pthread_mutex_t *mutex);

使用pthread_cond_wait释放由参数mutex指向的互斥锁，并且使调用线程关于参数cond指向的条件变量阻塞。被阻塞的线程可以被pthread_cond_signa1、pthread_cond_broadcast或者由fork和传递信号引起的中断唤醒。

即使返回错误信息，pthread_cond_wait通常在互斥锁被调用线程加锁后才返回。

函数将阻塞，直到条件变量被信号唤醒。它在阻塞前自动释放互斥锁，在返回前再自动获得它。

如果有多个线程关于条件变量阻塞，其退出阻塞状态的顺序将不确定。

如果ptread_cond_wait执行成功则返回0。返回其他值则意味着出现错误。

4．pthread_cond_timewait函数

函数原型如下。

#include <pthread.h>

int pthread_cond_timewait(pthread_cond_t *cond, pthread_mutex_t *mutex,

const struct timespec *abstime);

pthread_cond_timedwait和pthread_cond_wait的用法相似，区别在于pthread_cond_timedwait在经过由参数abstime指定的时间时不阻塞。

即使是返回错误，pthread_cond_timedwait也只在给互斥锁加锁后返回。

pthread_cond_timedwait函数将阻塞，直到条件变量获得信号或者经过由abstime指定的时间为止。

如果 pthread_cond_timedwait 执行成功则返回 0。如果阻塞条件变量的时间超过了由参数abstime所指定的时间，那么就返回ETIMEOUT。返回其他值则意味着出现错误。

5．pthread_cond_signal函数

函数原型如下。

#include <pthread.h>

int pthread_cond_signal(pthread_cond_t *cond);

使用pthread_cond_signal使得关于由参数cond指向的条件变量阻塞的线程退出阻塞状态。需要在同一个互斥锁的保护下使用pthread_cond_signal，否则，条件变量可以在对关联条件变量的测试和 pthread_cond_wait 带来的阻塞之间获得信号，这将导致无限期的等待。

如果没有一个线程关于条件变量阻塞，那么pthread_cond_signal无效。

如果pthread_cond_signal执行成功则返回0。返回其他值则意味着出现错误。

6．pthread_cond_broadcast函数

函数原型如下。

#include <pthread.h>

int pthread_cond_broadcast(pthread_cond_t *cond);

使用pthread_cond_broadcast使得所有关于由参数cond指向的条件变量阻塞的线程退出阻塞状态。如果没有阻塞的线程，cond_broadcast无效。

这个函数将唤醒所有由 pthread_cond_wait 阻塞的线程。因为所有关于条件变量阻塞的线程都同时参与竞争，所以使用这个函数需要小心。

如果pthread_cond_broadcast执行成功则返回0。返回其他值则意味着出现错误。

7．条件变量应用实例

【例7.11】是使用条件变量来进行线程同步的应用实例，这是一个典型的生产者-消费者问题。

【例7.11】使用条件变量进行线程同步应用实例。

#include <stdio.h>

#include <pthread.h>

#define BUFFER_SIZE 4

#define OVER (-1)

struct producers　　　　　　　　//定义生产者条件变量结构

{

int buffer[BUFFER_SIZE];　　　　　//定义缓冲区

pthread_mutex_t lock;　　　　　　//定义访问缓冲区的互斥锁

int　readpos, writepos;　　　　　//读写的位置

pthread_cond_t　notempty;　　　　　//缓冲区有数据时的标记

pthread_cond_t　notfull;　　　　　//缓冲区未满的标记

};

//初始化缓冲区

void init(struct producers *b)

{

pthread_mutex_init(&b->lock,NULL);

pthread_cond_init(&b->notempty,NULL);

pthread_cond_init(&b->notfull,NULL);

b->readpos=0;

b->writepos=0;

}

//在缓冲区中存放一个整数

void put(struct producers *b, int data)

{

pthread_mutex_lock(&b->lock);

//当缓冲区为满时等待

while((b->writepos+1)%BUFFER_SIZE==b->readpos)

{

pthread_cond_wait(&b->notfull,&b->lock);

//在返回之前，pthread_cond_wait需要参数b->lock

}

//向缓冲区中写数据，并将写指针向前移动

b->buffer[b->writepos]=data;

b->writepos++;

if(b->writepos>=BUFFER_SIZE)

{

b->writepos=0;

}

//发送当前缓冲区中有数据的信号

pthread_cond_signal(&b->notempty);

pthread_mutex_unlock(&b->lock);

}

//从缓冲区中读数据并将数据从缓冲区中移走

int get(struct producers *b)

{

int data;

pthread_mutex_lock(&b->lock);

//当缓冲区中有数据时等待

while(b->writepos==b->readpos)

{

pthread_cond_wait(&b->notempty,&b->lock);

}

//从缓冲区中读数据，并将指针前移

data=b->buffer[b->readpos];

b->readpos++;

if(b->readpos>=BUFFER_SIZE)

{

b->readpos=0;

}

//发送当前缓冲区未满的信号

pthread_cond_signal(&b->notfull);

pthread_mutex_unlock(&b->lock);

return data;

}

struct producers　buffer;

void *producer(void *data)

{

int n;

for(n=0;n<10;n++)

{

printf("Producer: %d-->\n",n);

put(&buffer,n);

}

put(&buffer,OVER);

return NULL;

}

void *consumer(void *data)

{

int d;

while(1)

{

d=get(&buffer);

if(d==OVER)

{

break;

}

printf("Consumer: --> %d\n",d);

}

return NULL;

}

int main(void)

{

pthread_t tha,thb;

void *retval;

init(&buffer);

pthread_create(&tha,NULL,producer,0);

pthread_create(&thb,NULL,consumer,0);

pthread_join(tha,&retval);

pthread_join(thb,&retval);

return 0;

}

将文件保存为exam11pthreadsyn2.c，在终端中使用gcc编译，并且运行，可以看到如下的输出结果。

alloeat@ubuntu:～/chapter7Exam$ gcc exam11pthreadsyn2.c -o pthreadsyn2 -lpthread

alloeat@ubuntu:～/chapter7Exam$./pthreadsyn2

Producer: 0-->

Producer: 1-->

Producer: 2-->

Producer: 3-->

Producer: 4-->

Consumer: --> 0

Consumer: --> 1

Consumer: --> 2

Consumer: --> 3

Consumer: --> 4

Producer: 5-->

Producer: 6-->

Producer: 7-->

Consumer: --> 5

Consumer: --> 6

Consumer: --> 7

Producer: 8-->

Producer: 9-->

Consumer: --> 8

Consumer: --> 9
第8章 Linux的信号和进程间通信

在Linux系统中，如果同时存在多个进程，则需要考虑这些异步进程之间的通信事件，包括数据和协同工作等。Linux的信号机制提供了这么一种处理异步事件的方法，本章将详细介绍Linux中的信号以及其使用方法。

8.1 Linux的进程通信和信号基础

8.1.1 Linux的进程通信

在第6章中介绍了如何创建多个进程并且使其同时运行，但是这些进程仅仅能通过fork等函数来传送一个已经打开的文件，或者通过对文件系统中文件的操作来实现多个进程中的数据交互。但是在比较复杂应用中，用户通常需要使用多个相关的进程来执行有关操作，此时进程之间必须进行通信，共享资源和信息。Linux内核提供了多种必要的机制来实现这种通信，这些机制通常叫做进程间通信（IPC，InterProcess Communication）。

进程间通信通常需要实现如下目标。

● 数据传输：进程可能要发送数据到另一个进程。发送的数据量可以在一个字节到几兆字节之间。

● 共享数据：多个进程想要操作共享的数据。一个进程修改了数据，其他共享该数据的进程应该立即看见这个变化。

● 通知事件：当一些事件发生时，进程也许会向另—个进程或一组进程发消息通知事件的发生。例如，进程终止时，它要通知其父进程。接收者可能是被异步通知的，这时候它的正常处理被中断，由此，接收者可以选择等待通知。

● 资源共享：一些要求相互操作的进程需要自行定义一些协议，这些协议针对它们要访问的特定的资源。这些协议是通过使用锁和同步机制来实现的，而锁和同步机制是建立在内核提供的基本功能之上的。

● 进程控制：有些进程，例如 debugger，希望完全控制另一个进程（目标进程）的执行。控制进程希望能够拦截为目标进程设计的所有的陷入和异常，并且能够及时知道目标进程的状态改变。

进程间的通信机制（IPC）其实就是多进程间相互通信、交换信息的方法。Linux 支持多种IPC机制，主要包括信号、管道和传统Unix操作系统的IPC机制，本章将介绍信号，管道将在下一章中介绍。

8.1.2 信号机制和信号

信号机制是使用信号来进行进程之间相互传递消息的一种方法，其中信号全称为软中断信号，简称软中断。

软中断信号（signal，又简称为信号）用来通知进程发生了异步事件，进程之间可以互相通过系统调用kill函数来发送软中断信号，而Linux内核也可以因为内部事件而给进程发送信号，通知进程发生了某个事件。

注意：信号只是用来通知某进程发生了什么事件，其实质上并不给该进程传递任何数据。

每个信号都有一个名字，这些名字都以字符 SIG 开头，在头文件<signal.h>中，这些信号都被定义为正整数，称为信号编号。

注意：没有编号为0的信号，kill函数对编号0有特殊的应用，在POSIX.1规范中，将此种信号编号值称为空信号。

Linux内核支持64种不同的信号（具体内容将在8.1.4小节中进行详细介绍），这些信号中的大部分都有了预先定义好的意义。但是，它们都支持自定义动作，并且还提供了类似SIGUSR1这样由应用程序来定义的信号。

1．信号源

在Linux中，信号的源可能存在如下几种可能。

● 当用户按下某些终端按键之后引发终端产生的信号。例如，在程序运行中按“CTRL+\”组合键将终止程序的运行。

● 硬件产生的一个异常信号，例如除数为 0、无效的内存引用等，这种异常信号通常会由硬件检测得到并将其通知Linux内核，然后内核为该条件发生时正在运行的进程产生适当的信号。

● 进程调用系统调用 kill 函数（kill(2)）可以给一个进程或者进程组发送一个信号，需要注意的是，此时发送和接收信号的进程/进程组的所有者必须相同。

● 用户也可以调用 kill 命令（kill(1)）将信号发送给其他进程。

● 当检测到某种软件条件已经发生，并应将其通知有关进程的时候也会产生一个信号，例如，SIGURG信号就是在接收到一个通过网络传送的外部数据时产生的。

注意：kill(1)、kill(2)是在Linux系统帮助手册中的位置，其中“1”、“2”说明在man命令后跟随的页数。具体到kill中来，kill(1)表示这是一个命令，而kill(2)表示这是系统调用，其命令格式示例如下。

alloeat@ubuntu:～/chapter8Exam$ man 1 kill

//这是kill(1)及其输出

NAME

kill - send a signal to a process

SYNOPSIS

kill [-signal | -s signal] pid ...

kill [-L | -V, --version]

kill -l　[signal]

alloeat@ubuntu:～/chapter8Exam$ man 2 kill

//这是kill(2)及其输出

NAME

kill - send signal to a process

SYNOPSIS

#include <sys/types.h>

#include <signal.h>

int kill(pid_t pid, int sig);

2．信号的处理方式

Linux的每一个信号都有一个默认的动作，典型的默认动作是终止进程。当一个信号到来的时候，收到这个信号的进程会根据信号的具体情况提供以下3种不同的处理方式。

● 类似中断的处理程序，对于需要处理的信号，进程可以指定处理函数，由该函数来处理。

● 忽略某个信号，对该信号不做任何处理，就像从未发生过一样。

● 对该信号的处理保留系统的默认值，这种默认操作大多数是使得进程终止。进程通过系统调用signal函数来指定进程对某个信号的处理行为。

3．信号的局限性

作为一种进程交互机制，信号有一些局限性。

● 信号的系统开销太大。

● 发送信号的进程要进行系统调用。

● 内核要中断接收信号的进程，而且要管理它的堆栈，同时还要调用处理程序，之后还要恢复执行被中断的进程。

● 信号的数量非常有限，因为只存在有限的不同的信号。

● 信号能传送的信息量十分有限，用户产生的信号不可能发送附加信息及各种参数。

所以，在实际使用中，信号机制常常用于进程之间的事件的通知，而不应用于复杂的交互操作。

8.1.3 信号的工作方式

一个常见的信号应用实例是使用“CTRL+C”组合键来中断一个进程的运行，其详细操作部分说明如下。需要注意的是，只有在前台运行的进程才能接收到“CTRL+C”组合键的输入。

● 用户输入命令，在 Shell 下启动一个前台进程。

● 如果用户按 Ctrl+C，会产生一个硬件中断。

● 如果 CPU 当前正在执行这个进程的代码，则该进程的用户空间代码暂停执行，CPU从用户态切换到内核态处理硬件中断。

● 终端驱动程序将 Ctrl+C 解释成一个 SIGINT 信号，记在该进程的 PCB 中（也可以说发送了一个SIGINT信号给该进程）。

● 当某个时刻要从内核返回到该进程的用户空间代码继续执行之前，首先处理 PCB中记录的信号，发现有一个 SIGINT 信号待处理，而这个信号的默认处理动作是终止进程，所以直接终止进程而不再返回它的用户空间代码执行。

Linux内核给一个进程发送软中断信号的方法，是在进程所在的进程表项的信号域设置对应于该信号的位（内核通过在进程的 struct task_struct 结构中的信号域中设置相应的位来实现向一个进程发送信号）。

如果信号发送给一个正在睡眠的进程，那么要看该进程进入睡眠的优先级。如果进程睡眠在可被中断的优先级上，则唤醒进程；否则仅设置进程表中信号域相应的位，而不唤醒进程。这一点比较重要，因为进程检查是否收到信号的时机是：一个进程在即将从内核态返回到用户态时；或者在一个进程要进入或离开一个适当的低调度优先级睡眠状态时。

内核处理一个进程收到的信号的时机是在一个进程从内核态返回用户态时。所以，当一个进程在内核态下运行时，软中断信号并不立即起作用，要等到将返回用户态时才处理。进程只有处理完信号才会返回用户态，进程在用户态下不会有未处理完的信号。

内核处理一个进程收到的软中断信号是在该进程的上下文中，因此进程必须处于运行状态。前面介绍概念的时候讲过，处理信号有3种类型：进程接收到信号后退出；进程忽略该信号；进程收到信号后执行用户自定义的使用系统调用 signal()注册的函数。当进程接收到一个它忽略的信号时，进程丢弃该信号，就像从来没有收到该信号似的，而继续运行。如果进程收到一个要捕捉的信号，那么进程从内核态返回用户态时执行用户定义的函数。而且执行用户定义的函数的方法很巧妙，内核是在用户栈上创建一个新的层，该层中将返回地址的值设置成用户定义的处理函数的地址。这样，进程从内核返回弹出栈顶时就返回到用户定义的函数处，从函数返回再弹出栈顶时，才返回原先进入内核的地方。这样做的原因是用户定义的处理函数不能且不允许在内核态下执行（如果用户定义的函数在内核态下运行，用户就可以获得任何权限）。

在信号的处理方法中有几点特别需要引起注意。

● 在一些系统中，当一个进程处理完中断信号返回用户态之前，内核清除用户区中设定的对该信号的处理例程的地址，即下一次进程对该信号的处理方法又改为默认值，除非在下一次信号到来之前再次使用signal系统调用。

● 如果要捕捉的信号发生于进程正在执行一个系统调用中时，并且该进程睡眠在可中断的优先级上，这时该信号引起进程做一次longjmp函数调用跳出睡眠状态，返回用户态并执行信号处理例程。当从信号处理例程返回时，进程就像从系统调用返回一样，但返回了一个错误代码，指出该次系统调用曾经被中断。

● 若进程睡眠在可中断的优先级上，则当它收到一个要忽略的信号时，该进程被唤醒，但不做longjmp函数调用，一般是继续睡眠。但用户感觉不到进程曾经被唤醒，而是像没有产生过信号一样。

● 内核对子进程终止（SIGCLD）信号的处理方法与其他信号有所区别。

● 如果一个进程调用 signal()系统调用，并设置了 SIGCLD 的处理方法，且该进程有子进程处于僵死状态，则内核将向该进程发一个SIGCLD信号。

8.1.4 Linux中的信号说明

1．Linux信号的分类

参考8.1.2节介绍的Linux中的信号源，可以把Linux中的信号分为如下几大类。

● 与进程终止相关的信号。当进程退出或者子进程终止时，发出这类信号。

● 与进程例外事件相关的信号。例如，进程越界，或企图写一个只读的内存区域（如程序正文区），或执行一个特权指令及其他各种硬件错误。

● 与在系统调用期间遇到不可恢复条件相关的信号。例如，执行系统调用 exec 时，原有资源已经释放，而目前系统资源又已经耗尽。

● 与执行系统调用时遇到非预测错误条件相关的信号。例如，执行一个并不存在的系统调用。

● 在用户态下的进程发出的信号。例如，进程调用系统调用 kill 向其他进程发送信号。

● 与终端交互相关的信号。例如，用户关闭一个终端，或按 Break 键等情况。

● 跟踪进程执行的信号。

2． Linux 的预定义信号

在 Linux 中使用 kill -1 命令来查看系统支持的信号列表，或者输入“man 7 signal”查看更详细的说明，前者的输出列表说明如下。

alloeat@ubuntu:～/chapter8Exam$ kill -l

1) SIGHUP　　2) SIGINT　　3) SIGQUIT　4) SIGILL　　5) SIGTRAP

6) SIGABRT　7) SIGBUS　　8) SIGFPE　　9) SIGKILL　10) SIGUSR1

11) SIGSEGV　12) SIGUSR2　13) SIGPIPE　14) SIGALRM　15) SIGTERM

16) SIGSTKFLT　17) SIGCHLD　18) SIGCONT　19) SIGSTOP　20) SIGTSTP

21) SIGTTIN　22) SIGTTOU　23) SIGURG　24) SIGXCPU　25) SIGXFSZ

26) SIGVTALRM　27) SIGPROF　28) SIGWINCH　29) SIGIO　　30) SIGPWR

31) SIGSYS　34) SIGRTMIN　35) SIGRTMIN+1　36) SIGRTMIN+2　37) SIGRTMIN+3

38) SIGRTMIN+4　39) SIGRTMIN+5　40) SIGRTMIN+6　41) SIGRTMIN+7　42) SIGRTMIN+8

43) SIGRTMIN+9　44) SIGRTMIN+10 45) SIGRTMIN+11 46) SIGRTMIN+12 47) SIGRTMIN+13

48) SIGRTMIN+14 49) SIGRTMIN+15 50) SIGRTMAX-14 51) SIGRTMAX-13 52) SIGRTMAX-12

53) SIGRTMAX-11 54) SIGRTMAX-10 55) SIGRTMAX-9　56) SIGRTMAX-8　57) SIGRTMAX-7

58) SIGRTMAX-6　59) SIGRTMAX-5　60) SIGRTMAX-4　61) SIGRTMAX-3　62) SIGRTMAX-2　63)

SIGRTMAX-1　64) SIGRTMAX

信号列表中编号为1～31的信号为传统Linux内核所支持的信号，是不可靠信号（非实时的），编号为 34 ～ 63 的信号是后来扩充的，称做可靠信号（实时信号）。不可靠信号和可靠信号的区别在于前者不支持排队，可能会造成信号的丢失，而后者不会。

此外在不可靠信号中有4个比较特殊的信号，具体说明如下（其中前两个信号是不能被忽略的，而后两个信号是用户自定义的）。

● SIGSTOP（19）：这个信号将中断进程的执行。

● SIGKILL（9）：这个信号将强制进程退出。

● SIGUSR1（12）和 SIGUSR2（12）：用户自定义信号。

3．Linux的预定义信号说明

编号为1～31的预定义信号的说明如下。

● SIGHUP：本信号在用户终端连接（正常或非正常）结束时发出。通常是在终端的控制进程结束时，通知同一会话期（Session）内的各个作业，这时它们与控制终端不再关联。在登录Linux系统的时候，系统会自动分配给登录用户一个控制终端。在这个终端运行的所有程序，包括前台进程组和后台进程组，一般都属于同一个会话。当用户退出Linux登录时，前台进程组和后台有对终端输出的进程将会收到SIGHUP信号。这个信号的默认操作为终止进程，因此前台进程组和后台有终端输出的进程就会中止。此外，对于与终端脱离关系的守护进程，这个信号用于通知它重新读取配置文件。

● SIGINT：程序终止（或中断，interrupt）信号，在用户输入 INTR 字符（通常是Ctrl+C或Delete键）时发出，用于通知前台进程组终止进程。

● SIGQUIT：和 SIGINT 类似，但由 QUIT 字符（通常是 Ctrl+\）来控制。进程在因收到SIGQUIT退出时会产生core文件，在这个意义上类似于一个程序错误信号。

● SIGILL：执行了非法指令。通常是因为可执行文件本身出现错误，或者试图执行数据段，堆栈溢出时也有可能产生这个信号。

● SIGTRAP：由断点指令或其他陷阱（Trap）指令产生，由调试器（Debugger）使用，例如跟踪陷阱信号。

● SIGABRT：调用 abort 函数时产生的信号，将会使进程非正常结束。

● SIGBUS：非法地址, 包括内存地址对齐（Alignment）出错。例如，访问一个四个字长的整数, 但其地址不是 4 的倍数。它与 SIGSEGV 的区别在于后者是由于对合法存储地址的非法访问触发的（如访问不属于自己存储空间或只读存储空间）。

