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  第1章　UNIX基础知识
 
1.1　引言
 
所有操作系统都为它们所运行的程序提供服务。典型的服务包括：执行新程序、打开文件、读文件、分配存储区以及获得当前时间等，本书集中阐述不同版本的UNIX操作系统所提供的服务。
 
想要按严格的先后顺序介绍UNIX，而不超前引用尚未介绍过的术语，这几乎是不可能的（可能也会令人厌烦）。本章从程序员的角度快速浏览UNIX，对书中引用的一些术语和概念进行简要的说明并给出实例。在以后各章中，将对这些概念做更详细的说明。对于初涉UNIX环境的程序员，本章还简要介绍了UNIX提供的各种服务。
 
1.2　UNIX体系结构
 
从严格意义上说，可将操作系统定义为一种软件，它控制计算机硬件资源，提供程序运行环境。我们通常将这种软件称为内核（kernel），因为它相对较小，而且位于环境的核心。图1-1显示了UNIX系统的体系结构。
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[image: ..\UNIX环境高级编程（第3版）tu\0101.tif]
 
图1-1　UNIX操作系统的体系结构
 
内核的接口被称为系统调用（system call，图1-1中的阴影部分）。公用函数库构建在系统调用接口之上，应用程序既可使用公用函数库，也可使用系统调用。（我们将在1.11节对系统调用和库函数做更多说明。）shell是一个特殊的应用程序，为运行其他应用程序提供了一个接口。
 
从广义上说，操作系统包括了内核和一些其他软件，这些软件使得计算机能够发挥作用，并使计算机具有自己的特性。这里所说的其他软件包括系统实用程序（system utility）、应用程序、shell以及公用函数库等。
 
例如，Linux是GNU操作系统使用的内核。一些人将这种操作系统称为GNU/Linux操作系统，但是，更常见的是简单地称其为Linux。虽然这种表达方法在严格意义上讲并不正确，但鉴于“操作系统”这个词的双重含义，这种叫法还是可以理解的（这样的叫法更简洁）。
 
1.3　登录
 
1．登录名
 
用户在登录UNIX系统时，先键入登录名，然后键入口令。系统在其口令文件（通常是/etc/ passwd文件）中查看登录名。口令文件中的登录项由7个以冒号分隔的字段组成，依次是：登录名、加密口令、数字用户ID（205）、数字组ID（105）、注释字段、起始目录（/home/sar）以及shell程序（/bin/ksh）。
 
sar:x:205:105:Stephen Rago:/home/sar:/bin/ksh
 

  2 

 
目前，所有的系统已将加密口令移到另一个文件中。第6章将说明这种文件以及访问它们的函数。
 
2．shell
 
用户登录后，系统通常先显示一些系统信息，然后用户就可以向shell程序键入命令。（当用户登录时，某些系统启动一个视窗管理程序，但最终总会有一个shell程序运行在一个视窗中）。shell是一个命令行解释器，它读取用户输入，然后执行命令。shell的用户输入通常来自于终端（交互式shell），有时则来自于文件（称为shell脚本）。图1-2总结了UNIX系统中常见的shell。
 
[image: C:\Documents and Settings\Administrator\Application Data\Tencent\Users\646154518\QQ\WinTemp\RichOle\QJ}6Z72%4}HLG_[0OWDULWA.png]
 
图1-2　UNIX系统中常见的shell
 
系统从口令文件中相应用户登录项的最后一个字段中了解到应该为该登录用户执行哪一个shell。
 
自V7以来，由Steve Bourne在贝尔实验室开发的Bourne shell得到了广泛应用，几乎每一个现有的UNIX系统都提供Bourne shell，其控制流结构类似于Algol 68。
 
C shell是由Bill Joy在伯克利开发的，所有BSD版本都提供这种shell。另外，AT&T的System V/386 R3.2和System V R4（SVR4）也提供C shell（下一章将对这些不同版本的UNIX系统做更多说明）。C shell是在第6版shell而非Bourne shell的基础上构造的，其控制流类似于C语言，它支持Bourne shell没有的一些特色功能，例如作业控制、历史机制以及命令行编辑等。
 
Korn shell是Bourne shell的后继者，它首先在SVR4中提供。Korn shell是由贝尔实验室的David Korn开发的，在大多数UNIX系统上运行，但在SVR4之前，通常它需要另行购买，所以没有其他两种shell流行。它与Bourne shell向上兼容，并具有使C shell广泛得到应用的一些特色功能，包括作业控制以及命令行编辑等。
 
Bourne-again shell是GNU shell，所有Linux系统都提供这种shell。它的设计遵循POSIX标准，同时也保留了与Bourne shell的兼容性。它支持C shell和Korn shell两者的特色功能。
 
TENEX C shell是C shell的加强版本。它从TENEX操作系统（1972年BBN公司开发）借鉴了很多特色，例如命令完备。TENEX C shell在C shell基础上增加了很多特性，常被用来替换C shell。
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POSIX 1003.2标准对shell进行了标准化。这项规范基于Korn shell和Bourne shell的特性。
 
 
 不同的Linux系统使用不同的默认shell。一些Linux默认使用Bourne-again shell。另外一些使用BSD的对Bourne shell的替代品dash（Debian Almquist shell，最早由Kenneth Almquist开发，并在后来移植入Linux）。FreeBSD的默认用户shell衍生于Almquist shell。Mac OS X的默认shell是Bourne-again shell。
 
 Solaries继承了BSD和System V两者，它提供了图1-2中所示的所有shell。在因特网上可以找到shell的自由移植版软件。
 
 本书将使用这种形式的注释来描述历史注释，并对不同的UNIX系统的实现进行比较。当我们了解到历史缘由后，会更好地理解采用某种特定实现技术的原因。
 

 
本书将使用很多交互式shell实例来执行所开发的程序，这些实例使用了Bourne shell、Korn shell和Bourne-again shell通用的功能。
 
1.4　文件和目录
 
1．文件系统
 
UNIX文件系统是目录和文件的一种层次结构，所有东西的起点是称为根（root）的目录，这个目录的名称是一个字符“/”。
 
目录（directory）是一个包含目录项的文件。在逻辑上，可以认为每个目录项都包含一个文件名，同时还包含说明该文件属性的信息。文件属性是指文件类型（是普通文件还是目录等）、文件大小、文件所有者、文件权限（其他用户能否访问该文件）以及文件最后的修改时间等。stat和fstat函数返回包含所有文件属性的一个信息结构。第4章将详细说明文件的各种属性。
 
 
 目录项的逻辑视图与实际存放在磁盘上的方式是不同的。UNIX文件系统的大多数实现并不在目录项中存放属性，这是因为当一个文件具有多个硬链接时，很难保持多个属性副本之间的同步。这一点将在第4章讨论硬链接时理解得更明晰。
 

 
2．文件名
 
目录中的各个名字称为文件名（filename）。只有斜线（/）和空字符这两个字符不能出现在文件名中。斜线用来分隔构成路径名的各文件名，空字符则用来终止一个路径名。尽管如此，好的习惯还是只使用常用印刷字符的一个子集作为文件名字符（如果在文件名中使用了某些shell的特殊字符，则必须使用shell的引号机制来引用文件名，这会带来很多麻烦）。事实上，为了可移植性，POSIX.1推荐将文件名限制在以下字符集之内：字母（a～z、A～Z）、数字（0～9）、句点（.）、短横线（-）和下划线（_）。
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创建新目录时会自动创建了两个文件名：.（称为点）和..（称为点点）。点指向当前目录，点点指向父目录。在最高层次的根目录中，点点与点相同。
 
 
 Research UNIX System和某些早期UNIX System V的文件系统限制文件名的最大长度为14个字符，BSD版本则将这种限制扩展为255个字符。现今，几乎所有商业化的UNIX文件系统都支持超过255个字符的文件名。
 

 
3．路径名
 
由斜线分隔的一个或多个文件名组成的序列（也可以斜线开头）构成路径名（pathname），以斜线开头的路径名称为绝对路径名（absolute pathname），否则称为相对路径名（relative pathname）。相对路径名指向相对于当前目录的文件。文件系统根的名字（/）是一个特殊的绝对路径名，它不包含文件名。
 
实例
 
不难列出一个目录中所有文件的名字，图1-3是ls(1)命令的简要实现。
 
#include "apue.h"

#include <dirent.h>



int

main(int argc, char *argv[])

{

　　 DIR　　　　　 　 *dp; 

　　 struct dirent  *dirp; 



　　 if (argc != 2) 

　　　　　err_quit("usage: ls directory_name");



　　 if ((dp = opendir(argv[1])) == NULL) 

　　　　　err_sys("can't open %s", argv[1]); 

　　 while ((dirp = readdir(dp)) != NULL) 

　　　　　printf("%s\n", dirp->d_name); 



　　 closedir(dp); 

　　 exit(0); 

}
 
图1-3　列出一个目录中的所有文件
 
ls(1)这种表示方法是UNIX系统的惯用方法，用以引用UNIX系统手册中的一个特定项。ls(1)引用第一部分中的ls项。各部分通常用数字1～8编号，在每个部分中的各项则按字母顺序排列。在本书中始终假定你有自己所使用的UNIX系统的手册。
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 早期的UNIX系统把8个部分都集中在一本《UNIX程序员手册》（UNIX Programmer's Manual）中。随着页数的增加，现在的趋势是把这些部分分别安排在不同的手册中，例如用户手册、程序员手册以及系统管理员手册等。
 
 一些UNIX系统用大写字母把某一部分手册进一步分成若干小部分，例如，AT&T[1990e]中的所有标准I/O函数都被指明位于3S部分中，例如fopen(3S)。另一些UNIX系统不用数字而是用字母将手册分成若干部分，如用C表示命令部分等。
 

 
现今，大多数手册都以电子文档形式提供。如果用的是联机手册，则可用下面的命令查看ls命令手册页：
 
man 1 ls
 
或
 
man -s1 ls
 
图1-3只打印一个目录中各个文件的名字，不显示其他信息，如果该源文件名为myls.c，则可以用下面的命令对其进行编译，编译结果是生成默认名为a.out的可执行文件中。
 
cc myls.c
 
 
 历史上，cc(1)是C编译器。在配置了GNU C编译系统的系统中，C编译器是gcc(1)。其中，cc通常链接至gcc。
 

 
示例输出如下：
 
$ ./a.out /dev

. 

.. 

cdrom

stderr

stdout

stdin

fd

sda4

sda3

sda2

sda1

sda

tty2

tty1

console

tty

zero

null

                    很多行未显示

mem

$ ./a.out /etc/ssl/private

can't open /etc/ssl/private: Permission denied

$ ./a.out /dev/tty

can't open /dev/tty: Not a directory
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本书将以以下方式表示输入的命令及其输出：输入的字符以等宽粗体表示，程序输出则以上面所示的等宽字体表示。对输出的注释以中文宋体表示。输入之前的美元符号（$）是shell的提示符，本书总是将shell提示符表示为$。
 
注意，myls程序列出的目录中的文件名不是以字母顺序列出的，而ls命令一般是按字母顺序打印目录项。
 
在这个20行的程序中，有很多细节需要考虑。
 
 
 	首先，其中包含了一个头文件apue.h。本书中几乎每一个程序都包含此头文件。它包含了某些标准系统头文件，定义了许多常量及函数原型，这些都将用于本书的各个实例中，附录B列出了这一头文件。
 
 	接下来，我们包含了一个系统头文件dirent.h，以便使用opendir和readdir的函数原型，以及dirent结构的定义。在其他一些系统里，这些定义被分成多个头文件。比如，在Ubuntu 12.04中，/usr/include/dirent.h声明了函数原型，并且包含bits/dirent.h，后者定义了dirent结构（真正存放在/usr/include/x86_64- linux-gnu/bits下）。
 
 	main函数的声明使用了ISO C标准所使用的风格（下一章将对ISO C标准进行更多说明）。
 
 	程序获取命令行的第1个参数argv[1]作为要列出其各个目录项的目录名。第7章将说明main函数如何被调用，程序如何存取命令行参数和环境变量。
 
 	因为各种不同UNIX系统目录项的实际格式是不一样的，所以使用函数opendir、 readdir和closedir对目录进行处理。
 
 	opendir函数返回指向DIR结构的指针，我们将该指针传送给readdir函数。我们并不关心DIR结构中包含了什么。然后，在循环中调用readdir来读每个目录项。它返回一个指向dirent结构的指针，而当目录中已无目录项可读时则返回null指针。在dirent结构中取出的只是每个目录项的名字（d_name）。使用该名字，此后就可调用stat函数（见4.2节）以获得该文件的所有属性。
 
 	程序调用了两个自编的函数对错误进行处理：err_sys和err_quit。从上面的输出中可以看到，err_sys函数打印一条消息（“Permission denied”或“Not a directory”），说明遇到了什么类型的错误。这两个出错处理函数在附录B中说明，1.7节将更多地叙述出错处理。
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 	当程序将结束时，它以参数0调用函数exit。函数exit终止程序。按惯例，参数0的意思是正常结束，参数值1～255则表示出错。8.5节将说明一个程序（如shell或我们所编写的程序）如何获得它所执行的另一个程序的exit状态。
 

 
4．工作目录
 
每个进程都有一个工作目录（working directory），有时称其为当前工作目录（current working directory）。所有相对路径名都从工作目录开始解释。进程可以用chdir函数更改其工作目录。
 
例如，相对路径名doc/memo/joe指的是当前工作目录中的doc目录中的memo目录中的文件（或目录）joe。从该路径名可以看出，doc和memo都应当是目录，但是却不能分辨joe是文件还是目录。路径名/urs/lib/lint是一个绝对路径名，它指的是根目录中的usr目录中的lib目录中的文件（或目录）lint。
 
5．起始目录
 
登录时，工作目录设置为起始目录（home directory），该起始目录从口令文件（见1.3节）中相应用户的登录项中取得。
 
1.5　输入和输出
 
1．文件描述符
 
文件描述符（file descriptor）通常是一个小的非负整数，内核用以标识一个特定进程正在访问的文件。当内核打开一个现有文件或创建一个新文件时，它都返回一个文件描述符。在读、写文件时，可以使用这个文件描述符。
 
2．标准输入、标准输出和标准错误
 
按惯例，每当运行一个新程序时，所有的shell都为其打开3个文件描述符，即标准输入（standard input）、标准输出（standard output）以及标准错误（standard error）。如果不做特殊处理，例如就像简单的命令ls，则这3个描述符都链接向终端。大多数shell都提供一种方法，使其中任何一个或所有这3个描述符都能重新定向到某个文件，例如：
 
ls > file.list
 
执行ls命令，其标准输出重新定向到名为file.list的文件。
 
3．不带缓冲的I/O
 
函数open、read、write、lseek以及close提供了不带缓冲的I/O。这些函数都使用文件描述符。
 
实例
 
如果愿意从标准输入读，并向标准输出写，则图1-4中所示的程序可用于复制任一UNIX普通文件。
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#include "apue.h"



#define　　BUFFSIZE　　4096



int

main(void) 

{

　　 int　　 n; 

　　 char　　buf[BUFFSIZE]; 



　　 while ((n = read(STDIN_FILENO, buf, BUFFSIZE)) > 0) 

　　　　　if (write(STDOUT_FILENO, buf, n) != n) 

　　　　　　　 err_sys("write error");



　　 if (n < 0) 

　　　　　err_sys("read error");



　　 exit(0); 

}
 
图1-4　将标准输入复制到标准输出
 
头文件<unistd.h>（apue.h中包含了此头文件）及两个常量STDIN_FILENO和STDOUT_FILENO是POSIX标准的一部分（下一章将对此做更多的说明）。头文件<unistd.h>包含了很多UNIX系统服务的函数原型，例如图1-4程序中调用的read和write。
 
两个常量STDIN_FILENO和STDOUT_FILENO定义在<unistd.h>头文件中，它们指定了标准输入和标准输出的文件描述符。在POSIX标准中，它们的值分别是0和1，但是考虑到可读性，我们将使用这些名字来表示这些常量。
 
3.9节将详细讨论BUFFSIZE常量，说明它的各种不同值将如何影响程序的效率。但是不管该常量的值如何，此程序总能复制任一UNIX普通文件。
 
read函数返回读取的字节数，此值用作要写的字节数。当到达输入文件的尾端时，read返回0，程序停止执行。如果发生了一个读错误，read返回−1。出错时大多数系统函数返回−1。
 
如果将该程序编译成标准名称的a.out文件，并以下列方式执行它：
 
./a.out > data
 
那么标准输入是终端，标准输出则重新定向至文件data，标准错误也是终端。如果此输出文件并不存在，则shell会创建它。该程序将用户键入的各行复制到标准输出，键入文件结束符（通常是Ctrl+D）时，将终止本次复制。
 
若以下列方式执行该程序：
 
./a.out < infile > outfile
 
会将名为infile文件的内容复制到名为outfile的文件中。
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第3章将更详细地说明不带缓冲的I/O函数。
 
4．标准I/O
 
标准I/O函数为那些不带缓冲的I/O函数提供了一个带缓冲的接口。使用标准I/O函数无需担心如何选取最佳的缓冲区大小，如图1-4中的BUFFSIZE常量的大小。使用标准I/O函数还简化了对输入行的处理（常常发生在UNIX的应用程序中）。例如，fgets函数读取一个完整的行，而read函数读取指定字节数。在5.4节中我们将了解到，标准I/O函数库提供了使我们能够控制该库所使用的缓冲风格的函数。
 
我们最熟悉的标准I/O函数是printf。在调用printf的程序中，总是包含<stdio.h>（在本书中，该头文件包含在apue.h中），该头文件包括了所有标准I/O函数的原型。
 
实例
 
图1-5程序的功能类似于前一个调用了read和write的程序，5.8节将对此程序进行更详细的说明。它将标准输入复制到标准输出，也就能复制任一UNIX普通文件。
 
#include "apue.h"



int

main(void) 

{

　　 int　　　　c; 



　　　while ((c = getc(stdin)) != EOF) 

　　　　　 if (putc(c, stdout) == EOF) 

　　　　　　　　err_sys("output error");



　　　if (ferror(stdin)) 

　　　　　 err_sys("input error");



　　　exit(0); 

}
 
图1-5　用标准I/O将标准输入复制到标准输出
 
函数getc一次读取一个字符，然后函数putc将此字符写到标准输出。读到输入的最后一个字节时，getc返回常量EOF（该常量在<stdio.h>中定义）。标准I/O常量stdin和stdout也在头文件<stdio.h>中定义，它们分别表示标准输入和标准输出。
 
1.6　程序和进程
 
1．程序
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程序（program）是一个存储在磁盘上某个目录中的可执行文件。内核使用exec函数（7个exec函数之一），将程序读入内存，并执行程序。8.10节将说明这些exec函数。
 
2．进程和进程ID
 
程序的执行实例被称为进程（process）。本书的每一页几乎都会使用这一术语。某些操作系统用任务（task）表示正在被执行的程序。
 
UNIX系统确保每个进程都有一个唯一的数字标识符，称为进程ID（process ID）。进程ID总是一个非负整数。
 
实例
 
图1-6程序用于打印进程ID。
 
#include "apue.h"



int

main(void) 

{

 　　printf("hello world from process ID %ld\n", (long)getpid());

 　　exit(0); 

}
 
图1-6　打印进程ID
 
如果将该程序编译成a.out文件，然后执行它，则有：
 
$ ./a.out

hello world from process ID 851

$ ./a.out

hello world from process ID 854


 
此程序运行时，它调用函数getpid得到其进程ID。我们将会在后面看到，getpid返回一个pid_t数据类型。我们不知道它的大小，仅知道的是标准会保证它能保存在一个长整型中。因为我们必须在printf函数中指定需要打印的每一个变量的大小，所以我们必须把它的值强制转换为它可能会用到的最大的数据类型（这里是长整型）。虽然大多数进程ID可以用整型表示，但用长整型可以提高可移植性。
 
3．进程控制
 
有3个用于进程控制的主要函数：fork、exec和waitpid。（exec函数有7种变体，但经常把它们统称为exec函数。）
 
实例
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UNIX系统的进程控制功能可以用一个简单的程序说明（见图1-7）。该程序从标准输入读取命令，然后执行这些命令。它类似于shell程序的基本实施部分。
 
#include "apue.h"

#include <sys/wait.h>



int

main(void) 

{

　　 char　　buf[MAXLINE];　　/* from apue.h */

　　 pid_t　 pid; 

　　 int　　 status; 



　　 printf("%% ");　　/* print prompt (printf requires %% to print %) */

　　 while (fgets(buf, MAXLINE, stdin) != NULL) {

　　　　　if (buf[strlen(buf) - 1] == '\n') 

　　　　　　　 buf[strlen(buf) - 1] = 0; /* replace newline with null */



　　　　　if ((pid = fork()) < 0) {

　　　　　　　 err_sys("fork error");

　　　　　} else if (pid == 0) {　　　　/* child */

　　　　　　　 execlp(buf, buf, (char *)0); 

　　　　　　　 err_ret("couldn't execute: %s", buf); 

　　　　　　　 exit(127); 

　　　　　}



　　　　　/* parent */

　　　　　if ((pid = waitpid(pid, &status, 0)) < 0) 

　　　　　　　 err_sys("waitpid error");

　　　　　printf("%% ");

　　 }

　　 exit(0); 

}
 
图1-7　从标准输入读命令并执行
 
在这个30行的程序中，有很多功能需要考虑。
 
 
 	用标准I/O函数fgets从标准输入一次读取一行。当键入文件结束符（通常是Ctrl+D）作为行的第一个字符时，fgets返回一个null指针，于是循环停止，进程也就终止。第18章将说明所有特殊的终端字符（文件结束、退格字符、整行擦除等），以及如何改变它们。
 
 	因为fgets返回的每一行都以换行符终止，后随一个null字节，因此用标准C函数strlen计算此字符串的长度，然后用一个null字节替换换行符。这样做是因为execlp函数要求的参数是以null结束的而不是以换行符结束的。
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 	调用fork创建一个新进程。新进程是调用进程的一个副本，我们称调用进程为父进程，新创建的进程为子进程。fork对父进程返回新的子进程的进程ID（一个非负整数），对子进程则返回0。因为fork创建一个新进程，所以说它被调用一次（由父进程），但返回两次（分别在父进程中和在子进程中）。
 
 	在子进程中，调用execlp以执行从标准输入读入的命令。这就用新的程序文件替换了子进程原先执行的程序文件。fork和跟随其后的exec两者的组合就是某些操作系统所称的产生（spawn）一个新进程。在UNIX系统中，这两部分分离成两个独立的函数。第8章将对这些函数进行更多说明。
 
 	子进程调用execlp执行新程序文件，而父进程希望等待子进程终止，这是通过调用waitpid实现的，其参数指定要等待的进程（即pid参数是子进程ID）。waitpid函数返回子进程的终止状态（status变量）。在我们这个简单的程序中，没有使用该值。如果需要，可以用此值准确地判定子进程是如何终止的。
 
 	该程序的最主要限制是不能向所执行的命令传递参数。例如不能指定要列出目录项的目录名，只能对工作目录执行ls命令。为了传递参数，先要分析输入行，然后用某种约定把参数分开（可能使用空格或制表符），再将分隔后的各个参数传递给execlp函数。尽管如此，此程序仍可用来说明UNIX系统的进程控制功能。
 

 
如果运行此程序，将得到下列结果。注意，该程序使用了一个不同的提示符（%），以区别于shell的提示符。
 
$ ./a.out

% date

Sat Jan 21 19:42:07 EST 2012

% who

sar       console   Jan 1  14:59

sar       ttys000   Jan 1  14:59

sar       ttys001   Jan 15 15:28

% pwd

/home/sar/bk/apue/3e

% ls

Makefile

a.out

shell1.c

% ^D                                    键入文件结束符

$                                       常规的shell提示符


 
 
 ^D表示一个控制字符。控制字符是特殊字符，其构成方法是：在键盘上按下控制键——通常被标记为Control或Ctrl，同时按另一个键。Ctrl+D或^D是默认的文件结束符。在第18章中讨论终端I/O时，会介绍更多的控制字符。
 

 

  13 

 
4．线程和线程ID
 
通常，一个进程只有一个控制线程（thread）——某一时刻执行的一组机器指令。对于某些问题，如果有多个控制线程分别作用于它的不同部分，那么解决起来就容易得多。另外，多个控制线程也可以充分利用多处理器系统的并行能力。
 
一个进程内的所有线程共享同一地址空间、文件描述符、栈以及与进程相关的属性。因为它们能访问同一存储区，所以各线程在访问共享数据时需要采取同步措施以避免不一致性。
 
与进程相同，线程也用ID标识。但是，线程ID只在它所属的进程内起作用。一个进程中的线程ID在另一个进程中没有意义。当在一进程中对某个特定线程进行处理时，我们可以使用该线程的ID引用它。
 
控制线程的函数与控制进程的函数类似，但另有一套。线程模型是在进程模型建立很久之后才被引入到UNIX系统中的，然而这两种模型之间存在复杂的交互，在第12章中，我们会对此进行说明。
 
1.7　出错处理
 
当UNIX系统函数出错时，通常会返回一个负值，而且整型变量errno通常被设置为具有特定信息的值。例如，open函数如果成功执行则返回一个非负文件描述符，如出错则返回1。在open出错时，有大约15种不同的errno值（文件不存在、权限问题等）。而有些函数对于出错则使用另一种约定而不是返回负值。例如，大多数返回指向对象指针的函数，在出错时会返回一个null指针。
 
文件<errno.h>中定义了errno以及可以赋与它的各种常量。这些常量都以字符E开头。另外，UNIX系统手册第2部分的第1页，intro(2)列出了所有这些出错常量。例如，若errno等于常量EACCES，表示产生了权限问题（例如，没有足够的权限打开请求文件）。
 
 
 在Linux中，出错常量在errno(3)手册页中列出。
 

 
POSIX和ISO C将errno定义为一个符号，它扩展成为一个可修改的整形左值（lvalue）。它可以是一个包含出错编号的整数，也可以是一个返回出错编号指针的函数。以前使用的定义是：
 
extern int errno;
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但是在支持线程的环境中，多个线程共享进程地址空间，每个线程都有属于它自己的局部errno以避免一个线程干扰另一个线程。例如，Linux支持多线程存取errno，将其定义为：
 
 extern int *__errno_location(void); 

 #define errno (*__errno_location())
 
对于errno应当注意两条规则。第一条规则是：如果没有出错，其值不会被例程清除。因此，仅当函数的返回值指明出错时，才检验其值。第二条规则是：任何函数都不会将errno值设置为0，而且在<errno.h>中定义的所有常量都不为0。
 
C标准定义了两个函数，它们用于打印出错信息。
 
#include <string.h>



char *strerror(int errnum); 

  　　　　　　　　　　　　　　　　　　　　　返回值：指向消息字符串的指针 


 
strerror函数将errnum（通常就是errno值）映射为一个出错消息字符串，并且返回此字符串的指针。
 
perror函数基于errno的当前值，在标准错误上产生一条出错消息，然后返回。
 
#include <stdio.h> 



void perror(const char *msg); 


 
它首先输出由msg指向的字符串，然后是一个冒号，一个空格，接着是对应于errno值的出错消息，最后是一个换行符。
 
实例
 
图1-8程序显示了这两个出错函数的使用方法。
 
#include "apue.h"

#include <errno.h>



int

main(int argc, char *argv[])

{

 　　fprintf(stderr, "EACCES: %s\n", strerror(EACCES)); 

 　　errno = ENOENT; 

 　　perror(argv[0]); 

 　　exit(0); 

}
 
图1-8　例示strerror和perror
 
如果将此程序编译成文件a.out，然后执行它，则有
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$ ./a.out

EACCES: Permission denied

./a.out: No such file or directory


 
注意，我们将程序名（argv[0]，其值是./a.out）作为参数传递给perror。这是一个标准的UNIX惯例。使用这种方法，在程序作为管道的一部分执行时，例如：
 
prog1 < inputfile | prog2 | prog3 > outputfile
 
我们就能分清3个程序中的哪一个产生了一条特定的出错消息。
 
本书中的所有实例基本上都不直接调用strerror或perror，而是使用附录B中的出错函数。该附录中的出错函数使我们只用一条C语句就可利用ISO C的可变参数表功能处理出错情况。
 
出错恢复
 
可将在<errno.h>中定义的各种出错分成两类：致命性的和非致命性的。对于致命性的错误，无法执行恢复动作。最多能做的是在用户屏幕上打印出一条出错消息或者将一条出错消息写入日志文件中，然后退出。对于非致命性的出错，有时可以较妥善地进行处理。大多数非致命性出错是暂时的（如资源短缺），当系统中的活动较少时，这种出错很可能不会发生。
 
与资源相关的非致命性出错包括：EAGAIN、 ENFILE、 ENOBUFS、 ENOLCK、 ENOSPC、 EWOULDBLOCK，有时ENOMEM也是非致命性出错。当EBUSY指明共享资源正在使用时，也可将它作为非致命性出错处理。当EINTR中断一个慢速系统调用时，可将它作为非致命性出错处理（在10.5节对此会进行更多说明）。
 
对于资源相关的非致命性出错的典型恢复操作是延迟一段时间，然后重试。这种技术可应用于其他情况。例如，假设出错表明一个网络连接不再起作用，那么应用程序可以采用这种方法，在短时间延迟后，尝试重建该连接。一些应用使用指数补偿算法，在每次迭代中等待更长时间。
 
最终，由应用的开发者决定在哪些情况下应用程序可以从出错中恢复。如果能够采用一种合理的恢复策略，那么可以避免应用程序异常终止，进而就能改善应用程序的健壮性。
 
1.8　用户标识
 
1．用户ID
 
口令文件登录项中的用户ID（user ID）是一个数值，它向系统标识各个不同的用户。系统管理员在确定一个用户的登录名的同时，确定其用户ID。用户不能更改其用户ID。通常每个用户有一个唯一的用户ID。下面将介绍内核如何使用用户ID来检验该用户是否有执行某些操作的权限。
 
用户ID为0的用户为根用户（root）或超级用户（superuser）。在口令文件中，通常有一个登录项，其登录名为root，我们称这种用户的特权为超级用户特权。我们将在第4章中看到，如果一个进程具有超级用户特权，则大多数文件权限检查都不再进行。某些操作系统功能只向超级用户提供，超级用户对系统有自由的支配权。
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 Mac OS X客户端版本交由用户使用时，禁用超级用户账户，服务器版本则可使用该账户。在Apple的网站可以找到使用说明，它告知如何才能使用该账户。参见
 http://support.apple.com/kb/HT1528。
 

 
2．组ID
 
口令文件登录项也包括用户的组ID（group ID），它是一个数值。组ID也是由系统管理员在指定用户登录名时分配的。一般来说，在口令文件中有多个登录项具有相同的组ID。组被用于将若干用户集合到项目或部门中去。这种机制允许同组的各个成员之间共享资源（如文件）。4.5节将介绍可以通过设置文件的权限使组内所有成员都能访问该文件，而组外用户不能访问。
 
组文件将组名映射为数值的组ID。组文件通常是/etc/group。
 
使用数值的用户ID和数值的组ID设置权限是历史上形成的。对于磁盘上的每个文件，文件系统都存储该文件所有者的用户ID和组ID。存储这两个值只需4个字节（假定每个都以双字节的整型值存放）。如果使用完整ASCII登录名和组名，则需更多的磁盘空间。另外，在检验权限期间，比较字符串较之比较整型数更消耗时间。
 
但是对于用户而言，使用名字比使用数值方便，所以口令文件包含了登录名和用户ID之间的映射关系，而组文件则包含了组名和组ID之间的映射关系。例如，ls -l命令使用口令文件将数值的用户ID映射为登录名，从而打印出文件所有者的登录名。
 
 
 早期的UNIX系统使用16位整型数表示用户ID和组ID。现今的UNIX系统使用32位整型数表示用户ID和组ID。
 

 
实例
 
图1-9程序用于打印用户ID和组ID。
 
#include "apue.h"



int

main(void) 

{

 　　printf("uid = %d, gid = %d\n", getuid(), getgid());

 　　exit(0); 

}
 
图1-9　打印用户ID和组ID
 
程序调用getuid和getgid以返回用户ID和组ID。运行该程序的结果如下：
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$ ./a.out

uid = 205, gid = 105 


 
3．附属组ID
 
除了在口令文件中对一个登录名指定一个组ID外，大多数 UNIX系统版本还允许一个用户属于另外一些组。这一功能是从4.2BSD开始的，它允许一个用户属于多至16个其他的组。登录时，读文件/etc/group，寻找列有该用户作为其成员的前16个记录项就可以得到该用户的附属组ID（supplementary group ID）。在下一章将说明，POSIX要求系统至少应支持8个附属组，实际上大多数系统至少支持16个附属组。
 
1.9　信号
 
信号（signal）用于通知进程发生了某种情况。例如，若某一进程执行除法操作，其除数为0，则将名为SIGFPE（浮点异常）的信号发送给该进程。进程有以下3种处理信号的方式。
 
（1）忽略信号。有些信号表示硬件异常，例如，除以0或访问进程地址空间以外的存储单元等，因为这些异常产生的后果不确定，所以不推荐使用这种处理方式。
 
（2）按系统默认方式处理。对于除数为0，系统默认方式是终止该进程。
 
（3）提供一个函数，信号发生时调用该函数，这被称为捕捉该信号。通过提供自编的函数，我们就能知道什么时候产生了信号，并按期望的方式处理它。
 
很多情况都会产生信号。终端键盘上有两种产生信号的方法，分别称为中断键（interrupt key，通常是Delete键或Ctrl+C）和退出键（quit key，通常是Ctrl+\），它们被用于中断当前运行的进程。另一种产生信号的方法是调用kill函数。在一个进程中调用此函数就可向另一个进程发送一个信号。当然这样做也有些限制：当向一个进程发送信号时，我们必须是那个进程的所有者或者是超级用户。
 
实例
 
回忆一下基本的shell实例（见图1-7程序）。如果调用此程序，然后按下中断键，则执行此程序的进程终止。产生这种后果的原因是：对于此信号（SIGINT）的系统默认动作是终止进程。该进程没有告诉系统内核应该如何处理此信号，所以系统按默认方式终止该进程。
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为了能捕捉到此信号，程序需要调用signal函数，其中指定了当产生SIGINT信号时要调用的函数的名字。函数名为sig_int，当其被调用时，只是打印一条消息，然后打印一个新提示符。在图1-7程序中添加了11行，构成了图1-10程序（添加的11行以行首的+号指示）。
 
　#include "apue.h"

　#include <sys/wait.h>



+ static void sig_int(int);　　/* our signal-catching function */

+ 

　int

　main(void) 

　{

　　　 char　 buf[MAXLINE]; /* from apue.h */

　　　 pid_t pid; 

　　　 int　　status; 



+　　　if (signal(SIGINT, sig_int) == SIG_ERR) 

+　　　　　 err_sys("signal error");

+　

　　　 printf("%% "); /* print prompt (printf requires %% to print %) */

　　　 while (fgets(buf, MAXLINE, stdin) != NULL) {

　　　　　　if (buf[strlen(buf) - 1] == '\n') 

　　　　　　　　 buf[strlen(buf) - 1] = 0; /* replace newline with null */



　　　　　　if ((pid = fork()) < 0) {

　　　　　　　　 err_sys("fork error");

　　　　　　} else if (pid == 0) {　/* child */

　　　　　　　　 execlp(buf, buf, (char *)0); 

　　　　　　　　 err_ret("couldn't execute: %s", buf); 

　　　　　　　　 exit(127); 

　　　　　　}



　　　　　　/* parent */

　　　　　　if ((pid = waitpid(pid, &status, 0)) < 0) 

　　　　　　　　 err_sys("waitpid error");

　　　　　　printf("%% ");

　　　 }

　　　 exit(0); 

　}

+ 

+ void

+ sig_int(int signo) 

+ {

+　　　printf("interrupt\n%% ");

+ }
 
图1-10　从标准输入读命令并执行
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因为大多数重要的应用程序都对信号进行处理，所以第10章将详细介绍信号。
 
1.10　时间值
 
历史上，UNIX系统使用过两种不同的时间值。
 
（1）日历时间。该值是自协调世界时（Coordinated Universal Time，UTC）1970年1月1日00:00:00这个特定时间以来所经过的秒数累计值（早期的手册称UTC为格林尼治标准时间）。这些时间值可用于记录文件最近一次的修改时间等。
 
系统基本数据类型time_t用于保存这种时间值。
 
（2）进程时间。也被称为CPU时间，用以度量进程使用的中央处理器资源。进程时间以时钟滴答计算。每秒钟曾经取为50、60或100个时钟滴答。
 
系统基本数据类型clock_t保存这种时间值。2.5.4节将说明如何用sysconf函数得到每秒的时钟滴答数。
 
当度量一个进程的执行时间时（见3.9节），UNIX系统为一个进程维护了3个进程时间值：
 
 
 	时钟时间；
 
 	用户CPU时间；
 
 	系统CPU时间。
 

 
时钟时间又称为墙上时钟时间（wall clock time），它是进程运行的时间总量，其值与系统中同时运行的进程数有关。每当在本书中提到时钟时间时，都是在系统中没有其他活动时进行度量的。
 
用户CPU时间是执行用户指令所用的时间量。系统CPU时间是为该进程执行内核程序所经历的时间。例如，每当一个进程执行一个系统服务时，如read或write，在内核内执行该服务所花费的时间就计入该进程的系统CPU时间。用户CPU时间和系统CPU时间之和常被称为CPU时间。
 
要取得任一进程的时钟时间、用户时间和系统时间是很容易的——只要执行命令time(1)，其参数是要度量其执行时间的命令，例如：
 
$ cd /usr/include

$ time -p grep _POSIX_SOURCE */*.h > /dev/null

real    om0.81s

user    om0.11s

sys     om0.07s


 
time命令的输出格式与所使用的shell有关，其原因是某些shell并不运行/usr/bin/time，而是使用一个内置函数测量命令运行所使用的时间。
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8.17节将说明一个运行进程如何取得这3个时间。关于时间和日期的一般说明见6.10节。
 
1.11　系统调用和库函数
 
所有的操作系统都提供多种服务的入口点，由此程序向内核请求服务。各种版本的UNIX实现都提供良好定义、数量有限、直接进入内核的入口点，这些入口点被称为系统调用（system call，见图1-1）。Research UNIX系统第7版提供了约50个系统调用，4.4BSD提供了约110个系统调用，而SVR4则提供了约120个系统调用。具体数字在不同操作系统版本中会不同，新近的大多数系统大大增加了支持的系统调用的个数。Linux 3.2.0提供了380个系统调用，FreeBSD 8.0提供的系统调用超过450个。
 
系统调用接口总是在《UNIX程序员手册》的第2部分中说明，是用C语言定义的，与具体系统如何调用一个系统调用的实现技术无关。这与很多早期的操作系统不同，那些系统按传统方式用机器的汇编语言定义内核入口点。
 
UNIX所使用的技术是为每个系统调用在标准C库中设置一个具有同样名字的函数。用户进程用标准C调用序列来调用这些函数，然后，函数又用系统所要求的技术调用相应的内核服务。例如，函数可将一个或多个C参数送入通用寄存器，然后执行某个产生软中断进入内核的机器指令。从应用角度考虑，可将系统调用视为C函数。
 
《UNIX程序员手册》的第3部分定义了程序员可以使用的通用库函数。虽然这些函数可能会调用一个或多个内核的系统调用，但是它们并不是内核的入口点。例如，printf函数会调用write系统调用以输出一个字符串，但函数strcpy（复制一个字符串）和atoi（将ASCII转换为整数）并不使用任何内核的系统调用。
 
从实现者的角度来看，系统调用和库函数之间有根本的区别，但从用户角度来看，其区别并不重要。在本书中，系统调用和库函数都以C函数的形式出现，两者都为应用程序提供服务。但是，我们应当理解，如果希望的话，我们可以替换库函数，但是系统调用通常是不能被替换的。
 
以存储空间分配函数malloc为例。有多种方法可以进行存储空间分配及与其相关的无用空间回收操作（最佳适应、首次适应等），并不存在对所有程序都最优的一种技术。UNIX系统调用中处理存储空间分配的是sbrk(2)，它不是一个通用的存储器管理器。它按指定字节数增加或减少进程地址空间。如何管理该地址空间却取决于进程。存储空间分配函数malloc(3)实现一种特定类型的分配。如果我们不喜欢其操作方式，则可以定义自己的malloc函数，它很可能将使用sbrk系统调用。事实上，有很多软件包，它们使用sbrk系统调用实现自己的存储空间分配算法。图1-11显示了应用程序、malloc函数以及sbrk系统调用之间的关系。
 
[image: ..\UNIX环境高级编程（第3版）tu\0111.tif]
 
图1-11　malloc函数和sbrk系统调用
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从中可见，两者职责不同，内核中的系统调用分配一块空间给进程，而库函数malloc则在用户层次管理这一空间。
 
另一个可说明系统调用和库函数之间差别的例子是，UNIX系统提供的判断当前时间和日期的接口。一些操作系统分别提供了一个返回时间的系统调用和另一个返回日期的系统调用。任何特殊的处理，例如正常时制和夏令时之间的转换，由内核处理或要求人为干预。UNIX系统则不同，它只提供一个系统调用，该系统调用返回自协调世界时1970年1月1日零时这个特定时间以来所经过的秒数。对该值的任何解释，例如将其变换成人们可读的、适用于本地时区的时间和日期，都留给用户进程进行处理。在标准C库中，提供了若干例程以处理大多数情况。这些库函数处理各种细节，如各种夏令时算法等。
 
应用程序既可以调用系统调用也可以调用库函数。很多库函数则会调用系统调用。图1-12显示了这种差别。
 
[image: ..\UNIX环境高级编程（第3版）tu\0112.tif]
 
图1-12　C库函数和系统调用之间的差别
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系统调用和库函数之间的另一个差别是：系统调用通常提供一种最小接口，而库函数通常提供比较复杂的功能。我们从sbrk系统调用和malloc库函数之间的差别中可以看到这一点。当我们比较不带缓冲的I/O函数（见第3章）和标准I/O函数（见第5章）时，还将看到这种差别。
 
进程控制系统调用（fork、exec和wait）通常由用户应用程序直接调用（请回忆图1-7中的基本shell）。但是为了简化某些常见的情况，UNIX系统也提供了一些库函数，如system和popen。8.13节将说明system函数的一种实现，它使用基本的进程控制系统调用。10.18节还将强化这一实例以正确地处理信号。
 
为使读者了解大多数程序员应用的UNIX系统接口，我们不得不既说明系统调用，又介绍某些库函数。例如，若只描述sbrk系统调用，那么就会忽略很多应用程序使用的malloc库函数。本书除了必须要区分两者时，对系统调用和库函数都使用函数（function）这一术语来表示。
 
1.12　小结
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本章快速浏览了UNIX系统。说明了某些以后会多次用到的基本术语，介绍了一些小的UNIX程序实例。读者可以从中大概了解到本书其余部分将要介绍的内容。
 
下一章是关于UNIX系统的标准，以及这方面的工作对当前系统的影响。标准，特别是ISO C标准和POSIX.1标准，将影响本书的余下部分。
 
习题
 
1.1　在系统上验证，除根目录外，目录.和..是不同的。
 
1.2　分析图1-6程序的输出，说明进程ID为852和853的进程发生了什么情况？
 
1.3　在1.7节中，perror的参数是用ISO C的属性const定义的，而strerror的整型参数没有用此属性定义，为什么？
 
1.4　若日历时间存放在带符号的32位整型数中，那么到哪一年它将溢出？可以用什么方法扩展溢出浮点数？采用的策略是否与现有的应用相兼容？
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1.5　若进程时间存放在带符号的32位整型数中，而且每秒为100时钟滴答，那么经过多少天后该时间值将会溢出?
 


第2章　UNIX标准及实现
 
2.1　引言
 
人们在UNIX编程环境和C程序设计语言的标准化方面已经做了很多工作。虽然UNIX应用程序在不同的UNIX操作系统版本之间进行移植相当容易，但是20世纪80年代UNIX版本种类的剧增以及它们之间差别的扩大，导致很多大用户（如美国政府）呼吁对其进行标准化。
 
本章首先回顾过去近25年人们在UNIX标准化方面做出的种种努力，然后讨论这些UNIX编程标准对本书所列举的各种UNIX操作系统实现的影响。所有标准化工作的一个重要部分是对每种实现必须定义的各种限制进行说明，所以我们将说明这些限制以及确定它们值的各种方法。
 
2.2　UNIX标准化
 
2.2.1　ISO C
 
　
 

  25 

 
1989年下半年，C程序设计语言的ANSI标准X3.159-1989得到批准。此标准被也采纳为国际标准ISO/IEC 9899:1990。ANSI是美国国家标准学会（American National Standards Institute）的缩写，它是国际标准化组织（International Organization for Standardization，ISO）中代表美国的成员。IEC是国际电子技术委员会（International Electrotechnical Commission）的缩写。
 
ISO C标准现在由ISO/IEC的C程序设计语言国际标准工作组维护和开发，该工作组称为ISO/ IEC JTC1/SC22/WG14，简称WG14。ISO C标准的意图是提供C程序的可移植性，使其能适合于大量不同的操作系统，而不只是适合UNIX系统。此标准不仅定义了C程序设计语言的语法和语义，还定义了其标准库（参见ISO 1999第7章；Plauger[1992]；Kernighan和Ritchie[1988]中的附录B）。因为所有现今的UNIX系统（如本书介绍的几个UNIX系统）都提供C标准中定义的库函数，所以该标准库非常重要。
 
1999年，ISO C标准被更新，并被批准为ISO/IEC 9899:1999，它显著改善了对进行数值处理的应用软件的支持。除了对某些函数原型增加了关键字restrict外，这种改变并不影响本书中描述的POSIX接口。restrict关键字告诉编译器，哪些指针引用是可以优化的，其方法是指出指针引用的对象在函数中只通过该指针进行访问。
 
1999年以来，已经公布了3个技术勘误来修正ISO C标准中的错误，分别在2001年、2004年和2007年公布。如同大多数标准一样，在批准标准和修改软件使其符合标准两者之间有一段时间延迟。随着供应商编译系统的不断演化，对最新ISO C标准的支持也就越来越多。
 
 
 gcc对ISO C标准1999版本符合程度的总结可参见http://www.gnu.org/c99status.html，虽然C标准已经在2011年更新，但由于其他标准还没有进行相应的更新，因此在本书中我们还是沿用1999年的版本。
 

 
按照该标准定义的各个头文件（见图2-1）可将ISO C库分成24个区。POSIX.1标准包括这些头文件以及另外一些头文件。从图2-1中可以看出，所有这些头文件在4种UNIX实现（FreeBSD 8.0、Linux 3.2.0、Mac OS X 10.6.8和Solaris 10）中都支持。本章后面将对这4种UNIX实现进行说明。
 
 
 ISO C头文件依赖于操作系统所配置的C编译器的版本。FreeBSD 8.0配置了gcc 4.2.1版，Solaris 10配置了gcc 3.4.3版（以及Sun Studio自带的C编译器），Ubuntu 12.04（Linux 3.2.0）配置了gcc 4.6.3版，Mac OS X 10.6.8配置了gcc 4.0.1和4.2.1版。
 

 
[image: 2-1]
 
图2-1　ISO C标准定义的头文件
 
2.2.2　IEEE POSIX
 
POSIX是一个最初由IEEE（Institute of Electrical and Electronics Engineers，电气和电子工程师学会）制订的标准族。POSIX指的是可移植操作系统接口（Portable Operating System Interface）。它原来指的只是IEEE标准1003.1-1988（操作系统接口），后来则扩展成包括很多标记为1003的标准及标准草案，如shell和实用程序（1003.2）。
 
与本书相关的是1003.1操作系统接口标准，该标准的目的是提升应用程序在各种UNIX系统环境之间的可移植性。它定义了“符合POSIX的”（POSIX compliant）操作系统必须提供的各种服务。该标准已被很多计算机制造商采用。虽然1003.1标准是以UNIX操作系统为基础的，但是它并不限于UNIX和UNIX类的系统。确实，有些提供专有操作系统的制造商也声称他们的系统符合POSIX（同时还保留所有专有功能）。
 
由于1003.1标准说明了一个接口（interface）而不是一种实现（implementation），所以并不区分系统调用和库函数。所有在标准中的例程都被称为函数。
 
标准是不断演进的，1003.1标准也不例外。该标准的1988版，即IEEE标准1003.1-1988经修改后递交给ISO，它没有增加新的接口或功能，但修订了文本。最终的文档作为IEEE标准1003.1-1990正式出版[IEEE 1990]，这也就是国际标准ISO/IEC 9945-1:1990。该标准通常称为POSIX.1，本书将使用此术语来表示不同版本的标准。
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IEEE 1003.1工作组此后继续对这一标准做了更多修改。1996年，该标准的修订版发布，它包括了1003.1-1990、1003.1b-1993实时扩展标准以及被称为pthreads的多线程编程接口（POSIX线程），这就是国际标准ISO/IEC 9945-1:1996。1999年出版了IEEE标准1003.1d-1999，其中增加了更多实时接口。一年后，出版了IEEE标准1003.1j-2000和1003.1q-2000，前者包含了更多实时接口，后者增加了标准在事件跟踪方面的扩展。
 
2001年的1003.1版本与以前各版本有较大的差别，它组合了多个1003.1的修正、1003.2标准以及Single UNIX Specificaiton（SUS）第2版的若干部分（对于SUS，后面将进行更多说明），这形成了IEEE标准1003.1-2001，它包括下列几个标准。
 
 
 	ISO/IEC 9945-1（IEEE标准1003.1-1996），包括 
   
   	IEEE标准1003.1-1990
 
   	IEEE标准1003.1b-1993（实时扩展）
 
   	IEEE标准1003.1c-1995（pthreads）
 
   	IEEE标准1003.1i-1995（实时技术勘误表）
 
  
 
 
 	IEEE P1003.1a草案（系统接口修正）
 
 	IEEE标准1003.1d-1999（高级实时扩展）
 
 	IEEE标准1003.1j-2000（更多高级实时扩展）
 
 	IEEE标准1003.1q-2000（跟踪）
 
 	部分IEEE标准1003.1g-2000（协议无关接口）
 
 	ISO/IEC 9945-2（IEEE标准1003.2-1993）
 
 	IEEE P1003.2b草案（shell及实用程序的修正）
 
 	IEEE标准1003.2d-1994（批处理扩展）
 
 	Single UNIX Specification第2版基本说明，包括 
   
   	系统接口定义，第5发行版
 
   	命令和实用程序，第5发行版
 
   	系统接口和头文件，第5发行版
 
  
 
 
 	开放组技术标准，网络服务，5.2发行版
 
 	ISO/IEC 9899-1999，C程序设计语言
 

 
2004年，POSIX.1说明随着技术勘误得到更新，2008年做了更多综合的改动并作为基本说明的第7发行版发布，ISO在2008年底批准了这个版本并在2009年进行发布，即国际标准ISO/IEC9945:2009。该标准基于其他几个标准。
 
 
 	IEEE标准1003.1，2004年版。
 
 	开放组织技术标准，2006，扩展API集，第1～4部分。
 
 	ISO/IEC 9899:1999，包含勘误表。
 

 
图2-2、图2-3以及图2-4总结了POSIX.1指定的必需的和可选的头文件。因为POSIX.1包含了ISO C标准库函数，所以它还需要图2-1中列出的各个头文件。这4张图中的表也总结了本书所讨论的4种UNIX系统实现所包含的头文件。
 
[image: C:\Documents and Settings\Administrator\Application Data\Tencent\Users\646154518\QQ\WinTemp\RichOle\15GTKKX70RYFQ8[SOCFW3@T.png]
 
图2-2　POSIX标准定义的必需的头文件
 
本书中描述了POSIX.1 2008年版，其接口分成两部分：必需部分和可选部分。可选接口部分按功能又进一步分成40个功能分区。图2-5按各自的选项码总结了包含未弃用的编程接口。选项码是能够表述标准的2～3个字母的缩写，用以标识属于各个功能分区的接口，其中的接口依赖于特定选项的支持。很多选项处理实时扩展。
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图2-3　POSIX标准定义的XSI可选头文件
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图2-4　POSIX标准定义的可选头文件
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图2-5　POSIX.1可选接口组和选项码
 
POSIX.1没有包括超级用户（superuser）这样的概念，代之以规定某些操作要求“适当的优先权”，POSIX.1将此术语的含义留由具体实现进行解释。某些符合美国国防部安全性指南要求的UNIX系统具有很多不同的安全级。本书仍使用传统的UNIX术语，并指明要求超级用户特权的操作。
 
经过20多年的工作，相关标准已经成熟稳定。POSIX.1标准现在由Austin Group开放工作组（http://www.opengroup.org/austin）维护。为了保证它们仍然有价值，仍需经常对这些标准进行更新或再确认。
 
2.2.3　Single UNIX Specification
 
Single UNIX Specification（SUS，单一UNIX规范）是POSIX.1标准的一个超集，它定义了一些附加接口扩展了POSIX.1规范提供的功能。POSIX.1相当于Single UNIX Specification中的基本规范部分。
 
POSIX.1中的X/Open系统接口（X/Open System Interface，XSI）选项描述了可选的接口，也定义了遵循XSI（XSI conforming）的实现必须支持POSIX.1的哪些可选部分。这些必须支持的部分包括：文件同步、线程栈地址和长度属性、线程进程共享同步以及_XOPEN_UNIX符号常量（在图2-5中它们被加上“SUS强制的”的标记）。只有遵循XSI的实现才能称为UNIX系统。
 
 
 Open Group拥有UNIX商标，他们使用Single UNIX Specification定义了一系列接口。一个系统要想称为UNIX系统，其实现必须支持这些接口。UNIX系统供应商必须以文件形式提供符合性声明，并通过验证符合性的测试，才能得到使用UNIX商标的许可证。
 

 
有些接口在遵循XSI的系统中是可选的，这些接口根据功能被分成若干选项组（option group），具体如下。
 
 
 	加密：由符号常量_XOPEN_CRYPE标记。
 
 	实时：由符号常量_XOPEN_REALTIME标记。
 
 	高级实时。
 
 	实时线程：由符号常量_XOPEN_REALTIME_THREADS标记。
 
 	高级实时线程。
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Single UNIX Specification是Open Group的出版物，而Open Group是由两个工业社团X/Open和开放系统软件基金会（Open System Software Foundation，OSF）在1996年合并构成的。X/Open过去出版了X/Open Portability Guide（X/Open可移植性指南），它采用了若干特定标准，填补了其他标准缺失功能的空白。这些指南的目的是改善应用的可移植性，使其不仅仅符合已发布的标准。
 
X/Open在1994年发布了Single UNIX Specification第1版，因为它大约包含了1170个接口，因此也称为“Spec 1170”。它源自通用开放软件环境（Common Open Software Environment，COSE）的倡议，该倡议的目标是进一步改善应用程序在所有UNIX操作系统实现之间的可移植性。COSE的成员包括Sun、IBM、HP、Novell/USL以及OSF等，他们的UNIX都包含了通用商业化应用软件使用的接口，这较之仅仅赞同和支持标准前进了一大步。从这些应用软件的接口中选出的1170个接口被包括在下列标准中：X/Open通用应用环境（Common Application Environment，CAE）第4发行版（也被称为XPG4，以表示它与其前身X/Open Portability Guide的历史关系）、系统V接口定义（System V Interface Definition，SVID）第3版Level 1接口、OSF应用环境规范（Application Environment Specification，AES）Full Use接口。
 
1997年，Open Group发布了Single UNIX Specification第2版。新版本增加了对线程、实时接口、64位处理、大文件以及增强的多字节字符处理等功能的支持。
 
Single UNIX Specification第3版（SUSv3）由Open Group在2001年发布。SUSv3的基本规范与IEEE标准1003.1-2001相同，分成4个部分：基本定义、系统接口、shell和实用程序以及基本理论。SUSv3还包括X/Open Curses第4发行版第2版，但该规范并不是POSIX.1的组成部分。
 
2002年，ISO将IEEE标准1003.1-2001批准为国际标准ISO/IEC 9945:2002。Open Group在2003年再次更新了1003.1标准，包括了技术方面的更正。ISO将其批准为国际标准ISO/IEC 9945:2003。2004年4月，Open Group发布了Single UNIX Specification第3版2004年版，将更多技术上的更正合并到标准的正文中。
 
2008年，Single UNIX Specification再次更新，包括了更正和新的接口、移除弃用的接口以及将一些未来可能被删除的接口标记为弃用接口等。另外，有一些过去被认为可选的接口变成必选接口，其中包括异步I/O、屏障、时钟选择、存储映像文件、内存保护、读写锁、实时信号、POSIX信号量、旋转锁、线程安全函数、线程、超时机制以及时钟等。最终形成的标准就是基本规范的第7发行版，也即POSIX.1-2008。Open Group把这个版本和X/OPEN Curses规范的更新版打包，并于2010年作为Single UNIX Specification第4版发布。我们把这个规范称为SUSv4。
 
2.2.4　FIPS
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FIPS代表的是联邦信息处理标准（Federal Information Processing Standard），这一标准是由美国政府发布的，并由美国政府用于计算机系统的采购。FIPS151-1（1989年4月）基于IEEE标准1003.1-1988及ANSI C标准草案。此后是FIPS 151-2（1993年5月），它基于IEEE标准1003.1-1990。在POSIX.1中列为可选的某些功能，在FIPS 151-2中是必需的。所有这些可选功能在POSIX.1-2001中已成为强制性要求。
 
POSIX.1 FIPS的作用是，它要求任何希望向美国政府销售符合POSIX.1标准的计算机系统的厂商都应支持POSIX.1的某些可选功能。因为POSIX.1 FIPS已经撤回，所以在本书中我们不再进一步考虑它。
 
2.3　UNIX系统实现
 
上一节说明了3个由各自独立的组织所制定的标准：ISO C、IEEE POSIX以及Single UNIX Specification。但是，标准只是接口的规范。这些标准是如何与现实世界相关连的呢？这些标准由厂商采用，然后转变成具体实现。本书中我们不仅对这些标准感兴趣，还对它们的具体实现感兴趣。
 
在McKusick等[1996]的1.1节中给出了UNIX系统家族树的详细历史。UNIX的各种版本和变体都起源于在PDP-11系统上运行的UNIX分时系统第6版（1976年）和第7版（1979年）（通常称为V6和V7）。这两个版本是在贝尔实验室以外首先得到广泛应用的UNIX系统。从这棵树上演进出以下3个分支。
 
（1）AT&T分支，从此引出了系统III和系统V（被称为UNIX的商用版本）。
 
（2）加州大学伯克利分校分支，从此引出4.xBSD实现。
 
（3）由AT&T贝尔实验室的计算科学研究中心不断开发的UNIX研究版本，从此引出UNIX分时系统第8版、第9版，终止于1990年的第10版。
 
2.3.1　SVR4
 
SVR4（UNIX System V Release 4）是AT&T的UNIX系统实验室（UNIX System Laboratories，USL，其前身是AT&T的UNIX Software Operation）的产品，它将下列系统的功能合并到了一个一致的操作系统中：AT&T UNIX系统V 3.2版（SVR3.2）、Sun Microsystems公司的SunOS操作系统、加州大学伯克利分校的4.3BSD以及微软的Xenix系统（Xenix是在V7的基础上开发的，后来又采纳了很多系统V的功能）。其源代码于1989年后期发布，在1990年开始向终端用户提供。SVR4符合POSIX 1003.1标准和X/Open XPG3标准。
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AT&T也出版了系统V接口定义（SVID）[AT&T 1989]。SVID第3版说明了UNIX系统要达到SVR4质量要求必须提供的功能。如同POSIX.1一样，SVID定义了一个接口，而不是一种实现。SVID并不区分系统调用和库函数。对于一个SVR4的具体实现，应查看其参考手册，以了解系统调用和库函数的不同之处[AT&T 1990e]。
 
2.3.2　4.4BSD
 
BSD（Berkeley Software Distribution）是由加州大学伯克利分校的计算机系统研究组（CSRG）研究开发和分发的。4.2BSD于1983年问世，4.3BSD则于1986年发布。这两个版本都在VAX小型机上运行。它们的下一个版本4.3BSD Tahoe于1988年发布，在一台称为Tahoe的小型机上运行（Leffler等[1989]说明了4.3BSD Tahoe版）。其后又有1990年的4.3BSD Reno版，它支持很多POSIX.1的功能。
 
最初的BSD系统包含了AT&T专有的源代码，它们需要AT&T许可证。为了获得BSD系统的源代码，首先需要持有AT&T的UNIX源代码许可证。这种情况正在改变，近几年，越来越多的AT&T源代码被替换成非AT&T源代码，很多添加到BSD系统上的新功能也来自于非AT&T方面。
 
1989年，伯克利将4.3BSD Tahoe中很多非AT&T源代码包装成BSD网络软件1.0版，并使其成为可公开获得的软件。1991年发布了BSD网络软件2.0版，它是从4.3BSD Reno版派生出来的，其目的是使大部分（如果不是全部的话）4.4BSD系统不再受AT&T许可证的限制，这样，大家都可以得到源代码。
 
4.4BSD-Lite是CSRG计划开发的最后一个发行版。由于与USL产生的法律纠纷，该版本曾一度延迟推出。在纠纷解决后，4.4BSD-Lite立即于1994年发布，并且不再需要具有UNIX源代码使用许可证就可以使用它。1995年CSRG发布了修复了bug的版本。4.4BSD-Lite第2发行版是CSRG的最后一个BSD版本（McKusick等[1996]描述了该BSD版本）。
 
在伯克利所进行的UNIX开发工作是从PDP-11开始的，然后转移到VAX小型机上，接着又转移到工作站上。20世纪90年代早期，伯克利得到支持在广泛应用的80386个人计算机上开发BSD版本，结果产生了386BSD。这一工作是由Bill Jolitz完成的，其工作在1991年全年的Dr. Dobb's期刊上以每月一篇文章连载发表。其中很多代码出现在BSD网络软件2.0版中。
 
2.3.3　FreeBSD
 
FreeBSD基于4.4BSD-Lite操作系统。在加州大学伯克利分校的CSRG决定终止其在UNIX操作系统的BSD版本的研发工作，而且386BSD项目被忽视很长时间之后，为了继续坚持BSD系列，形成了FreeBSD项目。
 
由FreeBSD项目产生的所有软件，包括其二进制代码和源代码，都是免费使用的。为了测试书中的实例，本书选取了4个操作系统，FreeBSD 8.0操作系统是其中之一。
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 有许多基于BSD的免费操作系统。NetBSD项目（http://www.netbsd.org）类似于FreeBSD项目，但是更注重不同硬件平台之间的可移植性。OpenBSD项目（http://www.openbsd.org）也类似于FreeBSD项目，但更注重于安全性。
 

 
2.3.4　Linux
 
Linux是一种提供类似于UNIX的丰富编程环境的操作系统，在GNU公用许可证的指导下，Linux是免费使用的。Linux的普及是计算机产业中的一道亮丽风景线。Linux经常是支持较新硬件的第一个操作系统，这一点使其引人注目。
 
Linux是由Linus Torvalds在1991年为替代MINIX而研发的。一位当时名不见经传人物的努力掀起了澎湃巨浪，吸引了遍布全世界的很多软件开发者，在使用和不断增强Linux方面自愿贡献出了他们大量的时间。
 
Ubuntu 12.04的Linux分发版本是用以测试本书实例的操作系统之一。该系统使用了Linux操作系统3.2.0版内核。
 
2.3.5　Mac OS X
 
与其以前的版本相比，Mac OS X使用了完全不同的技术。其核心操作系统称为“Darwin”，它基于Mach内核（Accetta等[1986]）、FreeBSD操作系统以及具有面向对象框架的驱动和其他内核扩展的结合。Mac OS X 10.5的Intel部分已经被验证为是一个UNIX系统。（关于UNIX验证的更多信息，请参见http://www.opengroup.org/certification/idx/UNIX.html）。
 
Mac OS X 10.6.8（Darwin 10.8.0）是用以测试本书实例的操作系统之一。
 
2.3.6　Solaris
 
Solaris是由Sun Microsystems（现为Oracle）开发的UNIX系统版本。它基于SVR4，在超过15年的时间里，Sun Microsystems的工程师对其功能不断增强。它是唯一在商业上取得成功的SVR4后裔，并被正式验证为UNIX系统。
 
2005年，Sun Microsystems把Solaris操作系统的大部分源代码开放给公众，作为OpenSolaris开放源代码操作系统的一部分，试图建立围绕Solaris的外部开发人员社区。
 
Solaris 10 UNIX操作系统也是用以测试本书实例的操作系统之一。
 
2.3.7　其他UNIX系统
 
已经通过验证的其他UNIX版本包括：
 
 
 	AIX，IBM版的UNIX系统；
 
 	HP-UX，HP版的UNIX系统；
 
 	IRIX，Silicon Graphics版的UNIX系统；
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 	UnixWare，SVR4派生的UNIX系统，现由SCO销售。
 

 
2.4　标准和实现的关系
 
前面提到的各个标准定义了任一实际系统的子集。本书主要关注4种实际的UNIX系统：FreeBSD 8.0、Linux 3.2.0、Mac OS X 10.6.8和Solaris 10。在这4种系统中，虽然只有Mac OS X 和Solaris 10 能够称自己是一种UNIX系统，但是所有这4种系统都提供UNIX编程环境。因为所有这4种系统都在不同程度上符合POSIX标准，所以我们也将重点关注POSIX.1标准所要求的功能，并指出这4种系统具体实现与POSIX之间的差别。仅仅一个特定实现所具有的功能和例程会被清楚地标记出来。我们还关注那些属于UNIX系统必需的，但却在符合POSIX标准的系统中是可选的功能。
 
应当看到，这些实现都提供了对它们早期版本（如SVR3.2和4.3BSD）功能的向后兼容性。例如，Solaris对POSIX.1规范中的非阻塞I/O（O_NONBLOCK）以及传统的系统V中的方法（O_NDELAY）都提供了支持。本书将只使用POSIX.1的功能，但是也会提及它所替换的是哪一种非标准功能。与此相类似，SVR3.2和4.3BSD以某种方法提供了可靠的信号机制，这种方法也有别于POSIX.1标准。第10章将只说明POSIX.1的信号机制。
 
2.5　限制
 
UNIX系统实现定义了很多幻数和常量，其中有很多已被硬编码到程序中，或用特定的技术确定。由于大量标准化工作的努力，已有若干种可移植的方法用以确定这些幻数和具体实现定义的限制。这非常有助于改善UNIX环境下软件的可移植性。
 
以下两种类型的限制是必需的。
 
（1）编译时限制（例如，短整型的最大值是什么？）
 
（2）运行时限制（例如，文件名有多少个字符？）
 
编译时限制可在头文件中定义。程序在编译时可以包含这些头文件。但是，运行时限制则要求进程调用一个函数获得限制值。
 
另外，某些限制在一个给定的实现中可能是固定的（因此可以静态地在一个头文件中定义），而在另一个实现中则可能是变动的（需要有一个运行时函数调用）。这种类型限制的一个例子是文件名的最大字符数。SVR4之前的系统V由于历史原因只允许文件名最多包含14个字符，而源于BSD的系统则将此增加为255。目前，大多数UNIX系统支持多文件系统类型，而每一种类型有它自己的限制。文件名的最大长度依赖于该文件处于何种文件系统，例如，根文件系统中的文件名长度限制可能是14个字符，而在另一个文件系统中文件名长度限制可能是255个字符，这是运行时限制的一个例子。
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为了解决这类问题，提供了以下3种限制。
 
（1）编译时限制（头文件）。
 
（2）与文件或目录无关的运行时限制（sysconf函数）。
 
（3）与文件或目录有关的运行时限制（pathconf和fpathconf函数）。
 
使事情变得更加复杂的是，如果一个特定的运行时限制在一个给定的系统上并不改变，则可将其静态地定义在一个头文件中，但是，如果没有将其定义在头文件中，应用程序就必须调用3个conf函数中的一个（我们很快就会对它们进行说明），以确定其运行时的值。
 
2.5.1　ISO C限制
 
ISO C定义的所有编译时限制都列在头文件<limits.h>中（见图2-6）。这些限制常量在一个给定系统中并不会改变。表中第3列列出了ISO C标准可接受的最小值。这用于16位整型的系统，用1的补码表示。第4列列出了32位整型Linux系统的值，用2的补码表示。注意，我们没有列出无符号数据类型的最小值，这些值应该都为0。在64位系统中，其long整型的最大值与表中long long整型的最大值相匹配。
 
[image: C:\Documents and Settings\Administrator\Application Data\Tencent\Users\646154518\QQ\WinTemp\RichOle\VR{$H3H1G)`PA8D3GD~$}AL.png]
 
图2-6　<limits.h>中定义的整型值大小
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我们将会遇到的一个区别是系统是否提供带符号或无符号的的字符值。从图2-6中的第4列可以看出，该特定系统使用带符号字符。从图中可以看到CHAR_MIN等于SCHAR_MIN，CHAR_MAX等于SCHAR_MAX。如果系统使用无符号字符，则CHAR_MIN等于0，CHAR_MAX等于UCHAR_MAX。
 
在头文件<float.h>中，对浮点数据类型也有类似的一组定义。如若读者在工作中涉及大量浮点数据类型，则应仔细查看该文件。
 
虽然ISO C标准规定了整型数据类型可接受的最小值，但POSIX.1对C标准进行了扩充。为了符合POSIX.1标准，具体实现必须支持INT_MAX的最小值为2 147 483 647，INT_MIN为−2 147 483 647，UINT_MAX为4 294 967 295。因为POSIX.1要求具体实现支持8位的char类型，所以CHAR_BIT必须是8，SCHAR_MIN必须是−128，SCHAR_MAX必须是127，UCHAR_MAX必须是255。
 
我们会遇到的另一个ISO C常量是FOPEN_MAX，这是具体实现保证可同时打开的标准I/O流的最小个数，该值在头文件<stdio.h>中定义，其最小值是8。POSIX.1中的STREAM_MAX（若定义的话）则应与FOPEN_MAX具有相同的值。
 
ISO C还在<stdio.h>中定义了常量TMP_MAX，这是由tmpnam函数产生的唯一文件名的最大个数。关于此常量我们将在5.13节中进行更多说明。
 
虽然ISO C定义了常量FILENAME_MAX，但我们应避免使用该常量，因为POSIX.1提供了更好的替代常量（NAME_MAX和PATH_MAX），我们很快就会介绍该常量。
 
在图2-7中，我们列出了本书所讨论4种平台上的FILENAME_MAX、FOPEN_MAX和TMP_MAX值。
 
[image: C:\Documents and Settings\Administrator\Application Data\Tencent\Users\646154518\QQ\WinTemp\RichOle\P5SEFP~WF2I9OHQ%_G(FS5I.png]
 
图2-7　在各种平台上ISO的限制
 
2.5.2　POSIX限制
 
POSIX.1定义了很多涉及操作系统实现限制的常量，遗憾的是，这是POSIX.1中最令人迷惑不解的部分之一。虽然POSIX.1定义了大量限制和常量，我们只关心与基本POSIX.1接口有关的部分。这些限制和常量分成下列7类。
 
（1）数值限制：LONG_BIT、SSIZE_MAX和WORD_BIT。
 
（2）最小值：图2-8中的25个常量。
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（3）最大值：_POSIX_CLOCKRES_MIN。
 
（4）运行时可以增加的值：CHARCLASS_NAME_MAX、 COLL_WEIGHTS_MAX、 LINE_MAX、 NGROUPS_MAX和RE_DUP_MAX。
 
（5）运行时不变值（可能不确定）：图2-9中的17个常量（加上12.2节中介绍的4个常量和14.5节中介绍的3个常量）。
 
（6）其他不变值：NL_ARGMAX、NL_MSGMAX、NL_SETMAX和NL_TEXTMAX。
 
（7）路径名可变值：FILESIZEBITS、 LINK_MAX、 MAX_CANON、 MAX_INPUT、 NAME_MAX、 PATH_MAX、PIPE_BUF和SYMLINK_MAX。
 
在这些限制和常量中，某些可能定义在<limits.h>中，其余的则按具体条件可定义、可不定义。在2.5.4节中说明sysconf、pathconf和fpathconf函数时，我们将描述可定义或可不定义的限制和常量。在图2-8中，我们列出了25个最小值。
 
这些最小值是不变的——它们并不随系统而改变。它们指定了这些特征最具约束性的值。一个符合POSIX.1的实现应当提供至少这样大的值。这就是为什么将它们称为最小值，虽然它们的名字都包含了MAX。另外，为了保证可移植性，一个严格符合POSIX标准的应用程序不应要求更大的值。我们将在本书的适当章节说明每一个常量的含义。
 
 
 一个严格符合（strictly conforming）POSIX的应用区别于一个刚刚符合POSIX（merely POSIX confirming）的应用。符合POSIX的应用只使用在IEEE 1003.1-2001中定义的接口。严格符合POSIX的应用满足更多的限制，例如，不依赖于POSIX未定义的行为、不使用其任何已弃用的接口以及不要求所使用的常量值大于图2-8中所列出的最小值。
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[image: C:\Documents and Settings\Administrator\Application Data\Tencent\Users\646154518\QQ\WinTemp\RichOle\YQ0FDUEX0B5Y0FJ(01[}}$H.png]
 
图2-8　<limits.h>中的POSIX.1最小值
 
遗憾的是，这些不变最小值中的某一些在实际应用中太小了。例如，目前在大多数UNIX系统中，每个进程可同时打开的文件数远远超过20。另外，_POSIX_PATH_MAX的最小限制值为255，这太小了，路径名可能会超过这一限制。这意味着在编译时不能使用_POSIX_OPEN_MAX和_POSIX_PATH_MAX这两个常量作为数组长度。
 
图2-8中的25个不变最小值的每一个都有一个相关的实现值，其名字是将图2-8中的名字删除前缀_POSIX_后构成的。没有_POSIX_前缀的名字用于给定具体实现支持的该不变最小值的实际值（这25个实现值是本节开始部分所列出的1、4、5、7类：2个是运行时可以增加的值、15个是运行时不变值、7个是路径名可变值，以及数值SSIZE_MAX）。问题是并不能确保所有这25个实现值都在<limit.h>头文件中定义。
 
例如，某个特定值可能不在此头文件中定义，其理由是：一个给定进程的实际值可能依赖于系统的存储总量。如果没有在头文件中定义它们，则不能在编译时使用它们作为数组边界。所以，POSIX.1提供了3个运行时函数以供调用，它们是：sysconf、pathconf以及fpathconf。使用这3个函数可以在运行时得到实际的实现值。但是，还有一个问题，其中某些值由POSIX.1定义为“可能不确定的”（逻辑上无限的），这就意味着该值没有实际上限。例如，在Solaris中，进程结束时注册可运行atexit的函数个数仅受系统存储总量的限制。所以在Solaris中，ATEXIT_MAX被认为是不确定的。2.5.5节还将讨论运行时限制不确定的问题。
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图2-9　<limits.h>中的POSIX.1运行时不变值
 
2.5.3　XSI限制
 
XSI定义了代表实现限制的几个常量。
 
（1）最小值：图2-10中列出的5个常量。
 
（2）运行时不变值（可能不确定）：IOV_MAX和PAGE_SIZE。
 
图2-10列出了最小值。最后两个常量值说明了POSIX.1最小值太小的情况，根据推测这可能是考虑到了嵌入式POSIX.1实现。为此，Single UNIX Specification为符合XSI的系统增加了具有较大最小值的符号。
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图2-10　<limits.h>中的XSI最小值
 
2.5.4　函数sysconf、pathconf和fpathconf
 
我们已列出了实现必须支持的各种最小值，但是怎样才能找到一个特定系统实际支持的限制值呢？正如前面提到的，某些限制值在编译时是可用的，而另外一些则必须在运行时确定。我们也曾提及某些限制值在一个给定的系统中可能是不会更改的，而其他限制值可能会更改，因为它们与文件和目录相关联。运行时限制可调用下面3个函数之一获得。
 
#include <unistd.h> 



long sysconf(int name); 



long pathconf(const char *pathname, int name);



log fpathconf(int fd, int name); 



                               所有函数返回值：若成功，返回相应值；若出错，返回-1（见后）


 
后面两个函数的差别是：一个用路径名作为其参数，另一个则取文件描述符作为参数。
 
图2-11中列出了sysconf函数所使用的name参数，它用于标识系统限制。以_SC_开始的常量用作标识运行时限制的sysconf参数。图2-12列出了pathconf和fpathconf函数为标识系统限制所使用的name参数。以_PC_开始的常量用作标识运行时限制的pathconf或fpathconf参数。
 
我们需要更详细地讨论一下这3个函数不同的返回值。
 
（1）如果name参数并不是一个合适的常量，这3个函数都返回−1，并把errno置为EINVAL。图2-11和图2-12的第3列给出了我们在整本书中将要涉及的限制常量。
 
（2）有些name会返回一个变量值（返回值[image:  \geqslant ]0）或者提示该值是不确定的。不确定的值通过返回−1来体现，而不改变errno的值。
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图2-11　对sysconf的限制及name参数
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图2-12　对pathconf和fpathconf的限制及name参数
 
（3）_SC_CLK_TCK的返回值是每秒的时钟滴答数，用于times函数的返回值（8.17节）。
 
对于pathconf的参数pathname和fpathconf的参数fd有很多限制。如果不满足其中任何一个限制，则结果是未定义的。
 
（1）_PC_MAX_CANON和_PC_MAX_INPUT引用的文件必须是终端文件。
 
（2）_PC_LINK_MAX和_PC_TIMESTAMP_RESOLUTION引用的文件可以是文件或目录。如果是目录，则返回值用于目录本身，而不用于目录内的文件名项。
 
（3）_PC_FILESIZEBITS和_PC_NAME_MAX引用的文件必须是目录，返回值用于该目录中的文件名。
 
（4）_PC_PATH_MAX引用的文件必须是目录。当所指定的目录是工作目录时，返回值是相对路径名的最大长度（遗憾的是，这不是我们想要知道的一个绝对路径名的实际最大长度，我们将在2.5.5节中再次回到这一问题上来）。
 
（5）_PC_PIPE_BUF引用的文件必须是管道、FIFO或目录。在管道或FIFO情况下，返回值是对所引用的管道或FIFO的限制值。对于目录，返回值是对在该目录中创建的任一FIFO的限制值。
 
（6）_PC_SYMLINK_MAX引用的文件必须是目录。返回值是该目录中符号链接可包含字符串的最大长度。
 
实例
 
图2-13中所示的awk(1)程序构建了一个C程序，它打印各pathconf和sysconf符号的值。
 

  42～45 

 
#!/usr/bin/awk -f

BEGIN　　{

　　 printf("#include \"apue.h\"\n")

　　 printf("#include <errno.h>\n")

　　 printf("#include <limits.h>\n")

　　 printf("\n")

　　 printf("static void pr_sysconf(char *, int);\n")

　　 printf("static void pr_pathconf(char *, char *, int);\n")

　　 printf("\n")

　　 printf("int\n")

　　 printf("main(int argc, char *argv[])\n")

　　 printf("{\n"}

　　 printf("\tif (argc != 2)\n")

　　 printf("\t\terr_quit(\"usage: a.out <dirname>\");\n\n")

　　 FS="\t+"

　　 while (getline <"sysconf.sym" > 0) {

　　　　  printf("#ifdef %s\n", $1) 

　　　　  printf("\tprintf(\"%s defined to be %%ld\\n\", (long)%s+0);\n", $1, $1) 

　　　　  printf("#else\n")

　　　　  printf("\tprintf(\"no symbol for %s\\n\");\n", $1) 

　　　　  printf("#endif\n")

　　　　  printf("#ifdef %s\n", $2) 

　　　　  printf("\tpr_sysconf(\"%s =\", %s);\n", $1, $2) 

　　　　  printf("#else\n")

　　　　  printf("\tprintf(\"no symbol for %s\\n\");\n", $2) 

　　　　  printf("#endif\n")

　　 }

　　 close("sysconf.sym")

　　 while (getline <"pathconf.sym" > 0) {

　　　　  printf("#ifdef %s\n", $1) 

　　　　  printf("\tprintf(\"%s defined to be %%ld\\n\", (long)%s+0);\n", $1, $1) 

　　　　  printf("#else\n")

　　　　  printf("\tprintf(\"no symbol for %s\\n\");\n", $1) 

　　　　  printf("#endif\n")

　　　　  printf("#ifdef %s\n", $2) 

　　　　  printf("\tpr_pathconf(\"%s =\", argv[1], %s);\n", $1, $2) 

　　　　  printf("#else\n")

　　　　  printf("\tprintf(\"no symbol for %s\\n\");\n", $2) 

　　　　  printf("#endif\n")

　　 

}

　　 close("pathconf.sym")

　　 exit

}

END {

　　 printf("\texit(0);\n")

　　 printf("}\n\n")

　　 printf("static void\n")

　　 printf("pr_sysconf(char *mesg, int name)\n")

　　 printf("{\n"}

　　 printf("\tlong val;\n\n")

　　 printf("\tfputs(mesg, stdout);\n")

　　 printf("\terrno = 0;\n")

　　 printf("\tif ((val = sysconf(name)) < 0) {\n"}

　　 printf("\t\tif (errno != 0) {\n"}

　　 printf("\t\t\tif (errno == EINVAL)\n")

　　 printf("\t\t\t\tfputs(\" (not supported)\\n\", stdout);\n")

　　 printf("\t\t\telse\n")

　　 printf("\t\t\t\terr_sys(\"sysconf error\");\n")

　　 printf("\t\t) else {\n"}

　　 printf("\t\t\tfputs(\" (no limit)\\n\", stdout);\n")

　　 printf("\t\t)\n")

　　 printf("\t} else {\n"}

　　 printf("\t\tprintf(\" %%ld\\n\", val);\n")

　　 printf("\t)\n")

　　 printf("}\n\n")

　　 printf("static void\n")

　　 printf("pr_pathconf(char *mesg, char *path, int name)\n")

　　 printf("{\n"}

　　 printf("\tlong val;\n")

　　 printf("\n")

　　 printf("\tfputs(mesg, stdout);\n")

　　 printf("\terrno = 0;\n")

　　 printf("\tif ((val = pathconf(path, name)) < 0) {\n"}

　　 printf("\t\tif (errno != 0) {\n"}

　　 printf("\t\t\tif (errno == EINVAL)\n")

　　 printf("\t\t\t\tfputs(\" (not supported)\\n\", stdout);\n")

　　 printf("\t\t\telse\n")

　　 printf("\t\t\t\terr_sys(\"pathconf error, path = %%s\", path);\n")

　　 printf("\t\t) else {\n"}

　　 printf("\t\t\tfputs(\" (no limit)\\n\", stdout);\n")

　　 printf("\t\t)\n")

　　 printf("\t) else {\n"}

　　 printf("\t\tprintf(\" %%ld\\n\", val);\n")

　　 printf("\t}\n")

　　 printf("}\n")

}
 
图2-13　构建C程序以打印所有得到支持的系统配置限制
 
该awk程序读两个输入文件——pathconf.sym和sysconfig.sym，这两个文件中包含了用制表符分隔的限制名和符号列表。并非每种平台都定义所有符号，所以围绕每个pathconf和sysconf调用，awk程序都使用了必要的#ifdef语句。
 
例如，awk程序将输入文件中类似于下列形式的行：
 
NAME_MAX　　_PC_NAME_MAX
 
转换成下列C代码：
 
#ifdef NAME_MAX

　　　printf("NAME_MAX is defined to be %d\n", NAME_MAX+0);

#else

　　　printf("no symbol for NAME_MAX\n");

#endif

#ifdef _PC_NAME_MAX

　　　pr_pathconf("NAME_MAX =", argv[1], _PC_NAME_MAX);

#else

　　　printf("no symbol for _PC_NAME_MAX\n");

#endif
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由awk产生的C程序如图2-14所示，它会打印所有这些限制，并处理未定义限制的情况。
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#include "apue.h"

#include <errno.h>

#include <limits.h>



static void pr_sysconf(char *, int);

static void pr_pathconf(char *, char *, int);



int

main(int argc, char *argv[])

{

　　 if (argc != 2)

　　　　　err_quit("usage: a.out <dirname>");



 #ifdef ARG_MAX

　　　printf("ARG_MAX defined to be %ld\n", (long)ARG_MAX+0);

 #else

　　　printf("no symbol for ARG_MAX\n");

 #endif

 #ifdef _SC_ARG_MAX

　　　pr_sysconf("ARG_MAX =", _SC_ARG_MAX);

 #else

　　　printf("no symbol for _SC_ARG_MAX\n");

 #endif



 /* similar processing for all the rest of the sysconf symbols... */



 #ifdef MAX_CANON

　　　printf("MAX_CANON defined to be %ld\n", (long)MAX_CANON+0);

 #else

　　　printf("no symbol for MAX_CANON\n");

 #endif

 #ifdef _PC_MAX_CANON

　　　pr_pathconf("MAX_CANON =", argv[1], _PC_MAX_CANON);

 #else

　　　printf("no symbol for _PC_MAX_CANON\n");

 #endif



 /* similar processing for all the rest of the pathconf symbols... */



　　　exit(0);

}



static void

pr_sysconf(char *mesg, int name)

{

　　　long　　val;



　　　fputs(mesg, stdout);

　　　errno = 0;

　　　if ((val = sysconf(name)) < 0) {

　　　　　 if (errno != 0) {

　　　　　　　　if (errno == EINVAL)

　　　　　　　　　　 fputs(" (not supported)\n", stdout);

　　　　　　　　else

　　　　　　　　　　 err_sys("sysconf error");

　　　　　 } else {

　　　　　　　　fputs(" (no limit)\n", stdout);

　　　　　 }

　　　} else {

　　　　　 printf(" %ld\n", val);

　　　}

}



static void

pr_pathconf(char *mesg, char *path, int name)

{

　　　long　　val;



　　　fputs(mesg, stdout);

　　　errno = 0;

　　　if ((val = pathconf(path, name)) < 0) {

　　　　　 if (errno != 0) {

　　　　　　　　if (errno == EINVAL)

　　　　　　　　　　 fputs(" (not supported)\n", stdout);

　　　　　　　　else

　　　　　　　　　　 err_sys("pathconf error, path = %s", path);

　　　　　 } else {

　　　　　　　　fputs(" (no limit)\n", stdout);

　　　　　 }

　　　} else {

　　　　　 printf(" %ld\n", val);

　　　}

}
 
图2-14　打印所有可能的sysconf和pathconf值
 
图2-15总结了在本书讨论的4种系统上图2-14所示程序的输出结果。“无符号”项表示该系统没有提供相应_SC或_PC符号以查询相关常量值。因此，该限制是未定义的。与此对比，“不支持”项表示该符号由系统定义，但是未被sysconf和pathcon函数识别。“无限制”项表示该系统将相关常量定义为无限制，但并不表示该限制值可以是无限的，它只表示该限制值不确定。
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图2-15　配置限制的实例
 
 
 注意，有些限制报告地并不正确。例如，在Linux中，SYMLOOP_MAX被报告成无限制，但是检查源代码后就会发现，实际上它在硬编码中有限制值，这一限制将循环缺失的情况下遍历连续符号链接的数目限制为40（参阅fs/namei.c中的follow_link函数）。
 
 Linux中另一个潜在的不精确的来源是pathconf和fpathconf函数都是在C库函数中实现的，这些函数返回的配置限制依赖于底层的文件系统类型，因此如果你的文件系统不被C库熟知的话，函数返回的是一个猜测值。
 

 
我们将在4.14节中看到，UFS是Berkeley快速文件系统的SVR4实现，PCFS是Solaris的MS-DOS FAT文件系统的实现。
 
2.5.5　不确定的运行时限制
 
前面已提及某些限制值可能是不确定的。我们遇到的问题是，如果这些限制值没有在头文件<limits.h>中定义，那么在编译时也就不能使用它们。但是，如果它们的值是不确定的，那么在运行时它们可能也是未定义的。让我们来观察两个特殊的情况，为一个路径名分配存储区，以及确定文件描述符的数目。
 
1．路径名
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很多程序需要为路径名分配存储区，一般来说，在编译时就为其分配了存储区，而且不同的程序使用各种不同的幻数（其中很少是正确的）作为数组长度，如256、512、1 024或标准I/O常量BUFSIZ。4.3BSD头文件<sys/param.h>中的常量MAXPATHLEN才是正确的值，但是很多4.3BSD应用程序并未使用它。
 
POSIX.1试图用PATH_MAX值来帮助我们，但是如果此值是不确定的，那么仍是毫无帮助的。图2-16程序是本书用来为路径名动态分配存储区的函数。
 
#include "apue.h"

#include <errno.h>

#include <limits.h>



#ifdef　PATH_MAX

static long pathmax = PATH_MAX;

#else

static long pathmax = 0;

#endif



static long posix_version = 0;

static long xsi_version = 0;



/* If PATH_MAX is indeterminate, no guarantee this is adequate */

#define PATH_MAX_GUESS 1024



char *

path_alloc(size_t *sizep) /* also return allocated size, if nonnull */

{

　　 char　　*ptr;

　　 size_t size;



　　 if (posix_version == 0)

　　　　　posix_version = sysconf(_SC_VERSION);



　　 if (xsi_version == 0)

　　　　　xsi_version = sysconf(_SC_XOPEN_VERSION);



　　 if (pathmax == 0) {　　/* first time through */

　　　　 errno = 0;

　　　　if ((pathmax = pathconf("/", _PC_PATH_MAX)) < 0) {

　　　　　　 if (errno == 0)

　　　　　　　　　pathmax = PATH_MAX_GUESS; /* it's indeterminate */

　　　　　　 else

　　　　　　　　　err_sys("pathconf error for _PC_PATH_MAX");

　　　　} else {

　　　　　　 pathmax++;　　/* add one since it's relative to root */  

　　　　}

　　 }



　　 /*

　　　* Before POSIX.1-2001, we aren't guaranteed that PATH_MAX includes

　　　* the terminating null byte.　Same goes for XPG3.

　　　*/

　　 if ((posix_version < 200112L) && (xsi_version < 4))

　　　　　size = pathmax + 1;

　　 else

　　　　　size = pathmax;



　　 if ((ptr = malloc(size)) == NULL)

　　　　　err_sys("malloc error for pathname");



　　 if (sizep != NULL)

　　　　　*sizep = size;

　　 return(ptr);

}
 
图2-16　为路径名动态地分配空间
 
如果<limits.h>中定义了常量PATH_MAX，那么就没有任何问题；如果未定义，则需调用pathconf。因为pathconf的返回值是基于工作目录的相对路径名的最大长度，而工作目录是其第一个参数，所以，指定根目录为第一个参数，并将得到的返回值加1作为结果值。如果pathconf指明PATH_MAX是不确定的，那么我们就只能猜测某个值。
 
对于PATH_MAX是否考虑到在路径名末尾有一个null字节这一点，2001年以前的POSIX.1版本表述得并不清楚。出于安全方面的考虑，如果操作系统的实现符合某个先前版本的标准，但并不符合Single UNIX Specification的任何版本（SUS明确要求在结尾处加一个终止null字节），则需要在为路径名分配的存储量上加1。
 
处理不确定结果情况的正确方法与如何使用分配的存储空间有关。例如，如果我们为getcwd调用分配存储空间（返回当前工作目录的绝对路径名，见4.23节），但分配到的空间太小，则会返回一个错误，并将errno设置为ERANGE。然后可调用realloc来增加分配的空间（见7.8节和习题4.16）并重试。不断重复此操作，直到getcwd调用成功执行。
 
2．最大打开文件数
 
守护进程（daemon process，在后台运行且不与终端相连接的一种进程）中一个常见的代码序列是关闭所有打开文件。某些程序中有下列形式的代码序列，这段程序假定在<sys/param.h>头文件中定义了常量NOFILE。
 
#include <sys/param.h>;



for (i = 0; i < NOFILE; i++)

　　 close(i);
 
另外一些程序则使用某些<stdio.h>版本提供的作为上限的常量_NFILE。某些程序则直接将其上限值硬编码为20。但是，这些方法都不是可移植的。
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我们希望用POSIX.1的OPEN_MAX确定此值以提高可移植性，但是如果此值是不确定的，则仍然有问题，如果我们编写下列代码：
 
#include <unistd.h>



for (i = 0; i < sysconf(_SC_OPEN_MAX); i++)

　　　close(i);
 
如果OPEN_MAX是不确定的，那么for循环根本不会执行，因为sysconf将返回-1。在这种情况下，最好的选择就是关闭所有描述符直至某个限制值（如256）。如同上面的路径名实例一样，虽然并不能保证在所有情况下都能正确工作，但这却是我们所能选择的最好方法。图2-17的程序中使用了这种技术。
 
我们可以耐心地调用close，直至得到一个出错返回，但是从close（EBADF）出错返回并不区分无效描述符和没有打开的描述符。如果使用此技术，而且描述符9未打开，描述符10打开了，那么将停止在9上，而不会关闭10。dup函数（见3.12节）在超过了OPEN_MAX时确实会返回一个特定的出错值，但是用复制一个描述符两、三百次的方法来确定此值是一种非常极端的方法。
 
#include "apue.h"

#include <errno.h>

#include <limits.h>



#ifdef OPEN_MAX

static long openmax = OPEN_MAX;

#else

static long openmax = 0;

#endif



/*

 * If OPEN_MAX is indeterminate, this might be inadequate.

 */

#define OPEN_MAX_GUESS 256



long

open_max(void)

{

　　 if (openmax == 0) {　　/* first time through */

　　　　　errno = 0;

　　　　　if ((openmax = sysconf(_SC_OPEN_MAX)) < 0) {

　　　　　　　 if (errno == 0)

　　　　　　　　　　openmax = OPEN_MAX_GUESS; /* it's indeterminate */

　　　　　　　 else

　　　　　　　　　　err_sys("sysconf error for _SC_OPEN_MAX");

　　　　　}

　　 }

　　 return(openmax);

}
 
图2-17　确定文件描述符个数
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某些实现返回LONG_MAX作为限制值，但这与不限制其值在效果上是相同的。Linux对ATEXIT_MAX所取的限制值就属于此种情况（见图2-15），这将使程序的运行行为变得非常糟糕，因此并不是一个好方法。
 
例如，我们可以使用Bourne-again shell的内建命令ulimit来更改进程可同时打开文件的最多个数。如果要将此限制值设置为在效果上是无限制的，那么通常要求具有特权（超级用户）。但是，一旦将其值设置为无穷大，sysconf就会将LONG_MAX作为OPEN_MAX的限制值报告。程序若将此值作为要关闭的文件描述符数的上限（如图2-17所示），那么为了试图关闭2 147 483 647个文件描述符，就会浪费大量时间，实际上其中绝大多数文件描述符并未得到使用。
 
支持Single UNIX Specification中XSI扩展的系统提供了getrlimit(2)函数（见7.11节）。它返回一个进程可以同时打开的描述符的最多个数。使用该函数，我们能够检测出对于进程能够打开的文件数实际上并没有设置上限，于是也就避开了这个问题。
 
 
 OPEN_MAX被POSIX称为运行时不变值，这意味着在一个进程的生命周期中其值不应发生变化。但是在支持XSI扩展的系统上，可以调用setrlimit(2)函数（见7.11节）更改一个运行进程的OPEN_MAX值（也可用C shell的limit或Bourne shell、Bourne-again shell、Debian Almquist和Korn shell的ulimit命令更改这个值）。如果系统支持这种功能，则可以更改图2-17中的函数，使得每次调用此函数时都会调用sysconf，而不只是在第一次调用此函数时调用sysconf。
 

 
2.6　选项
 
图2-5列出了POSIX.1的选项，并且2.2.3节讨论了XSI的选项组。如果我们要编写可移植的应用程序，而这些程序可能会依赖于这些可选的支持的功能，那么就需要一种可移植的方法来判断实现是否支持一个给定的选项。
 
如同对限制的处理（见2.5节）一样，POSIX.1定义了3种处理选项的方法。
 
（1）编译时选项定义在<unistd.h>中。
 
（2）与文件或目录无关的运行时选项用sysconf函数来判断。
 
（3）与文件或目录有关的运行时选项通过调用pathconf或fpathconf函数来判断。
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选项包括了图2-5中第3列的符号以及图2-19和图2-18中的符号。如果符号常量未定义，则必须使用sysconf、pathconf或fpathconf来判断是否支持该选项。在这种情况下，这些函数的name参数前缀_POSIX必须替换为_SC或_PC。对于以_XOPEN为前缀的常量，在构成name参数时必须在其前放置_SC或_PC。例如，若常量_POSIX_RAW_THREADS是未定义的，那么就可以将name参数设置为SC_RAW_THREADS，并以此调用sysconf来判断该平台是否支持POSIX线程选项。如若常量_XOPEN_UNIX是未定义的，那么就可以将name参数设置为_SC_XOPEN_UNIX，并以此调用sysconf来判断该平台是否支持XSI扩展。
 
对于每一个选项，有以下3种可能的平台支持状态。
 
（1）如果符号常量没有定义或者定义值为−1，那么该平台在编译时并不支持相应选项。但是有一种可能，即在已支持该选项的新系统上运行老的应用时，即使该选项在应用编译时未被支持，但如今新系统运行时检查会显示该选项已被支持。
 
（2）如果符号常量的定义值大于0，那么该平台支持相应选项。
 
（3）如果符号常量的定义值为0，则必须调用sysconf、pathconf或fpathconf来判断相应选项是否受到支持。
 
图2-18总结了pathconf和fpathconf使用的符号常量。除了图2-5中列出的选项之外，图2-19总结了其他一些sysconf使用的未弃用的选项及它们的符号常量。注意，我们省略了与实用命令相关的选项。
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图2-18　pathconf和fpathconf的选项及name参数
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图2-19　sysconf的选项及name参数
 
如同系统限制一样，关于sysconf、pathconf和fpathconf如何处理选项，有如下几点值得注意。
 
（1）_SC_VERSION的返回值表示标准发布的年（以4位数表示）、月（以2位数表示）。该值可能是198808L、199009L、199506L或表示该标准后续版本的其他值。与SUSv3（POSIX.1 2001年版）相关连的值是200112L，与SUSv4（POSIX.1 2008年版）相关连的值是200809L。
 
（2）_SC_XOPEN_VERSION的返回值表示系统支持的XSI版本。与SUSv3相关联的值是600，与SUSv4相关的值是700。
 
（3）_SC_JOB_CONTROL、_SC_SAVED_IDS以及_PC_VDISABLE的值不再表示可选功能。虽然XPG4和SUS早期版本要求支持这些选项，但从SUSv3起，不再需要这些功能，但这些符号仍然被保留，以便向后兼容。
 
（4）符合POSIX.1-2008的平台还要求支持下列选项：
 
 
 	_POSIX_ASYNCHRONOUS_IO
 
 	_POSIX_BARRIERS
 
 	_POSIX_CLOCK_SELECTION
 
 	_POSIX_MAPPED_FILES
 
 	_POSIX_MEMORY_PROTECTION
 
 	_POSIX_READER_WRITER_LOCKS
 
 	_POSIX_REALTIME_SIGNALS
 
 	_POSIX_SEMAPHORES
 
 	_POSIX_SPIN_LOCKS
 
 	_POSIX_THREAD_SAFE_FUNCTIONS
 
 	_POSIX_THREADS
 
 	_POSIX_TIMEOUTS
 
 	_POSIX_TIMERS
 

 
这些常量定义成具有值200809L。相应的_SC符号同样是为了向后兼容而被保留下来的。
 
（5）如果对指定的pathname或fd已不再支持此功能，那么_PC_CHOWN_RESTRICTED和_PC_NO_ TRUNC返回−1，而errno不变，在所有符合POSIX的系统中，返回值将大于0（表示该选项被支持）；
 
（6）_PC_CHOWN_RESTRICT引用的文件必须是一个文件或者是一个目录。如果是一个目录，那么返回值指明该选项是否可应用于该目录中的各个文件。
 
（7）_PC_NO_TRUNC和_PC_2_SYMLINKS引用的文件必须是一个目录。
 
（8）_PC_NO_TRUNC的返回值可用于目录中的各个文件名。
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（9）_PC_VDISABLE引用的文件必须是一个终端文件。
 
（10）_PC_ASYNC_IO、_PC_PRIO_IO和_PC_SYNC_IO引用的文件一定不能是一个目录。
 
图2-20列出了若干配置选项以及在本书所讨论的4个示例系统上的对应值。如果系统定义了某个符号常量但它的值为−1或0，但是相应的sysconf或pathconf调用返回的是−1，就表示该项未被支持。可以看到，有些系统实现还没有跟上Single UNIX Specification的最新版本。
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图2-20　配置选项的实例
 
注意，当用于Solaris PCFS文件系统中的文件时，对于_PC_NO_TRUNC，pathconf返回−1。PCFS文件系统支持DOS格式（软盘格式），DOS文件名按DOS文件系统所要求8.3格式截断，在进行此种操作时并无任何提示。
 
2.7　功能测试宏
 
如前所述，头文件定义了很多POSIX.1和XSI符号。但是除了POSIX.1和XSI定义外，大多数实现在这些头文件中也加入了它们自己的定义。如果在编译一个程序时，希望它只与POSIX的定义相关，而不与任何实现定义的常量冲突，那么就需要定义常量_POSIX_C_SOURCE。一旦定义了_POSIX_C_ SOURCE，所有POSIX.1头文件都使用此常量来排除任何实现专有的定义。
 
 
 POSIX.1标准的早期版本定义了_POSIX_SOURCE常量。在POSIX.1的2001版中，它被替换为_POSIX_C_SOURCE。
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常量_POSIX_C_SOURCE及_XOPEN_SOURCE被称为功能测试宏（feature test macro）。所有功能测试宏都以下划线开始。当要使用它们时，通常在cc命令行中以下列方式定义：
 
cc -D_POSIX_C_SOURCE=200809L　file.c
 
这使得C程序在包括任何头文件之前，定义了功能测试宏。如果我们仅想使用POSIX.1定义，那么也可将源文件的第一行设置为：
 
#define_POSIX_C_SOURCE 200809L
 
为使SUSv4的XSI选项可由应用程序使用，需将常量_XOPEN_SOURCE定义为700。除了让XSI选项可用以外，就POSIX.1的功能而言，这与将_POSIX_C_SOURCE定义为200809L的作用相同。
 
SUS将c99实用程序定义为C编译环境的接口。随之，就可以用如下方式编译文件：
 
 c99 -D_XOPEN_SOURCE=700 file.c –o file
 
可以使用-std=c99选项在gcc的C编译器中启用1999 ISO C扩展，如下所示：
 
gcc -D_XOPEN_SOURCE=700 -std=c99 file.c -o file
 
2.8　基本系统数据类型
 
历史上，某些UNIX系统变量已与某些C数据类型联系在一起，例如，历史上主、次设备号存放在一个16位的短整型中，8位表示主设备号，另外8位表示次设备号。但是，很多较大的系统需要用多于256个值来表示其设备号，于是，就需要一种不同的技术。（实际上，Solaris用32位表示设备号：14位用于主设备号，18位用于次设备号。）
 
头文件<sys/types.h>中定义了某些与实现有关的数据类型，它们被称为基本系统数据类型（primitive system data type）。还有很多这种数据类型定义在其他头文件中。在头文件中，这些数据类型都是用C的typedef来定义的。它们绝大多数都以_t结尾。图2-21列出了本书将使用的一些基本系统数据类型。
 
用这种方式定义了这些数据类型后，就不再需要考虑因系统不同而变化的程序实现细节。在本书中涉及这些数据类型时，我们会说明为什么要使用它们。
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图2-21　一些常用的基本系统数据类型
 
2.9　标准之间的冲突
 
就整体而言，这些不同的标准之间配合得相当好。因为SUS基本说明和POSIX.1是同一个东西，所以我们不对它们进行特别的说明，我们主要关注ISO C标准和POSIX.1之间的差别。它们之间的冲突并非有意，但如果出现冲突，POSIX.1服从ISO C标准。然而它们之间还是存在着一些差别的。
 
ISO C定义了clock函数，它返回进程使用的CPU时间，返回值是clock_t类型值，但ISO C标准没有规定它的单位。为了将此值变换成以秒为单位，需要将其除以在<time.h>头文件中定义的CLOCKS_PER_SEC。POSIX.1定义了times函数，它返回其调用者及其所有终止子进程的CPU时间以及时钟时间，所有这些值都是clock_t类型值。sysconf函数用来获得每秒滴答数，用于表示times函数的返回值。ISO C和POSIX.1用同一种数据类型（clock_t）来保存对时间的测量，但定义了不同的单位。这种差别可以在Solaris中看到，其中clock返回微秒数（CLOCK_PER_SEC是100万），而sysconf为每秒滴答数返回的值是100。因此，我们在使用clock_t类型变量的时候，必须十分小心以免混淆不同的时间单位。
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另一个可能产生冲突的地方是：在ISO C标准说明函数时，可能没有像POSIX.1那样严。在POSIX环境下，有些函数可能要求有一个与C环境下不同的实现，因为POSIX环境中有多个进程，而ISO C环境则很少考虑宿主操作系统。尽管如此，很多符合POSIX的系统为了兼容性也会实现ISO C函数。signal函数就是一个例子。如果在不了解的情况下使用了Solaris提供的signal函数（希望编写可在ISO C环境和较早UNIX系统中运行的可兼容程序），那么它提供了与POSIX.1 sigaction函数不同的语义。第10章将对signal函数做更多说明。
 
2.10　小结
 
在过去25年多的时间里，UNIX编程环境的标准化已经取得了很大进展。本章对3个主要标准——ISO C、POSIX和Single UNIX Specification进行了说明，也分析了这些标准对本书主要关注的4个实现，即FreeBSD、Linux、Mac OS X和Solaris所产生的影响。这些标准都试图定义一些可能随实现而更改的参数，但是我们已经看到这些限制并不完美。本书将涉及很多这些限制和幻常量。
 
在本书最后的参考书目中，说明了如何获得这些标准的方法。
 
习题
 
2.1　在2.8节中提到一些基本系统数据类型可以在多个头文件中定义。例如，在FreeBSD 8.0中，size_t在29个不同的头文件中都有定义。由于一个程序可能包含这29个不同的头文件，但是ISO C却不允许对同一个名字进行多次typedef，那么如何编写这些头文件呢？
 
2.2　检查系统的头文件，列出实现基本系统数据类型所用到的实际数据类型。
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2.3　改写图2-17中的程序，使其在sysconf为OPEN_MAX限制返回LONG_MAX时，避免进行不必要的处理。
 


第3章　文件I/O
 
3.1　引言
 
本章开始讨论UNIX系统，先说明可用的文件I/O函数——打开文件、读文件、写文件等。UNIX系统中的大多数文件I/O只需用到5个函数：open、read、write、lseek以及close。然后说明不同缓冲长度对read和write函数的影响。
 
本章描述的函数经常被称为不带缓冲的I/O（unbuffered I/O，与将在第5章中说明的标准I/O函数相对照）。术语不带缓冲指的是每个read和write都调用内核中的一个系统调用。这些不带缓冲的I/O函数不是ISO C的组成部分，但是，它们是POSIX.1和Single UNIX Specification的组成部分。
 
只要涉及在多个进程间共享资源，原子操作的概念就变得非常重要。我们将通过文件I/O和open函数的参数来讨论此概念。然后，本章将进一步讨论在多个进程间如何共享文件，以及所涉及的内核有关数据结构。在描述了这些特征后，将说明dup、fcntl、sync、fsync和ioctl函数。
 
3.2　文件描述符
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对于内核而言，所有打开的文件都通过文件描述符引用。文件描述符是一个非负整数。当打开一个现有文件或创建一个新文件时，内核向进程返回一个文件描述符。当读、写一个文件时，使用open或creat返回的文件描述符标识该文件，将其作为参数传送给read或write。
 
按照惯例，UNIX系统shell把文件描述符0与进程的标准输入关联，文件描述符1与标准输出关联，文件描述符2与标准错误关联。这是各种 shell以及很多应用程序使用的惯例，与UNIX内核无关。尽管如此，如果不遵循这种惯例，很多UNIX系统应用程序就不能正常工作。
 
在符合POSIX.1的应用程序中，幻数0、1、2虽然已被标准化，但应当把它们替换成符号常量STDIN_FILENO、STDOUT_FILENO和STDERR_FILENO以提高可读性。这些常量都在头文件<unistd.h>中定义。
 
文件描述符的变化范围是0～OPEN_MAX-1（见图2-11）。早期的UNIX系统实现采用的上限值是19（允许每个进程最多打开20个文件），但现在很多系统将其上限值增加至63。
 
 
 对于FreeBSD 8.0、Linux 3.2.0、Mac OS X 10.6.8以及Solaris 10，文件描述符的变化范围几乎是无限的，它只受到系统配置的存储器总量、整型的字长以及系统管理员所配置的软限制和硬限制的约束。
 

 
3.3　函数open和openat
 
调用open或openat函数可以打开或创建一个文件。
 
#include <fcntl.h>



int open(const char *path, int oflag,... /* mode_t mode */); 



int openat(int fd, const char *path, int oflag, ... /* mode_t mode */ );



　　　　　　　　　　　　　　　　　　　　两函数的返回值：若成功，返回文件描述符；若出错，返回−1


 
我们将最后一个参数写为...，ISO C用这种方法表明余下的参数的数量及其类型是可变的。对于open函数而言，仅当创建新文件时才使用最后这个参数（稍后将对此进行说明）。在函数原型中将此参数放置在注释中。
 
path参数是要打开或创建文件的名字。oflag参数可用来说明此函数的多个选项。用下列一个或多个常量进行“或”运算构成oflag参数（这些常量在头文件<fcntl.h>中定义）。
 
O_RDONLY　　只读打开。
 
O_WRONLY　　只写打开。
 
O_RDWR　　　读、写打开。
 
 
 大多数实现将O_RDONLY定义为0，O_WRONLY定义为1，O_RDWR定义为2，以与早期的程序兼容。
 

 
O_EXEC　　只执行打开。
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O_SEARCH　　只搜索打开（应用于目录）。
 
 
 O_SEARCH常量的目的在于在目录打开时验证它的搜索权限。对目录的文件描述符的后续操作就不需要再次检查对该目录的搜索权限。本书中涉及的操作系统目前都没有支持O_SEARCH。
 

 
在这5个常量中必须指定一个且只能指定一个。下列常量则是可选的。
 
O_APPEND　　每次写时都追加到文件的尾端。3.11节将详细说明此选项。
 
O_CLOEXEC　　把FD_CLOEXEC常量设置为文件描述符标志。3.14节中将说明文件描述符标志。
 
O_CREAT　　若此文件不存在则创建它。使用此选项时，open函数需同时说明第3个参数mode（openat函数需说明第4个参数mode），用mode指定该新文件的访问权限位（4.5节将说明文件的权限位，那时就能了解如何指定mode，以及如何用进程的umask值修改它）。
 
O_DIRECTORY　　如果path引用的不是目录，则出错。
 
O_EXCL　　如果同时指定了O_CREAT，而文件已经存在，则出错。用此可以测试一个文件是否存在，如果不存在，则创建此文件，这使测试和创建两者成为一个原子操作。3.11节将更详细地说明原子操作。
 
O_NOCTTY　　如果path引用的是终端设备，则不将该设备分配作为此进程的控制终端。9.6节将说明控制终端。
 
O_NOFOLLOW　　如果path引用的是一个符号链接，则出错。4.17节将说明符号链接。
 
O_NONBLOCK　　如果path引用的是一个FIFO、一个块特殊文件或一个字符特殊文件，则此选项为文件的本次打开操作和后续的I/O操作设置非阻塞方式。14.2节将说明此工作模式。
 
 
 较早的System V引入了O_NDELAY（不延迟）标志，它与O_NONBLOCK（不阻塞）选项类似，但它的读操作返回值具有二义性。如果不能从管道、FIFO或设备读得数据，则不延迟选项使read返回0，这与表示已读到文件尾端的返回值0冲突。基于SVR4的系统仍支持这种语义的不延迟选项，但是新的应用程序应当使用不阻塞选项代替之。
 

 
O_SYNC　　使每次write等待物理I/O操作完成，包括由该write操作引起的文件属性更新所需的I/O。3.14节将使用此选项。
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O_TRUNC　　如果此文件存在，而且为只写或读-写成功打开，则将其长度截断为0。
 
O_TTY_INIT　　如果打开一个还未打开的终端设备，设置非标准termios参数值，使其符合Single UNIX Specification。第18章将讨论终端I/O的termios结构。
 
下面两个标志也是可选的。它们是Single UNIX Specification（以及POSIX.1）中同步输入和输出选项的一部分。
 
O_DSYNC　　使每次write要等待物理I/O操作完成，但是如果该写操作并不影响读取刚写入的数据，则不需等待文件属性被更新。
 
 
 O_DSYNC和O_SYNC标志有微妙的区别。仅当文件属性需要更新以反映文件数据变化（例如，更新文件大小以反映文件中包含了更多的数据）时，O_DSYNC标志才影响文件属性。而设置O_SYNC标志后，数据和属性总是同步更新。当文件用O_DSYN标志打开，在重写其现有的部分内容时，文件时间属性不会同步更新。与此相反，如果文件是用O_SYNC标志打开，那么对该文件的每一次write都将在write返回前更新文件时间，这与是否改写现有字节或追加写文件无关。
 

 
O_RSYNC　　使每一个以文件描述符作为参数进行的read操作等待，直至所有对文件同一部分挂起的写操作都完成。
 
 
 Solaris 10支持所有这3个标志。FreeBSD（和Mac OS X）设置了另外一个标志（O_FSYNC），它与标志O_SYNC的作用相同。因为这两个标志是等效的，它们定义的标志具有相同的值。FreeBSD 8.0不支持O_DSYNC或O_RSYNC标志。Mac OS X并不支持O_RSYNC，但却定义了O_DSYNC，处理O_DSYNC与处理O_SYNC相同。Linux 3.2.0定义了O_DSYNC，但处理O_RSYNC与处理O_SYNC相同。
 

 
由open和openat函数返回的文件描述符一定是最小的未用描述符数值。这一点被某些应用程序用来在标准输入、标准输出或标准错误上打开新的文件。例如，一个应用程序可以先关闭标准输出（通常是文件描述符1），然后打开另一个文件，执行打开操作前就能了解到该文件一定会在文件描述符1上打开。在3.12节说明dup2函数时，可以了解到有更好的方法来保证在一个给定的描述符上打开一个文件。
 
fd参数把open和openat函数区分开，共有3种可能性。
 
（1）path参数指定的是绝对路径名，在这种情况下，fd参数被忽略，openat函数就相当于open函数。
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（2）path参数指定的是相对路径名，fd参数指出了相对路径名在文件系统中的开始地址。fd参数是通过打开相对路径名所在的目录来获取。
 
（3）path参数指定了相对路径名，fd参数具有特殊值AT_FDCWD。在这种情况下，路径名在当前工作目录中获取，openat函数在操作上与open函数类似。
 
openat函数是POSIX.1最新版本中新增的一类函数之一，希望解决两个问题。第一，让线程可以使用相对路径名打开目录中的文件，而不再只能打开当前工作目录。在第11章我们会看到，同一进程中的所有线程共享相同的当前工作目录，因此很难让同一进程的多个不同线程在同一时间工作在不同的目录中。第二，可以避免time-of-check-to-time-of-use（TOCTTOU）错误。
 
TOCTTOU错误的基本思想是：如果有两个基于文件的函数调用，其中第二个调用依赖于第一个调用的结果，那么程序是脆弱的。因为两个调用并不是原子操作，在两个函数调用之间文件可能改变了，这样也就造成了第一个调用的结果就不再有效，使得程序最终的结果是错误的。文件系统命名空间中的TOCTTOU错误通常处理的就是那些颠覆文件系统权限的小把戏，这些小把戏通过骗取特权程序降低特权文件的权限控制或者让特权文件打开一个安全漏洞等方式进行。Wei和Pu[2005]在UNIX文件系统接口中讨论了TOCTTOU的缺陷。
 
文件名和路径名截断
 
如果NAME_MAX是14，而我们却试图在当前目录中创建一个文件名包含15个字符的新文件，此时会发生什么呢？按照传统，早期的System V版本（如SVR2）允许这种使用方法，但总是将文件名截断为14个字符，而且不给出任何信息，而BSD类的系统则返回出错状态，并将errno设置为ENAMETOOLONG。无声无息地截断文件名会引起问题，而且它不仅仅影响到创建新文件。如果NAME_MAX是14，而存在一个文件名恰好就是14个字符的文件，那么以路径名作为其参数的任一函数（open、stat等）都无法确定该文件的原始名是什么。其原因是这些函数无法判断该文件名是否被截断过。
 
在POSIX.1中，常量_POSIX_NO_TRUNC决定是要截断过长的文件名或路径名，还是返回一个出错。正如我们在第2章中已经见过的，根据文件系统的类型，此值可以变化。我们可以用fpathconf或pathconf来查询目录具体支持何种行为，到底是截断过长的文件名还是返回出错。
 
 
 是否返回一个出错值在很大程度上是历史形成的。例如。基于SVR4的系统对传统的System V文件系统（S5）并不出错，但是它对BSD风格的文件系统（UFS）则出错。作为另一个例子（参见图2-20），Solaris对UFS返回出错，对与DOS兼容的文件系统PCFS则不返回出错，其原因是DOS会无声无息地截断不匹配8.3格式的文件名。BSD类系统和Linux总是会返回出错。
 

 
若_POSIX_NO_TRUNC有效，则在整个路径名超过PATH_MAX，或路径名中的任一文件名超过NAME_MAX时，出错返回，并将errno设置为ENAMETOOLONG。
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 大多数的现代文件系统支持文件名的最大长度可以为255。因为文件名通常比这个限制要短，因此对大多数应用程序来说这个限制还未出现什么问题。
 

 
3.4　函数creat
 
也可调用creat函数创建一个新文件。
 
#include <fcntl.h> 



int creat(const char *path, mode_t mode);



　　　　　　　　　　　　　　　　返回值：若成功，返回为只写打开的文件描述符；若出错，返回−1


 
注意，此函数等效于：
 
open(path, O_WRONLY｜O_CREAT｜O_TRUNC, mode);


 
 
 在早期的UNIX系统版本中，open的第二个参数只能是0、1或2。无法打开一个尚未存在的文件，因此需要另一个系统调用creat以创建新文件。现在，open函数提供了选项O_CREAT和O_TRUNC，于是也就不再需要单独的creat函数。
 

 
在4.5节中，我们将详细说明文件访问权限，并说明如何指定mode。
 
creat的一个不足之处是它以只写方式打开所创建的文件。在提供open的新版本之前，如果要创建一个临时文件，并要先写该文件，然后又读该文件，则必须先调用creat、close，然后再调用open。现在则可用下列方式调用open实现：
 
open(path, O_RDWR｜O_CREAT｜O_TRUNC, mode);


 
3.5　函数close
 
可调用close函数关闭一个打开文件。
 
#include <unistd.h> 



int close (int fd)；



　　　　　　　　　　　　　　　　　　　返回值：若成功，返回0；若出错，返回−1


 
关闭一个文件时还会释放该进程加在该文件上的所有记录锁。14.3节将讨论这一点。
 
当一个进程终止时，内核自动关闭它所有的打开文件。很多程序都利用了这一功能而不显式地用close关闭打开文件。实例见图1-4程序。
 
3.6　函数lseek
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每个打开文件都有一个与其相关联的“当前文件偏移量”（current file offset）。它通常是一个非负整数，用以度量从文件开始处计算的字节数（本节稍后将对“非负”这一修饰词的某些例外进行说明）。通常，读、写操作都从当前文件偏移量处开始，并使偏移量增加所读写的字节数。按系统默认的情况，当打开一个文件时，除非指定O_APPEND选项，否则该偏移量被设置为0。
 
可以调用lseek显式地为一个打开文件设置偏移量。
 
#include <unistd.h> 



off_t lseek(int fd, off_t offset, int whence);



　　　　　　　　　　　　　　　　　　　返回值：若成功，返回新的文件偏移量；若出错，返回为−1


 
对参数offset的解释与参数whence的值有关。
 
 
 	若whence是SEEK_SET，则将该文件的偏移量设置为距文件开始处offset个字节。
 
 	若whence是SEEK_CUR，则将该文件的偏移量设置为其当前值加offset，offset可为正或负。
 
 	若whence是SEEK_END，则将该文件的偏移量设置为文件长度加offset，offset可正可负。
 

 
若lseek成功执行，则返回新的文件偏移量，为此可以用下列方式确定打开文件的当前偏移量：
 
off_t　　currpos;

currpos = lseek(fd, 0, SEEK_CUR);
 
这种方法也可用来确定所涉及的文件是否可以设置偏移量。如果文件描述符指向的是一个管道、FIFO或网络套接字，则lseek返回1，并将errno设置为ESPIPE。
 
 
 3个符号常量SEEK_SET、SEEK_CUR和SEEK_END是在System V中引入的。在System V之前，whence被指定为0（绝对偏移量）、1（相对于当前位置的偏移量）或2（相对文件尾端的偏移量）。很多软件仍然把这些数字直接写在代码里。
 
 在lseek中的字符l表示长整型。在引入off_t数据类型之前，offset参数和返回值是长整型的。lseek是在UNIX V7中引入的，当时C语言中增加了长整型（在UNIX V6中，用函数seek和tell提供类似功能）。
 

 
实例
 
图3-1所示的程序用于测试对其标准输入能否设置偏移量。
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#include "apue.h"

int

main(void)

{

　　 if (lseek(STDIN_FILENO, 0, SEEK_CUR) == -1)

　　　　　 printf("cannot seek\n");

　　 else

　　　　　 printf("seek OK\n");

　　 exit(0);

}
 
图3-1　测试标准输入能否被设置偏移量
 
如果用交互方式调用此程序，则可得
 
$ ./a.out < /etc/passwd

seek OK

$ cat < /etc/passwd| ./a.out

cannot seek

$ ./a.out < /var/spool/cron/FIFO

cannot seek


 
通常，文件的当前偏移量应当是一个非负整数，但是，某些设备也可能允许负的偏移量。但对于普通文件，其偏移量必须是非负值。因为偏移量可能是负值，所以在比较lseek的返回值时应当谨慎，不要测试它是否小于0，而要测试它是否等于1。
 
 
 在Intel x86处理器上运行的FreeBSD的设备/dev/kmem支持负的偏移量。
 
 因为偏移量（off_t）是带符号数据类型（见图2-21），所以文件的最大长度会减少一半。例如，若off_t是32位整型，则文件最大长度是231−1个字节。
 

 
lseek仅将当前的文件偏移量记录在内核中，它并不引起任何I/O操作。然后，该偏移量用于下一个读或写操作。
 
文件偏移量可以大于文件的当前长度，在这种情况下，对该文件的下一次写将加长该文件，并在文件中构成一个空洞，这一点是允许的。位于文件中但没有写过的字节都被读为0。
 
文件中的空洞并不要求在磁盘上占用存储区。具体处理方式与文件系统的实现有关，当定位到超出文件尾端之后写时，对于新写的数据需要分配磁盘块，但是对于原文件尾端和新开始写位置之间的部分则不需要分配磁盘块。
 
实例
 
图3-2所示的程序用于创建一个具有空洞的文件。
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#include "apue.h"

#include <fcntl.h>



char　　buf1[] = "abcdefghij";

char　　buf2[] = "ABCDEFGHIJ";



int

main(void)

{

　　 int　　fd;



　　 if ((fd = creat("file.hole", FILE_MODE)) < 0)

　　　　　err_sys("creat error");



　　 if (write(fd, buf1, 10) != 10)

　　　　　err_sys("buf1 write error");

　　 /* offset now = 10 */



　　 if (lseek(fd, 16384, SEEK_SET) == -1)

　　　　　err_sys("lseek error");

　　 /* offset now = 16384 */



　　 if (write(fd, buf2, 10) != 10)

　　　　　err_sys("buf2 write error");

　　 /* offset now = 16394 */



　　 exit(0);

}
 
图3-2　创建一个具有空洞的文件
 
运行该程序得到：
 
$ ./a.out

$ ls -l file.hole　　　　　　　　　　　　检查其大小

-rw-r--r-- 1 sar　　　　　16394 Nov 25 01:01 file.hole

$ od -c file.hole　　　　　　　　　　　　观察实际内容

0000000 a　b　c　d　e　f　g　h　i　j \0 \0 \0 \0 \0 \0

0000020　\0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0

*

0040000　A　B　C　D　E　F　G　H　I　J

0040012


 
使用od(1)命令观察该文件的实际内容。命令行中的-c标志表示以字符方式打印文件内容。从中可以看到，文件中间的30个未写入字节都被读成0。每一行开始的一个7位数是以八进制形式表示的字节偏移量。
 
为了证明在该文件中确实有一个空洞，将刚创建的文件与同样长度但无空洞的文件进行比较：
 
$ ls -ls file.hole file.nohole　 比较长度

　 8 -rw-r--r-- 1 sar　　　　16394 Nov 25 01:01 file.hole

　20 -rw-r--r-- 1 sar　　　　16394 Nov 25 01:03 file.nohole


 
虽然两个文件的长度相同，但无空洞的文件占用了20个磁盘块，而具有空洞的文件只占用8个磁盘块。
 
在此实例中调用了将在3.8节中说明的write函数。4.12节将对具有空洞的文件进行更多说明。
 
因为lseek使用的偏移量是用off_t类型表示的，所以允许具体实现根据各自特定的平台自行选择大小合适的数据类型。现今大多数平台提供两组接口以处理文件偏移量。一组使用32位文件偏移量，另一组则使用64位文件偏移量。
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Single UNIX Specification向应用程序提供了一种方法，使其通过sysconf函数确定支持何种环境（见2.5.4节）。图3-3总结了定义的sysconf常量。
 
[image: 0303.jpg]
 
图3-3　sysconf的数据大小选项和name参数
 
c99编译器要求使用getconf(1)命令将所期望的数据大小模型映射为编译和链接程序所需的标志。根据每个平台支持环境的不同，可能需要不同的标志和库。
 
 
 遗憾的是，在这方面，实现还未跟上标准的步伐。如果你的系统没有匹配标准的最新版本，那么系统还可能支持Single UNIX Specification前一版本中的选项名：_POSIX_V6_ILP32_OFF32、 _POSIX_V6_ILP32_OFFBIG、 _POSIX_V6_LP64_OFF64和_POSIX_V6_LP64_OFFBIG。
 
 为了避开这一点，应用程序可以将符号常量_FILE_OFFSET_BITS设置为64，以支持64位偏移量。这样就将off_t定义更改为64位带符号整型。将_FILE_OFFSET_BITS符号常量设置为32以支持32位偏移量。但是，应当注意的是，虽然本书讨论的4种平台都支持32位和64位文件偏移量，但是通过设置_FILE_OFFSET_BITS符号常量的值这种方法并不能保证应用程序是可移植的，也有可能达不到预期的效果。
 
 图3-4总结了在本书涉及的4种平台上，当应用程序没有定义_FILE_OFFSET_BITS时，off_t数据类型的字节数以及_FILE_OFFSET_BITS被定义成32或64时，off_t数据类型的字节数。
 

 
[image: 0304.jpg]
 
图3-4　不同平台上off_t的字节数
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注意：尽管可以实现64位文件偏移量，但是能否创建一个大于2 GB（231−1字节）的文件则依赖于底层文件系统的类型。
 
3.7　函数read
 
调用read函数从打开文件中读数据。
 
#include <unistd.h> 



ssize_t read(int fd, void *buf, size_t nbytes);



　　　　　　　　　　　　　　　　　返回值：读到的字节数，若已到文件尾，返回0；若出错，返回−1


 
如read成功，则返回读到的字节数。如已到达文件的尾端，则返回0。
 
有多种情况可使实际读到的字节数少于要求读的字节数：
 
 
 	读普通文件时，在读到要求字节数之前已到达了文件尾端。例如，若在到达文件尾端之前有30个字节，而要求读100个字节，则read返回30。下一次再调用read时，它将返回0（文件尾端）。
 
 	当从终端设备读时，通常一次最多读一行（第18章将介绍如何改变这一点）。
 
 	当从网络读时，网络中的缓冲机制可能造成返回值小于所要求读的字节数。
 
 	当从管道或FIFO读时，如若管道包含的字节少于所需的数量，那么read将只返回实际可用的字节数。
 
 	当从某些面向记录的设备（如磁带）读时，一次最多返回一个记录。
 
 	当一信号造成中断，而已经读了部分数据量时。我们将在10.5节进一步讨论此种情况。
 

 
读操作从文件的当前偏移量处开始，在成功返回之前，该偏移量将增加实际读到的字节数。
 
POSIX.1从几个方面对read函数的原型做了更改。经典的原型定义是：
 
int read(int fd, char *buf, unsigned nbytes);


 
 
 	首先，为了与ISO C一致，第2个参数由char *改为void *。在ISO C中，类型void *用于表示通用指针。
 
 	其次，返回值必须是一个带符号整型（ssize_t），以保证能够返回正整数字节数、0（表示文件尾端）或1（出错）。
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 	最后，第3个参数在历史上是一个无符号整型，这允许一个16位的实现一次读或写的数据可以多达65 534个字节。在1990 POSIX.1标准中，引入了新的基本系统数据类型ssize_t以提供带符号的返回值，不带符号的size_t则用于第3个参数（见2.5.2节中的SSIZE_MAX常量）。
 

 
3.8　函数write
 
调用write函数向打开文件写数据。
 
#include <unistd.h> 



ssize_t write(int fd, const void *buf, size_t nbytes);



　　　　　　　　　　　　　　　　　　　　　返回值：若成功，返回已写的字节数；若出错，返回−1


 
其返回值通常与参数nbytes的值相同，否则表示出错。write出错的一个常见原因是磁盘已写满，或者超过了一个给定进程的文件长度限制（见7.11节及习题10.11）。
 
对于普通文件，写操作从文件的当前偏移量处开始。如果在打开该文件时，指定了O_APPEND选项，则在每次写操作之前，将文件偏移量设置在文件的当前结尾处。在一次成功写之后，该文件偏移量增加实际写的字节数。
 
3.9　I/O的效率
 
图3-5程序只使用read和write函数复制一个文件。
 
#include "apue.h"



#define BUFFSIZE　　4096



int

main(void)

{

　　 int　　 n;

　　 char　　buf[BUFFSIZE];



　　 while ((n = read(STDIN_FILENO, buf, BUFFSIZE)) > 0)

　　　　　if (write(STDOUT_FILENO, buf, n) != n)

　　　　　　　 err_sys("write error");



　　 if (n < 0)

　　　　　err_sys("read error");



　　 exit(0);

}
 
图3-5　将标准输入复制到标准输出
 
关于该程序应注意以下几点。
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 	它从标准输入读，写至标准输出，这就假定在执行本程序之前，这些标准输入、输出已由shell安排好。确实，所有常用的UNIX系统shell都提供一种方法，它在标准输入上打开一个文件用于读，在标准输出上创建（或重写）一个文件。这使得程序不必打开输入和输出文件，并允许用户利用shell的I/O重定向功能。
 
 	考虑到进程终止时，UNIX系统内核会关闭进程的所有打开的文件描述符，所以此程序并不关闭输入和输出文件。
 
 	对UNIX系统内核而言，文本文件和二进制代码文件并无区别，所以本程序对这两种文件都有效。
 

 
我们还没有回答的一个问题是如何选取BUFFSIZE值。在回答此问题之前，让我们先用各种不同的BUFFSIZE值来运行此程序。图3-6显示了用20种不同的缓冲区长度，读516 581 760字节的文件所得到的结果。
 
用图3-5的程序读文件，其标准输出被重新定向到/dev/null上。此测试所用的文件系统是Linux ext4文件系统，其磁盘块长度为4 096字节（磁盘块长度由st_blksize表示，在4.12节中说明其值为4 096）。这也证明了图3-6中系统CPU时间的几个最小值差不多出现在BUFFSIZE为4 096及以后的位置，继续增加缓冲区长度对此时间几乎没有影响。
 
[image: 0306.jpg]
 
图3-6　Linux上用不同缓冲长度进行读操作的时间结果
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大多数文件系统为改善性能都采用某种预读（read ahead）技术。当检测到正进行顺序读取时，系统就试图读入比应用所要求的更多数据，并假想应用很快就会读这些数据。预读的效果可以从图3-6中看出，缓冲区长度小至32字节时的时钟时间与拥有较大缓冲区长度时的时钟时间几乎一样。
 
我们以后还将回到这一实例上。3.14节将用此说明同步写的效果，5.8 节将比较不带缓冲的I/O时间与标准I/O库所用的时间。
 
 
 应当了解，在什么时间对实施文件读、写操作的程序进行性能度量。操作系统试图用高速缓存技术将相关文件放置在主存中，所以如若重复度量程序性能，那么后续运行该程序所得到的计时很可能好于第一次。其原因是，第一次运行使得文件进入系统高速缓存，后续各次运行一般从系统高速缓存访问文件，无需读、写磁盘。（incore这个词的意思是在主存中，早期计算机的主存是用铁氧体磁心（ferrite core）做的，这也是“core dump”这个词的由来：程序的主存镜像存放在磁盘的一个文件中以便测试诊断）。
 
 在图3-6所示的测试数据中，不同缓冲区长度的各次运行使用不同的文件副本，所以后一次运行不会在前一次运行的高速缓存中找到它需要的数据。这些文件都足够大，不可能全部保留在高速缓存中（测试系统配置了6 GB RAM）。
 

 
3.10　文件共享
 
UNIX系统支持在不同进程间共享打开文件。在介绍dup函数之前，先要说明这种共享。为此先介绍内核用于所有I/O的数据结构。
 
 
 下面的说明是概念性的，与特定实现可能匹配，也可能不匹配。请参阅Bach[1986]对System V中相关数据结构的讨论。McKusick等[1996]说明4.4BSD中的相关数据结构。McKusick和Neville-Nell[2005]对FreeBSD 5.2进行了介绍。对Solaris的类似讨论请参见McDougall和 Marno[2007]。Linux 2.6内核体系结构介绍请参见Bovet和Cesati[2006]。
 

 
内核使用3种数据结构表示打开文件，它们之间的关系决定了在文件共享方面一个进程对另一个进程可能产生的影响。
 
（1）每个进程在进程表中都有一个记录项，记录项中包含一张打开文件描述符表，可将其视为一个矢量，每个描述符占用一项。与每个文件描述符相关联的是：
 
a．文件描述符标志（close_on_exec，参见图3-7和3.14节）；
 
b．指向一个文件表项的指针。
 
（2）内核为所有打开文件维持一张文件表。每个文件表项包含：
 
a．文件状态标志（读、写、添写、同步和非阻塞等，关于这些标志的更多信息参见3.14节）；
 
b．当前文件偏移量；
 
c．指向该文件v节点表项的指针。
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（3）每个打开文件（或设备）都有一个v节点（v-node）结构。v节点包含了文件类型和对此文件进行各种操作函数的指针。对于大多数文件，v节点还包含了该文件的i节点（i-node，索引节点）。这些信息是在打开文件时从磁盘上读入内存的，所以，文件的所有相关信息都是随时可用的。例如，i节点包含了文件的所有者、文件长度、指向文件实际数据块在磁盘上所在位置的指针等（4.14节较详细地说明了典型UNIX系统文件系统，并将更多地介绍i节点）。
 
 
 Linux没有使用v节点，而是使用了通用i节点结构。虽然两种实现有所不同，但在概念上，v节点与i节点是一样的。两者都指向文件系统特有的i节点结构。
 

 
我们忽略了那些不影响讨论的实现细节。例如，打开文件描述符表可存放在用户空间（作为一个独立的对应于每个进程的结构，可以换出），而非进程表中。这些表也可以用多种方式实现，不必一定是数组，例如，可将它们实现为结构的链表。如果不考虑实现细节的话，通用概念是相同的。
 
图3-7显示了一个进程对应的3张表之间的关系。该进程有两个不同的打开文件：一个文件从标准输入打开（文件描述符0），另一个从标准输出打开（文件描述符为1）。
 
[image: ..\UNIX环境高级编程（第3版）tu\0307.tif]
 
图3-7　 打开文件的内核数据结构
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从UNIX系统的早期版本[Thompson 1978]以来，这3张表之间的关系一直保持至今。这种关系对于在不同进程之间共享文件的方式非常重要。在以后的章节中涉及其他文件共享方式时还会回到这张图上来。
 
 
 创建v节点结构的目的是对在一个计算机系统上的多文件系统类型提供支持。这一工作是Peter Weinberger（贝尔实验室）和Bill Joy（Sun公司）分别独立完成的。Sun把这种文件系统称为虚拟文件系统（Virtual File System），把与文件系统无关的i节点部分称为v节点[Kleiman 1986]。当各个制造商的实现增加了对Sun的网络文件系统（NFS）的支持时，它们都广泛采用了v节点结构。在BSD系列中首先提供v节点的是增加了NFS的4.3BSD Reno。
 
 在SVR4中，v节点替代了SVR3中与文件系统无关的i节点结构。Solaris是从SVR4发展而来的，因此它也使用v节点。
 
 Linux没有将相关数据结构分为i节点和v节点，而是采用了一个与文件系统相关的i节点和一个与文件系统无关的i节点。
 

 
如果两个独立进程各自打开了同一文件，则有图3-8中所示的关系。
 
[image: ..\UNIX环境高级编程（第3版）tu\0308.tif]
 
图3-8　两个独立进程各自打开同一个文件
 

  76 

 
我们假定第一个进程在文件描述符3上打开该文件，而另一个进程在文件描述符4上打开该文件。打开该文件的每个进程都获得各自的一个文件表项，但对一个给定的文件只有一个v节点表项。之所以每个进程都获得自己的文件表项，是因为这可以使每个进程都有它自己的对该文件的当前偏移量。
 
给出了这些数据结构后，现在对前面所述的操作进一步说明。
 
 
 	在完成每个write后，在文件表项中的当前文件偏移量即增加所写入的字节数。如果这导致当前文件偏移量超出了当前文件长度，则将i节点表项中的当前文件长度设置为当前文件偏移量（也就是该文件加长了）。
 
 	如果用O_APPEND标志打开一个文件，则相应标志也被设置到文件表项的文件状态标志中。每次对这种具有追加写标志的文件执行写操作时，文件表项中的当前文件偏移量首先会被设置为i节点表项中的文件长度。这就使得每次写入的数据都追加到文件的当前尾端处。
 
 	若一个文件用lseek定位到文件当前的尾端，则文件表项中的当前文件偏移量被设置为i节点表项中的当前文件长度（注意，这与用O_APPEND标志打开文件是不同的，详见3.11节）。
 
 	lseek函数只修改文件表项中的当前文件偏移量，不进行任何I/O操作。
 

 
可能有多个文件描述符项指向同一文件表项。在3.12节中讨论dup函数时，我们就能看到这一点。在fork后也发生同样的情况，此时父进程、子进程各自的每一个打开文件描述符共享同一个文件表项（见8.3节）。
 
注意，文件描述符标志和文件状态标志在作用范围方面的区别，前者只用于一个进程的一个描述符，而后者则应用于指向该给定文件表项的任何进程中的所有描述符。在3.14节说明fcntl函数时，我们将会了解如何获取和修改文件描述符标志和文件状态标志。
 
本节前面所述的一切对于多个进程读取同一文件都能正确工作。每个进程都有它自己的文件表项，其中也有它自己的当前文件偏移量。但是，当多个进程写同一文件时，则可能产生预想不到的结果。为了说明如何避免这种情况，需要理解原子操作的概念。
 
3.11　原子操作
 
1．追加到一个文件
 
考虑一个进程，它要将数据追加到一个文件尾端。早期的UNIX系统版本并不支持open的O_APPEND选项，所以程序被编写成下列形式：
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if (lseek(fd,OL, 2) < 0)　　　　　　　　/*position to EOF*/

　　err_sys("lseek error");

if (write(fd, buf, 100) != 100)　　　　/*and write*/

　　err_sys("write error");
 
对单个进程而言，这段程序能正常工作，但若有多个进程同时使用这种方法将数据追加写到同一文件，则会产生问题（例如，若此程序由多个进程同时执行，各自将消息追加到一个日志文件中，就会产生这种情况）。
 
假定有两个独立的进程A和B都对同一文件进行追加写操作。每个进程都已打开了该文件，但未使用O_APPEND标志。此时，各数据结构之间的关系如图3-8中所示。每个进程都有它自己的文件表项，但是共享一个v节点表项。假定进程A调用了lseek，它将进程A的该文件当前偏移量设置为1 500字节（当前文件尾端处）。然后内核切换进程，进程B运行。进程B执行lseek，也将其对该文件的当前偏移量设置为1 500字节（当前文件尾端处）。然后B调用write，它将B的该文件当前文件偏移量增加至1 600。因为该文件的长度已经增加了，所以内核将v节点中的当前文件长度更新为1 600。然后，内核又进行进程切换，使进程A恢复运行。当A调用write时，就从其当前文件偏移量（1 500）处开始将数据写入到文件。这样也就覆盖了进程B刚才写入到该文件中的数据。
 
问题出在逻辑操作“先定位到文件尾端，然后写”，它使用了两个分开的函数调用。解决问题的方法是使这两个操作对于其他进程而言成为一个原子操作。任何要求多于一个函数调用的操作都不是原子操作，因为在两个函数调用之间，内核有可能会临时挂起进程（正如我们前面所假定的）。
 
UNIX系统为这样的操作提供了一种原子操作方法，即在打开文件时设置O_APPEND标志。正如前一节中所述，这样做使得内核在每次写操作之前，都将进程的当前偏移量设置到该文件的尾端处，于是在每次写之前就不再需要调用lseek。
 
2．函数pread和pwrite
 
Single UNIX Specification包括了XSI扩展，该扩展允许原子性地定位并执行I/O。pread和pwrite就是这种扩展。
 
#include <unistd.h>



ssize_t pread(int fd, void *buf, size_t nbytes, off_t offset); 



　　　　　　　　　　　　　　　　　返回值：读到的字节数，若已到文件尾，返回0；若出错，返回−1



ssize_t pwrite(int fd, const void *buf, size_t nbytes, off_t offset);



　　　　　　　　　　　　　　　　　返回值：若成功，返回已写的字节数；若出错，返回−1


 
调用pread相当于调用lseek后调用read，但是pread又与这种顺序调用有下列重要区别。
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 	调用pread时，无法中断其定位和读操作。
 
 	不更新当前文件偏移量。
 

 
调用pwrite相当于调用lseek后调用write，但也与它们有类似的区别。
 
3．创建一个文件
 
对open函数的O_CREAT和O_EXCL选项进行说明时，我们已见到另一个有关原子操作的例子。当同时指定这两个选项，而该文件又已经存在时，open将失败。我们曾提及检查文件是否存在和创建文件这两个操作是作为一个原子操作执行的。如果没有这样一个原子操作，那么可能会编写下列程序段：
 
if ((fd = open(pathname, O_WRONLY)) <0){

　　 if (errno == ENOENT) {

　　　　　if ((fd = creat(path, mode)) < 0)

　　　　　　　 err_sys("creat error");

　　 } else{

　　　　　err_sys("open error");

　　 }

}
 
如果在open和creat之间，另一个进程创建了该文件，就会出现问题。若在这两个函数调用之间，另一个进程创建了该文件，并且写入了一些数据，然后，原先进程执行这段程序中的creat，这时，刚由另一进程写入的数据就会被擦去。如若将这两者合并在一个原子操作中，这种问题也就不会出现。
 
一般而言，原子操作（atomic operation）指的是由多步组成的一个操作。如果该操作原子地执行，则要么执行完所有步骤，要么一步也不执行，不可能只执行所有步骤的一个子集。在4.15节描述link函数以及在14.3节中说明记录锁时，还将讨论原子操作。
 
3.12　函数dup和dup2
 
下面两个函数都可用来复制一个现有的文件描述符。
 
#include <unistd.h>



int dup(int fd); 



int dup2(int fd, int fd2);



　　　　　　　　　　两函数的返回值：若成功，返回新的文件描述符；若出错，返回−1
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由dup返回的新文件描述符一定是当前可用文件描述符中的最小数值。对于dup2，可以用fd2参数指定新描述符的值。如果fd2已经打开，则先将其关闭。如若fd等于fd2，则dup2返回fd2，而不关闭它。否则，fd2的FD_CLOEXEC文件描述符标志就被清除，这样fd2在进程调用exec时是打开状态。
 
这些函数返回的新文件描述符与参数fd共享同一个文件表项，如图3-9所示。
 
[image: ..\UNIX环境高级编程（第3版）tu\0309.tif]
 
图3-9　dup(1)后的内核数据结构
 
在此图中，我们假定进程启动时执行了：
 
newfd = dup(1);
 
当此函数开始执行时，假定下一个可用的描述符是3（这是非常可能的，因为0，1和2都由shell打开）。因为两个描述符指向同一文件表项，所以它们共享同一文件状态标志（读、写、追加等）以及同一当前文件偏移量。
 
每个文件描述符都有它自己的一套文件描述符标志。正如我们将在下一节中说明的那样，新描述符的执行时关闭（close-on-exec）标志总是由dup函数清除。
 
复制一个描述符的另一种方法是使用fcntl函数，3.14节将对该函数进行说明。实际上，调用
 
dup(fd);
 
等效于
 
fcntl (fd, F_DUPFD, 0);
 
而调用
 
dup2(fd, fd2)；
 
等效于
 
close(fd2);

fcntl(fd, F_DUPFD, fd2);
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在后一种情况下，dup2并不完全等同于close加上fcntl。它们之间的区别具体如下。
 
（1）dup2是一个原子操作，而close和fcntl包括两个函数调用。有可能在close和fcntl之间调用了信号捕获函数，它可能修改文件描述符（第10章将说明信号）。如果不同的线程改变了文件描述符的话也会出现相同的问题（第11章将说明线程）。
 
（2）dup2和fcntl有一些不同的errno。
 
 
 dup2系统调用起源于V7，然后传播至所有BSD版本。而复制文件描述符的fcntl方法则首先由系统III使用，然后由System V继续采用。SVR3.2选用了dup2函数，4.2BSD则选用了fcntl函数及F_DUPFD功能。POSIX.1要求兼有dup2及fcntl的F_DUPFD两种功能。
 

 
3.13　函数sync、fsync和fdatasync
 
传统的UNIX系统实现在内核中设有缓冲区高速缓存或页高速缓存，大多数磁盘I/O都通过缓冲区进行。当我们向文件写入数据时，内核通常先将数据复制到缓冲区中，然后排入队列，晚些时候再写入磁盘。这种方式被称为延迟写（delayed write）（Bach[1986]的第3章详细讨论了缓冲区高速缓存）。
 
通常，当内核需要重用缓冲区来存放其他磁盘块数据时，它会把所有延迟写数据块写入磁盘。为了保证磁盘上实际文件系统与缓冲区中内容的一致性，UNIX系统提供了sync、fsync和fdatasync三个函数。
 
#include<unistd.h> 



int fsync(int fd);



int fdatasync(int fd);



　　　　　　　　　　　　　　　　返回值：若成功，返回0；若出错，返回−1

void sync(void);


 
sync只是将所有修改过的块缓冲区排入写队列，然后就返回，它并不等待实际写磁盘操作结束。
 
通常，称为update的系统守护进程周期性地调用（一般每隔30秒）sync函数。这就保证了定期冲洗（flush）内核的块缓冲区。命令sync(1)也调用sync函数。
 
fsync函数只对由文件描述符fd指定的一个文件起作用，并且等待写磁盘操作结束才返回。fsync可用于数据库这样的应用程序，这种应用程序需要确保修改过的块立即写到磁盘上。
 
fdatasync函数类似于fsync，但它只影响文件的数据部分。而除数据外，fsync还会同步更新文件的属性。
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 本书说明的所有4种平台都支持sync和fsync函数。但是，FreeBSD 8.0不支持fdatasync。
 

 
3.14　函数fcntl
 
fcntl函数可以改变已经打开文件的属性。
 
#include<fcntl.h>



int fcntl(int fd, int cmd, ... /* int arg */); 



　　　　　　　　　　　　　　返回值：若成功，则依赖于cmd（见下）；若出错，返回−1


 
在本节的各实例中，第3个参数总是一个整数，与上面所示函数原型中的注释部分对应。但是在14.3节说明记录锁时，第3个参数则是指向一个结构的指针。
 
fcntl函数有以下5种功能。
 
（1）复制一个已有的描述符（cmd = F_DUPFD或F_DUPFD_CLOEXEC）。
 
（2）获取/设置文件描述符标志（cmd = F_GETFD或F_SETFD）。
 
（3）获取/设置文件状态标志（cmd = F_GETFL或F_SETFL）。
 
（4）获取/设置异步I/O所有权（cmd = F_GETOWN或F_SETOWN）。
 
（5）获取/设置记录锁（cmd = F_GETLK、F_SETLK或F_SETLKW）。
 
我们先说明这11种cmd中的前8种（14.3节说明后3种，它们都与记录锁有关）。参照图3-7，我们将讨论与进程表项中各文件描述符相关联的文件描述符标志以及每个文件表项中的文件状态标志。
 
F_DUPFD　　复制文件描述符fd。新文件描述符作为函数值返回。它是尚未打开的各描述符中大于或等于第3个参数值（取为整型值）中各值的最小值。新描述符与fd共享同一文件表项（见图3-9）。但是，新描述符有它自己的一套文件描述符标志，其FD_CLOEXEC文件描述符标志被清除（这表示该描述符在exec时仍保持有效，我们将在第8章对此进行讨论）。
 
F_DUPFD_CLOEXEC　　复制文件描述符，设置与新描述符关联的FD_CLOEXEC文件描述符标志的值，返回新文件描述符。
 
F_GETFD　　对应于fd的文件描述符标志作为函数值返回。当前只定义了一个文件描述符标志FD_CLOEXEC。
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F_SETFD　　对于fd设置文件描述符标志。新标志值按第3个参数（取为整型值）设置。
 
 
 要知道，很多现有的与文件描述符标志有关的程序并不使用常量FD_CLOEXEC，而是将此标志设置为0（系统默认，在exec时不关闭）或1（在exec时关闭）。
 

 
F_GETFL　　对应于fd的文件状态标志作为函数值返回。我们在说明open函数时，已描述了文件状态标志。它们列在图3-10中。
 
[image: 0310.jpg]
 
图3-10　对于fcntl的文件状态标志
 
遗憾的是，5个访问方式标志（O_RDONLY、O_WRONLY、O_RDWR、O_EXEC以及O_SEARCH）并不各占1位（如前所述，由于历史原因，前3个标志的值分别是0、1和2。这5个值互斥，一个文件的访问方式只能取这5个值之一）。因此首先必须用屏蔽字O_ACCMODE取得访问方式位，然后将结果与这5个值中的每一个相比较。
 
F_SETFL　　将文件状态标志设置为第3个参数的值（取为整型值）。可以更改的几个标志是：O_APPEND、O_NONBLOCK、O_SYNC、O_DSYNC、O_RSYNC、O_FSYNC和O_ASYNC。
 
F_GETOWN　　获取当前接收SIGIO和SIGURG信号的进程ID或进程组ID。14.5.2节将论述这两种异步I/O信号。
 
F_SETOWN　　设置接收SIGIO和SIGURG信号的进程ID或进程组ID。正的arg指定一个进程ID，负的arg表示等于arg绝对值的一个进程组ID。
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fcntl的返回值与命令有关。如果出错，所有命令都返回−1，如果成功则返回某个其他值。下列4个命令有特定返回值：F_DUPFD、F_GETFD、F_GETFL以及F_GETOWN。第1个命令返回新的文件描述符，第2个和第3个命令返回相应的标志，最后一个命令返回一个正的进程ID或负的进程组ID。
 
实例
 
图3-11中所示程序的第1个参数指定文件描述符，并对于该描述符打印其所选择的文件标志说明。
 
#include "apue.h"

#include <fcntl.h>



int

main(int argc, char *argv[])

{

　　 int　　val;



　　 if (argc != 2)

　　　　　err_quit("usage: a.out <descriptor#>");



　　 if ((val = fcntl(atoi(argv[1]), F_GETFL, 0)) < 0)

　　　　　 err_sys("fcntl error for fd %d", atoi(argv[1]));



　　 switch (val & O_ACCMODE) {

　　 case O_RDONLY:

　　　　　printf("read only");

　　　　　break;



　　 case O_WRONLY:

　　　　　printf("write only");

　　　　　break;



　　 case O_RDWR:

　　　　　printf("read write");

　　　　　break;



　　 default:

　　　　　err_dump("unknown access mode");

　　 }



　　 if (val & O_APPEND)

　　　　　printf(", append");

　　 if (val & O_NONBLOCK)

　　　　　printf(", nonblocking");

　　 if (val & O_SYNC)

　　　　　printf(", synchronous writes");



 #if !defined(_POSIX_C_SOURCE) && defined(O_FSYNC) && (O_FSYNC != O_SYNC)

　　 if (val & O_FSYNC)

　　　　　printf(", synchronous writes");

 #endif



　　 putchar('\n');

　　 exit(0);

}
 
图3-11　对于指定的描述符打印文件标志
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注意，我们使用了功能测试宏_POSIX_C_SOURCE，并且条件编译了POSIX.1中没有定义的文件访问标志。下面显示了从bash（Bourne-again shell）调用该程序时的几种情况。当使用不同shell时，结果会有些不同。
 
$./a.out 0 < /dev/tty

read only

$./a.out 1 > temp.foo

$ cat temp.foo

write only

$./a.out 2 2>>temp.foo

write only, append

$./a.out 5 5<>temp.foo

read write


 
子句5<>temp.foo表示在文件描述符5上打开文件temp.foo以供读、写。
 
实例
 
在修改文件描述符标志或文件状态标志时必须谨慎，先要获得现在的标志值，然后按照期望修改它，最后设置新标志值。不能只是执行F_SETFD或F_SETFL命令，这样会关闭以前设置的标志位。
 
图3-12是对于一个文件描述符设置一个或多个文件状态标志的函数。
 
#include "apue.h"

#include <fcntl.h>



void

set_fl(int fd, int flags) /* flags are file status flags to turn on */

{

　　int　　　　val;



　　if ((val = fcntl(fd, F_GETFL, 0)) < 0)

　　　　 err_sys("fcntl F_GETFL error");



　　val |= flags;　　　　/* turn on flags */



　　if (fcntl(fd, F_SETFL, val) < 0)

　　　　 err_sys("fcntl F_SETFL error");

}
 
图3-12　对一个文件描述符开启一个或多个文件状态标志
 
如果将中间的一条语句改为：
 
val &= ～flags;　　　　　/* turn flags off */
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就构成另一个函数，我们称为clr_fl，并将在后面某些例子中用到它。此语句使当前文件状态标志值val与flags的反码进行逻辑“与”运算。
 
如果在图3-5程序的开始处加上下面一行以调用set_fl，则开启了同步写标志。
 
set_fl(STDOUT_FILENO, O_SYNC);
 
这就使每次write都要等待，直至数据已写到磁盘上再返回。在UNIX系统中，通常write只是将数据排入队列，而实际的写磁盘操作则可能在以后的某个时刻进行。而数据库系统则需要使用O_SYNC，这样一来，当它从write返回时就知道数据已确实写到了磁盘上，以免在系统异常时产生数据丢失。
 
程序运行时，设置O_SYNC标志会增加系统时间和时钟时间。为了测试这一点，先运行图3-5程序，它从一个磁盘文件中将492.6 MB的数据复制到另一个文件。然后，对比设置了O_SYNC标志的程序，使其完成同样的工作。在使用ext4文件系统的Linux上执行上述操作，得到的结果如图3-13所示。
 
[image: 0313.jpg]
 
图3-13　在Linux ext4中采用各种同步机制后的计时结果
 
图3-13中的6行都是在BUFFSIZE为4 096字节时测量的。图3-6中的结果所测量的情况是读一个磁盘文件，然后写到/dev/null，所以没有磁盘输出。图3-13中的第2行对应于读一个磁盘文件，然后写到另一个磁盘文件中。这就是为什么图3-13中第1行与第2行有差别的原因。在写磁盘文件时，系统时间增加了，其原因是内核需要从进程中复制数据，并将数据排入队列以便由磁盘驱动器将其写到磁盘上。当写至磁盘文件时，我们期望时钟时间也会增加。
 
当支持同步写时，系统时间和时钟时间应当会显著增加。但从第3行可见，同步写所用的系统时间并不比延迟写所用的时间增加很多。这意味着要么Linux操作系统对延迟写和同步写操作的工作量相同（这其实是不太可能的），要么O_SYNC标志并没有起到期望的作用。在这种情况下，Linux操作系统并不允许我们用fcntl设置O_SYNC标志，而是显示失败但没有返回出错（但如果在文件打开时能指定该标志，我们还是应该遵重这个标志的）。
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最后3行中的时钟时间反映了所有写操作写入磁盘时需要的附加等待时间。同步写入文件之后，我们希望对fsync的调用并不会产生效果。这种情况理应在图3-13中的最后一行中呈现，但既然O_SYNC标志并没有起到预期的作用，所以最后一行和第5行的表现几乎相同。
 
图3-14显示了在采用HFS文件系统的Mac OS X 10.6.8上运行同样的测试得到的计时结果。该计时结果与我们的期望相符：同步写比延迟写所消耗的时间增加了很多，而且在同步写后再调用函数fsync并不产生测量结果上的显著差别。还要注意的是，在延迟写后增加一个fsync函数调用，测量结果的差别也不大。其可能原因是，在向某个文件写入新数据时，操作系统已经将以前写入的数据都冲洗到了磁盘上，所以在调用函数fsync时只需要做很少的工作。
 
[image: 0314.jpg]
 
图3-14　在Mac OS X HFS中采用各种同步机制后的计时结果
 
比较fsync和fdatasync，两者都更新文件内容，用了O_SYNC标志，每次写入文件时都更新文件内容。每一种调用的性能依赖很多因素，包括底层的操作系统实现、磁盘驱动器的速度以及文件系统的类型。
 
在本例中，我们看到了fcntl的必要性。我们的程序在一个描述符（标准输出）上进行操作，但是根本不知道由shell打开的相应文件的文件名。因为这是shell打开的，因此不能在打开时按我们的要求设置O_SYNC标志。使用fcntl，我们只需要知道打开文件的描述符，就可以修改描述符的属性。在讲解非阻塞管道时（15.2节）还会用到fcntl，因为对于管道，我们所知的只有其描述符。
 
3.15　函数ioctl
 
ioctl函数一直是I/O操作的杂物箱。不能用本章中其他函数表示的I/O操作通常都能用ioctl表示。终端I/O是使用ioctl最多的地方（在第18章中将看到，POSIX.1已经用一些单独的函数代替了终端I/O操作）。
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#include <unistd.h>　　 /* System V */ 



#include <sys/ioctl.h> /* BSD and Linux */ 



int ioctl(int fd, int request, ...);



　　　　　　　　　　　　　　　返回值：若出错，返回−1；若成功，返回其他值


 
 
 ioctl函数是Single UNIX Specification标准的一个扩展部分，以便处理STREAMS设备[Rago 1993]，但是，在SUSv4中已被移至弃用状态。UNIX系统实现用它进行很多杂项设备操作。有些实现甚至将它扩展到用于普通文件。
 

 
我们所示的函数原型对应于POSIX.1，FreeBSD 8.0和Mac OS X 10.6.8将第2个参数声明为unsigned long。因为第2个参数总是头文件中一个#defined的名字，所以这种细节并没有什么影响。
 
对于ISO C原型，它用省略号表示其余参数。但是，通常只有另外一个参数，它常常是指向一个变量或结构的指针。
 
在此原型中，我们表示的只是ioctl函数本身所要求的头文件。通常，还要求另外的设备专用头文件。例如，除POSIX.1所说明的基本操作之外，终端I/O的ioctl命令都需要头文件<termios.h>。
 
每个设备驱动程序可以定义它自己专用的一组ioctl命令，系统则为不同种类的设备提供通用的ioctl命令。图3-15中总结了FreeBSD支持的通用ioctl命令的一些类别。
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图3-15　FreeBSD中通用的ioctl操作
 
磁带操作使我们可以在磁带上写一个文件结束标志、倒带、越过指定个数的文件或记录等，用本章中的其他函数（read、write、lseek等）都难于表示这些操作，所以，对这些设备进行操作最容易的方法就是使用ioctl。
 
在18.12节中将说明使用ioctl函数获取和设置终端窗口大小，19.7节中使用ioctl函数访问伪终端的高级功能。
 
3.16　/dev/fd
 
较新的系统都提供名为/dev/fd的目录，其目录项是名为0、1、2等的文件。打开文件/dev/fd/n等效于复制描述符n（假定描述符n是打开的）。
 
 
 /dev/fd这一功能是由Tom Duff开发的，它首先出现在Research UNIX系统的第8版中，本书说明的所有4种系统（FreeBSD 8.0、Linux 3.2.0、Mac OS X 10.6.8和Solaris 10）都支持这一功能。它不是POSIX.1的组成部分。
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在下列函数调用中：
 
fd = open("/dev/fd/0", mode);
 
大多数系统忽略它所指定的mode，而另外一些系统则要求mode必须是所引用的文件（在这里是标准输入）初始打开时所使用的打开模式的一个子集。因为上面的打开等效于
 
fd = dup(0);
 
所以描述符0和fd共享同一文件表项（见图3-9）。例如，若描述符0先前被打开为只读，那么我们也只能对fd进行读操作。即使系统忽略打开模式，而且下列调用是成功的：
 
fd = open("/dev/fd/0", O_RDWR);
 
我们仍然不能对fd进行写操作。
 
 
 Linux实现中的/dev/fd是个例外。它把文件描述符映射成指向底层物理文件的符号链接。例如，当打开/dev/fd/0时，事实上正在打开与标准输入关联的文件，因此返回的新文件描述符的模式与/dev/fd文件描述符的模式其实并不相关。
 

 
我们也可以用/dev/fd作为路径名参数调用creat，这与调用open时用O_CREAT作为第2个参数作用相同。例如，若一个程序调用creat，并且路径名参数是/dev/fd/1，那么该程序仍能工作。
 
 
 注意，在Linux上这么做必须非常小心。因为Linux实现使用指向实际文件的符号链接，在/dev/fd文件上使用creat会导致底层文件被截断。
 

 
某些系统提供路径名/dev/stdin、/dev/stdout和/dev/stderr，这些等效于/dev/fd/0、 /dev/fd/1和/dev/fd/2。
 
/dev/fd文件主要由shell使用，它允许使用路径名作为调用参数的程序，能用处理其他路径名的相同方式处理标准输入和输出。例如，cat(1)命令对其命令行参数采取了一种特殊处理，它将单独的一个字符“-”解释为标准输入。例如：
 
filter file2 | cat file1 - file3 | lpr
 
首先cat读file1，接着读其标准输入（也就是filter file2命令的输出），然后读file3，如果支持/dev/fd，则可以删除cat对“-”的特殊处理，于是我们就可键入下列命令行：
 
filter file2 | cat file1 /dev/fd/0 file3 | lpr
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作为命令行参数的“-”特指标准输入或标准输出，这已由很多程序采用。但是这会带来一些问题，例如，如果用“-”指定第一个文件，那么看来就像指定了命令行的一个选项。/dev/fd则提高了文件名参数的一致性，也更加清晰。
 
3.17　小结
 
本章说明了UNIX系统提供的基本 I/O函数。因为read和write都在内核执行，所以称这些函数为不带缓冲的I/O函数。在只使用read和write情况下，我们观察了不同的I/O长度对读文件所需时间的影响。我们也观察了许多将已写入的数据冲洗到磁盘上的方法，以及它们对应用程序性能的影响。
 
在说明多个进程对同一文件进行追加写操作以及多个进程创建同一文件时，本章介绍了原子操作。也介绍了内核用来共享打开文件信息的数据结构。在本书的稍后还将涉及这些数据结构。
 
我们还介绍了ioctl和fcntl函数，本书后续部分还会涉及这两个函数。第14章还将fcntl用于记录锁，第18章和第19章将ioctl用于终端设备。
 
习题
 
3.1　当读/写磁盘文件时，本章中描述的函数确实是不带缓冲机制的吗？请说明原因。
 
3.2　编写一个与3.12节中dup2功能相同的函数，要求不调用fcntl函数，并且要有正确的出错处理。
 
3.3　假设一个进程执行下面3个函数调用：
 
fd1 = open(path, oflags);

fd2 = dup(fd1);

fd3 = open(path, oflags);
 
画出类似于图3-9的结果图。对fcntl作用于fd1来说，F_SETFD命令会影响哪一个文件描述符？F_SETFL呢？
 
3.4　许多程序中都包含下面一段代码：
 
dup2(fd, 0);

dup2(fd, 1);

dup2(fd, 2);

if (fd > 2)

　  close(fd);
 
为了说明if语句的必要性，假设fd是1，画出每次调用dup2时3个描述符项及相应的文件表项的变化情况。然后再画出fd为3的情况。
 
3.5　在Bourne shell、Bourne-again shell和Korn shell中，digit1>&digit2表示要将描述符digit1重定向至描述符digit2的同一文件。请说明下面两条命令的区别。
 
./a.out > outfile 2>&1

./a.out 2>&1 > outfile
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（提示：shell从左到右处理命令行。）
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3.6　如果使用追加标志打开一个文件以便读、写，能否仍用lseek在任一位置开始读？能否用lseek更新文件中任一部分的数据？请编写一段程序验证。
 


第4章　文件和目录
 
4.1　引言
 
上一章我们说明了执行I/O操作的基本函数，其中的讨论是围绕普通文件I/O进行的——打开文件、读文件或写文件。本章将描述文件系统的其他特征和文件的性质。我们将从stat函数开始，逐个说明stat结构的每一个成员以了解文件的所有属性。在此过程中，我们将说明修改这些属性的各个函数（更改所有者、更改权限等），还将更详细地说明UNIX文件系统的结构以及符号链接。本章最后介绍对目录进行操作的各个函数，并且开发了一个以降序遍历目录层次结构的函数。
 
4.2　函数stat、fstat、fstatat和lstat
 
本章主要讨论4个stat函数以及它们的返回信息。
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#include <sys/stat.h>



int stat(const char *restrict pathname, struct stat *restrict buf);



int fstat(int fd, struct stat *buf);　 



int lstat(const char *restrict pathname, struct stat *restrict buf);　



int fstatat(int fd, const char *restrict pathname, struct stat *restrict buf, int flag);



　　　　　　　　　　　　　　　　　　　　所有4个函数的返回值：若成功；返回0；若出错，返回-1


 
一旦给出pathname，stat函数将返回与此命名文件有关的信息结构。fstat函数获得已在描述符fd上打开文件的有关信息。lstat函数类似于stat，但是当命名的文件是一个符号链接时，lstat返回该符号链接的有关信息，而不是由该符号链接引用的文件的信息。（在4.22节中，当以降序遍历目录层次结构时，需要用到lstat。4.17节将更详细地说明符号链接。）
 
fstatat函数为一个相对于当前打开目录（由fd参数指向）的路径名返回文件统计信息。flag参数控制着是否跟随着一个符号链接。当AT_SYMLINK_NOFOLLOW标志被设置时，fstatat不会跟随符号链接，而是返回符号链接本身的信息。否则，在默认情况下，返回的是符号链接所指向的实际文件的信息。如果fd参数的值是AT_FDCWD，并且pathname参数是一个相对路径名，fstatat会计算相对于当前目录的pathname参数。如果pathname是一个绝对路径，fd参数就会被忽略。这两种情况下，根据flag的取值，fstatat的作用就跟stat或lstat一样
 
第2个参数buf是一个指针，它指向一个我们必须提供的结构。函数来填充由buf指向的结构。结构的实际定义可能随具体实现有所不同，但其基本形式是：
 
struct stat {　

　mode_t　　　　 　　　　st_mode;　　　　　/* file type & mode (permissions) */　

　ino_t　　　　　 　　　 st_ino;　　　 　　/* i-node number (serial number) */　

　dev_t　　　　　　　　　st_dev;　　　 　　/* device number (file system) */　

　dev_t　　　　　　　　　st_rdev;　　　　　/* device number for special files */　

　nlink_t　　　　　 　  st_nlink;　　 　　/* number of links */　

　uid_t　　　　　　   　st_uid;　　　 　　/* user ID of owner */　

　gid_t　　　　　　 　  st_gid;　　　 　　/* group ID of owner */　

　off_t　　　　　　 　  st_size;　　　　　/* size in bytes, for regular files */　

　struct timespec 　  st_atime;　　 　　/* time of last access */　

　struct timespec　　 st_mtime;　　 　　/* time of last modification */　

　struct timespec　　 st_ctime;　　 　　/* time of last file status change */　

　blksize_t　　　　 　 st_blksize;　　　/* best I/O block size */　

　blkcnt_t　　　　 　  st_blocks;　　   /* number of disk blocks allocated */　

};
 
 
 POSIX.1未要求st_rdev、st_blksize和st_blocks字段。Single UNIX Specification XSI扩展定义了这些字段。
 

 
timespec结构类型按照秒和纳秒定义了时间，至少包括下面两个字段：
 
time_t tv_sec;　

long　 tv_nsec;
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 在2008年版以前的标准中，时间字段定义成st_atime、st_mtime以及st_ctime，它们都是time_t类型的（以秒来表示）。timespec结构提供了更高精度的时间戳。为了保持兼容性，旧的名字可以定义成tv_sec成员。例如，st_atime可以定义成st_atim.tv_sec。
 

 
注意，stat结构中的大多数成员都是基本系统数据类型（见2.8节）。我们将说明此结构的每个成员以了解文件属性。
 
使用stat函数最多的地方可能就是ls -l命令，用其可以获得有关一个文件的所有信息。
 
4.3　文件类型
 
至此我们已经介绍了两种不同的文件类型：普通文件和目录。UNIX系统的大多数文件是普通文件或目录，但是也有另外一些文件类型。文件类型包括如下几种。
 
（1）普通文件（regular file）。这是最常用的文件类型，这种文件包含了某种形式的数据。至于这种数据是文本还是二进制数据，对于UNIX内核而言并无区别。对普通文件内容的解释由处理该文件的应用程序进行。
 
 
 一个值得注意的例外是二进制可执行文件。为了执行程序，内核必须理解其格式。所有二进制可执行文件都遵循一种标准化的格式，这种格式使内核能够确定程序文本和数据的加载位置。
 

 
（2）目录文件（directory file）。这种文件包含了其他文件的名字以及指向与这些文件有关信息的指针。对一个目录文件具有读权限的任一进程都可以读该目录的内容，但只有内核可以直接写目录文件。进程必须使用本章介绍的函数才能更改目录。
 
（3）块特殊文件（block special file）。这种类型的文件提供对设备（如磁盘）带缓冲的访问，每次访问以固定长度为单位进行。
 
 
 注意，FreeBSD不再支持块特殊文件。对设备的所有访问需要通过字符特殊文件进行。
 

 
（4）字符特殊文件（character special file）。这种类型的文件提供对设备不带缓冲的访问，每次访问长度可变。系统中的所有设备要么是字符特殊文件，要么是块特殊文件。
 
（5）FIFO。这种类型的文件用于进程间通信，有时也称为命名管道（named pipe）。15.5节将对其进行说明。
 
（6）套接字（socket）。这种类型的文件用于进程间的网络通信。套接字也可用于在一台宿主机上进程之间的非网络通信。第16章将用套接字进行进程间的通信。
 
（7）符号链接（symbolic link）。这种类型的文件指向另一个文件。4.17节将更多地描述符号链接。
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文件类型信息包含在stat结构的st_mode成员中。可以用图4-1中的宏确定文件类型。这些宏的参数都是stat结构中的st_mode成员。
 
[image: 0401.jpg]
 
图4-1　在<sys/stat.h>中的文件类型宏
 
POSIX.1允许实现将进程间通信（IPC）对象（如消息队列和信号量等）说明为文件。图4-2中的宏可用来从stat结构中确定IPC对象的类型。这些宏与图4-1中的不同，它们的参数并非st_mode，而是指向stat结构的指针。
 
[image: 0402.jpg]
 
图4-2　在<sys/stat.h>中的IPC类型宏
 
消息队列、信号量以及共享存储对象等将在第15章中讨论。但是，本书讨论的4种UNIX系统都不将这些对象表示为文件。
 
实例
 
图4-3程序取其命令行参数，然后针对每一个命令行参数打印其文件类型。
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#include "apue.h"



int

main(int argc, char *argv[])

{

　　int　　 i;

　　struct stat buf;

　　char　　*ptr;

　　for (i = 1; i < argc; i++) {

　　　　printf("%s: ", argv[i]);

　　　　if (lstat(argv[i], &buf) < 0) {

　　　　　　err_ret("lstat error");

　　　　　　continue;

　　　　}

　　　　if (S_ISREG(buf.st_mode))

　　　　　　ptr = "regular";

　　　　else if (S_ISDIR(buf.st_mode))

　　　　　　ptr = "directory";

　　　　else if (S_ISCHR(buf.st_mode))

　　　　　　ptr = "character special";

　　　　else if (S_ISBLK(buf.st_mode))

　　　　　　ptr = "block special";

　　　　else if (S_ISFIFO(buf.st_mode))

　　　　　　ptr = "fifo";

　　　　else if (S_ISLNK(buf.st_mode))

　　　　　　ptr = "symbolic link";

　　　　else if (S_ISSOCK(buf.st_mode))

　　　　　　ptr = "socket";

　　　　else

　　　　　　ptr = "** unknown mode **";

　　　　printf("%s\n", ptr);

　　}

　　exit(0);

}
 
图4-3　对每个命令行参数打印文件类型
 
图4-3程序的示例输出是：
 
$ ./a.out /etc/passwd /etc /dev/log /dev/tty \　

> /var/lib/oprofile/opd_pipe /dev/sr0　/dev/cdrom　

/etc/passwd: regular　

/etc: directory　

/dev/log: socket　

/dev/tty: character special　

/var/lib/oprofile/opd_pipe: fifo　

/dev/sr0: block special　

/dev/cdrom: symbolic link


 
（其中，在第一个命令行末端我们键入了一个反斜杠，通知shell要在下一行继续键入命令，然后，shell在下一行上用其辅助提示符>提示我们。）我们特地使用了lstat函数而不是stat函数以便检测符号链接。如若使用stat函数，则不会观察到符号链接。
 
早期的UNIX版本并不提供S_ISxxx宏，于是就需要将st_mode与屏蔽字S_IFMT进行逻辑“与”运算，然后与名为S_IFxxx的常量相比较。大多数系统在文件<sys/stat.h>中定义了此屏蔽字和相关的常量。如若查看此文件，则可找到S_ISDIR宏定义为：
 
#define S_ISDIR (mode) (((mode) & S_IFMT) == S_IFDIR)
 
我们说过，普通文件是最主要的文件类型，但是观察一下在一个给定的系统中各种文件的比例是很有意思的。图4-4显示了在一个单用户工作站Linux系统中的统计值和百分比。这些数据是由4.22节中的程序得到的。
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[image: 0404.jpg]
 
图4-4　不同类型文件的统计值和百分比
 
4.4　设置用户ID和设置组ID
 
与一个进程相关联的ID有6个或更多，如图4-5所示。
 
[image: 0405.jpg]
 
图4-5　与每个进程相关联的用户ID和组ID
 
 
 	实际用户ID和实际组ID标识我们究竟是谁。这两个字段在登录时取自口令文件中的登录项。通常，在一个登录会话期间这些值并不改变，但是超级用户进程有方法改变它们，8.11节将说明这些方法。
 
 	有效用户ID、有效组ID以及附属组ID决定了我们的文件访问权限，下一节将对此进行说明（我们已在1.8节中说明了附属组ID）。
 
 	保存的设置用户ID和保存的设置组ID在执行一个程序时包含了有效用户ID和有效组ID的副本，在8.11节中说明setuid函数时，将说明这两个保存值的作用。
 

 
 
 在POSIX.1 2001年版中，要求这些保存的ID。在早期POSIX版本中，它们是可选的。一个应用程序在编译时可测试常量_POSIX_SAVED_IDS，或在运行时以参数_SC_SAVED_IDS调用函数sysconf，以判断此实现是否支持这一功能。
 

 
通常，有效用户ID等于实际用户ID，有效组ID等于实际组ID。
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每个文件有一个所有者和组所有者，所有者由stat结构中的st_uid指定，组所有者则由st_gid指定。
 
当执行一个程序文件时，进程的有效用户ID通常就是实际用户ID，有效组ID通常是实际组ID。但是可以在文件模式字（st_mode）中设置一个特殊标志，其含义是“当执行此文件时，将进程的有效用户ID设置为文件所有者的用户ID（st_uid）”。与此相类似，在文件模式字中可以设置另一位，它将执行此文件的进程的有效组ID设置为文件的组所有者ID（st_gid）。在文件模式字中的这两位被称为设置用户ID（set-user-ID）位和设置组ID（set-group-ID）位。
 
例如，若文件所有者是超级用户，而且设置了该文件的设置用户ID位，那么当该程序文件由一个进程执行时，该进程具有超级用户权限。不管执行此文件的进程的实际用户ID是什么，都会是这样。例如，UNIX系统程序passwd(1)允许任一用户改变其口令，该程序是一个设置用户ID程序。因为该程序应能将用户的新口令写入口令文件中（一般是/etc/passwd或/etc/ shadow），而只有超级用户才具有对该文件的写权限，所以需要使用设置用户ID功能。因为运行设置用户ID程序的进程通常会得到额外的权限，所以编写这种程序时要特别谨慎。第8章将更详细地讨论这种类型的程序。
 
再回到stat函数，设置用户ID位及设置组ID位都包含在文件的st_mode值中。这两位可分别用常量S_ISUID和S_ISGID测试。
 
4.5　文件访问权限
 
st_mode值也包含了对文件的访问权限位。当提及文件时，指的是前面所提到的任何类型的文件。所有文件类型（目录、字符特别文件等）都有访问权限（access permission）。很多人认为只有普通文件有访问权限，这是一种误解。
 
每个文件有9个访问权限位，可将它们分成3类，见图4-6。
 
[image: 0406.jpg]
 
图4-6　9个访问权限位，取自<sys/stat.h>
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在图4-6前3行中，术语用户指的是文件所有者（owner）。chmod(1)命令用于修改这9个权限位。该命令允许我们用u表示用户（所有者），用g表示组，用o表示其他。有些书把这3种用户类型分别称为所有者、组和世界。这会造成混乱，因为chmod命令用o表示其他，而不是所有者。我们将使用术语用户、组和其他，以便与chmod命令保持一致。
 
图4-6中的3类访问权限（即读、写及执行）以各种方式由不同的函数使用。我们将这些不同的使用方式汇总在下面。当说明相关函数时，再进一步讨论。
 
 
 	第一个规则是，我们用名字打开任一类型的文件时，对该名字中包含的每一个目录，包括它可能隐含的当前工作目录都应具有执行权限。这就是为什么对于目录其执行权限位常被称为搜索位的原因。
 例如，为了打开文件/usr/include/stdio.h，需要对目录/、/usr和/usr/include具有执行权限。然后，需要具有对文件本身的适当权限，这取决于以何种模式打开它（只读、读-写等）。
 如果当前目录是/usr/include，那么为了打开文件stdio.h，需要对当前目录有执行权限。这是隐含当前目录的一个示例。打开stdio.h文件与打开./stdio.h作用相同。
 注意，对于目录的读权限和执行权限的意义是不相同的。读权限允许我们读目录，获得在该目录中所有文件名的列表。当一个目录是我们要访问文件的路径名的一个组成部分时，对该目录的执行权限使我们可通过该目录（也就是搜索该目录，寻找一个特定的文件名）。
 引用隐含目录的另一个例子是，如果PATH环境变量（8.10节将对其进行说明）指定了一个我们不具有执行权限的目录，那么shell绝不会在该目录下找到可执行文件。
 
 	对于一个文件的读权限决定了我们是否能够打开现有文件进行读操作。这与open函数的O_RDONLY和O_RDWR标志相关。
 
 	对于一个文件的写权限决定了我们是否能够打开现有文件进行写操作。这与open函数的O_WRONLY和O_RDWR标志相关。
 
 	为了在open函数中对一个文件指定O_TRUNC标志，必须对该文件具有写权限。
 
 	为了在一个目录中创建一个新文件，必须对该目录具有写权限和执行权限。
 
 	为了删除一个现有文件，必须对包含该文件的目录具有写权限和执行权限。对该文件本身则不需要有读、写权限。
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 	如果用7个exec函数（见8.10节）中的任何一个执行某个文件，都必须对该文件具有执行权限。该文件还必须是一个普通文件。
 

 
进程每次打开、创建或删除一个文件时，内核就进行文件访问权限测试，而这种测试可能涉及文件的所有者（st_uid和st_gid）、进程的有效ID（有效用户ID和有效组ID）以及进程的附属组ID（若支持的话）。两个所有者ID是文件的性质，而两个有效ID和附属组ID则是进程的性质。内核进行的测试具体如下。
 
（1）若进程的有效用户ID是0（超级用户），则允许访问。这给予了超级用户对整个文件系统进行处理的最充分的自由。
 
（2）若进程的有效用户ID等于文件的所有者ID（也就是进程拥有此文件），那么如果所有者适当的访问权限位被设置，则允许访问；否则拒绝访问。适当的访问权限位指的是，若进程为读而打开该文件，则用户读位应为1；若进程为写而打开该文件，则用户写位应为1；若进程将执行该文件，则用户执行位应为1。
 
（3）若进程的有效组ID或进程的附属组ID之一等于文件的组ID，那么如果组适当的访问权限位被设置，则允许访问；否则拒绝访问。
 
（4）若其他用户适当的访问权限位被设置，则允许访问；否则拒绝访问。
 
按顺序执行这4步。注意，如果进程拥有此文件（第2步），则按用户访问权限批准或拒绝该进程对文件的访问——不查看组访问权限。类似地，若进程并不拥有该文件。但进程属于某个适当的组，则按组访问权限批准或拒绝该进程对文件的访问——不查看其他用户的访问权限。
 
4.6　新文件和目录的所有权
 
在第3章中讲述用open或creat创建新文件时，我们并没有说明赋予新文件的用户ID和组ID是什么。4.21节将说明mkdir函数，此时就会了解如何创建一个新目录。关于新目录的所有权规则与本节将说明的新文件所有权规则相同。
 
新文件的用户ID设置为进程的有效用户ID。关于组ID，POSIX.1允许实现选择下列之一作为新文件的组ID。
 
（1）新文件的组ID可以是进程的有效组ID。
 
（2）新文件的组ID可以是它所在目录的组ID。
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 FreeBSD 8.0和Mac OS X 10.6.8总是使用目录的组ID作为新文件的组ID。有些Linux文件系统使用mount(1)命令选项允许在POSIX.1提出的两种选项中进行选择。对于Linux 3.2.0和Solaris 10，默认情况下，新文件的组ID取决于它所在的目录的设置组ID位是否被设置。如果该目录的这一位已经被设置，则新文件的组ID设置为目录的组ID；否则新文件的组ID设置为进程的有效组ID。
 