● SIGFPE：在发生致命的算术运算错误时发出。算术运算错误包括浮点运算错误,以及溢出及除数为0等其他所有的算术的错误。

● SIGKILL：用来立即结束程序的运行。本信号不能被阻塞、处理和忽略。如果管理员发现某个进程终止不了，可尝试发送这个信号。

● SIGUSR1：留给用户使用，可由用户在应用程序中自行定义。

● SIGSEGV：试图访问未分配给登录用户的内存区，或试图向没有写权限的内存地址写数据。

● SIGUSR2：留给用户使用，可由用户在应用程序中自行定义。

● SIGPIPE：管道破裂信号，当对一个读进程已经运行结束的管道执行写操作时产生。这种情况通常发生在进程间通信时，比如采用管道（FIFO）通信的两个进程通信时，读管道还没有打开或者意外终止就向管道写时，写进程会收到SIGPIPE信号。此外比如使用套接字（Socket）通信的两个进程，写进程在写Socket的时候，读进程已经终止。

● SIGALRM：时钟定时信号，计算的是实际的时间或时钟时间。由 alarm 函数设定的时间段终止时，会产生该信号。

● SIGTERM：程序结束（Terminate）信号，与 SIGKILL 不同的是该信号可以被阻塞和处理。通常用来要求程序自己正常退出，Shell 命令“kill”默认产生这个信号。如果进程终止不了，才会尝试SIGKILL。

● SIGSTKFLT：堆栈错误。

● SIGCHLD：子进程结束时，父进程会收到这个信号。如果父进程没有处理这个信号，也没有等待子进程，子进程虽然终止，但是还会在内核进程表中占有表项，这时的子进程称为僵尸进程，这种情况应该尽量避免。也是就说，父进程或者忽略SIGCHILD信号，或者捕捉它，或者等待它派生的子进程，或者父进程先终止，这时子进程的终止自动由init进程来接管。

● SIGCONT：让一个停止（Stopped）的进程继续执行。此信号不能被阻塞，可以用一个信号处理程序来让程序在由停止状态变为继续执行时完成特定的工作。例如，重新显示提示符。

● SIGSTOP：停止（Stopped）进程的执行。注意它和 terminate 以及 interrupt 的区别，该进程还未结束, 只是暂停执行。此信号不能被阻塞、处理或忽略。

注意：SIGKILL和SIGSTOP是两个不能被应用程序捕捉和忽略的信号，这是为了使系统管理员能在任何时候结束或停止某一特定进程的执行。

● SIGTSTP：停止进程的运行, 但该信号可以被处理和忽略。用户键入 SUSP 字符时（通常是Ctrl+z）发出这个信号。

● SIGTTIN：当后台作业要从用户终端读数据时，该作业中的所有进程会收到SIGTTIN信号，默认情况下这些进程会停止执行。

● SIGTTOU：类似于 SIGTTIN, 但在写终端（或修改终端模式）时收到。

● SIGURG：套接字上出现紧急情况时产生此信号，例如紧急数据。

● SIGXCPU：超过处理器源限制时产生的信号。这个限制可以由 getrlimit/setrlimit来读取/改变。

● SIGXFSZ：当进程企图扩大文件，以至于超过文件大小资源限制时产生此信号。

● SIGVTALRM：虚拟时钟信号，类似于 SIGALRM，但是计算的是该进程占用的CPU时间。

● SIGPROF：类似于 SIGALRM/SIGVTALRM, 但包括该进程使用的 CPU 时间以及系统调用的时间。

● SIGWINCH：窗口大小改变时发出的信号。

● SIGIO：文件描述符准备就绪, 表示可以开始进行输入/输出操作。

● SIGPWR：电源失效信号（Power Failure）。

● SIGSYS：非法的系统调用。

各个信号对进程的影响总结如表8.1所示。

8.1.5 信号的注册

要对一个信号进行处理，就需要给出此信号发生时系统所调用的处理函数——特定的信号（除无法捕捉的信号SIGKIL和SIGSTOP外）相应的处理函数。如果正在运行的程序的原代码里注册了针对某一特定信号的处理程序，不论当时程序执行到何处，—旦进程接收到该信号，相应的调用都会执行。

 表8.1 信号对进程的影响总结

 [image: figure_0307_0113]

对于已经有自己的功能动作的信号而言，其注册就是用一个用户自己定义的功能动作去替换Linux内核预定义的功能动作的操作。例如，功能键“CTRL+C”是中止当前进程的运行，当其被按下的时候当前进程会接收到SIGINT信号，然后对应该信号的操作是终止当前进程。用户可以使用信号注册将SIGINT信号对应的操作定义为用户期望的操作，比如说在标准输出上输出一串字符串，在注册完成之后如果进程再次检测到SIGINT信号即会进行输出字符串操作，而不是终止退出。

Linux提供了singal和sigcation函数用于信号的注册。

1．singal函数

要对一个信号进行处理，就需要给出此信号发生时系统所调用的处理函数，singal函数可以为一个特定的信号（除无法捕捉的SIGKILL和SIGSTOP信号外）注册相应的处理函数。如果正在运行的程序源代码里注册了针对某一特定信号的处理程序，不论当时程序执行到何处，一旦进程接收到该信号，相应的调用就会发生，其标准调用格式说明如下。

#include <signal.h>

void (*signal (int signum, void (*handler) (int))) (int);

signal函数的更为简洁的调用格式说明如下。

#include <signal.h>

typedef void (*sighandler_t)(int);

sighandler_t signal(int signum, sighandler_t handler);

参数signum表示所注册函数针对的信号，可以使用的值为8.1.4节中介绍的信号的关键字或者对应的编码（不推荐使用编码）；参数handler通常是指向调用函数的函数指针，这个函数是进程接收到信号之后的动作，这便是所谓的信号处理函数。

信号处理函数 handler 可能是用户自定义的一个函数，或是两个在 singal.h 头文件中进行了定义的值。

SIG_IGN：忽略signumber所指出信号。

SIG_DFL：调用系统定义的默认信号处理。

注意：信号处理函数的参数是要处理的信号的信号值，并且不能为 SIGKILL 和SIGSTOP设置信号处理函数。

当 signal 函数调用成功之后返回信号以前的处理配置，如调用失败则返回 SIG_ERR （-1）。

当程序执行 signal 后，表示从这个时候开始由 signum 指定的信号对应的操作将是handler 所传递的函数。需要注意的是，并非是程序执行到 signal 这一行就立即会对该信号做什么操作，因为信号的产生是无法预期的，程序设计人员根本没法预知该在哪一行捕捉突如其来的信号。用signal设置信号处理函数只是告诉系统对这个信号用什么程序来处理。

【例8.1】是一个使用自定义的字符串输出函数来取代SIGINT信号的终止当前进程运行响应操作的应用实例。

【例8.1】信号的注册应用实例1。

#include <signal.h>

#include <stdio.h>

//这是信号处理函数

void signalDeal(int iSignNum) //参数是信号量的编号

{

printf("The signal NO. is:%d\n",iSignNum);　//输出信号量编号

return;

}

//主函数

int main(void)

{

signal(SIGINT,signalDeal); //申明变量，使用signalDeal函数替代退出

while(1)　//死循环

{

sleep(1);

}

return 0;

}

程序使用signalDeal函数来替代了组合键“CTRL+C”对应的终止当前进程的操作，其动作是使用 printf 函数在终端上输出当前进程接收到的信号编号。将文件保存为exam1signal.c，在终端中使用gcc编译，并且运行，可以看到如下的输出结果。

alloeat@ubuntu:～/chapter8Exam$ gcc exam1signal.c -o examsignal　//编译

alloeat@ubuntu:～/chapter8Exam$./examsignal　//运行

^CThe signal NO. is:2

//按下CTRL+C，打印对应的信号编号，前面的^C是反馈CTRL+C的按键输出

^CThe signal NO. is:2

^\退出 (核心已转储)　//使用CTRL+\的组合键退出

注意：可以看到程序并没在调用singal函数的时候就输出对应的字符，而是在有信号产生的时候才调用该处理函数的。

【例8.2】是另外一个比较复杂的Linux信号注册应用实例，其分别对3个信号进行了不同的函数注册操作。

【例8.2】信号的注册应用实例2。

#include <stdio.h>

#include <signal.h>

#include <stdlib.h>

void intfunc(int signum);

void exitfunc(int signum);

int main()

{

char buffer1[100],buffer2[100];

int i;

if((int)(signal(SIGINT, intfunc))==-1)　//注册SIGINT信号

{

printf("Couldn't register signal hanlder for SIGINT!\n");

exit(1);

}

if((int)(signal(SIGTSTP, intfunc))==-1)　//注册SIGTSTP信号

{

printf("Couldn't register signal hanlder for SIGTSTP!\n");

exit(1);

}

if((int)(signal(SIGTERM, exitfunc))==-1)　//注册SIGTERM信号

{

printf("Couldn't register signal hanlder for SIGTERM!\n");

exit(1);

}

printf("Pid of This Process : %d \n",getpid());

while(1)

{

printf("Please input:\n");　//等待输入

fgets(buffer1, sizeof(buffer1),stdin);　//将标准输入的数据写入buffer1

for(i=0;i<100;i++)　//开始复制数据

{

if(buffer1[i]>=97&&buffer1[i]<=122)

{

buffer2[i]=buffer1[i]-32;

}

else

{

buffer2[i]=buffer1[i];

}

}

printf("Your input is: %s \n",buffer2);

}

exit(0);

}

//用于打印信号量编号

void intfunc(int signum)

{

printf("catch signal %d \n",signum);

}

//退出函数

void exitfunc(int signum)

{

printf("signal SIGTERM \n");

exit(0);

}

程序调用 signal 函数分别注册了 SIGINT、SIGTSTP 和 SIGTERM 的信号处理函数intfunc 和 exitfunc ，然后在主进程中实现将用户的输入改变大小写。将文件保存为exam2signal.c，在终端中使用gcc编译，并且运行，可以看到如下的输出结果。

alloeat@ubuntu:～/chapter8Exam$ gcc exam2signal.c -o examsignal2　//编译

alloeat@ubuntu:～/chapter8Exam$./examsignal2　//运行

Pid of This Process : 10742　//进程编号

Please input:

eqr

Your input is: EQR　//大小写切换

Please input:

teoweurw

Your input is: TEOWEURW

Please input:

^Ccatch signal 2　//使用CTRL+C不能退出

^\退出 (核心已转储)　//使用CTRL+\退出

在上一小节中介绍了Linux中提供了两个用户自定义信号SIGUSR1和SIGUSR2，【例8.3】是对这两个信号进行注册应用的实例。

【例8.3】信号的注册应用实例3。

#include <stdio.h>

#include <signal.h>

#include <error.h>

static void sigDeal(int);　　//处理函数

int main(void)

{

if (signal(SIGUSR1, sigDeal) == SIG_ERR) //注册SIGUSR1

{

perror("can't catch SIGUSR1");

}

if (signal(SIGUSR2, sigDeal) == SIG_ERR) //注册SIGUSR2

{

perror("can't catch SIGUSR2");

}

printf("Pid of This Process : %d \n",getpid()); //打印进程号

while(1)

pause(); //挂起

}

static void sigDeal(int signo)　//信号编号作为参数

{

if (signo == SIGUSR1)　//如果是用户自定义信号1

{

printf("received SIGUSR1\n");

}

else if (signo == SIGUSR2) //如果是用户自定义信号2

{

printf("received SIGUSR2\n");

}

else　//其他信号

{

printf("received signal %d\n", signo);

}

}

程序使用signal函数分别注册了SIGUSR1和SIGUSR2信号所对应的操作函数。将文件保存为exam3signal.c，在终端中使用gcc编译，并且运行，可以看到如下的输出结果。

alloeat@ubuntu:～/chapter8Exam$ gcc exam3signal.c -o examsignal3　//编译

alloeat@ubuntu:～/chapter8Exam$./examsignal3　//运行

Pid of This Process : 10805　//进程号

received SIGUSR1　//接收到自定义信号1

received SIGUSR2　//接收到自定义信号2

^C　//退出

由于进程没有办法自行产生 SIGUSR1 和 SIGUSR2 对应的信号，所以需要使用 kill函数给当前进程发送信号，操作方法是另外开一个终端并且输入以下命令。

alloeat@ubuntu:～/chapter8Exam$ kill -USR1 10805

alloeat@ubuntu:～/chapter8Exam$ kill -USR2 10805

2．sigaction函数

如果觉得signal功能不够强大，可以使用功能更加强大的sigcation函数来完成相应的注册工作，其标准调用格式说明如下。

#include <signal.h>

int sigaction(int signum, const struct sigaction *act,struct sigaction *oldact);

其中，参数signum指定要处理的信号（除SIGKILL和SIGSTOP之外），act和oldact都是指向信号动作结构体的指针。结构体的定义如下。

struct sigaction

{

void (*sa_handler)(int);

void(*sa_sigaction)(int,siginfo_t *,void *);

sigset_t sa_mask;

int sa_flags;

}

其中sa_handler是指向信号处理函数的地址。参数sa_sigaction是指向函数的指针。它指向的函数有3个参数，其中第2个为siginfo_t结构体，其定义如下。

struct siginfo_t

{

int si_signo;　//信号标号

int si_errno;　//错误值

int si_code;　　//信号编码

pid_t si_pid;　//进程编号

uid_t si_uid;　//进程的真实用户ID

int si_status;　　//信号的返回值

clock_t si_utime; //用户消耗时间

clock_t si_stime; //系统消耗时间

signal_t si_value;　//信号值

int si_int;　　　//* POSIX.1b信号

void *si_ptr;　//POSIX.1b信号

void *si_addr;　　//内存位置

int si_band;　　//Band事件

int si_fd;　　　//文件描述符

}

sa_flags指示信号处理函数的不同选项。具体可选参数如表8.2所示。可以通过位运算的或运算（OR）串接不同的参数而实现所需的选项设置，将其赋值为0则选用所有的默认选项。

 表8.2 sa_flags可选标志及对应设置

 [image: figure_0313_0114]

【例8.4】是sigaction函数的应用实例，功能类似【例8.2】的功能，其中涉及了部分关于信号集的操作，读者可以自行参阅。

【例8.4】信号的注册应用实例4。

#include <stdio.h>

#include <signal.h>

#include <string.h>

#include <errno.h>

#include <stdlib.h>

void signalDeal(int signum);

int main(void)

{

char buffer1[100], buffer2[100];

int i;

struct sigaction act;

act.sa_handler = signalDeal;　//将函数名称赋值

sigemptyset(&act.sa_mask);

act.sa_flags=0;

if((int)(sigaction(SIGTERM, &act, NULL))==-1)

{

perror("Couldn't register signal handler!\n");

return 1;

}

printf("Pid of thi process: %d \n",getpid());

while(1)

{

printf("Please input:\n");

fgets(buffer1, sizeof(buffer1),stdin);

for(i=0;i<100;i++)

{

if(buffer1[i]>=97&&buffer1[i]<=122)

{

buffer2[i]=buffer1[i]-32;

}

else

{

buffer2[i]=buffer1[i];

}

}

printf("Your input is: %s \n",buffer2);

}

exit(0);

}

void signalDeal(int signum)

{

printf("catch signal SIGTERM. \n");

exit(0);

}

将文件保存为exam4sigaction.c，在终端中使用gcc编译，并且运行，可以看到如下的输出结果。

alloeat@ubuntu:～/chapter8Exam$ gcc exam4sigaction.c -o examsigaction

alloeat@ubuntu:～/chapter8Exam$./examsigaction

Pid of thi process: 10984

Please input:

werw

Your input is: WERW

Please input:

3453uo

Your input is: 3453UO

Please input:

^C

8.1.6 可重入函数

顾名思义，可重入函数就是可以在运行期间再次被调用的函数。由于Linux是一个多任务操作系统，在任务执行期间捕捉到信号并对其进行处理时，进程正在执行的指令序列就被信号处理程序临时中断。如果从信号处理程序返回，则继续执行进程断点处的正常指令序列，从重新恢复到断点重新执行的过程中，函数所依赖的环境没有发生改变，就说这个函数是可重入的，反之就是不可重入的。

在进程中断期间，系统会保存和恢复进程的上下文，然而恢复的上下文仅限于返回地址、处理器寄存器等之类的少量上下文，而函数内部使用的诸如全局或静态变量、缓冲区等并不在保护之列。所以如果这些值在函数被中断期间发生了改变，那么当函数回到断点继续执行时，其结果就不可预料了。例如，一个进程此时正在执行 malloc 分配堆空间，此时程序捕捉到信号发生中断，执行信号处理程序中恰好也有一个malloc，这样就会对进程的环境造成破坏，因为 malloc 通常为它所分配的存储区维护一个链接表，插入执行信号处理函数时，进程可能正在对这张表进行操作，而信号处理函数的调用刚好覆盖了进程的操作，造成错误。

通常来说，满足下面条件之一的多数函数都是不可重入函数：

● 使用了静态数据结构。

● 调用了 malloc 函数或 free 函数。

● 调用了标准 I/O 函数。标准 I/O 库很多实现都以不可重入的方式使用全局数据结构。

● 进行了浮点运算。许多的处理器/编译器中，浮点运算一般都是不可重入的，这是因为浮点运算大多使用协处理器或者软件模拟来实现。

在实际应用中，可重入函数可能存在以下两种状况。

● 信号处理程序 A 内外都调用了同一个不可重入函数 B，B 在执行期间被信号打断，进入A（在A中调用了B），运行完成之后返回B被中断点继续执行，这时B函数的环境可能改变，其结果就不可预料了。

● 多线程共享进程内部的资源，如果两个线程 A、B 调用同一个不可重入函数 F。A线程进入F后，线程调度，切换到B，B也执行了F，那么当再次切换到线程A时，其调用F的结果也是不可预料的。

【例8.5】给出了一个实例，应用代码使用signal函数注册了SIGALRM的值，而后设置一个定时器，在for函数运行期间的某个时刻，也许就是在getpwnam函数运行期间，相应信号发生中断，进入信号处理函数func，在运行func期间又收到alarm发出的信号，getpwnam可能再次中断，这样就很容易发生不可预料的问题。

【例8.5】可重入函数应用实例。

#include <stdlib.h>

#include <stdio.h>

#include <pwd.h>

#include <signal.h>

#include <errno.h>

static void func(int signo)

{

struct passwd *rootptr;

if((rootptr = getpwnam("root")) == NULL)

{

perror("getpwnam error");

}

signal(SIGALRM,func);

alarm(1);

}

int main(void)

{

struct passwd *ptr;

signal(SIGALRM,func);

alarm(1);

for(;;)

{

if((ptr = getpwnam("sar")) == NULL)

{

perror("getpwnam error");

}

}

return 0;

}

注意：由于不推荐这种应用方法，所以不做编译和输出，读者可以自行尝试，其输出是随机的。

在信号处理程序中即使调用可重入函数也需要对一些问题进行处理。例如，作为一个通用的规则，当在信号处理程序中调用可重入函数时，应当在之前保存errno的值，并在之后恢复这个值。这是因为每个线程只有一个errno变量，信号处理函数可能会修改其值，要了解经常被捕捉到的信号是SIGCHLD，其信号处理程序通常要调用wait函数，而各种wait函数都能改变errno的值。

以下给出了Linux中的可重入函数列表。

_exit()、 access()、alarm()、cfgetispeed()、cfgetospeed()、cfsetispeed()、cfsetospeed()、chdir()、chmod()、chown()、close()、creat()、dup()、dup2()、execle()、 execve()、fcntl()、fork()、fpathconf ()、fstat()、fsync()、getegid()、 geteuid()、getgid()、getgroups()、getpgrp()、getpid()、getppid()、getuid()、 kill()、link()、lseek()、mkdir()、mkfifo()、 open()、pathconf()、pause()、pipe()、raise()、read()、rename()、rmdir()、setgid ()、setpgid()、setsid()、setuid()、 sigaction()、sigaddset()、sigdelset()、sigemptyset()、sigfillset()、 sigismember()、signal()、sigpending()、sigprocmask()、sigsuspend()、sleep()、 stat()、sysconf()、tcdrain()、tcflow()、tcflush()、tcgetattr()、tcgetpgrp()、 tcsendbreak()、tcsetattr()、tcsetpgrp()、time()、times()、 umask()、uname()、unlink()、utime()、wait()、waitpid()、write()。

8.2 信号的基本操作

信号的基本操作包括向进程发送信号，使用一个定时信号以及调用相应的信号使得进程退出。Linux系统提供了相应的函数来实现对应的操作。

8.2.1 发送信号

在【例8.2】中为了测试SIGUSR1和SIGUSR2，使用kill函数从外部给进程发送相应的信号。在实际应用中，Linux中的用户进程可以调用kill函数和raise函数来完成相应的信号发送操作，前者用于给其他进程发送信号，而后者用于给进程自身发送信号。

1．kill函数

kill 函数（这个地方使用的是 kill(2)，其对应的帮助手册是 man 2 kill）将信号发送给进程或者进程组，其标准调用格式说明如下。

#include <sys/types.h>

#include <signal.h>

int kill(pid_t pid, int sig);

参数pid表示kill函数发送信号对象的进程或进程组号，其取值说明如表8.3所示。参数sig为需要发送的信号编码。当该函数调用成功其返回值为0，如果调用失败其返回值为-1。

 表8.3 kill函数的pid参数

 [image: figure_0317_0115]

需要注意的是，进程使用kill函数向另外一个进程发送信号需要相应的权限，超级用户可以将信号发送给任意进程，非超级用户则要求发送者和接受者的实际用户ID或有效用户ID必须相同。

注意：除SIGCONT信号外，任何进程都可以将该信号发送给属于同一会话的任何其他进程。

另外一个需要注意的方面是，sig参数对应的是信号编码值，当其为0时（即空信号），实际不发送任何信号，但照常进行错误检查。因此，可用于检查目标进程是否存在，以及当前进程是否具有向目标发送信号的权限（root权限的进程可以向任何进程发送信号，非root权限的进程只能向属于同一个session（会话）或者同一个用户的进程发送信号）。