 
使用POSIX.1所允许的第二个选项（继承目录的组ID）使得在某个目录下创建的文件和目录都具有该目录的组ID。于是文件和目录的组所有权从该点向下传递。例如，在Linux的/var/mail目录中就使用了这种方法。
 
 
 正如前面提到的，这种设置组所有权的方法是FreeBSD 8.0和Mac OS X 10.6.8系统默认的，但对于Linux和Solaris则是可选的。在Linux 3.2.0和Solaris 10之下，必须使设置组ID位起作用。更进一步，为使这种方法能够正常工作，mkdir函数要自动地传递一个目录的设置组ID位（4.21节将说明mkdir就是这样做的）。
 

 
4.7　函数access和faccessat
 
正如前面所说，当用open函数打开一个文件时，内核以进程的有效用户ID和有效组ID为基础执行其访问权限测试。有时，进程也希望按其实际用户ID和实际组ID来测试其访问能力。例如，当一个进程使用设置用户ID或设置组ID功能作为另一个用户（或组）运行时，就可能会有这种需要。即使一个进程可能已经通过设置用户ID以超级用户权限运行，它仍可能想验证其实际用户能否访问一个给定的文件。access和faccessat函数是按实际用户ID和实际组ID进行访问权限测试的。（该测试也分成4步，这与4.5节中所述的一样，但将有效改为实际。）
 
#include <unistd.h>　



int access(const char *pathname, int mode);　 



int faccessat(int fd, const char *pathname, int mode, int flag);　



　　　　　　　　　　　　　　　　　　　　　两个函数的返回值：若成功，返回0；若出错，返回-1


 
其中，如果测试文件是否已经存在，mode就为F_OK；否则mode是图4-7中所列常量的按位或。
 
[image: 0407.jpg]
 
图4-7　access函数的mode标志，取自<unistd.h>
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faccessat函数与access函数在下面两种情况下是相同的：一种是pathname参数为绝对路径，另一种是fd参数取值为AT_FDCWD而pathname参数为相对路径。否则，faccessat计算相对于打开目录（由fd参数指向）的pathname。
 
flag参数可以用于改变faccessat的行为，如果flag设置为AT_EACCESS，访问检查用的是调用进程的有效用户ID和有效组ID，而不是实际用户ID和实际组ID。
 
实例
 
图4-8显示了access函数的使用方法。
 
#include "apue.h"

#include <fcntl.h>



int

main(int argc, char *argv[])

{

　　if (argc != 2)

　　　　err_quit("usage: a.out <pathname>");

　　if (access(argv[1], R_OK) < 0)

　　　　err_ret("access error for %s", argv[1]);

　　else

　　　　printf("read access OK\n");

　　if (open(argv[1], O_RDONLY) < 0)

　　　　err_ret("open error for %s", argv[1]);

　　else

　　　　printf("open for reading OK\n");

　　exit(0);

}
 
图4-8　access函数实例
 
下面是该程序的示例会话：
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$ ls -l a.out　

-rwxrwxr-x 1 sar　　　　 　　　　15945 Nov 30 12:10 a.out　

$ ./a.out a.out　

read access OK　

open for reading OK　

$ ls -l /etc/shadow　

-r-------- 1 root　　　　 　　　　1315 Jul 17 2002 /etc/shadow　

$ ./a.out /etc/shadow　

access error for /etc/shadow: Permission denied　

open error for /etc/shadow: Permission denied　

$ su　　　　　　　　　　　　　 　　成为超级用户　

Password:　　　　　　　　　　 　　输入超级用户口令　

# chown root a.out　　　　　　 　将文件用户ID改为 root

# chmod u+s a.out　　　　　 　 　并打开设置用户ID位　

# ls -l a.out　　　　　　　　　　 检查所有者和SUID位　

-rwsrwxr-x 1 root　　 　　　　　 15945 Nov 30 12:10 a.out　

# exit　　　　 　　　　　　　　　　恢复为正常用户　

$ ./a.out /etc/shadow　

access error for /etc/shadow: Permission denied　

open for reading OK


 
在本例中，尽管open函数能打开文件，但通过设置用户ID程序可以确定实际用户不能正常读指定的文件。
 
 
 在上例及第8章中，我们有时要成为超级用户，以便演示某些功能是如何工作的。如果你使用多用户系统，但无超级用户权限，那么你就不能完整地重复这些实例。
 

 
4.8　函数umask
 
至此我们已说明了与每个文件相关联的9个访问权限位，在此基础上我们可以说明与每个进程相关联的文件模式创建屏蔽字。
 
umask函数为进程设置文件模式创建屏蔽字，并返回之前的值。（这是少数几个没有出错返回函数中的一个。）
 
#include <sys/stat.h>　 



mode_t umask(mode_t cmask);　 



　　　　　　　　　　　　　　　　　　　　　　　　　　　返回值：之前的文件模式创建屏蔽字


 
其中，参数cmask是由图4-6中列出的9个常量（S_IRUSR、S_IWUSR等）中的若干个按位“或”构成的。
 
在进程创建一个新文件或新目录时，就一定会使用文件模式创建屏蔽字（回忆3.3节和3.4节，在那里我们说明了open和creat函数。这两个函数都有一个参数mode，它指定了新文件的访问权限位）。我们将在4.21节说明如何创建一个新目录。在文件模式创建屏蔽字中为1的位，在文件mode中的相应位一定被关闭。
 
实例
 
图4-9程序创建了两个文件，创建第一个时，umask值为0，创建第二个时，umask值禁止所有组和其他用户的访问权限。
 
#include "apue.h"

#include <fcntl.h>



#define RWRWRW (S_IRUSR|S_IWUSR|S_IRGRP|S_IWGRP|S_IROTH|S_IWOTH)



int

main(void)

{

　　umask(0);

　　if (creat("foo", RWRWRW) < 0)

　　　　err_sys("creat error for foo");

　　umask(S_IRGRP | S_IWGRP | S_IROTH | S_IWOTH);

　　if (creat("bar", RWRWRW) < 0)

　　 err_sys("creat error for bar");

　　 exit(0);

}
 
图4-9　umask函数实例
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若运行此程序可得如下结果，从中可见访问权限位是如何设置的。
 
$ umask　　　　　　　 　　　　先打印当前文件模式创建屏蔽字　

002　

$ ./a.out　

$ ls -l foo bar　

-rw------- 1 sar　　　　　　　0 Dec 7 21:20 bar　

-rw-rw-rw- 1 sar　　　　　　　0 Dec 7 21:20 foo　

$ umask　　　　　　　 　　　　观察文件模式创建屏蔽字是否更改　

002


 
UNIX系统的大多数用户从不处理他们的umask值。通常在登录时，由shell的启动文件设置一次，然后，再不改变。尽管如此，当编写创建新文件的程序时，如果我们想确保指定的访问权限位已经激活，那么必须在进程运行时修改umask值。例如，如果我们想确保任何用户都能读文件，则应将umask设置为0。否则，当我们的进程运行时，有效的umask值可能关闭该权限位。
 
在前面的示例中，我们用shell的umask命令在运行程序的前、后打印文件模式创建屏蔽字。从中可见，更改进程的文件模式创建屏蔽字并不影响其父进程（常常是shell）的屏蔽字。所有shell都有内置umask命令，我们可以用该命令设置或打印当前文件模式创建屏蔽字。
 
用户可以设置umask值以控制他们所创建文件的默认权限。该值表示成八进制数，一位代表一种要屏蔽的权限，这示于图4-10中。设置了相应位后，它所对应的权限就会被拒绝。常用的几种umask值是002、022和027。002阻止其他用户写入你的文件，022阻止同组成员和其他用户写入你的文件，027阻止同组成员写你的文件以及其他用户读、写或执行你的文件。
 
[image: 0410.jpg]
 
图4-10　umask文件访问权限位
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Single UNIX Specification要求shell应该支持符号形式的umask命令。与八进制格式不同，符号格式指定许可的权限（即在文件创建屏蔽字中为0的位）而非拒绝的权限（即在文件创建屏蔽字中为1的位）。下面显示了两种格式的命令。
 
$ umask　　　　　　　　　　　　　  先打印当前文件模式创建屏蔽字　

002　

$ umask -S　　　　　　　　　　 　　打印符号格式　

u=rwx,g=rwx,o=rx　

$ umask 027　　　　　　　　　　　　更改文件模式创建屏蔽字　

$ umask -S　　　　　　　　　　 　　打印符号格式　

u=rwx,g=rx,o=


 
4.9　函数chmod、fchmod和fchmodat
 
chmod、fchmod和fchmodat这3个函数使我们可以更改现有文件的访问权限。
 
#include <sys/stat.h>　 



int chmod(const char *pathname, mode_t mode);　 



int fchmod(int fd, mode_t mode);　 



int fchmodat(int fd, const char *pathname, mode_t mode, int flag);　 



　　　　　　　　　　　　　　　　　　　　　　　3个函数返回值：若成功，返回0；若出错，返回−1


 
chmod函数在指定的文件上进行操作，而fchmod函数则对已打开的文件进行操作。fchmodat函数与chmod函数在下面两种情况下是相同的：一种是pathname参数为绝对路径，另一种是fd参数取值为AT_FDCWD而pathname参数为相对路径。否则，fchmodat计算相对于打开目录（由fd参数指向）的pathname。flag参数可以用于改变fchmodat的行为，当设置了AT_SYMLINK_NOFOLLOW标志时，fchmodat并不会跟随符号链接。
 
为了改变一个文件的权限位，进程的有效用户ID必须等于文件的所有者ID，或者该进程必须具有超级用户权限。
 
参数mode是图4-11中所示常量的按位或。
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[image: 0411.jpg]
 
图4-11　chmod函数的mode常量，取自<sys/stat.h>
 
注意，在图4-11中，有9项是取自图4-6中的9个文件访问权限位。我们另外加了6个，它们是两个设置ID常量（S_ISUID和S_ISGID）、保存正文常量（S_ISVTX）以及3个组合常量（S_IRWXU、 S_IRWXG和S_IRWXO）。
 
 
 保存正文位（S_ISVTX）不是POSIX.1的一部分。在Single UNIX Specification中，它被定义在XSI扩展中。我们在下一节说明其目的。
 

 
实例
 
为了演示umask函数，我们在前面运行了图4-9程序，先让我们回忆文件foo和bar当时的最后状态：
 
$ ls -l foo bar　

-rw------- 1 sar　　　　　　　　0 Dec 7 21:20 bar　

-rw-rw-rw- 1 sar　　　　　　　　0 Dec 7 21:20 foo


 
图4-12的程序修改了这两个文件的模式。
 
#include "apue.h"



int

main(void)

{

　　struct stat　statbuf;



　　/* turn on set-group-ID and turn off group-execute */



　　if (stat("foo", &statbuf) < 0)

　　　　err_sys("stat error for foo");

　　if (chmod("foo", (statbuf.st_mode & ~S_IXGRP) | S_ISGID) < 0)

　　　　err_sys("chmod error for foo");



　　/* set absolute mode to "rw-r--r--" */



　　if (chmod("bar", S_IRUSR | S_IWUSR | S_IRGRP | S_IROTH) < 0)

　　　　err_sys("chmod error for bar");

　　exit(0);

}
 
图4-12　chmod函数实例
 
在运行图4-12程序后，这两个文件的最后状态是：
 
$ ls -l foo bar　

-rw-r--r-- 1 sar　　　　　 0 Dec 7 21:20 bar　

-rw-rwSrw- 1 sar　　　　　 0 Dec 7 21:20 foo
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在本例中，不管文件bar的当前权限位如何，我们都将其权限设置为一个绝对值。对文件foo，我们相对于其当前状态设置权限。为此，先调用stat获得其当前权限，然后修改它。我们显式地打开了设置组ID位、关闭了组执行位。注意，ls命令将组执行权限表示为S，它表示设置组ID位已经设置，同时，组执行位未设置。
 
 
 在Solaris中，ls命令显示l而非S，这表明对该文件可以加强制性文件或记录锁。这只能用于普通文件，14.3节将更详细地讨论这一点。
 

 
最后还要注意，在运行图4-12程序后，ls命令列出的时间和日期并没有改变。在4.19节中，我们会了解到chmod函数更新的只是i节点最近一次被更改的时间。按系统默认方式，ls -l列出的是最后修改文件内容的时间。
 
chmod函数在下列条件下自动清除两个权限位。
 
 
 	Solaris等系统对用于普通文件的粘着位赋予了特殊含义，在这些系统上如果我们试图设置普通文件的粘着位（S_ISVTX），而且又没有超级用户权限，那么mode中的粘着位自动被关闭（我们将在下一节说明粘着位）。这意味着只有超级用户才能设置普通文件的粘着位。这样做的理由是防止恶意用户设置粘着位，由此影响系统性能。
 

 
 
 在FreeBSD 8.0和Solaris 10中，只有超级用户才能对普通文件设置粘着位。Linux 3.2.0和Mac OS X 10.6.8对设置粘着位并无此种限制，其原因是，粘着位对Linux普通文件并无意义。虽然粘着位对FreeBSD的普通文件也无意义，但还是阻止除超级用户以外的任何用户对普通文件设置该位。
 

 
 
 	新创建文件的组ID可能不是调用进程所属的组。回忆一下4.6节，新文件的组ID可能是父目录的组ID。特别地，如果新文件的组ID不等于进程的有效组ID或者进程附属组ID中的一个，而且进程没有超级用户权限，那么设置组ID位会被自动被关闭。这就防止了用户创建一个设置组ID文件，而该文件是由并非该用户所属的组拥有的。
 

 
 
 这种情况下，FreeBSD 8.0对试图设置组ID的操作肯定会返回失败，而其他的系统则无声息地关闭该位，但不会对试图改变文件访问权限的操作直接做失败处理。
 
 FreeBSD 8.0、Linux 3.2.0、Mac OS X 10.6.8和Solaris 10增加了另一个安全性功能以试图阻止误用某些保护位。如果没有超级用户权限的进程写一个文件，则设置用户ID位和设置组ID位会被自动清除。如果恶意用户找到一个他们可以写的设置组ID和设置用户ID文件，即使可以修改此文件，他们也没有对该文件的特殊权限。
 

 
4.10　粘着位
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S_ISVTX位有一段有趣的历史。在UNIX尚未使用请求分页式技术的早期版本中，S_ISVTX位被称为粘着位（sticky bit）。如果一个可执行程序文件的这一位被设置了，那么当该程序第一次被执行，在其终止时，程序正文部分的一个副本仍被保存在交换区（程序的正文部分是机器指令）。这使得下次执行该程序时能较快地将其装载入内存。其原因是：通常的UNIX文件系统中，文件的各数据块很可能是随机存放的，相比较而言，交换区是被作为一个连续文件来处理的。对于通用的应用程序，如文本编辑程序和C语言编译器，我们常常设置它们所在文件的粘着位。自然地，对于在交换区中可以同时存放的设置了粘着位的文件数是有限制的，以免过多占用交换区空间，但无论如何这是一个有用的技术。因为在系统再次自举前，文件的正文部分总是在交换区中，这正是名字中“粘着”的由来。后来的UNIX版本称它为保存正文位（saved-text bit），因此也就有了常量S_ISVTX。现今较新的UNIX系统大多数都配置了虚拟存储系统以及快速文件系统，所以不再需要使用这种技术。
 
现今的系统扩展了粘着位的使用范围，Single UNIX Specification允许针对目录设置粘着位。如果对一个目录设置了粘着位，只有对该目录具有写权限的用户并且满足下列条件之一，才能删除或重命名该目录下的文件：
 
 
 	拥有此文件；
 
 	拥有此目录；
 
 	是超级用户。
 

 
目录/tmp和/var/tmp是设置粘着位的典型候选者——任何用户都可在这两个目录中创建文件。任一用户（用户、组和其他）对这两个目录的权限通常都是读、写和执行。但是用户不应能删除或重命名属于其他人的文件，为此在这两个目录的文件模式中都设置了粘着位。
 
 
 POSIX.1没有定义保存正文位，Single UNIX Specification将它定义在XSI扩展部分。FreeBSD 8.0、Linux 3.2.0、Mac OS X 10.6.8和Solaris 10则支持这种功能。
 
 在Solaris 10中，如果对普通文件设置了粘着位，那么它就具有特殊含义。在这种情况下，如果任何执行位都没有设置，那么操作系统就不会缓存文件内容。
 

 
4.11　函数chown、fchown、fchownat和lchown
 
下面几个chown函数可用于更改文件的用户ID和组ID。如果两个参数owner或group中的任意一个是-1，则对应的ID不变。
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#include <unistd.h>　



int chown(const char *pathname, uid_t owner, gid_t group);　



int fchown(int fd, uid_t owner, gid_t group);　 



int fchownat(int fd, const char *pathname, uid_t owner, gid_t group, int flag);　 



int lchown(const char *pathname, uid_t owner, gid_t group);　 



　　　　　　　　　　　　　　　　　　　　　　4个函数的返回值：若成功，返回0；若出错，返回-1


 
除了所引用的文件是符号链接以外，这4个函数的操作类似。在符号链接情况下，lchown和fchownat（设置了AT_SYMLINK_NOFOLLOW标志）更改符号链接本身的所有者，而不是该符号链接所指向的文件的所有者。
 
fchown函数改变fd参数指向的打开文件的所有者，既然它在一个已打开的文件上操作，就不能用于改变符号链接的所有者。
 
fchownat函数与chown或者lchown函数在下面两种情况下是相同的：一种是pathname参数为绝对路径，另一种是fd参数取值为AT_FDCWD而pathname参数为相对路径。在这两种情况下，如果flag参数中设置了AT_SYMLINK_NOFOLLOW标志，fchownat与lchown行为相同，如果flag参数中清除了AT_SYMLINK_NOFOLLOW标志，则fchownat与chown行为相同。 如果fd参数设置为打开目录的文件描述符，并且pathname参数是一个相对路径名，fchownat函数计算相对于打开目录的pathname。
 
基于BSD的系统一直规定只有超级用户才能更改一个文件的所有者。这样做的原因是防止用户改变其文件的所有者从而摆脱磁盘空间限额对他们的限制。System V则允许任一用户更改他们所拥有的文件的所有者。
 
 
 按照_POSIX_CHOWN_RESTRICTED的值，POSIX.1允许在这两种形式的操作中选用一种。
 
 对于Solaris 10，此功能是个配置选项，其默认值是施加限制。而FreeBSD 8.0、Linux 3.2.0和Mac OS X 10.6.8则总对chown施加限制。
 

 
回忆2.6节，_POSIX_CHOWN_RESTRICTED常量可选地定义在头文件<unistd.h>中，而且总是可以用pathconf或fpathconf函数进行查询。此选项还与所引用的文件有关——可在每个文件系统基础上，使该选项起作用或不起作用。在下文中，如提及“若_POSIX_CHOWN_ RESTRICTED生效”，则表示“这适用于我们正在谈及的文件”，而不管该实际常量是否在头文件中定义。
 
若_POSIX_CHOWN_RESTRICTED对指定的文件生效，则
 
（1）只有超级用户进程能更改该文件的用户ID；
 
（2）如果进程拥有此文件（其有效用户ID等于该文件的用户ID），参数owner等于-1或文件的用户ID，并且参数group等于进程的有效组ID或进程的附属组ID之一，那么一个非超级用户进程可以更改该文件的组ID。
 
这意味着，当_POSIX_CHOWN_RESTRICTED有效时，不能更改其他用户文件的用户ID。你可以更改你所拥用的文件的组ID，但只能改到你所属的组。
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如果这些函数由非超级用户进程调用，则在成功返回时，该文件的设置用户ID位和设置组ID位都被清除。
 
4.12　文件长度
 
stat结构成员st_size表示以字节为单位的文件的长度。此字段只对普通文件、目录文件和符号链接有意义。
 
 
 FreeBSD 8.0、Mac OS X 10.6.8和Solaris 10对管道也定义了文件长度，它表示可从该管道中读到的字节数，我们将在15.2中讨论管道。
 

 
对于普通文件，其文件长度可以是0，在开始读这种文件时，将得到文件结束（end-of-file）指示。对于目录，文件长度通常是一个数（如16或512）的整倍数，我们将在4.22节中说明读目录操作。
 
对于符号链接，文件长度是在文件名中的实际字节数。例如，在下面的例子中，文件长度7就是路径名usr/lib的长度：
 
lrwxrwxrwx 1 root　　　　　 7 Sep 25 07:14 lib -> usr/lib
 
（注意，因为符号链接文件长度总是由st_size指示，所以它并不包含通常C语言用作名字结尾的null字节。）
 
现今，大多数现代的UNIX系统提供字段st_blksize和st_blocks。其中，第一个是对文件I/O较合适的块长度，第二个是所分配的实际512字节块块数。回忆3.9节，其中提到了当我们将st_blksize用于读操作时，读一个文件所需的时间量最少。为了提高效率，标准I/O库（我们将在第5章中说明）也试图一次读、写st_blksize个字节。
 
 
 应当了解的是，不同的UNIX版本其st_blocks所用的单位可能不是512字节的块。使用此值并不是可移植的。
 

 
文件中的空洞
 
在3.6节中，我们提及普通文件可以包含空洞。在图3-2程序中例示了这一点。空洞是由所设置的偏移量超过文件尾端，并写入了某些数据后造成的。作为一个例子，考虑下列情况：
 
$ ls -l core　

-rw-r--r-- 1 sar　　　 8483248 Nov 18 12:18 core　

$ du -s core　

272　　　　core


 
文件core的长度稍稍超过8 MB，可是du命令报告该文件所使用的磁盘空间总量是272个512字节块（即139 264字节）。很明显，此文件中有很多空洞。
 
 
 在很多BSD类系统上，du命令报告的是1 024字节块的块数，Solaris报告的是512字节块的块数。在Linux上，报告的块数单位取决于是否设置了环境变量POSIXLY_CORRECT。当设置了该环境变量，du命令报告的是1 024字节块的块数；没有设置该环境变量时，du命令报告的是512字节块的块数。
 

 

  111 

 
正如我们在3.6节中提及的，对于没有写过的字节位置，read函数读到的字节是0。如果执行下面的命令，可以看出正常的I/O操作读整个文件长度：
 
$ wc -c core　

8483248 core


 
 
 带-c选项的wc(1)命令计算文件中的字符数（字节）。
 

 
如果使用实用程序（如cat(1)）复制这个文件，那么所有这些空洞都会被填满，其中所有实际数据字节皆填写为0。
 
$ cat core > core.copy　

$ ls -l core*　

-rw-r--r--　1 sar　　　8483248 Nov 18 12:18 core　

-rw-rw-r--　1 sar　　　8483248 Nov 18 12:27 core.copy　

$ du -s core*　

272　　 core　

16592　 core.copy


 
从中可见，新文件所用的实际字节数是8 495 104（512×16 592）。此长度与ls命令报告的长度不同，其原因是，文件系统使用了若干块以存放指向实际数据块的各个指针。
 
有兴趣的读者可以参阅Bach[1986]的4.2节、McKusick等[1996]的7.2节和7.3节（或McKusick和Neville-Neil[2005]的8.2节和8.3节）、McDougall和Mauro[2007]的15.2节以及Singh[2006]的第12章，以更详细地了解文件的物理结构。
 
4.13　文件截断
 
有时我们需要在文件尾端处截去一些数据以缩短文件。将一个文件的长度截断为0是一个特例，在打开文件时使用O_TRUNC标志可以做到这一点。为了截断文件可以调用函数truncate和ftruncate。
 
#include <unistd.h>　



int truncate(const char *pathname, off_t length);　 



int ftruncate(int fd, off_t length);　 



　　　　　　　　　　　　　　　　　　　　　两个函数的返回值：若成功，返回0；若出错，返回-1


 
这两个函数将一个现有文件长度截断为length。如果该文件以前的长度大于length，则超过length以外的数据就不再能访问。如果以前的长度小于length，文件长度将增加，在以前的文件尾端和新的文件尾端之间的数据将读作0（也就是可能在文件中创建了一个空洞）。
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 早于4.4BSD的BSD系统只能用truncate函数截短一个文件，不能用它扩展一个文件。
 
 Solaris对fcntl函数进行了扩展，增加了F_FREESP，它允许释放一个文件中的任何一部分，而不只是文件尾端处的一部分。
 

 
图13-6的程序使用了ftruncate函数，以便在获得对一个文件的锁后，清空该文件。
 
4.14　文件系统
 
为了说明文件链接的概念，先要介绍UNIX文件系统的基本结构。同时，了解i节点和指向i节点的目录项之间的区别也是很有益的。
 
目前，正在使用的UNIX文件系统有多种实现。例如，Solaris支持多种不同类型的磁盘文件系统：传统的基于BSD的UNIX文件系统（称为UFS），读、写DOS格式软盘的文件系统（称为PCFS），以及读CD的文件系统（称为HSFS）。在图2-20中，我们已经看到了不同类型文件系统的一个区别。UFS是以Berkeley快速文件系统为基础的。本节讨论该文件系统。
 
 
 每一种文件系统类型都有它各自的特征，有些特征可能是混淆不清的。例如，大部分UNIX文件系统支持大小写敏感的文件名。因此，如果创建了一个名为file.txt的文件以及另外一个名为file.TXT的文件，就是创建了两个不同的文件。在Mac OS X上，HFS文件系统是大小写保留的，并且是大小写不敏感比较的。因此，如果创建了一个名为file.txt的文件，当你再创建名为file.TXT的文件时，就会覆盖原来的file.txt文件。但是，保存在文件系统中的是文件创建时的文件名（即file.txt，因为是大小写保留的）。事实上，在“f, i, l, e, ., t, x, t”这个序列中的大写或小写字母的排列都会在搜索这个文件时得到匹配（大小写不敏感比较）。因此，除了file.txt和file.TXT，我们还可以用File.txt、fILE.tXt以及FiLe.TxT等名字来访问该文件。
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我们可以把一个磁盘分成一个或多个分区。每个分区可以包含一个文件系统（见图4-13）。i节点是固定长度的记录项，它包含有关文件的大部分信息。
 
[image: ..\14-0434yds排版CMM\UNIX环境高级编程（第3版）tu\0413.tif]
 
图4-13　磁盘、分区和文件系统
 
如果更仔细地观察一个柱面组的i节点和数据块部分，则可以看到图4-14中所示的情况。
 
注意图4-14中的下列各点。
 
[image: ..\14-0434yds排版CMM\UNIX环境高级编程（第3版）tu\0414.tif]
 
图4-14　较详细的柱面组的i节点和数据块
 
 
 	在图中有两个目录项指向同一个i节点。每个i节点中都有一个链接计数，其值是指向该i节点的目录项数。只有当链接计数减少至0时，才可删除该文件（也就是可以释放该文件占用的数据块）。这就是为什么“解除对一个文件的链接”操作并不总是意味着“释放该文件占用的磁盘块”的原因。这也是为什么删除一个目录项的函数被称之为unlink而不是delete的原因。在stat结构中，链接计数包含在st_nlink成员中，其基本系统数据类型是nlink_t。这种链接类型称为硬链接。回忆2.5.2节，其中，POSIX.1常量LINK_MAX指定了一个文件链接数的最大值。
 
 	另外一种链接类型称为符号链接（symbolic link）。符号链接文件的实际内容（在数据块中）包含了该符号链接所指向的文件的名字。在下面的例子中，目录项中的文件名是3个字符的字符串lib，而在该文件中包含了7个字节的数据usr/lib：
 

 
lrwxrwxrwx 1 root　　　 7 Sep 25 07:14 lib -> urs/lib
 
该i节点中的文件类型是S_IFLNK，于是系统知道这是一个符号链接。
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 	i节点包含了文件有关的所有信息：文件类型、文件访问权限位、文件长度和指向文件数据块的指针等。stat结构中的大多数信息都取自i节点。只有两项重要数据存放在目录项中：文件名和i节点编号。其他的数据项（如文件名长度和目录记录长度）并不是本书关心的。i节点编号的数据类型是ino_t。
 
 	因为目录项中的i节点编号指向同一文件系统中的相应i节点，一个目录项不能指向另一个文件系统的i节点。这就是为什么ln(1)命令（构造一个指向一个现有文件的新目录项）不能跨越文件系统的原因。我们将在下一节说明link函数。
 
 	当在不更换文件系统的情况下为一个文件重命名时，该文件的实际内容并未移动，只需构造一个指向现有i节点的新目录项，并删除老的目录项。链接计数不会改变。例如，为将文件/usr/lib/foo重命名为/usr/foo，如果目录/usr/lib和/usr在同一文件系统中，则文件foo的内容无需移动。这就是mv(1)命令的通常操作方式。
 

 
我们说明了普通文件的链接计数概念，但是对于目录文件的链接计数字段又如何呢？假定我们在工作目录中构造了一个新目录：
 
$ mkdir testdir


 
图4-15显示了其结果。注意，该图显式地显示了.和..目录项。
 
[image: ..\14-0434yds排版CMM\UNIX环境高级编程（第3版）tu\0415.tif]
 
图4-15　创建了目录testdir后的文件系统实例
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编号为2549的i节点，其类型字段表示它是一个目录，链接计数为2。任何一个叶目录（不包含任何其他目录的目录）的链接计数总是2，数值2来自于命名该目录（testdir）的目录项以及在该目录中的.项。编号为1267的i节点，其类型字段表示它是一个目录，链接计数大于或等于3。它大于或等于3的原因是，至少有3个目录项指向它：一个是命名它的目录项（在图4-15中没有表示出来），第二个是在该目录中的.项，第三个是在其子目录testdir中的..项。注意，在父目录中的每一个子目录都使该父目录的链接计数增加1。
 
这种格式与UNIX文件系统的经典格式类似，在Bach[1986]的第4章中对此进行了详细说明。关于伯克利快速文件系统对此所做的更改请参阅McKusick等[1996]的第7章以及McKusick和Neville-Neil[2005]中的第8章。关于UFS（伯克利快速文件系统的Solaris版）的详细情况，请参见McDougall和Mauro[2007]的第15章。关于Mac OS X使用的HFS文件系统格式，请参阅Singh[2006]的第12章。
 
4.15　函数link、linkat、unlink、unlinkat和remove
 
如上节所述，任何一个文件可以有多个目录项指向其i节点。创建一个指向现有文件的链接的方法是使用link函数或linkat函数。
 
#include <unistd.h>　



int link(const char *existingpath, const char *newpath);　

int linkat(int efd, const char *existingpath, int nfd, const char *newpath, int flag);



　　　　　　　　　　　　　　　　　　　　两个函数的返回值：若成功，返回0；若出错，返回-1


 
这两个函数创建一个新目录项newpath，它引用现有文件existingpath。如果newpath已经存在，则返回出错。只创建newpath中的最后一个分量，路径中的其他部分应当已经存在。
 
对于linkat函数，现有文件是通过efd和existingpath参数指定的，新的路径名是通过nfd和newpath参数指定的。默认情况下，如果两个路径名中的任一个是相对路径，那么它需要通过相对于对应的文件描述符进行计算。如果两个文件描述符中的任一个设置为AT_FDCWD，那么相应的路径名（如果它是相对路径）就通过相对于当前目录进行计算。如果任一路径名是绝对路径，相应的文件描述符参数就会被忽略。
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当现有文件是符号链接时，由flag参数来控制linkat函数是创建指向现有符号链接的链接还是创建指向现有符号链接所指向的文件的链接。如果在flag参数中设置了AT_SYMLINK_FOLLOW标志，就创建指向符号链接目标的链接。如果这个标志被清除了，则创建一个指向符号链接本身的链接。
 
创建新目录项和增加链接计数应当是一个原子操作（请回忆在3.11节中对原子操作的讨论）。
 
虽然POSIX.1允许实现支持跨越文件系统的链接，但是大多数实现要求现有的和新建的两个路径名在同一个文件系统中。如果实现支持创建指向一个目录的硬链接，那么也仅限于超级用户才可以这样做。其理由是这样做可能在文件系统中形成循环，大多数处理文件系统的实用程序都不能处理这种情况（4.17节将说明一个由符号链接引入循环的例子）。因此，很多文件系统实现不允许对于目录的硬链接。
 
为了删除一个现有的目录项，可以调用unlink函数。
 
#include <unistd.h>　 



int unlink(const char *pathname);　 

int unlinkat(int fd, const char *pathname, int flag);　 



　　　　　　　　　　　　　　　　　　　　　两个函数的返回值：若成功，返回0；若出错，返回-1


 
这两个函数删除目录项，并将由pathname所引用文件的链接计数减1。如果对该文件还有其他链接，则仍可通过其他链接访问该文件的数据。如果出错，则不对该文件做任何更改。
 
我们在前面已经提及，为了解除对文件的链接，必须对包含该目录项的目录具有写和执行权限。正如4.10节所述，如果对该目录设置了粘着位，则对该目录必须具有写权限，并且具备下面三个条件之一：
 
 
 	拥有该文件；
 
 	拥有该目录；
 
 	具有超级用户权限。
 

 
只有当链接计数达到0时，该文件的内容才可被删除。另一个条件也会阻止删除文件的内容——只要有进程打开了该文件，其内容也不能删除。关闭一个文件时，内核首先检查打开该文件的进程个数；如果这个计数达到0，内核再去检查其链接计数；如果计数也是0，那么就删除该文件的内容。
 
如果pathname参数是相对路径名，那么unlinkat函数计算相对于由fd文件描述符参数代表的目录的路径名。如果fd参数设置为AT_FDCWD，那么通过相对于调用进程的当前工作目录来计算路径名。如果pathname参数是绝对路径名，那么fd参数被忽略。
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flag参数给出了一种方法，使调用进程可以改变unlinkat函数的默认行为。当AT_ REMOVEDIR标志被设置时，unlinkat函数可以类似于rmdir一样删除目录。如果这个标志被清除，unlinkat与unlink执行同样的操作。
 
实例
 
图4-16的程序打开一个文件，然后解除它的链接。执行该程序的进程然后睡眠15秒，接着就终止。
 
#include "apue.h"

#include <fcntl.h>



int

main(void)

{

　　if (open("tempfile", O_RDWR) < 0)

　　　　err_sys("open error");

　　if (unlink("tempfile") < 0)

　　　　err_sys("unlink error");

　　printf("file unlinked\n");

　　sleep(15);

　　printf("done\n");

　　exit(0);

}
 
图4-16　打开一个文件，然后unlink它
 
运行该程序，其结果是：
 
$ ls -l tempfile　　　　　　　 　　查看文件大小　

-rw-r----- 1 sar　　　413265408 Jan 21 07:14 tempfile　

$ df /home　　　　　　　　　　　　　检查可用磁盘空间　

Filesystem　1K-blocks　　 Used　Available　Use%　Mounted　on　

/dev/hda4　　11021440　1956332　　9065108　 18%　/home　

$ ./a.out &    　　　　　　　　　　在后台运行图4-16程序　

1364　　　　　　　　　　　　　　 　　shell打印其进程ID　

$ file unlinked　　　　　　　　　　解除文件链接　

ls -l tempfile　　　　　　　　 　　观察文件是否仍然存在　

ls: tempfile: No such file or directory　　　　　 目录项已删除　

$ df /home　　　　　　　　　　　　　检查可用磁盘空间有无变化　

Filesystem　1K-blocks　　 Used　Available　Use%　Mounted　on　

/dev/hda4　　11021440　1956332　　9065108　 18%　/home　

$ done　　　　　　　　　　　　　 　　程序执行结束，关闭所有打开文件　

df /home　　 　　　　　　　　　　　　现在，应当有更多可用磁盘空间　

Filesystem　1K-blocks　　 Used　Available　Use%　Mounted on　

/dev/hda4　　11021440　1552352　　9469088　 15%　/home　

　　　　　　　　　　　　　　　　　　　现在，394.1 MB磁盘空间可用　　　　　　 
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unlink的这种特性经常被程序用来确保即使是在程序崩溃时，它所创建的临时文件也不会遗留下来。进程用open或creat创建一个文件，然后立即调用unlink，因为该文件仍旧是打开的，所以不会将其内容删除。只有当进程关闭该文件或终止时（在这种情况下，内核关闭该进程所打开的全部文件），该文件的内容才被删除。
 
如果pathname是符号链接，那么unlink删除该符号链接，而不是删除由该链接所引用的文件。给出符号链接名的情况下，没有一个函数能删除由该链接所引用的文件。
 
如果文件系统支持的话，超级用户可以调用unlink，其参数pathname指定一个目录，但是通常应当使用rmdir函数，而不使用unlink这种方式。我们将在4.21节中说明rmdir函数。
 
我们也可以用remove函数解除对一个文件或目录的链接。对于文件，remove的功能与unlink相同。对于目录，remove的功能与rmdir相同。
 
#include <stdio.h>　 



int remove(const char *pathname);　 



　　　　　　　　　　　　　　　　　　　　　　　　　返回值：若成功，返回0；若出错，返回-1


 
 
 ISO C指定remove函数删除一个文件，这更改了UNIX历来使用的名字unlink，其原因是实现C标准的大多数非UNIX系统并不支持文件链接。
 

 
4.16　函数rename和renameat
 
文件或目录可以用rename函数或者renameat函数进行重命名。
 
#include <stdio.h>　 



int rename(const char *oldname, const char *newname);　 



int renameat(int oldfd, const char *oldname, int newfd, const char *newname);　 



　　　　　　　　　　　　　　　　　　　　两个函数的返回值：若成功，返回0；若出错，返回-1


 
 
 ISO C对文件定义了rename函数（C标准不处理目录）。POSIX.1扩展此定义，使其包含了目录和符号链接。
 

 
根据oldname是指文件、目录还是符号链接，有几种情况需要加以说明。我们也必须说明如果newname已经存在时将会发生什么。
 
（1）如果oldname指的是一个文件而不是目录，那么为该文件或符号链接重命名。在这种情况下，如果newname已存在，则它不能引用一个目录。如果newname已存在，而且不是一个目录，则先将该目录项删除然后将oldname重命名为newname。对包含oldname的目录以及包含newname的目录，调用进程必须具有写权限，因为将更改这两个目录。
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（2）如若oldname指的是一个目录，那么为该目录重命名。如果newname已存在，则它必须引用一个目录，而且该目录应当是空目录（空目录指的是该目录中只有.和..项）。如果newname存在（而且是一个空目录），则先将其删除，然后将oldname重命名为newname。另外，当为一个目录重命名时，newname不能包含oldname作为其路径前缀。例如，不能将/usr/foo重命名为/usr/foo/testdir，因为旧名字（/usr/foo）是新名字的路径前缀，因而不能将其删除。
 
（3）如若oldname或newname引用符号链接，则处理的是符号链接本身，而不是它所引用的文件。
 
（4）不能对.和..重命名。更确切地说，.和..都不能出现在oldname和newname的最后部分。
 
（5）作为一个特例，如果oldname和newname引用同一文件，则函数不做任何更改而成功返回。
 
如若newname已经存在，则调用进程对它需要有写权限（如同删除情况一样）。另外，调用进程将删除oldname目录项，并可能要创建newname目录项，所以它需要对包含oldname及包含newname的目录具有写和执行权限。
 
除了当oldname或newname指向相对路径名时，其他情况下renameat函数与rename函数功能相同。如果oldname参数指定了相对路径，就相对于oldfd参数引用的目录来计算oldname。类似地，如果newname指定了相对路径，就相对于newfd引用的目录来计算newname。oldfd或newfd参数（或两者）都能设置成AT_FDCWD，此时相对于当前目录来计算相应的路径名。
 
4.17　符号链接
 
符号链接是对一个文件的间接指针，它与上一节所述的硬链接有所不同，硬链接直接指向文件的i节点。引入符号链接的原因是为了避开硬链接的一些限制。
 
 
 	硬链接通常要求链接和文件位于同一文件系统中。
 
 	只有超级用户才能创建指向目录的硬链接（在底层文件系统支持的情况下）。
 

 
对符号链接以及它指向何种对象并无任何文件系统限制，任何用户都可以创建指向目录的符号链接。符号链接一般用于将一个文件或整个目录结构移到系统中另一个位置。
 

  120 

 
当使用以名字引用文件的函数时，应当了解该函数是否处理符号链接。也就是该函数是否跟随符号链接到达它所链接的文件。如若该函数具有处理符号链接的功能，则其路径名参数引用由符号链接指向的文件。否则，一个路径名参数引用链接本身，而不是由该链接指向的文件。图4-17列出了本章中所说明的各个函数是否处理符号链接。在图4-17中没有列出mkdir、mkinfo、mknod和rmdir这些函数，其原因是，当路径名是符号链接时，它们都出错返回。以文件描述符作为参数的一些函数（如fstat、fchmod等）也未在该图中列出，其原因是，对符号链接的处理是由返回文件描述符的函数（通常是open）进行的。chown是否跟随符号链接取决于实现。在所有现代的系统中，chown函数都跟随符号链接。
 
 
 符号链接由4.2BSD引入，chown最初并不跟随符号链接，但在4.4BSD中情况发生了变化。SVR4中的System V包含了对符号链接的支持，但与原始BSD中的行为已大不相同，也实现了chown函数跟随符号链接。早期Linux版本中（Linux 2.1.81以前的版本），chown并不跟随符号链接。从2.1.81版开始，chown跟随符号链接。FreeBSD 8.0、Mac OS X 10.6.8和Solaris 10中，chown跟随符号链接。所有这些平台都实现了lchown，它改变符号链接自身的所有权。
 

 
[image: 0417.jpg]
 
图4-17　各个函数对符号链接的处理
 
图4-17的一个例外是，同时用O_CREAT和O_EXCL两者调用open函数。在此情况下，若路径名引用符号链接，open将出错返回，errno设置为EEXIST。这种处理方式的意图是堵塞一个安全性漏洞，以防止具有特权的进程被诱骗写错误的文件。
 
实例
 
使用符号链接可能在文件系统中引入循环。大多数查找路径名的函数在这种情况发生时都将出错返回，errno值为ELOOP。考虑下列命令序列：
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$ mkdir foo　　　　　　　　　　 　　创建一个新目录　

$ touch foo/a　　　　　　　　　 　　创建一个0长度的文件　

$ ln -s ../foo foo/testdir　 　 　创建一个符号链接　

$ ls -l foo　

total 0　

-rw-r----- 1 sar　　　　　　0 Jan 22 00:16 a

lrwxrwxrwx 1 sar　　　　　　6 Jan 22 00:16 testdir -> ../foo


 
这创建了一个目录foo，它包含了一个名为a的文件以及一个指向foo的符号链接。在图4-18中显示了这种结果，图中以圆表示目录，以正方形表示一个文件。
 
[image: http://www.proedu.com.cn:8001/api/storage/getbykey/original?key=13120bf09b7651322054]
 
图4-18　构成循环的符号链接testdir
 
如果我们写一段简单的程序，使用Solaris的标准函数ftw(3)以降序遍历文件结构，打印每个遇到的路径名，则其输出是：
 
foo　

foo/a　

foo/testdir　

foo/testdir/a　

foo/testdir/testdir　

foo/testdir/testdir/a　

foo/testdir/testdir/testdir　

foo/testdir/testdir/testdir/a　

　（更多行，直至ftw出错返回，此时，errno值为ELOOP）
 
4.22节提供了我们自己的ftw函数版本，它用lstat代替stat以阻止它跟随符号链接。
 
 
 注意，Linux的ftw和nftw函数记录了所有看到的目录并避免多次重复处理一个目录，因此这两个函数不显示这种程序运行行为。
 

 
这样一个循环是很容易消除的。因为unlink并不跟随符号链接，所以可以unlink文件foo/testdir。但是如果创建了一个构成这种循环的硬链接，那么就很难消除它。这就是为什么link函数不允许构造指向目录的硬链接的原因（除非进程具有超级用户权限）。
 
 
 实际上，Rich Stevens在写本节的最初版本时，在自己的系统上做了一个这样的实验。结果文件系统变得错误百出。正常的fsck(1)实用程序不能修复问题。为了修复文件系统，不得不使用了并不推荐使用的工具clri(8)和dcheck(8)。
 
 对目录的硬链接的需求由来已久，但是使用符号链接和mkdir函数，用户就不再需要创建指向目录的硬链接了。
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用open打开文件时，如果传递给open函数的路径名指定了一个符号链接，那么open跟随此链接到达所指定的文件。若此符号链接所指向的文件并不存在，则open返回出错，表示它不能打开该文件。这可能会使不熟悉符号链接的用户感到迷惑，例如：
 
$ ln -s /no/such/file myfile　　　　　 　　创建一个符号链接　

$ ls myfile　

myfile　　　　　　　　　　　　　　　　　　 　　ls查到该文件　

$ cat myfile　　　　　　　　　　　　　　　　　试图查看该文件　

cat: myfile:　No such file or directory　

$ ls -1 myfile　　　　　　　　　　　　　　　　尝试-l选项　

lrwxrwxrwx　1　sar　　　　13 Jan 22 00:26　myfile -> /no/such/file


 
文件myfile存在，但cat却称没有这一文件。其原因是myfile是个符号链接，由该符号链接所指向的文件并不存在。ls命令的-l选项给我们两个提示：第一个字符是l，它表示这是一个符号链接，而->也表明这是一个符号链接。ls命令还有另一个选项-F，它会在符号链接的文件名后加一个@符号，在未使用-l选项时，这可以帮助我们识别出符号链接。
 
4.18　创建和读取符号链接
 
可以用symlink或symlinkat函数创建一个符号链接。
 
#include <unistd.h>　 



int symlink(const char *actualpath, const char *sympath);　



int symlinkat(const char *actualpath, int fd, const char *sympath);　 



　　　　　　　　　　　　　　　　　　　两个函数的返回值：若成功，返回0；若出错，返回-1


 
函数创建了一个指向actualpath的新目录项sympath。在创建此符号链接时，并不要求actualpath已经存在（在上一节结束部分的例子中我们已经看到了这一点）。并且，actualpath和sympath并不需要位于同一文件系统中。
 
symlinkat函数与symlink函数类似，但sympath参数根据相对于打开文件描述符引用的目录（由fd参数指定）进行计算。如果sympath参数指定的是绝对路径或者fd参数设置了AT_FDCWD值，那么symlinkat就等同于symlink函数。
 
因为open函数跟随符号链接，所以需要有一种方法打开该链接本身，并读该链接中的名字。readlink和readlinkat函数提供了这种功能。
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#include <unistd.h>　 



ssize_t readlink(const char *restrict pathname, char *restrict buf, 

　　　　　　　　 size_t bufsize);　



ssize_t readlinkat(int fd, const char* restrict pathname,   

　　　　　　　　　 char *restrict buf, size_t bufsize);



　　　　　　　　　　　　　　　　两个函数的返回值：若成功，返回读取的字节数；若出错，返回-1


 
两个函数组合了open、read和close的所有操作。如果函数成功执行，则返回读入buf的字节数。在buf中返回的符号链接的内容不以null字节终止。
 
当pathname参数指定的是绝对路径名或者fd参数的值为AT_FDCWD，readlinkat函数的行为与readlink相同。但是，如果fd参数是一个打开目录的有效文件描述符并且pathname参数是相对路径名，则readlinkat计算相对于由fd代表的打开目录的路径名。
 
4.19　文件的时间
 
在4.2节中，我们讨论了Single UNIX Specification 2008年版如何提高stat结构中时间字段的精度，从原来的秒提高到秒加上纳秒。每个文件属性所保存的实际精度依赖于文件系统的实现。对于把时间戳记录在秒级的文件系统来说，纳秒这个字段就会被填充为0。对于时间戳的记录精度高于秒级的文件系统来说，不足秒的值被转换成纳秒并记录在纳秒这个字段中。
 
对每个文件维护3个时间字段，它们的意义示于图4-19中。
 
[image: 0419.jpg]
 
图4-19　与每个文件相关的3个时间值
 
注意，修改时间（st_mtim）和状态更改时间（st_ctim）之间的区别。修改时间是文件内容最后一次被修改的时间。状态更改时间是该文件的i节点最后一次被修改的时间。在本章中我们已说明了很多影响到i节点的操作，如更改文件的访问权限、更改用户ID、更改链接数等，但它们并没有更改文件的实际内容。因为i节点中的所有信息都是与文件的实际内容分开存放的，所以，除了要记录文件数据修改时间以外，还需要记录状态更改时间，也就是更改i节点中信息的时间。
 
注意，系统并不维护对一个i节点的最后一次访问时间，所以access和stat函数并不更改这3个时间中的任一个。
 
系统管理员常常使用访问时间来删除在一定时间范围内没有被访问过的文件。典型的例子是删除在过去一周内没有被访问过的名为a.out或core的文件。find(1)命令常被用来进行这种类型的操作。
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修改时间和状态更改时间可被用来归档那些内容已经被修改或i节点已经被更改的文件。
 
ls命令按这3个时间值中的一个排序进行显示。系统默认（用-l或-t选项调用时）是按文件的修改时间的先后排序显示。-u选项使ls命令按访问时间排序，-c选项则使其按状态更改时间排序。
 
图4-20列出了我们已说明过的各种函数对这3个时间的作用。回忆4.14节中所述，目录是包含目录项（文件名和相关的i节点编号）的文件，增加、删除或修改目录项会影响到它所在目录相关的3个时间。这就是在图4-20中包含两列的原因，其中一列是与该文件（或目录）相关的3个时间，另一列是与所引用的文件（或目录）的父目录相关的3个时间。例如，创建一个新文件影响到包含此新文件的目录，也影响该新文件的i节点。但是，读或写一个文件只影响该文件的i节点，而对目录则无影响。
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[image: 0420.jpg]
 
图4-20　各种函数对访问、修改和状态更改时间的作用
 
（mkdir和rmdir函数将在4.21节中说明。utimes、utimensat、futimens函数将在下一节中说明。7个exec函数将在8.10节中讨论。第15章将说明mkfifo和pipe函数。）
 
4.20　函数futimens、utimensat和utimes
 
一个文件的访问和修改时间可以用以下几个函数更改。futimens和utimensat函数可以指定纳秒级精度的时间戳。用到的数据结构是与stat函数族相同的timespec结构（见4.2节）。
 
#include <sys/stat.h>　 



int futimens(int fd, const struct timespec times[2]);　



int utimensat(int fd, const char *path, const struct timespec times[2], int flag);　 



　　　　　　　　　　　　　　　　　　　　　两个函数返回值：若成功，返回0；若出错，返回-1


 
这两个函数的times数组参数的第一个元素包含访问时间，第二元素包含修改时间。这两个时间值是日历时间，如1.10节所述，这是自特定时间（1970年1月1日00:00:00）以来所经过的秒数。不足秒的部分用纳秒表示。
 
时间戳可以按下列4种方式之一进行指定。
 
（1）如果times参数是一个空指针，则访问时间和修改时间两者都设置为当前时间。
 
（2）如果times参数指向两个timespec结构的数组，任一数组元素的tv_nsec字段的值为UTIME_ NOW，相应的时间戳就设置为当前时间，忽略相应的tv_sec字段。
 
（3）如果times参数指向两个timespec结构的数组，任一数组元素的tv_nsec字段的值为UTIME_ OMIT，相应的时间戳保持不变，忽略相应的tv_sec字段。
 
（4）如果times参数指向两个timespec结构的数组，且tv_nsec字段的值为既不是UTIME_NOW也不是UTIME_OMIT，在这种情况下，相应的时间戳设置为相应的tv_sec和tv_nsec字段的值。
 
执行这些函数所要求的优先权取决于times参数的值。
 
 
 	如果times是一个空指针，或者任一tv_nsec字段设为UTIME_NOW，则进程的有效用户ID必须等于该文件的所有者ID；进程对该文件必须具有写权限，或者进程是一个超级用户进程。
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 	如果times是非空指针，并且任一tv_nsec字段的值既不是UTIME_NOW也不是UTIME_ OMIT，则进程的有效用户ID必须等于该文件的所有者ID，或者进程必须是一个超级用户进程。对文件只具有写权限是不够的。
 
 	如果times是非空指针，并且两个tv_nsec字段的值都为UTIME_OMIT，就不执行任何的权限检查。
 

 
futimens函数需要打开文件来更改它的时间，utimensat函数提供了一种使用文件名更改文件时间的方法。pathname参数是相对于fd参数进行计算的，fd要么是打开目录的文件描述符，要么设置为特殊值AT_FDCWD（强制通过相对于调用进程的当前目录计算pathname）。如果pathname指定了绝对路径，那么fd参数被忽略。
 
utimensat的flag参数可用于进一步修改默认行为。如果设置了AT_SYMLINK_NOFOLLOW标志，则符号链接本身的时间就会被修改（如果路径名指向符号链接）。默认的行为是跟随符号链接，并把文件的时间改成符号链接的时间。
 
futimens和utimensat函数都包含在POSIX.1中，第3个函数utimes包含在Single UNIX Specification的XSI扩展选项中。
 
#include <sys/time.h>　 



int utimes(const char *pathname, const struct timeval times[2]);　 



　　　　　　　　　　　　　　　　　　　　　　　　函数返回值：若成功，返回0；若出错，返回-1


 
utimes函数对路径名进行操作。times参数是指向包含两个时间戳（访问时间和修改时间）元素的数组的指针，两个时间戳是用秒和微妙表示的。
 
struct timeval {　

　　　　time_t tv_sec; /* seconds */　

　　　　long tv_usec;　/* microseconds */

};
 
注意，我们不能对状态更改时间st_ctim（i节点最近被修改的时间）指定一个值，因为调用utimes函数时，此字段会被自动更新。
 
在某些UNIX版本中，touch(1)命令使用这些函数中的某一个。另外，标准归档程序tar(1)和cpio(1)可选地调用这些函数，以便将一个文件的时间值设置为将它归档时保存的时间。
 
实例
 
图4-21的程序使用带O_TRUNC选项的open函数将文件长度截断为0，但并不更改其访问时间及修改时间。为了做到这一点，首先用stat函数得到这些时间，然后截断文件，最后再用futimens函数重置这两个时间。
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#include "apue.h"

#include <fcntl.h>



int

main(int argc, char *argv[])

{

　　int　　　　　　i, fd;

　　struct stat　statbuf;

　　struct timespec times[2];

　　for (i = 1; i < argc; i++) {

　　　　if (stat(argv[i], &statbuf) < 0) { /* fetch current times */

　　　　　　err_ret("%s: stat error", argv[i]);

　　　　　　continue;

　　　　}

　　　　if ((fd = open(argv[i], O_RDWR | O_TRUNC)) < 0) { /* truncate */

　　　　　　err_ret("%s: open error", argv[i]);

　　　　　　continue;

　　　　}

　　　　times[0] = statbuf.st_atim;

　　　　times[1] = statbuf.st_mtim;

　　　　if (futimens(fd, times) < 0)　/* reset times */

　　　　　　err_ret("%s: futimens error", argv[i]);

　　　　close(fd);

　　 }

　　 exit　0);

}
 
图4-21　futimens函数实例
 
可以用以下Linux命令演示图4-21中的程序：
 
$ ls -l changemod times　　　　　 查看长度和最后修改时间　

-rwxr-xr-x 1 sar 13792 Jan 22 01:26 changemod　

-rwxr-xr-x 1 sar 13824 Jan 22 01:26 times　

$ ls -lu changemod times　　　　　查看最后访问时间　

-rwxr-xr-x 1 sar 13792 Jan 22 22:22 changemod　

-rwxr-xr-x 1 sar 13824 Jan 22 22:22 times　

 $ date　　　　　　　　　　　　　 　 打印当天日期　

 Fri Jan 27 20:53:46 EST 2012　

 $ ./a.out changemod times　　　  运行图4-21的程序　

 $ ls -l changemod times　　　　  检查结果　

-rwxr-xr-x 1 sar　　　　　 0 Jan 22 01:26 changemod　

-rwxr-xr-x 1 sar　　　　　 0 Jan 22 01:26 times　

 $ ls -lu changemod times　　　　 检查最后访问时间　

-rwxr-xr-x 1 sar　　　　　 0 Jan 22 22:22 changemod　

-rwxr-xr-x 1 sar　　　　　 0 Jan 22 22:22 times　

 $ ls -lc changemod times　　　　 检查状态更改时间　

-rwxr-xr-x 1 sar　　　　　 0 Jan 27 20:53 changemod　

-rwxr-xr-x 1 sar　　　　　 0 Jan 27 20:53 times
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正如我们所预见的一样，最后修改时间和最后访问时间未变。但是，状态更改时间则更改为程序运行时的时间。
 
4.21　函数mkdir、mkdirat和rmdir
 
用mkdir和mkdirat函数创建目录，用rmdir函数删除目录。
 
#include <sys/stat.h>　 



int mkdir(const char *pathname, mode_t mode);　 



int mkdirat(int fd, const char *pathname, mode_t mode);　 



　　　　　　　　　　　　　　　　　　　　　　两个函数返回值：若成功，返回0；若出错，返回-1


 
这两个函数创建一个新的空目录。其中，.和..目录项是自动创建的。所指定的文件访问权限mode由进程的文件模式创建屏蔽字修改。
 
常见的错误是指定与文件相同的mode（只指定读、写权限）。但是，对于目录通常至少要设置一个执行权限位，以允许访问该目录中的文件名（见习题4.16）。
 
按照4.6节中讨论的规则来设置新目录的用户ID和组ID。
 
 
 Solaris 10和Linux 3.2.0也使新目录继承父目录的设置组ID位。这就使得在新目录中创建的文件将继承该目录的组ID。对于Linux，文件系统的实现决定是否支持此特征。例如，ext2、ext3和ext4文件系统用mount(1)命令的一个选项来控制是否支持此特征。但是，Linux的UFS文件系统实现则是不可选择的，新目录继承父目录的设置组ID位，这仿效了历史上BSD的实现。在BSD系统中，新目录的组ID是从父目录继承的。
 
 基于BSD的系统并不要求在目录间传递设置组ID位，因为不论设置组ID位如何，新创建的文件和目录总是继承父目录的组ID。因为FreeBSD 8.0和Mac OS X 10.6.8是基于4.4BSD的，它们不要求继承设置组ID位。在这些平台上，新创建的文件和目录总是继承父目录的组ID，这与是否设置了设置组ID位无关。
 

 
早期的UNIX版本并没有mkdir函数，它是由4.2BSD和SVR3引入的。在早期版本中，进程要调用mknod函数创建一个新目录，但是只有超级用户进程才能使用mknod函数。为了避免这一点，创建目录的命令mkdir(1)必须由根用户拥有，而且对它设置了设置用户ID位。要通过一个进程创建一个目录，必须用system(3)函数调用mkdir(1)命令。
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mkdirat函数与mkdir函数类似。当fd参数具有特殊值AT_FDCWD或者pathname参数指定了绝对路径名时，mkdirat与mkdir完全一样。否则，fd参数是一个打开目录，相对路径名根据此打开目录进行计算。
 
用rmdir函数可以删除一个空目录。空目录是只包含.和..这两项的目录。
 
#include <unistd.h>　 



int rmdir(const char *pathname);　 



　　　　　　　　　　　　　　　　　　　　　　　　返回值：若成功，返回0；若出错，返回-1


 
如果调用此函数使目录的链接计数成为0，并且也没有其他进程打开此目录，则释放由此目录占用的空间。如果在链接计数达到0时，有一个或多个进程打开此目录，则在此函数返回前删除最后一个链接及.和..项。另外，在此目录中不能再创建新文件。但是在最后一个进程关闭它之前并不释放此目录。（即使另一些进程打开该目录，它们在此目录下也不能执行其他操作。这样处理的原因是，为了使rmdir函数成功执行，该目录必须是空的。）
 
4.22　读目录
 
对某个目录具有访问权限的任一用户都可以读该目录，但是，为了防止文件系统产生混乱，只有内核才能写目录。回忆4.5节，一个目录的写权限位和执行权限位决定了在该目录中能否创建新文件以及删除文件，它们并不表示能否写目录本身。
 
目录的实际格式依赖于UNIX系统实现和文件系统的设计。早期的系统（如V7）有一个比较简单的结构：每个目录项是16个字节，其中14个字节是文件名，2个字节是i节点编号。而对于4.2BSD，由于它允许更长的文件名，所以每个目录项的长度是可变的。这就意味着读目录的程序与系统相关。为了简化读目录的过程，UNIX现在包含了一套与目录有关的例程，它们是POSIX.1的一部分。很多实现阻止应用程序使用read函数读取目录的内容，由此进一步将应用程序与目录格式中与实现相关的细节隔离。
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#include <dirent.h>　



DIR *opendir(const char *pathname);　 



DIR *fdopendir(int fd);　 

 　　　　　　　　　　　　　　　　　两个函数返回值：若成功，返回指针；若出错，返回NULL



struct dirent *readdir(DIR *dp);　 

 　　　　　　　　　　　　　　　　　返回值：若成功，返回指针；若在目录尾或出错，返回NULL　



void rewinddir(DIR *dp);



int closedir(DIR *dp);　 

 　　　　　　　　　　　　　　　　　返回值：若成功，返回0；若出错，返回-1　 



long telldir(DIR *dp);

 　　　　　　　　　　　　　　　　　返回值：与dp关联的目录中的当前位置　



void seekdir(DIR *dp, long loc);


 
fdopendir函数最早出现在SUSv4（Single UNIX Specification第4版）中，它提供了一种方法，可以把打开文件描述符转换成目录处理函数需要的DIR结构。
 
telldir和seekdir函数不是基本POSIX.1标准的组成部分。它们是Single UNIX Specification中的XSI扩展，所以可以期望所有符合UNIX系统的实现都会提供这两个函数。
 
回忆一下，在图1-3程序中（ls命令的基本实现部分）使用了其中几个函数。
 
定义在头文件<dirent.h>中的dirent结构与实现有关。实现对此结构所做的定义至少包含下列两个成员：
 
　ino_t d_ino;　　　　　　　　 /* i-node number */　

　char　d_name[];　　　　　　　/* null-terminated filename */
 
 
 POSIX.1并没有定义d_ino项，因为这是一个实现特征，但在POSIX.1的XSI扩展中定义了d_ino。POSIX.1在此结构中只定义了d_name项。
 

 
注意，d_name项的大小并没有指定，但必须保证它能包含至少NAME_MAX个字节（不包含终止null字节，回忆图2-15）。因为文件名是以null字节结束的，所以在头文件中如何定义数组d_name并无多大关系，数组大小并不表示文件名的长度。
 
DIR结构是一个内部结构，上述7个函数用这个内部结构保存当前正在被读的目录的有关信息。其作用类似于FILE结构。FILE结构由标准I/O库维护，我们将在第5章中对它进行说明。
 
由opendir和fdopendir返回的指向DIR结构的指针由另外5个函数使用。opendir执行初始化操作，使第一个readdir返回目录中的第一个目录项。DIR结构由fdopendir创建时，readdir返回的第一项取决于传给fdopendir函数的文件描述符相关联的文件偏移量。注意，目录中各目录项的顺序与实现有关。它们通常并不按字母顺序排列。
 
实例
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我们将使用这些对目录进行操作的例程编写一个遍历文件层次结构的程序，其目的是得到如图4-4中所示的各种类型的文件计数。图4-22的程序只有一个参数，它说明起点路径名，从该点开始递归降序遍历文件层次结构。Solaris提供了一个遍历此层次结构的函数ftw(3)，对于每一个文件它都调用一个用户定义的函数。ftw函数的问题是：对于每一个文件，它都调用stat函数，这就使程序跟随符号链接。例如，如果从根目录（root）开始，并且有一个名为/lib的符号链接，它指向/usr/lib， 则所有在目录/usr/lib中的文件都会被计数两次。为了纠正这一点，Solaris提供了另一个函数nftw(3)，它具有一个停止跟随符号链接的选项。尽管可以使用nftw，但是为了说明目录例程的使用方法，我们还是编写了一个简单的文件遍历程序。
 
 
 在SUSv4中，nftw包含在XSI选项中。FreeBSD 8.0、Linux 3.2.0、Mac OS X 10.6.8以及Solaris 10都包括了该函数的实现。（在SUSv4中，ftw函数已被标记为弃用。）基于BSD的UNIX系统则有另一个函数fts(3)，它提供类似的功能。该函数在FreeBSD 8.0、Linux 3.2.0和Mac OS X 10.6.8中是可用的。
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#include "apue.h"

#include <dirent.h>

#include <limits.h>



/* function type that is called for each filename */

typedef int Myfunc(const char *, const struct stat *, int);



static Myfunc myfunc;

static int　　 myftw(char *, Myfunc *);

static int　　 dopath(Myfunc *);

static long nreg, ndir, nblk, nchr, nfifo, nslink, nsock, ntot;



int

main(int argc, char *argv[])

{

　　int　　　ret;

　　if (argc != 2)

　　　　err_quit("usage:　ftw　<starting-pathname>");

　　ret = myftw(argv[1], myfunc);　　　　/* does it all */

　　ntot = nreg + ndir + nblk + nchr + nfifo + nslink + nsock;

　　if (ntot == 0)

　　　　ntot = 1;　　　　 /* avoid divide by 0; print 0 for all counts */

　　printf("regular files　= %7ld, %5.2f %%\n", nreg,

　　　nreg*100.0/ntot);

　　printf("directories　　= %7ld, %5.2f %%\n", ndir,

　　　ndir*100.0/ntot);

　　printf("block special　= %7ld, %5.2f %%\n", nblk,

　　　nblk*100.0/ntot);

　　printf("char special　 = %7ld, %5.2f %%\n", nchr,

　　　nchr*100.0/ntot);

　　printf("FIFOs　　　　　= %7ld, %5.2f %%\n", nfifo,

　　　nfifo*100.0/ntot);

　　printf("symbolic links = %7ld, %5.2f %%\n", nslink,

　　　nslink*100.0/ntot);

　　printf("sockets　　　　= %7ld, %5.2f %%\n", nsock,

　　　nsock*100.0/ntot);

　　exit(ret);

}

/*

 * Descend through the hierarchy, starting at "pathname".

 * The caller's func() is called for every file.

 */

#define FTW_F 1　　　　　　/* file other than directory */

#define FTW_D 2　　　　　　/* directory */

#define FTW_DNR 3　　　　　/* directory that can't be read */

#define FTW_NS 4　　　　 　/* file that we can't stat */



static char *fullpath;　　/* contains full pathname for every file */

static size_t pathlen;



static int　　　　　　　  　/* we return whatever func() returns */

myftw(char *pathname, Myfunc *func)

{

　　fullpath = path_alloc(&pathlen); /* malloc PATH_MAX+1 bytes */

　　　　　　　　　　　　　　　  　　　　　/* ({Flgure 2.16}) */

　　if (pathlen <= strlen(pathname)) {

　　　　pathlen = strlen(pathname) * 2;

　　　　if ((fullpath = realloc(fullpath, pathlen)) == NULL)

　　　　　　err_sys("realloc failed");

　　}

　　strcpy(fullpath, pathname);

　　return(dopath(func));

}



/*

 * Descend through the hierarchy, starting at "fullpath".

 * If "fullpath" is anything other than a directory, we lstat() it,

 * call func(), and return.　For a directory, we call ourself

 * recursively for each name in the directory.

 */



static int　　　　　　　　　　　 /* we return whatever func() returns */

dopath(Myfunc* func)

{

　　struct stat　　　statbuf;

　　struct dirent　　*dirp;

　　DIR　　　　　　　　*dp;

　　int　　　　　　　　ret, n;

　　if (lstat(fullpath, &statbuf) < 0) /* stat error */

　　　　return(func(fullpath, &statbuf, FTW_NS));

　　if (S_ISDIR(statbuf.st_mode) == 0) /* not a directory */

　　　　return(func(fullpath, &statbuf, FTW_F));

　　/*

　　 * It's a directory.　First call func() for the directory,

　　 * then process each filename in the directory.

　　 */

　　if ((ret = func(fullpath, &statbuf, FTW_D)) != 0)

　　　　return(ret);

　　n = strlen(fullpath);

　　if (n + NAME_MAX + 2 > pathlen) { /* expand path buffer */

　　　　pathlen *= 2;

　　　　if ((fullpath = realloc(fullpath, pathlen)) == NULL)

　　　　　　err_sys("realloc failed");

　　}

　　fullpath[n++] = '/';

　　fullpath[n] = 0;

　　if ((dp = opendir(fullpath)) == NULL) /* can't read directory */

　　　　return(func(fullpath, &statbuf, FTW_DNR));

　　while ((dirp = readdir(dp)) != NULL) {

　　　　if (strcmp(dirp->d_name, ".") == 0　||

　　　　　　strcmp(dirp->d_name, "..") == 0)

　　　　　　　　continue;　　　　 /* ignore dot and dot-dot */

　　　　strcpy(&fullpath[n], dirp->d_name); /* append name after "/" */

　　　　if ((ret = dopath(func)) != 0)　　　/* recursive */

　　　　　　break; /* time to leave */

　　}

　　fullpath[n-1] = 0; /* erase everything from slash onward */

　　if (closedir(dp) < 0)

　　　　err_ret("can't close directory %s", fullpath);

　　return(ret);

}

static int

myfunc(const char *pathname, const struct stat *statptr, int type)

{

　　switch (type) {

　　case FTW_F:

　　　　switch (statptr->st_mode & S_IFMT) {

　　　　case S_IFREG:　 nreg++;　　 break;

　　　　case S_IFBLK:　　nblk++;　　break;

　　　　case S_IFCHR:　　nchr++;　　break;

　　　　case S_IFIFO:　　nfifo++;　 break;

　　　　case S_IFLNK:　　nslink++;　break;

　　　　case S_IFSOCK:　 nsock++;　 break;

　　　　case S_IFDIR: /* directories should have type = FTW_D */

　　　　　　err_dump("for S_IFDIR for %s", pathname);

　　　　}

　　　　break;

　　case FTW_D:

　　　　ndir++;

　　　　break;

　　case FTW_DNR:

　　　　err_ret("can't read directory %s", pathname);

　　　　break;

　　case FTW_NS:

　　　　err_ret("stat error for %s", pathname);

　　　　break;

　　default:

　　　　err_dump("unknown type %d for pathname %s", type, pathname);

　　}

　　return(0);

}
 
图4-22　递归降序遍历目录层次结构，并按文件类型计数
 
在程序中，我们提供了比所要求的更多的通用性，这样做的目的是为了具体说明ftw和nftw函数的应用。例如，函数myfunc总是返回0，即使调用它的函数准备了处理非0返回也是如此。
 
关于降序遍历文件系统的更多信息，以及在很多标准UNIX命令（如find、ls、tar等）中使用这种技术的情况，请参阅Fowler、Korn和Vo[1989]。
 
4.23　函数chdir、fchdir和getcwd
 
每个进程都有一个当前工作目录，此目录是搜索所有相对路径名的起点（不以斜线开始的路径名为相对路径名）。当用户登录到UNIX系统时，其当前工作目录通常是口令文件（/etc/passwd）中该用户登录项的第6个字段——用户的起始目录（home directory）。当前工作目录是进程的一个属性，起始目录则是登录名的一个属性。
 
进程调用chdir或fchdir函数可以更改当前工作目录。
 
#include <unistd.h>　



int chdir(const char *pathname);　



int fchdir(int fd);　



　　　　　　　　　　　　　　　　　　　两个函数的返回值：若成功，返回0；若出错，返回-1


 
在这两个函数中，分别用pathname或打开文件描述符来指定新的当前工作目录。
 
实例
 
因为当前工作目录是进程的一个属性，所以它只影响调用chdir的进程本身，而不影响其他进程（我们将在第8章更详细地说明进程之间的关系）。这就意味着图4-23的程序并不会产生我们可能希望得到的结果。
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#include "apue.h"



int

main(void)

{

　　if (chdir("/tmp") < 0)

　　　 err_sys("chdir failed");

　　printf("chdir to /tmp succeeded\n");

　　exit(0);

}
 
图4-23　chdir函数实例
 
如果编译图4-23程序，并且调用其可执行目标代码文件mycd，则可以得到下列结果：
 
$ pwd　

/usr/lib　

$ mycd　

chdir to /tmp succeeded　

$ pwd　

/usr/lib


 
从中可以看出，执行mycd命令的shell的当前工作目录并没有改变，这是shell执行程序工作方式的一个副作用。每个程序运行在独立的进程中，shell的当前工作目录并不会随着程序调用chdir而改变。由此可见，为了改变shell进程自己的工作目录，shell应当直接调用chdir函数，为此，cd命令内建在shell中。
 
因为内核必须维护当前工作目录的信息，所以我们应能获取其当前值。遗憾的是，内核为每个进程只保存指向该目录v节点的指针等目录本身的信息，并不保存该目录的完整路径名。
 
 
 Linux内核可以确定完整路径名。完整路径名的各个组成部分分布在mount表和dcache表中，然后进行重新组装，比如在读取/proc/self/cwd符号链接时。
 

 
我们需要一个函数，它从当前工作目录（.）开始，用..找到其上一级目录，然后读其目录项，直到该目录项中的i节点编号与工作目录i节点编号相同，这样地就找到了其对应的文件名。按照这种方法，逐层上移，直到遇到根，这样就得到了当前工作目录完整的绝对路径名。很幸运，函数getcwd就提供了这种功能。
 
#include <unistd.h>　



char *getcwd(char *buf, size_t size);　



　　　　　　　　　　　　　　　　　　　返回值：若成功，返回buf；若出错，返回NULL


 
必须向此函数传递两个参数，一个是缓冲区地址buf，另一个是缓冲区的长度size（以字节为单位）。该缓冲区必须有足够的长度以容纳绝对路径名再加上一个终止null字节，否则返回出错（请回忆2.5.5节中有关为最大长度路径名分配空间的讨论）。
 
 
 某些getcwd的早期实现允许第一个参数buf为NULL。在这种情况下，此函数调用malloc动态地分配size字节数的空间。这不是POSIX.1或Single UNIX Specification的所属部分，应当避免使用。
 

 
实例
 
图4-24的程序将工作目录更改至一个指定的目录，然后调用getcwd，最后打印该工作目录。如果运行该程序，则可得
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$ ./a.out　

cwd = /var/spool/uucppublic　

$ ls -l /usr/spool　

lrwxrwxrwx 1 root 12 Jan 31 07:57 /usr/spool -> ../var/spool


 
　
 
#include "apue.h"

int

main(void)

{

　　char *ptr;

　　size_t　size;

　　if (chdir("/usr/spool/uucppublic") < 0)

　　　　err_sys("chdir failed");

　　ptr = path_alloc(&size); /* our own function */

　　if (getcwd(ptr, size) == NULL)

　　　　err_sys("getcwd failed");

　　printf("cwd = %s\n", ptr);

　　exit(0);

}
 
图4-24　getcwd函数实例
 
注意，chdir跟随符号链接（正如我们希望的，如图4-17中所示），但是当getcwd沿目录树上溯遇到/var/spool目录时，它并不了解该目录由符号链接/usr/spool所指向。这是符号链接的一种特性。
 
当一个应用程序需要在文件系统中返回到它工作的出发点时，getcwd函数是有用的。在更换工作目录之前，我们可以调用getcwd函数先将其保存起来。在完成了处理后，就可将所保存的原工作目录路径名作为调用参数传送给chdir，这样就返回到了文件系统中的出发点。
 
fchdir函数向我们提供了一种完成此任务的便捷方法。在更换到文件系统中的不同位置前，无需调用getcwd函数，而是使用open打开当前工作目录，然后保存其返回的文件描述符。当希望回到原工作目录时，只要简单地将该文件描述符传送给fchdir。
 
4.24　设备特殊文件
 
st_dev和st_rdev这两个字段经常引起混淆，在18.9节，我们编写ttyname函数时，需要使用这两个字段。有关规则很简单：
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 	每个文件系统所在的存储设备都由其主、次设备号表示。设备号所用的数据类型是基本系统数据类型dev_t。主设备号标识设备驱动程序，有时编码为与其通信的外设板；次设备号标识特定的子设备。回忆图4-13，一个磁盘驱动器经常包含若干个文件系统。在同一磁盘驱动器上的各文件系统通常具有相同的主设备号，但是次设备号却不同。
 
 	我们通常可以使用两个宏：major和minor来访问主、次设备号，大多数实现都定义这两个宏。这就意味着我们无需关心这两个数是如何存放在dev_t对象中的。
 

 
 
 早期的系统用16位整型存放设备号：8位用于主设备号，8位用于次设备号。FreeBSD 8.0和Mac OS X 10.6.8使用32位整型，其中8位表示主设备号，24位表示次设备号。在32位系统中，Solaris 10用32位整型表示dev_t，其中14位用于主设备号，18位用于次设备号。在64位系统中，Solaris 10用64位整型表示dev_t，主设备号和次设备号各用其中的32位表示。在Linux 3.2.0上，虽然dev_t是64位整型，但其中只有12位用于主设备号，20位用于次设备号。
 
 POSIX.1说明dev_t类型是存在的，但没有定义它包含什么，或如何取得其内容。大多数实现定义了宏major和minor，但在哪一个头文件中定义它们则与实现有关。基于BSD的UNIX系统将它们定义在<sys/types>中。Solaris在<sys/mkdev.h>中定义了它们的函数原型，因为在<sys/ sysmacros.h>中的宏定义都弃用了。Linux将它们定义在<sys/sysmacros.h>中，而该头文件又包含在<sys/type.h>中。
 

 
 
 	系统中与每个文件名关联的st_dev值是文件系统的设备号，该文件系统包含了这一文件名以及与其对应的i节点。
 
 	只有字符特殊文件和块特殊文件才有st_rdev值。此值包含实际设备的设备号。
 

 
实例
 
图4-25的程序为每个命令行参数打印设备号，另外，若此参数引用的是字符特殊文件或块特殊文件，则还打印该特殊文件的st_rdev值。
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#include "apue.h"

#ifdef SOLARIS

#include <sys/mkdev.h>

#endif



int

main(int argc, char *argv[])

{

　　int　　　　　 i;

　　struct stat buf;

　　for (i = 1; i < argc; i++) {

　　　　printf("%s: ", argv[i]);

　　　　if (stat(argv[i], &buf) < 0) {

　　　　　　err_ret("stat error");

　　　　　　continue;

　　　　}

　　　　printf("dev = %d/%d", major(buf.st_dev),　minor(buf.st_dev));

　　　　if (S_ISCHR(buf.st_mode) || S_ISBLK(buf.st_mode)) {

　　　　　　printf(" (%s) rdev = %d/%d",

　　　　　　　　　　(S_ISCHR(buf.st_mode)) ? "character" : "block",

　　　　　　　　　　major(buf.st_rdev), minor(buf.st_rdev));

　　　　}

　　　　printf("\n");

　　　}

　　　exit(0);

}
 
图4-25　打印st_dev和st_rdev值
 
在Linux上运行此程序得到下面的输出：
 
$ ./a.out / /home/sar /dev/tty[01]　

/: dev = 8/3　

/home/sar: dev = 8/4　

/dev/tty0: dev = 0/5 (character) rdev = 4/0　

/dev/tty1: dev = 0/5 (character) rdev = 4/1　

$ mount　　　　　　　　　　　　　　　　　 哪些目录安装在哪些设备上?　

/dev/sda3 on / type ext3 (rw,errors=remount-ro,commit=0)　

/dev/sda4 on /home type ext2 (rw,commit=0)　

$ ls -l /dev/tty[01] /dev/sda[34]　

brw-rw---- 1 root　　8, 3 2011-07-01 11:08 /dev/sda3　

brw-rw---- 1 root　　8, 4 2011-07-01 11:08 /dev/sda4　

crw--w---- 1 root　　4, 0 2011-07-01 11:08 /dev/tty0　

crw------- 1 root　　4, 1 2011-07-01 11:08 /dev/tty1


 
传给该程序的前两个参数是目录（/和/home/sar），后两个参数是设备名/dev/tty[01]。（我们用shell正则表达式语言以缩短所需的输入量。shell将字符串/dev/tty[01]扩展为/dev/tty0 /dev/tty1。）
 
我们期望设备是字符特殊文件。从程序的输出可见，根目录和/home/sar目录的设备号不同，这表示它们位于不同的文件系统中。运行mount(1)命令可以证明了这一点。
 
然后用ls命令查看由mount命令报告的两个磁盘设备和两个终端设备。这两个磁盘设备是块特殊文件，而两个终端设备是字符特殊文件。（通常，只有那些包含随机访问文件系统的设备类型是块特殊文件设备，如硬盘驱动器、软盘驱动器和CD-ROM等。UNIX的早期版本支持磁带存放文件系统，但这从未广泛使用过。）
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注意，两个终端设备（st_dev）的文件名和i节点在设备0/5上（devtmpfs伪文件系统，它实现了/dev文件系统），但是它们的实际设备号是4/0和4/1。
 
4.25　文件访问权限位小结
 
我们已经说明了所有文件访问权限位，其中某些位有多种用途。图4-26列出了所有这些权限位，以及它们对普通文件和目录文件的作用。
 
[image: 0426.jpg]
 
图4-26　文件访问权限位小结
 
最后9个常量还可以分成如下3组：
 
S_IRWXU = S_IRUSR｜S_IWUSR｜S_IXUSR　

S_IRWXG = S_IRGRP｜S_IWGRP｜S_IXGRP　

S_IRWXO = S_IROTH｜S_IWOTH｜S_IXOTH
 
4.26　小结
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本章内容围绕stat函数，详细介绍了stat结构中的每一个成员。这使我们对UNIX文件和目录的各个属性都有所了解。我们讨论了文件和目录在文件系统中是如何设计的以及如何使用文件系统命名空间。对文件和目录的所有属性以及对文件和目录进行操作的所有函数的全面了解，对于UNIX编程是非常重要的。
 
习题
 
4.1　用stat函数替换图4-3程序中的lstat函数，如若命令行参数之一是符号链接，会发生什么变化？
 
4.2　如果文件模式创建屏蔽字是777（八进制），结果会怎样？用shell的umask命令验证该结果。
 
4.3　关闭一个你所拥有文件的用户读权限，将导致拒绝你访问自己的文件，对此进行验证。
 
4.4　创建文件foo和bar后，运行图4-9的程序，将发生什么情况？
 
4.5　4.12节中讲到一个普通文件的大小可以为0，同时我们又知道st_size字段是为目录或符号链接定义的，那么目录和符号链接的长度是否可以为0？
 
4.6　编写一个类似cp(1)的程序，它复制包含空洞的文件，但不将字节0写到输出文件中去。
 
4.7　在4.12节ls命令的输出中，core和core.copy的访问权限不同，如果创建两个文件时umask没有变，说明为什么会发生这种差别。
 
4.8　在运行图4-16的程序时，使用了df(1)命令来检查空闲的磁盘空间。为什么不使用du(1)命令？
 
4.9　图4-20中显示unlink函数会修改文件状态更改时间，这是怎样发生的？
 
4.10　4.22节中，系统对可打开文件数的限制对myftw函数会产生什么影响？
 
4.11　在4.22节中的myftw从不改变其目录，对这种处理方法进行改动：每次遇到一个目录就用其调用chdir，这样每次调用lstat时就可以使用文件名而非路径名，处理完所有的目录项后执行chdir("..")。比较这种版本的程序和书中程序的运行时间。
 
4.12　每个进程都有一个根目录用于解析绝对路径名，可以通过chroot函数改变根目录。在手册中查阅此函数。说明这个函数什么时候有用。
 
4.13　如何只设置两个时间值中的一个来使用utimes函数？
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4.14　有些版本的finger(1)命令输出“New mail received ...”和“unread since ...”，其中...表示相应的日期和时间。程序是如何决定这些日期和时间的？
 
4.15　用cpio(1)和tar(1)命令检查档案文件的格式（请参阅《UNIX程序员手册》第5部分中的说明）。3个可能的时间值中哪几个是为每一个文件保存的？你认为文件复原时，文件的访问时间是什么？为什么？
 
4.16　UNIX系统对目录树的深度有限制吗？编写一个程序循环，在每次循环中，创建目录，并将该目录更改为工作目录。确保叶节点的绝对路径名的长度大于系统的PATH_MAX限制。可以调用getcwd得到目录的路径名吗？标准UNIX系统工具是如何处理长路径名的？对目录可以使用tar或cpio命令归档吗？
 
4.17　3.16节中描述了/dev/fd特征。如果每个用户都可以访问这些文件，则其访问权限必须为rw-rw-rw-。有些程序创建输出文件时，先删除该文件以确保该文件名不存在，忽略返回码。
 
 unlink (path);　

 if ( (fd = creat(path, FILE_MODE)) < 0)　

　　 err_sys(...);
 

  142 

 
如果path是/dev/fd/1，会出现什么情况？
 


第5章　标准I/O库
 
5.1　引言
 
本章讲述标准I/O库。不仅是UNIX，很多其他操作系统都实现了标准I/O库，所以这个库由ISO C标准说明。Single UNIX Specification对ISO C标准进行了扩充，定义了另外一些接口。
 
标准I/O库处理很多细节，如缓冲区分配、以优化的块长度执行I/O等。这些处理使用户不必担心如何选择使用正确的块长度（如3.9节中所述）。这使得它便于用户使用，但是如果我们不深入地了解I/O库函数的操作，也会带来一些问题。
 
 
 标准I/O库是由Dennis Ritchie在1975年左右编写的。它是Mike Lesk编写的可移植I/O库的主要修改版本。令人惊讶的是，35年来，几乎没有对标准I/O库进行修改。
 

 
5.2　流和FILE对象
 
在第3章中，所有I/O函数都是围绕文件描述符的。当打开一个文件时，即返回一个文件描述符，然后该文件描述符就用于后续的I/O操作。而对于标准I/O库，它们的操作是围绕流（stream）进行的（请勿将标准I/O术语流与System V的STREAMS I/O系统相混淆，STREAMS I/O系统是System V的组成部分，Single UNIX Specification则将其标准化为XSI STREAMS选项，但是在SUSv4中已经将其标记为弃用）。当用标准I/O库打开或创建一个文件时，我们已使一个流与一个文件相关联。
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对于ASCII字符集，一个字符用一个字节表示。对于国际字符集，一个字符可用多个字节表示。标准I/O文件流可用于单字节或多字节（“宽”）字符集。流的定向（stream's orientation）决定了所读、写的字符是单字节还是多字节的。当一个流最初被创建时，它并没有定向。如若在未定向的流上使用一个多字节I/O函数（见<wchar.h>），则将该流的定向设置为宽定向的。若在未定向的流上使用一个单字节I/O函数，则将该流的定向设为字节定向的。只有两个函数可改变流的定向。freopen函数（稍后讨论）清除一个流的定向；fwide函数可用于设置流的定向。
 
#include <stdio.h>



#include <wchar.h> 



int fwide(FILE *fp, int mode); 



　　　　　　　返回值：若流是宽定向的，返回正值；若流是字节定向的，返回负值；若流是未定向的，返回0


 
根据mode参数的不同值，fwide函数执行不同的工作。
 
 
 	如若mode参数值为负，fwide将试图使指定的流是字节定向的。
 
 	如若mode参数值为正，fwide将试图使指定的流是宽定向的。
 
 	如若mode参数值为0，fwide将不试图设置流的定向，但返回标识该流定向的值。
 

 
注意，fwide并不改变已定向流的定向。还应注意的是，fwide无出错返回。试想，如若流是无效的，那么将发生什么呢？我们唯一可依靠的是，在调用fwide前先清除errno，从fwide返回时检查errno的值。在本书的其余部分，我们只涉及字节定向流。
 
当打开一个流时，标准I/O函数fopen（参考5.5节）返回一个指向FILE对象的指针。该对象通常是一个结构，它包含了标准I/O库为管理该流需要的所有信息，包括用于实际I/O的文件描述符、指向用于该流缓冲区的指针、缓冲区的长度、当前在缓冲区中的字符数以及出错标志等。
 
应用程序没有必要检验FILE对象。为了引用一个流，需将FILE指针作为参数传递给每个标准I/O函数。在本书中，我们称指向FILE对象的指针（类型为FILE*）为文件指针。
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在本章中，我们在UNIX系统环境中说明标准I/O库。正如前述，此标准库已移植到UNIX之外的很多系统中。但是为了说明该库实现的一些细节，我们将讨论其在UNIX系统上的典型实现。
 
5.3　标准输入、标准输出和标准错误
 
对一个进程预定义了3个流，并且这3个流可以自动地被进程使用，它们是：标准输入、标准输出和标准错误。这些流引用的文件与在3.2节中提到文件描述符STDIN_FILENO、STDOUT_FILENO和STDERR_FILENO所引用的相同。
 
这3个标准I/O流通过预定义文件指针stdin、stdout和stderr加以引用。这3个文件指针定义在头文件<stdio.h>中。
 
5.4　缓冲
 
标准I/O库提供缓冲的目的是尽可能减少使用read和write调用的次数（见图3-6，其中显示了在不同缓冲区长度情况下，执行I/O所需的CPU时间量）。它也对每个I/O流自动地进行缓冲管理，从而避免了应用程序需要考虑这一点所带来的麻烦。遗憾的是，标准I/O库最令人迷惑的也是它的缓冲。
 
标准I/O提供了以下3种类型的缓冲。
 
（1）全缓冲。在这种情况下，在填满标准I/O缓冲区后才进行实际I/O操作。对于驻留在磁盘上的文件通常是由标准I/O库实施全缓冲的。在一个流上执行第一次I/O操作时，相关标准I/O函数通常调用malloc（见7.8节）获得需使用的缓冲区。
 
术语冲洗（flush）说明标准I/O缓冲区的写操作。缓冲区可由标准I/O例程自动地冲洗（例如，当填满一个缓冲区时），或者可以调用函数fflush冲洗一个流。值得注意的是，在UNIX环境中，flush有两种意思。在标准I/O库方面，flush（冲洗）意味着将缓冲区中的内容写到磁盘上（该缓冲区可能只是部分填满的）。在终端驱动程序方面（例如，在第18章中所述的tcflush函数），flush（刷清）表示丢弃已存储在缓冲区中的数据。
 
（2）行缓冲。在这种情况下，当在输入和输出中遇到换行符时，标准I/O库执行I/O操作。这允许我们一次输出一个字符（用标准I/O函数fputc），但只有在写了一行之后才进行实际I/O操作。当流涉及一个终端时（如标准输入和标准输出），通常使用行缓冲。
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对于行缓冲有两个限制。第一，因为标准I/O库用来收集每一行的缓冲区的长度是固定的，所以只要填满了缓冲区，那么即使还没有写一个换行符，也进行I/O操作。第二，任何时候只要通过标准I/O库要求从（a）一个不带缓冲的流，或者（b）一个行缓冲的流（它从内核请求需要数据）得到输入数据，那么就会冲洗所有行缓冲输出流。在（b）中带了一个在括号中的说明，其理由是，所需的数据可能已在该缓冲区中，它并不要求一定从内核读数据。很明显，从一个不带缓冲的流中输入（即（a）项）需要从内核获得数据。
 
（3）不带缓冲。标准I/O库不对字符进行缓冲存储。例如，若用标准I/O函数fputs写15个字符到不带缓冲的流中，我们就期望这15个字符能立即输出，很可能使用3.8节的write函数将这些字符写到相关联的打开文件中。
 
标准错误流stderr通常是不带缓冲的，这就使得出错信息可以尽快显示出来，而不管它们是否含有一个换行符。
 
ISO C要求下列缓冲特征。
 
 
 	当且仅当标准输入和标准输出并不指向交互式设备时，它们才是全缓冲的。
 
 	标准错误决不会是全缓冲的。
 

 
但是，这并没有告诉我们如果标准输入和标准输出指向交互式设备时，它们是不带缓冲的还是行缓冲的；以及标准错误是不带缓冲的还是行缓冲的。很多系统默认使用下列类型的缓冲：
 
 
 	标准错误是不带缓冲的。
 
 	若是指向终端设备的流，则是行缓冲的；否则是全缓冲的。
 

 
 
 本书讨论的4种平台都遵从标准I/O缓冲的这些惯例，标准错误是不带缓冲的，打开至终端设备的流是行缓冲的，其他流是全缓冲的。
 

 
我们将在5.12节和图5-1对标准I/O缓冲做更详细的说明。
 
对任何一个给定的流，如果我们并不喜欢这些系统默认，则可调用下列两个函数中的一个更改缓冲类型。
 
#include <stdio.h>



void setbuf(FILE *restrict fp, char *restrict buf);



int setvbuf(FILE *restrict fp, char *restrict buf, int mode, size_t size);



　　　　　　　　　　　　　　　返回值：若成功，返回0；若出错，返回非0
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这些函数一定要在流已被打开后调用（这是十分明显的，因为每个函数都要求一个有效的文件指针作为它们的第一个参数），而且也应在对该流执行任何一个其他操作之前调用。
 
可以使用setbuf函数打开或关闭缓冲机制。为了带缓冲进行I/O，参数buf必须指向一个长度为BUFSIZ的缓冲区（该常量定义在<stdio.h>中）。通常在此之后该流就是全缓冲的，但是如果该流与一个终端设备相关，那么某些系统也可将其设置为行缓冲的。为了关闭缓冲，将buf设置为NULL。
 
使用setvbuf，我们可以精确地说明所需的缓冲类型。这是用mode参数实现的：
 
_IOFBF　　　全缓冲
 
_IOLBF　　　行缓冲
 
_IONBF　　　不带缓冲
 
如果指定一个不带缓冲的流，则忽略buf和size参数。如果指定全缓冲或行缓冲，则buf和size可选择地指定一个缓冲区及其长度。如果该流是带缓冲的，而buf是NULL，则标准I/O库将自动地为该流分配适当长度的缓冲区。适当长度指的是由常量BUFSIZ所指定的值。
 
 
 某些C函数库实现使用stat结构中的成员st_blksize所指定的值（见4.2节）决定最佳I/O缓冲区长度。在本章的后续内容中可以看到，GNU C函数库就使用这种方法。
 

 
图5-1列出了这两个函数的动作，以及它们的各个选项。
 
[image: 5-1.jpg]
 
图5-1　setbuf和setvbuf函数
 
要了解，如果在一个函数内分配一个自动变量类的标准I/O缓冲区，则从该函数返回之前，必须关闭该流（7.8节将对此做更多讨论）。另外，其些实现将缓冲区的一部分用于存放它自己的管理操作信息，所以可以存放在缓冲区中的实际数据字节数少于size。一般而言，应由系统选择缓冲区的长度，并自动分配缓冲区。在这种情况下关闭此流时，标准I/O库将自动释放缓冲区。
 
任何时候，我们都可强制冲洗一个流。
 
#include<stdio.h>



int fflush(FILE *fp);



　　　　　　　　　　　　　　　返回值：若成功，返回0；若出错，返回EOF
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此函数使该流所有未写的数据都被传送至内核。作为一种特殊情形，如若fp是NULL，则此函数将导致所有输出流被冲洗。
 
5.5　打开流
 
下列3个函数打开一个标准I/O流。
 
#include <stdio.h>



FILE *fopen(const char *restrict pathname, const char *restrict type);



FILE *freopen(const char *restrict pathname, const char *restrict type, FILE *restrict fp);



FILE *fdopen(int fd, const char *type);



　　　　　　　　　　　　　　　3个函数的返回值：若成功，返回文件指针；若出错，返回NULL


 
这3个函数的区别如下。
 
（1）fopen函数打开路径名为pathname的一个指定的文件。
 
（2）freopen函数在一个指定的流上打开一个指定的文件，如若该流已经打开，则先关闭该流。若该流已经定向，则使用freopen清除该定向。此函数一般用于将一个指定的文件打开为一个预定义的流：标准输入、标准输出或标准错误。
 
（3）fdopen函数取一个已有的文件描述符（我们可能从open、dup、dup2、fcntl、pipe、 socket、 socketpair或accept函数得到此文件描述符），并使一个标准的I/O流与该描述符相结合。此函数常用于由创建管道和网络通信通道函数返回的描述符。因为这些特殊类型的文件不能用标准I/O函数fopen打开，所以我们必须先调用设备专用函数以获得一个文件描述符，然后用fdopen使一个标准I/O流与该描述符相结合。
 
 
 fopen和freopen是ISO C的所属部分。而ISO C并不涉及文件描述符，所以仅有POSIX.1具有fdopen。
 

 
type参数指定对该I/O流的读、写方式，ISO C规定type参数可以有15种不同的值，如图5-2所示。
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[image: 5-2.jpg]
 
图5-2　打开标准I/O流的type参数
 
使用字符b作为type的一部分，这使得标准I/O系统可以区分文本文件和二进制文件。因为UNIX内核并不对这两种文件进行区分，所以在UNIX系统环境下指定字符b作为type的一部分实际上并无作用。
 
对于fdopen，type参数的意义稍有区别。因为该描述符已被打开，所以fdopen为写而打开并不截断该文件。（例如，若该描述符原来是由open函数创建的，而且该文件已经存在，则其O_TRUNC标志将决定是否截断该文件。fdopen函数不能截断它为写而打开的任一文件。）另外，标准I/O追加写方式也不能用于创建该文件（因为如果一个描述符引用一个文件，则该文件一定已经存在）。
 
当用追加写类型打开一个文件后，每次写都将数据写到文件的当前尾端处。如果有多个进程用标准I/O追加写方式打开同一文件，那么来自每个进程的数据都将正确地写到文件中。
 
 
 4.4BSD 以前的伯克利版本以及 Kernighan 和 Ritchie[1988]第 177 页上所示的简单版本的fopen函数并不能正确地处理追加写方式。这些版本在打开流时，调用lseek定位到文件尾端。在涉及多个进程时，为了正确地支持追加写方式，该文件必须用O_APPEND标志打开，我们已在3.3节中对此进行了讨论。在每次写前，做一次lseek操作同样也不能正确工作（如同在3.11节中讨论的一样）。
 

 
当以读和写类型打开一个文件时（type中+号），具有下列限制。
 
 
 	如果中间没有fflush、fseek、fsetpos或rewind，则在输出的后面不能直接跟随输入。
 
 	如果中间没有fseek、fsetpos或rewind，或者一个输入操作没有到达文件尾端，则在输入操作之后不能直接跟随输出。
 

 
对应于图5-2，图5-3中列出了打开一个流的6种不同的方式。
 
[image: 5-3.jpg]
 
图5-3　打开一个标准I/O流的6种不同方式
 
注意，在指定w或a类型创建一个新文件时，我们无法说明该文件的访问权限位（第3章中所述的open函数和creat函数则能做到这一点）。POSIX.1要求实现使用如下的权限位集来创建文件：
 
S_IRUSR | S_IWUSR | S_IRGRP | S_IWGRP | S_IROTH | S_IWOTH
 
回忆4.8节，我们可以通过调整umask值来限制这些权限。
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除非流引用终端设备，否则按系统默认，流被打开时是全缓冲的。若流引用终端设备，则该流是行缓冲的。一旦打开了流，那么在对该流执行任何操作之前，如果希望，则可使用前节所述的setbuf和setvbuf改变缓冲的类型。
 
调用fclose关闭一个打开的流。
 
#include <stdio.h>



int fclose(FILE *fp); 



　　　　　　　　　　　　　　　返回值：若成功，返回0；若出错，返回EOF


 
在该文件被关闭之前，冲洗缓冲中的输出数据。缓冲区中的任何输入数据被丢弃。如果标准I/O库已经为该流自动分配了一个缓冲区，则释放此缓冲区。
 
当一个进程正常终止时（直接调用exit函数，或从main函数返回），则所有带未写缓冲数据的标准I/O流都被冲洗，所有打开的标准I/O流都被关闭。
 
5.6　读和写流
 
一旦打开了流，则可在3种不同类型的非格式化I/O中进行选择，对其进行读、写操作。
 
（1）每次一个字符的I/O。一次读或写一个字符，如果流是带缓冲的，则标准I/O函数处理所有缓冲。
 
（2）每次一行的I/O。如果想要一次读或写一行，则使用fgets和fputs。每行都以一个换行符终止。当调用fgets时，应说明能处理的最大行长。5.7节将说明这两个函数。
 
（3）直接I/O。fread和fwrite函数支持这种类型的I/O。每次I/O操作读或写某种数量的对象，而每个对象具有指定的长度。这两个函数常用于从二进制文件中每次读或写一个结构。5.9节将说明这两个函数。
 
 
 直接I/O（direct I/O）这个术语来自ISO C标准，有时也被称为：二进制I/O、一次一个对象I/O、面向记录的I/O或面向结构的I/O。不要把这个特性和FreeBSD和Linux支持的open函数的O_DIRECT标志混淆，它们之间是没有关系的。
 

 
（5.11节说明了格式化I/O函数，如printf和scanf。）
 
1．输入函数
 
以下3个函数可用于一次读一个字符。
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#include <stdio.h>



int getc(FILE *fp);



int fgetc(FILE *fp);



int getchar(void);



　　　　　　　　　　　　　3个函数的返回值：若成功，返回下一个字符；若已到达文件尾端或出错，返回EOF


 
函数getchar等同于getc(stdin)。前两个函数的区别是，getc可被实现为宏，而fgetc不能实现为宏。这意味着以下几点。
 
（1）getc的参数不应当是具有副作用的表达式，因为它可能会被计算多次。
 
（2）因为fgetc一定是个函数，所以可以得到其地址。这就允许将fgetc的地址作为一个参数传送给另一个函数。
 
（3）调用fgetc所需时间很可能比调用getc要长，因为调用函数所需的时间通常长于调用宏。
 
这3个函数在返回下一个字符时，将其unsigned char类型转换为int类型。说明为无符号的理由是，如果最高位为1也不会使返回值为负。要求整型返回值的理由是，这样就可以返回所有可能的字符值再加上一个已出错或已到达文件尾端的指示值。在<stdio.h>中的常量EOF被要求是一个负值，其值经常是−1。这就意味着不能将这3个函数的返回值存放在一个字符变量中，以后还要将这些函数的返回值与常量EOF比较。
 
注意，不管是出错还是到达文件尾端，这3个函数都返回同样的值。为了区分这两种不同的情况，必须调用ferror或feof。
 
#include <stdio.h>　



int ferror(FILE *fp);　



int feof(FILE *fp);　



　　　　　　　　　　　　　　　两个函数返回值：若条件为真，返回非0（真）；否则，返回0（假）



void clearerr(FILE *fp);


 
在大多数实现中，为每个流在FILE对象中维护了两个标志：
 
 
 	出错标志；
 
 	文件结束标志。
 

 
调用clearerr可以清除这两个标志。
 
从流中读取数据以后，可以调用ungetc将字符再压送回流中。
 
#include <stdio.h>



int ungetc(int c, FILE *fp);



　　　　　　　　　　　　　　　返回值：若成功，返回c；若出错，返回EOF


 

  151 

 
压送回到流中的字符以后又可从流中读出，但读出字符的顺序与压送回的顺序相反。应当了解，虽然ISO C允许实现支持任何次数的回送，但是它要求实现提供一次只回送一个字符。我们不能期望一次能回送多个字符。
 
回送的字符，不一定必须是上一次读到的字符。不能回送EOF。但是当已经到达文件尾端时，仍可以回送一个字符。下次读将返回该字符，再读则返回EOF。之所以能这样做的原因是，一次成功的ungetc调用会清除该流的文件结束标志。
 
当正在读一个输入流，并进行某种形式的切词或记号切分操作时，会经常用到回送字符操作。有时需要先看一看下一个字符，以决定如何处理当前字符。然后就需要方便地将刚查看的字符回送，以便下一次调用getc时返回该字符。如果标准I/O库不提供回送能力，就需将该字符存放到一个我们自己的变量中，并设置一个标志以便判别在下一次需要一个字符时是调用getc，还是从我们自己的变量中取用这个字符。
 
 
 用ungetc压送回字符时，并没有将它们写到底层文件中或设备上，只是将它们写回标准I/O库的流缓冲区中。
 

 
2．输出函数
 
对应于上面所述的每个输入函数都有一个输出函数。
 
#include <stdio.h>



int putc(int c, FILE *fp);



int fputc(int c, FILE *fp);



int putchar(int c); 



　　　　　　　　　　　　　　　3个函数返回值：若成功，返回c；若出错，返回EOF


 
与输入函数一样，putchar(c)等同于putc(c, stdout)，putc可被实现为宏，而fputc不能实现为宏。
 
5.7　每次一行I/O
 
下面两个函数提供每次输入一行的功能。
 
#include <stdio.h>



char *fgets(char *restrict buf, int n，FILE *restrict fp);



char *gets(char *buf);



　　　　　　　　　　　　　　　两个函数返回值：若成功，返回buf；若已到达文件尾端或出错，返回NULL


 
这两个函数都指定了缓冲区的地址，读入的行将送入其中。gets从标准输入读，而fgets则从指定的流读。
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对于fgets，必须指定缓冲的长度n。此函数一直读到下一个换行符为止，但是不超过n−1个字符，读入的字符被送入缓冲区。该缓冲区以null字节结尾。如若该行包括最后一个换行符的字符数超过n−1，则fgets只返回一个不完整的行，但是，缓冲区总是以null字节结尾。对fgets的下一次调用会继续读该行。
 
gets是一个不推荐使用的函数。其问题是调用者在使用gets时不能指定缓冲区的长度。这样就可能造成缓冲区溢出（如若该行长于缓冲区长度），写到缓冲区之后的存储空间中，从而产生不可预料的后果。这种缺陷曾被利用，造成1988年的因特网蠕虫事件。有关说明请见1989年6月的Communications of the ACM（vol.32, no.6）。gets与fgets的另一个区别是，gets并不将换行符存入缓冲区中。
 
 
 这两个函数对换行符处理方式的差别与UNIX的进展有关。在V7的手册（1979）中就说明：“为了向后兼容，gets删除换行符，而fgets则保留换行符。”
 

 
虽然ISO C要求提供gets，但请使用fgets，而不要使用gets。事实上，在SUSv4中，gets被标记为弃用的接口，而且在ISO C标准的最新版本（ISO/IEC 9899:2011）中已被忽略。
 
fputs和puts提供每次输出一行的功能。
 
#include <stdio.h>



int fputs(const char *restrict str, FILE *restrict fp);



int puts(const char *str);



　　　　　　　　　　　　　　　两个函数返回值：若成功，返回非负值；若出错，返回EOF


 
函数fputs将一个以null字节终止的字符串写到指定的流，尾端的终止符null不写出。注意，这并不一定是每次输出一行，因为字符串不需要换行符作为最后一个非null字节。通常，在null字节之前是一个换行符，但并不要求总是如此。
 
puts将一个以null字节终止的字符串写到标准输出，终止符不写出。但是，puts随后又将一个换行符写到标准输出。
 
puts并不像它所对应的gets那样不安全。但是我们还是应避免使用它，以免需要记住它在最后是否添加了一个换行符。如果总是使用fgets和fputs, 那么就会熟知在每行终止处我们必须自己处理换行符。
 
5.8　标准I/O的效率
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使用前面所述的函数，我们能对标准I/O系统的效率有所了解。图5-4程序类似于图3-4程序，它使用getc和putc将标准输入复制到标准输出。这两个例程可以实现为宏。
 
#include "apue.h"



int

main(void)

{

 　　int　　　　c;



 　　while ((c = getc(stdin)) != EOF)

　　　　　if (putc(c, stdout) == EOF)

　　　　　　　err_sys("output error");



 　　if (ferror(stdin))

　　　　　err_sys("input error");



 　　exit(0);

}
 
图5-4　用getc和putc将标准输入复制到标准输出
 
可以用fgetc和fputc改写该程序，这两个一定是函数，而不是宏（我们没有给出对源代码更改的细节）。
 
最后，我们还编写了一个读、写行的版本，见图5-5。
 
#include "apue.h"



int

main(void)

{

 　　char　　　　buf[MAXLINE];



 　　while (fgets(buf, MAXLINE, stdin) != NULL)

　　　　　if (fputs(buf, stdout) == EOF)

　　　　　　　 err_sys("output error");



 　　if (ferror(stdin))

　　　　　err_sys("input error");



 　　exit(0);

}
 
图5-5　用fgets和fputs将标准输入复制到标准输出
 
注意，在图5-4程序和图5-5程序中，没有显式地关闭标准I/O流。我们知道exit函数将会冲洗任何未写的数据，然后关闭所有打开的流（我们将在8.5节讨论这一点）。将这3个程序的时间与图3-6中的时间进行比较是很有趣的。图5-6中显示了对同一文件（98.5 MB，300万行）进行操作所得的数据。
 
[image: 5-6.jpg]
 
图5-6　使用标准I/O例程得到的时间结果
 
对于这3个标准I/O版本的每一个，其用户CPU时间都大于图3-6中的最佳read版本，因为在每次读一个字符的标准I/O版本中有一个要执行1亿次的循环，而在每次读一行的版本中有一个要执行3 144 984次的循环。在read版本中，其循环只需执行25 224次（对于缓冲区长度为4 096字节）。因为系统CPU时间几乎相同，所以用户CPU时间的差别以及等待I/O结束所消耗时间的差别造成了时钟时间的差别。
 
系统CPU时间几乎相同，原因是因为所有这些程序对内核提出的读、写请求数基本相同。注意，使用标准I/O例程的一个优点是无需考虑缓冲及最佳I/O长度的选择。在使用fgets时需要考虑最大行长，但是与选择最佳I/O长度比较，这要方便得多。
 
图5-6的最后一列是每个main函数的文本空间字节数（由C编译器产生的机器指令）。从中可见，使用getc和putc的版本与使用fgetc和fputc的版本在文本空间长度方面大体相同。通常，getc和putc实现为宏，但在GNU C库实现中，宏简单地扩充为函数调用。
 
使用每次一行I/O版本的速度大约是每次一个字符版本速度的两倍。如果fgets和fputs函数是用getc和putc实现的（参见Kernighan和Ritchie[1988]的7.7节），那么，可以预期fgets版本的时间会与getc版本接近。实际上，每次一行的版本会更慢一些，因为除了现已存在的6百万次函数调用外还需另外增加2亿次函数调用。而在本测试中所用的每次一行函数是用memccpy(3)实现的。通常，为了提高效率，memccpy函数用汇编语言而非C语言编写。正因为如此，每次一行版本才会有较高的速度。
 
这些时间数字的最后一个有趣之处在于：fgetc版本较图3-6中BUFFSIZE＝1的版本要快得多。两者都使用了约2亿次的函数调用，在用户CPU时间方面，fgetc版本的速度大约是后者的16倍，而在时钟时间方面几乎是39倍。造成这种差别的原因是：使用read的版本执行了2亿次函数调用，这也就引起2亿次系统调用。而对于fgetc版本，它也执行2亿次函数调用，但是这只引起25 224次系统调用。系统调用与普通的函数调用相比需要花费更多的时间。
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需要声明的是，这些时间结果只在某些系统上才有效。这种时间结果依赖于很多实现的特征，而这种特征对于不同的UNIX系统可能是不同的。尽管如此，有这样一组数据，并对各种版本的差别做出解释，这有助于我们更好地了解系统。在本节及3.9节中我们了解到的基本事实是，标准I/O库与直接调用read和write函数相比并不慢很多。对于大多数比较复杂的应用程序，最主要的用户CPU时间是由应用本身的各种处理消耗的，而不是由标准I/O例程消耗的。
 
5.9　二进制I/O
 
5.6节和5.7节中的函数以一次一个字符或一次一行的方式进行操作。如果进行二进制I/O操作，那么我们更愿意一次读或写一个完整的结构。如果使用getc或putc读、写一个结构，那么必须循环通过整个结构，每次循环处理一个字节，一次读或写一个字节，这会非常麻烦而且费时。如果使用fputs和fgets，那么因为fputs在遇到null字节时就停止，而在结构中可能含有null字节，所以不能使用它实现读结构的要求。相类似，如果输入数据中包含有null字节或换行符，则fgets也不能正确工作。因此，提供了下列两个函数以执行二进制I/O操作。
 
#include <stdio.h>



size_t fread(void *restrict ptr, size_t size, size_t nobj, FILE *restrict fp);



size_t fwrite(const void *restrict ptr, size_t size, size_t nobj, FILE *restrict fp);



　　　　　　　　　　　　　　　两个函数的返回值：读或写的对象数


 
这些函数有以下两种常见的用法。
 
（1）读或写一个二进制数组。例如，为了将一个浮点数组的第2～5个元素写至一文件上，可以编写如下程序：
 
float　 data[10];



if (fwrite(&data[2], sizeof(float), 4, fp) != 4)

　　 err_sys("fwrite error");
 
其中，指定size为每个数组元素的长度，nobj为欲写的元素个数。
 
（2）读或写一个结构。例如，可以编写如下程序：
 
struct {

　short　　　 count;

　long　　　　total;

　char　　　　name[NAMESIZE];

} item;



if (fwrite(&item, sizeof(item), 1, fp) != 1)

　　 err_sys("fwrite error");
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其中，指定size为结构的长度，nobj为1（要写的对象个数）。
 
将这两个例子结合起来就可读或写一个结构数组。为了做到这一点，size应当是该结构的sizeof，nobj应是该数组中的元素个数。
 
fread和fwrite返回读或写的对象数。对于读，如果出错或到达文件尾端，则此数字可以少于nobj。在这种情况，应调用ferror或feof以判断究竟是那一种情况。对于写，如果返回值少于所要求的nobj，则出错。
 
使用二进制I/O的基本问题是，它只能用于读在同一系统上已写的数据。多年之前，这并无问题（那时，所有UNIX系统都运行于PDP-11上），而现在，很多异构系统通过网络相互连接起来，而且，这种情况已经非常普遍。常常有这种情形，在一个系统上写的数据，要在另一个系统上进行处理。在这种环境下，这两个函数可能就不能正常工作，其原因是：
 
（1）在一个结构中，同一成员的偏移量可能随编译程序和系统的不同而不同（由于不同的对齐要求）。确实，某些编译程序有一个选项，选择它的不同值，或者使结构中的各成员紧密包装（这可以节省存储空间，而运行性能则可能有所下降）；或者准确对齐（以便在运行时易于存取结构中的各成员）。这意味着即使在同一个系统上，一个结构的二进制存放方式也可能因编译程序选项的不同而不同。
 
（2）用来存储多字节整数和浮点值的二进制格式在不同的系统结构间也可能不同。
 
在第16章讨论套接字时，我们将涉及某些相关问题。在不同系统之间交换二进制数据的实际解决方法是使用互认的规范格式。关于网络协议使用的交换二进制数据的某些技术，请参阅Rogo[1993]的8.2节或者Stevens、Fenner和Rudoff[2004]的5.18节。
 
在8.14节中，我们将再回到fread函数，那时将用它读一个二进制结构——UNIX的进程会计记录。
 
5.10　定位流
 
有3种方法定位标准I/O流。
 
（1）ftell和fseek函数。这两个函数自V7以来就存在了，但是它们都假定文件的位置可以存放在一个长整型中。
 
（2）ftello和fseeko函数。Single UNIX Specification引入了这两个函数，使文件偏移量可以不必一定使用长整型。它们使用off_t数据类型代替了长整型。
 
（3）fgetpos和fsetpos函数。这两个函数是由ISO C引入的。它们使用一个抽象数据类型fpos_t记录文件的位置。这种数据类型可以根据需要定义为一个足够大的数，用以记录文件位置。
 

  157 

 
需要移植到非UNIX系统上运行的应用程序应当使用fgetpos和fsetpos。
 
#include <stdio.h>



long ftell(FILE *fp);



　　　　　　　　　　　　　　　返回值：若成功，返回当前文件位置指示；若出错，返回-1L



int fseek(FILE *fp, long offset, int whence);



　　　　　　　　　　　　　　　返回值：若成功，返回0；若出错，返回−1



void rewind(FILE *fp);


 
对于一个二进制文件，其文件位置指示器是从文件起始位置开始度量，并以字节为度量单位的。ftell用于二进制文件时，其返回值就是这种字节位置。为了用fseek定位一个二进制文件，必须指定一个字节offset，以及解释这种偏移量的方式。whence的值与3.6节中lseek函数的相同：SEEK_SET表示从文件的起始位置开始，SEEK_CUR表示从当前文件位置开始，SEEK_END表示从文件的尾端开始。ISO C并不要求一个实现对二进制文件支持SEEK_END规格说明，其原因是某些系统要求二进制文件的长度是某个幻数的整数倍，结尾非实际内容部分则填充为0。但是在UNIX中，对于二进制文件，则是支持SEEK_END的。
 
对于文本文件，它们的文件当前位置可能不以简单的字节偏移量来度量。这主要也是在非UNIX系统中，它们可能以不同的格式存放文本文件。为了定位一个文本文件，whence一定要是SEEK_SET，而且offset只能有两种值：0（后退到文件的起始位置），或是对该文件的ftell所返回的值。使用rewind函数也可将一个流设置到文件的起始位置。
 
除了偏移量的类型是off_t而非long以外，ftello函数与ftell相同，fseeko函数与fseek相同。
 
#include <stdio.h>



off_t ftello(FILE *fp);



　　　　　　　　　　　　　　　返回值：若成功，返回当前文件位置；若出错，返回(off_t)-1



int fseeko(FILE *fp, off_t offset, int whence);



　　　　　　　　　　　　　　　返回值：若成功，返回0；若出错，返回−1


 
回忆3.6节中对off_t数据类型的讨论。实现可将off_t类型定义为长于32位。
 
正如我们已提及的，fgetpos和fsetpos两个函数是ISO C标准引入的。
 

  158 

 
#include <stdio.h>



int fgetpos(FILE *restrict fp, fpos_t *restrict pos);



int fsetpos(FILE *fp, const fpos_t *pos);



　　　　　　　　　　　　　　　两个函数返回值：若成功，返回0；若出错，返回非0


 
fgetpos将文件位置指示器的当前值存入由pos指向的对象中。在以后调用fsetpos时，可以使用此值将流重新定位至该位置。
 
5.11　格式化I/O
 
1．格式化输出
 
格式化输出是由5个printf函数来处理的。
 
#include <stdio.h>



int printf(const char *restrict format, ...);



int fprintf(FILE *restrict fp, const char *restrict format, ...);



int dprintf(int fd, const char *restrict format, ...);



　　　　　　　　　　　　　　3个函数返回值：若成功，返回输出字符数；若输出出错，返回负值



int sprintf(char *restrict buf, const char *restrict format, ...);



　　　　　　　　　　　　　　返回值：若成功，返回存入数组的字符数；若编码出错，返回负值



int snprintf(char *restrict buf, size_t n, const char *restrict format, ...);



　　　　　　　　　　　　　　返回值：若缓冲区足够大，返回将要存入数组的字符数；若编码出错，返回负值


 
printf将格式化数据写到标准输出，fprintf写至指定的流，dprintf写至指定的文件描述符，sprintf将格式化的字符送入数组buf中。sprintf在该数组的尾端自动加一个null字节，但该字符不包括在返回值中。
 
注意，sprintf函数可能会造成由buf指向的缓冲区的溢出。调用者有责任确保该缓冲区足够大。因为缓冲区溢出会造成程序不稳定甚至安全隐患，为了解决这种缓冲区溢出问题，引入了snprintf函数。在该函数中，缓冲区长度是一个显式参数，超过缓冲区尾端写的所有字符都被丢弃。如果缓冲区足够大，snprintf函数就会返回写入缓冲区的字符数。与sprintf相同，该返回值不包括结尾的null字节。若snprintf函数返回小于缓冲区长度n的正值，那么没有截断输出。若发生了一个编码的错误，snprintf返回负值。
 
虽然dprintf不处理文件指针，但我们仍然把它包括在处理格式化输出的函数中。注意，使用dprintf不需要调用fdopen将文件描述符转换为文件指针（fprintf需要）。
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格式说明控制其余参数如何编写，以后又如何显示。每个参数按照转换说明编写，转换说明以百分号%开始，除转换说明外，格式字符串中的其他字符将按原样，不经任何修改被复制输出。一个转换说明有4个可选择的部分，下面将它们都示于方括号中：
 
%[flags][fldwidth][precision][lenmodifier]convtype
 
图5-7总结了各种标志。
 
[image: 5-7.jpg]
 
图5-7　转换说明中的标志部分
 
fldwidth说明最小字段宽度。转换后参数字符数若小于宽度，则多余字符位置用空格填充。字段宽度是一个非负十进制数，或是一个星号（*）。
 
precision说明整型转换后最少输出数字位数、浮点数转换后小数点后的最少位数、字符串转换后最大字节数。精度是一个点（.），其后跟随一个可选的非负十进制数或一个星号（*）。
 
宽度和精度字段两者皆可为*。此时，一个整型参数指定宽度或精度的值。该整型参数正好位于被转换的参数之前。
 
lenmodifier说明参数长度。其可能的值示于图5-8中。
 
[image: 5-8.jpg]
 
图5-8　转换说明中的长度修饰符
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convtype不是可选的。它控制如何解释参数。图5-9中列出了各种转换类型字符。
 
根据常规的转换说明，转换是按照它们出现在format参数之后的顺序应用于参数的。一种替代的转换说明语法也允许显式地用%n$序列来表示第n个参数的形式来命名参数。注意，这两种语法不能在同一格式说明中混用。在替代的语法中，参数从1开始计数。如果参数既没有提供字段宽度和也没有提供精度，通配符星号的语法就更改为*m$，m指明提供值的参数的位置。
 
[image: 5-9.jpg]
 
图5-9　转换说明中的转换类型
 
下列5种printf族的变体类似于上面的5种，但是可变参数表（...）替换成了arg。
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#include <stdarg.h>



#include <stdio.h>



int vprintf(const char *restrict format, va_list arg);



int vfprintf(FILE *restrict fp, const char *restrict format, va_list arg);



int vdprintf(int fd, const char *restrict format, va_list arg);



　　　　　　　　　所有3个函数返回值：若成功，返回输出字符数；若输出出错，返回负值



int vsprintf(char *restrict buf, const char *restrict format, va_list arg);



　　　　　　　　　函数返回值：若成功，返回存入数组的字符数；若编码出错，返回负值



int vsnprintf(char *restrict buf, size_t n, const char *restrict format, va_list arg);



　　　　　　　　　函数返回值：若缓冲区足够大，返回存入数组的字符数；若编码出错，返回负值


 
在附录B的出错处理例程中，将使用vsnprintf函数。
 
关于ISO C标准中有关可变长度参数表的详细说明请参阅Kernighan和Ritchie[1988]的7.3节。应当了解的是，由ISO C提供的可变长度参数表例程（<stdarg.h>头文件和相关的例程）与由较早版本UNIX提供的<varargs.h>例程是不同的。
 
2．格式化输入
 
执行格式化输入处理的是3个scanf函数。
 
#include <stdio.h>



int scanf(const char *restrict format, ...);



int fscanf(FILE *restrict fp, const char *restrict format, ...);



int sscanf(const char *restrict buf, const char *restrict format, ...);



　　　3个函数返回值：赋值的输入项数；若输入出错或在任一转换前已到达文件尾端，返回EOF


 
scanf族用于分析输入字符串，并将字符序列转换成指定类型的变量。在格式之后的各参数包含了变量的地址，用转换结果对这些变量赋值。
 
格式说明控制如何转换参数，以便对它们赋值。转换说明以%字符开始。除转换说明和空白字符外，格式字符串中的其他字符必须与输入匹配。若有一个字符不匹配，则停止后续处理，不再读输入的其余部分。
 
一个转换说明有3个可选择的部分，下面将它们都示于方括号中：
 
%[*][fldwidth][m][lenmodifier]convtype
 
可选择的星号（*）用于抑制转换。按照转换说明的其余部分对输入进行转换，但转换结果并不存放在参数中。
 
fldwidth说明最大宽度（即最大字符数）。lenmodifier说明要用转换结果赋值的参数大小。由printf函数族支持的长度修饰符同样得到scanf族函数的支持（见图5-8中的长度修饰符表）。
 
convtype字段类似于printf族的转换类型字段，但两者之间还有些差别。一个差别是，作为一种选项，输入中带符号的可赋予无符号类型。例如，输入流中的-1可被转换成4 294 967 295赋予无符号整型变量。图5-10总结了scanf族函数支持的转换类型。
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在字段宽度和长度修饰符之间的可选项m是赋值分配符。它可以用于%c、%s以及%[转换符，迫使内存缓冲区分配空间以接纳转换字符串。在这种情况下，相关的参数必须是指针地址，分配的缓冲区地址必须复制给该指针。如果调用成功，该缓冲区不再使用时，由调用者负责通过调用free函数来释放该缓冲区。
 
scanf函数族同样支持另外一种转换说明，允许显式地命名参数：序列%n$代表了第n个参数。与printf函数族相同，同一编号的参数在格式串中可引用多次。但Single UNIX Specification指出，这种情况在scanf函数族中如何作用还未定义。
 
[image: 5-10.jpg]
 
图5-10　转换说明中的转换类型
 
与printf族相同，scanf族也使用由<stdarg.h>说明的可变长度参数表。
 
#include <stdarg.h>



#include <stdio.h>



int vscanf(const char *restrict format, va_list arg);



int vfscanf(FILE *restrict fp, const char *restrict format, va_list arg);



int vsscanf(const char *restrict buf, const char *restrict format, va_list arg);



　　　　　　3个函数返回值：指定的输入项目数；若输入出错或在任一转换前文件结束，返回EOF


 

  163 

 
关于scanf函数族的详细情况，请参阅UNIX系统手册。
 
5.12　实现细节
 
正如前述，在UNIX中，标准I/O库最终都要调用第3章中说明的I/O例程。每个标准I/O流都有一个与其相关联的文件描述符，可以对一个流调用fileno函数以获得其描述符。
 
 
 注意，fileno不是ISO C标准部分，而是POSIX.1支持的扩展。
 

 
#include <stdio.h>



int fileno(FILE *fp);



　　　　　　　　　　　　　　　返回值：与该流相关联的文件描述符


 
如果要调用dup或fcntl等函数，则需要此函数。
 
为了了解你所使用的系统中标准I/O库的实现，最好从头文件<stdio.h>开始。从中可以看到FILE对象是如何定义的、每个流标志的定义以及定义为宏的各个标准I/O例程（如getc）。Kernighan和Ritchie[1988]中的8.5节含有一个示例实现，从中可以看到很多UNIX实现的基本样式。Plauger[1992]的第12章提供了标准I/O库一种实现的全部源代码。GNU标准I/O库的实现也是公开可用的。
 
实例
 
图5-11程序为3个标准流以及一个与普通文件相关联的流打印有关缓冲的状态信息。
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#include "apue.h"



void　　 pr_stdio(const char *, FILE *);

int　　　is_unbuffered(FILE *);

int　　　is_linebuffered(FILE *);

int　　　buffer_size(FILE *);



int

main(void)

{

 　　FILE　*fp;



 　　fputs("enter any character\n", stdout);

 　　if (getchar() == EOF)

　　　　　err_sys("getchar error");

 　　fputs("one line to standard error\n", stderr);



 　　pr_stdio("stdin",　stdin);

 　　pr_stdio("stdout", stdout);

 　　pr_stdio("stderr", stderr);



 　　if ((fp = fopen("/etc/passwd", "r")) == NULL)

 　　　　 err_sys("fopen error");

 　　if (getc(fp) == EOF)

 　　　　 err_sys("getc error");

 　　pr_stdio("/etc/passwd", fp);

 　　exit(0);

}



void

pr_stdio(const char *name, FILE *fp)

{

 　　printf("stream = %s, ", name);

 　　if (is_unbuffered(fp))

　　　　　printf("unbuffered");

 　　else if (is_linebuffered(fp))

　　　　　printf("line buffered");

 　　else /* if neither of above */

　　　　　printf("fully buffered");

 　　printf(", buffer size = %d\n", buffer_size(fp));

}



/*

 * The following is nonportable.

 */



#if defined(_IO_UNBUFFERED)



int

is_unbuffered(FILE *fp)

{

 　　return(fp->_flags & _IO_UNBUFFERED);

}



int

is_linebuffered(FILE *fp)

{

 　　return(fp->_flags & _IO_LINE_BUF);

}



int

buffer_size(FILE *fp)

{

 　　return(fp->_IO_buf_end - fp->_IO_buf_base);

}



#elif defined(__SNBF)



int

is_unbuffered(FILE *fp)

{

 　　return(fp->_flags & __SNBF);

}



int

is_linebuffered(FILE *fp)

{

 　　return(fp->_flags & __SLBF);

}



int

buffer_size(FILE *fp)

{

 　　return(fp->_bf._size);

}



#elif defined(_IONBF)



#ifdef _LP64

#define _flag __pad[4]

#define _ptr __pad[1]

#define _base __pad[2]

#endif



int

is_unbuffered(FILE *fp)

{

 　　return(fp->_flag & _IONBF);

}



int

is_linebuffered(FILE *fp)

{

 　　return(fp->_flag & _IOLBF);

}



int

buffer_size(FILE *fp)

{

#ifdef _LP64

 　　return(fp->_base - fp->_ptr);

#else

 　　return(BUFSIZ);　　　/* just a guess */

#endif

}



#else



#error unknown stdio implementation!



#endif
 
图5-11　对各个标准I/O流打印缓冲状态信息
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注意，在打印缓冲状态信息之前，先对每个流执行I/O操作，第一个I/O操作通常就造成为该流分配缓冲区。本例中的结构成员和常量是由本书中使用的4种平台实现的标准I/O库定义的。应当了解，标准I/O库实现在不同的系统中可能有所不同，像本例中的程序是不可移植的，因为它们嵌入了与特定实现相关的内容。
 
如果运行图5-11的程序两次，一次使3个标准流与终端相连接，另一次使它们重定向到普通文件，则所得结果是：
 
$ ./a.out　　　　　　　　　　　　　　stdin、stdout和stderr都连至终端

enter any character

　　　　　　　　　　　　　　　　　　  键入换行符

one line to standard error

stream = stdin, line buffered, buffer size = 1024

stream = stdout, line buffered, buffer size = 1024

stream = stderr, unbuffered, buffer size = 1

stream = /etc/passwd, fully buffered, buffer size = 4096

$ ./a.out < /etc/group > std.out 2> std.err

　　　　　　　　　　　　　　　　　　  3个流都重定向，再次运行该程序

$ cat std.err

one line to standard error

$ cat std.out

enter any character

stream = stdin, fully buffered, buffer size = 4096

stream = stdout, fully buffered, buffer size = 4096

stream = stderr, unbuffered, buffer size = 1

stream = /etc/passwd, fully buffered, buffer size = 4096


 
从中可见，该系统的默认是：当标准输入、输出连至终端时，它们是行缓冲的。行缓冲的长度是1 024字节。注意，这并没有将输入、输出的行长限制为1 024字节，这只是缓冲区的长度。如果要将2 048字节的行写到标准输出，则要进行两次write系统调用。当将这两个流重新定向到普通文件时，它们就变成是全缓冲的，其缓冲区长度是该文件系统优先选用的I/O长度（从stat结构中得到的st_blksize值）。从中也可看到，标准错误如它所应该的那样是不带缓冲的，而普通文件按系统默认是全缓冲的。
 
5.13　临时文件
 
ISO C标准I/O库提供了两个函数以帮助创建临时文件。
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#include<stdio.h>



char *tmpnam(char *ptr);

　　　　　　　　　　　　　　　返回值：指向唯一路径名的指针

FILE *tmpfile(void);



　　　　　　　　　　　　　　　返回值：若成功，返回文件指针；若出错，返回NULL


 
tmpnam函数产生一个与现有文件名不同的一个有效路径名字符串。每次调用它时，都产生一个不同的路径名，最多调用次数是TMP_MAX。TMP_MAX定义在<stdio.h>中。
 
 
 虽然ISO C定义了TMP_MAX，但该标准只要求其值至少应为25。但是，Single UNIX Specification却要求符合XSI的系统支持其值至少为10 000。虽然此最小值允许一个实现使用4位数字（0000～9999）作为临时文件名，但是，大多数UNIX实现使用的却是大、小写字符。
 
 tmpnam函数在SUSv4中被标记为弃用，但是ISO C标准还继续支持它。
 

 
若ptr是NULL，则所产生的路径名存放在一个静态区中，指向该静态区的指针作为函数值返回。后续调用tmpnam时，会重写该静态区（这意味着，如果我们调用此函数多次，而且想保存路径名，则我们应当保存该路径名的副本，而不是指针的副本）。如若ptr不是NULL，则认为它应该是指向长度至少是L_tmpnam个字符的数组（常量L_tmpnam定义在头文件<stdio.h>中）。所产生的路径名存放在该数组中，ptr也作为函数值返回。
 
tmpfile创建一个临时二进制文件（类型wb+），在关闭该文件或程序结束时将自动删除这种文件。注意，UNIX对二进制文件不进行特殊区分。
 
实例
 
图5-12程序说明了这两个函数的应用。
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#include "apue.h"



int

main(void)

{

 　　char name[L_tmpnam], line[MAXLINE];

 　　FILE　*fp;



 　　printf("%s\n", tmpnam(NULL));　　　　/* first temp name */



 　　tmpnam(name);　　　　　　　　　　　 　　/* second temp name */

 　　printf("%s\n", name);



 　　if ((fp = tmpfile()) == NULL)　　　　/* create temp file */

　　　　　err_sys("tmpfile error");

 　　fputs("one line of output\n", fp);　/* write to temp file */

 　　rewind(fp);　　　　　　　　　　　　　　　/* then read it back */

 　　if (fgets(line, sizeof(line), fp) == NULL)

　　　　　err_sys("fgets error");

 　　fputs(line, stdout);　　　　　　　　　/* print the line we wrote */



 　　exit(0);

}
 
图5-12　tmpnam和tmpfile函数实例
 
执行图5-12的程序，可得：
 
$ ./a.out

/tmp/fileT0Hsu6

/tmp/filekmAsYQ

one line of output


 
tmpfile函数经常使用的标准UNIX技术是先调用tmpnam产生一个唯一的路径名，然后，用该路径名创建一个文件，并立即unlink它。请回忆4.15节，对一个文件解除链接并不删除其内容，关闭该文件时才删除其内容。而关闭文件可以是显式的，也可以在程序终止时自动进行。
 
Single UNIX Specification为处理临时文件定义了另外两个函数：mkdtemp和mkstemp，它们是XSI的扩展部分。
 
#include <stdlib.h>



char *mkdtemp(char *template);



　　　　　　　　　　　　　　　返回值：若成功，返回指向目录名的指针；若出错，返回NULL



int mkstemp(char *template);



　　　　　　　　　　　　　　　返回值：若成功，返回文件描述符；若出错，返回−1


 
mkdtemp函数创建了一个目录，该目录有一个唯一的名字；mkstemp函数创建了一个文件，该文件有一个唯一的名字。名字是通过template字符串进行选择的。这个字符串是后6位设置为XXXXXX的路径名。函数将这些占位符替换成不同的字符来构建一个唯一的路径名。如果成功的话，这两个函数将修改template字符串反映临时文件的名字。
 
由mkdtemp函数创建的目录使用下列访问权限位集：S_IRUSR | S_IWUSR | S_IXUSR。注意，调用进程的文件模式创建屏蔽字可以进一步限制这些权限。如果目录创建成功，mkdtemp返回新目录的名字。
 
mkstemp函数以唯一的名字创建一个普通文件并且打开该文件，该函数返回的文件描述符以读写方式打开。由mkstemp创建的文件使用访问权限位S_IRUSR | S_IWUSR。
 
与tempfile不同，mkstemp创建的临时文件并不会自动删除。如果希望从文件系统命名空间中删除该文件，必须自己对它解除链接。
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使用tmpnam和tempnam至少有一个缺点：在返回唯一的路径名和用该名字创建文件之间存在一个时间窗口，在这个时间窗口中，另一进程可以用相同的名字创建文件。因此应该使用tmpfile和mkstemp函数，因为它们不存在这个问题。
 
实例
 
图5-13程序显示了如何使用mkstemp函数。
 
#include "apue.h"

#include <errno.h>



void make_temp(char *template);



int

main()

{

 　　char　　　　good_template[] = "/tmp/dirXXXXXX";　　/* right way */

 　　char　　　　*bad_template = "/tmp/dirXXXXXX";　　　/* wrong way*/



 　　printf("trying to create first temp file...\n");

 　　make_temp(good_template);

 　　printf("trying to create second temp file...\n");

 　　make_temp(bad_template);

 　　exit(0);

}



void

make_temp(char *template)

{

 　　Int　　　　　　  fd;

 　　struct stat　　sbuf;



 　　if ((fd = mkstemp(template)) < 0)

 　　　　　err_sys("can't create temp file");

 　　printf("temp name = %s\n", template);

 　　close(fd);

 　　if (stat(template, &sbuf) < 0) {

 　　　 　if (errno == ENOENT)

 　　　　　　　printf("file doesn't exist\n");

 　　　 　else

 　　　　　　　err_sys("stat failed");

 　　} else {

 　　　　　printf("file exists\n");

 　　　　　unlink(template);

　　 }

}
 
图5-13　mkstemp函数的应用
 
运行图5.13中的程序，得到：
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$ ./a.out

trying to create first temp file...

temp name = /tmp/dirUmBT7h

file exists

trying to create second temp file...

Segmentation fault


 
两个模板字符串声明方式的不同带来了不同的运行结果。对于第一个模板，因为使用了数组，名字是在栈上分配的。但第二种情况使用的是指针，在这种情况下，只有指针自身驻留在栈上。编译器把字符串存放在可执行文件的只读段，当mkstemp函数试图修改字符串时，出现了段错误（segment fault）。
 
5.14　内存流
 
我们已经看到，标准I/O库把数据缓存在内存中，因此每次一字符和每次一行的I/O更有效。我们也可以通过调用setbuf或setvbuf函数让I/O库使用我们自己的缓冲区。在SUSv4中支持了内存流。这就是标准I/O流，虽然仍使用FILE指针进行访问，但其实并没有底层文件。所有的I/O都是通过在缓冲区与主存之间来回传送字节来完成的。我们将看到，即便这些流看起来像文件流，它们的某些特征使其更适用于字符串操作。
 
有3个函数可用于内存流的创建，第一个是fmemopen函数。
 
#include <stdio.h>



FILE *fmemopen(void *restrict buf, size_t size, const char *restrict type);



　　　　　　　　　　　　　　　返回值：若成功，返回流指针；若错误，返回NULL


 
fmemopen函数允许调用者提供缓冲区用于内存流：buf参数指向缓冲区的开始位置，size参数指定了缓冲区大小的字节数。如果buf参数为空，fmemopen函数分配size字节数的缓冲区。在这种情况下，当流关闭时缓冲区会被释放。
 
type参数控制如何使用流。type可能的取值如图5-14所示。
 
[image: 5-14.jpg]
 
图5-14　打开内存流的type参数
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注意，这些取值对应于基于文件的标准I/O流的type参数取值，但其中有些微小差别。第一，无论何时以追加写方式打开内存流时，当前文件位置设为缓冲区中的第一个null字节。如果缓冲区中不存在null字节，则当前位置就设为缓冲区结尾的后一个字节。当流并不是以追加写方式打开时，当前位置设为缓冲区的开始位置。因为追加写模式通过第一个null字节确定数据的尾端，内存流并不适合存储二进制数据（二进制数据在数据尾端之前就可能包含多个null字节）。
 
第二，如果buf参数是一个null指针，打开流进行读或者写都没有任何意义。因为在这种情况下缓冲区是通过fmemopen进行分配的，没有办法找到缓冲区的地址，只写方式打开流意味着无法读取已写入的数据，同样，以读方式打开流意味着只能读取那些我们无法写入的缓冲区中的数据。
 
第三，任何时候需要增加流缓冲区中数据量以及调用fclose、fflush、fseek、fseeko以及fsetpos时都会在当前位置写入一个null字节。
 
实例
 
有必要看一下对内存流的写入是如何在我们自己提供的缓冲区上进行操作的。图5-15给出了用已知模式填充缓冲区时流写入是如何操作的。
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#include "apue.h"



#define BSZ 48



int

main()

{

 　　FILE *fp;

 　　char buf[BSZ];



 　　memset(buf, 'a', BSZ-2);

 　　buf[BSZ-2] = '\0';

 　　buf[BSZ-1] = 'X';

 　　if ((fp = fmemopen(buf, BSZ, "w+")) == NULL)

 　　　　err_sys("fmemopen failed");

 　　printf("initial buffer contents: %s\n", buf);

 　　fprintf(fp, "hello, world");

 　　printf("before flush: %s\n", buf);

 　　fflush(fp);

 　　printf("after fflush: %s\n", buf);

 　　printf("len of string in buf = %ld\n", (long)strlen(buf));



 　　memset(buf, 'b', BSZ-2);

 　　buf[BSZ-2] = '\0';

 　　buf[BSZ-1] = 'X';

 　　fprintf(fp, "hello, world");

 　　fseek(fp, 0, SEEK_SET);

 　　printf("after　fseek: %s\n", buf);

 　　printf("len of string in buf = %ld\n", (long)strlen(buf));



 　　memset(buf, 'c', BSZ-2);

 　　buf[BSZ-2] = '\0';

 　　buf[BSZ-1] = 'X';

 　　fprintf(fp, "hello, world");

 　　fclose(fp);

 　　printf("after fclose: %s\n", buf);

 　　printf("len of string in buf = %ld\n", (long)strlen(buf));



 　　return(0);

}
 
图5-15　观察内存流的写入操作
 
我们在Linux上运行该程序，得到如下结果：
 
$ ./a.out

　　　　　　　　　　　　　　　　　 　　　　　　用a字符改写缓冲区

initial buffer contents:　　　　　　　　　 fmemopen在缓冲区开始处放置null字节

before flush:　　　　　　　　　　　　　　　　流冲洗后缓冲区才会变化

after fflush: hello, world

len of string in buf = 12　　　　　　　　　null字节加到字符串结尾

　　　　　　　　　　　　　　　　　 　　　　　　现在用b字符改写缓冲区

after fseek: bbbbbbbbbbbbhello, world　　fseek引起缓冲区冲洗

len of string in buf = 24　　　　　　　　　再次追加写null字节

　　　　　　　　　　　　　　　　　 　　　　　　现在用c字符改写缓冲区

after fclose: hello, worldcccccccccccccccccccccccccccccccccc

len of string in buf = 46　　　　　　　　　没有追加写null字节


 
这个例子给出了冲洗内存流和追加写null字节的策略。写入内存流以及推进流的内容大小（相对缓冲区大小而言，该大小是固定的）这个概念时，null字节会自动追加写。流内容大小是由写入多少来确定的。
 
 
 在本书所讨论的4个平台中，只有Linux 3.2.0支持内存流。这是具体实现还没有跟上最新的标准，相信随着时间的推移，这种情况会有所改变。
 

 
用于创建内存流的其他两个函数分别是open_memstream和open_wmemstream。
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#include <stdio.h>



FILE *open_memstream(char **bufp, size_t *sizep);



#include <wchar.h>



FILE *open_wmemstream(wchar_t **bufp, size_t *sizep);



　　　　　　　　　　　　　　　两个函数的返回值：若成功，返回流指针；若出错，返回NULL


 
open_memstream函数创建的流是面向字节的，open_wmemstream函数创建的流是面向宽字节的（回忆5.2节中对于多字节字符的说明）。这两个函数与fmemopen函数的不同在于：
 
 
 	创建的流只能写打开；
 
 	不能指定自己的缓冲区，但可以分别通过bufp和sizep参数访问缓冲区地址和大小；
 
 	关闭流后需要自行释放缓冲区；
 
 	对流添加字节会增加缓冲区大小。
 

 
但是在缓冲区地址和大小的使用上必须遵循一些原则。第一，缓冲区地址和长度只有在调用fclose或fflush后才有效；第二，这些值只有在下一次流写入或调用fclose前才有效。因为缓冲区可以增长，可能需要重新分配。如果出现这种情况，我们会发现缓冲区的内存地址值在下一次调用fclose或fflush时会改变。
 
因为避免了缓冲区溢出，内存流非常适用于创建字符串。因为内存流只访问主存，不访问磁盘上的文件，所以对于把标准I/O流作为参数用于临时文件的函数来说，会有很大的性能提升。
 
5.15　标准I/O的替代软件
 
标准I/O库并不完善。Korn和Vo[1991]列出了它的很多不足之处，其中，某些属于基本设计，但是大多数则与各种不同的实现有关。
 
标准I/O库的一个不足之处是效率不高，这与它需要复制的数据量有关。当使用每次一行函数fgets和fputs时，通常需要复制两次数据：一次是在内核和标准I/O缓冲区之间（当调用read和write时），第二次是在标准I/O缓冲区和用户程序中的行缓冲区之间。快速I/O库[AT&T 1990a中的fio(3)]避免了这一点，其方法是使读一行的函数返回指向该行的指针，而不是将该行复制到另一个缓冲区中。Hume[1988]报告：由于做了这种更改，grep(1)实用程序的速度提升了3倍。
 
Korn和Vo[1991]说明了标准I/O库的另一种替代版：sfio。这一软件包在速度上与fio相近，通常快于标准I/O库。sfio软件包也提供了一些其他标准I/O库所没有的新特征：推广了I/O流，使其不仅可以代表文件，也可代表存储区；可以编写处理模块，并以栈方式将其压入I/O流，这样就可以改变一个流的操作；较好的异常处理等。
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Krieger、Stumm和Unrau[1992]说明了另一个替代软件包，它使用了映射文件——mmap函数，我们将在14.8节中说明此函数。该新软件包称为ASI（Alloc Stream Interface）。其编程接口类似于UNIX系统存储分配函数（malloc、realloc和free，这些函数将在7.8节中说明）。与sfio软件包相同，ASI使用指针力图减少数据复制量。
 
许多标准I/O库实现在C函数库中可用，这种C函数库是为内存较小的系统，如嵌入式系统设计的。这些实现对于合理内存要求的关注超过对可移植性、速度以及功能性等方面的关注。这种类型函数库的两种实现是：uClibc C库（参阅http://www.uclibc.org）和Newlib C库（http://www.source.redhat.com/newlib）。
 
5.16　小结
 
大多数UNIX应用程序都使用标准I/O库。本章说明了该库提供的很多函数以及某些实现细节和效率方面的考虑。应该看到，标准I/O库使用了缓冲技术，而它正是产生很多问题、引起许多混淆的部分。
 
习题
 
5.1　用setvbuf实现setbuf。
 
5.2　图5-5中的程序利用每次一行I/O（fgets和fputs函数）复制文件。若将程序中的MAXLINE改为4，当复制的行超过该最大值时会出现什么情况？对此进行解释。
 
5.3　printf返回0值表示什么？
 
5.4　下面的代码在一些机器上运行正确，而在另外一些机器运行时出错，解释问题所在。
 
#include　　<stdio.h>



int

　main(void)

{

　　 char　　c;

　　 while ((c = getchar()) != EOF)

　　　　　putchar(c);

}
 
5.5　对标准I/O流如何使用fsync函数（见3.13节）？
 
5.6　在图1-7和图1-10程序中，打印的提示信息没有包含换行符，程序也没有调用fflush函数，请解释输出提示信息的原因是什么？
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5.7　基于BSD的系统提供了funopen的函数调用使我们可以拦截读、写、定位以及关闭一个流的调用。使用这个函数为FreeBSD和Mac OS X实现fmemopen。
 


第6章　系统数据文件和信息
 
6.1　引言
 
UNIX系统的正常运作需要使用大量与系统有关的数据文件，例如，口令文件/etc/passwd和组文件/etc/group就是经常被多个程序频繁使用的两个文件。用户每次登录UNIX系统，以及每次执行ls -l命令时都要使用口令文件。
 
由于历史原因，这些数据文件都是ASCII文本文件，并且使用标准I/O库读这些文件。但是，对于较大的系统，顺序扫描口令文件很花费时间，我们需要能够以非ASCII文本格式存放这些文件，但仍向使用其他文件格式的应用程序提供接口。对于这些数据文件的可移植接口是本章的主题。本章也包括了系统标识函数、时间和日期函数。
 
6.2　口令文件
 
UNIX系统口令文件（POSIX.1则将其称为用户数据库）包含了图6-1中所示的各字段，这些字段包含在<pwd.h>中定义的passwd结构中。
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 注意，POSIX.1只指定passwd结构包含的10个字段中的5个。大多数平台至少支持其中7个字段。BSD派生的平台支持全部10个字段。
 

 
[image: 6-1.jpg]
 
图6-1　/etc/passwd文件中的字段
 
由于历史原因，口令文件是/etc/passwd，而且是一个ASCII文件。每一行包含图6-1中所示的各字段，字段之间用冒号分隔。例如，在Linux中，该文件中可能有下列4行：
 
root:x:0:0:root:/root:/bin/bash

squid:x:23:23::/var/spool/squid:/dev/null

nobody:x:65534:65534:Nobody:/home:/bin/sh

sar:x:205:105:Stephen Rago:/home/sar:/bin/bash
 
关于这些登录项，请注意下列各点：
 
 
 	通常有一个用户名为root的登录项，其用户ID是0（超级用户）。
 
 	加密口令字段包含了一个占位符。较早期的UNIX系统版本中，该字段存放加密口令字。将加密口令字存放在一个人人可读的文件中是一个安全性漏洞，所以现在将加密口令字存放在另一个文件中。在下一节讨论口令字时，我们将详细涉及此问题。
 
 	口令文件项中的某些字段可能是空。如果加密口令字段为空，这通常就意味着该用户没有口令（不推荐这样做）。squid登录项有一空白字段：注释字段。空白注释字段不产生任何影响。
 
 	shell字段包含了一个可执行程序名，它被用作该用户的登录shell。若该字段为空，则取系统默认值，通常是/bin/sh。注意，squid登录项的该字段为/dev/null。显然，这是一个设备，不是可执行文件，将其用于此处的目的是，阻止任何人以用户squid的名义登录到该系统。
 

 
 
 很多服务对于帮助它们得以实施的不同守护进程使用不同的用户ID（见第13章），squid项是为实现squid代理高速缓存服务的进程设置的。
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 	为了阻止一个特定用户登录系统，除使用/dev/null外，还有若干种替代方法。常见的一种方法是，将/bin/false用作登录shell。它简单地以不成功（非0）状态终止，该shell将此种终止状态判断为假。另一种常见方法是，用/bin/true禁止一个账户。它所做的一切是以成功（0）状态终止。某些系统提供nologin命令，它打印可定制的出错信息，然后以非0状态终止。
 
 	使用nobody用户名的一个目的是，使任何人都可登录至系统，但其用户ID（65534）和组ID（65534）不提供任何特权。该用户ID和组ID只能访问人人皆可读、写的文件。（假定用户ID 65534和组ID 65534并不拥有任何文件，而实际情况就应如此。）
 
 	提供finger(1)命令的某些UNIX系统支持注释字段中的附加信息。其中，各部分之间都用逗号分隔：用户姓名、办公室地点、办公室电话号码以及家庭电话号码等。另外，如果注释字段中的用户姓名是一个&，则它被替换为登录名。例如，可以有下列记录：
 

 
sar:x:205:105:Steve Rago, SF 5-121, 555-1111, 555-2222:/home/sar:/bin/sh
 
使用finger命令就可打印Steve Rago的有关信息。
 
$ finger -p sar

Login: sar　　　　　　　　　　　 　   　　　　Name: Steve Rago

Directory: /home/sar　　　　　　　　    　　Shell: /bin/sh

Office:　SF 5-121,　555-1111　　　　　　　  Home Phone:　555-2222

On since Mon Jan 19 03:57 (EST) on ttyv0 (messages off)

No Mail.


 
 
 即使你所使用的系统并不支持finger命令，这些信息仍可存放在注释字段中，该字段只是一个注释，并不由系统实用程序解释。
 

 
某些系统提供了vipw命令，允许管理员使用该命令编辑口令文件。vipw命令串行化地更改口令文件，并且确保它所做的更改与其他相关文件保持一致。系统也常常经由图形用户界面（GUI）提供类似的功能。
 
POSIX.1定义了两个获取口令文件项的函数。在给出用户登录名或数值用户ID后，这两个函数就能查看相关项。
 
#include<pwd.h> 



struct passwd *getpwuid(uid_t uid); 



struct passwd *getpwnam(const char *name);



　　　　　　　　　　　　　　　两个函数返回值：若成功，返回指针；若出错，返回NULL
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getpwuid函数由ls(1)程序使用，它将i节点中的数字用户ID映射为用户登录名。在键入登录名时，getpwnam函数由login(1)程序使用。
 
这两个函数都返回一个指向passwd结构的指针，该结构已由这两个函数在执行时填入信息。passwd结构通常是函数内部的静态变量，只要调用任一相关函数，其内容就会被重写。
 
如果要查看的只是登录名或用户ID，那么这两个POSIX.1函数能满足要求，但是也有些程序要查看整个口令文件。下列3个函数则可用于此种目的。
 
#include <pwd.h> 



struct passwd *getpwent(void);



　　　　　　　　　　　　　　　返回值：若成功，返回指针；若出错或到达文件尾端，返回NULL

void setpwent(void);



void endpwent(void);
 
 
 基本POSIX.1标准没有定义这3个函数。在Single UNIX Specification中，它们被定义为XSI扩展。因此，可预期所有UNIX实现都将提供这些函数。
 

 
调用getpwent时，它返回口令文件中的下一个记录项。如同上面所述的两个POSIX.1函数一样，它返回一个由它填写好的passwd结构的指针。每次调用此函数时都重写该结构。在第一次调用该函数时，它打开它所使用的各个文件。在使用本函数时，对口令文件中各个记录项的安排顺序并无要求。某些系统采用散列算法对/etc/passwd文件中各项排序。
 
函数setpwent反绕它所使用的文件，endpwent则关闭这些文件。在使用getpwent查看完口令文件后，一定要调用endpwent关闭这些文件。getpwent知道什么时间应当打开它所使用的文件（第一次被调用时），但是它并不知道何时关闭这些文件。
 
实例
 
图6-2程序给出了getpwnam函数的一个实现。
 
#include <pwd.h>

#include <stddef.h>

#include <string.h>



struct passwd *

getpwnam(const char *name)

{

　　struct passwd　*ptr;



　　setpwent();

　　while ((ptr = getpwent()) != NULL)

　　　 if (strcmp(name, ptr->pw_name) == 0)

　　　　　break;　　　　　　/* found a match */

　　endpwent();

　　return(ptr);　　　　　　　/* ptr is NULL if no match found */

}
 
图6-2　getpwnam函数
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在函数开始处调用setpwent是自我保护性的措施，以便确保如果调用者在此之前已经调用getpwent打开了有关文件情况下，反绕有关文件使它们定位到文件开始处。getpwnam和getpwuid完成后不应使有关文件仍处于打开状态，所以应调用endpwent关闭它们。
 
6.3　阴影口令
 
加密口令是经单向加密算法处理过的用户口令副本。因为此算法是单向的，所以不能从加密口令猜测到原来的口令。
 
历史上使用的算法总是在64字符集[a-zA-Z0-9./]中产生13个可打印字符（见Morris和Thompson [1979]）。某些较新的系统使用其他方法，如MD5或SHA-1算法，对口令加密，产生更长的加密口令字符串。（加密口令的字符越多，这些字符的组合也就越多，于是用各种可能组合来猜测口令的难度就越大。）当我们将单个字符放在加密口令字段中时，可以确保任一加密口令都不会与其相匹配。
 
对于一个加密口令，找不到一种算法可以将其反变换到明文口令（明文口令是在Password:提示后键入的口令）。但是可以对口令进行猜测，将猜测的口令经单向算法变换成加密形式，然后将其与用户的加密口令相比较。如果用户口令是随机选择的，那么这种方法并不是很有用。但是用户往往以非随机方式选择口令（如配偶的姓名、街名、宠物名等）。一个经常重复的实验是先得到一份口令文件，然后用试探方法猜测口令。（Garfinkel等[2003]的第4章对UNIX口令及口令加密处理方案的历史情况及细节进行了说明。）
 
为使企图这样做的人难以获得原始资料（加密口令），现在，某些系统将加密口令存放在另一个通常称为阴影口令（shadow password）的文件中。该文件至少要包含用户名和加密口令。与该口令相关的其他信息也可存放在该文件中（图6-3）。
 
[image: 6-3.jpg]
 
图6-3　/etc/shadow文件中的字段
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只有用户登录名和加密口令这两个字段是必须的。其他的字段控制口令更改的频率，或者说口令的衰老以及账户仍然处于活动状态的时间。
 
阴影口令文件不应是一般用户可以读取的。仅有少数几个程序需要访问加密口令，如login(1)和passwd(1)，这些程序常常是设置用户ID为root的程序。有了阴影口令后，普通口令文件/etc/passwd可由各用户自由读取。
 
在Linux 3.2.0和Solaris 10中，与访问口令文件的一组函数相类似，有另一组函数可用于访问阴影口令文件。
 
#include <shadow.h>



struct spwd *getspnam(const char *name);



struct spwd *getspent(void);

　　　　　　　　　　　　　　　两个函数返回值：若成功，返回指针；若出错，返回NULL

void setspent(void);



void endspent(void);


 
在FreeBSD 8.0和Mac OS X 10.6.8中，没有阴影口令结构。附加的账户信息存放在口令文件中（见图6-1）。
 
6.4　组文件
 
UNIX组文件（POSIX.1称其为组数据库）包含了图6-4中所示字段。这些字段包含在＜grp.h＞中所定义的group结构中。
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图6-4　/etc/group文件中的字段
 
字段gr_mem是一个指针数组，其中每个指针指向一个属于该组的用户名。该数组以null指针结尾。
 
可以用下列两个由POSIX.1定义的函数来查看组名或数值组ID。
 

  182 

 
#include <grp.h>



struct group *getgrgid(gid_t gid);



struct group *getgrnam(const char *name);

　　　　　　　　　　　　　　　两个函数返回值：若成功，返回指针；若出错，返回NULL


 
如同对口令文件进行操作的函数一样，这两个函数通常也返回指向一个静态变量的指针，在每次调用时都重写该静态变量。
 
如果需要搜索整个组文件，则须使用另外几个函数。下列3个函数类似于针对口令文件的3个函数。
 
#include <grp.h>



struct group *getgrent(void);



　　　　　　　　　　　　　　　返回值：若成功，返回指针；若出错或到达文件尾端，返回NULL

void setgrent(void);



void endgrent(void);
 
 
 这3个函数不是基本POSIX.1标准的组成部分。Single UNIX Specification的XSI扩展定义了这些函数。所有UNIX系统都提供这3个函数。
 

 
setgrent函数打开组文件（如若它尚末被打开）并反绕它。getgrent函数从组文件中读下一个记录，如若该文件尚未打开，则先打开它。endgrent函数关闭组文件。
 
6.5　附属组ID
 
在UNIX系统中，对组的使用已经做了些更改。在V7中，每个用户任何时候都只属于一个组。当用户登录时，系统就按口令文件记录项中的数值组ID，赋给他实际组ID。可以在任何时候执行newgrp(1)以更改组ID。如果newgrp命令执行成功（关于权限规则，请参阅手册），则实际组ID就更改为新的组ID，它将被用于后续的文件访问权限检查。执行不带任何参数的newgrp，则可返回到原来的组。
 
这种组成员形式一直维持到1983年左右。此时，4.2BSD引入了附属组ID（supplementary group ID）的概念。我们不仅可以属于口令文件记录项中组ID所对应的组，也可属于多至16个另外的组。文件访问权限检查相应被修改为：不仅将进程的有效组ID与文件的组ID相比较，而且也将所有附属组ID与文件的组ID进行比较。
 
 
 附属组ID是POSIX.1要求的特性。（在较早的POSIX.1版本中，该特性是可选的。）常量NGROUPS_MAX（见图2-11）规定了附属组ID的数量，其常用值是16（见图2-15）。
 

 
使用附属组ID的优点是不必再显式地经常更改组。一个用户会参与多个项目，因此也就要同时属于多个组，此类情况是常有的。
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为了获取和设置附属组ID，提供了下列3个函数。
 
#include <unistd.h>



int getgroups(int gidsetsize, gid_t grouplist[]);

　　　　　　　　　　　　　　　返回值：若成功，返回附属组ID数量；若出错，返回-1

#include <grp.h> /* on Linux */



#include <unistd.h> /* on FreeBSD, Mac OS X, and Solaris */



int setgroups(int ngroups, const gid_t grouplist[]);



#include <grp.h> /* on Linux and Solaris */



#include <unistd.h> /* on FreeBSD and Mac OS X */



int initgroups(const char *username, gid_t basegid);

　　　　　　　　　　　　　　　两个函数的返回值：若成功，返回0；若出错，返回-1


 
 
 在这3个函数中，POSIX.1只说明了getgroups。因为setgroups和initgroups是特权操作，所以它们并非POSIX.1的组成部分。但是，本书说明的所有4种平台都支持这3个函数。在Mac OS X 10.6.8中，basegid 被声明为int类型。
 

 
getgroups将进程所属用户的各附属组ID填写到数组grouplist中，填写入该数组的附属组ID数最多为gidsetsize个。实际填写到数组中的附属组ID数由函数返回。
 
作为一种特殊情况，如若gidsetsize为0，则函数只返回附属组ID数，而对数组grouplist则不做修改。（这使调用者可以确定grouplist数组的长度，以便进行分配。）
 
setgroups可由超级用户调用以便为调用进程设置附属组ID表。grouplist是组ID数组，而ngroups说明了数组中的元素数。ngroups的值不能大于NGROUPS_MAX。
 
通常，只有initgroups函数调用setgroups，initgroups读整个组文件（用前面说明的函数getgrent、setgrent和endgrent），然后对username确定其组的成员关系。然后，它调用setgroups，以便为该用户初始化附属组ID表。因为initgroups要调用setgroups，所以只有超级用户才能调用initgroups。除了在组文件中找到username是成员的所有组，initgroups也在附属组ID表中包括了basegid。basegid是username在口令文件中的组ID。
 
只有少数几个程序调用initgroups，例如login(1)程序在用户登录时调用该函数。
 
6.6　实现区别
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我们已讨论了Linux和Solaris支持的阴影口令文件。FreeBSD和Mac OS X则以不同方式存储加密口令字。图6-5总结了本书涉及的4种平台如何存储用户和组信息。
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图6-5　账户实现的区别
 
在FreeBSD中，阴影口令文件是/etc/master.passwd。可以使用特殊命令编辑该文件，它会从阴影口令文件产生/etc/passwd的一个副本。另外，也产生该文件的散列副本。/etc/pwd.db是/etc/passwd的散列副本，/etc/spwd.db是/etc/master.passwd的散列版本。这些为大型安装的系统提供了更好的性能。
 
但是，Mac OS X只在单用户模式下使用/etc/passwd和/etc/master.passwd（在维护系统时，单用户模式通常意味着不能提供任何系统服务）。在正常运行期间的多用户模式，目录服务守护进程提供对用户和组账户信息的访问。
 
虽然Linux和Solaris支持类似的阴影口令接口，但两者之间存在某些细微的差别。例如，图6-3中所示的整数字段在Solaris中定义为int类型，而在Linux中则定义为long int。另一个差别是账户-不活动字段：Solaris将其定义为自用户上次登录后到下次账户自动失效之间的天数，而Linux则将其定义为达到最大口令年龄尚余天数。
 
在很多系统中，用户和组数据库是用网络信息服务（Network Information Service，NIS）实现的。这使管理人员可编辑数据库的主副本，然后将它自动分发到组织中的所有服务器上。客户端系统联系服务器以查看用户和组的有关信息。NIS+和轻量级目录访问协议（Lightweight Directory Access Protocol，LDAP）提供了类似功能。很多系统通过配置文件/etc/nsswitch.conf控制用于管理每一类信息的方法。
 
6.7　其他数据文件
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至此仅讨论了两个系统数据文件——口令文件和组文件。在日常操作中，UNIX系统还使用很多其他文件。例如，BSD网络软件有一个记录各网络服务器所提供服务的数据文件（/etc/services），有一个记录协议信息的数据文件（/etc/protocols），还有一个则是记录网络信息的数据文件（/etc/networks）。幸运的是，对于这些数据文件的接口都与上述对口令文件和组文件的相似。
 
一般情况下，对于每个数据文件至少有3个函数。
 
（1）get函数：读下一个记录，如果需要，还会打开该文件。此种函数通常返回指向一个结构的指针。当已达到文件尾端时返回空指针。大多数get函数返回指向一个静态存储类结构的指针，如果要保存其内容，则需复制它。
 
（2）set函数：打开相应数据文件（如果尚末打开），然后反绕该文件。如果希望在相应文件起始处开始处理，则调用此函数。
 
（3）end函数：关闭相应数据文件。如前所述，在结束了对相应数据文件的读、写操作后，总应调用此函数以关闭所有相关文件。
 
另外，如果数据文件支持某种形式的键搜索，则也提供搜索具有指定键的记录的例程。例如，对于口令文件，提供了两个按键进行搜索的程序：getpwnam寻找具有指定用户名的记录；getpwuid寻找具有指定用户ID的记录。
 
图6-6中列出了一些这样的例程，这些都是UNIX常用的。在图中列出了针对口令文件和组文件的函数，这些已在前面说明过。图中也列出了一些与网络有关的函数。对于图中列出的所有数据文件都有get、set和end函数。
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图6-6　访问系统数据文件的一些例程
 
 
 在Solaris中，图6-6中的最后4个数据文件都是符号链接，它们都链接到目录/etc/inet下的同名文件上。大多数UNIX系统实现都有类似于图中所列的附加函数，但是这些附加函数都旨在处理系统管理文件，专用于各个实现。
 

 
6.8　登录账户记录
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大多数UNIX系统都提供下列两个数据文件：utmp文件记录当前登录到系统的各个用户；wtmp文件跟踪各个登录和注销事件。在V7中，每次写入这两个文件中的是包含下列结构的一个二进制记录：
 
struct utmp {

　char　ut_line[8];　/* tty line: "ttyh0", "ttyd0", "ttyp0", ... */

　char　ut_name[8];　/* login name */

　long　ut_time;　　 /* seconds since Epoch */

};
 
登录时，login程序填写此类型结构，然后将其写入到utmp文件中，同时也将其添写到wtmp文件中。注销时，init进程将utmp文件中相应的记录擦除（每个字节都填以null字节），并将一个新记录添写到wtmp文件中。在wtmp文件的注销记录中，ut_name字段清除为0。在系统再启动时，以及更改系统时间和日期的前后，都在wtmp文件中追加写特殊的记录项。who(1)程序读取utmp文件，并以可读格式打印其内容。后来的UNIX版本提供last(1)命令，它读wtmp文件并打印所选择的记录。
 
大多数UNIX版本仍提供utmp和wtmp文件，但正如所期望的，其中的信息量却增加了。V7中写入的20字节的结构在SVR2中已扩充为36字节，而在SVR4中，utmp结构已扩充为多于350字节。
 
 
 在Solaris中，这些记录的详细格式请参见手册页utmpx(4)。Solaris 10中这两个文件都在目录/var/adm中。Solaris提供了很多函数（见getutx(3)）读或写这两个文件。
 
 在FreeBSD 8.0和Linux 3.2.0中，登录记录的格式请参见手册页utmp(5)。这两个文件的路径名是/var/run/utmp和/var/log/wtmp。在Mac OS X 10.6.8中，utmp和wtmp文件不存在。在Mac OS X 10.5中，wtmp文件中的信息可以从系统登录工具中获得，utmpx文件包含了活动的登录会话的信息。
 

 
6.9　系统标识
 
POSIX.1定义了uname函数，它返回与主机和操作系统有关的信息。
 
#include <sys/utsname.h>



int uname(struct utsname *name);

　　　　　　　　　　　　　　　返回值：若成功，返回非负值；若出错，返回-1
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通过该函数的参数向其传递一个utsname结构的地址，然后该函数填写此结构。POSIX.1只定义了该结构中最少需提供的字段（它们都是字符数组），而每个数组的长度则由实现确定。某些实现在该结构中提供了另外一些字段。
 
struct utsname {

　char sysname[ ];　 /* name of the operating system */

　char nodename[ ];　/* name of this node */

　char release[ ];　 /* current release of operating system */

　char version[ ];　 /* current version of this release */

　char machine[ ];　 /* name of hardware type */

};
 
每个字符串都以null字节结尾。本书讨论的4种平台支持的最大名字长度（包含终止null字节）列于图6-7中。utsname结构中的信息通常可用uname(1)命令打印。
 
 
 POSIX.1警告nodename元素可能并不适用于在通信网络上引用主机。此函数来自于System V，在早期，nodename元素适用于在UUCP网络上引用主机。
 
 还要认识到，在此结构中并没有给出有关POSIX.1版本的信息。应当使用2.6节中所说明的_POSIX_VERSION获得该信息。
 
 最后，此函数只给出了一种获取该结构中信息的方法，至于如何初始化这些信息，POSIX.1没有给出任何说明。
 

 
历史上，BSD派生的系统提供gethostname函数，它只返回主机名，该名字通常就是TCP/IP网络上主机的名字。
 
#include <unistd.h>



int gethostname(char *name, int namelen);

　　　　　　　　　　　　　　　返回值：若成功，返回0；若出错，返回-1


 
namelen参数指定name缓冲区长度，如若提供足够的空间，则通过name返回的字符串以null字节结尾。如若没有提供足够的空间，则没有说明通过name返回的字符串是否以null结尾。
 
现在，gethostname函数已在POSIX.1中定义，它指定最大主机名长度是HOST_NAME_MAX。图6-7中总结列出了本书讨论的4种实现支持的最大名字长度。
 
[image: 6-7.jpg]
 
图6-7　系统标识名限制
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如果宿主机联接到TCP/IP网络中，则此主机名通常是该主机的完整域名。
 
hostname(1)命令可用来获取和设置主机名。（超级用户用一个类似的函数sethostname来设置主机名。）主机名通常在系统自举时设置，它由/etc/rc或init取自一个启动文件。
 
6.10　时间和日期例程
 
由UNIX内核提供的基本时间服务是计算自协调世界时（Coordinated Universal Time，UTC）公元1970年1月1日00:00:00这一特定时间以来经过的秒数。1.10节中曾提及这种秒数是以数据类型time_t表示的，我们称它们为日历时间。日历时间包括时间和日期。UNIX在这方面与其他操作系统的区别是：（a）以协调统一时间而非本地时间计时；（b）可自动进行转换，如变换到夏令时；（c）将时间和日期作为一个量值保存。
 
time函数返回当前时间和日期。
 
#include <time.h>



time_t time(time_t *calptr);



　　　　　　　　　　　　　　　返回值：若成功，返回时间值；若出错，返回-1


 
时间值作为函数值返回。如果参数非空，则时间值也存放在由calptr指向的单元内。
 
POSXI.1的实时扩展增加了对多个系统时钟的支持。在Single UNIX Specification V4中，控制这些时钟的接口从可选组被移至基本组。时钟通过clockid_t类型进行标识。图6-8给出了标准值。
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图6-8　时钟类型标识符
 
clock_gettime函数可用于获取指定时钟的时间，返回的时间在4.2节介绍的timespec结构中，它把时间表示为秒和纳秒。
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#include <sys/time.h>



int clock_gettime(clockid_t clock_id, struct timespec *tsp);



　　　　　　　　　　　　　　　返回值：若成功，返回0；若出错，返回-1


 
当时钟ID设置为CLOCK_REALTIME时，clock_gettime函数提供了与time函数类似的功能，不过在系统支持高精度时间值的情况下，clock_gettime可能比time函数得到更高精度的时间值。
 
#include <sys/time.h>



int clock_getres(clockid_t clock_id, struct timespec *tsp);



　　　　　　　　　　　　　　　返回值：若成功，返回0；若出错，返回-1


 
clock_getres函数把参数tsp指向的timespec结构初始化为与clock_id参数对应的时钟精度。例如，如果精度为1毫秒，则tv_sec字段就是0，tv_nsec字段就是1 000 000。
 
要对特定的时钟设置时间，可以调用clock_settime函数。
 
#include <sys/time.h>



int clock_settime(clockid_t clock_id, const struct timespec *tsp);



　　　　　　　　　　　　　　　返回值：若成功，返回0；若出错，返回-1


 
我们需要适当的特权来更改时钟值，但是有些时钟是不能修改的。
 
 
 历史上，在System V派生的系统实现中，调用stime(2)函数来设置系统时间，而在BSD派生的系统中调用settimeofday(2)设置系统时间。
 

 
SUSv4指定gettimeofday函数现在已弃用。然而，一些程序仍然使用这个函数，因为与time函数相比，gettimeofday提供了更高的精度（可到微秒级）。
 
#include <sys/time.h>



int gettimeofday(struct timeval *restrict tp, void *restrict tzp);

　　　　　　　　　　　　　　　返回值：总是返回0


 
tzp的唯一合法值是NULL，其他值将产生不确定的结果。某些平台支持用tzp说明时区，但这完全依实现而定，Single UNIX Specification对此并没有定义。
 
gettimeofday函数以距特定时间（1970年1月1日00 : 00 : 00）的秒数的方式将当前时间存放在tp指向的timeval结构中，而该结构将当前时间表示为秒和微秒。
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一旦取得这种从上述特定时间经过的秒数的整型时间值后，通常要调用函数将其转换为分解的时间结构，然后调用另一个函数生成人们可读的时间和日期。图6-9说明了各种时间函数之间的关系。（图中以虚线表示的3个函数localtime、mktime和strftime都受到环境变量TZ的影响，我们将在本节的最后部分对其进行说明。点划线表示了如何从时间相关的结构获得日历时间。）
 
两个函数localtime和gmtime将日历时间转换成分解的时间，并将这些存放在一个tm结构中。
 
struct 　 tm {　　　 　　/* a broken-down time */

　int　　　tm_sec;　 　　/* seconds after the minute: [0 - 60] */

　int　　　tm_min;　 　　/* minutes after the hour: [0 - 59] */

　int　　　tm_hour;　　　/* hours after midnight: [0 - 23] */

　int　　　tm_mday;　　　/* day of the month: [1 - 31] */

　int　　　tm_mon;　 　　/* months since January: [0 - 11] */

　int　　　tm_year;　　　/* years since 1900 */

　int　　　tm_wday;　　　/* days since Sunday: [0 - 6] */

　int　　　tm_yday;　　　/* days since January 1: [0 - 365] */

　int　　　tm_isdst; 　　/* daylight saving time flag: <0, 0, >0 */

};
 
秒可以超过59的理由是可以表示润秒。注意，除了月日字段，其他字段的值都以0开始。如果夏令时生效，则夏令时标志值为正；如果为非夏令时时间，则该标志值为0；如果此信息不可用，则其值为负。
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 Single UNIX Specification的以前版本允许双润秒，于是，tm_sec值的有效范围是0～61。UTC的正式定义不允许双润秒，所以，现在tm_sec值的有效范围定义为0～60。
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图6-9　各个时间函数之间的关系
 
#include <time.h>



struct tm *gmtime(const time_t　*calptr);



struct tm *localtime(const time_t *calptr);



　　　　　　　　　　　　　　　两个函数的返回值：指向分解的tm结构的指针；若出错，返回NULL


 
localtime和gmtime之间的区别是：localtime将日历时间转换成本地时间（考虑到本地时区和夏令时标志），而gmtime则将日历时间转换成协调统一时间的年、月、日、时、分、秒、周日分解结构。
 
函数mktime以本地时间的年、月、日等作为参数，将其变换成time_t值。
 
#include <time.h>



time_t mktime(struct tm *tmptr);



　　　　　　　　　　　　　　　返回值：若成功，返回日历时间；若出错，返回-1


 
函数strftime是一个类似于printf的时间值函数。它非常复杂，可以通过可用的多个参数来定制产生的字符串。
 
#include <time.h>



size_t strftime(char *restrict buf, size_t maxsize,

　　　　　　  　　const char *restrict format,

　　　　　　　  　const struct tm *restrict tmptr);



size_t strftime_l(char *restrict buf, size_t maxsize, 

　　　　　　　  　　const char *restrict format, 

　　　　　　  　　　const struct tm *restrict tmptr, locale_t locale);



　　　　　　　　　　　　　　　两个函数的返回值：若有空间，返回存入数组的字符数；否则，返回0


 
 
 两个较早的函数——asctime和ctime能用于产生一个26字节的可打印的字符串，类似于date(1)命令默认的输出。然而，这些函数现在已经被标记为弃用，因为它们易受到缓冲区溢出问题的影响。
 

 
strftime_l允许调用者将区域指定为参数，除此之外，strftime和strftime_l函数是相同的。strftime使用通过TZ环境变量指定的区域。
 
tmptr参数是要格式化的时间值，由一个指向分解时间值tm结构的指针说明。格式化结果存放在一个长度为maxsize个字符的buf数组中，如果buf长度足以存放格式化结果及一个null终止符，则该函数返回在buf中存放的字符数（不包括null终止符）；否则该函数返回0。
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format参数控制时间值的格式。如同printf函数一样，转换说明的形式是百分号之后跟一个特定字符。format中的其他字符则按原样输出。两个连续的百分号在输出中产生一个百分号。与printf函数的不同之处是，每个转换说明产生一个不同的定长输出字符串，在format字符串中没有字段宽度修饰符。图6-10中列出了37种ISO C规定的转换说明。
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图6-10　strftime的转换说明
 
图中第3列的数据来自于在Mac OS X中执行strftime函数所得的结果，它对应的时间和日期是：Thu Jan 19 21:24:52 EST 2012。
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图6-10中的大多数格式说明的意义很明显。需要略做解释的是%U、%V和%W。%U是相应日期在该年中所属周数，包含该年中第一个星期日的周是第一周。%W也是相应日期在该年中所属的周数，不同的是包含第一个星期一的周为第一周。%V说明符则与上述两者有较大区别。如果包含了1月1日的那一周包含了新一年的4天或更多天，那么该周是一年中的第一周；否则该周被认为是上一年的最后一周。在这两种情况下，周一都被视作每周的第一天。
 
同printf一样，strftime对某些转换说明支持修饰符。可以使用E和O修饰符产生本地支持的另一种格式。
 
 
 某些系统对strftime的format字符串提供另一些非标准的扩充支持。
 

 
实例
 
图6-11演示了如何使用本章中讨论的多个时间函数。特别演示了如何使用strftime打印包含当前日期和时间的字符串。
 
#include <stdio.h>

#include <stdlib.h>

#include <time.h>



int

main(void)

{

　　 time_t t;

　　 struct tm *tmp;

　　 char buf1[16];

　　 char buf2[64];



　　 time(&t);

　　 tmp = localtime(&t);

　　 if (strftime(buf1, 16, "time and date: %r, %a %b %d, %Y", tmp) == 0)

　　　　　printf("buffer length 16 is too small\n");

　　 else

　　　　　printf("%s\n", buf1);

　　 if (strftime(buf2, 64, "time and date: %r, %a %b %d, %Y", tmp) == 0)

　　　　　printf("buffer length 64 is too small\n");

　　 else

　　　　　printf("%s\n", buf2);

　　 exit(0);

}
 
图6-11　使用strftime函数
 
回顾图6-9中的不同时间函数的关系。在以人们可读的格式打印时间之前，需要获取时间并将其转换成分解的时间结构。图6-11程序的输出如下：
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$ ./a.out

buffer length 16 is too small

time and date: 11:12:35 PM, Thu Jan 19, 2012


 
strptime函数是strftime的反过来版本，把字符串时间转换成分解时间。
 
#include <time.h>



char *strptime(const char *restrict buf, const char *restrict format,

　　　　  　　　 struct tm *restrict tmptr);



　　　　　　　　　　　　　　　返回值：指向上次解析的字符的下一个字符的指针；否则，返回NULL


 
format参数给出了buf参数指向的缓冲区内的字符串的格式。虽然与strftime函数的说明稍有不同，但格式说明是类似的。strptime函数转换说明符列在图6-12中。
 
[image: 6-12.jpg]
 
图6-12　strptime函数的转换说明
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我们曾在前面提及，图6-9中以虚线表示的3个函数受到环境变量TZ的影响。这3个函数是localtime、mktime和strftime。如果定义了TZ，则这些函数将使用其值代替系统默认时区。如果TZ定义为空串（即TZ=），则使用协调统一时间UTC。TZ的值常常类似于TZ=EST5EDT，但是POSIX.1允许更详细的说明。有关TZ变量的详细情况，请参阅Single UNIX Specification [Open Group 2010]中的环境变量章节。
 
 
 关于TZ环境变量的更多信息可参见手册页tzset(3)。
 

 
6.11　小结
 
所有UNIX系统都使用口令文件和组文件。我们说明了读这些文件的各种函数。本章也介绍了阴影口令，它可以增加系统的安全性。附属组ID提供了一个用户同时可以参加多个组的方法。我们还介绍了大多数系统所提供的访问其他与系统有关数据文件的类似函数。我们讨论了几个POSIX.1的系统标识函数，应用程序使用它们以标识它在何种系统上运行。最后，说明了ISO C和Single UNIX Specification提供的与时间和日期有关的一些函数。
 
习题
 
6.1　如果系统使用阴影文件，那么如何取得加密口令？
 
6.2　假设你有超级用户权限，并且系统使用了阴影口令，重新考虑上一道习题。
 
6.3　编写一程序，它调用uname并输出utsname结构中的所有字段，将该输出与uname(1)命令的输出结果进行比较。
 
6.4　计算可由time_t数据类型表示的最近时间。如果超出了这一时间将会如何?
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6.5　编写一程序，获取当前时间，并使用strftime将输出结果转换为类似于date(1)命令的默认输出。将环境变量TZ设置为不同值，观察输出结果。
 


第7章　进程环境
 
7.1　引言
 
下一章将介绍进程控制原语，在此之前需先了解进程的环境。本章中将学习：当程序执行时，其main函数是如何被调用的；命令行参数是如何传递给新程序的；典型的存储空间布局是什么样式；如何分配另外的存储空间；进程如何使用环境变量；进程的各种不同终止方式等。另外，还将说明longjmp和setjmp函数以及它们与栈的交互作用。本章结束之前，还将查看进程的资源限制。
 
7.2　main函数
 
C程序总是从main函数开始执行。main函数的原型是：
 
int main(int argc, char *argv[]);


 
其中，argc是命令行参数的数目，argv是指向参数的各个指针所构成的数组。7.4节将对命令行参数进行说明。
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当内核执行C程序时（使用一个exec函数，8.10节将说明exec函数），在调用main前先调用一个特殊的启动例程。可执行程序文件将此启动例程指定为程序的起始地址——这是由连接编辑器设置的，而连接编辑器则由C编译器调用。启动例程从内核取得命令行参数和环境变量值，然后为按上述方式调用main函数做好安排。
 
7.3　进程终止
 
有8种方式使进程终止（termination），其中5种为正常终止，它们是：
 
（1）从main返回；
 
（2）调用exit；
 
（3）调用_exit或_Exit；
 
（4）最后一个线程从其启动例程返回（11.5节）；
 
（5）从最后一个线程调用pthread_exit（11.5节）。
 
异常终止有3种方式，它们是：
 
（6）调用abort（10.17节）；
 
（7）接到一个信号（10.2节）；
 
（8）最后一个线程对取消请求做出响应（11.5节和12.7节）。
 
 
 在第11章和第12章讨论线程之前，我们暂不考虑专门针对线程的3种终止方式。
 

 
上节提及的启动例程是这样编写的，使得从main返回后立即调用exit函数。如果将启动例程以C代码形式表示（实际上该例程常常用汇编语言编写），则它调用main函数的形式可能是：
 
exit(main(argc, argv));
 
1．退出函数
 
3个函数用于正常终止一个程序：_exit和_Exit立即进入内核，exit则先执行一些清理处理，然后返回内核。
 
#include <stdlib.h>



void exit(int status);



void _Exit(int status);