【例8.6】是一个父进程利用kill()函数向其子进程传送SIGABRT信号，使子进程非正常结束的实例。

【例8.6】kill函数应用实例1。

#include<unistd.h>

#include<signal.h>

#include<sys/types.h>

#include<sys/wait.h>

#include<stdio.h>

#include<errno.h>

int main(void)

{

pid_t pid;

int status;

if(!(pid= fork()))　//创建一个子进程

{

printf("Hi I am child process!\n");

sleep(10);　　//让子进程睡眠，看父进程的行为

printf("Hi I am child process, again!\n");

return;

}

else

{

printf("send signal to child process (%d) \n",pid);

sleep(1);

if(kill(pid ,SIGABRT) == -1)　//发送SIGABRT信号

{

perror("kill failed!\n");

}

wait(&status);

if(WIFSIGNALED(status))

{

printf("child process receive signal %d\n",WTERMSIG(status));

}

}

return 0;

}

将文件保存为exam6kill.c，在终端中使用gcc编译，并且运行，可以看到如下的输出结果。

alloeat@ubuntu:～/chapter8Exam$ gcc exam6kill.c -o examkill　//编译

alloeat@ubuntu:～/chapter8Exam$./examkill　//运行

send signal to child process (12769)　//向进程发送数据

Hi I am child process!　//打印子进程

child process receive signal 6　//接收到信号，退出

【例8.7】是另外一个使用kill函数的应用实例。

【例8.7】kill函数应用实例2。

#include <stdlib.h>

#include <stdio.h>

#include <sys/types.h>

#include <sys/wait.h>

#include <errno.h>

int main(void)

{

pid_t　child;

int status, retval;

child = fork();

if(child <0)

{

perror("fork");

exit(EXIT_FAILURE);

}

else if(child == 0)

{

sleep(1000);

exit(EXIT_SUCCESS);

}

else

{

//在子进程未退出时就返回到主进程

if((waitpid(child, &status, WNOHANG)) == 0)

{

retval = kill(child, SIGKILL);

if(retval)

{

puts("kill failed/n");

perror("kill");

waitpid(child, &status, 0);

}

else

{

printf("%d killed/n", child);

}

}

}

exit(EXIT_SUCCESS);

}

将文件保存为exam7kill.c，在终端中使用gcc编译，并且运行，可以看到如下的输出结果。

alloeat@ubuntu:～/chapter8Exam$ gcc exam7kill.c -o examkill1

alloeat@ubuntu:～/chapter8Exam$./examkill1

12794 killed/nalloeat@ubuntu:～/chapter8Exam$

可以看到，函数直接从进程12794中退出。

2．raise函数

如果当前进程需要对自身发送一个信号，可以使用 raise 函数，其标准调用格式说明如下。

#include <signal.h>

int raise(int sig);

sig 参数是需要向自身发送的信号的信号编码，如果函数调用成功返回 0，如果出错则返回-1。

注意：raise函数其实等同于调用kill(getpid(),signo)。

【例8.8】是一个raise函数应用实例，由终端输入某几个特定的字符串“int”、“stop”、“continue”和“quit”时，程序不再将字符串处理并回显，而是向其自身发送信号，再调用相应的信号处理函数。

【例8.8】raise函数应用实例。

#include <stdio.h>

#include <signal.h>

#include <errno.h>

#include <stdlib.h>

void inthandler(int signum);

void continuehandler(int signum);

void terminatehandler(int signum);

//主函数

int main(void)

{

char buffer[100];

if((int)(signal(SIGINT,&inthandler))==-1)　//注册SIGINT信号

{

perror("Couldn't register signal hanlder for SIGINT!\n");

exit(1);

}

if((int)(signal(SIGTSTP, &inthandler))==-1)　//注册SIGTSTP信号

{

perror("Couldn't register signal hanlder for SIGTSTP!\n");

exit(2);

}

if((int)(signal(SIGCONT, &continuehandler))==-1)　//注册SIGCONT信号

{

perror("Couldn't register signal hanlder for SIGCONT!\n");

exit(3);

}

if((int)(signal(SIGTERM, &terminatehandler))==-1)　//注册SIGTERM信号

{

perror("Couldn't register signal hanlder for SIGINT!\n");

exit(4);

}

printf("Pid of This Process : %d \n",getpid());

while(1)

{

printf("Please input:\n");

fgets(buffer, sizeof(buffer),stdin);

if(strcmp(buffer,"int\n")==0)　//使用strcmp函数获取输入，发送信号

{

raise(SIGINT);

}

else if(strcmp(buffer,"stop\n")==0)

{

raise(SIGTSTP);

}

else if(strcmp(buffer,"continue\n")==0)

{

raise(SIGCONT);

}

else if(strcmp(buffer,"quit\n")==0)

{

raise(SIGTERM);

}

else

{

printf("Your input is: %s \n",buffer);

}

}

exit(0);

}

//终止信号处理函数

void inthandler(int signum)

{

printf("catch signal %d \n",signum);

}

//继续信号处理函数

void continuehandler(int signum)

{

printf("Continue code.\n");

}

//退出信号处理函数

void terminatehandler(int signum)

{

printf("signal SIGTERM \n");

exit(0);

}

将文件保存为exam8raise.c，在终端中使用gcc编译，并且运行，输入相应的字符串，可以看到如下的输出结果。

alloeat@ubuntu:～/chapter8Exam$ gcc exam8raise.c -o examraise

alloeat@ubuntu:～/chapter8Exam$./examraise

Pid of This Process : 12913

Please input:

we324

Your input is: we324

Please input:

int

catch signal 2

Please input:

stop

catch signal 20

Please input:

continue

Continue code.

Please input:

quit

signal SIGTERM

8.2.2 信号的定时

在Linux的应用程序中，常常需要定时一段时间之后让线程去执行一个动作，此时可以使用 SIGALRM 信号量。Linux 内核同样提供了相应的操作函数 alarm，其标准调用格式说明如下。

#include <unistd.h>

unsigned int alarm(unsigned int seconds);

参数 seconds 又称为闹钟时间，指定了下一次发送信号的时间，即在当期时间的seconds秒后，向进程本身发送SIGALRM信号。进程调用alarm后，任何以前的alarm调用都将无效。如果参数seconds为0，那么进程内将不再包含任何闹钟时间。

如果调用alarm之前，进程中已经设置了闹钟时间，则返回上一个闹钟时间的剩余时间，否则返回0。

alarm函数可以用于对可能阻塞的操作设置时间的上限值。例如，应用中有一个读低速设备的可能阻塞的操作，在超过一定时间后就停止执行这个读操作。如【例8.9】所示，其从标准输入上读一行，然后将其写到标准输出上，如果超过1秒则停止。

【例8.9】alarm函数应用实例。

#include <signal.h>

#include <stdio.h>

#include <errno.h>

#include <unistd.h>

#include <stdlib.h>

#define MAXLINE 4096　//行最大容量

static void sigalrm(int);

int main(void)

{

int　　　n;

char　line[MAXLINE];

if (signal(SIGALRM, sigalrm) == SIG_ERR) //使用sigalrm替代SIGALRM信号

{

perror("signal(SIGALRM) error");　//出错处理

}

alarm(10);　//定时10个tip

if ((n = read(STDIN_FILENO, line, MAXLINE)) < 0) //从输入读

{

perror("read error");

}

alarm(0);　//取消定时

write(STDOUT_FILENO, line, n);

exit(0);

}

static void sigalrm(int signo)

{

//什么都不做，仅仅打断读信号

}

将文件保存为exam9alarm.c，在终端中使用gcc编译，并且运行，输入相应的字符串，可以看到如下的输出结果。

alloeat@ubuntu:～/chapter8Exam$ gcc exam9alarm.c -o examalarm

alloeat@ubuntu:～/chapter8Exam$./examalarm

23423423^C

如果希望使用更加精确的定时操作，可以使用setitimer函数，其标准调用格式说明如下。

#include <sys/time.h>

int setitimer(int which, const struct itimerval *new_value,struct itimerval

*old_value);

参数which用于指定定时器类型，其支持3种类型的定时器，如表8.4所示。

 表8.4 setitimer的witch参数说明

 [image: figure_0324_0116]

参数new_value和old_value为指向时间参数的结构体指针，itimerval结构原型如下。

struct itimerval

{

struct timeval it_interval;　/*计时器重启动的间歇值*/

struct timeval it_value;　/*计时器安装后首先启动的初始值*/

};

成员it_interval和it_value也是timeval类型的结构体。

struct timeval

{

long tv_sec;　　　/*时间的秒数部分*/

long tv_usec;　　/*时间的微妙(1/1000000)部分*/

};

setitimer函数将value指向的结构体设为计时器的当前值，如果old_value不是NULL，将返回计时器原有值，其若调用成功则返回0，若出错则返回-1。

【例8.10】是一个setitimer函数的应用实例，该实例每隔1秒便会调用信号处理函数ElsfTimer()，打印出当前系统的时间和日期，在ElsfTimer()函数中，使用了另外两个系统调用gettimeofday函数和localtime函数（参考第3章）。

【例8.10】setitimer函数应用实例。

#include <signal.h>

#include <time.h>

#include <sys/time.h>

#include <unistd.h>

#include <stdio.h>

#include <stdlib.h>

static void DealTime(int signo)　//信号处理函数

{

struct timeval tp;

struct tm *tm;

gettimeofday(&tp,NULL);　//获得系统当前时间（秒和微秒）

tm=localtime(&tp.tv_sec);　//获得当地目前时间和日期

printf(" sec = %ld \t",tp.tv_sec);　//打印从UNIX纪元开始到现在的秒数

printf(" usec = %ld \n",tp.tv_usec);　//打印微秒

printf("%d-%d-%d%d:%d:%d\n",tm->tm_year+1900,tm->tm_mon+1,tm->tm_mday,tm->tm_

hour,tm->tm_min,tm->tm_sec);　/*打印当地目前时间和日期*/

}

static void InitTime(int tv_sec,int tv_usec)

{

struct itimerval value;　　//定义时间参数结构体value

signal(SIGALRM, DealTime);　//注册信号SIGALRM和信号处理函数

value.it_value.tv_sec = tv_sec;　//秒

value.it_value.tv_usec = tv_usec; //微秒

value.it_interval.tv_sec = tv_sec;

value.it_interval.tv_usec = tv_usec;

setitimer(ITIMER_REAL, &value, NULL);

//setitimer 发送信号，定时类型为ITIMER_REAL

}

int main(void)

{

InitTime(1,0);　//每隔1秒打印一次

while(1)

{

}

exit(0);

}

将文件保存为exam10setitimer.c，在终端中使用gcc编译，并且运行，输入相应的字符串，可以看到如下的输出结果。

alloeat@ubuntu:～/chapter8Exam$ gcc exam10setitimer.c -o examsetitimer

alloeat@ubuntu:～/chapter8Exam$./examsetitimer

sec = 1343198208　　usec = 626926

2012-7-2514:36:48

sec = 1343198209　　usec = 626918

2012-7-2514:36:49

sec = 1343198210　　usec = 626918

2012-7-2514:36:50

sec = 1343198211　　usec = 626918

2012-7-2514:36:51

sec = 1343198212　　usec = 626920

2012-7-2514:36:52

sec = 1343198213　　usec = 626918

2012-7-2514:36:53

sec = 1343198214　　usec = 626918

2012-7-2514:36:54

^C

8.2.3 进程退出信号

如果进程在执行过程中出现了异常，可以调用abort函数向进程发送SIGABRT信号使其退出，abort函数的标准调用格式说明如下。

#include <stdlib.h>

void abort(void);

abort函数用于将SIGABRT（退出）信号发送给调用的进程，其没有返回值，【例8.11】是一个abort函数的应用实例。

【例8.11】abort函数应用实例。

#include <stdlib.h>

#include <stdio.h>

#include <signal.h>

int main(void)

{

abort();　//退出

exit(EXIT_SUCCESS);

}

将文件保存为exam11abort.c，在终端中使用gcc编译，并且运行，输入相应的字符串，可以看到如下的输出结果。

alloeat@ubuntu:～/chapter8Exam$ gcc exam11abort.c -o examabort

alloeat@ubuntu:～/chapter8Exam$./examabort

//已放弃 (核心已转储)

8.3 Linux的信号集

在Linux系统的实际应用中，常常需要将多个信号组合起来使用，这种用来表示多个信号的数据类型被称为 Linux 的信号集（Signal Set），其定义格式为 sigset_t。

信号集的数据格式定义结构在signal.h头文件中，具体说明如下。

typedef struct

{

unsigned long sig[_NSIG_WORDS];

} sigset_t;

Linux内核提供了5个相应的函数用于信号集的操作，其标准调用格式说明如下。

#include <signal.h>

int sigemptyset (sigset_t *set);

int sigfillset (sigset_t *set);

int sigaddset (sigset_t *set, int signum);

int sigdelset (sigset_t *set, int signum);

int sigismember (const sigset_t *set, int signum);

各个函数的功能、参数和返回值说明如下。

● sigemptyset 函数：用于将 set 参数所指向的信号集设定为空，即不包含任何信号，调用成功返回0，否则返回-1。

● sigfillset 函数：用于将 set 参数所指向的信号集设定为满，即包含所有的信号，调用成功返回0，否则返回-1。

● sigaddset 函数：用于将 signum 参数所代表的信号添加到 set 参数所指向的信号集中，调用成功返回0，否则返回-1。

● sigdelset 函数：用于将 signum 参数所代表的信号从 set 参数所指向的信号集中删除，调用成功返回0，否则返回-1。

● sigismember 函数：用于检查 signum 参数所代表的信号是否在 set 参数所指向的信号集中，如果是真则返回1，如果是假则返回0，如果调用出错则返回-1。

在信号集进行初始话之后就可在该信号集中增、删特定的信号。对所有以信号集作为参数的函数，都向其传送信号集地址。在后面的学习中将经常使用到信号集。

例如，如果打算在处理信号SIGINT时，只阻塞对SIGQUIT信号的处理，可以用如下的方法。

struct sigaction act;

sigemptyset (&act.sa_mask);

sigaddset (&act.sa_mask, SIGQUIT);

sigaction (SIGINT, &act, NULL);

【例 8.12】是一个使用信号集函数对信号集进行操作的应用实例，其对信号集进行初始化和加入操作之后进行测试。

【例8.12】信号集应用实例。

#include <signal.h>

#include <stdio.h>

#include <unistd.h>

//打印信号集合

void printsigset(const sigset_t *set)

{

int i;

for (i = 1; i < 32; i++)

if (sigismember(set, i) == 1)　//测试信号集

putchar('1');　//如果信号存在输出1

else

putchar('0');

puts("");

}

//主函数

int main(void)

{

sigset_t s, p;

sigemptyset(&s);　//清空信号集

sigaddset(&s, SIGINT);　//加入SIGINT信号

sigprocmask(SIG_BLOCK, &s, NULL);　//阻塞信号，在第9章中介绍

while (1)

{

sigpending(&p);

printsigset(&p);　//打印测试结果

sleep(1);

}

return 0;

}

将文件保存为exam12signalset.c，在终端中使用gcc编译，并且运行，可以看到如下的输出结果。当使用“Ctrl+C”组合键发送一个终止信号的时候，可以看到立即打印输出一个“1”。

alloeat@ubuntu:～/chapter8Exam$ gcc exam12signalset.c -o examsignalset

alloeat@ubuntu:～/chapter8Exam$./examsignalset

0000000000000000000000000000000

0000000000000000000000000000000

0000000000000000000000000000000

0000000000000000000000000000000

^C0100000000000000000000000000000

0100000000000000000000000000000

0100000000000000000000000000000

^C0100000000000000000000000000000

0100000000000000000000000000000

^\退出 (核心已转储)

8.4 信号的阻塞和挂起

在Linux信号的实际应用中，有时候既不希望进程在接收到信号时立刻中断进程的当前工作，也不希望该信号完全被忽略，而是希望进程延迟一段时间再去调用相关的信号处理函数。可以通过阻塞信号的方法来实现这种需求。

Linux提供了sigprocmask函数和sigsuspend函数用于信号的阻塞和挂起。

sigprocmask 函数用于信号的阻塞操作，其可以用于检测或更改进程的信号掩码（Signal Mask），信号掩码是由被阻塞的发送给当前进程的信号组成的信号集，其标准调用格式说明如下。

#include <signal.h>

int sigprocmask(int how, const sigset_t *set, sigset_t *oldset);

sigprocmask的参数set和oldset是sigset_t类型的指针，用于表示所指向的信号集。set指向一个信号集时，参数how表示sigprocmask函数将如何对set所指向信号集以及信号掩码进行操作，其取值及对应函数功能如表8.5所示。当set参数为NULL时，how的取值无效。当oldset不为NULL时，函数sigprocmask将进程当前的信号掩码返回给oldset。

除了让一个信号阻塞，Linux 同样提供了对信号进行挂起操作的函数 sigsuspend。在调用该函数之后，进程停止在该处，等待着开放信号的唤醒。系统在接受到信号后，马上就把现在的信号集还原为原来的，然后调用处理函数。

 表8.5 参数how的取值及对应功能

 [image: figure_0330_0117]

sigsuspend函数的标准调用格式说明如下。

#include <signal.h>

int sigsuspend(const sigset_t *mask);

进程的信号屏蔽字设置为由参数sigmask指向的值。在捕捉到一个信号或发生了一个会终止该进程的信号之前，该进程也被挂起。如果捕捉到一个信号而且从该信号处理程序返回，则sigsuspend返回，并且该进程的信号屏蔽字设置为调用sigsuspend之前的值。如果函数调用若出错则返回-1，同时errno被设置为EINTR。

注意：此函数没有成功返回值。如果它返回到调用者，则总是返回-1。将errno设置为EINTR用于表示一个被中断的系统调用。

【例8.13】是sigprocmask函数和sigsuspend函数的应用实例。

【例8.13】信号的阻塞和挂起。

#include <signal.h>

#include <stdio.h>

#include <stdlib.h>

#include <errno.h>

static void sig_quit(int);

int　main(void)

{

sigset_t newmask, oldmask, pendmask;

if (signal(SIGQUIT, sig_quit) == SIG_ERR)

{

perror("can't catch SIGQUIT");

}

sigemptyset(&newmask);//初始化信号集

sigaddset(&newmask, SIGQUIT); //添加SIGQUIT到信号集

if (sigprocmask(SIG_BLOCK, &newmask, &oldmask) < 0)

{

perror("SIG_BLOCK error");　//如果调用阻塞操作失败

}

sleep(5);　//休眠

if (sigpending(&pendmask) < 0)

{

perror("sigpending error");　//挂起操作失败

}

if (sigismember(&pendmask, SIGQUIT)) //测试SIGQUIT信号是否属于该信号集

{

("\nSIGQUIT pending\n");

}

if (sigprocmask(SIG_SETMASK, &oldmask, NULL) < 0)

{

perror("SIG_SETMASK error");

}

printf("SIGQUIT unblocked\n");

sleep(5);　//终止

exit(0);

}

static void sig_quit(int signo)

{

printf("caught SIGQUIT\n");

if (signal(SIGQUIT, SIG_DFL) == SIG_ERR)

{

perror("can't reset SIGQUIT");　//打印出错信息

}

}

将文件保存为 exam13sig.c，在终端中使用 gcc 编译，并且运行，可以看到如下的输出结果。

alloeat@ubuntu:～/chapter8Exam$ gcc exam13sig.c -o examsig

alloeat@ubuntu:～/chapter8Exam$./examsig

SIGQUIT unblocked
第9章 Linux的管道、命名管道和进程间通信

在第8章中介绍了使用信号机制来实现Linux系统中的多进程间的信息交互，但是信号机制能够交互的信息量很小，通常来说只是起到一个“通知”事件发生的作用。如果进程要向另外一个进程发送一些数据信息，此时可以使用管道或者命名管道。

9.1 Linux的管道基础

管道（Pipe）也称为匿名管道，是Linux下最常见的进程间通信方式之一，它是在两个进程之间实现一个数据流通的通道。管道是一种很经典的进程之间的通信方式，其具有两个缺点。

● 部分系统中的管道是半双工的，数据只能向一个方向流动（这一项特征应该根据相应的Linux内核来确认）。

● 管道通常来说只能在有相同祖先的进程间使用，例如父子进程、兄弟进程等。

9.1.1 管道的基本概念

管道是Linux/UNIX系统中比较原始的进程间通信形式，它实现数据以一种数据流的方式在进程间流动。在系统中其相当于文件系统上的一个文件，用于缓存所要传输的数据。在某些特性上它又不同于文件，例如，当数据读出后，则管道中就没有数据了，但文件没有这个特性。

管道是Linux中最古老的进程通信机制，其应用非常广泛，和信号类似，其也提供了相应的操作符“|”以供用户在Shell中使用。

操作符“|”将其前后两个命令连接到一起，前一个命令的输出成为后一个命令的输入，可以支持使用多个“|”连接多个命令。其标准调用格式说明如下，命令A输出即为命令B的输入，假如命令A为“ls”命令，则这个输出即为当前目录下的文件列表。