#include <unistd.h>



void _exit(int status);


 
我们将在8.5节中讨论这3个函数对其他进程（如正在终止进程的父进程和子进程）的影响。
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 使用不同头文件的原因是exit和_Exit是由ISO C说明的，而_exit是由POSIX.1说明的。
 

 
由于历史原因，exit函数总是执行一个标准I/O库的清理关闭操作：对于所有打开流调用fclose函数。回忆5.5节，这造成输出缓冲中的所有数据都被冲洗（写到文件上）。
 
3个退出函数都带一个整型参数，称为终止状态（或退出状态，exit status）。大多数UNIX系统shell都提供检查进程终止状态的方法。如果（a）调用这些函数时不带终止状态，或（b）main执行了一个无返回值的return语句，或（c）main没有声明返回类型为整型，则该进程的终止状态是未定义的。但是，若main的返回类型是整型，并且main执行到最后一条语句时返回（隐式返回），那么该进程的终止状态是0。
 
 
 这种处理是ISO C标准1999版引入的。历史上，若main函数终止时没有显式使用return语句或调用exit函数，那么进程终止状态是未定义的。
 

 
`
 
main函数返回一个整型值与用该值调用exit是等价的。于是在main函数中
 
exit(0);
 
等价于
 
return(0);
 
实例
 
图7-1中的程序是经典的“hello, world”实例。
 
#include <stdio.h>

main()

{

　　 printf("hello, world\n");

}
 
图7-1　经典C程序
 
对该程序进行编译，然后运行，则可见到其终止码是随机的。如果在不同的系统上编译该程序，我们很可能得到不同的终止码，这取决于main函数返回时栈和寄存器的内容：
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$ gcc hello.c

$ ./a.out

hello, world

$ echo $?　　　　　　　　　　　　　　　　　打印终止状态

13


 
现在，我们启用1999 ISO C编译器扩展，则可见到终止码改变了：
 
$ gcc -std=c99 hello.c　　　　　　　　　启用gcc的1999 ISO C扩展

hello.c:4: warning: return type defaults to 'int'

$ ./a.out

hello, world

$ echo $?　　　　　　　　　　　　　　　　　打印终止状态

0


 
 
 注意，当我们启用1999 ISO C扩展时，编译器发出警告消息。打印该警告消息的原因是：main函数的类型没有显式地声明为整型。如果我们增加了这一声明，那么此警告消息就不会出现。但是，如果我们使编译器所推荐的警告消息都起作用（使用-Wall标志），则可能见到类似于“control reaches end of nonvoid function.”（控制到达非void函数的尾端）这样的警告消息。
 
 将main声明为返回整型，但在main函数体内用exit代替return，对某些C编译器和UNIX lint(1)程序而言会产生不必要的警告信息，因为这些编译器并不了解main中的exit与return语句的作用相同。避开这种警告信息的一种方法是在main中使用return语句而不是exit。但是这样做的结果是不能用UNIX的grep实用程序来找出程序中所有的exit调用。另一个解决方法是将main说明为返回void而不是int，然后仍然调用exit。这样做可以避免编译器的警告，但从程序设计角度看却并不正确，而且会产生其他的编译警告，因为main的返回类型应当是带符号整型。本章将main表示为返回整型，因为这是ISO C和POSIX.1所定义的。
 
 不同的编译器产生警告消息的详细程度是不一样的。除非使用警告选项，否则GNU C编译器不会发出不必要的警告消息。
 

 
下一章我们将了解进程如何造成程序被执行，如何等待进程完成，然后又如何获取其终止状态。
 
2．函数atexit
 
按照ISO C的规定，一个进程可以登记多至32个函数，这些函数将由exit自动调用。我们称这些函数为终止处理程序（exit handler），并调用atexit函数来登记这些函数。
 
#include <stdlib.h>



int atexit(void (*func)(void));



　　　　　　　　　　　　　　　返回值：若成功，返回0；若出错，返回非0
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其中，atexit的参数是一个函数地址，当调用此函数时无需向它传递任何参数，也不期望它返回一个值。exit调用这些函数的顺序与它们登记时候的顺序相反。同一函数如若登记多次，也会被调用多次。
 
 
 终止处理程序这一机制是由ANSI C标准于1989年引入的。早于ANSI C的系统，如SVR3和4.3BSD，都不提供这种终止处理程序。
 
 ISO C要求，系统至少应支持32个终止处理程序，但实现经常会提供更多的支持（参见图2-15）。为了确定一个给定的平台支持的最大终止处理程序数，可以使用sysconf函数（如图2-14所示）。
 

 
根据ISO C和POSIX.1，exit首先调用各终止处理程序，然后关闭（通过fclose）所有打开流。POSIX.1扩展了ISO C标准，它说明，如若程序调用exec函数族中的任一函数，则将清除所有已安装的终止处理程序。图7-2显示了一个C程序是如何启动的，以及它终止的各种方式。
 
[image: 0702]
 
图7-2　一个C程序是如何启动和终止的
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注意，内核使程序执行的唯一方法是调用一个exec函数。进程自愿终止的唯一方法是显式或隐式地（通过调用exit）调用_exit或_Exit。进程也可非自愿地由一个信号使其终止（图7-2中没有显示）。
 
实例
 
图7-3的程序说明如何使用atexit函数。
 
#include "apue.h"



static void　　my_exit1(void);

static void　　my_exit2(void);



int

main(void)

{

 　　if (atexit(my_exit2) != 0)

　　　　　err_sys("can't register my_exit2");



 　　if (atexit(my_exit1) != 0)

　　　　　err_sys("can't register my_exit1");

 　　if (atexit(my_exit1) != 0)

　　　　　err_sys("can't register my_exit1");



 　　printf("main is done\n");

 　　return(0);

}



static void

my_exit1(void)

{

 　　printf("first exit handler\n");

}



static void

my_exit2(void)

{

 　　printf("second exit handler\n");

}
 
图7-3　终止处理程序实例
 
执行该程序产生：
 
$ ./a.out

main is done

first exit handler

first exit handler

second exit handler
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终止处理程序每登记一次，就会被调用一次。在图7-3的程序中，第一个终止处理程序被登记两次，所以也会被调用两次。注意，在main中没有调用exit，而是用了return语句。
 
7.4　命令行参数
 
当执行一个程序时，调用exec的进程可将命令行参数传递给该新程序。这是UNIX shell的一部分常规操作。在前几章的很多实例中，我们已经看到了这一点。
 
实例
 
图7-4所示的程序将其所有命令行参数都回显到标准输出上。注意，通常的echo(1)程序不回显第0个参数。
 
#include "apue.h"



int

main(int argc, char *argv[])

{

 　　int　　 i;



 　　for (i = 0; i < argc; i++)　　　　/* echo all command-line args */

　　　　　printf("argv[%d]: %s\n", i, argv[i]);

 　　exit(0);

}
 
图7-4　将所有命令行参数回显到标准输出
 
编译此程序，并将可执行代码文件命名为echoarg，则得到：
 
$ ./echoarg arg1 TEST foo

argv[0]: ./echoarg

argv[1]: arg1

argv[2]: TEST

argv[3]: foo


 
ISO C和POSIX.1都要求argv[argc]是一个空指针。这就使我们可以将参数处理循环改写为：
 
for (i = 0; argv[i] != NULL; i++)
 
7.5　环境表
 
每个程序都接收到一张环境表。与参数表一样，环境表也是一个字符指针数组，其中每个指针包含一个以null结束的C字符串的地址。全局变量environ则包含了该指针数组的地址：
 
extern char **environ;
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例如，如果该环境包含5个字符串，那么它看起来如图7-5中所示。其中，每个字符串的结尾处都显式地有一个null字节。我们称environ为环境指针（environment pointer），指针数组为环境表，其中各指针指向的字符串为环境字符串。
 
[image: 0705]
 
图7-5　由5个字符串组成的环境
 
按照惯例，环境由
 
name = value


 
这样的字符串组成，如图7-5中所示。大多数预定义名完全由大写字母组成，但这只是一个惯例。
 
在历史上，大多数UNIX系统支持main函数带3个参数，其中第3个参数就是环境表地址：
 
int main(int argc, char *argv[], char *envp[]);


 
因为ISO C规定main函数只有两个参数，而且第3个参数与全局变量environ相比也没有带来更多益处，所以POSIX.1也规定应使用environ而不使用第3个参数。通常用getenv和putenv函数（见7.9节）来访问特定的环境变量，而不是用environ变量。但是，如果要查看整个环境，则必须使用environ指针。
 
7.6　C程序的存储空间布局
 
历史沿袭至今，C程序一直由下列几部分组成：
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 	正文段。这是由CPU执行的机器指令部分。通常，正文段是可共享的，所以即使是频繁执行的程序（如文本编辑器、C编译器和shell等）在存储器中也只需有一个副本，另外，正文段常常是只读的，以防止程序由于意外而修改其指令。
 
 	初始化数据段。通常将此段称为数据段，它包含了程序中需明确地赋初值的变量。例如，C程序中任何函数之外的声明：
 

 
 int　　maxcount = 99;


 
　　使此变量以其初值存放在初始化数据段中。
 
 
 	未初始化数据段。通常将此段称为bss段，这一名称来源于早期汇编程序一个操作符，意思是“由符号开始的块”（block started by symbol），在程序开始执行之前，内核将此段中的数据初始化为0或空指针。函数外的声明：
 

 
 long　 sum[1000];
 
　　使此变量存放在非初始化数据段中。
 
 
 	栈。自动变量以及每次函数调用时所需保存的信息都存放在此段中。每次函数调用时，其返回地址以及调用者的环境信息（如某些机器寄存器的值）都存放在栈中。然后，最近被调用的函数在栈上为其自动和临时变量分配存储空间。通过以这种方式使用栈，C递归函数可以工作。递归函数每次调用自身时，就用一个新的栈帧，因此一次函数调用实例中的变量集不会影响另一次函数调用实例中的变量。
 
 	堆。通常在堆中进行动态存储分配。由于历史上形成的惯例，堆位于未初始化数据段和栈之间。
 

 
图7-6显示了这些段的一种典型安排方式。这是程序的逻辑布局，虽然并不要求一个具体实现一定以这种方式安排其存储空间，但这是一种我们便于说明的典型安排。对于32位Intel x86处理器上的Linux，正文段从0x08048000单元开始，栈底则在0xC0000000之下开始（在这种特定结构中，栈从高地址向低地址方向增长）。堆顶和栈顶之间未用的虚地址空间很大。
 
 
 a.out中还有若干其他类型的段，如包含符号表的段、包含调试信息的段以及包含动态共享库链接表的段等。这些部分并不装载到进程执行的程序映像中。
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从图7-6还可注意到，未初始化数据段的内容并不存放在磁盘程序文件中。其原因是，内核在程序开始运行前将它们都设置为0。需要存放在磁盘程序文件中的段只有正文段和初始化数据段。
 
[image: 0706]
 
图7-6　典型的存储空间安排
 
size(1)命令报告正文段、数据段和bss段的长度（以字节为单位）。例如：
 
$ size /usr/bin/cc /bin/sh

　　text　　 data　　　bss　　　 dec　　 hex　 filename

　346919　　 3576　　 6680　 357175　 57337　 /usr/bin/cc

　102134　　 1776　　11272　 115182　 1c1ee　 /bin/sh


 
第4列和第5列是分别以十进制和十六进制表示的3段总长度。
 
7.7　共享库
 
现在，大多数UNIX系统支持共享库。Arnold[1986]说明了System V上共享库的一个早期实现，Gingell等[1987]则说明了SunOS上的另一个实现。共享库使得可执行文件中不再需要包含公用的库函数，而只需在所有进程都可引用的存储区中保存这种库例程的一个副本。程序第一次执行或者第一次调用某个库函数时，用动态链接方法将程序与共享库函数相链接。这减少了每个可执行文件的长度，但增加了一些运行时间开销。这种时间开销发生在该程序第一次被执行时，或者每个共享库函数第一次被调用时。共享库的另一个优点是可以用库函数的新版本代替老版本而无需对使用该库的程序重新连接编辑（假定参数的数目和类型都没有发生改变）。
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在不同的系统中，程序可能使用不同的方法说明是否要使用共享库。比较典型的有cc(1)和ld(1)命令的选项。作为长度方面发生变化的例子，先用无共享库方式创建下列可执行文件（典型的hello.c程序）：
 
$ gcc -static hello1.c　　　　　　　　　　　　　　　阻止gcc使用共享库

$ ls -l a.out

-rwxrwxr-x 1 sar　　　　 879443 Sep 2 10:39 a.out

$ size a.out

　 text　　 data　　　bss　　　dec　　 hex　　filename

 787775　　 6128　　11272　 805175　 c4937　　a.out


 
如果再使用共享库编译此程序，则可执行文件的正文和数据段的长度都显著减小：
 
$ gcc hello1.c　　　　　　　　　　gcc 默认使用共享库

$ ls -l a.out

-rwxrwxr-x 1 sar　　　　 8378 Sep 2 10:39 a.out

$ size a.out

　　text　　 data　　 bss　　dec　　　 hex　　filename

　　1176　　　504　　　16　 1696　　　 6a0　　a.out


 
7.8　存储空间分配
 
ISO C说明了3个用于存储空间动态分配的函数。
 
（1）malloc，分配指定字节数的存储区。此存储区中的初始值不确定。
 
（2）calloc，为指定数量指定长度的对象分配存储空间。该空间中的每一位（bit）都初始化为0。
 
（3）realloc，增加或减少以前分配区的长度。当增加长度时，可能需将以前分配区的内容移到另一个足够大的区域，以便在尾端提供增加的存储区，而新增区域内的初始值则不确定。
 
#include <stdlib.h>



void *malloc(size_t　size);



void *calloc(size_t　nobj, size_t size);



void *realloc(void *ptr, size_t newsize);



　　　　　　　　　　　　　　　3个函数返回值：若成功，返回非空指针；若出错，返回NULL



void free(void *ptr);
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这3个分配函数所返回的指针一定是适当对齐的，使其可用于任何数据对象。例如，在一个特定的系统上，如果最苛刻的对齐要求是，double必须在8的倍数地址单元处开始，那么这3个函数返回的指针都应这样对齐。
 
因为这3个alloc函数都返回通用指针void *，所以如果在程序中包括了#include <stdlib.h>（以获得函数原型），那么当我们将这些函数返回的指针赋予一个不同类型的指针时，就不需要显式地执行强制类型转换。未声明函数的默认返回值为int，所以使用没有正确函数声明的强制类型转换可能会隐藏系统错误，因为int类型的长度与函数返回类型值的长度不同（本例中是指针）。
 
函数free释放ptr指向的存储空间。被释放的空间通常被送入可用存储区池，以后，可在调用上述3个分配函数时再分配。
 
realloc函数使我们可以增、减以前分配的存储区的长度（最常见的用法是增加该区）。例如，如果先为一个数组分配存储空间，该数组长度为512，然后在运行时填充它，但运行一段时间后发现该数组原先的长度不够用，此时就可调用realloc扩充相应存储空间。如果在该存储区后有足够的空间可供扩充，则可在原存储区位置上向高地址方向扩充，无需移动任何原先的内容，并返回与传给它相同的指针值。如果在原存储区后没有足够的空间，则realloc分配另一个足够大的存储区，将现存的512个元素数组的内容复制到新分配的存储区。然后，释放原存储区，返回新分配区的指针。因为这种存储区可能会移动位置，所以不应当使任何指针指在该区中。习题4.16和图C-3显示了在getcwd中如何使用realloc，以处理任何长度的路径名。图17-27的程序是使用realloc的另一个例子，用其可以避免使用编译时固定长度的数组。
 
注意，realloc的最后一个参数是存储区的新长度，不是新、旧存储区长度之差。作为一个特例，若ptr是一个空指针，则realloc的功能与malloc相同，用于分配一个指定长度为newsize的存储区。
 
 
 这些函数的早期版本允许调用realloc分配自上次malloc、realloc或calloc调用以来所释放的块。这种技巧可回溯到V7，它利用malloc的搜索策略，实现存储器紧缩。Solaris仍支持这一功能，而很多其他平台则不支持。这种功能不被赞同，不应再使用。
 

 
这些分配例程通常用sbrk(2)系统调用实现。该系统调用扩充（或缩小）进程的堆（见图7-6）。malloc和free的一个样例实现请见Kernighan和Ritchie[1988]的8.7节。
 
虽然sbrk可以扩充或缩小进程的存储空间，但是大多数malloc和free的实现都不减小进程的存储空间。释放的空间可供以后再分配，但将它们保持在malloc池中而不返回给内核。
 
大多数实现所分配的存储空间比所要求的要稍大一些，额外的空间用来记录管理信息——分配块的长度、指向下一个分配块的指针等。这就意味着，如果超过一个已分配区的尾端或者在已分配区起始位置之前进行写操作，则会改写另一块的管理记录信息。这种类型的错误是灾难性的，但是因为这种错误不会很快就暴露出来，所以也就很难发现。
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在动态分配的缓冲区前或后进行写操作，破坏的可能不仅仅是该区的管理记录信息。在动态分配的缓冲区前后的存储空间很可能用于其他动态分配的对象。这些对象与破坏它们的代码可能无关，这造成寻求信息破坏的源头更加困难。
 
其他可能产生的致命性的错误是：释放一个已经释放了的块；调用free时所用的指针不是3个alloc函数的返回值等。如若一个进程调用malloc函数，但却忘记调用free函数，那么该进程占用的存储空间就会连续增加，这被称为泄漏（leakage）。如果不调用free函数释放不再使用的空间，那么进程地址空间长度就会慢慢增加，直至不再有空闲空间。此时，由于过度的换页开销，会造成性能下降。
 
因为存储空间分配出错很难跟踪，所以某些系统提供了这些函数的另一种实现版本。每次调用这3个分配函数中的任意一个或free时，它们都进行附加的检错。在调用连接编辑器时指定一个专用库，在程序中就可使用这种版本的函数。此外还有公共可用的资源，在对其进行编译时使用一个特殊标志就会使附加的运行时检查生效。
 
 
 FreeBSD、Mac OS X以及Linux通过设置环境变量支持附加的调试功能。另外，通过符号链接/etc/malloc.conf可将选项传递给FreeBSD函数库。
 

 
替代的存储空间分配程序
 
有很多可替代malloc和free的函数。某些系统已经提供替代存储空间分配函数的库。另一些系统只提供标准的存储空间分配程序。如果需要，软件开发者可以下载替代函数。下面讨论某些替代函数和库。
 
1．libmalloc
 
基于SVR4的UNIX系统，如Solaries，包含了libmalloc库，它提供了一套与ISO C存储空间分配函数相匹配的接口。libmalloc库包括mallopt函数，它使进程可以设置一些变量，并用它们来控制存储空间分配程序的操作。还可使用另一个名为mallinfo的函数，以对存储空间分配程序的操作进行统计。
 
2．vmalloc
 
Vo[1996]说明一种存储空间分配程序，它允许进程对于不同的存储区使用不同的技术。除了一些vmalloc特有的函数外，该库也提供了ISO C存储空间分配函数的仿真器。
 
3．quick-fit
 
历史上所使用的标准malloc算法是最佳适配或首次适配存储分配策略。quick-fit（快速适配）算法比上述两种算法快，但可能使用较多存储空间。Weinstock和Wulf[1988]对该算法进行了描述，该算法基于将存储空间分裂成各种长度的缓冲区，并将未使用的缓冲区按其长度组成不同的空闲区列表。现在许多分配程序都基于快速适配。
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4．jemalloc
 
jemalloc函数实现是FreeBSD 8.0中的默认存储空间分配程序，它是库函数malloc族在FreeBSD中的实现。它的设计具有良好的可扩展性，可用于多处理器系统中使用多线程的应用程序。Evans[2006]说明了具体实现及其性能评估。
 
5．TCMalloc
 
TCMalloc函数用于替代malloc函数族以提供高性能、高扩展性和高存储效率。从高速缓存中分配缓冲区以及释放缓冲区到高速缓存中时，它使用线程-本地高速缓存来避免锁开销。它还有内置的堆检查程序和堆分析程序帮助调试和分析动态存储的使用。TCMalloc库是开源可用的，是Google-perftools工具中的一个。Ghemawat和Menage[2005]对此做了简单介绍。
 
6．函数alloca
 
还有一个函数也值得一提，这就是alloca。它的调用序列与malloc相同，但是它是在当前函数的栈帧上分配存储空间，而不是在堆中。其优点是：当函数返回时，自动释放它所使用的栈帧，所以不必再为释放空间而费心。其缺点是：alloca函数增加了栈帧的长度，而某些系统在函数已被调用后不能增加栈帧长度，于是也就不能支持alloca函数。尽管如此，很多软件包还是使用alloca函数，也有很多系统实现了该函数。
 
 
 本书中讨论的4个平台都提供了alloca函数。
 

 
7.9　环境变量
 
如同前述，环境字符串的形式是：
 
name = value
 
UNIX内核并不查看这些字符串，它们的解释完全取决于各个应用程序。例如，shell使用了大量的环境变量。其中某一些在登录时自动设置（如HOME、USER等），有些则由用户设置。我们通常在一个shell启动文件中设置环境变量以控制shell的动作。例如，若设置了环境变量MAILPATH，则它告诉Bourne shell、GNU Bourne-again shell和Korn shell到哪里去查看邮件。
 
ISO C定义了一个函数getenv，可以用其取环境变量值，但是该标准又称环境的内容是由实现定义的。
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#include <stdlib.h>



char *getenv(const char *name);



　　　　　　　　　　　　　　　返回值：指向与name关联的value的指针；若未找到，返回NULL


 
注意，此函数返回一个指针，它指向name=value字符串中的value。我们应当使用getenv从环境中取一个指定环境变量的值，而不是直接访问environ。
 
Single UNIX Specification中的POSIX.1定义了某些环境变量。如果支持XSI扩展，那么其中也包含了另外一些环境变量定义。图7-7列出了由Single UNIX Specification定义的环境变量，并指明本书讨论的4种实现对它们的支持情况。由POSIX.1定义的各环境变量标记为•，否则为XSI扩展。本书讨论的4种UNIX实现使用了很多依赖于实现的环境变量。注意，ISO C没有定义任何环境变量。
 
[image: 7-7.jpg]
 
图7-7　Single UNIX Specification定义的环境变量
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除了获取环境变量值，有时也需要设置环境变量。我们可能希望改变现有变量的值，或者是增加新的环境变量。（在下一章将会了解到，我们能影响的只是当前进程及其后生成和调用的任何子进程的环境，但不能影响父进程的环境，这通常是一个shell进程。尽管如此，修改环境表的能力仍然是很有用的。）遗憾的是，并不是所有系统都支持这种能力。图7-8列出了由不同的标准及实现支持的各种函数。
 
[image: 7-8.jpg]
 
图7-8　对于各种环境表函数的支持
 
 
 clearenv不是Single UNIX Specification的组成部分。它被用来删除环境表中的所有项。
 

 
在图7-8中，中间3个函数的原型是：
 
#include <stdlib.h>



int putenv(char *str);



　　　　　　　　　　　　　　　函数返回值：若成功，返回0；若出错，返回非0



int setenv(const char *name, const char *value, int rewrite);



int unsetenv(const char *name);



　　　　　　　　　　　　　　　两个函数返回值：若成功，返回0；若出错，返回−1


 
这3个函数的操作如下。
 
 
 	putenv取形式为name=value的字符串，将其放到环境表中。如果name已经存在，则先删除其原来的定义。
 
 	setenv将name设置为value。如果在环境中name已经存在，那么（a）若rewrite非0，则首先删除其现有的定义；（b）若rewrite为0，则不删除其现有定义（name不设置为新的value，而且也不出错）。
 
 	unsetenv删除name的定义。即使不存在这种定义也不算出错。
 

 
 
 注意，putenv和setenv之间的差别。setenv必须分配存储空间，以便依据其参数创建name = value字符串。putenv可以自由地将传递给它的参数字符串直接放到环境中。确实，许多实现就是这么做的，因此，将存放在栈中的字符串作为参数传递给putenv就会发生错误，其原因是，从当前函数返回时，其栈帧占用的存储区可能将被重用。
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这些函数在修改环境表时是如何进行操作的呢？对这一问题进行研究、考察是非常有益的。回忆图7-6，其中，环境表（指向实际name=value字符串的指针数组）和环境字符串通常存放在进程存储空间的顶部（栈之上）。删除一个字符串很简单——只要先在环境表中找到该指针，然后将所有后续指针都向环境表首部顺次移动一个位置。但是增加一个字符串或修改一个现有的字符串就困难得多。环境表和环境字符串通常占用的是进程地址空间的顶部，所以它不能再向高地址方向（向上）扩展：同时也不能移动在它之下的各栈帧，所以它也不能向低地址方向（向下）扩展。两者组合使得该空间的长度不能再增加。
 
（1）如果修改一个现有的name：
 
a．如果新value的长度少于或等于现有value的长度，则只要将新字符串复制到原字符串所用的空间中；
 
b．如果新value的长度大于原长度，则必须调用malloc为新字符串分配空间，然后将新字符串复制到该空间中，接着使环境表中针对name的指针指向新分配区。
 
（2）如果要增加一个新的name，则操作就更加复杂。首先，必须调用malloc为name=value字符串分配空间，然后将该字符串复制到此空间中。
 
a．如果这是第一次增加一个新name，则必须调用malloc为新的指针表分配空间。接着，将原来的环境表复制到新分配区，并将指向新name=value字符串的指针存放在该指针表的表尾，然后又将一个空指针存放在其后。最后使environ指向新指针表。再看一下图7-6，如果原来的环境表位于栈顶之上（这是一种常见情况），那么必须将此表移至堆中。但是，此表中的大多数指针仍指向栈顶之上的各name=value字符串。
 
b．如果这不是第一次增加一个新name，则可知以前已调用malloc在堆中为环境表分配了空间，所以只要调用realloc，以分配比原空间多存放一个指针的空间。然后将指向新name=value字符串的指针存放在该表表尾，后面跟着一个空指针。
 
7.10　函数setjmp和longjmp
 
在C中，goto语句是不能跨越函数的，而执行这种类型跳转功能的是函数setjmp和longjmp。这两个函数对于处理发生在很深层嵌套函数调用中的出错情况是非常有用的。
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考虑图7-9程序的骨架部分。其主循环是从标准输入读一行，然后调用do_line处理该输入行。do_line函数调用get_token从该输入行中取下一个标记。一行中的第一个标记假定是一条某种形式的命令，switch语句就实现命令选择。对程序中示例的命令调用cmd_add函数。
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#include "apue.h"



#define　　 TOK_ADD　　 5



void　　　　 do_line(char *);

void　　　　 cmd_add(void);

int　　　　　get_token(void);



int

main(void)

{

 　　char　　　　 line[MAXLINE];



 　　while (fgets(line, MAXLINE, stdin) != NULL)

　　　　　do_line(line);

 　　exit(0);

}



char　　*tok_ptr;　　　　　　/* global pointer for get_token() */



void

do_line(char *ptr)　　　　　/* process one line of input */

{

 　　int　　　　cmd;



 　　tok_ptr = ptr;

 　　while ((cmd = get_token()) > 0) {

　　　　　switch (cmd) {　　/* one case for each command */

　　　　　case TOK_ADD:

　　　　　　　　cmd_add();

　　　　　　　　break;

　　　　　}

 　　}

}



void

cmd_add(void)

{

 　　int　　　 token;



 　　token = get_token();

 　　/* rest of processing for this command */

}



int

get_token(void)

{

 　　/* fetch next token from line pointed to by tok_ptr */

}
 
图7-9　进行命令处理程序的典型骨架部分
 
图7-9的程序的骨架部分在读命令、确定命令的类型，然后调用相应函数处理每一条命令这类程序中是非常典型的。图7-10显示了调用了cmd_add之后栈的大致使用情况。
 
[image: 0710]
 
图7-10　调用cmd_add后的各个栈帧
 
自动变量的存储单元在每个函数的栈桢中。数组line在main的栈帧中，整型cmd在do_line的栈帧中，整型token在cmd_add的栈帧中。
 
如上所述，这种形式的栈安排是非常典型的，但并不要求非如此不可。栈并不一定要向低地址方向扩充。某些系统对栈并没有提供特殊的硬件支持，此时一个C实现可能要用链表实现栈帧。
 
在编写图7-9这样的程序时经常会遇到的一个问题是，如何处理非致命性的错误。例如，若cmd_add函数发现一个错误（比如一个无效的数），那么它可能先打印一个出错消息，然后忽略输入行的余下部分，返回main函数并读下一输入行。但是如果这种情况出现在main函数中的深层嵌套层中时，用C语言难以做到这一点（在本例中，cmd_add函数只比main低两个层次，在有些程序中往往低5个层次或更多）。如果我们不得不以检查返回值的方法逐层返回，那就会变得很麻烦。
 
解决这种问题的方法就是使用非局部goto——setjmp和longjmp函数。非局部指的是，这不是由普通的C语言goto语句在一个函数内实施的跳转，而是在栈上跳过若干调用帧，返回到当前函数调用路径上的某一个函数中。
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#include <setjmp.h>



int setjmp(jmp_buf env);



　　　　　　　　　　　　　　　返回值：若直接调用，返回0；若从longjmp返回，则为非0



void longjmp(jmp_buf env, int val);


 
在希望返回到的位置调用setjmp，在本例中，此位置在main函数中。因为我们直接调用该函数，所以其返回值为0。setjmp参数env的类型是一个特殊类型jmp_buf。这一数据类型是某种形式的数组，其中存放在调用longjmp时能用来恢复栈状态的所有信息。因为需在另一个函数中引用env变量，所以通常将env变量定义为全局变量。
 
当检查到一个错误时，例如在cmd_add函数中，则以两个参数调用longjmp函数。第一个就是在调用setjmp时所用的env；第二个参数是具非0值的val，它将成为从setjmp处返回的值。使用第二个参数的原因是对于一个setjmp可以有多个longjmp。例如，可以在cmd_add中以val为1调用longjmp，也可在get_token中以val为2调用longjmp。在main函数中，setjmp的返回值就会是1或2，通过测试返回值就可判断造成返回的longjmp是在cmd_add还是在get_token中。
 
再回到程序实例中，图7-11中给出了经修改过后的main和cmd_add函数（其他两个函数do_line和get_token未更改）。
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#include "apue.h"

#include <setjmp.h>



#define　　　TOK_ADD　　　 5



jmp_buf　　jmpbuffer;



int

main(void)

{

 　　char　　　　 line[MAXLINE];



 　　if (setjmp(jmpbuffer) != 0)

　　　　　printf("error");

 　　while (fgets(line, MAXLINE, stdin) != NULL)

　　　　　do_line(line);

 　　exit(0);

}



 . . .



void

cmd_add(void)

{

 　　int　　　token;



 　　token = get_token();

 　　if (token < 0)　　　　　　/* an error has occurred */

　　　　　longjmp(jmpbuffer, 1);

 　　/* rest of processing for this command */

}
 
图7-11　setjmp和longjmp实例
 
执行main时，调用setjmp，它将所需的信息记入变量jmpbuffer中并返回0。然后调用do_line，它又调用cmd_add，假定在其中检测到一个错误。在cmd_add中调用longjmp之前，栈如图7-10中所示。但是longjmp使栈反绕到执行main函数时的情况，也就是抛弃了cmd_add和do_line的栈帧（见图7-12）。调用longjmp造成main中setjmp的返回，但是，这一次的返回值是1（longjmp的第二个参数）。
 
[image: 0712]
 
图7-12　在调用longjmp后的栈帧
 
1．自动变量、寄存器变量和易失变量
 
我们已经了解在调用longjmp后栈帧的基本结构，下一个问题是：“在main函数中，自动变量和寄存器变量的状态如何？”当longjmp返回到main函数时，这些变量的值是否能恢复到以前调用setjmp时的值（即回滚到原先值），或者这些变量的值保持为调用do_line时的值（do_line调用cmd_add，cmd_add又调用longjmp）？遗憾的是，对此问题的回答是“看情况”。大多数实现并不回滚这些自动变量和寄存器变量的值，而所有标准则称它们的值是不确定的。如果你有一个自动变量，而又不想使其值回滚，则可定义其为具有volatile属性。声明为全局变量或静态变量的值在执行longjmp时保持不变。
 
实例
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下面我们通过图7-13程序说明在调用longjmp后，自动变量、全局变量、寄存器变量、静态变量和易失变量的不同情况。
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#include "apue.h"

#include <setjmp.h>



static void　　f1(int, int, int, int);

static void　　f2(void);



static jmp_buf　 jmpbuffer;

static int　　　　globval;



int

main(void)

{

 　　int　　　　　　　　　autoval;

 　　register int　　　 regival;

 　　volatile int　　　 volaval;

 　　static int　　　　 statval;



 　　globval = 1; autoval = 2; regival = 3; volaval = 4; statval = 5;



 　　if (setjmp(jmpbuffer) != 0) {

　　　　　printf("after longjmp:\n");

　　　　　printf("globval = %d, autoval = %d, regival = %d,"

　　　　　　　" volaval = %d, statval = %d\n",

　　　　　　　globval, autoval, regival, volaval, statval);

　　　　　exit(0);

 　　}



 　　/*

　　　* Change variables after setjmp, but before longjmp.

　　　*/

 　　globval = 95; autoval = 96; regival = 97; volaval = 98;

 　　statval = 99;



 　　f1(autoval, regival, volaval, statval);　　　　　　/* never returns */

 　　exit(0);

}



static void

f1(int i, int j, int k, int l)

{

 　　printf("in f1():\n");

 　　printf("globval = %d, autoval = %d, regival = %d,"

 　　　　" volaval = %d, statval = %d\n", globval, i, j, k, l);

 　　f2();

}



static void

f2(void)

{

 　　longjmp(jmpbuffer, 1);

}
 
图7-13　longjmp对各类变量的影响
 
如果以不带优化和带优化选项对此程序分别进行编译，然后运行它们，则得到的结果是不同的：
 
$ gcc testjmp.c　　　　　　　 不进行任何优化的编译

$ ./a.out

in f1():

globval = 95, autoval = 96, regival = 97, volaval = 98, statval = 99

after longjmp:

globval = 95, autoval = 96, regival = 97, volaval = 98, statval = 99

$ gcc -O testjmp.c　　　　　　进行全部优化的编译

$ ./a.out

in f1():

globval = 95, autoval = 96, regival = 97, volaval = 98, statval = 99

after longjmp:

globval = 95, autoval = 2, regival = 3, volaval = 98, statval = 99


 
注意，全局变量、静态变量和易失变量不受优化的影响，在longjmp之后，它们的值是最近所呈现的值。在某个系统的setjmp(3)手册页上说明，存放在存储器中的变量将具有longjmp时的值，而在CPU和浮点寄存器中的变量则恢复为调用setjmp时的值。这确实就是运行图7-13程序时所观察到的值。不进行优化时，所有这5个变量都存放在存储器中（即忽略了对regival变量的register存储类说明）。而进行了优化后，autoval和regival都存放在寄存器中（即使autoval并未说明为register），volatile变量则仍存放在存储器中。通过这一实例我们可以理解到，如果要编写一个使用非局部跳转的可移植程序，则必须使用volatile属性。但是从一个系统移植到另一个系统，其他任何事情都可能改变。
 
在图7-13中，某些printf的格式字符串可能不适宜安排在程序文本的一行中。我们没有将其分成多个printf调用，而是使用了ISO C的字符串连接功能，于是两个字符串序列
 
"string1" "string2"
 
等价于
 
"string1string2"
 
第10章讨论信号处理程序及sigsetjmp和siglongjmp时，将再次涉及setjmp和longjmp函数。
 
2．自动变量的潜在问题
 
前面已经说明了处理栈帧的一般方式，现在值得分析一下自动变量的一个潜在出错情况。基本规则是声明自动变量的函数已经返回后，不能再引用这些自动变量。在整个UNIX手册中，关于这一点有很多警告。
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图7-14中给出了一个名为open_data的函数，它打开了一个标准I/O流，然后为该流设置缓冲。
 
#include　<stdio.h>



FILE *

open_data(void)

{

 　　FILE *fp;

 　　Char databuf[BUFSIZ];　/* setvbuf makes this the stdio buffer */



 　　if ((fp = fopen("datafile", "r")) == NULL)

　　　　　return(NULL);

 　　if (setvbuf(fp, databuf, _IOLBF, BUFSIZ) != 0)

　　　　　return(NULL);

 　　return(fp);　　　　　　　/* error */

}
 
图7-14　自动变量的不正确使用
 
问题是：当open_data返回时，它在栈上所使用的空间将由下一个被调用函数的栈帧使用。但是，标准I/O库函数仍将使用这部分存储空间作为该流的缓冲区。这就产生了冲突和混乱。为了改正这一问题，应在全局存储空间静态地（如static或extern）或者动态地（使用一种alloc函数）为数组databuf分配空间。
 
7.11　函数getrlimit和setrlimit
 
每个进程都有一组资源限制，其中一些可以用getrlimit和setrlimit函数查询和更改。
 
#include <sys/resource.h>



int getrlimit(int resource, struct rlimit *rlptr);



int setrlimit(int resource, const struct rlimit *rlptr);



　　　　　　　　　　　　　　　两个函数返回值：若成功，返回0；若出错，返回非0


 
 
 这两个函数在Single UNIX Specification的XSI扩展中定义。进程的资源限制通常是在系统初始化时由0进程建立的，然后由后续进程继承。每种实现都可以用自己的方法对资源限制做出调整。
 

 
对这两个函数的每一次调用都指定一个资源以及一个指向下列结构的指针。
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struct rlimit {

　　rlim_t rlim_cur;　 /* soft limit: current limit */

　　rlim_t rlim_max;　 /* hard limit: maximum value for rlim_cur */

};
 
在更改资源限制时，须遵循下列3条规则。
 
（1）任何一个进程都可将一个软限制值更改为小于或等于其硬限制值。
 
（2）任何一个进程都可降低其硬限制值，但它必须大于或等于其软限制值。这种降低，对普通用户而言是不可逆的。
 
（3）只有超级用户进程可以提高硬限制值。
 
常量RLIM_INFINITY指定了一个无限量的限制。
 
这两个函数的resource参数取下列值之一。图7-15显示哪些资源限制是由Single UNIX Specification定义并由本书讨论的4种UNIX系统实现支持的。
 
[image: 7-15.jpg]
 
图7-15　对资源限制的支持
 
RLIMIT_AS　　进程总的可用存储空间的最大长度（字节）。这影响到sbrk函数（1.11节）和mmap函数（14.8节）。
 
RLIMIT_CORE　　core文件的最大字节数，若其值为0则阻止创建core文件。
 
RLIMIT_CPU　　CPU时间的最大量值（秒），当超过此软限制时，向该进程发送SIGXCPU信号。
 
RLIMIT_DATA　　数据段的最大字节长度。这是图7-6中初始化数据、非初始以及堆的总和。
 
RLIMIT_FSIZE　　可以创建的文件的最大字节长度。当超过此软限制时，则向该进程发送SIGXFSZ信号。
 
RLIMIT_MEMLOCK　　一个进程使用mlock(2)能够锁定在存储空间中的最大字节长度。
 
RLIMIT_MSGQUEUE　　进程为POSIX消息队列可分配的最大存储字节数。
 
RLIMIT_NICE　　为了影响进程的调度优先级，nice值（8.16节）可设置的最大限制。
 
RLIMIT_NOFILE　　每个进程能打开的最多文件数。更改此限制将影响到sysconf函数在参数_SC_OPEN_MAX中返回的值（见2.5.4节），亦见图2-17。
 
RLIMIT_NPROC　　每个实际用户ID可拥有的最大子进程数。更改此限制将影响到sysconf函数在参数_SC_CHILD_MAX中返回的值（见2.5.4节）。
 
RLIMIT_NPTS　　用户可同时打开的伪终端（第19章）的最大数量。
 
RLIMIT_RSS　　最大驻内存集字节长度（resident set size in bytes，RSS）。如果可用的物理存储器非常少，则内核将从进程处取回超过RSS的部分。
 
RLIMIT_SBSIZE　　在任一给定时刻，一个用户可以占用的套接字缓冲区的最大长度（字节）。
 
RLIMIT_SIGPENDING　　一个进程可排队的信号最大数量。这个限制是sigqueue函数实施的（10.20节）。
 
RLIMIT_STACK　　栈的最大字节长度。见图7-6。
 
RLIMIT_SWAP　　用户可消耗的交换空间的最大字节数
 
RLIMIT_VMEM　　这是RLIMIT_AS的同义词。
 
资源限制影响到调用进程并由其子进程继承。这就意味着，为了影响一个用户的所有后续进程，需将资源限制的设置构造在shell之中。确实，Bourne shell、GNU Bourne-again shell和Korn shell具有内置的ulimit命令，C shell具有内置limit命令。（umask和chdir函数也必须是shell内置的。）
 
实例
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图7-16的程序打印由系统支持的所有资源当前的软限制和硬限制。为了在各种实现上编译该程序，我们已经条件地包括了各种不同的资源名。注意，有些平台定义rlim_t为unsigned long long而非unsigned long。在同一系统中这个定义可能也会变动，这取决于我们在编译程序候是否支持64位文件。有些限制作用于文件大小，因此rlim_t类型必须足够大才能表示文件大小限制。为了避免使用错误的格式说明而导致编译器警告，通常会首先把限制复制到64位整型，这样只需处理一种格式。
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#include "apue.h"

#include <sys/resource.h>



#define　doit(name)　 pr_limits(#name, name)



static void　　pr_limits(char *, int);



int

main(void)

{

#ifdef　　RLIMIT_AS

 　　doit(RLIMIT_AS);

#endif



 　　doit(RLIMIT_CORE);

 　　doit(RLIMIT_CPU);

 　　doit(RLIMIT_DATA);

 　　doit(RLIMIT_FSIZE);



#ifdef　　RLIMIT_MEMLOCK

 　　doit(RLIMIT_MEMLOCK);

#endif



#ifdef RLIMIT_MSGQUEUE

 　　doit(RLIMIT_MSGQUEUE);

#endif



#ifdef RLIMIT_NICE

 　　doit(RLIMIT_NICE);

#endif



 　　doit(RLIMIT_NOFILE);



#ifdef　　RLIMIT_NPROC

 　　doit(RLIMIT_NPROC);

#endif



#ifdef RLIMIT_NPTS

 　　doit(RLIMIT_NPTS);

#endif



#ifdef　　RLIMIT_RSS

 　　doit(RLIMIT_RSS);

#endif



#ifdef　　RLIMIT_SBSIZE

 　　doit(RLIMIT_SBSIZE);

#endif



#ifdef RLIMIT_SIGPENDING

 　　doit(RLIMIT_SIGPENDING);

#endif



 　　doit(RLIMIT_STACK);



#ifdef RLIMIT_SWAP

 　　doit(RLIMIT_SWAP);

#endif



#ifdef　　RLIMIT_VMEM

 　　doit(RLIMIT_VMEM);

#endif



 　　exit(0);

}



static void

pr_limits(char *name, int resource)

{

 　　struct rlimit　　　　limit;

 　　unsigned long long　lim;



 　　if (getrlimit(resource, &limit) < 0)

　　　　 err_sys("getrlimit error for %s", name);

 　　printf("%-14s　", name);

 　　if (limit.rlim_cur == RLIM_INFINITY) {

　　　　　printf("(infinite)　");

 　　} else {

　　　　 lim = limit.rlim_cur;

　　　　 printf("%10lld　", lim);

 　　}

 　　if (limit.rlim_max == RLIM_INFINITY) {

　　　　 printf("(infinite)");

 　　} else {

　　　　 lim = limit.rlim_max;

　　　　 printf("%10lld", lim);

 　　}

 　　putchar((int)'\n');

}
 
图7-16　打印当前资源限制
 
注意，在doit宏中使用了ISO C的字符串创建算符（#），以便为每个资源名产生字符串值。例如：
 
doit(RLIMIT_CORE);
 
这将由C预处理程序扩展为：
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pr_limits("RLIMIT_CORE",　RLIMIT_CORE);
 
在FreeBSD下运行此程序，得到：
 
$ ./a.out

RLIMIT_AS          (infinite)      (infinite)

RLIMIT_CORE        (infinite)      (infinite)

RLIMIT_CPU         (infinite)      (infinite)

RLIMIT_DATA         536870912      536870912

RLIMIT_FSIZE       (infinite)      (infinite)

RLIMIT_MEMLOCK     (infinite)      (infinite)

RLIMIT_NOFILE            3520           3520

RLIMIT_NPROC             1760           1760

RLIMIT_NPTS        (infinite)      (infinite)

RLIMIT_RSS         (infinite)      (infinite)

RLIMIT_SBSIZE   　  (infinite)     (infinite)

RLIMIT_STACK        67108864        67108864

RLIMIT_SWAP        (infinite)      (infinite)

RLIMIT_VMEM        (infinite)      (infinite)


 
在Solaris下运行此程序，得到：
 
$ ./a.out

RLIMIT_AS            (infinite)　　(infinite)

RLIMIT_CORE          (infinite)　　(infinite)

RLIMIT_CPU           (infinite)　　(infinite)

RLIMIT_DATA          (infinite)　　(infinite)

RLIMIT_FSIZE         (infinite)　　(infinite)

RLIMIT_NOFILE              256         65536

RLIMIT_STACK           8388608 　　(infinite)

RLIMIT_VMEM          (infinite)　　(infinite)


 
在介绍了信号机制后，习题10.11将继续讨论资源限制。
 
7.12　小结
 
理解UNIX系统环境中C程序的环境是理解UNIX系统进程控制特性的先决条件。本章说明了一个进程是如何启动和终止的，如何向其传递参数表和环境。虽然参数表和环境都不是由内核进行解释的，但内核起到了从exec的调用者将这两者传递给新进程的作用。
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本章也说明了C程序的典型存储空间布局，以及一个进程如何动态地分配和释放存储空间。详细地了解用于维护环境的一些函数是有意义的，因为它们涉及存储空间分配。本章也介绍了setjmp和longjmp函数，它们提供了一种在进程内非局部转移的方法。最后介绍了各种实现提供的资源限制功能。
 
习题
 
7.1　在Intel x86系统上，使用Linux，如果执行一个输出“hello, world”的程序但不调用exit或return，则程序的返回代码为13（用shell检查），解释其原因。
 
7.2　图7-3中的printf函数的结果何时才被真正输出？
 
7.3　是否有方法不使用（a）参数传递、（b）全局变量这两种方法，将main中的参数argc和argv传递给它所调用的其他函数？
 
7.4　在有些UNIX系统实现中执行程序时访问不到其数据段的0单元，这是一种有意的安排，为什么？
 
7.5　用C语言的typedef为终止处理程序定义了一个新的数据类型Exitfunc，使用该类型修改atexit的原型。
 
7.6　如果用calloc分配一个long型的数组，数组的初始值是否为0？如果用calloc分配一个指针数组，数组的初始值是否为空指针？
 
7.7　在7.6节结尾处size命令的输出结果中，为什么没有给出堆和栈的大小？
 
7.8　为什么7.7节中两个文件的大小（879 443和8 378）不等于它们各自文本和数据大小的和？
 
7.9　为什么7.7节中对于一个简单的程序，使用共享库以后其可执行文件的大小变化如此巨大？
 
7.10　在7.10节中我们已经说明为什么不能将一个指针返回给一个自动变量，下面的程序是否正确？
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　int

　f1(int val)

　{

　　　int　　　num = 0;

　　　int　　　*ptr = &num;

　　　if (val == 0) {

　　　　　 int　　　val;

　　　　　 val = 5;

　　　　　 ptr = &val;

　　　}

　　　return(*ptr + 1);

　}
 


第8章　进程控制
 
8.1　引言
 
本章介绍UNIX系统的进程控制，包括创建新进程、执行程序和进程终止。还将说明进程属性的各种ID——实际、有效和保存的用户ID和组ID，以及它们如何受到进程控制原语的影响。本章还包括了解释器文件和system函数。本章最后讲述大多数UNIX系统所提供的进程会计机制，这种机制使我们能够从另一个角度了解进程的控制功能。
 
8.2　进程标识
 
每个进程都有一个非负整型表示的唯一进程ID。因为进程ID标识符总是唯一的，常将其用作其他标识符的一部分以保证其唯一性。例如，应用程序有时就把进程ID作为名字的一部分来创建一个唯一的文件名。
 
虽然是唯一的，但是进程ID是可复用的。当一个进程终止后，其进程ID就成为复用的候选者。大多数UNIX系统实现延迟复用算法，使得赋予新建进程的ID不同于最近终止进程所使用的ID。这防止了将新进程误认为是使用同一ID的某个已终止的先前进程。
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系统中有一些专用进程，但具体细节随实现而不同。ID为0的进程通常是调度进程，常常被称为交换进程（swapper）。该进程是内核的一部分，它并不执行任何磁盘上的程序，因此也被称为系统进程。进程ID 1通常是init进程，在自举过程结束时由内核调用。该进程的程序文件在UNIX的早期版本中是/etc/init，在较新版本中是/sbin/init。此进程负责在自举内核后启动一个UNIX系统。init通常读取与系统有关的初始化文件（/etc/rc*文件或/etc/inittab文件，以及在/etc/init.d中的文件），并将系统引导到一个状态（如多用户）。init进程决不会终止。它是一个普通的用户进程（与交换进程不同，它不是内核中的系统进程），但是它以超级用户特权运行。本章稍后部分会说明init如何成为所有孤儿进程的父进程。
 
 
 在Mac OS X 10.4中，init进程被launchd进程替代，执行的任务集与init相同，但扩展了功能。可参阅Singh[2006]在5.10节中的讨论来了解launchd是如何操作的。
 

 
每个UNIX系统实现都有它自己的一套提供操作系统服务的内核进程，例如，在某些UNIX的虚拟存储器实现中，进程ID 2是页守护进程（page daemon），此进程负责支持虚拟存储器系统的分页操作。
 
除了进程ID，每个进程还有一些其他标识符。下列函数返回这些标识符。
 
#include <unistd.h>



pid_t getpid(void); 



　　　　　　　　　　　　　　　　　　　　返回值：调用进程的进程ID

pid_t getppid(void); 



　　　　　　　　　　　　　　　　　　　　返回值：调用进程的父进程ID

uid_t getuid(void); 



　　　　　　　　　　　　　　　　　　　　返回值：调用进程的实际用户ID

uid_t geteuid(void);



　　　　　　　　　　　　　　　　　　　　返回值：调用进程的有效用户ID

gid_t getgid(void); 



　　　　　　　　　　　　　　　　　　　　返回值：调用进程的实际组ID

gid_t getegid(void);

　　　　　　　　　　　　　　　　　　　　返回值：调用进程的有效组ID
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注意，这些函数都没有出错返回，在下一节讨论fork函数时，将进一步讨论父进程ID。在4.4节中已讨论了实际和有效用户ID及组ID。
 
8.3　函数fork
 
一个现有的进程可以调用fork函数创建一个新进程。
 
#include <unistd.h>



pid_t fork(void);



　　　　　　　　　　　　　　　　　　　　返回值：子进程返回0，父进程返回子进程ID；若出错，返回−1
 
由fork创建的新进程被称为子进程（child process）。fork函数被调用一次，但返回两次。两次返回的区别是子进程的返回值是0，而父进程的返回值则是新建子进程的进程ID。将子进程ID返回给父进程的理由是：因为一个进程的子进程可以有多个，并且没有一个函数使一个进程可以获得其所有子进程的进程ID。fork使子进程得到返回值0的理由是：一个进程只会有一个父进程，所以子进程总是可以调用getppid以获得其父进程的进程ID（进程ID 0总是由内核交换进程使用，所以一个子进程的进程ID不可能为0）。
 
子进程和父进程继续执行fork调用之后的指令。子进程是父进程的副本。例如，子进程获得父进程数据空间、堆和栈的副本。注意，这是子进程所拥有的副本。父进程和子进程并不共享这些存储空间部分。父进程和子进程共享正文段（见7.6节）。
 
由于在fork之后经常跟随着exec，所以现在的很多实现并不执行一个父进程数据段、栈和堆的完全副本。作为替代，使用了写时复制（Copy-On-Write，COW）技术。这些区域由父进程和子进程共享，而且内核将它们的访问权限改变为只读。如果父进程和子进程中的任一个试图修改这些区域，则内核只为修改区域的那块内存制作一个副本，通常是虚拟存储系统中的一“页”。Bach[1986]的9.2节和McKusick等[1996]的5.6节和5.7节对这种特征做了更详细的说明。
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 某些平台提供fork函数的几种变体。本书讨论的4种平台都支持下节将要讨论的vfork(2)。
 
 Linux 3.2.0提供了另一种新进程创建函数——clone(2)系统调用。这是一种fork的推广形式，它允许调用者控制哪些部分由父进程和子进程共享。
 
 FreeBSD 8.0提供了rfork(2)系统调用，它类似于Linux的clone系统调用。rfork调用是从Plan 9操作系统（Pike等[1995]）派生出来的。
 
 Solaris 10提供了两个线程库：一个用于POSIX线程（pthreads），另一个用于Solaris线程。在这两个线程库中，fork的行为有所不同。对于POSIX线程，fork创建一个进程，它仅包含调用该fork的线程，但对于Solaris线程，fork创建的进程包含了调用线程所在进程的所有线程的副本。在Solaris 10中，这种行为改变了。不管使用哪种线程库，fork创建的子进程只保留调用线程的副本。Solaris也提供了fork1函数，它创建的进程只复制调用线程。还有forkall函数，它创建的进程复制了进程中所有的线程。第11章和第12章将详细讨论线程。
 

 
实例
 
图8-1程序演示了fork函数，从中可以看到子进程对变量所做的改变并不影响父进程中该变量的值。
 
#include "apue.h"



int　　　　globvar = 6; 　　 　　/* external variable in initialized data */

char　buf[] = "a write to stdout\n";



int

main(void)

{

 　　int　　　var; 　　　　/* automatic variable on the stack */

 　　pid_t　　pid;



 　　var = 88;

 　　if (write(STDOUT_FILENO, buf, sizeof(buf)-1) != sizeof(buf)-1)

　　　　　err_sys("write error");

 　　printf("before fork\n");　　  　/* we don't flush stdout */



 　　if ((pid = fork()) < 0) {

　　　　　err_sys("fork error");

 　　} else if (pid == 0) {　　　　 　/* child */

　　　　　globvar++;　　　　　　　　　　/* modify variables */

　　　　　var++;

 　　} else {

　　　　　sleep(2); 　　　　　　　　　　/* parent */

 　　}



 　　printf("pid = %ld, glob = %d, var = %d\n", (long)getpid(), globvar,

 　　　var);

 　　exit(0);

}
 
图8-1　fork函数实例
 
如果执行此程序则得到：
 
$ ./a.out

a write to stdout

before fork

pid = 430, glob = 7, var = 89　　子进程的变量值改变了

pid = 429, glob = 6, var = 88　　父进程的变量值没有改变

$ a.out > temp.out

$ cat temp.out

a write to stdout

before fork

pid = 432, glob = 7, var = 89

before fork

pid = 431, glob = 6, var = 88
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一般来说，在fork之后是父进程先执行还是子进程先执行是不确定的，这取决于内核所使用的调度算法。如果要求父进程和子进程之间相互同步，则要求某种形式的进程间通信。在图8-1程序中，父进程使自己休眠2 s，以此使子进程先执行。但并不保证2 s已经足够，在8.9节讲述竞争条件时还将谈及这一问题及其他类型的同步方法。在10.16节中，我们将说明在fork之后如何使用信号使父进程和子进程同步。
 
当写标准输出时，我们将buf长度减去1作为输出字节数，这是为了避免将终止null字节写出。strlen计算不包含终止null字节的字符串长度，而sizeof则计算包括终止null字节的缓冲区长度。两者之间的另一个差别是，使用strlen需进行一次函数调用，而对于sizeof而言，因为缓冲区已用已知字符串进行初始化，其长度是固定的，所以sizeof是在编译时计算缓冲区长度。
 
注意图8-1所示的程序中fork与I/O函数之间的交互关系。回忆第3章中所述，write函数是不带缓冲的。因为在fork之前调用write，所以其数据写到标准输出一次。但是，标准I/O库是带缓冲的。回忆一下5.12节，如果标准输出连到终端设备，则它是行缓冲的；否则它是全缓冲的。当以交互方式运行该程序时，只得到该printf输出的行一次，其原因是标准输出缓冲区由换行符冲洗。但是当将标准输出重定向到一个文件时，却得到printf输出行两次。其原因是，在fork之前调用了printf一次，但当调用fork时，该行数据仍在缓冲区中，然后在将父进程数据空间复制到子进程中时，该缓冲区数据也被复制到子进程中，此时父进程和子进程各自有了带该行内容的缓冲区。在exit之前的第二个printf将其数据追加到已有的缓冲区中。当每个进程终止时，其缓冲区中的内容都被写到相应文件中。
 
文件共享
 
对图8-1程序需注意的另一点是：在重定向父进程的标准输出时，子进程的标准输出也被重定向。实际上，fork的一个特性是父进程的所有打开文件描述符都被复制到子进程中。我们说“复制”是因为对每个文件描述符来说，就好像执行了dup函数。父进程和子进程每个相同的打开描述符共享一个文件表项（见图3-9）。
 
考虑下述情况，一个进程具有3个不同的打开文件，它们是标准输入、标准输出和标准错误。在从fork返回时，我们有了如图8-2中所示的结构。
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重要的一点是，父进程和子进程共享同一个文件偏移量。考虑下述情况：一个进程fork了一个子进程，然后等待子进程终止。假定，作为普通处理的一部分，父进程和子进程都向标准输出进行写操作。如果父进程的标准输出已重定向（很可能是由shell实现的），那么子进程写到该标准输出时，它将更新与父进程共享的该文件的偏移量。在这个例子中，当父进程等待子进程时，子进程写到标准输出；而在子进程终止后，父进程也写到标准输出上，并且知道其输出会追加在子进程所写数据之后。如果父进程和子进程不共享同一文件偏移量，要实现这种形式的交互就要困难得多，可能需要父进程显式地动作。
 
[image: ..\14-0434yds排版CMM\UNIX环境高级编程（第3版）tu\0802.tif]
 
图8-2　fork之后父进程和子进程之间对打开文件的共享
 
如果父进程和子进程写同一描述符指向的文件，但又没有任何形式的同步（如使父进程等待子进程），那么它们的输出就会相互混合（假定所用的描述符是在fork之前打开的）。虽然这种情况是可能发生的（见图8-2），但这并不是常用的操作模式。
 
在fork之后处理文件描述符有以下两种常见的情况。
 
（1）父进程等待子进程完成。在这种情况下，父进程无需对其描述符做任何处理。当子进程终止后，它曾进行过读、写操作的任一共享描述符的文件偏移量已做了相应更新。
 

  232 

 
（2）父进程和子进程各自执行不同的程序段。在这种情况下，在fork之后，父进程和子进程各自关闭它们不需使用的文件描述符，这样就不会干扰对方使用的文件描述符。这种方法是网络服务进程经常使用的。
 
除了打开文件之外，父进程的很多其他属性也由子进程继承，包括：
 
 
 	实际用户ID、实际组ID、有效用户ID、有效组ID
 
 	附属组ID
 
 	进程组ID
 
 	会话ID
 
 	控制终端
 
 	设置用户ID标志和设置组ID标志
 
 	当前工作目录
 
 	根目录
 
 	文件模式创建屏蔽字
 
 	信号屏蔽和安排
 
 	对任一打开文件描述符的执行时关闭（close-on-exec）标志
 
 	环境
 
 	连接的共享存储段
 
 	存储映像
 
 	资源限制
 

 
父进程和子进程之间的区别具体如下。
 
 
 	fork的返回值不同。
 
 	进程ID不同。
 
 	这两个进程的父进程ID不同：子进程的父进程ID是创建它的进程的ID，而父进程的父进程ID则不变。
 
 	子进程的tms_utime、tms_stime、tms_cutime和tms_ustime的值设置为0（这些时间将在8.17节中介绍）。
 
 	子进程不继承父进程设置的文件锁。
 
 	子进程的未处理闹钟被清除。
 
 	子进程的未处理信号集设置为空集。
 

 
其中很多特性至今尚未讨论过，我们将在以后几章中对它们进行说明。
 
使fork失败的两个主要原因是：（a）系统中已经有了太多的进程（通常意味着某个方面出了问题），（b）该实际用户ID的进程总数超过了系统限制。回忆图2-11，其中CHILD_MAX规定了每个实际用户ID在任一时刻可拥有的最大进程数。
 
fork有以下两种用法。
 
（1）一个父进程希望复制自己，使父进程和子进程同时执行不同的代码段。这在网络服务进程中是常见的——父进程等待客户端的服务请求。当这种请求到达时，父进程调用fork，使子进程处理此请求。父进程则继续等待下一个服务请求。
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（2）一个进程要执行一个不同的程序。这对shell是常见的情况。在这种情况下，子进程从fork返回后立即调用exec（我们将在8.10节说明exec）。
 
某些操作系统将第2种用法中的两个操作（fork之后执行exec）组合成一个操作，称为spawn。UNIX系统将这两个操作分开，因为在很多场合需要单独使用fork，其后并不跟随exec。另外，将这两个操作分开，使得子进程在fork和exec之间可以更改自己的属性，如I/O重定向、用户ID、信号安排等。在第15章中有很多这方面的例子。
 
 
 Single UNIX Specification在高级实时选项组中确实包括了spawn接口。但是该接口并不想替换fork和exec。它们的目的是支持难于有效实现fork的系统，特别是对存储管理缺少硬件支持的系统。
 

 
8.4　函数vfork
 
vfork函数的调用序列和返回值与fork相同，但两者的语义不同。
 
 
 vfork起源于较早的2.9BSD。有些人认为，该函数是有瑕疵的。但是本书讨论的4种平台都支持它。事实上，BSD的开发者在4.4BSD中删除了该函数，但4.4BSD派生的所有开放源码BSD版本又将其收回。在SUSv3中，vfork被标记为弃用的接口，在SUSv4中被完全删除。我们只是由于历史的原因还是把它包含进来。可移植的应用程序不应该使用这个函数。
 

 
vfork函数用于创建一个新进程，而该新进程的目的是exec一个新程序（如上一节末尾的（2）中一样）。图1-7程序中的shell基本部分就是这类程序的一个例子。vfork与fork一样都创建一个子进程，但是它并不将父进程的地址空间完全复制到子进程中，因为子进程会立即调用exec（或exit），于是也就不会引用该地址空间。不过在子进程调用exec或exit之前，它在父进程的空间中运行。这种优化工作方式在某些UNIX系统的实现中提高了效率，但如果子进程修改数据（除了用于存放vfork返回值的变量）、进行函数调用、或者没有调用exec或exit就返回都可能会带来未知的结果。（就像上一节中提及的，实现采用写时复制技术以提高fork之后跟随exec操作的效率，但是不复制比部分复制还是要快一些。）
 
vfork和fork之间的另一个区别是：vfork保证子进程先运行，在它调用exec或exit之后父进程才可能被调度运行，当子进程调用这两个函数中的任意一个时，父进程会恢复运行。（如果在调用这两个函数之前子进程依赖于父进程的进一步动作，则会导致死锁。）
 
实例
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图8-3中的程序是图8-1中的程序的修改版，其中用vfork代替了fork，删除了对于标准输出的write调用。另外，我们也不再需要让父进程调用sleep，因为我们可以保证，在子进程调用exec或exit之前，内核会使父进程处于休眠状态。
 
#include "apue.h"



int　　　　globvar = 6; 　　　　/* external variable in initialized data */



int

main(void)

{

 　　int　　　　var; 　　　　　　/* automatic variable on the stack */

 　　pid_t　　　pid;



 　　var = 88;

 　　printf("before vfork\n");　　　/* we don't flush stdio */

 　　if ((pid = vfork()) < 0) {

　　　　　err_sys("vfork error");

 　　} else if (pid == 0) {　　　　　/* child */

　　　　　globvar++;　　　　　　　　　　/* modify parent's variables */

　　　　　var++;

　　　　　_exit(0); 　　　　　　　　　　/* child terminates */

 　　}

 　　/* parent continues here */

 　　printf("pid = %ld, glob = %d, var = %d\n", (long)getpid(), globvar,

 　　　var);

 　　exit(0);

}
 
图8-3　vfork函数实例
 
运行该程序得到：
 
$.la.out

before vfork

pid = 29039, glob = 7, var = 89


 
子进程对变量做增1的操作，结果改变了父进程中的变量值。因为子进程在父进程的地址空间中运行，所以这并不令人惊讶。但是其作用的确与fork不同。
 
注意，在图8-3程序中，调用了_exit而不是exit。正如7.3节所述，_exit并不执行标准I/O缓冲区的冲洗操作。如果调用的是exit而不是_exit，则该程序的输出是不确定的。它依赖于标准I/O库的实现，我们可能会看到输出没有发生变化，或者发现没有出现父进程的printf输出。
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如果子进程调用exit，实现冲洗标准I/O流。如果这是函数库采取的唯一动作，那么我们会见到这样操作的输出与子进程调用_exit所产生的输出完全相同，没有任何区别。如果该实现也关闭标准I/O流，那么表示标准输出FILE对象的相关存储区将被清0。因为子进程借用了父进程的地址空间，所以当父进程恢复运行并调用printf时，也就不会产生任何输出，printf返回−1。注意，父进程的STDOUT_FILENO仍然有效，子进程得到的是父进程的文件描述符数组的副本（参见图8-2）。
 
 
 大多数exit的现代实现不再在流的关闭方面自找麻烦。因为进程即将终止，那时内核将关闭在进程中已打开的所有文件描述符。在库中关闭这些，只是增加了开销而不会带来任何益处。
 

 
McKusick等[1996]的5.6节中包含了fork和vfork实现方面的更多信息。习题8.1和习题8.2将继续对vfork进行讨论。
 
8.5　函数exit
 
如7.3节所述，进程有5种正常终止及3种异常终止方式。5种正常终止方式具体如下。
 
（1）在main函数内执行return语句。如在7.3节中所述，这等效于调用exit。
 
（2）调用exit函数。此函数由ISO C定义，其操作包括调用各终止处理程序（终止处理程序在调用atexit函数时登记），然后关闭所有标准I/O流等。因为ISO C并不处理文件描述符、多进程（父进程和子进程）以及作业控制，所以这一定义对UNIX系统而言是不完整的。
 
（3）调用_exit或_Exit函数。ISOC定义_Exit，其目的是为进程提供一种无需运行终止处理程序或信号处理程序而终止的方法。对标准I/O流是否进行冲洗，这取决于实现。在UNIX系统中，_Exit和_exit是同义的，并不冲洗标准I/O流。_exit函数由exit调用，它处理UNIX系统特定的细节。_exit是由POSIX.1说明的。
 
 
 在大多数UNIX系统实现中，exit(3)是标准C库中的一个函数，而_exit(2)则是一个系统调用。
 

 
（4）进程的最后一个线程在其启动例程中执行return语句。但是，该线程的返回值不用作进程的返回值。当最后一个线程从其启动例程返回时，该进程以终止状态0返回。
 
（5）进程的最后一个线程调用pthread_exit函数。如同前面一样，在这种情况中，进程终止状态总是0，这与传送给pthread_exit的参数无关。在11.5节中，我们将对pthread_exit做更多说明。
 
3种异常终止具体如下。
 
（1）调用abort。它产生SIGABRT信号，这是下一种异常终止的一种特例。
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（2）当进程接收到某些信号时。（第10章将较详细地说明信号。）信号可由进程自身（如调用abort函数）、其他进程或内核产生。例如，若进程引用地址空间之外的存储单元、或者除以0，内核就会为该进程产生相应的信号。
 
（3）最后一个线程对“取消”（cancellation）请求作出响应。默认情况下，“取消”以延迟方式发生：一个线程要求取消另一个线程，若干时间之后，目标线程终止。在11.5节和12.7节，我们将详细讨论“取消”请求。
 
不管进程如何终止，最后都会执行内核中的同一段代码。这段代码为相应进程关闭所有打开描述符，释放它所使用的存储器等。
 
对上述任意一种终止情形，我们都希望终止进程能够通知其父进程它是如何终止的。对于3个终止函数（exit、_exit和_Exit），实现这一点的方法是，将其退出状态（exit status）作为参数传送给函数。在异常终止情况，内核（不是进程本身）产生一个指示其异常终止原因的终止状态（termination status）。在任意一种情况下，该终止进程的父进程都能用wait或waitpid函数（将在下一节说明）取得其终止状态。
 
注意，这里使用了“退出状态”（它是传递给向3个终止函数的参数，或main的返回值）和“终止状态”两个术语，以表示有所区别。在最后调用_exit时，内核将退出状态转换成终止状态（回忆图7-2）。图8-4说明父进程检查子进程终止状态的不同方法。如果子进程正常终止，则父进程可以获得子进程的退出状态。
 
在说明fork函数时，显而易见，子进程是在父进程调用fork后生成的。上面又说明了子进程将其终止状态返回给父进程。但是如果父进程在子进程之前终止，又将如何呢？其回答是：对于父进程已经终止的所有进程，它们的父进程都改变为init进程。我们称这些进程由init进程收养。其操作过程大致是：在一个进程终止时，内核逐个检查所有活动进程，以判断它是否是正要终止进程的子进程，如果是，则该进程的父进程ID就更改为1（init进程的ID）。这种处理方法保证了每个进程有一个父进程。
 
另一个我们关心的情况是，如果子进程在父进程之前终止，那么父进程又如何能在做相应检查时得到子进程的终止状态呢？如果子进程完全消失了，父进程在最终准备好检查子进程是否终止时是无法获取它的终止状态的。内核为每个终止子进程保存了一定量的信息，所以当终止进程的父进程调用wait或waitpid时，可以得到这些信息。这些信息至少包括进程ID、该进程的终止状态以及该进程使用的CPU时间总量。内核可以释放终止进程所使用的所有存储区，关闭其所有打开文件。在UNIX术语中，一个已经终止、但是其父进程尚未对其进行善后处理（获取终止子进程的有关信息、释放它仍占用的资源）的进程被称为僵死进程（zombie）。ps(1)命令将僵死进程的状态打印为Z。如果编写一个长期运行的程序，它fork了很多子进程，那么除非父进程等待取得子进程的终止状态，不然这些子进程终止后就会变成僵死进程。
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 某些系统提供了一种避免产生僵死进程的方法，这将在10.7中介绍。
 

 
最后一个要考虑的问题是：一个由init进程收养的进程终止时会发生什么？它会不会变成一个僵死进程？对此问题的回答是“否”，因为init被编写成无论何时只要有一个子进程终止，init就会调用一个wait函数取得其终止状态。这样也就防止了在系统中塞满僵死进程。当提及“一个init的子进程”时，这指的可能是init直接产生的进程（如将在9.2节说明的getty进程），也可能是其父进程已终止，由init收养的进程。
 
8.6　函数wait和waitpid
 
当一个进程正常或异常终止时，内核就向其父进程发送SIGCHLD信号。因为子进程终止是个异步事件（这可以在父进程运行的任何时候发生），所以这种信号也是内核向父进程发的异步通知。父进程可以选择忽略该信号，或者提供一个该信号发生时即被调用执行的函数（信号处理程序）。对于这种信号的系统默认动作是忽略它。第10章将说明这些选项。现在需要知道的是调用wait或waitpid的进程可能会发生什么。
 
 
 	如果其所有子进程都还在运行，则阻塞。
 
 	如果一个子进程已终止，正等待父进程获取其终止状态，则取得该子进程的终止状态立即返回。
 
 	如果它没有任何子进程，则立即出错返回 。
 

 
如果进程由于接收到SIGCHLD信号而调用wait，我们期望wait会立即返回。但是如果在随机时间点调用wait，则进程可能会阻塞。
 
#include <sys/wait.h>



pid_t wait(int *statloc);



pid_t waitpid(pid_t pid, int *statloc, int options);

　　　　　　　　　　　　　　　两个函数返回值：若成功，返回进程ID；若出错，返回0（见后面的说明）或−1


 
这两个函数的区别如下。
 
 
 	在一个子进程终止前，wait使其调用者阻塞，而waitpid有一选项，可使调用者不阻塞。
 
 	waitpid并不等待在其调用之后的第一个终止子进程，它有若干个选项，可以控制它所等待的进程。
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如果子进程已经终止，并且是一个僵死进程，则wait立即返回并取得该子进程的状态；否则wait使其调用者阻塞，直到一个子进程终止。如调用者阻塞而且它有多个子进程，则在其某一子进程终止时，wait就立即返回。因为wait返回终止子进程的进程ID，所以它总能了解是哪一个子进程终止了。
 
这两个函数的参数statloc是一个整型指针。如果statloc不是一个空指针，则终止进程的终止状态就存放在它所指向的单元内。如果不关心终止状态，则可将该参数指定为空指针。
 
依据传统，这两个函数返回的整型状态字是由实现定义的。其中某些位表示退出状态（正常返回），其他位则指示信号编号（异常返回），有一位指示是否产生了core文件等。POSIX.1规定，终止状态用定义在<sys/wait.h>中的各个宏来查看。有4个互斥的宏可用来取得进程终止的原因，它们的名字都以WIF开始。基于这4个宏中哪一个值为真，就可选用其他宏来取得退出状态、信号编号等。这4个互斥的宏示于图8-4中。
 
[image: 8-4.jpg]
 
图8-4　检查wait和waitpid所返回的终止状态的宏
 
在9.8节中讨论作业控制时，将说明如何停止一个进程。
 
实例
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图8-5中的函数pr_exit使用图8-4中的宏以打印进程终止状态的说明。本书中的很多程序都将调用此函数。注意，如果定义了WCOREDUMP宏，则此函数也处理该宏。
 
#include "apue.h"

#include <sys/wait.h>



void

pr_exit(int status)

{

 　　if (WIFEXITED(status))

　　　　　printf("normal termination, exit status = %d\n",

　　　　　　　　　　WEXITSTATUS(status));

 　　else if (WIFSIGNALED(status))

　　　　　printf("abnormal termination, signal number = %d%s\n",

　　　　　　　　　　WTERMSIG(status),

#ifdef　　WCOREDUMP

　　　　　　　　　　WCOREDUMP(status) ? " (core file generated)" : "");

#else

　　　　　　　　　　"");

#endif

 　　else if (WIFSTOPPED(status))

　　　　　printf("child stopped, signal number = %d\n",

　　　　　　　　　　WSTOPSIG(status));

}
 
图8-5　打印exit状态的说明
 
 
 FreeBSD 8.0、Linux 3.2.0、Mac OS X 10.6.8以及Solaris 10都支持WCOREDUMP宏。但是如果定义了_POSIX_C_SOURCE常量，有些平台就隐藏这个定义（回忆2.7节）。
 

 
图8-6中程序调用pr_exit函数，演示终止状态的各种值。
 
#include "apue.h"

#include <sys/wait.h>



int

main(void)

{

 　　pid_t　　pid;

 　　int　　　status;



 　　if ((pid = fork()) < 0)

　　　　　err_sys("fork error");

 　　else if (pid == 0)　　　　　　　　/* child */

　　　　　exit(7);



 　　if (wait(&status) != pid)　　　　/* wait for child */

　　　　　err_sys("wait error");

 　　pr_exit(status); 　　　　　　　　 /* and print its status */



 　　if ((pid = fork()) < 0)

　　　　　err_sys("fork error");

 　　else if (pid == 0)　　　　　　　　/* child */

　　　　　abort();　　　　　　　　　 　　/* generates SIGABRT */



 　　if (wait(&status) != pid)　　　　/* wait for child */

　　　　　err_sys("wait error");

 　　pr_exit(status);　　　　　　　　　/* and print its status */



 　　if ((pid = fork()) < 0)

　　　　　err_sys("fork error");

 　　else if (pid == 0) 　　　　　　　/* child */

　　　　　status /= 0; 　　　　　　　　/* divide by 0 generates SIGFPE */



 　　if (wait(&status) != pid)　　　/* wait for child */

　　　　　err_sys("wait error");

 　　pr_exit(status);　　　　　　　　/* and print its status */



 　　exit(0);

}
 
图8-6　演示不同的exit值
 
运行该程序可得：
 
$ ./a.out

normal termination, exit status = 7

abnormal termination, signal number = 6 (core file generated)

abnormal termination, signal number = 8 (core file generated)


 
现在，我们可以从WTERMSIG中打印信号编号。可以查看<signal.h>头文件验证SIGABRT的值为6，SIGFPE的值为8。我们将在10.22节中看到一种可移植的方式进行信号编号到说明性名字的映射。
 
正如前面所述，如果一个进程有几个子进程，那么只要有一个子进程终止，wait就返回。如果要等待一个指定的进程终止（如果知道要等待进程的ID），那么该如何做呢？在早期的UNIX版本中，必须调用wait，然后将其返回的进程ID和所期望的进程ID相比较。如果终止进程不是所期望的，则将该进程ID和终止状态保存起来，然后再次调用wait。反复这样做，直到所期望的进程终止。下一次又想等待一个特定进程时，先查看已终止的进程列表，若其中已有要等待的进程，则获取相关信息；否则调用wait。其实，我们需要的是等待一个特定进程的函数。POSIX.定义了waitpid函数以提供这种功能（以及其他一些功能）。
 
对于waitpid函数中pid参数的作用解释如下。
 
pid ==−1　　 等待任一子进程。此种情况下，waitpid与wait等效。
 
pid > 0　　 　等待进程ID与pid相等的子进程。
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pid == 0 　 　等待组ID等于调用进程组ID的任一子进程。（9.4节将说明进程组。）
 
pid <−1　　　等待组ID等于pid绝对值的任一子进程。
 
waitpid函数返回终止子进程的进程ID，并将该子进程的终止状态存放在由statloc指向的存储单元中。对于wait，其唯一的出错是调用进程没有子进程（函数调用被一个信号中断时，也可能返回另一种出错。第10章将对此进行讨论）。但是对于waitpid，如果指定的进程或进程组不存在，或者参数pid指定的进程不是调用进程的子进程，都可能出错。
 
options参数使我们能进一步控制waitpid的操作。此参数或者是0，或者是图8-7中常量按位或运算的结果。
 
 
 FreeBSD 8.0和Solaris 10支持另一个非标准的可选常量WNOWAIT，它使系统将终止状态已由waitpid返回的进程保持在等待状态，这样它可被再次等待。
 

 
[image: 8-7.jpg]
 
图8-7　waitpid的options常量
 
waitpid函数提供了wait函数没有提供的3个功能。
 
（1）waitpid可等待一个特定的进程，而wait则返回任一终止子进程的状态。在讨论popen函数时会再说明这一功能。
 
（2）waitpid提供了一个wait的非阻塞版本。有时希望获取一个子进程的状态，但不想阻塞。
 
（3）waitpid通过WUNTRACED和WCONTINUED选项支持作业控制。
 
实例
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回忆8.5节中有关僵死进程的讨论。如果一个进程fork一个子进程，但不要它等待子进程终止，也不希望子进程处于僵死状态直到父进程终止，实现这一要求的诀窍是调用fork两次。图8-8程序实现了这一点。
 
#include "apue.h"

#include <sys/wait.h>



int

main(void)

{

 　　pid_t　　pid;



 　　if ((pid = fork()) < 0) {

　　　　　 err_sys("fork error");

 　　} else if (pid == 0) {　　　　　　　　/* first child */

　　　　　if ((pid = fork()) < 0)

　　　　　　　　err_sys("fork error");

　　　　　else if (pid > 0)

　　　　　　　　exit(0); 　　　　　　/* parent from second fork == first child */



　　　　　/*

　　　　　 * We're the second child; our parent becomes init as soon

　　　　　 * as our real parent calls exit() in the statement above.

　　　　　 * Here's where we'd continue executing, knowing that when

　　　　　 * we're done, init will reap our status.

　　　　　 */

　　　　　 sleep(2);

　　　　　 printf("second child, parent pid = %ld\n", (long)getppid());

　　　　 　exit(0);

 　　}



 　　if (waitpid(pid, NULL, 0) != pid) 　　　　　　/* wait for first child */

　　　　　err_sys("waitpid error");



 　　/*

 　　 * We're the parent (the original process); we continue executing,

 　　 * knowing that we're not the parent of the second child.

 　　 */

 　　exit(0);

}
 
图8-8　fork两次以避免僵死进程
 
第二个子进程调用sleep以保证在打印父进程ID时第一个子进程已终止。在fork之后，父进程和子进程都可继续执行，并且我们无法预知哪一个会先执行。在fork之后，如果不使第二个子进程休眠，那么它可能比其父进程先执行，于是它打印的父进程ID将是创建它的父进程，而不是init进程（进程ID 1）。
 
执行图8-8程序得到：
 
$ ./a.out

$ second child, parent pid = 1
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注意，当原先的进程（也就是exec本程序的进程）终止时，shell打印其提示符，这在第二个子进程打印其父进程ID之前。
 
8.7　函数waitid
 
Single UNIX Specification包括了另一个取得进程终止状态的函数——waitid，此函数类似于waitpid，但提供了更多的灵活性。
 
#include <sys/wait.h>



int waitid(idtype_t idtype, id_t id, siginfo_t *infop, int options);

　　　　　　　　　　　　　　　　　　　　返回值：若成功，返回0；若出错，返回−1


 
与waitpid相似，waitid允许一个进程指定要等待的子进程。但它使用两个单独的参数表示要等待的子进程所属的类型，而不是将此与进程ID或进程组ID组合成一个参数。id参数的作用与idtype的值相关。该函数支持的idtype类型列在图8-9中。
 
[image: 8-9.jpg]
 
图8-9　waitid的idtype常量
 
options参数是图8-10中各标志的按位或运算。这些标志指示调用者关注哪些状态变化。
 
[image: 8-10.jpg]
 
图8-10　waitid的options常量
 
WCONTINUED、WEXITED或WSTOPPED这3个常量之一必须在options参数中指定。
 
infop参数是指向siginfo结构的指针。该结构包含了造成子进程状态改变有关信号的详细信息。10.14节将进一步讨论siginfo结构。
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 本书讨论的4种平台中，Linux 3.2.0、Mac OS X 10.6.8和Solaris 10支持waitid。但要注意的是，Mac OS X 10.6.8并没有设置siginfo结构中的所有信息。
 

 
8.8　函数wait3和wait4
 
大多数UNIX系统实现提供了另外两个函数wait3和wait4。历史上，这两个函数是从UNIX系统的BSD分支延袭下来的。它们提供的功能比POSIX.1函数wait、waitpid和waitid所提供功能的要多一个，这与附加参数有关。该参数允许内核返回由终止进程及其所有子进程使用的资源概况。
 
#include <sys/types.h>

#include <sys/wait.h>

#include <sys/time.h>

#include <sys/resource.h>



pid_t wait3(int *statloc, int options, struct rusage *rusage);



pid_t wait4(pid_t pid, int *statloc, int options, struct rusage *rusage);



　　　　　　　　　　　　　　　　　　　　两个函数返回值：若成功，返回进程ID；若出错，返回−1


 
资源统计信息包括用户CPU时间总量、系统CPU时间总量、缺页次数、接收到信号的次数等。有关细节请参阅getrusage(2)手册页（这种资源信息与7.11节中所述的资源限制不同）。图8-11列出了各个wait函数所支持的参数。
 
[image: 8-11.jpg]
 
图8-11　不同系统上各个wait函数所支持的参数
 
 
 Single UNIX Specification的早期版本包括wait3函数。在SUSv2中，wait3被移到了遗留目录下，在SUSv3中，则删去了wait3。
 

 
8.9　竞争条件
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当多个进程都企图对共享数据进行某种处理，而最后的结果又取决于进程运行的顺序时，我们认为发生了竞争条件（race condition）。如果在fork之后的某种逻辑显式或隐式地依赖于在fork之后是父进程先运行还是子进程先运行，那么fork函数就会是竞争条件活跃的滋生地。通常，我们不能预料哪一个进程先运行。即使我们知道哪一个进程先运行，在该进程开始运行后所发生的事情也依赖于系统负载以及内核的调度算法。
 
在图8-8程序中，当第二个子进程打印其父进程ID时，我们看到了一个潜在的竞争条件。如果第二个子进程在第一个子进程之前运行，则其父进程将会是第一个子进程。但是，如果第一个子进程先运行，并有足够的时间到达并执行exit，则第二个子进程的父进程就是init。即使在程序中调用sleep，也不能保证什么。如果系统负载很重，那么在sleep返回之后、第一个子进程得到机会运行之前，第二个子进程可能恢复运行。这种形式的问题很难调试，因为在大部分时间，这种问题并不出现。
 
如果一个进程希望等待一个子进程终止，则它必须调用wait函数中的一个。如果一个进程要等待其父进程终止（如图8-8程序中一样），则可使用下列形式的循环：
 
while(getppid() != 1)

　　sleep(1);
 
这种形式的循环称为轮询（polling），它的问题是浪费了CPU时间，因为调用者每隔1 s都被唤醒，然后进行条件测试。
 
为了避免竞争条件和轮询，在多个进程之间需要有某种形式的信号发送和接收的方法。在UNIX中可以使用信号机制，在10.16节将说明它在解决此方面问题的一种用法。各种形式的进程间通信（IPC）也可使用，在第15章和第17章将对此进行讨论。
 
在父进程和子进程的关系中，常常出现下述情况。在fork之后，父进程和子进程都有一些事情要做。例如，父进程可能要用子进程ID更新日志文件中的一个记录，而子进程则可能要为父进程创建一个文件。在本例中，要求每个进程在执行完它的一套初始化操作后要通知对方，并且在继续运行之前，要等待另一方完成其初始化操作。这种情况可以用代码描述如下：
 
#include　"apue.h"

TELL_WAIT();　　/* set things up for TELL_xxx & WAIT_xxx*/

if ((pid = fork()) < 0) {

　　err_sys("fork error");

} else if (pid == 0) {　　　　　　　　/* child*/

　　/* child does whatever is necessary ...*/

　　TELL_PARENT(getppid());　　　　　 /* tell parent we're done*/

　　WAIT_PARENT();　　　　　　　　　　　/* and wait for parent*/

　　/* and the child continues on its way ...*/

　　exit(0);

}

/* parent does whatever is necessary ...*/

TELL_CHILD(pid); 　　　　　　　　　　　/* tell child we're done*/

WAIT_CHILD();　　　　　　　　　　　　　/* and wait for child*/

/* and the parent continues on its way ...*/

exit(0);
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假定在头文件apue.h中定义了需要使用的各个变量。5个例程TELLWAIT、TELL PARENT、 TELL_CHILD、WAIT_PARENT以及WAIT_CHILD可以是宏，也可以是函数。
 
在后面几章中会说明实现这些TELL和WAIT例程的不同方法：10.16节中说明使用信号的一种实现，图15-7程序说明使用管道的一种实现。下面先看一个使用这5个例程的实例。
 
实例
 
图8-12程序输出两个字符串：一个由子进程输出，另一个由父进程输出。因为输出依赖于内核使这两个进程运行的顺序及每个进程运行的时间长度，所以该程序包含了一个竞争条件。
 
#include "apue.h"



static void charatatime(char *);



int

main(void)

{

 　　pid_t　　pid;



 　　if ((pid = fork()) < 0) {

　　　　　err_sys("fork error");

 　　} else if (pid == 0) {

　　　　　charatatime("output from child\n");

 　　} else {

　　　　　charatatime("output from parent\n");

 　　}

 　　exit(0);

}



static void

charatatime(char *str)

{

 　　char *ptr;

 　　int　　 c;



 　　setbuf(stdout, NULL); 　　　　/* set unbuffered */

 　　for (ptr = str; (c = *ptr++) != 0; )

　　　　　putc(c, stdout);

}
 
图8-12　带有竞争条件的程序
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在程序中将标准输出设置为不带缓冲的，于是每个字符输出都需调用一次write。本例的目的是使内核能尽可能多次地在两个进程之间进行切换，以便演示竞争条件。（如果不这样做，可能也就决不会见到下面所示的输出。没有看到具有错误的输出并不意味着竞争条件不存在，这只是意味着在此特定的系统上未能见到它。）下面的实际输出说明该程序的运行结果是会改变的。
 
$ ./a.out

ooutput from child

utput from parent

$ ./a.out

ooutput from child

utput from parent

$ ./a.out

output from child

output from parent


 
修改图8-12中的程序，使其使用TELL和WAIT函数，于是形成了图8-13中的程序。行首标以+号的行是新增加的行。
 
　　#include "apue.h"



 　　static void charatatime(char *);



 　　int

 　　main(void)

 　　{

 　　　　　pid_t　　pid;



+　　　　　TELL_WAIT();

+

 　　　　　if ((pid = fork()) < 0) {

 　　　　　　　err_sys("fork error");

 　　　　　} else if (pid == 0) {

+　　　　　　　WAIT_PARENT();　　　　　　　/* parent goes first*/

 　　　　　　　charatatime("output from child\n");

 　　　　　} else {

 　　　　　　　charatatime("output from parent\n");

+　　　　　　　TELL_CHILD(pid);

 　　　　　}

 　　　　　exit(0);

 　　}



 　　static void

 　　charatatime(char *str)

 　　{

 　　　　　Char　　　*ptr;

 　　　　　Int　　　 c;



 　　　　　setbuf(stdout, NULL); 　　　　　　　/* set unbuffered*/

 　　　　　for (ptr = str; (c = *ptr++) != 0; )

 　　　　　　　　putc(c, stdout);

 　　}
 
图8-13　修改图8-12程序以避免竞争条件
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运行此程序则能得到所预期的输出——两个进程的输出不再交叉混合。
 
图8-13中的程序是使父进程先运行。如果将fork之后的行改成：
 
else if (pid == 0) {

　　charatatime("output from child\n");

　　TELL_PARENT(getppid());

} else {

　　WAIT_CHILD();　　　　 /* child goes first */

　　charatatime("output from parent\n");

}
 
则子进程先运行。习题8.4将继续这一实例。
 
8.10　函数exec
 
8.3节曾提及用fork函数创建新的子进程后，子进程往往要调用一种exec函数以执行另一个程序。当进程调用一种exec函数时，该进程执行的程序完全替换为新程序，而新程序则从其main函数开始执行。因为调用exec并不创建新进程，所以前后的进程ID并未改变。exec只是用磁盘上的一个新程序替换了当前进程的正文段、数据段、堆段和栈段。
 
有7种不同的exec函数可供使用，它们常常被统称为exec函数，我们可以使用这7个函数中的任一个。这些exec函数使得UNIX系统进程控制原语更加完善。用fork可以创建新进程，用exec可以初始执行新的程序。exit函数和wait函数处理终止和等待终止。这些是我们需要的基本的进程控制原语。在后面各节中将使用这些原语构造另外一些如popen和system之类的函数。
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#include <unistd.h>



int execl(const char *pathname, const char *arg0, ...　/* (char *)0 */ );



int execv(const char *pathname, char *const argv[]);



int execle(const char *pathname, const char *arg0, ...

　　　　　 /* (char *)0, char *const envp[]　*/ );



int execve(const char *pathname, char *const argv[], char *const envp[]);



int execlp(const char *filename, const char *arg0, ...　/* (char *)0 */ );



int execvp(const char *filename, char *const argv[]);



int fexecve(int fd, char *const argv[], char *const envp[]);

　　　　　　　　　　　　　　　　　　　　7个函数返回值：若出错，返回−1；若成功，不返回


 
这些函数之间的第一个区别是前4个函数取路径名作为参数，后两个函数则取文件名作为参数，最后一个取文件描述符作为参数。当指定filename作为参数时：
 
 
 	如果filename中包含/，则就将其视为路径名；
 
 	否则就按PATH环境变量，在它所指定的各目录中搜寻可执行文件。
 

 
PATH变量包含了一张目录表（称为路径前缀），目录之间用冒号（:）分隔。例如，下列name=value环境字符串指定在4个目录中进行搜索。
 
PATH=/bin:/usr/bin:/usr/local/bin:.
 
最后的路径前缀.表示当前目录。（零长前缀也表示当前目录。在value的开始处可用:表示，在行中间则要用::表示，在行尾以:表示。）
 
 
 出于安全性方面的考虑，有些人要求在搜索路径中决不要包括当前目录。请参见Garfinkel等[2003]。
 

 
如果execlp或execvp使用路径前缀中的一个找到了一个可执行文件，但是该文件不是由连接编辑器产生的机器可执行文件，则就认为该文件是一个shell脚本，于是试着调用/bin/sh，并以该filename作为shell的输入。
 
fexecve函数避免了寻找正确的可执行文件，而是依赖调用进程来完成这项工作。调用进程可以使用文件描述符验证所需要的文件并且无竞争地执行该文件。否则，拥有特权的恶意用户就可以在找到文件位置并且验证之后，但在调用进程执行该文件之前替换可执行文件（或可执行文件的部分路径），具体可参考3.3节TOCTTOU的讨论。
 
第二个区别与参数表的传递有关（l表示列表list，v表示矢量vector）。函数execl、execlp和execle要求将新程序的每个命令行参数都说明为一个单独的参数。这种参数表以空指针结尾。对于另外4个函数（execv、execvp、execve和fexecve），则应先构造一个指向各参数的指针数组，然后将该数组地址作为这4个函数的参数。
 
在使用ISO C原型之前，对execl、execle和execlp三个函数表示命令行参数的一般方法是：
 
char *arg0, char *arg1, ..., char *argn, (char *)0


 
这种语法显式地说明了最后一个命令行参数之后跟了一个空指针。如果用常量0来表示一个空指针，则必须将它强制转换为一个指针；否则它将被解释为整型参数。如果一个整型数的长度与char *的长度不同，那么exec函数的实际参数将出错。
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最后一个区别与向新程序传递环境表相关。以e结尾的3个函数（execle、execve和fexecve）可以传递一个指向环境字符串指针数组的指针。其他4个函数则使用调用进程中的environ变量为新程序复制现有的环境（回忆7.9节及图7-8中对环境字符串的讨论。其中曾提及如果系统支持setenv和putenv这样的函数，则可更改当前环境和后面生成的子进程的环境，但不能影响父进程的环境）。通常，一个进程允许将其环境传播给其子进程，但有时也有这种情况，进程想要为子进程指定某一个确定的环境。例如，在初始化一个新登录的shell时，login程序通常创建一个只定义少数几个变量的特殊环境，而在我们登录时，可以通过shell启动文件，将其他变量加到环境中。
 
在使用ISO C原型之前，execle的参数是：
 
char *pathname, char *arg0, ..., char *argn, (char *)0, char *envp[]


 
从中可见，最后一个参数是指向环境字符串的各字符指针构成的数组的指针。而在ISO C原型中，所有命令行参数、空指针和envp指针都用省略号（...）表示。
 
这7个exec函数的参数很难记忆。函数名中的字符会给我们一些帮助。字母p表示该函数取filename作为参数，并且用PATH环境变量寻找可执行文件。字母l表示该函数取一个参数表，它与字母v互斥。v表示该函数取一个argv[ ]矢量。最后，字母e表示该函数取envp[ ]数组，而不使用当前环境。图8-14显示了这7个函数之间的区别。
 
[image: 8-14.jpg]
 
图8-14　7个exec函数之间的区别
 
每个系统对参数表和环境表的总长度都有一个限制。在2.5.2节和图2-8中，这种限制是由ARG_MAX给出的。在POSIX.1系统中，此值至少是4 096字节。当使用shell的文件名扩充功能产生一个文件名列表时，可能会受到此值的限制。例如，命令
 
grep getrlimit /usr/share/man/*/*
 
在某些系统上可能产生如下形式的shell错误：
 
Argument list too long
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 由于历史原因，System V中此限制值是5 120字节。早期BSD系统的此限制值是20 480字节。当前系统中，此限制值要大得多。（如图2-14所示的程序的输出，图2-15总结列出了限制值。）
 

 
为了摆脱对参数表长度的限制，我们可以使用xargs(1)命令，将长参数表断开成几部分。为了寻找在我们所用系统手册页中的getrlimit，我们可以用
 
find /usr/share/man -type f -print | xargs grep getrlimit
 
如果所用的系统手册页是压缩过的，则可使用
 
find /usr/share/man -type f -print | xargs bzgrep getrlimit
 
对于find命令，我们使用选项-type f，以限制输出列表只包含普通文件。这样做的原因是，grep命令不能在目录中进行模式搜索，我们也想避免不必要的出错消息。
 
前面曾提及，在执行exec后，进程ID没有改变。但新程序从调用进程继承了的下列属性：
 
 
 	进程ID和父进程ID
 
 	实际用户ID和实际组ID
 
 	附属组ID
 
 	进程组ID
 
 	会话ID
 
 	控制终端
 
 	闹钟尚余留的时间
 
 	当前工作目录
 
 	根目录
 
 	文件模式创建屏蔽字
 
 	文件锁
 
 	进程信号屏蔽
 
 	未处理信号
 
 	资源限制
 
 	nice值（遵循XSI的系统，见8.16节）
 
 	tms_utime、tms_stime、tms_cutime以及tms_cstime值
 

 
对打开文件的处理与每个描述符的执行时关闭（close-on-exec）标志值有关。回忆图3-7以及3.14节中对FD_CLOEXEC标志的说明，进程中每个打开描述符都有一个执行时关闭标志。若设置了此标志，则在执行exec时关闭该描述符；否则该描述符仍打开。除非特地用fcntl设置了该执行时关闭标志，否则系统的默认操作是在exec后仍保持这种描述符打开。
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POSIX.1明确要求在exec时关闭打开目录流（见4.22节中所述的opendir函数）。这通常是由opendir函数实现的，它调用fcntl函数为对应于打开目录流的描述符设置执行时关闭标志。
 
注意，在exec前后实际用户ID和实际组ID保持不变，而有效ID是否改变则取决于所执行程序文件的设置用户ID位和设置组ID位是否设置。如果新程序的设置用户ID位已设置，则有效用户ID变成程序文件所有者的ID；否则有效用户ID不变。对组ID的处理方式与此相同。
 
在很多UNIX实现中，这7个函数中只有execve是内核的系统调用。另外6个只是库函数，它们最终都要调用该系统调用。这7个函数之间的关系示于图8-15中。
 
[image: ..\14-0434yds排版CMM\UNIX环境高级编程（第3版）tu\0815.tif]
 
图8-15　7个exec函数之间的关系
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在这种安排中，库函数execlp和execvp使用PATH环境变量，查找第一个包含名为filename的可执行文件的路径名前缀。fexecve库函数使用/proc把文件描述符参数转换成路径名，execve用该路径名去执行程序。
 
 
 这描述了在FreeBSD 8.0和Linux 3.2.0中是如何实现fexecve的。其他系统采用的方法可能不同。例如，没有/proc和/dev/fd的系统可能把fexecve实现为系统调用，把文件描述符参数转换成i节点指针，把execve实现为系统调用，把路径名参数转换成i节点指针，然后把execve和fexecve中剩余的exec公共代码放到单独的函数中，调用该函数时传入执行文件的i节点指针。
 

 
实例
 
图8-16中的程序演示了exec函数。
 
#include "apue.h"

#include <sys/wait.h>



Char　*env_init[] = { "USER=unknown", "PATH=/tmp", NULL };



int

main(void)

{

 　　pid_t　　pid;



 　　if ((pid = fork()) < 0) {

 　　　　　err_sys("fork error");

 　　} else if (pid == 0) {　　　　/* specify pathname, specify environment */

 　　　　　if (execle("/home/sar/bin/echoall", "echoall", "myarg1",

　　　　　　　　　　　"MY ARG2", (char *)0, env_init) < 0)

　　　　　　　　　err_sys("execle error");

 　　}



 　　if (waitpid(pid, NULL, 0) < 0)

 　　　　　err_sys("wait error");



 　　if ((pid = fork()) < 0) {

 　　　　　err_sys("fork error");

 　　} else if (pid == 0) {　　　　　/* specify filename, inherit environment */

 　　　　　if (execlp("echoall", "echoall", "only 1 arg", (char *)0) < 0)

　　　　　　　　err_sys("execlp error");

 　　}



 　　exit(0);

}
 
图8-16　exec函数实例
 
在该程序中先调用execle，它要求一个路径名和一个特定的环境。下一个调用的是execlp，它用一个文件名，并将调用者的环境传送给新程序。execlp在这里能够工作是因为目录/home/sar/bin是当前路径前缀之一。注意，我们将第一个参数（新程序中的argv[0]）设置为路径名的文件名分量。某些shell将此参数设置为完全的路径名。这只是一个惯例。我们可将argv[0]设置为任何字符串。当login命令执行shell时就是这样做的。在执行shell之前，login在argv[0]之前加一个/作为前缀，这向shell指明它是作为登录shell被调用的。登录shell将执行启动配置文件（start-up profile）命令，而非登录shell则不会执行这些命令。
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图8-16中的程序要执行两次的echoall程序如图8-17所示。这是一个很普通的程序，它回显所有命令行参数及全部环境表。
 
#include "apue.h"



int

main(int argc, char *argv[])

{

 　　int　　　　　　　i;

 　　char　　　　　　 **ptr;

 　　extern char　 　**environ;



 　　for (i = 0; i < argc; i++)　　　　　　/* echo all command-line args */

　　　　　printf("argv[%d]: %s\n", i, argv[i]);



 　　for (ptr = environ; *ptr != 0; ptr++)　　/* and all env strings */

　　　　　printf("%s\n", *ptr);



 　　exit(0);

}
 
图8-17　回显所有命令行参数和所有环境字符串
 
执行图8-16中的程序得到：
 
$ ./a.out

argv[0]: echoall

argv[1]: myarg1

argv[2]: MY ARG2

USER=unknown

PATH=/tmp

argv[0]: echoall

$ argv[1]: only 1 arg

USER=sar

LOGNAME=sar

SHELL=/bin/bash

　　　　　　　　　　　　　还有47行没有列出

HOME=/home/sar


 
注意，shell提示符出现在第二个exec打印argv[0]之前。这是因为父进程并不等待该子进程结束。
 
8.11　更改用户ID和更改组ID
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在UNIX系统中，特权（如能改变当前日期的表示法）以及访问控制（如能否读、写一个特定文件），是基于用户ID和组ID的。当程序需要增加特权，或需要访问当前并不允许访问的资源时，我们需要更换自己的用户ID或组ID，使得新ID具有合适的特权或访问权限。与此类似，当程序需要降低其特权或阻止对某些资源的访问时，也需要更换用户ID或组ID，新ID不具有相应特权或访问这些资源的能力。
 
一般而言，在设计应用时，我们总是试图使用最小特权（least privilege）模型。依照此模型，我们的程序应当只具有为完成给定任务所需的最小特权。这降低了由恶意用户试图哄骗我们的程序以未预料的方式使用特权造成的安全性风险。
 
可以用setuid函数设置实际用户ID和有效用户ID。与此类似，可以用setgid函数设置实际组ID和有效组ID。
 
#include <unistd.h>



int setuid(uid_t uid);



int setgid(gid_t gid);

　　　　　　　　　　　　　　　　　　　　两个函数返回值：若成功，返回0；若出错，返回−1


 
关于谁能更改ID有若干规则。现在先考虑更改用户ID的规则（关于用户ID我们所说明的一切都适用于组ID）。
 
（1）若进程具有超级用户特权，则setuid函数将实际用户ID、有效用户ID以及保存的设置用户ID（saved set-user-ID）设置为uid。
 
（2）若进程没有超级用户特权，但是uid等于实际用户ID或保存的设置用户ID，则setuid只将有效用户ID设置为uid。不更改实际用户ID和保存的设置用户ID。
 
（3）如果上面两个条件都不满足，则errno设置为EPERM，并返回−1。
 
在此假定_POSIX_SAVED_IDS为真。如果没有提供这种功能，则上面所说的关于保存的设置用户ID部分都无效。
 
 
 在POSIX.1 2001版中，保存的ID是强制性功能。而在较早版本中，它们是可选择的。为了弄清楚某种实现是否支持这一功能，应用程序在编译时可以测试常量_POSIOX_SAVED_IDS，或者在运行时以_SC_SAVED_IDS参数调用sysconf函数。
 

 
关于内核所维护的3个用户ID，还要注意以下几点。
 
（1）只有超级用户进程可以更改实际用户ID。通常，实际用户ID是在用户登录时，由login(1)程序设置的，而且决不会改变它。因为login是一个超级用户进程，当它调用setuid时，设置所有3个用户ID。
 
（2）仅当对程序文件设置了设置用户ID位时，exec函数才设置有效用户ID。如果设置用户ID位没有设置，exec函数不会改变有效用户ID，而将维持其现有值。任何时候都可以调用setuid，将有效用户ID设置为实际用户ID或保存的设置用户ID。自然地，不能将有效用户ID设置为任一随机值。
 
（3）保存的设置用户ID是由exec复制有效用户ID而得到的。如果设置了文件的设置用户ID位，则在exec根据文件的用户ID设置了进程的有效用户ID以后，这个副本就被保存起来了。
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图8-18总结了更改这3个用户ID的不同方法。
 
[image: 8-18.jpg]
 
图8-18　更改3个用户ID的不同方法
 
注意，8.2节中所述的getuid和geteuid函数只能获得实际用户ID和有效用户ID的当前值。我们没有可移植的方法去获得保存的设置用户ID的当前值。
 
 
 FreeBSD 8.0和LINUX 3.2.0提供了getresuid和getresgid函数，它们可以分别用于获取保存的设置用户ID和保存的设置组ID。
 

 
1．函数setreuid和setregid
 
历史上，BSD支持setreuid函数，其功能是交换实际用户ID和有效用户ID的值。
 
#include <unistd.h>



int setreuid(uid_t ruid, uid_t euid);



int setregid(gid_t rgid, gid_t egid);

　　　　　　　　　　　　　　　　　　　　两个函数返回值：若成功，返回0；若出错，返回-1


 
如若其中任一参数的值为−1，则表示相应的ID应当保持不变。
 
规则很简单：一个非特权用户总能交换实际用户ID和有效用户ID。这就允许一个设置用户ID程序交换成用户的普通权限，以后又可再次交换回设置用户ID权限。POSIX.1引进了保存的设置用户ID特性后，其规则也相应加强，它允许一个非特权用户将其有效用户ID设置为保存的设置用户ID。
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 seteuid和setregid两个函数都是Single UNIX Specification的XSI扩展。因此，可以期望所有UNIX系统实现都将对它们提供支持。
 
 4.3BSD并没有上面所说的保存的设置用户ID特性，而是使用setreuid和setregid来代替。这就允许一个非特权用户交换这两个用户ID的值，但是要注意，当使用此特性的程序生成shell进程时，它必须在exec之前先将实际用户ID设置为普通用户ID。如果不这样做的话，实际用户ID就可能是具有特权的（由setreuid的交换操作造成），然后shell进程可能会调用setreuid交换两个用户ID值并取得更多权限。作为一个保护性的解决这一问题的编程措施，程序在子进程调用exec之前，将子进程的实际用户ID和有效用户ID都设置成普通用户ID。
 

 
2．函数seteuid和setegid
 
POIX.1包含了两个函数seteuid和setegid。它们类似于setuid和setgid，但只更改有效用户ID和有效组ID。
 
#include <unistd.h>



int seteuid(uid_t uid);



int setegid(gid_t gid);

　　　　　　　　　　　　　　　　　　　　两个函数返回值：若成功，返回0；若出错，返回−1


 
一个非特权用户可将其有效用户ID设置为其实际用户ID或其保存的设置用户ID。对于一个特权用户则可将有效用户ID设置为uid。（这区别于setuid函数，它更改所有3个用户ID。）
 
图8-19给出了本节所述的更改3个不同用户ID的各个函数。
 
[image: ..\14-0434yds排版CMM\UNIX环境高级编程（第3版）tu\0819.tif]
 
图8-19　设置不同用户ID的各函数
 
3．组ID
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本章中所说明的一切都以类似方式适用于各个组ID。附属组ID不受setgid、setregid和setegid函数的影响。
 
实例
 
为了说明保存的设置用户ID特性的用法，先观察一个使用该特性的程序。我们所观察的是at(1)程序，它用于调度将来某个时刻要运行的命令。
 
 
 在Linux 3.2.0上安装的at程序的设置用户ID是daemon用户。在FreeBSD 8.0、Mac OS X 10.6.8以及Solaris 10上安装的at程序的设置用户ID是root用户。这允许at命令对守护进程拥有的特权文件具有写权限，守护进程代表用户运行at命令。在Linux 3.2.0上，程序是用atd(8)守护进程运行的。在FreeBSD 8.0和Solaris 10上，程序通过cron(1M)守护进程运行。在Mac OS X 10.6.8上，程序通过launchd(8)守护进程运行。
 

 
为了防止被欺骗而运行不被允许的命令或读、写没有访问权限的文件，at命令和最终代表用户运行命令的守护进程必须在两种特权之间切换：用户特权和守护进程特权。下面列出了其工作步骤。
 
（1）程序文件是由root用户拥有的，并且其设置用户ID位已设置。当我们运行此程序时，得到下列结果：
 
　　　　　　　　　　实际用户ID=我们的用户ID（未改变）
 
　　　　　　　　　　有效用户ID=root
 
　　　　　　　保存的设置用户ID=root
 
（2）at程序做的第一件事就是降低特权，以用户特权运行。它调用setuid函数把有效用户ID设置为实际用户ID。此时得到：
 
　　　　　　　　　　实际用户ID=我们的用户ID（未改变）
 
　　　　　　　　　　有效用户ID=我们的用户ID
 
　　　　　　　　保存设置用户ID=root（未改变）
 
（3）at程序以我们的用户特权运行，直到它需要访问控制哪些命令即将运行，这些命令需要何时运行的配置文件时，at程序的特权会改变。这些文件由为用户运行命令的守护进程持有。at命令调用setuid函数把有效用户ID设为root，因为setuid的参数等于保存的设置用户ID，所以这种调用是许可的（这就是为什么需要保存的设置用户ID的原因）。现在得到：
 
　　　　　　　　　　实际用户ID=我们的用户ID（未改变）
 
　　　　　　　　　　有效用户ID=root
 
　　　　　　　保存的设置用户ID=root（未改变）
 
因为有效用户ID是root，文件访问是允许的。
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（4）修改文件从而记录了将要运行的命令以及它们的运行时间以后，at命令通过调用seteuid，把有效用户ID设置为用户ID，降低它的特权。防止对特权的误用。此时我们可以得到：
 
　　　　　　　　　　实际用户ID=我们的用户ID（未改变）
 
　　　　　　　　　　有效用户ID=我们的用户ID
 
　　　　　　　保存的设置用户ID=root（未改变）
 
（5）守护进程开始用root特权运行，代表用户运行命令，守护进程调用fork，子进程调用setuid将它的用户ID更改至我们的用户ID。因为子进程以root特权运行，更改了所有的ID，所以
 
　　　　　　　　　　实际用户ID=我们的用户ID
 
　　　　　　　　　　有效用户ID=我们的用户ID
 
　　　　　　　保存的设置用户ID=我们的用户ID
 
现在守护进程可以安全地代表我们执行命令，因为它只能访问我们通常可以访问的文件，我们没有额外的权限。
 
以这种方式使用保存的设置用户ID，只有在需要提升特权的时候，我们通过设置程序文件的设置用户ID而得到的额外权限。然而，其他时间进程在运行时只具有普通的权限。如果进程不能在其结束部分切换回保存的设置用户ID，那么就不得不在全部运行时间都保持额外的权限（这可能会造成麻烦）。
 
8.12　解释器文件
 
所有现今的UNIX系统都支持解释器文件（interpreter file）。这种文件是文本文件，其起始行的形式是：
 
#!　pathname [ optional-argument ]


 
在感叹号和pathname之间的空格是可选的。最常见的解释器文件以下列行开始：
 
#! /bin/sh
 
pathname通常是绝对路径名，对它不进行什么特殊的处理（不使用PATH进行路径搜索）。对这种文件的识别是由内核作为exec系统调用处理的一部分来完成的。内核使调用exec函数的进程实际执行的并不是该解释器文件，而是在该解释器文件第一行中pathname所指定的文件。一定要将解释器文件（文本文件，它以#!开头）和解释器（由该解释器文件第一行中的pathname指定）区分开来。
 
很多系统对解释器文件第一行有长度限制。这包括#!、pathname、可选参数、终止换行符以及空格数。
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 在FreeBSD 8.0中，该限制是4 097字节。Linux 3.2.0中，该限制为128字节。Mac OS X 10.6.8中，该限制为513字节，而Solaris 10的限制是1 024字节。
 

 
实例
 
让我们观察一个实例，从中可了解当被执行的文件是个解释器文件时，内核如何处理exec函数的参数及该解释器文件第一行的可选参数。图8-20中的程序调用exec执行一个解释器文件。
 
#include "apue.h"

#include <sys/wait.h>



int

main(void)

{

 　　pid_t　　pid;



 　　if ((pid = fork()) < 0) {

 　　　　　err_sys("fork error");

 　　} else if (pid == 0) {　　　　　　　　　/* child */

 　　　　　if (execl("/home/sar/bin/testinterp",

 　　　　　　　　　　  "testinterp", "myarg1", "MY ARG2", (char *)0) < 0)

 　　　　　　　err_sys("execl error");

 　　}

 　　if (waitpid(pid, NULL, 0) < 0)　　/* parent */

 　　　　 err_sys("waitpid error");

 　　exit(0);

}
 
图8-20　执行一个解释器文件的程序
 
下面先显示要被执行的该解释器文件的内容（只有一行），接着是运行图8-20中的程序得到的结果。
 
$ cat /home/sar/bin/testinterp

#!/home/sar/bin/echoarg foo

$ ./a.out

argv[0]: /home/sar/bin/echoarg

argv[1]: foo

argv[2]: /home/sar/bin/testinterp

argv[3]: myarg1

argv[4]: MY ARG2
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程序echoarg（解释器）回显每一个命令行参数（它就是图7-4中的程序）。注意，当内核exec解释器（/home/sar/bin/echoarg）时，argv[0]是该解释器的pathname，argv[1]是解释器文件中的可选参数，其余参数是pathname（/home/sar/bin/testinterp）以及图8-20所示的程序中调用execl的第2个和第3个参数（myarg1和MY ARG2）。调用execl时的argv[1]和argv[2]已右移了两个位置。注意，内核取execl调用中的pathname而非第一个参数（testinterp），因为一般而言，pathname包含了比第一个参数更多的信息。
 
实例
 
在解释器pathname后可跟随可选参数。如果一个解释器程序支持-f选项，那么在pathname后经常使用的就是-f。例如，可以以下列方式执行awk(1)程序：
 
awk -f myfile
 
它告诉awk从文件myfile中读awk程序。
 
 
 在UNIX System V派生的很多系统中，常包含有awk语言的两个版本。awk常常被称为“老awk”，它是与V7一起分发的原始版本。nawk（新awk）包含了很多增强功能，对应于在Aho、Kernighan和Weinberger[1988]中说明的语言。此新版本提供了对命令行参数的访问，这是下面的例子所需的。Solaris 10 提供了两个版本。
 
 POSIX 1003.2标准现在是Single UNIX Specification中基本POSIX.1规范的一部分。在该标准中，awk程序是其中的一个实用程序。该实用程序的基础也是Aho、Kernighan和Weinberger[1988]中所描述的语言。
 
 Mac OS X 10.6.8中的awk版本基于贝尔实验室版本，并已将其放在公共域（public domain）中。FreeBSD 8.0和Linux的某些发行版提供GNU awk（gawk），它链接至名字awk。gawk版本遵循POSIX标准，但也包括了一些扩展。因为gawk和贝尔实验室的awk版本比较新，所以较之nawk或老版本的awk更受人欢迎。（贝尔实验室的awk版本可从http://cm.bell-labs.com/cm/cs/awkbook/index.html获取。）
 

 
在解释器文件中使用-f选项，可以写成：
 
#!/bin/awk –f

（在此解释器文件中后跟随awk程序）
 
例如，图8-21展示了在/usr/local/bin/awkexample中的一个解释器文件程序。
 
#!/usr/bin/awk -f

# Note: on Solaris, use nawk instead

BEGIN {

 　　for (i = 0; i < ARGC; i++)

 　　　　　printf "ARGV[%d] = %s\n", i, ARGV[i]

 　　exit

}
 
图8-21　作为解释器文件的awk程序
 
如果路径前缀之一是/usr/local/bin，则可以用下列方式执行图8-21中的程序（假定我们已打开了该文件的执行位）：
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$ awkexample filel FILENAME2 f3

ARGV[0] = awk

ARGV[1] = file1

ARGV[2] = FILENAME2

ARGV[3] = f3


 
执行/bin/awk时，其命令行参数是：
 
/bin/awk -f /usr/local/bin/awkexample file1 FILENAME2 f3
 
解释器文件的路径名（/usr/local/bin/awkexample）被传送给解释器。因为不能期望解释器（在本例中是/bin/awk）会使用PATH变量定位该解释器文件，所以只传送其路径名中的文件名是不够的，要将解释器文件完整的路径名传送给解释器。当awk读解释器文件时，因为#是awk的注释字符，所以它忽略第一行。
 
可以用下列命令验证上述命令行参数。
 
$ /bin/su　　　　　　　　　　　　　　　　　　　　　成为超级用户

Password:　　　　　　　　　　　　　　　　　　　　　输入超级用户口令

# mv /usr/bin/awk /usr/bin/awk.save　　　　　　保存原先的程序

# cp /home/sar/bin/echoarg /usr/bin/awk 　　　暂时替换它

# suspend　　　　　　　　　　　　　　　　　　　　　用作业控制挂起超级用户shell

[1] + Stopped　　　　　 /bin/su

$ awkexample file1 FILENAME2 f3

argv[0]: /bin/awk

argv[1]: -f

argv[2]: /usr/local/bin/awkexample

argv[3]: file1

argv[4]: FILENAME2

argv[5]: f3

$ fg　　　　　　　　　　　　　　　　　　　　　　　　用作业控制恢复超级用户shell

/bin/su

# mv /usr/bin/awk.save /usr/bin/awk 　　　　　恢复原先的程序

# exit　　　　　　　　　　　　　　　　 　　　　　　终止超级用户shell


 
在此例子中，解释器的-f选项是必需的。正如前述，它告诉awk在什么地方找到awk程序。如果在解释器文件中删除-f选项，则在试图运行该解释器文件时，通常输出一条出错消息。该出错消息的精确文本可能有所不同，这取决于解释器文件存放在何处以及其余参数是否表示现有的文件等。因为在这种情况下命令行参数是：
 
/bin/awk /usr/local/bin/awkexample file1 FILENAME2 f3
 
于是awk企图将字符串/usr/local/bin/awkexample解释为一个awk程序。如果不能向解释器传递至少一个可选参数（在本例中是-f），那么这些解释器文件只有对shell才是有用的。
 
是否一定需要解释器文件呢？那也不完全如此。但是它们确实使用户得到效率方面的好处，其代价是内核的额外开销（因为识别解释器文件的是内核）。由于下述理由，解释器文件是有用的。
 
（1）有些程序是用某种语言写的脚本，解释器文件可将这一事实隐藏起来。例如，为了执行图8-21程序，只需使用下列命令行：
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awkexample optional-arguments


 
而并不需要知道该程序实际上是一个awk脚本，否则就要以下列方式执行该程序：
 
awk -f awkexample optional-arguments


 
（2）解释器脚本在效率方面也提供了好处。再考虑一下前面的例子。仍旧隐藏该程序是一个awk脚本的事实，但是将其放在一个shell脚本中：
 
awk ’BEGIN { 

　　for (i = 0; i < ARGC; i++)

　　　　printf "ARGV[%d] = %s\n", i, ARGV[i] 

　　exit

}’ $*
 
这种解决方法的问题是要求做更多的工作。首先，shell读此命令，然后试图execlp此文件名。因为shell脚本是一个可执行文件，但却不是机器可执行的，于是返回一个错误，execlp就认为该文件是一个shell脚本（它实际上就是这种文件）。然后执行/bin/sh，并以该shell脚本的路径名作为其参数。shell正确地执行我们的shell脚本，但是为了运行awk程序，它调用fork、exec和wait。于是，用一个shell脚本代替解释器脚本需要更多的开销。
 
（3）解释器脚本使我们可以使用除/bin/sh以外的其他shell来编写shell脚本。当execlp找到一个非机器可执行的可执行文件时，它总是调用/bin/sh来解释执行该文件。但是，用解释器脚本则可简单地写成：
 
#!/bin/csh

（在解释器文件中后跟随C shell脚本）
 
再一次，我们也可将此放在一个/bin/sh脚本中（然后由其调用C shell），但是要有更多的开销。
 
如果3个shell和awk没有用#作为注释符，则上面所说的都无效。
 
8.13　函数system
 
在程序中执行一个命令字符串很方便。例如，假定要将时间和日期放到某一个文件中，则可使用6.10节中的函数实现这一点。调用time得到当前日历时间，接着调用localtime将日历时间变换为年、月、日、时、分、秒、周日的分解形式，然后调用strftime对上面的结果进行格式化处理，最后将结果写到文件中。但是用下面的system函数则更容易做到这一点：
 
system("date > file");
 
ISO C定义了system函数，但是其操作对系统的依赖性很强。POSIX.1包括了system接口，它扩展了ISO C定义，描述了system在POSIX.1环境中的运行行为。
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#include <stdlib.h>



int system(const char *cmdstring);

　　　　　　　　　　　　　　　　　　　　返回值：（见下）


 
如果cmdstring是一个空指针，则仅当命令处理程序可用时，system返回非0值，这一特征可以确定在一个给定的操作系统上是否支持system函数。在UNIX中，system总是可用的。
 
因为system在其实现中调用了fork、exec和waitpid，因此有3种返回值。
 
（1）fork失败或者waitpid返回除EINTR之外的出错，则system返回−1，并且设置errno以指示错误类型。
 
（2）如果exec失败（表示不能执行shell），则其返回值如同shell执行了exit(127)一样。
 
（3）否则所有3个函数（fork、exec和waitpid）都成功，那么system的返回值是shell的终止状态，其格式已在waitpid中说明。
 
 
 如果waitpid被一个捕捉到的信号中断，则某些早期的system实现都返回错误类型值EINTR。但是，因为没有可用的策略能让应用程序从这种错误类型中恢复（子进程的进程ID对调用者来说是未知的）。POSIX后来增加了下列要求：在这种情况下system不返回一个错误。（10.5节中将讨论被中断的系统调用。）
 

 
图8-22中的程序是system函数的一种实现。它对信号没有进行处理。10.18节中将修改此函数使其进行信号处理。
 
#include　<sys/wait.h>

#include　<errno.h>

#include　<unistd.h>



int

system(const char *cmdstring)　　/* version without signal handling */

{

 　　pid_t　　pid;

 　　int　　　status;



 　　if (cmdstring == NULL)

 　　　　　return(1);　　　　　　/* always a command processor with UNIX */



 　　if ((pid = fork()) < 0) {

 　　　　　status = -1;　/* probably out of processes */

 　　} else if (pid == 0) {　　　　　　　　　/* child */

 　　　　　execl("/bin/sh", "sh", "-c", cmdstring, (char *)0);

 　　　　　_exit(127);　　　　　　　/* execl error */

 　　} else {　　　　　　　　　　　　　　　　　　　/* parent */

 　　　　　while (waitpid(pid, &status, 0) < 0) {

 　　　　　　　if (errno != EINTR) {

　　　　　　　　　　 status = -1; /* error other than EINTR from waitpid() */

　　　　　　　　　　 break;

 　　　　　　　}

 　　　　　}

 　　}



 　　return(status);

}
 
图8-22　system函数（没有对信号进行处理）
 
shell的-c选项告诉shell程序取下一个命令行参数（在这里是cmdstring）作为命令输入（而不是从标准输入或从一个给定的文件中读命令）。shell对以null字节终止的命令字符串进行语法分析，将它们分成命令行参数。传递给shell的实际命令字符串可以包含任一有效的shell命令。例如，可以用<和>对输入和输出重定向。
 
如果不使用shell执行此命令，而是试图由我们自己去执行它，那将相当困难。首先，我们必须用execlp而不是execl，像shell那样使用PATH变量。我们必须将null字节终止的命令字符串分成各个命令行参数，以便调用execlp。最后，我们也不能使用任何一个shell元字符。
 
注意，我们调用_exit而不是exit。这是为了防止任一标准I/O缓冲（这些缓冲会在fork中由父进程复制到子进程）在子进程中被冲洗。
 
用图8-23中的程序对这种实现的system函数进行测试（pr_exit函数定义在图8-5程序中）。
 
#include "apue.h"

#include <sys/wait.h>



int

main(void)

{

 　　int　　　　status;



 　　if ((status = system("date")) < 0)

 　　　　　err_sys("system() error");



 　　pr_exit(status);



 　　if ((status = system("nosuchcommand")) < 0)

 　　　　　err_sys("system() error");



 　　pr_exit(status);



 　　if ((status = system("who; exit 44")) < 0)

 　　　　　err_sys("system() error");



 　　pr_exit(status);



 　　exit(0);

}
 
图8-23　调用system函数
 
运行图8-23程序得到：
 
$ ./a.out

Sat Feb 25 19:36:59 EST 2012

normal termination, exit status = 0　　　　对于date

sh: nosuchcommand: command not found

normal termination, exit status = 127　　　对于无此种命令

sar　　　 console Jan　1 14:59

sar　　　 ttys000 Feb　7 19:08

sar　　　 ttys001 Jan 15 15:28

sar　　　 ttys002 Jan 15 21:50

sar　　　 ttys003 Jan 21 16:02

normal termination, exit status = 44　　　对于 exit


 
使用system而不是直接使用fork和exec的优点是：system进行了所需的各种出错处理以及各种信号处理（在10.18节中的下一个版本system函数中）。
 
在UNIX的早期系统中，包括SVR3.2和4.3BSD，都没有waitpid函数，于是父进程用下列形式的语句等待子进程：
 
while ((lastpid = wait(&status)) != pid && lastpid != -1)

　　;
 
如果调用system的进程在调用它之前已经生成子进程，那么将引起问题。因为上面的while语句一直循环执行，直到由system产生的子进程终止才停止，如果不是用pid标识的任一子进程在pid子进程之前终止，则它们的进程ID和终止状态都被while语句丢弃。实际上，由于wait不能等待一个指定的进程以及其他一些原因，POSIX.1 Rationale才定义了waitpid函数。如果不提供waitpid函数，popen和pclose函数也会发生同样的问题（见15.3节）。
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设置用户ID程序
 
如果在一个设置用户ID程序中调用system，那会发生什么呢？这是一个安全性方面的漏洞，决不应当这样做。图8-24程序是一个简单程序，它只是对其命令行参数调用system函数。
 
#include "apue.h"



int

main(int argc, char *argv[])

{

 　　int　　　　status;



 　　if (argc < 2)

 　　　　err_quit("command-line argument required");



 　　if ((status = system(argv[1])) < 0)

 　　　　　err_sys("system() error");



 　　pr_exit(status);



 　　exit(0);

}
 
图8-24　用system执行命令行参数
 
将此程序编译成可执行目标文件tsys。
 
图8-25所示的是另一个简单程序，它打印实际用户ID和有效用户ID。
 
#include "apue.h"



int

main(void)

{

 　　printf("real uid = %d, effective uid = %d\n", getuid(), geteuid());

 　　exit(0);

}
 
图8-25　打印实际用户ID和有效用户ID
 
将此程序编译成可执行目标文件printuids。运行这两个程序，得到如下结果：
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$ tsys printuids　　　　　　　　　 　　　　 正常执行，无特权

real uid = 205, effective uid = 205

normal termination, exit status = 0

$ su　　　　　　　　　　　　　　　　　 　　　 成为超级用户

Password:　　　　　　　　　　　　　　 　　　 输入超级用户口令

# chown root tsys　　  　　　　　　 　　　 更改所有者

# chmod u+s tsys　　    　　　　　　　　　 增加设置用户ID

# ls -l tsys　　　　　　　   　  　　 　　 检验文件权限和所有者

-rwsrwxr-x 1 root　　　 7888 Feb 25 22:13 tsys

# exit　　　　　　　　　　　　　　　　　　　 退出超级用户shell

$ tsys printuids

real uid = 205, effective uid = 0　　   哎呀！ 这是一个安全性漏洞

normal termination, exit status = 0


 
我们给予tsys程序的超级用户权限在system中执行了fork和exec之后仍被保持下来。
 
 
 有些实现通过更改/bin/sh，当有效用户ID与实际用户ID不匹配时，将有效用户ID设置为实际用户ID，这样可以关闭上述安全漏洞。在这些系统中，上述示例的结果就不会发生。不管调用system的程序设置用户ID位状态如何，都会打印出相同的有效用户ID。
 

 
如果一个进程正以特殊的权限（设置用户ID或设置组ID）运行，它又想生成另一个进程执行另一个程序，则它应当直接使用fork和exec，而且在fork之后、exec之前要更改回普通权限。设置用户ID或设置组ID程序决不应调用system函数。
 
 
 这种警告的一个理由是：system调用shell对命令字符串进行语法分析，而shell使用IFS变量作为其输入字段分隔符。早期的shell版本在被调用时不将此变量重置为普通字符集。这就允许一个恶意的用户在调用system之前设置IFS，造成system执行一个不同的程序。
 

 
8.14　进程会计
 
大多数UNIX系统提供了一个选项以进行进程会计（process accounting）处理。启用该选项后，每当进程结束时内核就写一个会计记录。典型的会计记录包含总量较小的二进制数据，一般包括命令名、所使用的CPU时间总量、用户ID和组ID、启动时间等。本节将较详细地说明这种会计记录，这样也使我们得到了一个再次观察进程的机会，以及使用5.9节中所介绍的fread函数的机会。
 
 
 任一标准都没有对进程会计进行过说明。于是，所有实现都有令人厌烦的差别。例如，关于I/O的数量，Solaris 10使用的单位是字节，FreeBSD 8.0和Mac OS X 10.6.8使用的单位是块，但又不考虑不同的块长，这使得该计数值并无实际效用。Linux 3.2.0则完全没有保持I/O统计数。
 
 每种实现也都有自己的一套管理命令去处理这种原始的会计数据。例如，Solaris提供了runacct(1m)和acctcom(1)，FreeBSD则提供sa(8)命令处理并总结原始会计数据。
 

 
一个至今没有说明的函数（acct）启用和禁用进程会计。唯一使用这一函数的是accton(8)命令（这是在几种平台上都类似的少数几条命令中的一条）。超级用户执行一个带路径名参数的accton命令启用会计处理。会计记录写到指定的文件中，在FreeBSD和Mac OS X中，该文件通常是/var/account/acct；在Linux中，该文件是/var/account/pacct；在Solaris中，该文件是/var/adm/pacct。执行不带任何参数的accton命令则停止会计处理。
 
会计记录结构定义在头文件<sys/acct.h>中，虽然每种系统的实现各不相同，但会计记录样式基本如下：
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typedef　u_short comp_t;　　　　　/* 3-bit base 8 exponent; 13-bit fraction*/

struct　acct

{

　char　 ac_flag;　　　　　　　　　/* flag (see Figure 8.26)*/

　char　 ac_stat;　　　　　　　　　/* termination status(signal & core flag only)*/

 　　　　　　　　　　　　　　　　　　/* (Solaris only)*/

　uid_t　ac_uid; 　　　　　　　　　/* real user ID*/

　gid_t　ac_gid; 　　　　　　　　　/* real group ID*/

　dev_t　ac_tty; 　　　　　　　　　/* controlling terminal*/

　time_t ac_btime;　　　　　　　　/* starting calendar time*/

　comp_t ac_utime;　　　　　　　　/* user CPU time*/

　comp_t ac_stime;　　　　　　　　/* system CPU time*/

　comp_t ac_etime;　　　　　　　　/* elapsed time*/

　comp_t ac_mem;　　　　　　　　　/* average memory usage*/

　comp_t ac_io; 　　　　　　　　　/* bytes transferred (by read and write)*/

　　　　　　　　　　　　　　　　　　/* "blocks" on BSD systems*/

　comp_t ac_rw;　　　　　　　　　 /* blocks read or written*/

　　　　　　　　　　　　　　　　　　/* (not present on BSD systems)*/

　char　 ac_comm[8];　　　　　　 /* command name: [8] for Solaris,*/

　　　　　　　　　　　　　　　　　　/* [10] for Mac OS X, [16] for FreeBSD, and*/

　　　　　　　　　　　　　　　　　　/* [17] for Linux*/

};
 
在大多数的平台上，时间是以时钟滴答数记录的，但FreeBSD以微秒进行记录的。ac_flag成员记录了进程执行期间的某些事件。这些事件见图8-26。
 
[image: 8-26.jpg]
 
图8-26　会计记录中的ac_flag值
 
会计记录所需的各个数据（各CPU时间、传输的字符数等）都由内核保存在进程表中，并在一个新进程被创建时初始化（如fork之后在子进程中）。进程终止时写一个会计记录。这产生两个后果。
 
第一，我们不能获取永远不终止的进程的会计记录。像init这样的进程在系统生命周期中一直在运行，并不产生会计记录。这也同样适合于内核守护进程，它们通常不会终止。
 
第二，在会计文件中记录的顺序对应于进程终止的顺序，而不是它们启动的顺序。为了确定启动顺序，需要读全部会计文件，并按启动日历时间进行排序。这不是一种很完善的方法，因为日历时间的单位是秒（见1.10节），在一个给定的秒中可能启动了多个进程。而墙上时钟时间的单位是时钟滴答（通常，每秒滴答数在60～128）。但是我们并不知道进程的终止时间，所知道的只是启动时间和终止顺序。这就意味着，即使墙上时钟时间比启动时间要精确得多，仍不能按照会计文件中的数据重构各进程的精确启动顺序。
 
会计记录对应于进程而不是程序。在fork之后，内核为子进程初始化一个记录，而不是在一个新程序被执行时初始化。虽然exec并不创建一个新的会计记录，但相应记录中的命令名改变了，AFORK标志则被清除。这意味着，如果一个进程顺序执行了3个程序（A exec B、B exec C，最后是C exit），只会写一个会计记录。在该记录中的命令名对应于程序C，但CPU时间是程序A、B和C之和。
 
实例
 
为了得到某些会计数据以便查看，我们按图8-27编写了测试程序。
 
[image: ..\14-0434yds排版CMM\UNIX环境高级编程（第3版）tu\0827.tif]
 
图8-27　会计处理实例的进程结构
 
测试程序的源代码如图8-28所示。该程序调用4次fork。每个子进程做不同的事情，然后终止。
 

  270～271 

 
#include "apue.h"



int

main(void)

{

 　　pid_t　　pid;



 　　if ((pid = fork()) < 0)

 　　　　　err_sys("fork error");

 　　else if (pid != 0) {　　　　/* parent */

 　　　　　sleep(2);

 　　　　　exit(2);　　　　　　　　/* terminate with exit status 2 */

 　　}



 　　if ((pid = fork()) < 0)

 　　　　　err_sys("fork error");

 　　else if (pid != 0) {　　　/* first child */

 　　　　　sleep(4);

 　　　　　abort();　　　　　　　/* terminate with core dump */

 　　}



 　　if ((pid = fork()) < 0)

 　　　　　err_sys("fork error");

 　　else if (pid != 0) {　　　　/* second child */

 　　　　　execl("/bin/dd", "dd", "if=/etc/passwd", "of=/dev/null", NULL);

 　　　　　exit(7);　　　　　　　　/* shouldn't get here */

 　　}



 　　if ((pid = fork()) < 0)

 　　　　　err_sys("fork error");

 　　else if (pid != 0) {　　　　/* third child */

 　　　　　sleep(8);

 　　　　　exit(0);　　　　　　　　/* normal exit */

 　　}



 　　sleep(6);　　　　　　　　　　　/* fourth child */

 　　kill(getpid(), SIGKILL);　　/* terminate w/signal, no core dump */

 　　exit(6);　　　　　　　　　　　 /* shouldn't get here */

}
 
图8-28　产生会计数据的程序
 
在Solaris上运行该测试程序，然后用图8-29中的程序从会计记录中选择一些字段并打印出来。
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#include "apue.h"

#include <sys/acct.h>



#if defined(BSD)　　/* different structure in FreeBSD */

#define acct acctv2

#define ac_flag ac_trailer.ac_flag

#define FMT "%-*.*s　e = %.0f, chars = %.0f, %c %c %c %c\n"

#elif defined(HAS_AC_STAT)

#define FMT "%-*.*s　e = %6ld, chars = %7ld, stat = %3u: %c %c %c %c\n"

#else

#define FMT "%-*.*s　e = %6ld, chars = %7ld, %c %c %c %c\n"

#endif

#if defined(LINUX)

#define acct acct_v3　　/* different structure in Linux */

#endif



#if !defined(HAS_ACORE)

#define ACORE 0

#endif

#if !defined(HAS_AXSIG)

#define AXSIG 0

#endif



#if !defined(BSD)

static unsigned long

compt2ulong(comp_t comptime)　　/* convert comp_t to unsigned long */

{

 　　unsigned long　　val;

 　　int　　　　　　　　exp;



 　　val = comptime & 0x1fff;　　　　　/* 13-bit fraction */

 　　exp = (comptime >> 13) & 7;　　　/* 3-bit exponent (0-7) */

 　　while (exp-- > 0)

　　　　　val *= 8;

 　　return(val);

}

#endif



int

main(int argc, char *argv[])

{

 　　struct acct　　　　acdata;

 　　FILE　　　　　　　　*fp;



 　　if (argc != 2)

　　　　　err_quit("usage: pracct filename");

 　　if ((fp = fopen(argv[1], "r")) == NULL)

　　　　　err_sys("can't open %s", argv[1]);

 　　while (fread(&acdata, sizeof(acdata), 1, fp) == 1) {

　　　　　printf(FMT, (int)sizeof(acdata.ac_comm),

 　　　　　　　(int)sizeof(acdata.ac_comm), acdata.ac_comm,

#if defined(BSD)

 　　　　　　　acdata.ac_etime, acdata.ac_io,

#else

 　　　　　　　compt2ulong(acdata.ac_etime), compt2ulong(acdata.ac_io),

#endif

#if defined(HAS_AC_STAT)

 　　　　　　　(unsigned char) acdata.ac_stat,

#endif

 　　　　　　　acdata.ac_flag & ACORE ? 'D' : ' ',

 　　　　　　　acdata.ac_flag & AXSIG ? 'X' : ' ',

 　　　　　　　acdata.ac_flag & AFORK ? 'F' : ' ',

 　　　　　　　acdata.ac_flag & ASU　 ? 'S' : ' ');

 　　}

 　　if (ferror(fp))

　　　　　err_sys("read error");

 　　exit(0);

}
 
图8-29　打印从系统会计文件中选出的字段
 
BSD派生的平台不支持ac_stat成员，所以我们在支持该成员的平台上定义了HAS_AC_STAT常量。基于特性而非平台定义的符号常量使代码更易读，也使我们更容易修改程序。修改的方法是对编译命令增加新的定义。替代方法可以是使用：
 
#if　!defined(BSD) && !defined(MACOS)
 
但是，当将应用移植到其他平台上时，这种方法会带来很大的不便。
 
我们定义了类似的常量以判断该平台是否支持ACORE和AXSIG会计标志。我们不能直接使用这两个标志符号，其原因是，在Linux中，它们被定义为enum类型值，而在#ifdef表达式中不能使用此种类型值。
 
为了进行测试，执行下列操作步骤。
 
（1）成为超级用户，用accton命令启用会计处理。注意，当此命令结束时，会计处理已经启用，因此在会计文件中的第一个记录应来自这一命令。
 
（2）终止超级用户shell，运行图8-28程序。这会追加6个记录到会计文件中（超级用户shell一个、父进程一个、4个子进程各一个）。
 
在第二个子进程中，execl并不创建一个新进程，所以对第二个进程只有一个会计记录。
 
（3）成为超级用户，停止会计处理。因为在accton命令终止时已经停止会计处理，所以不会在会计文件中增加一个记录。
 
（4）运行图8-29程序，从会计文件中选出字段并打印。
 
第4步的输出如下面所示。在每一行中都对进程追加了说明，以便后面讨论。
 
accton　 e =　　 1, chars =　　 336, stat  =　　0:　　　　 S

sh　　　　e =　1550, chars =　20168, stat  =　　0:　　　　 S

dd　　　　e =　　　2, chars =　 1585, stat  =　　0: 　　　　　　第二个子进程

a.out　　e =　　202, chars =　　　0, stat　 =　　0: 　　　　　　父进程

a.out　　e =　　420, chars =　　　0, stat　 =　134: 　　F　　  第一个子进程

a.out　　e =　　600, chars =　　　0, stat　 =　　9: 　　F　　　 第四个子进程

a.out　　e =　　801, chars =　　　0, stat　 =　　0: 　　F　　　 第三个子进程
 
墙上时钟时间值的单位是每秒滴答数。从图2-15中可见，本系统的每秒滴答数是100。例如，在父进程中的sleep(2)对应于墙上时钟时间202个时钟滴答。对于第一个子进程，sleep(4)变成420时钟滴答。注意，一个进程休眠的时间总量并不精确。（第10章将返回到sleep函数。）调用fork和exit也需要一些时间。
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注意，ac_stat成员并不是进程的真正终止状态。它只是8.6节中讨论的终止状态的一部分。如果进程异常终止，则此字节包含的信息只是core标志位（一般是最高位）以及信号编号数（一般是低7位）。如果进程正常终止，则从会计文件不能得到进程的退出（exit）状态。对于第一个子进程，此值是128+6。128是core标志位，6是此系统信号SIGABRT的值（它是由调用abort产生的）。第四个子进程的值是9，它对应于SIGKILL的值。从会计文件的数据中不能分辨出，父进程在退出时所用的参数值是2，第三个子进程退出时所用的参数值是0。
 
dd进程将文件/etc/passwd复制到第二个子进程中，该文件的长度是777字节。而I/O字符数是此值的2倍，其原因是读了777字节，然后又写了777字节。即使输出到空设备，但仍对I/O字符数进行计算。dd命令还有31个附加字节，用于报告读写字节数的摘要信息，该摘要信息也会在stdout上打印输出。
 
ac_flag值与我们所预料的相同。除调用execl的第二个子进程以外，其他子进程都设置了F标志。父进程没有设置F标志，其原因是执行父进程的交互式shell调用fork，然后执行a.out文件。第一个子进程调用abort，abort产生信号SIGABRT，产生了core转储。该进程的X标志和D标志都没有打开，因为Solaris不支持它们；相关信息可从ac_stat字段导出。第四个子进程也因信号而终止，但是SIGKILL信号并不产生core转储，它只是终止该进程。
 
最后要说明的是：第一个子进程的I/O字符数为0，但是该进程产生了一个core文件。其原因是写core文件所需的I/O并不由该进程负责。
 
8.15　用户标识
 
任一进程都可以得到其实际用户ID和有效用户ID及组ID。但是，我们有时希望找到运行该程序用户的登录名。我们可以调用getpwuid(getuid())，但是如果一个用户有多个登录名，这些登录名又对应着同一个用户ID，又将如何呢？（一个人在口令文件中可以有多个登录项，它们的用户ID相同，但登录shell不同。）系统通常记录用户登录时使用的名字（见6.8节），用getlogin函数可以获取此登录名。
 
#include <unistd.h>



char *getlogin(void);



　　　　　　　　　　　　　　　　　　　　返回值：若成功，返回指向登录名字符串的指针；若出错，返回NULL
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如果调用此函数的进程没有连接到用户登录时所用的终端，则函数会失败。通常称这些进程为守护进程（daemon），第13章将对这种进程专门进行讨论。
 
给出了登录名，就可用getpwnam在口令文件中查找用户的相应记录，从而确定其登录shell等。
 
 
 为了找到登录名，UNIX系统在历史上一直是调用ttyname函数（见18.9节），然后在utmp文件（见6.8节）中找匹配项。FreeBSD和Mac OS X将登录名存放在与进程表项相关联的会话结构中，并提供系统调用获取该登录名。
 
 System V提供cuserid函数返回登录名。此函数先调用getlogin函数，如果失败则再调用getpwuid(getuid())。IEEE标准1003.1-1988说明了cuserid，但是它以有效用户ID而不是实际用户ID来调用。POSIX.1的1990版本删除了cuserid函数。
 
 环境变量LOGNAME通常由login(1)以用户的登录名对其赋初值，并由登录shell继承。但是，用户可以修改环境变量，所以不能使用LOGNAME来验证用户，而应当使用getlogin函数。
 

 
8.16　进程调度
 
UNIX系统历史上对进程提供的只是基于调度优先级的粗粒度的控制。调度策略和调度优先级是由内核确定的。进程可以通过调整nice值选择以更低优先级运行（通过调整nice值降低它对CPU的占有，因此该进程是“友好的”）。只有特权进程允许提高调度权限。
 
POSIX实时扩展增加了在多个调度类别中选择的接口以进一步细调行为。我们这里只讨论用于调整nice值的接口，这些包括在POSIX.1的XSI扩展选项中。关于实时调度扩展更多的信息，可参考Gallmeister[1995]。
 
Single UNIX Specification中nice值的范围在0～(2*NZERO)-1之间，有些实现支持0～2*NZERO。nice值越小，优先级越高。虽然这看起来有点倒退，但实际上是有道理的：你越友好，你的调度优先级就越低。NZERO是系统默认的nice值。
 
 
 注意，定义NZERO的头文件因系统而异。除了头文件以外，Linux 3.2.0可以通过非标准的sysconf参数（_SC_NZERO）来访问NZERO的值。
 

 
进程可以通过nice函数获取或更改它的nice值。使用这个函数，进程只能影响自己的nice值，不能影响任何其他进程的nice值。
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#include <unistd.h>



int nice(int incr);



　　　　　　　　　　　　　　　　　　　　返回值：若成功，返回新的nice值NZERO；若出错，返回−1


 
incr参数被增加到调用进程的nice值上。如果incr太大，系统直接把它降到最大合法值，不给出提示。类似地，如果incr太小，系统也会无声息地把它提高到最小合法值。由于−1是合法的成功返回值，在调用nice函数之前需要清楚errno，在nice函数返回−1时，需要检查它的值。如果nice调用成功，并且返回值为−1，那么errno仍然为0。如果errno不为0，说明nice调用失败。
 
getpriority函数可以像nice函数那样用于获取进程的nice值，但是getpriority还可以获取一组相关进程的nice值。
 
#include <sys/resource.h>



int getpriority(int which, id_t who);



　　　　　　　　　　　　　　　　返回值：若成功，返回-NZERO～NZERO-1之间的nice值；若出错，返回−1


 
which参数可以取以下三个值之一：PRIO_PROCESS表示进程，PRIO_PGRP表示进程组，PRIO_USER表示用户ID。which参数控制who参数是如何解释的，who参数选择感兴趣的一个或多个进程。如果who参数为0，表示调用进程、进程组或者用户（取决于which参数的值）。当which设为PRIO_USER并且who为0时，使用调用进程的实际用户ID。如果which参数作用于多个进程，则返回所有作用进程中优先级最高的（最小的nice值）。
 
setpriority函数可用于为进程、进程组和属于特定用户ID的所有进程设置优先级。
 
#include <sys/resource.h>



int setpriority(int which, id_t who, int value);



　　　　　　　　　　　　　　　　　　　　返回值：若成功，返回0；若出错，返回−1


 
参数which和who与getpriority函数中相同。value增加到NZERO上，然后变为新的nice值。
 
 
 nice系统调用起源于早期Research UNIX系统的PDP-11版本。getpriority和setpriority函数源于4.2BSD。
 

 
Single UNIX Specification没有对在fork之后子进程是否继承nice值制定规则，而是留给具体实现自行决定。但是遵循XSI的系统要求进程调用exec后保留nice值。
 
 
 在FreeBSD 8.0、Linux 3.2.0、MacOS X 10.6.8以及Solaris 10中，子进程从父进程中继承nice值。
 

 
实例
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图8-30的程序度量了调整进程nice值的效果。两个进程并行运行，各自增加自己的计数器。父进程使用了默认的nice值，子进程以可选命令参数指定的调整后的nice值运行。运行10 s后，两个进程都打印各自的计数值并终止。通过比较不同nice值的进程的计数值的差异，我们可以了解nice值时如何影响进程调度的。
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#include "apue.h"

#include <errno.h>

#include <sys/time.h>



#if defined(MACOS)

#include <sys/syslimits.h>

#elif defined(SOLARIS)

#include <limits.h>

#elif defined(BSD)

#include <sys/param.h>

#endif



unsigned long long count;

struct timeval end;



void

checktime(char *str)

{

 　　struct timeval　　tv;



 　　gettimeofday(&tv, NULL);

 　　if (tv.tv_sec >= end.tv_sec && tv.tv_usec >= end.tv_usec) {

　　　　　printf("%s count = %lld\n", str, count);

　　　　　exit(0);

 　　}

}



int

main(int argc, char *argv[])

{

 　　pid_t　　pid;

 　　char　　 *s;

 　　int　　　nzero, ret;

 　　int　　　adj = 0;



 　　setbuf(stdout, NULL);

#if defined(NZERO)

 　　nzero = NZERO;

#elif defined(_SC_NZERO)

 　　nzero = sysconf(_SC_NZERO);

#else

#error NZERO undefined

#endif

 　　printf("NZERO = %d\n", nzero);

 　　if (argc == 2)

　　　　　adj = strtol(argv[1], NULL, 10);

 　　gettimeofday(&end, NULL);

 　　end.tv_sec += 10;　　　/* run for 10 seconds */



 　　if ((pid = fork()) < 0) {

 　　　　　err_sys("fork failed");

 　　} else if (pid == 0) {　　　/* child */

 　　　　　s = "child";

 　　　　　printf("current nice value in child is %d, adjusting by %d\n",

 　　　　　　nice(0)+nzero, adj);

 　　　　　errno = 0;

 　　　　　if ((ret = nice(adj)) == -1 && errno != 0)

　　　　　　　　err_sys("child set scheduling priority");

 　　　　　printf("now child nice value is %d\n", ret+nzero);

 　　} else {　　　/* parent */

 　　　　　s = "parent";

 　　　　　printf("current nice value in parent is %d\n", nice(0)+nzero);

 　　}

 　　for(;;) {

 　　　　　if (++count == 0)

　　　　　　　　err_quit("%s counter wrap", s);

 　　　　　checktime(s);

 　　}

}
 
图8-30　更改nice值的效果
 
执行该程序两次：一次用默认的nice值，另一次用最高有效nice值（最低调度优先级）。程序运行在单处理器Linux系统上，以显示调度程序如何在不同nice值的进程间进行CPU的共享。否则，对于有空闲资源的系统，如多处理器系统（或多核CPU），两个进程可能无需共享CPU（运行在不同的处理器上），就无法看出具有不同nice值的两个进程的差异。
 
$ ./a.out

NZERO = 20

current nice value in parent is 20

current nice value in child is 20, adjusting by 0

now child nice value is 20

child count = 1859362

parent count = 1845338

$ ./a.out 20

NZERO = 20

current nice value in parent is 20

current nice value in child is 20, adjusting by 20

now child nice value is 39

parent count = 3595709

child count = 52111
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当两个进程的nice值相同时，父进程占用50.2%的CPU，子进程占用49.8%的CPU。可以看到，两个进程被有效地进行了平等对待。百分比并不完全相同，是因为进程调度并不精确，而且子进程和父进程在计算结束时间和处理循环开始时间之间执行了不同数量的处理。
 
相比之下，当子进程有最高可能nice值（最低优先级）时，我们看到父进程占用98.5%的CPU，而子进程只占用1.5%的CPU。这些值取决于进程调度程序如何使用nice值，因此不同的UNIX系统会产生不同的CPU占用比。
 
8.17　进程时间
 
在1.10节中说明了我们可以度量的3个时间：墙上时钟时间、用户CPU时间和系统CPU时间。任一进程都可调用times函数获得它自己以及已终止子进程的上述值。
 
#include <sys/times.h>



clock_t times(struct tms *buf));

　　　　　　　　　　返回值：若成功，返回流逝的墙上时钟时间（以时钟滴答数为单位）；若出错，返回-1


 
此函数填写由buf指向的tms结构，该结构定义如下：
 
struct tms {

　clock_t　tms_utime;　/* user CPU time */

　clock_t　tms_stime;　/* system CPU time */

　clock_t　tms_cutime; /* user CPU time,terminated children */

　clock_t　tms_cstime; /* system CPU time,terminated children */

};
 
注意，此结构没有包含墙上时钟时间。times函数返回墙上时钟时间作为其函数值。此值是相对于过去的某一时刻度量的，所以不能用其绝对值而必须使用其相对值。例如，调用times，保存其返回值。在以后某个时间再次调用times，从新返回的值中减去以前返回的值，此差值就是墙上时钟时间。（一个长期运行的进程可能其墙上时钟时间会溢出，当然这种可能性极小，见习题1.5）。
 
该结构中两个针对子进程的字段包含了此进程用本章开始部分的wait函数族已等待到的各子进程的值。
 
所有由此函数返回的clock_t值都用_SC_CLK_TCK（由sysconf函数返回的每秒时钟滴答数，见2.5.4节）转换成秒数。
 
 
 大多数实现提供了getrusage(2)函数，该函数返回CPU时间以及指示资源使用情况的另外14个值。它起源于BSD系统，所以BSD派生的实现与其他实现比较，支持的字段要多一些。
 

 
实例
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图8-31中的程序将每个命令行参数作为shell命令串执行，对每个命令计时，并打印从tms结构取得的值。
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#include "apue.h"

#include <sys/times.h>



static void　　pr_times(clock_t, struct tms *, struct tms *);

static void　　do_cmd(char *);



int

main(int argc, char *argv[])

{

 　　int　　　i;



 　　setbuf(stdout, NULL);

 　　for (i = 1; i < argc; i++)

　　　　　 do_cmd(argv[i]);　　/* once for each command-line arg */

 　　exit(0);

}



static void

do_cmd(char *cmd)　　　　/* execute and time the "cmd" */

{

 　　struct tms　　tmsstart, tmsend;

 　　clock_t　　　　start, end;

 　　int　　　　　　status;



 　　printf("\ncommand: %s\n", cmd);



 　　if ((start = times(&tmsstart)) == -1) 　　/* starting values */

　　　　　 err_sys("times error");



 　　if ((status = system(cmd)) < 0) 　　 　　　/* execute command */

　　　　　 err_sys("system() error");



 　　if ((end = times(&tmsend)) == -1) 　　　　/* ending values */

　　　　　 err_sys("times error");



 　　pr_times(end-start, &tmsstart, &tmsend);

 　　pr_exit(status);

}



static void

pr_times(clock_t real, struct tms *tmsstart, struct tms *tmsend)

{

 　　static long　　　　clktck = 0;



 　　if (clktck == 0) 　　 　　/* fetch clock ticks per second first time */

　　　　　if ((clktck = sysconf(_SC_CLK_TCK)) < 0)

　　　　　　　　err_sys("sysconf error");



 　　printf("　real:　%7.2f\n", real / (double) clktck);

 　　printf("　user:　%7.2f\n",

 　　　(tmsend->tms_utime - tmsstart->tms_utime) / (double) clktck);

 　　printf("　sys:　 %7.2f\n",

 　　　(tmsend->tms_stime - tmsstart->tms_stime) / (double) clktck);

 　　printf("　child user:　%7.2f\n",

 　　　(tmsend->tms_cutime - tmsstart->tms_cutime) / (double) clktck);

 　　printf("　child sys:　 %7.2f\n",

 　　　(tmsend->tms_cstime - tmsstart->tms_cstime) / (double) clktck);

}
 
图8-31　计时并执行所有命令行参数
 
运行此程序可以得到：
 
$ ./a.out "sleep 5" "date" "man bash >/dev/null"

command: sleep 5

　real:　　 5.01

　user:　　 0.00

　sys:　　　0.00

　child user:　　 0.00

　child sys:　　　0.00

normal termination, exit status = 0



command: date

Sun Feb 26 18:39:23 EST 2012

　real:　　 0.00

　user:　　 0.00

　sys:　　　0.00

　child user:　　 0.00　　　　 

　child sys:　　　0.00

normal termination, exit status = 0



command: man bash >/dev/null

　real:　　 1.46

　user:　　 0.00

　sys:　　　0.00

　child user:　　 1.32

　child sys:　　　0.07

normal termination, exit status = 0


 
在前两个命令中，命令执行时间足够快避免了以可报告的精度记录CPU时间。但在第3个命令中，运行了一个处理时间足够长的命令来表明所有的CPU时间都出现在子进程中，而shell和命令正是在子进程中执行的。
 
8.18　小结
 
对在UNIX环境中的高级编程而言，完整地了解UNIX的进程控制是非常重要的。其中必须熟练掌握的只有几个函数——fork、exec系列、_exit、wait和waitpid。很多应用程序都使用这些简单的函数。fork函数也给了我们一个了解竞争条件的机会。
 

  282 

 
本章说明了system函数和进程会计，这也使我们能进一步了解所有这些进程控制函数。本章还说明了exec函数的另一种变体：解释器文件及它们的工作方式。对各种不同的用户ID和组ID（实际、有效和保存的）的理解，对编写安全的设置用户ID程序是至关重要的。
 
在了解进程和子进程的基础上，下一章将进一步说明进程和其他进程的关系——会话和作业控制。第10章将说明信号机制并以此结束对进程的讨论。
 
习题
 
8.1　在图8-3程序中，如果用exit调用代替_exit调用，那么可能会使标准输出关闭，使printf返回−1。修改该程序以验证在你所使用的系统上是否会产生此种结果。如果并非如此，你怎样处理才能得到类似结果呢？
 
8.2　回忆图7-6中典型的存储空间布局。由于对应于每个函数调用的栈帧通常存储在栈中，并且由于调用vfork后，子进程运行在父进程的地址空间中，如果不是在main函数中而是在另一个函数中调用vfork，此后子进程又从该函数返回，将会发生什么？请编写一段测试程序对此进行验证，并且画图说明发生了什么。
 
8.3　重写图8-6中的程序，把wait换成waitid。不调用pr_exit，而从siginfo结构中确定等价的信息。
 
8.4　当用$./a.out执行图8-13中的程序一次时，其输出是正确的。但是若将该程序按下列方式执行多次，则其输出不正确。
 
$ ./a.out ; a.out ;./a.out

output from parent

ooutput from parent

ouotuptut from child

put from parent

output from child

utput from child


 
原因是什么？怎样才能更正此类错误？如果使子进程首先输出，还会发生此问题吗？
 
8.5　在图8-20所示的程序中，调用execl，指定pathname为解释器文件。如果将其改为调用execlp，指定testinterp的filename，并且如果目录/home/sar/bin是路径前缀，则运行该程序时，argv[2]的打印输出是什么？
 
8.6　编写一段程序创建一个僵死进程，然后调用system执行ps(1)命令以验证该进程是僵死进程。
 

  283 

 
8.7　8.10节中提及POSIX.1要求在exec时关闭打开目录流。按下列方法对此进行验证：对根目录调用opendir，查看在你系统上实现的DIR结构，然后打印执行时关闭标志。接着打开同一目录读并打印执行时关闭标志。
 


第9章　进程关系
 
9.1　引言
 
在上一章我们已了解到进程之间具有关系。首先，每个进程有一个父进程（初始的内核级进程通常是自己的父进程）。当子进程终止时，父进程得到通知并能取得子进程的退出状态。在8.6节说明waitpid函数时，我们也提到了进程组，以及如何等待进程组中的任意一个进程终止。
 
本章将更详细地说明进程组以及POSIX.1引入的会话的概念。还将介绍登录shell（登录时所调用的）和所有从登录shell启动的进程之间的关系。
 
在说明这些关系时不可能不谈及信号，而讨论信号时又需要很多本章介绍的概念。如果你不熟悉UNIX系统信号机制，则可能先要浏览一下第10章。
 
9.2　终端登录
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先说明当我们登录到UNIX系统时所执行的各个程序。在早期的UNIX系统（如V7）中，用户用哑终端（用硬连接连到主机）进行登录。终端或者是本地的（直接连接）或者是远程的（通过调制解调器连接）。在这两种情况下，登录都经由内核中的终端设备驱动程序。例如，在PDP-11上常用的设备是DH-11和DZ-11。因为连到主机上的终端设备数是固定的，所以同时的登录数也就有了已知的上限。
 
随着位映射图形终端的出现，开发出了窗口系统，它向用户提供了与主机系统进行交互的新方式。创建终端窗口的应用也被开发出来，它仿真了基于字符的终端，使得用户可以用熟悉的方式（即通过shell命令行）与主机进行交互。
 
现今，某些平台允许用户在登录后启动一个窗口系统，而另一些平台则自动为用户启动窗口系统。在后面一种情况中，用户可能仍然需要登录，这取决于窗口系统是如何配置的（某些窗口系统可被配置成自动为用户登录）。
 
我们现在描述的过程用于经由终端登录至UNIX系统。该过程几乎与所使用的终端类型无关，所使用的终端可以是基于字符的终端、仿真基于字符终端的图形终端，或者运行窗口系统的图形终端。
 
1．BSD终端登录
 
在过去35年中，BSD终端登录过程并没有多少改变。系统管理者创建通常名为/etc/ttys的文件，其中，每个终端设备都有一行，每一行说明设备名和传到getty程序的参数。例如，其中一个参数说明了终端的波特率等。当系统自举时，内核创建进程ID为1的进程，也就是init进程。init进程使系统进入多用户模式。init读取文件/etc/ttys，对每一个允许登录的终端设备，init调用一次fork，它所生成的子进程则exec getty程序。这种情况示于图9-1中。
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图9-1中所有进程的实际用户ID和有效用户ID都是0（也就是说，它们都具有超级用户特权）。init以空环境exec getty程序。
 
[image: ..\14-0434 UNIX环境高级编程（第3版）(改一校)改\0901.tif]
 
图9-1　为允许终端登录，init调用的进程
 
getty对终端设备调用open函数，以读、写方式将终端打开。如果设备是调制解调器，则open可能会在设备驱动程序中滞留，直到用户拨号调制解调器，并且线路被接通。一旦设备被打开，则文件描述符0、1、2就被设置到该设备。然后getty输出“login:”之类的信息，并等待用户键入用户名。如果终端支持多种速度，则getty可以测试特殊字符以便适当地更改终端速度（波特率）。关于getty程序以及有关数据文件（gettytab）的细节，请参阅UNIX系统手册。
 
当用户键入了用户名后，getty的工作就完成了。然后它以类似于下列的方式调用login程序：
 
execle("/bin/login", "login", "-p", username, (char *)0, envp);
 
（在gettytab文件中可能会有一些选项使其调用其他程序，但系统默认是login程序）。init以一个空环境调用getty。getty以终端名（如TERM=foo，其中终端foo的类型取自gettytab文件）和在gettytab中说明的环境字符串为login创建一个环境（envp参数）。-p标志通知login保留传递给它的环境，也可将其他环境字符串加到该环境中，但是不要替换它。图9-2显示了login刚被调用后这些进程的状态。
 
[image: ..\14-0434 UNIX环境高级编程（第3版）(改一校)改\0902.tif]
 
图9-2　login调用后进程的状态
 
因为最初的init进程具有超级用户特权，所以图9-2中的所有进程都有超级用户特权。图9-2中底部3个进程的进程ID相同，因为进程ID不会因执行exec而改变。并且，除了最初的init进程，所有进程的父进程ID均为1。
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login能处理多项工作。因为它得到了用户名，所以能调用getpwnam取得相应用户的口令文件登录项。然后调用getpass(3)以显示提示“Password:”，接着读用户键入的口令（自然，禁止回显用户键入的口令）。它调用crypt(3)将用户键入的口令加密，并与该用户在阴影口令文件中登录项的pw_passwd字段相比较。如果用户几次键入的口令都无效，则login以参数1调用exit表示登录过程失败。父进程（init）了解到子进程的终止情况后，将再次调用fork，其后又执行了getty，对此终端重复上述过程。
 
这是UNIX系统传统的用户身份验证过程。现代UNIX系统已发展到支持多个身份验证过程。例如，FreeBSD、Linux、Mac OS X以及Solaris都支持被称为PAM（Pluggable Authentication Modules，可插入的身份验证模块）的更加灵活的方案。PAM允许管理人员配置使用何种身份验证方法来访问那些使用PAM库编写的服务。
 
如果应用程序需要验证用户是否具有适当的权限去执行某个服务，那么我们要么将身份验证机制编写到应用中，要么使用PAM库得到同样的功能。使用PAM的优点是，管理员可以基于本地策略、针对不同任务配置不同的验证用户身份的方法。
 
如果用户正确登录，login就将完成如下工作。
 
 
 	将当前工作目录更改为该用户的起始目录（chdir）。
 
 	调用chown更改该终端的所有权，使登录用户成为它的所有者。
 
 	将对该终端设备的访问权限改变成“用户读和写”。
 
 	调用setgid及initgroups设置进程的组ID。
 
 	用login得到的所有信息初始化环境：起始目录（HOME）、shell（SHELL）、用户名（USER和LOGNAME）以及一个系统默认路径（PATH）。
 
 	login进程更改为登录用户的用户ID（setuid）并调用该用户的登录shell，其方式类似于：
 

 
execl("/bin/sh", "-sh", (char *)0);
 
 
 argv[0]的第一个字符负号“−”是一个标志，表示该shell被作为登录shell调用。shell可以查看此字符，并相应地修改其启动过程。
 

 
login程序实际所做的比上面说的要多。它可选择地打印日期消息（message-of-the-day）文件、检查新邮件以及执行其他一些任务。本章中我们主要关心上面所说的功能。
 
回忆8.11节中对setuid函数的讨论，因为setuid是由超级用户调用的，它更改所有3个用户ID：实际用户ID、有效用户ID和保存的用户ID。login在较早时间调用的setgid对所有3个组ID也有同样效果。
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至此，登录用户的登录shell开始运行。其父进程ID是init进程（进程ID 1），所以当此登录shell终止时，init会得到通知（接到SIGCHLD信号），它会对该终端重复全部上述过程。登录shell的文件描述符0、1和2设置为终端设备。图9-3显示了这种安排。
 
[image: ..\14-0434 UNIX环境高级编程（第3版）(改一校)改\0903.tif]
 
图9-3　终端登录完成各种设置后的进程安排
 
现在，登录shell读取其启动文件（Bourne shell和Korn shell是.profile，GNU Bourne-again shell是.bash_profile、.bash_login或.profile，C shell是.cshrc和.login）。这些启动文件通常更改某些环境变量并增加很多环境变量。例如，大多数用户设置他们自己的PATH并常常提示实际终端类型（TERM）。当执行完启动文件后，用户最后得到shell提示符，并能键入命令。
 
2．Mac OS X终端登录
 
Mac OS X部分地基于FreeBSD，所以其终端登录进程与BSD终端登录进程的工作步骤基本相同。但是，Mac OS X有些不同之处。
 
 
 	init的工作是由launchd完成的。
 
 	一开始提供的就是图形终端。
 

 
3．Linux终端登录
 
Linux的终端登录过程非常类似于BSD。确实，Linux login命令是从4.3BSD login命令派生出来的。BSD登录过程与Linux登录过程的主要区别在于说明终端配置的方式。
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在System V的init文件格式之后，有些Linux发行版的init程序使用了管理文件方式。在这些系统中，/etc/inittab包含配置信息，指定了init应当为之启动getty进程的各终端设备。
 
其他Linux发行版本，如最近的Ubuntu发行版，配有称为“Upstart”的init程序。使用存放在/etc/init目录的*.conf命名的配置文件。例如，运行/dev/tty1上的getty需要的说明可能放在/etc/init/tty1.conf文件中。
 
根据所使用的getty版本的不同，终端的特征要么在命令行中说明（如agetty），要么在/etc/gettydefs文件中说明（如mgetty）。
 
4．Solaris终端登录
 
Solaris支持两种形式的终端登录：（a）getty方式，这与前面对BSD终端登录的说明一样；（b）ttymon登录，这是SVR4引入的一种新特性。通常，getty用于控制台，ttymon则用于其他终端的登录。
 
ttymon命令是服务访问设施（Service Access Facility，SAF）的一部分。SAF的目的是用一致的方式对提供系统访问的服务进行管理（关于SAF的详细信息可以参见Rago[1993]的第6章）。按照本书的宗旨，我们只简单说明从init到登录shell之间不同的工作步骤，最后结果与图9-3中所示相似。init是sac（service access controller，服务访问控制器）的父进程，sac调用fork，然后，当系统进入多用户状态时，其子进程执行ttymon程序。ttymon监控在配置文件中列出的所有终端端口，当用户键入登录名时，它调用一次fork。在此之后ttymon的子进程执行login，它向用户发出提示，要求输入口令字。一旦完成这一处理，login执行登录用户的登录shell，于是到达了图9-3中所示的位置。一个区别是用户登录shell的父进程现在是ttymon，而在getty登录中，登录shell的父进程是init。
 
9.3　网络登录
 
通过串行终端登录至系统和经由网络登录至系统两者之间的主要（物理上的）区别是：网络登录时，在终端和计算机之间的连接不再是点到点的。在网络登录情况下，login仅仅是一种可用的服务，这与其他网络服务（如FTP或SMTP）的性质相同。
 
在上节所述的终端登录中，init知道哪些终端设备可用来进行登录，并为每个设备生成一个getty进程。但是，对网络登录情况则有所不同，所有登录都经由内核的网络接口驱动程序（如以太网驱动程序），而且事先并不知道将会有多少这样的登录。因此必须等待一个网络连接请求的到达，而不是使一个进程等待每一个可能的登录。
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为使同一个软件既能处理终端登录，又能处理网络登录，系统使用了一种称为伪终端（pseudo terminal）的软件驱动程序，它仿真串行终端的运行行为，并将终端操作映射为网络操作，反之亦然。（在第19章，我们将详细说明伪终端。）
 
1．BSD网络登录
 
在BSD中，有一个inetd进程（有时称为因特网超级服务器），它等待大多数网络连接。本节将说明BSD网络登录中所涉及的进程序列。关于这些进程的网络程序设计方面的细节请参阅Stevens、Fenner和Rudoff [2004]。
 
作为系统启动的一部分，init调用一个shell，使其执行shell脚本/etc/rc。由此shell脚本启动一个守护进程inetd。一旦此shell脚本终止，inetd的父进程就变成init。inetd等待TCP/IP连接请求到达主机，而当一个连接请求到达时，它执行一次fork，然后生成的子进程exec适当的程序。
 
假定一个对于TELNET服务进程的TCP连接请求到达。TELNET是使用TCP协议的远程登录应用程序。在另一台主机（它通过某种形式的网络与服务进程主机相连接）上的用户，或在同一个主机上的一个用户启动TELNET客户进程，由此启动登录过程：
 
telnet hostname


 
该客户进程打开一个到hostname主机的TCP连接，在hostname主机上启动的程序被称为TELNET服务进程。然后，客户进程和服务进程之间使用TELNET应用协议通过TCP连接交换数据。启动客户进程的用户现在登录到了服务进程所在的主机（当然，假定用户在服务进程主机上有一个有效的账号）。图9-4显示了在执行TELNET服务进程（称为telnetd）中所涉及的进程序列。
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[image: ..\14-0434 UNIX环境高级编程（第3版）(改一校)改\0904.tif]
 
图9-4　执行TELNET服务进程时调用的进程序列
 
然后，telnetd进程打开一个伪终端设备，并用fork分成两个进程。父进程处理通过网络连接的通信，子进程则执行login程序。父进程和子进程通过伪终端相连接。在调用exec之前，子进程使其文件描述符0、1、2与伪终端相连。如果登录正确，login就执行9.2节中所述的同样步骤—更改当前工作目录为起始目录、设置登录用户的组ID、用户ID以及初始环境。然后login调用exec将其自身替换为登录用户的登录shell。图9-5显示了到达这一点时的进程安排。
 
[image: ..\14-0434 UNIX环境高级编程（第3版）(改一校)改\0905.tif]
 
图9-5　网络登录完成各种设置后的进程安排
 
很明显，在伪终端设备驱动程序和实际终端用户之间进行了很多工作。第19章详细说明伪终端时，我们将介绍与这种安排相关的所有进程。
 
需要理解的重点是：当通过终端（见图9-3）或网络（见图9-5）登录时，我们得到一个登录shell，其标准输入、标准输出和标准错误要么连接到一个终端设备，要么连接到一个伪终端设备上。在后面几节中我们会了解到这一登录shell是一个POSIX.1会话的开始，而此终端或伪终端则是会话的控制终端。
 
2．Mac OS X网络登录
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Mac OS X是部分地基于FreeBSD的，所以其网络登录与BSD网络登录基本相同。但Mac OS X上telnet守护进程是从launchd运行的。
 
 
 telnet守护进程在Mac OS X中默认是禁用的（虽然可以通过launchctl(1)命令启用）。Mac OS X上执行网络登录的更好办法是用使ssh（安全shell命令）。
 

 
3．Linux网络登录
 
除了有些版本使用扩展的因特网服务守护进程xinetd代替inetd进程外，Linux网络登录的其他方面与BSD网络登录相同。xinetd进程对它所启动的各种服务的控制比inetd提供的控制更加精细。
 
4．Solaris网络登录
 
Solaris中网络登录的工作过程与BSD和Linux中的步骤几乎一样。同样使用了类似于BSD版的inetd服务进程，但是在Solaris中，inetd服务进程在服务管理设施（Service Management Facility，SMF）下作为restarter运行。这个restarter是守护进程，它负责启动和监视其他守护进程，如果其他守护进程失败的话，restarter重启这些失效进程。虽然inetd服务程序由SMF中的主restarter启动，但实际上主restarter是由init程序启动的，最后得到的结果与图9-5中一样。
 
 
 Solaris服务管理设施是管理和监视系统服务的框架，提供了一种从影响系统服务的故障中恢复的途径。关于服务管理设施的更多内容，可参阅Adams[2005]以及Solaris系统手册smf(5)和inetd(1M)。
 

 
9.4　进程组
 
每个进程除了有一进程ID之外，还属于一个进程组，第10章讨论信号时还会涉及进程组。
 
进程组是一个或多个进程的集合。通常，它们是在同一作业中结合起来的（9.8节将详细讨论作业控制），同一进程组中的各进程接收来自同一终端的各种信号。每个进程组有一个唯一的进程组ID。进程组ID类似于进程ID——它是一个正整数，并可存放在pid_t数据类型中。函数getpgrp返回调用进程的进程组ID。
 
#include <unistd.h>



pid_t getpgrp(void);



　　　　　　　　　　　　　　　　　　　　返回值：调用进程的进程组ID
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在早期BSD派生的系统中，该函数的参数是pid，返回该进程的进程组ID。Single UNIX Specification定义了getpgid函数模仿此种运行行为。
 
#include <unistd.h>



pid_t getpgid(pid_t pid);



　　　　　　　　　　　　　　　　　　　　返回值：若成功，返回进程组ID；若出错，返回−1


 
若pid是0，返回调用进程的进程组ID，于是，
 
getpgid(0);
 
等价于
 
getpgrp();
 
每个进程组有一个组长进程。组长进程的进程组ID等于其进程ID。
 
进程组组长可以创建一个进程组、创建该组中的进程，然后终止。只要在某个进程组中有一个进程存在，则该进程组就存在，这与其组长进程是否终止无关。从进程组创建开始到其中最后一个进程离开为止的时间区间称为进程组的生命期。某个进程组中的最后一个进程可以终止，也可以转移到另一个进程组。
 
进程调用setpgid可以加入一个现有的进程组或者创建一个新进程组（下一节中将说明用setsid也可以创建一个新的进程组）。
 
#include <unistd.h>



int setpgid(pid_t pid, pid_t pgid);



　　　　　　　　　　　　　　　　　　　　返回值：若成功，返回0；若出错，返回−1


 
setpgid函数将pid进程的进程组ID设置为pgid。如果这两个参数相等，则由pid指定的进程变成进程组组长。如果pid是0，则使用调用者的进程ID。另外，如果pgid是0，则由pid指定的进程ID用作进程组ID。
 
一个进程只能为它自己或它的子进程设置进程组ID。在它的子进程调用了exec后，它就不再更改该子进程的进程组ID。
 
在大多数作业控制shell中，在fork之后调用此函数，使父进程设置其子进程的进程组ID，并且也使子进程设置其自己的进程组ID。这两个调用中有一个是冗余的，但让父进程和子进程都这样做可以保证，在父进程和子进程认为子进程已进入了该进程组之前，这确实已经发生了。如果不这样做，在fork之后，由于父进程和子进程运行的先后次序不确定，会因为子进程的组员身份取决于哪个进程首先执行而产生竞争条件。
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在讨论信号时，将说明如何将一个信号发送给一个进程（由其进程ID标识）或发送给一个进程组（由进程组ID标识）。类似地，8.6节的waitpid函数可被用来等待一个进程或者指定进程组中的一个进程终止。
 
9.5　会话
 
会话（session）是一个或多个进程组的集合。例如，可以具有图9-6中所示的安排。其中，在一个会话中有3个进程组。
 
[image: ..\14-0434yds排版CMM\UNIX环境高级编程（第3版）tu\0906.tif]
 
图9-6　进程组和会话中的进程安排
 
通常是由shell的管道将几个进程编成一组的。例如，图9-6中的安排可能是由下列形式的shell命令形成的：
 
procl | proc2 &

proc3 | proc4 | proc5
 
进程调用setsid函数建立一个新会话。
 
#include <unistd.h>



pid_t setsid(void);



　　　　　　　　　　　　　　　　　　　　返回值：若成功，返回进程组ID；若出错，返回-1
 
如果调用此函数的进程不是一个进程组的组长，则此函数创建一个新会话。具体会发生以下3件事。
 
（1）该进程变成新会话的会话首进程（session leader，会话首进程是创建该会话的进程）。此时，该进程是新会话中的唯一进程。
 
（2）该进程成为一个新进程组的组长进程。新进程组ID是该调用进程的进程ID。
 
（3）该进程没有控制终端（下一节讨论控制终端）。如果在调用setsid之前该进程有一个控制终端，那么这种联系也被切断。
 
如果该调用进程已经是一个进程组的组长，则此函数返回出错。为了保证不处于这种情况，通常先调用fork，然后使其父进程终止，而子进程则继续。因为子进程继承了父进程的进程组ID，而其进程ID则是新分配的，两者不可能相等，这就保证了子进程不是一个进程组的组长。
 
Single UNIX Specification只说明了会话首进程，而没有类似于进程ID和进程组ID的会话ID。显然，会话首进程是具有唯一进程ID的单个进程，所以可以将会话首进程的进程ID视为会话ID。会话ID这一概念是由SVR4引入的。历史上，基于BSD的系统并不支持这个概念，但后来改弦易辙也支持了会话ID。getsid函数返回会话首进程的进程组ID。
 
 
 一些实现（如Solaris）与Single UNIX Specification保持一致，在实践中避免使用“会话ID”这一短语，而是将此称为“会话首进程的进程组ID”。会话首进程总是一个进程组的组长进程，所以两者是等价的。
 

 
#include <unistd.h>



pid_t getsid(pid_t pid);



　　　　　　　　　　　　　　　　　　　　返回值：若成功，返回会话首进程的进程组ID；若出错，返回-1


 
如若pid是0，getsid返回调用进程的会话首进程的进程组ID。出于安全方面的考虑，一些实现有如下限制：如若pid并不属于调用者所在的会话，那么调用进程就不能得到该会话首进程的进程组ID。
 
9.6　控制终端
 
会话和进程组还有一些其他特性。
 
 
 	一个会话可以有一个控制终端（controlling terminal）。这通常是终端设备（在终端登录情况下）或伪终端设备（在网络登录情况下）。
 
 	建立与控制终端连接的会话首进程被称为控制进程（controlling process）。
 
 	一个会话中的几个进程组可被分成一个前台进程组（foreground process group）以及一个或多个后台进程组（background process group）。
 
 	如果一个会话有一个控制终端，则它有一个前台进程组，其他进程组为后台进程组。
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 	无论何时键入终端的中断键（常常是Delete或Ctrl+C），都会将中断信号发送至前台进程组的所有进程。
 
 	无论何时键入终端的退出键（常常是Ctrl+\），都会将退出信号发送至前台进程组的所有进程。
 
 	如果终端接口检测到调制解调器（或网络）已经断开连接，则将挂断信号发送至控制进程（会话首进程）。
 

 
这些特性示于图9-7中。
 
[image: ..\14-0434 UNIX环境高级编程（第3版）(改一校)改\0907.tif]
 
图9-7　进程组、会话和控制终端
 
通常，我们不必担心控制终端，登录时，将自动建立控制终端。
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 POSIX.1将如何分配一个控制终端的机制交给具体实现来选择。19.4节中将说明实际步骤。
 
 当会话首进程打开第一个尚未与一个会话相关联的终端设备时，只要在调用open时没有指定O_NOCTTY标志（见3.3节），System V派生的系统将此作为控制终端分配给此会话。
 
 当会话首进程用TIOCSCTTY作为request参数（第三个参数是空指针）调用ioctl时，基于BSD的系统为会话分配控制终端。为使此调用成功执行，此会话不能已经有一个控制终端（通常ioctl调用紧跟在setsid调用之后，setsid保证此进程是一个没有控制终端的会话首进程）。除了以兼容模式支持其他系统以外，基于BSD的系统不使用POSIX.1中对open函数所说明的O_NOCTTY标志。
 
 图9-8总结了本书讨论的4个平台分配控制终端的方式。注意，虽然Mac OS X 10.6.8是从BSD派生出来的，但其分配控制终端的方式如同System V。
 

 
[image: 9-8.jpg]
 
图9-8　不同的实现分配控制终端的方式
 
有时不管标准输入、标准输出是否重定向，程序都要与控制终端交互作用。保证程序能与控制终端对话的方法是open文件/dev/tty。在内核中，此特殊文件是控制终端的同义语。自然地，如果程序没有控制终端，则对于此设备的open将失败。
 
典型的例子是用于读口令的getpass(3)函数（终端回显被关闭）。这一函数由crypt(1)程序调用，并可用于管道中。例如：
 
crypt < salaries | lpr
 
将文件salaries解密，然后经由管道将输出送至打印缓冲服务程序。因为crypt从其标准输入读输入文件，所以标准输入不能用于输入口令。而且，crypt经过了设计，因此每次运行此程序时都应输入加密口令，这样也就阻止了用户将口令存放在文件中（这会造成安全性漏洞）。
 
已经知道有一些方法可以破译crypt程序使用的密码。关于加密文件的详细情况请参见Garfinkel等[2003]。
 
9.7　函数tcgetpgrp、tcsetpgrp和tcgetsid
 
需要有一种方法来通知内核哪一个进程组是前台进程组，这样，终端设备驱动程序就能知道将终端输入和终端产生的信号发送到何处（见图9-7）。
 
#include <unistd.h>



pid_t tcgetpgrp(int fd);



　　　　　　　　　　　　　　　　　　　　　返回值：若成功，返回前台进程组ID；若出错，返回−1



int tcsetpgrp(int fd, pid_t pgrpid);



　　　　　　　　　　　　　　　　　　　　返回值：若成功，返回0；若出错，返回−1


 
函数tcgetpgrp返回前台进程组ID，它与在fd上打开的终端相关联。
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如果进程有一个控制终端，则该进程可以调用tcsetpgrp将前台进程组ID设置为pgrpid。pgrpid值应当是在同一会话中的一个进程组的ID。fd必须引用该会话的控制终端。
 