命令A|命令B|命令C……|命令N

在 8.1.4 节中介绍了使用“kill - l”命令来查看当前系统中所支持的信号类型列表。如果想在该信号列表中直接查找含有字串“SIGRTMAX”的信号，可以使用管道操作符“|”来连接“kill - l”和“grep”命令，此时 Shell 创建了 kill -l 和 grep 两个进程和这两个进程间的管道，将“kill - l”命令的输出作为“grep”命令的输入，也就是说在信号列表中查找包括“SIGRTMAX”的信号，其输出如下。

alloeat@ubuntu:～/chapter9Exam$ kill -l

1) SIGHUP　　2) SIGINT　　3) SIGQUIT　4) SIGILL　　5) SIGTRAP

6) SIGABRT　7) SIGBUS　　8) SIGFPE　　9) SIGKILL　10) SIGUSR1

11) SIGSEGV　12) SIGUSR2　13) SIGPIPE　14) SIGALRM　15) SIGTERM

16) SIGSTKFLT　17) SIGCHLD　18) SIGCONT　19) SIGSTOP　20) SIGTSTP

21) SIGTTIN　22) SIGTTOU　23) SIGURG　24) SIGXCPU　25) SIGXFSZ

26) SIGVTALRM　27) SIGPROF　28) SIGWINCH　29) SIGIO　　30) SIGPWR

31) SIGSYS　34) SIGRTMIN　35) SIGRTMIN+1　36) SIGRTMIN+2　37) SIGRTMIN+3

38) SIGRTMIN+4　39) SIGRTMIN+5　40) SIGRTMIN+6　41) SIGRTMIN+7　42) SIGRTMIN+8

43) SIGRTMIN+9　44) SIGRTMIN+10 45) SIGRTMIN+11 46) SIGRTMIN+12 47) SIGRTMIN+13

48) SIGRTMIN+14 49) SIGRTMIN+15 50) SIGRTMAX-14 51) SIGRTMAX-13 52) SIGRTMAX-12

53) SIGRTMAX-11 54) SIGRTMAX-10 55) SIGRTMAX-9　56) SIGRTMAX-8　57) SIGRTMAX-7

58) SIGRTMAX-6　59) SIGRTMAX-5　60) SIGRTMAX-4　61) SIGRTMAX-3　62) SIGRTMAX-2

63) SIGRTMAX-1　64) SIGRTMAX

alloeat@ubuntu:～/chapter9Exam$ kill -l | grep SIGRTMAX

48) SIGRTMIN+14 49) SIGRTMIN+15 50) SIGRTMAX-14 51) SIGRTMAX-13 52) SIGRTMAX-12

53) SIGRTMAX-11 54) SIGRTMAX-10 55) SIGRTMAX-9　56) SIGRTMAX-8　57) SIGRTMAX-7

58) SIGRTMAX-6　59) SIGRTMAX-5　60) SIGRTMAX-4　61) SIGRTMAX-3　62) SIGRTMAX-2

63) SIGRTMAX-1　64) SIGRTMAX

9.1.2 管道的实现方法

当一个进程创建一个管道时，Linux系统内核为使用管道准备了两个文件描述符。—个用于管道的输入，也就是在管道中写入数据；另—个用于管道的输出，也就是从管道中读出数据。然后进程对这两个文件描述符调用正常的系统调用，内核利用这种抽象机制实现了管道这一特殊操作，如图9.1所示。

 [image: figure_0333_0118]

 图9.1 管道的结构

如果—个管道只与一个进程相联系，只实现进程自身内部的通信，这个管道是毫无意义的。通常情况下，一个创建管道的进程接着就会创建其子进程。由于父子进程可以共享打开文件，子进程会从父进程那里继承到读写管道的文件描述符，这样，父子进程间的通信管道就建立起来了，如图9.2所示。

 [image: figure_0334_0119]

 图9.2 父进程和子进程之间的管道

最后需要确定数据的传输方向是从子进程传送到父进程，还是从父进程送到子进程。这一点确定之后，父子进程分别关闭与之无关的那个描述符。例如，数据从子进程传送到父进程，则子进程关闭读管道的描述符，父进程关闭写管道的描述符。这样，就建立了从子进程到父进程的通信管道，如图9.3所示。

 [image: figure_0334_0120]

 图9.3 从子进程到父进程的管道

9.1.3 管道读写操作规则

在建立了一个管道之后，即可通过调用相应的文件操作函数（例如 read、write 等）来读写管道一完成信息的传递。

需要注意的是，由于管道的一端已经关闭，在进行相应的操作时需要注意以下3个要点。

● 如果从一个写描述符关闭的管道中读数据，当读完所有的数据后，read 函数返回0，表明已到达文件末尾。严格来说，只有当没有数据继续写入后，才可以说到达了文件末尾。所以应该分清到底是暂时没有数据输入，还是已经到达文件末尾。如果是前者，读进程应该等待。多进程写、单进程读的情况就更加复杂。

● 如果向一个读描述符关闭的管道中写数据，就会产生 SIGPIPE 信号。不管是忽略这个信号，还是处理它，write函数都会将返回-1。

● 常数 PIPE_BUF 规定了内核中管道缓冲的大小，所以在写管道时要注意这一点。一次向管道中写入PIPE_BUF或更少的字符，不会和其他进程写入的内容交错。反之，当存在多个写管道的进程时，向其中写入超过PIPE_BUF个字符时，就会产生交错现象。

注意：在Linux系统中，可以使用pathconf或fpathconf函数来确定PIPE_BUF的大小，在 Ubuntu 中这个值是 4 096。

9.1.4 管道的特点

Linux的管道具有以下特点。

● 管道没有名字，所以也称为匿名管道。

● 管道是半双工的，数据只能向一个方向流动。需要双方向通信时，需要建立两个管道。

● 只能用于父子进程或者兄弟进程之间（具有亲缘关系的进程）通信。

● 单独构成一种独立的文件系统。管道对于管道两端的进程而言，就是一个文件。但它不是普通的文件，它不属于某种文件系统，而是自立门户，单独构成一种文件系统，并且只存在于内存中。

● 数据的读出和写入：一个进程向管道中写的内容被管道另一端的进程读出。写入的内容每次都添加在管道缓冲区的末尾，并且每次都是从缓冲区的头部读出数据。

● 管道的缓冲区是有限的（管道只存在于内存中，在创建管道时，为缓冲区分配一个页面大小）。

● 管道所传送的是无格式字节流，这就要求管道的读出方和写入方必须事先约定好数据的格式，例如，多少字节算作一条消息（或命令、或记录）等。

注意：在实际应用中，由于管道中的数据是无格式的，所以必须采用一个事先设计好的数据格式。

9.2 Linux的管道操作

Linux的管道操作包括管道的创建和管道的读写。

9.2.1 管道的创建和应用

Linux内核提供了函数pipe用于创建一个管道，其标准调用格式说明如下。

#include <unistd.h>

int pipe(int pipefd[2]);

函数的参数pipefd[2]是一个长度为2的文件描述符数组，其中pipefd[0]是读出端的文件描述符，fd[1]是写入端的文件描述符。也就是说 pipefd[0]只能为读打开，而 pipefd[1]是为写操作打开的。当函数调用成功之后，则自动维护了一个从fd[1]到fd[0]的数据通道。

函数如果调用成功，则返回0，如果调用失败，则返回-1。

1．创建管道

【例9.1】是一个调用pipe函数创建一个管道的应用实例，它调用pipe函数创建一个管道，并且打印管道的文件描述符。

【例9.1】管道的创建和应用实例1。

#include <unistd.h>

#include <stdio.h>

#include <stdlib.h>

#include <errno.h>

int main(void)

{

int fd[2];　　　// 文件描述符

char str[256];

if((pipe(fd)) < 0)　//创建管道

{

perror("create the pipe failed!\n");

exit(0);

}

write(fd[1], "create the pipe successfully!\n", 31);　//向管道写入端写入数据

read(fd[0], str, sizeof(str));　//从管道读出端读出数据

printf ("%s", str); //输出字符串

printf ("pipe file ID　are%d,%d \n", fd[0], fd[1]) ;　//打印管道描述符

close(fd[0]);　　　// 关闭管道的读出端文件描述符

close(fd[1]);　　　// 关闭管道的写入端文件描述符

return 0;

}

将文件保存为exam1ownpipe.c，在终端中使用gcc编译，并且运行，可以看到如下的输出结果。

alloeat@ubuntu:～/chapter9Exam$ gcc exam1ownpipe.c -o examownpipe1　//编译

alloeat@ubuntu:～/chapter9Exam$./examownpipe1　//运行

create the pipe successfully!　//创建成功

pipe file ID　are3,4　//打印管道的文件描述符

2．父子进程的管道通信

在实际使用中，进程自身创建一个管道是没有意义的。通常来说，进程先会创建一个子进程，然后创建一个管道，将需要传送的数据通过管道传送给子进程。【例9.2】给出了一个在父子进程间传送字符串数据的实例。

【例9.2】管道的创建和应用实例2。

#include <unistd.h>

#include <stdio.h>

#include <sys/types.h>

#include <stdlib.h>

#include <errno.h>

int main(void)

{

int n, fd[2];

pid_t pid;

char buffer[BUFSIZ+1];　//8192

if(pipe(fd)<0)　//创建一个管道，两个文件描述符在fd数组中

{

perror("pipe failed!\n ");

exit(0);

}

if((pid=fork())<0)　//创建一个子进程

{

printf("fork failed!\n ");

exit(0);

}

else if (pid>0)　//父进程

{

close(fd[0]);

write(fd[1],"This is a pipe test!\n",22);　//向管道写入数据,注意回车换行符

}

else　//子进程

{

close(fd[1]); //关闭

n = read(fd[0],buffer,BUFSIZ);　//从管道中读出数据

write(STDOUT_FILENO,buffer,n);　//将数据写到标准输出设备

}

exit(0);

}

将文件保存为exam2forkpipe.c，在终端中使用gcc编译，并且运行，可以看到如下的输出结果。

alloeat@ubuntu:～/chapter9Exam$ gcc exam2forkpipe.c -o examforkpipe

alloeat@ubuntu:～/chapter9Exam$./examforkpipe

This is a pipe test!

3．兄弟进程的管道通信

前面介绍过，管道通信只能在有亲缘关系的进程之间进行，这些具有亲缘关系的进程除了父子进程之外，还包括兄弟进程。【例9.3】给出了一个在兄弟进程之间使用管道进行数据通信的实例。

【例9.3】管道的创建和应用实例3。

#include <unistd.h>

#include <stdio.h>

#include <stdlib.h>

#include <sys/types.h>

#include <limits.h>

#include <string.h>

#include <errno.h>

#define BUFSIZE 4096　//定义一个最大的读写空间

int main(void)

{

int fd[2];

char buf[BUFSIZE] = "hello!I am your　brother!\n";　　// 缓冲区

pid_t pid;

int len;

if ((pipe(fd)) < 0)　　//创建管道

{

perror("pipe failed\n");

}

if ((pid = fork()) < 0)　　//创建第一个子进程

{

perror("fork failed\n");

}

else if (pid == 0)　　　//子进程

{

close (fd[0]);　　　//关闭不使用的文件描述符

write(fd[1], buf, strlen(buf));　//发送字符串

exit(0);

}

if ((pid = fork()) < 0)　　　//创建第二个子进程

{

perror("fork failed\n");

}

else if (pid > 0)　　　//父进程

{

close (fd[0]);

close (fd[1]);

exit (0);

}

else　　　　　//第二个子进程

{

close (fd[1]);　　　　//关闭管道文件描述符

len = read (fd[0], buf, BUFSIZE);　//读取消息

write(STDOUT_FILENO, buf, len); //将消息输出到标准输出

exit(0);

}

return 0;

}

将文件保存为exam3brotherpipe.c，在终端中使用gcc编译，并且运行，可以看到如下的输出结果。

alloeat@ubuntu:～/chapter9Exam$ gcc exam3brotherpipe.c -o exambrotherpipe　//编译

alloeat@ubuntu:～/chapter9Exam$./exambrotherpipe　//运行

hello!I am your　brother!　//输出字符串

4．管道的进一步应用

前面两个小节的实例只是简单地使用了管道的文件描述符，更常见的情况是子进程调用dup或dup2函数，将管道的文件描述符复制到标准输入或输出上，接着子进程调用exec函数运行其他程序，那么这个程序的标准输入或标准输出就成为从管道读入或向管道输出了，【例9.4】和【例9.5】是两个更为复杂的应用实例。

【例9.4】是通过调用Linux的“more”命令来实现分页输出一个指定文件的的应用实例。其首先创建了一个管道，然后调用 fork 函数创建一个子进程并且使子进程的标准输入成为管道的读端，然后使用exec函数调用more命令来对指定文件进行操作。

【例9.4】管道的创建和应用实例4。

#include <unistd.h>

#include <stdio.h>

#include <stdlib.h>

#include <sys/types.h>

#include <limits.h>

#include <string.h>

#include <errno.h>

#include <sys/wait.h>

#define DEF_PAGER "/bin/more"　//定义处理函数

#define MAXLINE　4096　//行最大字符数

int main(int argc, char *argv[])

{

int　　　n;

int　　　fd[2];

pid_t　pid;

char　*pager, *argv0;

char　line[MAXLINE];

FILE　*fp;

if (argc != 2)　//如果参数不正确

{

perror("usage:<pathname>\n");

exit(1);

}

if ((fp = fopen(argv[1], "r")) == NULL)　//如果以只读打开argv[1]指向的文件出错

{

printf("can't open %s", argv[1]);

exit(1);

}

if (pipe(fd) < 0)　//创建管道失败

{

perror("pipe error");

exit(0);

}

if ((pid = fork()) < 0)　//创建子进程失败

{

perror("fork error");

exit(0);

}

else if (pid > 0)

{　　　　　　　//父进程

close(fd[0]);　　//关闭读文件描述符

//将argv[1]通过管道发送

while (fgets(line, MAXLINE, fp) != NULL)

{

n = strlen(line);

if (write(fd[1], line, n) != n)

{

perror("write error to pipe");

exit(1);

}

}

if (ferror(fp))　//如果文件描述符出错

{

perror("fgets error");

exit(1);

}

close(fd[1]);

if (waitpid(pid, NULL, 0) < 0)

{

perror("waitpid error");

exit(1);

}

exit(0);

}

else　//子进程

{

close(fd[1]);

if (fd[0] != STDIN_FILENO)

{

if (dup2(fd[0], STDIN_FILENO) != STDIN_FILENO)

{

perror("dup2 error to stdin");

exit(1);

}

close(fd[0]);　/* don't need this after dup2 */

}

//exec函数的参数

if ((pager = getenv("PAGER")) == NULL)

pager = DEF_PAGER;

if ((argv0 = strrchr(pager, '/')) != NULL)

{

argv0++;

}

else

{

argv0 = pager;

}

if (execl(pager, argv0, (char *)0) < 0)

{

printf("execl error for %s", pager);

exit(1);

}

}

exit(0);

}

将文件保存为 exam4pipemore.c，在终端中使用 gcc 编译，并且运行，可以看到如下的输出结果。

alloeat@ubuntu:～/chapter9Exam$ gcc exam4pipemore.c -o exampipemore　//编译

alloeat@ubuntu:～/chapter9Exam$./exampipemore　//调用输出

usage:<pathname>　//提示使用路径

: Success

alloeat@ubuntu:～/chapter9Exam$./exampipemore exam4pipemore.c

//正确的调用方式，指定自身C文件作为输入文件

【例9.5】是另外一个通过管道进行数据传输的应用实例，其调用了一个用户自己编写的大小写字母切换应用程序 upcase（该应用程序存放在同一个目录下），将一个指定文件内的小写字母字符串都转换为大写字符串并且输出。

【例9.5】管道的创建和应用实例5。

#include <unistd.h>

#include <stdio.h>

#include <sys/types.h>

#include <sys/wait.h>

#include <stdlib.h>

#include <string.h>

#include <errno.h>

int main(int argc, char *argv[])

{

int n,fd[2];

pid_t pid;

char buffer[BUFSIZ+1];　//缓冲区定义

FILE *fp;

if(argc<=1)　//如果参数错误

{

printf("usage: %s <pathname>\n",argv[0]);

exit(1);

}

// 打开需要转换的文件

if((fp=fopen(argv[1],"r"))==NULL)

{

printf("Can't open %s \n", argv[1]);

exit(1);

}

//创建管道

if(pipe(fd)<0)

{

perror("pipe failed!\n ");

exit(1);

}

//创建子进程

if((pid=fork())<0)

{

perror("fork failed!\n ");

exit(1);

}

else if (pid>0)　//父进程

{

close(fd[0]);

while(fgets(buffer,BUFSIZ,fp)!=NULL)

{

n = strlen(buffer); //获得长度

//向管道中写入数据

if(write(fd[1],buffer,n)!=n)

{

perror("write error to pipe.\n"); //写入出错

exit(1);

}

}

if(ferror(fp))　//判断fp是否出错

{

perror("fgets error. \n");

exit(1);

}

close(fd[1]);　//关闭端口

if(waitpid(pid, NULL, 0)<0)　//释放子进程

{

perror("waitpid error!\n");

exit(1);

}

exit(0);

}

else　　　//子进程

{

close(fd[1]);

if(fd[0]!=STDIN_FILENO)

{

//指向标准输入

if(dup2(fd[0],STDIN_FILENO)!=STDIN_FILENO)

{

perror("dup2 error to stdin! \n");　//如果出错

exit(1);

}

close(fd[0]);

}

//执行upcase用户程序

if(execl("upcase","upcase",(char *)0)<0)

{

perror("execl error for upcase.\n");　//如果出错

exit(1);

}

exit(0);

}

}

其中涉及的 upcase 应用程序的代码如下，这是一个将指定文本的小写字符转换为大写字符的应用程序。

#include <stdio.h>

char buffer1[100],buffer2[100];

int i;

int main(void)

{

fgets(buffer1, sizeof(buffer1),stdin);　//将标准输入的数据写入buffer1

for(i=0;i<100;i++)　//开始复制数据

{

if(buffer1[i]>=97&&buffer1[i]<=122)

{

buffer2[i]=buffer1[i]-32;

}

else

{

buffer2[i]=buffer1[i];

}

}

printf("the str is: %s \n",buffer2);

return;

}

将文件保存为exam5pipeupcase.c，在终端中使用gcc编译，并且运行，可以看到如下的输出结果。

alloeat@ubuntu:～/chapter9Exam$ gcc exam5pipeupcase.c -o exampipeupcase　//编译

alloeat@ubuntu:～/chapter9Exam$./exampipeupcase　//运行

usage: ./exampipeupcase <pathname>　//参数出错

alloeat@ubuntu:～/chapter9Exam$./exampipeupcase pipetest.txt

the str is: THIS IS A TEST!

注意：读者可以自行建立文件pipetest.txt，输入一个带回车的、包括小写字符的字符串即可。

9.2.2 管道的高级操作函数

在 9.2.1 节的应用实例中可以看到 pipe 函数和 fork 函数通常是配合起来使用的。Linux内核同样提供了“合二为一”的的函数用于对应的操作，其标准调用格式说明如下。

#include <stdio.h>

FILE *popen(const char *command, const char *type);

int pclose(FILE *stream);

popen函数和pclose函数必须要配合使用，其很类似fopen和fclose函数的组合，其详细说明如下。

函数popen用于创建管道。它内部调用fork和exec函数执行命令行cmdstring，返回一个FILE结构的指针，即用于访问管道的指针。

popen 中的参数 const char *cmdstring 就是一个命令行。所有的 Shell 命令行参数和选项都可以使用。例如，可以使用如下的命令行调用。

popen("ls *.*","r");

popen("sort > /tmp/foo","w");

popen("sotr | uniq | more", "w");

popen 中的参数 const char *type 指出管道的类型。如果管道是以类型“r”打开的，那么这个管道的输入端连接到了命令行cmdstring的标准输出端。此时，命令行的输出可以从管道中读入。反之，如果管道是以类型“w”打开的，那么这个管道的输出端连接到了命令行的标准输入端。此时，向管道中写入的数据就成为命令行的输入数据。可以看到，type的作用与fopen和fclose中的相同，可以取“r”或“w”，表示管道可读或可写，但决不可以既可读又可写。在Linux系统中，规定管道的打开方式取决于type的第一个字符，比如type为“rw”，那么管道就是以“r”方式，即可读方式打开的。

函数pclose是用来关闭管道的。它关闭标准输入输出流，等待命令行执行完毕，然后返回结束时的状态。如果Shell不能执行这个命令行，结束时的状态就如同在Shell中执行了exit函数。

【例9.6】是使用popen函数来实现【例9.5】中功能的应用实例。

【例9.6】管道的高级操作函数应用实例。

#include <stdio.h>

#include <sys/types.h>

#include <sys/wait.h>

#include <stdlib.h>

#include <errno.h>

#include <stdlib.h>

int main(int argc, char *argv[])

{

char buffer[BUFSIZ+1];

FILE *fpin, *fpout;　//流变量

if(argc<=1)

{

printf("usage: %s <pathname>\n",argv[0]);　//如果参数出错

exit(1);

}

if((fpin=fopen(argv[1],"r")) == NULL) //以读方式打开指定文件

{

printf("Can't open %s \n", argv[1]);

exit(1);

}

if((fpout=popen("./upcase","w"))==NULL) //以写方式打开，注意命令行方式

{

perror("popen error \n");

exit(1);

}

while(fgets(buffer,BUFSIZ,fpin)!=NULL)　//写入数据

{

if(fputs(buffer,fpout)==EOF)　//如果到达文件结尾

{

perror("fputs error to pipe. \n"); //指明错误

exit(1);

}

}

if(ferror(fpin))　//判断流是否错误

{

perror("fgets error. \n");　//错误

exit(1);

}

if(pclose(fpout)==-1)　//关闭

{

printf("pclose error.\n");

exit(1);

}

exit(0);

}

将文件保存为 exam6popenpcase.c，在终端中使用 gcc 编译，并且运行，可以看到如下的输出结果。其中涉及的upcase和pipetest.txt文件说明请参考【例9.5】。

alloeat@ubuntu:～/chapter9Exam$ gcc exam6popenupcase.c -o exampopenupcase

alloeat@ubuntu:～/chapter9Exam$./exampopenupcase

usage: ./exampopenupcase <pathname>

alloeat@ubuntu:～/chapter9Exam$./exampopenupcase pipetest.txt

the str is: THIS IS A TEST!