大多数应用程序并不直接调用这两个函数。它们通常由作业控制shell调用。
 
给出控制TTY的文件描述符，通过tcgetsid函数，应用程序就能获得会话首进程的进程组ID。
 
#include <termios.h>



pid_t tcgetsid(int fd);



　　　　　　　　　　　　　　　　　　　　返回值：若成功，返回会话首进程的进程组ID；若出错，返回−1


 
需要管理控制终端的应用程序可以调用tcgetsid函数识别出控制终端的会话首进程的会话ID（它等价于会话首进程的进程组ID）。
 
9.8　作业控制
 
作业控制是BSD在1980年左右增加的一个特性。它允许在一个终端上启动多个作业（进程组），它控制哪一个作业可以访问该终端以及哪些作业在后台运行。作业控制要求以下3种形式的支持。
 
（1）支持作业控制的shell。
 
（2）内核中的终端驱动程序必须支持作业控制。
 
（3）内核必须提供对某些作业控制信号的支持。
 
 
 SVR3提供了一种不同的作业控制，称为shell层（shell layer）。但是POSIX.1选择了BSD形式的作业控制，这也是我们在这里所说明的。POSIX.1的早期版本中，对作业控制的支持是可选择的，现在则要求所有平台都支持它。
 

 
从shell使用作业控制功能的角度观察，用户可以在前台或后台启动一个作业。一个作业只是几个进程的集合，通常是一个进程管道。例如：
 
vi main.c
 
在前台启动了只有一个进程组成的作业。下面的命令：
 
pr *.c | lpr &

make all &
 
在后台启动了两个作业。这两个后台作业调用的所有进程都在后台运行。
 

  299 

 
如前所述，我们需要一个支持作业控制的shell以使用由作业控制提供的功能。对于早期的系统，shell是否支持作业控制比较易于说明。C shell支持作业控制，Bourne shell不支持，而Korn shell能否支持作业控制取决于主机是否支持作业控制。但是现在C shell已被移植到并不支持作业控制的系统上（如System V的早期版本），而当用名字jsh而不是用sh调用SVR4中的Bourne shell时，它支持作业控制。如果主机支持作业控制，则Korn shell继续支持作业控制。Bourne-again shell也支持作业控制。各种shell之间的差别无关紧要时，我们将只是一般地说明支持作业控制的shell和不支持作业控制的shell。
 
当启动一个后台作业时，shell赋予它一个作业标识符，并打印一个或多个进程ID。下面的脚本显示了Korn shell是如何处理这一点的。
 
$ make all > Make.out &

[1]　　 1475

$ pr *.c | lpr &

[2]　　 1490

$　　　　　　　　　　　键入回车

[2] + Done　　　　 pr *.c | lpr &

[1] + Done　　　　 make all > Make.out &


 
make是作业编号1，所启动的进程ID是1475。下一个管道是作业编号2，其第一个进程的进程ID是1490。当作业完成而且键入回车时，shell通知作业已经完成。键入回车是为了让shell打印其提示符。shell并不在任意时刻打印后台作业的状态改变——它只在打印其提示符让用户输入新的命令行之前才这样做。如果不这样处理，则当我们正输入一行时，它也可能输出，于是，就会引起混乱。
 
我们可以键入一个影响前台作业的特殊字符——挂起键（通常采用Ctrl+Z），与终端驱动程序进行交互作用。键入此字符使终端驱动程序将信号SIGTSTP发送至前台进程组中的所有进程，后台进程组作业则不受影响。实际上有3个特殊字符可使终端驱动程序产生信号，并将它们发送至前台进程组，它们是：
 
 
 	中断字符（一般采用Delete或Ctrl+C）产生SIGINT；
 
 	退出字符（一般采用Ctrl+\）产生SIGQUIT；
 
 	挂起字符（一般采用Ctrl+Z）产生SIGTSTP。
 

 
第18章中将说明可将这3个字符更改为用户选择的任意其他字符，以及如何使终端驱动程序不处理这些特殊字符。
 
终端驱动程序必须处理与作业控制有关的另一种情况。我们可以有一个前台作业，若干个后台作业，这些作业中哪一个接收我们在终端上键入的字符呢？只有前台作业接收终端输入。如果后台作业试图读终端，这并不是一个错误，但是终端驱动程序将检测这种情况，并且向后台作业发送一个特定信号SIGTTIN。该信号通常会停止此后台作业，而shell则向有关用户发出这种情况的通知，然后用户就可用shell命令将此作业转为前台作业运行，于是它就可读终端。下列操作过程显示了这一点：
 
$ cat > temp.foo &　　　　　 　　在后台启动，但将从标准输入读

[1]　　 1681

$　　　　　　　　　　　　　　　　　 键入回车

[1] + Stopped (SIGTTIN)　　 　　cat > temp.foo &

$ fg %1　　　　　　　　　　　　　　使1号作业成为前台作业

cat > temp.foo　　　　　　　　　　shell告诉我们现在哪一个作业在前台　 

hello, world　　　　　　　　　　　输入一行　 

^D　　　　　　　　　　　　　　　　　键入文件结束符

$ cat temp.foo　　　　　　　　　　检查该行已送入文件

hello, world


 
 
 注意，这个例子在Mac OS X 10.6.8上不起作用。在试图把cat命令放到前台时，read返回失败，并将errno设为EINTR。Mac OS X是基于FreeBSD的，在FreeBSD下本例运行良好，因此这应该是Mac OS X的一个bug。
 

 
shell在后台启动cat进程，但是当cat试图读其标准输入（控制终端）时，终端驱动程序知道它是个后台作业，于是将SIGTTIN信号送至该后台作业。shell检测到其子进程的状态改变（回忆8.6节中对wait和waitpid函数的讨论），并通知我们该作业已被停止。然后，我们用shell的fg命令将此停止的作业送入前台运行（关于作业控制命令，如fg和bg的详细情况，以及标识不同作业的各种方法请参阅有关shell的手册页）。这样做使shell将此作业转为前台进程组（tcsetpgrp），并将继续信号（SIGCONT）送给该进程组。因为该作业现在前台进程组中，所以它可以读控制终端。
 
如果后台作业输出到控制终端又将发生什么呢？这是一个我们可以允许或禁止的选项。通常，可以用stty(1)命令改变这一选项（第18章将说明在程序中如何改变这一选项）。下面显示了这种操作过程：
 
$ cat temp.foo &　　　　　 　　在后台执行

[1]　　 1719

$ hello, world　　　　　 　　　提示符后出现后台作业的输出

　　　　　　　　　　　　　　　   键入回车

[1] + Done　　　　 cat temp.foo &

$ stty tostop　　　　　　　　　禁止后台作业输出至控制终端 

$ cat temp.foo & 　　　　 　　在后台再试一次

[1]　　 1721

$　　　　　　　　　　　　　　 　 键入回车，发现作业已停止

[1] + Stopped(SIGTTOU)　　　　　cat temp.foo &

$ fg %1　　　　　　　　　　 　　在前台恢复停止的作业

cat temp.foo　　　　　　　 　　shell告诉我们现在哪一个作业在前台

hello, world　　　　　　　 　　这是该作业的输出


 
在用户禁止后台作业向控制终端写时，该作业的cat命令试图写其标准输出，此时，终端驱动程序识别出该写操作来自于后台进程，于是向该作业发送SIGTTOU信号，cat进程阻塞。与上面的例子一样，当用户使用shell的fg命令将该作业转为前台时，该作业继续执行直至完成。
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图9-9总结了前面已说明的作业控制的某些功能。穿过终端驱动程序框的实线表明终端 I/O和终端产生的信号总是从前台进程组连接到实际终端。对应于SIGTTOU信号的虚线表明后台进程组进程的输出是否出现在终端是可选择的。
 
[image: ..\14-0434 UNIX环境高级编程（第3版）(改一校)改\0909.tif]
 
图9-9　对于前台、后台作业以及终端驱动程序的作业控制功能总结
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是否需要作业控制是一个有争议的问题。作业控制是在窗口终端广泛得到应用之前设计和实现的。很多人认为设计得好的窗口系统已经免除了对作业控制的需要。某些人抱怨作业控制的实现要求得到内核、终端驱动程序、shell以及某些应用程序的支持，是吃力不讨好的事情。某些人在窗口系统中使用作业控制，他们认为两者都需要。不管你的意见如何，作业控制都是POSIX.1要求的部分。
 
9.9　shell执行程序
 
让我们检验一下shell是如何执行程序的，以及这与进程组、控制终端和会话等概念的关系。为此，再次使用ps命令。
 
首先使用不支持作业控制的、在Solaris上运行的经典Bourne shell。如果执行：
 
ps -o pid,ppid,pgid,sid,comm
 
则其输出可能是：
 
 PID　PPID　PGID　SID　COMMAND

 949　 947　　949　949　sh

1774　 949　　949　949　ps
 
ps的父进程是shell，这正是我们所期望的。shell和ps命令两者位于同一会话和前台进程组（949）中。因为我们是用一个不支持作业控制的shell执行命令时得到该值的，所以称其为前台进程组。
 
 
 某些平台支持一个选项，它使ps(1)命令打印与会话控制终端相关联的进程组ID。该值在TPGID列中显示。遗憾的是，ps(1)命令的输出在各个UNIX版本中都有所不同。例如，Solaris 10不支持该选项。在FreeBSD 8.0、Linux 3.2.0和Mac OS X 10.6.8中，命令
 
  ps　-o　pid, ppid, pgid, sid, tpgid, comm
 
 准确地打印我们想要的信息。
 
 注意，将进程与终端进程组ID（TPGID列）关联起来有点用词不当。进程并没有终端进程控制组。进程属于一个进程组，而进程组属于一个会话。会话可能有也可能没有控制终端。如果它确实有一个控制终端，则此终端设备知道其前台进程的进程组ID。这一值可以用tcsetpgrp函数在终端驱动程序中设置（见图9-9）。前台进程组ID是终端的一个属性，而不是进程的属性。取自终端设备驱动程序的该值是ps在TPGID列中打印的值。如果ps发现此会话没有控制终端，则它在该列打印0或者−1，具体值因不同平台而异。
 

 
如果在后台执行命令：
 
ps -o pid,ppid,pgid,sid,comm &
 
则唯一改变的值是命令的进程ID：
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 PID　PPID　PGID　SID COMMAND

 949　 947　　949　949 sh

1812　 949　　949　949 ps
 
因为这种shell不知道作业控制，所以没有将后台作业放入自己的进程组，也没有从后台作业处取走控制终端。
 
现在看一看Bourne shell如何处理管道。执行下列命令：
 
ps -o pid,ppid,pgid,sid,comm | cat1
 
其输出是：
 
 PID　PPID　PGID　SID COMMAND

 949　 947　 949　 949 sh

1823　 949　 949　 949 cat1

1824　1823　 949　 949 ps
 
（程序cat1是标准cat程序的一个副本，只是名字不同。本节还将使用cat的另一个名为cat2的副本。在一个管道中使用两个cat副本时，不同的名字可使我们将它们区分开来。）注意，管道中的最后一个进程是shell的子进程，该管道中的第一个进程则是最后一个进程的子进程。从中可以看出，shell fork一个它自身的副本，然后此副本再为管道中的每条命令各fork一个进程。
 
如果在后台执行此管道：
 
ps -o pid,ppid,pgid,sid,comm | cat1 &
 
则只改变进程ID。因为shell并不处理作业控制，后台进程的进程组ID仍是949，如同会话的进程组ID一样。
 
如果一个后台进程试图读其控制终端，则会发生什么呢？例如，若执行：
 
cat > temp.foo &
 
在有作业控制时，后台作业被放在后台进程组，如果后台作业试图读控制终端，则会产生信号SIGTTIN。在没有作业控制时，其处理方法是：如果该进程自己没有重定向标准输入，则shell自动将后台进程的标准输入重定向到/dev/null。读/dev/null则产生一个文件结束。这就意味着后台cat进程立即读到文件尾，并正常终止。
 
前面说明了对后台进程通过其标准输入访问控制终端的适当的处理方法，但是，如果一个后台进程打开/dev/tty并且读该控制终端，又将怎样呢？对此问题的回答是“看情况”。但是这很可能不是我们所期望的。例如：
 
crypt < salaries | lpr &
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就是这样的一条管道。我们在后台运行它，但是crypt程序打开/dev/tty，更改终端的特性（禁止回显），然后从该设备读，最后重置该终端特性。当执行这条后台管道时，crypt在终端上打印提示符“Password:”，但是shell读取了我们所输入的加密口令，并试图执行以加密口令为名称的命令。我们输送给shell的下一行则被crypt进程取为口令行，于是salaries也就不能正确地被译码，结果将一堆无用的信息送到了打印机。在这里，我们有了两个进程，它们试图同时读同一设备，其结果则依赖于系统。前面说明的作业控制以较好的方式处理一个终端在多个进程间的转接。
 
返回到Bourne shell实例，在一条管道中执行3个进程，我们可以检验Bourne shell使用的进程控制方式：
 
ps -o pid,ppid,pgid,sid,comm | cat1 | cat2
 
其输出为：
 
 PID　PPID　PGID　SID COMMAND

 949　 947　　949　949 sh

1988　 949　　949　949 cat2

1989　1988　　949　949 ps

1990　1988　　949　949 cat1
 
 
 如果在你的系统上，输出的命令名不正确，那也不必为此感到惊慌。有时可能会得到类似如下的输出：
 
 　　　PID　PPID　PGID　SID　COMMAND 　　　949　 947　　949　949　sh 　　 1831　 949　　949　949　sh 　　 1832　1831　　949　949　ps 　　 1833　1831　　949　949　sh
 
 造成此种结果的原因是，ps进程与shell产生竞争条件，shell创建一个子进程并由它执行cat命令。在这种情况下，当ps已经获得进程列表并打印时，shell尚未完成exec调用。
 

 
再重申一遍，该管道中的最后一个进程是shell的子进程，而执行管道中其他命令的进程则是该最后进程的子进程。图9-10显示了所发生的情况。因为该管道线中的最后一个进程是登录shell的子进程，当该进程（cat2）终止时，shell得到通知。
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[image: ..\14-0434yds排版CMM\UNIX环境高级编程（第3版）tu\0910.tif]
 
图9-10　Bourne shell执行管道ps | cat1 | cat2时的进程
 
现在让我们用一个运行在Linux上的作业控制shell来检验同一个例子。这将显示这些shell处理后台作业的方法。在本例中将使用Bourne-again shell，用其他作业控制shell得到的结果几乎是一样的。
 
ps -o pid,ppid,pgid,sid,tpgid,comm
 
其输出为：
 
 PID　PPID　PGID　 SID　TPGID COMMAND

2837　2818　2837　2837　 5796 bash

5796　2837　5796　2837　 5796 ps


 
（从本例开始，以粗体显示前台进程组。）我们立即看到了与Bourne shell例子的区别。Bourne-again shell将前台作业（ps）放入了它自己的进程组（5796）。ps命令是进程组组长进程，也是该进程组的唯一进程。进一步而言，此进程组具有控制终端，所以它是前台进程组。我们的登录shell在执行ps命令时是后台进程组。但需要注意的是，这两个进程组2837和5796都是同一会话的成员。事实上，在本节的各实例中，会话决不会改变。
 
在后台执行此进程：
 
ps -o pid,ppid,pgid,sid,tpgid,comm &
 
其输出为：
 
 PID　PPID　PGID　 SID　TPGID COMMAND

2837　2818　2837　2837　 2837 bash

5797　2837　5797　2837　 2837 ps


 
再一次，ps命令被放入它自己的进程组，但是此时进程组（5797）不再是前台进程组，而是一个后台进程组。TPGID 2837指示前台进程组是登录shell。
 
按下列方式在一个管道中执行两个进程：
 
ps -o pid,ppid,pgid,sid,tpgid,comm | cat1
 
其输出为：
 
 PID　PPID　PGID　 SID　TPGID COMMAND

2837　2818　2837　2837　 5799 bash

5799　2837　5799　2837　 5799 ps

5800　2837　5799　2837　 5799 cat1
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两个进程ps和cat1都在一个新进程组（5799）中，这是一个前台进程组。在本例和类似的Bourne shell实例之间能看到另一个区别。Bourne shell首先创建将执行管道中最后一条命令的进程，而此进程是第一个进程的父进程。在这里，Bourne-again shell是两个进程的父进程。但是，如果在后台执行此管道：
 
ps -o pid,ppid,pgid,sid,tpgid,comm | cat1 &
 
其结果是类似的，但是ps和cat1现在都处于同一后台进程组。
 
 PID　PPID　PGID　 SID　TPGID COMMAND

2837　2818　2837　2837　 2837 bash

5801　2837　5801　2837　 2837 ps

5802　2837　5801　2837　 2837 cat1


 
注意，使用的shell不同，创建各个进程的顺序也可能不同。
 
9.10　孤儿进程组
 
我们曾提及，一个其父进程已终止的进程称为孤儿进程（orphan process），这种进程由init进程“收养”。现在我们要说明整个进程组也可成为“孤儿”，以及POSIX.1如何处理它。
 
实例
 
考虑一个进程，它fork了一个子进程然后终止。这在系统中是经常发生的，并无异常之处，但是在父进程终止时，如果该子进程停止（用作业控制）又将如何呢？子进程如何继续，以及子进程是否知道它已经是孤儿进程？图9-11显示了这种情形：父进程已经fork了子进程，该子进程停止，父进程则将退出。
 
[image: ..\14-0434yds排版CMM\UNIX环境高级编程（第3版）tu\0911.tif]
 
图9-11　将要成为孤儿的进程组实例
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构成此种情形的程序示于图9-12中。下面要说明该程序的某些新特性。这里，假定使用了一个作业控制shell。回忆前面所述，shell将前台进程放在它（指前台进程）自已的进程组中（本例中是6099），shell则留在自己的进程组内（2837）。子进程继承其父进程（6099）的进程组。在fork之后：
 
 
 	父进程睡眠5秒，这是一种让子进程在父进程终止之前运行的一种权宜之计。
 
 	子进程为挂断信号（SIGHUP）建立信号处理程序。这样就能观察到SIGHUP信号是否已发送给子进程。（第10章将讨论信号处理程序。）
 
 	子进程用kill函数向其自身发送停止信号（SIGTSTP）。这将停止子进程，类似于用终端挂起字符（Ctrl+Z）停止一个前台作业。
 
 	当父进程终止时，该子进程成为孤儿进程，所以其父进程ID成为1，也就是init进程ID。
 
 	现在，子进程成为一个孤儿进程组的成员。POSIX.1将孤儿进程组（orphaned process group）定义为：该组中每个成员的父进程要么是该组的一个成员，要么不是该组所属会话的成员。对孤儿进程组的另一种描述可以是：一个进程组不是孤儿进程组的条件是——该组中有一个进程，其父进程在属于同一会话的另一个组中。如果进程组不是孤儿进程组，那么在属于同一会话的另一个组中的父进程就有机会重新启动该组中停止的进程。在这里，进程组中每一个进程的父进程（例如，进程6100的父进程是进程1）都属于另一个会话。所以此进程组是孤儿进程组。
 
 	因为在父进程终止后，进程组包含一个停止的进程，进程组成为孤儿进程组，POSIX.1要求向新孤儿进程组中处于停止状态的每一个进程发送挂断信号（SIGHUP），接着又向其发送继续信号（SIGCONT）。
 
 	在处理了挂断信号后，子进程继续。对挂断信号的系统默认动作是终止该进程，为此必须提供一个信号处理程序以捕捉该信号。因此，我们期望sig_hup函数中的printf会在pr_ids函数中的printf之前执行。
 

 
#include "apue.h"

#include <errno.h>



static void

sig_hup(int signo)

{

 　　printf("SIGHUP received, pid = %ld\n", (long)getpid());

}



static void

pr_ids(char *name)

{

 　　printf("%s: pid = %ld, ppid = %ld, pgrp = %ld, tpgrp = %ld\n",

 　　　　 name, (long)getpid(), (long)getppid(), (long)getpgrp(),

 　　　　 (long)tcgetpgrp(STDIN_FILENO));

 　　fflush(stdout);

}



int

main(void)

{

 　　char　　　c;

 　　pid_t　　 pid;



 　　pr_ids("parent");

 　　if ((pid = fork()) < 0) {

　　　　　err_sys("fork error");

 　　} else if (pid > 0) {　　/* parent */

　　　　　sleep(5);　　　　　/* sleep to let child stop itself */

 　　} else {　　　　　　　/* child */

　　　　　pr_ids("child");

　　　　　signal(SIGHUP, sig_hup);　　/* establish signal handler */

　　　　　kill(getpid(), SIGTSTP);　　/* stop ourself */

　　　　　pr_ids("child");　　　　　　　/* prints only if we're continued */

　　　　　if (read(STDIN_FILENO, &c, 1) != 1)

　　　　　　　 printf("read error %d on controlling TTY\n", errno);

 　　}

 　　exit(0);

}
 
图9-12　创建一个孤儿进程组
 
下面是图9-12中的程序的输出：
 
$ ./a.out

parent: pid = 6099, ppid = 2837, pgrp = 6099, tpgrp = 6099

child: pid = 6100, ppid = 6099, pgrp = 6099, tpgrp = 6099

$ SIGHUP received, pid = 6100

child: pid = 6100, ppid = 1, pgrp = 6099, tpgrp = 2837

read error 5 on controlling TTY


 
注意，因为两个进程，登录shell和子进程都写向终端，所以shell提示符和子进程的输出一起出现。正如我们所期望的那样，子进程的父进程ID变成1。
 
在子进程中调用pr_ids后，程序企图读标准输入。如前所述，当后台进程组试图读控制终端时，对该后台进程组产生SIGTTIN。但在这里，这是一个孤儿进程组，如果内核用此信号停止它，则此进程组中的进程就再也不会继续。POSIX.1规定，read返回出错，其errno设置为EIO（在本书所用的系统中其值是5）。
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最后，要注意的是父进程终止时，子进程变成后台进程组，因为父进程是由shell作为前台作业执行的。
 
在19.5节的pty程序中将会看到孤儿进程组的另一个例子。
 
9.11　FreeBSD实现
 
前面说明了进程、进程组、会话和控制终端的各种属性，值得观察一下所有这些是如何实现的。下面简要说明FreeBSD中的实现。SVR4实现的某些详细情况则请参阅Williams[1989]。图9-13显示了FreeBSD使用的各种有关数据结构。
 
[image: ..\14-0434yds排版CMM\UNIX环境高级编程（第3版）tu\0913.tif]
 
图9-13　会话和进程组的FreeBSD实现
 
下面从session结构开始说明图中标出的各个字段。每个会话都分配一个session结构（例如，每次调用setsid时）。
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 	s_count是该会话中的进程组数。当此计数器减至0时，则可释放此结构。
 
 	s_leader是指向会话首进程proc结构的指针。
 
 	s_ttyvp是指向控制终端vnode结构的指针。
 
 	s_ttyp是指向控制终端tty结构的指针。
 
 	s_sid是会话ID。请记住会话ID这一概念并非Single UNIX Specification的组成部分。
 

 
在调用setsid时，在内核中分配一个新的session结构。s_count设置为1，s_leader设置为调用进程proc结构的指针，s_sid设置为进程ID，因为新会话没有控制终端，所以s_ttyvp和s_ttyp设置为空指针。
 
接着说明tty结构。每个终端设备和每个伪终端设备均在内核中分配这样一种结构（第19章将对伪终端做更多说明）。
 
 
 	t_session指向将此终端作为控制终端的session结构（注意，tty结构指向session结构，session结构也指向tty结构）。终端在失去载波信号时使用此指针将挂起信号发送给会话首进程（见图9-7）。
 
 	t_pgrp指向前台进程组的pgrp结构。终端驱动程序用此字段将信号发送给前台进程组。由输入特殊字符（中断、退出和挂起）而产生的3个信号被发送至前台进程组。
 
 	t_termios是包含所有这些特殊字符和与该终端有关信息（如波特率、回显打开或关闭等）的结构。第18章将再说明此结构。
 
 	t_winsize是包含终端窗口当前大小的winsize型结构。当终端窗口大小改变时，信号SIGWINCH被发送至前台进程组。18.12节将说明如何设置和获取终端当前窗口大小。
 

 
为了找到特定会话的前台进程组，内核从session结构开始，然后用s_ttyp得到控制终端的tty结构，再用t_pgrp得到前台进程组的pgrp结构。
 
pgrp结构包含一个特定进程组的信息。其中各相关字段具体如下。
 
 
 	pg_id是进程组ID。
 
 	pg_session指向此进程组所属会话的session结构。
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 	pg_members是指向此进程组proc结构表的指针，该proc结构代表进程组的成员。proc结构中p_pglist结构是双向链表，指向该组中的下一个进程和上一个进程。直到遇到进程组中的最后一个进程，它的proc结构中p_pglist结构为空指针。
 

 
proc结构包含一个进程的所有信息。
 
 
 	p_pid包含进程ID。
 
 	p_pptr是指向父进程proc结构的指针。
 
 	p_pgrp指向本进程所属的进程组的pgrp结构的指针。
 
 	p_pglist是一个结构，其中包含两个指针，分别指向进程组中上一个和下一个进程。
 

 
最后还有一个vnode结构。如前所述，在打开控制终端设备时分配此结构。进程对/dev/tty的所有访问都通过vnode结构。
 
9.12　小结
 
本章说明了进程组之间的关系——会话，它由若干个进程组组成。作业控制是当今很多UNIX系统所支持的功能，本章说明了它是如何由支持作业控制的shell实现的。在这些进程关系中也涉及了进程的控制终端/dev/tty。
 
所有这些进程的关系都使用了很多信号方面的功能。下一章将详细讨论UNIX中的信号机制。
 
习题
 
9.1　考虑6.8节中说明的utmp和wtmp文件，为什么logout记录是由init进程写的？对于网络登录的处理与此相同吗？
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9.2　编写一段程序调用fork并使子进程建立一个新的会话。验证子进程变成了进程组组长且不再有控制终端。
 


第10章　信号
 
10.1　引言
 
信号是软件中断。很多比较重要的应用程序都需处理信号。信号提供了一种处理异步事件的方法，例如，终端用户键入中断键，会通过信号机制停止一个程序，或及早终止管道中的下一个程序。
 
UNIX系统的早期版本就已经提供信号机制，但是这些系统（如V7）所提供的信号模型并不可靠。信号可能丢失，而且在执行临界区代码时，进程很难关闭所选择的信号。4.3BSD和SVR3对信号模型都做了更改，增加了可靠信号机制。但是Berkeley和AT&T所做的更改之间并不兼容。幸运的是，POSIX.1对可靠信号例程进行了标准化，这正是本章所要说明的。
 
本章先对信号机制进行综述，并说明每种信号的一般用法。然后分析早期实现的问题。在分析存在的问题之后再说明解决这些问题的方法，这种安排有助于加深对改进机制的理解。本章也包含了很多并非完全正确的实例，这样做的目的是为了对其不足之处进行讨论。
 
10.2　信号概念
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首先，每个信号都有一个名字。这些名字都以3个字符SIG开头。例如，SIGABRT是夭折信号，当进程调用abort函数时产生这种信号。SIGALRM是闹钟信号，由alarm函数设置的定时器超时后将产生此信号。V7有15种不同的信号，SVR4和4.4BSD均有31种不同的信号。FreeBSD 8.0支持32种信号，Mac OS X 10.6.8以及Linux 3.2.0都支持31种信号，而Solaris 10支持40种信号。但是，FreeBSD、Linux和Solaris作为实时扩展都支持另外的应用程序定义的信号。虽然本书不包括POSIX实时扩展（有关信息请参阅Gallmeister[1995]），但是SUSv4已经把实时信号接口移至基础规范说明中。
 
在头文件<signal.h>中，信号名都被定义为正整数常量（信号编号）。
 
 
 实际上，实现将各信号定义在另一个头文件中，但是该头文件又包括在<signal.h>中。内核包括对用户级应用程序有意义的头文件，这被认为是一种不好的形式，所以如若应用程序和内核两者都需使用同一定义，那么就将有关信息放置在内核头文件中，然后用户级头文件再包括该内核头文件。于是，FreeBSD 8.0和Mac OS X 10.6.8将信号定义在<sys/signal.h>中，Linux 3.2.0将信号定义在<bits/signum.h>中，Solaris 10将信号定义在<sys/iso/signal_iso.h>中。
 

 
不存在编号为0的信号。在10.9节中将会看到，kill函数对信号编号0有特殊的应用。POSIX.1将此种信号编号值称为空信号。
 
很多条件可以产生信号。
 
 
 	当用户按某些终端键时，引发终端产生的信号。在终端上按Delete键（或者很多系统中的Ctrl+C键）通常产生中断信号（SIGINT）。这是停止一个已失去控制程序的方法。（第18章将说明此信号可被映射为终端上的任一字符。）
 
 	硬件异常产生信号：除数为0、无效的内存引用等。这些条件通常由硬件检测到，并通知内核。然后内核为该条件发生时正在运行的进程产生适当的信号。例如，对执行一个无效内存引用的进程产生SIGSEGV信号。
 
 	进程调用kill(2)函数可将任意信号发送给另一个进程或进程组。自然，对此有所限制：接收信号进程和发送信号进程的所有者必须相同，或发送信号进程的所有者必须是超级用户。
 
 	用户可用kill(1)命令将信号发送给其他进程。此命令只是kill函数的接口。常用此命令终止一个失控的后台进程。
 
 	当检测到某种软件条件已经发生，并应将其通知有关进程时也产生信号。这里指的不是硬件产生条件（如除以0），而是软件条件。例如SIGURG（在网络连接上传来带外的数据）、 SIGPIPE（在管道的读进程已终止后，一个进程写此管道）以及SIGALRM（进程所设置的定时器已经超时）。
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信号是异步事件的经典实例。产生信号的事件对进程而言是随机出现的。进程不能简单地测试一个变量（如errno）来判断是否发生了一个信号，而是必须告诉内核“在此信号发生时，请执行下列操作”。
 
在某个信号出现时，可以告诉内核按下列3种方式之一进行处理，我们称之为信号的处理或与信号相关的动作。
 
（1）忽略此信号。大多数信号都可使用这种方式进行处理，但有两种信号却决不能被忽略。它们是SIGKILL和SIGSTOP。这两种信号不能被忽略的原因是：它们向内核和超级用户提供了使进程终止或停止的可靠方法。另外，如果忽略某些由硬件异常产生的信号（如非法内存引用或除以0），则进程的运行行为是未定义的。
 
（2）捕捉信号。为了做到这一点，要通知内核在某种信号发生时，调用一个用户函数。在用户函数中，可执行用户希望对这种事件进行的处理。例如，若正在编写一个命令解释器，它将用户的输入解释为命令并执行之，当用户用键盘产生中断信号时，很可能希望该命令解释器返回到主循环，终止正在为该用户执行的命令。如果捕捉到SIGCHLD信号，则表示一个子进程已经终止，所以此信号的捕捉函数可以调用waitpid以取得该子进程的进程ID以及它的终止状态。又例如，如果进程创建了临时文件，那么可能要为SIGTERM信号编写一个信号捕捉函数以清除临时文件（SIGTERM是终止信号，kill命令传送的系统默认信号是终止信号）。注意，不能捕捉SIGKILL和SIGSTOP信号。
 
（3）执行系统默认动作。图10-1给出了对每一种信号的系统默认动作。注意，对大多数信号的系统默认动作是终止该进程。
 
[image: 10-1.jpg]
 
图10-1　UNIX系统信号
 
图10-1列出了所有信号的名字，说明了哪些系统支持此信号以及对于这些信号的系统默认动作。在SUS列中，“•”表示此种信号定义为基本POSIX.1规范部分，“XSI”表示该信号定义在XSI扩展部分。
 
在系统默认动作列，“终止+core”表示在进程当前工作目录的core文件中复制了该进程的内存映像（该文件名为core，由此可以看出这种功能很久之前就是UNIX的一部分）。大多数UNIX系统调试程序都使用core文件检查进程终止时的状态。
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 产生core文件是大多数UNIX系统的实现功能。虽然该功能不是POSIX.1的组成部分，但在Single UNIX Specification XSI的扩展部分中，这一功能作为一个潜在的特定实现的动作被提及。
 
 在不同的实现中，core文件的名字可能不同。例如，在FreeBSD 8.0中，core文件名为cmdname.core，其中cmdname是接收到信号的进程所执行的命令名。在Mac OS X 10.6.8中，core文件名是core.pid，其中，pid是接收到信号的进程的ID。（这些系统允许经sysctl参数配置core文件名。在Linux 3.2.0中，core文件名通过/proc/sys/kernel/core_pattern进行配置。）
 
 大多数实现在相应进程的工作目录中包含core文件项；但Mac OS X将所有core文件都放置在/cores目录中。
 

 
在下列条件下不产生core文件：（a）进程是设置用户ID的，而且当前用户并非程序文件的所有者；（b）进程是设置组ID的，而且当前用户并非该程序文件的组所有者；（c）用户没有写当前工作目录的权限；（d）文件已存在，而且用户对该文件设有写权限；（e）文件太大（回忆7.11节中的RLIMIT_CORE限制）。core文件的权限（假定该文件在此之前并不存在）通常是用户读/写，但Mac OS X只设置为用户读。
 
在图10-1说明中的“硬件故障”对应于实现定义的硬件故障。这些名字中有很多取自UNIX系统早先在PDP-11上的实现。请查看你所使用系统的手册，以确切地弄清楚这些信号对应于哪些错误类型。
 
下面较详细地逐一说明这些信号。
 
SIGABRT　　调用abort函数时（见10.17节）产生此信号。进程异常终止。
 
SIGALRM　　当用alarm函数设置的定时器超时时，产生此信号。详细情况见10.10节。若由setitimer(2)函数设置的间隔时间已经超时时，也产生此信号。
 
SIGBUS　　指示一个实现定义的硬件故障。当出现某些类型的内存故障时（如14.8节中说明的），实现常常产生此种信号。
 
SIGCANCEL　　这是Solaris线程库内部使用的信号。它不适用于一般应用。
 
SIGCHLD　　在一个进程终止或停止时，SIGCHLD信号被送给其父进程。按系统默认，将忽略此信号。如果父进程希望被告知其子进程的这种状态改变，则应捕捉此信号。信号捕捉函数中通常要调用一种wait函数以取得子进程ID和其终止状态。
 
System V的早期版本有一个名为SIGCLD（无H）的类似信号。这一信号具有与其他信号不同的语义，SVR2的手册页警告在新的程序中尽量不要使用这种信号。（令人奇怪的是，在SVR3和SVR4版的手册页中，该警告消失了。）应用程序应当使用标准的SIGCHLD信号，但应了解，为了向后兼容，很多系统定义了与SIGCHLD等同的SIGCLD。如果有使用SIGCLD的软件，需要查阅系统手册，了解它具体的语义。10.7节将讨论这两个信号。
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SIGCONT　　此作业控制信号发送给需要继续运行，但当前处于停止状态的进程。如果接收到此信号的进程处于停止状态，则系统默认动作是使该进程继续运行；否则默认动作是忽略此信号。例如，全屏编辑程序在捕捉到此信号后，使用信号处理程序发出重新绘制终端屏幕的通知。关于进一步的情况见10.21节。
 
SIGEMT　　指示一个实现定义的硬件故障。
 
 
 EMT这一名字来自PDP-11的仿真器陷入（emulator trap）指令。并非所有平台都支持此信号。例如，Linux只对SPARC、MIPS和PA_RISC等系统结构支持SIGEMT。
 

 
SIGFPE　　此信号表示一个算术运算异常，如除以0、浮点溢出等。
 
SIGFREEZE　　此信号仅由Solaris定义。它用于通知进程在冻结系统状态之前需要采取特定动作，例如当系统进入休眠或挂起状态时可能需要做这种处理。
 
SIGHUP　　如果终端接口检测到一个连接断开，则将此信号送给与该终端相关的控制进程（会话首进程）。见图9-13，此信号被送给session结构中s_leader字段所指向的进程。仅当终端的CLOCAL标志没有设置时，在上述条件下才产生此信号。（如果所连接的终端是本地的，则设置该终端的CLOCAL标志。它告诉终端驱动程序忽略所有调制解调器的状态行。第18章将说明如何设置此标志。）
 
注意，接到此信号的会话首进程可能在后台，作为一个例子，请参见图9-7。这区别于由终端正常产生的几个信号（中断、退出和挂起），这些信号总是传递给前台进程组。
 
如果会话首进程终止，也产生此信号。在这种情况，此信号送给前台进程组中的每一个进程。
 
通常用此信号通知守护进程（见第13章）再次读取它们的配置文件。选用SIGHUP的理由是，守护进程不会有控制终端，通常决不会接收到这种信号。
 
SIGILL　　此信号表示进程已执行一条非法硬件指令。
 
 
 4.3BSD的abort函数产生此信号。现在该函数产生SIGABRT信号。
 

 
SIGINFO　　这是一种BSD信号，当用户按状态键（一般采用Ctrl+T）时，终端驱动程序产生此信号并发送至前台进程组中的每一个进程（见图9-9）。此信号通常造成在终端上显示前台进程组中各进程的状态信息。
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 虽然Alpha平台将SIGINFO定义为与SIGPWR具有相同值，但是Linux并不支持SIGINFO信号。这更多是因为需要对OSF/1开发的软件提供某种程度的兼容。
 

 
SIGINT　　当用户按中断键（一般采用Delete或Ctrl+C）时，终端驱动程序产生此信号并发送至前台进程组中的每一个进程（见图9-9）。当一个进程在运行时失控，特别是它正在屏幕上产生大量不需要的输出时，常用此信号终止它。
 
SIGIO　　此信号指示一个异步I/O事件。在14.5.2节中将对此进行讨论。
 
 
 在图10-1中，对SIGIO的系统默认动作是终止或忽略。遗憾的是，这依赖于系统。在System V中，SIGIO与SIGPOLL相同，其默认动作是终止此进程。在BSD中，其默认动作是忽略此信号。
 
 Linux 3.2.0和Solaris 10将SIGIO定义为与SIGPOLL具有相同值，所以默认行为是终止该进程。在FreeBSD 8.0和Mac OS X 10.6.8中，默认行为是忽略该信号。
 

 
SIGIOT　　这指示一个实现定义的硬件故障。
 
 
 IOT这个名字来自于PDP-11，它是PDP-11计算机“输入/输出TRAP”（input/output TRAP）指令的缩写。System V的早期版本，由abort函数产生此信号。该函数现在产生SIGABRT信号。
 
 FreeBSD 8.0、Linux 3.2.0、Mac OS X 10.6.8和Solaris 10将SIGIOT定义为与SIGABRT具相同值。
 

 
SIGJVM1　　Solaris上为Java虚拟机预留的一个信号。
 
SIGJVM2　　Solaris上为Java虚拟机预留的另一个信号。
 
SIGKILL　　这是两个不能被捕捉或忽略信号中的一个。它向系统管理员提供了一种可以杀死任一进程的可靠方法。
 
SIGLOST　　运行在Solaris NFSv4客户端系统中的进程，恢复阶段不能重新获得锁，此时将由这个信号通知该进程。
 
SIGLWP　　此信号由Solaris线程库内部使用，并不做一般使用。在FreeBSD中，SIGLWP是SIGTHR的别名。
 
SIGPIPE　如果在管道的读进程已终止时写管道，则产生此信号。15.2节将说明管道。当类型为SOCK_STREAM的套接字已不再连接时，进程写该套接字也产生此信号。我们将在第16章说明套接字。
 
SIGPOLL　　这个信号在SUSv4中已被标记为弃用，将来的标准可能会将此信号移除。当在一个可轮询设备上发生一个特定事件时产生此信号。14.4.2节将说明poll函数和此信号，它起源于SVR3，与BSD的SIGIO和SIGURG信号接近。
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 在Linux和Solaris中，SIGPOLL定义为与SIGIO具有相同值。
 

 
SIGPROF　　这个信号在SUSv4中已被标记为弃用，将来的标准可能会将此信号移除。当setitimer(2)函数设置的梗概统计间隔定时器（profiling interval timer）已经超时时产生此信号。
 
SIGPWR　　这是一种依赖于系统的信号。它主要用于具有不间断电源（UPS）的系统。如果电源失效，则UPS起作用，而且通常软件会接到通知。在这种情况下，系统依靠蓄电池电源继续运行，所以无须做任何处理。但是如果蓄电池也将不能支持工作，则软件通常会再次接到通知，此时，系统必项使其各部分都停止运行。这时应当发送SIGPWR信号。在大多数系统中，接到蓄电池电压过低信息的进程将信号SIGPWR发送给init进程，然后由init处理停机操作。
 
 
 Solaris 10和有些Linux版本在inittab文件中有两个记录项用于此种目的：powerfail以及powerwait（或powerokwait）。
 
 在图10-1中，我们将SIGPWR的默认动作标记为“终止或忽略”。遗憾的是，这种默认动作依赖于系统。Linux对此的默认动作是终止相关进程，而Solaris的默认动作是忽略该信号。
 

 
SIGQUIT　　当用户在终端上按退出键（一般采用Ctrl+\）时，中断驱动程序产生此信号，并发送给前台进程组中的所有进程（见图9-9）。此信号不仅终止前台进程组（如SIGINT所做的那样），同时产生一个core文件。
 
SIGSEGV　　指示进程进行了一次无效的内存引用（通常说明程序有错，比如访问了一个未经初始化的指针）。
 
 
 名字SEGV代表“段违例”（segmentation violation）。
 

 
SIGSTKFLT　　此信号仅由Linux定义。它出现在Linux的早期版本，企图用于数学协处理器的栈故障。该信号并非由内核产生，但仍保留以向后兼容。
 
SIGSTOP　　这是一个作业控制信号，它停止一个进程。它类似于交互停止信号（SIGTSTP），但是SIGSTOP不能被捕捉或忽略。
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SIGSYS　　该信号指示一个无效的系统调用。由于某种未知原因，进程执行了一条机器指令，内核认为这是一条系统调用，但该指令指示系统调用类型的参数却是无效的。这种情况是可能发生的，例如，若用户编写了一道使用新系统调用的程序，然后运行该程序的二进制可执行代码，而所用的操作系统却是不支持该系统调用的较早版本，于是就出现上述情况。
 
SIGTERM　　这是由kill(1)命令发送的系统默认终止信号。由于该信号是由应用程序捕获的，使用SIGTERM也让程序有机会在退出之前做好清理工作，从而优雅地终止（相对于SIGKILL而言。SIGKILL不能被捕捉或者忽略）。
 
SIGTHAW　　此信号仅由Solaris定义。在被挂起的系统恢复时，该信号用于通知相关进程，它们需要采取特定的动作。
 
SIGTHR　　FreeBSD线程库预留的信号，它的值定义或与SIGLWP相同。
 
SIGTRAP　　指示一个实现定义的硬件故障。
 
 
 此信号名来自于PDP-11的TRAP指令。当执行断点指令时，实现常用此信号将控制转移至调试程序。
 

 
SIGTSTP　　交互停止信号，当用户在终端上按挂起键（一般采用Ctrl+Z）时，终端驱动程序产生此信号。该信号发送至前台进程组中的所有进程（参见图9-9）。
 
 
 遗憾的是，停止具有不同的含义。当讨论作业控制和信号时，我们谈及停止和继续作业。但是，终端驱动程序一直使用术语“停止”表示用Ctrl+S字符终止终端输出，为了继续启动该终端输出，则用Ctrl+Q字符。为此，终端驱动程序称产生交互停止信号的字符为挂起字符，而非停止字符。
 

 
SIGTTIN　　当一个后台进程组进程试图读其控制终端时，终端驱动程序产生此信号（见9.8节中对此问题的讨论）。在下列例外情形下不产生此信号：（a）读进程忽略或阻塞此信号；（b）读进程所属的进程组是孤儿进程组，此时读操作返回出错，errno设置为EIO。
 
SIGTTOU　　当一个后台进程组进程试图写其控制终端时，终端驱动程序产生此信号（见9.8节对此问题的讨论）。与上面所述的SIGTTIN信号不同，一个进程可以选择允许后台进程写控制终端。第18章将讨论如何更改此选项。
 
如果不允许后台进程写，则与SIGTTIN相似，也有两种特殊情况：（a）写进程忽略或阻塞此信号；（b）写进程所属进程组是孤儿进程组。在第2种情况下不产生此信号，写操作返回出错，errno设置为EIO。
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不论是否允许后台进程写，一些除写以外的下列终端操作也能产生SIGTTOU信号，如tcsetattr、 tcsendbreak、tcdrain、tcflush、tcflow以及tcsetpgrp。第18章将说明这些终端操作。
 
SIGURG　　此信号通知进程已经发生一个紧急情况。在网络连接上接到带外的数据时，可选择地产生此信号。
 
SIGUSR1　　这是一个用户定义的信号，可用于应用程序。
 
SIGUSR2　　这是另一个用户定义的信号，与SIGUSR1相似，可用于应用程序。
 
SIGVTALRM　　当一个由setitimer(2)函数设置的虚拟间隔时间已经超时时，产生此信号。
 
SIGWAITING　　此信号由Solaris线程库内部使用，不做他用。
 
SIGWINCH　　内核维持与每个终端或伪终端相关联窗口的大小。进程可以用ioctl函数（见18.12节）得到或设置窗口的大小。如果进程用ioctl的设置窗口大小命令更改了窗口大小，则内核将SIGWINCH信号发送至前台进程组。
 
SIGXCPU　　Single UNIX Specification的XSI扩展支持资源限制的概念（见7.11节）。如果进程超过了其软CPU时间限制，则产生此信号。
 
 
 在图10-1中，对于SIGXCPU的默认动作说明为“终止或终止+core”。该默认动作依赖于操作系统。Linux 3.2.0和Solaris 10支持的默认动作是终止并创建core文件；FreeBSD 8.0和Mac OS X 10.6.8支持的默认动作是终止且不产生core文件。Single UNIX Specification要求该默认动作是，异常终止该进程，是否创建core文件则留给实现决定。
 

 
SIGXFSZ　　如果进程超过了其软文件长度限制（见7.11节），则产生此信号。
 
 
 如同SIGXCPU一样，针对SIGXFSZ的默认动作依赖于操作系统。Linux 3.2.0和Solaris 10对此信号的默认动作是终止并创建core文件。FreeBSD 8.0和Mac OS X 10.6.8支持的默认动作是终止且不产生core文件。Single UNIX Specification要求该默认动作是异常终止该进程，是否创建core文件则留给实现决定。
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SIGXRES　　此信号仅由Solaris定义。可选择地使用此信号以通知进程超过了预配置的资源值。Solaris资源限制机制是一种通用设施，用于控制在独立应用集之间共享资源的使用。
 
10.3　函数signal
 
UNIX系统信号机制最简单的接口是signal函数。
 
#include <signal.h>



void (*signal(int signo, void (*func)(int)))(int);



　　　　　　　　　　　　　　　返回值：若成功，返回以前的信号处理配置；若出错，返回SIG_ERR


 
 
 signal函数由ISO C定义。因为ISO C不涉及多进程、进程组以及终端I/O等，所以它对信号的定义非常含糊，以致于对UNIX系统而言几乎毫无用处。
 
 从UNIX System V派生的实现支持signal函数，但该函数提供旧的不可靠信号语义（10.4节将说明这些旧的语义）。提供此函数主要是为了向后兼容要求此旧语义的应用程序，新应用程序不应使用这些不可靠信号。
 
 4.4BSD也提供signal函数，但它是按照sigaction函数定义的（10.14节将说明sigaction函数），所以在4.4BSD之下使用它提供新的可靠信号语义。目前大多数系统遵循这种策略，但Solaris 10沿用System V signal函数的语义。
 
 因为signal的语义与实现有关，所以最好使用sigaction函数代替signal函数。在10.14节讨论sigaction函数时，提供了使用该函数的signal的一个实现。本书中的所有实例均使用图10-18中给出的signal函数，这样不管使用何种平台都可以有一致的语义。
 

 
signo参数是图10-1中的信号名。func的值是常量SIG_IGN、常量SIG_DFL或当接到此信号后要调用的函数的地址。如果指定SIG_IGN，则向内核表示忽略此信号（记住有两个信号SIGKILL和SIGSTOP不能忽略）。如果指定SIG_DFL，则表示接到此信号后的动作是系统默认动作（见图10-1中的最后一列）。当指定函数地址时，则在信号发生时，调用该函数，我们称这种处理为捕捉该信号，称此函数为信号处理程序（signal handler）或信号捕捉函数（signal-catching function）。
 
signal函数原型说明此函数要求两个参数，返回一个函数指针，而该指针所指向的函数无返回值（void）。第一个参数signo是一个整型数，第二个参数是函数指针，它所指向的函数需要一个整型参数，无返回值。signal的返回值是一个函数地址，该函数有一个整型参数（即最后的(int)）。用自然语言来描述也就是要向信号处理程序传送一个整型参数，而它却无返回值。当调用signal设置信号处理程序时，第二个参数是指向该函数（也就是信号处理程序）的指针。signal的返回值则是指向在此之前的信号处理程序的指针。
 
 
 很多系统用附加的依赖于实现的参数来调用信号处理程序。10.14节将对此做进一步说明。
 

 
本节开头所示的signal函数原型太复杂了，如果使用下面的typedef[Plauger 1992]，则可使其简单一些。
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typedef void Sigfunc(int);
 
然后，可将signal函数原型写成：
 
Sigfunc *signal(int, Sigfunc *);
 
我们已将此typedef包括在apue.h文件中（见附录B），并随本章中的函数一起使用。
 
如果查看系统的头文件<signal.h>，则很可能会找到下列形式的声明：
 
#define SIG_ERR　(void (*)())-1

#define SIG_DFL　(void (*)())0

#define SIG_IGN　(void (*)())1
 
这些常量可用于表示“指向函数的指针，该函数要求一个整型参数，而且无返回值”。signal的第二个参数及其返回值就可用它们表示。这些常量所使用的3个值不一定是−1、0和1，但它们必须是3个值而决不能是任一函数的地址。大多数UNIX系统使用上面所示的值。
 
实例
 
图10-2给出了一个简单的信号处理程序，它捕捉两个用户定义的信号并打印信号编号。10.10节将说明pause函数，它使调用进程在接到一信号前挂起。
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#include "apue.h"



static void　sig_usr(int);　　　/* one handler for both signals */



int

main(void)

{

　　if (signal(SIGUSR1, sig_usr) == SIG_ERR)

　　　 　err_sys("can't catch SIGUSR1");

　　if (signal(SIGUSR2, sig_usr) == SIG_ERR)

　　　 　err_sys("can't catch SIGUSR2");

　　for ( ; ; )

　　　 　pause();

}



static void

sig_usr(int signo)　　　　　　/* argument is signal number */

{

　　if (signo == SIGUSR1)

　　　 　printf("received SIGUSR1\n");

　　else if (signo == SIGUSR2)

　　　 　printf("received SIGUSR2\n");

　　else

　 　　　err_dump("received signal %d\n", signo);

}
 
图10-2　捕捉SIGUSR1和SIGUSR2的简单程序
 
我们使该程序在后台运行，并且用kill(1)命令将信号发送给它。注意，在UNIX系统中，杀死（kill）这个术语是不恰当的。kill(1)命令和kill(2)函数只是将一个信号发送给一个进程或进程组。该信号是否终止进程则取决于该信号的类型，以及进程是否安排了捕捉该信号。
 
$ ./a.out &　　　　　　　　　　在后台启动进程

[1]　　　7216　　　　　 　　 　作业控制shell打印作业编号和进程ID

$ kill -USR1 7216　　　　　　向该进程发送SIGUSR1 

received SIGUSR1

$ kill -USR2 7216　　　　　　向该进程发送SIGUSR2

received SIGUSR2

$ kill 7216　　　　　　　　　 向该进程发送SIGTERM

[1]+　Terminated　　./a.out


 
因为执行图10-2程序的进程不捕捉SIGTERM信号，而对该信号的系统默认动作是终止，所以当向该进程发送SIGTERM信号后，该进程就终止。
 
1．程序启动
 
当执行一个程序时，所有信号的状态都是系统默认或忽略。通常所有信号都被设置为它们的默认动作，除非调用exec的进程忽略该信号。确切地讲，exec函数将原先设置为要捕捉的信号都更改为默认动作，其他信号的状态则不变（一个进程原先要捕捉的信号，当其执行一个新程序后，就不能再捕捉了，因为信号捕捉函数的地址很可能在所执行的新程序文件中已无意义）。
 
一个具体例子是一个交互shell如何处理针对后台进程的中断和退出信号。对于一个非作业控制shell，当在后台执行一个进程时，例如：
 
cc main.c &
 
shell自动将后台进程对中断和退出信号的处理方式设置为忽略。于是，当按下中断字符时就不会影响到后台进程。如果没有做这样的处理，那么当按下中断字符时，它不但终止前台进程，也终止所有后台进程。
 
很多捕捉这两个信号的交互程序具有下列形式的代码：
 
void sig_int(int), sig_quit(int);

if (signal(SIGINT, SIG_IGN) != SIG_IGN)

　　 signal(SIGINT, sig_int);

if (signal(SIGQUIT, SIG_IGN) != SIG_IGN)

　　 signal(SIGQUIT, sig_quit);
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这样处理后，仅当SIGINT和SIGQUIT当前未被忽略时，进程才会捕捉它们。
 
从signal的这两个调用中也可以看到这种函数的限制：不改变信号的处理方式就不能确定信号的当前处理方式。我们将在本章的稍后部分说明使用sigaction函数可以确定一个信号的处理方式，而无需改变它。
 
2．进程创建
 
当一个进程调用fork时，其子进程继承父进程的信号处理方式。因为子进程在开始时复制了父进程内存映像，所以信号捕捉函数的地址在子进程中是有意义的。
 
10.4　不可靠的信号
 
在早期的UNIX版本中（如V7），信号是不可靠的。不可靠在这里指的是，信号可能会丢失：一个信号发生了，但进程却可能一直不知道这一点。同时，进程对信号的控制能力也很差，它能捕捉信号或忽略它。有时用户希望通知内核阻塞某个信号：不要忽略该信号，在其发生时记住它，然后在进程做好了准备时再通知它。这种阻塞信号的能力当时并不具备。
 
 
 4.2BSD对信号机制进行了更改，提供了被称为可靠信号的机制。然后，SVR3也修改了信号机制，提供了System V可靠信号机制。POSIX.1选择了BSD模型作为其标准化的基础。
 

 
早期版本中的一个问题是在进程每次接到信号对其进行处理时，随即将该信号动作重置为默认值（在前面运行图10-2程序时，每种信号只捕捉一次，从而回避了这一点）。在描述这些早期系统的编程书籍中，有一个经典实例，它与如何处理中断信号相关，其代码与下面所示的相似：
 
　　 int　　 sig_int();　　　　　/* my signal handling function */

　　 [image: ]

　　 signal(SIGINT, sig_int);　/* establish handler */

　　 [image: ]

sig_int();

{

　　 signal(SIGINT, sig_int);　/* reestablish handler for next time */

　　 [image: ]　　　　　　　　　　　　　　　/* process the signal ... */

}


 
（由于早期的C语言版本不支持ISO C的void数据类型，所以将信号处理程序声明为int类型。）
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这段代码的一个问题是：在信号发生之后到信号处理程序调用signal函数之间有一个时间窗口。在此段时间中，可能发生另一次中断信号。第二个信号会造成执行默认动作，而对中断信号的默认动作是终止该进程。这种类型的程序段在大多数情况下会正常工作，使得我们认为它们是正确无误的，而实际上却并非如此。
 
这些早期版本的另一个问题是：在进程不希望某种信号发生时，它不能关闭该信号。进程能做的一切就是忽略该信号。有时希望通知系统“阻止下列信号发生，如果它们确实产生了，请记住它们。”能够显现这种缺陷的的一个经典实例是下列程序段，它捕捉一个信号，然后设置一个表示该信号已发生的标志：
 
int sig_int();　　　　　　　　　　　　/* my signal handling function */

int sig_int_flag;　　　　　　　　　　/* set nonzero when signal occurs */

main()

{

　　 signal(SIGINT, sig_int);　　　/* establish handler */

　　 [image: ]

　　 while (sig_int_flag == 0)

　　　　　pause();　　　　　　　　　　/* go to sleep, waiting for signal */

　　 [image: ]

}

sig_int()

{

　　 signal(SIGINT, sig_int);　　　/* reestablish handler for next time */

　　 sig_int_flag = 1;　　　　　　　 /* set flag for main loop to examine */

}


 
其中，进程调用pause函数使自己休眠，直到捕捉到一个信号。当捕捉到信号时，信号处理程序将标志sig_int_flag设置为非0值。从信号处理程序返回后，内核自动将该进程唤醒，它检测到该标志为非0，然后执行它所需做的。但是这里有一个时间窗口，在此窗口中操作可能失误。如果在测试sig_int_flag之后、调用pause之前发生信号，则此进程在调用pause时可能将永久休眠（假定此信号不会再次产生）。于是，这次发生的信号也就丢失了。这是另一个例子，某段代码并不正确，但是大多数时间却能正常工作。要查找并排除这种类型的问题很困难。
 
10.5　中断的系统调用
 
早期UNIX系统的一个特性是：如果进程在执行一个低速系统调用而阻塞期间捕捉到一个信号，则该系统调用就被中断不再继续执行。该系统调用返回出错，其errno设置为EINTR。这样处理是因为一个信号发生了，进程捕捉到它，这意味着已经发生了某种事情，所以是个好机会应当唤醒阻塞的系统调用。
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 在这里，我们必须区分系统调用和函数。当捕捉到某个信号时，被中断的是内核中执行的系统调用。
 

 
为了支持这种特性，将系统调用分成两类：低速系统调用和其他系统调用。低速系统调用是可能会使进程永远阻塞的一类系统调用，包括：
 
 
 	如果某些类型文件（如读管道、终端设备和网络设备）的数据不存在，则读操作可能会使调用者永远阻塞；
 
 	如果这些数据不能被相同的类型文件立即接受，则写操作可能会使调用者永远阻塞；
 
 	在某种条件发生之前打开某些类型文件，可能会发生阻塞（例如要打开一个终端设备，需要先等待与之连接的调制解调器应答）；
 
 	pause函数（按照定义，它使调用进程休眠直至捕捉到一个信号）和wait函数；
 
 	某些ioctl操作；
 
 	某些进程间通信函数（见第15章）。
 

 
在这些低速系统调用中，一个值得注意的例外是与磁盘I/O有关的系统调用。虽然读、写一个磁盘文件可能暂时阻塞调用者（在磁盘驱动程序将请求排入队列，然后在适当时间执行请求期间），但是除非发生硬件错误，I/O操作总会很快返回，并使调用者不再处于阻塞状态。
 
可以用中断系统调用这种方法来处理的一个例子是：一个进程启动了读终端操作，而使用该终端设备的用户却离开该终端很长时间。在这种情况下，进程可能处于阻塞状态几个小时甚至数天，除非系统停机，否则一直如此。
 
 
 对于中断的read、write系统调用，POSIX.1的语义在该标准的2001版有所改变。对于如何处理已read、write部分数据量的相应系统调用，早期版本允许实现自行选择。如若read系统调用已接收并传送数据至应用程序缓冲区，但尚未接收到应用程序请求的全部数据，此时被中断，操作系统可以认为该系统调用失败，并将errno设置为EINTR；另一种处理方式是允许该系统调用成功返回，返回值是已接收到的数据量。与此类似，如若write巳传输了应用程序缓冲区中的部分数据，然后被中断，操作系统可以认为该系统调用失败，并将errno设置为EINTR；另一种处理方式是允许该系统调用成功返回，返回值是已写部分的数据量。历史上，从System V派生的实现将这种系统调用视为失败，而BSD派生的实现则处理为部分成功返回。2001版POSIX.1标准采用BSD风格的语义。
 

 
与被中断的系统调用相关的问题是必须显式地处理出错返回。典型的代码序列（假定进行一个读操作，它被中断，我们希望重新启动它）如下：
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again:

　　 if ((n = read(fd, buf, BUFFSIZE)) < 0) {

　　　　　if (errno == EINTR)

　　　　　　　 goto again;　　/* just an interrupted system call */

　　　　　/* handle other errors */

　　 }
 
为了帮助应用程序使其不必处理被中断的系统调用，4.2BSD引进了某些被中断系统调用的自动重启动。自动重启动的系统调用包括：ioctl、read、readv、write、writev、wait和waitpid。如前所述，其中前5个函数只有对低速设备进行操作时才会被信号中断。而wait和waitpid在捕捉到信号时总是被中断。因为这种自动重启动的处理方式也会带来问题，某些应用程序并不希望这些函数被中断后重启动。为此4.3BSD允许进程基于每个信号禁用此功能。
 
 
 POSIX.1要求只有中断信号的SA_RESTART标志有效时，实现才重启动系统调用。在10.14节将看到，sigaction函数使用这个标志允许应用程序请求重启动被中断的系统调用。
 
 历史上，使用signal函数建立信号处理程序时，对于如何处理被中断的系统调用，各种实现的做法各不相同。System V的默认工作方式是从不重启动系统调用。而BSD则重启动被信号中断的系统调用。FreeBSD 8.0、Linux 3.2.0和Mac OS X 10.6.8中，当信号处理程序是用signal函数时，被中断的系统调用会重启动。但Solaris 10的默认方式是出错返回，将errno设置为EINTR。使用用户自己实现的signal函数（见图10-18）可以避免必须处理这些差异的麻烦。
 

 
4.2BSD引入自动重启动功能的一个理由是：有时用户并不知道所使用的输入、输出设备是否是低速设备。如果我们编写的程序可以用交互方式运行，则它可能读、写终端低速设备。如果在程序中捕捉信号，而且系统并不提供重启动功能，则对每次读、写系统调用就要进行是否出错返回的测试，如果是被中断的，则再调用读、写系统调用。
 
图10-3列出了几种实现所提供的与信号有关的函数及它们的语义。
 
[image: 10-3.jpg]
 
图10-3　几种信号实现所提供的功能
 
应当了解，其他厂商提供的UNIX系统可能不同于图10-3中所示的情况。例如，SunOS 4.1.2中的sigaction默认方式是重启动被中断的系统调用，这与列在图10-3中的各平台不同。
 
在图10-18中，提供了我们自己的signal函数版本，它自动地尝试重启动被中断的系统调用（除SIGALRM信号外）。在图10-19中则提供了另一个函数signal_intr，它不进行重启动。
 
在14.4节说明select和poll函数时，还将更多涉及被中断的系统调用。
 
10.6　可重入函数
 
进程捕捉到信号并对其进行处理时，进程正在执行的正常指令序列就被信号处理程序临时中断，它首先执行该信号处理程序中的指令。如果从信号处理程序返回（例如没有调用exit或longjmp），则继续执行在捕捉到信号时进程正在执行的正常指令序列（这类似于发生硬件中断时所做的）。但在信号处理程序中，不能判断捕捉到信号时进程执行到何处。如果进程正在执行malloc，在其堆中分配另外的存储空间，而此时由于捕捉到信号而插入执行该信号处理程序，其中又调用malloc，这时会发生什么？又例如，若进程正在执行getpwnam（见6.2节）这种将其结果存放在静态存储单元中的函数，其间插入执行信号处理程序，它又调用这样的函数，这时又会发生什么呢？在malloc例子中，可能会对进程造成破坏，因为malloc通常为它所分配的存储区维护一个链表，而插入执行信号处理程序时，进程可能正在更改此链表。在getpwnam的例子中，返回给正常调用者的信息可能会被返回给信号处理程序的信息覆盖。
 
Single UNIX Specification说明了在信号处理程序中保证调用安全的函数。这些函数是可重入的并被称为是异步信号安全的（async-signal safe）。除了可重入以外，在信号处理操作期间，它会阻塞任何会引起不一致的信号发送。图10-4列出了这些异步信号安全的函数。没有列入图10-4中的大多数函数是不可重入的，因为（a）已知它们使用静态数据结构；（b）它们调用malloc或free；（c）它们是标准I/O函数。标准I/O库的很多实现都以不可重入方式使用全局数据结构。注意，虽然在本书的某些实例中，信号处理程序也调用了printf函数，但这并不保证产生所期望的结果，信号处理程序可能中断主程序中的printf函数调用。
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图10-4　信号处理程序可以调用的可重入函数
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应当了解，即使信号处理程序调用的是图10-4中的函数，但是由于每个线程只有一个errno变量（回忆1.7节对errno和线程的讨论），所以信号处理程序可能会修改其原先值。考虑一个信号处理程序，它恰好在main刚设置errno之后被调用。如果该信号处理程序调用read这类函数，则它可能更改errno的值，从而取代了刚由main设置的值。因此，作为一个通用的规则，当在信号处理程序中调用图10-4中的函数时，应当在调用前保存errno，在调用后恢复errno。（应当了解，经常被捕捉到的信号是SIGCHLD，其信号处理程序通常要调用一种wait函数，而各种wait函数都能改变errno。）
 
注意，图10-4没有包括longjmp（7.10节）和siglongjmp（10.15节）。这是因为主例程以非可重入方式正在更新一个数据结构时可能产生信号。如果不是从信号处理程序返回而是调用siglongjmp，那么该数据结构可能是部分更新的。如果应用程序将要做更新全局数据结构这样的事情，而同时要捕捉某些信号，而这些信号的处理程序又会引起执行siglongjmp，则在更新这种数据结构时要阻塞此类信号。
 
实例
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图10-5给出了一段程序，这段程序从信号处理程序my_alarm调用非可重入函数getpwnam，而my_alarm每秒钟被调用一次。10.10节中将说明alarm函数。在该程序中调用alarm函数使得每秒产生一次SIGALRM信号。
 
#include "apue.h"

#include <pwd.h>



static void

my_alarm(int signo)

{

　　struct passwd　*rootptr;



　　printf("in signal handler\n");

　　if ((rootptr = getpwnam("root")) == NULL)

　　　　　　err_sys("getpwnam(root) error");

　　alarm(1);

}



int

main(void)

{

　　struct passwd　*ptr;



　　signal(SIGALRM, my_alarm);

　　alarm(1);

　　for ( ; ; ) {

　　　　if ((ptr = getpwnam("sar")) == NULL)

　　　　　　err_sys("getpwnam error");

　　　　if (strcmp(ptr->pw_name, "sar") != 0)

　　　　　　printf("return value corrupted!, pw_name = %s\n",

　　　　　　　　　　ptr->pw_name);

　　}

}
 
图10-5　在信号处理程序中调用不可再入函数
 
运行该程序时，其结果具有随机性。通常，在信号处理程序经多次迭代返回时，该程序将由SIGSEGV信号终止。检查core文件，从中可以看到main函数已调用getpwnam，但当getpwnam调用free时，信号处理程序中断了它的运行，并调用getpwnam，进而再次调用free。在信号处理程序调用free而主程序也在调用free时，malloc和free维护的数据结构就出现了损坏，偶然，此程序会运行若干秒，然后因产生SIGSEGV信号而终止。在捕捉到信号后，若main函数仍正确运行，其返回值却有时错误，有时正确。
 
从此实例中可以看出，如果在信号处理程序中调用一个非可重入函数，则其结果是不可预知的。
 
10.7　SIGCLD语义
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SIGCLD和SIGCHLD这两个信号很容易被混淆。SIGCLD（没有H）是System V的一个信号名，其语义与名为SIGCHLD的BSD信号不同。POSIX.1采用BSD的SIGCHLD信号。
 
BSD的SIGCHLD信号语义与其他信号的语义相类似。子进程状态改变后产生此信号，父进程需要调用一个wait函数以检测发生了什么。
 
System V处理SIGCLD信号的方式不同于其他信号。如果用signal或sigset（早期设置信号配置的，与SRV3兼容的函数）设置信号配置，则基于SVR4的系统继承了这一具有问题色彩的传统（即兼容性限制）。对于SIGCLD的早期处理方式是：
 
（1）如果进程明确地将该信号的配置设置为SIG_IGN，则调用进程的子进程将不产生僵死进程。注意，这与其默认动作（SIG_DFL）“忽略”（见图10-1）不同。子进程在终止时，将其状态丢弃。如果调用进程随后调用一个wait函数，那么它将阻塞直到所有子进程都终止，然后该wait会返回−1，并将其errno设置为ECHILD。（此信号的默认配置是忽略，但这不会使上述语义起作用。必须将其配置明确指定为SIG_IGN才可以。）
 
 
 POSIX.1并未说明在SIGCHLD被忽略时应产生的后果，所以这种行为是允许的。Single UNIX Specification的XSI扩展选项要求对于SIGCHLD支持这种行为。
 
 如果SIGCHLD被忽略，4.4BSD总是产生僵死进程。如果要避免僵死进程，则必须等待子进程。在SVR4中，如果调用signal或sigset将SIGCHLD的配置设置为忽略，则决不会产生僵死进程。本书讨论的4种平台在此方面都追随SVR4的行为。
 
 使用sigaction可设置SA_NOCLDWAIT标志（见图10-6）以避免进程僵死。本书讨论的4种平台都支持这一点。
 

 
（2）如果将SIGCLD的配置设置为捕捉，则内核立即检查是否有子进程准备好被等待，如果是这样，则调用SIGCLD处理程序。
 
第2种方式改变了为此信号编写处理程序的方法，这一点可在下面的实例中看到。
 
实例
 
10.4节曾提到，进入信号处理程序后，首先要调用signal函数以重新设置此信号处理程序（在信号被重置为其默认值时，它可能会丢失，立即重新设置可以减少此窗口时间）。图10-6展示了这一点。但此程序不能在某些传统的System V平台上正常工作。程序一行行地不断重复输出“SIGCLD received”，最后进程用完其栈空间并异常终止。
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#include 　　"apue.h"

#include 　　<sys/wait.h>



static void　　sig_cld(int);



int

main()

{

　　pid_t　pid;



　　if (signal(SIGCLD, sig_cld) == SIG_ERR)

　　　　perror("signal error");

　　if ((pid = fork()) < 0) {

　　　　perror("fork error");

　　} else if (pid == 0) {　　　　/* child */

　　　　sleep(2);

　　　　_exit(0);

　　}



　　pause();　　/* parent */

　　exit(0);

}



static void

sig_cld(int signo)　　/* interrupts pause() */

{

　　pid_t　pid;

　　int　　status;



　　printf("SIGCLD received\n");



　　if (signal(SIGCLD, sig_cld) == SIG_ERR)　　/* reestablish handler */

　　　　perror("signal error");



　　if ((pid = wait(&status)) < 0)　　　　　　　/* fetch child status */

　　　　perror("wait error");



　　printf("pid = %d\n", pid);

}
 
图10-6　不能正常工作的System V SIGCLD处理程序
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 因为基于BSD的系统通常并不支持早期System V的SIGCLD语义，所以FreeBSD 8.0和Mac OS X 10.6.8并没有出现此问题。Linux 3.2.0也没有出现此问题，其原因是，虽然SIGCLD和SIGCHLD定义为相同的值，但当一个进程安排捕捉SIGCHLD，并且已经有进程准备好由其父进程等待时，该系统并不调用SIGCHLD信号的处理程序。Solaris 10在此种情况时确实调用该信号处理程序，但在内核中增加了避免此问题的代码。
 
 虽然本书说明的所有4种平台都解决了这一问题，但是应当意识到没有解决这一问题的平台（如AIX）依然存在。
 

 
此程序的问题是：在信号处理程序的开始处调用signal，按照上述第2种方式，内核检查是否有需要等待的子进程（因为我们正在处理一个SIGCLD信号，所以确实有这种子进程），所以它产生另一个对信号处理程序的调用。信号处理程序调用signal，整个过程再次重复。
 
为了解决这一问题，应当在调用wait取到子进程的终止状态后再调用signal。此时仅当其他子进程终止，内核才会再次产生此种信号。
 
 
 如果为SIGCHLD建立了一个信号处理程序，又存在一个已终止但父进程尚未等待它的进程，则是否会产生信号？POSIX.1对此没有做说明。这就允许前面所述的工作方式。但是，POSIX.1在信号发生时并没有将信号处理重置为其默认值（假定正调用POSIX.1的sigaction函数设置其配置），于是在SIGCHLD处理程序中也就不必再为该信号指定一个信号处理程序。
 

 
务必了解你所用的系统实现中SIGCHLD信号的语义。也应了解在某些系统中#define SIGCHLD为SIGCLD或反之。更改这种信号的名字使你可以编译为另一个系统编写的程序，但是如果这一程序使用该信号的另一种语义，程序有可能不会正常工作。
 
 
 在本书说明的4种平台上，只有Linux 3.2.0和Solaris 10定义了SIGCLD，SIGCLD等同于SIGCHLD。
 

 
10.8　可靠信号术语和语义
 
我们需要先定义一些在讨论信号时会用到的术语。首先，当造成信号的事件发生时，为进程产生一个信号（或向一个进程发送一个信号）。事件可以是硬件异常（如除以0）、软件条件（如alarm定时器超时）、终端产生的信号或调用kill函数。当一个信号产生时，内核通常在进程表中以某种形式设置一个标志。
 
当对信号采取了这种动作时，我们说向进程递送了一个信号。在信号产生（generation）和递送（delivery）之间的时间间隔内，称信号是未决的（pending）。
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进程可以选用“阻塞信号递送”。如果为进程产生了一个阻塞的信号，而且对该信号的动作是系统默认动作或捕捉该信号，则为该进程将此信号保持为未决状态，直到该进程对此信号解除了阻塞，或者将对此信号的动作更改为忽略。内核在递送一个原来被阻塞的信号给进程时（而不是在产生该信号时），才决定对它的处理方式。于是进程在信号递送给它之前仍可改变对该信号的动作。进程调用sigpending函数（见10.13节）来判定哪些信号是设置为阻塞并处于未决状态的。
 
如果在进程解除对某个信号的阻塞之前，这种信号发生了多次，那么将如何呢？POSIX.1允许系统递送该信号一次或多次。如果递送该信号多次，则称这些信号进行了排队。但是除非支持POSIX.1实时扩展，否则大多数UNIX并不对信号排队，而是只递送这种信号一次。
 
 
 SUSv4中，实时信号功能已经移至基础规范的实时扩展部分。随着时间的推移，更多的系统即使不支持实时扩展，也会支持信号排队。我们将在10.20节中进一步讨论排队信号。
 
 SVR2的手册页称，在进程执行SIGCLD信号处理程序期间，该信号是用排队方式处理的，虽然在概念层次这可能是真的，但实际并非如此。内核是按照10.7节中所述方式产生此信号。SVR3的手册页对此做了修改，它指明在进程执行SIGCLD信号处理程序期间，忽略SIGCLD信号。SVR4手册页删除了有关部分。
 
 AT&T[1990e]中的SVR4 sigaction(2)手册页称SA_SIGINFO标志（见图10-16）使信号可靠地排队，这是不正确的。表面上内核部分地实现了此功能，但在SVR4中并不起作用。令人不可思议的是，SVID（System V接口定义）对这种可靠队列并未做同样的声明。
 

 
如果有多个信号要递送给一个进程，那将如何呢？POSIX.1并没有规定这些信号的递送顺序。但是POSIX.1基础部分建议：在其他信号之前递送与进程当前状态有关的信号，如SIGSEGV。
 
每个进程都有一个信号屏蔽字（signal mask），它规定了当前要阻塞递送到该进程的信号集。对于每种可能的信号，该屏蔽字中都有一位与之对应。对于某种信号，若其对应位已设置，则它当前是被阻塞的。进程可以调用sigprocmask（在10.12节中说明）来检测和更改其当前信号屏蔽字。
 
信号编号可能会超过一个整型所包含的二进制位数，因此POSIX.1定义了一个新数据类型sigset_t，它可以容纳一个信号集。例如，信号屏蔽字就存放在其中一个信号集中。10.11节将说明对信号集进行操作的5个函数。
 
10.9　函数kill和raise
 
kill函数将信号发送给进程或进程组。raise函数则允许进程向自身发送信号。
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 raise最初是由ISO C定义的。后来，为了与ISO C标准保持一致，POSIX.1也包括了该函数。但是POSIX.1扩展了raise的规范，使其可处理线程（12.8中讨论线程如何与信号交互）。因为ISO C并不涉及多进程，所以它不能定义以进程ID作为其参数（如kill函数）的函数。
 

 
#include <signal.h>



int kill(pid_t pid, int signo);



int raise(int signo);



　　　　　　　　　　　　　　　两个函数返回值：若成功，返回0；若出错，返回−1


 
调用
 
raise(signo);
 
等价于调用
 
kill(getpid(), signo);
 
kill的pid参数有以下4种不同的情况。
 
pid > 0　　将该信号发送给进程ID为pid的进程。
 
pid == 0　　将该信号发送给与发送进程属于同一进程组的所有进程（这些进程的进程组ID等于发送进程的进程组ID），而且发送进程具有权限向这些进程发送信号。这里用的术语“所有进程”不包括实现定义的系统进程集。对于大多数UNIX系统，系统进程集包括内核进程和init（pid为1）。
 
pid < 0　　将该信号发送给其进程组ID等于pid绝对值，而且发送进程具有权限向其发送信号的所有进程。如前所述，所有进程并不包括系统进程集中的进程。
 
pid == −1　　将该信号发送给发送进程有权限向它们发送信号的所有进程。如前所述，所有进程不包括系统进程集中的进程。
 
如前所述，进程将信号发送给其他进程需要权限。超级用户可将信号发送给任一进程。对于非超级用户，其基本规则是发送者的实际用户ID或有效用户ID必须等于接收者的实际用户ID或有效用户ID。如果实现支持_POSIX_SAVED_IDS（如POSIX.1现在要求的那样），则检查接收者的保存设置用户ID（而不是有效用户ID）。在对权限进行测试时也有一个特例：如果被发送的信号是SIGCONT，则进程可将它发送给属于同一会话的任一其他进程。
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POSIX.1将信号编号0定义为空信号。如果signo参数是0，则kill仍执行正常的错误检查，但不发送信号。这常被用来确定一个特定进程是否仍然存在。如果向一个并不存在的进程发送空信号，则kill返回−1，errno被设置为ESRCH。但是，应当注意，UNIX系统在经过一定时间后会重新使用进程ID，所以一个现有的具有所给定进程ID的进程并不一定就是你所想要的进程。
 
还应理解的是，测试进程是否存在的操作不是原子操作。在kill向调用者返回测试结果时，原来已存在的被测试进程此时可能已经终止，所以这种测试并无多大价值。
 
如果调用kill为调用进程产生信号，而且此信号是不被阻塞的，那么在kill返回之前，signo或者某个其他未决的、非阻塞信号被传送至该进程。（对于线程而言，还有一些附加条件；详细情况见12.8节。）
 
10.10　函数alarm和pause
 
使用alarm函数可以设置一个定时器（闹钟时间），在将来的某个时刻该定时器会超时。当定时器超时时，产生SIGALRM信号。如果忽略或不捕捉此信号，则其默认动作是终止调用该alarm函数的进程。
 
#include <unistd.h>



unsigned int alarm(unsigned int seconds);



　　　　　　　　　　　　　　　返回值：0或以前设置的闹钟时间的余留秒数


 
参数seconds的值是产生信号SIGALRM需要经过的时钟秒数。当这一时刻到达时，信号由内核产生，由于进程调度的延迟，所以进程得到控制从而能够处理该信号还需要一个时间间隔。
 
 
 早期的UNIX系统实现曾提出警告，这种信号可能比预定值提前1 s发送。POSIX.1则不允许这样做。
 

 
每个进程只能有一个闹钟时间。如果在调用alarm时，之前已为该进程注册的闹钟时间还没有超时，则该闹钟时间的余留值作为本次alarm函数调用的值返回。以前注册的闹钟时间则被新值代替。
 
如果有以前注册的尚未超过的闹钟时间，而且本次调用的seconds值是0，则取消以前的闹钟时间，其余留值仍作为alarm函数的返回值。
 
虽然SIGALRM的默认动作是终止进程，但是大多数使用闹钟的进程捕捉此信号。如果此时进程要终止，则在终止之前它可以执行所需的清理操作。如果我们想捕捉SIGALRM信号，则必须在调用alarm之前安装该信号的处理程序。如果我们先调用alarm，然后在我们能够安装SIGALRM处理程序之前已接到该信号，那么进程将终止。
 
pause函数使调用进程挂起直至捕捉到一个信号。
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#include <unistd.h>



int pause(void);



　　　　　　　　　　　　　　　返回值：−1，errno设置为EINTR
 
只有执行了一个信号处理程序并从其返回时，pause才返回。在这种情况下，pause返回−1， errno设置为EINTR。
 
实例
 
使用alarm和pause，进程可使自己休眠一段指定的时间。图10-7中的sleep1函数看似提供了这种功能（其实这里面存在问题，我们很快就会看到）。
 
#include 　<signal.h>

#include 　<unistd.h>



static void

sig_alrm(int signo)

{

　　/* nothing to do, just return to wake up the pause */

}



unsigned int

sleep1(unsigned int seconds)

{

　　if (signal(SIGALRM, sig_alrm) == SIG_ERR)

　　　　return(seconds);

　　alarm(seconds);　　　　/* start the timer */

　　pause();　　　　　　　　/* next caught signal wakes us up */

　　return(alarm(0));　　 /* turn off timer, return unslept time */

}
 
图10-7　sleep简化而不完整的实现
 
程序中的sleep1函数看起来与将在10.19节中说明的sleep函数类似，但这种简单实现有以下3个问题。
 
（1）如果在调用sleep1之前，调用者已设置了闹钟，则它被sleep1函数中的第一次alarm调用擦除。可用下列方法更正这一点：检查第一次调用alarm的返回值，如其值小于本次调用alarm的参数值，则只应等到已有的闹钟超时。如果之前设置的闹钟超时时间晚于本次设置值，则在sleep1函数返回之前，重置此闹钟，使其在之前闹钟的设定时间再次发生超时。
 
（2）该程序中修改了对SIGALRM的配置。如果编写了一个函数供其他函数调用，则在该函数被调用时先要保存原配置，在该函数返回前再恢复原配置。更正这一点的方法是：保存signal函数的返回值，在返回前重置原配置。
 

  339 

 
（3）在第一次调用alarm和pause之间有一个竞争条件。在一个繁忙的系统中，可能alarm在调用pause之前超时，并调用了信号处理程序。如果发生了这种情况，则在调用pause后，如果没有捕捉到其他信号，调用者将永远被挂起。
 
sleep的早期实现与图10-7程序类似，但更正了第1个和第2个问题。有两种方法可以更正第3个问题。第一种方法是使用setjmp，下一个实例将说明这种方法。另一种方法是使用sigprocmask和sigsuspend，10.19节将说明这种方法。
 
实例
 
SVR2中的sleep实现使用了setjmp和longjmp（见7.10节），以避免前一个实例的第3个问题中说明的竞争条件。此函数的一个简化版本称为sleep2，示于图10-8中（为了缩短实例程序的长度，程序中没有处理上面所说的第1个和第2个问题）。
 
#include 　　<setjmp.h>

#include 　　<signal.h>

#include 　　<unistd.h>



static jmp_buf　　env_alrm;



static void

sig_alrm(int signo)

{

　　longjmp(env_alrm, 1);

}



unsigned int

sleep2(unsigned int seconds)

{

　　if (signal(SIGALRM, sig_alrm) == SIG_ERR)

　　　　return(seconds);

　　if (setjmp(env_alrm) == 0) {

　　　　alarm(seconds);　　　　　/* start the timer */

　　　　pause();　　　　　　　　　/* next caught signal wakes us up */

　　}

　　return(alarm(0));　　　　　/* turn off timer, return unslept time */

}
 
图10-8　sleep的另一个不完善的实现
 
在此函数中，已避免了图10-7中具有的竞争条件。即使pause从未执行，在发生SIGALRM时， sleep2函数也返回。
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但是，sleep2函数中却有另一个难以察觉的问题，它涉及与其他信号的交互。如果SIGALRM中断了某个其他信号处理程序，则调用longjmp会提早终止该信号处理程序。图10-9显示了这种情况。SIGINT处理程序中包含了for循环语句，它在作者所用系统上的执行时间超过5s，也就是大于sleep2的参数值，这正是我们想要的。整型变量k说明为volatile，这样就阻止了优化编译程序去除循环语句。
 
#include "apue.h"



unsigned int　　　sleep2(unsigned int);

static void　　　 sig_int(int);



int

main(void)

{

　　unsigned int　unslept;



　　if (signal(SIGINT, sig_int) == SIG_ERR)

　　　　err_sys("signal(SIGINT) error");

　　unslept = sleep2(5);

　　printf("sleep2 returned: %u\n", unslept);

　　exit(0);

}



static void

sig_int(int signo)

{

　　int　　　　　　　　 i, j;

　　volatile int　　　k;



　　/*

　　 * Tune these loops to run for more than 5 seconds

　　 * on whatever system this test program is run.

　　 */

　　printf("\nsig_int starting\n");

　　for (i = 0; i < 300000; i++)

　　　　for (j = 0; j < 4000; j++)

　　　　　　 k += i * j;

　　printf("sig_int finished\n");

}
 
图10-9　在一个捕捉其他信号的程序中调用sleep2
 
执行图10-9中的程序，可以通过键入中断字符来中断休眠，运行结果如下：
 
$ ./a.out

^C　　　　　　　　　　　 键入中断字符

sig_int starting

sleep2 returned: 0


 
从中可见sleep2函数所引起的longjmp使另一个信号处理程序sig_int提早终止，即使它未完成也会如此。如果将SVR2的sleep函数与其他信号处理程序一起使用，就可能碰到这种情况。见习题10.3。
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sleep1和sleep2函数的这两个实例是告诉我们在涉及信号时需要有精细而周到的考虑。下面几节将说明解决这些问题的方法，使我们能够可靠地、在不影响其他代码段的情况下处理信号。
 
实例
 
除了用来实现sleep函数外，alarm还常用于对可能阻塞的操作设置时间上限值。例如，程序中有一个读低速设备的可能阻塞的操作（见10.5节），我们希望超过一定时间量后就停止执行该操作。图10-10实现了这一点，它从标准输入读一行，然后将其写到标准输出上。
 
#include "apue.h"



static void　sig_alrm(int);



int

main(void)

{

　　int　　 n;

　　char　　line[MAXLINE];



　　if (signal(SIGALRM, sig_alrm) == SIG_ERR)

　　　　err_sys("signal(SIGALRM) error");



　　alarm(10);

　　if ((n = read(STDIN_FILENO, line, MAXLINE)) < 0)

　　　　err_sys("read error");

　　alarm(0);



　　write(STDOUT_FILENO, line, n);

　　exit(0);

}



static void

sig_alrm(int signo)

{

　　/* nothing to do, just return to interrupt the read */

}
 
图10-10　带时间限制调用read
 
这种代码序列在很多UNIX应用程序中都能见到，但是这种程序有两个问题：
 
（1）图10-10中的程序具有与图10-7中的程序相同的问题：在第一次alarm调用和read调用之间有一个竞争条件。如果内核在这两个函数调用之间使进程阻塞，不能占用处理机运行，而其时间长度又超过闹钟时间，则read可能永远阻塞。大多数这种类型的操作使用较长的闹钟时间，例如1分钟或更长一点，使这种问题不会发生，但无论如何这是一个竞争条件。
 

  342 

 
（2）如果系统调用是自动重启动的，则当从SIGALRM信号处理程序返回时，read并不被中断。在这种情形下，设置时间限制不起作用。
 
在这里我们确实需要中断慢速系统调用。我们将在10.14节对此进行详细讨论。
 
实例
 
让我们用longjmp再实现前面的实例。使用这种方法无需担心一个慢速的系统调用是否被中断，见图10-11。
 
#include "apue.h"

#include <setjmp.h>



static void　　　　sig_alrm(int);

static jmp_buf　　env_alrm;



int

main(void)

{

　　int　　　　n;

　　char　　　 line[MAXLINE];



　　if (signal(SIGALRM, sig_alrm) == SIG_ERR)

　　　　err_sys("signal(SIGALRM) error");

　　if (setjmp(env_alrm) != 0)

　　　　err_quit("read timeout");



　　alarm(10);

　　if ((n = read(STDIN_FILENO, line, MAXLINE)) < 0)

　　　　err_sys("read error");

　　alarm(0);



　　write(STDOUT_FILENO, line, n);

　　exit(0);

}



static void

sig_alrm(int signo)

{

　　longjmp(env_alrm, 1);

}
 
图10-11　使用longjmp，带时间限制调用read
 
不管系统是否重新启动被中断的系统调用，该程序都会如所预期的那样工作。但是要知道，该程序仍旧有和图10-8中的程序相同的与其他信号处理程序交互的问题。
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如果要对I/O操作设置时间限制，则如上所示可以使用longjmp，当然也要清楚它可能有与其他信号处理程序交互的问题。另一种选择是使用select或poll函数，14.4.1节和14.4.2节将对它们进行说明。
 
10.11　信号集
 
我们需要有一个能表示多个信号——信号集（signal set）的数据类型。我们将在sigprocmask（下一节中说明）类函数中使用这种数据类型，以便告诉内核不允许发生该信号集中的信号。如前所述，不同的信号的编号可能超过一个整型量所包含的位数，所以一般而言，不能用整型量中的一位代表一种信号，也就是不能用一个整型量表示信号集。POSIX.1定义数据类型sigset_t以包含一个信号集，并且定义了下列5个处理信号集的函数。
 
#include <signal.h>



int sigemptyset(sigset_t *set);



int sigfillset(sigset_t *set);



int sigaddset(sigset_t *set, int signo);



int sigdelset(sigset_t * set, int signo);



　　　　　　　　　　　　　　　4个函数返回值：若成功，返回0；若出错，返回−1



int sigismember(const sigset_t *set, int signo);



　　　　　　　　　　　　　　　返回值：若真，返回1；若假，返回0


 
函数sigemptyset初始化由set指向的信号集，清除其中所有信号。函数sigfillset初始化由set指向的信号集，使其包括所有信号。所有应用程序在使用信号集前，要对该信号集调用sigemptyset或sigfillset一次。这是因为C编译程序将不赋初值的外部变量和静态变量都初始化为0，而这是否与给定系统上信号集的实现相对应却并不清楚。
 
一旦已经初始化了一个信号集，以后就可在该信号集中增、删特定的信号。函数sigaddset将一个信号添加到已有的信号集中，sigdelset则从信号集中删除一个信号。对所有以信号集作为参数的函数，总是以信号集地址作为向其传送的参数。
 
实现
 
如果实现的信号数目少于一个整型量所包含的位数，则可用一位代表一个信号的方法实现信号集。例如，本书的后续部分都假定一种实现有31种信号和32位整型。sigemptyset函数将整型设置为0，sigfillset函数则将整型中的各位都设置为1。这两个函数可以在<signal.h>头文件中实现为宏：
 
#define sigemptyset(ptr)　(*(ptr) = 0)

#define sigfillset(ptr)　 (*(ptr) = ~(sigset_t)0, 0)
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注意，除了设置信号集中各位为1外，sigfillset必须返回0，所以使用C语言的逗号算符，它将逗号算符后的值作为表达式的值返回。
 
使用这种实现，sigaddset开启一位（将该位设置为1），sigdelset则关闭一位（将该位设置为0）；sigismember测试一个指定的位。因为没有信号编号为0，所以从信号编号中减1以得到要处理位的位编号数。图10-12给出了这些函数的实现。
 
#include 　　<signal.h>

#include 　　<errno.h>



/*

 * <signal.h> usually defines NSIG to include signal number 0.

 */

#define　SIGBAD(signo)　((signo) <= 0 || (signo) >= NSIG)



int

sigaddset(sigset_t *set, int signo)

{

　　if (SIGBAD(signo)) {

　　　　errno = EINVAL;

　　　　return(-1);

　　}

　　*set |= 1 << (signo - 1);　　　/* turn bit on */

　　return(0);

}



int

sigdelset(sigset_t *set, int signo)

{

　　if (SIGBAD(signo)) {

　　　　errno = EINVAL;

　　　　return(-1);

　　}

　　*set &= ~(1 << (signo - 1));　　　/* turn bit off */

　　return(0);

}



int

sigismember(const sigset_t *set, int signo)

{

　　if (SIGBAD(signo)) {

　　　　errno = EINVAL;

　　　　return(-1);

　　}

　　return((*set & (1 << (signo - 1))) != 0);

}
 
图10-12　sigaddset、sigdelset和sigismember的实现
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也可将这3个函数在<signal.h>中实现为各一行的宏，但是POSIX.1要求检查信号编号参数的有效性，如果无效则设置errno。在宏中实现这一点比函数要难。
 
10.12　函数sigprocmask
 
10.8节曾提及一个进程的信号屏蔽字规定了当前阻塞而不能递送给该进程的信号集。调用函数sigprocmask可以检测或更改，或同时进行检测和更改进程的信号屏蔽字。
 
#include <signal.h>



int sigprocmask(int how, const sigset_t *restrict set, sigset_t *restrict oset);



　　　　　　　　　　　　　　　返回值：若成功，返回0；若出错，返回−1


 
首先，若oset是非空指针，那么进程的当前信号屏蔽字通过oset返回。
 
其次，若set是一个非空指针，则参数how指示如何修改当前信号屏蔽字。图10-13说明了how可选的值。SIG_BLOCK是或操作，而SIG_SETMASK则是赋值操作。注意，不能阻塞SIGKILL和SIGSTOP信号。
 
[image: 10-13.jpg]
 
图10-13　用sigprocmask更改当前信号屏蔽字的方法
 
如果set是个空指针，则不改变该进程的信号屏蔽字，how的值也无意义。
 
在调用sigprocmask后如果有任何未决的、不再阻塞的信号，则在sigprocmask返回前，至少将其中之一递送给该进程。
 
 
 sigprocmask是仅为单线程进程定义的。处理多线程进程中信号的屏蔽使用另一个函数。我们将在12.8节中对此进行讨论。
 

 
实例
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图10-14程序是一个函数，它打印调用进程信号屏蔽字中的信号名。图10-20中的程序和图10-22中的程序将调用此函数。
 
#include "apue.h"

#include <errno.h>



void

pr_mask(const char *str)

{

　　sigset_t　　sigset;

　　int　   　  errno_save;



　　errno_save = errno;　　　　　　/* we can be called by signal handlers */

　　if (sigprocmask(0, NULL, &sigset) < 0) {

　   　 err_ret("sigprocmask error");

　　} else {

　   　 printf("%s", str);

　   　 if (sigismember(&sigset, SIGINT))

　　　 　　　printf(" SIGINT");

　   　 if (sigismember(&sigset, SIGQUIT))

　　　 　　　printf(" SIGQUIT");

　   　 if (sigismember(&sigset, SIGUSR1))

　　　 　　　printf(" SIGUSR1");

　   　 if (sigismember(&sigset, SIGALRM))

　　　 　　　printf(" SIGALRM");



　　　　/* remaining signals can go here　*/



　　　　printf("\n");

　　}



　　errno = errno_save;　　　　/* restore errno */

}
 
图10-14　为进程打印信号屏蔽字
 
为了节省空间，没有对图10-1中列出的每一种信号测试该屏蔽字（见习题10.9）。
 
10.13　函数sigpending
 
sigpending函数返回一信号集，对于调用进程而言，其中的各信号是阻塞不能递送的，因而也一定是当前未决的。该信号集通过set参数返回。
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#include <signal.h>



int sigpending(sigset_t *set);



　　　　　　　　　　　　　　　返回值：若成功，返回0；若出错，返回−1


 
实例
 
图10-15展示了很多前面说明过的信号功能。
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#include "apue.h"



static void　sig_quit(int);



int

main(void)

{

　　sigset_t　newmask, oldmask, pendmask;



　　if (signal(SIGQUIT, sig_quit) == SIG_ERR)

　　　　err_sys("can't catch SIGQUIT");



　　/*

　　 * Block SIGQUIT and save current signal mask.

　　 */

　　sigemptyset(&newmask);

　　sigaddset(&newmask, SIGQUIT);

　　if (sigprocmask(SIG_BLOCK, &newmask, &oldmask) < 0)

　　　　err_sys("SIG_BLOCK error");



　　sleep(5);　　　　　/* SIGQUIT here will remain pending */



　　if (sigpending(&pendmask) < 0)

　　　　err_sys("sigpending error");

　　if (sigismember(&pendmask, SIGQUIT))

　　　　printf("\nSIGQUIT pending\n");



　　/*

　　 * Restore signal mask which unblocks SIGQUIT.

　　 */

　　if (sigprocmask(SIG_SETMASK, &oldmask, NULL) < 0)

　　　　err_sys("SIG_SETMASK error");

　　printf("SIGQUIT unblocked\n");



　　sleep(5); 　　　/* SIGQUIT here will terminate with core file */

　　exit(0);

}



static void

sig_quit(int signo)

{

　　printf("caught SIGQUIT\n");

　　if (signal(SIGQUIT, SIG_DFL) == SIG_ERR)

　　　　err_sys("can't reset SIGQUIT");

}
 
图10-15　信号设置和sigprocmask实例
 
进程阻塞SIGQUIT信号，保存了当前信号屏蔽字（以便以后恢复），然后休眠5秒。在此期间所产生的退出信号SIGQUIT都被阻塞，不递送至该进程，直到该信号不再被阻塞。在5秒休眠结束后，检查该信号是否是未决的，然后将SIGQUIT设置为不再阻塞。
 
注意，在设置SIGQUIT为阻塞时，我们保存了老的屏蔽字。为了解除对该信号的阻塞，用老的屏蔽字重新设置了进程信号屏蔽字（SIG_SETMASK）。另一种方法是用SIG_UNBLOCK使阻塞的信号不再阻塞。但是，应当了解如果编写一个可能由其他人使用的函数，而且需要在函数中阻塞一个信号，则不能用SIG_UNBLOCK简单地解除对此信号的阻塞，这是因为此函数的调用者在调用本函数之前可能也阻塞了此信号。在这种情况下必须使用SIG_SETMASK将信号屏蔽字恢复为先前的值，这样也就能继续阻塞该信号。10.18节的system函数部分有这样的一个例子。
 
在休眠期间如果产生了退出信号，那么此时该信号是未决的，但是不再受阻塞，所以在sigprocmask返回之前，它被递送到调用进程。从程序的输出中可以看到这一点：SIGQUIT处理程序（sig_quit）中的printf语句先执行，然后再执行sigprocmask之后的printf语句。
 
然后该进程再休眠5秒。如果在此期间再产生退出信号，那么因为在上次捕捉到该信号时，已将其处理方式设置为默认动作，所以这一次它就会使该进程终止。在下列输出中，当我们在终端键入退出字符Ctrl+\时，终端打印^\（终端退出字符）：
 
$ ./a.out

^\　　　　　　　　　 　　　　产生信号一次(在5 s之内)

SIGQUIT pending　　　 　　从sleep返回后

caught SIGQUIT　　　　 　 在信号处理程序中

SIGQUIT unblocked　　　  从sigprocmask返回后

^\Quit(coredump)　　　　　再次产生信号

$ ./a.out

^\^\^\^\^\^\^\^\^\^\　　 产生信号10次(在5 s之内)

SIGQUIT pending

caught SIGQUIT　　　　　　只产生信号一次

SIGQUIT unblocked

^\Quit(coredump)　　　　　再产生信号


 
shell发现其子进程异常终止时输出QUIT(coredump)信息。注意，第二次运行该程序时，在进程休眠期间使SIGQUIT信号产生了10次，但是解除了对该信号的阻塞后，只向进程传送一次SIGQUIT。从中可以看出在此系统上没有将信号进行排队。
 
10.14　函数sigaction
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sigaction函数的功能是检查或修改（或检查并修改）与指定信号相关联的处理动作。此函数取代了UNIX早期版本使用的signal函数。在本节末尾用sigaction函数实现了signal。
 
#include <signal.h>



int sigaction(int signo, const struct sigaction *restrict act, 

　　　　　　　　 struct sigaction *restrict oact);



　　　　　　　　　　　　　　　返回值：若成功，返回0；若出错，返回−1


 
其中，参数signo是要检测或修改其具体动作的信号编号。若act指针非空，则要修改其动作。如果oact指针非空，则系统经由oact指针返回该信号的上一个动作。此函数使用下列结构：
 
struct sigaction {

　void　　　(*sa_handler)(int);　 /* addr of signal handler, */

　　　　　　　　　　　　　　 　　　　　/* or SIG_IGN, or SIG_DFL */

　sigset_t sa_mask;　　　　　　　　/* additional signals to block */

　int　　　 sa_flags;　　　　　　　 /* signal options, Figure 10.16 */

　/* alternate handler */

　void　　 (*sa_sigaction)(int, siginfo_t *, void *);

};
 
当更改信号动作时，如果sa_handler字段包含一个信号捕捉函数的地址（不是常量SIG_IGN或SIG_DFL），则sa_mask字段说明了一个信号集，在调用该信号捕捉函数之前，这一信号集要加到进程的信号屏蔽字中。仅当从信号捕捉函数返回时再将进程的信号屏蔽字恢复为原先值。这样，在调用信号处理程序时就能阻塞某些信号。在信号处理程序被调用时，操作系统建立的新信号屏蔽字包括正被递送的信号。因此保证了在处理一个给定的信号时，如果这种信号再次发生，那么它会被阻塞到对前一个信号的处理结束为止。回忆10.8节，若同一种信号多次发生，通常并不将它们加入队列，所以如果在某种信号被阻塞时，它发生了5次，那么对这种信号解除阻塞后，其信号处理函数通常只会被调用一次（上一个例子已经说明了这种特性）。
 
一旦对给定的信号设置了一个动作，那么在调用sigaction显式地改变它之前，该设置就一直有效。这种处理方式与早期的不可靠信号机制不同，符合POSIX.1在这方面的要求。
 
act结构的sa_flags字段指定对信号进行处理的各个选项。图10-16详细列出了这些选项的意义。若该标志已定义在基本POSIX.1标准中，那么SUS列包含“•”；若该标志定义在基本POSIX.1标准的XSI扩展中，那么该列包含“XSI”。
 
[image: 10-16.jpg]
 
图10-16　处理每个信号的可选标志（sa_flags）
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sa_sigaction字段是一个替代的信号处理程序，在sigaction结构中使用了SA_SIGINFO标志时，使用该信号处理程序。对于sa_sigaction字段和sa_handler字段两者，实现可能使用同一存储区，所以应用只能一次使用这两个字段中的一个。
 
通常，按下列方式调用信号处理程序：
 
void　handler(int signo);


 
但是，如果设置了SA_SIGINFO标志，那么按下列方式调用信号处理程序：
 
void　handler(int signo, siginfo_t *info, void *context);


 
siginfo结构包含了信号产生原因的有关信息。该结构的大致样式如下所示。符合POSIX.1的所有实现必须至少包括si_signo和si_code成员。另外，符合XSI的实现至少应包含下列字段：
 
struct siginfo {

　int　　　　　　si_signo;　　/* signal number */

　int　　　　　　si_errno;　　/* if nonzero, errno value from <errno.h> */

　int　　　　　　si_code;　　 /* additional info (depends on signal) */

　pid_t　　　　　si_pid;　　　/* sending process ID */

　uid_t　　　　　si_uid;　　　/* sending process real user ID */

　void　　　　　*si_addr;　　/* address that caused the fault */

　int　　　　　　si_status;　/* exit value or signal number */

　union sigval si_value; 　/* application-specific value */

　/* possibly other fields also */

};
 
sigval联合包含下列字段：
 
int　 sival_int;

void *sival_ptr;
 
应用程序在递送信号时，在si_value.sival_int中传递一个整型数或者在si_value.sival_ptr中传递一个指针值。
 
图10-17示出了对于各种信号的si_code值，这些信号是由Single UNIX Specification定义的。注意，实现可定义附加的代码值。
 
若信号是SIGCHLD，则将设置si_pid、si_status和si_uid字段。若信号是SIGBUS、 SIGILL、 SIGFPE或SIGSEGV，则si_addr包含造成故障的根源地址，该地址可能并不准确。si_errno字段包含错误编号，它对应于造成信号产生的条件，并由实现定义。
 
信号处理程序的context参数是无类型指针，它可被强制类型转换为ucontext_t结构类型，该结构标识信号传递时进程的上下文。该结构至少包含下列字段：
 
ucontext_t *uc_link;　　　　/* pointer to context resumed when */

　　　　　　　　　　　　　　　　/* this context returns */

sigset_t　　 uc_sigmask;　　/* signals blocked when this context */

　　　　　　　　　　　　　　　　/* is active */

stack_t　　　uc_stack;　  　/* stack used by this context */

mcontext_t　 uc_mcontext;　/* machine-specific representation of */

　　　　　　　　　　　　　　　　/* saved context */
 
uc_stack字段描述了当前上下文使用的栈，至少包括下列成员：
 
void　 *ss_sp;　　　　　　　　/* stack base or pointer */

size_t ss_size;　　　　　　　/* stack size */

int　　 ss_flags;　　　　　　/* flags */
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 当实现支持实时信号扩展时，用SA_SIGINFO标志建立的信号处理程序将造成信号可靠地排队。一些保留信号可由实时应用使用。如果信号由sigqueue函数产生，那么siginfo结构能包含应用特有的数据（参见10.20节）。
 

 
实例：signal函数
 
现在用sigaction实现signal函数。很多平台都是这样做的（POSIX.1的基础阐述部分也说明这是POSIX所希望的）。另一方面，有些系统支持老的不可靠信号语义signal函数，其目的是实现二进制向后兼容。除非特殊地要求老的不可靠语义（为了向后兼容），否则应当使用下面的signal实现，或者直接调用sigaction（可以在调用sigaction时指定SA_RESETHAND和SA_NODEFER选项以实现老语义的signal函数）。本书中所有调用signal的实例均调用图10-18中实现的函数。
 
[image: 10-17.jpg]
 
图10-17　siginfo_t代码值
 
#include "apue.h"



/* Reliable version of signal(), using POSIX sigaction().　*/

Sigfunc *

signal(int signo, Sigfunc *func)

{

　　struct sigaction　　act, oact;



　　act.sa_handler = func;

　　sigemptyset(&act.sa_mask);

　　act.sa_flags = 0;

　　if (signo == SIGALRM) {

#ifdef　SA_INTERRUPT

　　　　 act.sa_flags |= SA_INTERRUPT;

#endif

　　} else {

　　　　act.sa_flags |= SA_RESTART;

　　}

　　if (sigaction(signo, &act, &oact) < 0)

　　　　return(SIG_ERR);

　　return(oact.sa_handler);

}
 
图10-18　用sigaction实现的signal函数
 
注意，必须用sigemptyset函数初始化act结构的sa_mask成员。不能保证act.sa_mask=0会做同样的事情。
 
对除SIGALRM以外的所有信号，我们都有意尝试设置SA_RESTART标志，于是被这些信号中断的系统调用都能自动重启动。不希望重启动由SIGALRM信号中断的系统调用的原因是：我们希望对I/O操作可以设置时间限制（请回忆有关图10-10的讨论）。
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某些早期系统（如SunOS）定义了SA_INTERRUPT标志。这些系统的默认方式是重新启动被中断的系统调用，而指定此标志则使系统调用被中断后不再重启动。Linux定义SA_INTERRUPT标志，以便与使用该标志的应用程序兼容。但是，如若信号处理程序是用sigaction设置的，那么其默认方式是不重新启动系统调用。Single UNIX Specification的XSI扩展规定，除非说明了SA_RESTART标志，否则sigaction函数不再重启动被中断的系统调用。
 
实例：signal_intr函数
 
图10-19给出的是signal函数的另一种版本，它力图阻止被中断的系统调用重启动。
 
#include "apue.h"



Sigfunc *

signal_intr(int signo, Sigfunc *func)

{

　　struct sigaction　act, oact;



　　act.sa_handler = func;

　　sigemptyset(&act.sa_mask);

　　act.sa_flags = 0;

#ifdef　　SA_INTERRUPT

　　ct.sa_flags |= SA_INTERRUPT;

#endif

　　if (sigaction(signo, &act, &oact) < 0)

　　　　return(SIG_ERR);

　　return(oact.sa_handler);

}
 
图10-19　signal_intr函数
 
如果系统定义了SA_INTERRUPT标志，那么为了提高可移植性，我们在sa_flags中增加该标志，这样也就阻止了被中断的系统调用的重启动。
 
10.15　函数sigsetjmp和siglongjmp
 
7.10节说明了用于非局部转移的setjmp和longjmp函数。在信号处理程序中经常调用longjmp函数以返回到程序的主循环中，而不是从该处理程序返回。图10-8和图10-11中已经出现了这种情况。
 
但是，调用longjmp有一个问题。当捕捉到一个信号时，进入信号捕捉函数，此时当前信号被自动地加到进程的信号屏蔽字中。这阻止了后来产生的这种信号中断该信号处理程序。如果用longjmp跳出信号处理程序，那么，对此进程的信号屏蔽字会发生什么呢？
 
 
 在FreeBSD 8.0和Mac OS X 10.6.8中，setjmp和longjmp保存和恢复信号屏蔽字。但是， Linux 3.2.0和Solaris 10并不执行这种操作，虽然Linux支持提供BSD行为的选项。FreeBSD 8.0和Mac OS X 10.6.8提供函数_setjmp和_longjmp，它们也不保存和恢复信号屏蔽字。
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为了允许两种形式并存，POSIX.1并没有指定setjmp和longjmp对信号屏蔽字的作用，而是定义了两个新函数sigsetjmp和siglongjmp。在信号处理程序中进行非局部转移时应当使用这两个函数。
 
#include <setjmp.h>



int sigsetjmp(sigjmp_buf env, int savemask);



　　　　　　　　　　　　　　　返回值：若直接调用，返回0；若从siglongjmp调用返回，则返回非0



void siglongjmp(sigjmp_buf env, int val);


 
这两个函数和setjmp、longjmp之间的唯一区别是sigsetjmp增加了一个参数。如果savemask非0，则sigsetjmp在env中保存进程的当前信号屏蔽字。调用siglongjmp时，如果带非0 savemask的sigsetjmp调用已经保存了env，则siglongjmp从其中恢复保存的信号屏蔽字。
 
实例
 
图10-20中的程序演示了在信号处理程序被调用时，系统所设置的信号屏蔽字如何自动地包括刚被捕捉到的信号。此程序也示例说明了如何使用sigsetjmp和siglongjmp函数。
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#include "apue.h"

#include <setjmp.h>

#include <time.h>



static void　　　　　　　　　　　　sig_usr1(int);

static void　　　　　　　　　　　　sig_alrm(int);

static sigjmp_buf　　　　　　　  jmpbuf;

static volatile sig_atomic_t　 canjump;



int

main(void)

{

　　if (signal(SIGUSR1, sig_usr1) == SIG_ERR)

　　　 　err_sys("signal(SIGUSR1) error");

　　if (signal(SIGALRM, sig_alrm) == SIG_ERR)

　　　 　err_sys("signal(SIGALRM) error");



　　pr_mask("starting main: ");　　　　　/* Figure 10.14 */



　　if (sigsetjmp(jmpbuf, 1)) {



　　　 　pr_mask("ending main: ");



　　　 　exit(0);

　　}

　　canjump = 1;　　　　/* now sigsetjmp() is OK */



　　for ( ; ; )

　　　 　pause();

}



static void

sig_usr1(int signo)

{

　　time_t　　starttime;



　　if (canjump == 0)

　　　 　return;　　　　　　　　/* unexpected signal, ignore */



　　pr_mask("starting sig_usr1: ");



　　alarm(3);　　　　　　　　　/* SIGALRM in 3 seconds */

　　starttime = time(NULL);

　　for ( ; ; )　　　　　　　　/* busy wait for 5 seconds */

　　　　if (time(NULL) > starttime + 5)

　　　　　 　break;



　　pr_mask("finishing sig_usr1: ");



　　canjump = 0;

　　siglongjmp(jmpbuf, 1);　　/* jump back to main, don't return */

}



static void

sig_alrm(int signo)

{

　　pr_mask("in sig_alrm: ");

}
 
图10-20　信号屏蔽、sigsetjmp和siglongjmp实例
 
此程序演示了另一种技术，只要在信号处理程序中调用siglongjmp就应使用这种技术。仅在调用sigsetjmp之后才将变量canjump设置为非0值。在信号处理程序中检测此变量，仅当它为非0值时才调用siglongjmp。这提供了一种保护机制，使得在jmpbuf（跳转缓冲）尚未由sigsetjmp初始化时，防止调用信号处理程序。（在本程序中，siglongjmp之后程序很快就结束，但是在较大的程序中，在siglongjmp之后的较长一段时间内，信号处理程序可能仍旧被设置）。在一般的C代码中（不是信号处理程序），对于longjmp并不需要这种保护措施。但是，因为信号可能在任何时候发生，所以在信号处理程序中，需要这种保护措施。
 
在程序中使用了数据类型sig_atomic_t，这是由ISO C标准定义的变量类型，在写这种类型变量时不会被中断。这意味着在具有虚拟存储器的系统上，这种变量不会跨越页边界，可以用一条机器指令对其进行访问。这种类型的变量总是包括ISO类型修饰符volatile，其原因是：该变量将由两个不同的控制线程——main函数和异步执行的信号处理程序访问。图10-21显示了此程序的执行时间顺序。可将图10-21分成三部分：左面部分（对应于main），中间部分（sig_usr1）和右面部分（sig_alrm）。在进程执行左面部分时，信号屏蔽字是0（没有信号是阻塞的）。而执行中间部分时，其信号屏蔽字是SIGUSR1。执行右面部分时，信号屏蔽字是SIGUSR1｜SIGALRM。
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图10-21　处理两个信号的实例程序的时间顺序
 
执行图10-20程序，得到下面的输出：
 
$ ./a.out &　　　　　　　　　　　　　　 　在后台启动进程

starting main:

[1]　 531　　　　　　　　　　　　　　　　　作业控制shell打印其进程ID

$ kill -USR1 531　　　　 　　　　　　　　向该进程发送SIGUSR1

starting sig_usr1: SIGUSR1

$ in sig_alrm: SIGUSR1 SIGALRM

finishing sig_usr1: SIGUSR1

ending main:

　　　　　　　 　　　　　　　　　　　　　　　键入回车

[1] + Done　　　　　./a.out &


 
该输出与我们所期望的相同：当调用一个信号处理程序时，被捕捉到的信号加到进程的当前信号屏蔽字中。当从信号处理程序返回时，恢复原来的屏蔽字。另外，siglongjmp恢复了由sigsetjmp所保存的信号屏蔽字。
 
如果在Linux中将图10-20程序中的sigsetjmp和siglongjmp分别替换成setjmp和longjmp（在FreeBSD中，则替换成_setjmp和_longjmp），则最后一行输出变成：
 
ending main: SIGUSR1
 

  358 

 
这意味着在调用setjmp之后执行main函数时，其SIGUSR1是阻塞的。这多半不是我们所希望的。
 
10.16　函数sigsuspend
 
上面已经说明，更改进程的信号屏蔽字可以阻塞所选择的信号，或解除对它们的阻塞。使用这种技术可以保护不希望由信号中断的代码临界区。如果希望对一个信号解除阻塞，然后pause以等待以前被阻塞的信号发生，则又将如何呢？假定信号是SIGINT，实现这一点的一种不正确的方法是：
 
sigset_t　　 newmask, oldmask;

sigemptyset(&newmask);

sigaddset(&newmask, SIGINT);

/* block SIGINT and save current signal mask */

if (sigprocmask(SIG_BLOCK, &newmask, &oldmask) < 0)

　　err_sys("SIG_BLOCK error");

/* critical region of code */

/* restore signal mask, which unblocks SIGINT */

if (sigprocmask(SIG_SETMASK, &oldmask, NULL) < 0)

　　err_sys("SIG_SETMASK error");

/* window is open */

pause();　/* wait for signal to occur */

/* continue processing */
 
如果在信号阻塞时，产生了信号，那么该信号的传递就被推迟直到对它解除了阻塞。对应用程序而言，该信号好像发生在解除对SIGINT的阻塞和pause之间（取决于内核如何实现信号）。如果发生了这种情况，或者如果在解除阻塞时刻和pause之间确实发生了信号，那么就会产生问题。因为可能不会再见到该信号，所以从这种意义上讲，在此时间窗口中发生的信号丢失了，这样就使得pause永远阻塞。这是早期的不可靠信号机制的另一个问题。
 
为了纠正此问题，需要在一个原子操作中先恢复信号屏蔽字，然后使进程休眠。这种功能是由sigsuspend函数所提供的。
 
#include <signal.h>



int sigsuspend(const sigset_t *sigmask);



　　　　　　　　　　　　　　　返回值：−1，并将errno设置为EINTR


 
进程的信号屏蔽字设置为由sigmask指向的值。在捕捉到一个信号或发生了一个会终止该进程的信号之前，该进程被挂起。如果捕捉到一个信号而且从该信号处理程序返回，则sigsuspend返回，并且该进程的信号屏蔽字设置为调用sigsuspend之前的值。
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注意，此函数没有成功返回值。如果它返回到调用者，则总是返回−1，并将errno设置为EINTR（表示一个被中断的系统调用）。
 
实例
 
图10-22显示了保护代码临界区，使其不被特定信号中断的正确方法。
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#include "apue.h"



static void　sig_int(int);



int

main(void)

{

　　sigset_t　　newmask, oldmask, waitmask;



　　pr_mask("program start: ");



　　if (signal(SIGINT, sig_int) == SIG_ERR)

　　　　err_sys("signal(SIGINT) error");

　　sigemptyset(&waitmask);

　　sigaddset(&waitmask, SIGUSR1);

　　sigemptyset(&newmask);

　　sigaddset(&newmask, SIGINT);



　　/*

　　 * Block SIGINT and save current signal mask.

　　 */

　　if (sigprocmask(SIG_BLOCK, &newmask, &oldmask) < 0)

　　　　err_sys("SIG_BLOCK error");



　　/*

　　 * Critical region of code.

　　 */

　　pr_mask("in critical region: ");



　　/*

　　 * Pause, allowing all signals except SIGUSR1.

　　 */

　　if (sigsuspend(&waitmask) != -1)

　　　　err_sys("sigsuspend error");



　　pr_mask("after return from sigsuspend: ");



　　/*

　　 * Reset signal mask which unblocks SIGINT.

　　 */

　　if (sigprocmask(SIG_SETMASK, &oldmask, NULL) < 0)

　　　　err_sys("SIG_SETMASK error");



　　/*

　　 * And continue processing ...

　　 */

　　pr_mask("program exit: ");



　　exit(0);

}



static void

sig_int(int signo)

{

　　pr_mask("\nin sig_int: ");

}
 
图10-22　保护临界区不被信号中断
 
注意，当sigsuspend返回时，它将信号屏蔽字设置为调用它之前的值。在本例中，SIGINT信号将被阻塞。因此将信号屏蔽恢复为之前保存的值（oldmask）。
 
运行图10-22中的程序得到下面的输出：
 
$ ./a.out

program start:

in critical region: SIGINT

^C　　　　　　　　　　　　　　　　　　键入中断字符

in sig_int: SIGINT SIGUSR1

after return from sigsuspend: SIGINT

program exit:


 
在调用sigsuspend时，将SIGUSRI信号加到了进程信号屏蔽字中，所以当运行该信号处理程序时，我们得知信号屏蔽字已经改变了。从中可见，在sigsuspend返回时，它将信号屏蔽字恢复为调用它之前的值。
 
实例
 
sigsuspend的另一种应用是等待一个信号处理程序设置一个全局变量。图10-23中的程序用于捕捉中断信号和退出信号，但是希望仅当捕捉到退出信号时，才唤醒主例程。
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#include "apue.h"



volatile sig_atomic_t　quitflag;　　　/* set nonzero by signal handler */



static void

sig_int(int signo)　　/* one signal handler for SIGINT and SIGQUIT */

{

　　if (signo == SIGINT)

　　　　printf("\ninterrupt\n");

　　else if (signo == SIGQUIT)

　　　　quitflag = 1;　/* set flag for main loop */

}



int

main(void)

{

　　sigset_t　newmask, oldmask, zeromask;



　　if (signal(SIGINT, sig_int) == SIG_ERR)

　　　　err_sys("signal(SIGINT) error");

　　if (signal(SIGQUIT, sig_int) == SIG_ERR)

　　　　err_sys("signal(SIGQUIT) error");



　　sigemptyset(&zeromask);

　　sigemptyset(&newmask);

　　sigaddset(&newmask, SIGQUIT);



　　/*

　　 * Block SIGQUIT and save current signal mask.

　　 */

　　if (sigprocmask(SIG_BLOCK, &newmask, &oldmask) < 0)

　　　　err_sys("SIG_BLOCK error");



　　while (quitflag == 0)

　　　　sigsuspend(&zeromask);



　　/*

　　 * SIGQUIT has been caught and is now blocked; do whatever.

　　 */

　　quitflag = 0;



　　/*

　　 * Reset signal mask which unblocks SIGQUIT.

　　 */

　　if (sigprocmask(SIG_SETMASK, &oldmask, NULL) < 0)

　　　　err_sys("SIG_SETMASK error");



　　exit(0);

}
 
图10-23　用sigsuspend等待一个全局变量被设置
 
此程序的样本输出是：
 
$ ./a.out

^C　　　　　　　　　键入中断字符

interrupt

^C　　　　　　　　　再次键入中断字符

interrupt

^C　　　　　　　　　再一次

interrupt

^\ $　　　　　　　 用退出符终止


 
 
 考虑到支持ISO C的非POSIX系统与POSIX系统两者之间的可移植性，在一个信号处理程序中唯一应当做的是为sig_atomic_t类型的变量赋一个值。POSIX.1规定得更多一些，它详细说明了在一个信号处理程序中可以安全地调用的函数列表（见图10-4），但是如果这样来编写代码，则它们可能不会正确地在非POSIX系统上运行。
 

 
实例
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可以用信号实现父、子进程之间的同步，这是信号应用的另一个实例。图10-24给出了8.9节中提到的5个例程的实现，它们是TELLWAIT、TELL_PARENT、TELL_CHILD、WAIT_PARENT和WAIT_CHILD。
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#include "apue.h"



static volatile sig_atomic_t sigflag; /* set nonzero by sig handler */

static sigset_t newmask, oldmask, zeromask;



static void

sig_usr(int signo)　　/* one signal handler for SIGUSR1 and SIGUSR2 */

{

　　sigflag = 1;

}



void

TELL_WAIT(void)

{

　　if (signal(SIGUSR1, sig_usr) == SIG_ERR)

　　　　err_sys("signal(SIGUSR1) error");

　　if (signal(SIGUSR2, sig_usr) == SIG_ERR)

　　　　err_sys("signal(SIGUSR2) error");

　　sigemptyset(&zeromask);

　　sigemptyset(&newmask);

　　sigaddset(&newmask, SIGUSR1);

　　sigaddset(&newmask, SIGUSR2);



　　/* Block SIGUSR1 and SIGUSR2, and save current signal mask */

　　if (sigprocmask(SIG_BLOCK, &newmask, &oldmask) < 0)

　　　　err_sys("SIG_BLOCK error");

}



void

TELL_PARENT(pid_t pid)

{

　　kill(pid, SIGUSR2);　　　　　　/* tell parent we're done */

}



void

WAIT_PARENT(void)

{

　　while (sigflag == 0)

　　　　sigsuspend(&zeromask);　/* and wait for parent */

　　sigflag = 0;



　　/* Reset signal mask to original value */

　　if (sigprocmask(SIG_SETMASK, &oldmask, NULL) < 0)

　　　　err_sys("SIG_SETMASK error");

}



void

TELL_CHILD(pid_t pid)

{

　　kill(pid, SIGUSR1);　　　　　　　/* tell child we're done */

}



void

WAIT_CHILD(void)

{

　　while (sigflag == 0)

　　　　sigsuspend(&zeromask);　/* and wait for child */

　　sigflag = 0;



　　/* Reset signal mask to original value */

　　if (sigprocmask(SIG_SETMASK, &oldmask, NULL) < 0)

　　　　err_sys("SIG_SETMASK error");

}
 
图10-24　父子进程可用来实现同步的例程
 
其中使用了两个用户定义的信号：SIGUSR1由父进程发送给子进程，SIGUSR2由子进程发送给父进程。图15-7显示了使用管道的这5个函数的另一种实现。
 
如果在等待信号发生时希望去休眠，则使用sigsuspend函数是非常适当的（正如在前面两个例子中所示），但是如果在等待信号期间希望调用其他系统函数，那么将会怎样呢？遗憾的是，在单线程环境下对此问题没有妥善的解决方法。如果可以使用多线程，则可专门安排一个线程处理信号（见12.8节中的讨论）。
 
如果不使用线程，那么我们能尽力做到最好的是，当信号发生时，在信号捕捉程序中对一个全局变量置1。例如，若我们捕捉SIGINT和SIGALRM这两种信号，并用signal_intr函数设置这两个信号的处理程序，使得它们中断任一被阻塞的慢速系统调用。当进程阻塞在调用read函数等待慢速设备输入时，很可能发生这两种信号（如果设置闹钟以阻止永远等待输入，那么对于SIGALRM信号，这种情况尤其会发生）。处理这种问题的代码类似于下面所示：
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if (intr_flag)　　　　　/* flag set by our SIGINT handler */

　　handle_intr();

if (alrm_flag)　　　　　/* flag set by our SIGALRM handler */

　　handle_alrm();

/* signals occurring in here are lost */

while (read( ... ) < 0) {

　　if (errno == EINTR) {

　　　　if (alrm_flag)

　　　　　　handle_alrm();

　　　　else if (intr_flag)

　　　　　　handle_intr();

　　} else {

　　　　/* some other error */

　　}

} else if (n == 0) {

　　/* end of file */

} else {

　　/* process input */

}
 
在调用read之前测试各全局标志，如果read返回一个中断的系统调用错误，则再次进行测试。如果在前两个if语句和后随的read调用之间捕捉到两个信号中的任意一个，则问题就发生了。正如代码中的注释所指出的，在此处发生的信号丢失了。调用信号处理程序，它们设置了相应的全局变量，但是read决不会返回（除非某些数据已准备好可读）。
 
我们希望实现下列操作步骤。
 
（1）阻塞SIGINT和SIGALRM。
 
（2）测试两个全局变量以判别是否发生了一个信号，如果已发生则对此进行处理。
 
（3）调用read（或任何其他系统函数）并解除对这两个信号的阻塞，这两个操作应当是一个原子操作。
 
仅当第（3）步是pause操作时，sigsuspend函数才能帮助我们。
 
10.17　函数abort
 
前面已提及abort函数的功能是使程序异常终止。
 
#include <stdlib.h>



void abort(void);



　　　　　　　　　　　　　　　此函数不返回值
 
此函数将SIGABRT信号发送给调用进程（进程不应忽略此信号）。ISO C规定，调用abort将向主机环境递送一个未成功终止的通知，其方法是调用raise(SIGABRT)函数。
 
ISO C要求若捕捉到此信号而且相应信号处理程序返回，abort仍不会返回到其调用者。如果捕捉到此信号，则信号处理程序不能返回的唯一方法是它调用exit、_exit、_Exit、longjmp或siglongjmp（10.15节讨论了longjmp和siglongjmp之间的区别）。POSIX.1也说明abort并不理会进程对此信号的阻塞和忽略。
 
让进程捕捉SIGABRT的意图是：在进程终止之前由其执行所需的清理操作。如果进程并不在信号处理程序中终止自己，POSIX.1声明当信号处理程序返回时，abort终止该进程。
 
ISO C针对此函数的规范将下列问题留由实现决定：是否要冲洗输出流以及是否要删除临时文件（见5.13节）。 POSIX.1的要求则更进一步，它要求如果abort调用终止进程，则它对所有打开标准I/O流的效果应当与进程终止前对每个流调用fclose相同。
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 System V的早期版本中，abort函数产生SIGIOT信号。更进一步，进程忽略此信号或者捕捉它并从信号处理程序返回，这都是可能的，在返回情况下，abort返回到它的调用者。
 
 4.3BSD产生SIGILL信号。在此之前，该函数解除对此信号的阻塞，将其配置恢复为SIG_DFL（终止并创建core文件）。这阻止一个进程忽略或捕捉此信号。
 
 历史上，abort的各种实现在如何处理标准I/O流方面是并不相同的。对于保护性的程序设计以及为提高可移植性，如果希望冲洗标准I/O流，则在调用abort之前要执行这种操作。在err_dump函数中实现了这一点（见附录B）。
 
 因为大多数UNIX系统tmpfile（临时文件）的实现在创建该文件之后立即调用unlink，所以ISO C关于临时文件的警告通常与我们无关。
 

 
实例
 
图10-25中的abort函数是按POSIX.1说明实现的。
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#include <signal.h>

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>



void

abort(void)　　　　　　/* POSIX-style abort() function */

{

　　sigset_t　　　　　　　mask;

　　struct sigaction　　action;



　　/* Caller can't ignore SIGABRT, if so reset to default */

　　sigaction(SIGABRT, NULL, &action);

　　if (action.sa_handler == SIG_IGN) {

　　　　action.sa_handler = SIG_DFL;

　　　　sigaction(SIGABRT, &action, NULL);

　　}

　　if (action.sa_handler == SIG_DFL)

　　　　fflush(NULL);　　　　　　　　/* flush all open stdio streams */



　　/* Caller can't block SIGABRT; make sure it's unblocked */

　　sigfillset(&mask);

　　sigdelset(&mask, SIGABRT);　　/* mask has only SIGABRT turned off */

　　sigprocmask(SIG_SETMASK, &mask, NULL);

　　kill(getpid(), SIGABRT);　　　/* send the signal */



　　/* If we're here, process caught SIGABRT and returned */

　　fflush(NULL);　　　　　　　　　/* flush all open stdio streams */

　　action.sa_handler = SIG_DFL;

　　sigaction(SIGABRT, &action, NULL);　　　　/* reset to default */

　　sigprocmask(SIG_SETMASK, &mask, NULL);　 /* just in case ... */

　　kill(getpid(), SIGABRT);　　　　　　　　　　/* and one more time */

　　exit(1);　　/* this should never be executed ... */

}
 
图10-25　abort的POSIX.1实现
 
首先查看是否将执行默认动作，若是则冲洗所有标准I/O流。这并不等价于对所有打开的流调用fclose（因为只冲洗，并不关闭它们），但是当进程终止时，系统会关闭所有打开的文件。如果进程捕捉此信号并返回，那么因为进程可能产生了更多的输出，所以再一次冲洗所有的流。不进行冲洗处理的唯一条件是如果进程捕捉此信号，然后调用_exit或_Exit。在这种情况下，任何未冲洗的内存中的标准I/O缓存都被丢弃。我们假定捕捉此信号，而且_exit或_Exit的调用者并不想要冲洗缓冲区。
 
回忆10.9节，如果调用kill使其为调用者产生信号，并且如果该信号是不被阻塞的（图10-25中的程序保证做到这一点），则在kill返回前该信号（或某个未决、未阻塞的信号）就被传送给了该进程。我们阻塞除SIGABRT外的所有信号，这样就可知如果对kill的调用返回了，则该进程一定已捕捉到该信号，并且也从该信号处理程序返回。
 
10.18　函数system
 
8.13节已经有了一个system函数的实现，但是该版本并不执行任何信号处理。POSIX.1要求system忽略SIGINT和SIGQUIT，阻塞SIGCHLD。在给出一个正确地处理这些信号的一个版本之前，先说明为什么要考虑信号处理。
 
实例
 
图10-26中的程序使用8.13节中的system版本，用其调用ed(1)编辑器。（ed编辑器很久以来就是UNIX的组成部分。在这里使用它的原因是：它是捕捉中断和退出信号的交互式程序。若从shell调用ed，并键入中断字符，则它捕捉中断信号并打印问号。ed程序对退出信号的处理方式设置为忽略。）
 
图10-26中的程序用于捕捉SIGINT和SIGCHLD信号。若调用它则可得：
 
$ ./a.out

a　　　　　　　　　　　　　　将正文追加至编辑器缓冲区

Here is one line of text

.　　　　　　　　　　　　　　行首的点停止追加方式

1,$p　　　　　　　　　　　　打印缓冲区中的第一行至最后一行，以便观察其内容

Here is one line of text

w temp.foo　　　　  　　　将缓冲区写至一文件

25　　　　　　　　　　 　　 编辑器称写了25个字节

q　 　　　　　　　　 　 　　离开编辑器

caught SIGCHLD
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当编辑器终止时，系统向父进程（a.out进程）发送SIGCHLD信号。父进程捕捉它，执行其处理程序sig_chid，然后从信号处理程序返回。但是若父进程正捕捉SIGCHLD信号（因为它创建了子进程，所以应当这样做以便了解它的子进程在何时终止），那么正在执行system函数时，应当阻塞对父进程递送SIGCHLD信号。实际上，这就是POSIX.1所说明的。否则，当system创建的子进程结束时，system的调用者可能错误地认为，它自己的一个子进程结束了。于是，调用者将会调用一种wait函数以获得子进程的终止状态，这样就阻止了system函数获得子进程的终止状态，并将其作为它的返回值。
 
#include "apue.h"



static void

sig_int(int signo)

{

　　printf("caught SIGINT\n");

}



static void

sig_chld(int signo)

{

　　printf("caught SIGCHLD\n");

}



int

main(void)

{

　　if (signal(SIGINT, sig_int) == SIG_ERR)

　　　　err_sys("signal(SIGINT) error");

　　if (signal(SIGCHLD, sig_chld) == SIG_ERR)

　　　　err_sys("signal(SIGCHLD) error");

　　if (system("/bin/ed") < 0)

　　　　err_sys("system() error");

　　exit(0);

}
 
图10-26　用syetem调用ed编辑器
 
如果再次执行该程序，在这次运行时将一个中断信号传送给编辑器，则可得：
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$ ./a.out

a　　　　　 　　　　　将正文追加至编辑器缓冲区

hello, world

.　　　　　 　　　　　行首的点停止追加方式

1,$p　　   　　　　　打印缓冲区中的第一行至最后一行，以便观察其内容

hello, world

w temp.foo　　　　　将缓冲区写至一文件

13　　　　　　　   　编辑器称写了13个字节

^C　　　　　　　　　　键入中断符

?　　　　　　　　　　 编辑器捕捉信号，打印问号

caught SIGINT　　  父进程执行同一操作

q　　　　　　　　　　 离开编辑器

caught SIGCHLD


 
回忆9.6节可知，键入中断字符可使中断信号传送给前台进程组中的所有进程。图10-27展示了编辑器正在运行时的各个进程的关系。
 
[image: 1027]
 
图10-27　图10-26程序运行时的前台和后台进程组
 
在这一实例中，SIGINT被送给3个前台进程（shell进程忽略此信号）。从输出中可见，a.out进程和ed进程捕捉该信号。但是，当用system运行另一个程序时，不应使父、子进程两者都捕捉终端产生的两个信号：中断和退出。这两个信号只应发送给正在运行的程序：子进程。因为由system执行的命令可能是交互式命令（如本例中的ed），以及因为system的调用者在程序执行时放弃了控制，等待该执行程序的结束，所以system的调用者就不应接收这两个终端产生的信号。这就是为什么POSIX.1规定system的调用者在等待命令完成时应当忽略这两个信号的原因。
 
实例
 
图10-28中的程序是system函数的另一个实现，它进行了所要求的信号处理。
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#include　　<sys/wait.h>

#include　　<errno.h>

#include　　<signal.h>

#include　　<unistd.h>



int

system(const char *cmdstring)　　　　/* with appropriate signal handling */

{

　　pid_t　　　　　　　   pid;

　　int　　　　　　　　　　status;

　　struct sigaction　　ignore, saveintr, savequit;

　　sigset_t　　　　　　　chldmask, savemask;



　　if (cmdstring == NULL)

　　　 　return(1);　　　　　　　　　　　/* always a command processor with UNIX */



　　ignore.sa_handler = SIG_IGN;　　/* ignore SIGINT and SIGQUIT */

　　sigemptyset(&ignore.sa_mask);

　　ignore.sa_flags = 0;

　　if (sigaction(SIGINT, &ignore, &saveintr) < 0)

　　　 　return(-1);

　　if (sigaction(SIGQUIT, &ignore, &savequit) < 0)

　　　 　return(-1);

　　sigemptyset(&chldmask);　　　　/* now block SIGCHLD */

　　sigaddset(&chldmask, SIGCHLD);

　　if (sigprocmask(SIG_BLOCK, &chldmask, &savemask) < 0)

　　　　 return(-1);



　　if ((pid = fork()) < 0) {

　　　　 status = -1;　　/* probably out of processes */

　　} else if (pid == 0) {　　　　　　/* child */

　　　　/* restore previous signal actions & reset signal mask */

　　　　sigaction(SIGINT, &saveintr, NULL);

　　　　sigaction(SIGQUIT, &savequit, NULL);

　　　　sigprocmask(SIG_SETMASK, &savemask, NULL);



　　　　execl("/bin/sh", "sh", "-c", cmdstring, (char *)0);

　　　　_exit(127);　　　　　　　　　　/* exec error */

　　} else {　　　　　　　　　　　　　 /* parent */

　　　　while (waitpid(pid, &status, 0) < 0)

　　　　　　if (errno != EINTR) {

　　　　　　　　status = -1; /* error other than EINTR from waitpid() */

　　　　　　　　break;

　　　　　　}

　　}



　　/* restore previous signal actions & reset signal mask */

　　if (sigaction(SIGINT, &saveintr, NULL) < 0)

　　 　　return(-1);

　　if (sigaction(SIGQUIT, &savequit, NULL) < 0)

　　 　　return(-1);

　　if (sigprocmask(SIG_SETMASK, &savemask, NULL) < 0)

　　 　　return(-1);



　　return(status);

}
 
图10-28　system函数的POSIX.1正确实现
 
如果将图10-26中的程序与system函数的这一实现相链接，那么所产生的二进制代码与上一个有缺陷的程序相比较，存在如下差别。
 
（1）当我们键入中断字符或退出字符时，不向调用进程发送信号。
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（2）当ed命令终止时，不向调用进程发送SIGCHLD信号。作为替代，在程序末尾的sigprocmask调用对SIGCHLD信号解除阻塞之前，SIGCHLD信号一直被阻塞。而对sigprocmask函数的这一次调用是在system函数调用waitpid获取子进程的终止状态之后。
 
 
 POSIX.1说明，在SIGCHLD未决期间，如若wait或waitpid返回了子进程的状态，那么SIGCHLD信号不应递送给该父进程，除非另一个子进程的状态也可用。FreeBSD 8.0、Mac OS X 10.6.8和Solaris 10都实现了这种语义，而Linux 3.2.0没有实现这种语义，在system函数调用了waitpid后，SIGCHLD保持为未决；当解除了对此信号的阻塞后，它被递送至调用者。如果我们在图10-26的sig_chld函数中调用wait，Linux系统将返回−1，并将errno设置为ECHILD，因为system函数已取到子进程的终止状态。
 

 
很多较早的书中使用下列程序段，它忽略中断和退出信号：
 
if ( (pid = fork()) < 0){

　　 err_sys("fork error");

}else if (pid == 0) {　 

　　 /* child */

　　 execl(...)；

　　 _exit(127);

}



/* parent */

old_intr = signal(SIGINT, SIG_IGN);

old_quit = signal(SIGQUIT, SIG_IGN);

waitpid(pid, &status, 0)

signal(SIGINT, old_intr);

signal(SIGQUIT, old_quit);
 
这段代码的问题是：在fork之后不能保证父进程还是子进程先运行。如果子进程先运行，父进程在一段时间后再运行，那么在父进程将中断信号的处理更改为忽略之前，就可能产生这种信号。由于这种原因，图10-28中在fork之前就改变对该信号的配置。
 
注意，子进程在调用execl之前要先恢复这两个信号的处理。如同8.10节中所说明的一样，这就允许在调用者配置的基础上，execl可将它们的配置更改为默认值。
 
system的返回值
 
注意system的返回值，它是shell的终止状态，但shell的终止状态并不总是执行命令字符串进程的终止状态。图8-23中有一些例子，其结果正是我们所期望的。如果执行一条如date那样的简单命令，其终止状态是0。执行shell命令exit 44，则得终止状态44。在信号方面又如何呢？
 
运行图8-24程序，并向正在执行的命令发送一些信号：
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$ tsys "sleep 30"

^Cnormal termination, exit status = 130　　　键入中断符

$ tsys "sleep 30"

^\sh: 946 Quit　　　　　　　　　　　　　　　　　　键入退出符

normal termination, exit status = 131


 
当用中断信号终止sleep时，pr_exit函数（见图8-5）认为它正常终止。当用退出符杀死sleep进程时，会发生同样的事情。终止状态130、131又是怎样得到的呢？原来Bourne shell有一个在其文档中没有说清楚的特性，其终止状态是128加上一个信号编号，该信号终止了正在执行的命令。用交互方式使用shell可以看到这一点。
 
$ sh　　　　  　　　　　　　　　　　 确保运行Bourne shell

$ sh -c "sleep 30"

^C　　　  　　　　　　　　　　　　　　键入中断符

$ echo $?　　　　　　　　　　　　　　打印最后一条命令的终止状态

130

$ sh -c "sleep 30"

^\sh: 962 Quit - core dumped    键入退出符

$ echo $?　　　　　　　　　　　　　　打印最后一条命令的终止状态

131

$ exit　  　　　　　　　　　　　　　 离开Bourne shell


 
在所使用的系统中，SIGINT的值为2，SIGQUIT的值为3，于是给出shell终止状态130、131。
 
再试一个类似的例子，这一次将一个信号直接送给shell，然后观察system返回什么：
 
$ tsys "sleep 30" &　　　　　　 　这一次在后台启动它

9257

$ ps -f　　　　　　　　　　　　　　　查看进程ID

　　　UID　 PID　 PPID　 TTY　　TIME CMD

　　　sar　9260　　949　pts/5　 0:00 ps -f

　　　sar　9258　 9257　pts/5　 0:00 sh -c sleep 30

　　　sar　 949　　947　pts/5　 0:01 /bin/sh

　　　sar　9257　　949　pts/5　 0:00 tsys sleep 30

　　　sar　9259　 9258　pts/5　 0:00 sleep 30

$ kill -KILL 9258　　　　　　　　　杀死shell自身

abnormal termination, signal number = 9


 
从中可见，仅当shell本身异常终止时，system的返回值才报告一个异常终止。
 
 
 其他的shell在处理终端产生的信号（如SIGINT和SIGQUIT）时表现出来的行为各不相同。例如在bash和dash中，键入中断或退出符会导致带有对应信号编号的表示异常终止的退出状态。但是，如果发现正在执行sleep的进程并直接给它发送信号，这样信号只会到达单个进程而不是整个前台进程组。这些shell与Bourne shell类似，以正常终止状态128加上信号编号退出。
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在编写使用system函数的程序时，一定要正确地解释返回值。如果直接调用fork、exec和wait，则终止状态与调用system是不同的。
 
10.19　函数sleep、nanosleep和clock_nanosleep
 
在本书的很多例子中都已使用了sheep函数，在图10-7程序和图10-8程序中有两个sleep的实现，但它们都是有缺陷的。
 
#include <unistd.h>



unsigned int sleep(unsigned int seconds);



　　　　　　　　　　　　　　　返回值：0或未休眠完的秒数


 
此函数使调用进程被挂起直到满足下面两个条件之一。
 
（1）已经过了seconds所指定的墙上时钟时间。
 
（2）调用进程捕捉到一个信号并从信号处理程序返回。
 
如同alarm信号一样，由于其他系统活动，实际返回时间比所要求的会迟一些。
 
在第1种情形，返回值是0。当由于捕捉到某个信号sleep提早返回时（第2种情形），返回值是未休眠完的秒数（所要求的时间减去实际休眠时间）。
 
尽管sleep可以用alarm函数（见10.10节）实现，但这并不是必需的。如果使用alarm，则这两个函数之间可能相互影响。POSIX.1标准对这些相互影响并未做任何说明。例如，若先调用alarm(10)，过了3秒后又调用sleep(5)，那么将如何呢？sleep将在5秒后返回（假定在这段时间内没有捕捉到另一个信号），但是否在2秒后又产生另一个SIGALRM信号呢？此细节与具体实现有关。
 
 
 FreeBSD 8.0、Linux 3.2.0、Mac OS X 10.6.8和Solaris 10用nanosleep函数实现sleep，使sleep具体实现与信号和闹钟定时器相互独立。考虑到可移植性，不应对sleep的实现进行任何假定，但是如果混合调用sleep和其他与时间有关的函数，则需了解它们之间可能产生的交互。
 

 
实例
 
图10-29给出的是一个POSIX.1 sleep函数的实现。此函数是图10-7程序的修改版，它可靠地处理信号，避免了早期实现中的竞争条件，但是仍未处理与以前设置的闹钟的交互作用（正如前面提到的，POSIX.1并未显式地对这些交互进行定义）。
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#include "apue.h"



static void

sig_alrm(int signo)

{

　　/* nothing to do, just returning wakes up sigsuspend() */

}



unsigned int

sleep(unsigned int seconds)

{

　　struct sigaction   newact, oldact;

　　sigset_t　　　  　  newmask, oldmask, suspmask;

　　unsigned int  　   unslept;



　　/* set our handler, save previous information */

　　newact.sa_handler = sig_alrm;

　　sigemptyset(&newact.sa_mask);

　　newact.sa_flags = 0;

　　sigaction(SIGALRM, &newact, &oldact);



　　/* block SIGALRM and save current signal mask */

　　sigemptyset(&newmask);

　　sigaddset(&newmask, SIGALRM);

　　sigprocmask(SIG_BLOCK, &newmask, &oldmask);



　　alarm(seconds);

　　suspmask = oldmask;



　　/* make sure SIGALRM isn't blocked */

　　sigdelset(&suspmask, SIGALRM);



　　/* wait for any signal to be caught */

　　sigsuspend(&suspmask);



　　/* some signal has been caught, SIGALRM is now blocked */



　　unslept = alarm(0);



　　/* reset previous action */

　　sigaction(SIGALRM, &oldact, NULL);



　　/* reset signal mask, which unblocks SIGALRM */

　　sigprocmask(SIG_SETMASK, &oldmask, NULL);

　　return(unslept);

}
 
图10-29　sleep的可靠实现
 
与图10-7相比，为了可靠地实现sleep，图10-29的代码比较长。程序中没有使用任何形式的非局部转移（如图10-8中为了避免在alarm和pause之间的竞争条件所做的那样），所以对处理SIGALRM信号期间可能执行的其他信号处理程序没有任何影响。
 
nanosleep函数与sleep函数类似，但提供了纳秒级的精度。
 
#include <time.h>



int nanosleep(const struct timespec *reqtp, struct timespec *remtp);



　　　　　　　　　　　　　　　返回值：若休眠到要求的时间，返回0；若出错，返回−1
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这个函数挂起调用进程，直到要求的时间已经超时或者某个信号中断了该函数。reqtp参数用秒和纳秒指定了需要休眠的时间长度。如果某个信号中断了休眠间隔，进程并没有终止，remtp参数指向的timespec结构就会被设置为未休眠完的时间长度。如果对未休眠完的时间并不感兴趣，可以把该参数置为NULL。
 
如果系统并不支持纳秒这一精度，要求的时间就会取整。因为nanosleep函数并不涉及产生任何信号，所以不需要担心与其他函数的交互。
 
 
 nanosleep函数过去属于Single UNIX Specification的定时器选项，现已被移至SUSv4的基础部分。
 

 
随着多个系统时钟的引入（回忆6.10节），需要使用相对于特定时钟的延迟时间来挂起调用线程。clock_nanosleep函数提供了这种功能。
 
#include <time.h>



int clock_nanosleep(clockid_t clock_id, int flags, 

　　　　　　　　　　　　const struct timespec *reqtp, struct timespec *remtp);



　　　　　　　　　　　　　　　返回值：若休眠要求的时间，返回0；若出错，返回错误码


 
clock_id参数指定了计算延迟时间基于的时钟。时钟标识符列于图6-8中。flags参数用于控制延迟是相对的还是绝对的。flags为0时表示休眠时间是相对的（例如，希望休眠的时间长度），如果flags值设置为TIMER_ABSTIME，表示休眠时间是绝对的（例如，希望休眠到时钟到达某个特定的时间）。
 
其他的参数reqtp和remtp，与nanosleep函数中的相同。但是，使用绝对时间时，remtp参数未使用，因为没有必要。在时钟到达指定的绝对时间值以前，可以为其他的clock_nanosleep调用复用reqtp参数相同的值。
 
注意，除了出错返回，调用
 
clock_nanosleep(CLOCK_REALTIME, 0, reqtp, remtp);
 
和调用
 
nanosleep(reqtp, remtp);
 
的效果是相同的。使用相对休眠的问题是有些应用对休眠长度有精度要求，相对休眠时间会导致实际休眠时间比要求的长。例如，某个应用程序希望按固定的时间间隔执行任务，就必须获取当前时间，计算下次执行任务的时间，然后调用nanosleep。在获取当前时间和调用nanosleep之间，处理器调度和抢占可能会导致相对休眠时间超过实际需要的时间间隔。即便分时进程调度程序对休眠时间结束后是否会马上执行用户任务并没有给出保证，使用绝对时间还是改善了精度。
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 在Single UNIX Specification的早期版本中，clock_nanosleep函数属于时钟选择选项，在SUSv4中，该函数已移至基础部分。
 

 
10.20　函数sigqueue
 
在10.8节中，我们介绍了大部分UNIX系统不对信号排队。在POSIX.1的实时扩展中，有些系统开始增加对信号排队的支持。在SUSv4中，排队信号功能已从实时扩展部分移至基础说明部分。
 
通常一个信号带有一个位信息：信号本身。除了对信号排队以外，这些扩展允许应用程序在递交信号时传递更多的信息（回忆10.14节）。这些信息嵌入在siginfo结构中。除了系统提供的信息，应用程序还可以向信号处理程序传递整数或者指向包含更多信息的缓冲区指针。
 
使用排队信号必须做以下几个操作。
 
（1）使用sigaction函数安装信号处理程序时指定SA_SIGINFO标志。如果没有给出这个标志，信号会延迟，但信号是否进入队列要取决于具体实现。
 
（2）在sigaction结构的sa_sigaction成员中（而不是通常的sa_handler字段）提供信号处理程序。实现可能允许用户使用sa_handler字段，但不能获取sigqueue函数发送出来的额外信息。
 
（3）使用sigqueue函数发送信号。
 
#include <signal.h>



int sigqueue(pid_t pid, int signo, const union sigval value);



　　　　　　　　　　　　　　　返回值：若成功，返回0；若出错，返回−1


 
sigqueue函数只能把信号发送给单个进程，可以使用value参数向信号处理程序传递整数和指针值，除此之外，sigqueue函数与kill函数类似。
 
信号不能被无限排队。回忆图2-9和图2-11中的SIGQUEUE_MAX限制。到达相应的限制以后， sigqueue就会失败，将errno设为EAGAIN。
 
随着实时信号的增强，引入了用于应用程序的独立信号集。这些信号的编号在SIGRTMIN～SIGRTMAX之间，包括这两个限制值。注意，这些信号的默认行为是终止进程。
 
图10-30总结了排队信号在本书不同的实现中的行为上的差异。
 
 
 Mac OS X 10.6.8并不支持sigqueue或者实时信号。在Solaris 10中，sigqueue在实时库librt中。
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图10-30　不同平台上排队信号的行为
 
10.21　作业控制信号
 
在图10-1所示的信号中，POSIX.1认为有以下6个与作业控制有关。
 
SIGCHLD　子进程已停止或终止。
 
SIGCONT　如果进程已停止，则使其继续运行。
 
SIGSTOP　停止信号（不能被捕捉或忽略）。
 
SIGTSTP　交互式停止信号。
 
SIGTTIN　后台进程组成员读控制终端。
 
SIGTTOU　后台进程组成员写控制终端。
 
除SIGCHLD以外，大多数应用程序并不处理这些信号，交互式shell则通常会处理这些信号的所有工作。当键入挂起字符（通常是Ctrl+Z）时，SIGTSTP被送至前台进程组的所有进程。当我们通知shell在前台或后台恢复运行一个作业时，shell向该作业中的所有进程发送SIGCONT信号。与此类似，如果向一个进程递送了SIGTTIN或SIGTTOU信号，则根据系统默认的方式，停止此进程，作业控制shell了解到这一点后就通知我们。
 
一个例外是管理终端的进程，例如，vi(1)编辑器。当用户要挂起它时，它需要能了解到这一点，这样就能将终端状态恢复到vi启动时的情况。另外，当在前台恢复它时，它需要将终端状态设置回它所希望的状态，并需要重新绘制终端屏幕。可以在下面的例子中观察到与vi类似的程序是如何处理这种情况的。
 
在作业控制信号间有某些交互。当对一个进程产生4种停止信号（SIGTSTP、SIGSTOP、SIGTTIN或SIGTTOU）中的任意一种时，对该进程的任一未决SIGCONT信号就被丢弃。与此类似，当对一个进程产生SIGCONT信号时，对同一进程的任一未决停止信号被丢弃。
 
注意，如果进程是停止的，则SIGCONT的默认动作是继续该进程；否则忽略此信号。通常，对该信号无需做任何事情。当对一个停止的进程产生一个SIGCONT信号时，该进程就继续，即使该信号是被阻塞或忽略的也是如此。
 
实例
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图10-31中的程序演示了当一个程序处理作业控制时通常所使用的规范代码序列。该程序只是将其标准输入复制到其标准输出，而在信号处理程序中以注释形式给出了管理屏幕的程序所执行的典型操作。
 
#include "apue.h"



#define　BUFFSIZE　1024



static void

sig_tstp(int signo)　　/* signal handler for SIGTSTP */

{

　　sigset_t　mask;



　　/* ... move cursor to lower left corner, reset tty mode ... */



　　/*

　　 * Unblock SIGTSTP, since it's blocked while we're handling it.

　　 */

　　sigemptyset(&mask);

　　sigaddset(&mask, SIGTSTP);

　　sigprocmask(SIG_UNBLOCK, &mask, NULL);



　　signal(SIGTSTP, SIG_DFL);　/* reset disposition to default */



　　kill(getpid(), SIGTSTP);　/* and send the signal to ourself */



　　/* we won't return from the kill until we're continued */



　　signal(SIGTSTP, sig_tstp);　/* reestablish signal handler */



　　/* ... reset tty mode, redraw screen ... */

}



int

main(void)

{

　　int　　　n;

　　char　　buf[BUFFSIZE];



　　/*

　　 * Only catch SIGTSTP if we're running with a job-control shell.

　　 */

　　if (signal(SIGTSTP, SIG_IGN) == SIG_DFL)

　　　　signal(SIGTSTP, sig_tstp);



　　while ((n = read(STDIN_FILENO, buf, BUFFSIZE)) > 0)

　　　　if (write(STDOUT_FILENO, buf, n) != n)

　　　　　　err_sys("write error");



　　if (n < 0)

　　　　err_sys("read error");



　　exit(0);

}
 
图10-31　如何处理SIGTSTP
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当图10-31中的程序启动时，仅当SIGTSTP信号的配置是SIG_DFL，它才安排捕捉该信号。其理由是：当此程序由不支持作业控制的shell（如/bin/sh）启动时，此信号的配置应当设置为SIG_IGN。实际上，shell并不显式地忽略此信号，而是由init将这3个作业控制信号SIGTSTP、SIGTTIN和SIGTTOU设置为SIG_IGN。然后，这种配置由所有登录shell继承。只有作业控制shell才应将这3个信号重新设置为SIG_DFL。
 
当键入挂起字符时，进程接到SIGTSTP信号，然后调用该信号处理程序。此时，应当进行与终端有关的处理：将光标移到左下角、恢复终端工作方式等。在将SIGTSTP重置为默认值（停止该进程），并且解除了对此信号的阻塞之后，进程向自己发送同一信号SIGTSTP。因为正在处理SIGTSTP信号，而在捕捉该信号期间系统自动地阻塞它，所以应当解除对此信号的阻塞。到达这一点时，系统停止该进程。仅当某个进程（通常是正响应一个交互式fg命令的作业控制shell）向该进程发送一个SIGCONT信号时，该进程才继续。我们不捕捉SIGCONT信号。该信号的默认配置是继续运行停止的进程，当此发生时，此程序如同从kill函数返回一样继续运行。当此程序继续运行时，将SIGTSTP信号重置为捕捉，并且做我们所希望做的终端处理（如重新绘制屏幕）。
 
10.22　信号名和编号
 
本节介绍如何在信号编号和信号名之间进行映射。某些系统提供数组
 
extern char *sys_siglist[];
 
数组下标是信号编号，数组中的元素是指向信号名符串的指针。
 
 
 FreeBSD 8.0、Linux 3.2.0和Mac OS X 10.6.8都提供这种信号名数组。Solaris 10也提供信号名数组，但该数组名是_sys_siglist。
 

 
可以使用psignal函数可移植地打印与信号编号对应的字符串。
 
#include <signal.h>



void psignal(int signo, const char *msg);


 
字符串msg（通常是程序名）输出到标准错误文件，后面跟随一个冒号和一个空格，再后面对该信号的说明，最后是一个换行符。如果msg为NULL，只有信号说明部分输出到标准错误文件，该函数类似于perror（1.7节）。
 
如果在sigaction信号处理程序中有siginfo结构，可以使用psiginfo函数打印信号信息。
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#include <signal.h>



void psiginfo(const siginfo_t *info, const char *msg);


 
它的工作方式与psignal函数类似。虽然这个函数访问除信号编号以外的更多信息，但不同的平台输出的这些额外信息可能有所不同。
 
如果只需要信号的字符描述部分，也不需要把它写到标准错误文件中（如可以写到日志文件中），可以使用strsignal函数，它类似于strerror（另见1.7节）。
 
#include <string.h>



char *strsignal(int signo);



　　　　　　　　　　　　　　　返回值：指向描述该信号的字符串的指针


 
给出一个信号编号，strsignal将返回描述该信号的字符串。应用程序可用该字符串打印关于接收到信号的出错消息。
 
 
 本书讨论的所有平台都提供psignal和strsignal函数，但相互之间有些差别。在Solaris 10中，若信号编号无效，strsignal将返回一个空指针，而FreeBSD 8.0、Linux 3.2.0和Mac OS X 10.6.8则返回一个字符串，它指出信号编号是不可识别的。
 
 只有Linux 3.2.0和Solaris 10支持psiginfo函数。
 

 
Solaris提供一对函数，一个函数将信号编号映射为信号名，另一个则反之。
 
#include <signal.h>



int sig2str(int signo, char *str);



int str2sig(const char *str, int *signop);



　　　　　　　　　　　　　　　两个函数的返回值：若成功，返回0；若出错，返回−1


 
在编写交互式程序，其中需接收和打印信号名和信号编号时，这两个函数是有用的。
 
sig2str函数将给定信号编号翻译成字符串，并将结果存放在str指向的存储区。调用者必须保证该存储区足够大，可以保存最长字符串，包括终止null字节。Solaris在<signal.h>中包含了常量SIG2STR_MAX，它定义了最大字符串长度。该字符串包括不带“SIG”前缀的信号名。例如，SIGKILL被翻译为字符串“KILL”，并存放在str指向的存储缓冲区中。
 
str2sig函数将给出的信号名翻译成信号编号。该信号编号存放在signop指向的整型中。名字要么是不带“SIG”前缀的信号名，要么是表示十进制信号编号的字符串（如“9”）。
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注意，sig2str和str2sig与常用的函数做法不同，当它们失败时，并不设置errno。
 
10.23　小结
 
信号用于大多数复杂的应用程序中。理解进行信号处理的原因和方式对于高级UNIX编程极其重要。本章对UNIX信号进行了详细而且比较深入的介绍。首先说明了早期信号实现的问题以及它们是如何显现出来的。然后介绍了POSIX.1的可靠信号概念以及所有相关的函数。在此基础上提供了abort、 system和sleep函数的POSIX.1实现。最后以观察分析作业控制信号以及信号名和信号编号之间的转换结束。
 
习题
 
10.1　删除图10-2程序中的for(;;)语句，结果会怎样？为什么？
 
10.2　实现10.22节中说明的sig2str函数。
 
10.3　画出运行图10-9程序时的栈帧情况。
 
10.4　图10-11程序中利用setjmp和longjmp设置I/O操作的超时，下面的代码也常见用于此种目的：
 
signal(SIGALRM, sig_alrm);

alarm(60);

if (setjmp(env_alrm) != 0) {

　　 /* handle timeout */

　　 ...

}

...
 