注意：在使用popen来调用upcase应用程序的时候需要使用“./upcase”。

9.3 Linux命名管道基础

从前面的章节可以知道，Linux的管道只能在有亲缘关系的进制之间实现通信，所以如果两个“毫无关系”的进程需要进行数据交换的时候就不能使用管道。但是Linux内核提供了另一种“管道”可以实现这种功能，其被称为命名管道（Named Pipe）或者先进先出队列（FIFO）。

命名管道不同于管道之处在于，它提供一个路径名与之关联，以命名管道的文件形式存在于文件系统中。这样，即使与命名管道的创建进程不存在亲缘关系的进程，只要可以访问该路径，就能够彼此通过命名管道相互通信（即能够访问该路径的进程以及命名管道的创建进程之间可以通信），因此不相关的进程通过命名管道也能交换数据。

注意：管道和命名管道都是实实在在的文件，但是管道没有公开的文件名，用户在文件系统中不能直接观察到并且访问到它；命名管道则是以普通文件形式存在的，任何进程都可以将其当成一个普通文件进行处理。

总之，命名管道与管道的区别主要体现在以下两点。

● 命名管道可以用于任何两个进程间的通信，而并不限制这两个进程同源，因此命名管道的使用比管道的使用要灵活方便得多。

● 命名管道作为一种特殊的文件存放于文件系统中，而不是像管道一样存放于内存（使用完毕后消失）。当进程对命名管道的使用结束后，命名管道依然存在于文件系统中。除非对其进行删除操作，否则该命名管道不会消失。

命名管道的出现，也极好地解决了系统在应用过程中产生的大量的中间临时文件的问题。命名管道可以被 Shell 调用，使数据从一个进程到另一个进程，系统不必为该中间通道而必须清理不必要的垃圾，或者去释放该通道的资源，它可以被留给后来的进程使用。

另外，需要注意的是，命名管道严格遵循先进先出（First In First Out）的规则，对管道及命名管道的读总是从开始处返回数据，对它们的写则把数据添加到末尾，所以它们不支持诸如lseek函数等文件定位操作。

9.3.1 使用命名管道

在Shell环境下，可以很简单地识别出命名管道文件。文件名后面紧跟着一根竖线，就是命名管道文件的标志。而在程序中，由于命名管道文件是一种特殊类型的文件，可以通过S_ISFIFO宏来检测。

在Shell中可以使用“mkfifo”命令建立一个命名管道，mkfifo命令的格式如下所示。

mkfifo [option] name...

其中 option 选项中可以选择要创建的命名管道模式，使用形式为-m mode，这里 mode指出将要创建的命名管道的八进制模式。注意，这里新创建的命名管道会像普通文件一样受到创建进程的umask修正。name表示所要创建的命名管道的名称。

关于更详尽的信息，用户可随时使用“man mkfifo”命令查看帮助信息。

一旦建立了一个命名管道，就可以像普通文件那样，对其使用 open、close、read、write、unlink等文件操作函数了。但是由于命名管道是个特殊的文件，不像普通管道那样存在于内核中，仅仅创建并不能立即使用，必须打开才能进行读写操作。读写操作要特别注意以下几点。

● 像普通管道那样，如果没有其他写进程打开一个命名管道，就对其进行读操作时，会产生SIGPIPE信号。如果所有的写进程都关闭命命名管道，对其的读操作就会认为到达文件末尾。

● 在多个写进程的情况下，写交错现象就有可能发生。与普通管道相同，只要一次写入的字符数不超过PIPE_BUF，就不会产生写交错现象。

命名管道常常产生阻塞状态。也就是说，如果一个读进程打开命名管道，那么这个进程就要进入阻塞状态，直到其他写进程打开这个管道为止。同样，如果一个写进程打开命名管道，这个进程也会出现阻塞状态，直到其他读进程打开这个管道为止。

如果用户不希望出现这种阻塞状态，可以通过设置 O_NONBLOCK 标志来实现。这样，不管有没有写进程，读打开操作就会立即返回。但是，如果没有读进程，写打开操作就会产生错误。

9.3.2 命名管道的常用工作方式

命名管道通常有如下两种工作方式。

● 命名管道由 Shell 命令使用，以便将数据从一条管道传送到另外一条管道，此时无须创建一个中间临时文件。

● 命名管道用于客户进程和服务器进程的应用程序中，以在客户进程和服务器进程之间传递数据。

1．命名管道的数据流复制传送

命名管道可以用于复制串行管道之间的数据流，此时不需要将数据写入到中间磁盘文件，因为命名管道具有名字，其可以用于非线性连接。

注意：管道没有名字，所以只能用于进程之间的线性连接。

图9.4是一个需要对一个输入流进行两次处理的操作。

 [image: figure_0349_0121]

 图9.4 一个对输入流进行两次处理的操作

使用命名管道以及tee命令则可以实现以上功能，tee命令从标准输入设备读取数据，将其内容输出到标准输出设备，同时保存成文件。用户可利用tee把管道导入的数据存成文件，甚至一次保存数份文件，tee命令的标准调用格式说明如下。

tee [OPTION]... [FILE]...

用户可以使用如下的命令序列来实现相应的操作。

mkfifo fifo　//创建fifo命名管道

prog3 < fifo&　//后台启动进程3

prog1<infile|tee fifo1|prog3

/*从fifo读取数据，然后启动进程1，并且使用tee命令将进程1的输出复制到标准输出

和文件infile*/

以上的操作处理过程如图9.5所示。

 [image: figure_0350_0122]

 图9.5 使用命名管道将一个流发送到两个进程

2．命名管道的终端通信

命名管道还经常用于在客户进程和服务器进程之间传送数据。如果有一个服务器进程需要和多个客户进程相关联，则每个客户进程都可以将这个请求写到一个该服务器进程所创建的公共的命名管道中，如图9.6所示。

 [image: figure_0350_0123]

 图9.6 服务器进程和客户进程使用命名管道通信

在这个通信模型中，最重要的一个问题是服务器进程如何将应答回馈给各个客户进程。最常见的解决方案是每个客户进程都在其发送的数据包中包含其进程 ID，然后服务器进程根据这些进程ID来为每个客户进程都创建一个命名管道，如图9.7所示。

如图9.7所示的模型，服务器进程可以只读方式打开公共的命名管道，当客户进程都关闭之后，服务器进程会在这个公共的命名管道中读到一个EOF（文件结束标志）。这种工作模型有如下两个缺点。

 [image: figure_0351_0124]

 图9.7 服务器进程和客户进程使用命名管道通信的完整模型

● 服务器进程不能判断一个客户进程是否会崩溃终止，此时为响应客户进程所建立的客户专属命名管道可能会丧失操作者，从而成为系统垃圾。

● 由于客户进程和服务器进程采用“发送—响应“的工作模式，所以服务器进程必须捕捉SIGPIPE信号，否则会出现响应不及时导致客户进程挂起的情况。

9.3.3 命名管道的打开和读写

对命名管道的操作和对普通文件十分相似，可以使用系统调用open打开一个命名管道，使用read和write函数对命名管道进行读写，使用close关闭一个命名管道。若要删除一个命名管道，则使用系统调用unlink。这些函数均在第4章中进行了详细的介绍。

1．打开命名管道

管道没有公开的名字，所以不能进行打开操作，当然其也不需要进行打开操作。但是命名管道是以一个普通文件存在的，用户可以对其进行打开操作（例如，调用open函数等）。但是命名管道的打开与其他文件的打开是有区别的，其打开规则说明如下。

● 如果当前打开操作是为读而打开命名管道时，若已经有相应进程为写而打开该命名管道，则当前打开操作将成功返回。否则，可能阻塞直到有相应进程为写而打开该命名管道（当前打开操作设置了阻塞标志），或者成功返回（当前打开操作没有设置阻塞标志）。

● 如果当前打开操作是为写而打开命名管道时，若已经有相应进程为读而打开该命名管道，则当前打开操作将成功返回。否则，可能阻塞直到有相应进程为读而打开该命名管道（当前打开操作设置了阻塞标志），或者返回ENXIO错误（当前打开操作没有设置阻塞标志）。

2．读命名管道

从命名管道中读取数据的必须遵循以下规则。

● 如果一个进程为了从命名管道中读取数据而阻塞打开命名管道，那么称该进程内的读操作为设置了阻塞标志的读操作。

● 如果有进程为了写入而打开命名管道，且当前命名管道内没有数据，则对于设置了阻塞标志的读操作来说，将一直阻塞。对于没有设置阻塞标志读操作来说则返回-1，当前errno值为EAGAIN，提醒以后再试。

● 对于设置了阻塞标志的读操作来说，造成阻塞的原因有两种：当前命名管道内有数据，但有其他进程在读这些数据；另外就是命名管道内没有数据。解除阻塞的原因则是命名管道中有新的数据写入，不论新写入数据量的大小，也不论读操作请求多少数据量。

● 读打开的阻塞标志只对本进程第一个读操作施加作用，如果本进程内有多个读操作序列，则在第一个读操作被唤醒并完成读操作后，其他将要执行的读操作将不再阻塞，即使在执行读操作时，命名管道中没有数据也一样（此时，读操作返回0）。

● 如果没有进程写打开命名管道，则设置了阻塞标志的读操作会阻塞。

注意：如果命名管道中有数据，则设置了阻塞标志的读操作不会因为命名管道中的字节数小于请求读的字节数而阻塞，此时，读操作会返回命名管道中现有的数据量。

3．写命名管道

向命名管道中写入数据必须符合以下规则。

● 如果一个进程为了向命名管道中写入数据而阻塞打开命名管道，那么称该进程内的写操作为设置了阻塞标志的写操作。

● 对于设置了阻塞标志的写操作，当要写入的数据量不大于 PIPE_BUF 时，Linux将保证写入的原子性。如果此时管道空闲缓冲区不足以容纳要写入的字节数，则进入睡眠，直到当缓冲区中能够容纳要写入的字节数时，才开始进行一次性写操作。

● 当要写入的数据量大于 PIPE_BUF 时，Linux 将不再保证写入的原子性。命名管道缓冲区一有空闲区域，写进程就会试图向管道写入数据，写操作在写完所有请求写的数据后返回。

● 对于没有设置阻塞标志的写操作，当要写入的数据量大于 PIPE_BUF 时，Linux将不再保证写入的原子性。在写满所有命名管道空闲缓冲区后，写操作返回。

● 当要写入的数据量不大于 PIPE_BUF 时，Linux 将保证写入的原子性。如果当前命名管道空闲缓冲区能够容纳请求写入的字节数，写完后成功返回。如果当前命名管道空闲缓冲区不能够容纳请求写入的字节数，则返回EAGAIN错误，提醒以后再写。

注意：原子操作（Atomic Operation）指的是由多步组成的操作。简单来讲，操作的原子性是指某一事务中的所有操作要么全部执行，要么全部不执行，不可能只执行所有步骤的一个子集。

9.4 Linux命名管道的操作

9.4.1 命名管道的创建

Linux内核提供了相应的函数用于创建命名管道，其标准调用格式说明如下。

#include <sys/types.h>

#include <sys/stat.h>

int mkfifo(const char *pathname, mode_t mode);

mkfifo函数的pathname参数是一个普通的路径名，也就是创建后命名管道文件的名字；mode参数是文件的操作权限，可以参考第4章中关于open函数的mode参数说明。如果函数调用成功返回0，否则返回-1。

如果mkfifo函数的pathname参数所指示的文件已经存在，则会返回EEXIST错误。所以一般典型的调用代码首先会检查是否返回该错误，如果确实返回该错误，那么只要调用打开命名管道的函数就可以了。通常来说，对于文件的I/O操作函数都可以用于FIFO，如close、read、write等。

注意：在使用“man”命令查看 mkfifo 函数的相关说明的时候，必须使用“man 3mkfifo”。

【例 9.7】是一个使用 mkfifo 来创建一个指定名称的命名管道的应用实例，命名管道的名称从参数avgv传入。

【例9.7】创建命名管道应用实例。

#include <sys/types.h>

#include <sys/stat.h>

#include <errno.h>

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char *argv[])

{

mode_t mode = 0666;　/*新创建的FIFO模式*/

if(argc != 2)

{

printf("USEMSG: create_FIFO { FIFO name}\n"); /*向用户提示程序使用帮助*/

exit(1);

}

if((mkfifo(argv[1], mode)) < 0)　/* 使用mkfifo函数创建一个FIFO管道*/

{

perror("failed to mkfifo!\n");

exit(1);

}

else

{　/*输出FIFO文件的名称*/

printf("you successfully create a FIFO name is : %s\n", argv[1]);

}

return 0;

}

将文件保存为 exam7mkfifo.c，在终端中使用 gcc 编译，并且运行，可以看到如下的输出结果。

alloeat@ubuntu:～/chapter9Exam$ gcc exam7mkfifo.c -o exammkfifo //编译

alloeat@ubuntu:～/chapter9Exam$./exammkfifo　//运行

USEMSG: create_FIFO { FIFO name}　//提示输入指定的命名管道名称

alloeat@ubuntu:～/chapter9Exam$./exammkfifo MYFIFO　//指定MYFIFO为名称

failed to mkfifo!　//该文件已经存在，创建失败

: File exists

alloeat@ubuntu:～/chapter9Exam$./exammkfifo MYFIFO1　//指定MYFIFO1为名称

you successfully create a FIFO name is : MYFIFO1　//创建成功

注意：使用“ls”命令可以在对应的文件夹中看到对应的命名管道文件。

9.4.2 命名管道的读写

命名管道的读写操作和普通文件很类似，可以应用第4章介绍的相应操作函数完成相关操作。【例9.8】是一个建立命名管道并且对其进行读写的应用实例。

【例9.8】命名管道的读写实例。

#include <unistd.h>

#include <sys/types.h>

#include <errno.h>

#include <stdlib.h>

#include <stdio.h>

#include <sys/stat.h>

#include <fcntl.h>

#define FIFO　"FIFO2"　//定义FIFO名称

int main(void)

{

pid_t pid;

int fd_r,fd_w;

int num_r,num_w;

int len = 40;

char buf_r[len];　//读写缓冲区

char buf_w[len];

//建立缓冲区，注意权限的设置

if((mkfifo(FIFO,O_CREAT|O_EXCL)<0)&&(errno!=EEXIST))

{

perror("create fifo fail!\n ");

exit(1);

}

if((pid=fork())==0)　//创建子函数

{

sleep(1);

printf("进程(%d):准备打开fifo ",getpid());

fd_r = open(FIFO,O_RDONLY,0);

if(fd_r==-1)//以阻塞方式读打开，没有其他进程写则打开操作阻塞

{

printf("进程(%d):打开fifo失败... ",getpid());

return;

};

printf("进程(%d):打开fifo成功. ",getpid());

while(1)

{

num_r = read(fd_r,buf_r,sizeof(buf_r));

printf(　"读字节数：%d ",num_r);

sleep(1);

//这里将验证写阻塞，写进程不休眠，很快就把管道写满，再写的时候就阻塞了

}

}

else if(pid>0)

{

printf("进程(%d):准备打开fifo ",getpid());

//if(open(FIFO,O_WRONLY|O_NONBLOCK,0)==-1)

fd_w = open(FIFO,O_WRONLY,0);

if(fd_w ==-1)//以阻塞方式写打开，没有其他进程读则打开操作阻塞

{

printf("进程(%d):打开fifo失败... ",getpid());

return;

}

printf("进程(%d):打开fifo成功. ",getpid());

while(1)

{

num_w = write(fd_w,buf_w,sizeof(buf_w));

printf(　"写字节数：%d ",num_w);

}

}

}

将文件保存为exam8fifo.c，在终端中使用gcc编译，并且运行，可以看到如下的输出结果。

alloeat@ubuntu:～/chapter9Exam$ gcc exam8fifo.c -o examfifo　//编译

alloeat@ubuntu:～/chapter9Exam$./examfifo　//运行

进程(6332):准备打开fifo进程(6332):打开fifo失败... ^C

【例9.9】和【例9.10】是使用命名管道来实现9.3.2节中提到的终端通信的实例，客户端进程通过一个命名管道将一个字符串发送到服务器端。

【例9.9】命名管道通信服务器端实例。

#include <stdio.h>

#include <stdlib.h>

#include <sys/stat.h>

#include <unistd.h>

#include <linux/stat.h>

#include <errno.h>

#define FIFO_FILE "MYFIFO"　//命名管道名称

int main(void)

{

FILE *fp;

char readbuf[80];　//读缓冲区

//创建命名管道文件

if((fp=fopen(FIFO_FILE,"r"))==NULL)

{

umask(0);

mknod(FIFO_FILE,S_IFIFO|0666,0);

}

else

{

fclose(fp);　//如果存在关闭fp

}

while(1)

{

//打开命名管道文件

if((fp=fopen(FIFO_FILE,"r"))==NULL)

{

printf("open fifo failed. \n");

exit(1);

}

// 从命名管道中读数据

if(fgets(readbuf,80,fp)!=NULL)

{

printf("Received string :%s \n", readbuf);

fclose(fp);

}

else

{

if(ferror(fp))　//如果出错

{

perror("read fifo failed.\n");

exit(1);

}

}

}

return 0;

}

【例9.10】命名管道通信客户端实例。

#include <stdio.h>

#include <stdlib.h>

#define FIFO_FILE "MYFIFO"

int main(int argc, char *argv[])

{

FILE *fp;

int i;

if(argc<=1) //如果参数错误

{

printf("usage: %s <pathname>\n",argv[0]);

exit(1);

}

if((fp=fopen(FIFO_FILE,"w"))==NULL) //打开文件

{

printf("open fifo failed. \n");

exit(1);

}

for(i=1;i<argc;i++)　//通过管道发送数据

{

if(fputs(argv[i],fp)==EOF)

{

printf("write fifo error. \n");

exit(1);

}

if(fputs(" ",fp)==EOF)

{

printf("write fifo error. \n");

exit(1);

}

}

fclose(fp);

return 0;

}

分别编译服务器端和客户端代码。首先运行客户端，然后在另外一个终端界面中通过客户端向服务器发送字符串，可以看到如下的输出结果。

//以下为服务器端的输出

alloeat@ubuntu:～/chapter9Exam$ gcc exam9fifosever.c -o examfifosever

//编译服务器端

alloeat@ubuntu:～/chapter9Exam$./examfifosever//运行客户端

Received string :this is a test　//接收到的字符串1

Received string :this is a another test!　//接收到的字符串2

//以下为客户端的输出

alloeat@ubuntu:～/chapter9Exam$ gcc exam9fifoclient.c -o examfifoclient

//编译客户端

alloeat@ubuntu:～/chapter9Exam$./examfifoclient this is a test　//发送字符串1

alloeat@ubuntu:～/chapter9Exam$./examfifoclient this is a another test!