这段代码有什么错误？
 
10.5　仅使用一个定时器（alarm或较高精度的setitimer），构造一组函数，使得进程在该单一定时器基础上可以设置任一数量的定时器。
 
10.6　编写一段程序测试图10-24中父进程和子进程的同步函数，要求进程创建一个文件并向文件写一个整数0，然后，进程调用fork，接着，父进程和子进程交替增加文件中的计数器值，每次计数器值增加1时，打印是哪一个进程（子进程或父进程）进行了该增加1操作。
 
10.7　在图10-25中，若调用者捕捉了SIGABRT并从该信号处理程序中返回，为什么不是仅仅调用_exit，而要恢复其默认设置并再次调用kill？
 
10.8　为什么在siginfo结构（见10.14节）的si_uid字段中包括实际用户ID而非有效用户ID？
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10.9　重写图10-14中的函数，要求它处理图10-1中的所有信号，每次循环处理当前信号屏蔽字中的一个信号（并不是对每一个可能的信号都循环一次）。
 
10.10　编写一段程序，要求在一个无限循环中调用sleep(60)函数，每5分钟（即5次循环）取当前的日期和时间，并打印tm_sec字段。将程序执行一晚上，请解释其结果。有些程序，如cron守护进程，每分钟运行一次，它是如何处理这类工作的？
 
10.11　修改图3-5的程序，要求：（a）将BUFFSIZE改为100；（b）用signal_intr函数捕捉SIGXFSZ信号量并打印消息，然后从信号处理程序中返回；（c）如果没有写满请求的字节数，则打印write的返回值。将软资源限制RLIMIT_FSIZE（见7.11节）更改为1 024字节（在shell中设置软资源限制，如果不行就直接在程序中调用setrlimit），然后复制一个大于1 024字节的文件，在各种不同的系统上运行新程序，其结果如何？为什么？
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10.12　编写一段调用fwrite的程序，它使用一个较大的缓冲区（约1 GB），调用fwrite前调用alarm使得1 s以后产生信号。在信号处理程序中打印捕捉到的信号，然后返回。fwrite可以完成吗？结果如何？
 


第11章　线程
 
11.1　引言
 
在前面的章节中讨论了进程，学习了UNIX进程的环境、进程间的关系以及控制进程的不同方式。可以看到在相关的进程间可以存在一定的共享。
 
本章将进一步深入理解进程，了解如何使用多个控制线程（或者简单地说就是线程）在单进程环境中执行多个任务。一个进程中的所有线程都可以访问该进程的组成部件，如文件描述符和内存。
 
不管在什么情况下，只要单个资源需要在多个用户间共享，就必须处理一致性问题。本章的最后将讨论目前可用的同步机制，防止多个线程在共享资源时出现不一致的问题。
 
11.2　线程概念
 
典型的UNIX进程可以看成只有一个控制线程：一个进程在某一时刻只能做一件事情。有了多个控制线程以后，在程序设计时就可以把进程设计成在某一时刻能够做不止一件事，每个线程处理各自独立的任务。这种方法有很多好处。
 
 
 	通过为每种事件类型分配单独的处理线程，可以简化处理异步事件的代码。每个线程在进行事件处理时可以采用同步编程模式，同步编程模式要比异步编程模式简单得多。
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 	多个进程必须使用操作系统提供的复杂机制才能实现内存和文件描述符的共享，我们将在第15章和第17章中学习这方面的内容。而多个线程自动地可以访问相同的存储地址空间和文件描述符。
 
 	有些问题可以分解从而提高整个程序的吞吐量。在只有一个控制线程的情况下，一个单线程进程要完成多个任务，只需要把这些任务串行化。但有多个控制线程时，相互独立的任务的处理就可以交叉进行，此时只需要为每个任务分配一个单独的线程。当然只有在两个任务的处理过程互不依赖的情况下，两个任务才可以交叉执行。
 
 	交互的程序同样可以通过使用多线程来改善响应时间，多线程可以把程序中处理用户输入输出的部分与其他部分分开。
 

 
有些人把多线程的程序设计与多处理器或多核系统联系起来。但是即使程序运行在单处理器上，也能得到多线程编程模型的好处。处理器的数量并不影响程序结构，所以不管处理器的个数多少，程序都可以通过使用线程得以简化。而且，即使多线程程序在串行化任务时不得不阻塞，由于某些线程在阻塞的时候还有另外一些线程可以运行，所以多线程程序在单处理器上运行还是可以改善响应时间和吞吐量。
 
每个线程都包含有表示执行环境所必需的信息，其中包括进程中标识线程的线程ID、一组寄存器值、栈、调度优先级和策略、信号屏蔽字、errno变量（见1.7节）以及线程私有数据（见12.6节）。一个进程的所有信息对该进程的所有线程都是共享的，包括可执行程序的代码、程序的全局内存和堆内存、栈以及文件描述符。
 
我们将要讨论的线程接口来自POSIX.1-2001。线程接口也称为“pthread”或“POSIX线程”，原来在POSIX.1-2001中是一个可选功能，但后来SUSv4把它们放入了基本功能。POSIX线程的功能测试宏是_POSIX_THREADS。应用程序可以把这个宏用于#ifdef测试，从而在编译时确定是否支持线程；也可以把_SC_THREADS常数用于调用sysconf函数，进而在运行时确定是否支持线程。遵循SUSv4的系统定义符号_POSIX_THREADS的值为200809L。
 
11.3　线程标识
 
就像每个进程有一个进程ID一样，每个线程也有一个线程ID。进程ID在整个系统中是唯一的，但线程ID不同，线程ID只有在它所属的进程上下文中才有意义。
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回忆一下进程ID，它是用pid_t数据类型来表示的，是一个非负整数。线程ID是用pthread_t数据类型来表示的，实现的时候可以用一个结构来代表pthread_t数据类型，所以可移植的操作系统实现不能把它作为整数处理。因此必须使用一个函数来对两个线程ID进行比较。
 
#include <pthread.h>



int pthread_equal(pthread_t tid1, pthread_t tid2);



　　　　　　　　　　　　　　　返回值：若相等，返回非0数值；否则，返回0


 
 
 Linux 3.2.0使用无符号长整型表示pthread_t数据类型。Solaris 10把pthread_t数据类型表示为无符号整型。FreeBSD 8.0和Mac OS X 10.6.8用一个指向pthread结构的指针来表示pthread_t数据类型。
 

 
用结构表示pthread_t数据类型的后果是不能用一种可移植的方式打印该数据类型的值。在程序调试过程中打印线程ID有时是非常有用的，而在其他情况下通常不需要打印线程ID。最坏的情况是，有可能出现不可移植的调试代码，当然这也算不上是很大的局限性。
 
线程可以通过调用pthread_self函数获得自身的线程ID。
 
#include <pthread.h>



pthread_t pthread_self(void);



　　　　　　　　　　　　　　　返回值：调用线程的线程ID
 
当线程需要识别以线程ID作为标识的数据结构时，pthread_self函数可以与pthread_equal函数一起使用。例如，主线程可能把工作任务放在一个队列中，用线程ID来控制每个工作线程处理哪些作业。如图11-1所示，主线程把新的作业放到一个工作队列中，由3个工作线程组成的线程池从队列中移出作业。主线程不允许每个线程任意处理从队列顶端取出的作业，而是由主线程控制作业的分配，主线程会在每个待处理作业的结构中放置处理该作业的线程ID，每个工作线程只能移出标有自己线程ID的作业。
 
[image: 1101]
 
图11-1　工作队列实例
 
11.4　线程创建
 
在传统UNIX进程模型中，每个进程只有一个控制线程。从概念上讲，这与基于线程的模型中每个进程只包含一个线程是相同的。在POSIX线程（pthread）的情况下，程序开始运行时，它也是以单进程中的单个控制线程启动的。在创建多个控制线程以前，程序的行为与传统的进程并没有什么区别。新增的线程可以通过调用pthread_create函数创建。
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#include <pthread.h>



int pthread_create(pthread_t *restrict tidp,

　　　　　　　　　　　 const pthread_attr_t *restrict attr, 

　　　　　　　　　　　 void *(*start_rtn)(void *), void *restrict arg);



　　　　　　　　　　　　　　　返回值：若成功，返回0；否则，返回错误编号


 
当pthread_create成功返回时，新创建线程的线程ID会被设置成tidp指向的内存单元。attr参数用于定制各种不同的线程属性。我们将在12.3节中讨论线程属性，但现在我们把它置为NULL，创建一个具有默认属性的线程。
 
新创建的线程从start_rtn函数的地址开始运行，该函数只有一个无类型指针参数arg。如果需要向start_rtn函数传递的参数有一个以上，那么需要把这些参数放到一个结构中，然后把这个结构的地址作为arg参数传入。
 
线程创建时并不能保证哪个线程会先运行：是新创建的线程，还是调用线程。新创建的线程可以访问进程的地址空间，并且继承调用线程的浮点环境和信号屏蔽字，但是该线程的挂起信号集会被清除。
 
注意，pthread函数在调用失败时通常会返回错误码，它们并不像其他的POSIX函数一样设置errno。每个线程都提供errno的副本，这只是为了与使用errno的现有函数兼容。在线程中，从函数中返回错误码更为清晰整洁，不需要依赖那些随着函数执行不断变化的全局状态，这样可以把错误的范围限制在引起出错的函数中。
 
实例
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虽然没有可移植的打印线程ID的方法，但是可以写一个小的测试程序来完成这个任务，以便更深入地了解线程是如何工作的。图11-2中的程序创建了一个线程，打印了进程ID、新线程的线程ID以及初始线程的线程ID。
 
#include "apue.h"

#include <pthread.h>



pthread_t ntid;



void

printids(const char *s)

{

 　　pid_t　　　　　pid;

 　　pthread_t　　 tid;



 　　pid = getpid();

 　　tid = pthread_self();

 　　printf("%s pid %lu tid %lu (0x%lx)\n", s, (unsigned long)pid,

 　　　(unsigned long)tid, (unsigned long)tid);

}



void *

thr_fn(void *arg)

{

 　　printids("new thread: ");

 　　return((void *)0);

}



int

main(void)

{

 　　int　　　　 err;



 　　err = pthread_create(&ntid, NULL, thr_fn, NULL);

 　　if (err != 0)

　　　　　err_exit(err, "can't create thread");

 　　printids("main thread:");

 　　sleep(1);

 　　exit(0);

}
 
图11-2　打印线程ID
 
这个实例有两个特别之处，需要处理主线程和新线程之间的竞争。（我们将在这章后面的内容中学习如何更好地处理这种竞争。）第一个特别之处在于，主线程需要休眠，如果主线程不休眠，它就可能会退出，这样新线程还没有机会运行，整个进程可能就已经终止了。这种行为特征依赖于操作系统中的线程实现和调度算法。
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第二个特别之处在于新线程是通过调用pthread_self函数获取自己的线程ID的，而不是从共享内存中读出的，或者从线程的启动例程中以参数的形式接收到的。回忆pthread_create函数，它会通过第一个参数（tidp）返回新建线程的线程ID。在这个例子中，主线程把新线程ID存放在ntid中，但是新建的线程并不能安全地使用它，如果新线程在主线程调用pthread_create返回之前就运行了，那么新线程看到的是未经初始化的ntid的内容，这个内容并不是正确的线程ID。
 
在Solaris上运行图11-2中的程序，得到：
 
$ ./a.out

main thread: pid 20075 tid 1 (0x1)

new thread:　pid 20075 tid 2 (0x2)


 
正如我们期望的，两个线程的进程ID相同，但线程ID不同。在FreeBSD上运行图11-2中的程序，得到：
 
$ ./a.out

main thread: pid 37396 tid 673190208 (0x28201140)

new thread:　pid 37396 tid 673280320 (0x28217140)


 
也如我们期望的，两个线程有相同的进程ID。如果把线程ID看成是十进制整数，那么这两个值看起来很奇怪，但是如果把它们转化成十六进制，看起来就更合理了。就像前面提到的，FreeBSD使用指向线程数据结构的指针作为它的线程ID。
 
我们期望Mac OS X与FreeBSD相似，但事实上，在Mac OS X中，主线程ID与用pthread_create新创建的线程的线程ID不在相同的地址范围内：
 
$ ./a.out

main thread: pid 31807 tid 140735073889440 (0x7fff70162ca0)

new thread:　pid 31807 tid 4295716864 (0x1000b7000)


 
相同的程序在Linux上运行得到：
 
$ ./a.out

main thread: pid 17874 tid 140693894424320 (0x7ff5d9996700)

new thread:　pid 17874 tid 140693886129920 (0x7ff5d91ad700)


 
尽管Linux线程ID是用无符号长整型来表示的，但是它们看起来像指针。
 
 
 Linux 2.4和Linux 2.6在线程实现上是不同的。Linux 2.4中，LinuxThreads是用单独的进程实现每个线程的，这使得它很难与POSIX线程的行为匹配。Linux 2.6中，对Linux内核和线程库进行了很大的修改，采用了一个称为Native POSIX线程库（Native POSIX Thread Library，NPTL）的新线程实现。它支持单个进程中有多个线程的模型，也更容易支持POSIX线程的语义。
 

 
11.5　线程终止
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如果进程中的任意线程调用了exit、_Exit或者_exit，那么整个进程就会终止。与此相类似，如果默认的动作是终止进程，那么，发送到线程的信号就会终止整个进程（12.8节将讨论信号与线程间是如何交互的）。
 
单个线程可以通过3种方式退出，因此可以在不终止整个进程的情况下，停止它的控制流。
 
（1）线程可以简单地从启动例程中返回，返回值是线程的退出码。
 
（2）线程可以被同一进程中的其他线程取消。
 
（3）线程调用pthread_exit。
 
#include <pthread.h>



void pthread_exit(void *rval_ptr);


 
rval_ptr参数是一个无类型指针，与传给启动例程的单个参数类似。进程中的其他线程也可以通过调用pthread_join函数访问到这个指针。
 
#include <pthread.h>



int pthread_join(pthread_t thread, void **rval_ptr);



　　　　　　　　　　　　　　　返回值：若成功，返回0；否则，返回错误编号


 
调用线程将一直阻塞，直到指定的线程调用pthread_exit、从启动例程中返回或者被取消。如果线程简单地从它的启动例程返回，rval_ptr就包含返回码。如果线程被取消，由rval_ptr指定的内存单元就设置为PTHREAD_CANCELED。
 
可以通过调用pthread_join自动把线程置于分离状态（马上就会讨论到），这样资源就可以恢复。如果线程已经处于分离状态，pthread_join调用就会失败，返回EINVAL，尽管这种行为是与具体实现相关的。
 
如果对线程的返回值并不感兴趣，那么可以把rval_ptr设置为NULL。在这种情况下，调用pthread_join函数可以等待指定的线程终止，但并不获取线程的终止状态。
 
实例
 
图11-3展示了如何获取已终止的线程的退出码。
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#include "apue.h"

#include <pthread.h>



void *

thr_fn1(void *arg)

{

 　　printf("thread 1 returning\n");

 　　return((void *)1);

}



void *

thr_fn2(void *arg)

{

 　　printf("thread 2 exiting\n");

 　　pthread_exit((void *)2);

}



int

main(void)

{

 　　int　　　　　  err;

 　　pthread_t　　 tid1, tid2;

 　　void　　　　　 *tret;



 　　err = pthread_create(&tid1, NULL, thr_fn1, NULL);

 　　if (err != 0)

　　　　　err_exit(err, "can't create thread 1");

 　　err = pthread_create(&tid2, NULL, thr_fn2, NULL);

 　　if (err != 0)

　　　　　err_exit(err, "can't create thread 2");

 　　err = pthread_join(tid1, &tret);

 　　if (err != 0)

　　　　　err_exit(err, "can't join with thread 1");

 　　printf("thread 1 exit code %ld\n", (long)tret);

 　　err = pthread_join(tid2, &tret);

 　　if (err != 0)

　　　　　err_exit(err, "can't join with thread 2");

 　　printf("thread 2 exit code %ld\n", (long)tret);

 　　exit(0);

}
 
图11-3　获得线程退出状态
 
运行图11-3中的程序，得到的结果是：
 
$ ./a.out

thread 1 returning

thread 2 exiting

thread 1 exit code 1

thread 2 exit code 2


 
可以看到，当一个线程通过调用pthread_exit退出或者简单地从启动例程中返回时，进程中的其他线程可以通过调用pthread_join函数获得该线程的退出状态。
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pthread_create和pthread_exit函数的无类型指针参数可以传递的值不止一个，这个指针可以传递包含复杂信息的结构的地址，但是注意，这个结构所使用的内存在调用者完成调用以后必须仍然是有效的。例如，在调用线程的栈上分配了该结构，那么其他的线程在使用这个结构时内存内容可能已经改变了。又如，线程在自己的栈上分配了一个结构，然后把指向这个结构的指针传给pthread_exit，那么调用pthread_join的线程试图使用该结构时，这个栈有可能已经被撤销，这块内存也已另作他用。
 
实例
 
图11-4中的程序给出了用自动变量（分配在栈上）作为pthread_exit的参数时出现的问题。
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#include "apue.h"

#include <pthread.h>



struct foo {

 　　int a, b, c, d;

};



void

printfoo(const char *s, const struct foo *fp)

{

 　　printf("%s", s);

 　　printf("　structure at 0x%lx\n", (unsigned long)fp);

 　　printf("　foo.a = %d\n", fp->a);

 　　printf("　foo.b = %d\n", fp->b);

 　　printf("　foo.c = %d\n", fp->c);

 　　printf("　foo.d = %d\n", fp->d);

}



void *

thr_fn1(void *arg)

{

 　　struct foo　　foo = {1, 2, 3, 4};



 　　printfoo("thread 1:\n", &foo);

 　　pthread_exit((void *)&foo);

}



void *

thr_fn2(void *arg)

{

 　　printf("thread 2: ID is %lu\n", (unsigned long)pthread_self());

 　　pthread_exit((void *)0);

}



int

main(void)

{

 　　int　　　　　  　err;

 　　pthread_t　　　 tid1, tid2;

 　　struct foo　　 *fp;



 　　err = pthread_create(&tid1, NULL, thr_fn1, NULL);

 　　if (err != 0)

　　　　　err_exit(err, "can't create thread 1");

 　　err = pthread_join(tid1, (void *)&fp);

 　　if (err != 0)

　　　　　err_exit(err, "can't join with thread 1");

 　　sleep(1);

 　　printf("parent starting second thread\n");

 　　err = pthread_create(&tid2, NULL, thr_fn2, NULL);

 　　if (err != 0)

　　　　　err_exit(err, "can't create thread 2");

 　　sleep(1);

 　　printfoo("parent:\n", fp);

 　　exit(0);

}
 
图11-4　pthread_exit参数的不正确使用
 
在Linux上运行此程序，得到：
 
$ ./a.out

thread 1:

　structure at 0x7f2c83682ed0

　foo.a = 1

　foo.b = 2

　foo.c = 3

　foo.d = 4

parent starting second thread

thread 2: ID is 139829159933696

parent:

　structure at 0x7f2c83682ed0

　foo.a = -2090321472

　foo.b = 32556

　foo.c = 1

　foo.d = 0


 
当然，运行结果根据内存体系结构、编译器以及线程库的实现会有所不同。在Solaris上的结果类似：
 
$ ./a.out

thread 1:

　structure at 0xffffffff7f0fbf30

　foo.a = 1

　foo.b = 2

　foo.c = 3

　foo.d = 4

parent starting second thread

thread 2: ID is 3

parent:

　structure at 0xffffffff7f0fbf30

　foo.a = -1

　foo.b = 2136969048

　foo.c = -1

　foo.d = 2138049024
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可以看到，当主线程访问这个结构时，结构的内容（在线程tid1的栈上分配的）已经改变了。注意第二个线程（tid2）的栈是如何覆盖第一个线程的栈的。为了解决这个问题，可以使用全局结构，或者用malloc函数分配结构。
 
在Mac OS X上运行的结果有所不同：
 
$ ./a.out

thread 1:

　structure at 0x1000b6f00

　foo.a = 1

　foo.b = 2

　foo.c = 3

　foo.d = 4

parent starting second thread

thread 2: ID is 4295716864

parent:

　structure at 0x1000b6f00

Segmentation fault (core dumped)


 
在这种情况下，父进程试图访问已退出的第一个线程传给它的结构时，内存不再有效，这时得到的是SIGSEGV信号。
 
FreeBSD上，父进程访问内存时，内存并没有被覆写，得到的结果是：
 
thread 1:

　structure at 0xbf9fef88

　foo.a = 1

　foo.b = 2

　foo.c = 3

　foo.d = 4

parent starting second thread

thread 2: ID is 673279680

parent:

　structure at 0xbf9fef88

　foo.a = 1

　foo.b = 2

　foo.c = 3

　foo.d = 4
 
虽然线程退出后，内存依然是完整的，但我们不能期望情况总是这样的。从其他平台上的结果中可以看出，情况并不都是这样的。
 
线程可以通过调用pthread_cancel函数来请求取消同一进程中的其他线程。
 
#include <pthread.h>



int pthread_cancel(pthread_t tid);



　　　　　　　　　　　　　　　返回值：若成功，返回0；否则，返回错误编号
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在默认情况下，pthread_cancel函数会使得由tid标识的线程的行为表现为如同调用了参数为PTHREAD_CANCELED的pthread_exit函数，但是，线程可以选择忽略取消或者控制如何被取消。我们将在12.7节中详细讨论。注意pthread_cancel并不等待线程终止，它仅仅提出请求。
 
线程可以安排它退出时需要调用的函数，这与进程在退出时可以用atexit函数（见7.3节）安排退出是类似的。这样的函数称为线程清理处理程序（thread cleanup handler）。一个线程可以建立多个清理处理程序。处理程序记录在栈中，也就是说，它们的执行顺序与它们注册时相反。
 
#include <pthread.h>



void pthread_cleanup_push(void (*rtn)(void *), void *arg);



void pthread_cleanup_pop(int execute);


 
当线程执行以下动作时，清理函数rtn是由pthread_cleanup_push函数调度的，调用时只有一个参数arg：
 
 
 	调用pthread_exit时；
 
 	响应取消请求时；
 
 	用非零execute参数调用pthread_cleanup_pop时。
 

 
如果execute参数设置为0，清理函数将不被调用。不管发生上述哪种情况，pthread_cleanup_pop都将删除上次pthread_cleanup_push调用建立的清理处理程序。
 
这些函数有一个限制，由于它们可以实现为宏，所以必须在与线程相同的作用域中以匹配对的形式使用。pthread_cleanup_push的宏定义可以包含字符{，这种情况下，在pthread_cleanup_pop的定义中要有对应的匹配字符}。
 
实例
 
图11-5给出了一个如何使用线程清理处理程序的例子。虽然例子是人为编造的，但它描述了其中涉及的清理机制。注意，虽然我们从来没想过要传一个参数0给线程启动例程，但还是需要把pthread_ cleanup_pop调用和pthread_cleanup_push调用匹配起来，否则，程序编译就可能通不过。
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#include "apue.h"

#include <pthread.h>



void

cleanup(void *arg)

{

 　　printf("cleanup: %s\n", (char *)arg);

}



void *

thr_fn1(void *arg)

{

 　　printf("thread 1 start\n");

 　　pthread_cleanup_push(cleanup, "thread 1 first handler");

 　　pthread_cleanup_push(cleanup, "thread 1 second handler");

 　　printf("thread 1 push complete\n");

 　　if (arg)

　　　　　return((void *)1);

 　　pthread_cleanup_pop(0);

 　　pthread_cleanup_pop(0);

 　　return((void *)1);

}



void *

thr_fn2(void *arg)

{

 　　printf("thread 2 start\n");

 　　pthread_cleanup_push(cleanup, "thread 2 first handler");

 　　pthread_cleanup_push(cleanup, "thread 2 second handler");

 　　printf("thread 2 push complete\n");

 　　if (arg)

　　　　　pthread_exit((void *)2);

 　　pthread_cleanup_pop(0);

 　　pthread_cleanup_pop(0);

 　　pthread_exit((void *)2);

}



int

main(void)

{

 　　int　　　　　  err;

 　　pthread_t　　 tid1, tid2;

 　　void　　　　　 *tret;



 　　err = pthread_create(&tid1, NULL, thr_fn1, (void *)1);

 　　if (err != 0)

　　　　　err_exit(err, "can't create thread 1");

 　　err = pthread_create(&tid2, NULL, thr_fn2, (void *)1);

 　　if (err != 0)

　　　　　err_exit(err, "can't create thread 2");

 　　err = pthread_join(tid1, &tret);

 　　if (err != 0)

　　　　　err_exit(err, "can't join with thread 1");

 　　printf("thread 1 exit code %ld\n", (long)tret);

 　　err = pthread_join(tid2, &tret);

 　　if (err != 0)

　　　　　err_exit(err, "can't join with thread 2");

 　　printf("thread 2 exit code %ld\n", (long)tret);

 　　exit(0);

}
 
图11-5　线程清理处理程序
 
在Linux或者Solaris上运行图11-5中的程序会得到：
 
$ ./a.out

thread 1 start

thread 1 push complete

thread 2 start

thread 2 push complete

cleanup: thread 2 second handler

cleanup: thread 2 first handler

thread 1 exit code 1

thread 2 exit code 2


 
从输出结果可以看出，两个线程都正确地启动和退出了，但是只有第二个线程的清理处理程序被调用了。因此，如果线程是通过从它的启动例程中返回而终止的话，它的清理处理程序就不会被调用。还要注意，清理处理程序是按照与它们安装时相反的顺序被调用的。
 
如果在FreeBSD或者Mac OS X上运行相同的程序，可以看到程序会出现段异常并产生core文件。这是因为在这两个平台上，pthread_cleanup_push是用宏实现的，而宏把某些上下文存放在栈上。当线程1在调用pthread_cleanup_push和调用pthread_cleanup_pop之间返回时，栈已被改写，而这两个平台在调用清理处理程序时就用了这个被改写的上下文。在Single UNIX Specification中，函数如果在调用pthread_cleanup_push和pthread_cleanup_pop之间返回，会产生未定义行为。唯一的可移植方法是调用pthread_exit。
 
现在，让我们了解一下线程函数和进程函数之间的相似之处。图11-6总结了这些相似的函数。
 
[image: 11-6.jpg]
 
图11-6　进程和线程原语的比较
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在默认情况下，线程的终止状态会保存直到对该线程调用pthread_join。如果线程已经被分离，线程的底层存储资源可以在线程终止时立即被收回。在线程被分离后，我们不能用pthread_join函数等待它的终止状态，因为对分离状态的线程调用pthread_join会产生未定义行为。可以调用pthread_ detach分离线程。
 
#include <pthread.h>



int pthread_detach(pthread_t tid);



　　　　　　　　　　　　　　　返回值：若成功，返回0；否则，返回错误编号


 
在下一章里，我们将学习通过修改传给pthread_create函数的线程属性，创建一个已处于分离状态的线程。
 
11.6　线程同步
 
当多个控制线程共享相同的内存时，需要确保每个线程看到一致的数据视图。如果每个线程使用的变量都是其他线程不会读取和修改的，那么就不存在一致性问题。同样，如果变量是只读的，多个线程同时读取该变量也不会有一致性问题。但是，当一个线程可以修改的变量，其他线程也可以读取或者修改的时候，我们就需要对这些线程进行同步，确保它们在访问变量的存储内容时不会访问到无效的值。
 
当一个线程修改变量时，其他线程在读取这个变量时可能会看到一个不一致的值。在变量修改时间多于一个存储器访问周期的处理器结构中，当存储器读与存储器写这两个周期交叉时，这种不一致就会出现。当然，这种行为是与处理器体系结构相关的，但是可移植的程序并不能对使用何种处理器体系结构做出任何假设。
 
图11-7描述了两个线程读写相同变量的假设例子。在这个例子中，线程A读取变量然后给这个变量赋予一个新的数值，但写操作需要两个存储器周期。当线程B在这两个存储器写周期中间读取这个变量时，它就会得到不一致的值。
 
[image: 1107]
 
图11-7　两个线程的交叉存储器周期
 
为了解决这个问题，线程不得不使用锁，同一时间只允许一个线程访问该变量。图11-8描述了这种同步。如果线程B希望读取变量，它首先要获取锁。同样，当线程A更新变量时，也需要获取同样的这把锁。这样，线程B在线程A释放锁以前就不能读取变量。
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[image: 1108]
 
图11-8　两个线程同步内存访问
 
两个或多个线程试图在同一时间修改同一变量时，也需要进行同步。考虑变量增量操作的情况（图11-9），增量操作通常分解为以下3步。
 
（1）从内存单元读入寄存器。
 
（2）在寄存器中对变量做增量操作。
 
（3）把新的值写回内存单元。
 
如果两个线程试图几乎在同一时间对同一个变量做增量操作而不进行同步的话，结果就可能出现不一致，变量可能比原来增加了1，也有可能比原来增加了2，具体增加了1还是2要取决于第二个线程开始操作时获取的数值。如果第二个线程执行第1步要比第一个线程执行第3步要早，第二个线程读到的值与第一个线程一样，为变量加1，然后写回去，事实上没有实际的效果，总的来说变量只增加了1。
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如果修改操作是原子操作，那么就不存在竞争。在前面的例子中，如果增加1只需要一个存储器周期，那么就没有竞争存在。如果数据总是以顺序一致出现的，就不需要额外的同步。当多个线程观察不到数据的不一致时，那么操作就是顺序一致的。在现代计算机系统中，存储访问需要多个总线周期，多处理器的总线周期通常在多个处理器上是交叉的，所以我们并不能保证数据是顺序一致的。
 
[image: 1109]
 
图11-9　两个非同步的线程对同一个变量做增量操作
 
在顺序一致环境中，可以把数据修改操作解释为运行线程的顺序操作步骤。可以把这样的操作描述为“线程A对变量增加了1，然后线程B对变量增加了1，所以变量的值就比原来的大2”，或者描述为“线程B对变量增加了1，然后线程A对变量增加了1，所以变量的值就比原来的大2”。这两个线程的任何操作顺序都不可能让变量出现除了上述值以外的其他值。
 
除了计算机体系结构以外，程序使用变量的方式也会引起竞争，也会导致不一致的情况发生。例如，我们可能对某个变量加1，然后基于这个值做出某种决定。因为这个增量操作步骤和这个决定步骤的组合并非原子操作，所以就给不一致情况的出现提供了可能。
 
11.6.1　互斥量
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可以使用pthread的互斥接口来保护数据，确保同一时间只有一个线程访问数据。互斥量（mutex）从本质上说是一把锁，在访问共享资源前对互斥量进行设置（加锁），在访问完成后释放（解锁）互斥量。对互斥量进行加锁以后，任何其他试图再次对互斥量加锁的线程都会被阻塞直到当前线程释放该互斥锁。如果释放互斥量时有一个以上的线程阻塞，那么所有该锁上的阻塞线程都会变成可运行状态，第一个变为运行的线程就可以对互斥量加锁，其他线程就会看到互斥量依然是锁着的，只能回去再次等待它重新变为可用。在这种方式下，每次只有一个线程可以向前执行。
 
只有将所有线程都设计成遵守相同数据访问规则的，互斥机制才能正常工作。操作系统并不会为我们做数据访问的串行化。如果允许其中的某个线程在没有得到锁的情况下也可以访问共享资源，那么即使其他的线程在使用共享资源前都申请锁，也还是会出现数据不一致的问题。
 
互斥变量是用pthread_mutex_t数据类型表示的。在使用互斥变量以前，必须首先对它进行初始化，可以把它设置为常量PTHREAD_MUTEX_INITIALIZER（只适用于静态分配的互斥量），也可以通过调用pthread_mutex_init函数进行初始化。如果动态分配互斥量（例如，通过调用malloc函数），在释放内存前需要调用pthread_mutex_destroy。
 
#include <pthread.h>



int pthread_mutex_init(pthread_mutex_t *restrict mutex,

　　　　　　　　　　　　　 const pthread_mutexattr_t *restrict attr);



int pthread_mutex_destroy(pthread_mutex_t *mutex);



　　　　　　　　　　　　　　　两个函数的返回值：若成功，返回0；否则，返回错误编号


 
要用默认的属性初始化互斥量，只需把attr设为NULL。我们将在12.4节中讨论互斥量属性。
 
对互斥量进行加锁，需要调用pthread_mutex_lock。如果互斥量已经上锁，调用线程将阻塞直到互斥量被解锁。对互斥量解锁，需要调用pthread_mutex_unlock。
 
#include <pthread.h>



int pthread_mutex_lock(pthread_mutex_t *mutex);



int pthread_mutex_trylock(pthread_mutex_t *mutex);



int pthread_mutex_unlock(pthread_mutex_t *mutex);



　　　　　　　　　　　　　　　所有函数的返回值：若成功，返回0；否则，返回错误编号


 
如果线程不希望被阻塞，它可以使用pthread_mutex_trylock尝试对互斥量进行加锁。如果调用pthread_mutex_trylock时互斥量处于未锁住状态，那么pthread_mutex_trylock将锁住互斥量，不会出现阻塞直接返回0，否则pthread_mutex_trylock就会失败，不能锁住互斥量，返回EBUSY。
 
实例
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图11-10描述了用于保护某个数据结构的互斥量。当一个以上的线程需要访问动态分配的对象时，我们可以在对象中嵌入引用计数，确保在所有使用该对象的线程完成数据访问之前，该对象内存空间不会被释放。
 
在对引用计数加1、减1、检查引用计数是否到达0这些操作之前需要锁住互斥量。在foo_alloc函数中将引用计数初始化为1时没必要加锁，因为在这个操作之前分配线程是唯一引用该对象的线程。但是在这之后如果要将该对象放到一个列表中，那么它就有可能被别的线程发现，这时候需要首先对它加锁。
 
在使用该对象前，线程需要调用foo_hold对这个对象的引用计数加1。当对象使用完毕时，必须调用foo_rele释放引用。最后一个引用被释放时，对象所占的内存空间就被释放。
 
在这个例子中，我们忽略了线程在调用foo_hold之前是如何找到对象的。如果有另一个线程在调用foo_hold时阻塞等待互斥锁，这时即使该对象引用计数为0，foo_rele释放该对象的内存仍然是不对的。可以通过确保对象在释放内存前不会被找到这种方式来避免上述问题。可以通过下面的例子来看看如何做到这一点。
 
#include <stdlib.h>

#include <pthread.h>



struct foo {

 　　int　　　　　　　　f_count;

 　　pthread_mutex_t f_lock;

 　　int　　　　　　　　f_id;

 　　/* ... more stuff here ... */

};



struct foo *

foo_alloc(int id) /* allocate the object */

{

 　　struct foo *fp;



 　　if ((fp = malloc(sizeof(struct foo))) != NULL) {

 　　　　　fp->f_count = 1;

 　　　　　fp->f_id = id;

 　　　　　if (pthread_mutex_init(&fp->f_lock, NULL) != 0) {

　　　　　　　　free(fp);

　　　　　　　　return(NULL);

 　　　　　}

 　　　　　/* ... continue initialization ... */

 　　}

 　　return(fp);

}



void

foo_hold(struct foo *fp) /* add a reference to the object */

{

 　　pthread_mutex_lock(&fp->f_lock);

 　　fp->f_count++;

 　　pthread_mutex_unlock(&fp->f_lock);

}



void

foo_rele(struct foo *fp) /* release a reference to the object */

{

 　　pthread_mutex_lock(&fp->f_lock);

 　　if (--fp->f_count == 0) { /* last reference */

　　　　　pthread_mutex_unlock(&fp->f_lock);

　　　　　pthread_mutex_destroy(&fp->f_lock);

　　　　　free(fp);

 　　} else {

　　　　　pthread_mutex_unlock(&fp->f_lock);

 　　}

}
 
图11-10　使用互斥量保护数据结构
 
11.6.2　避免死锁
 
如果线程试图对同一个互斥量加锁两次，那么它自身就会陷入死锁状态，但是使用互斥量时，还有其他不太明显的方式也能产生死锁。例如，程序中使用一个以上的互斥量时，如果允许一个线程一直占有第一个互斥量，并且在试图锁住第二个互斥量时处于阻塞状态，但是拥有第二个互斥量的线程也在试图锁住第一个互斥量。因为两个线程都在相互请求另一个线程拥有的资源，所以这两个线程都无法向前运行，于是就产生死锁。
 
可以通过仔细控制互斥量加锁的顺序来避免死锁的发生。例如，假设需要对两个互斥量A和B同时加锁。如果所有线程总是在对互斥量B加锁之前锁住互斥量A，那么使用这两个互斥量就不会产生死锁（当然在其他的资源上仍可能出现死锁）。类似地，如果所有的线程总是在锁住互斥量A之前锁住互斥量B，那么也不会发生死锁。可能出现的死锁只会发生在一个线程试图锁住另一个线程以相反的顺序锁住的互斥量。
 
有时候，应用程序的结构使得对互斥量进行排序是很困难的。如果涉及了太多的锁和数据结构，可用的函数并不能把它转换成简单的层次，那么就需要采用另外的方法。在这种情况下，可以先释放占有的锁，然后过一段时间再试。这种情况可以使用pthread_mutex_trylock接口避免死锁。如果已经占有某些锁而且pthread_mutex_trylock接口返回成功，那么就可以前进。但是，如果不能获取锁，可以先释放已经占有的锁，做好清理工作，然后过一段时间再重新试。
 
实例
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在这个例子中，我们更新了图11-10的程序，展示了两个互斥量的使用方法。在同时需要两个互斥量时，总是让它们以相同的顺序加锁，这样可以避免死锁。第二个互斥量维护着一个用于跟踪foo数据结构的散列列表。这样hashlock互斥量既可以保护foo数据结构中的散列表fh，又可以保护散列链字段f_next。foo结构中的f_lock互斥量保护对foo结构中的其他字段的访问。
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#include <stdlib.h>

#include <pthread.h>



#define NHASH 29

#define HASH(id) (((unsigned long)id)%NHASH)



struct foo *fh[NHASH];



pthread_mutex_t hashlock = PTHREAD_MUTEX_INITIALIZER;



struct foo {

 　　int　　　　　　　　f_count;

 　　pthread_mutex_t f_lock;

 　　int　　　　　　　　f_id;

 　　struct foo　　　 * f_next; /* protected by hashlock */

 　　/* ... more stuff here ... */

};



struct foo *

foo_alloc(int id) /* allocate the object */

{

 　　struct foo　　*fp;

 　　int　　　　　　idx;



 　　if ((fp = malloc(sizeof(struct foo))) != NULL) {

　　　　　fp->f_count = 1;

　　　　　fp->f_id = id;

　　　　　if (pthread_mutex_init(&fp->f_lock, NULL) != 0) {

　　　　　　　　free(fp);

　　　　　　　　return(NULL);

　　　　　}

　　　　　idx = HASH(id);

　　　　　pthread_mutex_lock(&hashlock);

　　　　　fp->f_next = fh[idx];

　　　　　fh[idx] = fp;

　　　　　pthread_mutex_lock(&fp->f_lock);

　　　　　pthread_mutex_unlock(&hashlock);

　　　　　/* ... continue initialization ... */

　　　　　pthread_mutex_unlock(&fp->f_lock);

 　　}

 　　return(fp);

}



void

foo_hold(struct foo *fp) /* add a reference to the object */

{

 　　pthread_mutex_lock(&fp->f_lock);

 　　fp->f_count++;

 　　pthread_mutex_unlock(&fp->f_lock);

}



struct foo *

foo_find(int id) /* find an existing object */

{

 　　struct foo　　*fp;



 　　pthread_mutex_lock(&hashlock);

 　　for (fp = fh[HASH(id)]; fp != NULL; fp = fp->f_next) {

　　　　　 if (fp->f_id == id) {

　　　　　　　　foo_hold(fp);

　　　　　　　　break;

　　　　　 }

 　　}

 　　pthread_mutex_unlock(&hashlock);

 　　return(fp);

}



void

foo_rele(struct foo *fp) /* release a reference to the object */

{

 　　struct foo　　*tfp;

 　　int　　　　　　idx;



 　　pthread_mutex_lock(&fp->f_lock);

 　　if (fp->f_count == 1) { /* last reference */

　　　　　 pthread_mutex_unlock(&fp->f_lock);

　　　　　 pthread_mutex_lock(&hashlock);

　　　　　 pthread_mutex_lock(&fp->f_lock);

　　　　　 /* need to recheck the condition */

　　　　　 if (fp->f_count != 1) {

　　　　　　　　fp->f_count--;

　　　　　　　　pthread_mutex_unlock(&fp->f_lock);

　　　　　　　　pthread_mutex_unlock(&hashlock);

　　　　　　　　return;

　　　　　 }

　　　　　 /* remove from list */

　　　　　 idx = HASH(fp->f_id);

　　　　　 tfp = fh[idx];

　　　　　 if (tfp == fp) {

　　　　　　　　fh[idx] = fp->f_next;

　　　　　 } else {

　　　　　　　　while (tfp->f_next != fp)

　　　　　　　　　　 tfp = tfp->f_next;

　　　　　　　　tfp->f_next = fp->f_next;

　　　　　 }

　　　　　 pthread_mutex_unlock(&hashlock);

　　　　　 pthread_mutex_unlock(&fp->f_lock);

　　　　　 pthread_mutex_destroy(&fp->f_lock);

　　　　　 free(fp);

 　　} else {

　　　　　 fp->f_count--;

　　　　　 pthread_mutex_unlock(&fp->f_lock);

 　　}

}
 
图11-11　使用两个互斥量
 
比较图11-11和图11-10，可以看出，分配函数现在锁住了散列列表锁，把新的结构添加到了散列桶中，而且在对散列列表的锁解锁之前，先锁定了新结构中的互斥量。因为新的结构是放在全局列表中的，其他线程可以找到它，所以在初始化完成之前，需要阻塞其他线程试图访问新结构。
 
foo_find函数锁住散列列表锁，然后搜索被请求的结构。如果找到了，就增加其引用计数并返回指向该结构的指针。注意，加锁的顺序是，先在foo_find函数中锁定散列列表锁，然后再在foo_hold函数中锁定foo结构中的f_lock互斥量。
 
现在有了两个锁以后，foo_rele函数就变得更加复杂了。如果这是最后一个引用，就需要对这个结构互斥量进行解锁，因为我们需要从散列列表中删除这个结构，这样才可以获取散列列表锁，然后重新获取结构互斥量。从上一次获得结构互斥量以来我们可能被阻塞着，所以需要重新检查条件，判断是否还需要释放这个结构。如果另一个线程在我们为满足锁顺序而阻塞时发现了这个结构并对其引用计数加1，那么只需要简单地对整个引用计数减1，对所有的东西解锁，然后返回。
 
这种锁方法很复杂，所以我们需要重新审视原来的设计。我们也可以使用散列列表锁来保护结构引用计数，使事情大大简化。结构互斥量可以用于保护foo结构中的其他任何东西。图11-12反映了这种变化。
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#include <stdlib.h>

#include <pthread.h>



#define NHASH 29

#define HASH(id) (((unsigned long)id)%NHASH)



struct foo *fh[NHASH];

pthread_mutex_t hashlock = PTHREAD_MUTEX_INITIALIZER;



struct foo {

 　　int　　　　　　　　 f_count; /* protected by hashlock */

 　　pthread_mutex_t  f_lock;

 　　int　　　　　　    f_id;

 　　struct foo　　　  * f_next; /* protected by hashlock */

 　　/* ... more stuff here ... */

};



struct foo *

foo_alloc(int id) /* allocate the object */

{

 　　struct foo　　*fp;

 　　int　　　　　　idx;



 　　if ((fp = malloc(sizeof(struct foo))) != NULL) {

　　　　　 fp->f_count = 1;

　　　　　 fp->f_id = id;

　　　　　 if (pthread_mutex_init(&fp->f_lock, NULL) != 0) {

　　　　　　　 free(fp);

　　　　　　　 return(NULL);

　　　　　 }

　　　　　 idx = HASH(id);

　　　　　 pthread_mutex_lock(&hashlock);

　　　　　 fp->f_next = fh[idx];

　　　　　 fh[idx] = fp;

　　　　　 pthread_mutex_lock(&fp->f_lock);

　　　　　 pthread_mutex_unlock(&hashlock);

　　　　　 /* ... continue initialization ... */

　　　　　 pthread_mutex_unlock(&fp->f_lock);

 　　}

 　　return(fp);

}



void

foo_hold(struct foo *fp) /* add a reference to the object */

{

 　　pthread_mutex_lock(&hashlock);

 　　fp->f_count++;

 　　pthread_mutex_unlock(&hashlock);

}



struct foo *

foo_find(int id) /* find an existing object */

{

 　　struct foo　　*fp;



 　　pthread_mutex_lock(&hashlock);

 　　for (fp = fh[HASH(id)]; fp != NULL; fp = fp->f_next) {

　　　　　 if (fp->f_id == id) {

　　　　　　　　fp->f_count++;

　　　　　　　　break;

　　　　　}

 　　}

 　　pthread_mutex_unlock(&hashlock);

 　　return(fp);

}



void

foo_rele(struct foo *fp) /* release a reference to the object */

{

 　　struct foo　　*tfp;

 　　int　　　　　　idx;



 　　pthread_mutex_lock(&hashlock);

 　　if (--fp->f_count == 0) { /* last reference, remove from list */

　　　　　 idx = HASH(fp->f_id);

　　　　　 tfp = fh[idx];

　　　　　 if (tfp == fp) {

　　　　　　　 fh[idx] = fp->f_next;

　　　　　 } else {

　　　　　　　 while (tfp->f_next != fp)

　　　　　　　　　　　 tfp = tfp->f_next;

　　　　　　　 tfp->f_next = fp->f_next;

　　　　　 }

　　　　　 pthread_mutex_unlock(&hashlock);

　　　　　 pthread_mutex_destroy(&fp->f_lock);

　　　　　 free(fp);

 　　} else {

　　　　　 pthread_mutex_unlock(&hashlock);

 　　}

}
 
图11-12　简化的锁
 
注意，与图11-11中的程序相比，图11-12中的程序就简单多了。两种用途使用相同的锁时，围绕散列列表和引用计数的锁的排序问题就不存在了。多线程的软件设计涉及这两者之间的折中。如果锁的粒度太粗，就会出现很多线程阻塞等待相同的锁，这可能并不能改善并发性。如果锁的粒度太细，那么过多的锁开销会使系统性能受到影响，而且代码变得复杂。作为一个程序员，需要在满足锁需求的情况下，在代码复杂性和性能之间找到正确的平衡。
 
11.6.3　函数pthread_mutex_timedlock
 
当线程试图获取一个已加锁的互斥量时，pthread_mutex_timedlock互斥量原语允许绑定线程阻塞时间。pthread_mutex_timedlock函数与pthread_mutex_lock是基本等价的，但是在达到超时时间值时，pthread_mutex_timedlock不会对互斥量进行加锁，而是返回错误码ETIMEDOUT。
 
#include <pthread.h>

#include <time.h>



int pthread_mutex_timedlock(pthread_mutex_t *restrict mutex,

　　　　　　　　　　　　　　　　 const struct timespec *restrict tsptr);



　　　　　　　　　　　　　　　返回值：若成功，返回0；否则，返回错误编号


 
超时指定愿意等待的绝对时间（与相对时间对比而言，指定在时间X之前可以阻塞等待，而不是说愿意阻塞Y秒）。这个超时时间是用timespec结构来表示的，它用秒和纳秒来描述时间。
 
实例
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图11-13给出了如何用pthread_mutex_timedlock避免永久阻塞。
 
#include "apue.h"

#include <pthread.h>



int

main(void)

{

 　　int err;

 　　struct timespec tout;

 　　struct tm *tmp;

 　　char buf[64];

 　　pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;



 　　pthread_mutex_lock(&lock);

 　　printf("mutex is locked\n");

 　　clock_gettime(CLOCK_REALTIME, &tout);

 　　tmp = localtime(&tout.tv_sec);

 　　strftime(buf, sizeof(buf), "%r", tmp);

 　　printf("current time is %s\n", buf);

 　　tout.tv_sec += 10; /* 10 seconds from now */

 　　/* caution: this could lead to deadlock */

 　　err = pthread_mutex_timedlock(&lock, &tout);

 　　clock_gettime(CLOCK_REALTIME, &tout);

 　　tmp = localtime(&tout.tv_sec);

 　　strftime(buf, sizeof(buf), "%r", tmp);

 　　printf("the time is now %s\n", buf);

 　　if (err == 0)

　　　　　printf("mutex locked again!\n");

 　　else

　　　　　printf("can't lock mvtex again:%s\n",strerror(err));

 　　exit(0);

}
 
图11-13　使用pthread_mutex_timedlock
 
图11-13中的程序运行结果输出如下：
 
$ ./a.out

mutex is locked

current time is 11:41:58 AM

the time is now 11:42:08 AM

can’t lock mutex again: Connection timed out


 
这个程序故意对它已有的互斥量进行加锁，目的是演示pthread_mutex_timedlock是如何工作的。不推荐在实际中使用这种策略，因为它会导致死锁。
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注意，阻塞的时间可能会有所不同，造成不同的原因有多种：开始时间可能在某秒的中间位置，系统时钟的精度可能不足以精确到支持我们指定的超时时间值，或者在程序继续运行前，调度延迟可能会增加时间值。
 
 
 Mac OS X 10.6.8还没有支持pthread_mutex_timedlock，但是FreeBSD 8.0、Linux 3.2.0以及Solaris 10支持该函数，虽然Solaris仍然把它放在实时库librt中。Solaris 10还提供了另一个使用相对超时时间的函数。
 

 
11.6.4　读写锁
 
读写锁（reader-writer lock）与互斥量类似，不过读写锁允许更高的并行性。互斥量要么是锁住状态，要么就是不加锁状态，而且一次只有一个线程可以对其加锁。读写锁可以有3种状态：读模式下加锁状态，写模式下加锁状态，不加锁状态。一次只有一个线程可以占有写模式的读写锁，但是多个线程可以同时占有读模式的读写锁。
 
当读写锁是写加锁状态时，在这个锁被解锁之前，所有试图对这个锁加锁的线程都会被阻塞。当读写锁在读加锁状态时，所有试图以读模式对它进行加锁的线程都可以得到访问权，但是任何希望以写模式对此锁进行加锁的线程都会阻塞，直到所有的线程释放它们的读锁为止。虽然各操作系统对读写锁的实现各不相同，但当读写锁处于读模式锁住的状态，而这时有一个线程试图以写模式获取锁时，读写锁通常会阻塞随后的读模式锁请求。这样可以避免读模式锁长期占用，而等待的写模式锁请求一直得不到满足。
 
读写锁非常适合于对数据结构读的次数远大于写的情况。当读写锁在写模式下时，它所保护的数据结构就可以被安全地修改，因为一次只有一个线程可以在写模式下拥有这个锁。当读写锁在读模式下时，只要线程先获取了读模式下的读写锁，该锁所保护的数据结构就可以被多个获得读模式锁的线程读取。
 
读写锁也叫做共享互斥锁（shared-exclusive lock）。当读写锁是读模式锁住时，就可以说成是以共享模式锁住的。当它是写模式锁住的时候，就可以说成是以互斥模式锁住的。
 
与互斥量相比，读写锁在使用之前必须初始化，在释放它们底层的内存之前必须销毁。
 
#include <pthread.h>



int pthread_rwlock_init(pthread_rwlock_t *restrict rwlock,

　　　　　　　　　　　　　　 const pthread_rwlockattr_t *restrict attr);



int pthread_rwlock_destroy(pthread_rwlock_t *rwlock);



　　　　　　　　　　　　　　　两个函数的返回值：若成功，返回0；否则，返回错误编号


 
读写锁通过调用pthread_rwlock_init进行初始化。如果希望读写锁有默认的属性，可以传一个null指针给attr，我们将在12.4.2节中讨论读写锁的属性。
 
Single UNIX Specification在XSI扩展中定义了PTHREAD_RWLOCK_INITIALIZER常量。如果默认属性就足够的话，可以用它对静态分配的读写锁进行初始化。
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在释放读写锁占用的内存之前，需要调用pthread_rwlock_destroy做清理工作。如果pthread_ rwlock_init为读写锁分配了资源，pthread_rwlock_destroy将释放这些资源。如果在调用pthread_rwlock_destroy之前就释放了读写锁占用的内存空间，那么分配给这个锁的资源就会丢失。
 
要在读模式下锁定读写锁，需要调用pthread_rwlock_rdlock。要在写模式下锁定读写锁，需要调用pthread_rwlock_wrlock。不管以何种方式锁住读写锁，都可以调用pthread_rwlock_unlock进行解锁。
 
#include <pthread.h>



int pthread_rwlock_rdlock(pthread_rwlock_t　*rwlock);



int pthread_rwlock_wrlock(pthread_rwlock_t　*rwlock);



int pthread_rwlock_unlock(pthread_rwlock_t　*rwlock);



　　　　　　　　　　　　　　　所有函数的返回值：若成功，返回0；否则，返回错误编号


 
各种实现可能会对共享模式下可获取的读写锁的次数进行限制，所以需要检查pthread_rwlock_ rdlock的返回值。即使pthread_rwlock_wrlock和pthread_rwlock_unlock有错误返回，而且从技术上来讲，在调用函数时应该总是检查错误返回，但是如果锁设计合理的话，就不需要检查它们。错误返回值的定义只是针对不正确使用读写锁的情况（如未经初始化的锁），或者试图获取已拥有的锁从而可能产生死锁的情况。但是需要注意，有些特定的实现可能会定义另外的错误返回。
 
Single UNIX Specification还定义了读写锁原语的条件版本。
 
#include <pthread.h>



int pthread_rwlock_tryrdlock(pthread_rwlock_t　*rwlock);



int pthread_rwlock_trywrlock(pthread_rwlock_t　*rwlock);



　　　　　　　　　　　　　　　两个函数的返回值：若成功，返回0；否则，返回错误编号


 
可以获取锁时，这两个函数返回0。否则，它们返回错误EBUSY。这两个函数可以用于我们前面讨论的遵守某种锁层次但还不能完全避免死锁的情况。
 
实例
 
图11-14中的程序解释了读写锁的使用。作业请求队列由单个读写锁保护。这个例子给出了图11-1所示的一种可能的实现，多个工作线程获取单个主线程分配给它们的作业。
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#include <stdlib.h>

#include <pthread.h>



struct job {

 　　struct job *j_next;

 　　struct job *j_prev;

 　　pthread_t　　j_id;　 /* tells which thread handles this job */

 　　/* ... more stuff here ... */

};



struct queue {

 　　struct job　　　 *q_head;

 　　struct job　　　 *q_tail;

 　　pthread_rwlock_t q_lock;

};



/*

 * Initialize a queue.

 */

int

queue_init(struct queue *qp)

{

 　　int err;



 　　qp->q_head = NULL;

 　　qp->q_tail = NULL;

 　　err = pthread_rwlock_init(&qp->q_lock, NULL);

 　　if (err != 0)

　　　　　return(err);

 　　/* ... continue initialization ... */

 　　return(0);

}



/*

 * Insert a job at the head of the queue.

 */

void

job_insert(struct queue *qp, struct job *jp)

{

 　　pthread_rwlock_wrlock(&qp->q_lock);

 　　jp->j_next = qp->q_head;

 　　jp->j_prev = NULL;

 　　if (qp->q_head != NULL)

　　　　　qp->q_head->j_prev = jp;

 　　else

　　　　　qp->q_tail = jp; 　　 /* list was empty */

 　　qp->q_head = jp;

 　　pthread_rwlock_unlock(&qp->q_lock);

}



/*

 * Append a job on the tail of the queue.

 */

void

job_append(struct queue *qp, struct job *jp)

{

 　　pthread_rwlock_wrlock(&qp->q_lock);

 　　jp->j_next = NULL;

 　　jp->j_prev = qp->q_tail;

 　　if (qp->q_tail != NULL)

　　　　　qp->q_tail->j_next = jp;

 　　else

　　　　　qp->q_head = jp;　　/* list was empty */

 　　qp->q_tail = jp;

 　　pthread_rwlock_unlock(&qp->q_lock);

}



/*

 * Remove the given job from a queue.

 */

void

job_remove(struct queue *qp, struct job *jp)

{

 　　pthread_rwlock_wrlock(&qp->q_lock);

 　　if (jp == qp->q_head) {

　　　　　qp->q_head = jp->j_next;

　　　　　if (qp->q_tail == jp)

　　　　　　　　qp->q_tail = NULL;

 　　　　　else

　　　　　　　　jp->j_next->j_prev = jp->j_prev;

 　　} else if (jp == qp->q_tail) {

　　　　　qp->q_tail = jp->j_prev;

　　　　　jp->j_prev->j_next = jp->j_next;

 　　} else {

　　　　　jp->j_prev->j_next = jp->j_next;

　　　　　jp->j_next->j_prev = jp->j_prev;

 　　}

 　　pthread_rwlock_unlock(&qp->q_lock);

}



/*

 * Find a job for the given thread ID.

 */

struct job *

job_find(struct queue *qp, pthread_t id)

{

 　　struct job *jp;



 　　if (pthread_rwlock_rdlock(&qp->q_lock) != 0)

　　　　　return(NULL);



 　　for (jp = qp->q_head; jp != NULL; jp = jp->j_next)

 　　　　　if (pthread_equal(jp->j_id, id))

　　　　　　　　break;



 　　pthread_rwlock_unlock(&qp->q_lock);

 　　return(jp);

}
 
图11-14　使用读写锁
 
在这个例子中，凡是需要向队列中增加作业或者从队列中删除作业的时候，都采用了写模式来锁住队列的读写锁。不管何时搜索队列，都需要获取读模式下的锁，允许所有的工作线程并发地搜索队列。在这种情况下，只有在线程搜索作业的频率远远高于增加或删除作业时，使用读写锁才可能改善性能。
 
工作线程只能从队列中读取与它们的线程ID匹配的作业。由于作业结构同一时间只能由一个线程使用，所以不需要额外的加锁。
 
11.6.5　带有超时的读写锁
 
与互斥量一样，Single UNIX Specification提供了带有超时的读写锁加锁函数，使应用程序在获取读写锁时避免陷入永久阻塞状态。这两个函数是pthread_rwlock_timedrdlock和pthread_rwlock_ timedwrlock。
 
#include <pthread.h>



#include <time.h>



int pthread_rwlock_timedrdlock(pthread_rwlock_t *restrict rwlock,

　　　　　　　　　　　　　　　　　　 const struct timespec *restrict tsptr);



int pthread_rwlock_timedwrlock(pthread_rwlock_t *restrict rwlock,

　　　　　　　　　　　　　　　　　　 const struct timespec *restrict tsptr);



　　　　　　　　　　　　　　　两个函数的返回值：若成功，返回0；否则，返回错误编号


 
这两个函数的行为与它们“不计时的”版本类似。tsptr参数指向timespec结构，指定线程应该停止阻塞的时间。如果它们不能获取锁，那么超时到期时，这两个函数将返回ETIMEDOUT错误。与pthread_mutex_timedlock函数类似，超时指定的是绝对时间，而不是相对时间。
 
11.6.6　条件变量
 
条件变量是线程可用的另一种同步机制。条件变量给多个线程提供了一个会合的场所。条件变量与互斥量一起使用时，允许线程以无竞争的方式等待特定的条件发生。
 
条件本身是由互斥量保护的。线程在改变条件状态之前必须首先锁住互斥量。其他线程在获得互斥量之前不会察觉到这种改变，因为互斥量必须在锁定以后才能计算条件。
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在使用条件变量之前，必须先对它进行初始化。由pthread_cond_t数据类型表示的条件变量可以用两种方式进行初始化，可以把常量PTHREAD_COND_INITIALIZER赋给静态分配的条件变量，但是如果条件变量是动态分配的，则需要使用pthread_cond_init函数对它进行初始化。
 
在释放条件变量底层的内存空间之前，可以使用pthread_cond_destroy函数对条件变量进行反初始化（deinitialize）。
 
#include <pthread.h>



int pthread_cond_init(pthread_cond_t *restrict cond,

　　　　　　　　　　　　　const pthread_condattr_t *restrict attr);



int pthread_cond_destroy(pthread_cond_t *cond);



　　　　　　　　　　　　　　　两个函数的返回值：若成功，返回0；否则，返回错误编号


 
除非需要创建一个具有非默认属性的条件变量，否则pthread_cond_init函数的attr参数可以设置为NULL。我们将在12.4.3节中讨论条件变量属性。
 
我们使用pthread_cond_wait等待条件变量变为真。如果在给定的时间内条件不能满足，那么会生成一个返回错误码的变量。
 
#include <pthread.h>



int pthread_cond_wait(pthread_cond_t *restrict cond,

　　　　　　　　　　　　　pthread_mutex_t *restrict mutex);



int pthread_cond_timedwait(pthread_cond_t *restrict cond,

　　　　　　　　　　　　　　　　pthread_mutex_t *restrict mutex,

　　　　　　　　　　　　　　　　const struct timespec *restrict tsptr);



　　　　　　　　　　　　　　　两个函数的返回值：若成功，返回0；否则，返回错误编号


 
传递给pthread_cond_wait的互斥量对条件进行保护。调用者把锁住的互斥量传给函数，函数然后自动把调用线程放到等待条件的线程列表上，对互斥量解锁。这就关闭了条件检查和线程进入休眠状态等待条件改变这两个操作之间的时间通道，这样线程就不会错过条件的任何变化。pthread_cond_wait返回时，互斥量再次被锁住。
 
pthread_cond_timedwait函数的功能与pthread_cond_wait函数相似，只是多了一个超时（tsptr）。超时值指定了我们愿意等待多长时间，它是通过timespec结构指定的。
 
如图11-13所示，需要指定愿意等待多长时间，这个时间值是一个绝对数而不是相对数。例如，假设愿意等待3分钟。那么，并不是把3分钟转换成timespec结构，而是需要把当前时间加上3分钟再转换成timespec结构。
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可以使用clock_gettime函数（见6.10节）获取timespec结构表示的当前时间。但是目前并不是所有的平台都支持这个函数，因此，也可以用另一个函数gettimeofday获取timeval结构表示的当前时间，然后把这个时间转换成timespec结构。要得到超时值的绝对时间，可以使用下面的函数（假设阻塞的最大时间使用分来表示的）：
 
#include <sys/time.h>

#include <stdlib.h>



void

maketimeout(struct timespec *tsp, long minutes)

{

　　 struct timeval now;



　　 /* get the current time */

　　 gettimeofday(&now, NULL);

　　 tsp->tv_sec = now.tv_sec;

　　 tsp->tv_nsec = now.tv_usec * 1000;　/* usec to nsec */

　　 /* add the offset to get timeout value */

　　 tsp->tv_sec += minutes * 60;

}
 
如果超时到期时条件还是没有出现，pthread_cond_timewait将重新获取互斥量，然后返回错误ETIMEDOUT。从pthread_cond_wait或者pthread_cond_timedwait调用成功返回时，线程需要重新计算条件，因为另一个线程可能已经在运行并改变了条件。
 
有两个函数可以用于通知线程条件已经满足。pthread_cond_signal函数至少能唤醒一个等待该条件的线程，而pthread_cond_broadcast函数则能唤醒等待该条件的所有线程。
 
 
 POSIX规范为了简化pthread_cond_signal的实现，允许它在实现的时候唤醒一个以上的线程。
 

 
#include <pthread.h>



int pthread_cond_signal(pthread_cond_t *cond);



int pthread_cond_broadcast(pthread_cond_t *cond);



　　　　　　　　　　　　　　　两个函数的返回值：若成功，返回0；否则，返回错误编号


 
在调用pthread_cond_signal或者pthread_cond_broadcast时，我们说这是在给线程或者条件发信号。必须注意，一定要在改变条件状态以后再给线程发信号。
 
实例
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图11-15给出了如何结合使用条件变量和互斥量对线程进行同步。
 
#include <pthread.h>



struct msg {

 　　struct msg *m_next;

 　　/* ... more stuff here ... */

};



struct msg *workq;



pthread_cond_t qready = PTHREAD_COND_INITIALIZER;



pthread_mutex_t qlock = PTHREAD_MUTEX_INITIALIZER;



void

process_msg(void)

{

 　　struct msg *mp;



 　　for (;;) {

 　　　　　pthread_mutex_lock(&qlock);

 　　　　　while (workq == NULL)

　　　　　　　　pthread_cond_wait(&qready, &qlock);

 　　　　　mp = workq;

 　　　　　workq = mp->m_next;

 　　　　　pthread_mutex_unlock(&qlock);

 　　　　　/* now process the message mp */

 　　}

}



void

enqueue_msg(struct msg *mp)

{

 　　pthread_mutex_lock(&qlock);

 　　mp->m_next = workq;

 　　workq = mp;

 　　pthread_mutex_unlock(&qlock);

 　　pthread_cond_signal(&qready);

}
 
图11-15　使用条件变量
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条件是工作队列的状态。我们用互斥量保护条件，在while循环中判断条件。把消息放到工作队列时，需要占有互斥量，但在给等待线程发信号时，不需要占有互斥量。只要线程在调用pthread_ cond_signal之前把消息从队列中拖出了，就可以在释放互斥量以后完成这部分工作。因为我们是在while循环中检查条件，所以不存在这样的问题：线程醒来，发现队列仍为空，然后返回继续等待。如果代码不能容忍这种竞争，就需要在给线程发信号的时候占有互斥量。
 
11.6.7　自旋锁
 
自旋锁与互斥量类似，但它不是通过休眠使进程阻塞，而是在获取锁之前一直处于忙等（自旋）阻塞状态。自旋锁可用于以下情况：锁被持有的时间短，而且线程并不希望在重新调度上花费太多的成本。
 
自旋锁通常作为底层原语用于实现其他类型的锁。根据它们所基于的系统体系结构，可以通过使用测试并设置指令有效地实现。当然这里说的有效也还是会导致CPU资源的浪费：当线程自旋等待锁变为可用时，CPU不能做其他的事情。这也是自旋锁只能够被持有一小段时间的原因。
 
当自旋锁用在非抢占式内核中时是非常有用的：除了提供互斥机制以外，它们会阻塞中断，这样中断处理程序就不会让系统陷入死锁状态，因为它需要获取已被加锁的自旋锁（把中断想成是另一种抢占）。在这种类型的内核中，中断处理程序不能休眠，因此它们能用的同步原语只能是自旋锁。
 
但是，在用户层，自旋锁并不是非常有用，除非运行在不允许抢占的实时调度类中。运行在分时调度类中的用户层线程在两种情况下可以被取消调度：当它们的时间片到期时，或者具有更高调度优先级的线程就绪变成可运行时。在这些情况下，如果线程拥有自旋锁，它就会进入休眠状态，阻塞在锁上的其他线程自旋的时间可能会比预期的时间更长。
 
很多互斥量的实现非常高效，以至于应用程序采用互斥锁的性能与曾经采用过自旋锁的性能基本是相同的。事实上，有些互斥量的实现在试图获取互斥量的时候会自旋一小段时间，只有在自旋计数到达某一阈值的时候才会休眠。这些因素，加上现代处理器的进步，使得上下文切换越来越快，也使得自旋锁只在某些特定的情况下有用。
 
自旋锁的接口与互斥量的接口类似，这使得它可以比较容易地从一个替换为另一个。可以用pthread_spin_init函数对自旋锁进行初始化。用pthread_spin_destroy函数进行自旋锁的反初始化。
 
#include <pthread.h>



int pthread_spin_init(pthread_spinlock_t *lock, int pshared);



int pthread_spin_destroy(pthread_spinlock_t *lock);



　　　　　　　　　　　　　　　两个函数的返回值：若成功，返回0；否则，返回错误编号
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只有一个属性是自旋锁特有的，这个属性只在支持线程进程共享同步（Thread Process-Shared Synchronization）选项（这个选项目前在Single UNIX Specification中是强制的，见图2-5）的平台上才用得到。pshared参数表示进程共享属性，表明自旋锁是如何获取的。如果它设为PTHREAD_ PROCESS_SHARED，则自旋锁能被可以访问锁底层内存的线程所获取，即便那些线程属于不同的进程，情况也是如此。否则pshared参数设为PTHREAD_PROCESS_PRIVATE，自旋锁就只能被初始化该锁的进程内部的线程所访问。
 
可以用pthread_spin_lock或pthread_spin_trylock对自旋锁进行加锁，前者在获取锁之前一直自旋，后者如果不能获取锁，就立即返回EBUSY错误。注意，pthread_spin_trylock不能自旋。不管以何种方式加锁，自旋锁都可以调用pthread_spin_unlock函数解锁。
 
#include <pthread.h>



int pthread_spin_lock(pthread_spinlock_t *lock);



int pthread_spin_trylock(pthread_spinlock_t *lock);



int pthread_spin_unlock(pthread_spinlock_t *lock);



　　　　　　　　　　　　　　　所有函数的返回值：若成功，返回0；否则，返回错误编号


 
注意，如果自旋锁当前在解锁状态的话，pthread_spin_lock函数不要自旋就可以对它加锁。如果线程已经对它加锁了，结果就是未定义的。调用pthread_spin_lock会返回EDEADLK错误（或其他错误），或者调用可能会永久自旋。具体行为依赖于实际的实现。试图对没有加锁的自旋锁进行解锁，结果也是未定义的。
 
不管是pthread_spin_lock还是pthread_spin_trylock，返回值为0的话就表示自旋锁被加锁。需要注意，不要调用在持有自旋锁情况下可能会进入休眠状态的函数。如果调用了这些函数，会浪费CPU资源，因为其他线程需要获取自旋锁需要等待的时间就延长了。
 
11.6.8　屏障
 
屏障（barrier）是用户协调多个线程并行工作的同步机制。屏障允许每个线程等待，直到所有的合作线程都到达某一点，然后从该点继续执行。我们已经看到一种屏障，pthread_join函数就是一种屏障，允许一个线程等待，直到另一个线程退出。
 
但是屏障对象的概念更广，它们允许任意数量的线程等待，直到所有的线程完成处理工作，而线程不需要退出。所有线程达到屏障后可以接着工作。
 
可以使用pthread_barrier_init函数对屏障进行初始化，用thread_barrier_destroy函数反初始化。
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#include <pthread.h>



int pthread_barrier_init(pthread_barrier_t *restrict barrier,

　　　　　　　　　　　　　　　const pthread_barrierattr_t *restrict attr,

　　　　　　　　　　　　　　　unsigned int count);

int pthread_barrier_destroy(pthread_barrier_t *barrier);

　　　　　　　　　　　　　　　两个函数的返回值：若成功，返回0；否则，返回错误编号


 
初始化屏障时，可以使用count参数指定，在允许所有线程继续运行之前，必须到达屏障的线程数目。使用attr参数指定屏障对象的属性，我们会在下一章详细讨论。现在设置attr为NULL，用默认属性初始化屏障。如果使用pthread_barrier_init函数为屏障分配资源，那么在反初始化屏障时可以调用pthread_barrier_destroy函数释放相应的资源。
 
可以使用pthread_barrier_wait函数来表明，线程已完成工作，准备等所有其他线程赶上来。
 
#include <pthread.h>



int pthread_barrier_wait(pthread_barrier_t *barrier);



　　　　　　　　　返回值：若成功，返回0或者PTHREAD_BARRIER_SERIAL_THREAD；否则，返回错误编号


 
调用pthread_barrier_wait的线程在屏障计数（调用pthread_barrier_init时设定）未满足条件时，会进入休眠状态。如果该线程是最后一个调用pthread_barrier_wait的线程，就满足了屏障计数，所有的线程都被唤醒。
 
对于一个任意线程，pthread_barrier_wait函数返回了PTHREAD_BARRIER_SERIAL_THREAD。剩下的线程看到的返回值是0。这使得一个线程可以作为主线程，它可以工作在其他所有线程已完成的工作结果上。
 
一旦达到屏障计数值，而且线程处于非阻塞状态，屏障就可以被重用。但是除非在调用了pthread_ barrier_destroy函数之后，又调用了pthread_barrier_init函数对计数用另外的数进行初始化，否则屏障计数不会改变。
 
实例
 
图11-16给出了在一个任务上合作的多个线程之间如何用屏障进行同步。
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#include "apue.h"

#include <pthread.h>

#include <limits.h>

#include <sys/time.h>



#define NTHR　 8　　　　　　　　　/* number of threads */

#define NUMNUM 8000000L　　　　 /* number of numbers to sort */

#define TNUM　 (NUMNUM/NTHR)　　/* number to sort per thread */



long nums[NUMNUM];

long snums[NUMNUM];



pthread_barrier_t b;



#ifdef SOLARIS

#define heapsort qsort

#else

extern int heapsort(void *, size_t, size_t,

　　　　　　　　　　int (*)(const void *, const void *));

#endif



/*

 * Compare two long integers (helper function for heapsort)

 */

int

complong(const void *arg1, const void *arg2)

{

 　　long l1 = *(long *)arg1;

 　　long l2 = *(long *)arg2;



 　　if (l1 == l2)

　　　　　return 0;

 　　else if (l1 < l2)

　　　　　return -1;

 　　else

　　　　　return 1;

}



/*

 * Worker thread to sort a portion of the set of numbers.

 */

void *

thr_fn(void *arg)

{

 　　long　　　 idx = (long)arg;



 　　heapsort(&nums[idx], TNUM, sizeof(long), complong);

 　　pthread_barrier_wait(&b);



 　　/*

 　　 * Go off and perform more work ...

 　　 */

 　　return((void *)0);

}



/*

 * Merge the results of the individual sorted ranges.

 */

void

merge()

{

 　　long　　　idx[NTHR];

 　　long　　　i, minidx, sidx, num;



 　　for (i = 0; i < NTHR; i++)

　　　　　 idx[i] = i * TNUM;

 　　for (sidx = 0; sidx < NUMNUM; sidx++) {

　　　　　 num = LONG_MAX;

　　　　　 for (i = 0; i < NTHR; i++) {

 　　　　　　　　if ((idx[i] < (i+1)*TNUM) && (nums[idx[i]] < num)) {

 　　　　　　　　　　num = nums[idx[i]];

 　　　　　　　　　　minidx = i;

 　　　　　　　　}

　　　　　 }

　　　　　 snums[sidx] = nums[idx[minidx]];

　　　　　 idx[minidx]++;

 　　}

}



int

main()

{

 　　unsigned long 　　i;

 　　struct timeval　　start, end;

 　　long long　　　　　startusec, endusec;

 　　double　　　　　　　elapsed;

 　　int　　　　　　　　 err;

 　　pthread_t　　　　　tid;



 　　/*

 　　 * Create the initial set of numbers to sort.

 　　 */

 　　srandom(1);

 　　for (i = 0; i < NUMNUM; i++)

　　　　　 nums[i] = random();



 　　/*

 　　 * Create 8 threads to sort the numbers.

 　　 */

 　　gettimeofday(&start, NULL);

 　　pthread_barrier_init(&b, NULL, NTHR+1);

 　　for (i = 0; i < NTHR; i++) {

　　　　　 err = pthread_create(&tid, NULL, thr_fn, (void *)(i * TNUM));

　　　　　 if (err != 0)

　　　　　　　 err_exit(err, "can't create thread");

 　　}

 　　pthread_barrier_wait(&b);

 　　merge();

 　　gettimeofday(&end, NULL);



 　　/*

 　　 * Print the sorted list.

 　　 */

 　　startusec = start.tv_sec * 1000000 + start.tv_usec;

 　　endusec = end.tv_sec * 1000000 + end.tv_usec;

 　　elapsed = (double)(endusec - startusec) / 1000000.0;

 　　printf("sort took %.4f seconds\n", elapsed);

 　　for (i = 0; i < NUMNUM; i++)

　　　　　 printf("%ld\n", snums[i]);

 　　exit(0);

}
 
图11-16　使用屏障
 
这个例子给出了多个线程只执行一个任务时，使用屏障的简单情况。在更加实际的情况下，工作线程在调用pthread_barrier_wait函数返回后会接着执行其他的活动。
 
在这个实例中，使用8个线程分解了800万个数的排序工作。每个线程用堆排序算法对100万个数进行排序（详细算法请参阅Knuth[1998]）。然后主线程调用一个函数对这些结果进行合并。
 
并不需要使用pthread_barrier_wait函数中的返回值PTHREAD_BARRIER_SERIAL_THREAD来决定哪个线程执行结果合并操作，因为我们使用了主线程来完成这个任务。这也是把屏障计数值设为工作线程数加1的原因，主线程也作为其中的一个候选线程。
 
如果只用一个线程去完成800万个数的堆排序，那么与图11-16中的程序相比，我们将能看到图11-16中的程序在性能上有显著提升。在8核处理器系统上，单线程程序对800万个数进行排序需要12.14秒。同样的系统，使用8个并行线程和1个合并结果的线程，相同的800万个数的排序仅需要1.91秒，速度提升了6倍。
 
11.7　小结
 
本章介绍了线程的概念，讨论了现有的创建和销毁线程的POSIX.1原语；此外，还介绍了线程同步问题，讨论了5个基本的同步机制（互斥量、读写锁、条件变量、自旋锁以及屏障），了解了如何使用它们来保护共享资源。
 
习题
 
11.1　修改图11-4所示的实例代码，正确地在两个线程之间传递结构。
 
11.2　在图11-14所示的实例代码中，需要另外添加什么同步（如果需要的话）可以使得主线程改变与挂起作业关联的线程ID？这会对job_remove函数产生什么影响？
 
11.3　把图11-15中的技术运用到工作线程实例（图11-1和图11-14）中实现工作线程函数。不要忘记更新queue_init函数对条件变量进行初始化，修改job_insert和job_append函数给工作线程发信号。会出现什么样的困难？
 
11.4　下面哪个步骤序列是正确的？
 
（1）对互斥量加锁（pthread_mutex_lock）。
 
（2）改变互斥量保护的条件。
 
（3）给等待条件的线程发信号（pthread_cond_broadcast）。
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（4）对互斥量解锁（pthread_mutex_unlock）。
 
或者
 
（1）对互斥量加锁（pthread_mutex_lock）。
 
（2）改变互斥量保护的条件。
 
（3）对互斥量解锁（pthread_mutex_unlock）。
 
（4）给等待条件的线程发信号（pthread_cond_broadcast）。
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11.5　实现屏障需要什么同步原语？给出pthread_barrier_wait函数的一个实现。
 


第12章　线程控制
 
12.1　引言
 
第11章讲了线程以及线程同步的基础知识。本章将讲解控制线程行为方面的详细内容，介绍线程属性和同步原语属性。前面的章节中使用的都它们的默认行为，没有进行详细介绍。
 
接下来还将介绍同一进程中的多个线程之间如何保持数据的私有性。最后讨论基于进程的系统调用如何与线程进行交互。
 
12.2　线程限制
 
在2.5.4节中讨论了sysconf函数。Single UNIX Specification定义了与线程操作有关的一些限制，图2-11并没有列出这些限制。与其他的系统限制一样，这些限制也可以通过sysconf函数进行查询。图12-1总结了这些限制。
 
[image: 12-1.jpg]
 
图12-1　线程限制和sysconf的name参数
 
与sysconf报告的其他限制一样，这些限制的使用是为了增强应用程序在不同的操作系统实现之间的可移植性。例如，如果应用程序需要为它管理的每个文件创建4个线程，但是系统却并不允许创建所有这些线程，这时可能就必须限制当前可并发管理的文件数。
 
图12-2给出了本书描述的4种操作系统实现中线程限制的值。如果操作系统实现的限制是不确定的，列出的值就是“没有确定的限制”（no limit）。但这并不意味着值是无限制的。
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图12-2　线程配置限制的实例
 
 
 注意，虽然某个操作系统实现可能没有提供访问这些限制的方法，但这并不意味着这些限制不存在，这只是意味着操作系统实现没有为使用sysconf访问这些值提供可用的方法。
 

 
12.3　线程属性
 
pthread接口允许我们通过设置每个对象关联的不同属性来细调线程和同步对象的行为。通常，管理这些属性的函数都遵循相同的模式。
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（1）每个对象与它自己类型的属性对象进行关联（线程与线程属性关联，互斥量与互斥量属性关联，等等）。一个属性对象可以代表多个属性。属性对象对应用程序来说是不透明的。这意味着应用程序并不需要了解有关属性对象内部结构的详细细节，这样可以增强应用程序的可移植性。取而代之的是，需要提供相应的函数来管理这些属性对象。
 
（2）有一个初始化函数，把属性设置为默认值。
 
（3）还有一个销毁属性对象的函数。如果初始化函数分配了与属性对象关联的资源，销毁函数负责释放这些资源。
 
（4）每个属性都有一个从属性对象中获取属性值的函数。由于函数成功时会返回0，失败时会返回错误编号，所以可以通过把属性值存储在函数的某一个参数指定的内存单元中，把属性值返回给调用者。
 
（5）每个属性都有一个设置属性值的函数。在这种情况下，属性值作为参数按值传递。
 
在第11章所有调用pthread_create函数的实例中，传入的参数都是空指针，而不是指向pthread_ attr_t结构的指针。可以使用pthread_attr_t结构修改线程默认属性，并把这些属性与创建的线程联系起来。可以使用pthread_attr_init函数初始化pthread_attr_t结构。在调用pthread_ attr_init以后，pthread_attr_t结构所包含的就是操作系统实现支持的所有线程属性的默认值。
 
#include <pthread.h>



int pthread_attr_init(pthread_attr_t *attr);



int pthread_attr_destroy(pthread_attr_t *attr);



　　　　　　　　　　　　　　　两个函数的返回值：若成功，返回0；否则，返回错误编号


 
如果要反初始化pthread_attr_t结构，可以调用pthread_attr_destroy函数。如果pthread_ attr_init的实现对属性对象的内存空间是动态分配的，pthread_attr_destroy就会释放该内存空间。除此之外，pthread_attr_destroy还会用无效的值初始化属性对象，因此，如果该属性对象被误用，将会导致pthread_create函数返回错误码。
 
图12-3总结了POSIX.1定义的线程属性。POSIX.1还为线程执行调度（Thread Execution Scheduling）选项定义了额外的属性，用以支持实时应用，但我们并不打算在这里讨论这些属性。图12-3同时给出了各个操作系统平台对每个线程属性的支持情况。
 
[image: 12-3.jpg]
 
图12-3　POSIX.1线程属性
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11.5节介绍了分离线程的概念。如果对现有的某个线程的终止状态不感兴趣的话，可以使用pthread_ detach函数让操作系统在线程退出时收回它所占用的资源。
 
如果在创建线程时就知道不需要了解线程的终止状态，就可以修改pthread_attr_t结构中的detachstate线程属性，让线程一开始就处于分离状态。可以使用pthread_attr_setdetachstate函数把线程属性detachstate设置成以下两个合法值之一：PTHREAD_CREATE_DETACHED，以分离状态启动线程；或者PTHREAD_CREATE_JOINABLE，正常启动线程，应用程序可以获取线程的终止状态。
 
#include <pthread.h>



int pthread_attr_getdetachstate(const pthread_attr_t *restrict attr, 

　　　　　　　　　　　　　　　　　　　int *detachstate);



int pthread_attr_setdetachstate(pthread_attr_t *attr, int *detachstate);



　　　　　　　　　　　　　　　两个函数的返回值：若成功，返回0；否则，返回错误编号


 
可以调用pthread_attr_getdetachstate函数获取当前的detachstate线程属性。第二个参数所指向的整数要么设置成PTHREAD_CREATE_DETACHED，要么设置成PTHREAD_CREATE_JOINABLE，具体要取决于给定pthread_attr_t结构中的属性值。
 
实例
 
图12-4给出了一个以分离状态创建线程的函数。
 
#include "apue.h"

#include <pthread.h>



int

makethread(void *(*fn)(void *), void *arg)

{

 　　int　　　　　　　　　err;

 　　pthread_t　　　　　 tid;

 　　pthread_attr_t　　attr;



 　　err = pthread_attr_init(&attr);

 　　if (err != 0)

　　　　　return(err);

 　　err = pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);

 　　if (err == 0)

　　　　　err = pthread_create(&tid, &attr, fn, arg);

 　　pthread_attr_destroy(&attr);

 　　return(err);

}
 
图12-4　以分离状态创建线程
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注意，此例忽略了pthread_attr_destroy函数调用的返回值。在这个实例中，我们对线程属性进行了合理的初始化，因此pthread_attr_destroy应该不会失败。但是，如果pthread_attr_destroy确实出现了失败的情况，将难以清理：必须销毁刚刚创建的线程，也许这个线程可能已经运行，并且与pthread_attr_destroy函数可能是异步执行的。忽略pthread_attr_destroy的错误返回可能出现的最坏情况是，如果pthread_attr_init已经分配了内存空间，就会有少量的内存泄漏。另一方面，如果pthread_attr_init成功地对线程属性进行了初始化，但之后pthread_attr_destroy的清理工作失败，那么将没有任何补救策略，因为线程属性结构对应用程序来说是不透明的，可以对线程属性结构进行清理的唯一接口是pthread_attr_destroy，但它失败了。
 
对于遵循POSIX标准的操作系统来说，并不一定要支持线程栈属性，但是对于遵循Single UNIX Specification中XSI选项的系统来说，支持线程栈属性就是必需的。可以在编译阶段使用_POSIX_ THREAD_ATTR_STACKADDR和_POSIX_THREAD_ATTR_STACKSIZE符号来检查系统是否支持每一个线程栈属性。如果系统定义了这些符号中的一个，就说明它支持相应的线程栈属性。或者，也可以在运行阶段把_SC_THREAD_ATTR_STACKADDR和_SC_THREAD_ATTR_STACKSIZE参数传给sysconf函数，检查运行时系统对线程栈属性的支持情况。
 
可以使用函数pthread_attr_getstack和pthread_attr_setstack对线程栈属性进行管理。
 
#include <pthread.h>



int pthread_attr_getstack(const pthread_attr_t *restrict attr,

　　　　　　　　　　　　　　　 void **restrict stackaddr,

　　　　　　　　　　　　　　　 size_t *restrict stacksize);



int pthread_attr_setstack(pthread_attr_t *attr,

　　　　　　　　　　　　　　　 void *stackaddr, size_t stacksize);



　　　　　　　　　　　　　　　两个函数的返回值：若成功，返回0；否则，返回错误编号


 
对于进程来说，虚地址空间的大小是固定的。因为进程中只有一个栈，所以它的大小通常不是问题。但对于线程来说，同样大小的虚地址空间必须被所有的线程栈共享。如果应用程序使用了许多线程，以致这些线程栈的累计大小超过了可用的虚地址空间，就需要减少默认的线程栈大小。另一方面，如果线程调用的函数分配了大量的自动变量，或者调用的函数涉及许多很深的栈帧（stack frame），那么需要的栈大小可能要比默认的大。
 
如果线程栈的虚地址空间都用完了，那可以使用malloc或者mmap（见14.8节）来为可替代的栈分配空间，并用pthread_attr_setstack函数来改变新建线程的栈位置。由stackaddr参数指定的地址可以用作线程栈的内存范围中的最低可寻址地址，该地址与处理器结构相应的边界应对齐。当然，这要假设malloc和mmap所用的虚地址范围与线程栈当前使用的虚地址范围不同。
 
stackaddr线程属性被定义为栈的最低内存地址，但这并不一定是栈的开始位置。对于一个给定的处理器结构来说，如果栈是从高地址向低地址方向增长的，那么stackaddr线程属性将是栈的结尾位置，而不是开始位置。
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应用程序也可以通过pthread_attr_getstacksize和pthread_attr_setstacksize函数读取或设置线程属性stacksize。
 
#include <pthread.h>



int pthread_attr_getstacksize(const pthread_attr_t　*restrict attr,　

　　　　　　　　　　　　　　　　　　size_t *restrict stacksize);



int pthread_attr_setstacksize (pthread_attr_t *attr, size_t stacksize);



　　　　　　　　　　　　　　　两个函数的返回值：若成功，返回0；否则，返回错误编号


 
如果希望改变默认的栈大小，但又不想自己处理线程栈的分配问题，这时使用pthread_attr_ setstacksize函数就非常有用。设置stacksize属性时，选择的stacksize不能小于PTHREAD_STACK_ MIN。
 
线程属性guardsize控制着线程栈末尾之后用以避免栈溢出的扩展内存的大小。这个属性默认值是由具体实现来定义的，但常用值是系统页大小。可以把guardsize线程属性设置为0，不允许属性的这种特征行为发生：在这种情况下，不会提供警戒缓冲区。同样，如果修改了线程属性stackaddr，系统就认为我们将自己管理栈，进而使栈警戒缓冲区机制无效，这等同于把guardsize线程属性设置为0。
 
#include <pthread.h>



iint pthread_attr_getguardsize(const pthread_attr_t　*restrict attr,　

　　　　　　　　　　　　　　　　　　 size_t *restrict guardsize);



int pthread_attr_setguardsize(pthread_attr_t *attr, size_t guardsize);



　　　　　　　　　　　　　　　两个函数的返回值：若成功，返回0；否则，返回错误编号


 
如果guardsize线程属性被修改了，操作系统可能会把它取为页大小的整数倍。如果线程的栈指针溢出到警戒区域，应用程序就可能通过信号接收到出错信息。
 
Single UNIX Specification还定义了一些其他的可选线程属性供实时应用程序使用，但在这里不讨论这些属性。
 
线程还有一些其他的pthread_attr_t结构中没有表示的属性：可撤销状态和可撤销类型。我们将在12.7节中讨论它们。
 
12.4　同步属性
 
就像线程具有属性一样，线程的同步对象也有属性。11.6.7节中介绍了自旋锁，它有一个属性称为进程共享属性。本节讨论互斥量属性、读写锁属性、条件变量属性和屏障属性。
 
12.4.1　互斥量属性
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互斥量属性是用pthread_mutexattr_t结构表示的。第11章中每次对互斥量进行初始化时，都是通过使用PTHREAD_MUTEX_INITIALIZER常量或者用指向互斥量属性结构的空指针作为参数调用pthread_ mutex_init函数，得到互斥量的默认属性。
 
对于非默认属性，可以用pthread_mutexattr_init初始化pthread_mutexattr_t结构，用pthread_ mutexattr_destroy来反初始化。
 
#include <pthread.h>



int pthread_mutexattr_init(pthread_mutexattr_t *attr);



int pthread_mutexattr_destroy(pthread_mutexattr_t *attr);



　　　　　　　　　　　　　　　两个函数的返回值：若成功，返回0；否则，返回错误编号


 
pthread_mutexattr_init函数将用默认的互斥量属性初始化pthread_mutexattr_t结构。值得注意的3个属性是：进程共享属性、健壮属性以及类型属性。POSIX.1中，进程共享属性是可选的。可以通过检查系统中是否定义了_POSIX_THREAD_PROCESS_SHARED符号来判断这个平台是否支持进程共享这个属性，也可以在运行时把_SC_THREAD_PROCESS_SHARED参数传给sysconf函数进行检查。虽然这个选项并不是遵循POSIX标准的操作系统必须提供的，但是Single UNIX Specification要求遵循XSI标准的操作系统支持这个选项。
 
在进程中，多个线程可以访问同一个同步对象。正如在第11章中看到的，这是默认的行为。在这种情况下，进程共享互斥量属性需设置为PTHREAD_PROCESS_PRIVATE。
 
我们将在第14章和第15章中看到，存在这样的机制：允许相互独立的多个进程把同一个内存数据块映射到它们各自独立的地址空间中。就像多个线程访问共享数据一样，多个进程访问共享数据通常也需要同步。如果进程共享互斥量属性设置为PTHREAD_PROCESS_SHARED，从多个进程彼此之间共享的内存数据块中分配的互斥量就可以用于这些进程的同步。
 
可以使用pthread_mutexattr_getpshared函数查询pthread_mutexattr_t结构，得到它的进程共享属性，使用pthread_mutexattr_setpshared函数修改进程共享属性。
 
#include <pthread.h>



int pthread_mutexattr_getpshared(const　pthread_mutexattr_t 

　　　　　　　　　　　　　　　　　　　　　*restrict attr, 

　　　　　　　　　　　　　　　　　　　　int *restrict pshared);



int pthread_mutexattr_setpshared(pthread_mutexattr_t *attr, 

　　　　　　　　　　　　　　　　　　　 int pshared);



　　　　　　　　　　　　　　　两个函数的返回值：若成功，返回0；否则，返回错误编号
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进程共享互斥量属性设置为PTHREAD_PROCESS_PRIVATE时，允许pthread线程库提供更有效的互斥量实现，这在多线程应用程序中是默认的情况。在多个进程共享多个互斥量的情况下，pthread线程库可以限制开销较大的互斥量实现。
 
互斥量健壮属性与在多个进程间共享的互斥量有关。这意味着，当持有互斥量的进程终止时，需要解决互斥量状态恢复的问题。这种情况发生时，互斥量处于锁定状态，恢复起来很困难。其他阻塞在这个锁的进程将会一直阻塞下去。
 
可以使用 pthread_mutexattr_getrobust 函数获取健壮的互斥量属性的值。可以调用 pthread_ mutexattr_setrobust函数设置健壮的互斥量属性的值。
 
#include <pthread.h>



int pthread_mutexattr_getrobust(const pthread_mutexattr_t 

　　　　　　　　　　　　　　　　　　　　*restrict attr,

　　　　　　　　　　　　　　　　　　　int *restrict robust);



int pthread_mutexattr_setrobust(pthread_mutexattr_t *attr,

　　　　　　　　　　　　　　　　　　　int robust);



　　　　　　　　　　　　　　　两个函数的返回值：若成功，返回0；否则，返回错误编号


 
健壮属性取值有两种可能的情况。默认值是PTHREAD_MUTEX_STALLED，这意味着持有互斥量的进程终止时不需要采取特别的动作。这种情况下，使用互斥量后的行为是未定义的，等待该互斥量解锁的应用程序会被有效地“拖住”。另一个取值是PTHREAD_MUTEX_ROBUST。这个值将导致线程调用pthread_ mutex_lock获取锁，而该锁被另一个进程持有，但它终止时并没有对该锁进行解锁，此时线程会阻塞，从pthread_mutex_lock返回的值为EOWNERDEAD而不是0。应用程序可以通过这个特殊的返回值获知，若有可能（要保护状态的细节以及如何进行恢复会因不同的应用程序而异），不管它们保护的互斥量状态如何，都需要进行恢复。
 
使用健壮的互斥量改变了我们使用pthread_mutex_lock的方式，因为现在必须检查3个返回值而不是之前的两个：不需要恢复的成功、需要恢复的成功以及失败。但是，即使不用健壮的互斥量，也可以只检查成功或者失败。
 
 
 在本书的4个平台中，只有Linux 3.2.0目前支持健壮的线程互斥量。Solaris 10只在它的Solaris线程库中支持健壮的线程互斥量（参阅Solaris手册的mutex_init(3C)获取相关的信息）。但是Solaris 11支持健壮的线程互斥量。
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如果应用状态无法恢复，在线程对互斥量解锁以后，该互斥量将处于永久不可用状态。为了避免这样的问题，线程可以调用pthread_mutex_consistent函数，指明与该互斥量相关的状态在互斥量解锁之前是一致的。
 
#include <pthread.h>



int pthread_mutex_consistent(pthread_mutex_t *mutex);



　　　　　　　　　　　　　　　返回值：若成功，返回0；否则，返回错误编号


 
如果线程没有先调用pthread_mutex_consistent就对互斥量进行了解锁，那么其他试图获取该互斥量的阻塞线程就会得到错误码ENOTRECOVERABLE。如果发生这种情况，互斥量将不再可用。线程通过提前调用pthread_mutex_consistent，能让互斥量正常工作，这样它就可以持续被使用。
 
类型互斥量属性控制着互斥量的锁定特性。POSIX.1定义了4种类型。
 
PTHREAD_MUTEX_NORMAL　　一种标准互斥量类型，不做任何特殊的错误检查或死锁检测。
 
PTHREAD_MUTEX_ERRORCHECK　　此互斥量类型提供错误检查。
 
PTHREAD_MUTEX_RECURSIVE　　此互斥量类型允许同一线程在互斥量解锁之前对该互斥量进行多次加锁。递归互斥量维护锁的计数，在解锁次数和加锁次数不相同的情况下，不会释放锁。所以，如果对一个递归互斥量加锁两次，然后解锁一次，那么这个互斥量将依然处于加锁状态，对它再次解锁以前不能释放该锁。
 
PTHREAD_MUTEX_DEFAULT　　此互斥量类型可以提供默认特性和行为。操作系统在实现它的时候可以把这种类型自由地映射到其他互斥量类型中的一种。例如，Linux 3.2.0把这种类型映射为普通的互斥量类型，而FreeBSD 8.0则把它映射为错误检查互斥量类型。
 
这4种类型的行为如图12-5所示。“不占用时解锁”这一栏指的是，一个线程对被另一个线程加锁的互斥量进行解锁的情况。“在已解锁时解锁”这一栏指的是，当一个线程对已经解锁的互斥量进行解锁时将会发生什么，这通常是编码错误引起的。
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图12-5　互斥量类型行为
 
可以用pthread_mutexattr_gettype函数得到互斥量类型属性，用pthread_mutexattr_settype函数修改互斥量类型属性。
 
#include <pthread.h>



int pthread_mutexattr_gettype(const pthread_mutexattr_t *restrict attr, int *restrict type);



int pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type);



　　　　　　　　　　　　　　　两个函数的返回值: 若成功，返回0；否则，返回错误编号


 
回忆11.6.6节中学过的，互斥量用于保护与条件变量关联的条件。在阻塞线程之前，pthread_cond_ wait和pthread_cond_timedwait函数释放与条件相关的互斥量。这就允许其他线程获取互斥量、改变条件、释放互斥量以及给条件变量发信号。既然改变条件时必须占有互斥量，使用递归互斥量就不是一个好主意。如果递归互斥量被多次加锁，然后用在调用pthread_cond_wait函数中，那么条件永远都不会得到满足，因为pthread_cond_wait所做的解锁操作并不能释放互斥量。
 
如果需要把现有的单线程接口放到多线程环境中，递归互斥量是非常有用的，但由于现有程序兼容性的限制，不能对函数接口进行修改。然而，使用递归锁可能很难处理，因此应该只在没有其他可行方案的时候才使用它们。
 
实例
 
图12-6描述了一种情况，在这种情况中递归互斥量看起来像是在解决并发问题。假设func1和func2是函数库中现有的函数，其接口不能改变，因为存在调用这两个接口的应用程序，而且应用程序不能改动。
 
[image: ..\14-0434 UNIX环境高级编程（第3版）(改一校)改\1206.tif]
 
图12-6　使用递归锁的一种可能情况
 
为了保持接口跟原来相同，我们把互斥量嵌入到了数据结构中，把这个数据结构的地址（x）作为参数传入。这种方案只有在为此数据结构提供分配函数时才可行，所以应用程序并不知道数据结构的大小（假设我们在其中增加互斥量之后必须扩大该数据结构的大小）。
 
 
 如果在最早定义数据结构时，预留了足够的可填充字段，允许把某些填充字段替换成互斥量，这种方法也是可行的。不过遗憾的是，大多数程序员并不善于预测未来，所以这并不是普遍可行的实践。
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如果func1和func2函数都必须操作这个结构，而且可能会有一个以上的线程同时访问该数据结构，那么func1和func2必须在操作数据以前对互斥量加锁。如果func1必须调用func2，这时如果互斥量不是递归类型的，那么就会出现死锁。如果能在调用func2之前释放互斥量，在func2返回后重新获取互斥量，那么就可以避免使用递归互斥量，但这也给其他的线程提供了机会，其他的线程可以在func1执行期间抓住互斥量的控制，修改这个数据结构。这也许是不可接受的，当然具体的情况要取决于互斥量试图提供什么样的保护。
 
图12-7显示了这种情况下使用递归互斥量的一种替代方法。通过提供func2函数的私有版本，称之为func2_locked函数，可以保持func1和func2函数接口不变，而且避免使用递归互斥量。要调用func2_locked函数，必须占有嵌入在数据结构中的互斥量，这个数据结构的地址是作为参数传入的。func2_locked的函数体包含func2的副本，func2现在只是获取互斥量，调用func2_ locked，然后释放互斥量。
 
[image: ..\14-0434 UNIX环境高级编程（第3版）(改一校)改\1207.tif]
 
图12-7　避免使用递归锁的一种可能情况
 
如果并不一定要保持库函数接口不变，就可以在每个函数中增加第二个参数表明这个结构是否被调用者锁定。但是，如果可以的话，保持接口不变通常是更好的选择，可以避免实现过程中人为加入的东西对原有系统产生不良影响。
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提供加锁和不加锁版本的函数，这样的策略在简单的情况下通常是可行的。在更加复杂的情况下，比如，库需要调用库以外的函数，而且可能会再次回调库中的函数时，就需要依赖递归锁。
 
实例
 
图12-8中的程序解释了有必要使用递归互斥量的另一种情况。这里，有一个“超时”（timeout）函数，它允许安排另一个函数在未来的某个时间运行。假设线程并不是很昂贵的资源，就可以为每个挂起的超时函数创建一个线程。线程在时间未到时将一直等待，时间到了以后再调用请求的函数。
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#include "apue.h"

#include <pthread.h>

#include <time.h>

#include <sys/time.h>



extern int makethread(void *(*)(void *), void *);



struct to_info {

 　　void　　　　　 (*to_fn)(void *);　/* function */

 　　void　　　　　 *to_arg;　　　　　　/* argument */

 　　struct timespec to_wait;　　　　/* time to wait */

};



#define SECTONSEC　1000000000　　/* seconds to nanoseconds */



#if !defined(CLOCK_REALTIME) || defined(BSD)

#define clock_nanosleep(ID, FL, REQ, REM)　　nanosleep((REQ), (REM))

#endif



#ifndef CLOCK_REALTIME

#define CLOCK_REALTIME 0

#define USECTONSEC 1000　　　　　/* microseconds to nanoseconds */



void

clock_gettime(int id, struct timespec *tsp)

{

 　　struct timeval tv;



 　　gettimeofday(&tv, NULL);

 　　tsp->tv_sec = tv.tv_sec;

 　　tsp->tv_nsec = tv.tv_usec * USECTONSEC;

}

#endif



void *

timeout_helper(void *arg)

{

 　　struct to_info　*tip;



 　　tip = (struct to_info *)arg;

 　　clock_nanosleep(CLOCK_REALTIME, 0, &tip->to_wait, NULL);

 　　(*tip->to_fn)(tip->to_arg);

 　　free(arg);

 　　return(0);

}



void

timeout(const struct timespec *when, void (*func)(void *), void *arg)

{

 　　struct timespec　　now;

 　　struct to_info　　 *tip;

 　　int　　　　　　　  　err;



 　　clock_gettime(CLOCK_REALTIME, &now);

 　　if ((when->tv_sec > now.tv_sec) ||

 　　　(when->tv_sec == now.tv_sec && when->tv_nsec > now.tv_nsec)) {

 　　　　 tip = malloc(sizeof(struct to_info));

 　　　　 if (tip != NULL) {

　　　　　　　 tip->to_fn = func;

　　　　　　　 tip->to_arg = arg;

　　　　　　　 tip->to_wait.tv_sec = when->tv_sec - now.tv_sec;

　　　　　　　 if (when->tv_nsec >= now.tv_nsec) {

　　　　　　　　　　tip->to_wait.tv_nsec = when->tv_nsec - now.tv_nsec;

　　　　　　　} else {

　　　　　　　　　　tip->to_wait.tv_sec--;

　　　　　　　　　　tip->to_wait.tv_nsec = SECTONSEC - now.tv_nsec +

　　　　　　　　　　 when->tv_nsec;

　　　　　　　}

　　　　　　　err = makethread(timeout_helper, (void *)tip);

　　　　　　　if (err == 0)

　　　　　　　　　　 return;

　　　　　　　else

　　　　　　　　　　 free(tip);

　　　　　}

 　　}



 　　/*

 　　 * We get here if (a) when <= now, or (b) malloc fails, or

 　　 * (c) we can't make a thread, so we just call the function now.

 　　 */

 　　(*func)(arg);

}



pthread_mutexattr_t attr;

pthread_mutex_t mutex;



void

retry(void *arg)

{

 　　pthread_mutex_lock(&mutex);



 　　/* perform retry steps ... */



 　　pthread_mutex_unlock(&mutex);

}



int

main(void)

{

 　　int　　　　　　　　　 err, condition, arg;

 　　struct timespec　　when;



 　　if ((err = pthread_mutexattr_init(&attr)) != 0)

 　　　　　err_exit(err, "pthread_mutexattr_init failed");

 　　if ((err = pthread_mutexattr_settype(&attr,

 　　　PTHREAD_MUTEX_RECURSIVE)) != 0)

 　　　　err_exit(err, "can't set recursive type");

 　　if ((err = pthread_mutex_init(&mutex, &attr)) != 0)

 　　　　err_exit(err, "can't create recursive mutex");



 　　/* continue processing ... */



 　　pthread_mutex_lock(&mutex);



 　　/*

 　　 * Check the condition under the protection of a lock to

 　　 * make the check and the call to timeout atomic.

 　　 */

 　　if (condition) {

 　　　　　/*

 　　　　　 * Calculate the absolute time when we want to retry.

 　　　　　 */

 　　　　　clock_gettime(CLOCK_REALTIME, &when);

 　　　　　when.tv_sec += 10;　　　/* 10 seconds from now */

 　　　　　timeout(&when, retry, (void *)((unsigned long)arg));

 　　}

 　　pthread_mutex_unlock(&mutex);



 　　/* continue processing ... */



 　　exit(0);

}
 
图12-8　使用递归互斥量
 
如果我们不能创建线程，或者安排函数运行的时间已过，这时问题就出现了。在这些情况下，我们只需在当前上下文中调用之前请求运行的函数。因为函数要获取的锁和我们现在占有的锁是同一个，所以除非该锁是递归的，否则就会出现死锁。
 
在图12-4中我们使用makethread函数以分离状态创建线程。因为传递给timeout函数的func函数参数将在未来运行，所以我们不希望一直空等线程结束。
 
可以调用sleep等待超时到期，但它提供的时间粒度是秒级的。如果希望等待的时间不是整数秒，就需要用nanosleep或者clock_nanosleep函数，它们两个提供了更高精度的休眠时间。
 
 
 在未定义CLOCK_REALTIME的系统中，我们根据nanosleep定义clock_nanosleep。然而，FreeBSD 8.0定义这个符号支持clock_gettime和clock_settime，但并不支持clock_ nanosleep。（只有Linux 3.2.0和Solaris 10目前支持clock_nanosleep。）
 
 另外，在未定义CLOCK_REALTIME的系统中，我们提供了我们自己的clock_gettime实现，该实现调用了gettimeofday并把微妙转换成纳秒。
 

 
timeout的调用者需要占有互斥量来检查条件，并且把retry函数安排为原子操作。retry函数试图对同一个互斥量进行加锁。除非互斥量是递归的，否则，如果timeout函数直接调用retry，会导致死锁。
 
12.4.2　读写锁属性
 
读写锁与互斥量类似，也是有属性的。可以用pthread_rwlockattr_init初始化pthread_ rwlockattr_t结构，用pthread_rwlockattr_destroy反初始化该结构。
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#include <pthread.h>



int pthread_rwlockattr_init(pthread_rwlockattr_t *attr);



int pthread_rwlockattr_destroy(pthread_rwlockattr_t *attr);



　　　　　　　　　　　　　　　两个函数的返回值：若成功，返回0；否则，返回错误编号


 
读写锁支持的唯一属性是进程共享属性。它与互斥量的进程共享属性是相同的。就像互斥量的进程共享属性一样，有一对函数用于读取和设置读写锁的进程共享属性。
 
#include <pthread.h>



int pthread_rwlockattr_getpshared(const　pthread_rwlockattr_t * 

　　　　　　　　　　　　　　　　　　　　 restrict attr,

　　　　　　　　　　　　　　　　　　　　 int *restrict pshared);



int pthread_rwlockattr_setpshared(pthread_rwlockattr_t *attr, 

　　　　　　　　　　　　　　　　　　　　 int pshared);



　　　　　　　　　　　　　　　两个函数的返回值：若成功，返回0；否则，返回错误编号


 
虽然POSIX只定义了一个读写锁属性，但不同平台的实现可以自由地定义额外的、非标准的属性。
 
12.4.3　条件变量属性
 
Single UNIX Specification目前定义了条件变量的两个属性：进程共享属性和时钟属性。与其他的属性对象一样，有一对函数用于初始化和反初始化条件变量属性。
 
#include <pthread.h>



int pthread_condattr_init(pthread_condattr_t *attr);



int pthread_condattr_destroy(pthread_condattr_t *attr);



　　　　　　　　　　　　　　　两个函数的返回值：若成功，返回0；否则，返回错误编号


 
与其他的同步属性一样，条件变量支持进程共享属性。它控制着条件变量是可以被单进程的多个线程使用，还是可以被多进程的线程使用。要获取进程共享属性的当前值，可以用pthread_condattr_ getpshared函数。设置该值可以用pthread_condattr_setpshared函数。
 
#include <pthread.h>



int pthread_condattr_getpshared(const　pthread_condattr_t * 

　　　　　　　　　　　　　　　　　　　restrict attr,

　　　　　　　　　　　　　　　　　　　int *restrict pshared);



int pthread_condattr_setpshared(pthread_condattr_t *attr, 

　　　　　　　　　　　　　　　　　　　int pshared);



　　　　　　　　　　　　　　　两个函数的返回值：若成功，返回0；否则，返回错误编号
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时钟属性控制计算pthread_cond_timedwait函数的超时参数（tsptr）时采用的是哪个时钟。合法值取自图6-8中列出的时钟ID。可以使用pthread_condattr_getclock函数获取可被用于pthread_ cond_timedwait函数的时钟ID，在使用pthread_cond_timedwait函数前需要用pthread_ condattr_t对象对条件变量进行初始化。可以用pthread_condattr_setclock函数对时钟ID进行修改。
 
#include <pthread.h>



int pthread_condattr_getclock(const pthread_condattr_t *

　　　　　　　　　　　　　　　　　　restrict attr,

　　　　　　　　　　　　　　　　　　clockid_t *restrict clock_id);



int pthread_condattr_setclock(pthread_condattr_t *attr,

　　　　　　　　　　　　　　　　　　clockid_t clock_id);



　　　　　　　　　　　　　　　两个函数的返回值:若成功，返回0；否则，返回错误编号


 
奇怪的是，Single UNIX Specification并没有为其他有超时等待函数的属性对象定义时钟属性。
 
12.4.4　屏障属性
 
屏障也有属性。可以使用pthread_barrierattr_init函数对屏障属性对象进行初始化，用pthread_barrierattr_destroy函数对屏障属性对象进行反初始化。
 
#include <pthread.h>



int pthread_barrierattr_init(pthread_barrierattr_t *attr);



int pthread_barrierattr_destroy(pthread_barrierattr_t *attr);



　　　　　　　　　　　　　　　两个函数的返回值：若成功，返回0；否则，返回错误编号


 
目前定义的屏障属性只有进程共享属性，它控制着屏障是可以被多进程的线程使用，还是只能被初始化屏障的进程内的多线程使用。与其他属性对象一样，有一个获取属性值的函数（pthread_ barrierattr_getpshared）和一个设置属性值的函数（pthread_barrierattr_setpshared）。
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#include <pthread.h>



int pthread_barrierattr_getpshared(const pthread_barrierattr_t *

　　　　　　　　　　　　　　　　　　　　　restrict attr,

　　　　　　　　　　　　　　　　　　　　　int *restrict pshared);



int pthread_barrierattr_setpshared(pthread_barrierattr_t *attr,

　　　　　　　　　　　　　　　　　　　　　int pshared);



　　　　　　　　　　　　　　　两个函数的返回值：若成功，返回0；否则，返回错误编号


 
进程共享属性的值可以是PTHREAD_PROCESS_SHARED（多进程中的多个线程可用），也可以是PTHREAD_PROCESS_PRIVATE（只有初始化屏障的那个进程内的多个线程可用）。
 
12.5　重入
 
10.6节讨论了可重入函数和信号处理程序。线程在遇到重入问题时与信号处理程序是类似的。在这两种情况下，多个控制线程在相同的时间有可能调用相同的函数。
 
如果一个函数在相同的时间点可以被多个线程安全地调用，就称该函数是线程安全的。在Single UNIX Specification中定义的所有函数中，除了图12-9中列出的函数，其他函数都保证是线程安全的。另外，ctermid和tmpnam函数在参数传入空指针时并不能保证是线程安全的。类似地，如果参数mbstate_t传入的是空指针，也不能保证wcrtomb和wcsrtombs函数是线程安全的。
 
[image: 12-9.jpg]
 
图12-9　POSIX.1中不能保证线程安全的函数
 
支持线程安全函数的操作系统实现会在<unistd.h>中定义符号_POSIX_THREAD_SAFE_FUNCTIONS。应用程序也可以在sysconf函数中传入_SC_THREAD_SAFE_FUNCTIONS参数在运行时检查是否支持线程安全函数。在SUSv4之前，要求所有遵循XSI的实现都必须支持线程安全函数，但是在SUSv4中，线程安全函数支持这个需求已经要求具体实现考虑遵循POSIX。
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操作系统实现支持线程安全函数这个特性时，对POSIX.1中的一些非线程安全函数，它会提供可替代的线程安全版本。图12-10列出了这些函数的线程安全版本。这些函数的命名方式与它们的非线程安全版本的名字相似，只不过在名字最后加了_r，表明这些版本是可重入的。很多函数并不是线程安全的，因为它们返回的数据存放在静态的内存缓冲区中。通过修改接口，要求调用者自己提供缓冲区可以使函数变为线程安全。
 
[image: 12-10.jpg]
 
图12-10　替代的线程安全函数
 
如果一个函数对多个线程来说是可重入的，就说这个函数就是线程安全的。但这并不能说明对信号处理程序来说该函数也是可重入的。如果函数对异步信号处理程序的重入是安全的，那么就可以说函数是异步信号安全的。我们在10.6节中讨论可重入函数时，图10-4中的函数就是异步信号安全函数。
 
除了图12-10中列出的函数，POSIX.1还提供了以线程安全的方式管理FILE对象的方法。可以使用flockfile和ftrylockfile获取给定FILE对象关联的锁。这个锁是递归的：当你占有这把锁的时候，还是可以再次获取该锁，而且不会导致死锁。虽然这种锁的具体实现并无规定，但要求所有操作FILE对象的标准I/O例程的动作行为必须看起来就像它们内部调用了flockfile和funlockfile。
 
#include <stdio.h>



int ftrylockfile(FILE *fp);



　　　　　　　　　　　　　　　返回值：若成功，返回0；若不能获取锁，返回非0数值



void flockfile(FILE *fp);



void funlockfile(FILE *fp);


 
虽然标准的I/O例程可能从它们各自的内部数据结构的角度出发，是以线程安全的方式实现的，但有时把锁开放给应用程序也是非常有用的。这允许应用程序把多个对标准I/O函数的调用组合成原子序列。当然，在处理多个FILE对象时，需要注意潜在的死锁，需要对所有的锁仔细地排序。
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如果标准I/O例程都获取它们各自的锁，那么在做一次一个字符的I/O时就会出现严重的性能下降。在这种情况下，需要对每一个字符的读写操作进行获取锁和释放锁的动作。为了避免这种开销，出现了不加锁版本的基于字符的标准I/O例程。
 
#include <stdio.h>



int getchar_unlocked(void);



int getc_unlocked(FILE *fp);



　　　　　　　　　　　　两个函数的返回值: 若成功，返回下一个字符；若遇到文件尾或者出错，返回EOF

int putchar_unlocked(int c);



int putc_unlocked(int c, FILE *fp);



　　　　　　　　　　　　　　　两个函数的返回值：若成功，返回c；若出错，返回EOF


 
除非被flockfile（或ftrylockfile）和funlockfile的调用包围，否则尽量不要调用这4个函数，因为它们会导致不可预期的结果（比如，由于多个控制线程非同步访问数据引起的种种问题）。
 
一旦对FILE对象进行加锁，就可以在释放锁之前对这些函数进行多次调用。这样就可以在多次的数据读写上分摊总的加解锁的开销。
 
实例
 
图12-11显示了getenv（见7.9节）的一个可能实现。这个版本不是可重入的。如果两个线程同时调用这个函数，就会看到不一致的结果，因为所有调用getenv的线程返回的字符串都存储在同一个静态缓冲区中。
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#include <limits.h>

#include <string.h>



#define MAXSTRINGSZ　　4096



static char envbuf[MAXSTRINGSZ];



extern char **environ;



char *

getenv(const char *name)

{

 　　int i, len;



 　　len = strlen(name);

 　　for (i = 0; environ[i] != NULL; i++) {

　　　　　if ((strncmp(name, environ[i], len) == 0) &&

　　　　　　(environ[i][len] == '=')) {

　　　　　　　 strncpy(envbuf, &environ[i][len+1], MAXSTRINGSZ-1);

　　　　　　　 return(envbuf);

　　　　　}

 　　}

 　　return(NULL);

}
 
图12-11　getenv的非可重入版本
 
图12-12给出了getenv的可重入的版本。这个版本叫做getenv_r。它使用pthread_once函数来确保不管多少线程同时竞争调用getenv_r，每个进程只调用thread_init函数一次。12.6节会详细描述pthread_once函数。
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#include <string.h>

#include <errno.h>

#include <pthread.h>

#include <stdlib.h>



extern char **environ;



pthread_mutex_t env_mutex;



static pthread_once_t init_done = PTHREAD_ONCE_INIT;



static void

thread_init(void)

{

 　　pthread_mutexattr_t attr;



 　　pthread_mutexattr_init(&attr);

 　　pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE);

 　　pthread_mutex_init(&env_mutex, &attr);

 　　pthread_mutexattr_destroy(&attr);

}



int

getenv_r(const char *name, char *buf, int buflen)

{

 　　int i, len, olen;



 　　pthread_once(&init_done, thread_init);

 　　len = strlen(name);

 　　pthread_mutex_lock(&env_mutex);

 　　for (i = 0; environ[i] != NULL; i++) {

　　　　　 if ((strncmp(name, environ[i], len) == 0) &&

　　　　　　(environ[i][len] == '=')) {

　　　　　　　 olen = strlen(&environ[i][len+1]);

　　　　　　　 if (olen >= buflen) {

　　　　　　　　　　 pthread_mutex_unlock(&env_mutex);

　　　　　　　　　　 return(ENOSPC);

　　　　　　　 }

　　　　　　　 strcpy(buf, &environ[i][len+1]);

　　　　　　　 pthread_mutex_unlock(&env_mutex);

　　　　　　　 return(0);

　　　　　 }

 　　}

 　　pthread_mutex_unlock(&env_mutex);

 　　return(ENOENT);

}
 
图12-12　getenv的可重入（线程安全）版本
 
要使getenv_r可重入，需要改变接口，调用者必须提供它自己的缓冲区，这样每个线程可以使用各自不同的缓冲区避免其他线程的干扰。但是，注意，要想使getenv_r成为线程安全的，这样做还不够，需要在搜索请求的字符时保护环境不被修改。可以使用互斥量，通过getenv_r和putenv函数对环境列表的访问进行串行化。
 
可以使用读写锁，从而允许对getenv_r进行多次并发访问，但增加的并发性可能并不会在很大程度上改善程序的性能，这里面有两个原因：第一，环境列表通常并不会很长，所以扫描列表时并不需要长时间地占有互斥量；第二，对getenv和putenv的调用也不是频繁发生的，所以改善它们的性能并不会对程序的整体性能产生很大的影响。
 
即使可以把getenv_r变成线程安全的，这也不意味着它对信号处理程序是可重入的。如果使用的是非递归的互斥量，线程从信号处理程序中调用getenv_r就有可能出现死锁。如果信号处理程序在线程执行getenv_r时中断了该线程，这时我们已经占有加锁的env_mutex，这样其他线程试图对这个互斥量的加锁就会被阻塞，最终导致线程进入死锁状态。所以，必须使用递归互斥量阻止其他线程改变我们正需要的数据结构，还要阻止来自信号处理程序的死锁。问题是pthread函数并不保证是异步信号安全的，所以不能把pthread函数用于其他函数，让该函数成为异步信号安全的。
 
12.6　线程特定数据
 
线程特定数据（thread-specific data），也称为线程私有数据（thread-private data），是存储和查询某个特定线程相关数据的一种机制。我们把这种数据称为线程特定数据或线程私有数据的原因是，我们希望每个线程可以访问它自己单独的数据副本，而不需要担心与其他线程的同步访问问题。
 
线程模型促进了进程中数据和属性的共享，许多人在设计线程模型时会遇到各种麻烦。那么为什么有人想在这样的模型中促进阻止共享的接口呢？这其中有两个原因。
 
第一，有时候需要维护基于每线程（per-thread）的数据。因为线程ID并不能保证是小而连续的整数，所以就不能简单地分配一个每线程数据数组，用线程ID作为数组的索引。即使线程ID确实是小而连续的整数，我们可能还希望有一些额外的保护，防止某个线程的数据与其他线程的数据相混淆。
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采用线程私有数据的第二个原因是，它提供了让基于进程的接口适应多线程环境的机制。一个很明显的实例就是errno。回忆1.7节中对errno的讨论。以前的接口（线程出现以前）把errno定义为进程上下文中全局可访问的整数。系统调用和库例程在调用或执行失败时设置errno，把它作为操作失败时的附属结果。为了让线程也能够使用那些原本基于进程的系统调用和库例程，errno被重新定义为线程私有数据。这样，一个线程做了重置errno的操作也不会影响进程中其他线程的errno值。
 
我们知道一个进程中的所有线程都可以访问这个进程的整个地址空间。除了使用寄存器以外，一个线程没有办法阻止另一个线程访问它的数据。线程特定数据也不例外。虽然底层的实现部分并不能阻止这种访问能力，但管理线程特定数据的函数可以提高线程间的数据独立性，使得线程不太容易访问到其他线程的线程特定数据。
 
在分配线程特定数据之前，需要创建与该数据关联的键。这个键将用于获取对线程特定数据的访问。使用pthread_key_create创建一个键。
 
#include <pthread.h>



int pthread_key_create(pthread_key_t *keyp, void (*destructor)(void *));



　　　　　　　　　　　　　　　返回值：若成功，返回0；否则，返回错误编号


 
创建的键存储在keyp指向的内存单元中，这个键可以被进程中的所有线程使用，但每个线程把这个键与不同的线程特定数据地址进行关联。创建新键时，每个线程的数据地址设为空值。
 
除了创建键以外，pthread_key_create可以为该键关联一个可选择的析构函数。当这个线程退出时，如果数据地址已经被置为非空值，那么析构函数就会被调用，它唯一的参数就是该数据地址。如果传入的析构函数为空，就表明没有析构函数与这个键关联。当线程调用pthread_exit或者线程执行返回，正常退出时，析构函数就会被调用。同样，线程取消时，只有在最后的清理处理程序返回之后，析构函数才会被调用。如果线程调用了exit、_exit、_Exit或abort，或者出现其他非正常的退出时，就不会调用析构函数。
 
线程通常使用malloc为线程特定数据分配内存。析构函数通常释放已分配的内存。如果线程在没有释放内存之前就退出了，那么这块内存就会丢失，即线程所属进程就出现了内存泄漏。
 
线程可以为线程特定数据分配多个键，每个键都可以有一个析构函数与它关联。每个键的析构函数可以互不相同，当然所有键也可以使用相同的析构函数。每个操作系统实现可以对进程可分配的键的数量进行限制（回忆一下图12-1中的PTHREAD_KEYS_MAX）。
 
线程退出时，线程特定数据的析构函数将按照操作系统实现中定义的顺序被调用。析构函数可能会调用另一个函数，该函数可能会创建新的线程特定数据，并且把这个数据与当前的键关联起来。当所有的析构函数都调用完成以后，系统会检查是否还有非空的线程特定数据值与键关联，如果有的话，再次调用析构函数。这个过程将会一直重复直到线程所有的键都为空线程特定数据值，或者已经做了PTHREAD_ DESTRUCTOR_ITERATIONS（见图12-1）中定义的最大次数的尝试。
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对所有的线程，我们都可以通过调用pthread_key_delete来取消键与线程特定数据值之间的关联关系。
 
#include <pthread.h>



int pthread_key_delete(pthread_key_t key);



　　　　　　　　　　　　　　　返回值：若成功，返回0；否则，返回错误编号


 
注意，调用pthread_key_delete并不会激活与键关联的析构函数。要释放任何与键关联的线程特定数据值的内存，需要在应用程序中采取额外的步骤。
 
需要确保分配的键并不会由于在初始化阶段的竞争而发生变动。下面的代码会导致两个线程都调用pthread_key_create。
 
void destructor(void *);



pthread_key_t key;

int init_done = 0;



int

threadfunc(void *arg)

{

　　 if (!init_done) {

　　　　　init_done = 1;

　　　　　err = pthread_key_create(&key, destructor);

　　 }

　　 [image: ]

}
 
有些线程可能看到一个键值，而其他的线程看到的可能是另一个不同的键值，这取决于系统是如何调度线程的，解决这种竞争的办法是使用pthread_once。
 
#include <pthread.h>



pthread_once_t initflag = PTHREAD_ONCE_INIT;



int pthread_once(pthread_once_t *initflag, void (*initfn)(void));



　　　　　　　　　　　　　　　返回值：若成功，返回0；否则，返回错误编号


 
initflag必须是一个非本地变量（如全局变量或静态变量），而且必须初始化为PTHREAD_ONCE_INIT。
 
如果每个线程都调用pthread_once，系统就能保证初始化例程initfn只被调用一次，即系统首次调用pthread_once时。创建键时避免出现冲突的一个正确方法如下：
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void destructor(void *);



pthread_key_t key;

pthread_once_t init_done = PTHREAD_ONCE_INIT;

void

thread_init(void)

{

　　 err = pthread_key_create(&key, destructor);

}



int

threadfunc(void *arg)

{

　　 pthread_once(&init_done, thread_init);

　　 [image: ]

}


 
键一旦创建以后，就可以通过调用pthread_setspecific函数把键和线程特定数据关联起来。可以通过pthread_getspecific函数获得线程特定数据的地址。
 
#include <pthread.h>



void *pthread_getspecific(pthread_key_t key);



　　　　　　　　　　　　　　　返回值：线程特定数据值；若没有值与该键关联，返回NULL 



int pthread_setspecific(pthread_key_t key, const void *value);



　　　　　　　　　　　　　　　返回值：若成功，返回0；否则，返回错误编号


 
如果没有线程特定数据值与键关联，pthread_getspecific将返回一个空指针，我们可以用这个返回值来确定是否需要调用pthread_setspecific。
 
实例
 
图12-11给出了getenv的假设实现。接着又给出了一个新的接口，提供的功能相同，不过它是线程安全的（见图12-12）。但是如果不修改应用程序，直接使用新的接口会出现什么问题呢？这种情况下，可以使用线程特定数据来维护每个线程的数据缓冲区副本，用于存放各自的返回字符串，如图12-13所示。
 

  449 

 
#include <limits.h>

#include <string.h>

#include <pthread.h>

#include <stdlib.h>



#define MAXSTRINGSZ　　4096



static pthread_key_t key;

static pthread_once_t init_done = PTHREAD_ONCE_INIT;

pthread_mutex_t env_mutex = PTHREAD_MUTEX_INITIALIZER;



extern char **environ;



static void

thread_init(void)

{

 　　pthread_key_create(&key, free);

}



char *

getenv(const char *name)

{

 　　int　　　　i, len;

 　　char　　　 *envbuf;



 　　pthread_once(&init_done, thread_init);

 　　pthread_mutex_lock(&env_mutex);

 　　envbuf = (char *)pthread_getspecific(key);

 　　if (envbuf == NULL) {

 　　　　 envbuf = malloc(MAXSTRINGSZ);

　　　　　if (envbuf == NULL) {

　　　　　　　 pthread_mutex_unlock(&env_mutex);

　　　　　　　 return(NULL);

　　　　　}

　　　　　pthread_setspecific(key, envbuf);

 　　}

 　　len = strlen(name);

 　　for (i = 0; environ[i] != NULL; i++) {

　　　　　if ((strncmp(name, environ[i], len) == 0) &&

　　　　　　(environ[i][len] == '=')) {

　　　　　　　 strncpy(envbuf, &environ[i][len+1], MAXSTRINGSZ-1);

　　　　　　　 pthread_mutex_unlock(&env_mutex);

　　　　　　　 return(envbuf);

　　　　　}

 　　}

 　　pthread_mutex_unlock(&env_mutex);

 　　return(NULL);

}
 
图12-13　线程安全的getenv的兼容版本
 
我们使用pthread_once来确保只为我们将使用的线程特定数据创建一个键。如果pthread_ getspecific返回的是空指针，就需要先分配内存缓冲区，然后再把键与该内存缓冲区关联。否则，如果返回的不是空指针，就使用pthread_getspecific返回的内存缓冲区。对析构函数，使用free来释放之前由malloc分配的内存。只有当线程特定数据值为非空时，析构函数才会被调用。
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注意，虽然这个版本的getenv是线程安全的，但它并不是异步信号安全的。对信号处理程序而言，即使使用递归的互斥量，这个版本的getenv也不可能是可重入的，因为它调用了malloc，而malloc函数本身并不是异步信号安全的。
 
12.7　取消选项
 
有两个线程属性并没有包含在pthread_attr_t结构中，它们是可取消状态和可取消类型。这两个属性影响着线程在响应pthread_cancel函数调用时所呈现的行为（见11.5节）。
 
可取消状态属性可以是PTHREAD_CANCEL_ENABLE，也可以是PTHREAD_CANCEL_DISABLE。线程可以通过调用pthread_setcancelstate修改它的可取消状态。
 
#include <pthread.h>



int pthread_setcancelstate(int state, int *oldstate);



　　　　　　　　　　　　　　　返回值：若成功，返回0；否则，返回错误编号


 
pthread_setcancelstate把当前的可取消状态设置为state，把原来的可取消状态存储在由oldstate指向的内存单元，这两步是一个原子操作。
 
回忆11.5节，pthread_cancel调用并不等待线程终止。在默认情况下，线程在取消请求发出以后还是继续运行，直到线程到达某个取消点。取消点是线程检查它是否被取消的一个位置，如果取消了，则按照请求行事。POSIX.1保证在线程调用图12-14中列出的任何函数时，取消点都会出现。
 
[image: 12-14.jpg]
 
图12-14　POSIX.1定义的取消点
 
线程启动时默认的可取消状态是PTHREAD_CANCEL_ENABLE。当状态设为PTHREAD_CANCEL_DISABLE时，对pthread_cancel的调用并不会杀死线程。相反，取消请求对这个线程来说还处于挂起状态，当取消状态再次变为PTHREAD_CANCEL_ENABLE时，线程将在下一个取消点上对所有挂起的取消请求进行处理。
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除了图12-14中列出的函数，POSIX.1还指定了图12-15中列出的函数作为可选的取消点。
 
 
 图12-15中列出的有些函数并没有在本书中进一步讨论，例如，处理消息分类和宽字符集的函数。
 

 
如果应用程序在很长的一段时间内都不会调用图12-14或图12-15中的函数（如数学计算领域的应用程序），那么你可以调用pthread_testcancel函数在程序中添加自己的取消点。
 
#include <pthread.h>



void pthread_testcancel(void);
 
调用pthread_testcancel时，如果有某个取消请求正处于挂起状态，而且取消并没有置为无效，那么线程就会被取消。但是，如果取消被置为无效，pthread_testcancel调用就没有任何效果了。
 
[image: 12-15.jpg]
 
图12-15　POSIX.1定义的可选取消点
 
我们所描述的默认的取消类型也称为推迟取消。调用pthread_cancel以后，在线程到达取消点之前，并不会出现真正的取消。可以通过调用pthread_setcanceltype来修改取消类型。
 
#include <pthread.h>



int pthread_setcanceltype(int type, int *oldtype);



　　　　　　　　　　　　　　　返回值：若成功，返回0；否则，返回错误编号


 
pthread_setcanceltype函数把取消类型设置为type（类型参数可以是PTHREADCANCEL_ DEFERRED， 也可以是PTHREAD_CANCEL_ASYNCHRONOUS），把原来的取消类型返回到oldtype指向的整型单元。
 
异步取消与推迟取消不同，因为使用异步取消时，线程可以在任意时间撤消，不是非得遇到取消点才能被取消。
 
12.8　线程和信号
 
即使是在基于进程的编程范型中，信号的处理有时候也是很复杂的。把线程引入编程范型，就使信号的处理变得更加复杂。
 
每个线程都有自己的信号屏蔽字，但是信号的处理是进程中所有线程共享的。这意味着单个线程可以阻止某些信号，但当某个线程修改了与某个给定信号相关的处理行为以后，所有的线程都必须共享这个处理行为的改变。这样，如果一个线程选择忽略某个给定信号，那么另一个线程就可以通过以下两种方式撤消上述线程的信号选择：恢复信号的默认处理行为，或者为信号设置一个新的信号处理程序。
 
进程中的信号是递送到单个线程的。如果一个信号与硬件故障相关，那么该信号一般会被发送到引起该事件的线程中去，而其他的信号则被发送到任意一个线程。
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10.12节讨论了进程如何使用sigprocmask函数来阻止信号发送。然而，sigprocmask的行为在多线程的进程中并没有定义，线程必须使用pthread_sigmask。
 
#include <signal.h>



int pthread_sigmask(int how, const sigset_t　*restrict set,　



　　　　　　　　　　　　sigset_t *restrict oset);



　　　　　　　　　　　　　　　返回值：若成功，返回0；否则，返回错误编号


 
pthread_sigmask函数与sigprocmask函数基本相同，不过pthread_sigmask工作在线程中，而且失败时返回错误码，不再像sigprocmask中那样设置errno并返回−1。set参数包含线程用于修改信号屏蔽字的信号集。how参数可以取下列3个值之一：SIG_BLOCK，把信号集添加到线程信号屏蔽字中，SIG_SETMASK，用信号集替换线程的信号屏蔽字；SIG_UNBLOCK，从线程信号屏蔽字中移除信号集。如果oset参数不为空，线程之前的信号屏蔽字就存储在它指向的sigset_t结构中。线程可以通过把set参数设置为NULL，并把oset参数设置为sigset_t结构的地址，来获取当前的信号屏蔽字。这种情况中的how参数会被忽略。
 
线程可以通过调用sigwait等待一个或多个信号的出现。
 
#include <signal.h>



int sigwait(const sigset_t *restrict set, int *restrict signop);



　　　　　　　　　　　　　　　返回值：若成功，返回0；否则，返回错误编号


 
set参数指定了线程等待的信号集。返回时，signop指向的整数将包含发送信号的数量。
 
如果信号集中的某个信号在sigwait调用的时候处于挂起状态，那么sigwait将无阻塞地返回。在返回之前，sigwait将从进程中移除那些处于挂起等待状态的信号。如果具体实现支持排队信号，并且信号的多个实例被挂起，那么sigwait将会移除该信号的一个实例，其他的实例还要继续排队。
 
为了避免错误行为发生，线程在调用sigwait之前，必须阻塞那些它正在等待的信号。sigwait函数会原子地取消信号集的阻塞状态，直到有新的信号被递送。在返回之前，sigwait将恢复线程的信号屏蔽字。如果信号在sigwait被调用的时候没有被阻塞，那么在线程完成对sigwait的调用之前会出现一个时间窗，在这个时间窗中，信号就可以被发送给线程。
 
使用sigwait的好处在于它可以简化信号处理，允许把异步产生的信号用同步的方式处理。为了防止信号中断线程，可以把信号加到每个线程的信号屏蔽字中。然后可以安排专用线程处理信号。这些专用线程可以进行函数调用，不需要担心在信号处理程序中调用哪些函数是安全的，因为这些函数调用来自正常的线程上下文，而非会中断线程正常执行的传统信号处理程序。
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如果多个线程在sigwait的调用中因等待同一个信号而阻塞，那么在信号递送的时候，就只有一个线程可以从sigwait中返回。如果一个信号被捕获（例如进程通过使用sigaction建立了一个信号处理程序），而且一个线程正在sigwait调用中等待同一信号，那么这时将由操作系统实现来决定以何种方式递送信号。操作系统实现可以让sigwait返回，也可以激活信号处理程序，但这两种情况不会同时发生。
 
要把信号发送给进程，可以调用kill（见10.9节）。要把信号发送给线程，可以调用pthread_ kill。
 
#include <signal.h>



int pthread_kill(pthread_t thread, int signo);



　　　　　　　　　　　　　　　返回值：若成功，返回0；否则，返回错误编号


 
可以传一个0值的signo来检查线程是否存在。如果信号的默认处理动作是终止该进程，那么把信号传递给某个线程仍然会杀死整个进程。
 
注意，闹钟定时器是进程资源，并且所有的线程共享相同的闹钟。所以，进程中的多个线程不可能互不干扰（或互不合作）地使用闹钟定时器（这是习题12.6的内容）。
 
实例
 
回忆图10-23所示的程序，我们等待信号处理程序设置标志表明主程序应该退出。唯一可运行的控制线程就是主线程和信号处理程序，所以阻塞信号足以避免错失标志修改。在线程中，我们需要使用互斥量来保护标志，如图12-16中的程序所示。
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#include "apue.h"

#include <pthread.h>



int　　　　　　quitflag; 　　/* set nonzero by thread */

sigset_t　　　mask;



pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;

pthread_cond_t waitloc = PTHREAD_COND_INITIALIZER;



void *

thr_fn(void *arg)

{

 　　int err, signo;



 　　for (;;) {

　　　　　 err = sigwait(&mask, &signo);

　　　　　 if (err != 0)

　　　　　　　 err_exit(err, "sigwait failed");

　　　　　 switch (signo) {

　　　　　 case SIGINT:

　　　　　　　 printf("\ninterrupt\n");

　　　　　　　 break;



　　　　　 case SIGQUIT:

　　　　　　　 pthread_mutex_lock(&lock);

　　　　　　　 quitflag = 1;

　　　　　　　 pthread_mutex_unlock(&lock);

　　　　　　　 pthread_cond_signal(&waitloc);

　　　　　　　 return(0);



　　　　　 default:

　　　　　　　 printf("unexpected signal %d\n", signo);

　　　　　　　 exit(1);

　　　　　 }

 　　}

}



int

main(void)

{

 　　int　　　　　　err;

 　　sigset_t　　　oldmask;

 　　pthread_t    tid;



 　　sigemptyset(&mask);

 　　sigaddset(&mask, SIGINT);

 　　sigaddset(&mask, SIGQUIT);

 　　if ((err = pthread_sigmask(SIG_BLOCK, &mask, &oldmask)) != 0)

 　　　　 err_exit(err, "SIG_BLOCK error");



 　　err = pthread_create(&tid, NULL, thr_fn, 0);

 　　if (err != 0)

 　　　　 err_exit(err, "can't create thread");



 　　pthread_mutex_lock(&lock);

 　　while (quitflag == 0)

 　　　　 pthread_cond_wait(&waitloc, &lock);

 　　pthread_mutex_unlock(&lock);



 　　/* SIGQUIT has been caught and is now blocked; do whatever */

 　　quitflag = 0;



 　　/* reset signal mask which unblocks SIGQUIT */

 　　if (sigprocmask(SIG_SETMASK, &oldmask, NULL) < 0)

 　　　　 err_sys("SIG_SETMASK error");

 　　exit(0);

}
 
图12-16　同步信号处理
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我们不用依赖信号处理程序中断主控线程，有专门的独立控制线程进行信号处理。在互斥量的保护下改动quitflag的值，这样主控线程不会在调用pthread_cond_signal时错失唤醒调用。在主控线程中使用相同的互斥量来检查标志的值，并且原子地释放互斥量，等待条件的发生。
 
注意，在主线程开始时阻塞SIGINT和SIGQUIT。当创建线程进行信号处理时，新建线程继承了现有的信号屏蔽字。因为sigwait会解除信号的阻塞状态，所有只有一个线程可以用于信号的接收。这可以使我们对主线程进行编码时不必担心来自这些信号的中断。
 
运行这个程序可以得到与图10-23类似的输出结果：
 
$ ./a.out

^?　　　　　　　　输入中断字符

interrupt

^?　　　　　　　　再次输入中断字符

interrupt

^?　　　　　　　　再次输入中断字符

interrupt

^\ $　　　　　　 现在用退出符终止


 
12.9　线程和fork
 
当线程调用fork时，就为子进程创建了整个进程地址空间的副本。回忆8.3节中讨论的写时复制，子进程与父进程是完全不同的进程，只要两者都没有对内存内容做出改动，父进程和子进程之间还可以共享内存页的副本。
 
子进程通过继承整个地址空间的副本，还从父进程那儿继承了每个互斥量、读写锁和条件变量的状态。如果父进程包含一个以上的线程，子进程在fork返回以后，如果紧接着不是马上调用exec的话，就需要清理锁状态。
 
在子进程内部，只存在一个线程，它是由父进程中调用fork的线程的副本构成的。如果父进程中的线程占有锁，子进程将同样占有这些锁。问题是子进程并不包含占有锁的线程的副本，所以子进程没有办法知道它占有了哪些锁、需要释放哪些锁。
 
如果子进程从fork返回以后马上调用其中一个exec函数，就可以避免这样的问题。这种情况下，旧的地址空间就被丢弃，所以锁的状态无关紧要。但如果子进程需要继续做处理工作的话，这种策略就行不通，还需要使用其他的策略。
 
在多线程的进程中，为了避免不一致状态的问题，POSIX.1声明，在fork返回和子进程调用其中一个exec函数之间，子进程只能调用异步信号安全的函数。这就限制了在调用exec之前子进程能做什么，但不涉及子进程中锁状态的问题。
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要清除锁状态，可以通过调用pthread_atfork函数建立fork处理程序。
 
#include <pthread.h>



int pthread_atfork(void (*prepare)(void), void (*parent)(void),

　　　　　　　　　　　 void (*child)(void));



　　　　　　　　　　　　　　　返回值：若成功，返回0；否则，返回错误编号


 
用pthread_atfork函数最多可以安装3个帮助清理锁的函数。prepare fork处理程序由父进程在fork创建子进程前调用。这个fork处理程序的任务是获取父进程定义的所有锁。parent fork处理程序是在fork创建子进程以后、返回之前在父进程上下文中调用的。这个fork处理程序的任务是对prepare fork处理程序获取的所有锁进行解锁。child fork处理程序在fork返回之前在子进程上下文中调用。与parent fork处理程序一样，child fork处理程序也必须释放prepare fork处理程序获取的所有锁。
 
注意，不会出现加锁一次解锁两次的情况，虽然看起来也许会出现。子进程地址空间在创建时就得到了父进程定义的所有锁的副本。因为prepare fork处理程序获取了所有的锁，父进程中的内存和子进程中的内存内容在开始的时候是相同的。当父进程和子进程对它们锁的副本进程解锁的时候，新的内存是分配给子进程的，父进程的内存内容是复制到子进程的内存中（写时复制），所以我们就会陷入这样的假象，看起来父进程对它所有的锁的副本进行了加锁，子进程对它所有的锁的副本进行了加锁。父进程和子进程对在不同内存单元的重复的锁都进行了解锁操作，就好像出现了下列事件序列。
 
（1）父进程获取所有的锁。
 
（2）子进程获取所有的锁。
 
（3）父进程释放它的锁。
 
（4）子进程释放它的锁。
 
可以多次调用pthread_atfork函数从而设置多套fork处理程序。如果不需要使用其中某个处理程序，可以给特定的处理程序参数传入空指针，它就不会起任何作用了。使用多个fork处理程序时，处理程序的调用顺序并不相同。parent和child fork处理程序是以它们注册时的顺序进行调用的，而prepare fork处理程序的调用顺序与它们注册时的顺序相反。这样可以允许多个模块注册它们自己的fork处理程序，而且可以保持锁的层次。
 
例如，假设模块A调用模块B中的函数，而且每个模块有自己的一套锁。如果锁的层次是A在B之前，模块B必须在模块A之前设置它的fork处理程序。当父进程调用fork时，就会执行以下的步骤，假设子进程在父进程之前运行：
 
（1）调用模块A的prepare fork处理程序获取模块A的所有锁。
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（2）调用模块B的prepare fork处理程序获取模块B的所有锁。
 
（3）创建子进程。
 
（4）调用模块B中的child fork处理程序释放子进程中模块B的所有锁。
 
（5）调用模块A中的child fork处理程序释放子进程中模块A的所有锁。
 
（6）fork函数返回到子进程。
 
（7）调用模块B中的parent fork处理程序释放父进程中模块B的所有锁。
 
（8）调用模块A中的parent fork处理程序来释放父进程中模块A的所有锁。
 
（9）fork函数返回到父进程。
 
如果fork处理程序是用来清理锁状态的，那么又由谁来负责清理条件变量的状态呢？在有些操作系统的实现中，条件变量可能并不需要做任何清理。但是有些操作系统实现把锁作为条件变量实现的一部分，这种情况下的条件变量就需要清理。问题是目前不存在允许清理锁状态的接口。如果锁是嵌入到条件变量的数据结构中的，那么在调用fork之后就不能使用条件变量，因为还没有可移植的方法对锁进行状态清理。另外，如果操作系统的实现是使用全局锁保护进程中所有的条件变量数据结构，那么操作系统实现本身可以在fork库例程中做清理锁的工作，但是应用程序不应该依赖操作系统实现中类似这样的细节。
 
实例
 
图12-17中的程序描述了如何使用pthread_atfork和fork处理程序。
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#include "apue.h"

#include <pthread.h>



pthread_mutex_t lock1 = PTHREAD_MUTEX_INITIALIZER;

pthread_mutex_t lock2 = PTHREAD_MUTEX_INITIALIZER;



void

prepare(void)

{

 　　int err;



 　　printf("preparing locks...\n");

 　　if ((err = pthread_mutex_lock(&lock1)) != 0)

 　　　　　err_cont(err, "can't lock lock1 in prepare handler");

 　　if ((err = pthread_mutex_lock(&lock2)) != 0)

 　　　　　err_cont(err, "can't lock lock2 in prepare handler");

}



void

parent(void)

{

 　　int err;



 　　printf("parent unlocking locks...\n");

 　　if ((err = pthread_mutex_unlock(&lock1)) != 0)

 　　　　 err_cont(err, "can't unlock lock1 in parent handler");

 　　if ((err = pthread_mutex_unlock(&lock2)) != 0)

 　　　　 err_cont(err, "can't unlock lock2 in parent handler");

}



void

child(void)

{

 　　int err;



 　　printf("child unlocking locks...\n");

 　　if ((err = pthread_mutex_unlock(&lock1)) != 0)

 　　　　 err_cont(err, "can't unlock lock1 in child handler");

 　　if ((err = pthread_mutex_unlock(&lock2)) != 0)

 　　　　 err_cont(err, "can't unlock lock2 in child handler");

}



void *

thr_fn(void *arg)

{

 　　printf("thread started...\n");

 　　pause();

 　　return(0);

}



int

main(void)

{

 　　int　　　　　　err;

 　　pid_t　　　　　pid;

 　　pthread_t　　 tid;



 　　if ((err = pthread_atfork(prepare, parent, child)) != 0)

 　　　　 err_exit(err, "can't install fork handlers");

 　　if ((err = pthread_create(&tid, NULL, thr_fn, 0)) != 0)

 　　　　 err_exit(err, "can't create thread");



 　　sleep(2);

 　　printf("parent about to fork...\n");



 　　if ((pid = fork()) < 0)

 　　　　 err_quit("fork failed");

 　　else if (pid == 0)　　　/* child */

 　　　　 printf("child returned from fork\n");

 　　else　　　　/* parent */

 　　　　 printf("parent returned from fork\n");

 　　exit(0);

}
 
图12-17　pthread_atfork实例
 
图12-17中定义了两个互斥量，lock1和lock2，prepare fork处理程序获取这两把锁，child fork处理程序在子进程上下文中释放它们，parent fork处理程序在父进程上下文中释放它们。
 
运行该程序，得到如下输出：
 
$ ./a.out

thread started...

parent about to fork...

preparing locks...

child unlocking locks...

child returned from fork

parent unlocking locks...

parent returned from fork


 
可以看到，prepare fork处理程序在调用fork以后运行，child fork处理程序在fork调用返回到子进程之前运行，parent fork处理程序在fork调用返回给父进程之前运行。
 
虽然pthread_atfork机制的意图是使fork之后的锁状态保持一致，但它还是存在一些不足之处，只能在有限情况下可用。
 
 
 	没有很好的办法对较复杂的同步对象（如条件变量或者屏障）进行状态的重新初始化。
 
 	某些错误检查的互斥量实现在child fork处理程序试图对被父进程加锁的互斥量进行解锁时会产生错误。
 
 	递归互斥量不能在child fork处理程序中清理，因为没有办法确定该互斥量被加锁的次数。
 
 	如果子进程只允许调用异步信号安全的函数，child fork处理程序就不可能清理同步对象，因为用于操作清理的所有函数都不是异步信号安全的。实际的问题是同步对象在某个线程调用fork时可能处于中间状态，除非同步对象处于一致状态，否则无法被清理。
 
 	如果应用程序在信号处理程序中调用了fork（这是合法的，因为fork本身是异步信号安全的），pthread_atfork注册的fork处理程序只能调用异步信号安全的函数，否则结果将是未定义的。
 

 
12.10　线程和I/O
 
3.11节介绍了pread和pwrite函数。这些函数在多线程环境下是非常有用的，因为进程中的所有线程共享相同的文件描述符。
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考虑两个线程，在同一时间对同一个文件描述符进行读写操作。
 
 
 
   
   	线程A 
   	线程B 
  
 
   
   	lseek(fd, 300, SEEK_SET); 
   	lseek(fd, 700, SEEK_SET); 
  
 
   
   	read(fd, buf1, 100); 
   	read(fd, buf2, 100); 
  
 
 

 
如果线程A执行lseek然后线程B在线程A调用read之前调用lseek，那么两个线程最终会读取同一条记录。很显然这不是我们希望的。
 
为了解决这个问题，可以使用pread，使偏移量的设定和数据的读取成为一个原子操作。
 
 
 
   
   	线程A 
   	线程B 
  
 
   
   	pread(fd, buf1, 100, 300); 
   	pread(fd, buf2, 100, 700); 
  
 
 

 
使用pread可以确保线程A读取偏移量为300的记录，而线程B读取偏移量为700的记录。可以使用pwrite来解决并发线程对同一文件进行写操作的问题。
 
12.11　小结
 
在UNIX系统中，线程提供了分解并发任务的另一种模型。线程促进了独立控制线程之间的共享，但也出现了它特有的同步问题。本章中，我们了解了如何调整线程和它们的同步原语，讨论了线程的可重入性，还学习了线程如何与其他面向进程的系统调用进行交互。
 
习题
 
12.1　在Linux系统中运行图12-17中的程序，但把输出结果重定向到一个文件中，并解释结果。
 
12.2　实现putenv_r，即putenv的可重入版本。确保你的实现既是线程安全的，也是异步信号安全的。
 
12.3　是否可以通过在getenv函数开始的时候阻塞信号，并在getenv函数返回之前恢复原来的信号屏蔽字这种方法，让图12-13中的getenv函数变成异步信号安全的？解释其原因。
 
12.4　写一个程序练习图12-13中的getenv版本，在FreeBSD上编译并运行程序，会出现什么结果？解释其原因。
 
12.5　假设可以在一个程序中创建多个线程执行不同的任务，为什么还是有可能会需要用fork？解释其原因。
 
12.6　重新实现图10-29中的程序，在不使用nanosleep或clock_nanosleep的情况下使它成为线程安全的。
 
12.7　调用fork以后，是否可以通过首先用pthread_cond_destroy销毁条件变量，然后用pthread_cond_init初始化条件变量这种方法安全地在子进程中对条件变量进行重新初始化？
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12.8　图12-8中的timeout函数可以大大简化，解释其原因。
 


第13章　守护进程
 
13.1　引言
 
守护进程（daemon）是生存期长的一种进程。它们常常在系统引导装入时启动，仅在系统关闭时才终止。因为它们没有控制终端，所以说它们是在后台运行的。UNIX系统有很多守护进程，它们执行日常事务活动。
 
本章将说明守护进程结构，以及如何编写守护进程程序。因为守护进程没有控制终端，我们需要了解在出现问题时，守护进程如何报告出错情况。
 
 
 有关守护进程这一术语被应用于计算机系统的历史背景，详见Raymond[1996]。
 

 
13.2　守护进程的特征
 
让我们先来看一些常用的系统守护进程，以及它们是怎样和第9章中叙述的进程组、控制终端和会话这三个概念相关联的。ps(1)命令打印系统中各个进程的状态。该命令有多个选项，有关细节请参考系统手册。为了解本节讨论中所需的信息，我们在基于BSD的系统下执行：
 
ps -axj
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选项-a显示由其他用户所拥有的进程的状态，-x显示没有控制终端的进程状态，-j显示与作业有关的信息：会话ID、进程组ID、控制终端以及终端进程组ID。在基于System V的系统中，与此相类似的命令是ps -efj（为了提高安全性，某些UNIX系统不允许用户使用ps命令查看不属于自己的进程）。ps的输出大致是：
 
 
 
   
   	UID 
   	PID 
   	PPID 
   	PGID 
   	SID 
   	TTY 
   	COMD 
  
 
   
   	root 
   	1 
   	0 
   	1 
   	1 
   	? 
   	/sbin/init 
  
 
   
   	root 
   	2 
   	0 
   	0 
   	0 
   	? 
   	[kthreadd] 
  
 
   
   	root 
   	3 
   	2 
   	0 
   	0 
   	? 
   	[ksoftirqd/0] 
  
 
   
   	root 
   	6 
   	2 
   	0 
   	0 
   	? 
   	[migration/0] 
  
 
   
   	root 
   	7 
   	2 
   	0 
   	0 
   	? 
   	[watchdog/0] 
  
 
   
   	root 
   	21 
   	2 
   	0 
   	0 
   	? 
   	[cpuset] 
  
 
   
   	root 
   	22 
   	2 
   	0 
   	0 
   	? 
   	[khelper] 
  
 
   
   	root 
   	26 
   	2 
   	0 
   	0 
   	? 
   	[sync_supers] 
  
 
   
   	root 
   	27 
   	2 
   	0 
   	0 
   	? 
   	[bdi-default] 
  
 
   
   	root 
   	29 
   	2 
   	0 
   	0 
   	? 
   	[kblockd] 
  
 
   
   	root 
   	35 
   	2 
   	0 
   	0 
   	? 
   	[kswapd0] 
  
 
   
   	root 
   	49 
   	2 
   	0 
   	0 
   	? 
   	[scsi_eh_0] 
  
 
   
   	root 
   	256 
   	2 
   	0 
   	0 
   	? 
   	[jbd2/sda5-8] 
  
 
   
   	root 
   	257 
   	2 
   	0 
   	0 
   	? 
   	[ext4-dio-unwrit] 
  
 
   
   	syslog 
   	847 
   	1 
   	843 
   	843 
   	? 
   	rsyslogd -c5 
  
 
   
   	root 
   	906 
   	1 
   	906 
   	906 
   	? 
   	/usr/sbin/cupsd -F 
  
 
   
   	root 
   	1037 
   	1 
   	1037 
   	1037 
   	? 
   	/usr/sbin/inetd 
  
 
   
   	root 
   	1067 
   	1 
   	1067 
   	1067 
   	? 
   	cron 
  
 
   
   	daemon 
   	1068 
   	1 
   	1068 
   	1068 
   	? 
   	atd 
  
 
   
   	root 
   	8196 
   	1 
   	8196 
   	8196 
   	? 
   	/usr/sbin/sshd -D 
  
 
   
   	root 
   	13047 
   	2 
   	0 
   	0 
   	? 
   	[kworker/1:0] 
  
 
   
   	root 
   	14596 
   	2 
   	0 
   	0 
   	? 
   	[flush-8:0] 
  
 
   
   	root 
   	26464 
   	1 
   	26464 
   	26464 
   	? 
   	rpcbind -w 
  
 
   
   	statd 
   	28490 
   	1 
   	28490 
   	28490 
   	? 
   	rpc.statd -L 
  
 
   
   	root 
   	28553 
   	2 
   	0 
   	0 
   	? 
   	[rpciod] 
  
 
   
   	root 
   	28554 
   	2 
   	0 
   	0 
   	? 
   	[nfsiod] 
  
 
   
   	root 
   	28561 
   	1 
   	28561 
   	28561 
   	? 
   	rpc.idmapd 
  
 
   
   	root 
   	28761 
   	2 
   	0 
   	0 
   	? 
   	[lockd] 
  
 
   
   	root 
   	28764 
   	2 
   	0 
   	0 
   	? 
   	[nfsd] 
  
 
   
   	root 
   	28775 
   	1 
   	28775 
   	28775 
   	? 
   	/usr/sbin/rpc.mountd --manage-gids 
  
 
 

 
其中，已移去了一些我们不感兴趣的列，如累计CPU时间。按照顺序，各列标题的意义分别是用户ID、进程ID、父进程ID、进程组ID、会话ID、终端名称以及命令字符串。
 
 
 此ps命令在支持会话ID的系统（Linux 3.2.0）上运行，9.5节的setsid函数中曾提及会话ID。简单地说，它就是会话首进程的进程ID。但是，一些基于BSD的系统，如Mac OS X 10.6.8，将打印与本进程所属进程组对应的session结构的地址（见9.11节），而非会话ID的地址。
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系统进程依赖于操作系统实现。父进程ID为0的各进程通常是内核进程，它们作为系统引导装入过程的一部分而启动。（init是个例外，它是一个由内核在引导装入时启动的用户层次的命令。）内核进程是特殊的，通常存在于系统的整个生命期中。它们以超级用户特权运行，无控制终端，无命令行。
 
在ps的输出实例中，内核守护进程的名字出现在方括号中。该版本的Linux使用一个名为kthreadd的特殊内核进程来创建其他内核进程，所以kthreadd表现为其他内核进程的父进程。对于需要在进程上下文执行工作但却不被用户层进程上下文调用的每一个内核组件，通常有它自己的内核守护进程。例如，在Linux中：
 
 
 	kswapd守护进程也称为内存换页守护进程。它支持虚拟内存子系统在经过一段时间后将脏页面慢慢地写回磁盘来回收这些页面。
 
 	flush守护进程在可用内存达到设置的最小阈值时将脏页面冲洗至磁盘。它也定期地将脏页面冲洗回磁盘来减少在系统出现故障时发生的数据丢失。多个冲洗守护进程可以同时存在，每个写回的设备都有一个冲洗守护进程。输出实例中显示出一个名为flush-8:0的冲洗守护进程。从名字中可以看出，写回设备是通过主设备号（8）和副设备号（0）来识别的。
 
 	sync_supers守护进程定期将文件系统元数据冲洗至磁盘。
 
 	jbd守护进程帮助实现了ext4文件系统中的日志功能。
 

 
进程1通常是init（Mac OS X中是launchd），8.2节对此做过说明。它是一个系统守护进程，除了其他工作外，主要负责启动各运行层次特定的系统服务。这些服务通常是在它们自己拥有的守护进程的帮助下实现的。
 
rpcbind守护进程提供将远程过程调用（Remote Procedure Call，RPC）程序号映射为网络端口号的服务。rsyslogd守护进程可以被由管理员启用的将系统消息记入日志的任何程序使用。可以在一台实际的控制台上打印这些消息，也可将它们写到一个文件中。（13.4节将对syslog设施进行说明。）
 
9.3节已谈到inetd守护进程。它侦听系统网络接口，以便取得来自网络的对各种网络服务进程的请求。nfsd、nfsiod、lockd、rpciod、rpc.idmapd、rpc.statd和rpc.mountd守护进程提供对网络文件系统（Network File System，NFS）的支持。注意，前4个是内核守护进程，后3个是用户级守护进程。
 
cron守护进程在定期安排的日期和时间执行命令。许多系统管理任务是通过cron每隔一段固定的时间就运行相关程序而得以实现的。atd守护进程与cron类似，它允许用户在指定的时间执行任务，但是每个任务它只执行一次，而非在定期安排的时间反复执行。cupsd守护进程是个打印假脱机进程，它处理对系统提出的各个打印请求。sshd守护进程提供了安全的远程登录和执行设施。
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注意，大多数守护进程都以超级用户（root）特权运行。所有的守护进程都没有控制终端，其终端名设置为问号。内核守护进程以无控制终端方式启动。用户层守护进程缺少控制终端可能是守护进程调用了setsid的结果。大多数用户层守护进程都是进程组的组长进程以及会话的首进程，而且是这些进程组和会话中的唯一进程（rsyslogd是一个例外）。最后，应当引起注意的是用户层守护进程的父进程是init进程。
 
13.3　编程规则
 
在编写守护进程程序时需遵循一些基本规则，以防止产生不必要的交互作用。下面先说明这些规则，然后给出一个按照这些规则编写的函数daemonize。
 
（1）首先要做的是调用umask将文件模式创建屏蔽字设置为一个已知值（通常是0）。由继承得来的文件模式创建屏蔽字可能会被设置为拒绝某些权限。如果守护进程要创建文件，那么它可能要设置特定的权限。例如，若守护进程要创建组可读、组可写的文件，继承的文件模式创建屏蔽字可能会屏蔽上述两种权限中的一种，而使其无法发挥作用。另一方面，如果守护进程调用的库函数创建了文件，那么将文件模式创建屏蔽字设置为一个限制性更强的值（如007）可能会更明智，因为库函数可能不允许调用者通过一个显式的函数参数来设置权限。
 
（2）调用fork，然后使父进程exit。这样做实现了下面几点。第一，如果该守护进程是作为一条简单的shell命令启动的，那么父进程终止会让shell认为这条命令已经执行完毕。第二，虽然子进程继承了父进程的进程组ID，但获得了一个新的进程ID，这就保证了子进程不是一个进程组的组长进程。这是下面将要进行的setsid调用的先决条件。
 
（3）调用setsid创建一个新会话。然后执行9.5节中列出的3个步骤，使调用进程：（a）成为新会话的首进程，（b）成为一个新进程组的组长进程，（c）没有控制终端。
 
 
 在基于System V的系统中，有些人建议在此时再次调用fork，终止父进程，继续使用子进程中的守护进程。这就保证了该守护进程不是会话首进程，于是按照System V规则（见9.6节）可以防止它取得控制终端。为了避免取得控制终端的另一种方法是，无论何时打开一个终端设备，都一定要指定O_NOCTTY。
 

 
（4）将当前工作目录更改为根目录。从父进程处继承过来的当前工作目录可能在一个挂载的文件系统中。因为守护进程通常在系统再引导之前是一直存在的，所以如果守护进程的当前工作目录在一个挂载文件系统中，那么该文件系统就不能被卸载。
 
或者，某些守护进程还可能会把当前工作目录更改到某个指定位置，并在此位置进行它们的全部工作。例如，行式打印机假脱机守护进程就可能将其工作目录更改到它们的spool目录上。
 
（5）关闭不再需要的文件描述符。这使守护进程不再持有从其父进程继承来的任何文件描述符（父进程可能是shell进程，或某个其他进程）。可以使用open_max函数（见2.17节）或getrlimit函数（见7.11节）来判定最高文件描述符值，并关闭直到该值的所有描述符。
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（6）某些守护进程打开/dev/null使其具有文件描述符0、1和2，这样，任何一个试图读标准输入、写标准输出或标准错误的库例程都不会产生任何效果。因为守护进程并不与终端设备相关联，所以其输出无处显示，也无处从交互式用户那里接收输入。即使守护进程是从交互式会话启动的，但是守护进程是在后台运行的，所以登录会话的终止并不影响守护进程。如果其他用户在同一终端设备上登录，我们不希望在该终端上见到守护进程的输出，用户也不期望他们在终端上的输入被守护进程读取。
 
实例
 
图13-1所示的函数可由一个想要初始化为守护进程的程序调用。
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#include "apue.h"

#include <syslog.h>

#include <fcntl.h>

#include <sys/resource.h>



void

daemonize(const char *cmd)

{

 　　int　　　　　　　　　i, fd0, fd1, fd2;

 　　pid_t　　　　　　　　pid;

 　　struct rlimit　　　rl;

 　　struct sigaction　sa;



 　　/*

 　　 * Clear file creation mask.

 　　 */

 　　umask(0);



 　　/*

 　　 * Get maximum number of file descriptors.

 　　 */

 　　if (getrlimit(RLIMIT_NOFILE, &rl) < 0)

 　　　　 err_quit("%s: can't get file limit", cmd);



 　　/*

 　　 * Become a session leader to lose controlling TTY.

 　　 */

 　　if ((pid = fork()) < 0)

 　　　　 err_quit("%s: can't fork", cmd);

 　　else if (pid != 0) /* parent */

 　　　　 exit(0);

 　　setsid();



 　　/*

 　　 * Ensure future opens won't allocate controlling TTYs.

 　　 */

 　　sa.sa_handler = SIG_IGN;

 　　sigemptyset(&sa.sa_mask);

 　　sa.sa_flags = 0;

 　　if (sigaction(SIGHUP, &sa, NULL) < 0)

 　　　　 err_quit("%s: can't ignore SIGHUP", cmd);

 　　if ((pid = fork()) < 0)

 　　　　 err_quit("%s: can't fork", cmd);

 　　else if (pid != 0) /* parent */

 　　　　 exit(0);



 　　/*

 　　 * Change the current working directory to the root so

 　　 * we won't prevent file systems from being unmounted.

 　　 */

 　　if (chdir("/") < 0)

 　　　　 err_quit("%s: can't change directory to /", cmd);



 　　/*

 　　 * Close all open file descriptors.

 　　 */

 　　if (rl.rlim_max == RLIM_INFINITY)

 　　　　 rl.rlim_max = 1024;

 　　for (i = 0; i < rl.rlim_max; i++)

 　　　　 close(i);



 　　/*

 　　 * Attach file descriptors 0, 1, and 2 to /dev/null.

 　　 */

 　　fd0 = open("/dev/null", O_RDWR);

 　　fd1 = dup(0);

 　　fd2 = dup(0);



 　　/*

 　　 * Initialize the log file.

 　　 */

 　　openlog(cmd, LOG_CONS, LOG_DAEMON);

 　　if (fd0 != 0 || fd1 != 1 || fd2 != 2) {

 　　　　 syslog(LOG_ERR, "unexpected file descriptors %d %d %d",

 　　　　　 fd0, fd1, fd2);

 　　　　 exit(1);

 　　}

}
 
图13-1　初始化一个守护进程
 
若daemonize函数由main程序调用，然后main程序进入休眠状态，那么可以用ps命令检查该守护进程的状态：
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$ ./a.out

$ ps -efj

UID　　 PID　PPID　 PGID　　SID　TTY　CMD

sar　 13800　　 1　13799　13799　?　　./a.out

$ ps -efj |　grep 13799

sar　 13800　　 1　13799　13799　?　　./a.out


 
我们也可用ps命令验证，没有活动进程存在的ID是13799。这意味着，守护进程在一个孤儿进程组中（见9.10节），它不是会话首进程，因此没有机会被分配到一个控制终端。这一结果是在daemonize函数中执行第二个fork造成的。可以看出，守护进程已经被正确地初始化了。
 
13.4　出错记录
 
守护进程存在的一个问题是如何处理出错消息。因为它本就不应该有控制终端，所以不能只是简单地写到标准错误上。我们不希望所有守护进程都写到控制台设备上，因为在很多工作站上控制台设备都运行着一个窗口系统。我们也不希望每个守护进程将它自己的出错消息写到一个单独的文件中。对任何一个系统管理人员而言，如果要关心哪一个守护进程写到哪一个记录文件中，并定期地检查这些文件，那么一定会使他感到头痛。所以，需要有一个集中的守护进程出错记录设施。
 
 
 BSD syslog设施是在伯克利开发的，广泛应用于4.2BSD。从BSD派生的很多系统都支持syslog。在SVR4之前，System V中从来没有一个集中的守护进程记录设施。在Single UNIX Specification的XSI扩展中包括了syslog函数。
 

 
自4.2BSD以来，BSD的syslog设施得到了广泛的应用。大多数守护进程都使用这一设施。图13-2显示了syslog设施的详细组织结构。
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图13-2　BSD的syslog设施
 
有以下3种产生日志消息的方法。
 
（1）内核例程可以调用 log 函数。任何一个用户进程都可以通过打开（open）并读取（read）/dev/klog设备来读取这些消息。因为我们无意编写内核例程，所以不再进一步说明此函数。
 
（2）大多数用户进程（守护进程）调用syslog(3)函数来产生日志消息。我们将在下面说明其调用序列。这使消息被发送至UNIX域数据报套接字/dev/log。
 
（3）无论一个用户进程是在此主机上，还是在通过TCP/IP网络连接到此主机的其他主机上，都可将日志消息发向UDP端口514。注意，syslog函数从不产生这些UDP数据报，它们要求产生此日志消息的进程进行显式的网络编程。
 
关于UNIX域套接字以及UDP套接字的细节，请参阅Stevens、Fenner和Rudoff[2004]。
 
通常，syslogd守护进程读取所有3种格式的日志消息。此守护进程在启动时读一个配置文件，其文件名一般为/etc/syslog.conf，该文件决定了不同种类的消息应送向何处。例如，紧急消息可发送至系统管理员（若已登录），并在控制台上打印，而警告消息则可记录到一个文件中。
 
该设施的接口是syslog函数。
 
#include <syslog.h>



void openlog(const char *ident, int option, int facility);



void syslog(int priority, const char *format, ...);



void closelog(void);



int setlogmask(int maskpri);



　　　　　　　　　　　　　　　返回值：前日志记录优先级屏蔽字值


 
调用openlog是可选择的。如果不调用openlog，则在第一次调用syslog时，自动调用openlog。调用closelog也是可选择的，因为它只是关闭曾被用于与syslogd守护进程进行通信的描述符。
 
调用openlog使我们可以指定一个ident，以后，此ident将被加至每则日志消息中。ident一般是程序的名称（如cron、inetd）。option参数是指定各种选项的位屏蔽。图13-3介绍了可用的option（选项）。若在Single UNIX Specification的openlog定义中包括了该选项，则在XSI列中用一个黑点表示。
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图13-3　openlog的option参数
 
openlog的facility参数值选取自图13-4。注意，Single UNIX Specification只定义了facility所有参数值中的一个子集，该子集一般只能用在一个给定的平台上。设置facility参数的目的是可以让配置文件说明，来自不同设施的消息将以不同的方式进行处理。如果不调用openlog，或者以facility为0来调用它，那么在调用syslog时，可将facility作为priority参数的一个部分进行说明。
 
调用syslog产生一个日志消息。其priority参数是facility和level的组合，它们可选取的值分别列于facility（见图13-4）和level（见图 13-5）中。level值按优先级从最高到最低依次排列。
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图13-4　openlog的facility参数
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图13-5　syslog中的level（按序排列）
 
将format参数以及其他所有参数传至vsprintf函数以便进行格式化。在format中，每个出现的%m字符都先被代换成与errno值对应的出错消息字符串（strerror）。
 
setlogmask函数用于设置进程的记录优先级屏蔽字。它返回调用它之前的屏蔽字。当设置了记录优先级屏蔽字时，各条消息除非已在记录优先级屏蔽字中进行了设置，否则将不被记录。注意，试图将记录优先级屏蔽字设置为0并不会有什么作用。
 
很多系统也将logger(1)程序作为向syslog设施发送日志消息的方法。虽然Single UNIX Specification没有定义任何可选参数，但某些实现允许将该程序的可选参数指定为facility、level和ident。logger命令是专门为以非交互方式运行的需要产生日志消息的shell脚本设计的。
 
实例
 
在一个（假定的）行式打印机假脱机守护进程中，可能包含有下面的调用序列：
 
openlog("lpd", LOG_PID, LOG_LPR);

syslog(LOG_ERR, "open error for %s: %m", filename);
 
第一个调用将ident字符串设置为程序名，指定该进程ID要始终被打印，并且将系统默认的facility设定为行式打印机系统。对syslog的调用指定一个出错条件和一个消息字符串。如若不调用openlog，则第二个调用的形式可能是：
 
syslog(LOG_ERR | LOG_LPR, "open error for %s: %m", filename);
 
其中，将priority参数指定为level和facility的组合。
 
除了syslog，很多平台还提供它的一种变体来处理可变参数列表。
 
#include <syslog.h>



#include <stdarg.h>



void vsyslog(int priority, const char *format, va_list arg);
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 本书说明的所有4种平台都提供vsyslog，但Single UNIX Specification中并不包括它。注意，如果要使它的声明对应用程序可见，可能需要定义一个额外的符号，例如，在FreeBSD中定义__BSD_ VISIBLE或在Linux中定义__USE_BSD。
 

 
大多数syslog实现将使消息短时间处于队列中。如果在此段时间中有重复消息到达，那么syslog守护进程不会把它写到日志记录中，而是会打印输出一条类似于“上一条消息重复了N次”的消息。
 
13.5　单实例守护进程
 
为了正常运作，某些守护进程会实现为，在任一时刻只运行该守护进程的一个副本。例如，这种守护进程可能需要排它地访问一个设备。对cron守护进程而言，如果同时有多个实例运行，那么每个副本都可能试图开始某个预定的操作，于是造成该操作的重复执行，这很可能导致出错。
 
如果守护进程需要访问一个设备，而该设备驱动程序有时会阻止想要多次打开/dev目录下相应设备节点的尝试。这就限制了在一个时刻只能运行守护进程的一个副本。但是如果没有这种设备可供使用，那么我们就需要自行处理。
 
文件和记录锁机制为一种方法提供了基础，该方法保证一个守护进程只有一个副本在运行。（文件和记录锁将在14.3节中讨论。）如果每一个守护进程创建一个有固定名字的文件，并在该文件的整体上加一把写锁，那么只允许创建一把这样的写锁。在此之后创建写锁的尝试都会失败，这向后续守护进程副本指明已有一个副本正在运行。
 
文件和记录锁提供了一种方便的互斥机制。如果守护进程在一个文件的整体上得到一把写锁，那么在该守护进程终止时，这把锁将被自动删除。这就简化了复原所需的处理，去除了对以前的守护进程实例需要进行清理的有关操作。
 
实例
 
图13-6所示的函数说明了如何使用文件和记录锁来保证只运行一个守护进程的一个副本。
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#include <unistd.h>

#include <stdlib.h>

#include <fcntl.h>

#include <syslog.h>

#include <string.h>

#include <errno.h>

#include <stdio.h>

#include <sys/stat.h>



#define LOCKFILE "/var/run/daemon.pid"

#define LOCKMODE (S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)



extern int lockfile(int);



int

already_running(void)

{

 　　int　　　　fd;

 　　char　　　 buf[16];



 　　fd = open(LOCKFILE, O_RDWR|O_CREAT, LOCKMODE);

 　　if (fd < 0) {

 　　　　 syslog(LOG_ERR, "can't open %s: %s", LOCKFILE, strerror(errno));

 　　　　 exit(1);

 　　}

 　　if (lockfile(fd) < 0) {

 　　　　 if (errno == EACCES || errno == EAGAIN) {

　　　　　　　 close(fd);

　　　　　　　 return(1);

 　　　　 }

 　　　　 syslog(LOG_ERR, "can't lock %s: %s", LOCKFILE, strerror(errno));

 　　　　 exit(1);

 　　}

 　　ftruncate(fd, 0);

 　　sprintf(buf, "%ld", (long)getpid());

 　　write(fd, buf, strlen(buf)+1);

 　　return(0);

}
 
图13-6　保证只运行一个守护进程的一个副本
 
守护进程的每个副本都将试图创建一个文件，并将其进程ID写到该文件中。这使管理人员易于标识该进程。如果该文件已经加了锁，那么lockfile函数将失败，errno设置为EACCES或EAGAIN，图13-6中的函数返回1，表明该守护进程已在运行。否则将文件长度截断为0，将进程ID写入该文件，图13-6中的函数返回0。
 
需要将文件长度截断为0，其原因是之前的守护进程实例的进程ID字符串可能长于调用此函数的当前进程的进程ID字符串。例如，若以前的守护进程的进程ID是12345，而新实例的进程ID是9999，那么将此进程ID写入文件后，在文件中留下的是99995。将文件长度截断为0就解决了此问题。
 
13.6　守护进程的惯例
 
在UNIX系统中，守护进程遵循下列通用惯例。
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 	若守护进程使用锁文件，那么该文件通常存储在/var/run目录中。然而需要注意的是，守护进程可能需要具有超级用户权限才能在此目录下创建文件。锁文件的名字通常是name.pid，其中，name是该守护进程或服务的名字。例如，cron守护进程锁文件的名字是/var/run/ crond.pid。
 
 	若守护进程支持配置选项，那么配置文件通常存放在/etc目录中。配置文件的名字通常是name.conf，其中，name是该守护进程或服务的名字。例如，syslogd守护进程的配置文件通常是/etc/syslog.conf。
 
 	守护进程可用命令行启动，但通常它们是由系统初始化脚本之一（/etc/rc*或/etc/ init.d/­*）启动的。如果在守护进程终止时，应当自动地重新启动它，则我们可在/etc/ inittab中为该守护进程包括respawn记录项，这样，init就将重新启动该守护进程。（假定系统使用System V风格的init命令。）
 
 	若一个守护进程有一个配置文件，那么当该守护进程启动时会读该文件，但在此之后一般就不会再查看它。若某个管理员更改了配置文件，那么该守护进程可能需要被停止，然后再启动，以使配置文件的更改生效。为避免此种麻烦，某些守护进程将捕捉SIGHUP信号，当它们接收到该信号时，重新读配置文件。因为守护进程并不与终端相结合，它们或者是无控制终端的会话首进程，或者是孤儿进程组的成员，所以守护进程没有理由期望接收SIGHUP。于是，守护进程可以安全地重复使用SIGHUP。
 

 
实例
 
图13-7所示的程序说明了守护进程可以重读其配置文件的一种方法。该程序使用sigwait以及多线程，对此我们已经在12.8节讨论过。
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#include "apue.h"

#include <pthread.h>

#include <syslog.h>



sigset_t　mask;



extern int already_running(void);



void

reread(void)

{

 　　/* ... */

}



void *

thr_fn(void *arg)

{

 　　int err, signo;



 　　for (;;) {

　　　　　err = sigwait(&mask, &signo);

　　　　　if (err != 0) {

　　　　　　　 syslog(LOG_ERR, "sigwait failed");

　　　　　　　 exit(1);

　　　　　}



　　　　　switch (signo) {

　　　　　case SIGHUP:

　　　　　　　 syslog(LOG_INFO, "Re-reading configuration file");

　　　　　　　 reread();

　　　　　　　 break;



　　　　　case SIGTERM:

　　　　　　　 syslog(LOG_INFO, "got SIGTERM; exiting");

　　　　　　　 exit(0);



　　　　　default:

　　　　　　　 syslog(LOG_INFO, "unexpected signal %d\n", signo);

　　　　　}

 　　}

 　　return(0);

}



int

main(int argc, char *argv[])

{

 　　int　　　　　　　　 　err;

 　　pthread_t　　　　   tid;

 　　char　　　　　　　　　*cmd;

 　　struct sigaction　 sa;



 　　if ((cmd = strrchr(argv[0], '/')) == NULL)

　　　　　cmd = argv[0];

 　　else

　　　　　cmd++;



 　　/*

 　　 * Become a daemon.

 　　 */

 　　daemonize(cmd);



 　　/*

 　　 * Make sure only one copy of the daemon is running.

 　　 */

 　　if (already_running()) {

　　　　　syslog(LOG_ERR, "daemon already running");

　　　　　exit(1);

 　　}



 　　/*

 　　 * Restore SIGHUP default and block all signals.

 　　 */

 　　sa.sa_handler = SIG_DFL;

 　　sigemptyset(&sa.sa_mask);

 　　sa.sa_flags = 0;

 　　if (sigaction(SIGHUP, &sa, NULL) < 0)

　　　　　err_quit("%s: can't restore SIGHUP default");

 　　sigfillset(&mask);

 　　if ((err = pthread_sigmask(SIG_BLOCK, &mask, NULL)) != 0)

　　　　　 err_exit(err, "SIG_BLOCK error");



 　　/*

 　　 * Create a thread to handle SIGHUP and SIGTERM.

 　　 */

 　　err = pthread_create(&tid, NULL, thr_fn, 0);

 　　if (err != 0)

　　　　　err_exit(err, "can't create thread");



 　　/*

 　　 * Proceed with the rest of the daemon.

 　　 */

 　　/* ... */

 　　exit(0);

}
 
图13-7　守护进程重读配置文件
 
该程序调用了图13-1中的daemonize来初始化守护进程。从该函数返回后，调用图13-6中的already_running函数以确保该守护进程只有一个副本在运行。到达这一点时，SIGHUP信号仍被忽略，所以需恢复对该信号的系统默认处理方式；否则调用sigwait的线程决不会见到该信号。
 
如同对多线程程序所推荐的那样，阻塞所有信号，然后创建一个线程处理信号。该线程的唯一工作是等待SIGHUP和SIGTERM。当接收到SIGHUP信号时，该线程调用reread函数重读它的配置文件。当它接收到SIGTERM信号时，会记录消息并退出。
 
回顾图10-1，SIGHUP和SIGTERM的默认动作是终止进程。因为我们阻塞了这些信号，所以当SIGHUP和SIGTERM的其中一个被发送到守护进程时，守护进程不会消亡。作为替代，调用sigwait的线程在返回时将指示已接收到该信号。
 
实例
 
并非所有守护进程都是多线程的。图13-8中的程序说明一个单线程守护进程如何捕捉SIGHUP并重读其配置文件。
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#include "apue.h"

#include <syslog.h>

#include <errno.h>



extern int lockfile(int);

extern int already_running(void);



void

reread(void)

{

 　　/* ... */

}



void

sigterm(int signo)

{

 　　syslog(LOG_INFO, "got SIGTERM; exiting");

 　　exit(0);

}



void

sighup(int signo)

{

 　　syslog(LOG_INFO, "Re-reading configuration file");

 　　reread();

}



int

main(int argc, char *argv[])

{

 　　char　　　　　　　　　*cmd;

 　　struct sigaction　 sa;



 　　if ((cmd = strrchr(argv[0], '/')) == NULL)

 　　　　　cmd = argv[0];

 　　else

 　　　　　cmd++;



 　　/*

 　　 * Become a daemon.

 　　 */

 　　daemonize(cmd);



 　　/*

 　　 * Make sure only one copy of the daemon is running.

 　　 */

 　　if (already_running()) {

 　　　　 syslog(LOG_ERR, "daemon already running");

 　　　　 exit(1);

 　　}



 　　/*

 　　 * Handle signals of interest.

 　　 */

 　　sa.sa_handler = sigterm;

 　　sigemptyset(&sa.sa_mask);

 　　sigaddset(&sa.sa_mask, SIGHUP);

 　　sa.sa_flags = 0;

 　　if (sigaction(SIGTERM, &sa, NULL) < 0) {

 　　　　 syslog(LOG_ERR, "can't catch SIGTERM: %s", strerror(errno));

 　　　　 exit(1);

 　　}

 　　sa.sa_handler = sighup;

 　　sigemptyset(&sa.sa_mask);

 　　sigaddset(&sa.sa_mask, SIGTERM);

 　　sa.sa_flags = 0;

 　　if (sigaction(SIGHUP, &sa, NULL) < 0) {

 　　　　 syslog(LOG_ERR, "can't catch SIGHUP: %s", strerror(errno));

 　　　　 exit(1);

 　　}



 　　/*

 　　 * Proceed with the rest of the daemon.

 　　 */

 　　/* ... */

 　　exit(0);

}
 
图13-8　守护进程重读配置文件的另一种实现
 
在初始化守护进程后，我们为SIGHUP和SIGTERM配置了信号处理程序。可以将重读逻辑放在信号处理程序中，也可以只在信号处理程序中设置一个标志，并由守护进程的主线程完成所有的工作。
 
13.7　客户进程-服务器进程模型
 
守护进程常常用作服务器进程。确实，我们可以称图13-2中的syslogd进程为服务器进程，用户进程（客户进程）用UNIX域数据报套接字向其发送消息。
 
一般而言，服务器进程等待客户进程与其联系，提出某种类型的服务要求。图13-2中，由syslogd服务器进程提供的服务是将一条出错消息记录到日志文件中。
 
图13-2中，客户进程和服务器进程之间的通信是单向的。客户进程向服务器进程发送服务请求，服务器进程则不向客户进程回送任何消息。在下面有关进程通信的几章中，我们将见到大量客户进程和服务器进程之间双向通信的实例。客户进程向服务器进程发送请求，服务器进程则向客户进程回送应答。
 
在服务器进程中调用fork然后exec另一个程序来向客户进程提供服务是很常见的。这些服务器进程通常管理着多个文件描述符：通信端点、配置文件、日志文件和类似的文件。最好的情况下，让子进程中的这些文件描述符保持打开状态并无大碍，因为它们很可能不会被在子进程中执行的程序所使用，尤其是那些与服务器端无关的程序。最坏情况下，保持它们的打开状态会导致安全问题——被执行的程序可能有一些恶意行为，如更改服务器端配置文件或欺骗客户端程序使其认为正在与服务器端通信，从而获取未授权的信息。
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解决此问题的一个简单方法是对所有被执行程序不需要的文件描述符设置执行时关闭（close-on-exec）标志。图13-9展示了一个可以用来在服务器端进程中执行上述工作的函数。
 
#include "apue.h"

#include <fcntl.h>



int

set_cloexec(int fd)

{

 　　int　　　　val;



 　　if ((val = fcntl(fd, F_GETFD, 0)) < 0)

 　　　　　return(-1);



 　　val |= FD_CLOEXEC;　　　　　/* enable close-on-exec */



 　　return(fcntl(fd, F_SETFD, val));

}
 
图13-9　设置执行时关闭标志
 
13.8　小结
 
在大多数UNIX系统中，守护进程是一直运行的。为了初始化我们自己的进程，使之作为守护进程运行，需要一些审慎的思索并理解第9章中说明的进程之间的关系。本章开发了一个可由守护进程调用的能对其自身正确初始化的函数。
 
因为守护进程通常没有控制终端，所以本章还讨论了守护进程记录出错消息的几种方法。我们讨论了在大多数UNIX系统中，守护进程遵循的若干惯例，给出了几个如何实现某些惯例的实例。
 
习题
 
13.1　从图13-2可以推测出，直接调用openlog或第一次调用syslog都可以初始化syslog设施，此时一定要打开用于UNIX域数据报套接字的特殊设备文件/dev/log。如果调用openlog前，用户进程（守护进程）先调用了chroot，结果会怎么样？
 
13.2　回顾13.2节中ps输出的示例。唯一一个不是会话首进程的用户层守护进程是rsyslogd进程。请解释为什么rsyslogd守护进程不是会话首进程。
 
13.3　列出你系统中所有有效的守护进程，并说明它们各自的功能。
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13.4　编写一段程序调用图13-1中daemonize函数。调用该函数后，它已成为守护进程，再调用getlogin（见8.15节）查看该进程是否有登录名。将结果打印到一个文件中。
 


第14章　高级I/O
 
14.1　引言
 
本章涵盖众多概念和函数，我们把它们统统都放到高级I/O下讨论：非阻塞I/O、记录锁、I/O多路转接（select和poll函数）、异步I/O、readv和writev函数以及存储映射I/O（mmap）。第15章和第17章中的进程间通信以及以后各章中的很多实例都要使用本章所描述的概念和函数。
 
14.2　非阻塞I/O
 
10.5节中曾将系统调用分成两类：“低速”系统调用和其他。低速系统调用是可能会使进程永远阻塞的一类系统调用，包括：
 
 
 	如果某些文件类型（如读管道、终端设备和网络设备）的数据并不存在，读操作可能会使调用者永远阻塞；
 
 	如果数据不能被相同的文件类型立即接受（如管道中无空间、网络流控制），写操作可能会使调用者永远阻塞；
 
 	在某种条件发生之前打开某些文件类型可能会发生阻塞（如要打开一个终端设备，需要先等待与之连接的调制解调器应答，又如若以只写模式打开FIFO，那么在没有其他进程已用读模式打开该FIFO时也要等待）；
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 	对已经加上强制性记录锁的文件进行读写；
 
 	某些ioctl操作；
 
 	某些进程间通信函数（见第15章）。
 

 
我们也曾说过，虽然读写磁盘文件会暂时阻塞调用者，但并不能将与磁盘I/O有关的系统调用视为“低速”。
 
非阻塞I/O使我们可以发出open、read和write这样的I/O操作，并使这些操作不会永远阻塞。如果这种操作不能完成，则调用立即出错返回，表示该操作如继续执行将阻塞。
 
对于一个给定的描述符，有两种为其指定非阻塞I/O的方法。
 
（1）如果调用open获得描述符，则可指定O_NONBLOCK标志（见3.3节）。
 
（2）对于已经打开的一个描述符，则可调用fcntl，由该函数打开O_NONBLOCK文件状态标志（见3.14节）。图3-12中的函数可用来为一个描述符打开任一文件状态标志。
 
 
 System V的早期版本使用标志O_NDELAY指定非阻塞方式。在这些System V版本中，如果无数据可读，则read返回0。而UNIX系统又常将read的返回值0解释为文件结束，两者有所混淆。POSIX.1提供了一个非阻塞标志，它的名字和语义都与O_NDELAY不同。确实，在System V的早期版本中，当从read得到返回值0时，我们并不知道该调用是阻塞了还是遇到了文件尾端。POSIX.1要求，对于一个非阻塞的描述符如果无数据可读，则read返回−1，errno被设置为EAGAIN。System V派生的某些平台既支持较旧的O_NDELAY，又支持POSIX.1的O_NONBLOCK，但在本书的实例中只使用POSIX.1规定的特征。较旧的O_NDELAY只是为了向后兼容，不应在新应用程序中使用。
 
 4.3BSD为fcntl提供了FNDELAY标志，其语义也稍有区别。它不只影响描述符的文件状态标志，还将终端设备或套接字的标志更改成非阻塞的，因此不仅影响共享同一文件表项的用户，而且对终端或套接字的所有用户起作用（4.3BSD非阻塞I/O只对终端和套接字起作用）。另外，如果对一个非阻塞描述符的操作不能无阻塞地完成，那么4.3BSD返回EWOULDBLOCK。现今，基于BSD的系统提供POSIX.1的O_NONBLOCK标志，并且将EWOULDBLOCK定义为与POSIX.1的EAGAIN相同。这些系统提供与其他POSIX兼容系统相一致的非阻塞语义：文件状态标志的更改影响同一文件表项的所有用户，但与通过其他文件表项对同一设备的访问无关。
 

 
实例
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图14-1中的程序是一个非阻塞I/O的实例，它从标准输入读500 000字节，并试图将它们写到标准输出上。该程序先将标准输出设置为非阻塞的，然后用for循环进行输出，每次write调用的结果都在标准错误上打印。函数clr_fl类似于图3-12中的set_fl。这个新函数清除1个或多个标志位。
 
#include "apue.h"

#include <errno.h>

#include <fcntl.h>



char 　　buf[500000];



int

main(void)

{

　　int　　　ntowrite, nwrite;

　　char 　　*ptr;



　　ntowrite = read(STDIN_FILENO, buf, sizeof(buf));

　　fprintf(stderr, "read %d bytes\n", ntowrite);



　　set_fl(STDOUT_FILENO, O_NONBLOCK);　　　　/* set nonblocking */



　　ptr = buf;

　　while (ntowrite > 0) {

　　　　errno = 0;

　　　　nwrite = write(STDOUT_FILENO, ptr, ntowrite);

　　　　fprintf(stderr, "nwrite = %d, errno = %d\n", nwrite, errno);



　　　　if (nwrite > 0) {

　　　　　　ptr += nwrite;

　　　　　　ntowrite -= nwrite;

　　　　}

　　}



　　clr_fl(STDOUT_FILENO, O_NONBLOCK);　　/* clear nonblocking */



　　exit(0);

}
 
图14-1　长的非阻塞write
 
若标准输出是普通文件，则可以期望write只执行一次。
 
$ ls -l /etc/services　　　　　　　　　　　　　　　打印文件长度

-rw-r--r-- 1 root　　　677959 Jun 23　2009 /etc/services

$ ./a.out < /etc/services > temp.file　　　　  先试一个普通文件

read 500000 bytes

nwrite = 500000, errno = 0　　　　　　　　　　　　一次写

$ ls -l temp.file　　　　　　　　　　　　　　　　　 检验输出文件长度

-rw-rw-r-- 1 sar　　　 500000 Apr　1 13:03 temp.file
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但是，若标准输出是终端，则期望write有时返回小于500 000的一个数字，有时返回错误。下面是运行结果：
 
$ ./a.out < /etc/services 2>stderr.out　　　 终端至输出

　　　　　　　　　　　　　　　　　　　　　　　　　　 大量输出至终端……

$ cat stderr.out

read 500000 bytes

nwrite = 999, errno = 0

nwrite = -1, errno = 35

nwrite = -1, errno = 35

nwrite = -1, errno = 35

nwrite = -1, errno = 35

nwrite = 1001, errno = 0

nwrite = -1, errno = 35

nwrite = 1002, errno = 0

nwrite = 1004, errno = 0

nwrite = 1003, errno = 0

nwrite = 1003, errno = 0

nwrite = 1005, errno = 0

nwrite = -1, errno = 35　　　　　　　　　　　　61个此类错误

　　[image: ]

nwrite = 1006, errno = 0

nwrite = 1004, errno = 0

nwrite = 1005, errno = 0

nwrite = 1006, errno = 0

nwrite = -1, errno = 35　　　　　　　　　　　　108个此类错误

　　[image: ]

nwrite = 1006, errno = 0

nwrite = 1005, errno = 0

nwrite = 1005, errno = 0

nwrite = -1, errno = 35　　　　　　　　　　　　681个此类错误

　　[image: ]

　　　　　　　　　　　　　　　　　　　　　　　　　　等等

nwrite = 347, errno = 0


 
在该系统上，errno值35对应的是EAGAIN。终端驱动程序一次能接受的数据量随系统而变。具体结果还会因登录系统时所使用的方式的不同而不同：在系统控制台上登录、在硬接线的终端上登录或用伪终端在网络连接上登录。如果你在终端上运行一个窗口系统，那么也是经由伪终端设备与系统交互。
 
在此实例中，程序发出了9 000多个write调用，但是只有500个真正输出了数据，其余的都只返回了错误。这种形式的循环称为轮询，在多用户系统上用它会浪费CPU时间。14.4节将介绍非阻塞描述符的I/O多路转接，这是进行这种操作的一种比较有效的方法。
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有时，可以将应用程序设计成使用多线程的（见第11章），从而避免使用非阻塞I/O。如若我们能在其他线程中继续进行，则可以允许单个线程在I/O调用中阻塞。这种方法有时能简化应用程序的设计（见第21章），但是，线程间同步的开销有时却可能增加复杂性，于是导致得不偿失的后果。
 
14.3　记录锁
 
当两个人同时编辑一个文件时，其后果将如何呢？在大多数UNIX系统中，该文件的最后状态取决于写该文件的最后一个进程。但是对于有些应用程序，如数据库，进程有时需要确保它正在单独写一个文件。为了向进程提供这种功能，商用UNIX系统提供了记录锁机制。（第20章包含了使用记录锁的数据库函数库。）
 
记录锁（record locking）的功能是：当第一个进程正在读或修改文件的某个部分时，使用记录锁可以阻止其他进程修改同一文件区。对于UNIX系统而言，“记录”这个词是一种误用，因为UNIX系统内核根本没有使用文件记录这种概念。一个更适合的术语可能是字节范围锁（byte-range locking），因为它锁定的只是文件中的一个区域（也可能是整个文件）。
 
1．历史
 
对早期UNIX系统的其中一个批评是它们不能用来运行数据库系统，其原因是这些系统不支持对部分文件加锁。在UNIX系统寻找进入商用计算环境的途径时，很多系统开发小组以各种不同方式增加了对记录锁的支持。
 
早期的伯克利版本只支持flock函数。该函数只能对整个文件加锁，不能对文件中的一部分加锁。
 
SVR3通过fcntl函数增加了记录锁功能。在此基础上构造了lockf函数，它提供了一个简化的接口。这些函数允许调用者对一个文件中任意字节数的区域加锁，长至整个文件，短至文件中的一个字节。
 
POSIX.1标准的基础是fcntl方法。图14-2列出了各种系统提供的不同形式的记录锁。注意，Single UNIX Specification在其XSI扩展中包括了lockf。
 
[image: 14-2.jpg]
 
图14-2　各种UNIX系统支持的记录锁形式
 
本节最后部分将说明建议性锁和强制性锁之间的区别。本书只介绍POSIX.1的fcntl锁。
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 记录锁是1980年由John Bass最早添加到V7上的。内核中相应的系统调用入口项是名为locking的函数。此函数提供了强制性记录锁功能，它被用在很多System III版本中。Xenix系统采用了此函数，某些基于Intel的System V派生版本，如OpenServer 5，在Xenix兼容库中仍旧支持该函数。
 

 
2．fcntl记录锁
 
3.14节中已经给出了fcntl函数的原型，为了叙说方便，这里再重复一次。
 
#include <fcnt1.h>



int fcnt1(int fd, int cmd, .../* struct flock *flockptr */);



　　　　　　　　　　　　　　　返回值：若成功，依赖于cmd（见下），否则，返回−1


 
对于记录锁，cmd是F_GETLK、F_SETLK或F_SETLKW。第三个参数（我们将调用flockptr）是一个指向flock结构的指针。
 
struct flock {

　short l_type;　　　　　/* F_RDLCK, F_WRLCK, or F_UNLCK */

　short l_whence;　　　 /* SEEK_SET, SEEK_CUR, or SEEK_END */

　off_t l_start;　　　　/* offset in bytes, relative to l_whence */

　off_t l_len;　　　　　/* length, in bytes; 0 means lock to EOF */

　pid_t l_pid;　　　　　/* returned with F_GETLK */

};
 
对flock结构说明如下。
 
 
 	所希望的锁类型：F_RDLCK（共享读锁）、F_WRLCK（独占性写锁）或F_UNLCK（解锁一个区域）。
 
 	要加锁或解锁区域的起始字节偏移量（l_start和l_whence）。
 
 	区域的字节长度（l_len）。
 
 	进程的ID（l_pid）持有的锁能阻塞当前进程（仅由F_GETLK返回）。
 

 
关于加锁或解锁区域的说明还要注意下列几项规则。
 
 
 	指定区域起始偏移量的两个元素与lseek函数（见3.6节）中最后两个参数类似。l_whence可选用的值是SEEK_SET、SEEK_CUR或SEEK_END。
 
 	锁可以在当前文件尾端处开始或者越过尾端处开始，但是不能在文件起始位置之前开始。
 
 	如若l_len为0，则表示锁的范围可以扩展到最大可能偏移量。这意味着不管向该文件中追加写了多少数据，它们都可以处于锁的范围内（不必猜测会有多少字节被追加写到了文件之后），而且起始位置可以是文件中的任意一个位置。
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 	为了对整个文件加锁，我们设置l_start和l_whence指向文件的起始位置，并且指定长度（l_len）为0。（有多种方法可以指定文件起始处，但常用的方法是将l_start指定为0，l_whence指定为SEEK_SET。）
 

 
上面提到了两种类型的锁：共享读锁（l_type为L_RDLCK）和独占性写锁（L_WRLCK）。基本规则是：任意多个进程在一个给定的字节上可以有一把共享的读锁，但是在一个给定字节上只能有一个进程有一把独占写锁。进一步而言，如果在一个给定字节上已经有一把或多把读锁，则不能在该字节上再加写锁；如果在一个字节上已经有一把独占性写锁，则不能再对它加任何读锁。在图14-3中示出了这些兼容性规则。
 
[image: C:\Documents and Settings\Administrator\桌面\Doc2.files\image001.png]
 
图14-3　不同类型锁彼此之间的兼容性
 
上面说明的兼容性规则适用于不同进程提出的锁请求，并不适用于单个进程提出的多个锁请求。如果一个进程对一个文件区间已经有了一把锁，后来该进程又企图在同一文件区间再加一把锁，那么新锁将替换已有锁。因此，若一进程在某文件的16～32字节区间有一把写锁，然后又试图在16～32字节区间加一把读锁，那么该请求将成功执行，原来的写锁会被替换为读锁。
 
加读锁时，该描述符必须是读打开。加写锁时，该描述符必须是写打开。
 
下面说明一下fcntl函数的3种命令。
 
F_GETLK　　判断由flockptr所描述的锁是否会被另外一把锁所排斥（阻塞）。如果存在一把锁，它阻止创建由flockptr所描述的锁，则该现有锁的信息将重写flockptr指向的信息。如果不存在这种情况，则除了将l_type设置为F_UNLCK之外，flockptr所指向结构中的其他信息保持不变。
 
F_SETLK　　设置由flockptr所描述的锁。如果我们试图获得一把读锁（l_type为F_RDLCK）或写锁（l_type为F_WRLCK），而兼容性规则阻止系统给我们这把锁，那么fcntl会立即出错返回，此时errno设置为EACCES或EAGAIN。
 
 
 虽然POSIX.1允许实现返回这两种出错代码中的任何一种，但本书说明的4种实现在锁请求不能得到满足时，都返回EAGAIN。
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　　此命令也用来清除由flockptr指定的锁（l_type为F_UNLCK）。
 
F_SETLKW　　这个命令是F_SETLK的阻塞版本（命令名中的W表示等待（wait））。如果所请求的读锁或写锁因另一个进程当前已经对所请求区域的某部分进行了加锁而不能被授予，那么调用进程会被置为休眠。如果请求创建的锁已经可用，或者休眠由信号中断，则该进程被唤醒。
 
应当了解，用F_GETLK测试能否建立一把锁，然后用F_SETLK或F_SETLKW企图建立那把锁，这两者不是一个原子操作。因此不能保证在这两次fcntl调用之间不会有另一个进程插入并建立一把相同的锁。如果不希望在等待锁变为可用时产生阻塞，就必须处理由F_SETLK返回的可能的出错。
 
 
 注意，POSIX.1并没有说明在下列情况下将发生什么：一个进程在某个文件的一个区间上设置了一把读锁，第二个进程在试图对同一文件区间加一把写锁时阻塞，然后第三个进程则试图在同一文件区间上得到另一把读锁。如果第三个进程只是因为读区间已有一把读锁，而被允许在该区间放置另一把读锁，那么这种实现就可能会使希望加写锁的进程饿死。因此，当对同一区间加另一把读锁的请求到达时，提出加写锁而阻塞的进程需等待的时间延长了。如果加读锁的请求来得很频繁，使得该文件区间始终存在一把或几把读锁，那么欲加写锁的进程就将等待很长时间。
 

 
在设置或释放文件上的一把锁时，系统按要求组合或分裂相邻区。例如，若第100～199字节是加锁的区，需解锁第150字节，则内核将维持两把锁，一把用于第100～149字节，另一把用于第151～199字节。图14-4说明了这种情况下的字节范围锁。
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[image: ..\1404.tif]
 
图14-4　文件字节范围锁
 
假定我们又对第150字节加锁，那么系统将会再把3个相邻的加锁区合并成一个区（第100～199字节）。其结果如图14-4中的第一个图所示，又跟开始的时候一样了。
 
实例：请求和释放一把锁
 
为了避免每次分配flock结构，然后又填入各项信息，可以用图14-5所示的程序中的函数lock_reg来处理所有这些细节。
 
#include "apue.h"

#include <fcntl.h>



int

lock_reg(int fd, int cmd, int type, off_t offset, int whence, off_t len)

{

　　struct flock　　lock;



　　lock.l_type = type;　　　　　　/* F_RDLCK, F_WRLCK, F_UNLCK */

　　lock.l_start = offset;　　　　/* byte offset, relative to l_whence */

　　lock.l_whence = whence;　　　 /* SEEK_SET, SEEK_CUR, SEEK_END */

　　lock.l_len = len;　　　　　　　/* #bytes (0 means to EOF) */



　　return(fcntl(fd, cmd, &lock));

}
 
图14-5　加锁或解锁一个文件区域的函数
 
因为大多数锁调用是加锁或解锁一个文件区域（命令F_GETLK很少使用），故通常使用下列5个宏中的一个，这5个宏都定义在apue.h中（见附录B）。
 
#define read_lock(fd,offset,whence,len) \

　　　　　　lock_reg((fd), F_SETLK, F_RDLCK, (offset), (whence), (len))

#define readw_lock(fd,offset,whence,len) \

　　　　　　lock_reg((fd), F_SETLKW, F_RDLCK, (offset), (whence), (len))

#define write_lock(fd,offset,whence,len) \

　　　　　　lock_reg((fd), F_SETLK, F_WRLCK, (offset), (whence), (len))

#define writew_lock(fd,offset,whence,len) \

　　　　　　lock_reg((fd), F_SETLKW, F_WRLCK, (offset), (whence), (len))

#define un_lock(fd,offset,whence,len) \

　　　　　　lock_reg((fd), F_SETLK, F_UNLCK, (offset), (whence), (len))
 
我们有目的地用与lseek函数同样的顺序定义了这些宏中的前3个参数。
 
实例：测试一把锁
 
图14-6中定义了一个函数lock_test，我们将用它测试一把锁。
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#include "apue.h"

#include <fcntl.h>



pid_t

lock_test(int fd, int type, off_t offset, int whence, off_t len)

{

　　struct flock　　lock;



　　lock.l_type = type;　　　　　　/* F_RDLCK or F_WRLCK */

　　lock.l_start = offset;　　　　/* byte offset, relative to l_whence */

　　lock.l_whence = whence;　　　/* SEEK_SET, SEEK_CUR, SEEK_END */

　　lock.l_len = len;　　　　　　 /* #bytes (0 means to EOF) */



　　if (fcntl(fd, F_GETLK, &lock) < 0)

　　　　err_sys("fcntl error");



　　if (lock.l_type == F_UNLCK)

　　　　return(0);　　　　　　　/* false, region isn't locked by another proc */

　　return(lock.l_pid);　　　 /* true, return pid of lock owner */

}
 
图14-6　测试一个锁条件的函数
 
如果存在一把锁，它阻塞由参数指定的锁请求，则此函数返回持有这把现有锁的进程的进程ID，否则此函数返回0。通常用下面两个宏来调用此函数（它们也定义在apue.h中）。
 
#define is_read_lockable(fd, offset, whence, len) \

　　　　　　(lock_test((fd), F_RDLCK, (offset), (whence), (len)) == 0)

#define is_write_lockable(fd, offset, whence, len) \

　　　　　　(lock_test((fd), F_WRLCK, (offset), (whence), (len)) == 0)
 
注意，进程不能使用lock_test函数测试它自己是否在文件的某一部分持有一把锁。F_GETLK命令的定义说明，返回信息指示是否有现有的锁阻止调用进程设置它自己的锁。因为F_SETLK和F_SETLKW命令总是替换调用进程现有的锁（若已存在），所以调用进程决不会阻塞在自己持有的锁上，于是，F_GETLK命令决不会报告调用进程自己持有的锁。
 
实例：死锁
 
如果两个进程相互等待对方持有并且不释放（锁定）的资源时，则这两个进程就处于死锁状态。如果一个进程已经控制了文件中的一个加锁区域，然后它又试图对另一个进程控制的区域加锁，那么它就会休眠，在这种情况下，有发生死锁的可能性。
 
图14-7所示的程序给出了一个死锁的例子。子进程对第0字节加锁，父进程对第1字节加锁。然后，它们中的每一个又试图对对方已经加锁的字节加锁。在该程序中使用了8.9节中介绍的父进程和子进程同步例程（TELL_xxx和WAIT_xxx），以便每个进程能够等待另一个进程获得它设置的第一把锁。
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#include "apue.h"

#include <fcntl.h>



static void

lockabyte(const char *name, int fd, off_t offset)

{

　　if (writew_lock(fd, offset, SEEK_SET, 1) < 0)

　　　　err_sys("%s: writew_lock error", name);

　　printf("%s: got the lock, byte %lld\n", name, (long long)offset);

}



int

main(void)

{

　　int　　　fd;

　　pid_t　　pid;



　　/*

　　 * Create a file and write two bytes to it.