//发送字符串2
第10章 Linux的System V IPC进程通信

System V IPC 机制是 Linux 从 UNIX 继承的进程间通信机制，其由消息队列、信号量以及共享内存3种具体实现方法组成，这3种IPC通信方式在编程接口和内部实现上都非常类似。

10.1 Linux的System V IPC进程通信基础

System V IPC 通信机制的 3 种具体实现方法具有相同的特点。例如，其都是采用类似的控制函数，都采用类似的ipc_perm结构，都具有标志符和关键字。

10.1.1 System V IPC的操作函数

Linux 内核提供了相应的函数用于实现 System V IPC 通信，消息队列、信号量和共享内存3种具体实现方式分别对应不同的头文件和动作操作函数，如表10.1所示。

 表10.1 System V IPC的通信函数

 [image: figure_0359_0125]

注意：可以看到 System V IPC 的 3 种实现方法中的相应操作函数的名称都很类似，但是必须要注意其对应的头文件是不同的。

10.1.2 System V IPC的标识符和关键字

1．标识符

每一个 System V IPC 的结构（消息队列、信号量和共享存储区段）都对应了一个标识符（ID），其是一个非负整数。当一个IPC结构被创建的时候，和该结构相关的标志符会自动加1并且赋予这个结构作为唯一内部标识，当这个非负整数累加到溢出的时候，会自动恢复到0重新开始。

每个 System V IPC 的进程通信机制中的结构都需要和唯一的一个标识符相联系。如果进程要访问这个IPC结构，则需要在Linux操作系统中传递这个唯一的引用标识符。例如，要访问某个共享内存段，唯一需要的就是指定给这个内存段的标识符，只有通过这个标识符才可以完成相关的操作。

标识符的唯一局限是在对应的IPC结构的类别内。为了说明这一点，假设“666”是某个消息队列的标识符，那么肯定不会有第二个消息队列的标识符为“666”，但是某个共享内存或者某个信号集的标识符却有可能是“666”。

2．关键字

标识符是 IPC 结构的内部名称，其在不同结构分类的内部是唯一的，但是对于整个System V IPC 机制而言却不是唯一的。所以，为了使多个合作进程能够使用同一个 IPC 结构，需要给IPC结构一个唯一的外部名称，这个外部名称被称为关键字（Key）。

当调用msgget函数、semget函数或者shmget函数创建一个IPC结构的时候，必须指定一个关键字，关键字的数据类型是Linux内核提供的基本系统数据类型key_t，这是一个长整型数据，其定义在头文件<sys/types.h>中，由内核转变为标识符。

在实际应用中，IPC结构的关键字有如下3种获取方式。

● 父进程或者服务器进程在创建一个新的 IPC 结构的时候使用关键字IPC_PRIVATE，将内核返回的标识符存放在某处，以供子进程或者客户进程使用。

● 在一个公用头文件中定义一个服务器进程和客户进程都“知道”的关键字，然后服务器进程使用这个关键字来创建一个新的IPC结构。

● 服务器进程和客户进程使用同一个路径和项目 ID（一个 0～255 之间的字符值），然后使用ftok函数将路径和项目ID转换为一个关键字，提供给服务器进程和客户进程使用。

3．ftok函数

ftok函数用于将一个路径和项目ID转换为关键字，其标准调用格式说明如下。

#include <sys/types.h>

#include <sys/ipc.h>

key_t ftok(const char *pathname, int proj_id);

path参数必须是一个存在的、可以访问的文件路径名，项目ID则只有低8位有效。如果调用成功则返回一个key_t类型的关键字，如果失败返回(key_t)-1。

对于命名同一个文件的所有路径名，当用同样的ID调用ftok函数，该函数返回相同的关键字。当用不同的ID调用ftok函数时，返回不同的关键字。如果ID低8位为0，ftok函数的返回是一个随机结果。

注意：ftok函数返回的关键字是根据文件的inode确定的。因此，如果这个文件在删除后又重新创建，则由ftok函数返回的关键字也会改变，尽管路径名仍然一样也是如此。

使用IPC资源通信的进程虽然可以直接用诸如1234这样的整数作为关键字，但它们之间需要在程序编码上保持一致。此外，这样做还有一个更致命的弱点：其他进程也可能使用这个整数作为另外的IPC资源的关键字。在这种情况下，则有可能导致混乱。因此，最好用ftok函数来生成IPC资源的关键字。

【例10.1】是一个使用ftok函数来创建关键字的应用实例。

【例10.1】使用ftok函数创建关键字应用实例。

#include <stdio.h>

#include <stdlib.h>

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/stat.h>

#include <unistd.h>

int main(int argc, char **argv)

{

struct stat stat1 ;

if (argc != 2)

{

printf("usage: ftok < pathname >");　//提示输入指定文件

exit(1);

}

stat(argv[1],&stat1); //获得文件的状态

//输出相应的信息

printf("st_dev:%lx, st_ino:%lx, key:%x\n",\

(unsigned long)stat1.st_dev,(unsigned long)stat1.st_ino,ftok(argv[1],0x579));

printf("st_dev:%lx, st_ino:%lx, key:%x\n",\

(unsigned long)stat1.st_dev,(unsigned long)stat1.st_ino,ftok(argv[1],0x118));

printf("st_dev:%lx, st_ino:%lx, key:%x\n",\

(unsigned long)stat1.st_dev,(unsigned long)stat1.st_ino,ftok(argv[1],0x22));

printf("st_dev:%lx, st_ino:%lx, key:%x\n",\

(unsigned long)stat1.st_dev,(unsigned long)stat1.st_ino,ftok(argv[1],0x33));

exit(0);

}

将文件保存为exam1ftok.c，在终端中使用gcc编译，并且运行，可以看到如下的输出结果。

alloeat@ubuntu:～/chapter10Exam$ gcc exam1ftok.c -o examftok

alloeat@ubuntu:～/chapter10Exam$./examftok

usage: ftok < pathname >alloeat@ubuntu:～/chapter10Exam$./examftok examftok

//没有指定文件名，再次指定，使用应用程序自身作为文件路径

st_dev:700, st_ino:21f7f, key:79001f7f

st_dev:700, st_ino:21f7f, key:18001f7f

st_dev:700, st_ino:21f7f, key:22001f7f

st_dev:700, st_ino:21f7f, key:33001f7f

从【例10.1】可以看到，ftok函数的返回值是一个合成的关键字值。对于同一个文件来说其可以生成多个关键字值，从理论上来说同一个文件可以得到最多 256 个关键字值。

在用户调用 semget、msgget、shmget 函数获得关键字值的时候，其返回的都是对应IPC对象的标识符，图10.1展示了这个过程。

 [image: figure_0362_0126]

 图10.1 创建关键字

10.1.3 ipc_perm的结构和权限

每一个IPC的对象都有一个ipc_perm结构与之对应，这个结构中记录了对象的一些信息，如所有者、创建者和权限等。它定义在头文件<sys/ipc.h>中，具体定义如下所示。

struct ipc_perm{

uid_t uid;　　　　/*所有者的有效用户ID */

gid_t gid;　　　/*所有者的有效组ID */

uid_t cuid;　　　/*创建者有效用户ID */

gid_t cgid;　　　/*创建者的有效组ID */

mode_t mode;　　　/*访问权限 */

ulong seq;　　　/*应用序号 */

key_t key;　　　/*关键字 */

};

下面详细说明这个结构的部分分量的含义。

● uid、gid、cuid 和 cgid：这 4 个分量中记录了 IPC 的对象的所有者和创建者的信息，它们是在创建对象时确定下来的，也可以通过系统函数的调用修改它们的值。但是，有权限修改这些值的只能是对象的创建者或超级用户。这与文件系统中的chown和chmod有些类似。

● mode：这个分量记录了 IPC 的对象的访问权限，它与文件的访问权限有些类似，同样，用户、组用户和其他用户这3类不同用户的权限不同。但是，这些权限中没有可执行权限了，并且术语也有些改变。消息队列和共享内存的权限使用术语“可读”、“可写”，而信号量则使用术语“可读”和“可改变”。IPC对象的不同权限如表10.2所示。

 表10.2 IPC对象的访问权限

 [image: figure_0363_0127]

● seq：这个分量记录了 IPC 的对象的应用序号，它并不是确定的值。每次对象被使用，这个值都会增加1，直到整数的最大值，然后又重新从0开始。用户不需要对它有很深的了解。

● key：这个分量记录了进程通信对象的关键字的值。

msgget、semget、shmget 函数最右边的形参 flag（msgget 中为 msgflg、semget 中为semflg、shmget中shmflg）为IPC对象创建权限，3个函数中flag参数的作用基本相同。

IPC对象创建权限（即flag）格式为0xxxxx，其中0表示8进制，低3位为用户、属组、其他的读、写、执行权限（执行位不使用），其含义与ipc_perm的mode相同，具体含义如表10.2所示。

IPC对象创建权限格式的低3位通常被称为“IPC对象存取权限”，如“0600”代表只有此用户下的进程才有可读、可写权限。IPC对象存取权限常与IPC_CREAT、IPC_EXCL两种标志进行或（|）运算完成对IPC对象创建的管理。可以把IPC_CREAT、IPC_EXCL两种标志称为IPC创建模式标志。

下面是两种创建模式标志在<sys/ipc.h>头文件中的宏定义。

#define IPC_CREAT　01000　//如果key不存在，则创建

#define IPC_EXCL　02000　//如果key存在，则失败

综上所述，flag 标志由两部分组成，一部分为 IPC 对象存取权限（含义同 ipc_perm中的mode），另一部分为IPC对象创建模式标志（IPC_CREAT、IPC_EXCL），两者进行或运算合成IPC对象创建权限。

10.1.4 创建System V IPC对象过程

Linux内核提供了相应的函数来创建一个新的或者访问一个已经存在的IPC对象，其创建或者访问的规则说明如下。

● 指定 key 为 IPC_PRIVATE 操作系统保证创建一个唯一的 IPC 对象。

● 设置 flag 参数的 IPC_CREAT 位，但不设置它的 IPC_EXCL 位时，如果所指定 key键的IPC对象不存在，那就是创建一个新的对象，否则返回该对象。

● 同时设置 flag 的 IPC_CREAT 和 IPC_EXCL 位时，如果所指定 key 键的 IPC 对象不存在，那就创建一个新的对象，否则返回一个EEXIST错误，因为该对象已存在。

表10.3 是创建 System V IPC 对象的总结。

 表10.3 System V IPC对象创建总结

 [image: figure_0364_0128]

在使用semget、msgget、shmget 创建一个IPC对象时，需要指定flag标志，在key不等于IPC_PRIVATE情况下，flag标志决定了创建方式和创建后IPC对象的存取权限。在key等于IPC_PRIVATE情况下，flag标志决定了创建后IPC对象的存取权限。如果只是引用一个已经存在的IPC对象，只需把flag标志设为0即可。

图10.2是使用相应函数创建或者打开一个IPC对象的流程示意。

10.1.5 System V IPC的缺点

System V IPC 进程通信机制具有以下几个缺点。

 [image: figure_0365_0129]

 图10.2 创建一个IPC对象流程

● IPC 结构是在 Linux 系统范围内起作用的，其没有访问计数机制，也不会自我删除，停止使用的IPC结构会一直保留在系统中直到被主动删除。

● IPC 结构不能在文件系统中公开访问，这主要是因为 IPC 结构没有对应的名字，所以也不能使用文件操作的函数来对这些结构进行操作。

● IPC 结构没有文件描述符，所以也不能对其使用多路转接 I/O 函数 select 和 poll，所以不能在文件或者设备I/O中使用IPC结构，同样也不能一次性使用多个IPC结构。

10.1.6 System V IPC的操作命令

可以使用ipcs命令得到当前Linux操作系统中IPC中所有对象的状态，该命令的标准调用格式说明如下。

ipcs [-asmq] [-tclup]

ipcs [-smq] -i id

ipcs -h

其参数说明如下。

-i：用于指定一个标识符。

以下参数用于指定IPC对象类型。

● -m：指定共享内存。

● -q：指定消息队列。

● -s：指定信号量。

● -a：所有的 IPC 结构。

以下用于指定输出格式。

● -t：按时间。

● -p：按照标识符。

● -c：按照创建者。

● -l：按照权限。

● -u：按照概要。

在当前 Linux 中使用 ipcs -a 命令可以看到类似如下的输出结果。

alloeat@ubuntu:～/chapter10Exam$ ipcs -a

//共享内存

------ Shared Memory Segments --------

key　　shmid　owner　perms　bytes　nattch　status

0x00000000 0　　alloeat　600　　393216　2　　dest

0x00000000 32769　alloeat　600　　393216　2　　dest

0x00000000 65538　alloeat　600　　393216　2　　dest

0x00000000 98307　alloeat　600　　393216　2　　dest

0x00000000 131076　alloeat　600　　499800　2　　dest

0xcbc384f8 163845　alloeat　600　　64528　1

0x00000000 327686　alloeat　777　　28728　2　　dest

0x00000000 294919　alloeat　777　　7695360　2　　dest

//信号量

------ Semaphore Arrays --------

key　　semid　owner　perms　nsems

0xcbc384f8 0　　alloeat　600　　1

//消息队列

------ Message Queues --------

key　　msqid　owner　perms　used-bytes　messages

0x00000518 0　　alloeat　660　　0　　0

10.2 消息队列

消息队列是一种以链表式结构组织的一组数据，存放在内核中，是由各进程通过消息队列标识符来引用的一种数据传送方式。像其他两种IPC对象一样，消息队列也是由内核来维护的。消息队列是3个IPC对象类型中最具有数据操作性的数据传送方式，在消息队列中可以随意根据特定的数据类型值来检索消息。

10.2.1 消息队列基础

消息队列就是一个消息的链表，每个消息队列都有一个队列的队列头，用结构 structmsg_queue来描述。队列头中包含了该消息队列的大量信息，包括消息队列键值、用户ID、组ID、消息队列中消息数目等，甚至记录了最近对消息队列读写进程的ID。用户可以访问这些信息，也可以设置其中的某些信息。

结构msg_queue用来描述消息队列的队列头，存在于系统空间，定义如下。

struct msg_queue

{

struct ipc_perm q_perm;

time_t q_stime;　　//上一条消息发送时间

time_t q_rtime;　　//上一条消息接收时间

time_t q_ctime;　　//上一次修改时间

unsigned long q_cbytes; //当前队列中的字节数据

unsigned long q_qnum;　//队列中的消息数

unsigned long q_qbytes; //队列的最大字节数

pid_t q_lspid;　　//上一条发送消息的pid

pid_t q_lrpid;　　//上一条接收消息的pid

struct list_head q_messages;

struct list_head q_receivers;

struct list_head q_senders;

};

结构msqid_ds用来设置或返回消息队列的信息，存在于用户空间，定义如下。

struct msqid_ds

{

struct ipc_perm msg_perm;

struct msg *msg_first;　//队列中第一条消息

struct msg *msg_last;　//队列中最后一条消息

time_t msg_stime; //上一条消息发送时间

time_t msg_rtime; //上一条消息接收时间

time_t msg_ctime; //上一次修改时间

unsigned long msg_lcbytes;

unsigned long msg_lqbytes;

unsigned short msg_cbytes;　//当前队列中的字节数据

unsigned short msg_qnum;　//队列中的消息数

unsigned short msg_qbytes;　//队列的最大字节数

pid_t msg_lspid;　//上一条发送消息的pid

pid_t msg_lrpid;　//上一条接收消息的pid

};

在Linux中消息队列的一些相关的配置参数说明如表10.4所示。

 表10.4 消息队列的一些配置参数

 [image: figure_0368_0130]

图10.3 是 Linux 操作系统中使用消息队列的示意。其中，struct ipc_ids msg_ids 是内核中记录消息队列的全局数据结构。struct msg_queue 是每个消息队列的队列头。

 [image: figure_0368_0131]

 图10.3 内核数据结构与消息队列

从图10.3 可以看到，全局数据结构 struct ipc_ids msg_ids 可以访问到每个消息队列头的第一个成员：struct ipc_perm；而每个 struct ipc_perm 能够与具体的消息队列对应起来，这是因为在该结构中，有一个 key_t 类型成员 key，而 key 则唯一确定一个消息队列。

ipc_perm结构定义如下。

struct ipc_perm

{

//内核中记录消息队列的全局数据结构msg_ids能够访问到该结构

key_t　key;　//该键值唯一对应一个消息队列

uid_t　uid;　//所有者的有效用户ID

gid_t　gid;　//所有者的有效组ID

uid_t　cuid;　//创建者的有效用户ID

gid_t　cgid;　//创建者的有效组ID

mode_t mode; //此对象的访问权限

unsigned long seq; //对象的序号

};

在10.1.5节中提到过，消息队列是随内核持续的，只有在内核重起或者显示删除一个消息队列时，该消息队列才会真正被删除。因此系统中记录消息队列的数据结构（struct ipc_ids msg_ids）位于内核中，系统中的所有消息队列都可以在结构 msg_ids 中找到访问入口。

注意：“随进程持续的”定义为，IPC一直存在，直至打开IPC对象的最后一个进程关闭该对象为止，如管道和有名管道。因为是“随内核持续的”定义为，IPC一直持续到内核重新自举或者显示删除该对象为止，如消息队列、信号量以及共享内存等；“随文件系统持续的”定义为，IPC一直持续到显示删除该对象为止。

10.2.2 创建消息队列

如表10.1所示，Linux内核提供了msgget函数创建或者打开一个消息队列，其标准调用格式说明如下。

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/msg.h>

int msgget(key_t key, int msgflg);

函数msgget的参数说明如下。

● 当参数 key 的取值为 IPC_PRIVATE 时，不管 flag 为何值，这个函数将创建一个新的消息队列。

● 当参数 key 的取值不为 IPC_PRIVATE 时，操作类型就取决于 flag 的值。如果 flag中设置了IPC_CREAT位，而没有设置IPC_EXCL位，就既可能执行打开操作，也可能执行创建操作。当key的取值与内核中某个存在的消息队列的关键字相同时，执行打开这个消息队列的操作，返回引用标识符。反之，当key的取值不与存在的任何一个消息队列的关键字相同时，就会执行创建消息队列的操作，返回引用标识符。

● 当参数 key 的取值不是 IPC_PRIVATE 时，如果 flag 中同时设置了 IPC_CREAT 和IPC_EXCL两位，则只会执行创建消息队列操作。当key的取值不与存在的任何一个消息队列的关键字相同时，就会执行创建消息队列的操作，返回引用标识符。当key的取值与内核中某个存在的消息队列的访问键相同时，这个函数就会出错返回。

所以，打开存在的消息队列的方法只有一种：将key取为要打开的消息队列的关键字的值，而flag中绝对不能设置IPC_EXCL位，这样就会成功地打开这个消息队列。另外，也可以通过flag参数设置消息队列的访问权限。当函数调用成功时会返回消息队列的引用标识符，否则返回-1，其对应的可能error列表说明如下。

● EACCES：指定的消息队列已存在，但调用进程没有权限访问它。

● EEXIST：key 指定的消息队列已存在，而 msgflg 中同时指定 IPC_CREAT 和IPC_EXCL标志。

● ENOENT：key指定的消息队列不存在，同时 msgflg 中没有指定 IPC_CREAT标志。

● ENOMEM：需要建立消息队列，但内存不足。

● ENOSPC：需要建立消息队列，但已达到系统的限制。

当一个新的消息队列被创建时，与之对应的msqid_ds结构会按照如下规则进行初始化。

● ipc_perm 结构会被初始化，其中，mode 域的设置会按照 flag 的要求进行。

● msg_qunm、msg_lspid、msg_lrpid、msg_stime 和 msg_rtime 都会被置 0。

● msg_ctime 被置为当前时间。

● msg_qbytes 被置为系统限制值。

【例10.2】是一个调用msgget函数来创建一个消息队列的应用实例。

【例10.2】创建消息队列应用实例。

#include <stdio.h>

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/msg.h>

#include <errno.h>

#include <stdlib.h>

int main(void)

{

key_t key;

int msqid;

printf("Enter the desired key in hex ="); //输入一个信号队列编号，十六进制

scanf("%x",&key); //读取输入值

printf("\nkey=0x%x", key); //输出输入值

if((msqid=msgget(key,IPC_CREAT|0660))==-1) //创建一个信号队列

{

perror("The msgget failed.\n");　//如果出错

exit(1);

}

printf("The msgget succeeded:msqid=%d \n",msqid); //输出对应的信号队列编号

exit(0);

}

将文件保存为exam2msgget.c，在终端中使用gcc编译，并且运行，可以看到如下的输出结果。

alloeat@ubuntu:～/chapter10Exam$ gcc exam2msgget.c -o exammsgget //编译

alloeat@ubuntu:～/chapter10Exam$./exammsgget //运行

Enter the desired key in hex =4567 //输入一个指定的关键字

key=0x4567The msgget succeeded:msqid=163841 //对应的标志符

alloeat@ubuntu:～/chapter10Exam$ ipcs -q //使用ipcs命令来查看对应的消息队列

------ Message Queues --------

key　　msqid　owner　perms　used-bytes　messages

0x00000518 0　　alloeat　660　　0　　0

0x00004567 163841　alloeat　660　　0　　0　//刚刚创建的消息队列

10.2.3 消息队列的发送和接收

消息队列允许两种操作：发送消息和接收消息。进程通过向消息队列发送消息和从消息队列接收消息来实现进程间的通信。

消息队列中存放的是一个个消息，而每个消息是一个结构体，该结构体由两个分量构成：消息的类型分量和数据分量。其中，类型分量由一个正的长整数构成，而数据分量根据不同的需要可以有不同的形式，其标准格式说明如下。

struct msgbuf

{

long mtype;　//消息的类型

char mtext[n];　//消息的内容

};

mtext[n]分量中的n用于确定消息的大小，也就是该消息中包括的字节数。

1．消息发送函数

Linux提供了msgsnd函数用于向消息队列发送消息，其标准调用格式说明如下。

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/msg.h>

int msgsnd(int msqid, const void *msgp, size_t msgsz, int msgflg);

msgsnd函数的参数说明如下。

● msqid 参数：消息队列的引用标识符，新发送的消息插入消息队列的末尾。

● ptr 参数：指向—个长正整数的指针，这个正整数之后紧跟着消息中所传递的数据。举例说明，ptr可以是指向自定义的结构mymsg的指针。

● nbytes 参数：消息的长度，不包括那个长正整数在内，以字节记。

● flag 参数：可以取 0 或者 IPC_NOWAIT。一旦设置 IPC_NOWAIT 位，在消息队列满的情况下（可能是消息个数太多，或者消息的总字节数太多），msgsnd 将不等待而直接带错返回；否则，发送消息的函数将被阻塞，直到消息队列腾出空间，或者消息队列被删除。

如果函数调用成功，将返回0，否则返回-1，并且会设置对应的error参数值，其详细说明如下。

● EAGAIN：参数 msgflg 设为 IPC_NOWAIT，而消息队列已满。

● EIDRM：标识符为 msqid 的消息队列已被删除。

● EACCESS：无权限写入消息队列。

● EFAULT：参数 msgp 指向无效的内存地址。

● EINTR：队列已满而处于等待情况下被信号中断。

● EINVAL：无效的参数 msqid、msgsz 或参数消息类型 type 小于 0。

2．消息接收函数

对应消息发送函数，Linux内核提供了相应的函数msgrcv用于接收消息，其标准调用格式说明如下。

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/msg.h>

ssize_t msgrcv(int msqid, void *msgp, size_t msgsz, long msgtyp,int msgflg);

msgrcv函数的参数说明如下。

● msqid 参数：消息队列的引用标识符。

● ptr 参数：指向一个长正整数的指针，这个正整数之后紧跟着一块空间，用来存储消息中所传递的数据。如果函数调用成功，系统就会将消息拷贝到这决空间中，并将消息本身从队列中删除。

● nbytes参数：要接收的消息数据的长度，以字节为单位。如果消息中数据的长度超过了这个值，就根据flag的值分两种情况来处理，要么截断数据，要么出错返回。

● type 参数：这个参数用来指定要接收消息队列中的哪条消息，并不是按照先进先出的顺序，其可分为3种情况，如表10.5所示。

 表10.5 tpye参数的取值

 [image: figure_0373_0132]