　　 */

　　if ((fd = creat("templock", FILE_MODE)) < 0)

　　　　err_sys("creat error");

　　if (write(fd, "ab", 2) != 2)

　　　　err_sys("write error");



　　TELL_WAIT();

　　if ((pid = fork()) < 0) {

　　　　err_sys("fork error");

　　} else if (pid == 0) {　　　　　　/* child */

　　　　lockabyte("child", fd, 0);

　　　　TELL_PARENT(getppid());

　　　　WAIT_PARENT();

　　　　lockabyte("child", fd, 1);

　　} else {　　　　　　　　　　　　　　/* parent */

　　　　lockabyte("parent", fd, 1);

　　　　TELL_CHILD(pid);

　　　　WAIT_CHILD();

　　　　lockabyte("parent", fd, 0);

　　}

　　exit(0);

}
 
图14-7　死锁检测实例
 
运行图14-7中的程序得到：
 
$ ./a.out

parent: got the lock, byte 1

child: got the lock, byte 0

parent: writew_lock error: Resource deadlock avoided

child: got the lock, byte 1
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检测到死锁时，内核必须选择一个进程接收出错返回。在本实例中，选择了父进程，但这是一个实现细节。在某些系统上，子进程总是接到出错信息，在另一些系统上，父进程总是接到出错信息。在某些系统上，当试图使用多把锁时，有时是子进程接到出错信息，有时则是父进程接到出错信息。
 
3．锁的隐含继承和释放
 
关于记录锁的自动继承和释放有3条规则。
 
（1）锁与进程和文件两者相关联。这有两重含义：第一重很明显，当一个进程终止时，它所建立的锁全部释放；第二重则不太明显，无论一个描述符何时关闭，该进程通过这一描述符引用的文件上的任何一把锁都会释放（这些锁都是该进程设置的）。这就意味着，如果执行下列4步：
 
fd1 = open(pathname, ...);

read_lock(fd1, ...);

fd2 = dup(fd1);

close(fd2);
 
则在close(fd2)后，在fd1上设置的锁被释放。如果将dup替换为open，其效果也一样：
 
fd1 = open(pathname, ...);

read_lock(fd1, ...);

fd2 = open(pathname, ...)

close(fd2);
 
（2）由fork产生的子进程不继承父进程所设置的锁。这意味着，若一个进程得到一把锁，然后调用fork，那么对于父进程获得的锁而言，子进程被视为另一个进程。对于通过fork从父进程处继承过来的描述符，子进程需要调用fcntl才能获得它自己的锁。这个约束是有道理的，因为锁的作用是阻止多个进程同时写同一个文件。如果子进程通过fork继承父进程的锁，则父进程和子进程就可以同时写同一个文件。
 
（3）在执行exec后，新程序可以继承原执行程序的锁。但是注意，如果对一个文件描述符设置了执行时关闭标志，那么当作为exec的一部分关闭该文件描述符时，将释放相应文件的所有锁。
 
4．FreeBSD实现
 
先简要地观察FreeBSD实现中使用的数据结构。这会帮助我们进一步理解记录锁的自动继承和释放的第一条规则：锁与进程和文件两者相关联。
 
考虑一个进程，它执行下列语句（忽略出错返回）。
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fd1 = open(pathname, ...);

write_lock(fd1, 0, SEEK_SET, 1);　　　/* parent write locks byte 0 */

if ((pid = fork()) > 0) {　　　　　　　/* parent */

　　 fd2 = dup(fd1);

　　 fd3 = open(pathname, ...);

} else if (pid == 0) {

　　 read_lock(fd1, 1, SEEK_SET, 1); /* child read locks byte 1 */

}

pause();
 
图14-8显示了父进程和子进程暂停（执行pause()）后的数据结构情况。
 
[image: ..\14-0434yds排版CMM\UNIX环境高级编程（第3版）tu\1408.tif]
 
图14-8　关于记录锁的FreeBSD数据结构
 
前面已经给出了open、fork以及dup调用后的数据结构（见图3-9和图8-2）。有了记录锁后，在原来的这些图上新加了lockf结构，它们由i节点结构开始相互链接起来。每个lockf结构描述了一个给定进程的一个加锁区域（由偏移量和长度定义的）。图中显示了两个lockf结构，一个是由父进程调用write_lock形成的，另一个则是由子进程调用read_lock形成的。每一个结构都包含了相应的进程ID。
 

  493 

 
在父进程中，关闭fd1、fd2或fd3中的任意一个都将释放由父进程设置的写锁。在关闭这3个描述符中的任意一个时，内核会从该描述符所关联的i节点开始，逐个检查lockf链接表中的各项，并释放由调用进程持有的各把锁。内核并不清楚（也不关心）父进程是用这3个描述中的哪一个来设置这把锁的。
 
实例
 
在图13-6所示的程序中，我们了解到，守护进程可用一把文件锁来保证只有该守护进程的唯一副本在运行。图14-9展示了lockfile函数的实现，守护进程可用该函数在文件上加写锁。
 
#include <unistd.h>

#include <fcntl.h>



int

lockfile(int fd)

{

　　struct flock fl;



　　fl.l_type = F_WRLCK;

　　fl.l_start = 0;

　　fl.l_whence = SEEK_SET;

　　fl.l_len = 0;

　　return(fcntl(fd, F_SETLK, &fl));

}
 
图14-9　在文件整体上加一把写锁
 
另一种方法是用write_lock函数定义lockfile函数。
 
#define　lockfile(fd)　write_lock((fd), 0, SEEK_SET, 0)
 
5．在文件尾端加锁
 
在对相对于文件尾端的字节范围加锁或解锁时需要特别小心。大多数实现按照l_whence的SEEK_CUR或SEEK_END值，用l_start以及文件当前位置或当前长度得到绝对文件偏移量。但是，常常需要相对于文件的当前长度指定一把锁，但又不能调用fstat来得到当前文件长度，因为我们在该文件上没有锁。（在fstat和锁调用之间，可能会有另一个进程改变该文件长度。）
 
考虑以下代码序列：
 
writew_lock(fd, 0, SEEK_END, 0);

write(fd, buf, 1);

un_lock(fd, 0, SEEK_END);

write(fd, buf, 1);
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该代码序列所做的可能并不是你所期望的。它得到一把写锁，该写锁从当前文件尾端起，包括以后可能追加写到该文件的任何数据。假定，该文件偏移量处于文件尾端时，执行第一个write，这个操作将文件延伸了1个字节，而该字节将被加锁。跟随其后的是解锁操作，其作用是对以后追加写到文件上的数据不再加锁。但在其之前刚追加写的一个字节则保留加锁状态。当执行第二个写时，文件尾端又延伸了1个字节，但该字节并未加锁。由此代码序列造成的文件锁状态如图14-10所示。
 
[image: ..\14-0434yds排版CMM\UNIX环境高级编程（第3版）tu\1410.tif]
 
图14-10　文件区域锁
 
当对文件的一部分加锁时，内核将指定的偏移量变换成绝对文件偏移量。另外，除了指定一个绝对偏移量（SEEK_SET）之外，fcntl还允许我们相对于文件中的某个点指定该偏移量，这个点是指当前偏移量（SEEK_CUR）或文件尾端（SEEK_END）。当前偏移量和文件尾端可能会不断变化，而这种变化又不应影响现有锁的状态，所以内核必须独立于当前文件偏移量或文件尾端而记住锁。
 
如果想解除的锁中包括第一次write所写的1个字节，那么应指定长度为−1。负的长度值表示在指定偏移量之前的字节数。
 
6．建议性锁和强制性锁
 
考虑数据库访问例程库。如果该库中所有函数都以一致的方法处理记录锁，则称使用这些函数访问数据库的进程集为合作进程（cooperating process）。如果这些函数是唯一地用来访问数据库的函数，那么它们使用建议性锁是可行的。但是建议性锁并不能阻止对数据库文件有写权限的任何其他进程写这个数据库文件。不使用数据库访问例程库协同一致的方法来访问数据库的进程是非合作进程。
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强制性锁会让内核检查每一个open、read和write，验证调用进程是否违背了正在访问的文件上的某一把锁。强制性锁有时也称为强迫方式锁（enforcement-mode locking）。
 
 
 从图14-2中可以看出，Linux 3.2.0和Solaris 10提供强制性记录锁，而FreeBSD 8.0和Mac OS X 10.6.8则不提供。强制性记录锁不是Single UNIX Specification的组成部分。在Linux中，如果用户想要使用强制性锁，则需要在各个文件系统基础上用mount命令的-o mand选项来打开该机制。
 

 
对一个特定文件打开其设置组ID位、关闭其组执行位便开启了对该文件的强制性锁机制（回忆图4-12）。因为当组执行位关闭时，设置组ID位不再有意义，所以SVR3的设计者借用两者的这种组合来指定对一个文件的锁是强制性的而非建议性的。
 
如果一个进程试图读（read）或写（write）一个强制性锁起作用的文件，而欲读、写的部分又由其他进程加上了锁，此时会发生什么呢？对这一问题的回答取决于3方面的因素：操作类型（read或write）、其他进程持有的锁的类型（读锁或写锁）以及read或write的描述符是阻塞还是非阻塞的。图14-11列出了8种可能性。
 
[image: 14-11.jpg]
 
图14-11　强制性锁对其他进程的read和write的影响
 
除了图14-11中的read和write函数，另一个进程持有的强制性锁也会对open函数产生影响。通常，即使正在打开的文件具有强制性记录锁，该open也会成功。随后的read或write依从于图14-11中所示的规则。但是，如果欲打开的文件具有强制性记录锁（读锁或写锁），而且open调用中的标志指定为O_TRUNC或O_CREAT，则不论是否指定O_NONBLOCK，open都立即出错返回，errno设置为EAGAIN。
 
 
 只有Solaris对O_CREAT标志处理为出错。当打开一个具强制性锁的文件时，Linux允许指定O_CREAT标志。对O_TRUNC标志产生open出错是有意义的，因为对于一个文件来讲，若另一个进程持有它的读锁或写锁，那么它就不能被截短为0。但是对O_CREAT标志在返回时设置出错就没什么意义了，因为该标志表示，只有在该文件不存在时才创建，但由于另一个进程持有该文件的记录锁，所以该文件肯定是存在的。
 

 
这种open的锁冲突处理方式可能会导致令人惊异的结果。在开发本节习题的时候，我们曾编写过一个测试程序，它打开一个文件（其模式指定为强制性锁），对该文件整体设置一把读锁，然后休眠一段时间。（回忆图14-11，读锁应当阻止其他进程写该文件。）在这段休眠时间内，用某些典型的UNIX系统程序和操作符对该文件进行处理，发现下列情况。
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 	可用ed编辑器对该文件进行编辑操作，而且编辑结果可以写回磁盘！强制性记录锁根本不起作用。用某些UNIX系统版本提供的系统调用跟踪特性，对ed操作进行跟踪分析发现，ed将新内容写到一个临时文件中，然后删除原文件，最后将临时文件名改为原文件名。强制性锁机制对unlink函数没有影响，于是这一切就发生了。
 

 
 
 在FreeBSD 8.0和Solaris 10中，用truss(1)命令可以得到一个进程的系统调用跟踪信息。Linux 3.2.0出于相同的目的提供了strace(1)命令。Mac OS X 10.6.8提供了dtruss(1m)命令来追踪系统调用，但该命令的使用需要超级用户的权限。
 

 
 
 	不能用vi编辑器编辑该文件。vi可以读该文件的内容，但是如果试图将新的数据写到该文件中，就会出错返回（EAGAIN）。如果试图将新数据追加写到该文件中，则write阻塞。vi的这种行为与我们所希望的一样。
 
 	使用Korn shell的>和>>操作符重写或追加写该文件，会产生出误信息“cannot create”。
 
 	在Bourne shell下使用>操作符也会出错，但是使用>>操作符时只阻塞，在解除强制性锁后会继续进行处理。（这两种shell在执行追加写操作时之所以会产生的差异，是因为Korn shell以O_CREAT和O_APPEND标志打开文件，而上面已提及指定O_CREAT会产生出错返回。但是，Bourne shell在该文件已存在时并不指定O_CREAT，所以open成功，而下一个write则阻塞。）
 

 
产生的结果随所用操作系统版本的不同而不同。从这样一个习题中可见，在使用强制性锁时还需有所警惕。从ed实例可以看到，强制性锁是可以设法避开的。
 
一个恶意用户可以使用强制性记录锁，对大家都可读的文件加一把读锁，这样就能阻止任何人写该文件（当然，该文件应当是强制性锁机制起作用的，这可能要求该用户能够更改该文件的权限位）。考虑一个数据库文件，它是大家都可读的，并且是强制性锁机制起作用的。如果一个恶意用户要对整个这个文件持有一把读锁，其他进程就不能再写该文件。
 
实例
 
图14-12中的程序可以用于确定一个系统是否支持强制性锁机制。
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#include "apue.h"

#include <errno.h>

#include <fcntl.h>

#include <sys/wait.h>



int

main(int argc, char *argv[])

{

　　int　　　　　　　   fd;

　　pid_t　　　　　　　 pid;

　　char　　　　　　　  buf[5];

　　struct stat　　　　statbuf;



　　if (argc != 2) {

　　　　fprintf(stderr, "usage: %s filename\n", argv[0]);

　　　　exit(1);

　　}

　　if ((fd = open(argv[1], O_RDWR | O_CREAT | O_TRUNC, FILE_MODE)) < 0)

　　　　err_sys("open error");

　　if (write(fd, "abcdef", 6) != 6)

　　　　err_sys("write error");



　　/* turn on set-group-ID and turn off group-execute */

　　if (fstat(fd, &statbuf) < 0)

　　　　err_sys("fstat error");

　　if (fchmod(fd, (statbuf.st_mode & ~S_IXGRP) | S_ISGID) < 0)

　　　　err_sys("fchmod error");



　　TELL_WAIT();



　　if ((pid = fork()) < 0) {

　　　　err_sys("fork error");

　　} else if (pid > 0) {　　/* parent */

　　　　/* write lock entire file */

　　　　if (write_lock(fd, 0, SEEK_SET, 0) < 0)

　　　　　　err_sys("write_lock error");



　　　　TELL_CHILD(pid);



　　　　if (waitpid(pid, NULL, 0) < 0)

　　　　　　err_sys("waitpid error");

　　} else {　　　　　　　　　/* child */

　　　　WAIT_PARENT();　　　 /* wait for parent to set lock */



　　　　set_fl(fd, O_NONBLOCK);



　　　　/* first let's see what error we get if region is locked */

　　　　if (read_lock(fd, 0, SEEK_SET, 0) != -1)　/* no wait */

　　　　　　err_sys("child: read_lock succeeded");

　　　　printf("read_lock of already-locked region returns %d\n",

　　　　　errno);



　　　　/* now try to read the mandatory locked file */

　　　　if (lseek(fd, 0, SEEK_SET) == -1)

　　　　　　err_sys("lseek error");

　　　　if (read(fd, buf, 2) < 0)

　　　　　　err_ret("read failed (mandatory locking works)");

　　　　else

　　　　　　printf("read OK (no mandatory locking), buf = %2.2s\n",

　　　　　　　buf);

　　}

　　exit(0);

}
 
图14-12　确定是否支持强制性锁
 
此程序首先创建一个文件，并使强制性锁机制对其起作用。然后程序分出一个父进程和一个子进程。父进程对整个文件设置一把写锁，子进程则先将该文件的描述符设置为非阻塞的，然后企图对该文件设置一把读锁，我们期望这会出错返回，并希望看到系统返回是EACCES或EAGAIN。接着，子进程将文件读、写位置调整到文件起点，并试图读（read）该文件。如果系统提供强制性锁机制，则read应返回EACCES或EAGAIN（因为该描述符是非阻塞的），否则read返回所读的数据。在Solaris 10上运行此程序（该系统支持强制性锁机制），得到：
 
$ ./a.out　temp.lock

read_lock of already-locked region returns 11

read failed (mandatory locking works): Resource temporarily unavailable


 
查看系统头文件或intro(2)手册页，可以看到errno值11对应于EAGAIN。若在FreeBSD 8.0运行此程序，则得到：
 
$ ./a.out temp.lock

read_lock of already_locked region returns 35

read OK (no mandatory locking), buf = ab


 
其中，errno值35对应于EAGAIN。该系统不支持强制性锁。
 
实例
 
让我们回到本节的第一个问题：当两个人同时编辑同一个文件时将会怎样呢？一般的UNIX系统文本编辑器并不使用记录锁，所以对此问题的回答仍然是：该文件的最后结果取决于写该文件的最后一个进程。
 
某些版本的vi编辑器使用建议性记录锁。即使我们使用这种版本的vi编辑器，它仍然不能阻止其他用户使用另一个没有使用建议性记录锁的编辑器。
 
若系统提供强制性记录锁，那么我们可以修改自己常用的编辑器来使用它（如果我们有该编辑器的源代码）。如果没有该编辑器的源代码，那么可以试一试下述方法。编写一个vi的前端程序。该程序立即调用fork，然后父进程只等待子进程完成。子进程打开在命令行中指定的文件，使强制性锁起作用，对整个文件设置一把写锁，然后执行vi。在vi运行时，该文件是加了写锁的，所以其他用户不能修改它。当vi结束时，父进程从wait返回，自编的前端程序结束。
 
虽然可以编写这种类型的小型前端程序，但它却不起作用。问题出在大多数编辑器读它们的输入文件，然后关闭它。只要引用被编辑文件的描述符关闭了，那么加在该文件上的锁就被释放了。这意味着，在编辑器读了该文件的内容后，随即关闭了该文件，那么锁也就不存在了。这个前端程序中没有任何方法可以阻止这一点。
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在第20章中，我们将使用数据库函数库中的记录锁来提供多个进程的并发访问。我们还将提供一些时间测量，以观察记录锁对进程的影响。
 
14.4　I/O多路转接
 
当从一个描述符读，然后又写到另一个描述符时，可以在下列形式的循环中使用阻塞I/O：
 
while ((n=read(STDIN_FILENO, buf, BUFSIZ)) > 0)

　　 if (write(STDOUT_FILENO, buf, n) != n)

　　　　　err_sys("write error");
 
这种形式的阻塞I/O到处可见。但是如果必须从两个描述符读，又将如何呢？在这种情况下，我们不能在任一个描述符上进行阻塞读（read），否则可能会因为被阻塞在一个描述符的读操作上而导致另一个描述符即使有数据也无法处理。所以为了处理这种情况需要另一种不同的技术。
 
让我们观察telnet(1)命令的结构。该程序从终端（标准输入）读，将所得数据写到网络连接上，同时从网络连接读，将所得数据写到终端上（标准输出）。在网络连接的另一端，telnetd守护进程读用户键入的命令，并将所读到的送给shell，这如同用户登录到远程机器上一样。telnetd守护进程将执行用户键入命令而产生的输出通过telnet命令送回给用户，并显示在用户终端上。图14-13显示了这种工作情景。
 
[image: ..\14-0434yds排版CMM\UNIX环境高级编程（第3版）tu\1413.tif]
 
图14-13　telnet程序概观
 
telnet进程有两个输入，两个输出。我们不能对两个输入中的任一个使用阻塞read，因为我们不知道到底哪一个输入会得到数据。
 
处理这种特殊问题的一种方法是，将一个进程变成两个进程（用fork），每个进程处理一条数据通路。图14-14中显示了这种安排。（System V的uucp通信包提供了cu(1)命令，其结构与此相似。）
 
[image: ..\1414.tif]
 
图14-14　使用两个进程实现telnet程序
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如果使用两个进程，则可使每个进程都执行阻塞read。但是这也产生了问题：操作什么时候终止？如果子进程接收到文件结束符（telnetd守护进程使网络连接断开），那么该子进程终止，然后父进程接收到SIGCHLD信号。但是，如果父进程终止（用户在终端上键入了文件结束符），那么父进程应通知子进程停止。为此可以使用一个信号（如SIGUSR1），但这使程序变得更加复杂。
 
我们可以不使用两个进程，而是用一个进程中的两个线程。虽然这避免了终止的复杂性，但却要求处理两个线程之间的同步，在复杂性方面这可能会得不偿失。
 
另一个方法是仍旧使用一个进程执行该程序，但使用非阻塞I/O读取数据。其基本思想是：将两个输入描述符都设置为非阻塞的，对第一个描述符发一个read。如果该输入上有数据，则读数据并处理它。如果无数据可读，则该调用立即返回。然后对第二个描述符作同样的处理。在此之后，等待一定的时间（可能是若干秒），然后再尝试从第一个描述符读。这种形式的循环称为轮询。这种方法的不足之处是浪费CPU时间。大多数时间实际上是无数据可读，因此执行read系统调用浪费了时间。在每次循环后要等多长时间再执行下一轮循环也很难确定。虽然轮询技术在支持非阻塞I/O的所有系统上都可使用，但是在多任务系统中应当避免使用这种方法。
 
还有一种技术称为异步I/O（asynchronous I/O）。利用这种技术，进程告诉内核：当描述符准备好可以进行I/O时，用一个信号通知它。这种技术有两个问题。首先，尽管一些系统提供了各自的受限形式的异步I/O，但POSIX采纳了另外一套标准化接口，所以可移植性成为一个问题（以前，POSIX异步I/O是Single UNIX Specification中是可选设施，但现在，这些接口在SUSv4中是必需的）。System V提供了SIGPOLL信号来支持受限形式的异步I/O，但是仅当描述符引用STREAMS设备时，此信号才起作用。BSD有一个类似的信号SIGIO，但也有类似的限制：仅当描述符引用终端设备或网络时它才能起作用。
 
这种技术的第二个问题是，这种信号对每个进程而言只有1个（SIGPOLL或SIGIO）。如果使该信号对两个描述符都起作用（在我们正在讨论的实例中，从两个描述符读），那么进程在接到此信号时将无法判别是哪一个描述符准备好了。尽管POSIX.1异步I/O接口允许选择哪个信号作为通知，但能用的信号数量仍远小于潜在的打开文件描述符的数量。为了确定是哪一个描述符准备好了，仍需将这两个描述符都设置为非阻塞的，并顺序尝试执行I/O。我们将在14.5节讨论异步I/O。
 
一种比较好的技术是使用I/O多路转接（I/O multiplexing）。为了使用这种技术，先构造一张我们感兴趣的描述符（通常都不止一个）的列表，然后调用一个函数，直到这些描述符中的一个已准备好进行I/O时，该函数才返回。poll、pselect和select这3个函数使我们能够执行I/O多路转接。在从这些函数返回时，进程会被告知哪些描述符已准备好可以进行I/O。
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 POSIX指定，为了在程序中使用select，必须包括<sys/select.h>。但较老的系统还要求包括<sys/types.h>、<sys/time.h>和<unistd.h>。查看select手册页可以弄清楚你的系统都支持什么。
 
 I/O多路转接在4.2BSD中是用select函数提供的。虽然该函数主要用于终端I/O和网络I/O，但它对其他描述符同样是起作用的。SVR3在增加STREAMS机制时增加了poll函数。但在SVR4之前，poll只对STREAMS设备起作用。SVR4支持对任意描述符起作用的poll。
 

 
14.4.1　函数select和pselect
 
在所有POSIX兼容的平台上，select函数使我们可以执行I/O多路转接。传给select的参数告诉内核：
 
 
 	我们所关心的描述符；
 
 	对于每个描述符我们所关心的条件（是否想从一个给定的描述符读，是否想写一个给定的描述符，是否关心一个给定描述符的异常条件）；
 
 	愿意等待多长时间（可以永远等待、等待一个固定的时间或者根本不等待）。
 

 
从select返回时，内核告诉我们：
 
 
 	已准备好的描述符的总数量；
 
 	对于读、写或异常这3个条件中的每一个，哪些描述符已准备好。
 

 
使用这种返回信息，就可调用相应的I/O函数（一般是read或write），并且确知该函数不会阻塞。
 
#include <sys/select.h>



int select(int maxfdp1, fd_set *restrict readfds,

　　　　　　 fd_set *restrict writefds, fd_set *restrict exceptfds,

　　　　　　 struct timeval *restrict tvptr);



　　　　　　　　　　　　　　　返回值：准备就绪的描述符数目；若超时，返回0；若出错，返回−1


 
先来说明最后一个参数，它指定愿意等待的时间长度，单位为秒和微秒（回忆4.20节）。有以下3种情况。
 
tvptr == NULL
 
永远等待。如果捕捉到一个信号则中断此无限期等待。当所指定的描述符中的一个已准备好或捕捉到一个信号则返回。如果捕捉到一个信号，则select返回-1，errno设置为EINTR。
 
tvptr->tv_sec == 0 && tvptr->tv_usec == 0
 
根本不等待。测试所有指定的描述符并立即返回。这是轮询系统找到多个描述符状态而不阻塞select函数的方法。
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tvptr->tv_sec != 0 || tvptr->tv_usec != 0
 
等待指定的秒数和微秒数。当指定的描述符之一已准备好，或当指定的时间值已经超过时立即返回。如果在超时到期时还没有一个描述符准备好，则返回值是0。（如果系统不提供微秒级的精度，则tvptr->tv_usec值取整到最近的支持值。）与第一种情况一样，这种等待可被捕捉到的信号中断。
 
 
 POSIX.1允许实现修改timeval结构中的值，所以在select返回后，你不能指望该结构仍旧保持调用select之前它所包含的值。FreeBSD 8.0、Mac OS X 10.6.8和Solaris 10都保持该结构中的值不变。但是，若在超时时间尚未到期时，select就返回，那么Linux 3.2.0将用剩余时间值更新该结构。
 

 
中间3个参数readfds、writefds和exceptfds是指向描述符集的指针。这3个描述符集说明了我们关心的可读、可写或处于异常条件的描述符集合。每个描述符集存储在一个fd_set数据类型中。这个数据类型是由实现选择的，它可以为每一个可能的描述符保持一位。我们可以认为它只是一个很大的字节数组，如图14-15所示。
 
[image: ..\14-0434yds排版CMM\UNIX环境高级编程（第3版）tu\1415.tif]
 
图14-15　对select指定读、写和异常条件描述符
 
对于fd_set数据类型，唯一可以进行的处理是：分配一个这种类型的变量，将这种类型的一个变量值赋给同类型的另一个变量，或对这种类型的变量使用下列4个函数中的一个。
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#include <sys/select.h>



int FD_ISSET(int fd, fd_set *fdset);



　　　　　　　　　　　　　　　返回值：若fd在描述符集中，返回非0值；否则，返回0

void FD_CLR(int fd, fd_set *fdset);



void FD_SET(int fd, fd_set *fdset);



void FD_ZERO(fd_set *fdset);


 
这些接口可实现为宏或函数。调用FD_ZERO将一个fd_set变量的所有位设置为0。要开启描述符集中的一位，可以调用FD_SET。调用FD_CLR可以清除一位。最后，可以调用FD_ISSET测试描述符集中的一个指定位是否已打开。
 
在声明了一个描述符集之后，必须用FD_ZERO将这个描述符集置为0，然后在其中设置我们关心的各个描述符的位。具体操作如下所示：
 
fd_set　rset;

int　　 fd;

FD_ZERO(&rset);

FD_SET(fd, &rset);

FD_SET(STDIN_FILENO, &rset);
 
从select返回时，可以用FD_ISSET测试该集中的一个给定位是否仍处于打开状态：
 
if (FD_ISSET(fd, &rset)) {

　　　　　 [image: ]

}


 
select的中间3个参数（指向描述符集的指针）中的任意一个（或全部）可以是空指针，这表示对相应条件并不关心。如果所有3个指针都是NULL，则select提供了比sleep更精确的定时器。（回忆10.19节，sleep等待整数秒，而select的等待时间则可以小于1秒，其实际精度取决于系统时钟。）习题14.5给出了这样一个函数。
 
select第一个参数maxfdp1的意思是“最大文件描述符编号值加1”。考虑所有3个描述符集，在3个描述符集中找出最大描述符编号值，然后加1，这就是第一个参数值。也可将第一个参数设置为FD_SETSIZE，这是<sys/select.h>中的一个常量，它指定最大描述符数（经常是1 024），但是对大多数应用程序而言，此值太大了。确实，大多数应用程序只使用3～10个描述符（某些应用程序需要更多的描述符，但这种UNIX程序并不典型）。通过指定我们所关注的最大描述符，内核就只需在此范围内寻找打开的位，而不必在3个描述符集中的数百个没有使用的位内搜索。
 
例如，图14-16所示的两个描述符集的情况就好像是执行了下述操作：
 

  504 

 
fd_set readset, writeset;

FD_ZERO(&readset);

FD_ZERO(&writeset);

FD_SET(0, &readset);

FD_SET(3, &readset);

FD_SET(1, &writeset);

FD_SET(2, &writeset);

select(4, &readset, &writeset, NULL, NULL);
 
因为描述符编号从0开始，所以要在最大描述符编号值上加1。第一个参数实际上是要检查的描述符数（从描述符0开始）。
 
select有3个可能的返回值。
 
[image: ..\14-0434yds排版CMM\UNIX环境高级编程（第3版）tu\1416.tif]
 
图14-16　select的样本描述符集
 
（1）返回值-1表示出错。这是可能发生的，例如，在所指定的描述符一个都没准备好时捕捉到一个信号。在此种情况下，一个描述符集都不修改。
 
（2）返回值0表示没有描述符准备好。若指定的描述符一个都没准备好，指定的时间就过了，那么就会发生这种情况。此时，所有描述符集都会置0。
 
（3）一个正返回值说明了已经准备好的描述符数。该值是3个描述符集中已准备好的描述符数之和，所以如果同一描述符已准备好读和写，那么在返回值中会对其计两次数。在这种情况下，3个描述符集中仍旧打开的位对应于已准备好的描述符。
 
对于“准备好”的含义要作一些更具体的说明。
 
 
 	若对读集（readfds）中的一个描述符进行的read操作不会阻塞，则认为此描述符是准备好的。
 
 	若对写集（writefds）中的一个描述符进行的write操作不会阻塞，则认为此描述符是准备好的。
 
 	若对异常条件集（exceptfds）中的一个描述符有一个未决异常条件，则认为此描述符是准备好的。现在，异常条件包括：在网络连接上到达带外的数据，或者在处于数据包模式的伪终端上发生了某些条件。（Stevens[1990]的15.10节中描述了后一种条件。）
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 	对于读、写和异常条件，普通文件的文件描述符总是返回准备好。
 

 
一个描述符阻塞与否并不影响select是否阻塞，理解这一点很重要。也就是说，如果希望读一个非阻塞描述符，并且以超时值为5秒调用select，则select最多阻塞5 s。相类似，如果指定一个无限的超时值，则在该描述符数据准备好，或捕捉到一个信号之前，select会一直阻塞。
 
如果在一个描述符上碰到了文件尾端，则select会认为该描述符是可读的。然后调用read，它返回0，这是UNIX系统指示到达文件尾端的方法。（很多人错误地认为，当到达文件尾端时，select会指示一个异常条件。）
 
POSIX.1也定义了一个select的变体，称为pselect。
 
#include <sys/select.h>



int pselect(int maxfdp1, fd_set *restrict readfds,

　　　　　　　fd_set *restrict writefds, fd_set *restrict exceptfds,

　　　　　　　const struct timespec *restrict tsptr,

　　　　　　　const sigset_t *restrict sigmask);



　　　　　　　　　　　　　　　返回值：准备就绪的描述符数目；若超时，返回0；若出错，返回−1


 
除下列几点外，pselect与select相同。
 
 
 	select的超时值用timeval结构指定，但pselect使用timespec结构（回忆4.2节中timespec结构的定义）。timespec结构以秒和纳秒表示超时值，而非秒和微秒。如果平台支持这样的时间精度，那么timespec就能提供更精准的超时时间。
 
 	pselect的超时值被声明为const，这保证了调用pselect不会改变此值。
 
 	pselect可使用可选信号屏蔽字。若sigmask为NULL，那么在与信号有关的方面，pselect的运行状况和select相同。否则，sigmask指向一信号屏蔽字，在调用pselect时，以原子操作的方式安装该信号屏蔽字。在返回时，恢复以前的信号屏蔽字。
 

 
14.4.2　函数poll
 
poll函数类似于select，但是程序员接口有所不同。虽然poll函数是System V引入进来支持STREAMS子系统的，但是poll函数可用于任何类型的文件描述符。
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#include <poll.h>



int poll(struct pollfd fdarray[], nfds_t nfds, int timeout);

　　　　　　　　　　　　　　　返回值：准备就绪的描述符数目；若超时，返回0；若出错，返回-1


 
与select不同，poll不是为每个条件（可读性、可写性和异常条件）构造一个描述符集，而是构造一个pollfd结构的数组，每个数组元素指定一个描述符编号以及我们对该描述符感兴趣的条件。
 
struct pollfd {

　int　　fd;　　　　 /* file descriptor to check, or < 0 to ignore */

　short events;　　 /* events of interest on fd */

　short revents;　　/* events that occurred on fd */

};
 
fdarray数组中的元素数由nfds指定。
 
 
 由于历史原因，在如何声明nfds参数方面有几种不同的方式。SVR3将nfds的类型指定为unsigned long，这似乎是太大了。在SVR4手册[AT&T 1990d]中，poll原型的第二个参数的数据类型为size_t（见图2-21中的基本系统数据类型）。但在<poll.h>包含的实际原型中，第二个参数的数据类型仍指定为unsigned long。Single UNIX Specification定义了新类型nfds_t，该类型允许实现选择对其合适的类型并且隐藏了应用细节。注意，因为返回值表示数组中满足事件的项数，所以这种类型必须大得足以保存一个整数。
 
 对应于SVR4的SVID[AT&T 1989]上显示，poll的第一个参数是struct pollfd fdarray []，而SVR4手册页[AT&T 1990d]上则显示该参数为struct pollfd *fdarray。在C语言中，这两种声明是等价的。我们使用第一种声明是为了重申fdarray指向的是一个结构数组，而不是指向单个结构的指针。
 

 
应将每个数组元素的events成员设置为图14-17中所示值的一个或几个，通过这些值告诉内核我们关心的是每个描述符的哪些事件。返回时，revents成员由内核设置，用于说明每个描述符发生了哪些事件。（注意，poll没有更改events成员。这与select不同，select修改其参数以指示哪一个描述符已准备好了。）
 
图14-17中的前4行测试的是可读性，接下来的3行测试的是可写性，最后3行测试的是异常条件。最后3行是由内核在返回时设置的。即使在events字段中没有指定这3个值，如果相应条件发生，在revents中也会返回它们。
 
 
 有些poll事件的名字中包含BAND，它指的是STREAMS当中的优先级波段。想要了解关于STREAMS和优先级波段的更多信息，可以查看Rago[1993]。
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图14-17　poll的events和revents标志
 
当一个描述符被挂断（POLLHUP）后，就不能再写该描述符，但是有可能仍然可以从该描述符读取到数据。
 
poll的最后一个参数指定的是我们愿意等待多长时间。如同select一样，有3种不同的情形。
 
timeout == -1
 
永远等待。（某些系统在<stropts.h>中定义了常量INFTIM，其值通常是-1。）当所指定的描述符中的一个已准备好，或捕捉到一个信号时返回。如果捕捉到一个信号，则poll返回-1，errno设置为EINTR。
 
timeout == 0
 
不等待。测试所有描述符并立即返回。这是一种轮询系统的方法，可以找到多个描述符的状态而不阻塞poll函数。
 
timeout > 0
 
等待timeout毫秒。当指定的描述符之一已准备好，或timeout到期时立即返回。如果timeout到期时还没有一个描述符准备好，则返回值是0。（如果系统不提供毫秒级精度，则timeout值取整到最近的支持值。）
 
理解文件尾端与挂断之间的区别是很重要的。如果我们正从终端输入数据，并键入文件结束符，那么就会打开POLLIN，于是我们就可以读文件结束指示（read返回0）。revents中的POLLHUP没有打开。如果正在读调制解调器，并且电话线已挂断，我们将接到POLLHUP通知。
 
与select一样，一个描述符是否阻塞不会影响poll是否阻塞。
 
select和poll的可中断性
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中断的系统调用的自动重启是由4.2BSD引入的（见10.5节），但当时select函数是不重启的。这种特性在大多数系统中一直延续了下来，即使指定了SA_RESTART选项也是如此。但是，在SVR4上，如果指定了SA_RESTART，那么select和poll也是自动重启的。为了在将软件移植到SVR4派生的系统上时阻止这一点，如果信号有可能会中断select或poll，就要使用signal_intr函数（见图10-19）。
 
 
 本书说明的各种实现在接到一信号时都不重启动poll和select，即便使用了SA_RESTART标志也是如此。
 

 
14.5　异步I/O
 
使用上一节说明的select和poll可以实现异步形式的通知。关于描述符的状态，系统并不主动告诉我们任何信息，我们需要进行查询（调用select或poll）。如在第10章中所述，信号机构提供了一种以异步形式通知某种事件已发生的方法。由BSD和System V派生的所有系统都提供了某种形式的异步I/O，使用一个信号（在System V中是SIGPOLL，在BSD中是SIGIO）通知进程，对某个描述符所关心的某个事件已经发生。我们在前面的章节中提到过，这些形式的异步I/O是受限制的：它们并不能用在所有的文件类型上，而且只能使用一个信号。如果要对一个以上的描述符进行异步I/O，那么在进程接收到该信号时并不知道这一信号对应于哪一个描述符。
 
SUSv4中将通用的异步I/O机制从实时扩展部分调整到基本规范部分。这种机制解决了这些陈旧的异步I/O设施存在的局限性。
 
在我们了解使用异步I/O的不同方法之前，需要先讨论一下成本。在用异步I/O的时候，要通过选择来灵活处理多个并发操作，这会使应用程序的设计复杂化。更简单的做法可能是使用多线程，使用同步模型来编写程序，并让这些线程以异步的方式运行。
 
使用POSIX异步I/O接口，会带来下列麻烦。
 
 
 	每个异步操作有3处可能产生错误的地方：一处在操作提交的部分，一处在操作本身的结果，还有一处在用于决定异步操作状态的函数中。
 
 	与POSIX异步I/O接口的传统方法相比，它们本身涉及大量的额外设置和处理规则。
 

 
 
 事实上，并不能把非异步I/O函数称作“同步”的，因为尽管它们相对于程序流来说是同步的，但相对于I/O来说并非如此。回忆第3章中关于同步写的讨论。当从write函数的调用返回时，写的数据是持久的，我们称这个写操作为“同步”的。也不能依靠把传统的调用归类为“标准”的I/O调用来区别传统的I/O函数和异步I/O函数，因为这样会使它们和标准I/O库中的函数调用相混淆。为了避免产生这种混淆，本节中我们把read和write函数归类为“传统”的I/O函数。
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 	从错误中恢复可能会比较困难。举例来说，如果提交了多个异步写操作，其中一个失败了，下一步我们应该怎么做？如果这些写操作是相关的，那么可能还需要撤销所有成功的写操作。
 

 
14.5.1　System V异步I/O
 
在System V中，异步I/O是STREAMS系统的一部分，它只对STREAMS设备和STREAMS管道起作用。System V的异步I/O信号是SIGPOLL。
 
为了对一个STREAMS设备启动异步I/O，需要调用ioctl，将它的第二个参数（request）设置成I_SETSIG。第三个参数是由图14-18中的一个或多个常量构成的整型值。这些常量是在<stropts.h>中定义的。
 
与STREAMS机制相关的接口在SUSv4中已被标记为弃用，所以这里不讨论它们的任何细节。关于STREAMS的信息详见Rago[1993]。
 
除了调用ioctl指定产生SIGPOLL信号的条件以外，还应为该信号建立信号处理程序。回忆图10-1，对于SIGPOLL的默认动作是终止该进程，所以应当在调用ioctl之前建立信号处理程序。
 
[image: 14-18.jpg]
 
图14-18　产生SIGPOLL信号的条件
 
14.5.2　BSD异步I/O
 
在BSD派生的系统中，异步I/O是信号SIGIO和SIGURG的组合。SIGIO是通用异步I/O信号，SIGURG则只用来通知进程网络连接上的带外数据已经到达。
 
为了接收SIGIO信号，需执行以下3步。
 
（1）调用signal或sigaction为SIGIO信号建立信号处理程序。
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（2）以命令F_SETOWN（见3.14节）调用fcntl来设置进程ID或进程组ID，用于接收对于该描述符的信号。
 
（3）以命令F_SETFL调用fcntl设置O_ASYNC文件状态标志（见图3-10），使在该描述符上可以进行异步I/O。
 
第3步仅能对指向终端或网络的描述符执行，这是BSD异步I/O设施的一个基本限制。
 
对于SIGURG信号，只需执行第1步和第2步。该信号仅对引用支持带外数据的网络连接描述符而产生，如TCP连接。
 
14.5.3　POSIX异步I/O
 
POSIX异步I/O接口为对不同类型的文件进行异步I/O提供了一套一致的方法。这些接口来自实时草案标准，该标准是Single UNIX Specification的可选项。在SUSv4中，这些接口被移到了基本部分中，所以现在所有的平台都被要求支持这些接口。
 
这些异步I/O接口使用AIO控制块来描述I/O操作。aiocb结构定义了AIO控制块。该结构至少包括下面这些字段（具体的实现可能还包含有额外的字段）：
 
struct aiocb {

　int 　　　　　　　　　　aio_fildes;　　　　/* file descriptor */

　off_t 　　　　　　　　　aio_offset;　　　　/* file offset for I/O */

　volatile　　void　 　 *aio_buf;　　　　　/* buffer for I/O */

　size_t 　　　　　　　  aio_nbytes;　　　　/* number of bytes to transfer */

　int　　　　　　　　 　　aio_reqprio;　 　　/* priority */

　struct sigevent　　  aio_sigevent;　　  /* signal information */

　int 　　　　　　　　　 aio_lio_opcode;　　/* operation for list I/O */

};
 
aio_fields字段表示被打开用来读或写的文件描述符。读或写操作从aio_offset指定的偏移量开始。对于读操作，数据会复制到缓冲区中，该缓冲区从aio_buf指定的地址开始。对于写操作，数据会从这个缓冲区中复制出来。aio_nbytes字段包含了要读或写的字节数。
 
注意，异步I/O操作必须显式地指定偏移量。异步I/O接口并不影响由操作系统维护的文件偏移量。只要不在同一个进程里把异步I/O函数和传统I/O函数混在一起用在同一个文件上，就不会导致什么问题。同时值得注意的是，如果使用异步I/O接口向一个以追加模式（使用O_APPEND）打开的文件中写入数据，AIO控制块中的aio_offset字段会被系统忽略。
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其他字段和传统I/O函数中的不一致。应用程序使用aio_reqprio字段为异步I/O请求提示顺序。然而，系统对于该顺序只有有限的控制能力，因此不一定能遵循该提示。aio_lio_opcode字段只能用于基于列表的异步I/O，我们在稍后再讨论它。aio_sigevent字段控制，在I/O事件完成后，如何通知应用程序。这个字段通过sigevent结构来描述。
 
struct sigevent {

　int 　　　　　　　　　　sigev_notify; 　　　　　　　　　　/* notify type */

　int 　　　　　　　　　　sigev_signo;　　　　　　　　　　　/* signal number */

　union sigval　　　　　sigev_value;　　　　　　　　　　　/* notify argument */

　void (*sigev_notify_function)(union sigval);　　　　/* notify function */

　pthread_attr_t *sigev_notify_attributes;　　　　　　 /* notify attrs */

};
 
sigev_notify字段控制通知的类型。取值可能是以下3个中的一个。
 
SIGEV_NONE　　异步I/O请求完成后，不通知进程。
 
SIGEV_SIGNAL　　异步I/O请求完成后，产生由sigev_signo字段指定的信号。如果应用程序已选择捕捉信号，且在建立信号处理程序的时候指定了SA_SIGINFO标志，那么该信号将被入队（如果实现支持排队信号）。信号处理程序会传送给一个siginfo结构，该结构的si_value字段被设置为sigev_value（如果使用了SA_SIGINFO标志）。
 
SIGEV_THREAD　　当异步I/O请求完成时，由sigev_notify_function字段指定的函数被调用。 sigev_value字段被传入作为它的唯一参数。除非sigev_notify_attributes字段被设定为pthread属性结构的地址，且该结构指定了一个另外的线程属性，否则该函数将在分离状态下的一个单独的线程中执行。
 
在进行异步I/O之前需要先初始化AIO控制块，调用aio_read函数来进行异步读操作，或调用aio_ write函数来进行异步写操作。
 
#include <aio.h>



int aio_read(struct aiocb *aiocb);



int aio_write(struct aiocb *aiocb);



　　　　　　　　　　　　　　　两个函数的返回值：若成功，返回0；若出错，返回−1


 
当这些函数返回成功时，异步I/O请求便已经被操作系统放入等待处理的队列中了。这些返回值与实际I/O操作的结果没有任何关系。I/O操作在等待时，必须注意确保AIO控制块和数据库缓冲区保持稳定；它们下面对应的内存必须始终是合法的，除非I/O操作完成，否则不能被复用。
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要想强制所有等待中的异步操作不等待而写入持久化的存储中，可以设立一个AIO控制块并调用aio_ fsync函数。
 
#include <aio.h>



int aio_fsync(int op, struct aiocb *aiocb);



　　　　　　　　　　　　　　　返回值：若成功，返回0；若出错，返回−1


 
AIO控制块中的aio_fildes字段指定了其异步写操作被同步的文件。如果op参数设定为O_DSYNC，那么操作执行起来就会像调用了fdatasync一样。否则，如果op参数设定为O_SYNC，那么操作执行起来就会像调用了fsync一样。
 
像aio_read和aio_write函数一样，在安排了同步时，aio_fsync操作返回。在异步同步操作完成之前，数据不会被持久化。AIO控制块控制我们如何被通知，就像aio_read和aio_write函数一样。
 
为了获知一个异步读、写或者同步操作的完成状态，需要调用aio_error函数。
 
#include <aio.h>



int aio_error(const struct aiocb *aiocb);



　　　　　　　　　　　　　　　返回值：（见下）


 
返回值为下面4种情况中的一种。
 
0　　异步操作成功完成。需要调用aio_return函数获取操作返回值。
 
−1　　对aio_error的调用失败。这种情况下，errno会告诉我们为什么。
 
EINPROGRESS　　异步读、写或同步操作仍在等待。
 
其他情况　　其他任何返回值是相关的异步操作失败返回的错误码。
 
如果异步操作成功，可以调用aio_return函数来获取异步操作的返回值。
 
#include <aio.h>



ssize_t aio_return(const struct aiocb *aiocb);



　　　　　　　　　　　　　　　返回值：（见下）


 
直到异步操作完成之前，都需要小心不要调用aio_return函数。操作完成之前的结果是未定义的。还需要小心对每个异步操作只调用一次aio_return。一旦调用了该函数，操作系统就可以释放掉包含了I/O操作返回值的记录。
 

  513 

 
如果aio_return函数本身失败，会返回−1，并设置errno。其他情况下，它将返回异步操作的结果，即会返回read、write或者fsync在被成功调用时可能返回的结果。
 
执行I/O操作时，如果还有其他事务要处理而不想被I/O操作阻塞，就可以使用异步I/O。然而，如果在完成了所有事务时，还有异步操作未完成时，可以调用aio_suspend函数来阻塞进程，直到操作完成。
 
#include <aio.h>



int aio_suspend(const struct aiocb *const list[], int nent,

　　　　　　　　　 const struct timespec *timeout);



　　　　　　　　　　　　　　　返回值：若成功，返回0；若出错，返回−1


 
aio_suspend可能会返回三种情况中的一种。如果我们被一个信号中断，它将会返回-1，并将errno设置为EINTR。如果在没有任何I/O操作完成的情况下，阻塞的时间超过了函数中可选的timeout参数所指定的时间限制，那么aio_suspend将返回-1，并将errno设置为EAGAIN（不想设置任何时间限制的话，可以把空指针传给timeout参数）。如果有任何I/O操作完成，aio_suspend将返回0。如果在我们调用aio_suspend操作时，所有的异步I/O操作都已完成，那么aio_suspend将在不阻塞的情况下直接返回。
 
list参数是一个指向AIO控制块数组的指针，nent参数表明了数组中的条目数。数组中的空指针会被跳过，其他条目都必须指向已用于初始化异步I/O操作的AIO控制块。
 
当还有我们不想再完成的等待中的异步I/O操作时，可以尝试使用aio_cancel函数来取消它们。
 
#include <aio.h>



int aio_cancel(int fd, struct aiocb *aiocb);



　　　　　　　　　　　　　　　返回值：（见下）


 
fd参数指定了那个未完成的异步I/O操作的文件描述符。如果aiocb参数为NULL，系统将会尝试取消所有该文件上未完成的异步I/O操作。其他情况下，系统将尝试取消由AIO控制块描述的单个异步I/O操作。我们之所以说系统“尝试”取消操作，是因为无法保证系统能够取消正在进程中的任何操作。
 
aio_cancel函数可能会返回以下4个值中的一个。
 
AIO_ALLDONE　　所有操作在尝试取消它们之前已经完成。
 
AIO_CANCELED　　所有要求的操作已被取消。
 
AIO_NOTCANCELED　　至少有一个要求的操作没有被取消。
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-1　　对aio_cancel的调用失败，错误码将被存储在errno中。
 
如果异步I/O操作被成功取消，对相应的AIO控制块调用aio_error函数将会返回错误ECANCELED。如果操作不能被取消，那么相应的AIO控制块不会因为对aio_cancel的调用而被修改。
 
还有一个函数也被包含在异步I/O接口当中，尽管它既能以同步的方式来使用，又能以异步的方式来使用，这个函数就是lio_listio。该函数提交一系列由一个AIO控制块列表描述的I/O请求。
 
#include <aio.h>



int lio_listio(int mode, struct aiocb *restrict const list[restrict],

　　　　　　　　 int nent, struct sigevent *restrict sigev);



　　　　　　　　　　　　　　　返回值：若成功，返回0；若出错，返回−1


 
mode参数决定了I/O是否真的是异步的。如果该参数被设定为LIO_WAIT，lio_listio函数将在所有由列表指定的I/O操作完成后返回。在这种情况下，sigev参数将被忽略。如果mode参数被设定为LIO_NOWAIT，lio_listio函数将在I/O请求入队后立即返回。进程将在所有I/O操作完成后，按照sigev参数指定的，被异步地通知。如果不想被通知，可以把sigev设定为NULL。注意，每个AIO控制块本身也可能启用了在各自操作完成时的异步通知。被sigev参数指定的异步通知是在此之外另加的，并且只会在所有的I/O操作完成后发送。
 
list参数指向AIO控制块列表，该列表指定了要运行的I/O操作的。nent参数指定了数组中的元素个数。AIO控制块列表可以包含NULL指针，这些条目将被忽略。
 
在每一个AIO控制块中，aio_lio_opcode字段指定了该操作是一个读操作（LIO_READ）、写操作（LIO_WRITE），还是将被忽略的空操作（LIO_NOP）。读操作会按照对应的AIO控制块被传给了aio_read函数来处理。类似地，写操作会按照对应的AIO控制块被传给了aio_write函数来处理。
 
实现会限制我们不想完成的异步I/O操作的数量。这些限制都是运行时不变量，其总结如图14-19所示。
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[image: 14-19.jpg]
 
图14-19　POSIX.1中的异步I/O运行时不变量的值
 
可以通过调用sysconf函数并把name参数设置为_SC_IO_LISTIO_MAX来设定AIO_LISTIO_MAX的值。类似地，可以通过调用sysconf并把name参数设置为_SC_AIO_MAX来设定AIO_MAX的值，通过调用sysconf并把其参数设置为_SC_AIO_PRIO_DELTA_MAX来设定AIO_PRIO_DELTA_MAX的值。
 
引入POSIX异步操作I/O接口的初衷是为实时应用提供一种方法，避免在执行I/O操作时阻塞进程。接下来就让我们来看一个使用这些接口的例子。
 
实例
 
虽然我们不会在本文中讨论实时编程，但因为POSIX异步I/O接口现在是Single UNIX Specification的基本部分，所以我们要了解一下怎么使用它们。为了对比异步I/O接口和相应的传统I/O接口，我们来研究一个任务，将一个文件从一种格式翻译成另一种格式。
 
图14-20中展示的程序，使用20世纪80年代流行的USENET新闻系统中使用的ROT-13算法，翻译文件，该算法原本用于将文本中的带有侵犯性的或者含有剧透和笑话笑点部分的文本模糊化。该算法将文本中的英文字符a～z和A～Z分别循环向右偏移13个字母位移，但不改变其他字符。
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#include "apue.h"

#include <ctype.h>

#include <fcntl.h>



#define BSZ 4096



unsigned char buf[BSZ];



unsigned char

translate(unsigned char c)

{

　　if (isalpha(c)) {

　　　　if (c >= 'n')

　　　　　　c -= 13;

　　　　else if (c >= 'a')

　　　　　　c += 13;

　　　　else if (c >= 'N')

　　　　　　c -= 13;

　　　　else

　　　　　　c += 13;

　　}

　　return(c);

}



int

main(int argc, char* argv[])

{

　　int　　ifd, ofd, i, n, nw;



　　if (argc != 3)

　　　　err_quit("usage: rot13 infile outfile");

　　if ((ifd = open(argv[1], O_RDONLY)) < 0)

　　　　err_sys("can't open %s", argv[1]);

　　if ((ofd = open(argv[2], O_RDWR|O_CREAT|O_TRUNC, FILE_MODE)) < 0)

　　　　err_sys("can't create %s", argv[2]);



　　while ((n = read(ifd, buf, BSZ)) > 0) {

　　　　for (i = 0; i < n; i++)

　　　　　　buf[i] = translate(buf[i]);

　　　　if ((nw = write(ofd, buf, n)) != n) {

　　　　　　if (nw < 0)

　　　　　　　　err_sys("write failed");

　　　　　　else

　　　　　　　　err_quit("short write (%d/%d)", nw, n);

　　　　}

　　}



　　fsync(ofd);

　　exit(0);

}
 
图14-20　用ROT-13翻译一个文件
 
程序中的I/O部分是很直接的：从输入文件中读取一个块，翻译之，然后再把这个块写到输出文件中。重复该步骤直到遇到文件尾端，read返回0。图14-21中的程序展示了如何使用等价的异步I/O函数做同样的任务。
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#include "apue.h"

#include <ctype.h>

#include <fcntl.h>

#include <aio.h>

#include <errno.h>



#define BSZ 4096

#define NBUF 8



enum rwop {

　　UNUSED = 0,

　　READ_PENDING = 1,

　　WRITE_PENDING = 2

};



struct buf {

　　enum rwop　　　　op;

　　int　　　　　　　 last;

　　struct aiocb　  aiocb;

　　unsigned char　 data[BSZ];

};



struct buf bufs[NBUF];

unsigned char

translate(unsigned char c)

{

　　/* same as before */

}



int

main(int argc, char* argv[])

{

　　int 　　　　　　　　　　  　ifd, ofd, i, j, n, err, numop;

　　struct stat 　　　　　　  sbuf;

　　const struct aiocb　　　 *aiolist[NBUF];

　　off_t 　　　　　　　　　　　off = 0;



　　if (argc != 3)

　　　　err_quit("usage: rot13 infile outfile");

　　if ((ifd = open(argv[1], O_RDONLY)) < 0)

　　　　err_sys("can’t open %s", argv[1]);

　　if ((ofd = open(argv[2], O_RDWR|O_CREAT|O_TRUNC, FILE_MODE)) < 0)

　　　　err_sys("can’t create %s", argv[2]);

　　if (fstat(ifd, &sbuf) < 0)

　　　　err_sys("fstat failed");



　　/* initialize the buffers */

　　for (i = 0; i < NBUF; i++) {

　　　　bufs[i].op = UNUSED;

　　　　bufs[i].aiocb.aio_buf = bufs[i].data;

　　　　bufs[i].aiocb.aio_sigevent.sigev_notify = SIGEV_NONE;

　　　　aiolist[i] = NULL;

　　}



　　numop = 0;

　　for (;;) {

　　　　for (i = 0; i < NBUF; i++) {

　　　　　　switch (bufs[i].op) {

　　　　　　case UNUSED:

　　　　　　　　/*

　　　　　　　　 * Read from the input file if more data

　　　　　　　　 * remains unread.

　　　　　　　　 */

　　　　　　　　if (off < sbuf.st_size) {

　　　　　　　　　　bufs[i].op = READ_PENDING;

　　　　　　　　　　bufs[i].aiocb.aio_fildes = ifd;

　　　　　　　　　　bufs[i].aiocb.aio_offset = off;

　　　　　　　　　　off += BSZ;

　　　　　　　　　　if (off >= sbuf.st_size)

　　　　　　　　　　　　bufs[i].last = 1;

　　　　　　　　　　bufs[i].aiocb.aio_nbytes = BSZ;

　　　　　　　　　　if (aio_read(&bufs[i].aiocb) < 0)

　　　　　　　　　　　　err_sys("aio_read failed");

　　　　　　　　　　aiolist[i] = &bufs[i].aiocb;

　　　　　　　　　　numop++;

　　　　　　　　}

　　　　　　　　break;



　　　　　　case READ_PENDING:

　　　　　　　　if ((err = aio_error(&bufs[i].aiocb)) == EINPROGRESS)

　　　　　　　　　　continue;

　　　　　　　　if (err != 0) {

　　　　　　　　　　if (err == -1)

　　　　　　　　　　　　err_sys("aio_error failed");

　　　　　　　　　　else

　　　　　　　　　　　　err_exit(err, "read failed");

　　　　　　　　}



　　　　　　　　/*

　　　　　　　　 * A read is complete; translate the buffer

　　　　　　　　 * and write it.

　　　　　　　　 */

　　　　　　　　if ((n = aio_return(&bufs[i].aiocb)) < 0)

　　　　　　　　　　err_sys("aio_return failed");

　　　　　　　　if (n != BSZ && !bufs[i].last)

　　　　　　　　　　err_quit("short read (%d/%d)", n, BSZ);

　　　　　　　　for (j = 0; j < n; j++)

　　　　　　　　　　bufs[i].data[j] = translate(bufs[i].data[j]);

　　　　　　　　bufs[i].op = WRITE_PENDING;

　　　　　　　　bufs[i].aiocb.aio_fildes = ofd;

　　　　　　　　bufs[i].aiocb.aio_nbytes = n;

　　　　　　　　if (aio_write(&bufs[i].aiocb) < 0)

　　　　　　　　　　err_sys("aio_write failed");

　　　　　　　　/* retain our spot in aiolist */

　　　　　　　　break;



　　　　　　case WRITE_PENDING:

　　　　　　　　if ((err = aio_error(&bufs[i].aiocb)) == EINPROGRESS)

　　　　　　　　　　continue;

　　　　　　　　if (err != 0) {

　　　　　　　　　　if (err == -1)

　　　　　　　　　　　　err_sys("aio_error failed");

　　　　　　　　　　else

　　　　　　　　　　　　err_exit(err, "write failed");

　　　　　　　　}



　　　　　　　　/*

　　　　　　　　 * A write is complete; mark the buffer as unused.

　　　　　　　　 */

　　　　　　　　if ((n = aio_return(&bufs[i].aiocb)) < 0)

　　　　　　　　　　err_sys("aio_return failed");

　　　　　　　　if (n != bufs[i].aiocb.aio_nbytes)

　　　　　　　　　　err_quit("short write (%d/%d)", n, BSZ);

　　　　　　　　aiolist[i] = NULL;

　　　　　　　　bufs[i].op = UNUSED;

　　　　　　　　numop--;

　　　　　　　　break;

　　　　　　}

　　　　}

　　　　if (numop == 0) {

　　　　　　if (off >= sbuf.st_size)

　　　　　　　　break;

　　　　} else {

　　　　　　if (aio_suspend(aiolist, NBUF, NULL) < 0)

　　　　　　　　err_sys("aio_suspend failed");

　　　　}

　　}



　　bufs[0].aiocb.aio_fildes = ofd;

　　if (aio_fsync(O_SYNC, &bufs[0].aiocb) < 0)

　　　　err_sys("aio_fsync failed");

　　exit(0);

}
 
图14-21　用ROT-13和异步I/O翻译一个文件
 
注意，我们使用了8个缓冲区，因此可以有最多8个异步I/O请求处于等待状态。令人惊讶的是，实际上这可能会降低性能，因为如果读操作是以无序的方式提交给文件系统的，操作系统提前读的算法便会失效。
 
在检查操作的返回值之前，必须确认操作已经完成。当aio_error返回的值既非EINPROGRESS亦非−1时，表明操作完成。除了这些值之外，如果返回值是0以外的任何值，说明操作失败了。一旦检查过这些情况，便可以安全地调用aio_return来获取I/O操作的返回值了。
 
只要还有事情要做，就可以提交异步I/O操作。当存在未使用的AIO控制块时，可以提交一个异步读操作。读操作完成后，翻译缓冲区中的内容并将它提交给一个异步写请求。当所有AIO控制块都在使用中时，通过调用aio_suspend等待操作完成。
 
在把一个块写入输出文件时，我们保留了在从输入文件读取数据时的偏移量。因而写的顺序并不重要。这一策略仅在输入文件中每个字符和输出文件中对应的字符的偏移量相同的情况下适用，我们在输出文件中既没有添加字符也没有删除字符。
 

  520 

 
这个实例中并没有使用异步通知，因为使用同步编程模型更加简单。如果在I/O操作进行时还有别的事情要做，那么额外的工作可以包含在for循环当中。然而，如果需要阻止这些额外的工作延迟翻译文件的任务，那么就需要组织下代码使用异步通知。多任务情况下，决定程序如何建构之前需要先考虑各个任务的优先级。
 
14.6　函数readv和writev
 
readv和writev函数用于在一次函数调用中读、写多个非连续缓冲区。有时也将这两个函数称为散布读（scatter read）和聚集写（gather write）。
 
#include <sys/uio.h>



ssize_t readv(int fd, const struct iovec *iov, int iovcnt);



ssize_t writev(int fd, const struct iovec *iov, int iovcnt);



　　　　　　　　　　　　　　　两个函数的返回值：已读或已写的字节数；若出错，返回−1


 
这两个函数的第二个参数是指向iovec结构数组的一个指针：
 
struct iovec {

　void　 *iov_base; /* starting address of buffer */

　size_t　iov_len;　/* size of buffer */

};
 
iov数组中的元素数由iovcnt指定，其最大值受限于IOV_MAX（回忆图2-11）。图14-22显示了这两个函数的参数和iovec结构之间的关系。
 
writev函数从缓冲区中聚集输出数据的顺序是：iov[0] 、iov[1]直至iov[iovcnt-1] 。 writev返回输出的字节总数，通常应等于所有缓冲区长度之和。
 
[image: ..\14-0434yds排版CMM\UNIX环境高级编程（第3版）tu\1422.tif]
 
图14-22　readv和writev的iovec结构
 
readv函数则将读入的数据按上述同样顺序散布到缓冲区中。readv总是先填满一个缓冲区，然后再填写下一个。readv返回读到的字节总数。如果遇到文件尾端，已无数据可读，则返回0。
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 这两个函数始于4.2BSD，后来，SVR4也提供它们。在Single UNIX Specification的XSI扩展中包括了这两个函数。
 

 
实例
 
在20.8节的_db_writeidx函数中，需将两个缓冲区中的内容连续地写到一个文件中。第二个缓冲区是调用者传递过来的一个参数，第一个缓冲区是我们创建的，它包含了第二个缓冲的长度以及文件中其他信息的文件偏移量。有以下3种方法可以实现这一要求。
 
（1）调用两次write，每个缓冲区一次。
 
（2）分配一个大到足以包含两个缓冲区的新缓冲区。将两个缓冲区的内容复制到新缓冲区中。然后对这个新缓冲区调用一次write。
 
（3）调用writev输出两个缓冲区。
 
20.8节的解决方案使用了writev，但是将它与另外两种方法进行比较，对我们是很有启发的。图14-23显示了上面所述3种方法的结果。
 
[image: 14-23.jpg]
 
图14-23　比较writev和其他技术所得的时间结果
 
用于测量的测试程序输出一个100字节的头文件，接着又输出200字节的数据。这样做1 048 576次，产生了一个300 MB的文件。该测试程序有3个版本——针对图14-23中的每一种测量技术编写了一个版本。使用times（见8.17节）测得它们在写操作前、后各使用的用户CPU时间、系统CPU时间和时钟时间。这3个时间的单位都是秒。
 
正如我们所预料的，调用两次write的系统时间比调用一次write或writev的长，这与图3-6的结果类似。
 
接着要注意的是，在缓冲区复制后跟随一个write所用的CPU时间（用户时间加系统时间）要少于调用一次writev所耗费的CPU时间。对于单一write的情况，我们先将用户层次的两个缓冲区复制到一个分段缓冲区（staging buffer），然后在调用write时内核将该分段缓冲区中的数据复制到其内部缓冲区。对于writev的情况，因为内核只需将数据直接复制进其分段缓冲区，所以复制工作应当会少一些。但是，对于这种少量数据，使用writev的固定成本大于收益。随着需复制数据的增加，程序中复制缓冲区的成本也会增多，此时，writev这种替代方法将更具吸引力。
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 不要依据图14-23中的数字对Linux和Mac OS X之间的相对性能作过多的推断。这两种计算机有很大差别：它们有不同的处理器结构、不同数量的RAM以及不同速度的磁盘。为了在操作系统之间进行公平的比较，需要对每一种操作系统都使用相同的硬件。
 

 
总之，应当用尽量少的系统调用次数来完成任务。如果我们只写少量的数据，将会发现自己复制数据然后使用一次write会比用writev更合算。但也可能发现，我们管理自己的分段缓冲区会增加程序额外的复杂性成本，所以从性能成本的角度来看不合算。
 
14.7　函数readn和writen
 
管道、FIFO以及某些设备（特别是终端和网络）有下列两种性质。
 
（1）一次read操作所返回的数据可能少于所要求的数据，即使还没达到文件尾端也可能是这样。这不是一个错误，应当继续读该设备。
 
（2）一次write操作的返回值也可能少于指定输出的字节数。这可能是由某个因素造成的，例如，内核输出缓冲区变满。这也不是错误，应当继续写余下的数据。（通常，只有非阻塞描述符，或捕捉到一个信号时，才发生这种write的中途返回。）
 
在读、写磁盘文件时从未见到过这种情况，除非文件系统用完了空间，或者接近了配额限制，不能将要求写的数据全部写出。
 
通常，在读、写一个管道、网络设备或终端时，需要考虑这些特性。下面两个函数readn和writen的功能分别是读、写指定的N字节数据，并处理返回值可能小于要求值的情况。这两个函数只是按需多次调用read和write直至读、写了N字节数据。
 
#include "apue.h"



ssize_t readn(int fd, void *buf, size_t nbytes);



ssize_t writen(int fd, void *buf, size_t nbytes);



　　　　　　　　　　　　　　　两个函数的返回值：读、写的字节数；若出错，返回−1


 
 
 类似于本书很多实例所使用的出错处理例程，我们定义这两个函数的目的是便于在后面实例中使用。readn和writen函数并不是哪个标准的组成部分。
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在要将数据写到上面提到的文件类型上时，就可调用writen，但是仅当事先就知道要接收数据的数量时，才调用readn。图14-24包含了readn和writen的实现，在后面的实例中，我们还会用到。
 
#include "apue.h"



ssize_t　　　　　　 /* Read "n" bytes from a descriptor */

readn(int fd, void *ptr, size_t n)

{

　　size_t nleft;

　　ssize_t nread;



　　nleft = n;

　　while (nleft > 0) {

　　　　if ((nread = read(fd, ptr, nleft)) < 0) {

　　　　　　if (nleft == n)

　　　　　　　　return(-1); /* error, return -1 */

　　　　　　else

　　　　　　　　break; /* error, return amount read so far */

　　　　} else if (nread == 0) {

　　　　　　break; /* EOF */

　　　　}

　　　　nleft -= nread;

　　　　ptr += nread;

　　}

　　return(n - nleft); /* return >= 0 */

}



ssize_t　　　　　　 /* Write "n" bytes to a descriptor　*/

writen(int fd, const void *ptr, size_t n)

{

　　size_t　　　　　nleft;

　　ssize_t　　　　 nwritten;



　　nleft = n;

　　while (nleft > 0) {

　　　　if ((nwritten = write(fd, ptr, nleft)) < 0) {

　　　　　　if (nleft == n)

　　　　　　　　return(-1); /* error, return -1 */

　　　　　　else

　　　　　　　　break;　　　/* error, return amount written so far */

　　　　} else if (nwritten == 0) {

　　　　　　break;

　　　　}

　　　　nleft -= nwritten;

　　　　ptr　 += nwritten;

　　}

　　return(n - nleft);　　　/* return >= 0 */

}
 
图14-24　readn和writen函数
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注意，若在已经读、写了一些数据之后出错，则这两个函数返回的是已传输的数据量，而非错误。与此类似，在读时，如达到文件尾端，而且在此之前已成功地读了一些数据，但尚未满足所要求的量，则readn返回已复制到调用者缓冲区中的字节数。
 
14.8　存储映射I/O
 
存储映射I/O（memory-mapped I/O）能将一个磁盘文件映射到存储空间中的一个缓冲区上，于是，当从缓冲区中取数据时，就相当于读文件中的相应字节。与此类似，将数据存入缓冲区时，相应字节就自动写入文件。这样，就可以在不使用read和write的情况下执行I/O。
 
 
 存储映射I/O伴随虚拟存储系统已经用了很多年。1981年，4.1BSD以其vread和vwrite函数提供了一种不同形式的存储映射I/O。4.2BSD中删除了这两个函数，试图替换成mmap函数。但是4.2BSD实际上并没有包含mmap函数（原因见McKusick等[1996]中2.5节的描述）。Gingell、Moran和Shannon[1987]描述了mmap的一种实现。SUSv4把mmap函数从可选项规范中移到了基础规范中。所有的遵循POSIX的系统都需要支持它。
 

 
为了使用这种功能，应首先告诉内核将一个给定的文件映射到一个存储区域中。这是由mmap函数实现的。
 
#include <sys/mman.h>



void *mmap(void *addr, size_t len, int prot, int flag, int fd, off_t off);



　　　　　　　　　　　　　　　返回值：若成功，返回映射区的起始地址；若出错，返回MAP_FAILED


 
addr参数用于指定映射存储区的起始地址。通常将其设置为0，这表示由系统选择该映射区的起始地址。此函数的返回值是该映射区的起始地址。
 
fd参数是指定要被映射文件的描述符。在文件映射到地址空间之前，必须先打开该文件。len参数是映射的字节数，off是要映射字节在文件中的起始偏移量（有关off值的一些限制将在后面说明）。
 
prot参数指定了映射存储区的保护要求，如图14-25所示。
 
[image: 14-25.jpg]
 
图14-25　映射存储区的保护要求
 
可将prot参数指定为PROT_NONE，也可指定为PROT_READ、PROT_WRITE和PROT_EXEC的任意组合的按位或。对指定映射存储区的保护要求不能超过文件open模式访问权限。例如，若该文件是只读打开的，那么对映射存储区就不能指定PROT_WRITE。
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在说明flag参数之前，先看一下存储映射文件的基本情况。图14-26显示了一个存储映射文件。（见图7-6中所示的典型进程的存储器安排。）在此图中，“起始地址”是mmap的返回值。映射存储区位于堆和栈之间：这属于实现细节，各种实现之间可能不同。
 
下面是flag参数影响映射存储区的多种属性。
 
MAP_FIXED　　返回值必须等于addr。因为这不利于可移植性，所以不鼓励使用此标志。如果未指定此标志，而且addr非0，则内核只把addr视为在何处设置映射区的一种建议，但是不保证会使用所要求的地址。将addr指定为0可获得最大可移植性。
 
 
 在遵循POSIX的系统中，对MAP_FIXED标志的支持是可选择的，但遵循XSI的系统则要求支持MAP_ FIXED。
 

 
MAP_SHARED　　这一标志描述了本进程对映射区所进行的存储操作的配置。此标志指定存储操作修改映射文件，也就是，存储操作相当于对该文件的write。必须指定本标志或下一个标志（MAP_ PRIVATE），但不能同时指定两者。
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MAP_PRIVATE　　本标志说明，对映射区的存储操作导致创建该映射文件的一个私有副本。所有后来对该映射区的引用都是引用该副本。（此标志的一种用途是用于调试程序，它将程序文件的正文部分映射至存储区，但允许用户修改其中的指令。任何修改只影响程序文件的副本，而不影响原文件。）
 
[image: ..\14-0434yds排版CMM\UNIX环境高级编程（第3版）tu\1426.tif]
 
图14-26　存储映射文件的例子
 
每种实现都可能还有另外一些MAP_xxx标志值，它们是那种实现所特有的。详细情况请参见你所使用系统的mmap(2)手册页。
 
off的值和addr的值（如果指定了MAP_FIXED）通常被要求是系统虚拟存储页长度的倍数。虚拟存储页长可用带参数_SC_PAGESIZE或_SC_PAGE_SIZE的sysconf函数（见2.5.4节）得到。因为off和addr常常指定为0，所以这种要求一般并不重要。
 
 
 这一要求通常是由系统实现强加的。尽管Single UNIX Specification不再要求满足该条件，但是所有本书中讲到的除了FreeBSD 8.0以外的所有平台都满足了这一要求。FreeBSD 8.0允许我们使用任意的地址对齐和偏移对齐，只要对齐匹配即可。
 

 
既然映射文件的起始偏移量受系统虚拟存储页长度的限制，那么如果映射区的长度不是页长的整数倍时，会怎么样呢？假定文件长为12字节，系统页长为512字节，则系统通常提供512字节的映射区，其中后500字节被设置为0。可以修改后面的这500字节，但任何变动都不会在文件中反映出来。于是，不能用mmap将数据添加到文件中。我们必须先加长该文件，如后面的图14-27中的程序所示。
 
与映射区相关的信号有SIGSEGV和SIGBUS。信号SIGSEGV通常用于指示进程试图访问对它不可用的存储区。如果映射存储区被mmap指定成了只读的，那么进程试图将数据存入这个映射存储区的时候，也会产生此信号。如果映射区的某个部分在访问时已不存在，则产生SIGBUS信号。例如，假设用文件长度映射了一个文件，但在引用该映射区之前，另一个进程已将该文件截断。此时，如果进程试图访问对应于该文件已截去部分的映射区，将会接收到SIGBUS信号。
 
子进程能通过fork继承存储映射区（因为子进程复制父进程地址空间，而存储映射区是该地址空间中的一部分），但是由于同样的原因，新程序则不能通过exec继承存储映射区。
 
调用mprotect可以更改一个现有映射的权限。
 
#include <sys/mman.h>



int mprotect(void *addr, size_t len, int prot);



　　　　　　　　　　　　　　　返回值：若成功，返回0；若出错，返回-1


 
prot的合法值与mmap中prot参数的一样（见图14-25）。请注意，地址参数addr的值必须是系统页长的整数倍。
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如果修改的页是通过MAP_SHARED标志映射到地址空间的，那么修改并不会立即写回到文件中。相反，何时写回脏页由内核的守护进程决定，决定的依据是系统负载和用来限制在系统失败事件中的数据损失的配置参数。因此，如果只修改了一页中的一个字节，当修改被写回到文件中时，整个页都会被写回。
 
如果共享映射中的页已修改，那么可以调用msync将该页冲洗到被映射的文件中。msync函数类似于fsync（见3.13节），但作用于存储映射区。
 
#include <sys/mman.h>



int msync(void *addr, size_t len, int flags);



　　　　　　　　　　　　　　　返回值：若成功，返回0；若出错，返回-1


 
如果映射是私有的，那么不修改被映射的文件。与其他存储映射函数一样，地址必须与页边界对齐。
 
flags参数使我们对如何冲洗存储区有某种程度的控制。可以指定MS_ASYNC标志来简单地调试要写的页。如果希望在返回之前等待写操作完成，则可指定MS_SYNC标志。一定要指定MS_ASYNC和MS_ SYNC中的一个。
 
MS_INVALIDATE是一个可选标志，允许我们通知操作系统丢弃那些与底层存储器没有同步的页。若使用了此标志，某些实现将丢弃指定范围中的所有页，但这种行为并不是必需的。
 
 
 msync函数包含在Single UNIX Specification的XSI选项中。因此，所有UNIX系统必须支持它。
 

 
当进程终止时，会自动解除存储映射区的映射，或者直接调用munmap函数也可以解除映射区。关闭映射存储区时使用的文件描述符并不解除映射区。
 
#include <sys/mman.h>



int munmap(void *addr, size_t len);



　　　　　　　　　　　　　　　返回值：若成功，返回0；若出错，返回−1


 
munmap并不影响被映射的对象，也就是说，调用munmap并不会使映射区的内容写到磁盘文件上。对于MAP_SHARED区磁盘文件的更新，会在我们将数据写到存储映射区后的某个时刻，按内核虚拟存储算法自动进行。在存储区解除映射后，对MAP_PRIVATE存储区的修改会被丢弃。
 
实例
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图14-27中的程序用存储映射I/O复制文件（类似于cp(1)命令）。
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#include "apue.h"

#include <fcntl.h>

#include <sys/mman.h>



#define COPYINCR (1024*1024*1024)　　/* 1 GB */



int

main(int argc, char *argv[])

{

　　int　　　　　　  fdin, fdout;

　　void　　　　　　 *src, *dst;

　　size_t　　　　 　copysz;

　　struct stat    sbuf;

　　off_t　　　     fsz = 0;



　　if (argc != 3)

　　　　err_quit("usage: %s <fromfile> <tofile>", argv[0]);



　　if ((fdin = open(argv[1], O_RDONLY)) < 0)

　　　　err_sys("can't open %s for reading", argv[1]);



　　if ((fdout = open(argv[2], O_RDWR | O_CREAT | O_TRUNC,

　　　FILE_MODE)) < 0)

　　　　err_sys("can't creat %s for writing", argv[2]);



　　if (fstat(fdin, &sbuf) < 0)　　　　　　　　　/* need size of input file */

　　　　err_sys("fstat error");



　　if (ftruncate(fdout, sbuf.st_size) < 0)　 /* set output file size */

　　　　err_sys("ftruncate error");



　　while (fsz < sbuf.st_size) {

　　　　if ((sbuf.st_size - fsz) > COPYINCR)

　　　　　　copysz = COPYINCR;

　　　　else

　　　　　　copysz = sbuf.st_size - fsz;



　　　　if ((src = mmap(0, copysz, PROT_READ, MAP_SHARED,

　　　　　fdin, fsz)) == MAP_FAILED)

　　　　　　err_sys("mmap error for input");

　　　　if ((dst = mmap(0, copysz, PROT_READ | PROT_WRITE,

　　　　　MAP_SHARED, fdout, fsz)) == MAP_FAILED)

　　　　　　err_sys("mmap error for output");



　　　　memcpy(dst, src, copysz);　　　　　　　　/* does the file copy */

　　　　munmap(src, copysz);

　　　　munmap(dst, copysz);

　　　　fsz += copysz;

　　}

　　exit(0);

}
 
图14-27　用存储映射I/O复制文件
 
该程序首先打开两个文件，然后调用fstat得到输入文件的长度。在为输入文件调用mmap和设置输出文件长度时都需使用输入文件长度。可以调用ftruncate设置输出文件的长度。如果不设置输出文件的长度，则对输出文件调用mmap也可以，但是对相关存储区的第一次引用会产生SIGBUS信号。
 
然后对每个文件调用mmap，将文件映射到内存，最后调用memcpy将输入缓冲区的内容复制到输出缓冲区。为了限制使用内存的量，我们每次最多复制1 GB的数据（如果系统没有足够的内存，可能无法把一个很大的文件中的所有内容都映射到内存中）。在映射文件中的后一部分数据之前，我们需要解除前一部分数据的映射。
 
在从输入缓冲区（src）取数据字节时，内核自动读输入文件；在将数据存入输出缓冲区（dst）时，内核自动将数据写到输出文件中。
 
 
 数据被写到文件的确切时间依赖于系统的页管理算法。某些系统设置了守护进程，在系统运行期间，它慢条斯理地将改写过的页写到磁盘上。如果想要确保数据安全地写到文件中，则需在进程终止前以MS_SYNC标志调用msync。
 

 
将存储区映射复制与用read和write进行的复制（缓冲区长度为8 192）相比较，得到图14-28中所示的结果。其中，时间单位是秒，被复制文件的长度是300 MB。注意，我们并没有在退出前将数据同步到磁盘。
 
[image: 14-28.jpg]
 
图14-28　read/write与mmap/memcpy比较的时间结果
 
在Linux 3.2.0和Solaris 10中，两种方法的总的CPU时间（用户时间+系统时间）几乎是相同的。在Solaris中，使用mmap和memcpy复制，与使用read和write相比，花费了更多的用户时间，但却减少了系统时间。在Linux中，用户时间的结果很相似，但是用read和write消耗的系统时间要比使用mmap和memcpy略好一些。这两种版本的方法是殊途同归的。
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二者的主要区别在于，与mmap和memcpy相比，read和write执行了更多的系统调用，并做了更多的复制。read和write将数据从内核缓冲区中复制到应用缓冲区（read），然后再把数据从应用缓冲区复制到内核缓冲区（write）。而mmap和memcpy则直接把数据从映射到地址空间的一个内核缓冲区复制到另一个内核缓冲区。当引用尚不存在的内存页时，这样的复制过程就会作为处理页错误的结果而出现（每次错页读发生一次错误，每次错页写发生一次错误）。如果系统调用和额外的复制操作的开销和页错误的开销不同，那么这两种方法中就会有一种比另一种表现更好。
 
在Linux 3.2.0中，相对于运行时间，两种版本的程序在时钟时间上显示出了巨大的差异：使用read和write的版本完成任务比使用mmap和memcpy的版本快了4倍。然而在Solaris 10中，使用mmap和memcpy的版本比使用read和write的版本要快。既然二者的CPU时间几乎是相同的，为何它们的时钟时间差异却如此之大呢？一种可能是，在一种版本中需要较长的时间来等待I/O完成。这个等待时间并没有计算在CPU的处理时间中。另一种可能是，某些系统处理的时间可能并没有在程序中计算，比如系统守护进程把页写到磁盘中的操作。由于需要为读和写分配页，系统的守护进程会帮助我们准备可用的页。如果页的写操作是随机的而非连续的，那么把它们写入磁盘所需要的时间会更长，因此在页可以被用来复用之前所需等待的时间也会更长。
 
有的系统将一个普通文件复制到另一个普通文件中时，存储映射I/O可能会比较快。但是有一些限制，例如，不能用这种技术在某些设备之间（如网络设备或终端设备）进行复制，并且在对被复制的文件进行映射后，也要注意该文件的长度是否改变。尽管如此，某些应用程序仍然能得益于存储映射I/O，因为它处理的是存储空间而不是读、写一个文件，所以常常可以简化算法。从存储映射I/O中得益的一个例子是对帧缓冲设备的操作，该设备引用位图式显示（bit-mapped display）。
 
Krieger、Stumm和Unrau[1992]描述了一个使用存储映射I/O的标准I/O库（见第5章）。
 
15.9节还会提到存储映射I/O，其中还举了一个例子，说明如何使用存储映射I/O在两个相关进程间提供共享存储区。
 
14.9　小结
 
本章描述了很多高级I/O功能，其中有许多将用在后面章节的实例中。
 
 
 	非阻塞I/O——发一个I/O操作，不使其阻塞。
 
 	记录锁（在第20章中有一个实例，该实例会对此进行更详细的讨论）。
 
 	I/O多路转接——select和poll函数（在后面的很多实例中会用到这两个函数）。
 
 	readv和writev函数（在后面的很多实例中也会用到这两个函数）。
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 	存储映射I/O（mmap）。
 

 
习题
 
14.1　编写一个测试程序说明你所用系统在下列情况下的运行情况：一个进程在试图对一个文件的某个范围加写锁的时候阻塞，之后其他进程又提出了一些相关的加读锁请求。试图加写锁的进程会不会因此而饿死？
 
14.2　查看你所用系统的头文件，并研究select和4个FD_宏的实现。
 
14.3　系统头文件通常对fd_set数据类型可以处理的最大描述符数有一个内置的限制，假设需要将描述符数增加到2 048，该如何实现？
 
14.4　比较处理信号量集的函数（见10.11节）和处理fd_set描述符集的函数，并比较这两类函数在你系统上的实现。
 
14.5　用select或poll实现一个与sleep类似的函数sleep_us，不同之处是要等待指定的若干微秒。比较这个函数和BSD中的usleep函数。
 
14.6　是否可以利用建议性记录锁来实现图10-24中的函数TELL_WAIT、TELL_PARENT、TELL_ CHILD、 WAIT_PARENT以及WAIT_CHILD？如果可以，编写这些函数并测试其功能。
 
14.7　用非阻塞写来确定管道的容量。将其值与第2章的PIPE_BUF值进行比较。
 
14.8　重写图14-21中的程序来制作一个过滤器：从标准输入中读入并向标准输出写，但是要使用异步I/O接口。为了使之能正常工作，你都需要修改些什么？记住，无论你的标准输出被连接到终端、管道还是一个普通文件，都应该得到相同的结果。
 
14.9　回忆图14-23，在你的系统上找到一个损益平衡点，从此点开始，使用writev将快于你自己使用单个write复制数据。
 
14.10　运行图14-27中的程序复制一个文件，检查输入文件的上一次访问时间是否更新了？
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14.11　在图14-27的程序中，在调用mmap后调用close关闭输入文件，以验证关闭描述符不会使内存映射I/O失效。
 


第15章　进程间通信
 
15.1　引言
 
第8章说明了进程控制原语，并且观察了如何调用多个进程。但是这些进程之间交换信息的唯一途径就是传送打开的文件，可以经由fork或exec来传送，也可以通过文件系统来传送。本章将说明进程之间相互通信的其他技术——进程间通信（InterProcess Communication，IPC）。
 
过去，UNIX系统IPC是各种进程通信方式的统称，但是，这些通信方式中极少有能在所有UNIX系统实现中进行移植的。随着POSIX和The Open Group（以前是X/Open）标准化的推进和影响的扩大，情况已得到改善，但差别仍然存在。图15-1摘要列出了本书讨论的4种实现所支持的不同形式的IPC。
 
[image: 15-1.jpg]
 
图15-1　UNIX系统IPC摘要
 
注意，虽然Single UNIX Specification（“SUS”列）要求的是半双工管道，但允许实现支持全双工管道。即使应用程序在编写时假定基础操作系统只支持半双工管道，支持全双工管道的实现也能用这种应用程序正常工作。图中使用“（全）”表示用全双工管道支持半双工管道的实现。
 
在图15-1中，我们在支持基本功能的位置处标注了一个黑点。对于全双工管道，如果该特征是经由UNIX域套接字（UNIX domain socket，见17.2节）支持的，则在相应列中标注“UDS”。某些实现用管道和UNIX域套接字来支持该特征，所以这些位置上标有“•、UDS”。
 
IPC接口作为POSIX.1实时扩展的一部分，也是Single UNIX Specification中的选项。在SUSv4中，信号量接口从可选规范移到了基本规范中。
 
虽然命名全双工管道作为被挂载的基于STREAMS的管道使用，但是Single UNIX Specification将它标记成弃用的。
 
 
 尽管Linux中OpenSS7项目的“Linux Fast-STREAMS”包支持STREAMS，但是这个包最近都没有更新。从2008年以来最新的包版本只到内核版本2.6.26。
 

 
图15-1中前10种IPC形式通常限于同一台主机的两个进程之间的IPC。最后两行（套接字和STREAMS）是仅有的支持不同主机上两个进程之间IPC的两种形式。
 
我们将与IPC有关的讨论分成3章。本章讨论经典的IPC：管道、FIFO、消息队列、信号量以及共享存储。下一章讨论使用套接字机制的网络IPC。第17章说明IPC的某些高级特征。
 
15.2　管道
 
管道是UNIX系统IPC的最古老形式，所有UNIX系统都提供此种通信机制。管道有以下两种局限性。
 
（1）历史上，它们是半双工的（即数据只能在一个方向上流动）。现在，某些系统提供全双工管道，但是为了最佳的可移植性，我们决不应预先假定系统支持全双工管道。
 
（2）管道只能在具有公共祖先的两个进程之间使用。通常，一个管道由一个进程创建，在进程调用fork之后，这个管道就能在父进程和子进程之间使用了。
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我们将会看到FIFO（见15.5节）没有第二种局限性，UNIX域套接字（见17.2节）没有这两种局限性。
 
尽管有这两种局限性，半双工管道仍是最常用的IPC形式。每当在管道中键入一个命令序列，让shell执行时，shell都会为每一条命令单独创建一个进程，然后用管道将前一条命令进程的标准输出与后一条命令的标准输入相连接。
 
管道是通过调用pipe函数创建的。
 
#include　<unistd.h>



int pipe(int fd[2]);



　　　　　　　　　　　　　　　返回值：若成功，返回0，若出错，返回-1


 
经由参数fd返回两个文件描述符：fd[0]为读而打开，fd[1]为写而打开。fd[1]的输出是fd[0]的输入。
 
 
 最初在4.3BSD和4.4BSD中，管道是用UNIX域套接字实现的。虽然UNIX域套接字默认是全双工的，但这些操作系统阻碍了用于管道的套接字，以至于这些管道只能以半双工模式操作。
 
 POSIX.1允许实现支持全双工管道。对于这些实现，fd[0]和fd[1]以读/写方式打开。
 

 
图15-2中给出了两种描绘半双工管道的方法。左图显示管道的两端在一个进程中相互连接，右图则强调数据需要通过内核在管道中流动。
 
fstat函数（见4.2节）对管道的每一端都返回一个FIFO类型的文件描述符。可以用S_ISFIFO宏来测试管道。
 
 
 POSIX.1规定stat结构的st_size成员对于管道是未定义的。但是当fstat函数应用于管道读端的文件描述符时，很多系统在st_size中存储管道中可用于读的字节数。但是，这是不可移植的。
 

 
[image: ..\14-0434 UNIX环境高级编程（第3版）(改一校)改\1502.tif]
 
图15-2　描绘半双工管道的两种方法
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单个进程中的管道几乎没有任何用处。通常，进程会先调用pipe，接着调用fork，从而创建从父进程到子进程的IPC通道，反之亦然。图15-3显示了这种情况。
 
[image: ..\14-0434yds排版CMM\UNIX环境高级编程（第3版）tu\1503.tif]
 
图15-3　fork之后的半双工管道
 
fork之后做什么取决于我们想要的数据流的方向。对于从父进程到子进程的管道，父进程关闭管道的读端（fd[0]），子进程关闭写端（fd[1]）。图15-4显示了在此之后描述符的状态结果。
 
[image: ..\14-0434yds排版CMM\UNIX环境高级编程（第3版）tu\1504.tif]
 
图15-4　从父进程到子进程的管道
 
对于一个从子进程到父进程的管道，父进程关闭fd[1]，子进程关闭fd[0]。
 
当管道的一端被关闭后，下列两条规则起作用。
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（1）当读（read）一个写端已被关闭的管道时，在所有数据都被读取后，read返回0，表示文件结束。（从技术上来讲，如果管道的写端还有进程，就不会产生文件的结束。可以复制一个管道的描述符，使得有多个进程对它具有写打开文件描述符。但是，通常一个管道只有一个读进程和一个写进程。下一节介绍FIFO时，会看到对于单个的FIFO常常有多个写进程。）
 
（2）如果写（write）一个读端已被关闭的管道，则产生信号SIGPIPE。如果忽略该信号或者捕捉该信号并从其处理程序返回，则write返回1，errno设置为EPIPE。
 
在写管道（或FIFO）时，常量PIPE_BUF规定了内核的管道缓冲区大小。如果对管道调用write，而且要求写的字节数小于等于PIPE_BUF，则此操作不会与其他进程对同一管道（或FIFO）的write操作交叉进行。但是，若有多个进程同时写一个管道（或FIFO），而且我们要求写的字节数超过PIPE_ BUF，那么我们所写的数据可能会与其他进程所写的数据相互交叉。用pathconf或fpathconf函数（见图2-12）可以确定PIPE_BUF的值。
 
实例
 
图15-5程序创建了一个从父进程到子进程的管道，并且父进程经由该管道向子进程传送数据。
 
#include "apue.h"



int

main(void)

{

　　int　　　　n;

　　int　　　　fd[2];

　　pid_t　　　pid;

　　char　　　 line[MAXLINE];



　　if (pipe(fd) < 0)

　　　　err_sys("pipe error");

　　if ((pid = fork()) < 0) {

　　　　err_sys("fork error");

　　} else if (pid > 0) {　　　　　　　　　　　　/* parent */

　　　　close(fd[0]);

　　　　write(fd[1], "hello world\n", 12);

　　} else {　　　　　　　　　　　　　　　　　　　 /* child */

　　　　close(fd[1]);

　　　　n = read(fd[0], line, MAXLINE);

　　　　write(STDOUT_FILENO, line, n);

　　}

　　exit(0);

}
 
图15-5　经由管道从父进程向子进程传送数据
 
注意，这里的管道方向和图15-4中的是一致的。
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在上面的例子中，直接对管道描述符调用了read和write。更有趣的是将管道描述符复制到了标准输入或标准输出上。通常，子进程会在此之后执行另一个程序，该程序或者从标准输入（已创建的管道）读数据，或者将数据写至其标准输出（该管道）。
 
实例
 
试着编写一个程序，其功能是每次一页地显示已产生的输出。已经有很多UNIX系统公用程序具有分页功能，因此无需再构造一个新的分页程序，只要调用用户最喜爱的分页程序就可以了。为了避免先将所有数据写到一个临时文件中，然后再调用系统中有关程序显示该文件，我们希望通过管道将输出直接送到分页程序。为此，先创建一个管道，fork一个子进程，使子进程的标准输入成为管道的读端，然后调用exec，执行用的分页程序。图15-6中的程序显示了如何实现这些操作。（本例要求在命令行中有一个参数指定要显示的文件的名称。通常，这种类型的程序要求在终端上显示的数据已经在存储器中了。）
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#include "apue.h"

#include <sys/wait.h>



#define　DEF_PAGER　　"/bin/more"　　　　　/* default pager program */



int

main(int argc, char *argv[])

{

　　int　　　　n;

　　int　　　　fd[2];

　　pid_t　　　pid;

　　char　　　 *pager, *argv0;

　　char　　　 line[MAXLINE];

　　FILE　　　 *fp;



　　if (argc != 2)

　　　　err_quit("usage: a.out <pathname>");



　　if ((fp = fopen(argv[1], "r")) == NULL)

　　　　err_sys("can't open %s", argv[1]);

　　if (pipe(fd) < 0)

　　　　err_sys("pipe error");



　　if ((pid = fork()) < 0) {

　　　   err_sys("fork error");

　　} else if (pid > 0) { 　　　　　　　　　　　　/* parent */

　　　  　close(fd[0]);　　　　　　　　　　　　　/* close read end */



　　　　　 /* parent copies argv[1] to pipe */

　　　　　 while (fgets(line, MAXLINE, fp) != NULL) {

　　　　　　　　n= strlen(line);

　　　　　   　if (write(fd[1], line, n) != n)

　　　　　 　　　　 err_sys("write error to pipe");

　　　　　}

 　　　　　if (ferror(fp))

　　　　　   　err_sys("fgets error");



　　　　　close(fd[1]); 　　/* close write end of pipe for reader */



　　　　　if (waitpid(pid, NULL, 0) < 0)

　　　　　 　　err_sys("waitpid error");

　　　　　exit(0);

 　　} else {　　　　　　　　　　　　　　　　　　　　/* child */

 　　　　close(fd[1]);　　/* close write end */

 　　　　if (fd[0] != STDIN_FILENO) {

 　　　　　　if (dup2(fd[0], STDIN_FILENO) != STDIN_FILENO)

　　　　　　 　　 err_sys("dup2 error to stdin");

　　　　　　 close(fd[0]);　　/* don't need this after dup2 */

　　　　 }



　　　　 /* get arguments for execl() */

　　　　 if ((pager = getenv("PAGER")) == NULL)

　　　　　　 pager = DEF_PAGER;

　　　　 if ((argv0 = strrchr(pager, '/')) != NULL)

　　　　　　 argv0++;　　　　　　/* step past rightmost slash */

　　　　 else

　　　　　　 argv0 = pager;　　/* no slash in pager */



　　　　 if (execl(pager, argv0, (char *)0) < 0)

　　　　　　 err_sys("execl error for %s", pager);

　　 }

　　 exit(0);

}
 
图15-6　将文件复制到分页程序
 
在调用fork之前，先创建一个管道。调用fork之后，父进程关闭其读端，子进程关闭其写端。然后子进程调用dup2，使其标准输入成为管道的读端。当执行分页程序时，其标准输入将是管道的读端。
 
将一个描述符复制到另一个上（在子进程中，fd[0]复制到标准输入），在复制之前应当比较该描述符的值是否已经具有所希望的值。如果该描述符已经具有所希望的值，并且调用了dup2和close，那么该描述符的副本将关闭。（回忆3.12节中所述，当dup2中的两个参数值相等时的操作。）在本程序中，如果shell没有打开标准输入，那么程序开始处的fopen应已使用描述符0，也就是最小未使用的描述符，所以fd[0]决不会等于标准输入。尽管如此，无论何时调用dup2和close将一个描述符复制到另一个上，作为一种保护性的编程措施，都要先将两个描述符进行比较。
 
请注意，我们是如何尝试使用环境变量PAGER获得用户分页程序名称的。如果这种操作没有成功，则使用系统默认值。这是环境变量的常见用法。
 
实例
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回忆8.9节中的5个函数：TELL_WAIT、TELL_PARENT、TELL_CHILD、WAIT_PARENT和WAIT_ CHILD。图10-24中提供了一个使用信号的实现。图15-7则提供了一个使用管道的实现。
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#include "apue.h"



static int　　pfd1[2], pfd2[2];



void

TELL_WAIT(void)

{

　　if (pipe(pfd1) < 0 || pipe(pfd2) < 0)

　　　　err_sys("pipe error");

}



void

TELL_PARENT(pid_t pid)

{

　　if (write(pfd2[1], "c", 1) != 1)

　　　　err_sys("write error");

}



void

WAIT_PARENT(void)

{

　　char　c;



　　if (read(pfd1[0], &c, 1) != 1)

　　　　err_sys("read error");



　　 if (c != 'p')

　　　　 err_quit("WAIT_PARENT: incorrect data");

}



void

TELL_CHILD(pid_t pid)

{

　　 if (write(pfd1[1], "p", 1) != 1)

　　　　 err_sys("write error");

}



void

WAIT_CHILD(void)

{

　　 char　c;



　　 if (read(pfd2[0], &c, 1) != 1)

　　　　 err_sys("read error");



　　 if (c != 'c')

　　　　 err_quit("WAIT_CHILD: incorrect data");

}
 
图15-7　让父进程和子进程同步的例程
 
如图15-8中所示，我们在调用fork之前创建了两个管道。父进程在调用TELL_CHILD时，经由上一个管道写一个字符“p”，子进程在调用TELL_PARENT时，经由下一个管道写一个字符“c”。相应的WAIT_XXX函数调用read读一个字符，没有读到字符时则阻塞（休眠等待）。
 
[image: ..\14-0434yds排版CMM\UNIX环境高级编程（第3版）tu\1508.tif]
 
图15-8　用两个管道实现父进程和子进程同步
 
注意，每一个管道都有一个额外的读取进程，这没有关系。也就是说，除了子进程从pfd1[0]读取，父进程也有上一个管道的读端。因为父进程并没有执行对该管道的读操作，所以这不会影响我们。
 
15.3　函数popen和pclose
 
常见的操作是创建一个连接到另一个进程的管道，然后读其输出或向其输入端发送数据，为此，标准I/O库提供了两个函数popen和pclose。这两个函数实现的操作是：创建一个管道，fork一个子进程，关闭未使用的管道端，执行一个shell运行命令，然后等待命令终止。
 
#include　<stdio.h>



FILE *popen(const char *cmdstring, const char *type);



　　　　　　　　　　　　　　　返回值：若成功，返回文件指针；若出错，返回NULL



int pclose(FILE　*fp);



　　　　　　　　　　　　　　　返回值：若成功，返回cmdstring的终止状态；若出错，返回-1


 
函数popen先执行fork，然后调用exec执行cmdstring，并且返回一个标准I/O文件指针。如果type是"r"，则文件指针连接到cmdstring的标准输出（见图15-9）。
 
[image: ..\14-0434yds排版CMM\UNIX环境高级编程（第3版）tu\1509.tif]
 
图15-9　执行fp = popen(cmdstring, "r")的结果
 
如果type是"w"，则文件指针连接到cmdstring的标准输入，如图15-10所示。
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[image: ..\14-0434yds排版CMM\UNIX环境高级编程（第3版）tu\1510.tif]
 
图15-10　执行fp = popen(cmdstring, "w")的结果
 
有一种方法可以帮助我们记住popen的最后一个参数及其作用，这就是与fopen进行类比。如果type是"r"，则返回的文件指针是可读的，如果type是"w"，则是可写的。
 
pclose函数关闭标准I/O流，等待命令终止，然后返回shell的终止状态。（我们曾在8.6节中描述过终止状态，8.13节描述的system函数也返回终止状态。）如果shell不能被执行，则pclose返回的终止状态与shell已执行exit(127)一样。
 
cmdstring由Bourne shell以下列方式执行：
 
sh -c cmdstring


 
这表示shell将扩展cmdstring中的任何特殊字符。例如，可以使用：
 
fp = popen("ls *.c" , "r")；
 
或者
 
fp = popen("cmd 2>&1" , "r");
 
实例
 
用popen重写图15-6中的程序，其结果如图15-11所示。
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#include "apue.h"

#include <sys/wait.h>



#define　PAGER　　"${PAGER:-more}" /* environment variable, or default */



int

main(int argc, char *argv[])

{

　　char　line[MAXLINE];

　　FILE　*fpin, *fpout;



　　if (argc != 2)

　　　　err_quit("usage: a.out <pathname>");

　　if ((fpin = fopen(argv[1], "r")) == NULL)

　　　　err_sys("can't open %s", argv[1]);



　　if ((fpout = popen(PAGER, "w")) == NULL)

　　　　err_sys("popen error");



　　/* copy argv[1] to pager */

　　while (fgets(line, MAXLINE, fpin) != NULL) {

　　　　if (fputs(line, fpout) == EOF)

　　　　　　err_sys("fputs error to pipe");

　　}

　　if (ferror(fpin))

　　　　err_sys("fgets error");

　　if (pclose(fpout) == -1)

　　　　err_sys("pclose error");



　　exit(0);

}
 
图15-11　用popen向分页程序传送文件
 
使用popen减少了需要编写的代码量。
 
shell命令${PAGER:-more}的意思是：如果shell变量PAGER已经定义，且其值非空，则使用其值，否则使用字符串more。
 
实例：函数popen和pclose
 
图15-12中的程序是我们编写的popen和pclose。
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#include "apue.h"

#include <errno.h>

#include <fcntl.h>

#include <sys/wait.h>



/*

 * Pointer to array allocated at run-time.

 */

static pid_t　*childpid = NULL;



/*

 * From our open_max(), {Figure 2.17}.

 */

static int　　maxfd;



FILE *

popen(const char *cmdstring, const char *type)

{

 　　int　　   i;

 　　int　　   pfd[2];

 　　pid_t　　 pid;

 　　FILE　　　*fp;



 　　/* only allow "r" or "w" */

 　　if ((type[0] != 'r' && type[0] != 'w') || type[1] != 0) {

　　　　 errno = EINVAL;

　　　　 return(NULL);

 　　}

 　　if (childpid == NULL) {　　　　/* first time through */

 　　　　/* allocate zeroed out array for child pids */

 　　　　maxfd = open_max();

 　　　　if ((childpid = calloc(maxfd, sizeof(pid_t))) == NULL)

 　　　　　　return(NULL);

 　　}



 　　if (pipe(pfd) < 0)

 　　　　return(NULL); 　　/* errno set by pipe() */

 　　if (pfd[0] >= maxfd || pfd[1] >= maxfd) {

 　　　　close(pfd[0]);

 　　　　close(pfd[1]);

 　　　　errno = EMFILE;

 　　　　return(NULL);

 　　}



 　　if ((pid = fork()) < 0) {

 　　　　return(NULL); 　　/* errno set by fork() */

 　　} else if (pid == 0) {　　　　　　　　　　　　　/* child */

 　　　　if (*type == 'r') {

 　　　　　　　close(pfd[0]);

 　　　　　　　if (pfd[1] != STDOUT_FILENO) {

 　　　　　　　　　dup2(pfd[1], STDOUT_FILENO);

 　　　　　　　　　close(pfd[1]);

 　　　　　　　}

 　　　　} else {

 　　　　　　　close(pfd[1]);

 　　　　　　　if (pfd[0] != STDIN_FILENO) {

 　　　　　　　　　dup2(pfd[0], STDIN_FILENO);

 　　　　　　　　　close(pfd[0]);

 　　　　　　　}

 　　　　}



 　　　　/* close all descriptors in childpid[] */

 　　　　for (i = 0; i < maxfd; i++)

 　　　　　　　if (childpid[i] > 0)

 　　　　　　　　　close(i);



 　　　　execl("/bin/sh", "sh", "-c", cmdstring, (char *)0);

 　　　　_exit(127);

 　　}



 　　/* parent continues... */

 　　if (*type == 'r') {

 　　　　close(pfd[1]);

 　　　　if ((fp = fdopen(pfd[0], type)) == NULL)

 　　　　　　　return(NULL);

 　　} else {

 　　　　close(pfd[0]);

 　　　　if ((fp = fdopen(pfd[1], type)) == NULL)

 　　　　　　　return(NULL);

 　　}



 　　childpid[fileno(fp)] = pid; 　　/* remember child pid for this fd */

 　　return(fp);

}



int

pclose(FILE *fp)

{

 　　int　　　 fd, stat;

 　　pid_t　　 pid;



 　　if (childpid == NULL) {

 　　　　errno = EINVAL;

 　　　　return(-1); 　　　　　　　/* popen() has never been called */

 　　}



 　　fd = fileno(fp);

 　　if (fd >= maxfd) {

 　　　　errno = EINVAL;

 　　　　return(-1); 　　　　　　　/* invalid file descriptor */

 　　}

 　　if ((pid = childpid[fd]) == 0) {

 　　　　errno = EINVAL;

 　　　　return(-1); 　　　　　　　/* fp wasn't opened by popen() */

 　　}



 　　childpid[fd] = 0;

 　　if (fclose(fp) == EOF)

 　　　　return(-1);



 　　while (waitpid(pid, &stat, 0) < 0)

 　　　　if (errno != EINTR)

 　　　　　　return(-1); 　　 　　/* error other than EINTR from waitpid() */



 　　return(stat); 　　 　　　　　/* return child's termination status */

}
 
图15-12　popen函数和pclose函数
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虽然popen的核心部分与本章中前面用过的代码类似，但是增加了很多需要考虑的细节。首先，每次调用popen时，应当记住所创建的子进程的进程ID，以及其文件描述符或FILE指针。我们选择在数组childpid中保存子进程ID，并用文件描述符作为其下标。于是，当以FILE指针作为参数调用pclose时，调用标准I/O函数fileno得到文件描述符，然后取得子进程ID，并用其作为参数调用waitpid。因为一个进程可能调用popen多次，所以在动态分配childpid数组时（第一次调用popen时），其数组长度应当是最大文件描述符数，于是该数组中可以存放与最大文件描述符数相同的子进程ID数。
 
注意，图2-17中的open_max函数可以返回打开文件的最大个数的近似值，如果这个值与系统不相关的话。注意不要使用那种其值大于（或等于）open_max函数返回值的管道文件描述符。对于popen，如果open_max函数返回的值恰巧非常小，那我们会关闭管道文件描述符并将errno设置为EMFILE，以此表明这里的很多文件描述符是打开的，最后返回1。对于pclose，如果对应于文件指针参数的描述符比所期望的大，则将errno设置为EINVAL，并返回1。
 
调用pipe和fork，然后为popen函数中的每个进程复制合适的描述符，这个过程和我们在本章前面所做的相类似。
 
POSIX.1要求popen关闭那些以前调用popen打开的、现在仍然在子进程中打开着的I/O流。为此，在子进程中从头逐个检查childpid数组的各个元素，关闭仍旧打开着的描述符。
 
若pclose的调用者已经为信号SIGCHLD设置了一个信号处理程序，则pclose中的waitpid调用将返回一个错误EINTR。因为允许调用者捕捉此信号（或者任何其他可能中断waitpid调用的信号），所以当waitpid被一个捕捉到的信号中断时，我们只是再次调用waitpid。
 
注意，如果应用程序调用waitpid，并且获得了popen创建的子进程的退出状态，那么我们会在应用程序调用pclose时调用waitpid，如果发现子进程已不再存在，将返回−1，将errno设置为ECHILD。这正是这种情况下POSIX.1所要求的。
 
 
 如果一个信号中断了wait，pclose的一些早期版本会返回错误EINTR。pclose的一些早期版本在wait期间，会阻塞或忽略信号SIGINT、SIGQUIT和SIGHUP。这是POSIX.1所不允许的。
 

 
注意，popen决不应由设置用户ID或设置组ID程序调用。当它执行命令时，popen等同于：
 
execl("/bin/sh", "sh", "-c", command, NULL);


 
它在从调用者继承的环境中执行shell，并由shell解释执行command。一个恶意用户可以操控这种环境，使得shell能以设置ID文件模式所授予的提升了的权限以及非预期的方式执行命令。
 
popen特别适用于执行简单的过滤器程序，它变换运行命令的输入或输出。当命令希望构造它自己的管道时，就是这种情形。
 
实例
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考虑一个应用程序，它向标准输出写一个提示，然后从标准输入读1行。使用popen，可以在应用程序和输入之间插入一个程序以便对输入进行变换处理。图15-13显示了这种情况下的进程安排。
 
[image: ..\14-0434yds排版CMM\UNIX环境高级编程（第3版）tu\1513.tif]
 
图15-13　用popen对输入进行变换处理
 
对输入进行的变换可能是路径名扩充，或者是提供一种历史机制（记住以前输入的命令）。
 
图15-14是一个简单的用于演示这个操作的过滤程序。它将标准输入复制到标准输出，在复制时将大写字符变换为小写字符。在写完换行符之后，要仔细冲洗（用fflush）标准输出，这样做的理由将在下一节介绍协同进程时讨论。
 
#include "apue.h"

#include <ctype.h>



int

main(void)

{

 　　int　　　c;



 　　while ((c = getchar()) != EOF) {

 　　　　if (isupper(c))

 　　　　　　c = tolower(c);

 　　　　if (putchar(c) == EOF)

 　　　　　　err_sys("output error");

 　　　　if (c == '\n')

 　　　　　　fflush(stdout);

 　　}

 　　exit(0);

}
 
图15-14　将大写字符变换成小写字符的过滤程序
 
将这个过滤程序编译成可执行文件myuclc，然后图15-15的程序会用popen调用它。
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#include "apue.h"

#include <sys/wait.h>



int

main(void)

{

 　　char 　　　line[MAXLINE];

 　　FILE 　　　*fpin;



 　　if ((fpin = popen("myuclc", "r")) == NULL)

 　　　　err_sys("popen error");

 　　for ( ; ; ) {

 　　　　fputs("prompt> ", stdout);

 　　　　fflush(stdout);

 　　　　if (fgets(line, MAXLINE, fpin) == NULL)　　/* read from pipe */

 　　　　　　break;

 　　　　if (fputs(line, stdout) == EOF)

 　　　　　　err_sys("fputs error to pipe");

 　　}

 　　if (pclose(fpin) == -1)

 　　　　err_sys("pclose error");

 　　putchar('\n');

 　　exit(0);

}
 
图15-15　调用大写/小写过滤程序读取命令
 
因为标准输出通常是行缓冲的，而提示并不包含换行符，所以在写了提示之后，需要调用fflush。
 
15.4　协同进程
 
UNIX系统过滤程序从标准输入读取数据，向标准输出写数据。几个过滤程序通常在shell管道中线性连接。当一个过滤程序既产生某个过滤程序的输入，又读取该过滤程序的输出时，它就变成了协同进程（coprocess）。
 
Korn shell提供了协同进程[Bolsky and Korn 1995]。Bourne shell、Bourne-again shell和C shell并没有提供将进程连接成协同进程的方法。协同进程通常在shell的后台运行，其标准输入和标准输出通过管道连接到另一个程序。虽然初始化一个协同进程，并将其输入和输出连接到另一个进程的shell语法是十分奇特的（详细情况见Bolsky和Korn[1995]中的第62～63页），但是协同进程的工作方式在C程序中也是非常有用的。
 
popen只提供连接到另一个进程的标准输入或标准输出的一个单向管道，而协同进程则有连接到另一个进程的两个单向管道：一个接到其标准输入，另一个则来自其标准输出。我们想将数据写到其标准输入，经其处理后，再从其标准输出读取数据。
 
实例
 
让我们通过一个实例来观察协同进程。进程创建两个管道：一个是协同进程的标准输入，另一个是协同进程的标准输出。图15-16显示了这种安排。
 
[image: ..\14-0434yds排版CMM\UNIX环境高级编程（第3版）tu\1516.tif]
 
图15-16　通过写协同进程的标准输入和读取它的标准输出来驱动协同进程
 
图15-17中的程序是一个简单的协同进程，它从其标准输入读取两个数，计算它们的和，然后将和写至其标准输出。（协同进程通常会做较此更有意义的工作。设计本实例的目的是帮助了解将进程连接起来所需的各种管道设施。）
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#include "apue.h"



int

main(void)

{

 　　int　　　 n, int1, int2;

 　　char　　　line[MAXLINE];



 　　while ((n = read(STDIN_FILENO, line, MAXLINE)) > 0) {

 　　　　line[n] = 0; 　　　　/* null terminate */

 　　　　if (sscanf(line, "%d%d", &int1, &int2) == 2) {

　　　　　　　sprintf(line, "%d\n", int1 + int2);

　　　　　　　n = strlen(line);

　　　　　　　if (write(STDOUT_FILENO, line, n) != n)

　　　　　　　　　err_sys("write error");

　　　　　 } else {

　　　　　　　if (write(STDOUT_FILENO, "invalid args\n", 13) != 13)

　　　　　　　　　err_sys("write error");

　　　　　 }

 　　}

 　　exit(0);

}
 
图15-17　将两个数相加的简单过滤程序
 
对此程序进行编译，将其可执行目标代码存入名为add2的文件。
 
图15-18中的程序从其标准输入读取两个数之后调用add2协同进程，并将协同进程送来的值写到其标准输出。
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#include "apue.h"



static void　　sig_pipe(int);　　　　　/* our signal handler */



int

main(void)

{

 　　int　    n, fd1[2], fd2[2];

 　　pid_t　  pid;

 　　char　　 line[MAXLINE];



 　　if (signal(SIGPIPE, sig_pipe) == SIG_ERR)

 　　　　err_sys("signal error");



 　　if (pipe(fd1) < 0 || pipe(fd2) < 0)

 　　　　err_sys("pipe error");



 　　if ((pid = fork()) < 0) {

 　　　　err_sys("fork error");

 　　} else if (pid > 0) {　　　　　　　　　　　　　/* parent */

 　　　　close(fd1[0]);

 　　　　close(fd2[1]);



 　　　　　while (fgets(line, MAXLINE, stdin) != NULL) {

 　　　　　　　n = strlen(line);

 　　　　　　　if (write(fd1[1], line, n) != n)

 　　　　　　　    err_sys("write error to pipe");

 　　　　　　　if ((n = read(fd2[0], line, MAXLINE)) < 0)

 　　　　　　　    err_sys("read error from pipe");

 　　　　　　　if (n == 0) {

 　　　　　　　    err_msg("child closed pipe");

 　　　　　　　    break;

 　　　　　　　}

 　　　　　　　line[n] = 0;　　/* null terminate */

 　　　　　　　if (fputs(line, stdout) == EOF)

 　　　　　　　　　err_sys("fputs error");

 　　　　　}



 　　　　　if (ferror(stdin))

 　　　　　　　err_sys("fgets error on stdin");

 　　　　　exit(0);

 　　} else {　　　　　　　　　　　　　　　　　　　　　　/* child */

 　　　　　close(fd1[1]);

 　　　　　close(fd2[0]);

 　　　　　if (fd1[0] != STDIN_FILENO) {

 　　　　　　　if (dup2(fd1[0], STDIN_FILENO) != STDIN_FILENO)

 　　　　　　　　　err_sys("dup2 error to stdin");

 　　　　　　　close(fd1[0]);

 　　　　　}



 　　　　　if (fd2[1] != STDOUT_FILENO) {

 　　　　　　　if (dup2(fd2[1], STDOUT_FILENO) != STDOUT_FILENO)

 　　　　　　　　　err_sys("dup2 error to stdout");

 　　　　　　　close(fd2[1]);

 　　　　　}

 　　　　　if (execl("./add2", "add2", (char *)0) < 0)

 　　　　　　　err_sys("execl error");

 　　}

 　　exit(0);

}



static void

sig_pipe(int signo)

{

 　　printf("SIGPIPE caught\n");

 　　exit(1);

}
 
图15-18　驱动add2过滤程序的程序
 
这个程序创建了两个管道，父进程、子进程各自关闭它们不需使用的管道端。必须使用两个管道：一个用作协同进程的标准输入，另一个则用作它的标准输出。然后，子进程调用dup2使管道描述符移至其标准输入和标准输出，最后调用了execl。
 
若编译和运行图15-18中的程序，它会按预期工作。此外，若图15-18中的程序在等待输入的时候杀死了add2协同进程，然后又输入两个数，那么程序对没有读进程的管道进行写操作时，会调用信号处理程序（见习题15.4）。
 
实例
 
在协同进程add2（见图15-17）中，我们故意使用了底层I/O（UNIX系统调用）：read和write。如果使用标准I/O来改写该协同进程，会怎么样呢？图15-19所示的程序就是改写后的版本。
 
#include "apue.h"



int

main(void)

{

 　　int　　　　int1, int2;

 　　char　　　 line[MAXLINE];



 　　while (fgets(line, MAXLINE, stdin) != NULL) {

 　　　　if (sscanf(line, "%d%d", &int1, &int2) == 2) {

　　　　　　　if (printf("%d\n", int1 + int2) == EOF)

 　　　　　　　　　err_sys("printf error");

 　　　　} else {

　　　　　　　if (printf("invalid args\n") == EOF)

 　　　　　　　　　err_sys("printf error");

 　　　　}

 　　}

 　　exit(0);

}
 
图15-19　将两个数相加的过滤程序，使用标准I/O
 

  551 

 
若图15-18中的程序调用这个新的协同进程，则它不再工作。问题出在默认的标准I/O缓冲机制上。当调用图15-19中的程序时，对标准输入的第一个fgets引起标准I/O库分配一个缓冲区，并选择缓冲的类型。因为标准输入是一个管道，所以标准I/O库默认是全缓冲的。标准输出也是如此。当add2从其标准输入读取而发生阻塞时，图15-18中的程序从管道读时也发生阻塞，于是产生了死锁。
 
这里，可以对将要运行的这一协同进程加以控制。我们可以修改图15-19中的程序，在while循环之前加上下面4行：
 
if (setvbuf(stdin, NULL, _IOLBF, 0) != 0)

　　err_sys("setvbuf error");

if (setvbuf(stdout, NULL, _IOLBF, 0)!= 0)

　　err_sys("setvbuf error");
 
这些代码行使得：当有一行可用时，fgets就返回；当输出一个换行符时，printf立即执行fflush操作。对setvbuf进行的这些显式调用使得图15-19中的程序能正常工作了。
 
如果不能修改管道输出的目标程序，则需使用其他技术。例如，如果在程序中使用awk(1)作为协同进程（代替add2程序），则下列命令行不能工作：
 
#！/bin/awk/ -f

{ print $1 + $2 }
 
不能工作的原因还是标准I/O的缓冲机制问题。但是在这种情况下，无法改变awk的工作方式（除非有awk的源代码）。我们不能修改awk的可执行代码，于是也就不能更改处理其标准I/O缓冲的方式。
 
对这种问题的一般解决方法是使被调用（在本例中是awk）的协同进程认为它的标准输入和输出都被连接到了一个终端。这使得协同进程中的标准I/O例程对这两个I/O流进行行缓冲，这类似于前面所做的显式调用setvbuf。第19章将用伪终端实现这种方法。
 
15.5　FIFO
 
FIFO有时被称为命名管道。未命名的管道只能在两个相关的进程之间使用，而且这两个相关的进程还要有一个共同的创建了它们的祖先进程。但是，通过FIFO，不相关的进程也能交换数据。
 
第14章中已经提及FIFO是一种文件类型。通过stat结构（见4.2节）的st_mode成员的编码可以知道文件是否是FIFO类型。可以用S_ISFIFO宏对此进行测试。
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创建FIFO类似于创建文件。确实，FIFO的路径名存在于文件系统中。
 
#include　<sys/stat.h>



int mkfifo(const char *path, mode_t mode);



int mkfifoat(int fd, const char *path, mode_t mode);



　　　　　　　　　　　　　　　两个函数的返回值：若成功，返回0；若出错，返回1


 
mkfifo函数中mode参数的规格说明与open函数中mode的相同（见3.3节）。新FIFO的用户和组的所有权规则与4.6节所述的相同。
 
mkfifoat函数和mkfifo函数相似，但是mkfifoat函数可以被用来在fd文件描述符表示的目录相关的位置创建一个FIFO。像其他*at函数一样，这里有3种情形：
 
（1）如果path参数指定的是绝对路径名，则fd参数会被忽略掉，并且mkfifoat函数的行为和mkfifo类似。
 
（2）如果path参数指定的是相对路径名，则fd参数是一个打开目录的有效文件描述符，路径名和目录有关。
 
（3）如果path参数指定的是相对路径名，并且fd参数有一个特殊值AT_FDCWD，则路径名以当前目录开始，mkfifoat和mkfifo类似。
 
当我们用mkfifo或者mkfifoat创建FIFO时，要用open来打开它。确实，正常的文件I/O函数（如close、read、write和unlink）都需要FIFO。
 
 
 应用程序可以用mknod和mknodat函数创建FIFO。因为POSIX.1原先并没有包括mknod函数，所以mkfifo是专门为POSIX.1设计的。mknod和mknodat函数现在已包括在POSIX.1的XSI扩展中。
 
 POSIX.1也包括了对mkfifo(1)命令的支持。本书讨论的4种平台都提供此命令。因此，可以用一条shell命令创建一个FIFO，然后用一般的shell I/O重定向对其进行访问。
 

 
当open一个FIFO时，非阻塞标志（O_NONBLOCK）会产生下列影响。
 
 
 	在一般情况下（没有指定O_NONBLOCK），只读open要阻塞到某个其他进程为写而打开这个FIFO为止。类似地，只写open要阻塞到某个其他进程为读而打开它为止。
 
 	如果指定了O_NONBLOCK，则只读open立即返回。但是，如果没有进程为读而打开一个FIFO，那么只写open将返回−1，并将errno设置成ENXIO。
 

 
类似于管道，若write一个尚无进程为读而打开的FIFO，则产生信号SIGPIPE。若某个FIFO的最后一个写进程关闭了该FIFO，则将为该FIFO的读进程产生一个文件结束标志。
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一个给定的FIFO有多个写进程是常见的。这就意味着，如果不希望多个进程所写的数据交叉，则必须考虑原子写操作。和管道一样，常量PIPE_BUF说明了可被原子地写到FIFO的最大数据量。
 
FIFO有以下两种用途。
 
（1）shell命令使用FIFO将数据从一条管道传送到另一条时，无需创建中间临时文件。
 
（2）客户进程-服务器进程应用程序中，FIFO用作汇聚点，在客户进程和服务器进程二者之间传递数据。
 
我们各用一个实例来说明这两种用途。
 
实例：用FIFO复制输出流
 
FIFO可用于复制一系列sell命令中的输出流。这就防止了将数据写向中间磁盘文件（类似于使用管道来避免中间磁盘文件）。但是不同的是，管道只能用于两个进程之间的线性连接，而FIFO是有名字的，因此它可用于非线性连接。
 
考虑这样一个过程，它需要对一个经过过滤的输入流进行两次处理。图15-20显示了这种安排。
 
[image: ..\14-0434yds排版CMM\UNIX环境高级编程（第3版）tu\1520.tif]
 
图15-20　对一个经过过滤的输入流进行两次处理的过程
 
使用FIFO和UNIX程序tee(1)就可以实现这样的过程而无需使用临时文件。（tee程序将其标准输入同时复制到其标准输出以及其命令行中命名的文件中。）
 
mkfifo fifo1

prog3 < fifo1 &

prog1 < infile | tee fifo1 | prog2
 
创建FIFO，然后在后台启动prog3，从FIFO读数据。然后启动progl，用tee将其输出发送到FIFO和prog2。图15-21显示了进程安排。
 
[image: ..\14-0434yds排版CMM\UNIX环境高级编程（第3版）tu\1521.tif]
 
图15-21　使用FIFO和tee将一个流发送到两个不同的进程
 
实例：使用FIFO进行客户进程-服务器进程通信
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FIFO的另一个用途是在客户进程和服务器进程之间传送数据。如果有一个服务器进程，它与很多客户进程有关，每个客户进程都可将其请求写到一个该服务器进程创建的众所周知的FIFO中（“众所周知”的意思是：所有需与服务器进程联系的客户进程都知道该FIFO的路径名）。图15-22显示了这种安排。
 
[image: ..\14-0434yds排版CMM\UNIX环境高级编程（第3版）tu\1522.tif]
 
图15-22　客户进程用FIFO向服务器进程发送请求
 
因为该FIFO有多个写进程，所以客户进程发送给服务器进程的请求的长度要小于PIPE_BUF字节。这样就能避免客户进程的多次写之间的交叉。
 
在这种类型的客户进程-服务器进程通信中使用FIFO的问题是：服务器进程如何将回答送回各个客户进程。不能使用单个FIFO，因为客户进程不可能知道何时去读它们的响应以及何时响应其他客户进程。一种解决方法是，每个客户进程都在其请求中包含它的进程ID。然后服务器进程为每个客户进程创建一个FIFO，所使用的路径名是以客户进程的进程ID为基础的。例如，服务器进程可以用名字/tmp/serv1. XXXXX创建FIFO，其中XXXXX被替换成客户进程的进程ID。图15-23显示了这种安排。
 
[image: ..\14-0434yds排版CMM\UNIX环境高级编程（第3版）tu\1523.tif]
 
图15-23　用FIFO进行客户进程-服务器进程通信
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虽然这种安排可以工作，但服务器进程不能判断一个客户进程是否崩溃终止，这就使得客户进程专用FIFO会遗留在文件系统中。另外，服务器进程还必须得捕捉SIGPIPE信号，因为客户进程在发送一个请求后有可能没有读取响应就终止了，于是留下一个只有写进程（服务器进程）而无读进程的客户进程专用FIFO。
 
按照图15-23中的安排，如果服务器进程以只读方式打开众所周知的FIFO（因为它只需读该FIFO），则每当客户进程个数从1变成0时，服务器进程就将在FIFO中读到（read）一个文件结束标志。为使服务器进程免于处理这种情况，一种常用的技巧是使服务器进程以读-写方式打开该众所周知的FIFO（见习题15.10）。
 
15.6　XSI IPC
 
有3种称作XSI IPC的IPC：消息队列、信号量以及共享存储器。它们之间有很多相似之处。本节先介绍它们相类似的特征，后面几节将说明这些IPC各自的特殊功能。
 
 
 XSI IPC函数是紧密地基于System V的IPC函数的。这3种类型的XSI IPC源自于1970年的一种称为“Columbus UNIX”的AT&T内部版本。后来它们被添加到System V上。由于XSI IPC不使用文件系统命名空间，而是构造了它们自己的命名空间，为此常常受到批评。
 

 
15.6.1　标识符和键
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每个内核中的IPC结构（消息队列、信号量或共享存储段）都用一个非负整数的标识符（identifier）加以引用。例如，要向一个消息队列发送消息或者从一个消息队列取消息，只需要知道其队列标识符。与文件描述符不同，IPC标识符不是小的整数。当一个IPC结构被创建，然后又被删除时，与这种结构相关的标识符连续加1，直至达到一个整型数的最大正值，然后又回转到0。
 
标识符是IPC对象的内部名。为使多个合作进程能够在同一IPC对象上汇聚，需要提供一个外部命名方案。为此，每个IPC对象都与一个键（key）相关联，将这个键作为该对象的外部名。
 
无论何时创建IPC结构（通过调用msgget、semget或shmget创建），都应指定一个键。这个键的数据类型是基本系统数据类型key_t，通常在头文件<sys/types.h>中被定义为长整型。这个键由内核变换成标识符。
 
有多种方法使客户进程和服务器进程在同一IPC结构上汇聚。
 
（1）服务器进程可以指定键IPC_PRIVATE创建一个新IPC结构，将返回的标识符存放在某处（如一个文件）以便客户进程取用。键IPC_PRIVATE保证服务器进程创建一个新IPC结构。这种技术的缺点是：文件系统操作需要服务器进程将整型标识符写到文件中，此后客户进程又要读这个文件取得此标识符。
 
IPC_PRIVATE键也可用于父进程子关系。父进程指定IPC_PRIVATE创建一个新IPC结构，所返回的标识符可供fork后的子进程使用。接着，子进程又可将此标识符作为exec函数的一个参数传给一个新程序。
 
（2）可以在一个公用头文件中定义一个客户进程和服务器进程都认可的键。然后服务器进程指定此键创建一个新的IPC结构。这种方法的问题是该键可能已与一个IPC结构相结合，在此情况下，get函数（msgget、semget或shmget）出错返回。服务器进程必须处理这一错误，删除已存在的IPC结构，然后试着再创建它。
 
（3）客户进程和服务器进程认同一个路径名和项目ID（项目ID是0～255之间的字符值），接着，调用函数ftok将这两个值变换为一个键。然后在方法（2）中使用此键。ftok提供的唯一服务就是由一个路径名和项目ID产生一个键。
 
#include <sys/ipc.h>



key_t ftok(const char *path, int id);



　　　　　　　　　　　　　　　返回值：若成功，返回键；若出错，返回(key_t)−1


 
path参数必须引用一个现有的文件。当产生键时，只使用id参数的低8位。
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ftok创建的键通常是用下列方式构成的：按给定的路径名取得其stat结构（见4.2节）中的部分st_dev和st_ino字段，然后再将它们与项目ID组合起来。如果两个路径名引用的是两个不同的文件，那么ftok通常会为这两个路径名返回不同的键。但是，因为i节点编号和键通常都存放在长整型中，所以创建键时可能会丢失信息。这意味着，对于不同文件的两个路径名，如果使用同一项目ID，那么可能产生相同的键。
 
3个get函数（msgget、semget和shmget）都有两个类似的参数：一个key和一个整型flag。在创建新的IPC结构（通常由服务器进程创建）时，如果key是IPC_PRIVATE或者和当前某种类型的IPC结构无关，则需要指明flag的IPC_CREAT标志位。为了引用一个现有队列（通常由客户进程创建），key必须等于队列创建时指明的key的值，并且IPC_CREAT必须不被指明。
 
注意，决不能指定IPC_PRIVATE作为键来引用一个现有队列，因为这个特殊的键值总是用于创建一个新队列。为了引用一个用IPC_PRIVATE键创建的现有队列，一定要知道这个相关的标识符，然后在其他IPC调用中（如msgsnd、msgrcv）使用该标识符，这样可以绕过get函数。
 
如果希望创建一个新的IPC结构，而且要确保没有引用具有同一标识符的一个现有IPC结构，那么必须在flag中同时指定IPC_CREAT和IPC_EXCL位。这样做了以后，如果IPC结构已经存在就会造成出错，返回EEXIST（这与指定了O_CREAT和O_EXCL标志的open相类似）。
 
15.6.2　权限结构
 
XSI IPC为每一个IPC结构关联了一个ipc_perm结构。该结构规定了权限和所有者，它至少包括下列成员：
 
struct ipc_perm {

　uid_t　uid;　/* owner's effective user id */

　gid_t　gid;　/* owner's effective group id */

　uid_t　cuid; /* creator's effective user id */

　gid_t　cgid; /* creator's effective group id */

　mode_t mode; /* access modes */

　[image: ]

};


 
每个实现会包括另外一些成员。如欲了解你所用系统中它的完整定义，请参见<sys/ipc.h>。
 
在创建IPC结构时，对所有字段都赋初值。以后，可以调用msgctl、semctl或shmctl修改uid、 gid和mode字段。为了修改这些值，调用进程必须是IPC结构的创建者或超级用户。修改这些字段类似于对文件调用chown和chmod。
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mode字段的值类似于图4-6中所示的值，但是对于任何IPC结构都不存在执行权限。另外，消息队列和共享存储使用术语“读”和“写”，而信号量则用术语“读”和“更改”（alter）。图15-24显示了每种IPC的6种权限。
 
[image: 15-24.jpg]
 
图15-24　XSI IPC权限
 
某些实现定义了表示每种权限的符号常量，但是这些常量并不包括在Single UNIX Specification中。
 
15.6.3　结构限制
 
所有3种形式的XSI IPC都有内置限制。大多数限制可以通过重新配置内核来改变。在对这3种形式的IPC中的每一种进行描述时，我们都会指出它的限制。
 
 
 在报告和修改限制方面，每种平台都有自己的方法。FreeBSD 8.0、Linux 3.2.0和Mac OS X 10.6.8提供了sysctl命令来观察和修改内核配置参数。在Solaris 10中，可以用prctl命令来改变内核IPC的限制。
 
 在Linux中，可以运行ipcs –l来显示IPC相关的限制。在FreeBSD中，等效的命令是ipcs -T。在Solaris中，可以通过运行sysdef –y来找到可调节参数。
 

 
15.6.4　优点和缺点
 
XSI IPC的一个基本问题是：IPC结构是在系统范围内起作用的，没有引用计数。例如，如果进程创建了一个消息队列，并且在该队列中放入了几则消息，然后终止，那么该消息队列及其内容不会被删除。它们会一直留在系统中直至发生下列动作为止：由某个进程调用msgrcv或msgctl读消息或删除消息队列；或某个进程执行ipcrm(1)命令删除消息队列；或正在自举的系统删除消息队列。将此与管道相比，当最后一个引用管道的进程终止时，管道就被完全地删除了。对于FIFO而言，在最后一个引用FIFO的进程终止时，虽然FIFO的名字仍保留在系统中，直至被显式地删除，但是留在FIFO中的数据已被删除了。
 

  559 

 
XSI IPC的另一个问题是：这些IPC结构在文件系统中没有名字。我们不能用第3章和第4章中所述的函数来访问它们或修改它们的属性。为了支持这些IPC对象，内核中增加了十几个全新的系统调用（msgget、 semop、shmat等）。我们不能用ls命令查看IPC对象，不能用rm命令删除它们，也不能用chmod命令修改它们的访问权限。于是，又增加了两个新命令ipcs(1)和ipcrm(1)。
 
因为这些形式的IPC不使用文件描述符，所以不能对它们使用多路转接I/O函数（select和poll）。这使得它很难一次使用一个以上这样的IPC结构，或者在文件或设备I/O中使用这样的IPC结构。例如，如果没有某种形式的忙等循环（busy-wait loop），就不能使一个服务器进程等待将要放在两个消息队列中任意一个中的消息。
 
Andrade、Carges和Kovach[1989]对使用System V IPC构建的一个事务处理系统进行了综述。他们认为System V IPC使用的命名空间（标识符）是一个优点，而不是前面所说的问题，理由是使用标识符使一个进程只要使用单个函数调用（msgsnd）就能将一个消息发送到一个队列，而其他形式的IPC则通常还要调用open、write和close。这种说法是错误的。为了避免使用键和调用msgget，客户进程总要以某种方式获得服务器进程队列的标识符。分派给特定队列的标识符取决于在创建该队列时，有多少消息队列已经存在，也取决于自内核自举以来，内核中将分配给新队列的表项已经使用了多少次。这是一个动态值，无法猜到或事先存放在一个头文件中。正如15.6.1节所述，至少服务器进程应将分配给队列的标识符写到一个文件中以便客户进程读取。
 
这些作者列举的消息队列的其他优点是：它们是可靠的、流控制的以及面向记录的；它们可以用非先进先出次序处理。图15-25对这些不同形式IPC的某些特征进行了比较。
 
[image: 15-25.jpg]
 
图15-25　不同形式IPC之间的特征比较
 
（我们将在第16章中描述流和数据报套接字，在17.2节中描述 UNIX 域套接字。）图15-25中的“无连接”指的是无需先调用某种形式的打开函数就能发送消息的能力。如前所述，因为需要有某种技术来获得队列标识符，所以我们并不认为消息队列是无连接的。因为所有这些形式的IPC 被限制在一台主机上，所以它们都是可靠的。当消息通过网络传送时，就要考虑丢失消息的可能性。“流控制”的意思是：如果系统资源（缓冲区）短缺，或者如果接收进程不能再接收更多消息，则发送进程就要休眠。当流控制条件消失时，发送进程应自动唤醒。
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图15-25中没有显示的一个特征是：IPC设施能否自动地为每个客户进程创建一个到服务器进程的唯一连接。第17章将说明UNIX流套接字可以提供这种能力。下面3节将对3种形式的XSI IPC进行详细的描述。
 
15.7　消息队列
 
消息队列是消息的链接表，存储在内核中，由消息队列标识符标识。在本节中，我们把消息队列简称为队列，其标识符简称为队列ID。
 
 
 Single UNIX Specification的消息传送选项中包括一种替代的IPC消息队列接口，该接口来源于POSIX实时扩展。本书不讨论这个接口。
 

 
msgget用于创建一个新队列或打开一个现有队列。msgsnd将新消息添加到队列尾端。每个消息包含一个正的长整型类型的字段、一个非负的长度以及实际数据字节数（对应于长度），所有这些都在将消息添加到队列时，传送给msgsnd。msgrcv用于从队列中取消息。我们并不一定要以先进先出次序取消息，也可以按消息的类型字段取消息。
 
每个队列都有一个msqid_ds结构与其相关联：
 
struct msqid_ds {

　struct ipc_perm　　   msg_perm;　　　　　　　/* see Section 15.6.2 */

　msgqnum_t　　　　　　　 msg_qnum;　　　　　　　/* # of messages on queue */

　msglen_t　　　　　　　　msg_qbytes;　　　　　　/* max # of bytes on queue */

　pid_t　　　　　　　　　　msg_lspid;　　　　　　 /* pid of last msgsnd() */

　pid_t　　　　　　　　　　msg_lrpid;　　　　　　 /* pid of last msgrcv() */

　time_t　　　　　　　  　msg_stime;　　　　　　　/* last-msgsnd() time */

　time_t　　　　　　　  　msg_rtime;　　　　　　　/* last-msgrcv() time */

　time_t　　　　　　　  　msg_ctime;　　　　　　　/* last-change time */

　 [image: ]

};


 
此结构定义了队列的当前状态。结构中所示的各成员是由Single UNIX Specification定义的。具体实现可能包括标准中没有定义的另一些字段。
 
图15-26列出了影响消息队列的系统限制。“导出的”表示这种限制来源于其他限制。例如，在Linux系统中，最大消息数是根据最大队列数和队列中所允许的最大数据量来决定的。其中最大队列数还要根据系统上安装的RAM的数量来决定。注意，队列的最大字节数限制进一步限制了队列中将要存储的消息的最大长度。
 
调用的第一个函数通常是msgget，其功能是打开一个现有队列或创建一个新队列。
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[image: 15-26.jpg]
 
图15-26　影响消息队列的系统限制
 
#include <sys/msg.h>



int msgget(key_t key, int flag);



　　　　　　　　　　　　　　　返回值：若成功，返回消息队列ID；若出错，返回1


 
15.6.1节说明了将key变换成一个标识符的规则，并且讨论了是创建一个新队列还是引用一个现有队列。在创建新队列时，要初始化msqid-ds结构的下列成员。
 
 
 	ipc-perm结构按15.6.2节中所述进行初始化。该结构中的mode成员按flag中的相应权限位设置。这些权限用图15-24中的值指定。
 
 	msg_qnum、msg_lspid、msg_lrpid、msg_stime和msg_rtime都设置为0。
 
 	msg_ctime设置为当前时间。
 
 	msg_qbytes设置为系统限制值。
 

 
若执行成功，msgget返回非负队列ID。此后，该值就可被用于其他3个消息队列函数。
 
msgctl函数对队列执行多种操作。它和另外两个与信号量及共享存储有关的函数（semctl和shmctl）都是XSI IPC的类似于ioctl的函数（亦即垃圾桶函数）。
 
#include <sys/msg.h>



int msgctl(int msqid, int cmd, struct msqid_ds *buf);



　　　　　　　　　　　　　　　返回值：若成功，返回0；若出错，返回1


 
cmd参数指定对msqid指定的队列要执行的命令。
 
IPC_STAT　　取此队列的msqid_ds结构，并将它存放在buf指向的结构中。
 
IPC_SET　　将字段msg_perm.uid、msg_perm.gid、msg_perm.mode和msg_qbytes从buf指向的结构复制到与这个队列相关的msqid_ds结构中。此命令只能由下列两种进程执行：一种是其有效用户ID等于msg_perm.cuid或msg_perm.uid，另一种是具有超级用户特权的进程。只有超级用户才能增加msg_qbytes的值。
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IPC_RMID　　从系统中删除该消息队列以及仍在该队列中的所有数据。这种删除立即生效。仍在使用这一消息队列的其他进程在它们下一次试图对此队列进行操作时，将得到EIDRM错误。此命令只能由下列两种进程执行：一种是其有效用户ID等于msg_perm.cuid或msg_perm.uid；另一种是具有超级用户特权的进程。
 
这3条命令（IPC_STAT、IPC_SET和IPC_RMID）也可用于信号量和共享存储。
 
调用msgsnd将数据放到消息队列中。
 
#include <sys/msg.h>



int msgsnd(int msqid, const void *ptr, size_t nbytes, int flag);



　　　　　　　　　　　　　　　返回值：若成功，返回0；若出错，返回1


 
正如前面提及的，每个消息都由3部分组成：一个正的长整型类型的字段、一个非负的长度（nbytes）以及实际数据字节数（对应于长度）。消息总是放在队列尾端。
 
ptr参数指向一个长整型数，它包含了正的整型消息类型，其后紧接着的是消息数据（若nbytes是0，则无消息数据）。若发送的最长消息是512字节的，则可定义下列结构：
 
struct mymesg {

　long mtype;　　　　/* positive message type */

　char mtext[512];　/* message data, of length nbytes */

};


 
ptr就是一个指向mymesg结构的指针。接收者可以使用消息类型以非先进先出的次序取消息。
 
 
 某些平台既支持32位环境，又支持64位环境。这影响到长整型和指针的大小。例如，在64位SPARC系统中，Solaris允许32位应用程序和64位应用程序同时存在。如果一个32位应用程序要经由管道或套接字与一个64位应用程序交换此结构，就会出问题。因为在32位应用程序中，长整型的大小是4字节，而在64位应用程序中，长整型的大小是8字节。这意味着，32位应用程序期望mtext字段在结构起始地址后的第4个字节处开始，而64位应用程序则期望mtext字段在结构起始地址后的第8个字节处开始。在这种情况下，64位应用程序的mtype字段的一部分会被32位应用程序视为mtext字段的组成部分，而32位应用程序的mtext字段的前4个字节会被64位应用程序解释为mtype字段的组成部分。
 
 但是，XSI消息队列就不会发生这种问题。Solaris实现的IPC系统调用的32位版本和64位版本具有不同的入口点。这些系统调用知道如何处理32位应用程序与64位应用程序的通信操作，并对类型字段做了特殊处理以避免它干扰消息的数据部分。唯一的潜在问题是，当64位应用程序向32位应用程序发送消息时，如果它在8字节类型字段中设置的值大于32位应用程序中4字节类型字段可表示的值，那么32位应用程序在其mtype字段中得到的将是一个截短了的类型值。
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参数flag的值可以指定为IPC_NOWAIT。这类似于文件I/O的非阻塞I/O标志（见14.2节）。若消息队列已满（或者是队列中的消息总数等于系统限制值，或队列中的字节总数等于系统限制值），则指定IPC_NOWAIT使得msgsnd立即出错返回EAGAIN。如果没有指定IPC_NOWAIT，则进程会一直阻塞到：有空间可以容纳要发送的消息；或者从系统中删除了此队列；或者捕捉到一个信号，并从信号处理程序返回。在第二种情况下，会返回EIDRM错误（“标识符被删除”）。最后一种情况则返回EINTR错误。
 
注意，对删除消息队列的处理不是很完善。因为每个消息队列没有维护引用计数器（打开文件有这种计数器），所以在队列被删除以后，仍在使用这一队列的进程在下次对队列进行操作时会出错返回。信号量机构也以同样方式处理其删除。相反，删除一个文件时，要等到使用该文件的最后一个进程关闭了它的文件描述符以后，才能删除文件中的内容。
 
当msgsnd返回成功时，消息队列相关的msqid_ds结构会随之更新，表明调用的进程ID（msg_ lspid）、调用的时间（msg_stime）以及队列中新增的消息（msg_qnum）。
 
msgrcv从队列中取用消息。
 
#include <sys/msg.h>



ssize_t msgrcv(int msqid, void *ptr, size_t nbytes, long type, int flag);



　　　　　　　　　　　　　　　返回值：若成功，返回消息数据部分的长度；若出错，返回-1


 
和msgsnd一样，ptr参数指向一个长整型数（其中存储的是返回的消息类型），其后跟随的是存储实际消息数据的缓冲区。nbytes指定数据缓冲区的长度。若返回的消息长度大于nbytes，而且在flag中设置了MSG_NOERROR位，则该消息会被截断（在这种情况下，没有通知告诉我们消息截断了，消息被截去的部分被丢弃）。如果没有设置这一标志，而消息又太长，则出错返回E2BIG（消息仍留在队列中）。
 
参数type可以指定想要哪一种消息。
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type == 0　返回队列中的第一个消息。
 
type > 0　返回队列中消息类型为type的第一个消息。
 
type < 0　返回队列中消息类型值小于等于type绝对值的消息，如果这种消息有若干个，则取类型值最小的消息。
 
type值非0用于以非先进先出次序读消息。例如，若应用程序对消息赋予优先权，那么type就可以是优先权值。如果一个消息队列由多个客户进程和一个服务器进程使用，那么type字段可以用来包含客户进程的进程ID（只要进程ID可以存放在长整型中）。
 
可以将flag值指定为IPC_NOWAIT，使操作不阻塞，这样，如果没有所指定类型的消息可用，则msgrcv返回1，error设置为ENOMSG。如果没有指定IPC_NOWAIT，则进程会一直阻塞到有了指定类型的消息可用，或者从系统中删除了此队列（返回1，error设置为EIDRM），或者捕捉到一个信号并从信号处理程序返回（这会导致msgrcv返回1，errno设置为EINTR）。
 
msgrcv成功执行时，内核会更新与该消息队列相关联的msgid_ds结构，以指示调用者的进程ID（msg_lrpid）和调用时间（msg_rtime），并指示队列中的消息数减少了1个（msg_qnum）。
 
实例：消息队列与全双工管道的时间比较
 
如若需要客户进程和服务器进程之间的双向数据流，可以使用消息队列或全双工管道。（回忆图15-1，通过UNIX域套接字机制，见17.2节，可以使全双工管道可用，而某些平台通过pipe函数提供全双工管道。）
 
图15-27显示了在Solaris上3种技术在时间方面的比较，这3种技术是：消息队列、全双工（STREAMS）管道和UNIX域套接字。测试程序先创建IPC通道，调用fork，然后从父进程向子进程发送约200 MB数据。数据发送的方式是：对于消息队列，调用100 000次msgsnd，每个消息长度为2 000字节；对于全双工管道和UNIX域套接字，调用100 000次write，每次写2 000字节。时间都以秒为单位。
 
[image: 15-27.jpg]
 
图15-27　在Solaris上3种IPC的时间比较
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从这些数字中可见，消息队列原来的实施目的是提供高于一般速度的IPC，但现在与其他形式的IPC相比，在速度方面已经没有什么差别了。（在原来实施消息队列时，可用的其他形式的IPC就只有半双工管道这一种。）考虑到使用消息队列时遇到的问题（见15.6.4节），我们得出的结论是，在新的应用程序中不应当再使用它们。
 
15.8　信号量
 
信号量与已经介绍过的IPC机构（管道、FIFO以及消息列队）不同。它是一个计数器，用于为多个进程提供对共享数据对象的访问。
 
 
 Single UNIX Specification包括了另外一套信号量接口，该接口原来是实时扩展的一部分。我们将在15.10节讨论这种接口。
 

 
为了获得共享资源，进程需要执行下列操作。
 
（1）测试控制该资源的信号量。
 
（2）若此信号量的值为正，则进程可以使用该资源。在这种情况下，进程会将信号量值减1，表示它使用了一个资源单位。
 
（3）否则，若此信号量的值为0，则进程进入休眠状态，直至信号量值大于0。进程被唤醒后，它返回至步骤（1）。
 
当进程不再使用由一个信号量控制的共享资源时，该信号量值增1。如果有进程正在休眠等待此信号量，则唤醒它们。
 
为了正确地实现信号量，信号量值的测试及减1操作应当是原子操作。为此，信号量通常是在内核中实现的。
 
常用的信号量形式被称为二元信号量（binary semaphore）。它控制单个资源，其初始值为1。但是，一般而言，信号量的初值可以是任意一个正值，该值表明有多少个共享资源单位可供共享应用。
 
遗憾的是，XSI信号量与此相比要复杂得多。以下3种特性造成了这种不必要的复杂性。
 
（1）信号量并非是单个非负值，而必需定义为含有一个或多个信号量值的集合。当创建信号量时，要指定集合中信号量值的数量。
 
（2）信号量的创建（semget）是独立于它的初始化（semctl）的。这是一个致命的缺点，因为不能原子地创建一个信号量集合，并且对该集合中的各个信号量值赋初值。
 
（3）即使没有进程正在使用各种形式的XSI IPC，它们仍然是存在的。有的程序在终止时并没有释放已经分配给它的信号量，所以我们不得不为这种程序担心。后面将要说明的undo功能就是处理这种情况的。
 
内核为每个信号量集合维护着一个semid_ds结构：
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struct semid_ds {

　struct ipc_perm　sem_perm;　　　/* see Section 15.6.2 */

　unsigned short　 sem_nsems; 　　/* # of semaphores in set */

　time_t　　　　　　 sem_otime; 　　/* last-semop() time */

　time_t　　　　　　 sem_ctime; 　　/* last-change time */

　 [image: ]

};


 
Single UNIX Specification定义了上面所示的各字段，但是具体实现可在semid_ds结构中定义添加的成员。
 
每个信号量由一个无名结构表示，它至少包含下列成员：
 
struct {

　unsigned short　semval;　 　　/* semaphore value, always >= 0 */

　pid_t　　　　　　 sempid;　 　　/* pid for last operation */

　unsigned short　semncnt;　　　/* # processes awaiting semval>curval */

　unsigned short　semzcnt;　　　/* # processes awaiting semval==0 */

　[image: ]

};


 
图15-28列出了影响信号量集合的系统限制。
 
[image: 15-28.jpg]
 
图15-28　影响信号量的系统限制
 
当我们想使用XSI信号量时，首先需要通过调用函数semget来获得一个信号量ID。
 
#include <sys/sem.h>



int semget(key_t key, int nsems, int flag);



　　　　　　　　　　　　　　　返回值：若成功，返回信号量ID；若出错，返回1


 
15.6.1节说明了将key变换为标识符的规则，讨论了是创建一个新集合，还是引用一个现有集合。创建一个新集合时，要对semid_ds结构的下列成员赋初值。
 
 
 	按15.6.2节中所述，初始化ipc_perm结构。该结构中的mode成员被设置为flag中的相应权限位。这些权限是用图15-24中的值设置的。
 
 	sem_otime设置为0。
 
 	sem_ctime设置为当前时间。
 
 	sem_nsems设置为nsems。
 

 
nsems是该集合中的信号量数。如果是创建新集合（一般在服务器进程中），则必须指定nsems。如果是引用现有集合（一个客户进程），则将nsems指定为0。
 
semctl函数包含了多种信号量操作。
 
#include <sys/sem.h>



int semctl(int semid, int semnum, int　cmd, ... /* union semun arg */);



　　　　　　　　　　　　　　　返回值：（见下）


 
第4个参数是可选的，是否使用取决于所请求的命令，如果使用该参数，则其类型是semun，它是多个命令特定参数的联合（union）：
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union semun {

　int　　　　　　　　val;　　 /* for SETVAL */

　struct semid_ds *buf;　　/* for IPC_STAT and IPC_SET */

　unsigned short　*array;　/* for GETALL and SETALL */

};
 
注意，这个选项参数是一个联合，而非指向联合的指针。
 
 
 通常应用程序必须定义semun联合。然而，在FreeBSD 8.0中，semun已经由<sys/sem.h>为我们定义好了。
 

 
cmd参数指定下列10种命令中的一种，这些命令是运行在semid指定的信号量集合上的。其中有5种命令是针对一个特定的信号量值的，它们用semnum指定该信号量集合中的一个成员。semnum值在0和nsems 1之间，包括0和nsems 1。
 
IPC_STAT　　对此集合取semid_ds结构，并存储在由arg.buf指向的结构中。
 
IPC_SET　　按arg.buf指向的结构中的值，设置与此集合相关的结构中的sem_perm.uid、sem_ perm.gid和sem_perm.mode字段。此命令只能由两种进程执行：一种是其有效用户ID等于sem_ perm.cuid或sem_perm.uid的进程；另一种是具有超级用户特权的进程。
 
IPC_RMID　　从系统中删除该信号量集合。这种删除是立即发生的。删除时仍在使用此信号量集合的其他进程，在它们下次试图对此信号量集合进行操作时，将出错返回EIDRM。此命令只能由两种进程执行：一种是其有效用户ID等于sem_perm.cuid或sem_perm.uid的进程；另一种是具有超级用户特权的进程。
 
GETVAL　　返回成员semnum的semval值。
 
SETVAL　　设置成员semnum的semval值。该值由arg.val指定。
 
GETPID　　返回成员semnum的sempid值。
 
GETNCNT　　返回成员semnum的semncnt值。
 
GETZCNT　　返回成员semnum的semzcnt值。
 
GETALL　　取该集合中所有的信号量值。这些值存储在arg.array指向的数组中。
 
SETALL　　将该集合中所有的信号量值设置成arg.array指向的数组中的值。
 
对于除GETALL以外的所有GET命令，semctl函数都返回相应值。对于其他命令，若成功则返回值为0，若出错，则设置errno并返回−1。
 
函数semop自动执行信号量集合上的操作数组。
 
#include <sys/sem.h>



int semop(int semid, struct sembuf semoparray[], size_t nops);



　　　　　　　　　　　　　　　返回值：若成功，返回0；若出错，返回−1
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参数semoparray是一个指针，它指向一个由sembuf结构表示的信号量操作数组：
 
struct sembuf {

　unsigned short　　　　sem_num; 　　　　　/* member # in set (0, 1, ..., nsems-1 */

　short 　　　　　　　　　sem_op;　　　　　　/* operation(negative, 0,or pasitive */)

　short 　　　　　　　　　sem_flg;　　　　　 /* IPC_NOWAIT, SEM_UNDO */

};
 
参数nops规定该数组中操作的数量（元素数）。
 
对集合中每个成员的操作由相应的sem_op值规定。此值可以是负值、0或正值。（下面的讨论将提到信号量的“undo”标志。此标志对应于相应的sem_flg成员的SEM_UNDO位。）
 
（1）最易于处理的情况是sem_op为正值。这对应于进程释放的占用的资源数。sem_op值会加到信号量的值上。如果指定了undo标志，则也从该进程的此信号量调整值中减去sem_op。
 
（2）若sem_op为负值，则表示要获取由该信号量控制的资源。
 
如若该信号量的值大于等于sem_op的绝对值（具有所需的资源），则从信号量值中减去sem_op的绝对值。这能保证信号量的结果值大于等于0。如果指定了undo标志，则sem_op的绝对值也加到该进程的此信号量调整值上。
 
如果信号量值小于sem_op的绝对值（资源不能满足要求），则适用下列条件。
 
a．若指定了IPC_NOWAIT，则semop出错返回EAGAIN。
 
b．若未指定IPC_NOWAIT，则该信号量的semncnt值加1（因为调用进程将进入休眠状态），然后调用进程被挂起直至下列事件之一发生。
 
i．此信号量值变成大于等于sem_op的绝对值（即某个进程已释放了某些资源）。此信号量的semncnt值减1（因为已结束等待），并且从信号量值中减去sem_op的绝对值。如果指定了undo标志，则sem_op的绝对值也加到该进程的此信号量调整值上。
 
ii．从系统中删除了此信号量。在这种情况下，函数出错返回EIDRM。
 
iii．进程捕捉到一个信号，并从信号处理程序返回，在这种情况下，此信号量的semncnt值减1（因为调用进程不再等待），并且函数出错返回EINTR。
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（3）若sem_op为0，这表示调用进程希望等待到该信号量值变成0。
 
如果信号量值当前是0，则此函数立即返回。
 
如果信号量值非0，则适用下列条件。
 
a．若指定了IPC_NOWAIT，则出错返回EAGAIN。
 
b．若未指定IPC_NOWAIT，则该信号量的semzcnt值加1（因为调用进程将进入休眠状态），然后调用进程被挂起，直至下列的一个事件发生。
 
i．此信号量值变成0。此信号量的semzcnt值减1（因为调用进程已结束等待）。
 
ii．从系统中删除了此信号量。在这种情况下，函数出错返回EIDRM。
 
iii．进程捕捉到一个信号，并从信号处理程序返回。在这种情况下，此信号量的semzcnt值减1（因为调用进程不再等待），并且函数出错返回EINTR。
 
semop函数具有原子性，它或者执行数组中的所有操作，或者一个也不做。
 
exit时的信号量调整
 
正如前面提到的，如果在进程终止时，它占用了经由信号量分配的资源，那么就会成为一个问题。无论何时只要为信号量操作指定了SEM_UNDO标志，然后分配资源（sem_op值小于0），那么内核就会记住对于该特定信号量，分配给调用进程多少资源（sem_op的绝对值）。当该进程终止时，不论自愿或者不自愿，内核都将检验该进程是否还有尚未处理的信号量调整值，如果有，则按调整值对相应信号量值进行处理。
 
如果用带SETVAL或SETALL命令的semctl设置一个信号量的值，则在所有进程中，该信号量的调整值都将设置为0。
 
实例：信号量、记录锁和互斥量的时间比较
 
如果在多个进程间共享一个资源，则可使用这3种技术中的一种来协调访问。我们可以使用映射到两个进程地址空间中的信号量、记录锁或者互斥量。对这3种技术两两之间在时间上的差别进行比较是有益的。
 
若使用信号量，则先创建一个包含一个成员的信号量集合，然后将该信号量值初始化为1。为了分配资源，以sem_op为1调用semop。为了释放资源，以sem_op为+1调用semop。对每个操作都指定SEM_UNDO，以处理在未释放资源条件下进程终止的情况。
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若使用记录锁，则先创建一个空文件，并且用该文件的第一个字节（无需存在）作为锁字节。为了分配资源，先对该字节获得一个写锁。释放该资源时，则对该字节解锁。记录锁的性质确保了当一个锁的持有者进程终止时，内核会自动释放该锁。
 
若使用互斥量，需要所有的进程将相同的文件映射到它们的地址空间里，并且使用PTHREAD_PROCESS_ SHARED互斥量属性在文件的相同偏移处初始化互斥量。为了分配资源，我们对互斥量加锁。为了释放锁，我们解锁互斥量。如果一个进程没有释放互斥量而终止，恢复将是非常困难的，除非我们使用鲁棒互斥量（回忆12.4.1节中讨论的pthread_mutex_consistent函数）。
 
图15-29显示了在Linux上，使用这3种不同技术进行锁操作所需的时间。在每一种情况下，资源都被分配、释放1 000 000次。这同时由3个不同的进程执行。图15-29中所示的时间是3个进程的总计，单位是秒。
 
[image: 15-29.jpg]
 
图15-29　Linux上锁替代技术的时间比较
 
在Linux上，记录锁比信号量快，但是共享存储中的互斥量的性能比信号量和记录锁的都要优越。如果我们能单一资源加锁，并且不需要XSI信号量的所有花哨功能，那么记录锁将比信号量要好。原因是它使用起来更简单、速度更快（在这个平台上），当进程终止时系统会管理遗留下来的锁。尽管对于这种平台来说，在共享存储中使用互斥量是一个更快的选择，但是我们依然喜欢使用记录锁，除非要特别考虑性能。这样做有两个原因。首先，在多个进程间共享的内存中使用互斥量来恢复一个终止的进程更难。其次，进程共享的互斥量属性还没有得到普遍支持。在Single UNIX Specification的老版本中，这是可选的。尽管在SUSv4中依然是可选的，但是现在，所有遵循XSI的实现都要求使用它。
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 在本书讨论的4个平台中，只有Linux 3.2.0和Solaris 10当前支持进程共享的互斥量属性。
 

 
15.9　共享存储
 
共享存储允许两个或多个进程共享一个给定的存储区。因为数据不需要在客户进程和服务器进程之间复制，所以这是最快的一种IPC。使用共享存储时要掌握的唯一窍门是，在多个进程之间同步访问一个给定的存储区。若服务器进程正在将数据放入共享存储区，则在它做完这一操作之前，客户进程不应当去取这些数据。通常，信号量用于同步共享存储访问。（不过正如前节最后部分所述，也可以用记录锁或互斥量。）
 
 
 Single UNIX Specification在其共享存储对象选项中包括了访问共享存储的替代接口，这些接口源于实时扩展。本书不讨论这些接口。
 

 
我们已经看到了共享存储的一种形式，就是在多个进程将同一个文件映射到它们的地址空间的时候。XSI共享存储和内存映射的文件的不同之处在于，前者没有相关的文件。XSI共享存储段是内存的匿名段。
 
内核为每个共享存储段维护着一个结构，该结构至少要为每个共享存储段包含以下成员：
 
struct shmid_ds {

　struct ipc_perm  shm_perm;　 /* see Section 15.6.2 */

　size_t　　　　　　 shm_segsz;　/* size of segment in bytes */

　pid_t　 　　　    shm_lpid;　　/* pid of last shmop() */

　pid_t　　　　　　　shm_cpid;　　/* pid of creator */

　shmatt_t　　　　　shm_nattch;　/* number of current attaches */

　time_t　　　　　　shm_atime;　 /* last-attach time */

　time_t　　　　　　shm_dtime;　 /* last-detach time */

　time_t　　　　　　shm_ctime;　 /* last-change time */

　 [image: ]

};


 
（按照支持共享存储段的需要，每种实现会增加其他结构成员。）
 
shmatt_t类型定义为无符号整型，它至少与unsigned short一样大。图15-30列出了影响共享存储的系统限制。
 
[image: 15-30.jpg]
 
图15-30　影响共享存储的系统限制
 
调用的第一个函数通常是shmget，它获得一个共享存储标识符。
 
#include <sys/shm.h>



int shmget(key_t key, size_t size, int flag);



　　　　　　　　　　　　　　　返回值：若成功，返回共享存储ID；若出错，返回−1


 
15.6.1节说明了将key变换成一个标识符的规则，以及是创建一个新共享存储段，还是引用一个现有的共享存储段。当创建一个新段时，初始化shmid_ds结构的下列成员。
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 	ipc_perm结构按15.6.2节中所述进行初始化。该结构中的mode按flag中的相应权限位设置。这些权限用图15-24中的值指定。
 
 	shm_lpid、shm_nattach、shm_atime和shm_dtime都设置为0。
 
 	shm_ctime设置为当前时间。
 
 	shm_segsz设置为请求的size。
 

 
参数size是该共享存储段的长度，以字节为单位。实现通常将其向上取为系统页长的整倍数。但是，若应用指定的size值并非系统页长的整倍数，那么最后一页的余下部分是不可使用的。如果正在创建一个新段（通常在服务器进程中），则必须指定其size。如果正在引用一个现存的段（一个客户进程），则将size指定为0。当创建一个新段时，段内的内容初始化为0。
 
shmctl函数对共享存储段执行多种操作。
 
#include <sys/shm.h>



int shmctl(int shmid, int cmd, struct shmid_ds *buf);



　　　　　　　　　　　　　　　返回值：若成功，返回0；若出错，返回−1


 
cmd参数指定下列5种命令中的一种，使其在shmid指定的段上执行。
 
IPC_STAT　　取此段的shmid_ds结构，并将它存储在由buf指向的结构中。
 
IPC_SET　　按buf指向的结构中的值设置与此共享存储段相关的shmid_ds结构中的下列3个字段：shm_perm.uid、shm_perm.gid和shm_perm.mode。此命令只能由下列两种进程执行：一种是其有效用户ID等于shm_perm.cuid或shm_perm.uid的进程；另一种是具有超级用户特权的进程。
 
IPC_RMID　　从系统中删除该共享存储段。因为每个共享存储段维护着一个连接计数（shmid_ds结构中的shm_nattch字段），所以除非使用该段的最后一个进程终止或与该段分离，否则不会实际上删除该存储段。不管此段是否仍在使用，该段标识符都会被立即删除，所以不能再用shmat与该段连接。此命令只能由下列两种进程执行：一种是其有效用户ID等于shm_perm.cuid或shm_perm.uid的进程；另一种是具有超级用户特权的进程。
 
Linux和Solaris提供了另外两种命令，但它们并非Single UNIX Specification的组成部分。
 
SHM_LOCK　　在内存中对共享存储段加锁。此命令只能由超级用户执行。
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SHM_UNLOCK　　解锁共享存储段。此命令只能由超级用户执行。
 
一旦创建了一个共享存储段，进程就可调用shmat将其连接到它的地址空间中。
 
#include <sys/shm.h>



void *shmat(int shmid, const void *addr, int flag);



　　　　　　　　　　　　　　　返回值：若成功，返回指向共享存储段的指针；若出错，返回-1


 
共享存储段连接到调用进程的哪个地址上与addr参数以及flag中是否指定SHM_RND位有关。
 
 
 	如果addr为0，则此段连接到由内核选择的第一个可用地址上。这是推荐的使用方式。
 
 	如果addr非0，并且没有指定SHM_RND，则此段连接到addr所指定的地址上。
 
 	如果addr非0，并且指定了SHM_RND，则此段连接到（addr (addr mod SHMLBA)）所表示的地址上。SHM_RND命令的意思是“取整”。SHMLBA的意思是“低边界地址倍数”，它总是2的乘方。该算式是将地址向下取最近1个SHMLBA的倍数。
 

 
除非只计划在一种硬件上运行应用程序（这在当今是不大可能的），否则不应指定共享存储段所连接到的地址。而是应当指定addr为0，以便由系统选择地址。
 
如果在flag中指定了SHM_RDONLY位，则以只读方式连接此段，否则以读写方式连接此段。
 
shmat的返回值是该段所连接的实际地址，如果出错则返回1。如果shmat成功执行，那么内核将使与该共享存储段相关的shmid_ds结构中的shm_nattch计数器值加1。
 
当对共享存储段的操作已经结束时，则调用shmdt与该段分离。注意，这并不从系统中删除其标识符以及其相关的数据结构。该标识符仍然存在，直至某个进程（一般是服务器进程）带IPC_RMID命令的调用shmctl特地删除它为止。
 
#include <sys/shm.h>



int shmdt(const void　*addr);



　　　　　　　　　　　　　　　返回值：若成功，返回0；若出错，返回-1


 
addr参数是以前调用shmat时的返回值。如果成功，shmdt将使相关shmid_ds结构中的shm_ nattch计数器值减1。
 
实例
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内核将以地址0连接的共享存储段放在什么位置上与系统密切相关。图15-31中的程序打印了一些特定系统存放各种类型的数据的位置信息。
 
#include "apue.h"

#include <sys/shm.h>



#define　ARRAY_SIZE　　 40000

#define　MALLOC_SIZE　　100000

#define　SHM_SIZE　　　　100000

#define　SHM_MODE　　　　0600　　/* user read/write */



char array[ARRAY_SIZE];　　 　　/* uninitialized data = bss */



int

main(void)

{

 　　int　　　　shmid;

 　　char　　　 *ptr, *shmptr;



 　　printf("array[] from %p to %p\n", (void *)&array[0],

 　　　(void *)&array[ARRAY_SIZE]);

 　　printf("stack around %p\n", (void *)&shmid);



 　　if ((ptr = malloc(MALLOC_SIZE)) == NULL)

 　　　　　err_sys("malloc error");

 　　printf("malloced from %p to %p\n", (void *)ptr,

 　　　(void *)ptr+MALLOC_SIZE);



 　　if ((shmid = shmget(IPC_PRIVATE, SHM_SIZE, SHM_MODE)) < 0)

 　　　　　err_sys("shmget error");

 　　if ((shmptr = shmat(shmid, 0, 0)) == (void *)-1)

 　　　　　err_sys("shmat error");

 　　printf("shared memory attached from %p to %p\n", (void *)shmptr,

 　　　(void *)shmptr+SHM_SIZE);



 　　if (shmctl(shmid, IPC_RMID, 0) < 0)

 　　　　err_sys("shmctl error");



 　　exit(0);

}
 
图15-31　打印各种类型的数据存放的位置
 
在一个基于Intel的64位Linux系统上运行此程序，其输出如下：
 
$ ./a.out

array[] from 0x6020c0 to 0x60bd00

stack around 0x7fff957b146c

malloced from 0x9e3010 to 0x9fb6b0

shared memory attached from 0x7fba578ab000 to 0x7fba578c36a0
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图15-32显示了这种情况，这与图7-6中所示的典型存储区布局类似。注意，共享存储段紧靠在栈之下。
 
回忆一下mmap函数（见14.8节），它可将一个文件的若干部分映射至进程地址空间。这在概念上类似于用shmat XSI IPC函数连接一个共享存储段。两者之间的主要区别是，用mmap映射的存储段是与文件相关联的，而XSI共享存储段则并无这种关联。
 
[image: ..\14-0434yds排版CMM\UNIX环境高级编程（第3版）tu\1532.tif]
 
图15-32　在基于Intel的Linux系统上的存储区布局
 
实例：/dev/zero的存储映射
 
共享存储可由两个不相关的进程使用。但是，如果进程是相关的，则某些实现提供了一种不同的技术。
 
 
 下面说明的技术用于FreeBSD 8.0、Linux 3.2.0和Solaris 10。Mac OS X 10.6.8当前并不支持将字符设备映射至进程地址空间。
 

 
在读设备/dev/zero时，该设备是0字节的无限资源。它也接收写向它的任何数据，但又忽略这些数据。我们对此设备作为IPC的兴趣在于，当对其进行存储映射时，它具有一些特殊性质。
 
 
 	创建一个未命名的存储区，其长度是mmap的第二个参数，将其向上取整为系统的最近页长。
 
 	存储区都初始化为0。
 
 	如果多个进程的共同祖先进程对mmap指定了MAP_SHARED标志，则这些进程可共享此存储区。
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图15-33中的程序是使用此特殊设备的一个例子。
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#include "apue.h"

#include <fcntl.h>

#include <sys/mman.h>



#define　　NLOOPS　　　1000

#define　　SIZE　　　　sizeof(long)　　/* size of shared memory area */



static int

update(long *ptr)

{

 　　return((*ptr)++);　　　　　　　　/* return value before increment */

}



int

main(void)

{

 　　int　　   fd, i, counter;

 　　pid_t　　 pid;

 　　void　　  *area;



 　　if ((fd = open("/dev/zero", O_RDWR)) < 0)

 　　　　err_sys("open error");

 　　if ((area = mmap(0, SIZE, PROT_READ | PROT_WRITE, MAP_SHARED,

 　　　fd, 0)) == MAP_FAILED)

 　　　　err_sys("mmap error");

 　　close(fd); 　　　 /* can close /dev/zero now that it's mapped */



 　　TELL_WAIT();



 　　if ((pid = fork()) < 0) {

 　　　　err_sys("fork error");

 　　} else if (pid > 0) {　　　　　　/* parent */

 　　　　for (i = 0; i < NLOOPS; i += 2) {

 　　　　　　　if ((counter = update((long *)area)) != i)

 　　　　　　　　　err_quit("parent: expected %d, got %d", i, counter);



　　　　　　　TELL_CHILD(pid);

　　　　　　　WAIT_CHILD();

　　　　　 }

 　　} else {　　　　　　　　　　　　　　　/* child */

　　　　　 for (i = 1; i < NLOOPS + 1; i += 2) {

　　　　　　　　WAIT_PARENT();



　　　　　　　　if ((counter = update((long *)area)) != i)

　　　　　　　　　　err_quit("child: expected %d, got %d", i, counter);



 　　　　　　　TELL_PARENT(getppid());

　　　　　 }

 　　}



 　　exit(0);

}
 
图15-33　在父进程、子进程之间使用/dev/zero的存储映射I/O的IPC
 
该程序打开此/dev/zero设备，然后指定长整型的长度调用mmap。注意，一旦存储区映射成功，我们就要关闭（close）此设备。然后，进程创建一个子进程。因为在调用mmap时指定了MAP_ SHARED，所以一个进程写到存储映射区的数据可被另一进程见到。（如果已指定MAP_PRIVATE，则此程序不能工作。）
 
然后，父进程、子进程交替运行，它们使用8.9节中的同步函数各自对共享存储映射区中的长整型数加1。存储映射区由mmap初始化为0。父进程先对它进行增1操作，使其成为1，然后子进程对其进行增1操作，使其成为2，然后父进程使其成为3，依此类推。注意，当在update函数中对长整型值增1时，因为增加的是其值，而不是指针，所以必须使用括号。
 
以上述方式使用/dev/zero的优点是：在调用mmap创建映射区之前，无需存在一个实际文件。映射/dev/zero自动创建一个指定长度的映射区。这种技术的缺点是：它只在两个相关进程之间起作用。但在相关进程之间使用线程可能更为简单有效（见第11章和第12章）。注意，无论使用哪一种技术，都需对共享数据进行同步访问。
 
实例：匿名存储映射
 
很多实现提供了一种类似于/dev/zero的设施，称为匿名存储映射。为了使用这种功能，要在调用mmap时指定MAP_ANON标志，并将文件描述符指定为1。结果得到的区域是匿名的（因为它并不通过一个文件描述符与一个路径名相结合），并且创建了一个可与后代进程共享的存储区。
 
 
 本书讨论的4种平台都支持匿名存储映射设施。但是注意，Linux为此设备定义了MAP_ANONYMOUS标志，并将MAP_ANON标志定义为与它相同的值以改善应用的可移植性。
 

 
为使图15-33中的程序应用这个设施，我们对它做了3处修改：（a）删除了/dev/zero的open语句，（b）删除了fd的close语句，（c）将mmap调用修改如下：
 
if ((area = mmap(0, SIZE, PROT_READ | PROT_WRITE,

　　　　　　　　　　　MAP_ANON | MAP_SHARED, -1, 0)) == MAP_FAILED)
 
此调用指定了MAP_ANON标志，并将文件描述符设置为1。图15-33中的程序的其余部分没变。
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最后两个实例说明了在多个无关进程之间如何使用共享存储段。如果在两个无关进程之间要使用共享存储段，那么有两种替代的方法。一种是应用程序使用XSI共享存储函数，另一种是使用mmap将同一文件映射至它们的地址空间，为此使用MAP_SHARED标志。
 
15.10　POSIX信号量
 
POSIX信号量机制是3种IPC机制之一，3种IPC机制源于POSIX.1的实时扩展。Single UNIX Specification将3种机制（消息队列、信号量和共享存储）置于可选部分中。在SUSv4之前，POSIX信号量接口已经被包含在信号量选项中。在SUSv4中，这些接口被移至了基本规范，而消息队列和共享存储接口依然是可选的。
 
POSIX信号量接口意在解决XSI信号量接口的几个缺陷。
 
 
 	相比于XSI接口，POSIX信号量接口考虑到了更高性能的实现。
 
 	POSIX信号量接口使用更简单：没有信号量集，在熟悉的文件系统操作后一些接口被模式化了。尽管没有要求一定要在文件系统中实现，但是一些系统的确是这么实现的。
 
 	POSIX信号量在删除时表现更完美。回忆一下，当一个XSI信号量被删除时，使用这个信号量标识符的操作会失败，并将errno设置成EIDRM。使用POSIX信号量时，操作能继续正常工作直到该信号量的最后一次引用被释放。
 

 
POSIX信号量有两种形式：命名的和未命名的。它们的差异在于创建和销毁的形式上，但其他工作一样。未命名信号量只存在于内存中，并要求能使用信号量的进程必须可以访问内存。这意味着它们只能应用在同一进程中的线程，或者不同进程中已经映射相同内存内容到它们的地址空间中的线程。相反，命名信号量可以通过名字访问，因此可以被任何已知它们名字的进程中的线程使用。
 
我们可以调用sem_open函数来创建一个新的命名信号量或者使用一个现有信号量。
 
#include <semaphore.h>



sem_t *sem_open(const char *name, int oflag, ... /* mode_t mode,

　　　　　　　　　 unsigned int value */ );



　　　　　　　　　　　　　　　返回值：若成功，返回指向信号量的指针；若出错，返回SEM_FAILED


 
当使用一个现有的命名信号量时，我们仅仅指定两个参数：信号量的名字和oflag参数的0值。当这个oflag参数有O_CREAT标志集时，如果命名信号量不存在，则创建一个新的。如果它已经存在，则会被使用，但是不会有额外的初始化发生。
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当我们指定O_CREAT标志时，需要提供两个额外的参数。mode参数指定谁可以访问信号量。mode的取值和打开文件的权限位相同：用户读、用户写、用户执行、组读、组写、组执行、其他读、其他写和其他执行。赋值给信号量的权限可以被调用者的文件创建屏蔽字修改（见 4.5 节和4.8节）。注意，只有读和写访问要紧，但是当我们打开一个现有信号量时接口不允许指定模式。实现经常为读和写打开信号量。
 
在创建信号量时，value参数用来指定信号量的初始值。它的取值是0～SEM_VALUE_MAX（见图2-9）。
 
如果我们想确保创建的是信号量，可以设置oflag参数为O_CREAT|O_EXCL。如果信号量已经存在，会导致sem_open失败。
 
为了增加可移植性，在选择信号量命名时必须遵循一定的规则。
 
 
 	名字的第一个字符应该为斜杠（/）。尽管没有要求POSIX信号量的实现要使用文件系统，但是如果使用了文件系统，我们就要在名字被解释时消除二义性。
 
 	名字不应包含其他斜杠以此避免实现定义的行为。例如，如果文件系统被使用了，那么名字/mysem和//mysem会被认定为是同一个文件名，但是如果实现没有使用文件系统，那么这两种命名可以被认为是不同的（考虑下如果实现把名字哈希运算转换成一个用来识别信号量的整数值会发生什么）。
 
 	信号量名字的最大长度是实现定义的。名字不应该长于_POSIX_NAME_MAX（见图2-8）个字符长度。因为这是使用文件系统的实现能允许的最大名字长度的限制。
 

 
如果想在信号量上进行操作，sem_open函数会为我们返回一个信号量指针，用于传递到其他信号量函数上。当完成信号量操作时，可以调用sem_close函数来释放任何信号量相关的资源。
 
#include <semaphore.h>



int sem_close(sem_t *sem);



　　　　　　　　　　　　　　　返回值：若成功，返回0；若出错，返回-1


 
如果进程没有首先调用sem_close而退出，那么内核将自动关闭任何打开的信号量。注意，这不会影响信号量值的状态——如果已经对它进行了增1操作，这并不会仅因为退出而改变。类似地，如果调用sem_close，信号量值也不会受到影响。在XSI信号量中没有类似SEM_UNDO标志的机制。
 
可以使用sem_unlink函数来销毁一个命名信号量。
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#include <semaphore.h>



int sem_unlink(const char *name);



　　　　　　　　　　　　　　　返回值：若成功，返回0；若出错，返回-1


 
sem_unlink函数删除信号量的名字。如果没有打开的信号量引用，则该信号量会被销毁。否则，销毁将延迟到最后一个打开的引用关闭。
 
不像XSI信号量，我们只能通过一个函数调用来调节POSIX信号量的值。计数减1和对一个二进制信号量加锁或者获取计数信号量的相关资源是相类似的。
 
 
 注意，信号量和POSIX信号量之间是没有差别的。是采用二进制信号量还是用计数信号量取决于如何初始化和使用信号量。如果一个信号量只是有值0或者1，那么它就是二进制信号量。当二进制信号量是1时，它就是“解锁的”，如果它的值是0，那就是“加锁的”。
 

 
可以使用sem_wait或者sem_trywait函数来实现信号量的减1操作。
 
#include <semaphore.h>



int sem_trywait(sem_t *sem);



int sem_wait(sem_t *sem);



　　　　　　　　　　　　　　　两个函数的返回值：若成功，返回0；若出错则，返回1


 
使用sem_wait函数时，如果信号量计数是0就会发生阻塞。直到成功使信号量减1或者被信号中断时才返回。可以使用sem_trywait函数来避免阻塞。调用sem_trywait时，如果信号量是0，则不会阻塞，而是会返回−1并且将errno置为EAGAIN。
 
第三个选择是阻塞一段确定的时间。为此，可以使用sem_timewait函数。
 
#include <semaphore.h>



#include <time.h>



int sem_timedwait(sem_t *restrict sem, 

　　　　　　　　　　 const struct timespec *restrict tsptr);



　　　　　　　　　　　　　　　返回值：若成功，返回0；若出错，返回1


 
想要放弃等待信号量的时候，可以用tsptr参数指定绝对时间。超时是基于CLOCK_REALTIME时钟的（回忆图6-8）。如果信号量可以立即减1，那么超时值就不重要了，尽管指定的可能是过去的某个时间，信号量的减1操作依然会成功。如果超时到期并且信号量计数没能减1，sem_timedwait将返回-1且将errno设置为ETIMEDOUT。
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可以调用sem_post函数使信号量值增1。这和解锁一个二进制信号量或者释放一个计数信号量相关的资源的过程是类似的。
 
#include <semaphore.h>



int sem_post(sem_t *sem);



　　　　　　　　　　　　　　　返回值：若成功，返回0；若出错，返回1


 
调用sem_post时，如果在调用sem_wait（或者sem_timedwait）中发生进程阻塞，那么进程会被唤醒并且被sem_post增1的信号量计数会再次被sem_wait（或者sem_timedwait）减1。
 
当我们想在单个进程中使用POSIX信号量时，使用未命名信号量更容易。这仅仅改变创建和销毁信号量的方式。可以调用sem_init函数来创建一个未命名的信号量。
 
#include <semaphore.h>



int sem_init(sem_t *sem, int pshared, unsigned int value);



　　　　　　　　　　　　　　　返回值：若成功，返回0；若出错，返回−1


 
pshared参数表明是否在多个进程中使用信号量。如果是，将其设置成一个非0值。value参数指定了信号量的初始值。
 
需要声明一个sem_t类型的变量并把它的地址传递给sem_init来实现初始化，而不是像sem_open函数那样返回一个指向信号量的指针。如果要在两个进程之间使用信号量，需要确保sem参数指向两个进程之间共享的内存范围。
 
对未命名信号量的使用已经完成时，可以调用sem_destroy函数丢弃它。
 
#include <semaphore.h>



int sem_destroy(sem_t *sem);



　　　　　　　　　　　　　　　返回值：若成功，返回0；若出错，返回−1


 
调用sem_destroy后，不能再使用任何带有sem的信号量函数，除非通过调用sem_init重新初始化它。
 
sem_getvalue函数可以用来检索信号量值。
 
#include <semaphore.h>



int sem_getvalue(sem_t *restrict sem, int *restrict valp);



　　　　　　　　　　　　　　　返回值：若成功，返回0；若出错，返回−1


 
成功后，valp指向的整数值将包含信号量值。但是请注意，我们试图要使用我们刚读出来的值的时候，信号量的值可能已经变了。除非使用额外的同步机制来避免这种竞争，否则sem_getvalue函数只能用于调试。
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 Mac OS X 10.6.8不支持sem_getvalue函数。
 

 
实例
 
介绍POSIX接口的动机之一就是，通过设计，它们的性能要明显好于现有XSI信号量接口。下面将了解现有系统是否达到了这个目标，尽管这些系统没有设计支持实时的应用。
 
在图15-34中，让3个进程在两种平台（Linux 3.2.0和Solaris 10）上竞争分配和释放信号量1 000 000次，比较了分别使用XSI信号量（不带SEM_UNDO）和POSIX信号量时的性能。
 
[image: 15-34.jpg]
 
图15-34　信号量实现的时间比较
 
在图15-34中可以看到，在Solaris系统中，POSIX信号量相对于XSI信号量在时间上仅提高了12%，但是在Linux系统中却提高了94%（近18倍的速度）。如果跟踪程序，我们会发现，POSIX信号量的Linux实现将文件映射到了进程地址空间中，并且没有使用系统调用来操作各自的信号量。
 
实例
 
回忆图12-5，Single UNIX Specification并没用定义当一个线程对一个普通互斥量加锁，而另一个线程试图去解锁它的情况，但是这种情况下错误检查互斥量和递归互斥量会产生错误。因为二进制信号量可以像互斥量一样来使用，我们可以使用信号量来创建自己的锁原语从而提供互斥。
 
假设我们将要创建自己的锁，这种锁能被一个线程加锁而被另一线程解锁，那么它的结构可能是这样的：
 
struct slock {

　sem_t *semp;

　char　　name[_POSIX_NAME_MAX];

};
 
图15-35中的程序展示了基于信号量的互斥原语的实现。
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#include "slock.h"

#include <stdlib.h>

#include <stdio.h>

#include <unistd.h>

#include <errno.h>



struct slock *

s_alloc()

{

 　　struct slock *sp;

 　　static int cnt;



 　　if ((sp = malloc(sizeof(struct slock))) == NULL)

 　　　　return(NULL);

 　　do {

 　　　　snprintf(sp->name, sizeof(sp->name), "/%ld.%d", (long)getpid(),

 　　　　　cnt++);

 　　　　sp->semp = sem_open(sp->name, O_CREAT|O_EXCL, S_IRWXU, 1);

 　　} while ((sp->semp == SEM_FAILED) && (errno == EEXIST));

 　　if (sp->semp == SEM_FAILED) {

 　　　　free(sp);

 　　　　return(NULL);

 　　}

 　　sem_unlink(sp->name);

 　　return(sp);

}



void

s_free(struct slock *sp)

{

 　　sem_close(sp->semp);

 　　free(sp);

}



int

s_lock(struct slock *sp)

{

 　　return(sem_wait(sp->semp));

}



int

s_trylock(struct slock *sp)

{

 　　return(sem_trywait(sp->semp));

}



int

s_unlock(struct slock *sp)

{

 　　return(sem_post(sp->semp));

}
 
图15-35　使用POSIX信号量的互斥
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根据进程ID和计数器来创建名字。我们不会刻意用互斥量去保护计数器，因为当两个竞争的线程同时调用s_alloc并以同一个名字结束时，在调用sem_open中使用O_EXCL标志将会使其中一个线程成功而另一个线程失败，失败的线程会将errno设置成EEXIST，所以对于这种情况，我们只是再次尝试。注意，我们打开一个信号量后断开了它的连接。这销毁了名字，所以导致其他进程不能再次访问它，这也简化了进程结束时的清理工作。
 
15.11　客户进程-服务器进程属性
 
下面详细说明客户进程和服务器进程的某些属性，这些属性受到它们之间所使用的各种 IPC类型的影响。最简单的关系类型是使客户进程fork然后exec所希望的服务器进程。在fork之前先创建两个半双工管道使数据可在两个方向传输。图15-16是这种安排的一个例子。所执行的服务器进程可能是一个设置用户ID的程序，这使它具有了特权。另外，服务器进程查看客户进程的实际用户ID就可以决定客户进程的真实身份。（回忆8.10节，从中可了解到在exec前后实际用户ID和实际组ID并没有改变。）
 
在这种安排下，可以构建一个open服务器进程（open server）。（17.5节提供了这种客户进程-服务器进程机制的一种实现。）它为客户进程打开文件而不是客户进程自己调用open函数。这样就可以在正常的UNIX用户权限、组权限以及其他权限之上或之外，增加附加的权限检查。假定服务器进程执行的是设置用户ID程序，这给予了它附加的权限（很可能是root权限）。服务器进程用客户进程的实际用户ID来决定是否给予它对所请求文件的访问权限。使用这种方式，可以构建一个服务器进程，它允许某些用户获得通常没有的访问权限。
 
在此例子中，因为服务器进程是父进程的子进程，所以它所能做的就是将文件内容传送给父进程。尽管这种方式对普通文件工作得很好，但是对有些文件却不能工作，如特殊设备文件。我们希望能做的是使服务器进程打开所要求的文件，并传回文件描述符。但是实际情况却是父进程可向子进程传送打开文件描述符，而子进程却不能向父进程传回文件描述符（除非使用专门的编程技术，这将在第17章介绍）。
 
图15-23中展示了另一种类型的服务器进程。这种服务器进程是一个守护进程，所有客户进程用某种形式的IPC与其联系。对于这种形式的客户进程-服务器进程关系，不能使用管道。需要使用一种形式的命名IPC，如FIFO或消息队列。使用FIFO时，如果服务器进程必需将数据送回客户进程，则对每个客户进程都要有单独使用的FIFO。如果客户进程-服务器进程应用程序只有客户进程向服务器进程发送数据，则只需要一个众所周知的FIFO。（System V行式打印机假脱机程序使用这种形式的客户进程-服务器进程。客户进程是lp(1)命令，服务器进程是lpsched守护进程。因为只有从客户进程到服务器进程的数据流，所有只需使用一个FIFO。没有需要送回客户进程的数据。）
 
使用消息队列则存在多种可能性。
 
（1）在服务器进程和所有客户进程之间只使用一个队列，使用每个消息的类型字段指明谁是消息的接受者。例如，客户进程可以用设置为1的类型字段来发送它们的消息。在请求之中应包括客户进程的进程ID。此后，服务器进程在发送响应消息时，将类型字段设置为客户进程的进程ID。服务器进程只接受类型字段为1的消息（msgrcv的第4个参数），客户进程则只接受类型字段等于它们进程ID的消息。
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（2）另一种方法是每个客户进程使用一个单独的消息队列。在向服务器进程发送第一个请求之前，每个客户进程先使用键IPC_PRIVATE创建它自己的消息队列。服务器进程也有它自己的队列，其键或标识符是所有客户进程都知道的。客户进程将其第一个请求发送到服务器进程的众所周知的队列上，该请求中应包含其客户进程消息队列的队列ID。服务器进程将其第一个响应发送到此客户进程队列，此后的所有请求和响应都在此队列上交换。
 
使用消息队列的这两种技术都可以用共享内存段和同步方法（信号量或记录锁）来实现。
 
使用这种类型的客户进程-服务器进程关系（客户进程和服务器进程是无关进程）的问题是服务器进程如何准确地标识客户进程。除非服务器进程正在执行一种非特权操作，否则服务器进程知道客户进程的身份是很重要的。例如，若服务器进程是一个设置用户ID程序，就有这种要求。虽然所有这几种形式的IPC都经由内核，但是它们并未提供任何设施使内核能够标识发送者。
 
对于消息队列，如果在客户进程和服务器进程之间使用一个专用队列（于是一次只有一个消息在该队列上），那么队列的msg_lspid包含了对方进程的进程ID。但是当客户进程将请求发送给服务器进程时，我们想要的是客户进程的有效用户ID，而不是它的进程ID。现在还没有一种可移植的方法，在已知进程ID情况下可以得到有效用户ID。（自然地，内核在进程表项中保持有这两种值，但是除非彻底检查内核存储空间，否则已知一个，无法得到另一个。）
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我们将在17.2节中使用下列技术，使服务器进程可以标识客户进程。这一技术可使用FIFO、消息队列、信号量以及共享存储。在下面的说明中假定按图15-23使用了FIFO。客户进程必须创建它自己的FIFO，并且设置该FIFO的文件访问权限，使得只允许用户读和用户写。假定服务器进程具有超级用户特权（或者它很可能并不关心客户进程的真实标识），那么服务器进程仍可读、写此FIFO。当服务器进程在众所周知的FIFO上接收到客户进程的第一个请求时（它应当包含客户进程专用FIFO的标识），服务器进程调用针对客户进程专用FIFO的stat或fstat。服务器进程假设：客户进程的有效用户ID是FIFO的所有者（stat结构的st_uid字段）。服务器进程验证该FIFO只有用户读和用户写权限。服务器进程还应检查与该FIFO有关的3个时间量（stat结构的st_atime、st_mtime和st_ctime字段），要检查它们与当前时间是否很接近（如不早于当前时间15秒或30秒）。如果一个恶意客户进程可以创建一个FIFO，使另一个用户成为其所有者，并且设置该文件的权限位为用户读和用户写，那么在系统中就存在了其他基础性的安全问题。
 
为了用XSI IPC实现这种技术，回想一下与每个消息队列、信号量以及共享存储段相关的ipc_perm结构，它标识了IPC结构的创建者（cuid和cgid字段）。和使用FIFO的实例一样，服务器进程应当要求客户进程创建该IPC结构，并使客户进程将访问权设置为只允许用户读和用户写。服务器进程也应检验与该IPC相关的时间值与当前时间是否很接近（因为这些IPC结构在显式地删除之前一直存在）。
 
在17.3节中，将会看到进行这种身份验证的一种更好的方法，就是内核提供客户进程的有效用户ID和有效组ID。套接字子系统在两个进程之间传送文件描述符时可以做到这一点。
 
15.12　小结
 
本章详细说明了进程间通信的多种形式：管道、命名管道（FIFO）、通常称为XSI IPC的3种形式的IPC（消息队列、信号量和共享存储），以及POSIX提供的替代信号量机制。信号量实际上是同步原语而不是IPC，常用于共享资源（如共享存储段）的同步访问。对于管道，我们说明了popen函数的实现、协同进程以及使用标准I/O库缓冲机制时可能遇到的问题。
 
经过分别对消息队列与全双工管道的时间以及信号量与记录锁的时间进行比较，提出了下列建议：要学会使用管道和FIFO，因为这两种基本技术仍可有效地应用于大量的应用程序。在新的应用程序中，要尽可能避免使用消息队列以及信号量，而应当考虑全双工管道和记录锁，它们使用起来会简单得多。共享存储仍然有它的用途，虽然通过mmap函数（见14.8节）也能提供同样的功能。
 
下一章将介绍网络IPC，它们使进程能够跨越计算机的边界进行通信。
 
习题
 
15.1　在图15-6的程序中，在父进程代码的末尾删除waitpid前的close，结果将如何？
 
15.2　在图15-6的程序中，在父进程代码的末尾删除waitpid，结果将如何？
 
15.3　如果popen函数的参数是一个不存在的命令，会造成什么结果？编写一段小程序对此进行测试。
 
15.4　在图15-18的程序中，删除信号处理程序，执行该程序，然后终止子进程。输入一行输入后，怎样才能说明父进程是由SIGPIPE终止的？
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15.5　在图15-18的程序中，用标准I/O库代替进行管道读、写的read和write。
 
15.6　POSIX.1加入waitpid函数的理由之一是，POSIX.1之前的大多数系统不能处理下面的代码。
 
if ( (fp = popen("/bin/true", "r")) == NULL )

　　　 ...

if ( (rc = system("sleep 100")) == -1)

　　　 ...

if (pclose(fp) == -1)

　　　 ...
 