● flag 参数：flag 参数和接收消息有关。如果设置 IPC_NOWAIT 位，在指定的 type无效的情况下，msgrcv将不等待而直接带错返回。否则，msgrcv调用将被阻塞，直到所希望的消息已放置在队列中，type变为有效或者消息队列被删除。如果设置MSG_NOERROR位，当消息数据长度超过nbytes时，消息数据就被截断，函数正确返回；否则，函数错误返回，消息仍然存在于消息队列中。

如果 msgrcv 函数调用成功，将返回接收的消息数据的字节数，否则返回-1，同时将按照如下规则更新与消息队列msqid相连数据结构的成员。

● msg_qnum 减 1。

● msg_lrpid 等于调用进程的进程 ID。

● msg_rtime 等于当前时间。

msgrcv函数可能对应的error错误值说明如下。

● E2BIG：消息数据长度大于 msgsz，而 msgflag 没有设置 IPC_NOERROR。

● EIDRM：标识符为 msqid 的消息队列已被删除。

● EACCESS：无权限读取该消息队列。

● EFAULT：参数 msgp 指向无效的内存地址。

● ENOMSG：参数 msgflg 设为 IPC_NOWAIT，而消息队列中无消息可读。

● EINTR：等待读取队列内的消息情况下被信号中断。

3．消息队列的发送和接收应用

【例10.3】是一个使用msgsnd函数通过消息队列发送用户指定字符串的实例，而【例10.4】是一个从【例10.3】接收发送字符串的应用实例。

【例10.3】消息队列字符串发送应用实例。

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

#include <unistd.h>

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/msg.h>

#include <error.h>

//信息结构体

struct my_msg

{

long int my_msg_type; //数据类型

char text[BUFSIZ];　//消息缓冲区的大小

} msgbuf;

int main(void)

{

int runningFlg =1;　//运行标志

int msgid;　　//消息标识符

msgid = msgget((key_t)1234,0666 |IPC_CREAT); //创建一个消息队列，使用1234作为键值

if(msgid==-1)

{

perror("msgget failed!\n"); //如果创建失败

exit(1);

}

while(runningFlg == 1)　//如果程序处于运行中

{

printf("输入希望发送的字符串: ");

fgets(msgbuf.text,BUFSIZ,stdin); //从标准输入读取BUFSIZ指定的数据

msgbuf.my_msg_type = 1; //指定数据类型

if(msgsnd(msgid,(void *)&msgbuf, BUFSIZ, 0)==-1) //发送数据

{

perror("msgsnd failed!\n"); //如果发送失败

exit(1);

}

if(strncmp(msgbuf.text,"end",3)==0) //如果用户输入end

{

runningFlg = 0;　//结束运行

}

}

return 0;

}

【例10.4】消息队列字符串接收应用实例。

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

#include <unistd.h>

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/msg.h>

#include <errno.h>

//定义的消息队列的结构体

struct my_msg

{

long int my_msg_type;

char text[BUFSIZ];

} msgbuf;

int main(void)

{

int runningFlg =1;

int msgid;

long int msg_to_receive=0;

msgid = msgget((key_t)1234,0666 |IPC_CREAT); //建立消息队列

if(msgid == -1) //如果建立消息队列失败

{

printf("msgget failed!\n");

exit(1);

}

while(runningFlg == 1) //进入循环

{

if(msgrcv(msgid,(void *)&msgbuf, BUFSIZ,msg_to_receive, 0)==-1)

{

perror("msgrcv failed!\n");　//如果接收数据失败

exit(1);

}

printf("接收到的字符串是 : %s", msgbuf.text);

if(strncmp(msgbuf.text,"end",3)==0)

runningFlg = 0; //如果接收完成

}

if(msgctl(msgid, IPC_RMID, 0)==-1) //删除消息队列

{

perror("msgct(IPC_RMID) failed!\n"); //如果删除消息队列失败

exit(1);

}

return 0;

}

将文件分别保存为exam3msgsnd.c和exam4msggrcv.c，在两个终端中分别使用gcc编译，并且运行，可以看到如下的输出结果。

alloeat@ubuntu:～/chapter10Exam$ gcc exam3msgsnd.c -o exammsgsnd

alloeat@ubuntu:～/chapter10Exam$./exammsgsnd

输入希望发送的字符串: tr

输入希望发送的字符串: test

输入希望发送的字符串: this is sender

以下为接收端的编译运行结果。

alloeat@ubuntu:～/chapter10Exam$ gcc exam4msggrcv.c -o exammsggrcv

alloeat@ubuntu:～/chapter10Exam$./exammsggrcv

接收到的字符串是 : tr

接收到的字符串是 : test

接收到的字符串是 : this is sender

10.2.4 消息队列的控制

除了对消息队列进行读写操作之外，Linux内核同样提供了对消息队列进行相应控制的函数msgctl，其可以用于以下操作，标准调用格式说明如下。

● 查看与消息队列相关的数据结构。

● 改变消息队列的许可权限。

● 改变消息队列的拥有者。

● 改变消息队列的字节大小。

● 删除一个消息队列。

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/msg.h>

int msgctl(int msqid, int cmd, struct msqid_ds *buf);

msgctl函数的参数说明如下：

● msqid：一个正整数，它必须是由 msgget 返回的消息队列的 ID。

● cmd：指定要求的操作，如表10.6所示。

注意：执行 IPC_STAT 命令的进程必须具有消息队列的读权限。执行 IPC_SET 和IPC_RMID命令的进程只能是消息队列的创建者、拥有者或特权进程。换言之，执行这两个命令的非特权进程必须是有效用户 ID 等于相连数据结构的成员 msg_perm.cuid 或msg_perm.uid的进程。此外，只有特权进程才可以增大消息队列的字节数。

 表10.6 参数cmd说明

 [image: figure_0377_0133]

● buf 参数：是一个指向类型为 msqid_ds 的结构，该结构由用户分配存储空间，它用于存放IPC_STAT命令的返回结果或IPC_SET命令要设置的值。

如果msgctl函数调用成功，返回0，否则返回-1，其对应的错误列表说明如下。

● EACCESS：参数 cmd 为 IPC_STAT，却无权限读取该消息队列。

● EFAULT：参数 buf 指向无效的内存地址。

● EIDRM：标识符为 msqid 的消息队列已被删除。

● EINVAL：无效的参数 cmd 或 msqid。

● EPERM：参数 cmd 为 IPC_SET 或 IPC_RMID，却无足够的权限执行。

【例10.5】是一个使用msgctl函数来对消息队列进行相应控制的实例。

【例10.5】消息队列控制应用实例。

#include <stdio.h>

#include <string.h>

#include <unistd.h>

#include <sys/ipc.h>

#include <sys/msg.h>

#include <errno.h>

#include <stdlib.h>

#define TEXT_SIZE 512　//缓冲区大小

struct msgbuf　//定义结构体

{

long mtype;

char mtext[TEXT_SIZE];

};

int main(int argc, char **argv)

{

int msqid;

struct msqid_ds info;

struct msgbuf buf;

struct msgbuf buf1;

int flag;

int sendlength, recvlength;

msqid = msgget(IPC_PRIVATE,0666);　//创建一个新的管道通信

if (msqid < 0)　//创建失败

{

perror("get ipc_id error\n");

exit(1);

}

buf.mtype = 1;　//结构体类型

strcpy(buf.mtext, "This is a test!"); //将字符串复制到缓冲区中

sendlength = sizeof(struct msgbuf) - sizeof(long); //获得字符串的长度

flag = msgsnd(msqid,&buf,sendlength,0);

if (flag < 0) //发送失败

{

perror("send message error");

exit(1);

}

buf.mtype = 3;

strcpy(buf.mtext, "this is a anthor test!"); //再次写入数据

sendlength = sizeof(struct msgbuf) - sizeof(long);

flag = msgsnd(msqid,&buf,sendlength,0); //发送数据

if (flag<0)

{

perror("send message error");

exit(1) ;

}

flag = msgctl(msqid, IPC_STAT, &info); //修改状态

if (flag<0)

{

perror("get message status error") ;

exit(1) ;

}

printf("uid:%d,gid = %d,cuid = %d,cgid = %d\n",

info.msg_perm.uid,info.msg_perm.gid,info.msg_perm.cuid,info.msg_perm.cgid);

//打印相应的标识符

printf("read-write:%03o,cbytes = %lu,qnum = %lu,qbytes= %lu\n",

info.msg_perm.mode&0777,info.msg_cbytes,info.msg_qnum,info.msg_qbytes);

system("ipcs -q") ;　//调用ipcs -q命令输出当前的消息队列状态

recvlength = sizeof(struct msgbuf) - sizeof(long);

memset(&buf1,0x00,sizeof(struct msgbuf));

flag = msgrcv(msqid,&buf1,recvlength ,3,0);

if (flag < 0)

{

perror("recv message error");

exit(1);

}

printf("type = %d,message = %s \n",buf1.mtype,buf1.mtext);

flag = msgctl(msqid, IPC_RMID,NULL);

if (flag < 0)

{

perror("rm message queue error");

exit(1);

}

system("ipcs -q") ;

return 0 ;

}

将文件保存为 exam5msgctl.c，在终端中使用 gcc 编译，并且运行，可以看到如下的输出结果。

alloeat@ubuntu:～/chapter10Exam$ gcc exam5msgctl.c -o exammsgctl

alloeat@ubuntu:～/chapter10Exam$./exammsgctl

uid:1000,gid = 1000,cuid = 1000,cgid = 1000

read-write:666,cbytes = 1024,qnum = 2,qbytes= 16384

------ Message Queues --------

key　　msqid　owner　perms　used-bytes　messages

0x00000518 0　　alloeat　660　　0　　0

0x00004567 163841　alloeat　660　　0　　0

0x000004d2 196610　alloeat　666　　0　　0

0x00000000 262147　alloeat　666　　1024　　2

type = 3,message = this is a anthor test!

------ Message Queues --------

key　　msqid　owner　perms　used-bytes　messages

0x00000518 0　　alloeat　660　　0　　0

0x00004567 163841　alloeat　660　　0　　0

0x000004d2 196610　alloeat　666　　0　　0

10.3 信号量

信号量（Semaphore）是一种用于实现计算机资源共享的IPC通信机制，其本质是一个计数器。

10.3.1 信号量基础

1．信号量的表现形式

信号量是用于控制多个进程访问计算机的共享资源的机制，计算机的共享资源按照访问方法可以分为如下两类。

● 互斥共享：即某一时刻只能允许一个进程对资源进行操作。

● 同步共享：同一时刻可以有若干进程对其进行某种操作。

信号量就是用来帮助实现多进程对资源的共享的机制，其名字来源于十字路口的信号灯。当红灯亮时，南北车辆通过路口，东西车辆等待；而绿灯亮时，东西车辆通过路口，南北车辆等待。由此，假设有某个共享资源，某一时刻只能允许一个进程对其进行操作，就像路口只能允许一个方向的车辆通过一样，是一种互斥资源。此时，信号量就像红绿灯一样，当某个进程对资源操作时，把它设置为一种形式，锁定资源，不允许其他进程使用。当这个进程完成操作后，释放资源，把它设置为另外一种形式，允许其他进程使用。这就是比较典型的信号量的使用形式，用于协调多个进程使用同一互斥资源。

信号量还有一种使用形式，用于处理多个共享资源。例如，有6台打印机，若干人要使用。打印机总管手里有空闲打印机个数的记录。当有人要使用打印机时，总管查看空闲打印机数目记录，如果大于0，就可以将打印机资源分配出去，空闲打印机数减1，否则请使用者等待。使用者用完打印机后归还时，空闲打印机数加1，若有使用者等待，就将打印机分配出去。信号量在对多个共享资源的控制中，就起到记录空闲资源数目的作用。

2．信号量的基础定义

当Linux操作系统的一个进程要访问某个共享资源时，它按下列步骤进行。

● 检测控制这个资源的信号量的值。

● 如果信号量的值是正数，就可以使用这个资源。进程将信号量的值减 1，表示它正在使用资源的某个小单元。

● 如果信号量的值为 0，那么这个进程进入睡眠状态，直到信号量的值重新大于零时被唤醒，转入第一步操作。

为了正确地实现信号量这一机制，检测和增减信号量的值应该是原语操作，所以信号量一般是在内核中实现的。

有一种信号量的普通形式，叫做二元信号量。它只控制一个资源，信号量的初始值设为“1”。这就是前面介绍的十字路口信号灯的情况。普遍来讲，信号量的初值可以是任意的正整数，这个初值就是共享资源可以提供的可供共享的单元的个数。

在信号量的实际应用中，是不能单独定义一个信号量的，而只能定义一个信号量集，其中包含一组信号量，同一信号量集中的信号量使用同一个引用 ID，这样设置是为了多个资源或同步操作的需要。每个信号量集都有一个与之对应结构，其中记录了信号量集的各种信息，该结构的定义如下，其定义在头文件<sys/sem.h>中。

struct semid_ds

{

struct ipc_perm　sem_perm;

struct sem　　*sem_base;

ushort　　　sem_nsems;

time_t　　　sem_otime;

time_t　　　sem_ctime;

}

结构中各分量的含义如表10.7所示。

 表10.7 结构semid_ds说明

 [image: figure_0381_0134]

下面介绍semid_ds中涉及的sem结构，这个结构中记录了单一信号量的一些信息，具体描述如下。

struct sem

{

ushort　semval;

pid_t　　sempid;

ushort　semncnt;

ushort　semzcnt;

}

其中每个分量的含义如表10.8所示。

 表10.8 结构sem每个域的含义

 [image: figure_0381_0135]

 续表

 [image: figure_0382_0136]

和消息队列相同，Linux操作系统对于信号量集也有一些限制，如表10.9所示。

 表10.9 Linux操作系统中的信号量集限制

 [image: figure_0382_0137]

10.3.2 信号量的相关函数

Linux提供相应的函数对信号量进行相应的操作，这些操作包括创建或者打开一个信号量集、操作信号量集以及对信号量集进行控制。

1．创建或者打开信号量集

semget函数用于创建或者打开一个信号量集，其标准调用格式说明如下。

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/sem.h>

int semget(key_t key, int nsems, int semflg);

参数key和参数flag的用法可以参考10.1.2节或10.2.3节中对msgget函数的介绍。nsems参数用于指出信号量集中应该创建的信号量的数量，如果是打开一个已存在的信号量集，这个参数就被忽略。

如果调用成功，返回信号量集标识符，否则返回-1，并且设置相应的 error 参数，其详细说明如下。

● EACCESS：没有权限。

● EEXIST：信号量集已经存在，无法创建。

● EIDRM：信号量集已经删除。

● ENOENT：信号量集不存在，同时 semflg 没有设置 IPC_CREAT 标志。

● ENOMEM：没有足够的内存创建新的信号量集。

● ENOSPC：超出限制。

当一个新的信号量集被创建的同时，与之相关联的semid_ds结构被初始化。

● ipc_perm 结构会被初始化，其中，mode 域的设置会按照 flag 的要求进行。

● em_otime 被置为零。

● sem_ctime 被置为当前值。

● sem_nsems 被置为参数 nsems 的值。

2．信号量集的操作

Linux操作系统提供了semop函数用于对信号量集进行操作，其标准调用格式说明如下。

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/sem.h>

int semop(int semid, struct sembuf *sops, unsigned nsops);

参数semid是一个通过semget函数返回的一个信号量集标识符；参数nops标明了参数sops所指向数组中的元素个数；参数sops为sembuf结构的数组，其中每个元素表示一个操作。由于此函数是一个原子操作，一旦执行就将执行数组中所有的操作。

Linux提供了一个结构sembuf，用来说明semop函数要对信号量集执行的操作，其定义如下。

struct sembuf

{

unsigned short sem_num;

short sem_op;

short sem_flg;

}

在sembuf结构中，sem_num是相对应的信号量集中的某一个资源（即指定将要进行操作的信号量），所以其值是一个从0到相应的信号量集的资源总数（ipc_perm.sem_nsems）之间的整数。sem_op指明所要执行的操作，sem_flg说明函数semop的行为。sem_op的值是一个整数，它的取值及所对应的操作说明如下。

● sem_op>0：表示进程对资源使用完毕，释放相应的资源数，并将 sem_op 的值加到信号量的值上。

● sem_op=0：进程阻塞，直到信号量的相应值为 0。当信号量已经为 0，函数立即返回。如果信号量的值不为0，则依据sem_flg的IPC_NOWAIT位决定函数动作。sem_flg指定IPC_NOWAIT，则semop函数出错返回EAGAIN。sem_flg没有指定IPC_NOWAIT，则将该信号量的 semncnt 值加 1，然后进程挂起，直到下述情况发生。信号量值为0，将信号量的semzcnt的值减1，函数semop成功返回，此信号量被删除（只有超级用户或创建用户进程拥有此权限），函数 smeop 出错返回EIDRM。进程捕捉到信号，并从信号处理函数返回，这种情况下将此信号量的semncnt值减1，函数semop出错返回EINTR。

● sem_op<0：请求 sem_op 的绝对值的资源。如果相应的资源数可以满足请求，则将该信号量的值减去 sem_op 的绝对值，函数成功返回。当相应的资源数不能满足请求时，这个操作与sem_flg有关。sem_flg指定IPC_NOWAIT，则semop函数出错返回EAGAIN。sem_flg没有指定IPC_NOWAIT，则将该信号量的semncnt值加 1，然后进程挂起直到下述情况发生：当相应的资源数可以满足请求，该信号的值减去 sem_op 的绝对值。成功返回；此信号量被删除（只有超级用户或创建用户进程拥有此权限）。函数smeop出错返回EIDRM：进程捕捉到信号，并从信号处理函数返回，这种情况下将此信号量的semncnt值减1，函数semop出错返回EINTR。

函数如果调用成功即返回0，否则返回-1，其同样会设置error的对应值，其详细说明如下：

● E2BIG：一次对信号量个数的操作超过了系统限制。

● EACCESS：权限不够。

● EAGAIN：使用了 IPC_NOWAIT，但操作不能继续进行。

● EFAULT：sops 指向的地址无效。

● EIDRM：信号量集已经删除。

● EINTR：当睡眠时接收到其他信号。

● EINVAL：信号量集不存在，或者 semid 无效。

● ENOMEM：使用了 SEM_UNDO，但无足够的内存创建所需的数据结构。

● ERANGE：信号量值超出范围。

3．信号量集的控制

Linux同样提供了semctl函数用于对信号量集的控制，其被称为信号量控制函数。除了设置信号量初值之外，它还可以获取与信号量集相关联的数据结构semid_ds，改变信号量集拥有者以及访问权限，删除指定的信号量集，查看与信号量集有关的其他信息（例如，最后一个操作它的进程和在该信号量集合上等待的进程数等）。

其标准调用格式说明如下。

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/sem.h>

int semctl(int semid, int semnum, int cmd, ...);

semid参数是信号量集的标识符；semnum参数用于指定信号量集中的某一个信号量；cmd用于指定具体的操作动作，如表10.10所示。

 表10.10 semctl的cmd参数说明

 [image: figure_0385_0138]

执行IPC_SET和IPC_RMID命令的进程只能是信号量集的创建进程、拥有进程或特权进程，执行其他命令的进程必须有信号量集的读或更新权限。

根据实际cmd参数的具体内容，semctl可能有第4个参数arg，其是一个联合体（union），val用于SETVAL命令，指明要设置的信号量值；buf用于IPC_STAT/IPC_SET命令，表示存放信号量集数据结构的缓冲区；array用于GETALL/SETALL命令，存放所获得的或要设置的信号量集合中所有信号量的值，说明如下。

union semun

{

int val;

struct semid_ds *buf ;

unsigned short array;

};

semctl函数如果调用成功，则返回值大于等于0（当semctl的操作为GET操作时返回相应的值，其余返回0）。如果调用失败则返回–1，并设置错误变量errno为对应的值，其详细说明如下。

● EACCESS：权限不够。

● EFAULT：arg 指向的地址无效。

● EIDRM：信号量集已经删除。

● EINVAL：信号量集不存在，或者 semid 无效。

● EPERM：进程有效用户没有 cmd 的权限。

● ERANGE：信号量值超出范围。

10.3.3 信号量的应用

信号量的应用如【例10.6】所示，这是一个使用多个进程来对信号量进行操作的应用实例。

【例10.6】消息队列控制应用实例。

#include <stdio.h>

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/sem.h>

#include <stdlib.h>

union semun

{

int val; //SETVAL的值

struct semid_ds *buf; //IPC_STAT, IPC_SET缓冲

unsigned short *array; //GETALL, SETALL数组

struct seminfo *__buf; //IPC_INFO缓冲区

};//信号量集合联合体

//对信号量数组semnum编号的信号量做P操作

int P(int semid, int semnum)

{

struct sembuf sops={semnum,-1, SEM_UNDO};

return (semop(semid,&sops,1));

}

//对信号量数组semnum编号的信号量做V操作

int V(int semid, int semnum)

{

struct sembuf sops={semnum,+1, SEM_UNDO};

return (semop(semid,&sops,1));

}

//主函数

int main(int argc, char **argv)

{

int key;

int semid,ret;

union semun arg;

struct sembuf semop;

int flag ;

key = ftok("/tmp", 0x66) ;　//创建一个关键字

if (key < 0)

{

perror("ftok key error\n") ;

exit(1) ;

}

//本程序创建了3个信号量

semid = semget(key,3,IPC_CREAT|0600);

if (semid == -1)

{

perror("create semget error\n");

exit(1);

}

if (argc == 1)

{

arg.val = 1;

//对0号信号量设置初始值

ret =semctl(semid,0,SETVAL,arg);

if(ret < 0)

{

perror("ctl sem error\n");

semctl(semid,0,IPC_RMID,arg);

exit(1);