　若在这段代码中不使用waitpid函数会如何？用wait代替呢？
 
15.7　当一个管道被写者关闭后，解释select和poll是如何处理该管道的输入描述符的。为了确定答案是否正确，编两个小测试程序，一个用select，另一个用poll。
 
　当一个管道的读端被关闭时，请重做此习题以查看该管道的输出描述符。
 
15.8　如果popen以type为"r"执行cmdstring，并将结果写到标准错误输出，结果会如何？
 
15.9　既然popen函数能使shell执行它的cmdstring参数，那么cmdstring终止时会产生什么结果？（提示：画出与此相关的所有进程。）
 
15.10　POSIX.1特别声明没有定义为读写而打开FIFO。虽然大多数UNIX系统允许读写FIFO，但是请用非阻塞方法实现为读写而打开FIFO。
 
15.11　除非文件包含敏感数据或机密数据，否则允许其他用户读文件不会造成损害。但是，如果一个恶意进程读取了被一个服务器进程和几个客户进程使用的消息队列中的一条消息后，会产生什么后果？恶意进程需要知道哪些信息就可以读消息队列？
 
15.12　编写一段程序完成下面的工作。执行一个循环5次，在每次循环中，创建一个消息队列，打印该队列的标识符，然后删除队列。接着再循环5次，在每次循环中利用键IPC_PRIVATE创建消息队列，并将一条消息放在队列中。程序终止后用ipcs(1)查看消息队列。解释队列标识符的变化。
 
15.13　描述如何在共享存储段中建立一个数据对象的链接列表。列表指针如何存储？
 
15.14　画出图15-33中的程序运行时下列值随时间变化的曲线图：父进程和子进程中的变量i、共享存储区中的长整型值以及update函数的返回值。假设子进程在fork后先运行。
 
15.15　使用15.9节中的XSI共享存储函数代替共享存储映射区，改写图15-33中的程序。
 
15.16　使用15.8节中的XSI信号量函数改写图15-33中的程序，实现父进程与子进程间的交替。
 
15.17　使用建议性记录锁改写图15-33中的程序，实现父进程与子进程间的交替。
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15.18　使用15.10节中的POSIX信号量函数改写图15-33中的程序，实现父进程与子进程间的交替。
 


第16章　网络IPC：套接字
 
16.1　引言
 
上一章我们考察了各种UNIX系统所提供的经典进程间通信机制（IPC）：管道、FIFO、消息队列、信号量以及共享存储。这些机制允许在同一台计算机上运行的进程可以相互通信。本章将考察不同计算机（通过网络相连）上的进程相互通信的机制：网络进程间通信（network IPC）。
 
在本章中，我们将描述套接字网络进程间通信接口，进程用该接口能够和其他进程通信，无论它们是在同一台计算机上还是在不同的计算机上。实际上，这正是套接字接口的设计目标之一：同样的接口既可以用于计算机间通信，也可以用于计算机内通信。尽管套接字接口可以采用许多不同的网络协议进行通信，但本章的讨论限制在因特网事实上的通信标准：TCP/IP协议栈。
 
POSIX.1中指定的套接字API是基于4.4 BSD套接字接口的。尽管这些年套接字接口有些细微的变化，但是当前的套接字接口与20世纪80年代早期4.2BSD所引入的接口很类似。
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本章仅是一个套接字API的概述。Stevens、Fenner和Rudoff[2004]在有关UNIX系统网络编程的权威性文献中详细讨论了套接字接口。
 
16.2　套接字描述符
 
套接字是通信端点的抽象。正如使用文件描述符访问文件，应用程序用套接字描述符访问套接字。套接字描述符在UNIX系统中被当作是一种文件描述符。事实上，许多处理文件描述符的函数（如read和write）可以用于处理套接字描述符。
 
为创建一个套接字，调用socket函数。
 
#include <sys/socket.h>



int socket (int domain, int type, int protocol);



　　　　　　　　　　　　　　　返回值：若成功，返回文件（套接字）描述符；若出错，返回−1


 
参数domain（域）确定通信的特性，包括地址格式（在下一节详细描述)。图16-1总结了由POSIX.1指定的各个域。各个域都有自己表示地址的格式，而表示各个域的常数都以AF_开头，意指地址族（address family）。
 
我们将在17.2节讨论UNIX域。大多数系统还定义了AF_LOCAL域，这是AF_UNIX的别名。AF_ UNSPEC域可以代表“任何”域。历史上，有些平台支持其他网络协议，如AF_IPX域代表的NetWare协议族，但这些协议的域常数没有被POSIX.1标准定义。
 
[image: 16-1.jpg]
 
图16-1　套接字通信域
 
参数type确定套接字的类型，进一步确定通信特征。图16-2总结了由POSIX.1定义的套接字类型，但在实现中可以自由增加其他类型的支持。
 
[image: 16-2.jpg]
 
图16-2　套接字类型
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参数protocol通常是0，表示为给定的域和套接字类型选择默认协议。当对同一域和套接字类型支持多个协议时，可以使用protocol选择一个特定协议。在AF_INET通信域中，套接字类型SOCK_STREAM的默认协议是传输控制协议（Transmission Control Protocol，TCP）。在AF_INET通信域中，套接字类型SOCK_DGRAM的默认协议是UDP。图16-3列出了为因特网域套接字定义的协议。
 
[image: 16-3.jpg]
 
图16-3　为因特网域套接字定义的协议
 
对于数据报（SOCK_DGRAM）接口，两个对等进程之间通信时不需要逻辑连接。只需要向对等进程所使用的套接字送出一个报文。
 
因此数据报提供了一个无连接的服务。另一方面，字节流（SOCK_STREAM）要求在交换数据之前，在本地套接字和通信的对等进程的套接字之间建立一个逻辑连接。
 
数据报是自包含报文。发送数据报近似于给某人邮寄信件。你能邮寄很多信，但你不能保证传递的次序，并且可能有些信件会丢失在路上。每封信件包含接收者地址，使这封信件独立于所有其他信件。每封信件可能送达不同的接收者。
 
相反，使用面向连接的协议通信就像与对方打电话。首先，需要通过电话建立一个连接，连接建立好之后，彼此能双向地通信。每个连接是端到端的通信链路。对话中不包含地址信息，就像呼叫两端存在一个点对点虚拟连接，并且连接本身暗示特定的源和目的地。
 
SOCK_STREAM套接字提供字节流服务，所以应用程序分辨不出报文的界限。这意味着从SOCK_STREAM套接字读数据时，它也许不会返回所有由发送进程所写的字节数。最终可以获得发送过来的所有数据，但也许要通过若干次函数调用才能得到。
 
SOCK_SEQPACKET套接字和SOCK_STREAM套接字很类似，只是从该套接字得到的是基于报文的服务而不是字节流服务。这意味着从SOCK_SEQPACKET套接字接收的数据量与对方所发送的一致。流控制传输协议（Stream Control Transmission Protocol，SCTP）提供了因特网域上的顺序数据包服务。
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SOCK_RAW套接字提供一个数据报接口，用于直接访问下面的网络层（即因特网域中的IP层）。使用这个接口时，应用程序负责构造自己的协议头部，这是因为传输协议（如TCP和UDP）被绕过了。当创建一个原始套接字时，需要有超级用户特权，这样可以防止恶意应用程序绕过内建安全机制来创建报文。
 
调用socket与调用open相类似。在两种情况下，均可获得用于I/O的文件描述符。当不再需要该文件描述符时，调用close来关闭对文件或套接字的访问，并且释放该描述符以便重新使用。
 
虽然套接字描述符本质上是一个文件描述符，但不是所有参数为文件描述符的函数都可以接受套接字描述符。图16-4总结了到目前为止所讨论的大多数以文件描述符为参数的函数使用套接字描述符时的行为。未指定和由实现定义的行为通常意味着该函数对套接字描述符无效。例如，lseek不能以套接字描述符为参数，因为套接字不支持文件偏移量的概念。
 
[image: 16-4.jpg]
 
图16-4　文件描述符函数使用套接字时的行为
 
套接字通信是双向的。可以采用shutdown函数来禁止一个套接字的I/O。
 
#include <sys/socket.h>



int shutdown (int sockfd, int how);



　　　　　　　　　　　　　　　返回值：若成功，返回0；若出错，返回−1
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如果how是SHUT_RD（关闭读端），那么无法从套接字读取数据。如果how是SHUT_WR（关闭写端），那么无法使用套接字发送数据。如果how是SHUT_RDWR，则既无法读取数据，又无法发送数据。
 
能够关闭（close）一个套接字，为何还使用shutdown呢？这里有若干理由。首先，只有最后一个活动引用关闭时，close才释放网络端点。这意味着如果复制一个套接字（如采用dup），要直到关闭了最后一个引用它的文件描述符才会释放这个套接字。而shutdown允许使一个套接字处于不活动状态，和引用它的文件描述符数目无关。其次，有时可以很方便地关闭套接字双向传输中的一个方向。例如，如果想让所通信的进程能够确定数据传输何时结束，可以关闭该套接字的写端，然而通过该套接字读端仍可以继续接收数据。
 
16.3　寻址
 
上一节学习了如何创建和销毁一个套接字。在学习用套接字做一些有意义的事情之前，需要知道如何标识一个目标通信进程。进程标识由两部分组成。一部分是计算机的网络地址，它可以帮助标识网络上我们想与之通信的计算机；另一部分是该计算机上用端口号表示的服务，它可以帮助标识特定的进程。
 
16.3.1　字节序
 
与同一台计算机上的进程进行通信时，一般不用考虑字节序。字节序是一个处理器架构特性，用于指示像整数这样的大数据类型内部的字节如何排序。图16-5显示了一个32位整数中的字节是如何排序的。
 
[image: ..\14-0434yds排版CMM\UNIX环境高级编程（第3版）tu\1605.tif]
 
图16-5　一个32位整数的字节序
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如果处理器架构支持大端（big-endian）字节序，那么最大字节地址出现在最低有效字节（Least Significant Byte，LSB）上。小端（little-endian）字节序则相反：最低有效字节包含最小字节地址。注意，不管字节如何排序，最高有效字节（Most Significant Byte，MSB）总是在左边，最低有效字节总是在右边。因此，如果想给一个32位整数赋值0x04030201，不管字节序如何，最高有效字节都将包含4，最低有效字节都将包含1。如果接下来想将一个字符指针（cp）强制转换到这个整数地址，就会看到字节序带来的不同。在小端字节序的处理器上，cp[0]指向最低有效字节因而包含1，cp[3]指向最高有效字节因而包含4。相比较而言，在大端字节序的处理器上，cp[0]指向最高有效字节因而包含4，cp[3]指向最低有效字节因而包含1。图16-6总结了本文所讨论的4种平台的字节序。
 
[image: 16-6.jpg]
 
图16-6　测试平台的字节序
 
 
 有些处理器可以配置成大端，也可以配置成小端，因而使问题变得更让人困惑。
 

 
网络协议指定了字节序，因此异构计算机系统能够交换协议信息而不会被字节序所混淆。TCP/IP协议栈使用大端字节序。应用程序交换格式化数据时，字节序问题就会出现。对于TCP/IP，地址用网络字节序来表示，所以应用程序有时需要在处理器的字节序与网络字节序之间转换它们。例如，以一种易读的形式打印一个地址时，这种转换很常见。
 
对于TCP/IP应用程序，有4个用来在处理器字节序和网络字节序之间实施转换的函数。
 
#include <arpa/inet.h>



uint32_t htonl(uint32_t hostint32);



　　　　　　　　　　　　　　　　　　　返回值：以网络字节序表示的32位整数

uint16_t htons(uint16_t hostint16);



　　　　　　　　　　　　　　　　　　　返回值：以网络字节序表示的16位整数

uint32_t ntohl(uint32_t netint32);



　　　　　　　　　　　　　　　　　　　返回值：以主机字节序表示的32位整数

uint16_t ntohs(uint16_t netint16);



　　　　　　　　　　　　　　　　　　　返回值：以主机字节序表示的16位整数
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h表示“主机”字节序，n表示“网络”字节序。l表示“长”（即4字节）整数，s表示“短”（即2字节）整数。虽然在使用这些函数时包含的是<arpa/inet.h>头文件，但系统实现经常是在其他头文件中声明这些函数的，只是这些头文件都包含在<arpa/inet.h>中。对于系统来说，把这些函数实现为宏也是很常见的。
 
16.3.2　地址格式
 
一个地址标识一个特定通信域的套接字端点，地址格式与这个特定的通信域相关。为使不同格式地址能够传入到套接字函数，地址会被强制转换成一个通用的地址结构sockaddr：
 
struct sockaddr {

　sa_family_t　　　　　sa_family;　　　/* address family */

　char　　　　　　　  　sa_data[];　　　/* variable-length address */

　[image: ]

};


 
套接字实现可以自由地添加额外的成员并且定义sa_data成员的大小。例如，在Linux中，该结构定义如下：
 
struct sockaddr {

　sa_family_t　　　　　　sa_family; 　　　/* address family */

　char　　　　　　　　  　sa_data[14];　　/* variable-length address */

};
 
但是在FreeBSD中，该结构定义如下：
 
struct sockaddr {

　unsigned char 　　　　sa_len;　　　　 /* total length */

　sa_family_t　　　　　 sa_family;　   /* address family */

　char　　　　　　　　　　sa_data[14];  /* variable-length address */

};
 
因特网地址定义在<netinet/in.h>头文件中。在IPv4因特网域（AF_INET）中，套接字地址用结构sockaddr_in表示：
 
struct in_addr {

　in_addr_t　　   　   s_ addr;　　 　　　　/* IPv4 address */

};



struct sockaddr_in { 

　sa_family_t　　　　  sin_family;　　　  /* address family */

　in_port_t　　　　　  sin_port;　　　　  /* port number */

　struct in_addr　　  sin_addr;　　　   /* IPv4 address */

};
 
数据类型in_port_t定义成uint16_t。数据类型in_addr_t定义成uint32_t。这些整数类型在<stdint.h>中定义并指定了相应的位数。
 
与AF_INET域相比较，IPv6因特网域（AF_INET6）套接字地址用结构sockaddr_in6表示：
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struct_in6_addr {

　uint8_t　　　　　　　  s6_addr[16];　　　　　　/* IPv6 address */

};

struct sockaddr_in6 {

　sa_family_t　 　　　　sin6_family;　　　　　　/* address family */

　in_port_t　　 　　　　sin6_port;　　　　　　　/* port number */

　uint32_t　　　　　　  sin6_flowinfo;　　　　　/* traffic class and flow info */

　struct in6_addr　　　sin6_addr;　　　　　　　/* IPv6 address*/

　uint32_t　　　　　　　sin6_scope_id;　　　　　/* set of interfaces for scope */

};
 
这些都是Single UNIX Specification要求的定义。每个实现可以自由添加更多的字段。例如，在Linux中，sockaddr_in定义如下：
 
struct sockaddr_in {

　sa_family_t　　　　   sin_family;　　　　/* address family */

　in_port_t　　　　　　　sin_port;　　　　　/* port number */

　struct in6_addr　　  sin6_addr;　 　　　/* IPv4 address */

　unsigned char　　    sin_zero[8]; 　　　/* filler */

};
 
其中成员sin_zero为填充字段，应该全部被置为0。
 
注意，尽管sockaddr_in与sockaddr_in6结构相差比较大，但它们均被强制转换成sockaddr结构输入到套接字例程中。在17.2节，将会看到UNIX域套接字地址的结构与上述两个因特网域套接字地址格式的不同。
 
有时，需要打印出能被人理解而不是计算机所理解的地址格式。BSD网络软件包含函数inet_addr和inet_ntoa，用于二进制地址格式与点分十进制字符表示（a.b.c.d）之间的相互转换。但是这些函数仅适用于IPv4地址。有两个新函数inet_ntop和inet_pton具有相似的功能，而且同时支持IPv4地址和IPv6地址。
 
#include <arpa/inet.h>



const char *inet_ntop(int domain, const void *restrict addr,

　　　　　　　　　　　　　char *restrict str, socklen_t size);



　　　　　　　　　　　　　　　返回值：若成功，返回地址字符串指针；若出错，返回NULL



int inet_pton(int domain, const char * restrict str, 

　　　　　　　　 void *restrict addr);



　　　　　　　　　　　　　　　返回值：若成功，返回1；若格式无效，返回0；若出错，返回−1


 
函数inet_ntop将网络字节序的二进制地址转换成文本字符串格式。inet_pton将文本字符串格式转换成网络字节序的二进制地址。参数domain仅支持两个值：AF_INET和AF_INET6。
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对于inet_ntop，参数size指定了保存文本字符串的缓冲区（str）的大小。两个常数用于简化工作： INET_ADDRSTRLEN定义了足够大的空间来存放一个表示IPv4地址的文本字符串；INET6_ADDRSTRLEN定义了足够大的空间来存放一个表示IPv6地址的文本字符串。对于inet_pton，如果domain是AF_ INET，则缓冲区addr需要足够大的空间来存放一个32位地址，如果domain是AF_INET6，则需要足够大的空间来存放一个128位地址。
 
16.3.3　地址查询
 
理想情况下，应用程序不需要了解一个套接字地址的内部结构。如果一个程序简单地传递一个类似于sockaddr结构的套接字地址，并且不依赖于任何协议相关的特性，那么可以与提供相同类型服务的许多不同协议协作。
 
历史上，BSD网络软件提供了访问各种网络配置信息的接口。6.7节简要讨论了网络数据文件和用来访问这些文件的函数。本节将更详细地讨论一些细节，并且引入新的函数来查询寻址信息。
 
这些函数返回的网络配置信息被存放在许多地方。这个信息可以存放在静态文件（如/etc/hosts和/etc/services）中，也可以由名字服务管理，如域名系统（Domain Name System，DNS）或者网络信息服务（Network Information Service，NIS）。无论这个信息放在何处，都可以用同样的函数访问它。
 
通过调用gethostent，可以找到给定计算机系统的主机信息。
 
#include <netdb.h>



struct hostent *gethostent(void);



　　　　　　　　　　　　　　　返回值：若成功，返回指针；若出错，返回NULL

void sethostent(int stayopen);



void endhostent(void);


 
如果主机数据库文件没有打开，gethostent会打开它。函数gethostent返回文件中的下一个条目。函数sethostent会打开文件，如果文件已经被打开，那么将其回绕。当stayopen参数设置成非0值时，调用gethostent之后，文件将依然是打开的。函数endhostent可以关闭文件。
 
当gethostent返回时，会得到一个指向hostent结构的指针，该结构可能包含一个静态的数据缓冲区，每次调用gethostent，缓冲区都会被覆盖。hostent结构至少包含以下成员：
 
struct hostent{

　char　 　*h_name;　　　　　 /* name of host */

　char　　**h_aliases;　　　 /* pointer to alternate host name array */

　int　　　 h_addrtype;　　　/* address type */

　int　　　 h_length;　　　　/* length in bytes of address */

　char   **h_addr_list;　　/* pointer to array of network addresses */

　[image: ]

};


 
返回的地址采用网络字节序。
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另外两个函数gethostbyname和gethostbyaddr，原来包含在hostent函数中，现在则被认为是过时的。SUSv4已经删除了它们。马上将会看到它们的替代函数。
 
能够采用一套相似的接口来获得网络名字和网络编号。
 
#include <netdb.h>



struct netent *getnetbyaddr (uint32_t net, int type);



struct netent *getnetbyname(const char *name);



struct netent *getnetent(void);



　　　　　　　　　　　　　　　3个函数的返回值：若成功，返回指针；若出错，返回NULL



void setnetent(int stayopen);



void endnetent(void);


 
netent结构至少包含以下字段：
 
struct netent {

　char　　  *n_name;　　　　 /* network name */

　char　　 **n_aliases; 　　/* alternate network name array pointer */

　int　　　　 n_addrtype;　　/* address type */

　uint32_t　 n_net;　　　　　/* network number */

　[image: ]

};


 
网络编号按照网络字节序返回。地址类型是地址族常量之一（如AF_INET）。
 
我们可以用以下函数在协议名字和协议编号之间进行映射。
 
#include <netdb.h>



struct protoent *getprotobyname(const char *name);



struct protoent *getprotobynumber(int proto);



struct protoent *getprotoent(void);



　　　　　　　　　　　　　　　3个函数的返回值：若成功，返回指针；若出错，返回NULL



void setprotoent(int stayopen);



void endprotoent(void);


 
POSIX.1定义的protoent结构至少包含以下成员：
 
struct protoent {

　char　 *p_name;　　　　　/* protocol name */

　char　**p_ aliases;　　 /* pointer to altername protocol name array */

　int　　　p_proto;　　　　/* protocol number */

　[image: ]

};
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服务是由地址的端口号部分表示的。每个服务由一个唯一的众所周知的端口号来支持。可以使用函数getservbyname将一个服务名映射到一个端口号，使用函数getservbyport将一个端口号映射到一个服务名，使用函数getservent顺序扫描服务数据库。
 
#include <netdb.h>



struct servent *getservbyname(const char *name, const char *proto);



struct servent *getserbyport(int port, const char *proto);



struct servent *getservent(void);



　　　　　　　　　　　　　　　3个函数的返回值：若成功，返回指针，若出错，返回NULL



void setservent(int stayopen);



void endservent(void);


 
servent结构至少包含以下成员：
 
struct servent{

　char　 *s_name;　　　　　　/* service name */

　char　**s_aliases;　　　　/* pointer to alternate service name array */

　int　　　s_port;　　　　　 /* port　number */

　char   *s_proto;　　　　　/* name of protocol */

　[image: ]

};


 
POSIX.1定义了若干新的函数，允许一个应用程序将一个主机名和一个服务名映射到一个地址，或者反之。这些函数代替了较老的函数gethostbyname和gethostbyaddr。
 
getaddrinfo函数允许将一个主机名和一个服务名映射到一个地址。
 
#include <sys/socket.h>



#include <netdb.h>



int getaddrinfo(const char *restrict host,

　　　　　　　　　 const char *restrict service,

　　　　　　　　　 const struct addrinfo *restrict hint, 

　　　　　　　　　 struct addrinfo **restrict res);



　　　　　　　　　　　　　　　返回值：若成功，返回0；若出错，返回非0错误码



void freeaddrinfo(struct addrinfo *ai);


 
需要提供主机名、服务名，或者两者都提供。如果仅仅提供一个名字，另外一个必须是一个空指针。主机名可以是一个节点名或点分格式的主机地址。
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getaddrinfo函数返回一个链表结构addrinfo。可以用freeaddrinfo来释放一个或多个这种结构，这取决于用ai_next字段链接起来的结构有多少。
 
addrinfo结构的定义至少包含以下成员：
 
struct addrinfo {

　int　　　　　　　　　　ai_flags;　　　　　　/* customize behavior */

　int　　　　　　　　　　ai_family;　　　　　 /* address family */

　int　　　　　　　　　　ai_socktype;　　　　/* socket type */

　int　　　　　　　　　　ai_protocol;　　　　/* protocol */

　socklen_t　　　  　  ai_addrlen;　　　　 /* length in bytes of address */

　struct sockaddr　  *ai_addr;　　　　　　/* address */

　char　　　　　　　　　*ai_canonname;　　　/* canonical name of host */

　struct addrinfo    *ai_next;　　　　　　/* next in list */

　[image: ]

};


 
可以提供一个可选的hint来选择符合特定条件的地址。hint是一个用于过滤地址的模板，包括ai_ family、 ai_flags、ai_protocol和ai_socktype字段。剩余的整数字段必须设置为0，指针字段必须为空。图16-7总结了ai_flags字段中的标志，可以用这些标志来自定义如何处理地址和名字。
 
[image: 16-7.jpg]
 
图16-7　addrinfo结构的标志
 
如果getaddrinfo失败，不能使用perror或strerror来生成错误消息，而是要调用gai_ strerror将返回的错误码转换成错误消息。
 
#include <netdb.h>



const char *gai_strerror(int error);



　　　　　　　　　　　　　　　返回值：指向描述错误的字符串的指针


 
getnameinfo函数将一个地址转换成一个主机名和一个服务名。
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#include <sys/socket.h>



#include <netdb.h>



int getnameinfo(const struct sockaddr *restrict addr, socklen_t alen,

　　　　　　　　　 char *restrict host, socklen_t hostlen,

　　　　　　　　　 char *restrict service, socklen_t servlen, int flags);



　　　　　　　　　　　　　　　返回值：若成功，返回0；若出错，返回非0值


 
套接字地址（addr）被翻译成一个主机名和一个服务名。如果host非空，则指向一个长度为hostlen字节的缓冲区用于存放返回的主机名。同样，如果service非空，则指向一个长度为servlen字节的缓冲区用于存放返回的主机名。
 
flags参数提供了一些控制翻译的方式。图16-8总结了支持的标志。
 
[image: 16-8.jpg]
 
图16-8　getnameinfo函数的标志
 
实例
 
图16-9说明了getaddrinfo函数的使用方法。
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#include "apue.h"

#if defined(SOLARIS)

#include <netinet/in.h>

#endif

#include <netdb.h>

#include <arpa/inet.h>

#if defined(BSD)

#include <sys/socket.h>

#include <netinet/in.h>

#endif



void

print_family(struct addrinfo *aip)

{

　　printf(" family ");

　　switch (aip->ai_family) {

　　case AF_INET:

　　　　printf("inet");

　　　　break;

　　case AF_INET6:

　　　　printf("inet6");

　　　　break;

　　case AF_UNIX:

　　　　printf("unix");

　　　　break;

　　case AF_UNSPEC:

　　　　printf("unspecified");

　　　　break;

　　default:

　　　　printf("unknown");

　　}

}



void

print_type(struct addrinfo *aip)

{

　　printf(" type ");

　　switch (aip->ai_socktype) {

　　case SOCK_STREAM:

　　　　printf("stream");

　　　　break;

　　case SOCK_DGRAM:

　　　　printf("datagram");

　　　　break;

　　case SOCK_SEQPACKET:

　　　　printf("seqpacket");

　　　　break;

　　case SOCK_RAW:

　　　　printf("raw");

　　　　break;

　　default:

　　　　printf("unknown (%d)", aip->ai_socktype);

　　}

}



void

print_protocol(struct addrinfo *aip)

{

　　printf(" protocol ");

　　switch (aip->ai_protocol) {

　　case 0:

　　　　printf("default");

　　　　break;

　　case IPPROTO_TCP:

　　　　printf("TCP");

　　　　break;

　　case IPPROTO_UDP:

　　　　printf("UDP");

　　　　break;

　　case IPPROTO_RAW:

　　　　printf("raw");

　　　　break;

　　default:

　　　　printf("unknown (%d)", aip->ai_protocol);

　　}

}



void

print_flags(struct addrinfo *aip)

{

　　printf("flags");

　　if (aip->ai_flags == 0) {

　　　　printf(" 0");

　　} else {

　　　　if (aip->ai_flags & AI_PASSIVE)

　　　　　　printf(" passive");

　　　　if (aip->ai_flags & AI_CANONNAME)

　　　　　　printf(" canon");

　　　　if (aip->ai_flags & AI_NUMERICHOST)

　　　　　　printf(" numhost");

　　　　if (aip->ai_flags & AI_NUMERICSERV)

　　　　　　printf(" numserv");

　　　　if (aip->ai_flags & AI_V4MAPPED)

　　　　　　printf(" v4mapped");

　　　　if (aip->ai_flags & AI_ALL)

　　　　　　printf(" all");

　　}

}



int

main(int argc, char *argv[])

{

　　struct addrinfo　　　　　*ailist, *aip;

　　struct addrinfo　　　　　 hint;

　　struct sockaddr_in     *sinp;

　　const char 　　　　　  　*addr;

　　int 　　　　　　　　　  　　err;

　　char　　　　　　　　　  　　abuf[INET_ADDRSTRLEN];



　　if (argc != 3)

　　　　err_quit("usage: %s nodename service", argv[0]);

　　hint.ai_flags = AI_CANONNAME;

　　hint.ai_family = 0;

　　hint.ai_socktype = 0;

　　hint.ai_protocol = 0;

　　hint.ai_addrlen = 0;

　　hint.ai_canonname = NULL;

　　hint.ai_addr = NULL;

　　hint.ai_next = NULL;

　　if ((err = getaddrinfo(argv[1], argv[2], &hint, &ailist)) != 0)

　　　　err_quit("getaddrinfo error: %s", gai_strerror(err));

　　for (aip = ailist; aip != NULL; aip = aip->ai_next) {

　　　　print_flags(aip);

　　　　print_family(aip);

　　　　print_type(aip);

　　　　print_protocol(aip);

　　　　printf("\n\thost %s", aip->ai_canonname?aip->ai_canonname:"-");

　　　　if (aip->ai_family == AF_INET) {

　　　  　  sinp = (struct sockaddr_in *)aip->ai_addr;

　　　  　  addr = inet_ntop(AF_INET, &sinp->sin_addr, abuf,

　　　　　　　　  INET_ADDRSTRLEN);

　　　  　  printf(" address %s", addr?addr:"unknown");

　　　  　  printf(" port %d", ntohs(sinp->sin_port));

　　　　　}

　　　　　printf("\n");

　　　 }

　　　 exit(0);

}
 
图16-9　打印主机和服务信息
 
这个程序说明了getaddrinfo函数的使用方法。如果有多个协议为指定的主机提供给定的服务，程序会打印出多条信息。本实例仅打印了与IPv4一起工作的那些协议（ai_family为AF_INET）的地址信息。如果想将输出限制在AF_INET协议族，可以在提示中设置ai_family字段。
 
在一个测试系统上运行这个程序时，得到了以下输出：
 
$ ./a.out harry nfs

flags canon family inet type stream protocol TCP

　　 host harry address 192.168.1.99 port 2049

flags canon family inet type datagram protocol UDP

　　 host harry address 192.168.1.99 port 2049


 
16.3.4　将套接字与地址关联
 
将一个客户端的套接字关联上一个地址没有多少新意，可以让系统选一个默认的地址。然而，对于服务器，需要给一个接收客户端请求的服务器套接字关联上一个众所周知的地址。客户端应有一种方法来发现连接服务器所需要的地址，最简单的方法就是服务器保留一个地址并且注册在/etc/services或者某个名字服务中。
 
使用bind函数来关联地址和套接字。
 
#include <sys/socket.h>



int bind(int sockfd, const struct sockaddr *addr, socklen_t len);



　　　　　　　　　　　　　　　返回值：若成功，返回0；若出错，返回−1


 
对于使用的地址有以下一些限制。
 
 
 	在进程正在运行的计算机上，指定的地址必须有效；不能指定一个其他机器的地址。
 

 

  604 

 
 
 	地址必须和创建套接字时的地址族所支持的格式相匹配。
 
 	地址中的端口号必须不小于1 024，除非该进程具有相应的特权（即超级用户）。
 
 	一般只能将一个套接字端点绑定到一个给定地址上，尽管有些协议允许多重绑定。
 

 
对于因特网域，如果指定IP地址为INADDR_ANY（<netinet/in.h>中定义的），套接字端点可以被绑定到所有的系统网络接口上。这意味着可以接收这个系统所安装的任何一个网卡的数据包。在下一节中可以看到，如果调用connect或listen，但没有将地址绑定到套接字上，系统会选一个地址绑定到套接字上。
 
可以调用getsockname函数来发现绑定到套接字上的地址。
 
#include <sys/socket.h>



int getsockname(int sockfd, struct sockaddr *restrict addr, 

　　　　　　　　　 socklen_t *restrict alenp);



　　　　　　　　　　　　　　　返回值：若成功，返回0；若出错，返回−1


 
调用getsockname之前，将alenp设置为一个指向整数的指针，该整数指定缓冲区sockaddr的长度。返回时，该整数会被设置成返回地址的大小。如果地址和提供的缓冲区长度不匹配，地址会被自动截断而不报错。如果当前没有地址绑定到该套接字，则其结果是未定义的。
 
如果套接字已经和对等方连接，可以调用getpeername函数来找到对方的地址。
 
#include <sys/socket.h>



int getpeername(int sockfd, struct sockaddr *restrict addr,

　　　　　　　　　 socklen_t *restrict alenp);



　　　　　　　　　　　　　　　返回值：若成功，返回0；若出错，返回−1


 
除了返回对等方的地址，函数getpeername和getsockname一样。
 
16.4　建立连接
 
如果要处理一个面向连接的网络服务（SOCK_STREAM或SOCK_SEQPACKET），那么在开始交换数据以前，需要在请求服务的进程套接字（客户端）和提供服务的进程套接字（服务器）之间建立一个连接。使用connect函数来建立连接。
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#include <sys/socket.h>



int connect(int sockfd, const struct sockaddr *addr, socklen_t len);



　　　　　　　　　　　　　　　返回值：若成功，返回0；若出错，返回−1


 
在connect中指定的地址是我们想与之通信的服务器地址。如果sockfd没有绑定到一个地址， connect会给调用者绑定一个默认地址。
 
当尝试连接服务器时，出于一些原因，连接可能会失败。要想一个连接请求成功，要连接的计算机必须是开启的，并且正在运行，服务器必须绑定到一个想与之连接的地址上，并且服务器的等待连接队列要有足够的空间（后面会有更详细的介绍）。因此，应用程序必须能够处理connect返回的错误，这些错误可能是由一些瞬时条件引起的。
 
实例
 
图16-10显示了一种如何处理瞬时connect错误的方法。如果一个服务器运行在一个负载很重的系统上，就很有可能发生这些错误。
 
#include "apue.h"

#include <sys/socket.h>



#define MAXSLEEP 128



int

connect_retry(int sockfd, const struct sockaddr *addr, socklen_t alen)

{

　　int numsec;



　　/*

　　 * Try to connect with exponential backoff.

　　 */

　　for (numsec = 1; numsec <= MAXSLEEP; numsec <<= 1) {

　　　　if (connect(sockfd, addr, alen) == 0) {

　　　　　　/*

　　　　　　 * Connection accepted.

　　　　　　 */

　　　　　　return(0);

　　　　}



　　　　/*

　　　　 * Delay before trying again.

　　　　 */

　　　　if (numsec <= MAXSLEEP/2)

　　　　　　sleep(numsec);

　　}

　　return(-1);

}
 
图16-10　支持重试的connect
 

  606 

 
这个函数展示了指数补偿（exponential backoff）算法。如果调用connect失败，进程会休眠一小段时间，然后进入下次循环再次尝试，每次循环休眠时间会以指数级增加，直到最大延迟为2分钟左右。
 
然而图16-10中的代码存在一个问题：代码是不可移植的。它在Linux和Solaris上可以工作，但是在FreeBSD和Mac OS X上却不能按预期工作。在基于BSD的套接字实现中，如果第一次连接尝试失败，那么在TCP中继续使用同一个套接字描述符，接下来仍旧会失败。这就是一个协议相关的行为从（协议无关的）套接字接口中显露出来变得应用程序可见的例子。这些都是历史原因，因此Single UNIX Specification警告，如果connect失败，套接字的状态会变成未定义的。
 
因此，如果connect失败，可迁移的应用程序需要关闭套接字。如果想重试，必须打开一个新的套接字。这种更易于迁移的技术如图16-11所示。
 
#include "apue.h"

#include <sys/socket.h>



#define MAXSLEEP 128



int

connect_retry(int domain, int type, int protocol,

　　　　　　　　 const struct sockaddr *addr, socklen_t alen)

{

　　int numsec, fd;



　　/*

　　 * Try to connect with exponential backoff.

　　 */

　　for (numsec = 1; numsec <= MAXSLEEP; numsec <<= 1) {

　　　　if ((fd = socket(domain, type, protocol)) < 0)

　　　　　　return(-1);

　　　　if (connect(fd, addr, alen) == 0) {

　　　　　　/*

　　　　　　 * Connection accepted.

　　　　　　 */

　　　　　　return(fd);

　　　　}

　　　　close(fd);



　　　　/*

　　　　 * Delay before trying again.

　　　　 */

　　　　if (numsec <= MAXSLEEP/2)

　　　　　　sleep(numsec);

　　}

　　return(-1);

}
 
图16-11　可迁移的支持重试的连接代码
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需要注意的是，因为可能要建立一个新的套接字，给connect_retry函数传递一个套接字描述符参数是没有意义。我们现在返回一个已连接的套接字描述符给调用者，而并非返回一个表示调用成功的值。
 
如果套接字描述符处于非阻塞模式（该模式将在16.8节中进一步讨论），那么在连接不能马上建立时，connect将会返回−1并且将errno设置为特殊的错误码EINPROGRESS。应用程序可以使用poll或者select来判断文件描述符何时可写。如果可写，连接完成。
 
connect函数还可以用于无连接的网络服务（SOCK_DGRAM）。这看起来有点矛盾，实际上却是一个不错的选择。如果用SOCK_DGRAM套接字调用connect，传送的报文的目标地址会设置成connect调用中所指定的地址，这样每次传送报文时就不需要再提供地址。另外，仅能接收来自指定地址的报文。
 
服务器调用listen函数来宣告它愿意接受连接请求。
 
#include <sys/socket.h>



int listen(int sockfd, int backlog);



　　　　　　　　　　　　　　　返回值：若成功，返回0；若出错，返回−1


 
参数backlog提供了一个提示，提示系统该进程所要入队的未完成连接请求数量。其实际值由系统决定，但上限由<sys/socket.h>中的SOMAXCONN指定。
 
 
 Solaris系统忽略了<sys/socket.h>中的SOMAXCONN。具体的最大值取决于每个协议的实现。对于TCP，其默认值为128。
 

 
一旦队列满，系统就会拒绝多余的连接请求，所以backlog的值应该基于服务器期望负载和处理量来选择，其中处理量是指接受连接请求与启动服务的数量。
 
一旦服务器调用了listen，所用的套接字就能接收连接请求。使用accept函数获得连接请求并建立连接。
 
#include <sys/socket.h>



int accept(int sockfd, struct sockaddr *restrict addr,

　　　　　　 socklen_t *restrict len);



　　　　　　　　　　　　　　　返回值：若成功，返回文件（套接字）描述符；若出错，返回−1


 
函数accept所返回的文件描述符是套接字描述符，该描述符连接到调用connect的客户端。这个新的套接字描述符和原始套接字（sockfd）具有相同的套接字类型和地址族。传给accept的原始套接字没有关联到这个连接，而是继续保持可用状态并接收其他连接请求。
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如果不关心客户端标识，可以将参数addr和len设为NULL。否则，在调用accept之前，将addr参数设为足够大的缓冲区来存放地址，并且将len指向的整数设为这个缓冲区的字节大小。返回时，accept会在缓冲区填充客户端的地址，并且更新指向len的整数来反映该地址的大小。
 
如果没有连接请求在等待，accept会阻塞直到一个请求到来。如果sockfd处于非阻塞模式，accept会返回−1，并将errno设置为EAGAIN或EWOULDBLOCK。
 
 
 本文中讨论的所有平台都将EAGAIN定义为EWOULDBLOCK。
 

 
如果服务器调用accept，并且当前没有连接请求，服务器会阻塞直到一个请求到来。另外，服务器可以使用poll或select来等待一个请求的到来。在这种情况下，一个带有等待连接请求的套接字会以可读的方式出现。
 
实例
 
图16-12显示了一个函数，可以用来分配和初始化套接字供服务器进程使用。
 
#include "apue.h"

#include <errno.h>

#include <sys/socket.h>



int

initserver(int type, const struct sockaddr *addr, socklen_t alen,

　int qlen)

{

　　int fd;

　　int err = 0;



　　if ((fd = socket(addr->sa_family, type, 0)) < 0)

　　　　return(-1);

　　if (bind(fd, addr, alen) < 0)

　　　　goto errout;

　　if (type == SOCK_STREAM || type == SOCK_SEQPACKET) {

　　　　if (listen(fd, qlen) < 0)

　　　　　　goto errout;

　　}

　　return(fd);



errout:

　　err = errno;

　　close(fd);

　　errno = err;

　　return(-1);

}
 
图16-12　初始化一个套接字端点供服务器进程使用
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可以看到，TCP有一些奇怪的地址复用规则，这使得这个例子不完备。图16-22显示了有关这个函数的另一个版本，可以绕过这些规则，解决此版本的主要缺陷。
 
16.5　数据传输
 
既然一个套接字端点表示为一个文件描述符，那么只要建立连接，就可以使用read和write来通过套接字通信。回忆前面所讲，通过在connect函数里面设置默认对等地址，数据报套接字也可以被“连接”。在套接字描述符上使用read和write是非常有意义的，因为这意味着可以将套接字描述符传递给那些原先为处理本地文件而设计的函数。而且还可以安排将套接字描述符传递给子进程，而该子进程执行的程序并不了解套接字。
 
尽管可以通过read和write交换数据，但这就是这两个函数所能做的一切。如果想指定选项，从多个客户端接收数据包，或者发送带外数据，就需要使用6个为数据传递而设计的套接字函数中的一个。
 
3个函数用来发送数据，3个用于接收数据。首先，考查用于发送数据的函数。
 
最简单的是send，它和write很像，但是可以指定标志来改变处理传输数据的方式。
 
#include <sys/socket.h>



ssize_t send(int sockfd, const void *buf, size_t nbytes, int flags);



　　　　　　　　　　　　　　　返回值：若成功，返回发送的字节数；若出错，返回−1


 
类似write，使用send时套接字必须已经连接。参数buf和nbytes的含义与write中的一致。
 
然而，与write不同的是，send支持第4个参数flags。3个标志是由Single UNIX Specification定义的，但是具体系统实现支持其他标志的情况也是很常见的。图16-13总结了这些标志。
 
[image: 16-13.jpg]
 
图16-13　send套接字调用标志
 
即使send成功返回，也并不表示连接的另一端的进程就一定接收了数据。我们所能保证的只是当send成功返回时，数据已经被无错误地发送到网络驱动程序上。
 
对于支持报文边界的协议，如果尝试发送的单个报文的长度超过协议所支持的最大长度，那么send会失败，并将errno设为EMSGSIZE。对于字节流协议，send会阻塞直到整个数据传输完成。函数sendto和send很类似。区别在于sendto可以在无连接的套接字上指定一个目标地址。
 
#include <sys/socket.h>



ssize_t sendto(int sockfd, const void *buf, size_t nbytes, int flags,

　　　　　　　　　const struct sockaddr *destaddr, socklen_t destlen);



　　　　　　　　　　　　　　　返回值：若成功，返回发送的字节数；若出错，返回−1


 
对于面向连接的套接字，目标地址是被忽略的，因为连接中隐含了目标地址。对于无连接的套接字，除非先调用connect设置了目标地址，否则不能使用send。sendto提供了发送报文的另一种方式。
 
通过套接字发送数据时，还有一个选择。可以调用带有msghdr结构的sendmsg来指定多重缓冲区传输数据，这和writev函数很相似（见14.6节）。
 
#include <sys/socket.h>



ssize_t sendmsg(int sockfd, const struct msghdr *msg, int flags);



　　　　　　　　　　　　　　　返回值：若成功，返回发送的字节数；若出错，返回−1


 
POSIX.1定义了msghdr结构，它至少有以下成员：
 
struct msghdr {

　void　　　　　　　*msg_name;　　　　　/* optional address */

　socklen_t　　　 　msg_namelen;　　　/* address size in bytes */

　struct iovec　　*msg_iov;　　　　 　/* array of I/O buffers */

　int　　　　　　   msg_iovlen;　　　  /* number of elements in array */

　void　　　　　　 *msg_control;　　　 /* ancillary data */

　socklen_t　     msg_controllen;　  /* number of ancillary bytes */

　int　　　　　 　　msg_flags;　　 　　 /* flags for received message */

  [image: ]

};
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在14.6节中可以看到iovec结构。在17.4节中可以看到辅助数据的使用。
 
函数recv和read相似，但是recv可以指定标志来控制如何接收数据。
 
#include <sys/socket.h>



ssize_t recv(int sockfd, void *buf, size_t nbytes, int flags);



　　　　　返回值：返回数据的字节长度；若无可用数据或对等方已经按序结束，返回0；若出错，返回−1


 
图16-14总结了这些标志。仅有3个标志是Single UNIX Specification定义的。
 
[image: 16-14.jpg]
 
图16-14　recv套接字调用标志
 
当指定MSG_PEEK标志时，可以查看下一个要读取的数据但不真正取走它。当再次调用read或其中一个recv函数时，会返回刚才查看的数据。
 
对于SOCK_STREAM套接字，接收的数据可以比预期的少。MSG_WAITALL标志会阻止这种行为，直到所请求的数据全部返回，recv函数才会返回。对于SOCK_DGRAM和SOCK_SEQPACKET套接字，MSG_ WAITALL标志没有改变什么行为，因为这些基于报文的套接字类型一次读取就返回整个报文。
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如果发送者已经调用shutdown（见16.2节）来结束传输，或者网络协议支持按默认的顺序关闭并且发送端已经关闭，那么当所有的数据接收完毕后，recv会返回0。
 
如果有兴趣定位发送者，可以使用recvfrom来得到数据发送者的源地址。
 
#include <sys/socket.h>



ssize_t recvfrom(int sockfd, void *restrict buf, size_t len, int flags,

　　　　　　　　　　struct sockaddr *restrict addr, 

　　　　　　　　　　socklen_t *restrict addrlen);



　　　　　　返回值：返回数据的字节长度；若无可用数据或对等方已经按序结束，返回0；若出错，返回−1


 
如果addr非空，它将包含数据发送者的套接字端点地址。当调用recvfrom时，需要设置addrlen参数指向一个整数，该整数包含addr所指向的套接字缓冲区的字节长度。返回时，该整数设为该地址的实际字节长度。
 
因为可以获得发送者的地址，recvfrom通常用于无连接的套接字。否则，recvfrom等同于recv。
 
为了将接收到的数据送入多个缓冲区，类似于readv（见14.6节），或者想接收辅助数据（见17.4节），可以使用recvmsg。
 
#include <sys/socket.h>



ssize_t recvmsg(int sockfd, struct msghdr *msg, int flags);



　　　　　　返回值：返回数据的字节长度；若无可用数据或对等方已经按序结束，返回0；若出错，返回−1


 
recvmsg用msghdr结构（在sendmsg中见到过）指定接收数据的输入缓冲区。可以设置参数flags来改变recvmsg的默认行为。返回时，msghdr结构中的msg_flags字段被设为所接收数据的各种特征。（进入recvmsg时msg_flags被忽略。）recvmsg中返回的各种可能值总结在图16-15中。我们将在第17章看到使用recvmsg的实例。
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[image: 16-15.jpg]
 
图16-15　从recvmsg中返回的msg_flags标志
 
实例：面向连接的客户端
 
图16-16显示了一个与服务器通信的客户端从系统的uptime命令获得输出。我们把这个服务称为“远程正常运行时间”（remote uptime）（简写为“ruptime”）。
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#include "apue.h"

#include <netdb.h>

#include <errno.h>

#include <sys/socket.h>



#define BUFLEN　　128



extern int connect_retry(int, int, int, const struct sockaddr *,

　　socklen_t);



void

print_uptime(int sockfd)

{

　　int　　　　n;

　　char　　　 buf[BUFLEN];



　　while ((n = recv(sockfd, buf, BUFLEN, 0)) > 0)

　　　　write(STDOUT_FILENO, buf, n);

　　if (n < 0)

　　　　err_sys("recv error");

}



int

main(int argc, char *argv[])

{

　　struct addrinfo   *ailist, *aip;

　　struct addrinfo　　hint;

　　int　　　　　　  　　sockfd, err;



　　if (argc != 2)

　　　　err_quit("usage: ruptime hostname");

　　memset(&hint, 0, sizeof(hint));

　　hint.ai_socktype = SOCK_STREAM;

　　hint.ai_canonname = NULL;

　　hint.ai_addr = NULL;

　　hint.ai_next = NULL;

　　if ((err = getaddrinfo(argv[1], "ruptime", &hint, &ailist)) != 0)

　　　　err_quit("getaddrinfo error: %s", gai_strerror(err));

　　for (aip = ailist; aip != NULL; aip = aip->ai_next) {

　　　　if ((sockfd = connect_retry(aip->ai_family, SOCK_STREAM, 0,

　　　　　aip->ai_addr, aip->ai_addrlen)) < 0) {

　　　　　　err = errno;

　　　　} else {

　　　　　　print_uptime(sockfd);

　　　　　　exit(0);

　　　　}

 　　}

　　err_exit(err, "can't connect to %s", argv[1]);

}
 
图16-16　用于从服务器获取正常运行时间的客户端命令
 
这个程序连接服务器，读取服务器发送过来的字符串并将其打印到标准输出。因为使用的是SOCK_ STREAM套接字，所以不能保证调用一次recv就会读取整个字符串，因此需要重复调用直到它返回0。
 
如果服务器支持多重网络接口或多重网络协议，函数getaddrinfo可能会返回多个候选地址供使用。轮流尝试每个地址，当找到一个允许连接到服务的地址时便可停止。使用图16-11中的connect_ retry函数来与服务器建立一个连接。
 
实例：面向连接的服务器
 
图16-17展示了服务器程序，用来提供uptime命令的输出到图16-16所示的客户端程序。
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#include "apue.h"

#include <netdb.h>

#include <errno.h>

#include <syslog.h>

#include <sys/socket.h>



#define BUFLEN　　128

#define QLEN 10



#ifndef HOST_NAME_MAX

#define HOST_NAME_MAX 256

#endif



extern int initserver(int, const struct sockaddr *, socklen_t, int);



void

serve(int sockfd)

{

　　int　　　 clfd;

　　FILE　　　*fp;

　　char　　　buf[BUFLEN];



　　set_cloexec(sockfd);

　　for (;;) {

　　　　if ((clfd = accept(sockfd, NULL, NULL)) < 0) {

　　　　　　syslog(LOG_ERR, "ruptimed: accept error: %s",

　　　　　　　strerror(errno));

　　　　　　exit(1);

　　　　}

　　　　set_cloexec(clfd);

 　　　　if ((fp = popen("/usr/bin/uptime", "r")) == NULL) {

　　　　　　 sprintf(buf, "error: %s\n", strerror(errno));

　　　　　　 send(clfd, buf, strlen(buf), 0);

　　　　} else {

　　　　　　 while (fgets(buf, BUFLEN, fp) != NULL)

　　　　　　　　  send(clfd, buf, strlen(buf), 0);

　　　　　　 pclose(fp);

　　　　}

　　　　close(clfd);

　　}

}



int

main(int argc, char *argv[])

{

　　struct addrinfo　　*ailist, *aip;

　　struct addrinfo　　 hint;

　　int　   　　 　 　   sockfd, err, n;

　　char　　　　　　　　 *host;



　　if (argc != 1)

　　　　err_quit("usage: ruptimed");

　　if ((n = sysconf(_SC_HOST_NAME_MAX)) < 0)

　　　　n = HOST_NAME_MAX;　　/* best guess */

　　if ((host = malloc(n)) == NULL)

　　　　err_sys("malloc error");

　　if (gethostname(host, n) < 0)

　　　　err_sys("gethostname error");

　　daemonize("ruptimed");

　　memset(&hint, 0, sizeof(hint));

　　hint.ai_flags = AI_CANONNAME;

　　hint.ai_socktype = SOCK_STREAM;

　　hint.ai_canonname = NULL;

　　hint.ai_addr = NULL;

　　hint.ai_next = NULL;

　　if ((err = getaddrinfo(host, "ruptime", &hint, &ailist)) != 0) {

　　　　syslog(LOG_ERR, "ruptimed: getaddrinfo error: %s",

　　　　　gai_strerror(err));

　　　　exit(1);

　　}

　　for (aip = ailist; aip != NULL; aip = aip->ai_next) {

　　　　if ((sockfd = initserver(SOCK_STREAM, aip->ai_addr,

　　　　　aip->ai_addrlen, QLEN)) >= 0) {

　　　　　　serve(sockfd);

　　　　　　exit(0);

　　　　}

　　}

　　exit(1);

}
 
图16-17　提供系统正常运行时间的服务器程序
 
为了找到它的地址，服务器需要获得其运行时的主机名。如果主机名的最大长度不确定，可以使用HOST_NAME_MAX代替。如果系统没定义HOST_NAME_MAX，可以自己定义。POSIX.1要求主机名的最大长度至少为255字节，不包括终止null字符，因此定义HOST_NAME_MAX为256来包括终止null字符。
 
服务器调用gethostname获得主机名，查看远程正常运行时间服务的地址。可能会有多个地址返回，但我们简单地选择第一个来建立被动套接字端点（即一个只用于监听连接请求的地址）。处理多个地址作为习题留给读者。
 
使用图16-12的initserver函数来初始化套接字端点，在这个端点上等待到来的连接请求。（实际上，使用的是图16-22的版本；在16.6节中讨论套接字选项时，可以了解其中的原因。）
 
实例：另一个面向连接的服务器
 
前面说过，采用文件描述符来访问套接字是非常有意义的，因为它允许程序对联网环境的网络访问一无所知。图16-18中所示的服务器程序版本说明了这一点。服务器没有从uptime命令中读取输出并发送到客户端，而是将uptime命令的标准输出和标准错误安排成为连接到客户端的套接字端点。
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#include "apue.h"

#include <netdb.h>

#include <errno.h>

#include <syslog.h>

#include <fcntl.h>

#include <sys/socket.h>

#include <sys/wait.h>



#define QLEN 10



#ifndef HOST_NAME_MAX

#define HOST_NAME_MAX 256

#endif



extern int initserver(int, const struct sockaddr *, socklen_t, int);



void

serve(int sockfd)

{

　　int　　　clfd, status;

　　pid_t　　pid;



　　set_cloexec(sockfd);

　　for (;;) {

　　　　if ((clfd = accept(sockfd, NULL, NULL)) < 0) {

　　　　　　syslog(LOG_ERR, "ruptimed: accept error: %s",

　　　　　　　strerror(errno));

　　　　　　exit(1);

　　　　}

　　　　if ((pid = fork()) < 0) {

　　　　　syslog(LOG_ERR, "ruptimed: fork error: %s",

　　　　　　　strerror(errno));

　　　　　　exit(1);

　　　　} else if (pid == 0) {　　/* child */

　　　　　　/*

　　　　　　 * The parent called daemonize (Figure 13.1), so

　　　　　　 * STDIN_FILENO, STDOUT_FILENO, and STDERR_FILENO

　　　　　　 * are already open to /dev/null.　Thus, the call to

　　　　　　 * close doesn't need to be protected by checks that

　　　　　　 * clfd isn't already equal to one of these values.

　　　　　　 */

　　　　　　if (dup2(clfd, STDOUT_FILENO) != STDOUT_FILENO ||

　　　　　　　dup2(clfd, STDERR_FILENO) != STDERR_FILENO) {

　　　　　　　　syslog(LOG_ERR, "ruptimed: unexpected error");

　　　　　　　　exit(1);

　　　　　　}

　　　　　　close(clfd);

　　　　　　execl("/usr/bin/uptime", "uptime", (char *)0);

　　　　　　syslog(LOG_ERR, "ruptimed: unexpected return from exec: %s",

　　　　　　　strerror(errno));

　　　　} else {　　　　/* parent */

　　　　　　close(clfd);

　　　　　　waitpid(pid, &status, 0);

　　　　}

　　}

}



int

main(int argc, char *argv[])

{

　　struct addrinfo　　*ailist, *aip;

　　struct addrinfo    hint;

　　int　　　　　　　　　 sockfd, err, n;

　　char　　　　　　　　 *host;



　　if (argc != 1)

　　　　err_quit("usage: ruptimed");

　　if ((n = sysconf(_SC_HOST_NAME_MAX)) < 0)

　　　　n = HOST_NAME_MAX;　　/* best guess */

　　if ((host = malloc(n)) == NULL)

　　　　err_sys("malloc error");

　　if (gethostname(host, n) < 0)

　　　　err_sys("gethostname error");

　　daemonize("ruptimed");

　　memset(&hint, 0, sizeof(hint));

　　hint.ai_flags = AI_CANONNAME;

　　hint.ai_socktype = SOCK_STREAM;

　　hint.ai_canonname = NULL;

　　hint.ai_addr = NULL;

　　hint.ai_next = NULL;

　　if ((err = getaddrinfo(host, "ruptime", &hint, &ailist)) != 0) {

　　　　syslog(LOG_ERR, "ruptimed: getaddrinfo error: %s",

　　　　　gai_strerror(err));

　　　　exit(1);

　　}

　　for (aip = ailist; aip != NULL; aip = aip->ai_next) {

　　　　if ((sockfd = initserver(SOCK_STREAM, aip->ai_addr,

　　　　　aip->ai_addrlen, QLEN)) >= 0) {

　　　　　　serve(sockfd);

　　　　　　exit(0);

　　　　}

　　}

　　exit(1);

}
 
图16-18　用于说明命令直接写到套接字的服务器程序
 
我们没有采用popen来运行uptime命令，并从连接到命令标准输出的管道读取输出，而是采用fork创建了一个子进程，然后使用dup2使STDIN_FILENO的子进程副本对/dev/null开放，使STDOUT_ FILENO和STDERR_FILENO的子进程副本对套接字端点开放。当执行uptime时，命令将结果写到它的标准输出，该标准输出是连接到套接字的，所以数据被送到ruptime客户端命令。
 
父进程可以安全地关闭连接到客户端的文件描述符，因为子进程仍旧让它打开着。父进程会等待子进程处理完毕再继续，所以子进程不会变成僵死进程。由于运行uptime命令不会花费太长的时间，所以父进程在接受下一个连接请求之前，可以等待子进程退出。然而，如果子进程运行的时间比较长的话，这种策略就未必适合了。
 
前面的实例采用的都是面向连接的套接字。但如何选择合适的套接字类型呢？何时采用面向连接的套接字，何时采用无连接的套接字呢？答案取决于我们要做的工作量和能够容忍的出错程度。
 
对于无连接的套接字，数据包到达时可能已经没有次序，因此如果不能将所有的数据放在一个数据包里，则在应用程序中就必须关心数据包的次序。数据包的最大尺寸是通信协议的特征。另外，对于无连接的套接字，数据包可能会丢失。如果应用程序不能容忍这种丢失，必须使用面向连接的套接字。
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容忍数据包丢失意味着两种选择。一种选择是，如果想和对等方可靠通信，就必须对数据包编号，并且在发现数据包丢失时，请求对等应用程序重传，还必须标识重复数据包并丢弃它们，因为数据包可能会延迟或疑似丢失，可能请求重传之后，它们又出现了。
 
另一种选择是，通过让用户再次尝试那个命令来处理错误。对于简单的应用程序，这可能就足够了，但对于复杂的应用程序，这种选择通常不可行。因此，一般在这种情况下使用面向连接的套接字比较好。
 
面向连接的套接字的缺陷在于需要更多的时间和工作来建立一个连接，并且每个连接都需要消耗较多的操作系统资源。
 
实例：无连接的客户端
 
图16-19中的程序是采用数据报套接字接口的uptime客户端命令版本。
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#include "apue.h"

#include <netdb.h>

#include <errno.h>

#include <sys/socket.h>



#define BUFLEN　　　　128

#define TIMEOUT　　　 20



void

sigalrm(int signo)

{

}



void

print_uptime(int sockfd, struct addrinfo *aip)

{

　　int　　　　n;

　　char　　　 buf[BUFLEN];



　　buf[0] = 0;

　　if (sendto(sockfd, buf, 1, 0, aip->ai_addr, aip->ai_addrlen) < 0)

　　　　err_sys("sendto error");

　　alarm(TIMEOUT);

　　if ((n = recvfrom(sockfd, buf, BUFLEN, 0, NULL, NULL)) < 0) {

　　　　if (errno != EINTR)

　　　　　　alarm(0);

　　　　err_sys("recv error");

　　}

　　alarm(0);

　　write(STDOUT_FILENO, buf, n);

}



int

main(int argc, char *argv[])

{

　　struct addrinfo　　　  *ailist, *aip;

　　struct addrinfo　　　   hint;

　　int　　　　　　　　　　　　sockfd, err;

　　struct sigaction　　　　sa;



　　if (argc != 2)

　　　　err_quit("usage: ruptime hostname");

　　sa.sa_handler = sigalrm;

　　sa.sa_flags = 0;

　　sigemptyset(&sa.sa_mask);

　　if (sigaction(SIGALRM, &sa, NULL) < 0)

　　　　err_sys("sigaction error");

　　memset(&hint, 0, sizeof(hint));

　　hint.ai_socktype = SOCK_DGRAM;

　　hint.ai_canonname = NULL;

　　hint.ai_addr = NULL;

　　hint.ai_next = NULL;

　　if ((err = getaddrinfo(argv[1], "ruptime", &hint, &ailist)) != 0)

　　　　err_quit("getaddrinfo error: %s", gai_strerror(err));



　　for (aip = ailist; aip != NULL; aip = aip->ai_next) {

　　　　if ((sockfd = socket(aip->ai_family, SOCK_DGRAM, 0)) < 0) {

　　　　　　err = errno;

　　　　} else {

　　　　　　print_uptime(sockfd, aip);

　　　　　　exit(0);

　　　　}

　　}



　　fprintf(stderr, "can't contact %s: %s\n", argv[1], strerror(err));

　　exit(1);

}
 
图16-19　采用数据报服务的客户端命令
 
除了增加安装一个SIGALRM的信号处理程序以外，基于数据报的客户端中的main函数和面向连接的客户端中的类似。使用alarm函数来避免调用recvfrom时的无限期阻塞。
 
对于面向连接的协议，需要在交换数据之前连接到服务器。对于服务器来说，到来的连接请求已经足够判断出所需提供给客户端的服务。但是对于基于数据报的协议，需要有一种方法通知服务器来执行服务。本例中，只是简单地向服务器发送了1字节的数据。服务器将接收它，从数据包中得到地址，并使用这个地址来传送它的响应。如果服务器提供多个服务，可以使用这个请求数据来表示需要的服务，但由于服务器只做一件事情，1字节数据的内容是无关紧要的。
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如果服务器不在运行状态，客户端调用recvfrom便会无限期阻塞。对于这个面向连接的实例，如果服务器不运行，connect调用会失败。为了避免无限期阻塞，可以在调用recvfrom之前设置警告时钟。
 
实例：无连接的服务器
 
图16-20所示的程序是uptime服务器的数据报版本。
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#include "apue.h"

#include <netdb.h>

#include <errno.h>

#include <syslog.h>

#include <sys/socket.h>



#define BUFLEN　　　　　128

#define MAXADDRLEN　　 256



#ifndef HOST_NAME_MAX

#define HOST_NAME_MAX 256

#endif



extern int initserver(int, const struct sockaddr *, socklen_t, int);



void

serve(int sockfd)

{

　　int　　　　　　　　　 n;

　　socklen_t　　　　　　alen;

　　FILE　　　　　　　   *fp;

　　char　　　　　　　　　buf[BUFLEN];

　　char　　　　　　　　　abuf[MAXADDRLEN];

　　struct sockaddr　  *addr = (struct sockaddr *)abuf;



　　set_cloexec(sockfd);

　　for (;;) {

　　　　alen = MAXADDRLEN;

　　　　if ((n = recvfrom(sockfd, buf, BUFLEN, 0, addr, &alen)) < 0) {

　　　　　　syslog(LOG_ERR, "ruptimed: recvfrom error: %s",

　　　　　　　strerror(errno));

　　　　　　exit(1);

　　　　}

　　　　if ((fp = popen("/usr/bin/uptime", "r")) == NULL) {

　　　　　　sprintf(buf, "error: %s\n", strerror(errno));

　　　　　　sendto(sockfd, buf, strlen(buf), 0, addr, alen);

　　　　} else {

　　　　　　if (fgets(buf, BUFLEN, fp) != NULL)

　　　　　　　　sendto(sockfd, buf, strlen(buf), 0, addr, alen);

　　　　　　pclose(fp);

　　　　}

　　}

}



int

main(int argc, char *argv[])

{

　　struct addrinfo　　*ailist, *aip;

　　struct addrinfo　　 hint;

　　int　　　　　　　　   sockfd, err, n;

　　char　　　　　　　　　*host;



　　if (argc != 1)

　　　　err_quit("usage: ruptimed");

　　if ((n = sysconf(_SC_HOST_NAME_MAX)) < 0)

　　　　n = HOST_NAME_MAX;　　/* best guess */

　　if ((host = malloc(n)) == NULL)

　　　　err_sys("malloc error");

　　if (gethostname(host, n) < 0)

　　　　err_sys("gethostname error");

　　daemonize("ruptimed");

　　memset(&hint, 0, sizeof(hint));

　　hint.ai_flags = AI_CANONNAME;

　　hint.ai_socktype = SOCK_DGRAM;

　　hint.ai_canonname = NULL;

　　hint.ai_addr = NULL;

　　hint.ai_next = NULL;

　　if ((err = getaddrinfo(host, "ruptime", &hint, &ailist)) != 0) {

　　　　syslog(LOG_ERR, "ruptimed: getaddrinfo error: %s",

　　　　　gai_strerror(err));

　　　　exit(1);

　　}

　　for (aip = ailist; aip != NULL; aip = aip->ai_next) {

　　　　if ((sockfd = initserver(SOCK_DGRAM, aip->ai_addr,

　　　　　aip->ai_addrlen, 0)) >= 0) {

　　　　　　serve(sockfd);

　　　　　　exit(0);

　　　　}

　　}

　　exit(1);

}
 
图16-20　基于数据报提供系统正常运行时间的服务器
 
服务器在recvfrom阻塞等待服务请求。当一个请求到达时，保存请求者地址并使用popen来运行uptime命令。使用sendto函数将输出发送到客户端，将目标地址设置成刚才的请求者地址。
 
16.6　套接字选项
 
套接字机制提供了两个套接字选项接口来控制套接字行为。一个接口用来设置选项，另一个接口可以查询选项的状态。可以获取或设置以下3种选项。
 
（1）通用选项，工作在所有套接字类型上。
 
（2）在套接字层次管理的选项，但是依赖于下层协议的支持。
 
（3）特定于某协议的选项，每个协议独有的。
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Single UNIX Specification定义了套接字层的选项（上述选项中的前两个选项类型）。
 
可以使用setsockopt函数来设置套接字选项。
 
#include <sys/socket.h>



int setsockopt(int sockfd, int level, int option, const void *val,

　　　　　　　　 socklen_t len);



　　　　　　　　　　　　　　　返回值：若成功，返回0；若出错，返回−1


 
参数level标识了选项应用的协议。如果选项是通用的套接字层次选项，则level设置成SOL_SOCKET。否则，level设置成控制这个选项的协议编号。对于TCP选项，level是IPPROTO_TCP，对于IP，level是IPPROTO_IP。图16-21总结了Single UNIX Specification中定义的通用套接字层次选项。
 
[image: 16-21.jpg]
 
图16-21　套接字选项
 
参数val根据选项的不同指向一个数据结构或者一个整数。一些选项是on/off开关。如果整数非0，则启用选项。如果整数为0，则禁止选项。参数len指定了val指向的对象的大小。
 
可以使用getsockopt函数来查看选项的当前值。
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#include <sys/socket.h>



int getsockopt(int sockfd, int level, int option, void *restrict val, 

　　　　　　　　　socklen_t *restrict lenp);



　　　　　　　　　　　　　　　返回值：若成功，返回0；若出错，返回−1


 
参数lenp是一个指向整数的指针。在调用getsockopt之前，设置该整数为复制选项缓冲区的长度。如果选项的实际长度大于此值，则选项会被截断。如果实际长度正好小于此值，那么返回时将此值更新为实际长度。
 
实例
 
当服务器终止并尝试立即重启时，图16-12中的函数将无法正常工作。通常情况下，除非超时（超时时间一般是几分钟），否则TCP的实现不允许绑定同一个地址。幸运的是，套接字选项SO_REUSEADDR可以绕过这个限制，如图16-22所示。
 
#include "apue.h"

#include <errno.h>

#include <sys/socket.h>



int

initserver(int type, const struct sockaddr *addr, socklen_t alen,

　int qlen)

{

　　int fd, err;

　　int reuse = 1;



　　if ((fd = socket(addr->sa_family, type, 0)) < 0)

　　　　return(-1);

　　if (setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, &reuse,

　　　sizeof(int)) < 0)

　　　　goto errout;

　　if (bind(fd, addr, alen) < 0)

　　　　goto errout;

　　if (type == SOCK_STREAM || type == SOCK_SEQPACKET)

　　　　if (listen(fd, qlen) < 0)

　　　　　　goto errout;

　　return(fd);



errout:

　　err = errno;

　　close(fd);

　　errno = err;

　　return(-1);

}
 
图16-22　采用地址复用初始化套接字端点供服务器使用
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为了启用SO_REUSEADDR选项，设置了一个非0值的整数，并把这个整数地址作为val参数传递给了setsockopt。将len参数设置成了一个整数大小来表明val所指的对象的大小。
 
16.7　带外数据
 
带外数据（out-of-band data）是一些通信协议所支持的可选功能，与普通数据相比，它允许更高优先级的数据传输。带外数据先行传输，即使传输队列已经有数据。TCP支持带外数据，但是UDP不支持。套接字接口对带外数据的支持很大程度上受TCP带外数据具体实现的影响。
 
TCP将带外数据称为紧急数据（urgent data）。TCP仅支持一个字节的紧急数据，但是允许紧急数据在普通数据传递机制数据流之外传输。为了产生紧急数据，可以在3个send函数中的任何一个里指定MSG_OOB标志。如果带MSG_OOB标志发送的字节数超过一个时，最后一个字节将被视为紧急数据字节。
 
如果通过套接字安排了信号的产生，那么紧急数据被接收时，会发送SIGURG信号。在3.14节和14.5.2节中可以看到，在fcntl中使用F_SETOWN命令来设置一个套接字的所有权。如果fcntl中的第三个参数为正值，那么它指定的就是进程ID。如果为非-1的负值，那么它代表的就是进程组ID。因此，可以通过调用以下函数安排进程接收套接字的信号：
 
fcntl(sockfd, F_SETOWN, pid);
 
F_GETOWN命令可以用来获得当前套接字所有权。对于F_SETOWN命令，负值代表进程组ID，正值代表进程ID。因此，调用
 
owner = fcntl(sockfd, F_GETOWN, 0);
 
将返回owner，如果owner为正值，则等于配置为接收套接字信号的进程的ID。如果owner为负值，其绝对值为接收套接字信号的进程组的ID。
 
TCP支持紧急标记（urgent mark）的概念，即在普通数据流中紧急数据所在的位置。如果采用套接字选项SO_OOBINLINE，那么可以在普通数据中接收紧急数据。为帮助判断是否已经到达紧急标记，可以使用函数sockatmark。
 
#include <sys/socket.h>



int sockatmark(int sockfd);



　　　　　　　　　　　　　　　返回值：若在标记处，返回1；若没在标记处，返回0；若出错，返回−1


 
当下一个要读取的字节在紧急标志处时，sockatmark返回1。
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当带外数据出现在套接字读取队列时，select函数（见14.4.1节）会返回一个文件描述符并且有一个待处理的异常条件。可以在普通数据流上接收紧急数据，也可以在其中一个recv函数中采用MSG_OOB标志在其他队列数据之前接收紧急数据。TCP队列仅用一个字节的紧急数据。如果在接收当前的紧急数据字节之前又有新的紧急数据到来，那么已有的字节会被丢弃。
 
16.8　非阻塞和异步I/O
 
通常，recv函数没有数据可用时会阻塞等待。同样地，当套接字输出队列没有足够空间来发送消息时，send函数会阻塞。在套接字非阻塞模式下，行为会改变。在这种情况下，这些函数不会阻塞而是会失败，将errno设置为EWOULDBLOCK或者EAGAIN。当这种情况发生时，可以使用poll或select来判断能否接收或者传输数据。
 
Single UNIX Specification包含通用异步I/O机制（见14.5节）的支持。套接字机制有其自己的处理异步I/O的方式，但是这在Single UNIX Specification中没有标准化。一些文献把经典的基于套接字的异步I/O机制称为“基于信号的I/O”，区别于Single UNIX Specification中的通用异步I/O机制。
 
在基于套接字的异步I/O中，当从套接字中读取数据时，或者当套接字写队列中空间变得可用时，可以安排要发送的信号SIGIO。启用异步I/O是一个两步骤的过程。
 
（1）建立套接字所有权，这样信号可以被传递到合适的进程。
 
（2）通知套接字当I/O操作不会阻塞时发信号。
 
可以使用3种方式来完成第一个步骤。
 
（1）在fcntl中使用F_SETOWN命令。
 
（2）在ioctl中使用FIOSETOWN命令。
 
（3）在ioctl中使用SIOCSPGRP命令。
 
要完成第二个步骤，有两个选择。
 
（1）在fcntl中使用F_SETFL命令并且启用文件标志O_ASYNC。
 
（2）在ioctl中使用FIOASYNC命令。
 
虽然有多种选项，但它们没有得到普遍支持。图16-23总结了本文讨论的平台支持这些选项的情况。
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[image: 16-23.jpg]
 
图16-23　套接字异步I/O管理命令
 
16.9　小结
 
本章考察了IPC机制，这些机制允许进程与不同计算机上的以及同一计算机上的其他进程通信。我们讨论了套接字端点如何命名，在连接服务器时，如何发现所用的地址。
 
我们给出了采用无连接的（即基于数据报的）套接字和面向连接的套接字的客户端和服务器的实例，还简要讨论了异步和非阻塞的套接字I/O，以及用于管理套接字选项的接口。
 
下一章将会考察一些高级IPC主题，包括在同一台计算机上如何使用套接字在两个进程之间传送文件描述符。
 
习题
 
16.1　写一个程序判断所使用系统的字节序。
 
16.2　写一个程序，在至少两种不同的平台上打印出所支持套接字的stat结构成员，并且描述这些结果的不同之处。
 
16.3　图16-17的程序只在一个端点上提供了服务。修改这个程序，同时支持多个端点（每个端点具有一个不同的地址）上的服务。
 
16.4　写一个客户端程序和服务端程序，返回指定主机上当前运行的进程数量。
 
16.5　在图16-18的程序中，服务器等待子进程执行uptime，子进程完成后退出，服务器才接受下一个连接请求。重新设计服务器，使得处理一个请求时并不拖延处理到来的连接请求。
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16.6　写两个库例程：一个在套接字上允许异步I/O，一个在套接字上不允许异步I/O。使用图16-23来保证函数能够在所有平台上运行，并且支持尽可能多的套接字类型。
 


第17章　高级进程间通信
 
17.1　引言
 
前面两章讨论了UNIX系统提供的各种IPC，其中包括管道和套接字。本章介绍一种高级IPC——UNIX域套接字机制，并说明它的应用方法。这种形式的IPC可以在同一计算机系统上运行的两个进程之间传送打开文件描述符。服务进程可以使它们的打开文件描述符与指定的名字相关联，同一系统上运行的客户进程可以使用这些名字与服务器进程汇聚。我们还会了解到操作系统如何为每一个客户进程提供一个独用的IPC通道。
 
17.2　UNIX域套接字
 
UNIX域套接字用于在同一台计算机上运行的进程之间的通信。虽然因特网域套接字可用于同一目的，但UNIX域套接字的效率更高。UNIX域套接字仅仅复制数据，它们并不执行协议处理，不需要添加或删除网络报头，无需计算校验和，不要产生顺序号，无需发送确认报文。
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UNIX域套接字提供流和数据报两种接口。UNIX域数据报服务是可靠的，既不会丢失报文也不会传递出错。UNIX域套接字就像是套接字和管道的混合。可以使用它们面向网络的域套接字接口或者使用socketpair函数来创建一对无命名的、相互连接的UNIX域套接字。
 
#include <sys/socket.h>



int socketpair(int domain, int type, int protocol, int sockfd[2]);



　　　　　　　　　　　　　　　返回值：若成功，返回0；若出错，返回-1


 
虽然接口足够通用，允许socketpair用于其他域，但一般来说操作系统仅对UNIX域提供支持。
 
一对相互连接的UNIX域套接字可以起到全双工管道的作用：两端对读和写开放（见图17-1）。我们将其称为fd管道（fd-pipe），以便与普通的半双工管道区分开来。
 
[image: ..\14-0434yds排版CMM\UNIX环境高级编程（第3版）tu\1701.tif]
 
图17-1　套接字对
 
实例：fd_pipe函数
 
图17-2展示了fd_pipe函数，它使用socketpair函数来创建一对相互连接的UNIX域流套接字。
 
#include "apue.h"

#include <sys/socket.h>



/*

 * Returns a full-duplex pipe (a UNIX domain socket) with

 * the two file descriptors returned in fd[0] and fd[1].

 */

int

fd_pipe(int fd[2])

{

 　　return(socketpair(AF_UNIX, SOCK_STREAM, 0, fd));

}
 
图17-2　创建一个全双工管道
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 某些基于BSD的系统使用UNIX域套接字来实现管道。但当调用pipe时，第一描述符的写端和第二描述符的读端都是关闭的。为了得到全双工管道，必须直接调用socketpair。
 

 
实例：借助UNIX域套接字轮询XSI消息队列
 
15.6.4节曾经提到XSI消息队列的使用存在一个问题，即不能将它们和poll或者select一起使用，这是因为它们不能关联到文件描述符。然而，套接字是和文件描述符相关联的，消息到达时，可以用套接字来通知。对每个消息队列使用一个线程。每个线程都会在msgrcv调用中阻塞。当消息到达时，线程会把它写入一个UNIX域套接字的一端。当poll指示套接字可以读取数据时，应用程序会使用这个套接字的另外一端来接收这个消息。
 
图17-3中的程序说明了这个技术。main函数中创建了一些消息队列和UNIX域套接字，并为每个消息队列开启了一个新线程。然后它在一个无限循环中用poll来轮询选择一个套接字端点。当某个套接字可读时，程序可以从套接字中读取数据并把消息打印到标准输出上。
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#include "apue.h"

#include <poll.h>

#include <pthread.h>

#include <sys/msg.h>

#include <sys/socket.h>



#define NQ　　　　　3　　　　　　　/* number of queues */

#define MAXMSZ　　 512　　　　　　/* maximum message size */

#define KEY　　　　 0x123　　　　 /* key for first message queue */



struct threadinfo {

 　　int qid;

 　　int fd;

};



struct mymesg {

 　　long mtype;

 　　char mtext[MAXMSZ];

};



void *

helper(void *arg)

{

 　　int　　　　　　　　　　　n;

 　　struct mymesg　　　　　m;

 　　struct threadinfo　　*tip = arg;



 　　for(;;) {

 　　　　　memset(&m, 0, sizeof(m));

 　　　　　if ((n = msgrcv(tip->qid, &m, MAXMSZ, 0, MSG_NOERROR)) < 0)

 　　　　　　　　err_sys("msgrcv error");

 　　　　　if (write(tip->fd, m.mtext, n) < 0)

 　　　　　　　　err_sys("write error");

 　　}

}



int

main()

{

 　　int　　　　　　　　　　　　i, n, err;

 　　int　　　　　　　　　　　　fd[2];

 　　int　　　　　　　　　　　　qid[NQ];

 　　struct pollfd　　　　　　pfd[NQ];

 　　struct threadinfo　　　 ti[NQ];

 　　pthread_t　　　　　  　  tid[NQ];

 　　char　　　　　　　　    　buf[MAXMSZ];



 　　for (i = 0; i < NQ; i++) {

 　　　　　if ((qid[i] = msgget((KEY+i), IPC_CREAT|0666)) < 0)

 　　　　　　　　err_sys("msgget error");



 　　　　　printf("queue ID %d is %d\n", i, qid[i]);



 　　　　　if (socketpair(AF_UNIX, SOCK_DGRAM, 0, fd) < 0)

 　　　　　　　err_sys("socketpair error");

 　　　　　pfd[i].fd = fd[0];

 　　　　　pfd[i].events = POLLIN;

 　　　　　ti[i].qid = qid[i];

 　　　　　ti[i].fd = fd[1];

 　　　　　if ((err = pthread_create(&tid[i], NULL, helper, &ti[i])) != 0)

 　　　　　　　err_exit(err, "pthread_create error");

 　　}



 　　for (;;) {

 　　　　　if (poll(pfd, NQ, -1) < 0)

 　　　　　　　err_sys("poll error");

 　　　　　for (i = 0; i < NQ; i++) {

 　　　　　　　if (pfd[i].revents & POLLIN) {

 　　　　　　　　　if ((n = read(pfd[i].fd, buf, sizeof(buf))) < 0)

 　　　　　　　　　　　err_sys("read error");

 　　　　　　　　　buf[n] = 0;

 　　　　　　　　　printf("queue id %d, message %s\n", qid[i], buf);

 　　　　　　　}

 　　　　　}

 　　}



 　　exit(0);

}
 
图17-3　使用UNIX域套接字轮询XSI消息队列
 
注意，我们使用的是数据报（SOCK_DGRAM）套接字而不是流套接字。这样做可以保持消息边界，以保证从套接字里一次只读取一条消息。
 
这种技术可以（非直接地）在消息队列中运用poll或者select。只要为每个队列分配一个线程的开销以及每个消息额外复制两次（一次写入套接字，另一次从套接字里读取出来）的开销是可接受的，这种技术就会使XSI消息队列的使用更加容易。
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使用图17-4中所示的程序给图17-3中所示的测试程序发送消息。
 
#include "apue.h"

#include <sys/msg.h>



#define MAXMSZ 512



struct mymesg {

 　　long mtype;

 　　char mtext[MAXMSZ];

};



int

main(int argc, char *argv[])

{

 　　key_t key;

 　　long qid;

 　　size_t nbytes;

 　　struct mymesg m;



 　　if (argc != 3) {

 　　　　fprintf(stderr, "usage: sendmsg KEY message\n");

 　　　　exit(1);

 　　}

 　　key = strtol(argv[1], NULL, 0);

 　　if ((qid = msgget(key, 0)) < 0)

 　　　　err_sys("can't open queue key %s", argv[1]);

 　　memset(&m, 0, sizeof(m));

 　　strncpy(m.mtext, argv[2], MAXMSZ-1);

 　　nbytes = strlen(m.mtext);

 　　m.mtype = 1;

 　　if (msgsnd(qid, &m, nbytes, 0) < 0)

 　　　　err_sys("can't send message");

 　　exit(0);

}
 
图17-4　给XSI消息队列发送消息
 
这个程序需要两个参数：消息队列关联的键值以及一个包含消息主体的字符串。发送消息到服务器端时，它会打印如下信息：
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$ ./pollmsg & 　　　　　　　　　　　　　　　　　在后台运行服务器

[1] 12814

$ queue ID 0 is 196608

queue ID 1 is 196609

queue ID 2 is 196610

$ ./sendmsg 0x123 "hello, world"　　　　　　给第一个队列发送一条消息

queue id 196608, message hello, world

$ ./sendmsg 0x124 "just a test"　　　　　 　给第二个队列发送一条消息

queue id 196609, message just a test

$ ./sendmsg 0x125 "bye" 　　　　　　　　　　　给第三个队列发送一条消息

queue id 196610, message bye


 
命名UNIX域套接字
 
虽然socketpair函数能创建一对相互连接的套接字，但是每一个套接字都没有名字。这意味着无关进程不能使用它们。
 
在16.3.4节中学习了如何将一个地址绑定到一个因特网域套接字上。恰如因特网域套接字一样，可以命名UNIX域套接字，并可将其用于告示服务。但是要注意，UNIX域套接字使用的地址格式不同于因特网域套接字。
 
回忆16.3节，套接字地址格式会随实现而变。UNIX域套接字的地址由sockaddr_un结构
 表示。在Linux 3.2.0和Solaris 10中，sockaddr_un结构在头文件<sys/un.h>中的定义如下：
 
struct sockaddr_un {

　　　sa_family_t　　　sun_family;　　　　　　　　/* AF_UNIX */

　　　char　　　　　  　sun_path[108];　　 　　　/* pathname */

};
 
但是在FreeBSD 8.0和Mac OS X 10.6.8中，sockaddr_un结构的定义如下：
 
struct sockaddr_un {

　　　unsigned char　 sun_len;　　　　　　　　 　/* sockaddr length */

　　　sa_family_t　   sun_family;　　 　　　　　/* AF_UNIX */

　　　char　　　  　   sun_path[104]; 　　　　　/* pathname */

};
 
sockaddr_un结构的sun_path成员包含一个路径名。当我们将一个地址绑定到一个UNIX域套接字时，系统会用该路径名创建一个S_IFSOCK类型的文件。
 
该文件仅用于向客户进程告示套接字名字。该文件无法打开，也不能由应用程序用于通信。
 
如果我们试图绑定同一地址时，该文件已经存在，那么bind请求会失败。当关闭套接字时，并不自动删除该文件，所以必须确保在应用程序退出前，对该文件执行解除链接操作。
 
实例
 
图17-5所示的程序是一个将地址绑定到UNIX域套接字的例子。
 
运行此程序时，bind请求成功执行。但是，若第二次运行该程序，则出错返回，其原因是该文件已经存在。在删除该文件之前，该程序不会再成功运行。
 
$ ./a.out　　　　　　　　　　　　　　　　运行该程序

UNIX domain socket bound

$ ls -l foo.socket　　　　　 　　　　　查看套接字文件

srwxrw-xr-x 1 sar　　　　0 May 18 00:44 foo.socket

$ ./a.out　　　　　　　　　　　　　　　　试图再次运行该程序

bind failed: Address already in use

$ rm foo.socket　　　　　　　　　　　 　刪除该套接字文件

$ ./a.out　　　　　　　　　　  　　　　　第三次运行该程序

UNIX domain socket bound　　　　　　　现在成功啦


 
#include "apue.h"

#include <sys/socket.h>

#include <sys/un.h>



int

main(void)

{

 　　int fd, size;

 　　struct sockaddr_un un;



 　　un.sun_family = AF_UNIX;

 　　strcpy(un.sun_path, "foo.socket");

 　　if ((fd = socket(AF_UNIX, SOCK_STREAM, 0)) < 0)

 　　　　err_sys("socket failed");

 　　size = offsetof(struct sockaddr_un, sun_path) + strlen(un.sun_path);

 　　if (bind(fd, (struct sockaddr *)&un, size) < 0)

 　　　　err_sys("bind failed");

 　　printf("UNIX domain socket bound\n");

 　　exit(0);

}
 
图17-5　将地址绑定到UNIX域套接字
 
确定绑定地址长度的方法是，先计算sun_path成员在sockaddr_un结构中的偏移量，然后将结果与路径名长度（不包括终止null字符）相加。因为sockaddr_un结构中sun_path之前的成员与实现相关，所以我们使用<stddef.h>头文件（包括在apue.h中）中的offsetof宏计算sun_path成员从结构开始处的偏移量。如果查看<stddef.h>，则可见到类似于下列形式的定义：
 
#define offsetof(TYPE, MEMBER) ((int)&((TYPE *)0)->MEMBER)
 
假定该结构从地址0开始，此表达式求得成员起始地址的整型值。
 
17.3　唯一连接
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服务器进程可以使用标准bind、listen和accept函数，为客户进程安排一个唯一UNIX域连接。客户进程使用connect与服务器进程联系。在服务器进程接受了connect请求后，在服务器进程和客户进程之间就存在了唯一连接。这种风格的操作与我们在图16-16和图16-17中所示的对因特网域套接字的操作相同。
 
图17-6展示了客户进程和服务器进程存在连接之前二者的情形。服务器端把它的套接字绑定到sockaddr_un的地址并监听新的连接请求。图17-7展示了在服务器端接受客户端连接请求后，客户端和服务器端之间建立的唯一的连接。
 
[image: ..\14-0434yds排版CMM\UNIX环境高级编程（第3版）tu\1706.tif]
 
图17-6　connect之前的客户端套接字和服务器端套接字
 
[image: ..\14-0434yds排版CMM\UNIX环境高级编程（第3版）tu\1707.tif]
 
图17-7　connect之后的客户端套接字和服务器端套接字
 
现在，我们将开发3个函数，使用这些函数可以在运行于同一台计算机上的两个无关进程之间创建唯一连接。这些函数模仿了在16.4节中讨论过的面向连接的套接字函数。这里，我们将UNIX域套接字应用于底层通信机制。
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#include "apue.h"



int serv_listen(const char *name);



　　　　　　　　　　　　　　　返回值：若成功，返回要监听的文件描述符；若出错，返回负值



int serv_accept(int listenfd, uid_t *uidptr);



　　　　　　　　　　　　　　　返回值：若成功，返回新文件描述符；若出错，返回负值



int cli_conn(const char *name); 



　　　　　　　　　　　　　　　返回值：若成功，返回文件描述符；若出错，返回负值


 
服务器进程可以调用serv_listen函数（见图17-8）声明它要在一个众所周知的名字（文件系统中的某个路径名）上监听客户进程的连接请求。当客户进程想要连接至服务器进程时，它们将使用该名字。serv_listen函数的返回值是用于接收客户进程连接请求的服务器UNIX域套接字。
 
服务器进程可以使用serv_accept函数（见图17-9）等待客户进程连接请求的到达。当一个请求到达时，系统自动创建一个新的UNIX域套接字，并将它与客户端套接字连接，最后将这个新套接字返回给服务器。此外，客户进程的有效用户ID存放在uidptr指向的存储区中。
 
客户进程调用cli_conn函数（见图17-10）连接至服务器进程。客户进程指定的name参数必须与服务器进程调用serv_listen函数时所用的名字相同。函数返回时，客户进程得到接连至服务器进程的文件描述符。
 
图17-8给出了serv_listen函数。
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#include "apue.h"

#include <sys/socket.h>

#include <sys/un.h>

#include <errno.h>



#define QLEN　　　10



/*

 * Create a server endpoint of a connection.

 * Returns fd if all OK, <0 on error.

 */

int

serv_listen(const char *name)

{

 　　int　　　　　　　　　　fd, len, err, rval;

 　　struct sockaddr_un　un;



 　　if (strlen(name) >= sizeof(un.sun_path)) {

 　　　　errno = ENAMETOOLONG;

 　　　　return(-1);

 　　}



 　　/* create a UNIX domain stream socket */

 　　if ((fd = socket(AF_UNIX, SOCK_STREAM, 0)) < 0)

 　　　　return(-2);



 　　unlink(name);　　　　　/* in case it already exists */



 　　/* fill in socket address structure */

 　　memset(&un, 0, sizeof(un));

 　　un.sun_family = AF_UNIX;

 　　strcpy(un.sun_path, name);

 　　len = offsetof(struct sockaddr_un, sun_path) + strlen(name);



 　　/* bind the name to the descriptor */

 　　if (bind(fd, (struct sockaddr *)&un, len) < 0) {

 　　　　rval = -3;

 　　　　goto errout;

 　　}



 　　if (listen(fd, QLEN) < 0) {　　/* tell kernel we're a server */

 　　　　rval = -4;

 　　　　goto errout;

 　　}

 　　return(fd);



errout:

 　　err = errno;

 　　close(fd);

 　　errno = err;

 　　return(rval);

}
 
图17-8　serv_listen函数
 
首先，调用socket创建一个UNIX域套接字。然后将欲赋给套接字的众所周知的路径名填入sockaddr_ un结构。该结构是调用bind的参数。注意，不需要设置某些平台提供的sun_len字段，因为操作系统会用传送给bind函数的地址长度设置该字段。
 
最后，调用listen函数（见16.4节）来通知内核该进程将作为服务器进程等待客户进程的连接请求。当收到一个客户进程的连接请求后，服务器进程调用serv_accept函数（见图17-9）。
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#include "apue.h"

#include <sys/socket.h>

#include <sys/un.h>

#include <time.h>

#include <errno.h>



#define　　STALE　　30　　/* client's name can't be older than this (sec) */



/*

 * Wait for a client connection to arrive, and accept it.

 * We also obtain the client's user ID from the pathname

 * that it must bind before calling us.

 * Returns new fd if all OK, <0 on error

 */

int

serv_accept(int listenfd, uid_t *uidptr)

{

 　　int　　　　　　　　　　　 clifd, err, rval;

 　　socklen_t　　　　　　　　len;

 　　time_t　　　　　　　　   staletime;

 　　struct sockaddr_un　　 un;

 　　struct stat　　　　　   statbuf;

 　　char　　　　　　　　　　　*name;



 　　/* allocate enough space for longest name plus terminating null */

 　　if ((name = malloc(sizeof(un.sun_path) + 1)) == NULL)

 　　　　return(-1);

 　　len = sizeof(un);

 　　if ((clifd = accept(listenfd, (struct sockaddr *)&un, &len)) < 0) {

 　　　　free(name);

 　　　　return(-2);　　　　　　/* often errno=EINTR, if signal caught */

 　　}



 　　/* obtain the client's uid from its calling address */

 　　len -= offsetof(struct sockaddr_un, sun_path); /* len of pathname */

 　　memcpy(name, un.sun_path, len);

 　　name[len] = 0;　　　　　　　/* null terminate */

 　　if (stat(name, &statbuf) < 0) {

 　　　　rval = -3;

 　　　　goto errout;

 　　}



#ifdef  S_ISSOCK　　　　　　/* not defined for SVR4 */

 　　if (S_ISSOCK(statbuf.st_mode) == 0) {

 　　　　rval = -4;　　　　　/* not a socket */

 　　　　goto errout;

 　　}

#endif



 　　if ((statbuf.st_mode & (S_IRWXG | S_IRWXO)) ||

 　　　　(statbuf.st_mode & S_IRWXU) != S_IRWXU) {

 　　　　　　rval = -5;　　/* is not rwx------ */

 　　　　　　goto errout;

 　　}



 　　staletime = time(NULL) - STALE;

 　　if (statbuf.st_atime < staletime ||

 　　　　statbuf.st_ctime < staletime ||

 　　　　statbuf.st_mtime < staletime) {

 　　　　　　rval = -6;　　/* i-node is too old */

 　　　　　　goto errout;

 　　}



 　　if (uidptr != NULL)

 　　　　*uidptr = statbuf.st_uid;　　/* return uid of caller */

 　　unlink(name);　　　　　/* we're done with pathname now */

 　　free(name);

 　　return(clifd);



errout:

 　　err = errno;

 　　close(clifd);

 　　free(name);

 　　errno = err;

 　　return(rval);

}
 
图17-9　serv_accept函数
 
服务器进程在调用serv_accept中阻塞，等待一个客户进程调用cli_conn。从accept返回时，返回值是连接到客户进程的崭新的描述符。另外，accept函数也经由其第二个参数（指向sockaddr_ un结构的指针）返回客户进程赋给其套接字的路径名（包含客户进程ID的名字）。接着，程序复制这个路径名，并确保它是以null终止的（如果路径名占用了sockaddr_un结构里的sun_path成员所有的可用空间，那就没有空间存放终止null字符）。然后，调用stat函数验证：该路径名确实是一个套接字；其权限仅允许用户读、用户写以及用户执行。还要验证与套接字相关联的3个时间参数不比当前时间早30秒。（回忆6.10节，time函数返回当前时间和日期，用公元1970年1月1日00:00:00以来经过的秒数表示。）
 
如若通过了所有这些检验，则可认为客户进程的身份（其有效用户ID）是该套接字的所有者。虽然这种检验并不完善，但这是对当前系统所能做到的最佳方案。（如若内核能通过accept的参数返回有效用户ID，则会更好一些。）
 
客户进程调用cli_conn函数（见图17-10）对连到服务器进程的连接进行初始化。
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#include "apue.h"

#include <sys/socket.h>

#include <sys/un.h>

#include <errno.h>



#define　　CLI_PATH　　　　　"/var/tmp/"

#define　　CLI_PERM　　　　　S_IRWXU　　　　　　　　/* rwx for user only */



/*

 * Create a client endpoint and connect to a server.

 * Returns fd if all OK, <0 on error.

 */

int

cli_conn(const char *name)

{

 　　int　　　　　　　　　　　　fd, len, err, rval;

 　　struct sockaddr_un　　　un, sun;

 　　int　　　　　　　　　　　　do_unlink = 0;



 　　if (strlen(name) >= sizeof(un.sun_path)) {

 　　　　errno = ENAMETOOLONG;

 　　　　return(-1);

 　　}



 　　/* create a UNIX domain stream socket */

 　　if ((fd = socket(AF_UNIX, SOCK_STREAM, 0)) < 0)

 　　　　return(-1);



 　　/* fill socket address structure with our address */

 　　memset(&un, 0, sizeof(un));

 　　un.sun_family = AF_UNIX;

 　　sprintf(un.sun_path, "%s%05ld", CLI_PATH, (long)getpid());

 　　len = offsetof(struct sockaddr_un, sun_path) + strlen(un.sun_path);



 　　unlink(un.sun_path);　　　　　/* in case it already exists */

 　　if (bind(fd, (struct sockaddr *)&un, len) < 0) {

 　　　　rval = -2;

 　　　　goto errout;

 　　}

 　　if (chmod(un.sun_path, CLI_PERM) < 0) {

 　　　　rval = -3;

 　　　　do_unlink = 1;

 　　　　goto errout;

 　　}



 　　/* fill socket address structure with server's address */

 　　memset(&sun, 0, sizeof(sun));

 　　sun.sun_family = AF_UNIX;

 　　strcpy(sun.sun_path, name);

 　　len = offsetof(struct sockaddr_un, sun_path) + strlen(name);

 　　if (connect(fd, (struct sockaddr *)&sun, len) < 0) {

 　　　　rval = -4;

 　　　　do_unlink = 1;

 　　　　goto errout;

 　　}

 　　return(fd);



errout:

 　　err = errno;

 　　close(fd);

 　　if (do_unlink)

 　　　　unlink(un.sun_path);

 　　errno = err;

 　　return(rval);

}
 
图17-10　cli_conn函数
 
调用socket函数创建UNIX域套接字的客户进程端，然后用客户进程专有的名字填入sockaddr_un结构。
 
此例中没让系统选择默认地址，其原因是，如果这样处理，服务器进程将不能区分各个客户进程（如果不为UNIX域套接字显式地绑定名字，内核会代表我们隐式地绑定一个地址且不会在文件系统创建文件来表示这个套接字）。于是，我们绑定自己的地址，但在开发使用套接字的客户端程序时通常并不采用这一步骤。
 
绑定的路径名的最后5个字符来自客户进程ID。仅在该路径名已存在时调用unlink。然后，调用bind将名字赋给客户进程套接字。这在文件系统中创建了一个套接字文件，所用的名字与被绑定的路径名一样。接着，调用chmod关闭除用户读、用户写以及用户执行以外的其他权限。在serv_ accept中，服务器进程检验这些权限以及套接字用户ID以验证客户进程的身份。
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然后，必须填充另一个sockaddr_un结构，这次用的是服务进程众所周知的路径名。最后，调用connect函数初始化与服务进程的连接。
 
17.4　传送文件描述符
 
在两个进程之间传送打开文件描述符的技术是非常有用的。因此可以对客户进程-服务器进程应用进行不同的设计。它使一个进程（通常是服务器进程）能够处理打开一个文件所要做的一切操作（包括将网络名翻译为网络地址、拨号调制解调器、协商文件锁等）以及向调用进程送回一个描述符，该描述符可被用于以后的所有I/O函数。涉及打开文件或设备的所有细节对客户进程而言都是透明的。
 
下面进一步说明从一个进程向另一个进程“传送一个打开文件描述符”的含义。回忆图3-8，其中显示了两个进程，它们打开了同一文件。虽然它们共享同一个v节点，但每个进程都有它自己的文件表项。
 
当一个进程向另一个进程传送一个打开文件描述符时，我们想让发送进程和接收进程共享同一文件表项。图17-11显示了所期望的安排。
 
[image: ..\14-0434 UNIX环境高级编程（第3版）(改一校)改\1711.tif]
 
图17-11　从顶部进程传送一个打开文件至底部进程
 
在技术上，我们是将指向一个打开文件表项的指针从一个进程发送到另外一个进程。该指针被分配存放在接收进程的第一个可用描述符项中。（注意，不要造成错觉，以为发送进程和接收进程中的描述符编号是相同的，它们通常是不同的。）两个进程共享同一个打开文件表，这与fork之后的父进程和子进程共享打开文件表的情况完全相同（见图8-2）。
 
当发送进程将描述符传送给接收进程后，通常会关闭该描述符。发送进程关闭该描述符并不会真的关闭该文件或设备，其原因是该描述符仍被视为由接收进程打开（即使接收进程尚未接收到该描述符）。
 
下面定义本章用以发送和接收文件描述符的3个函数。本节后面会给出这3个函数的代码。
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#include "apue.h"



int send_fd(int fd, int fd_to_send);



int send_err(int fd, int status, const char *errmsg);



　　　　　　　　　　　　　　　两个函数的返回值：若成功，返回0；若出错，返回-1



int recv_fd(int fd, ssize_t (*userfunc)(int, const void *, size_t));



　　　　　　　　　　　　　　　返回值：若成功，返回文件描述符；若出错，返回负值


 
当一个进程（通常是服务器进程）想将一个描述符传送给另一个进程时，可以调用send_fd或send_ err。等待接收描述符的进程（客户进程）调用recv_fd。
 
send_fd使用fd代表的UNIX域套接字发送描述符fd_to_send。send_err 使用fd发送errmsg以及后随的status字节。status的值应在-1～-255。
 
客户进程调用recv_fd接收描述符。如果一切正常（发送者调用了send_fd），则函数返回值为非负描述符。否则，返回值是由send_err发送的status（-1～-255的一个负值）。另外，如果服务器进程发送了一条出错消息，则客户进程调用它自己的userfunc函数处理该消息。userfunc的第一个参数是常量STDERR_FILENO，然后是指向出错消息的指针及其长度。userfunc函数的返回值是已写的字节数或负的出错编号值。客户进程常将普通的write函数指定为userfunc。
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我们实现用于这3个函数的我们自己制定的协议。为发送一个描述符，send_fd先发送2字节0，然后是实际描述符。为了发送一条出错消息，send_err发送errmsg，然后是1字节0，最后是status字节的绝对值（1～255）。recv_fd函数读取套接字中所有字节直至遇到null字符。null字符之前的所有字符都传送给调用者的userfunc。recv_fd读取的下一个字节是状态（status）字节。若状态字节为0，则表示一个描述符已传送过来，否则表示没有描述符可接收。
 
send_err函数在将出错消息写到套接字后，即调用send_fd函数，如图17-12所示。
 
#include "apue.h"



/*

 * Used when we had planned to send an fd using send_fd(),

 * but encountered an error instead.　We send the error back

 * using the send_fd()/recv_fd() protocol.

 */

int

send_err(int fd, int errcode, const char *msg)

{

　 int　　　　n;



　 if ((n = strlen(msg)) > 0)

 　　   if (writen(fd, msg, n) != n)　　/* send the error message */

 　　　　    return(-1);



　 if (errcode >= 0)

　     errcode = -1;　　/* must be negative */



　 if (send_fd(fd, errcode) < 0)

　     return(-1);



　 return(0);

}
 
图17-12　send_err函数
 
为了用UNIX域套接字交换文件描述符，调用sendmsg(2)和recvmsg(2)函数（见16.5节）。这两个函数的参数中都有一个指向msghdr结构的指针，该结构包含了所有关于要发送或要接收的消息的信息。该结构的定义大致如下：
 
struct msghdr {

　　void　　　　　　　*msg_name;　　　　　　 　/* optional address */

　　socklen_t　　　　 msg_namelen;　　　　　 /* address size in bytes */

　　struct iovec　  *msg_iov;　　　　　　　　/* array of I/O buffers */

　　int　　　　　　  　msg_iovlen;　　　　　　/* number of elements in array */

　　void　　　　　   *msg_control;　　　　　 /* ancillary data */

　　socklen_t　  　  msg_controllen;　　　 /* number of ancillary bytes */

　　int　　　　  　   msg_flags;　　　　　　 /* flags for received message */

};
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前两个元素通常用于在网络连接上发送数据报，其中目的地址可以由每个数据报指定。接下来的两个元素使我们可以指定一个由多个缓冲区构成的数组（散布读和聚集写），这与对 readv和writev函数（见14.6节）的说明一样。 msg_flags字段包含了描述接收到的消息的标志，图16-15总结了这些标志。
 
两个元素处理控制信息的传送和接收。msg_control字段指向cmsghdr（控制信息头）结构，msg_ controllen字段包含控制信息的字节数。
 
struct cmsghdr {

　　socklen_t  cmsg_len;　　　　/* data byte count, including header */

　　int　　　　　cmsg_level;　　 /* originating protocol */

　　int　　　　　cmsg_type;　　　/* protocol-specific type */

　　/* followed by the actual control message data */

};
 
为了发送文件描述符，将cmsg_len设置为cmsghdr结构的长度加一个整型的长度（描述符的长度），cmg_level字段设置为SOL_SOCKET，cmsg_type字段设置为SCM_RIGHTS，用以表明在传送访问权。（SCM是Socket-level Control Message的缩写，即套接字级控制消息。）访问权仅能通过UNIX域套接字传送。描述符紧随cmsg_type字段之后存储，用CMSG_DATA宏获得该整型量的指针。
 
在此定义3个宏，用于访问控制数据，一个宏用于帮助计算cmsg_len所使用的值。
 
#include <sys/socket.h>



unsigned char *CMSG_DATA(struct cmsghdr *cp);



　　　　　　　　　　　　　　返回值：返回一个指针，指向与cmsghdr结构相关联的数据



struct cmsghdr *CMSG_FIRSTHDR(struct msghdr *mp);



　　　　　　　　　　　　　　返回值：返回一个指针，指向与msghdr结构相关联的第一个cmsghdr结构；

　　　　　　　　　　　　　　若无这样的结构，返回NULL



struct cmsghdr *CMSG_NXTHDR(struct msghdr *mp, 

　　　　　　　　     　　　　　　struct cmsghdr *cp);



　　　　　　　　　　　　　　返回值：返回一个指针，指向与msghdr结构相关联的下一个cmsghdr结构，

　　　　　　　　　　　　　　该msghdr结构给出了当前的cmsghdr结构；若当前cmsghdr结构已是最后一

　　　　　　　　　　　　　　个，返回NULL



unsigned int CMSG_LEN(unsigned int nbytes);



　　　　　　　　　　　　　　返回值：返回为nbytes长的数据对象分配的长度


 
 
 Single UNIX Specification定义了前3个宏，但没有定义CMSG_LEN。
 

 
CMSG_LEN宏返回存储nbytes长的数据对象所需的字节数，它先将nbytes加上cmsghdr结构的长度，然后按处理器体系结构的对齐要求进行调整，最后再向上取整。
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图17-13中的程序是UNIX域套接字的send_fd函数，它通过UNIX域套接字传递文件描述符。sendmsg调用被用来传送协议数据（包括null字节和状态字节）以及描述符。
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#include "apue.h"

#include <sys/socket.h>



/* size of control buffer to send/recv one file descriptor */

#define　　CONTROLLEN　　CMSG_LEN(sizeof(int))



static struct cmsghdr　*cmptr = NULL;　　/* malloc'ed first time */



/*

 * Pass a file descriptor to another process.

 * If fd<0, then -fd is sent back instead as the error status.

 */

int

send_fd(int fd, int fd_to_send)

{

 　　struct iovec　　iov[1];

 　　struct msghdr　 msg;

 　　char　　　　     buf[2];　　　　　/* send_fd()/recv_fd() 2-byte protocol */



 　　iov[0].iov_base　　= buf;

 　　iov[0].iov_len 　　= 2;

 　　msg.msg_iov　　    = iov;

 　　msg.msg_iovlen　　 = 1;

 　　msg.msg_name      = NULL;

 　　msg.msg_namelen   = 0;



 　　if (fd_to_send < 0) {

 　　　　msg.msg_control　　= NULL;

 　　　　msg.msg_controllen = 0;

 　　　　buf[1] = -fd_to_send;　　　　/* nonzero status means error */

 　　　　if (buf[1] == 0)

 　　　　　　buf[1] = 1;　　/* -256, etc. would screw up protocol */

 　　} else {

 　　　　if (cmptr == NULL && (cmptr = malloc(CONTROLLEN)) == NULL)

 　　　　　　return(-1);

 　　　　cmptr->cmsg_level　　 = SOL_SOCKET;

 　　　　cmptr->cmsg_type 　　 = SCM_RIGHTS;

 　　　　cmptr->cmsg_len  　　 = CONTROLLEN;

 　　　　msg.msg_control      = cmptr;

 　　　　msg.msg_controllen   = CONTROLLEN;

 　　　　*(int *)CMSG_DATA(cmptr) = fd_to_send;　　　　/* the fd to pass */

 　　　　buf[1] = 0;　　　　/* zero status means OK */

 　　}



 　　buf[0] = 0;　　　　　　/* null byte flag to recv_fd() */

 　　if (sendmsg(fd, &msg, 0) != 2)

 　　　　return(-1);

 　　return(0);

}
 
图17-13　通过UNIX域套接字发送文件描述符
 
为了接收一个文件描述符（见图17-14），我们为cmsghdr结构和描述符分配了足够大的空间，设置msg_control指向该分配到的存储区，然后调用了recvmsg。使用CMSG_LEN宏计算所需的空间总量。
 
读取UNIX域套接字，直至读到null字节，它位于最后的状态字节之前。null字节之前是一条来自发送者的出错消息。
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#include "apue.h"

#include <sys/socket.h>　　　　/* struct msghdr */



/* size of control buffer to send/recv one file descriptor */

#define　CONTROLLEN　CMSG_LEN(sizeof(int))



static struct cmsghdr　　*cmptr = NULL;　　/* malloc'ed first time */



/*

 * Receive a file descriptor from a server process.　Also, any data

 * received is passed to (*userfunc)(STDERR_FILENO, buf, nbytes).

 * We have a 2-byte protocol for receiving the fd from send_fd().

 */

int

recv_fd(int fd, ssize_t (*userfunc)(int, const void *, size_t))

{

 　　int　　　　　  　  newfd, nr, status;

 　　char　　　　　　  *ptr;

 　　char　　　　　　　　buf[MAXLINE];

 　　struct iovec　　　iov[1];

 　　struct msghdr　　 msg;



 　　status = -1;

 　　for ( ; ; ) {

 　　　　　iov[0].iov_base　　= buf;

 　　　　　iov[0].iov_len 　　= sizeof(buf);

 　　　　　msg.msg_iov　　    = iov;

 　　　　　msg.msg_iovlen 　　= 1;

 　　　　　msg.msg_name　 　　= NULL;

 　　　　　msg.msg_namelen　　= 0;

 　　　　　if (cmptr == NULL && (cmptr = malloc(CONTROLLEN)) == NULL)

 　　　　　　　return(-1);

 　　　　　msg.msg_control　  = cmptr;

 　　　　　msg.msg_controllen = CONTROLLEN;

 　　　　　if ((nr = recvmsg(fd, &msg, 0)) < 0) {

 　　　　　　　err_ret("recvmsg error");

 　　　　　　　return(-1);

 　　　　　} else if (nr == 0) {

 　　　　　　　err_ret("connection closed by server");

 　　　　　　　return(-1);

 　　　　　}



 　　　　　/*

 　　　　　 * See if this is the final data with null & status.　Null

 　　　　　 * is next to last byte of buffer; status byte is last byte.

 　　　　　 * Zero status means there is a file descriptor to receive.

 　　　　　 */

 　　　　　for (ptr = buf; ptr < &buf[nr]; ) {

 　　　　　　　　if (*ptr++ == 0) {

 　　　　　　　　　　if (ptr != &buf[nr-1])

 　　　　　　　　　　　　err_dump("message format error");

 　　　　　　　　　　status = *ptr & 0xFF;　　　　　/* prevent sign extension */

 　　　　　　　　　　if (status == 0) {

 　　　　　　　　　　　　if (msg.msg_controllen < CONTROLLEN)

 　　　　　　　　　　　　　　err_dump("status = 0 but no fd");

 　　　　　　　　　　　　newfd = *(int *)CMSG_DATA(cmptr);

 　　　　　　　　　　} else {

 　　　　　　　　　　　　newfd = -status;

 　　　　　　　　　　}

 　　　　　　　　　　nr -= 2;

 　　　　　　　}

 　　　　}

 　　　　if (nr > 0 && (*userfunc)(STDERR_FILENO, buf, nr) != nr)

 　　　　　　　return(-1);

 　　　　if (status >= 0)　　　　　　　　/* final data has arrived */

 　　　　　　　return(newfd);　　　　　　/* descriptor, or -status */

 　　}

｝
 
图17-14　通过UNIX域套接字接收文件描述符
 
注意，该程序总是准备接收一个描述符（在每次调用recvmsg之前，设置msg_control和msg_ controllen），但是仅当msg_controllen返回的是非0值时，才确实接收到描述符。
 
回忆serv_accept函数（见图17-9）确定调用者身份的步骤。如果内核能够把调用者的证书在调用accept之后返回给调用处会更好。某些UNIX域套接字的实现提供类似的功能，但它们的接口不同。
 
 
 FreeBSD 8.0和Linux 3.2.0都支持通过UNIX域套接字发送证书，但它们的实现方式不同。Mac OS X 10.6.8是部分从FreeBSD派生出来的，但禁止传送证书。Solaris 10不支持通过UNIX域套接字传送证书，然而它支持从一个通过STREAMS管道传输文件描述符的进程中获得证书，这里我们不讨论它的细节。
 

 
在FreeBSD中，将证书作为cmsgcred结构传送。
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#define CMGROUP_MAX 16

struct cmsgcred {

　　pid_t cmcred_pid;　　　　　　　　　 　　/* sender's process ID */

　　uid_t cmcred_uid;　　　　　　　　　 　　/* sender's real UID */

　　uid_t cmcred_euid;　　　　　　　　　　　/* sender's effective UID */

　　gid_t cmcred_gid;　　　　　　　　　 　　/* sender's real GID */

　　short cmcred_ngroups;　　　　　　　 　 /* number of groups */

　　gid_t cmcred_groups[CMGROUP_MAX];　　/* groups */

};
 
在传送证书时，仅需为cmsgcred结构保留存储空间。内核将填充该结构以防止应用程序伪装成具有另一种身份。
 
在Linux中，将证书作为ucred结构传送。
 
struct ucred {

　　pid_t pid;　 　　/* sender's process ID */

　　uid_t uid;　 　　/* sender's user ID */

　　gid_t gid;　 　　/* sender's group ID */

};
 
与FreeBSD不同，Linux需要在传输前初始化这个结构。内核会确保应用程序要么能够使用对应调用者的值，要么有使用其他值的合适权限。
 
图17-15显示了更新过后的send_fd函数，它包含了发送进程的证书。
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#include "apue.h"

#include <sys/socket.h>



#if defined(SCM_CREDS)　　　　　　　/* BSD interface */

#define CREDSTRUCT　　　　  cmsgcred

#define SCM_CREDTYPE　　　　SCM_CREDS

#elif defined(SCM_CREDENTIALS)　　/* Linux interface */

#define CREDSTRUCT　　　　　ucred

#define SCM_CREDTYPE　　   SCM_CREDENTIALS

#else

#error passing credentials is unsupported!

#endif



/* size of control buffer to send/recv one file descriptor */

#define RIGHTSLEN　　　　CMSG_LEN(sizeof(int))

#define CREDSLEN　　　　 CMSG_LEN(sizeof(struct CREDSTRUCT))

#define CONTROLLEN　　　(RIGHTSLEN + CREDSLEN)



static struct cmsghdr　　　*cmptr = NULL;　　/* malloc'ed first time */



/*

 * Pass a file descriptor to another process.

 * If fd<0, then -fd is sent back instead as the error status.

 */

int

send_fd(int fd, int fd_to_send)

{

　　struct CREDSTRUCT　　 *credp;

　　struct cmsghdr       *cmp;

　　struct iovec　　　　　　iov[1];

　　struct msghdr　　　　　 msg;

　　char　　　　　　　　　　　buf[2];　　/* send_fd/recv_ufd 2-byte protocol */



　　iov[0].iov_base = buf;

　　iov[0].iov_len　 = 2;

　　msg.msg_iov　　　 = iov;

　　msg.msg_iovlen   = 1;

 　　msg.msg_name    = NULL;

 　　msg.msg_namelen = 0;

 　　msg.msg_flags   = 0;

 　　if (fd_to_send < 0) {

 　　　　msg.msg_control　  = NULL;

 　　　　msg.msg_controllen = 0;

 　　　　buf[1] = -fd_to_send;　　/* nonzero status means error */

 　　　　if (buf[1] == 0)

 　　　　　　　buf[1] = 1;　　/* -256, etc. would screw up protocol */

 　　} else {

 　　　　if (cmptr == NULL && (cmptr = malloc(CONTROLLEN)) == NULL)

　　　　　　　return(-1);

 　　　　msg.msg_control　  = cmptr;

 　　　　msg.msg_controllen = CONTROLLEN;

 　　　　cmp = cmptr;

 　　　　cmp->cmsg_level　= SOL_SOCKET;

 　　　　cmp->cmsg_type　 = SCM_RIGHTS;

 　　　　cmp->cmsg_len　  = RIGHTSLEN;

 　　　　*(int *)CMSG_DATA(cmp) = fd_to_send;　　/* the fd to pass */

 　　　　cmp = CMSG_NXTHDR(&msg, cmp);

 　　　　cmp->cmsg_level　 = SOL_SOCKET;

 　　　　cmp->cmsg_type　　= SCM_CREDTYPE;

 　　　　cmp->cmsg_len　　 = CREDSLEN;

 　　　　credp = (struct CREDSTRUCT *)CMSG_DATA(cmp);

#if defined(SCM_CREDENTIALS)

 　　　　credp->uid = geteuid();

 　　　　credp->gid = getegid();

 　　　　credp->pid = getpid();

#endif

 　　　　buf[1] = 0;　　　　/* zero status means OK */

 　　}

 　　buf[0] = 0;　　　　　　/* null byte flag to recv_ufd() */

 　　if (sendmsg(fd, &msg, 0) != 2)

 　　　　return(-1);

 　　return(0);

}
 
图17-15　通过UNIX域套接字发送证书
 
注意，只有在Linux上才需要初始化证书结构。
 
图17-16中的recv_ufd函数是recv_fd的修改版，它通过一个引用参数返回发送者的用户ID。
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#include "apue.h"

#include <sys/socket.h>　　　　　　　　　/* struct msghdr */

#include <sys/un.h>



#if defined(SCM_CREDS)　　　　　　　　　/* BSD interface */

#define CREDSTRUCT　　　　  cmsgcred

#define CR_UID　　　　　　　 cmcred_uid

#define SCM_CREDTYPE　　　　SCM_CREDS

#elif defined(SCM_CREDENTIALS)　　　　/* Linux interface */

#define CREDSTRUCT　　　　  ucred

#define CR_UID　　　　　　　 uid

#define CREDOPT　　　　　　　SO_PASSCRED

#define SCM_CREDTYPE　　　　SCM_CREDENTIALS

#else

#error passing credentials is unsupported!

#endif



/* size of control buffer to send/recv one file descriptor */

#define RIGHTSLEN　　　CMSG_LEN(sizeof(int))

#define CREDSLEN　　　 CMSG_LEN(sizeof(struct CREDSTRUCT))

#define　CONTROLLEN　　(RIGHTSLEN + CREDSLEN)



static struct cmsghdr　　　　*cmptr = NULL;　　　　　/* malloc'ed first time */



/*

 * Receive a file descriptor from a server process.　Also, any data

 * received is passed to (*userfunc)(STDERR_FILENO, buf, nbytes).

 * We have a 2-byte protocol for receiving the fd from send_fd().

 */

int

recv_ufd(int fd, uid_t *uidptr,

　　　　　 ssize_t (*userfunc)(int, const void *, size_t))

{



 　　struct cmsghdr　　　  *cmp;

 　　struct CREDSTRUCT 　 *credp;

 　　char　　　　　　　　　  *ptr;

 　　char　　　　　　　　　　　buf[MAXLINE];

 　　struct iovec　　　　　　iov[1];

 　　struct msghdr　　　　　 msg;

 　　int　　　　　　　　　　　 nr;

 　　int　　　　　　　　　　　 newfd = -1;

 　　int　　　　　　　　　　　 status = -1;

#if defined(CREDOPT)

 　　const int　　　　　　　　on = 1;



 　　if (setsockopt(fd, SOL_SOCKET, CREDOPT, &on, sizeof(int)) < 0) {

 　　　　err_ret("setsockopt error");

 　　　　return(-1);

 　　}

#endif

 　　for ( ; ; ) {

 　　　　　iov[0].iov_base  = buf;

 　　　　　iov[0].iov_len　 = sizeof(buf);

 　　　　　msg.msg_iov　    = iov;

 　　　　　msg.msg_iovlen　 = 1;

 　　　　　msg.msg_name　　 = NULL;

 　　　　　msg.msg_namelen　= 0;

 　　　　　if (cmptr == NULL && (cmptr = malloc(CONTROLLEN)) == NULL)

 　　　　　　　return(-1);

 　　　　　msg.msg_control　  = cmptr;

 　　　　　msg.msg_controllen = CONTROLLEN;

 　　　　　if ((nr = recvmsg(fd, &msg, 0)) < 0) {

 　　　　　　　err_ret("recvmsg error");

 　　　　　　　return(-1);

 　　　　　} else if (nr == 0) {

 　　　　　　　err_ret("connection closed by server");

 　　　　　　　return(-1);

 　　　　　}



 　　　　　/*

 　　　　　 * See if this is the final data with null & status.　Null

 　　　　　 * is next to last byte of buffer; status byte is last byte.

 　　　　　 * Zero status means there is a file descriptor to receive.

 　　　　　 */

 　　　　　for (ptr = buf; ptr < &buf[nr]; ) {

 　　　　　　　　if (*ptr++ == 0) {

 　　　　　　　　　　if (ptr != &buf[nr-1])

 　　　　　　　　　　　　err_dump("message format error");

 　　　　　　　　　　status = *ptr & 0xFF;　/* prevent sign extension */

 　　　　　　　　　　if (status == 0) {

 　　　　　　　　　　　　if (msg.msg_controllen != CONTROLLEN)

 　　　　　　　　　　　　　　err_dump("status = 0 but no fd");



 　　　　　　　　　　　　　/* process the control data */

 　　　　　　　　　　　　　for (cmp = CMSG_FIRSTHDR(&msg);

 　　　　　　　　　　　　　　cmp != NULL; cmp = CMSG_NXTHDR(&msg, cmp)) {

 　　　　　　　　　　　　　　　if (cmp->cmsg_level != SOL_SOCKET)

 　　　　　　　　　　　　　　　　　continue;

 　　　　　　　　　　　　　　　switch (cmp->cmsg_type) {

 　　　　　　　　　　　　　　　case SCM_RIGHTS:

 　　　　　　　　　　　　　　　　　newfd = *(int *)CMSG_DATA(cmp);

 　　　　　　　　　　　　　　　　　break;

 　　　　　　　　　　　　　　　case SCM_CREDTYPE:

 　　　　　　　　　　　　　　　　　credp = (struct CREDSTRUCT *)CMSG_DATA(cmp);

 　　　　　　　　　　　　　　　　　*uidptr = credp->CR_UID;

 　　　　　　　　　　　　　　　}

 　　　　　　　　　　　　　}

 　　　　　　　　　　} else {

 　　　　　　　　　　　　　newfd = -status;

 　　　　　　　　　　}

 　　　　　　　　　　nr -= 2;

 　　　　　　　　}

 　　　　　}

 　　　　　if (nr > 0 && (*userfunc)(STDERR_FILENO, buf, nr) != nr)

 　　　　　　　　return(-1);

 　　　　　if (status >= 0)　　　　　　　　　　/* final data has arrived */

 　　　　　　　　return(newfd);　　　　　　　　/* descriptor, or -status */

 　　}

}
 
图17-16　通过UNIX域套接字接收证书
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在FreeBSD中，指定SCM_CREDS表示要传送证书。在Linux中，则使用SCM_CREDENTIALS。
 
17.5　open服务器进程第1版
 
使用文件描述符传送技术开发一个 open 服务器进程——一个由一个进程执行以打开一个或多个文件。该服务器进程不是将文件内容送回调用进程，而是送回一个打开文件描述符。这使该服务器进程对任何类型的文件（如设备或套接字）而不单是普通文件都能起作用。客户进程和服务器进程用IPC交换最小量的信息：从客户进程到服务器进程传送文件名和打开模式，而从服务器进程到客户进程返回描述符。文件内容不需通过IPC交换。
 
将服务器进程设计成一个单独的可执行程序（或者是由客户进程执行的，这正是本节所说明的；或者是由守护服务器进程执行的，将在下一节进行说明）有很多优点。
 
 
 	任何客户进程都能很容易地和服务器进程联系，这类似于客户进程调用一个库函数。我们没有将特定服务硬编码在应用程序中，而是设计了一种可供重用的设施。
 
 	如若需要更改服务器进程，那么也只影响一个程序。相反，更新一个库函数可能需要更新调用此库函数的所有程序（即用连接编辑器重新连接）。共享库函数可以简化这种更新（见7.7节）。
 
 	服务器进程可以是一个设置用户ID程序，于是使其具有客户进程没有的附加权限。注意，库函数（或共享库函数）不能提供这种能力。
 

 
客户进程创建一个fd管道，然后调用fork和exec来调用服务器进程。客户进程使用一端经fd管道发送请求，服务器进程使用另一端经fd管道回送响应。
 
定义客户进程和服务器进程间的应用程序协议如下。
 
（1）客户进程通过fd管道向服务器进程发送“open<pathname> <openmode>\0”形式的请求。<openmode>是数值，以ASCII十进制数表示，是open函数的第二个参数。该请求字符串以null字符终止。
 
（2）服务器进程调用send_fd或send_err回送打开描述符或出错消息。
 
这是一个进程向其父进程发送打开描述符的实例。17.6节将修改此实例来使用一个守护服务器进程，它的服务器进程将一个描述符发送给一个完全无关的进程。
 
首先要有一个头文件open.h（见图17-17），它包括标准头文件，并且定义了函数原型。
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#include "apue.h"

#include <errno.h>



#define　　CL_OPEN "open"　　　　　　　　/* client's request for server */



int　　　　 csopen(char *, int);
 
图17-17　open.h头文件
 
main函数（见图17-18）是一个循环，它先从标准输入读一个路径名，然后将该文件复制到标准输出。它调用csopen函数来联系open服务器进程，从其返回一个打开描述符。
 
#include 　　"open.h"

#include 　　<fcntl.h>



#define　BUFFSIZE　　　　8192



int

main(int argc, char *argv[])

{

 　　int　　　 n, fd;

 　　char　　　buf[BUFFSIZE];

 　　char　　　line[MAXLINE];



 　　/* read filename to cat from stdin */

 　　while (fgets(line, MAXLINE, stdin) != NULL) {

 　　　　　if (line[strlen(line) - 1] == '\n')

 　　　　　　　line[strlen(line) - 1] = 0; /* replace newline with null */



 　　　　　/* open the file */

 　　　　　if ((fd = csopen(line, O_RDONLY)) < 0)

 　　　　　　　continue;　　　　　/* csopen() prints error from server */



 　　　　　/* and cat to stdout */

 　　　　　while ((n = read(fd, buf, BUFFSIZE)) > 0)

 　　　　　　　if (write(STDOUT_FILENO, buf, n) != n)

 　　　　　　　　　 err_sys("write error");

 　　　　　if (n < 0)

 　　　　　　　err_sys("read error");

 　　　　　close(fd);

 　　}



 　　exit(0);

}
 
图17-18　main函数
 
函数csopen（见图17-19）在创建了fd管道之后，进行了服务器进程的fork和exec操作。
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#include 　　"open.h"

#include 　　<sys/uio.h>　　　　　/* struct iovec */



/*

 * Open the file by sending the "name" and "oflag" to the

 * connection server and reading a file descriptor back.

 */

int

csopen(char *name, int oflag)

{

 　　pid_t　　　　　　pid;

 　　int　　　　　　　len;

 　　char　　　　　　 buf[10];

 　　struct iovec　 iov[3];

 　　static int　   fd[2] = { -1, -1 };



 　　if (fd[0] < 0) {　　　/* fork/exec our open server first time */

 　　　　　if (fd_pipe(fd) < 0) {

 　　　　　　　err_ret("fd_pipe error");

 　　　　　　　return(-1);

 　　　　　}

 　　　　　if ((pid = fork()) < 0) {

 　　　　　　　err_ret("fork error");

 　　　　　　　return(-1);

 　　　　　} else if (pid == 0) {　　　　　/* child */

 　　　　　　　close(fd[0]);

 　　　　　　　if (fd[1] != STDIN_FILENO &&

 　　　　　　　　dup2(fd[1], STDIN_FILENO) != STDIN_FILENO)

 　　　　　　　　　err_sys("dup2 error to stdin");

 　　　　　　　if (fd[1] != STDOUT_FILENO &&

 　　　　　　　　dup2(fd[1], STDOUT_FILENO) != STDOUT_FILENO)

 　　　　　　　　　　err_sys("dup2 error to stdout");

 　　　　　　　　if (execl("./opend", "opend", (char *)0) < 0)

 　　　　　　　　　　err_sys("execl error");

 　　　　　}

 　　　　　close(fd[1]);　　　　　　　　　　　　　/* parent */

 　　}

 　　sprintf(buf, " %d", oflag);　　　　　　　 /* oflag to ascii */

 　　iov[0].iov_base = CL_OPEN " ";　　　　　　/* string concatenation */

 　　iov[0].iov_len　= strlen(CL_OPEN) + 1;

 　　iov[1].iov_base = name;

 　　iov[1].iov_len　= strlen(name);

 　　iov[2].iov_base = buf;

 　　iov[2].iov_len　= strlen(buf) + 1;　　　　　/* +1 for null at end of buf */

 　　len = iov[0].iov_len + iov[1].iov_len + iov[2].iov_len;

 　　if (writev(fd[0], &iov[0], 3) != len) {

 　　　　err_ret("writev error");

 　　　　return(-1);

 　　}



 　　/* read descriptor, returned errors handled by write() */

 　　return(recv_fd(fd[0], write));

}
 
图17-19　csopen函数
 
子进程关闭fd管道的一端，父进程关闭另一端。作为服务器进程，子进程也将fd管道的一端复制到其标准输入和标准输出。（另一种可选择的方案是，将描述符fd[1]的ASCII表示形式作为一个参数传送给服务器进程。）
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父进程将包含路径名和打开模式的请求发送给服务器进程。最后，父进程调用recv_fd返回描述符或出错消息。如果服务器进程返回出错消息，那么父进程调用write，向标准错误输出该消息。
 
现在，让我们来看看open服务器进程。其程序是opend，由图17-19中的子进程执行。首先，要有一个opend.h头文件（见图17-20），它包括标准头文件，并且声明了全局变量和函数原型。
 
#include "apue.h"

#include <errno.h>



#define　CL_OPEN "open"　　　　　/* client's request for server */



extern char　　errmsg[];　　　　 /* error message string to return to client */

extern int　　 oflag;　　　　　　 /* open() flag: O_xxx ... */

extern char  *pathname;　　　　　/* of file to open() for client */



int　　　 cli_args(int, char **);

void 　　 handle_request(char *, int, int);
 
图17-20　opend.h头文件
 
main函数（见图17-21）经fd管道（它的标准输入）读来自客户进程的请求，然后调用函数handle_ request。
 
#include 　　"opend.h"



char     errmsg[MAXLINE];

int      oflag;

char　　 *pathname;



int

main(void)

{

 　　int　　　 nread;

 　　char　　　buf[MAXLINE];



 　　for ( ; ; ) {　/* read arg buffer from client, process request */

 　　　　　if ((nread = read(STDIN_FILENO, buf, MAXLINE)) < 0)

 　　　　　　　err_sys("read error on stream pipe");

 　　　　　else if (nread == 0)

 　　　　　　　break;　　　　　/* client has closed the stream pipe */

 　　　　　handle_request(buf, nread, STDOUT_FILENO);

 　　}

 　　exit(0);

}
 
图17-21　服务器进程main函数第1版
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图17-22中的handle_request函数承担了全部工作。它调用函数buf_args将客户进程请求分解成标准argv型的参数表，然后调用函数cli_args处理客户进程的参数。如果一切正常，则调用open打开相应文件，接着调用send_fd，经由fd管道（它的标准输出）将描述符回送给客户进程。如果出错则调用send_err回送一则出错消息，其中使用了前面说明的客户进程-服务器进程协议。
 
#include 　　"opend.h"

#include 　　<fcntl.h>



void

handle_request(char *buf, int nread, int fd)

{

 　　int　　　newfd;



 　　if (buf[nread-1] != 0) {

 　　　　snprintf(errmsg, MAXLINE-1,

 　　　　　"request not null terminated: %*.*s\n", nread, nread, buf);

 　　　　send_err(fd, -1, errmsg);

 　　　　return;

 　　}

 　　if (buf_args(buf, cli_args) < 0) {　　/* parse args & set options */

 　　　　send_err(fd, -1, errmsg);

 　　　　return;

 　　}

 　　if ((newfd = open(pathname, oflag)) < 0) {

 　　　　snprintf(errmsg, MAXLINE-1, "can't open %s: %s\n", pathname,

 　　　　　strerror(errno));

 　　　　send_err(fd, -1, errmsg);

 　　　　return;

 　　}

 　　if (send_fd(fd, newfd) < 0)　　　　　/* send the descriptor */

 　　　　err_sys("send_fd error");

 　　close(newfd);　　　　　/* we're done with descriptor */

}
 
图17-22　handle_request函数第1版
 
客户进程请求是一个以null终止的字符串，它包含由空格分隔的参数。图 17-23 中的 buf_ args函数将字符串分解成标准argv型参数表，并调用用户函数处理参数。我们使用ISO C函数strtok将字符串分割成独立的参数。
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#include "apue.h"



#define　MAXARGC　　　　50　　　　　/* max number of arguments in buf */

#define　WHITE　　　　" \t\n"　　　/* white space for tokenizing arguments */



/*

 * buf[] contains white-space-separated arguments.　We convert it to an

 * argv-style array of pointers, and call the user's function (optfunc)

 * to process the array.　We return -1 if there's a problem parsing buf,

 * else we return whatever optfunc() returns.　Note that user's buf[]

 * array is modified (nulls placed after each token).

 */

int

buf_args(char *buf, int (*optfunc)(int, char **))

{

　　char 　　*ptr, *argv[MAXARGC];

　　int　　　argc;



　　if (strtok(buf, WHITE) == NULL)　　　　/* an argv[0] is required */

　　　　return(-1);

　　argv[argc = 0] = buf;

　　while ((ptr = strtok(NULL, WHITE)) != NULL) {

　　　 if (++argc >= MAXARGC-1)　　/* -1 for room for NULL at end */

　　　　　 return(-1);

　　　 argv[argc] = ptr;

　　}

　　argv[++argc] = NULL;



　　/*

　　 * Since argv[] pointers point into the user's buf[],

　　 * user's function can just copy the pointers, even

　　 * though argv[] array will disappear on return.

　　 */

　　return((*optfunc)(argc, argv));

}
 
图17-23　buf_args函数
 
buf_args调用的服务器进程函数是cli_args（见图17-24）。它验证客户进程发送的参数个数是否正确，然后将路径名和打开模式存储在全局变量中。
 
#include　"opend.h"



/*

 * This function is called by buf_args(), which is called by

 * handle_request().　buf_args() has broken up the client's

 * buffer into an argv[]-style array, which we now process.

 */

int

cli_args(int argc, char **argv)

{

　　if (argc != 3 || strcmp(argv[0], CL_OPEN) != 0) {

　　　　strcpy(errmsg, "usage: <pathname> <oflag>\n");

　　　　return(-1);

　　}

　　pathname = argv[1];　　　　　/* save ptr to pathname to open */

　　oflag = atoi(argv[2]);

　　return(0);

}
 
图17-24　cli_args函数
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这样也就完成了open服务器进程，它由客户进程执行fork和exec来调用。在fork之前创建了一个fd管道，然后客户进程和服务器进程用其进行通信。在这种安排下，每个客户进程都有一个服务器进程。
 
17.6　open服务器进程第2版
 
在上一节中，我们开发了一个open服务器进程，由客户进程执行fork和exec调用，它说明了如何从子程序向父程序传送文件描述符。本节将开发一个守护进程方式的open服务器进程。一个服务器进程处理所有客户进程的请求。由于避免了使用 fork 和 exec，我们期望这个设计会更有效。在客户进程和服务器进程之间仍使用UNIX域套接字连接，并用实例说明在两个无关进程之间如何传送文件描述符。我们将使用 17.3 节引入的 3 个函数：serv_listen、serv_ accept和cli_conn。这个服务器进程还将演示一个服务器进程如何处理多个客户进程，为此要用到14.4节中说明的select和poll函数。
 
本节所述的客户进程类似于17.5节中的客户进程。实际上，文件main.c是完全相同的（见图17-18）。我们将在open.h头文件（见图17-17）中加入下面这行：
 
#define CS_OPEN "/tmp/opend.socket" /* server's well-known name */
 
因为在此例中调用的是cli_conn而非fork和exec，所以文件open.c与图17-19中的不同。修改后如图17-25所示。
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#include 　　"open.h"

#include 　　<sys/uio.h>　　　　　/* struct iovec */



/*

 * Open the file by sending the "name" and "oflag" to the

 * connection server and reading a file descriptor back.

 */

int

csopen(char *name, int oflag)

{

 　　int　　　　　     len;

 　　char　　　　      buf[12];

 　　struct iovec　　 iov[3];

 　　static int　　　　csfd = -1;



 　　if (csfd < 0) {　　　/* open connection to conn server */

 　　　　if ((csfd = cli_conn(CS_OPEN)) < 0) {

 　　　　　　err_ret("cli_conn error");

 　　　　　　return(-1);

 　　　　}

 　　}



 　　sprintf(buf, " %d", oflag);　　　　　/* oflag to ascii */

 　　iov[0].iov_base = CL_OPEN " ";　　　/* string concatenation */

 　　iov[0].iov_len　= strlen(CL_OPEN) + 1;

 　　iov[1].iov_base = name;

 　　iov[1].iov_len  = strlen(name);

 　　iov[2].iov_base = buf;

 　　iov[2].iov_len　= strlen(buf) + 1;　　/* null always sent */

 　　len = iov[0].iov_len + iov[1].iov_len + iov[2].iov_len;

 　　if (writev(csfd, &iov[0], 3) != len) {

 　　　　err_ret("writev error");

 　　　　return(-1);

 　　}



 　　/* read back descriptor; returned errors handled by write() */

 　　return(recv_fd(csfd, write));

}
 
图17-25　csopen函数第2版
 
客户进程与服务器进程之间使用的协议仍然相同。
 
接下来再看服务器进程。头文件opend.h（见图17-26）包括了标准头文件，并且声明了全局变量和函数原型。
 
#include "apue.h"

#include <errno.h>



#define　CS_OPEN "/tmp/opend.socket"　　/* well-known name */

#define　CL_OPEN "open"　　　　　　　　　 /* client's request for server */



extern int　　 debug;　　　　　/* nonzero if interactive (not daemon) */

extern char　　errmsg[];　　　/* error message string to return to client */

extern int　　 oflag;　　　　　/* open flag: O_xxx ... */

extern char   *pathname;　　 /* of file to open for client */



typedef struct {　　　　　　　/* one Client struct per connected client */

　int　　fd;　　　　　　　　　　/* fd, or -1 if available */

　uid_t　uid;

} Client;



extern Client　　　*client;　　　　　　　　/* ptr to malloc'ed array */

extern int　　  　  client_size;　　　　　/* # entries in client[] array */



int　　　　　 cli_args(int, char **);

int　　　　　 client_add(int, uid_t);

void 　　    client_del(int);

void 　　    loop(void);

void 　　    handle_request(char *, int, int, uid_t);
 
图17-26　opend.h头文件第2版
 
因为此服务器进程处理所有客户进程，所以它必须保存每个客户进程连接的状态。这是用在opend.h头文件中声明的client数组实现的。图17-27定义了3个处理此数组的函数。
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#include 　　"opend.h"



#define　NALLOC　　10　　　　　/* # client structs to alloc/realloc for */



static void

client_alloc(void)　　　　　　/* alloc more entries in the client[] array */

{

 　　int　　　　i;



 　　if (client == NULL)

 　　　　client = malloc(NALLOC * sizeof(Client));

 　　else

 　　　　client = realloc(client, (client_size+NALLOC)*sizeof(Client));

 　　if (client == NULL)

 　　　　err_sys("can't alloc for client array");



 　　/* initialize the new entries */

 　　for (i = client_size; i < client_size + NALLOC; i++)

 　　 　　client[i].fd = -1;　　/* fd of -1 means entry available */



 　　client_size += NALLOC;

}



/*

 * Called by loop() when connection request from a new client arrives.

 */

int

client_add(int fd, uid_t uid)

{

 　　int　　　i;



 　　if (client == NULL)　　　　　/* first time we're called */

 　　　　client_alloc();

again:

 　　for (i = 0; i < client_size; i++) {

 　　　　if (client[i].fd == -1) {　　/* find an available entry */

 　　　　　　 client[i].fd = fd;

 　　　　　　 client[i].uid = uid;

 　　　　　　 return(i);　　/* return index in client[] array */

 　　　　}

 　　}



 　　/* client array full, time to realloc for more */

 　　client_alloc();

 　　goto again;　　　　　/* and search again (will work this time) */

}



/*

 * Called by loop() when we're done with a client.