}

}

//取0号信号量的值

ret =semctl(semid,0,GETVAL,arg);

printf("after semctl setval sem[0].val =[%d]\n",ret);

system("date") ;　//调用date系统命令

printf("P operate begin\n") ;

flag = P(semid,0) ;

if (flag)

{

perror("P operate error\n") ;

exit(1);

}

printf("P operate end\n") ;

ret =semctl(semid,0,GETVAL,arg);

printf("after P sem[0].val=[%d]\n",ret);

system("date") ;

if (argc == 1)

{

sleep(120) ;

}

printf("V operate begin\n") ;

if (V(semid, 0) < 0)

{

perror("V operate error\n") ;

exit(1);

}

printf("V operate end\n") ;

ret =semctl(semid,0,GETVAL,arg);

printf("after V sem[0].val=%d\n",ret);

system("date") ;

if (argc >1)

{

semctl(semid,0,IPC_RMID,arg); //对信号量集进行操作

}

return 0 ;

}

将文件保存为exam6sem.c，在终端中使用gcc编译，并且运行，可以看到如下的输出结果。

alloeat@ubuntu:～/chapter10Exam$ gcc exam6sem.c -o examsem

alloeat@ubuntu:～/chapter10Exam$./examsem

after semctl setval sem[0].val =[1]

2012年08月01日 星期三 14:57:32 CST

P operate begin

P operate end

after P sem[0].val=[0]

2012 年 08 月 01 日 星期三 14:57:32 CST

在另外一个终端里再次运行，可以看到如下的结果。

alloeat@ubuntu:～/chapter10Exam$./examsem test1

after semctl setval sem[0].val =[0]

2012 年 08 月 01 日 星期三 14:57:56 CST

P operate begin

P operate end

after P sem[0].val=[0]

2012 年 08 月 01 日 星期三 14:58:04 CST

V operate begin

V operate end

after V sem[0].val=1

2012 年 08 月 01 日 星期三 14:58:04 CST

10.4 共享内存

共享内存是指让Linux操作系统中两个或者更多进程共享一段指定的内存区间，从而进行数据交互的 System V IPC 机制，这是 3 种 IPC 机制中速度最快的一种。

10.4.1 共享内存基础

两个不同进程A、B共享内存的意思是，同一块物理内存被映射到进程A、B各自的进程地址空间，进程A可以即时看到进程B对共享内存中数据的更新。反之，进程B也可以即时看到进程A对共享内存中数据的更新。

共享内存机制是最快的一种进程通信机制，因为没有中间介质，如消息队列、管道等中的延迟，数据直接由内存映射到进程空间。通常，共享内存段由一个进程创建，接下来的读写操作就由许多进程参加，这样就能传递信息了。

在系统内核为一个进程分配内存地址时，通过分页机制可以让一个进程的物理地址不连续，同时也可以让一段内存同时分配给不同的进程。共享内存机制就是通过该原理来实现的，共享内存机制只是提供数据的传送，如何控制服务器端和客户端的读写操作互斥，这就需要一些其他的辅助工具，例如信号量的概念。

采用共享内存通信的一个显而易见的好处是效率高，因为进程可以直接读写内存，而不需要任何数据的复制。对于像管道和消息队列等通信方式，则需要在内核和用户空间进行4次数据复制，而共享内存则只复制2次数据：一次从输入文件到共享内存区，另一次从共享内存区到输出文件。实际上，进程之间在共享内存时，并不总是读写少量数据后就解除映射。有新的通信时，再重新建立共享内存区域。而是保持共享区域，直到通信完毕为止。这样，数据内容一直保存在共享内存中，并没有写回文件。共享内存中的内容往往是在解除映射时才写回文件的。因此，采用共享内存的通信方式效率是非常高的。

共亨内存机制唯一的不足在于，需要一定的同步机制控制多个进程对同一块内存的读写。当一个进程在写数据时，不允许其他的进程写数据或读数据，这可以通过信号量控制实现。

同前面的两种通信机制一样，每个共享内存段都对应一个 shmid_ds 结构。这个结构的定义如下。

struct shmid_ds

{

struct ipc_perm　shm_perm;

int　　　shm_segsz;

ushort　　shm_lkcnt;

pid_t　　　shm_cpid;

pid_t　　　shm_lpid;

ulong　　　shm_nattach;

time_t　　shm_atime;

time_t　　shm_dtime;

time_t　　shm_ctime;

};

其中每个分量的含义如表10.11所示。

 表10.11 shmid_ds结构分量说明

 [image: figure_0390_0139]

和信号量、消息队列类似，Linux同样给共享内存提供了一些限制，如表10.12所示。

 表10.12 Linux操作系统下的共享内存限制

 [image: figure_0390_0140]

10.4.2 共享内存的相关操作

Linux内核提供了一系列函数用于对共享内存进行操作，这些操作包括创建或者打开一块共享内存、共享内存的链接、共享内存的脱离以及共享内存的属性设置。

1．创建或者打开共享内存

shmget 函数用于创建一块新的共享内存或者打开一块已经存在的内存，其标准调用格式说明如下。

#include <sys/ipc.h>

#include <sys/shm.h>

int shmget(key_t key, size_t size, int shmflg);

参数key表示所创建或打开的共享内存的关键字；参数size表示共享内存区域的大小，只在创建一个新的共享内存时生效；参数flag表示调用函数的操作类型，也可用于设置共享内存的访问权限，两者通过逻辑或表示。

shmget函数调用成功时，返回值为共享内存的引用标识符。调用失败时，返回值为-l，并且设置相应的error值，详细说明如下：

● EINVAL：参数 size 小于 SHMMIN 或大于 SHMMAX。

● EEXIST：欲建立 key 所指的共享内存，但已经存在。

● EIDRM：参数 key 所指的共享内存已经删除。

● ENOSPC：超过了系统允许建立的共享内存的最大值（SHMALL）。

● ENOENT：参数 key 所指的共享内存不存在，而参数 shmflg 未设 IPC_CREAT 位。

● EACCES：没有权限。

● ENOMEM：核心内存不足。

函数shmget的具体动作由参数key和flag决定，其详细说明如下。

● 当 key 参数被设置为 IPC_PRIVATE 时，创建一个新的共享内存。此时参数 flag的取值对函数的操作不起任何作用。

● 当 key 参数没有被设置为 IPC_PRIVATE，并且参数 flag 设置了 IPC_CREAT 位，而没有设置IPC_EXCL位，则执行操作由key取值决定。另外，如果key参数为内核中某个已存在的共享内存的键，则执行打开这个键的操作，反之，则执行创建共享内存的操作。

● 当 key 参数没有被设置为 IPC_PRIVATE，且参数 flag 中同时设置了 IPC_CREAT位和IPC_EXCL位，则只执行创建共享内存操作。参数key的取值应与内核中已存在的任何共享内存的关键字都不相同，否则函数调用失败。

当调用shmget函数创建一个共享内存时，此共享内存的shmid_ds结构被初始化，其初始化规则说明如下。

● ipc_perm：各个分量被设置为相应值。

● shm_lpid、shm_nattach、shm_atime 和 shm_dtime：被设置为 0。

● shm_ctime：设置为当前时间。

【例10.7】是一个使用shmget函数创建一块共享内存的应用实例。

【例10.7】创建共享内存应用实例。

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/shm.h>

#include <stdlib.h>

#include <stdio.h>

#include <errno.h>

#define BUFSZ 4096

int main (void)

{

int shm_id;　//共享内存标识符

shm_id = shmget (IPC_PRIVATE, BUFSZ, 0666); //创建共享内存

if (shm_id < 0) //如果出错

{

perror("shmget failed!\n");

exit (1);　//shmget出错退出

}

printf ("creat a shared memory segment successfully: %d \n", shm_id);

system("ipcs -m");　//调用ipcs命令查看IPC

exit(0);

}

将文件保存为exam7shmget.c，在终端中使用gcc编译，并且运行，可以看到如下的输出结果。

alloeat@ubuntu:～/chapter10Exam$ gcc exam7shmget.c -o examshmget

alloeat@ubuntu:～/chapter10Exam$./examshmget

creat a shared memory segment successfully: 360457

------ Shared Memory Segments --------

key　　shmid　owner　perms　bytes　nattch　status

0x00000000 0　　alloeat　600　　393216　2　　dest

0x00000000 32769　alloeat　600　　393216　2　　dest

0x00000000 65538　alloeat　600　　393216　2　　dest

0x00000000 163843　alloeat　600　　393216　2　　dest

0x00000000 196612　alloeat　600　　499800　2　　dest

0xcbc384f8 229381　alloeat　600　　64528　3

0x00000000 262150　alloeat　600　　144400　2　　dest

0x00000000 294919　alloeat　600　　4　　2　　dest

0x00000000 327688　alloeat　600　　4　　2　　dest

0x00000000 360457　alloeat　666　　4096　0

2．链接共享内存

当一个共享内存创建或打开后，使用该共享内存的进程必须将此内存区域附加到它的地址空间，Linux提供了shmat函数用于链接共享内存，其标准调用格式说明如下。

#include <sys/types.h>

#include <sys/shm.h>

void *shmat(int shmid, const void *shmaddr, int shmflg);

参数shmid表示要附加的共享内存段的引用标识符；参数flag用于表示shmat函数的操作方式，如果flag设置了SHM_RDONLY位，该内存区域被设置为只读，否则设置为可读写；参数addr和参数flag共同决定共享内存区域要附加到的地址值，其详细说明如下。

● 如果参数 addr 为 0，系统将自动查找进程地址空间，将共享内存区域附加到第一块有效内存区域上，此时flag无效。

● 如果参数 addr 不为 0，而参数 flag 未设置 SHM_RND 位，则将共享内存区域附加到由addr指定的地址处。

● 如果参数 addr 不为 0，而参数 flag 设置了 SHM_RND 位。则共享内存区域附加到由 addr-(addr %SHMLBA)指定的地址处。

如果shmid函数调用成功，返回共享内存区域的指针。如果调用失败时，返回值为-1，同时会设置error参数，其详细说明如下。

● EACCES：无权限以指定方式链接共享内存。

● EINVAL：无效的参数 shmid 或 shmaddr。

● ENOMEM：核心内存不足。

注意：shmat 函数成功执行后，会将 shmid 所表示共享内存段的 shmid_ds 结构的shm_nattch计数器的值加1。

3．脱离共享内存

在使用完共享内存之后，应该调用shmdt函数将指定的共享内存段从当前进程空间中脱离出去，其标准调用格式说明如下。

#include <sys/types.h>

#include <sys/shm.h>

int shmdt(const void *shmaddr);

shmdt函数仅用于将共享区域与进程的地址空间分离，并不删除共享内存本身。参数addr为要分离的共享内存区域的指针，是调用shmat函数时的返回值。

当函数调用成功则返回0。如果调用失败则返回值为-1，并且将相应的error值设置为EINVAL，以表示无效的参数shmaddr。

4．设置共享内存的属性

Linux同样提供了对共享内存进行控制的函数shmctl，其标准调用格式说明如下。

#include <sys/ipc.h>

#include <sys/shm.h>

int shmctl(int shmid, int cmd, struct shmid_ds *buf);

参数 shmid 为所要操作的共享内存段的标识符；参数 buf 是 struct shmid_ds 型的指针，其作用与参数cmd的值相关；参数cmd用于指明shmctl函数所要进行的操作，如表10.13所示。

 表10.13 参数cmd的设置

 [image: figure_0394_0141]

注意：IPC_SET参数要求进程的用户ID等于shm_perm.cuid或者等于shm_perm.uid；或者也可以拥有root权限。

函数shmctl如果调用成功则返回0，如果出错则返回-1，并且将error设置为对应的值，其详细说明如下。

● EACCESS：参数 cmd 为 IPC_STAT，却无权限读取该共享内存。

● EFAULT：参数 buf 指向无效的内存地址。

● EIDRM：标识符为 shmid 的共享内存已被删除。

● EINVAL：无效的参数 cmd 或 shmid。

● EPERM：参数 cmd 为 IPC_SET 或 IPC_RMID，却无足够的权限执行。

10.4.3 共享内存的应用实例

1．应用实例1

【例 10.8】是一个父子进程使用共享内存进行通信的应用实例，子进程通过共享内存将一个字符串发送给父进程。

【例10.8】共享内存应用实例1。

#include <stdio.h>

#include <unistd.h>

#include <string.h>

#include <sys/ipc.h>

#include <sys/shm.h>

#include <errno.h>

#include <stdlib.h>

#define SIZE 1024

int main(void)

{

int shmid;

char *shmaddr;

struct shmid_ds buf;

int flag = 0;

int pid;

shmid = shmget(IPC_PRIVATE,SIZE,IPC_CREAT|0600); //创建一块内存缓冲区

if (shmid < 0)

{

perror("get shm ipc_id error\n"); //如果创建失败

exit(1);

}

pid = fork(); //创建一个子进程

if (pid == 0) //父进程

{

shmaddr = (char *)shmat(shmid,NULL,0); //返回指向共享存储区的指针

if ((int)shmaddr == -1) //如果失败

{

perror("shmat addr error\n") ;

exit(1);

}

strcpy(shmaddr, "Hi, I am child process!\n") ;

shmdt(shmaddr); //释放内存

exit(1);

}

else if (pid > 0) //在子进程中

{

sleep(3) ;

flag = shmctl(shmid,IPC_STAT, &buf); //修改内存的参数

if (flag == -1)

{

perror("shmctl shm error\n") ;

exit(1) ;

}

//打印一系列参数

printf("shm_segsz =%d bytes\n", buf.shm_segsz) ;

printf("parent pid=%d, shm_cpid = %d \n", getpid(), buf.shm_cpid) ;

printf("chlid pid=%d, shm_lpid = %d \n",pid , buf.shm_lpid) ;

shmaddr = (char *) shmat(shmid, NULL, 0); //开辟一块共享内存

if ((int)shmaddr == -1)

{

perror("shmat addr error\n") ;

exit(1) ;

//创建失败

}

printf("%s", shmaddr) ;

shmdt(shmaddr);　//释放内存

shmctl(shmid, IPC_RMID, NULL) ;

}

else

{

perror("fork error\n");　//创建进程失败

shmctl(shmid, IPC_RMID, NULL) ;

}

return 0 ;

}

将文件保存为exam8shm.c，在终端中使用gcc编译，并且运行，可以看到如下的输出结果。

alloeat@ubuntu:～/chapter10Exam$ gcc exam8shm.c -o examshm

alloeat@ubuntu:～/chapter10Exam$./examshm

shm_segsz =1024 bytes

parent pid=4319, shm_cpid = 4319

chlid pid=4320, shm_lpid = 4320

Hi, I am child process!

2．应用实例2

【例10.9】和【例10.10】是一个客户端和服务器端进程使用共享内存进行字符串发送的应用实例。

服务器端应用实例首先创建—个名为“1234” 的共享内存，并链接至自己的地址空间。完成这两步操作后，它便可以往共享内存写数据了。写共享内存通过指针操作即可。写入的数据很简单，仅仅是“a”至z”这26个字母。当数据写完后，进程等待，直到得知客户进程已读完数据。客户进程简单地设置共享内存第一字节为“*”，通知服务进程数据已读完。最后，这个服务程序删除共享内存，退出执行。

【例10.9】共享内存应用实例2——服务器端。

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/shm.h>

#include <stdio.h>

#include <string.h>

#include <errno.h>

#include <stdlib.h>

int main(void)

{

int　shmid;

char c;

char *shmptr, *s;

if((shmid=shmget(1234,256,IPC_CREAT | 0666))<0)

{

perror("shmget failed.\n");

exit(1);

}

if((shmptr=shmat(shmid,0,0))==-1)

{

shmctl(shmid, IPC_RMID, shmptr);

perror("shmat failed.\n");

exit(1);

}

s = shmptr;

for(c='a';c<='z';c++)

{

*s++=c;

}

*s = NULL;

while(*shmptr!='*')

sleep(1);

shmctl(shmid, IPC_RMID, shmptr);

return 0;

}

客户端程序读出服务器端进程写至共享内存的内容，并将它们打印出来。它与服务进程有一点不同：打开名为“1234”的共享内存时，它没有指定 IPC_CREAT。这样，当服务进程没有运行时，由于该共享存储段不存在，客户此时将错误返回。

将文件保存为 exam9shmsever.c，在终端中使用 gcc 编译，并且运行，可以看到如下的输出结果。

alloeat@ubuntu:～/chapter10Exam$ gcc exam9shmsever.c -o examshmsever

alloeat@ubuntu:～/chapter10Exam$./examshmsever

//程序会等待服务器端运行结束后再退出

【例10.10】共享内存应用实例2——客户端。

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/shm.h>

#include <stdio.h>

#include <string.h>

#include <errno.h>

#include <stdlib.h>

int main(void)

{

int　shmid;

char c;

char *shmptr, *s;

if((shmid = shmget(1234,256, 0666))<0)

{

perror("shmget failed.\n");

exit(1);

}

if((shmptr=shmat(shmid,0,0))==-1)

{

shmctl(shmid,IPC_RMID,shmptr);

perror("shmat failed.\n");

exit(1);

}

for(s=shmptr;*s!=NULL;s++)

{

putchar(*s);

}

printf("\n");

shmptr='';

return 0;

}

将文件保存为exam9shmclient.c，在终端中使用gcc编译，并且运行，可以看到如下的输出结果。

alloeat@ubuntu:～/chapter10Exam$ gcc exam9shmclient.c -o examshmclient

alloeat@ubuntu:～/chapter10Exam$./examshmclient

abcdefghijklmnopqrstuvwxyz

3．应用实例3

【例10.11】是一个打印不同类型的数据所存放位置的应用实例。

【例10.11】共享内存应用实例3。

#include <stdio.h>

#include <unistd.h>

#include <string.h>

#include <sys/ipc.h>

#include <sys/shm.h>

#include <errno.h>

#include <stdlib.h>

#define ARRAY_SIZE　40000

#define MALLOC_SIZE　100000

#define SHM_SIZE　　100000

#define SHM_MODE　　0600　//用户读写

char　array[ARRAY_SIZE];　//未初始化缓冲区

int main(void)

{

int　　shmid;

char　*ptr, *shmptr;

printf("array[] from %lx to %lx\n", (unsigned long)&array[0],

(unsigned long)&array[ARRAY_SIZE]);

printf("stack around %lx\n", (unsigned long)&shmid);

if ((ptr = malloc(MALLOC_SIZE)) == NULL)

{

perror("malloc error\n"); //分配内存空间失败

}

printf("malloced from %lx to %lx\n", (unsigned long)ptr,

(unsigned long)ptr+MALLOC_SIZE);

if ((shmid = shmget(IPC_PRIVATE, SHM_SIZE, SHM_MODE)) < 0)

{

perror("shmget error\n"); //创建共享内存失败

}

if ((shmptr = shmat(shmid, 0, 0)) == (void *)-1)

{

perror("shmat error\n"); //链接地址空间失败

}

printf("shared memory attached from %lx to %lx\n",

(unsigned long)shmptr, (unsigned long)shmptr+SHM_SIZE);

if (shmctl(shmid, IPC_RMID, 0) < 0)

{

perror("shmctl error\n");

}

exit(0);

}

将文件保存为 exam10printfmem.c，在终端中使用 gcc 编译，并且运行，可以看到如下的输出结果。

alloeat@ubuntu:～/chapter10Exam$ gcc exam10printfmem.c -o examprintfmem

alloeat@ubuntu:～/chapter10Exam$./examprintfmem

array[] from 804a060 to 8053ca0

stack around bfd03984

malloced from 8233008 to 824b6a8

shared memory attached from b757a000 to b75926a0
图书在版编目（CIP）数据

Linux C编程从入门到精通/宋磊，程钢编著.--北京：人民邮电出版社，2014.1

ISBN　978-7-115-33224-0

Ⅰ.①L…　Ⅱ.①宋…②程…　Ⅲ.①Linux操作系统—程序设计②C语言—程序设计　Ⅳ.①TP316.89②TP312

中国版本图书馆CIP数据核字（2013）第241778号

内容提要

本书是一本由浅入深、循序渐进地讲解Linux系统使用和开发的教程，是基于Ubuntu版本来介绍Linux系统的基础知识和Linux C 语言开发过程的。本书包括Linux基础，在Linux 中编写C 语言代码，Linux 编程进阶，Linux的文件编程，Linux的流编程，Linux的进程，Linux的线程，Linux的信号和进程间通信，Linux的管道、命名管道和进程间通信，Linux的System V IPC 进程通信等10章。本书最大的特点在于语言浅显易懂，并配合使用了一定的实际开发实例，使得读者可以很容易地掌握 Linux C 语言的基础知识和实际开发经验。

本书可以作为 Linux C 语言开发的入门教程，也可以作为 Linux C 语言开发的参考手册，可供有初步Linux C 语言基础知识的工程师、高等院校计算机专业的学生和Linux爱好者使用。

◆编著　宋磊　程钢

责任编辑　傅道坤

责任印制　程彦红　焦志炜

◆人民邮电出版社出版发行　　北京市丰台区成寿寺路11号

邮编　100164　　电子邮件　315@ptpress.com.cn

网址　http://www.ptpress.com.cn

北京昌平百善印刷厂印刷

◆开本：800×1000　1/16

印张：25

字数：489千字　　2014年1月第1版

印数：1-3000册　　2014年1月北京第1次印刷

定价：59.00元

读者服务热线：(010)81055410　印装质量热线：(010)81055316

反盗版热线：(010)81055315
EPUB/cover.jpg
«y—gn
ERERE B HRAKITE

N BB ER Y ik

POSTS & TELECOM PRESS

AN

EPUB/cover.xhtml
[image: Cover]