 */

void

client_del(int fd)

{

 　　int　　　　　i;



 　　for (i = 0; i < client_size; i++) {

 　　　　　if (client[i].fd == fd) {

 　　　　　　　client[i].fd = -1;

 　　　　　　　return;

 　　　　　}

 　　}

 　　log_quit("can't find client entry for fd %d", fd);

}
 
图17-27　处理client数组的3个函数
 
第一次调用client_add时，它调用client_alloc，client_alloc又调用malloc为该数组的10个登记项分配空间。在这10个登记项全部用完后，如若再调用client_add，那么client_alloc函数将调用realloc来分配附加空间。依靠这种动态空间分配，我们无需在编译时将估计的数组长度值放入头文件中从而限制client数组的长度。如果出错，这些函数将调用log_函数（见附录B），因为我们假定服务器进程是守护进程。
 
通常服务器进程会作为守护进程运行，但我们想提供一个让其前台运行的选项，同时能够把分析信息发送到标准错误输出。这应该能使服务器更容易评测和调试，特别是当用户没有权限读取那些分析信息经常写入的日志文件时。可以使用一个命令行选项来控制服务器是否在前台运行或者作为守护进程在后台运行。
 
一个系统的所有命令遵循相同的约定是非常重要的，因为这会提高它的易用性。如果有人熟悉某条命令的选项风格，那么若后面的命令使用了其他的风格，他就很容易犯错。
 
处理命令行空格就很容易发生这样的问题。有些命令需要它的选项和其参数以空格隔开，而另一些则希望它的参数直接跟在它的选项之后。如果没有遵循一个一致的规则，用户就得记住所有命令的语法，或者在尝试和调错中调用这些命令。
 
Single UNIX Specification包括了一系列的约定和规范来保证命令行语法的一致性，其中包括一些建议，如“限制每个命令行选项为一个单一的阿拉伯字符”以及“所有选项必须以‘−’作为开头字符”。
 
幸运的是，getopt函数能够帮助命令开发者以一致的方式处理命令行选项。
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#include <unistd.h>



int getopt(int argc, char * const argv[], const char *options);



extern int optind, opterr, optopt;



extern char *optarg;



　　　　　　　　　　　　　　　返回值：若所有选项被处理完，返回-1；否则，返回下一个选项字符


 
参数argc和argv与传入main函数的一样。options参数是一个包含该命令支持的选项字符的字符串。如果一个选项字符后面接了一个冒号，则表示该选项需要参数；否则，该选项不需要额外参数。举例来说，如果一条命令的用法说明如下：
 
command [-i] [-u username] [-z] filename
 
则我们可以给getopt传送一个"iu:z"作为options字符串。
 
函数getopt一般用在循环体内，循环直到getopt返回-1时退出。每次迭代中，getopt会返回下一个选项。应用程序负责筛选这些选项，判断是否有冲突，getopt仅负责解释选项并保证一个标准的格式。
 
当遇到无效的选项时，getopt返回一个问题标记（question mark）而不是这个字符。如果选项缺少参数，getopt也会返回一个问题标记，但如果选项字符串的第一个字符是冒号，getopt会直接返回冒号。而特殊的“--”格式则会导致getopt停止处理选项并返回-1。这允许用户传递以“-”开头但不是选项的参数。例如，如果有一个名字为“-bar”的文件，下面的命令行是无法删除这个文件的：
 
rm –bar
 
因为rm会试图把-bar解释为选项。正确的删除文件的命令应该是：
 
rm -- -bar
 
getopt函数支持以下4个外部变量。
 
optarg　　如果一个选项需要参数，在处理该选项时，getopt会设置optarg指向该选项的参数字符串。
 
opterr　　如果一个选项发生了错误，getopt会默认打印一条出错消息。应用程序可以通过设置opterr参数为0来禁止这个行为。
 
optind　　用来存放下一个要处理的字符串在argv数组里的下标。它从1开始，每处理一个参数，getopt都会对其递增1。
 
Optopt　　如果处理选项时发生了错误，getopt会设置optopt指向导致出错的选项字符串。
 
open服务器进程的main函数（见图17-28）定义全局变量，处理命令行选项，并且调用loop函数。如果以-d选项调用服务器进程，则服务器进程将以交互方式运行而非守护进程方式。测试服务器进程时会用到这个选项。
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#include 　　"opend.h"

#include 　　<syslog.h>



int　     debug, oflag, client_size, log_to_stderr;

char 　   errmsg[MAXLINE];

char 　  *pathname;

Client   *client = NULL;



int

main(int argc, char *argv[])

{

 　　int　　　　c;



 　　log_open("open.serv", LOG_PID, LOG_USER);



 　　opterr = 0;　　　　　　　　/* don't want getopt() writing to stderr */

 　　while ((c = getopt(argc, argv, "d")) != EOF) {

 　　　　　switch (c) {

 　　　　　case 'd':　　　　　　/* debug */

 　　　　　　　　debug = log_to_stderr = 1;

 　　　　　　　　break;



 　　　　　case '?':

 　　　　　　　　err_quit("unrecognized option: -%c", optopt);

 　　　　　}

 　　}



 　　if (debug == 0)

 　　　　daemonize("opend");



 　　loop();　　　　　/* never returns */

}
 
图17-28　服务器进程main函数第2版
 
loop函数是服务器进程的无限循环。我们将给出该函数的两种版本。图17-29是使用select的一种版本。图17-30所示的程序是使用poll的另一种版本。
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#include 　　"opend.h"

#include 　　<sys/select.h>



void

loop(void)

{

 　　int　　　 i, n, maxfd, maxi, listenfd, clifd, nread;

 　　char 　　 buf[MAXLINE];

 　　uid_t　　 uid;

 　　fd_set　　rset, allset;



 　　FD_ZERO(&allset);



 　　/* obtain fd to listen for client requests on */

 　　if ((listenfd = serv_listen(CS_OPEN)) < 0)

 　　　　log_sys("serv_listen error");

 　　FD_SET(listenfd, &allset);

 　　maxfd = listenfd;

 　　maxi = -1;



 　　for ( ; ; ) {

 　　　　rset = allset;　　　　　/* rset gets modified each time around */

 　　　　if ((n = select(maxfd + 1, &rset, NULL, NULL, NULL)) < 0)

 　　　　　　　log_sys("select error");



 　　　　if (FD_ISSET(listenfd, &rset)) {

 　　　　　　　/* accept new client request */

 　　　　　　　if ((clifd = serv_accept(listenfd, &uid)) < 0)

 　　　　　　　　　　log_sys("serv_accept error: %d", clifd);

 　　　　　　　i = client_add(clifd, uid);

 　　　　　　　FD_SET(clifd, &allset);

 　　　　　　　if (clifd > maxfd)

　　　　　　　　　　maxfd = clifd;　　/* max fd for select() */

 　　　　　　　if (i > maxi)

　　　　　　　　　　maxi = i;　　　　　/* max index in client[] array */

 　　　　　　　log_msg("new connection: uid %d, fd %d", uid, clifd);

 　　　　　　　continue;

 　　　　　}



 　　　　for (i = 0; i <= maxi; i++) {　　　　　/* go through client[] array */

 　　　　　　　if ((clifd = client[i].fd) < 0)

 　　　　　　　　　　continue;

 　　　　　　　if (FD_ISSET(clifd, &rset)) {

　　　　　　　　　　/* read argument buffer from client */

　　　　　　　　　　if ((nread = read(clifd, buf, MAXLINE)) < 0) {

 　　　　　　　　　　　　log_sys("read error on fd %d", clifd);

　　　　　　　　　　} else if (nread == 0) {

 　　　　　　　　　　　　log_msg("closed: uid %d, fd %d",

 　　　　　　　　　　　　　client[i].uid, clifd);

 　　　　　　　　　　　　client_del(clifd);　/* client has closed cxn */

 　　　　　　　　　　　　FD_CLR(clifd, &allset);

 　　　　　　　　　　　　close(clifd);

　　　　　　　　　　} else {　/* process client's request */

 　　　　　　　　　　　　handle_request(buf, nread, clifd, client[i].uid);

　　　　　　　　　　}

 　　　　　　　}

 　　　　}

 　　}

}
 
图17-29　使用select的loop函数
 
此函数调用serv_listen（见图17-8）创建服务器进程与客户进程连接的端点。此函数的其余部分是一个循环，它从select调用开始。在select返回后，可能会发生下面两种情况。
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（1）描述符listenfd可以随时读取，这意味着一个新客户进程已调用了cli_conn。为了处理这种情况，我们将调用serv_accept（见图17-9），然后为新客户进程更新client数组以及与该新客户进程相关的簿记信息。（我们要跟踪select的第一个参数的最高描述符编号，还要跟踪使用中的client数组的最高下标。）
 
（2）一个现有的客户进程的连接可以随时读取。这意味着该客户进程已经终止，或者该客户进程已发送一个新请求。如果read返回0（文件结束），则表示客户进程已终止。如果read返回的值大于0，则表示有一个新请求需处理，可以调用request来处理。
 
用allset描述符集跟踪当前使用的描述符。当新客户进程连接至服务器进程时，会打开此描述符集的相应位。当该客户进程终止时，会关闭相应位。
 
因为客户进程的所有描述符都由内核自动关闭（包括与服务器进程的连接），所以我们总能知道什么时候客户进程终止了，该终止是否是自愿的。这与XSI IPC机制不同。
 
使用poll函数的loop函数如图17-30所示。
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#include 　　"opend.h"

#include 　　<poll.h>



#define NALLOC　　10　　/* # pollfd structs to alloc/realloc */



static struct pollfd *

grow_pollfd(struct pollfd *pfd, int *maxfd)

{

 　　int　　　　　　　 i;

 　　int　　　　　　　 oldmax = *maxfd;

 　　int　　　　　　　 newmax = oldmax + NALLOC;



 　　if ((pfd = realloc(pfd, newmax * sizeof(struct pollfd))) == NULL)

 　　　　err_sys("realloc error");

 　　for (i = oldmax; i < newmax; i++) {

 　　　　pfd[i].fd = -1;

 　　　　pfd[i].events = POLLIN;

 　　　　pfd[i].revents = 0;

 　　}

 　　*maxfd = newmax;

 　　return(pfd);

}



void

loop(void)

{

 　　int　　　　　　　　　i, listenfd, clifd, nread;

 　　char　　　　　　　　 buf[MAXLINE];

 　　uid_t　　　　　　　　uid;

 　　struct pollfd 　  *pollfd;

 　　int　　　　　　　　　numfd = 1;

 　　int　　　　　　　　　maxfd = NALLOC;



 　　if ((pollfd = malloc(NALLOC * sizeof(struct pollfd))) == NULL)

 　　　　err_sys("malloc error");

 　　for (i = 0; i < NALLOC; i++) {

 　　　　pollfd[i].fd = -1;

 　　　　pollfd[i].events = POLLIN;

 　　　　pollfd[i].revents = 0;

 　　}



 　　/* obtain fd to listen for client requests on */

 　　if ((listenfd = serv_listen(CS_OPEN)) < 0)

 　　　　log_sys("serv_listen error");

 　　client_add(listenfd, 0);　　/* we use [0] for listenfd */

 　　pollfd[0].fd = listenfd;



 　　for ( ; ; ) {

 　　　　if (poll(pollfd, numfd, -1) < 0)

　　　　　　　log_sys("poll error");



 　　　　　if (pollfd[0].revents & POLLIN) {

　　　　　　　　/* accept new client request */

 　　　　　　　if ((clifd = serv_accept(listenfd, &uid)) < 0)

　　　　　　　　　　log_sys("serv_accept error: %d", clifd);

 　　　　　　　client_add(clifd, uid);



 　　　　　　　/* possibly increase the size of the pollfd array */

 　　　　　　　if (numfd == maxfd)

 　　　　　　　　　pollfd = grow_pollfd(pollfd, &maxfd);

 　　　　　　　pollfd[numfd].fd = clifd;

 　　　　　　　pollfd[numfd].events = POLLIN;

 　　　　　　　pollfd[numfd].revents = 0;

 　　　　　　　numfd++;

 　　　　　　　log_msg("new connection: uid %d, fd %d", uid, clifd);

 　　　　　}



 　　　　　for (i = 1; i < numfd; i++) {

 　　　　　　　if (pollfd[i].revents & POLLHUP) {

 　　　　　　　　　goto hungup;

 　　　　　　　} else if (pollfd[i].revents & POLLIN) {

 　　　　　　　　　/* read argument buffer from client */

 　　　　　　　　　if ((nread = read(pollfd[i].fd, buf, MAXLINE)) < 0) {

 　　　　　　　　　　　log_sys("read error on fd %d", pollfd[i].fd);

 　　　　　　　　　} else if (nread == 0) {

hungup:

 　　　　　　　　　　　/* the client closed the connection */

 　　　　　　　　　　　log_msg("closed: uid %d, fd %d",

 　　　　　　　　　　　　client[i].uid, pollfd[i].fd);

 　　　　　　　　　　　client_del(pollfd[i].fd);

 　　　　　　　　　　　close(pollfd[i].fd);

 　　　　　　　　　　　if (i < (numfd-1)) {

 　　　　　　　　　　　　　　/* pack the array */

 　　　　　　　　　　　　　　pollfd[i].fd = pollfd[numfd-1].fd;

 　　　　　　　　　　　　　　pollfd[i].events = pollfd[numfd-1].events;

 　　　　　　　　　　　　　　pollfd[i].revents = pollfd[numfd-1].revents;

 　　　　　　　　　　　　　　i--;　　　　　/* recheck this entry */

 　　　　　　　　　　　　}

 　　　　　　　　　　　　numfd--;

 　　　　　　　　　　} else {　　　　　　/* process client's request */

 　　　　　　　　　　　　handle_request(buf, nread, pollfd[i].fd,

 　　　　　　　　　　　　　client[i].uid);

 　　　　　　　　　　}

 　　　　　　　}

 　　　　}

 　　}

}
 
图17-30　使用poll的loop函数
 
为使打开描述符的数量能与客户进程数量相当，我们动态地为pollfd结构的数字分配空间，所使用的策略与client_alloc函数分配client数组（见图17-27）时所使用的相同。
 
pollfd数组中的第一个登记项（下标号为0）用于listenfd描述符。新客户进程连接的到达由listenfd描述符中的POLLIN指示。如同前述，调用serv_accept来接受该连接。
 
对于一个现有的客户进程，应当处理来自poll的两个不同事件：由POLLHUP指示的客户进程终止，由POLLIN指示的来自现有客户进程的一个新请求。即使连接的服务器端还在读取数据，客户端也能够关闭它这端的连接。即使连接的一端已经被标记为挂起状态，服务器仍然可以读取在它那端队列里的数据。当然，服务器在收到客户端的挂起消息时用close关闭到客户端的连接，可有效地抛弃所有队列里的数据。剩下的请求也没必要处理，因为我们已经无法发回响应的信息。
 
如同此函数的select版本，调用request函数（见图17-31）处理来自客户进程的新请求。此函数类似于其早期版本（见图17-22）。它调用同一函数buf_args（见图17-23），buf_args又调用cli_args（见图17-24），但是，因为它是在一个守护进程中运行的，所以它在日志文件中记录出错消息，而不是在标准错误上打印它们。
 

  668 

 
#include 　　"opend.h"

#include 　　<fcntl.h>



void

handle_request(char *buf, int nread, int clifd, uid_t uid)

{

 　　int　　　　　newfd;



 　　if (buf[nread-1] != 0) {

 　　　　snprintf(errmsg, MAXLINE-1,

 　　　　　"request from uid %d not null terminated: %*.*s\n",

 　　　　　uid, nread, nread, buf);

 　　　　send_err(clifd, -1, errmsg);

 　　　　return;

 　　}

 　　log_msg("request: %s, from uid %d", buf, uid);



 　　/* parse the arguments, set options */

 　　if (buf_args(buf, cli_args) < 0) {

 　　　　send_err(clifd, -1, errmsg);

 　　　　log_msg(errmsg);

 　　　　return;

 　　}



 　　if ((newfd = open(pathname, oflag)) < 0) {

 　　　　snprintf(errmsg, MAXLINE-1, "can't open %s: %s\n",

 　　　　　pathname, strerror(errno));

 　　　　send_err(clifd, -1, errmsg);

 　　　　log_msg(errmsg);

 　　　　return;

 　　}



 　　/* send the descriptor */

 　　if (send_fd(clifd, newfd) < 0)

 　　　　log_sys("send_fd error");

 　　log_msg("sent fd %d over fd %d for %s", newfd, clifd, pathname);

 　　close(newfd);　　　　　/* we're done with descriptor */

}
 
图17-31　request函数
 
这就完成了open服务器进程第2版，它仅使用一个守护进程就处理了所有的客户进程请求。
 
17.7　小结
 
本章的关键点是如何在两个进程之间传送文件描述符，以及服务器进程如何接受来自客户进程的唯一连接。虽然所有平台都支持UNIX域套接字（见图15-1），但是各种实现都有不同之处，这使我们很难开发可移植的应用程序。
 
整章都使用了UNIX域套接字。我们了解了如何用它们来实现一个全双工的管道以及如何利用它们来适应14.4节的I/O多路转接函数以间接地用于XSI消息队列中。
 
本章给出了open服务器进程的两个版本。一个版本由客户进程用fork和exec直接调用，另一版本是一个守护服务器进程处理所有客户进程请求。这两个版本均采用文件描述符传送和接收函数。
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我们还展示了如何使用getopt函数来保证命令行参数处理的一致性。最终的open服务器进程版本使用了getopt函数、17.3节中引入的客户进程-服务器进程连接函数和14.4节中的I/O多路转接函数。
 
习题
 
17.1　我们选择使用图17-3中的UNIX域数据报套接字，因为它们能够保留消息边界。描述如果使用常规的管道实现需要哪些必要的改动。我们应当如何避免额外的两次消息复制呢？
 
17.2　使用本章描述的文件描述符传送函数以及8.9节中描述的父进程和子进程同步例程，编写具有下列功能的程序。该程序调用fork，子进程打开一个现有的文件并将打开文件描述符传送给父进程。然后，子进程调用lseek确定该文件的当前读、写位置，通知父进程。父进程读该文件的当前偏移量，并打印它以便验证。若此文件按上述方式从子进程传递到父进程，则父进程和子进程应共享同一个文件表项，所以当子进程每次更改该文件当前偏移量时，这种更改应该也会影响父进程的描述符。使子进程将该文件定位至一个不同偏移量，并再次通知父进程。
 
17.3　图17-20和图17-21中的程序分别定义和声明了全局变量，两者的区别是什么？
 
17.4　改写buf_args函数（见图17-23），删除其中对argv数组长度的编译时限制。请用动态存储分配。
 
17.5　描述优化图17-29和图17-30中的loop函数的方法，并实现之。
 
17.6　在serv_listen函数（见图17-8）中，如果文件已经存在，我们要先对代表UNIX域套接字的文件名解除链接。为了防止误删除不是套接字的文件，我们可以先调用stat来验证文件类型。解释这种做法存在的两个问题。
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17.7　请给出两种可能的方法，使得单次调用sendmsg可以传递多个文件描述符。尝试实现你的方法并验证你的操作系统是否支持这样的方法。
 


第18章　终端I/O
 
18.1　引言
 
无论在哪种操作系统中，终端I/O的处理都是非常繁琐的一部分，UNIX系统也不例外。在大多数版本的编程手册中，终端I/O手册页常常是最长的几个部分之一。
 
在20世纪70年代后期，系统Ⅲ在V7的基础上发展出一套不同的终端例程，由此使得UNIX终端I/O处理分立为两种不同的风格。一种是系统Ⅲ的风格，由System V沿续下来，另一种是V7的风格，它成为BSD派生的系统终端I/O处理的标准。如同信号一样，POSIX.1在这两种风格的基础上制定了终端I/O标准。本章将介绍POSIX.1的所有终端函数，以及某些平台特有的增加部分。
 
终端I/O系统之所以如此复杂，部分原因是人们将其应用在众多的事物上：终端、计算机之间的直接连接、调制解调器以及打印机等。
 
18.2　综述
 
终端I/O有两种不同的工作模式。
 
（1）规范模式输入处理。在这种模式中，对终端输入以行为单位进行处理。对于每个读请求，终端驱动程序最多返回一行。
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（2）非规范模式输入处理。输入字符不装配成行。
 
如果不做特殊处理，则默认模式是规范模式。例如，若shell将标准输入重定向到终端，并用read和write将标准输入复制到标准输出，则终端以规范模式进行工作，每次read最多返回一行。处理整个屏幕的程序（如vi编辑器）使用非规范模式，原因是它的命令可能是由单个字符组成的，并且不以换行符终止。另外，该编辑器并不希望系统对特殊字符进行处理，因为这些字符很可能与编辑命令中使用的字符重叠。例如，Ctrl+D字符通常是终端的文件结束符，但在vi中它是向下滚动半个屏幕的命令。
 
 
 V7和较早的BSD风格类的终端驱动程序支持3种终端输入模式：（a）精细加工模式（输入装配成行，并对特殊字符进行处理）；（b）原始模式（输入不装配成行，也不对特殊字符进行处理）；（c）cbreak模式（输入不装配成行，但对某些特殊字符进行处理）。图18-20显示了将终端设置为cbreak或原始模式的POSIX.1函数。
 

 
POSIX.1定义了11个特殊输入字符，其中9个可以更改。本书已经用到了其中几个，例如文件结束符（通常是Ctrl+D）和挂起字符（通常是Ctrl+Z）。18.3节将对这些字符逐一进行说明。
 
可以认为终端设备是由通常位于内核中的终端驱动程序控制的。每个终端设备都有一个输入队列和一个输出队列，如图18-1所示。
 
[image: ..\14-0434yds排版CMM\UNIX环境高级编程（第3版）tu\1801.tif]
 
图18-1　终端设备的输入、输出队列的逻辑结构
 
对此图要说明以下几点。
 
 
 	如果打开了回显功能，则在输入队列和输出队列之间有一个隐含的连接。
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 	输入队列的长度MAX_INPUT（见图2-11）是有限值。当一个特定设备的输入队列已经填满时，系统的行为将依赖于实现。这种情况发生时大多数UNIX系统回显响铃字符。
 
 	图中没有显示另一个输入限制MAX_CANON。这个限制是一个规范输入行的最大字节数。
 
 	虽然输出队列的长度通常也是有限的，但是程序并不能获得这个定义其长度的常量，因为当输出队列将要填满时，内核便直接使写进程休眠，直至写队列中有可用的空间。
 
 	我们将说明如何使用冲洗函数tcflush冲洗输入或输出队列。与此类似，在说明tcsetattr函数时，将会了解到如何通知系统只有在输出队列为空时，才能改变一个终端的属性。（例如，想要改变输出属性时就要这样做。）也可以通知系统，让它在改变终端属性时丢弃输入队列中的所有东西。（如果正在改变输入属性，或者在规范模式和非规范模式之间进行转换，就需要这样做，以免以错误的模式对以前输入的字符进行解释。）
 

 
大多数UNIX系统在一个称为终端行规程（terminal line discipline）的模块中进行全部的规范处理。可以将这个模块设想成一个盒子，位于内核通用读、写函数和实际设备驱动程序之间（见图18-2）。
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[image: ..\14-0434yds排版CMM\UNIX环境高级编程（第3版）tu\1802.tif]
 
图18-2　终端行规程
 
由于将规范处理分离为单独的模块，所有的终端驱动程序都能够一致地支持规范处理。在第19章讨论伪终端时还将使用此图。
 
所有可以检测和更改的终端设备特性都包含在termios结构中。该结构定义在头文件<termios.h>中，本章使用这一头文件。
 
struct termios {

　tcflag_t　c_iflag;　　　/* input flags */

　tcflag_t　c_oflag;　　　/* output flags */

　tcflag_t　c_cflag;　　　/* control flags */

　tcflag_t　c_lflag;　　　/* local flags */

　cc_t　    c_cc[NCCS]; 　/* control characters */

};
 
粗略地说，输入标志通过终端设备驱动程序控制字符的输入（例如，剥除输入字节的第8位，允许输入奇偶校验），输出标志则控制驱动程序输出（例如，执行输出处理、将换行符转换为CR/LF），控制标志影响RS-232串行线（例如，忽略调制解调器的状态线、每个字符的一个或两个停止位），本地标志影响驱动程序和用户之间的接口（例如，回显打开或关闭、可视地擦除字符、允许终端产生的信号以及对后台输出的作业控制停止信号）。
 
类型tcflag_t的长度足以保存每个标志值，它经常被定义为unsigned int或者unsigned long。c_cc数组包含了所有可以更改的特殊字符。NCCS是该数组中元素的数量，其典型值在15～20（因为大多数UNIX实现支持的特殊字符都比POSIX.1所定义的11个要多）。cc_t类型的长度足以保存每个特殊字符，典型的是unsigned char。
 
 
 POSIX标准之前的System V版本有一个名为<termio.h>的头文件和一个名为termio的数据结构。为了与先前版本有所区别，POSIX.1在这些名字后加了一个s。
 

 
图18-3至图18-6列出了所有可以更改以影响终端设备特性的终端标志。注意，虽然Single UNIX Specification定义了供所有平台启动所用的公共子集，但所有实现都有自己的扩充部分。这些扩充部分大多来自各系统之间的历史差异。18.5节将对这些标志值进行详细的讨论。
 
[image: 18-3.jpg]
 
图18-3　c_cflag终端标志
 
[image: 18-4.jpg]
 
图18-4　c_iflag终端标志
 
[image: 18-5.jpg]
 
图18-5　c_lflag终端标志
 
给出了所有可用的选项后，如何才能检测和更改终端设备的这些特性呢？图18-7总结并列出了Single UNIX Specification所定义的对终端设备进行操作的各个函数。（列出的所有函数都是POSIX基本规范的组成部分。9.7节已说明了tcgetpgrp、tcgetsid和tcsetpgrp函数。）
 
注意，对终端设备，Single UNIX Specification没有使用经典的ioctl，而是使用了图18-7中列出的13个函数。这样做的理由是：对于终端设备的ioctl函数，其最后一个参数的数据类型随执行动作的不同而改变。因此，不可能对参数进行类型检查。
 
[image: 18-6.jpg]
 
图18-6　c_oflag终端标志
 
[image: 18-7.jpg]
 
图18-7　终端I/O函数汇总
 
虽然在终端设备上进行操作的只有13个函数，但是图18-7中的前两个函数（tcgetattr和tcsetattr）能处理大约70种不同的标志（见图18-3至图18-6）。终端设备有大量选项可供使用，此外，对于某个特定设备（假设其为终端、调制解调器、打印机或任何其他设备），决定其需要哪些选项对我们来说也是一种挑战，这些都使得对终端设备的处理变得异常复杂。
 
图18-7中列出的13个函数之间的关系如图18-8所示。
 
 
 POSIX.1没有指定将波特率信息存储在termios结构中的什么地方，它依赖于实现的细节。某些系统，如Solaris，将此信息存储在c_cflag字段中。Linux和BSD派生的系统，如FreeBSD和Mac OS X，则在此结构中有两个分开的字段：一个存储输入速度，另一个存储输出速度。
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[image: ..\14-0434yds排版CMM\UNIX环境高级编程（第3版）tu\1808.tif]
 
图18-8　与终端有关的各函数之间的关系
 
18.3　特殊输入字符
 
POSIX.1定义了11个在输入时要特殊处理的字符。实现定义了另外一些特殊字符。图18-9总结并列出了这些特殊字符。
 
[image: 18-9.jpg]
 
图18-9　终端特殊输入字符汇总
 
在POSIX.1的11个特殊字符中，其中有9个字符的值可以任意更改。不能更改的两个特殊字符是换行符和回车符（分别是\n和\r），也可能是STOP和START字符（依赖于实现）。为了更改，只需要修改termios结构中c_cc数组的相应项。该数组中的元素都用名字作为下标进行引用，每个名字都以字母V开头（见图18-9中的第3列）。
 
POSIX.1允许禁止使用这些字符。若将c_cc数组中的某项设置为_POSIX_VDISABLE的值，则禁止使用相应特殊字符。
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 在Single UNIX Specification的早期版本中，支持_POSIX_VDISABLE是可选项，现在则是必选项。
 
 本书讨论的4种平台都支持此特性。Linux 3.2.0和Solaris 10将_POSIX_VDISABLE定义为0，而FreeBSD 8.0和Mac OS X 10.6.8则将其定义为0xff。
 
 某些早期的UNIX系统所用的方法是：若与某一特性相应的特殊输入字符是0，则禁止使用该特性。
 

 
实例
 
在详细说明各特殊字符之前，先看一个更改特殊字符的小程序。图18-10所示的程序禁用中断字符，并将文件结束符设置为Ctrl+B。
 
#include "apue.h"

#include <termios.h>



int

main(void)

{

 　　struct termios　　term;

 　　long　　　　　　　　vdisable;



 　　if (isatty(STDIN_FILENO) == 0)

 　　　　err_quit("standard input is not a terminal device");



 　　if ((vdisable = fpathconf(STDIN_FILENO, _PC_VDISABLE)) < 0)

 　　　　err_quit("fpathconf error or _POSIX_VDISABLE not in effect");



 　　if (tcgetattr(STDIN_FILENO, &term) < 0)　　/* fetch tty state */

 　　　　err_sys("tcgetattr error");



 　　term.c_cc[VINTR] = vdisable;　　/* disable INTR character */

 　　term.c_cc[VEOF]　= 2;　　　　　　 /* EOF is Control-B */



 　　if (tcsetattr(STDIN_FILENO, TCSAFLUSH, &term) < 0)

 　　　　err_sys("tcsetattr error");



 　　exit(0);

}
 
图18-10　禁用中断字符并更改文件结束符
 
对此程序要说明以下几点。
 
 
 	仅当标准输入是终端设备时才修改终端特殊字符。调用isatty（见18.9节）对此进行检测。
 
 	用fpathconf获取_POSIX_VDISABLE值。
 
 	函数tcgetattr（见18.4节）从内核获取termios结构。在修改了此结构后，调用tcsetattr函数设置属性，只有我们所希望修改的属性被更改了，而其他属性保持不变。
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 	禁用中断键与忽略中断信号是不同的。图 18-10 中的程序所做的只是禁用使终端驱动程序产生SIGINT信号的特殊字符。我们仍可使用kill函数将该信号发送至进程。
 

 
下面较详细地说明各个特殊字符。我们称这些字符为特殊输入字符，但是其中有两个字符——STOP和START（Ctrl+S和Ctrl+Q），在输出时也要进行特殊处理。注意，这些字符中的大多数在被终端驱动程序识别并进行特殊处理后会被丢弃，并不将它们返回给执行读终端操作的进程。返回给读进程的例外字符是换行符（NL、EOL、EOL2）和回车符（CR）。
 
CR　　回车符。不能更改此字符。以规范模式进行输入时识别此字符。在已设置ICANON（规范模式）和ICRNL（将CR映射为NL）但并未设置IGNCR（忽略CR）时，CR字符会被转换成NL，并具有与NL字符相同的作用。此字符返回给读进程（很可能是在转换为NL之后）。
 
DISCARD　　丢弃符。在扩充模式（IEXTEN）下进行输入时识别此字符。在输入另一个DISCARD字符之前或在丢弃条件被清除之前（见FLUSHO选项），此字符使后续输出都被丢弃。此字符在处理后即被丢弃（即不传送给读进程）。
 
DSUSP　　延迟挂起作业控制字符（delayed-suspend job-control character）。在扩充模式（IEXTEN）下，若支持作业控制，并且已设置ISIG标志，则在输入时识别此字符。与SUSP字符的相同之处是：延迟挂起字符产生SIGTSTP信号，该信号被发送至前台进程组中的所有进程（见图9-7）。但是，信号产生的时间并不是在键入延迟挂起字符之时，而是在某个进程从控制终端读到此字符时才产生。此字符在处理后即被丢弃（即不传送给读进程）。
 
EOF　　文件结束符。以规范模式（ICANON）进行输入时识别此字符。当键入此字符时，等待被读的所有字节都被立即传送给读进程。如果没有字节等待读，则返回0。在行首输入一个EOF字符是向程序指示文件结束的正常方式。此字符在规范模式下处理后即被丢弃（即不传送给读进程）。
 
EOL　　附加的行定界符，与NL作用相同。以规范模式（ICANON）进行输入时识别此字符，并将此字符返回给读进程。但是此字符不常用。
 
EOL2　　另一个行定界符，与NL作用相同。对此字符的处理方式与EOL字符相同。
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ERASE　　向前擦除字符（退格）。以规范模式（ICANON）输入时识别此字符。它擦除行中的前一个字符，但不会超越行首字符擦除上一行中的字符。此字符在规范模式下处理后即被丢弃（即不传送给读进程）。
 
ERASE2　　供替换的向前擦除字符（退格）。对此字符的处理与向前擦除字符（ERASE）完全相同。
 
INTR　　中断字符。若已设置ISIG标志，则在输入中识别此字符。它产生SIGINT信号，该信号被送至前台进程组中的所有进程（见图9-7）。此字符在处理后即被丢弃（即不传送给读进程）。
 
KILL　　杀死字符。（名字“杀死”在这里又一次被误用，kill函数是用来将某一信号发送给进程的，而此字符应被称为行擦除符，它与信号毫无关系。）以规范模式（ICANON）输入时识别此字符。它擦除一整行，并在处理后即被丢弃（即不传送给读进程）。
 
LNEXT　　下一个字符的字面值（literal-next character）。以扩充方式（IEXTEN）输入时识别此字符，它使下一个字符的任何特殊含意都被忽略。这对本节提及的所有特殊字符都起作用。使用这一字符可向程序键入任何字符。LNEXT字符在处理后即被丢弃，但输入的下一个字符被传送给读进程。
 
NL　　换行字符，也被称为行定界符。不能更改此字符。以规范模式（ICANON）输入时识别此字符。此字符返回给读进程。
 
QUIT　　退出字符。若已设置ISIG标志，则在输入中识别此字符。它产生SIGQUIT信号，该信号又被送至前台进程组中的所有进程（见图9-7）。此字符在处理后即被丢弃（即不传送给读进程）。
 
回忆图10-1，INTR和QUIT的区别是：QUIT字符不仅按默认规则终止进程，而且还产生一个core文件。
 
REPRINT　　再打印字符。以扩充规范模式（设置了IEXTEN和ICANON标志）进行输入时识别此字符。它使所有未读的输入被输出（再回显）。此字符在处理后即被丢弃（即不传送给读进程）。
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START　　启动字符。若已设置IXON标志，则在输入中识别此字符。若已设置IXOFF标志，则自动产生此字符作为输出。已设置IXON时，接收到的START字符使停止的输出（由以前输入的STOP字符造成）重新启动。在此情形下，此字符在处理后即被丢弃（即不传送给读进程）。
 
已设置IXOFF标志时，若新的输入不会使输入缓冲区溢出，则终端驱动程序自动产生一个START字符来恢复以前被停止的输入。
 
STATUS　　BSD的状态请求字符。以扩充规范模式（设置了IEXTEN和ICANON标志）进行输入时识别此字符。它产生SIGINFO信号，该信号又被送至前台进程组中的所有进程（见图9-7）。另外，如果没有设置NOKERNINFO标志，则有关前台进程组的状态信息也显示在终端上。此字符在处理后即被丢弃（即不传送给读进程）。
 
STOP　　停止字符。若已设置IXON标志，则在输入中识别此字符。若已设置IXOFF标志，则自动产生此字符作为输出。已设置IXON时，接收到STOP字符则停止输出。在此情形下，此字符在处理后即被丢弃（即不传送给读进程）。当输入一个START字符后，被停止的输出重新启动。
 
已设置IXOFF时，终端驱动程序自动产生一个STOP字符以防止输入缓冲区溢出。
 
SUSP　　挂起作业控制字符。若支持作业控制并且已设置ISIG标志，则在输入中识别此字符。它产生SIGTSTP信号，该信号又被送至前台进程组的所有进程（见图9-7）。此字符在处理后即被丢弃（即不传送给读进程）。
 
WERASE　　字擦除字符。以扩充规范模式（设置了IEXTEN和ICANON标志）进行输入时识别此字符。它使前一个字被擦除。首先，它向前跳过任意一个空白字符（空格或制表符），然后再向前跃过前一记号，使光标处在前一个记号的第一个字符位置上。通常，前一个记号在碰到一个空白字符时即终止。但是，可通过设置ALTWERASE标志来改变这个行为。此标志使前一个记号在碰到第一个非字母、非数字字符时即终止。此字符在处理后即被丢弃（即不传送给读进程）。
 
需要为终端设备定义的另一个“字符”是BREAK字符。BREAK实际上并不是一个字符，而是在异步串行数据传送时发生的一个条件。根据串行接口的不同，可以有多种方式通知设备驱动程序发生了BREAK条件。
 
 
 大多数早期的串行终端都有一个标记为BREAK的键，用其可以产生BREAK条件，这就是为什么大多数人认为BREAK就是一个字符的原因。某些较新的终端键盘没有BREAK键。在PC上，BREAK键可能有其他用途。例如，键入Ctrl+BREAK可中断Windows命令解释器。
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对于异步串行数据传送，BREAK是一个0值的位序列，其持续时间长于要求发送一个字节的时间。整个0值位序列被视为是一个BREAK。18.8节将说明如何用tcsendbreak函数发送一个BREAK。
 
18.4　获得和设置终端属性
 
为了获得和设置termios结构，可以调用tcgetattr和tcsetattr函数。这样就可以检测和修改各种终端选项标志和特殊字符，使终端按我们所希望的方式进行操作。
 
#include <termios.h>



int tcgetattr(int fd, struct termios *termptr);



int tcsetattr(int fd, int opt, const struct termios *termptr);



　　　　　　　　　　　　　　　两个函数的返回值：若成功，返回0；若出错，返回-1


 
这两个函数都有一个指向termios结构的指针作为其参数，它们或者返回当前终端的属性，或者设置该终端的属性。因为这两个函数只对终端设备进行操作，所以若fd没有引用终端设备则出错返回-1，errno设置为ENOTTY。
 
tcsetattr的参数opt使我们可以指定在什么时候新的终端属性才起作用。opt可以指定为下列常量中的一个。
 
TCSANOW　　更改立即发生。
 
TCSADRAIN　　发送了所有输出后更改才发生。若更改输出参数则应使用此选项。
 
TCSAFLUSH　　发送了所有输出后更改才发生。更进一步，在更改发生时未读的所有输入数据都被丢弃（冲洗）。
 
Tcsetattr函数的返回状态在使用时易产生混淆。如果它执行了任意一种所要求的动作，即使未能执行所有要求的动作，它也返回OK（表示成功）。如果该函数返回OK，则我们有责任检查该函数是否执行了所有要求的动作。这就意味着，在调用tcsetattr设置所希望的属性后，需调用tcgetattr，然后将实际终端属性与所希望的属性相比较，以检测两者是否有区别。
 
在终端第一次被打开时，其属性视具体情况而定。一些系统可能会将终端属性初始化为具体实现所定义的值，另一些系统可能会保留并使用最后一次使用终端时的属性值。通过打开一个带有O_TTY_INIT标志（见3.3节）的驱动设备，可以确认终端的行为是否遵循标准，这样就能在调用tcgetattr时，确保初始化termios结构中的任何非标准部分，使得在修改属性和调用tcgetattr时，终端的表现符合预期。
 
18.5　终端选项标志
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本节将列出所有不同的终端选项标志，扩展图18-3至图18-6中的说明。我们将按字母顺序列出各个选项并指出每个选项出现在4个终端标志字段中的哪一个。（从选项名字中看不出它所处的字段。）还将说明每个选项是否是Single UNIX Specification定义的，并列出了支持该选项的平台。
 
列出的所有选项标志（除所谓的屏蔽字标志外）都用一位或多位（设置或清除）表示。屏蔽字标志定义多个位，它们组合在一起，可以定义一组值。屏蔽字标志有一个定义名，每个值也有一个名字。例如，为了设置字符长度，首先用字符长度屏蔽字标志CSIZE将表示字符长度的位清0，然后设置下列值之一：CS5、CS6、CS7或CS8。
 
由Linux和Solaris支持的6个延迟值也有屏蔽字标志：BSDLY、CRDLY、FFDLY、NLDLY、TABDLY和VTDLY。对于每个延迟值的长度请参阅Solaris中的termio(7I)手册页。在所有情况下，延迟屏蔽字为0就表示没有延迟。如果指定了延迟，则由OFILL和OFDEL标志决定是由驱动器进行实际延迟还是只传输填充字符。
 
实例
 
图18-11演示了如何使用这些屏蔽字标志取一个值或者设置一个值。
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#include "apue.h"

#include <termios.h>



int

main(void)

{

 　　struct termios　　term;



 　　if (tcgetattr(STDIN_FILENO, &term) < 0)

 　　　　err_sys("tcgetattr error");



 　　switch (term.c_cflag & CSIZE) {

 　　case CS5:

 　　　　printf("5 bits/byte\n");

 　　　　break;

 　　case CS6:

 　　　　printf("6 bits/byte\n");

 　　　　break;

 　　case CS7:

 　　　　printf("7 bits/byte\n");

 　　　　break;

 　　case CS8:

 　　　　printf("8 bits/byte\n");

 　　　　break;

 　　default:

 　　　　printf("unknown bits/byte\n");

 　　}



 　　term.c_cflag &= ~CSIZE;　　　　　/* zero out the bits */

 　　term.c_cflag |= CS8;　　　　　　 /* set 8 bits/byte */

 　　if (tcsetattr(STDIN_FILENO, TCSANOW, &term) < 0)

 　　　　err_sys("tcsetattr error");



 　　exit(0);

}
 
图18-11　tcgetattr和tcsetattr实例
 
下面说明各选项标志。
 
ALTWERASE　　（c_lflag，FreeBSD、Mac OS X）已设置此标志时，若输入WERASE字符，则使用一个替换的字擦除算法。它不是向前移动到前一个空白字符为止，而是向前移动到第一个非字母、非数字字符为止。
 
BRKINT　　（c_iflag，POSIX.1、FreeBSD、Linux、Mac OS X、Solaris）若已设置此标志，而未设置IGNBRK，则在接到BREAK时，冲洗输入、输出队列，并产生一个SIGINT信号。如果此终端设备是一个控制终端，则此信号就是为前台进程组产生的。
 
若未设置IGNBRK和BRKINT，但是设置了PARMRK，则BREAK被读作一个3字节序列\377、\0和\0；若也未设置PARMRK，则BREAK被读作单个字符\0。
 
BSDLY　　（c_oflag，XSI、Linux、Solaris）退格延迟屏蔽字。此屏蔽字的值是BS0或BS1。
 
CBAUDEXT　　（c_cflag，Solaris）扩充的波特率。用于允许大于B38400的波特率。（将在18.7节讨论波特率。）
 
CCAR_OFLOW　　（c_cflag，FreeBSD、Mac OS X）使用RS-232调制解调器DCD（Data-Carrier- Detect，数据载波检测）信号打开输出的硬件流控制。这与早期的MDMBUF标志相同。
 
CCTS_OFLOW　　（c_cflag，FreeBSD、Mac OS X、Solaris）使用RS-232 CTS（Clear-To-Send，清除发送）信号打开输出的硬件流控制。
 
CDSR_OFLOW　　（c_cflag，FreeBSD、Mac OS X）根据RS-232 DSR（Data-Set-Ready，数据准备就绪）信号进行输出的流控制。
 
CDTR_IFLOW　　（c_cflag，FreeBSD，Mac OS X）根据RS-232 DTR（Data-Terminal-Ready，数据终端就绪）信号进行输入的流控制。
 
CIBAUDEXT　　（c_cflag，Solaris）扩充的输入波特率。用于允许大于B38400的输入波特率。（将在18.7节讨论波特率。）
 
CIGNORE　　（c_cflag，FreeBSD、Mac OS X）忽略控制标志。
 
CLOCAL（c_cflag，POSIX.1、FreeBSD、Linux、Mac OS X、Solaris）若设置，则忽略调制解调器状态线。这通常意味着该设备是直接连接的。例如，若未设置此标志，则打开一个终端设备常常会遭遇阻塞，直到调制解调器回应呼叫并建立连接。
 
CMSPAR　　（c_oflag，Linux）选择标记或空奇偶校验。若已设置PARODD，则奇偶校验位总是1（标记奇偶校验）。否则奇偶校验位总是0（空奇偶校验）。
 

  685 

 
CRDLY　　（c_oflag，XSI、Linux、Solaris）回车延迟屏蔽字。此屏蔽字的可能值是CR0、 CR1、 CR2和CR3。
 
CREAD　　（c_cflag，POSIX.1、FreeBSD、Linux、Mac OS X、Solaris）若设置，则接收者被启用，可以接收字符。
 
CRTSCTS　　（c_cflag，FreeBSD、Linux、Mac OS X、Solaris）其行为依赖于平台。对于Solaris，若设置该标志，则允许带外硬件流控制。在另外3个平台上，则既允许带内硬件流控制，又允许带外硬件流控制（等价于CCTS_OFLOW|CRTS_IFLOW）。
 
CRTS_IFLOW　　（c_cflag，FreeBSD、Mac OS X、Solaris）输入的RTS（Request-To-Send，请求发送）流控制。
 
CRTSXOFF　　（c_cflag，Solaris）若设置，则允许带内硬件流控制，RS-232 RTS信号的状态控制了流控制。
 
CSIZE　　（c_cflag，POSIX.1、FreeBSD、Linux、Mac OS X、Solaris）此字段是一个屏蔽字标志，它指定发送和接收的每个字节的位数。此长度不包括可能有的奇偶校验位。由此屏蔽字定义的字段值是CS5、CS6、CS7和CS8，分别表示每个字节包含5位、6位、7位和8位。
 
CSTOPB　　（c_cflag，POSIX.1、FreeBSD、Linux、Mac OS X、Solaris）若设置，则使用两个停止位，否则只使用一个停止位。
 
ECHO　　（c_lflag，POSIX.1、FreeBSD、Linux、Mac OS X、Solaris）若设置，则将输入字符回显到终端设备。在规范模式和非规范模式下都可以回显输入字符。
 
ECHOCTL　　（c_lflag，FreeBSD、Linux、Mac OS X、Solaris）若设置并且也设置ECHO，则除ASCII TAB、ASCII NL以及START和STOP字符外，其他ASCII控制字符（ASCII字符集中0至八进制37对应的字符）都被回显为^X，其中，X是相应控制字符加上八进制100所构成的字符。例如，ASCII Ctrl+A字符（八进制1）被回显为^A。ASCII DELETE字符（八进制177）则回显为^?。若未设置此标志，则ASCII控制字符按其原样回显。如同ECHO标志，在规范模式和非规范模式下，此标志对控制字符回显都起作用。
 
应当了解的是，某些系统以不同方式回显EOF字符，因为EOF的典型值是Ctrl+D（而Ctrl+D是ASCII EOT字符，它可能使某些终端挂断）。请查看有关手册。
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ECHOE　　（c_lflag，POSIX.1、FreeBSD、Linux、Mac OS X、Solaris）若设置并且也设置ICANON，则ERASE字符从显示中擦除当前行中的最后一个字符。这通常是在终端驱动程序中写一个3字符序列实现的，该序列是：退格、空格、退格。
 
若支持WERASE字符，则ECHOE用一个或若干个上述3字符序列擦除前一个字。
 
若支持ECHOPRT标志，则这里说明的关于ECHOE的动作是在假定未设置ECHOPRT标志的条件下得出的。
 
ECHOK　　（c_lflag，POSIX.1、FreeBSD、Linux、Mac OS X、Solaris）若设置并且也设置ICANON，则KILL字符从显示中擦除当前行，或者输出NL字符（用以强调已擦除整个行）。
 
若支持ECHOKE标志，则关于ECHOK的说明是在假定未设置ECHOKE标志的条件下得出的。
 
ECHOKE　　（c_lflag，FreeBSD、Linux、Mac OS X、Solaris）若设置并且也设置ICANON，则回显KILL字符的方式是擦除行中的每一个字符。擦除每个字符的方法则由ECHOE和ECHOPRT标志选择。
 
ECHONL　　（c_lflag，POSIX.1、FreeBSD、Linux、Mac OS X、Solaris）若设置并且也设置ICANON，即使没有设置ECHO，也回显NL字符。
 
ECHOPRT　　（c_lflag，FreeBSD、Linux、Mac OS X、Solaris）若设置并且也设置ICANON和ECHO，则ERASE字符（以及WERASE字符，若受到支持）使所有正被擦除的字符按它们被擦除的方式被打印。这一方法常在硬拷贝终端上显示其作用，它可以使我们确切地看到哪些字符正被刪除。
 
EXTPROC　　（c_lflag，FreeBSD、Linux、Mac OS X）若设置，规范字符处理在操作系统之外执行。如果串行通信外设卡能够通过执行某些行规程处理减轻主机处理器负载，那么就可以这样设置。在使用伪终端时（见第19章），也可以这样设置。
 
FFDLY　　（c_oflag，XSI、Linux、Solaris）换页延迟屏蔽字。此屏蔽字标志值是FF0或FF1。
 
FLUSHO　　（c_lflag，FreeBSD、Linux、Mac OS X、Solaris）若设置，则冲洗输出。当键入DISCARD字符时设置此标志。当键入另一个DISCARD字符时，此标志被清除。可以通过设置或清除此终端标志来设置或清除此条件。
 
HUPCL　　（c_cflag，POSIX.1、FreeBSD、Linux、Mac OS X、Solaris）若设置，则当最后一个进程关闭设备时，调制解调器控制线降至低电平（也就是调制解调器的连接断开）。
 

  687 

 
ICANON　　（c_lflag，POSIX.1、FreeBSD、Linux、Mac OS X、Solaris）若设置，则按规范模式工作（见18.10节）。这使下列字符起作用：EOF、EOL、EOL2、ERASE、KILL、REPRINT、STATUS和WERASE。输入字符被装配成行。
 
如果不以规范模式工作，则读请求直接从输入队列取字符。在至少接到MIN个字节或两个字节之间的超时值TIME到期时，read才返回。详细情况参见18.11节。
 
ICRNL　　（c_iflag，POSIX.1、FreeBSD、Linux、Mac OS X、Solaris）若设置并且未设置IGNCR，则将接收到的CR字符转换成NL字符。
 
IEXTEN　　（c_lflag，POSIX.1、FreeBSD、Linux、Mac OS X、Solaris）若设置，则识别并处理扩展的、由实现定义的特殊字符。
 
IGNBRK　　（c_iflag，POSIX.1、FreeBSD、Linux、Mac OS X、Solaris）在已设置时，忽略输入中的BREAK条件。关于BREAK条件是产生SIGINT信号还是被作为数据读取，见BRKINT。
 
IGNCR　　（c_iflag，POSIX.1、FreeBSD、Linux、Mac OS X、Solaris）若设置，则忽略接收到的CR字符。若未设置此标志，而设置了ICRNL标志，则有可能将接收到的CR字符转换成NL字符。
 
IGNPAR　　（c_iflag，POSIX.1、FreeBSD、Linux、Mac OS X、Solaris）在已设置时，忽略带有结构出错（非BREAK）或奇偶出错的输入字节。
 
IMAXBEL　　（c_iflag，FreeBSD、Linux、Mac OS X、Solaris）当输入队列满时响铃。
 
INLCR　　（c_iflag，POSIX.1、FreeBSD、Linux、Mac OS X、Solaris）若设置，则将接收到的NL字符转换成CR字符。
 
INPCK　　（c_iflag，POSIX.1、FreeBSD、Linux、Mac OS X、Solaris）在已设置时，使输入奇偶校验起作用。若未设置INPCK，则使输入奇偶校验不起作用。
 
奇偶“产生和检测”和“输入奇偶校验”是两件不同的事。奇偶位的产生和检测是由PARENB标志控制的。设置该标志后通常会使串行接口的设备驱动程序对输出字符产生奇偶位，对输入字符则验证其奇偶性。PARODD标志决定该奇偶性应当是奇还是偶。如果一个其奇偶性错误的输入字符到来，则检查INPCK标志的状态。若已设置此标志，则检查IGNPAR标志（以决定是否应忽略带奇偶出错的输入字节）；若不应忽略此输入字节，则检查PARMRK标志以决定应该向读进程传送哪些字符。
 
ISIG　　（c_lflag，POSIX.1、FreeBSD、Linux、Mac OS X、Solaris）若设置，则判别输入字符是否是要产生终端信号的特殊字符（INTR、QUIT、SUSP和DSUSP）；若是，则产生相应信号。
 
ISTRIP　　（c_iflag，POSIX.1、FreeBSD、Linux、Mac OS X、Solaris）在已设置此标志时，有效输入字节被剥离为7位。在未设置时，则处理全部8位。
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IUCLC　　（c_iflag，Linux、Solaris）将输入的大写字符转换成小写字符。
 
IUTF8　　（c_iflag，Linux、Mac OS X）允许使用UTF-8多字节字符进行字符擦除处理。
 
IXANY　　（c_iflag，XSI、FreeBSD、Linux、Mac OS X、Solaris）使任何字符都能重新启动输出。
 
IXOFF　　（c_iflag，POSIX.1、FreeBSD、Linux、Mac OS X、Solaris）若设置，则使启动-停止输入控制起作用。当终端驱动程序发现输入队列将要填满时，输出一个STOP字符。此字符应当由发送数据的设备识别，并使该设备停止。此后，当把输入队列中的字符处理完毕之后，终端驱动程序将输出一个START字符，使该设备恢复发送数据。
 
IXON　　（c_iflag，POSIX.1、FreeBSD、Linux、Mac OS X、Solaris）若设置，则使启动-停止输出控制起作用。当终端驱动程序接收到一个STOP字符时，输出停止。在输出停止时，下一个START字符恢复输出。若未设置此标志，则START和STOP字符由进程作为一般字符读取。
 
MDMBUF　　（c_cflag，FreeBSD、Mac OS X）按照调制解调器的载波标志进行输出流控制。这是CCAR_OFLOW标志的曾用名。
 
NLDLY　　（c_oflag，XSI、Linux、Solaris）换行延迟屏蔽字。此屏蔽字的值是NL0或NL1。
 
NOFLSH　　（c_lflag，POSIX.1、FreeBSD、Linux、Mac OS X、Solaris）按系统默认，当终端驱动程序产生SIGINT和SIGQUIT信号时，输入和输出队列都被冲洗。另外，当它产生SIGSUSP信号时，输入队列被冲洗。若已设置NOFLSH标志，则在这些信号产生时，不对输入、输出队列进行常规冲洗。
 
NOKERNINFO　　（c_lflag，FreeBSD、Mac OS X）在已设置时，此标志阻止STATUS字符打印前台进程组的信息。但是无论是否设置此标志，STATUS字符都会使SIGINFO信号被发送至前台进程组。
 
OCRNL　　（c_oflag，XSI、FreeBSD、Linux、Solaris）若设置，则将输出的CR字符转换成NL字符。
 
OFDEL　　（c_oflag，XSI、Linux、Solaris）若设置，则输出填充字符是ASCII DEL；否则是ASCII NUL。见OFILL标志。
 
OFILL　　（c_oflag，XSI、Linux、Solaris）若设置，则传递填充字符（ASCII DEL或ASCII NUL，见OFDEL标志）以实现延迟，而不使用时间延迟。见6个延迟屏蔽字标志：BSDLY、 CRDLY、 FFDLY、 NLDLY、TABDLY和VTDLY。
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OLCUC　　（c_oflag，Linux、Solaris）若设置，则将小写字符转换成大写字符。
 
NLCR　　（c_oflag，XSI、FreeBSD、Linux、Mac OS X、Solaris）若设置，将输出的NL字符转换成CR-NL字符。
 
ONLRET　　（c_oflag，XSI、FreeBSD、Linux、Solaris）若设置，则假定输出的NL字符执行回车功能。
 
ONOCR　　（c_oflag，XSI、FreeBSD、Linux、Solaris）若设置，则在0列不输出CR字符。
 
ONOEOT　　（c_oflag，FreeBSD、Mac OS X）若设置，则在输出中丢弃EOT（^D）字符。在某些将Ctrl+D解释为挂断的终端上，设置此标志可能是必需的。
 
OPOST　　（c_oflag，POSIX.1、FreeBSD、Linux、Mac OS X、Solaris）若设置，则进行实现定义的输出处理。关于c_oflag字段的各种实现定义标志，见图18-6。
 
OXTABS　　（c_oflag，FreeBSD、Mac OS X）若设置，则制表符在输出中被扩展为空格。这与将水平制表符延迟（TABDLY）设置为XTABS或TAB3所产生的效果相同。
 
PARENB　　（c_cflag，POSIX.1、FreeBSD、Linux、Mac OS X、Solaris）若设置，则对输出字符产生奇偶位，对输入字符执行奇偶校验。若已设置PARODD，则奇偶校验是奇校验；否则是偶校验。另见对INPCK、IGNPAR和PARMRK标志的讨论。
 
PAREXT　　（c_cflag，Solaris）选择标记或空奇偶性。若PARODD设置，则奇偶位总是1（标记奇偶性）；否则，奇偶位总是0（空奇偶性）。
 
PARMRK　　（c_iflag，POSIX.1、FreeBSD、Linux、Mac OS X、Solaris）在已设置时，若未设置IGNPAR，则带有结构出错（非BREAK）的字节或带有奇偶出错的字节将被进程读作一个3字符序列\377、\0和X，其中X是接收到的出错字节。若未设置ISTRIP，则一个有效的\377被传送给进程时为\377, \377。若未设置IGNPAR和PARMRK，则带有结构出错误或奇偶出错的字节都被读作一个字符\0。
 
PARODD　　（c_cflag，POSIX.1、FreeBSD、Linux、Mac OS X、Solaris）若设置，则输出和输入字符的奇偶性都是奇，否则为偶。注意，PARENB标志控制奇偶性的产生和检测。
 
在已设置CMSPAR或PAREXT标志时，PARODD标志也控制是否使用标记或空奇偶性。
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PENDIN　　（c_lflag，FreeBSD、Linux、Mac OS X、Solaris）若设置，则在下一个字符输入时，尚未读的任何输入都由系统重新打印。这一动作与键入REPRINT字符时的作用相类似。
 
TABDLY　　（c_oflag，XSI、Linux、Mac OS X、Solaris）水平制表符延迟屏蔽字。此屏蔽字的值是TAB0、TAB1、TAB2或TAB3。
 
XTABS的值等于TAB3。此值使系统将制表符扩展成空格。系统假定制表符的长度为8个空格，不能更改此假定。
 
TOSTOP　　（c_lflag，POSIX.1、FreeBSD、Linux、Mac OS X、Solaris）若设置，并且该实现支持作业控制，则将信号SIGTTOU送到试图写控制终端的一个后台进程的进程组。按默认，此信号暂停该进程组中所有进程。如果写控制终端的后台进程忽略或阻塞此信号，则终端驱动程序不产生此信号。
 
VTDLY　　（c_oflag，XSI、Linux、Solaris）垂直制表延迟屏蔽字。此屏蔽字的值是VT0和VT1。
 
XCASE　　（c_lflag，Linux、Solaris）若设置，并且也设置ICANON，则终端被假定为只支持大写字符，全部输入转换为小写字符。要想输入一个大写字符，要在其前面加一个反斜杠。与之类似，系统输出大写字符时，也要在其前面加一个反斜杠。（如今这个选项标志已弃用，因为只支持大写字符的终端即使不是全部，也是绝大部分都已经不存在了。）
 
18.6　stty命令
 
上节说明的所有选项都可以被检查和更改：在程序中用tcgetattr和tcsetattr函数（见18.4节）进行检查和更改；在命令行（或shell脚本）中用stty(1)命令进行检查和更改。简单地说，stty(1)命令就是图18-7中所列的前6个函数的接口。如果以-a选项执行此命令，则显示终端的所有选项：
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$ stty -a

speed 9600 baud; 25 rows; 80 columns;

lflags: icanon isig iexten echo echoe -echok echoke -echonl echoctl

 　　　 　-echoprt -altwerase -noflsh -tostop -flusho pendin -nokerninfo

 　　　 　-extproc

iflags: -istrip icrnl -inlcr -igncr ixon -ixoff ixany imaxbel -ignbrk

 　　　 　brkint -inpck -ignpar -parmrk

oflags: opost onlcr -ocrnl -oxtabs -onocr -onlret

cflags: cread cs8 -parenb -parodd hupcl -clocal -cstopb -crtscts

 　　　 　-dsrflow -dtrflow -mdmbuf

cchars: discard = ^O; dsusp = ^Y; eof = ^D; eol = ;

 　　　 　eol2 = ; erase = ^H; erase2 = ^?; intr = ^C; kill = ^U;

 　　　 　lnext = ^V; min = 1; quit = ^; reprint = ^R; start = ^Q;

 　　　 　status = ^T; stop = ^S; susp = ^Z; time = 0; werase = ^W;


 
若在选项名前有一个连字符，表示该选项禁用。最后4行显示各终端特殊字符（见18.3节）的当前设置。第1行显示当前终端窗口的行数和列数，18.12节将对终端窗口大小进行讨论。
 
 
 stty命令使用它的标准输入获得和设置终端的选项标志。虽然，某些较早的实现使用标准输出，但POSIX.1要求使用标准输入。本书讨论的4种实现提供了在标准输入上操作的stty版本。这意味着如果希望了解名为ttyla的终端的设置，那么可以键入
 
 stty -a </dev/ttyla
 

 
18.7　波特率函数
 
术语波特率（baud rate）是一个历史沿用的术语，现在它指的是“位/秒”（bit per second）。虽然大多数终端设备对输入和输出使用同一波特率，但是只要硬件许可，可以将它们设置为两个不同值。
 
#include <termios.h>



speed_t cfgetispeed(const struct termios *termptr);



speed_t cfgetospeed(const struct termios *termptr);



　　　　　　　　　　　　　　　两个函数的返回值：波特率值



int cfsetispeed(struct termios *termptr, speed_t speed);



int cfsetospeed(struct termios *termptr, speed_t speed);



　　　　　　　　　　　　　　　两个函数的返回值：若成功，返回0；出错，返回-1


 
两个cfget函数的返回值，以及两个cfset函数的speed参数都是下列常量之一：B50、 B75、 B110、 B134、 B150、 B200、 B300、 B600、 B1200、 B1800、 B2400、 B4800、 B9600、 B19200或B38400。常量B0表示“挂断”。在调用tcsetattr时，如若将输出波特率指定为B0，则调制解调器的控制线就不再起作用。
 
 
 大多数系统定义了另外的波特率值，如B57600以及B115250。
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使用这些函数时，必须认识到输入、输出波特率是存储在设备的termios结构中的，如图18-8所示。在调用两个cfget函数中的任意一个之前，要先用tcgetattr获得设备的termios结构。与此类似，在调用两个cfset函数中的任意一个之后，要做的就是在termios结构中设置波特率。为使这种更改影响到设备，应当调用tcsetattr函数。即使所设置的两个波特率中的任意一个出错，在调用tcsetattr之前可能也不会发现这个错误。
 
这4个波特率函数的存在使应用程序不必考虑具体实现在termios结构中表示波特率的不同方法。Linux和BSD派生的平台趋向于存储波特率的数值。（即9 600波特率存储成值9 600），然而，System V派生的平台（如Solaris）趋向于以位屏蔽方式编码波特率。从cfget函数得到的速度值以及向cfset函数传送的速度值都未转换，与它们存储在termios结构中的表示形式一样。
 
18.8　行控制函数
 
下列4个函数提供了终端设备的行控制能力。4个函数都要求参数fd引用一个终端设备，否则出错返回-1，errno设置为ENOTTY。
 
#include <termios.h>



int tcdrain(int fd);



int tcflow(int fd, int action);



int tcflush(int fd, int queue);



int tcsendbreak(int fd, int duration);



　　　　　　　　　　　　　　　4个函数的返回值：若成功，返回0；若出错，返回-1


 
tcdrain函数等待所有输出都被传递。tcflow函数用于对输入和输出流控制进行控制。action参数必定是下列4个值之一。
 
TCOOFF　　输出被挂起。
 
TCOON　　重新启动以前被挂起的输出。
 
TCIOFF　　系统发送一个STOP字符，这将使终端设备停止发送数据。
 
TCION　　系统发送一个START字符，这将使终端设备恢复发送数据。
 
tcflush函数冲洗（抛弃）输入缓冲区（其中的数据是终端驱动程序已接收到，但用户程序尚未读取的）或输出缓冲区（其中的数据是用户程序已经写入，但尚未被传递的）。queue参数必定是下列3个常量之一。
 
TCIFLUSH　　冲洗输入队列。
 
TCOFLUSH　　冲洗输出队列。
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TCIOFLUSH　　冲洗输入队列和输出队列。
 
tcsendbreak函数在一个指定的时间区间内发送连续的0值位流。若duration参数为0，则此种传递延续0.25～0.5秒。POSIX.1说明若duration非0，则传递时间依赖于实现。
 
18.9　终端标识
 
历史上，在大多数UNIX系统版本中，控制终端的名字一直是/dev/tty。POSIX.1提供了一个运行时函数，可用来确定控制终端的名字。
 
#include <stdio.h>



char *ctermid(char *ptr);



　　　　　　　返回值：若成功，返回指向控制终端名的指针；若出错，返回指向空字符串的指针


 
如果ptr非空，则被认为是一个指针，指向长度至少为L_ctermid字节的数组，进程的控制终端名存储在该数组中。常量L_ctermid被定义在<stdio.h>中。若ptr是一个空指针，则该函数为数组（通常作为静态变量）分配空间。同样，进程的控制终端名存储在该数组中。
 
在这两种情况中，该数组的起始地址都被作为函数值返回。因为大多数UNIX系统都使用/dev/tty作为控制终端名，所以此函数的主要作用是改善向其他操作系统的可移植性。
 
 
 当调用ctermid函数时，本书说明的所有4种平台都返回字符串/dev/tty。
 

 
实例：ctermid函数
 
图18-12给出的是POSIX.1 ctermid函数的一个实现。
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#include 　　<stdio.h>

#include 　　<string.h>



static char　ctermid_name[L_ctermid];



char *

ctermid(char *str)

{

 　　if (str == NULL)

 　　　　str = ctermid_name;

 　　return(strcpy(str, "/dev/tty"));　　/* strcpy() returns str */

}
 
图18-12　POSIX.1 ctermid函数的实现
 
注意，因为我们无法确定调用者的缓冲区大小，所以也就不能防止过度使用该缓冲区。
 
另外还有两个UNIX系统比较感兴趣的函数：isatty和ttyname。如果文件描述符引用一个终端设备，则isatty返回真。ttyname返回的是在该文件描述符上打开的终端设备的路径名。
 
#include <unistd.h>



int isatty(int fd);



　　　　　　　　　　　　　　　返回值：若为终端设备，返回1（真）；否则，返回0（假）



char *ttyname(int fd);



　　　　　　　　　　　　　　　返回值：指向终端路径名的指针；若出错，返回NULL


 
实例：isatty函数
 
如图18-13所示，isatty函数很容易实现。我们只尝试使用了其中一个终端专用函数（如果成功执行，它不改变任何东西），并查看了其返回值。
 
#include 　　<termios.h>



int

isatty(int fd)

{

 　　struct termios　ts;



 　　return(tcgetattr(fd, &ts) != -1); /* true if no error (is a tty) */

}
 
图18-13　POSIX.1 isatty函数的实现
 
使用图18-14中的程序测试isatty函数。
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#include "apue.h"



int

main(void)

{

　　printf("fd 0: %s\n", isatty(0) ? "tty" : "not a tty");

　　printf("fd 1: %s\n", isatty(1) ? "tty" : "not a tty");

　　printf("fd 2: %s\n", isatty(2) ? "tty" : "not a tty");

　　exit(0);

}
 
图18-14　测试isatty函数
 
运行图18-14中的程序，得到如下输出：
 
$ ./a.out

fd 0: tty

fd 1: tty

fd 2: tty

$ ./a.out </etc/passwd 2>/dev/null

fd 0: not a tty

fd 1: tty

fd 2: not a tty


 
实例：ttyname函数
 
ttyname函数（见图18-15）比较长，因为它要搜索所有设备表项，寻找匹配项。
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#include 　　<sys/stat.h>

#include 　　<dirent.h>

#include 　　<limits.h>

#include 　　<string.h>

#include 　　<termios.h>

#include 　　<unistd.h>

#include 　　<stdlib.h>



struct devdir {

 　　struct devdir 　　*d_next;

 　　char　　　　　　　　*d_name;

};



static struct devdir　　　　*head;

static struct devdir　　　　*tail;

static char　　　　　　　　　 pathname[_POSIX_PATH_MAX + 1];



static void

add(char *dirname)

{

 　　struct devdir 　　　　　*ddp;

 　　int　　　　　　　　　　　 len;



 　　len = strlen(dirname);



 　　/*

 　　 * Skip ., .., and /dev/fd.

 　　 */

 　　if ((dirname[len-1] == '.') && (dirname[len-2] == '/' ||

 　　　(dirname[len-2] == '.' && dirname[len-3] == '/')))

 　　　　return;

 　　if (strcmp(dirname, "/dev/fd") == 0)

 　　　　return;

 　　if ((ddp = malloc(sizeof(struct devdir))) == NULL)

 　　　　return;

 　　if ((ddp->d_name = strdup(dirname)) == NULL) {

 　　　　free(ddp);

 　　　　return;

 　　}



 　　ddp->d_next = NULL;

 　　if (tail == NULL) {

 　　　　head = ddp;

 　　　　tail = ddp;

 　　} else {

 　　　　tail->d_next = ddp;

 　　　　tail = ddp;

 　　}

}



static void

cleanup(void)

{

 　　struct devdir 　　*ddp, *nddp;



 　　ddp = head;

 　　while (ddp != NULL) {

 　　　　nddp = ddp->d_next;

 　　　　free(ddp->d_name);

 　　　　free(ddp);

 　　　　ddp = nddp;

 　　}

 　　head = NULL;

 　　tail = NULL;

}



static char *

searchdir(char *dirname, struct stat *fdstatp)

{

 　　struct stat　　　　devstat;

 　　DIR　　　　　　  　*dp;

 　　int　　　　　　   　devlen;

 　　struct dirent 　 *dirp;



 　　strcpy(pathname, dirname);

 　　if ((dp = opendir(dirname)) == NULL)

 　　　　return(NULL);

 　　strcat(pathname, "/");

 　　devlen = strlen(pathname);

 　　while ((dirp = readdir(dp)) != NULL) {

 　　　　strncpy(pathname + devlen, dirp->d_name,

 　　　　　_POSIX_PATH_MAX - devlen);



 　　　　/*

 　　　　 * Skip aliases.

 　　　　 */

 　　　　if (strcmp(pathname, "/dev/stdin") == 0 ||

 　　　　　strcmp(pathname, "/dev/stdout") == 0 ||

 　　　　　strcmp(pathname, "/dev/stderr") == 0)

 　　　　　　continue;

 　　　　if (stat(pathname, &devstat) < 0)

 　　　　　　　continue;

 　　　　if (S_ISDIR(devstat.st_mode)) {

 　　　　　　　add(pathname);

 　　　　　　　continue;

 　　　　}

 　　　　if (devstat.st_ino == fdstatp->st_ino &&

 　　　　　devstat.st_dev == fdstatp->st_dev) {　　/* found a match */

 　　　　　　　closedir(dp);

 　　　　　　　return(pathname);

 　　　　}

 　　}



 　　closedir(dp);

 　　return(NULL);

}



char *

ttyname(int fd)

{

 　　struct stat　　　　fdstat;

 　　struct devdir 　　*ddp;

 　　char　　　　　　　　*rval;



 　　if (isatty(fd) == 0)

 　　　　return(NULL);

 　　if (fstat(fd, &fdstat) < 0)

 　　　　return(NULL);

 　　if (S_ISCHR(fdstat.st_mode) == 0)

 　　　　return(NULL);



 　　rval = searchdir("/dev", &fdstat);

 　　if (rval == NULL) {

 　　　　for (ddp = head; ddp != NULL; ddp = ddp->d_next)

 　　　　　　　if ((rval = searchdir(ddp->d_name, &fdstat)) != NULL)

 　　　　　　　　　break;

 　　}



 　　cleanup();

 　　return(rval);

}
 
图18-15　POSIX.1 ttyname函数的实现
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此处使用的技术是读/dev目录，寻找具有相同设备号和i节点编号的表项。回忆4.24节，每个文件系统都有一个唯一的设备号（stat结构中的st_dev字段，见4.2节），文件系统中的每个目录项都有一个唯一的i节点编号（stat结构中的st_ino字段）。在此函数中，假定在找到一个匹配的设备号和匹配的i节点号时，就能找到所希望的目录项。也能验证这两个表项与st_rdev字段（终端设备的主设备号和次设备号）相匹配，还能验证该目录项是一个字符特殊文件。但是，因为已经验证了文件描述符参数既是一个终端设备，又是一个字符特殊文件，而且因为在UNIX系统中，匹配的设备号和i节点编号是唯一的，所以不再需要进行另外的比较。
 
终端名可能在/dev的子目录中。于是，需要搜索/dev下的整个文件系统树。我们跳过了少数几个可能会产生不正确结果或奇怪结果的目录：/dev/.、/dev/..和/dev/fd。我们也跳过了一些别名：/dev/stdin、/dev/stdout以及/dev/stderr，因为它们是/dev/fd目录中文件的符号链接。
 
使用图18-16中的程序测试这一实现。
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#include "apue.h"



int

main(void)

{

 　　char *name;

 　　if (isatty(0)) {

 　　　　name = ttyname(0);

 　　　　if (name == NULL)

 　　　　　　name = "undefined";

 　　} else {

 　　　　name = "not a tty";

 　　}

 　　printf("fd 0: %s\n", name);



 　　if (isatty(1)) {

 　　　　name = ttyname(1);

 　　　　if (name == NULL)

 　　　　　　name = "undefined";

 　　} else {

 　　　　name = "not a tty";

 　　}

 　　printf("fd 1: %s\n", name);



 　　if (isatty(2)) {

 　　　　name = ttyname(2);

 　　　　if (name == NULL)

 　　　　　　name = "undefined";

 　　} else {

 　　　　name = "not a tty";

 　　}

 　　printf("fd 2: %s\n", name);



 　　exit(0);

}
 
图18-16　测试ttyname函数
 
运行图18-16中的程序，得到：
 
$ ./a.out < /dev/console 2> /dev/null

fd 0: /dev/console

fd 1: /dev/ttys001

fd 2: not a tty


 
18.10　规范模式
 
规范模式很简单：发一个读请求，当一行已经输入后，终端驱动程序即返回。以下几个条件造成读返回。
 
 
 	所请求的字节数已读到时，读返回。无需读一个完整的行。如果读了部分行，那么也不会丢失任何信息，下一次读从前一次读的停止处开始。
 
 	当读到一个行定界符时，读返回。回忆18.3节，在规范模式中，下列字符被解释为“行结束”：NL、EOL、EOL2和EOF。另外，在18.5节中也曾说明，如若已设置ICRNL，但未设置IGNCR，则CR字符的作用与NL字符一样，也终止一行。
 在这5个行界定符中，只有一个EOF符在终端驱动程序对其进行处理后即被丢弃。其他4个字符则作为其所处行的最后一个字符返回给调用者。
 
 	如果捕捉到信号，并且该函数不再自动重启（见10.5节），则读也返回。
 

 
实例：getpass函数
 
下面说明getpass函数，它读入用户在终端上键入的口令。此函数由login(1)和crypt(1)程序调用。为了读取口令，该函数必须关闭回显，但仍可使终端以规范模式进行工作，因为不管键入什么作为口令都能构成一个完整行。图18-17显示了UNIX系统中的一个典型实现。
 
#include 　　<signal.h>

#include 　　<stdio.h>

#include 　　<termios.h>



#define　MAX_PASS_LEN　　　8　　　　　/* max #chars for user to enter */



char *

getpass(const char *prompt)

{

 　　static char　　　 buf[MAX_PASS_LEN + 1];　　/* null byte at end */

 　　char　　　　　　　 *ptr;

 　　sigset_t　　      sig, osig;

 　　struct termios   ts, ots;

 　　FILE　　　　 　　 *fp;

 　　int  　 　　      c;



 　　if ((fp = fopen(ctermid(NULL), "r+")) == NULL)

 　　　　　return(NULL);

 　　setbuf(fp, NULL);



 　　sigemptyset(&sig);

 　　sigaddset(&sig, SIGINT);　　　　　　　/* block SIGINT */

 　　sigaddset(&sig, SIGTSTP);　　　　　　/* block SIGTSTP */

 　　sigprocmask(SIG_BLOCK, &sig, &osig);　　/* and save mask */



 　　tcgetattr(fileno(fp), &ts);　　　　　/* save tty state */

 　　ots = ts;　　　　　　　　　　　　　　　　/* structure copy */

 　　ts.c_lflag &= ~(ECHO | ECHOE | ECHOK | ECHONL);

 　　tcsetattr(fileno(fp), TCSAFLUSH, &ts);

 　　fputs(prompt, fp);



 　　ptr = buf;

 　　while ((c = getc(fp)) != EOF && c != '\n')

 　　　　if (ptr < &buf[MAX_PASS_LEN])

 　　　　　　*ptr++ = c;

 　　*ptr = 0;　　　　　　　　 /* null terminate */

 　　putc('\n', fp);　　　　　/* we echo a newline */



 　　tcsetattr(fileno(fp), TCSAFLUSH, &ots); /* restore TTY state */

 　　sigprocmask(SIG_SETMASK, &osig, NULL);　/* restore mask */

 　　fclose(fp);　　　　　　　　/* done with /dev/tty */

 　　return(buf);

}
 
图18-17　getpass函数的实现
 
在此例中，应当考虑以下几个方面。
 
 
 	调用ctermid函数打开控制终端，而不是直接将/dev/tty写在程序中。
 
 	只是读、写控制终端，如果不能以读、写模式打开此设备则出错返回。还有一些其他的使用约定。在GNU C函数库版本中，如果不能以读、写模式打开控制终端，则getpass读取标准输入，写到标准错误。在Solaris版本中，如果不能打开控制终端，则getpass失败。
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 	阻塞两个信号SIGINT和SIGTSTP。如果不这样做，在输入INTR字符时就会使程序异常中止，并使终端仍处于禁止回显状态。与此相类似，输入SUSP字符时将使程序停止，并且在禁止回显状态下返回到shell。在禁止回显时，我们选择了阻塞这两个信号。如果这两个信号是在读取口令期间产生的，则它们会一直被保持，直到getpass返回，阻塞才会解除。也有其他方法来处理这些信号。有些getpass版本忽略SIGINT（保存它以前的动作），在返回前将其动作恢复为以前的值。这就意味着，在该信号被忽略期间所发生的这种信号都会丢失。其他版本捕捉SIGINT（保存它以前的动作），如果捕捉到此信号，则在恢复终端状态和信号动作后，用kill函数发送此信号。没有一个getpass版本捕捉、忽略或阻塞SIGQUIT，所以输入QUIT字符就会使程序异常中止，并且很可能使终端保持在禁止回显状态。
 
 	请注意，某些shell，尤其是Korn shell，在以交互方式读输入时都使终端处于回显状态。这些shell是提供命令行编辑的shell，因此在每次输入一条交互命令时都处理终端状态。所以如果在这种shell下调用此程序，并且用QUIT字符使其异常中止，则这种shell可能会恢复回显状态。其他不提供命令行编辑的shell（如Bourne shell）将使程序异常中止，并使终端保持在不回显状态。如果对终端做了这种操作，则stty命令能使终端恢复到回显状态。
 
 	使用标准I/O读、写控制终端。我们特地将流设置为不带缓冲的，否则在流的读、写之间可能会有某些交叉（这样就需要多次调用fflush）。也可使用不带缓冲的I/O（见第 3章），但是在这种情况下就只能用read来模仿getc函数。
 
 	最多只存储8个字符作为口令。输入的其他多余字符则全部被忽略。
 

 
图18-18中的程序调用getpass并且打印我们输入的内容。这是为了验证ERASE和KILL字符能否正常工作（如同它们在规范模式下应该表现的那样）。
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#include "apue.h"



char 　　*getpass(const char *);



int

main(void)

{

 　　char 　　*ptr;



 　　if ((ptr = getpass("Enter password:")) == NULL)

 　　　　err_sys("getpass error");

 　　printf("password: %s\n", ptr);



 　　/* now use password (probably encrypt it) ... */



 　　while (*ptr != 0)

 　　　　*ptr++ = 0;　　　　　/* zero it out when we're done with it */

 　　exit(0);

}
 
图18-18　调用getpass函数
 
如果调用getpass函数的程序使用的是明文口令，那么为了安全起见，在程序完成后应在内存中清除它。如果该程序会产生其他用户可能读取的core文件（回忆10.2节，core的系统默认许可权使每个用户都能读它），或者如果某个其他进程能够设法读该进程的存储空间，则它们就可能会读到这个明文口令。（“明文”是指我们在getpass打印的提示符处键入的口令。大多数UNIX系统程序会对这个明文口令进行修改，将它转换成一个“加密”口令。例如，口令文件（见6.2节）中的pw_passwd字段包含的是加密口令，而不是明文口令。）
 
18.11　非规范模式
 
可以通过关闭termios结构中c_lflag字段的ICANON标志来指定非规范模式。在非规范模式中，输入数据不装配成行，不处理下列特殊字符（见18.3节）：ERASE、KILL、EOF、NL、EOL、EOL2、CR、REPRINT、STATUS和WERASE。
 
如前所述，规范模式很容易理解：系统每次至多返回一行。但在非规范模式下，系统如何知道在什么时候将数据返回给我们呢？如果它一次返回一个字节，那么系统开销就会过大。（回忆图3-6，从中可以看到每次读一个字节的开销有多大。如果每次返回的数据加倍，那么系统调用的开销就可以减半。）在启动读数据之前，往往不知道要读多少数据，所以系统不能总是一次返回多个字节。
 
解决方法是，当已读了指定量的数据后，或者已经超过了给定量的时间后，即通知系统返回。这种技术使用了termios结构中c_cc数组的两个变量：MIN和TIME。c_cc数组中的这两个元素的下标名为VMIN和VTIME。
 
MIN指定一个read返回前的最小字节数。TIME指定等待数据到达的分秒数（分秒为秒的1/10）。有下列4种情形。
 
情形A：MIN>0，TIME>0
 
TIME指定一个字节间定时器（interbyte timer），它只在第一个字节被接收时启动。在该定时器超时之前，若已接到MIN个字节，则read返回MIN个字节。如果在接到MIN个字节之前，该定时器已超时，则read返回已接收到的字节。（因为定时器是在第一个字节被接收后启动的，所以在定时器超时时，read至少会返回一个字节。）在这种情形中，第一个字节被接收之前，调用者会一直阻塞。如果在调用read时数据已经可用，则就如同在read后数据被立即接收了一样。
 
情形B：MIN>0，TIME==0
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read在接收到MIN个字节之前不返回。这会造成read无限期阻塞。
 
情形C：MIN==0，TIME>0
 
TIME指定一个调用read时启动的读定时器。（与情形A相比较，两者是不同的。在情形A中，非0 TIME表示字节间定时器，该定时器要等到第一个字节被接收时才启动。）在接到一个字节或者该定时器超时时，read即返回。如果是定时器超时，则read返回0。
 
情形D：MIN==0，TIME==0
 
如果有数据可用，则read最多返回所要求的字节数。如果无数据可用，则read立即返回0。
 
在所有这些情形中，MIN只是最小值。如果程序要求的数据多于MIN个字节，那么它或许能接收到所要求的字节数。这也适用于MIN==0的情形C和情形D。
 
图18-19总结并列出了非规范模式输入的4种不同情形。在这个图中，nbytes是read的第三个参数（返回的最大字节数）。
 
[image: 18-19.jpg]
 
图18-19　非规范输入的4种情形
 
 
 请注意，POSIX.1允许下标VMIN和VTIME的值分别与VEOF和VEOL的相同。确实，Solaris就是这样做的，这样就提供了与System V的早期版本的兼容性。但是，这也带来了可移植性问题。从非规范模式转换为规范模式时，必须恢复VEOF和VEOL。如果VMIN等于VEOF，且不恢复它们的值，那么当把VMIN的典型值设置为1时，文件结束符就变成了Ctrl+A。解决这一问题最简单的方法是：在要转入非规范模式时，将整个termios结构保存起来，以后再要转回规范模式时恢复它。
 

 
实例
 
图18-20中的程序定义了函数tty_cbreak和tty_raw，它们将终端分别设置为cbreak模式（cbreak mode）和原始模式（raw mode）。（术语cbreak和原始来自于V7的终端驱动程序。）tty_reset函数的功能是将终端恢复到原始的工作状态（也就是调用tty_cbreak或tty_raw之前的工作状态）。
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如果已调用tty_cbreak，那么在调用tty_raw之前需要调用tty_reset。如果已调用tty_raw，然后又要调用tty_cbreak，那么在此之前同样也要调用tty_reset。这减少了出错时终端处于不可用状态的机会。
 
该程序还提供了另外两个函数：tty_atexit和tty_termios。tty_atexit可被登记为退出处理程序，以保证exit恢复终端工作模式。tty_termios则返回一个指向原来规范模式下termios结构的指针。
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#include "apue.h"

#include <termios.h>

#include <errno.h>



static struct termios　　　　　　　　　 save_termios;

static int　　　　　　　　　　　　　  　　ttysavefd = -1;

static enum { RESET, RAW, CBREAK } 　ttystate = RESET;



int

tty_cbreak(int fd)　　/* put terminal into a cbreak mode */

{

 　　int　　　　　　　 　err;

 　　struct termios　　buf;



 　　if (ttystate != RESET) {

 　　　　errno = EINVAL;

 　　　　return(-1);

 　　}

 　　if (tcgetattr(fd, &buf) < 0)

 　　　　return(-1);

 　　save_termios = buf;　　/* structure copy */



 　　/*

 　　 * Echo off, canonical mode off.

 　　 */

 　　buf.c_lflag &= ~(ECHO | ICANON);



 　　/*

 　　 * Case B: 1 byte at a time, no timer.

 　　 */

 　　buf.c_cc[VMIN] = 1;

 　　buf.c_cc[VTIME] = 0;

 　　if (tcsetattr(fd, TCSAFLUSH, &buf) < 0)

 　　　　return(-1);



 　　/*

 　　 * Verify that the changes stuck.　tcsetattr can return 0 on

 　　 * partial success.

 　　 */

 　　if (tcgetattr(fd, &buf) < 0) {

 　　　　err = errno;

 　　　　tcsetattr(fd, TCSAFLUSH, &save_termios);

 　　　　errno = err;

 　　　　return(-1);

 　　}

 　　if ((buf.c_lflag & (ECHO | ICANON)) || buf.c_cc[VMIN] != 1 ||

 　　　buf.c_cc[VTIME] != 0) {

 　　　　/*

 　　　　 * Only some of the changes were made.　Restore the

 　　　　 * original settings.

 　　　　 */

 　　　　tcsetattr(fd, TCSAFLUSH, &save_termios);

 　　　　errno = EINVAL;

 　　　　return(-1);

 　　}



 　　ttystate = CBREAK;

 　　ttysavefd = fd;

 　　return(0);

}



int

tty_raw(int fd)　　　　/* put terminal into a raw mode */

{

 　　int　　　　　　 　　err;

 　　struct termios　　buf;



 　　if (ttystate != RESET) {

 　　　　errno = EINVAL;

 　　　　return(-1);

 　　}

 　　if (tcgetattr(fd, &buf) < 0)

 　　　　return(-1);

 　　save_termios = buf;　　/* structure copy */



 　　/*

 　　 * Echo off, canonical mode off, extended input

 　　 * processing off, signal chars off.

 　　 */

 　　buf.c_lflag &= ~(ECHO | ICANON | IEXTEN | ISIG);



 　　/*

 　　 * No SIGINT on BREAK, CR-to-NL off, input parity

 　　 * check off, don't strip 8th bit on input, output

 　　 * flow control off.

 　　 */

 　　buf.c_iflag &= ~(BRKINT | ICRNL | INPCK | ISTRIP | IXON);



 　　/*

 　　 * Clear size bits, parity checking off.

 　　 */

 　　buf.c_cflag &= ~(CSIZE | PARENB);



 　　/*

 　　 * Set 8 bits/char.

 　　 */

 　　buf.c_cflag |= CS8;



 　　/*

 　　 * Output processing off.

 　　 */

 　　buf.c_oflag &= ~(OPOST);



 　　/*

 　　 * Case B: 1 byte at a time, no timer.

 　　 */

 　　buf.c_cc[VMIN] = 1;

 　　buf.c_cc[VTIME] = 0;

 　　if (tcsetattr(fd, TCSAFLUSH, &buf) < 0)

　　　　　return(-1);



 　　/*

 　　 * Verify that the changes stuck.　tcsetattr can return 0 on

 　　 * partial success.

 　　 */

 　　if (tcgetattr(fd, &buf) < 0) {

 　　　　err = errno;

 　　　　tcsetattr(fd, TCSAFLUSH, &save_termios);

 　　　　errno = err;

 　　　　return(-1);

 　　}

 　　if ((buf.c_lflag & (ECHO | ICANON | IEXTEN | ISIG)) ||

 　　　(buf.c_iflag & (BRKINT | ICRNL | INPCK | ISTRIP | IXON)) ||

 　　　(buf.c_cflag & (CSIZE | PARENB | CS8)) != CS8 ||

 　　　(buf.c_oflag & OPOST) || buf.c_cc[VMIN] != 1 ||

 　　　buf.c_cc[VTIME] != 0) {

 　　　　/*

 　　　　 * Only some of the changes were made.　Restore the

 　　　　 * original settings.

 　　　　 */

 　　　　tcsetattr(fd, TCSAFLUSH, &save_termios);

 　　　　errno = EINVAL;

 　　　　return(-1);

 　　}



 　　ttystate = RAW;

 　　ttysavefd = fd;

 　　return(0);

}



int

tty_reset(int fd)　　　　　/* restore terminal's mode */

{

 　　if (ttystate == RESET)

 　　　　return(0);

 　　if (tcsetattr(fd, TCSAFLUSH, &save_termios) < 0)

 　　　　return(-1);

 　　ttystate = RESET;

 　　return(0);

}



void

tty_atexit(void)　　　　　　/* can be set up by atexit(tty_atexit) */

{

 　　if (ttysavefd >= 0)

 　　　　tty_reset(ttysavefd);

}



struct termios *

tty_termios(void)　　　　　/* let caller see original tty state */

{

 　　return(&save_termios);

}
 
图18-20　将终端模式设置为cbreak模式或原始模式
 
cbreak模式的定义如下。
 
 
 	非规范模式。如本节开始处所述，这种模式关闭了对某些输入字符的处理。这种模式没有关闭对信号的处理，所以用户始终可以键入一个能够触发终端产生信号的字符。请注意，调用者应当捕捉这些信号，否则这种信号就有可能终止程序，并且使终端保持在cbreak模式。
 作为一般规则，在编写更改终端模式的程序时，应当捕捉大多数信号，以便在程序终止前恢复终端模式。
 
 	关闭回显。
 
 	每次输入一个字节。为此，将MIN设置为1，将TIME设置为0。这是图18-19中的情形B。至少有一个字节可用时，read才返回。
 

 
对原始模式的定义如下。
 
 
 	非规范模式。也关闭了对信号产生字符（ISIG）和扩充输入字符（IEXTEN）的处理。另外还禁用了BRKINT字符，使BREAK字符不再产生信号。
 
 	关闭回显。
 
 	禁止输入中的CR到NL映射（ICRNL）、输入奇偶检测（INPCK）、剥离输入字节的第8位（ISTRIP）以及输出流控制（IXON）。
 
 	8位字符（CS8），且禁用奇偶校验（PARENB）。
 
 	禁止所有输出处理（OPOST）。
 
 	每次输入一个字节（MIN=1，TIME=0）。
 

 
图18-21中的程序测试原始模式和cbreak模式。
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#include "apue.h"



static void

sig_catch(int signo)

{

 　　printf("signal caught\n");

 　　tty_reset(STDIN_FILENO);

 　　exit(0);

}



int

main(void)

{

 　　int　　　　i;

 　　char 　　　c;



 　　if (signal(SIGINT, sig_catch) == SIG_ERR)　　/* catch signals */

 　　　　err_sys("signal(SIGINT) error");

 　　if (signal(SIGQUIT, sig_catch) == SIG_ERR)

 　　　　err_sys("signal(SIGQUIT) error");

 　　if (signal(SIGTERM, sig_catch) == SIG_ERR)

 　　　　err_sys("signal(SIGTERM) error");



 　　if (tty_raw(STDIN_FILENO) < 0)

 　　　　err_sys("tty_raw error");

 　　printf("Enter raw mode characters, terminate with DELETE\n");

 　　while ((i = read(STDIN_FILENO, &c, 1)) == 1) {

 　　　　if ((c &= 255) == 0177)　　　　　/* 0177 = ASCII DELETE */

 　　　　　　break;

 　　　　printf("%o\n", c);

 　　}

 　　if (tty_reset(STDIN_FILENO) < 0)

 　　　　err_sys("tty_reset error");

 　　if (i <= 0)

 　　　　err_sys("read error");

 　　if (tty_cbreak(STDIN_FILENO) < 0)

 　　　　err_sys("tty_cbreak error");

 　　printf("\nEnter cbreak mode characters, terminate with SIGINT\n");

 　　while ((i = read(STDIN_FILENO, &c, 1)) == 1) {

 　　　　c &= 255;

 　　　　printf("%o\n", c);

 　　}

 　　if (tty_reset(STDIN_FILENO) < 0)

 　　　　err_sys("tty_reset error");

 　　if (i <= 0)

 　　　　err_sys("read error");



 　　exit(0);

}
 
图18-21　测试原始终端模式和cbreak终端模式
 
运行图18-21中的程序，可以观察这两种终端工作模式的工作情况。
 
$ ./a.out

Enter raw mode characters, terminate with DELETE

　　　　　　　　　　　　　　　　　　　　　　　　　　　　　4

　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　33

　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　133

　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　 61

　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　 70

　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　 176

 　　　　　　　　　　　　　　　键入Delete

Enter cbreak mode characters, terminate with SIGINT

1　　　　　　　　　　　　　　　键入Ctrl+A

10　　　　　　　　　　　　    键入退格

signal caught　　　　　　   键入中断键


 
在原始模式中，输入的字符是Ctrl+D（04）和特殊功能键F7。在所用的终端上，此功能键产生5个字符：ESC（033）、[（0133）、1（061）、8（070）和˜（0176）。注意，在原始模式下关闭了输出处理（˜OPOST），所以在每个字符后没有得到回车符。另外还要注意的是，在cbreak模式下，不对输入特殊字符进行处理（因此没对Ctrl+D、文件结束符和退格进行特殊处理），但是仍对终端产生的信号进行处理。
 
18.12　终端窗口大小
 
大多数UNIX系统都提供了一种跟踪当前终端窗口大小的方法，在窗口大小发生变化时，使内核通知前台进程组。内核为每个终端和伪终端都维护了一个winsize结构：
 
struct winsize {

　unsigned short ws_row;　　　　　　/* rows, in characters */

　unsigned short ws_col;　　　　　　/* columns, in characters */

　unsigned short ws_xpixel;　　　　/* horizontal size, pixels (unused) */

　unsigned short ws_ypixel;　　　　/* vertical size, pixels (unused) */

};
 
此结构的规则如下。
 
 
 	用ioctl（见3.15节）的TIOCGWINSZ命令可以取此结构的当前值。
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 	用ioctl的TIOCSWINSZ命令可以将此结构的新值存储到内核中。如果此新值与存储在内核中的当前值不同，则前台进程组会收到SIGWINCH信号。（注意，从图10-1中可以看出，此信号的系统默认动作是被忽略。）
 
 	除了存储此结构的当前值以及在此值改变时产生一个信号以外，内核对该结构不进行任何其他操作。对结构中的值进行解释完全是应用程序的工作。
 

 
提供这种功能的目的是，当窗口大小发生变化时应用程序能够得到通知（如vi编辑器）。应用程序接收此信号后，可以获取窗口大小的新值，然后重绘屏幕。
 
实例
 
图18-22所示的程序打印当前窗口大小，然后休眠。每次窗口大小改变时，程序就捕捉到SIGWINCH信号，然后打印新的窗口大小。我们必须用一个信号终止此程序。
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#include "apue.h"

#include <termios.h>

#ifndef　TIOCGWINSZ

#include <sys/ioctl.h>

#endif



static void

pr_winsize(int fd)

{

 　　struct winsize　　size;



 　　if (ioctl(fd, TIOCGWINSZ, (char *) &size) < 0)

 　　　　err_sys("TIOCGWINSZ error");

 　　printf("%d rows, %d columns\n", size.ws_row, size.ws_col);

}



static void

sig_winch(int signo)

{

 　　printf("SIGWINCH received\n");

 　　pr_winsize(STDIN_FILENO);

}



int

main(void)

{

 　　if (isatty(STDIN_FILENO) == 0)

 　　　　exit(1);

 　　if (signal(SIGWINCH, sig_winch) == SIG_ERR)

 　　　　err_sys("signal error");

 　　pr_winsize(STDIN_FILENO);　　　　　/* print initial size */

 　　for ( ; ; )　　　　　　　　　　　　　/* and sleep forever */

 　　　　pause();

}
 
图18-22　打印窗口大小
 
在一个带窗口终端的系统上运行图18-22中的程序得到：
 
$ ./a.out

35 rows, 80 columns　　　    　　　　　　初始大小

SIGWINCH received　　　 　　　　　　　　　更改窗口大小：捕捉到信号

40 rows, 123 columns

SIGWINCH received　　 　　　　　　　　　　再一次

42 rows, 33 columns

^C $　　　　　　　　　　　　　 　　　　　　　键入中断键以终止


 
18.13　termcap、terminfo和curses
 
termcap的意思是终端能力（terminal capability），它涉及文本文件/etc/termcap和一套读此文件的例程。termcap这种技术是在伯克利开发的，注意是为了支持vi编辑器。termcap文件包含了对各种终端的说明：终端支持哪些功能（如行数、列数、终端是否支持退格），如何使终端执行某些操作（如清屏、将光标移动到给定位置）。把这些信息从编译过的程序中取出来并把它们放在易于编辑的文本文件中，这样就使得vi编辑器能在很多不同的终端上运行。
 
最后，将支持termcap文件的例程从vi编辑器中抽取出来，放在一个单独的curses库中。为使这套库可供要进行屏幕处理的任何程序使用，还增加了很多功能。
 
termcap这种技术并不是很完善。当越来越多的终端被加到数据文件中时，为找到一个特定的终端，需要花费更长的时间扫描此数据文件。这个数据文件还用两个字符的名字来标识不同的终端属性。这些缺陷迫使开发人员开发出了terminfo以及与其相关的curses库。在terminfo中，终端说明基本上都是文本说明的编译版本，在运行时易于被快速定位。terminfo最初由SVR2开始使用，此后所有System V的版本都使用它。
 
 
 历史上，基于System V的系统使用terminfo，BSD派生的系统使用termcap，但是现在，系统通常两者都提供。然而Mac OS X仅支持terminfo。
 

 
Goodheart[1991]对terminfo和curses库进行了详细说明，但此书已不再增印。Strang[1986]说明了curses函数库的伯克利版本。Strang、Mui和O’Reilly[1988]则对termcap和terminfo进行了说明。
 
 
 可在http://invisible-island.net/ncurses/ncurses.html 或 http://www.gnu.org/software/ncurses上找到与SVR4 curses接口兼容的开放版ncurses函数库。
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不论是termcap还是terminfo，它们本身都不处理本章所述及的问题：更改终端的模式、更改终端特殊字符、处理窗口大小等。它们所提供的是在各种终端上执行典型操作（清屏、移动光标）的方法。另一方面，在本章所述问题方面，curses能提供某种具体细节方面的帮助。curses提供了很多函数，用来设置原始模式、设置cbreak模式、打开和关闭回显等。注意，curses库是为基于字符的哑终端设计的，而如今，它们大部分已被以基于像素的图形终端所代替。
 
18.14　小结
 
终端有很多特征和选项，其中大多数都可按需进行更改。本章描述了很多更改终端操作（即更改特殊输入字符和可选择标志）的函数，还介绍了可对终端设备进行设置或恢复的各个终端特殊字符以及众多选项。
 
终端的输入模式有两种——规范的（每次一行）和非规范的。本章中包含了若干这两种工作模式的实例，也提供了一些函数，它们在POSIX.1终端选项和较早的BSD cbreak模式及原始模式之间进行映射。本章还说明了如何获取和改变终端窗口大小。
 
习题
 
18.1　编写一个调用tty_raw并且不恢复终端模式就终止的程序。如果系统提供reset(1)命令（本书说明的4种平台全都提供），使用该命令恢复终端模式。
 
18.2　c_cflag字段的PARODD标志允许我们设置奇检验或偶校验，而BSD中的tip程序也允许奇偶校验位为0或1。它是如何实现的？
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18.3　如果你系统中的stty(1)命令输出MIN和TIME值，做下面的练习。登录系统两次，其中一次登录时打开vi编辑器，在另外一次登录中用stty命令确定vi设置的MIN和TIME值（因为vi将终端设置为非规范模式）。（如果你的终端上有窗口系统正在运行，那么你也可以进行同样的测试，方法是：登录一次，然后用两个分开的窗口。）
 


第19章　伪终端
 
19.1　引言
 
在第9章中，我们了解到，终端登录是经由自动提供终端语义的终端设备进行的。在终端和运行程序之间有一个终端行规程（见图18-2），通过该规程我们能够设置终端的特殊字符（如退格、行删除、中断等）。但是，当一个登录请求到达网络连接时，终端行规程并不是自动被加载到网络连接和登录shell之间的。图9-5显示了一个伪终端（pseudo terminal）设备驱动程序，用于提供终端语义。
 
伪终端除了用于网络登录，还有其他用途，本章将对此进行介绍。首先概要叙述如何使用伪终端，接着讨论某些特殊使用情况。然后，提供在多种平台下用于创建伪终端的函数，并使用这些函数编写一个程序，我们将该程序称为pty。将看到pty程序的各种用途：抄录在终端上输入和输出的所有字符（script(1)程序）；运行协同进程来避免图15-19中的程序遇到的缓冲区问题。
 
19.2　概述
 
伪终端这个术语是指，对于一个应用程序而言，它看上去像一个终端，但事实上它并不是一个真正的终端。图19-1显示了使用伪终端时，相关进程的典型安排。图中的关键点如下。
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[image: ..\14-0434yds排版CMM\UNIX环境高级编程（第3版）tu\1901.tif]
 
图19-1　使用伪终端的相关进程的典型结构
 
 
 	通常，一个进程打开伪终端主设备，然后调用fork。子进程建立一个新的会话，打开一个相应的伪终端从设备，将其文件描述符复制到标准输入、标准输出和标准错误，然后调用exec。伪终端从设备成为子进程的控制终端。
 
 	对于伪终端从设备上的用户进程来说，其标准输入、标准输出和标准错误都是终端设备。通过这些描述符，用户进程能够处理第18章中的所有终端I/O函数。但是因为伪终端从设备不是真正的终端设备，所以无意义的函数调用（例如，改变波特率、发送中断符、设置奇偶校验）将被忽略。
 
 	任何写到伪终端主设备的都会作为从设备的输入，反之亦然。事实上，所有从设备端的输入都来自于伪终端主设备上的用户进程。这看起来就像一个双向管道，但从设备上的终端行规程使我们拥有普通管道没有的其他处理能力。
 

 
图19-1显示了FreeBSD、Mac OS X或Linux系统中的伪终端结构。19.3节将介绍如何打开这些设备。
 
在Solaris中，伪终端是使用STREAMS子系统构建的（见14.4节）。图19-2详细描述了Solaris中各个伪终端STREAMS模块的安排。虚线框中的两个STREAMS模块是可选的。pckt和ptem模块帮助提供伪终端特有的语义。另外两个模块（ldterm和ttcompat）提供行规程处理。19.3节将展示如何建立这些STREAMS模块的安排。
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[image: ..\14-0434yds排版CMM\UNIX环境高级编程（第3版）tu\1902.tif]
 
图19-2　Solaris中的伪终端安排
 
现在简化以上图示，不再画出图19-1中的“读函数和写函数”或图19-2中的“流首”。同时使用缩写“PTY”表示伪终端，并将图19-2中所有伪终端从设备之上的STREAMS模块合并在一起表示为“终端行规程”模块，像图19-1中的那样。
 
现在，我们来考察伪终端的某些典型用途。
 
1．网络登录服务器
 
伪终端可用于构造提供网络登录的服务器。典型的例子是telnetd和rlogind服务器。Stevens[1990]中的第15章详细讨论了提供rlogin服务的步骤。一旦登录shell运行在远端主机上，即可得到图19-3中所示的安排。telnetd服务器使用类似的安排。
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在rlogind服务器和登录shell之间有两个exec调用，这是因为login程序通常是在两个exec之间检验用户是否合法。
 
图19-3的一个关键点是，驱动PTY主设备的进程通常同时在读写另一个I/O流。本例中另一个I/O流是TCP/IP框。这表示该进程必然使用了某种形式的诸如select或poll这样的I/O多路转接（见14.4节），或者被分成两个进程或线程。
 
[image: ..\14-0434yds排版CMM\UNIX环境高级编程（第3版）tu\1903.tif]
 
图19-3　rlogind服务器的进程安排
 
2．窗口系统终端模拟
 
窗口系统通常提供一个终端模拟器，这样我们就能在熟悉的命令行环境中通过shell来运行程序。终端模拟器作为shell和窗口管理器之间的媒介。每个shell在自己的窗口中执行。这个安排（两个shell运行在不同窗口）如图19-4所示。
 
[image: ..\14-0434yds排版CMM\UNIX环境高级编程（第3版）tu\1904.tif]
 
图19-4　窗口系统的进程安排
 
shell将自己的标准输入、标准输出、标准错误连接到PTY的从设备端。终端模拟器程序打开PTY的主设备。终端模拟器除了作为窗口子系统的接口，还要负责模拟一种特殊的终端，这意味着它需要根据它所模拟的设备类型来响应返回码。这些码列在termcap和terminfo数据库中。
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当用户改变终端模拟器窗口的大小时，窗口管理器会通知终端模拟器。终端模拟器在PTY的主设备端发出TIOCSWINSZ ioctl命令来设置从设备的窗口大小。如果新的窗口大小和当前的不同，内核会发送一个SIGWINCH信号给前台PTY从设备的进程组。如果应用程序在窗口大小改变时需要重绘屏幕，它就会捕捉这个SIGWINCH信号，然后发出TIOCSWINSZ ioctl命令获得新的屏幕尺寸并重绘屏幕。
 
3．script程序
 
script(1)程序是随大多数UNIX系统提供的，它将终端会话期间的所有输入和输出信息复制到一个文件中。为完成此工作，该程序将自己置于终端和一个新调用的登录shell之间。图19-5详细描述了script程序有关的交互。这里要特别指出，script程序通常是从登录shell启动的，该shell还要等待script程序的终止。
 
[image: ..\14-0434yds排版CMM\UNIX环境高级编程（第3版）tu\1905.tif]
 
图19-5　script程序
 
script程序运行时，位于PTY从设备上的终端行规程的所有输出都将复制到脚本文件中（通常称为typescript）。因为击键通常由该行规程模块回显，所以该脚本文件也包括了输入的内容。但是，因为键入的口令不会回显，所以该脚本文件不会包含口令。
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 在编写本书第1版时，Rich Stevens用script程序获取实例程序的输出。这样避免了手工复制程序输出可能带来的错误。但是，使用script的不足之处是必须处理脚本文件中的控制字符。
 

 
在19.5节开发了通用的pty程序后，我们将看到使用pty程序和一个简单的shell脚本就能够实现一个新版本的script程序。
 
4．expect程序
 
伪终端可以用来在非交互模式中驱动交互式程序的运行。许多硬连线程序需要一个终端才能运行， passwd(1)命令就是一个例子，它要求用户在系统提示后输入口令。
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为了支持批处理操作模式而修改所有交互式程序是非常麻烦的，与这种处理相比，一个更好的解决方法是通过一个脚本来驱动交互式程序。expect程序[Libes 1990, 1991, 1994]提供了这样的方法。类似于19.5节的pty程序，它使用伪终端来运行其他程序。并且，expect还提供了一种编程语言用于检查运行程序的输出，以确定用什么作为输入发送给该程序。当一个源自脚本的交互式的程序正在运行时，不能仅仅是将脚本中的所有内容复制到程序中去，或者将程序的输出送至脚本，而是必须要向程序发送某个输入，检查它的输出，并决定下一步发送给程序的内容。
 
5．运行协同进程
 
在图15-19所示的协同进程的例子中，我们不能调用使用标准I/O库进行输入、输出的协同进程，这是因为当通过管道与协同进程进行通信时，标准I/O库会完全缓冲标准输入和标准输出，从而引起死锁。如果协同进程是一个已经编译的程序而我们又没有源程序，则无法在源程序中加入fflush语句来解决这个问题。图15-16显示了一个进程驱动协同进程的情况。我们需要做的是将一个伪终端放到两个进程之间（如图19-6所示），诱使协同进程认为它是由终端驱动的，而非另一个进程。
 
[image: ..\14-0434yds排版CMM\UNIX环境高级编程（第3版）tu\1906.tif]
 
图19-6　用伪终端驱动一个协同进程
 
现在协同进程的标准输入和标准输出就像终端设备一样，所以标准I/O库会将这两个流设置成行缓冲。
 
父进程有两种方法在自身和协同进程之间获得伪终端。（这种情况下的父进程可以类似图15-18中的程序，使用两个管道和协同进程进行通信。）一个方法是，父进程直接调用pty_fork函数（见19.4节）而不是调用fork。另一种方法是，exec该pty程序（见19.5节），将协同进程作为参数。我们将在给出pty程序后介绍这两种方法。
 
6．观看长时间运行程序的输出
 
使用任何一个标准shell，可以将一个需要长时间运行的程序放到后台运行。但是，如果将该程序的标准输出重定向到一个文件，并且它产生的输出又不多，那么我们就不能方便地监控程序的进展，因为标准I/O库将完全缓冲它的标准输出。我们看到的将只是标准I/O库函数写到输出文件中的成块输出，有时甚至可能是长度为8 192字节的数据块。
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如果有源程序，则可以加入fflush调用强制标准I/O缓冲区在某些节点冲洗或者把缓冲模式改成使用setvbuf的行缓冲。然而，如果没有源程序，可以在pty程序下运行该程序，让标准I/O库认为标准输出是终端。图19-7显示了这个安排，我们将这个缓慢输出的程序称为slowout。从登录shell到pty进程的fort/exec箭头是用虚线表示的，为的是强调pty进程是作为后台任务运行的。
 
[image: ..\14-0434yds排版CMM\UNIX环境高级编程（第3版）tu\1907.tif]
 
图19-7　使用伪终端运行一个缓慢输出的程序
 
19.3　打开伪终端设备
 
PTY表现得就像物理终端设备一样，因此应用程序就无须在意它们在使用的是何种设备。然而，在打开PTY设备文件时，应用程序并不需要设置O_TTY_INIT标识。Single UNIX Specification已经要求PTY从设备端第一次被打开的时候要初始化，这样该设备正常工作所需要的所有非标准termios标识就都被设置了。这个要求旨在允许PTY设备和遵循POSIX的调用tcgetattr和tcsetattr的应用程序正确地运行。
 
各种平台打开伪终端设备的方法有所不同。在Single UNIX Specification的XSI扩展中包含了很多函数，试图统一这些方法。这些函数的基础是SVR4用于管理基于STREAMS的伪终端的一组函数。 posix_ openpt函数提供了一种可移植的方法来打开下一个可用伪终端主设备。
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#include <stdlib.h>



#include <fcntl.h>



int posix_openpt(int oflag);



　　　　　　　　　返回值：若成功，返回下一个可用的PTY主设备文件描述符；若出错，返回-1


 
参数oflag是一个位屏蔽字，指定如何打开主设备，它类似于open(2)的oflag参数，但是并不支持所有打开标志。对于posix_openpt，可以指定O_RDWR来打开主设备进行读、写，指定O_NOCTTY来防止主设备成为调用者的控制终端。其他打开标志都会导致未定义的行为。
 
在伪终端从设备可用之前，它的权限必须设置，以便应用程序可以访问它。grantpt函数提供这样的功能：它把从设备节点的用户ID设置为调用者的实际用户ID，设置其组ID为一非指定值，通常是可以访问该终端设备的组。权限被设置为：对个体所有者是读/写，对组所有者是写（0620）。
 
实现通常将PTY从设备的组所有者设置为tty组。把那些要对系统中所有活动终端具有写权限的程序（如wall(1)和write(1)）的设置组ID设置为tty组。因为在PTY从设备上tty组的写权限是被允许的，所以这些程序就可以向活动终端写入。
 
#include <stdlib.h>



int grantpt(int fd);



int unlockpt(int fd);



　　　　　　　　　　　　　　　两个函数的返回值：若成功，返回0；若出错，返回-1


 
为了更改从设备节点的权限，grantpt可能需要fork并exec一个设置用户ID程序（如在Solaris中是/usr/lib/pt_chmod）。于是，如果调用者捕捉到SIGCHLD信号，那么其行为是未说明的。
 
unlockpt函数用于准予对伪终端从设备的访问，从而允许应用程序打开该设备。阻止其他进程打开从设备后，建立该设备的应用程序有机会在使用主、从设备之前正确地初始化这些设备。
 
注意，在grantpt和unlockpt这两个函数中，文件描述符参数是与伪终端主设备关联的文件描述符。
 
如果给定了伪终端主设备的文件描述符，那么可以用ptsname函数找到伪终端从设备的路径名。这使应用程序可以独立于给定平台的某种特定约定而标识从设备。注意，该函数返回的名字可能存储在静态存储中，因此后续的调用可能会覆盖它。
 
#include <stdlib.h>



char *ptsname(int fd);



　　　　　　　　　　　　　　　返回值：若成功，返回指向PTY从设备名的指针；若出错，返回NULL
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图19-8总结了Single UNIX Specification中的伪终端函数，指出了本书讨论的4种平台分别支持哪些函数。
 
[image: 19-8.jpg]
 
图19-8　XSI伪终端函数
 
 
 在FreeBSD中，grantpt和unlockpt除了参数验证外不执行任何操作，PTY是通过正确的权限动态地创建出来的。注意，FreeBSD定义O_NOCTTY标志只是为了兼容调用posix_openpt的应用程序。在FreeBSD中打开终端设备并不会引起分配控制终端的副作用，所以O_NOCTTY标志并无作用。
 

 
Single UNIX Specification已经改善了此方面的可移植性，但是差距仍然存在。我们提供了两个处理所有这些细节的函数：ptym_open和ptys_open。ptym_open打开下一个可用的PTY主设备，ptys_ open打开相应的从设备。
 
#include "apue.h"



int ptym_open(char *pts_name, int pts_namesz);



　　　　　　　　　　　　　　　返回值：若成功，返回PTY主设备文件描述符；若出错，返回-1



int ptys_open(char *pts_name);



　　　　　　　　　　　　　　　返回值：若成功，返回PTY从设备文件描述符；若出错，返回-1


 
通常，不直接调用这两个函数，而是由函数pty_fork（见19.4节）调用它们，并且还会fork出一个子进程。
 
ptym_open函数打开下一个可用的PTY主设备。调用者必须分配一个数组来存放主设备或从设备的名字，并且如果调用成功，相应的从设备名会通过pts_name返回。然后，这个名字传给用来打开该从设备的ptys_open函数。缓冲区的字节长度由pts_namesz传送，使得ptym_open函数不会复制比该缓冲区长的字符串。
 
在说明pty_fork函数之后，提供两个函数来打开这两个设备的原因将会很明显。通常，一个进程调用ptym_open来打开一个主设备并且得到从设备名。该进程然后fork子进程，子进程在调用setsid建立新的会话后调用ptys_open打开从设备。这就是从设备如何成为子进程控制终端的过程（见图19-9）。
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#include "apue.h"

#include <errno.h>

#include <fcntl.h>

#if defined(SOLARIS)

#include <stropts.h>

#endif



int

ptym_open(char *pts_name, int pts_namesz)

{

 　　char　　　　 *ptr;

 　　int　　　　   fdm, err;



 　　if ((fdm = posix_openpt(O_RDWR)) < 0)

 　　　　　return(-1);

 　　if (grantpt(fdm) < 0)　　　　　　　　　/* grant access to slave */

 　　　　　goto errout;

 　　if (unlockpt(fdm) < 0)　　　　　　　　/* clear slave's lock flag */

 　　　　　goto errout;

 　　if ((ptr = ptsname(fdm)) == NULL)　/* get slave's name */

 　　　　　goto errout;



 　　/*

 　　 * Return name of slave.　Null terminate to handle

 　　 * case where strlen(ptr) > pts_namesz.

 　　 */

 　　strncpy(pts_name, ptr, pts_namesz);

 　　pts_name[pts_namesz - 1] = '\0';

 　　return(fdm);　　　　　　　　　　　　　　/* return fd of master */

errout:

 　　err = errno;

 　　close(fdm);

 　　errno = err;

 　　return(-1);

}



int

ptys_open(char *pts_name)

{

 　　int fds;

#if defined(SOLARIS)

 　　int err, setup;

#endif



 　　if ((fds = open(pts_name, O_RDWR)) < 0)

 　　　　　return(-1);



#if defined(SOLARIS)

 　　/*

 　　 * Check if stream is already set up by autopush facility.

 　　 */

 　　if ((setup = ioctl(fds, I_FIND, "ldterm")) < 0)

 　　　　　goto errout;



 　　if (setup == 0) {

 　　　　　if (ioctl(fds, I_PUSH, "ptem") < 0)

　　　　　　　　goto errout;

 　　　　　if (ioctl(fds, I_PUSH, "ldterm") < 0)

　　　　　　　　goto errout;

 　　　　　if (ioctl(fds, I_PUSH, "ttcompat") < 0) {

errout:

　　　　　　　　err = errno;

　　　　　　　　close(fds);

　　　　　　　　errno = err;

　　　　　　　　return(-1);

 　　　　　}

 　　}

#endif

 　　return(fds);

}
 
图19-9　伪终端打开函数
 
ptym_open函数用XSI PTY函数找到并打开一个未被使用的PTY主设备，并初始化对应的PTY从设备。ptys_open函数打开的是PTY从设备。然而在Solaris系统中，在PTY从设备表现得像个终端前，我们可能需要多做几步工作。
 
在Solaris中，打开从设备后，我们可能需要将3个STREAMS模块压入从设备的流中。伪终端仿真模块（ptem）和终端行规程模块（ldterm）合在一起像一个真正的终端一样工作。ttcompat提供了对早期系统（如V7、4BSD和Xenix）的ioctl调用的兼容性。这是一个可选的模块，但是因为对于网络登录，它是自动压入的，所以我们将它压入到从设备的流中。
 
也可能并不需要压入这3个模块，其原因是，它们可能已经位于流中。STREAMS系统支持一种称为autopush（自动压入）的工具，它允许系统管理员配置一张模块列表，只要打开一个特定设备，就将这些模块压入流中（详见Rago[1993]）。使用I_FIND ioctl命令观察ldterm是否已在流中。如果是，则认为该流已用autopush机制配置，这样就无需再压入相应模块。
 
Linux、Mac OS X和Solaris都遵循历史上System V的行为：如果调用者是一个还没有控制终端的会话首进程，这个打开（open）的调用会分配一个PTY从设备作为控制终端。如果不想让这种情况发生，可以在打开（open）时设置O_NOCTTY标志。然而，在FreeBSD中，打开PTY从设备不会产生分配其作为控制终端的副作用，下一节将探讨如何在FreeBSD中分配控制终端。
 
19.4　函数pty_fork
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现在使用上一节介绍的两个函数ptym_open和ptys_open来编写一个新函数，我们称之为pty_ fork。这个新函数具有如下功能：用fork调用打开主设备和从设备，创建作为会话首进程的子进程并使其具有控制终端。
 
#include "apue.h"



#include <termios.h>



pid_t pty_fork(int *ptrfdm, char *slave_name, int slave_namesz,

　　　　　　　　　const struct termios *slave_termios,

　　　　　　　　　const struct winsize *slave_winsize);



　　　　　　　　　返回值：子进程中返回0；父进程中返回子进程的进程ID；若出错，返回−1


 
PTY主设备的文件描述符通过ptrfdm指针返回。
 
如果slave_name不为空，从设备名被存储在该指针指向的存储区中。调用者必须为该存储区分配空间。
 
如果指针slave_termios不为空，则系统使用该指针所引用的结构初始化从设备的终端行规程。如果该指针为空，那么系统将会把从设备的termios结构设置成实现定义的初始状态。类似地，如果slave_ winsize指针不为空，那么按该指针所引用的结构初始化从设备的窗口大小。如果该指针为空，winsize结构通常被初始化为0。
 
图19-10显示了该函数的代码。它调用相应的ptym_open和ptys_open函数，在本书讨论的4种平台上，pty_fork函数都能工作。
 
#include "apue.h"

#include <termios.h>



pid_t

pty_fork(int *ptrfdm, char *slave_name, int slave_namesz,

 　　　　　const struct termios *slave_termios,

 　　　　　const struct winsize *slave_winsize)

{

 　　int　　　　fdm, fds;

 　　pid_t　　　pid;

 　　char　　　 pts_name[20];



 　　if ((fdm = ptym_open(pts_name, sizeof(pts_name))) < 0)

 　　　　　err_sys("can't open master pty: %s, error %d", pts_name, fdm);



 　　if (slave_name != NULL) {

 　　　　　/*

 　　　　　 * Return name of slave.　Null terminate to handle case

 　　　　　 * where strlen(pts_name) > slave_namesz.

 　　　　　 */

 　　　　　strncpy(slave_name, pts_name, slave_namesz);

 　　　　　slave_name[slave_namesz - 1] = '\0';

 　　}



 　　if ((pid = fork()) < 0) {

 　　　　　return(-1);

 　　} else if (pid == 0) {　　　　　/* child */

 　　　　　if (setsid() < 0)

　　　　　　　　err_sys("setsid error");



 　　　　　/*

 　　　　　 * System V acquires controlling terminal on open().

 　　　　　 */

 　　　　　if ((fds = ptys_open(pts_name)) < 0)

　　　　　　　　err_sys("can't open slave pty");

 　　　　　close(fdm);　　　　　/* all done with master in child */



#if　defined(BSD)

 　　　　　/*

 　　　　　 * TIOCSCTTY is the BSD way to acquire a controlling terminal.

 　　　　　 */

 　　　　　if (ioctl(fds, TIOCSCTTY, (char *)0) < 0)

　　　　　　　　err_sys("TIOCSCTTY error");

#endif

 　　　　　/*

 　　　　　 * Set slave's termios and window size.

 　　　　　 */

 　　　　　if (slave_termios != NULL) {

　　　　　　　　if (tcsetattr(fds, TCSANOW, slave_termios) < 0)

　　　　　　　　　　 err_sys("tcsetattr error on slave pty");

 　　　　　}

 　　　　　if (slave_winsize != NULL) {

　　　　　　　　if (ioctl(fds, TIOCSWINSZ, slave_winsize) < 0)

　　　　　　　　　　 err_sys("TIOCSWINSZ error on slave pty");

 　　　　　}



 　　　　　/*

 　　　　　 * Slave becomes stdin/stdout/stderr of child.

 　　　　　 */

 　　　　　if (dup2(fds, STDIN_FILENO) != STDIN_FILENO)

　　　　　　　　err_sys("dup2 error to stdin");

 　　　　　if (dup2(fds, STDOUT_FILENO) != STDOUT_FILENO)

　　　　　　　　err_sys("dup2 error to stdout");

 　　　　　if (dup2(fds, STDERR_FILENO) != STDERR_FILENO)

　　　　　　　　err_sys("dup2 error to stderr");

 　　　　　if (fds != STDIN_FILENO && fds != STDOUT_FILENO &&

 　　　　　　fds != STDERR_FILENO)

　　　　　　　　close(fds);

 　　　　　return(0);　　　　　/* child returns 0 just like fork() */

 　　} else {　　　　　　　　　/* parent */

 　　　　　*ptrfdm = fdm;　　/* return fd of master */

 　　　　　return(pid);　　　/* parent returns pid of child */

 　　}

}
 
图19-10　pty_fork函数
 
在打开PTY主设备后，调用fork。正如前面提到的，子进程先调用setsid建立新的会话，然后才调用ptys_open。当调用setsid时，子进程还不是一个进程组的首进程，因此执行9.5节中列出的3个操作步骤：（a）子进程创建一个新的会话，它是该会话的首进程；（b）子进程创建一个新的进程组；（c）子进程断开与以前可能有的控制终端的关联，于是不再有控制终端。在Linux、Mac OS X和Solaris系统中，当调用ptys_open时，从设备成为新会话的控制终端。在FreeBSD系统中，必须调用TIOCSCTTY ioctl来分配一个控制终端。（回想图9-8，其他3个平台也支持TIOCSCTTY ioctl命令，但是只有在FreeBSD中需要我们去调用它。）
 
termios和winsize这两个结构在子进程中初始化。最后从设备的文件描述符被复制到子进程的标准输入、标准输出和标准错误中。这意味着不管子进程以后调用exec执行何种程序，它都具有同PTY从设备（其控制终端）联系起来的上述3个描述符。
 
在调用fork后，父进程返回PTY主设备的描述符以及子进程的进程ID。下一节将在pty程序中使用pty_fork函数。
 
19.5　pty程序
 
编写pty程序的目的是用
 
pty prog arg1 arg2
 
来代替
 
prog arg1 arg2
 
当用pty来执行另一个程序时，那个程序在一个它自己的会话中执行，并和一个伪终端连接。
 
让我们查看pty程序的源代码。第一个文件（见图19-11）包含main函数。它调用上一节的pty_ fork函数。
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#include "apue.h"

#include <termios.h>



#ifdef LINUX

#define OPTSTR "+d:einv"

#else

#define OPTSTR "d:einv"

#endif



static void　set_noecho(int);　　　　　/* at the end of this file */

void　　　　　do_driver(char *);　　　　/* in the file driver.c */

void　　　　　loop(int, int);　　　　　 /* in the file loop.c */



int

main(int argc, char *argv[])

{

 　　int　　　　　　　　　fdm, c, ignoreeof, interactive, noecho, verbose;

 　　pid_t　　　　　　　　pid;

 　　char　　　　　　　　*driver;

 　　char　　　　　　　　 slave_name[20];

 　　struct termios　　 orig_termios;

 　　struct winsize　　 size;



 　　interactive = isatty(STDIN_FILENO);

 　　ignoreeof = 0;

 　　noecho = 0;

 　　verbose = 0;

 　　driver = NULL;



 　　opterr = 0;　　　　　　　　/* don't want getopt() writing to stderr */

 　　while ((c = getopt(argc, argv, OPTSTR)) != EOF) {

 　　　　　switch (c) {

 　　　　　case 'd':　　　　　　/* driver for stdin/stdout */

　　　　　　　　driver = optarg;

　　　　　　　　break;



 　　　　　case 'e':　　　　　/* noecho for slave pty's line discipline */

　　　　　　　　noecho = 1;

　　　　　　　　break;



 　　　　　case 'i':　　　　　/* ignore EOF on standard input */

　　　　　　　　ignoreeof = 1;

　　　　　　　　break;



 　　　　　case 'n':　　　　　/* not interactive */

　　　　　　　　interactive = 0;

　　　　　　　　break;



 　　　　　case 'v':　　　　　/* verbose */

　　　　　　　　verbose = 1;

　　　　　　　　break;



 　　　　　case '?':

　　　　　　　　err_quit("unrecognized option: -%c", optopt);

 　　　　　}

 　　}

 　　if (optind >= argc)

　　　　　err_quit("usage: pty [ -d driver -einv ] program [ arg ... ]");



 　　if (interactive) {　　/* fetch current termios and window size */

　　　　　if (tcgetattr(STDIN_FILENO, &orig_termios) < 0)

　　　　　　　 err_sys("tcgetattr error on stdin");

　　　　　if (ioctl(STDIN_FILENO, TIOCGWINSZ, (char *) &size) < 0)

　　　　　　　 err_sys("TIOCGWINSZ error");

　　　　　pid = pty_fork(&fdm, slave_name, sizeof(slave_name),

　　　　　　&orig_termios, &size);

 　　} else {

　　　　　pid = pty_fork(&fdm, slave_name, sizeof(slave_name),

　　　　　　NULL, NULL);

 　　}



 　　if (pid < 0) {

　　　　　err_sys("fork error");

 　　} else if (pid == 0) {　　　　　　　　　　/* child */

　　　　　if (noecho)

　　　　　　　 set_noecho(STDIN_FILENO);　　　/* stdin is slave pty */



　　　　　if (execvp(argv[optind], &argv[optind]) < 0)

　　　　　　　 err_sys("can't execute: %s", argv[optind]);

 　　}



 　　if (verbose) {

　　　　　fprintf(stderr, "slave name = %s\n", slave_name);

　　　　　if (driver != NULL)

　　　　　　　 fprintf(stderr, "driver = %s\n", driver);

 　　}



 　　if (interactive && driver == NULL) {

　　　　　if (tty_raw(STDIN_FILENO) < 0)　　　　 /* user's tty to raw mode */

　　　　　　　 err_sys("tty_raw error");

　　　　　if (atexit(tty_atexit) < 0)　　　　　　/* reset user's tty on exit */

　　　　　　　 err_sys("atexit error");

 　　}



 　　if (driver)

　　　　　do_driver(driver);　　　　/* changes our stdin/stdout */



 　　loop(fdm, ignoreeof);　　　　　/* copies stdin -> ptym, ptym -> stdout */



 　　exit(0);

}



static void

set_noecho(int fd)　　　　　/* turn off echo (for slave pty) */

{

 　　struct termios　　stermios;



 　　if (tcgetattr(fd, &stermios) < 0)

　　　　　err_sys("tcgetattr error");



 　　stermios.c_lflag &= ~(ECHO | ECHOE | ECHOK | ECHONL);



 　　/*

 　　 * Also turn off NL to CR/NL mapping on output.

 　　 */

 　　stermios.c_oflag &= ~(ONLCR);



 　　if (tcsetattr(fd, TCSANOW, &stermios) < 0)

　　　　　err_sys("tcsetattr error");

}
 
图19-11　pty程序的main函数
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下一节介绍pty程序的不同用途时，将看到多种命令行选项。getopt函数帮助我们以协调一致的模式分析命令行参数。为了在Linux系统中强制POSIX行为，我们将选项字符串的第一个字符设置为加号。
 
在调用pty_fork前，我们获取termios和winsize结构的当前值，将其作为参数传递给pty_ fork。通过这种方法，PTY从设备具有和当前终端相同的初始状态。
 
子进程从pty_fork返回后，可选地关闭了PTY从设备的回显，然后调用execvp来执行命令行指定的程序。所有余下的命令行参数将成为该程序的参数。
 
父进程可选地将用户终端设置为原始模式。在这种情况下，父进程还要设置退出处理程序，使得在调用exit时复原终端状态。下一节将描述do_driver函数。
 
接下来，父进程调用函数loop（见图19-12），该函数仅仅是将从标准输入接收到的所有内容复制到PTY主设备，并将PTY主设备接收到的所有内容复制到标准输出。尽管使用select或poll的单进程或多线程是可行的，但是为了有所变化，这里使用了两个进程。
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#include "apue.h"



#define　BUFFSIZE　512



static void　sig_term(int);

static volatile sig_atomic_t　sigcaught;　　　/* set by signal handler */



void

loop(int ptym, int ignoreeof)

{

 　　pid_t　　　child;

 　　int　　　　nread;

 　　char　 　　buf[BUFFSIZE];



 　　if ((child = fork()) < 0) {

 　　　　　err_sys("fork error");

 　　} else if (child == 0) {　　/* child copies stdin to ptym */

 　　　　　for ( ; ; ) {

　　　　　　　　if ((nread = read(STDIN_FILENO, buf, BUFFSIZE)) < 0)

 　　　　　　　　　　err_sys("read error from stdin");

　　　　　　　　else if (nread == 0)

 　　　　　　　　　　break;　　　　　/* EOF on stdin means we're done */

　　　　　　　　if (writen(ptym, buf, nread) != nread)

 　　　　　　　　　　err_sys("writen error to master pty");

 　　　　　}



 　　　　　/*

 　　　　　 * We always terminate when we encounter an EOF on stdin,

 　　　　　 * but we notify the parent only if ignoreeof is 0.

 　　　　　 */

 　　　　　if (ignoreeof == 0)

　　　　　　　　kill(getppid(), SIGTERM);　/* notify parent */

 　　　　　exit(0);　　/* and terminate; child can't return */

 　　}



 　　/*

 　　 * Parent copies ptym to stdout.

 　　 */

 　　if (signal_intr(SIGTERM, sig_term) == SIG_ERR)

　　　　　err_sys("signal_intr error for SIGTERM");



 　　for ( ; ; ) {

　　　　　if ((nread = read(ptym, buf, BUFFSIZE)) <= 0)

　　　　　　　　break;　　　　　/* signal caught, error, or EOF */

　　　　　if (writen(STDOUT_FILENO, buf, nread) != nread)

　　　　　　　 err_sys("writen error to stdout");

 　　}



 　　/*

 　　 * There are three ways to get here: sig_term() below caught the

 　　 * SIGTERM from the child, we read an EOF on the pty master (which

 　　 * means we have to signal the child to stop), or an error.

 　　 */

 　　if (sigcaught == 0)　　/* tell child if it didn't send us the signal */

　　　　　kill(child, SIGTERM);



 　　/*

 　　 * Parent returns to caller.

 　　 */

}



/*

 * The child sends us SIGTERM when it gets EOF on the pty slave or

 * when read() fails.　We probably interrupted the read() of ptym.

 */

static void

sig_term(int signo)

{

 　　sigcaught = 1;　　　　　　　/* just set flag and return */

}
 
图19-12　loop函数
 
注意，因为使用了两个进程，所以一个终止时，必须通知另一个。我们用SIGTERM信号进行这种通知。
 
19.6　使用pty程序
 
接下来看几个pty程序的应用实例，并了解使用不同命令行选项的必要性。
 
如果使用Korn shell，那么我们执行命令：
 
pty ksh
 
会得到一个运行在伪终端下的全新shell。
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如果文件ttyname包含了图18-16中所示的程序，那么可按如下模式执行pty程序：
 
$ who

sar console May 19 16:47

sar ttys000 May 19 16:47

sar ttys001 May 19 16:48

sar ttys002 May 19 16:48

sar ttys003 May 19 16:49

sar ttys004 May 19 16:49　　　　　　ttys004是当前使用的最高PTY设备

$ pty ttyname　　 　　　　　　　　　　在PTY上运行图18-16中的程序

fd 0: /dev/ttys005　 　　　　　　　　ttys005是下一个可用的PTY

fd 1: /dev/ttys005

fd 2: /dev/ttys005


 
1．utmp文件
 
6.8节讨论过记录当前登录到UNIX系统的用户的utmp文件。那么在伪终端上运行程序的用户是否被认为是登录了呢？如果是用telnetd和rlogind远程登录，显然在伪终端上登录的用户应该在utmp文件中有相应记录项。但是，通过窗口系统或script类程序在伪终端上运行shell的用户是否应该在utmp文件中有相应记录项呢？有的系统有记录，有的没有。如果在utmp文件中没有记录的话， who(1)程序一般不会显示相应伪终端正在被使用。
 
除非utmp文件允许其他用户的写权限（这被认为是一个安全漏洞），否则一般使用伪终端的程序将不能对utmp文件进行写操作。
 
2．作业控制交互
 
当在pty下运行作业控制shell时，它能够正常地运行。例如，
 
pty ksh
 
将在pty下运行Korn shell。我们能够在这个新shell下运行程序并使用作业控制，这如同在登录shell中一样。但如果在pty下运行一个交互式程序而不是作业控制shell，例如，
 
pty cat
 
那么在键入作业控制挂起字符之前该程序的运行一切正常。而在键入作业控制挂起字符时，作业控制挂起字符将会被显示为^Z，并且被忽略。在早期基于BSD的系统中，cat进程终止，pty进程终止，回到初始登录shell。为了明白其中的原因，我们需要检查所有相关的进程以及这些进程所属的进程组和会话。图19-13显示了pty cat运行时的安排。
 
[image: ..\14-0434yds排版CMM\UNIX环境高级编程（第3版）tu\1913.tif]
 
图19-13　pty cat的进程组和会话
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键入挂起字符（Ctrl+Z）时，它被cat进程下的行规程模块所识别，这是因为pty将终端（在pty父进程之下）设置为原始模式。但内核不会停止cat进程，这是因为它属于一个孤儿进程组（见9.10节）。cat的父进程是pty父进程，它属于另一个会话。
 
历史上，不同的系统处理这种情况的方法也不同。POSIX.1只是说明SIGTSTP信号不能被发送给进程。4.3BSD的派生系统向进程递送一个它从不捕获的SIGKILL信号。4.4BSD没有采用发送SIGKILL信号的方法，转而采用符合于POSIX.1的处理方法。如果SIGTSTP信号具有默认配置，并且传递给孤儿进程组中的一个进程，那么4.4BSD的内核会无声息地丢弃SIGTSTP信号。大多数当前的实现都采用这种处理模式。
 
当我们使用pty来运行作业控制shell时，被这个新shell调用的作业决不会是任何孤儿进程组的成员，这是因为作业控制shell总是属于同一个会话。在这种情况下，键入的Ctrl+Z被发送到由shell调用的进程，而不是shell本身。
 
让pty调用的进程能够处理作业控制信号的唯一的方法是：另外增加一个pty命令行标志，使pty子进程自己能够识别作业挂起字符（在pty子进程中），而不是让该字符穿越所有路程而到达另一个行规程模块。
 
3．检查长时间运行程序的输出
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另一个使用pty进行作业控制交互的实例见图19-7。如果运行一个缓慢产生输出的程序：
 
pty slowout > file.out &
 
当子进程试图从标准输入（终端）读入数据时，pty进程立刻停止运行。这是因为该作业是一个后台作业，并且当它试图访问终端时会使作业控制停止。如果将标准输入重定向使得pty不从终端读取数据，如：
 
pty slowout < /dev/null > file.out &
 
那么pty程序也立即停止，因为它从标准输入和终端读取到一个文件结束符。解决这个问题的方法是使用-i选项，这个选项的含义是忽略来自标准输入的文件结束符：
 
pty -i slowout < /dev/null > file.out &
 
这个标志导致在遇到文件结束符时，图19-13的pty子进程退出，但子进程不会告诉父进程终止。相反，父进程一直将PTY从设备的输出复制到标准输出（本例中是文件file.out）。
 
4．script程序
 
使用pty程序可以把script(1)程序实现成下面shell脚本：
 
#!/bin/sh

pty "${SHELL:-/bin/sh}" | tee typescript
 
一旦执行这个shell脚本，即可执行ps命令来观察进程之间的关系。图19-14详细地显示了这些关系。
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[image: ..\14-0434yds排版CMM\UNIX环境高级编程（第3版）tu\1914.tif]
 
图19-14　script shell脚本的进程安排
 
在这个例子中，假设SHELL变量是Korn shell（可能是/bin/ksh）。如前面所述，script仅仅是将新的shell（和它调用的所有的子进程）的输出复制出来，但是因为PTY从设备上的行规程模块通常允许回显，所以绝大多数键入也都被写到typescript文件中。
 
5．运行协同进程
 
在图15-8所示的程序中，协同进程不能使用标准I/O函数，其原因是标准输入和标准输出不是终端，所以标准I/O函数会将它们放到缓冲区中。如果把
 
if (execl("./add2", "add2", (char *)0) < 0)
 
替换成
 
if (execl("./pty", "pty", "-e", "add2", (char *)0) < 0)
 
在pty下运行协同进程，该程序即使使用了标准I/O仍然可以正确运行。
 
图19-15显示了在使用伪终端作为协同进程的输入和输出时，进程的安排。这是图19-6的扩充，它显示了所有的进程连接和数据流。框中的“驱动程序”是按前面的说明更改了execl的图15-8的程序。
 
[image: ..\14-0434yds排版CMM\UNIX环境高级编程（第3版）tu\1915.tif]
 
图19-15　运行一个协同进程，以伪终端作为其输入和输出
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这一实例显示了-e（不回显）选项对于pty程序的重要性。因为pty程序的标准输入没有连接到终端，所以它不以交互方式运行。在图19-11程序中，interactive标志默认为假，这是因为对isatty调用的返回是假。这意味着真正终端上的行规程保持在规范模式下，并允许回显。指定-e选项后，关掉了PTY从设备上的行规程模块的回显。如果不这样做，则键入的每一个字符都将被两个行规程模块各回显一次。
 
还能用-e选项关闭termios结构的ONLCR标志，以防止所有协同进程的输出被回车和换行符终止。
 
在不同的系统上测试这个例子，会遇到14.7节中描述readn和writen函数时顺便提到的同样问题。当描述符引用的不是普通磁盘文件时，从read返回的数据量可能会因两个实现之间的不同而有所区别。使用pty的协同进程实例产生了非预期的结果，其原因可追溯至图15-18的程序中读管道的read函数，它返回的结果不足一行。解决方法是不使用图15-18中的程序，而是要使用来自于习题15.5针对这个程序的另外一个版本，这个版本改用标准I/O库，将两个管道的标准I/O流都设置为行缓冲。这样，fgets函数将会读完一个整行。图15-18的程序中的while循环假设发送到协同进程的每一行都会带来一行的返回结果。
 
6．非交互地驱动交互式程序
 
虽然让pty运行任意协同进程，甚至交互式的协同进程的想法很诱人，但这是行不通的。问题在于pty只是将其标准输入复制到PTY，并将来自PTY的数据复制到其标准输出，而并不关心具体发送的或得到的是什么数据。
 
举个例子，我们可以在pty下运行telnet命令，直接与远程主机对话：
 
pty telnet 192.168.1.3
 
这样做与直接键入telnet 192.168.1.3相比，并没有带来更多的好处，但我们可能希望在一个脚本中运行telnet程序，其目的很可能是要检验远程主机的某个条件。如果telnet.cmd文件包括下面4行：
 
sar

passwd

uptime

exit


 
第1行是登录到远程主机时使用的用户名，第2行是口令，第3行是希望运行的命令，第4行终止此会话。如果按下列方式运行此脚本：
 
pty -i < telnet.cmd telnet 192.168.1.3
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那么，它不会像我们所想的那样操作。而是，telnet.cmd文件的内容在还没有得到机会提示我们输入账户名和口令之前，就被发送到了远程主机。当它关闭回显而读口令时，login使用tcsetattr选项，于是丢弃了已在队列中的所有数据。这样一来，我们发送的数据就被丢掉了。
 
当以交互方式运行telnet程序时，我们等待远程主机发出输入口令的提示，然后再键入口令，但是pty程序不知道这样做。这就是需要一个比pty更巧妙的程序，如expect，从脚本文件驱动交互式程序的原因。
 
即使如前所示那样从图15-18程序运行pty，这也没有任何帮助。因为图15-18中的程序认为它在一个管道写入的每一行都会在另一个管道产生一行。对于一个交互式程序，输入一行可能产生多行输出。更进一步，图15-18中的程序在从协同进程读之前，它总是先发送一行给该进程。如果想在发送给协同进程一些数据之前从协同进程处读，这种策略就行不通了。
 
有一些从shell脚本驱动交互式程序的方法。可以在pty上增加一种命令语言和一个解释器。但是一个适当的命令语言可能十倍于pty程序的大小。另一种选择是使用命令语言并用pty_fork函数来调用交互式程序，这正是expect程序所做的。
 
我们将采用一种不同的途径，使用选项-d使pty程序的输入和输出与驱动进程连接起来。该驱动进程的标准输出是pty的标准输入，反之亦然。这有点像协同进程，只是在pty的“另一边”。此种进程结构与图19-15中所示的几乎相同，只是在这种场景中，由pty来完成驱动进程的fork和exec。而且我们在pty和驱动进程二者之间使用的是一个双向的流管道，而不是两个半双工管道。
 
图19-16展示的是do_driver函数的源代码，在使用-d选项时，该函数由pty（见图19-11）的main函数调用。
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#include "apue.h"



void

do_driver(char *driver)

{

 　　pid_t　 child;

 　　int　　　pipe[2];



 　　/*

 　　 * Create a full-duplex pipe to communicate with the driver.

 　　 */

 　　if (fd_pipe(pipe) < 0)

　　　　　err_sys("can't create stream pipe");



 　　if ((child = fork()) < 0) {

　　　　　 err_sys("fork error");

 　　} else if (child == 0) {　　　　　/* child */

　　　　　 close(pipe[1]);



 　　　　　/* stdin for driver */

 　　　　　if (dup2(pipe[0], STDIN_FILENO) != STDIN_FILENO)

　　　　　　　　err_sys("dup2 error to stdin");



 　　　　　/* stdout for driver */

 　　　　　if (dup2(pipe[0], STDOUT_FILENO) != STDOUT_FILENO)

　　　　　　　　err_sys("dup2 error to stdout");

 　　　　　if (pipe[0] != STDIN_FILENO && pipe[0] != STDOUT_FILENO)

　　　　　　　　close(pipe[0]);



 　　　　　/* leave stderr for driver alone */

 　　　　　execlp(driver, driver, (char *)0);

 　　　　　err_sys("execlp error for: %s", driver);

 　　}



 　　close(pipe[0]);　　　　　/* parent */

 　　if (dup2(pipe[1], STDIN_FILENO) != STDIN_FILENO)

　　　　　err_sys("dup2 error to stdin");

 　　if (dup2(pipe[1], STDOUT_FILENO) != STDOUT_FILENO)

　　　　　err_sys("dup2 error to stdout");

 　　if (pipe[1] != STDIN_FILENO && pipe[1] != STDOUT_FILENO)

　　　　　close(pipe[1]);



 　　/*

 　　 * Parent returns, but with stdin and stdout connected

 　　 * to the driver.

 　　 */

}
 
图19-16　pty程序的do_driver函数
 
通过我们自己编写由pty调用的驱动程序，可以按我们所希望的方式驱动交互式程序。即使驱动程序有和pty连接在一起的标准输入和标准输出，驱动进程仍然可以通过读、写/dev/tty同用户交互。这个解决方法仍不如expect程序通用，但是它用不到50行的代码提供了pty的一种实用的选项。
 
19.7　高级特性
 
伪终端还有其他特性，我们在这里简略提一下。Sun Microsystems[2002]和BSD pts(4)的手册页对此有更详细的说明。
 
1．打包模式
 
打包模式（packet mode）能够使PTY主设备了解到PTY从设备的状态变化。在Solaris系统中，可以通过将STREAMS模块pckt压入PTY主设备端来设置这种模式。图19-2显示了这种可选模块。在FreeBSD、Linux和Mac OS X中，可以用TIOCPKT ioctl命令来设置这种模式。
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Solaris和其他平台相比较，具体的打包模式有所不同。在Solaris中，读取PTY主设备的进程必须调用getmsg从流首取得消息，这是因为pckt模块将一些事件转化成了无数据的STREAMS消息。在其他平台中，每一次对PTY主设备的读操作都会返回带有可选数据的状态字节。
 
无论实现细节如何，打包模式的目的是，当PTY从设备上的行规程模块出现以下事件时，通知进程从PTY主设备读取数据：读队列被冲洗；写队列被冲洗，输出被停止（如Ctrl+S），输出重新开始，XON/XOFF流控制被禁用后重新启用，XON/XOFF流控制被启用后重新禁用。这些事件由rlogin客户进程和rlogind服务器进程使用。
 
2．远程模式
 
PTY主设备可以用TIOCREMOTE ioctl命令将PTY从设备设置成远程模式。虽然FreeBSD、Mac OS X 10.6.8和Solaris 10使用同样的命令来启用或禁用这个特性，但是在Solaris中，ioctl的第三个参数是一个整型数，而在Mac OS X中则是一个指向整型数的指针。（FreeBSD 8.0和Linux 3.2.0不支持这一命令。）
 
当PTY主设备将PTY从设备设置成这种模式时，它通知PTY从设备上的行规程模块对从主设备接收到的任何数据都不进行任何处理，不管从设备termios结构中的规范或非规范标志是否设置，都是这样。远程模式适用于窗口管理器这种进行自己的行编辑的应用程序。
 
3．窗口大小变化
 
PTY主设备上的进程可以用TIOCSWINSZ ioctl命令来设置从设备的窗口大小。如果新的大小和当前的大小不同，SIGWINCH信号将被发送到PTY从设备的前台进程组。
 
4．信号发生
 
读、写PTY主设备的进程可以向PTY从设备的进程组发送信号。在Solaris 10中，可以用TIOCSIGNAL ioctl命令做到这一点。在FreeBSD 8.0、Linux 3.2.0和 Mac OS X 10.6.8中，用TIOCSIG ioctl来做到这一点。在这两种情况下，第三个参数都是信号编号值。
 
19.8　小结
 
本章开始部分简要叙述了如何使用伪终端，并观察了某些应用实例。接着，分析说明了在本书讨论的4种平台上打开伪终端所需的代码。然后用此代码提供了通用pty_fork函数，它可用于多种不同的应用。该函数是小程序（pty）的基础，我们使用这一程序揭示了伪终端的许多属性。
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伪终端在大多数UNIX系统中每天都被用来进行网络登录。我们还检查了伪终端的许多其他用途，从script程序到使用批处理脚本来驱动交互式程序等。
 
习题
 
19.1　当用telnet或rlogin远程登录到一个BSD系统上时，像我们在19.3节讨论过的那样，PTY从设备的所有权和权限被设置。该过程是如何发生的？
 
19.2　使用pty程序来确定你的系统用于初始化PTY从设备的termios结构和winsize结构的值。
 
19.3　重写loop函数（见图19-12），使之成为使用select或poll的单个进程。
 
19.4　在子进程中，pty_fork返回后，标准输入、标准输出和标准错误都以读写模式打开。能够将标准输入变成只读，另两个变成只写吗？
 
19.5　在图19-13中，指出哪些进程组是前台的，哪些进程组是后台的，并指出会话首进程。
 
19.6　在图19-13中，当键入文件终止符时，进程终止的顺序是什么？如果可能的话，用进程会计信息验证之。
 
19.7　script(1)程序通常在输出文件头增加一行说明它的开始时间，在输出文件末尾增加一行说明它的结束时间。将这些特性添加到本章展示的简单的shell脚本中。
 
19.8　解释为什么在下面的例子中，即使程序ttyname（见图18-16）只产生输出而不读入的情况下，文件data的内容还被输出到终端上。
 
$ cat data　　　　　　　　　　　　　　　一个两行的文件

hello,

world

$ pty -i < data ttyname -i  　 　　-i表示忽略stdin的文件结束标志

hello,　　　　　　　　　　　　　　　　　这两行来自何处？

world

fd 0:/dev/ttys005　　　　　　　　  　我们期望ttyname输出这3行

fd 1:/dev/ttys005 

fd 2:/dev/ttys005
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19.9　编写一个调用pty_fork的程序，该程序有一个子进程，该子进程exec另一个你写的程序。子进程exec的新程序能够捕获SIGTERM和SIGWINCH。当捕获到信号时，要打印出有关消息，并且对于后一种信号，还要打印终端窗口大小。然后让父进程用19.7节描述过的ioctl命令向PTY从设备的进程组发送SIGTERM信号。从PTY从设备读回消息并验证捕获到了该信号。接下来由父进程设置PTY从设备窗口的大小，并再读回PTY从设备的输出。让父进程退出（exit）并确定PTY从设备进程是否也要终止；如果要终止，应如何终止？
 


第20章　数据库函数库
 
20.1　引言
 
20世纪80年代早期，UNIX系统被认为不适合运行多用户数据库系统（见Stonebraker[1981]和Weinberger[1982]）。早期的系统（如V7），因为没有提供任何形式的IPC机制（除了半双工管道），也没有提供任何形式的字节范围锁机制，所以确实不适合运行多用户数据库系统。但是，这些缺陷中的大多数都已得到纠正。到20世纪了80年代后期，UNIX系统已为运行可靠的、多用户的数据库系统提供了一个适合的环境。自那时以来，很多商业公司都已提供这种数据库系统。
 
本章将开发一个简单的、多用户数据库的C函数库。调用此函数库提供的C语言函数，其他程序可以获取和存储数据库中的记录。（这类数据库通常被称为键-值存储。）这个C函数库只是一个完整的数据库系统的一部分，我们并不开发其他部分（如查询语言等），关于其他部分可以参阅专门介绍数据库的教科书。我们感兴趣的是数据库函数库与UNIX的接口，以及这些接口与前面各章节所涉及主题的关系（如14.3节的字节范围锁）。
 
20.2　历史
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dbm(3)是一个在UNIX系统中很流行的数据库函数库，它由Ken Thompson开发，使用了动态散列结构。最初，它与V7一起提供，并出现在所有BSD版本中，也包含在SVR4的BSD兼容函数库中[AT&T 1990c]。BSD的开发者扩充了dbm函数库，并将它称为ndbm。ndbm函数库包括在BSD和SVR4中。ndbm函数是Single UNIX Specification的XSI扩展标准的一部分。
 
Seltzer和Yigit[1991]中详细介绍了dbm函数库使用的动态散列算法的历史，以及这个库的其他实现方法，如dbm函数库的GNU版本gdbm。但是，这些实现的一个根本限制是它们都不支持多个进程对数据库的并发更新。它们都没有提供并发控制（如记录锁机制）。
 
4.4BSD提供了一个新的库——db(3)，该库支持3种不同的访问模式：面向记录、散列和B树。同样，db也没有提供并发控制（这一点在db(3)手册页的BUGS部分说得很清楚）。
 
 
 Oracle（http://www.oracle.com ）提供了几个版本的db函数库，它们支持并发访问、锁机制和事务。
 

 
大部分商用数据库函数库提供多进程同时更新数据库所需要的并发控制。这些系统一般都使用14.3节中介绍的建议记录锁机制，但是，它们也常常实现自己的锁原语，以避免为获得一把无竞争锁而需的系统调用开销。这些商用系统通常用B+树[Comer 1979]或某种动态散列技术，如线性散列[Litwin 1980]或者可扩展的散列[Fagin et al. 1979]来实现数据库。
 
图20-1列出了本书说明的4种操作系统常用的数据库函数库。注意在Linux上，gdbm库既支持dbm函数库，又支持ndbm函数库。
 
[image: 20-1.jpg]
 
图20-1　多种平台支持的数据库函数库
 
20.3　函数库
 
本章开发的函数库类似于ndbm函数库，但增加了并发控制机制，从而允许多进程同时更新同一数据库。本节将首先描述数据库函数库的C语言接口，下一节再讨论其实现。
 

  744 

 
当打开一个数据库时，通过返回值得到一个代表数据库的句柄（一个不透明指针）。将用此句柄作为参数来调用其他数据库函数。
 
#include "apue_db.h"



DBHANDLE db_open(const char *pathname, int oflag, ... /* int mode */);



　　　　　　　　　　　　　　　　　返回值：若成功，返回数据库句柄；若失败，返回NULL



void db_close(DBHANDLE db);


 
如果db_open成功返回，则将建立两个文件：pathname.idx和pathname.dat，pathname.idx是索引文件，pathname.dat是数据文件。参数oflag作为传递给open（见3.3节）的第二个参数，来指定这些文件的打开模式（只读、读/写或如果文件不存在则创建等）。如果需要建立新的数据库，mode将作为第三个参数传递给open（文件访问权限）。
 
当不再使用数据库时，调用db_close来关闭数据库。db_close将关闭索引文件和数据文件，并释放数据库使用过程中分配到的所有用于内部缓冲区的存储空间。
 
当向数据库中存入一条新的记录时，必须提供一个此记录的键，以及与此键相关联的数据。如果此数据库存储的是人事信息，键可以是员工ID，数据可以是此员工的姓名、地址、电话号码以及受聘日期等。实现要求每条记录的键必须是唯一的（例如，不会有两个员工记录有同样的员工ID）。
 
#include "apue_db.h"



int db_store(DBHANDLE db, const char *key, const char *data, int flag);



　　　　　　　　　　　　　　　　　返回值：若成功，返回0；若出错，返回非0值（见下）


 
key和data是由null字符终止的字符串。它们可以包含除了null字符外的任何字符，如换行符。
 
flag参数只能是DB_INSERT（插入一条新记录）、DB_REPLACE（替换一条已有的记录）或DB_ STORE（插入一条新记录或替換一条已有的记录，只要合适无论哪一种都可以）。这3个常数定义在apue_db.h头文件中。如果使用DB_INSERT或DB_STORE，并且记录并不存在，则插入一条新记录。如果使用DB_REPLACE或DB_STORE，并且该记录已经存在，则用新记录替换已有记录。如果使用DB_REPLACE，而记录不存在，则将errno设置为ENOENT，返回值为1，并且不加入新记录。如果使用DB_INSERT，而记录已经存在，则不插入新记录，返回值为1。在这里，返回1以区别于一般的出错返回（1）。
 
通过指定键key可以从数据库中获取一条记录。
 
#include "apue_db.h"



char *db_fetch(DBHANDLE db, const char *key);



　　　　　　　　　　　　　　　　　返回值：若成功，返回指向数据的指针；若没有找到记录，返回NULL
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如果找到了记录，返回指向通过key存放的数据的指针。通过指定key，也可以在数据库中删除一条记录。
 
#include "apue_db.h"



int db_delete(DBHANDLE db, const char *key);



　　　　　　　　　　　　　　　　　返回值：若成功，返回0；若没有找到记录，返回−1


 
除了通过指定key获取记录外，还可以逐条记录地访问数据库。为此，首先调用db_rewind回滚到数据库的第一条记录，然后在每一次循环中调用db_nextrec，顺序地读每条记录。
 
#include "apue_db.h"



void db_rewind(DBHANDLE db);



char *db_nextrec(DBHANDLE db, char *key);



　　　　　　　　　　　　　　　返回值：若成功，返回指向数据的指针；若到达数据库文件的尾端，返回NULL


 
如果key是非空指针，db_nextrec将这个指针复制到存储区域开始的内存位置，然后返回这个指针。
 
db_nextrec不保证其返回记录的顺序，只保证对数据库中的每一条记录只读取一次。如果顺序存储3条键分别为A、B、C的记录，则无法确定db_nextrec将按什么顺序返回这3条记录。它可能按B、A、C的顺序返回，也可能按其他顺序。实际的顺序由数据库的实现决定。
 
这7个函数提供了数据库函数库的接口。接下来介绍实现。
 
20.4　实现概述
 
访问数据库的函数库通常使用两个文件来存储信息：一个索引文件和一个数据文件。索引文件包括实际的索引值（键）和一个指向数据文件中对应数据记录的指针。有许多技术可用来组织索引文件以提高按键查询的速度和效率，散列表和B+树是两种常用的技术。我们采用固定大小的散列表来组织索引文件结构，并采用链表法解决散列冲突。在介绍db_open时，曾提到将创建两个文件：一个以.idx为后缀的索引文件和一个以.dat为后缀的数据文件。
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我们将键和索引以null结尾的字符串形式存储，它们不能包含任意的二进制数据。有些数据库系统用二进制形式存储数值数据（如用1个、2个或4个字节存储一个整数）以节省存储空间，这样一来使函数复杂化，也使数据库文件在不同的平台间移植比较困难。例如，网络上有两个系统使用不同的二进制格式存储整数，如果想要这两个系统都能够访问数据库，就必须解决不同存储格式的问题（今天不同体系结构的系统在网络上共享文件已经很常见了）。按照字符串形式存储所有的记录，包括键和数据，能使这一切变得简单。这确实需要使用更多的磁盘空间，但降低了获得可移植性需要付出的代价。
 
db_store要求对于每个键，只有一条对应的记录。有些数据库系统允许多条记录使用同样的键，并提供方法访问与一个键相关的所有记录。另外，我们只有一个索引文件，这意味着每个数据记录只能有一个键（我们不支持次键）。有些数据库允许一条记录拥有多个键，并且对每一个键使用一个索引文件。当插入或删除一条记录时，要对所有的索引文件进行相应的修改。（一个拥有多个索引的例子是员工库文件。可以将员工ID作为键，也可以将员工的社会保险号作为键。由于员工的名字并不保证唯一，所以名字不能作为键。）
 
图20-2是数据库实现的基本结构。
 
[image: ..\14-0434 UNIX环境高级编程（第3版）(改一校)改\2002.tif]
 
图20-2　索引文件和数据文件结构
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索引文件由3部分组成：空闲链表指针、散列表和索引记录。图20-2中，所有指针字段中实际存储的是ASCII码数字形式的文件偏移量。
 
当给定一个键，要在数据库中寻找一条记录时，db_fetch根据该键计算散列值，由此散列值可确定一条散列链（链表指针字段可以为0，表示一条空的散列链）。沿着这条散列链，可以找到所有具有这一散列值的索引记录。当遇到一个索引记录的链表指针字段为0时，表示到达了此散列链的末尾。
 
下面来看一个实际的数据库文件。图20-3所示的程序建立了一个新的数据库，并且写入了3条记录。由于所有的字段都以ASCII字符的形式存储在数据库中，所以可以用任何标准的UNIX系统工具来查看索引文件和数据文件：
 
$ ls -l db4.*

-rw-r--r--　1 sar　　　 28 Oct 19 21:33 db4.dat

-rw-r--r--　1 sar　　　 72 Oct 19 21:33 db4.idx　 

$ cat db4.idx

　　0　53　35　　0

　　0　10Alpha:0:6

　　0　10beta:6:14

　 17　11gamma:20:8

$ cat db4.dat

data1

Data for beta

record3


 
为了使这个例子紧凑，将每个指针字段的大小设置为4个ASCII字符，将散列链的数量设置为3条。由于每一个指针中记录的是一个文件偏移量，所以4个ASCII字符限制了一个索引文件或数据文件的大小最多只能为10 000字节。当在20.9节做性能测试时，将指针字段的大小设为6个字符（这样文件大小可以达到1 000 000字节），将散列链数量设为100。
 
#include "apue.h"

#include "apue_db.h"

#include <fcntl.h>



int

main(void)

{

 　　DBHANDLE 　　　db;



 　　if ((db = db_open("db4", O_RDWR | O_CREAT | O_TRUNC,

 　　　FILE_MODE)) == NULL)

 　　　　err_sys("db_open error");



 　　if (db_store(db, "Alpha", "data1", DB_INSERT) != 0)

 　　　　err_quit("db_store error for alpha");

 　　if (db_store(db, "beta", "Data for beta", DB_INSERT) != 0)

 　　　　err_quit("db_store error for beta");

 　　if (db_store(db, "gamma", "record3", DB_INSERT) != 0)

 　　　　err_quit("db_store error for gamma");



 　　db_close(db);

 　　exit(0);

}
 
图20-3　建立一个数据库并写入3条记录
 
索引文件的第一行为：
 
0　53　35　　0
 
分别为空闲链表指针（0表示空闲链表为空）和3个散列链的指针：53、35和0。下一行：
 
0　10Alpha:0:6
 
显示了一条索引记录的结构。第一个4字符字段（0）为链表指针，表示这一条记录是此散列链的最后一条。下一个4字符字段（10）为idx len（索引记录长度），表示此索引记录剩余部分的长度。用两个read操作来读取一条索引记录：第一个read读取这两个固定长度的字段（链表指针和索引记录长度），然后再根据索引记录长度来读取后面的不定长部分。剩下的3个字段为：键、数据记录的偏移量和数据记录的长度。这3个字段用分隔符隔开，此处使用的分隔符是冒号。由于这3个字段都是不定长的，所以需要一个专门的分隔符，而且这个分隔符不能出现在键中。最后用一个\n（换行符）结束这一条索引记录。由于在索引记录长度字段中已经有了记录的长度，所以这个换行符并不是必需的，加上换行符是为了把各条索引记录分开，这样就可以用标准的UNIX系统工具（如cat和more）来查看索引文件。键字段是将记录写入数据库时指定的值。数据记录在数据文件中的偏移量为0，长度为6。从数据文件中可看到数据记录确实从0开始，长度为6个字节。（与索引文件一样，这里自动在每条数据记录的后面追加一个换行符，以便于使用UNIX系统工具。在调用db_fetch时，此换行符不作为数据返回。）
 
如果在这个例子中跟踪 3 条散列链，可以看到第一条散列链上第一条记录的偏移量是 53（gamma）。这条链上下一条记录的偏移量为17（alpha），并且是这条链上的最后一条记录。第二条散列链上的第一条记录的偏移量是35（beta），且是此链上最后一条记录。第三条散列链为空。
 
请注意，索引文件中键的顺序和数据文件中对应数据记录的顺序与图 20-3 程序中调用 db_ store的顺序一样。由于在调用db_open时使用了O_TRUNC标志，索引文件和数据文件都被截断了，整个数据库相当于重新初始化。在这种情况下，db_store将新的索引记录和数据记录追加到对应的文件末尾。后面将看到，db_store还可以重复使用这两个文件中已删除记录原来对应的空间。
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使用固定大小的散列表作为索引是一个妥协。当每个散列链都不太长时，这个方法能保证快速地访问。我们的目的是能够快速地查找任一键，同时又不使用太复杂的数据结构（如B树或动态散列表）。动态散列表的优点是能保证仅用两次磁盘存取就能找到数据记录（详见Litwin[1980]或Fagin等[1979]）。B树能够用（已排序的）键的顺序来遍历数据库（采用散列表的db_nextrec函数就做不到这一点）。
 
20.5　集中式或非集中式
 
当有多个进程访问同一数据库时，有两种方法可实现库函数。
 
（1）集中式。由一个进程作为数据库管理者，所有的数据库访问工作由此进程完成。其他进程通过IPC机制与此中心进程进行联系。
 
（2）非集中式。每个库函数使用要求的并发控制（加锁），然后发起自己的I/O函数调用。
 

  750 

 
使用这两种技术的数据库系统都有。如果有适当的加锁例程，因为避免了使用IPC，那么非集中式方法一般要快一些。图20-4描绘了集中式方法的操作。
 
图中特意表示出IPC像绝大多数UNIX系统的消息传递一样需要经过操作系统内核（15.9节中说明的共享存储不需要这种经过内核的复制）。在集中方式下，中心控制进程将记录读出，然后通过IPC机制将数据传递给请求进程。这是这种设计的不足之处。注意，集中式数据库管理进程是唯一对数据库文件进行I/O操作的进程。
 
集中式的优点是能够根据需要来对操作模式进行调整。例如，可以通过中心进程给不同的进程赋予不同的优先级，这会影响到中心进程对I/O操作的调度。而用非集中式方法则很难做到这一点。在这种情况下，只能依赖于操作系统内核的磁盘I/O调度策略和加锁策略（例如，当3个进程同时等待一个即将可用的锁时，我们无法确定哪个进程将得到这个锁）。
 
集中式方法的另一个优点是，恢复要比非集中式方法容易。在集中式方法中，所有状态信息都集中存放在一处，所以如若杀死了数据库进程，只需在该处查看以识别出需要解决的未完成事务，然后将数据库恢复到一致状态。
 
[image: 14-0434 UNIX环境高级编程（第3版）(改一校)改\2004.tif]
 
图20-4　集中式数据库访问
 
图20-5描绘了非集中式方法，本章的实现就是采用这种方法。
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[image: ..\14-0434yds排版CMM\UNIX环境高级编程（第3版）tu\2005.tif]
 
图20-5　非集中式数据库访问
 
调用数据库库函数执行I/O的用户进程是合作进程，它们使用字节范围记录锁机制来实现并发控制。
 
20.6　并发
 
由于很多系统的实现都采用两个文件（一个索引文件和一个数据文件）的方法，所以在此也使用这种方法，这要求能够控制对两个文件的加锁。有很多方法可用来对两个文件进行加锁。
 
1．粗粒度锁
 
最简单的加锁方法是将这两个文件中的一个作为整个数据库的锁，并要求调用者在对数据库进行操作前必须获得这个锁。这种加锁方式称为粗粒度锁（coarse-grained locking）。例如，可以认为一个进程对索引文件的0字节加了读锁后，才能读整个数据库；一个进程对索引文件的0字节加了写锁后，就能写整个数据库。可以使用UNIX系统的字节范围锁机制来控制每次可以有多个读进程，而只能有一个写进程（见图14-3）。db_fetch和db_nextrec函数要求具有读锁，而db_delete、 db_ store和db_open则要求具有写锁。（db_open要求写锁的原因是如果要创建新文件的话，要在索引文件前端建立空闲区链表以及散列链表。）
 
粗粒度锁的问题是它限制了并发。用粗粒度锁时，当一个进程向一条散列链中添加一条记录时，其他进程无法访问另一条散列链上的记录。
 
2．细粒度锁
 
细粒度锁（fine-grained locking）的方法改进了粗粒度锁，提供了更高的并发性。一个读进程或写进程在操作一条记录前必须先获得此记录所在散列链的读锁或写锁。一条散列链允许同时有多个读进程，但只能有一个写进程。其次，一个写进程在访问空闲区链表（如db_delete或db_store）前，必须获得空闲区链表的写锁。最后，当db_store向索引文件或数据文件末尾追加一条新记录时，必须获得对应文件相应区域的写锁。
 
期望细粒度锁能比粗粒度锁能提供更高的并发性。20.9 节将给出一些实际的比较测试结果。20.8 节给出了细粒度锁实现的源代码，并讨论锁的实现细节（粗粒度锁是这个细粒度锁实现的简化）。
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在源代码中，直接调用了read、readv、write和writev。没有使用标准I/O函数库。虽然使用标准I/O函数库也可以使用字节范围锁，但是需要非常复杂的缓冲管理。例如，标准I/O缓冲区的数据在5分钟之前被另一个进程修改了，那么我们就不希望fgets返回的数据是10分钟之前读入标准I/O缓冲区的数据。
 
以上对并发的讨论依据的是对数据库函数库的简单需求。商业系统一般有更多的需要。关于并发更多的细节可以参见Data[2004]的第16章。
 
20.7　构造函数库
 
数据库的函数库由两个文件构成，一个公用的C头文件以及一个C源文件。我们可以用下列命令构造一个静态函数库。
 
gcc -I../include -Wall -c db.c

ar rsv libapue_db.a db.o
 
因为我们在数据库函数库中使用了一些我们自己的公共函数，所以希望与libapue_db.a相连接的应用程序也需要与libapue.a相连接。
 
另一方面，如果想构建数据库函数库的动态共享库版本，可使用下列命令：
 
gcc -I../include -Wall -fPIC -c db.c

gcc -shared -Wl,-soname,libapue_db.so.1 -o libapue_db.so.1 \

　　 -L../lib -lapue -lc db.o
 
构建成的共享库libapue_db.so.1需放置在动态连接程序/载入程序（dynamic linker/loader）能够找到的一个公用目录中。还可以将共享库放置在一个私有目录中，修改LD_LIBRARY_PATH环境变量，使动态连接程序/载入程序的搜索路径包含该私有目录。
 
 
 在不同平台间，构建共享库的步骤会有所不同。这里说明的步骤是在带GNU C编译器的Linux系统中进行的。
 

 
20.8　源代码
 
本节解释我们编写的数据库函数库源代码，先从头文件apue_db.h开始。函数库源代码以及调用此函数库的所有应用程序都包含这一头文件。
 
从此处开始，实例程序的编排方式在很多方面与前面的实例程序编排有所不同。首先，因为源代码较长，为此加了行号，这使得通过行号联系相应的源代码进行讨论更加方便。其次，对源代码的说明紧随相关源代码之后。
 
 
 这种风格受到John Lions解释UNIX V6操作系统源代码的书[Lions 1977, 1996]的影响，这使得解释说明大量源代码更为简易。
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注意，此处对空白行不编号。虽然某些工具（如pr(1)）的正常操作与这些空白行是有关的，但是我们对它们并无任何兴趣。
 
1　 #ifndef _APUE_DB_H

2　 #define _APUE_DB_H



3　 typedef　　void *　DBHANDLE;



4　 DBHANDLE　db_open(const char *, int, ...);

5　 void　    db_close(DBHANDLE);

6　 char　　　*db_fetch(DBHANDLE, const char *);

7　 int　　　　db_store(DBHANDLE, const char *, const char *, int);

8　 int　　　　db_delete(DBHANDLE, const char *);

9　 void　　　 db_rewind(DBHANDLE);

10　char　　　*db_nextrec(DBHANDLE, char *);



11　/*

12　 * Flags for db_store().

13　 */

14　#define DB_INSERT　　 1　　/* insert new record only */

15　#define DB_REPLACE　　2　　/* replace existing record */

16　#define DB_STORE　　　3　　 /* replace or insert */



17　/*

18　 * Implementation limits.

19　 */

20　#define IDXLEN_MIN　　 6　　/* key, sep, start, sep, length, \n */

21　#define IDXLEN_MAX 1024　　/* arbitrary */

22　#define DATLEN_MIN　　 2　　/* data byte, newline */

23　#define DATLEN_MAX 1024　　 /* arbitrary */



24　#endif /* _APUE_DB_H */
 
[1～3]　　使用符号_APUE_DB_H以保证只包括该头文件一次。DBHANDLE类型表示对数据库的一个有效引用，用于隔离应用程序和数据库的实现细节。将此技术与标准I/O库向应用程序提供FILE结构相比较，两者相似。
 
[4～10]　　接着，声明了数据库函数库公有函数的原型。因为使用函数库的应用程序包括了此头文件，所以这里不再声明函数库私有函数的原型。
 
[11～24]　　定义了可以传送给 db_store 函数的合法标志。其后是实现的基本限制。如果希望支持更大的数据库，可以更改这些限制。
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最小索引记录长度由IDXLEN_MIN指定。这表示1字节键、1字节分隔符、1字节起始偏移量，另一个1字节分隔符、1字节长度和终止换行符。（回忆图20-2中索引记录的格式。）一条索引记录通常长于IDXLEN_MIN字节，这只是最小长度。
 
下一个文件是db.c，它是库函数的C源文件。为简化起见，将所有函数都放在一个文件中。这样处理的优点是只要将私有函数声明为static，就可对外将它隐蔽起来。
 
1　　#include "apue.h"

2　　#include "apue_db.h"

3　　#include <fcntl.h>　　 /* open & db_open flags */

4　　#include <stdarg.h>

5　　#include <errno.h>

6　　#include <sys/uio.h>　 /* struct iovec */



7　　/*

8　　 * Internal index file constants.

9　　 * These are used to construct records in the

10　　* index file and data file.

11　　*/

12　 #define IDXLEN_SZ　　 4　　/* index record length (ASCII chars) */

13　 #define SEP　　　　　':'　　/* separator char in index record */

14　 #define SPACE　　　　' '　　/* space character */

15　 #define NEWLINE　　 '\n'　 /* newline character */



16　 /*

17　　* The following definitions are for hash chains and free

18　　* list chain in the index file.

19　　*/

20　 #define PTR_SZ　　　　　7　　/* size of ptr field in hash chain */

21　 #define PTR_MAX　 999999　　/* max file offset = 10**PTR_SZ - 1 */

22　 #define NHASH_DEF　　137　　/* default hash table size */

23　 #define FREE_OFF　　　　0　　/* free list offset in index file */

24　 #define HASH_OFF PTR_SZ　　 /* hash table offset in index file */



25　 typedef unsigned long DBHASH;　/* hash values */

26　 typedef unsigned long COUNT;　 /* unsigned counter */
 
[1～6]　　使用了一些私有函数库中的函数，所以程序中包括了apue.h。当然，apue.h也包括若干标准头文件，包括<stdio.h>和<unistd.h>。因为db_open函数使用由<stdarg.h>定义的可变参数函数，所以程序中也包括了<stdarg.h>。
 
[7～26]　　索引记录的长度说明为IDXLEN_SZ。我们用某些字符（如冒号、换行符）作为数据库中的分隔符。当删除一记录时，在其中全部填入空格符。
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其中一些定义为常量的值也可定义为变量，只是会使实现复杂一些。例如，设定散列表的大小为137记录项，也许更好的方法是让db_open的调用者根据预期的数据库大小通过参数来设定这个值，然后将该值存在索引文件的最前面。
 
27　 /*

28　  *Library's private representation of the database.

29　  */

30　 typedef struct {

31　 　int　　idxfd; 　　/* fd for index file */

32　 　int　　datfd; 　　/* fd for data file */

33　 　char　*idxbuf;　　/* malloc'ed buffer for index record */

34　 　char　*datbuf;　　/* malloc'ed buffer for data record*/

35　 　char　*name;　　　/* name db was opened under */

36　 　off_t　idxoff;　　/* offset in index file of index record */

37　 　　　　　　　　　　　/* key is at (idxoff + PTR_SZ + IDXLEN_SZ) */

38　 　size_t idxlen;　　/* length of index record */

39　 　　　　　　　　　　　/* excludes IDXLEN_SZ bytes at front of record */

40　 　　　　　　　　　　　/* includes newline at end of index record */

41　 　off_t　datoff;　　/* offset in data file of data record */

42　 　size_t datlen;　　/* length of data record */

43　 　　　　　　　　　　　/* includes newline at end */

44　 　off_t　ptrval;　　/* contents of chain ptr in index record */

45　 　off_t　ptroff;　　/* chain ptr offset pointing to this idx record */

46　 　off_t　chainoff;　/* offset of hash chain for this index record */

47　 　off_t　hashoff; 　/* offset in index file of hash table */

48　 　DBHASH nhash;　　 /* current hash table size */

49　 　COUNT　cnt_delok;　　　/* delete OK */

50　 　COUNT　cnt_delerr;　　 /* delete error */

51　 　COUNT　cnt_fetchok;　　/* fetch OK */

52　 　COUNT　cnt_fetcherr;　 /* fetch error */

53　 　COUNT　cnt_nextrec;　　/* nextrec */

54　 　COUNT　cnt_stor1;　　　/* store: DB_INSERT, no empty, appended */

55　 　COUNT　cnt_stor2;　　　/* store: DB_INSERT, found empty, reused */

56　 　COUNT　cnt_stor3;　　　/* store: DB_REPLACE, diff len, appended */

57　 　COUNT　cnt_stor4;　　　/* store: DB_REPLACE, same len, overwrote */

58　 　COUNT　cnt_storerr;　　/* store error */

59　 } DB;
 
[27～48]　　在DB结构中记录一个打开数据库的所有信息。db_open函数返回DB结构的指针DBHANDLE值。这个指针被用于其他所有函数，而该结构本身则不面向调用者。
 
因为在数据库中以ASCII形式存放指针和长度，所以将这些转换为数字值，并存放在DB结构中。也存放散列表长度，虽然一般而言，这是定长的，但也有可能为加强该函数库，允许调用者在创建数据库时指定该长度（见习题20.7）。
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[49～59]　　DB结构的最后10个字段对成功和不成功的操作进行计数。如果想要分析数据库的性能，则可编写一个函数返回这些统计值。但目前我们仅保持这些计数器，并未编写此种函数。
 
60　 　 /*

61　 　　*Internal functions.

62　 　　*/

63　 　 static DB　　 *_db_alloc(int);

64　 　 static void　　_db_dodelete(DB *);

65　 　 static int　　 _db_find_and_lock(DB *, const char *, int);

66　 　 static int　　 _db_findfree(DB *, int, int);

67　 　 static void　　_db_free(DB *);

68　 　 static DBHASH　_db_hash(DB *, const char *);

69　 　 static char　 *_db_readdat(DB *);

70　 　 static off_t　 _db_readidx(DB *, off_t);

71　 　 static off_t　 _db_readptr(DB *, off_t);

72　 　 static void　　_db_writedat(DB *, const char *, off_t, int);

73　 　 static void　　_db_writeidx(DB *, const char *, off_t, int, off_t);

74　 　 static void　　_db_writeptr(DB *, off_t, off_t);



75　 　 /*

76　 　　*Open or create a database.　Same arguments as open(2).

77　 　　*/

78　 　 DBHANDLE

79　 　 db_open(const char *pathname, int oflag, ...)

80　 　 {

81　 　　 DB　　　      *db;

82　 　　 int　　　　　　len, mode;

83　 　　 size_t　　    i;

84　 　　 char　　　　　 asciiptr[PTR_SZ + 1],

85　 　　　　　　　　　　 hash[(NHASH_DEF + 1) * PTR_SZ + 2];

86　 　　　　　　　　　　　　　/* +2 for newline and null */

87　 　　 struct stat　statbuff;



88　 　　 /*

89　 　　　* Allocate a DB structure, and the buffers it needs.

90　 　　　*/

91　 　　 len = strlen(pathname);

92　 　　 if ((db = _db_alloc(len)) == NULL)

93　 　　　　　err_dump("db_open: _db_alloc error for DB");
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[60～74]　　选择用db_开头来命名用户可调用（公有）的所有函数，用_db_开头来命名内部（私有）函数。公有函数在函数库头文件apue_db.h中声明。内部函数声明为static，所以只有同一文件中的其他函数才能调用它们（该文件包含函数库实现）。
 
[75～93]　　db_open函数的参数与open(2)相同。如果调用者想要创建数据库文件，那么用可选择的第三个参数指定文件权限。db_open函数打开索引文件和数据文件，在必要时初始化索引文件。该函数调用_db_alloc来为DB结构分配空间，并初始化此结构。
 
94　　　db->nhash　 = NHASH_DEF;/* hash table size */

95　　　db->hashoff = HASH_OFF;   /* offset in index file of hash table */

96　　　strcpy(db->name, pathname);

97　　　strcat(db->name, ".idx");



98　　　if (oflag & O_CREAT) {

99　　　　　va_list ap;



100　　　 　 va_start(ap, oflag);

101　　　 　 mode = va_arg(ap, int);

102　　　 　 va_end(ap);



103　　　 　 /*

104　　　 　　* Open index file and data file.

105　　      */

106　　　 　　db->idxfd = open(db->name, oflag, mode);

107　　　 　　strcpy(db->name + len, ".dat");

108　　　 　　db->datfd = open(db->name, oflag, mode);

109　　 　} else {

110　　　 　　/*

111　　　 　　 * Open index file and data file.

112　　　 　　 */

113　　　 　　db->idxfd = open(db->name, oflag);

114　　　 　　strcpy(db->name + len, ".dat");

115　　　 　　db->datfd = open(db->name, oflag);

116　　　 }



117　　　if (db->idxfd < 0 || db->datfd < 0) {

118　　　 　　_db_free(db);

119　　　 　　return(NULL);

120　　　 }
 
[94～97]　　继续初始化DB结构。调用者传入的路径名指定数据库文件名的前缀。追加后缀.idx以构成数据库索引文件的名字。
 
[98～108]　　如果调用者想要创建数据库文件，那么使用<stdarg.h>中的可变参数函数以找到可选的第三个参数。然后，使用open创建并打开索引文件和数据文件。注意，数据文件的文件名以索引文件同样的前缀开始，但后缀为.dat。
 
[109～116]　　如果调用者没有指定O_CREAT标志，那么正在打开已有的数据库文件。此时，只用两个参数调用open。
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[117～120]　　如果在打开或创建任一数据库文件时出错，则调用_db_free清除DB结构，然后对调用者返回NULL。如果一个文件open成功而另一个失败，_db_free将关闭该打开文件描述符。我们很快就会见到这一操作。
 
121　　　if ((oflag & (O_CREAT | O_TRUNC)) == (O_CREAT | O_TRUNC)) {

122　　　 　　/*

123　　　 　　 * If the database was created, we have to initialize

124　　　 　　 * it.　Write lock the entire file so that we can stat

125　　　 　　 * it, check its size, and initialize it, atomically.

126　　　 　　 */

127　　　 　　if (writew_lock(db->idxfd, 0, SEEK_SET, 0) < 0)

128　　　 　　　　err_dump("db_open: writew_lock error");



129　　　 　　if (fstat(db->idxfd, &statbuff) < 0)

130　　　 　　　　err_sys("db_open: fstat error");



131　　　 　　if (statbuff.st_size == 0) {

132　　　 　　　　/*

133　　　 　　　　 * We have to build a list of (NHASH_DEF + 1) chain

134　　　 　　　　 * ptrs with a value of 0.　The +1 is for the free

135　　　 　　　　 * list pointer that precedes the hash table.

136　　　 　　　　 */

137　　　 　　　　sprintf(asciiptr, "%*d", PTR_SZ, 0);
 
[121～130]　　如果正在建立数据库，则必须正确地加锁。考虑两个进程试图同时建立同一个数据库的情况。第一个进程运行到调用fstat，并且在fstat返回后被内核阻塞。这时第二个进程调用db_open，发现索引文件的长度为0，然后初始化空闲链表和散列链表。第二个进程继续运行，向数据库中写入了一条记录。这时第二个进程被阻塞，第一个进程在调用fstat后立刻继续运行，它发现索引文件的长度为0（因为第一个进程调用fstat在前，然后第二个进程再初始化索引文件），所以第一个进程重新初始化空闲链表和散列链表，第二个进程写入的记录就被抹去了。避免发生这种情况的方法是进行加锁，为此可以使用14.3节中的readw_lock、writew_lock和un_lock这3个宏。
 
[131～137]　　如果索引文件的长度是0，那么这是刚刚被创建的，所以需要初始化它所包含的空闲列表指针和散列链指针。注意，使用格式字符串%*d将数据库指针从整型转换为ASCII字符串。（在_db_writeidx和_db_writeptr中还将使用这种格式字符串。）这一格式告诉sprintf取PTR_SZ参数，用它作为下一个参数的最小字段宽度，在此例中，它是0（此处，因为正在创建一数据库，所以将指针初始化为0）。其作用是强迫创建的字符串至少包含PTR_SZ个字符（在左边用空格充填）。在_db_writeidx和_db_writeptr中，将传送一个非0指针值，但是首先将验证指针值不大于PTR_MAX，以保证写入数据库的指针字符串恰好为PTR_SZ(7)个字符。
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138　　　　　　　　　hash[0] = 0;

139　　　　　　　　　for (i = 0; i < NHASH_DEF + 1; i++)

140　　　　　　　　　　　　strcat(hash, asciiptr);

141　　　　　　　　　strcat(hash, "\n");

142　　　　　　　　　i = strlen(hash);

143　　　　　　　　　if (write(db->idxfd, hash, i) != i)

144　　　　　　　　　　　err_dump("db_open: index file init write error");

145　　　　　　}

146　　　　　　if (un_lock(db->idxfd, 0, SEEK_SET, 0) < 0)

147　　　　　　　　err_dump("db_open: un_lock error");

148　　　 }

149　　　 db_rewind(db);

150　　　 return(db);

151　}



152　/*

153　 * Allocate & initialize a DB structure and its buffers.

154　 */

155　static DB *

156　_db_alloc(int namelen)

157　{

158　　 DB　　　　*db;



159　　 /*

160　　　* Use calloc, to initialize the structure to zero.

161　　　*/

162　　 if ((db = calloc(1, sizeof(DB))) == NULL)

163　　　 err_dump("_db_alloc: calloc error for DB");

164　　 db->idxfd = db->datfd = -1;　　　　　　　　/* descriptors */



165　　 /*

166　　　* Allocate room for the name.

167　　　* +5 for ".idx" or ".dat" plus null at end.

168　　　*/

169　　 if ((db->name = malloc(namelen + 5)) == NULL)

170　　　 　　err_dump("_db_alloc: malloc error for name");
 
[138～151]　　继续初始化新创建的数据库。构造散列表，将它写到索引文件中。然后，解锁索引文件，重置数据库文件指针，返回DB结构指针作为句柄，以便调用者以后用于其他数据库函数。
 
[152～164]　　db_open调用函数_db_alloc为DB结构分配空间，包括一个索引缓冲区和一个数据缓冲区。用calloc分配存储区来存放DB结构，并将该存储区各存储单元全部初始化为0。这产生了一个副作用，也就是将数据库文件描述符也设置为0，为此需将它们重新设置为−1，表示它们至此还不是有效的。
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[165～170]　　分配空间以存放数据库索引文件和数据文件的名字。如db_open中所说明的那样，更改它们的名字后缀以便引用索引文件或数据文件。
 
171　　　 /*

172　　　  * Allocate an index buffer and a data buffer.

173　　　  * +2 for newline and null at end.

174　　　  */

175　　　 if ((db->idxbuf = malloc(IDXLEN_MAX + 2)) == NULL)

176　　　 　　err_dump("_db_alloc: malloc error for index buffer");

177　　　 if ((db->datbuf = malloc(DATLEN_MAX + 2)) == NULL)

178　　　 　　err_dump("_db_alloc: malloc error for data buffer");

179　　　 return(db);

180　}



181　/*

182　 * Relinquish access to the database.

183　 */

184　void

185　db_close(DBHANDLE h)

186　{

187　　_db_free((DB *)h);　　　/* closes fds, free buffers & struct */

188　}



189　/*

190　 * Free up a DB structure, and all the malloc'ed buffers it

191　 * may point to.　Also close the file descriptors if still open.

192　 */

193　static void

194　_db_free(DB *db)

195　{

196　　 if (db->idxfd >= 0)

197　　　　 close(db->idxfd);

198　　 if (db->datfd >= 0)

199　　　　 close(db->datfd);
 
[171～180]　　为索引文件和数据文件的缓冲区分配空间。索引缓冲区和数据缓冲区的大小在apue_db.h中定义。可以通过让这些缓冲区按需要动态扩张来增强数据库函数库。其方法可以是记录这两个缓冲区的大小，然后在需要更大的缓冲区时调用realloc。最后，返回指向已分配到的DB结构的指针。
 
[181～188]　　db_close函数只是一个包装，它将数据库句柄强制类型转换为DB结构的指针，将它传送给_db_free函数，由该函数释放资源以及DB结构。
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[189～199]　　db_open在打开索引文件和数据文件时如果发生错误，会调用_db_free函数释放资源。应用程序在结束对数据库的使用后，db_close也会调用_db_free。如果数据库索引文件的文件描述符有效，那么关闭该文件。对数据文件描述符也进行同样处理。（回忆在_db_alloc中分配一个新的DB结构时，将每个文件描述符都初始化为−1。如果不能打开两个数据库文件中的一个，相应文件描述符仍为−1，也就是无需关闭它。）
 
200　　if (db->idxbuf != NULL)

201　　　　free(db->idxbuf);

202　　if (db->datbuf != NULL)

203　　　　free(db->datbuf);

204　　if (db->name != NULL)

205　　　　free(db->name);

206　　free(db);

207　}



208　/*

209　 * Fetch a record.　Return a pointer to the null-terminated data.

210　 */

211　char *

212　db_fetch(DBHANDLE h, const char *key)

213　{

214　　DB　　　*db = h;

215　　char　　*ptr;



216　　if (_db_find_and_lock(db, key, 0) < 0) {

217　　　　ptr = NULL;　　　　　　　　　/* error, record not found */

218　　　　db->cnt_fetcherr++;

219　　} else {

220　　　　ptr = _db_readdat(db);　　 /* return pointer to data */

221　　　　db->cnt_fetchok++;

222　　}



223　　/*

224　　 * Unlock the hash chain that _db_find_and_lock locked.

225　　 */

226　　if (un_lock(db->idxfd, db->chainoff, SEEK_SET, 1) < 0)

227　　　　err_dump("db_fetch: un_lock error");

228　　return(ptr);

229　}
 
[200～207]　　接着，释放动态分配的缓冲区。可以安全地将一个空指针传递给free函数，这样也就无需事先检查每个缓冲区指针的值，但是我们认为只释放已分配的对象是一种较好的编程风格。（并非所有释放程序都像free那样容忍差错。）最后，释放DB结构占用的存储区。
 
[208～218]　　函数db_fetch根据给定的键来读取一条记录。它调用_db_find_and_lock在数据库中查找记录。若不能找到该记录，则将返回值（ptr）设置为NULL，将不成功的记录搜索计数器值加1。因为从_db_find_and_lock返回时，数据库索引文件是加锁的，所以先要解锁，然后再返回。
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[219～229]　　如果找到了记录，调用_db_readdat读相应的数据记录，并将成功记录搜索计数器值加1。在返回前，调用un_lock对索引文件解锁。然后，返回所找到记录的指针（如果没有找到所需记录，则返回NULL）。
 
230　/*

231　 * Find the specified record.　Called by db_delete, db_fetch,

232　 * and db_store.　Returns with the hash chain locked.

233　 */

234　static int

235　_db_find_and_lock(DB *db, const char *key, int writelock)

236　{

237　　 off_t  offset, nextoffset;



238　　 /*

239　　　* Calculate the hash value for this key, then calculate the

240　　　* byte offset of corresponding chain ptr in hash table.

241　　　* This is where our search starts.　First we calculate the

242　　　* offset in the hash table for this key.

243　　　*/

244　　 db->chainoff = (_db_hash(db, key) * PTR_SZ) + db->hashoff;

245　　 db->ptroff = db->chainoff;



246　　 /*

247　　　* We lock the hash chain here.　The caller must unlock it

248　　　* when done.　Note we lock and unlock only the first byte.

249　　　*/

250　　 if (writelock) {

251　　　 　　if (writew_lock(db->idxfd, db->chainoff, SEEK_SET, 1) < 0)

252　　　 　　　　err_dump("_db_find_and_lock: writew_lock error");

253　　 } else {

254　　　 　　if (readw_lock(db->idxfd, db->chainoff, SEEK_SET, 1) < 0)

255　　　 　　　　err_dump("_db_find_and_lock: readw_lock error");

256　　 }



257　　 /*

258　　　* Get the offset in the index file of first record

259　　　* on the hash chain (can be 0).

260　　　*/

261　　 offset = _db_readptr(db, db->ptroff);
 
[230～237]　　_db_find_and_lock函数在函数库内部用于按给定的键查找记录。在搜索记录时，如果想在索引文件上加一把写锁，则将writelock参数设置为非0值。如果将writelock参数设置为0，则在搜索记录时，在索引文件上加读锁。
 
[238～256]　　在_db_find_and_lock中准备遍历散列链。将键转换为散列值，用其计算在文件中相应散列链的起始地址（chainoff）。在遍历散列链前，等待获得锁。注意，只锁该散列链开始处的第1个字节。这种方式允许多个进程同时搜索不同的散列链，因此增加了并发性。
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[257～261]　　调用_db_readptr读散列链中的第一个指针。如果该函数返回0，则该散列链为空。
 
262　　while (offset != 0) {

263　　　　nextoffset = _db_readidx(db, offset);

264　　　　if (strcmp(db->idxbuf, key) == 0)

265　　　　　　break;　　　 /* found a match */

266　　　　db->ptroff = offset; /* offset of this (unequal) record */

267　　　　offset = nextoffset; /* next one to compare */

268　　 }

269　　 /*

270　　　* offset == 0 on error (record not found).

271　　　*/

272　　 return(offset == 0 ? -1 : 0);

273　}



274　/*

275　 * Calculate the hash value for a key.

276　 */

277　static DBHASH

278　_db_hash(DB *db, const char *key)

279　{

280　　DBHASH　　　hval = 0;

281　　char　　　　c;

282　　int　　　　 i;



283　　for (i = 1; (c = *key++) != 0; i++)

284　　　 　hval += c * i;　　　　/* ascii char times its 1-based index */

285　　return(hval % db->nhash);

286　}
 
[262～268]　　while循环遍历散列链中的每一条索引记录，并比较键。调用函数_db_readidx读取每条索引记录。它将当前记录的键填入DB结构中的idxbuf字段。如果_db_readidx返回0，则已到达散列链的最后一记录项。
 
[269～273]　　如果在循环后，offset为0，说明已达到散列链末端而且没有找到匹配键，于是返回1。否则，找到了匹配记录（用break语句退出了循环），所以返回0表示成功。此时，ptroff字段包含前一索引记录的地址，datoff包含数据记录的地址，datlen是数据记录的长度。当沿着散列链进行遍历时，必须始终保存当前索引记录的前一条索引记录，其中有一个指针指向当前索引记录。这样做在删除一条记录时很有用，因为必须修改当前索引记录的前一条记录的链指针以删除当前记录。
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[274～286]　　_db_hash根据给定的键计算散列值。它将键中的每一个ASCII字符乘以这个字符在字符串中以1开始的索引号，将这些结果加起来，除以散列表记录项数，将余数作为这个键的散列值。回忆散列表记录项数是137，它是一个素数，按Knuth[1998]，素数散列通常能提供良好的分布特性。
 
287　/*

288　 * Read a chain ptr field from anywhere in the index file:

289　 * the free list pointer, a hash table chain ptr, or an

290　 * index record chain ptr.

291　 */

292　static off_t

293　_db_readptr(DB *db, off_t offset)

294　{

295　　char　　 asciiptr[PTR_SZ + 1];



296　　if (lseek(db->idxfd, offset, SEEK_SET) == -1)

297　　　　err_dump("_db_readptr: lseek error to ptr field");

298　　if (read(db->idxfd, asciiptr, PTR_SZ) != PTR_SZ)

299　　　　err_dump("_db_readptr: read error of ptr field");

300　　asciiptr[PTR_SZ] = 0;　　　　　　/* null terminate */

301　　return(atol(asciiptr));

302　}



303　/*

304　 * Read the next index record.　We start at the specified offset

305　 * in the index file.　We read the index record into db->idxbuf

306　 * and replace the separators with null bytes.　If all is OK we

307　 * set db->datoff and db->datlen to the offset and length of the

308　 * corresponding data record in the data file.

309　 */

310　static off_t

311　_db_readidx(DB *db, off_t offset)

312　{

313　　ssize_t　　  　  i;

314　　char　　　　   　*ptr1, *ptr2;

315　　char　　　　　　　asciiptr[PTR_SZ + 1], asciilen[IDXLEN_SZ + 1];

316　　struct iovec    iov[2];
 
[287～302]　　_db_readptr函数读取以下3种不同链表指针中的任意一种：（a）索引文件最开始处指向空闲链表中第一个索引记录的指针，（b）散列表中指向散列链的第一条索引记录的指针，（c）存放在每条索引记录开始处、指向下一条记录的指针（这里的索引记录既可以处于一条散列链表中，也可以处于空闲链表中）。返回前，将指针从ASCII形式转换为长整型。此函数不进行任何加锁操作，所以其调用者应事先做好必要的加锁。
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[303～316]　　_db_readidx函数用于从索引文件的指定偏移量处读取索引记录。如果成功，该函数将返回链表中下一条记录的偏移量。该函数还填充DB结构的许多字段：idxoff包含索引文件中当前记录的偏移量，ptrval包含在散列链表中下一个索引项的偏移量，idxlen包含当前索引记录的长度，idxbuf包含实际索引记录，datoff包含数据文件中该记录的偏移量，datlen包含该数据记录的长度。
 
317　　　 /*

318　　　　* Position index file and record the offset.　db_nextrec

319　　　　* calls us with offset==0, meaning read from current offset.

320　　　　* We still need to call lseek to record the current offset.

321　　　　*/

322　　　 if ((db->idxoff = lseek(db->idxfd, offset,

323　　　　　offset == 0 ? SEEK_CUR : SEEK_SET)) == -1)

324　　　　　　err_dump("_db_readidx: lseek error");



325　　　 /*

326　　　  * Read the ascii chain ptr and the ascii length at

327　　　  * the front of the index record.　This tells us the

328　　　  * remaining size of the index record.

329　　　  */

330　　　 iov[0].iov_base = asciiptr;

331　　　 iov[0].iov_len　= PTR_SZ;

332　　　 iov[1].iov_base = asciilen;

333　　　 iov[1].iov_len　= IDXLEN_SZ;

334　　　 if ((i = readv(db->idxfd, &iov[0], 2)) != PTR_SZ + IDXLEN_SZ) {

335　　　　　 if (i == 0 && offset == 0)

336　     　　　　return(-1);　　　  　　　/* EOF for db_nextrec */

337　　　　　 err_dump("_db_readidx: readv error of index record");

338　　　 }



339　　　 /*

340　　　  * This is our return value; always >= 0.

341　　　  */

342　　　 asciiptr[PTR_SZ] = 0;　　　　　　/* null terminate */

343　　　 db->ptrval =   toll(asciiptr); /* offset of next key in chain */



344　　　 asciilen[IDXLEN_SZ] = 0;　　　　/* null terminate */

345　　　 if ((db->idxlen = atoi(asciilen)) < IDXLEN_MIN ||

346　　　　　db->idxlen > IDXLEN_MAX)

347　　　　　　err_dump("_db_readidx: invalid length");
 
[317～324]　　按调用者提供的参数查找索引文件偏移量。在DB结构中记录该偏移量，为此即使调用者想要在当前文件偏移量处读记录（设置offset为0），仍需要调用lseek以确定当前偏移量。因为在索引文件中，索引记录决不会存放在偏移量为0处，所以可以放心地使用0表示“从当前偏移量处读”。
 
[325～338]　　调用readv读在索引记录开始处的两个定长字段：指向下一索引记录的链指针和该索引记录余下部分的长度（余下部分是变长的）。
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[339～347]　　将下一记录的偏移量转换为整型，并存放到ptrval字段中（这将被用作此函数的返回值）。然后将索引记录的长度转换为整型，并存放到idxlen字段中。
 
348　　　 /*

349　　　  * Now read the actual index record.　We read it into the key

350　　　  * buffer that we malloced when we opened the database.

351　　　  */

352　　　 if ((i = read(db->idxfd, db->idxbuf, db->idxlen)) != db->idxlen)

353　　　 　　err_dump("_db_readidx: read error of index record");

354　　　 if (db->idxbuf[db->idxlen-1] != NEWLINE)　　　/* sanity check */

355　　　　　err_dump("_db_readidx: missing newline");

356　　　 db->idxbuf[db->idxlen-1] = 0;　　　　　　/* replace newline with null */



357　　　 /*

358　　　  * Find the separators in the index record.

359　　　  */

360　　　 if ((ptr1 = strchr(db->idxbuf, SEP)) == NULL)

361　　　　　err_dump("_db_readidx: missing first separator");

362　　　 *ptr1++ = 0;　　　　　　　　　　　　　　　/* replace SEP with null */



363　　　 if ((ptr2 = strchr(ptr1, SEP)) == NULL)

364　　　　　err_dump("_db_readidx: missing second separator");

365　　　 *ptr2++ = 0;　　　　　　　　　　　　　　　/* replace SEP with null */



366　　　 if (strchr(ptr2, SEP) != NULL)

367　　　　　err_dump("_db_readidx: too many separators");



368　　　 /*

369　　　  * Get the starting offset and length of the data record.

370　　　  */

371　　　 if ((db->datoff = atol(ptr1)) < 0)

372　　　　　err_dump("_db_readidx: starting offset < 0");

373　　　 if ((db->datlen = atol(ptr2)) <= 0 || db->datlen > DATLEN_MAX)

374　　　　　err_dump("_db_readidx: invalid length");

375　　　 return(db->ptrval);　　　　　　　　/* return offset of next key in chain */

376　}
 
[348～356]　　将索引记录的变长部分读入DB结构中的idxbuf字段。该记录应以换行符结尾。用null字符代替换行符。如果索引文件已遭破坏，那么调用err_dump函数终止core文件。
 
[357～367]　　将索引记录划分成3个字段：键、对应数据记录的偏移量和数据记录的长度。 strchr函数在给定字符串中找到第一个指定字符。这里，我们要寻找的是记录中分隔字段的字符（SEP，此处定义为冒号）。
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[368～376]　　将数据记录偏移量和数据记录长度转换为整型，并将它们存放在DB结构中。然后，返回在散列链中下一条记录的偏移量。注意，我们并不读数据记录，这由调用者自己完成。例如，在db_fetch中，在_db_find_and_lock按键找到索引记录前是不读取数据记录的。
 
377　/*

378　 * Read the current data record into the data buffer.

379　 * Return a pointer to the null-terminated data buffer.

380　 */

381　static char *

382　_db_readdat(DB *db)

383　{

384　　if (lseek(db->datfd, db->datoff, SEEK_SET) == -1)

385　　　　err_dump("_db_readdat: lseek error");

386　　if (read(db->datfd, db->datbuf, db->datlen) != db->datlen)

387　　　　err_dump("_db_readdat: read error");

388　　if (db->datbuf[db->datlen-1] != NEWLINE)　　/* sanity check */

389　　　　err_dump("_db_readdat: missing newline");

390　　db->datbuf[db->datlen-1] = 0; /* replace newline with null */

391　　return(db->datbuf);　　　　/* return pointer to data record */

392　}



393　/*

394　 * Delete the specified record.

395　 */

396　int

397　db_delete(DBHANDLE h, const char *key)

398　{

399　　DB　　　　　*db = h;

400　　int　　　　 rc = 0;　　　　　　　　/* assume record will be found */



401　　if (_db_find_and_lock(db, key, 1) == 0) {

402　    　_db_dodelete(db);

403　     db->cnt_delok++;

404　　} else {

405　　　　rc = -1;　　　　　　　　　　　　/* not found */

406　　　　db->cnt_delerr++;

407　　}

408　　if (un_lock(db->idxfd, db->chainoff, SEEK_SET, 1) < 0)

409　　　　 err_dump("db_delete: un_lock error");

410　　return(rc);

411　}
 
[377～392]　　在datoff和datlen已经被正确初始化后，_db_readdat函数将数据记录的内容读入DB结构中的datbuf字段指向的缓冲区。
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[393～411]　　db_delete函数用于删除与给定键匹配的一条记录。使用_db_find_and_lock来判断在数据库中该记录是否存在。如果存在，则调用_db_dodelete函数执行删除该记录的操作。 _db_find_and_lock的第三个参数控制对散列链是加读锁还是写锁。此处，因为可能执行更改该链表的操作，所以要加一把写锁。_db_find_and_lock返回时，这把锁仍旧存在，为此不管是否找到了所需的记录，都需要解除这把锁。
 
412　/*

413　 * Delete the current record specified by the DB structure.

414　 * This function is called by db_delete and db_store, after

415　 * the record has been located by _db_find_and_lock.

416　 */

417　static void

418　_db_dodelete(DB *db)

419　{

420　　int　　　　 i;

421　　char　　　*ptr;

422　　off_t　　　freeptr, saveptr;



423　　/*

424　　 * Set data buffer and key to all blanks.

425　　 */

426　　for (ptr = db->datbuf, i = 0; i < db->datlen - 1; i++)

427　　　　*ptr++ = SPACE;

428　　*ptr = 0;　　/* null terminate for _db_writedat */

429　　ptr = db->idxbuf;

430　　while (*ptr)

431　　　　*ptr++ = SPACE;



432　　/*

433　　 * We have to lock the free list.

434　　 */

435　　if (writew_lock(db->idxfd, FREE_OFF, SEEK_SET, 1) < 0)

436　　　　err_dump("_db_dodelete: writew_lock error");



437　　/*

438　　 * Write the data record with all blanks.

439　　 */

440　　_db_writedat(db, db->datbuf, db->datoff, SEEK_SET);
 
[412～431]　　_db_dodelete函数执行从数据库中删除一条记录的所有操作。（该函数也可以由db_store调用。）此函数的大部分工作仅仅是更新空闲链表以及与键对应的散列链。当一条记录被删除后，将其键和数据记录设为空。本章后面将提到的函数db_nextrec要用到这一点。
 
[432～440]　　调用writew_lock对空闲链表加写锁，这样能防止两个进程同时删除不同链表上的记录时产生相互影响，因为要将被删除的记录添加到空闲链表中，这将改变空闲链表指针，而一次只能有一个进程能这样做。
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调用函数_db_writedat清空数据记录。这时_db_writedat并不对数据文件加写锁，这是因为db_ delete对这条记录的散列链已经加了写锁，这保证不会再有其他进程能够读、写这条记录。
 
441　　　 /*

442　　　  * Read the free list pointer.　Its value becomes the

443　　　  * chain ptr field of the deleted index record.　This means

444　　　  * the deleted record becomes the head of the free list.

445　　　  */

446　　　 freeptr = _db_readptr(db, FREE_OFF);



447　　　 /*

448　　　  * Save the contents of index record chain ptr,

449　　　  * before it's rewritten by _db_writeidx.

450　　　  */

451　　　 saveptr = db->ptrval;



452　　　 /*

453　　　  * Rewrite the index record.　This also rewrites the length

454　　　  * of the index record, the data offset, and the data length,

455　　　  * none of which has changed, but that's OK.

456　　　  */

457　　　 _db_writeidx(db, db->idxbuf, db->idxoff, SEEK_SET, freeptr);



458　　　 /*

459　　　  * Write the new free list pointer.

460　　　  */

461　　　 _db_writeptr(db, FREE_OFF, db->idxoff);



462　　　 /*

463　　　  * Rewrite the chain ptr that pointed to this record being

464　　　  * deleted.　Recall that _db_find_and_lock sets db->ptroff to

465　　　  * point to this chain ptr.　We set this chain ptr to the

466　　　  * contents of the deleted record's chain ptr, saveptr.

467　　　  */

468　　　 _db_writeptr(db, db->ptroff, saveptr);

469　　　 if (un_lock(db->idxfd, FREE_OFF, SEEK_SET, 1) < 0)

470　　　 　　err_dump("_db_dodelete: un_lock error");

471　}
 
[441～461]　　读空闲链表指针，接着修改索引记录。让这条记录的下一条记录指针指向空闲链表的第一条记录（如果空闲链表为空，则这个新的链表指针置为0）。清除键之后用正被删除索引记录的偏移量更新空闲链表指针，也就是使其指向当前删除的这条记录。这意味着空闲链表的处理基于后进先出（虽然是以首次适应算法来删除空闲链表项），也就是说被删除的记录都被添加到空闲链表头部。
 
没有为每个文件分别设置空闲链表。将一个删除的索引记录添加到空闲链表时，该索引记录仍指向已删除的数据记录。当然还有更好的处理方法，但复杂性会增加。
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[462～471]　　修改散列链中前一条记录的指针，使其指向正删除记录之后的记录，这样就从散列链中移除了要删除的记录。最后对空闲链表解锁。
 
472　/*

473　 * Write a data record.　Called by _db_dodelete (to write

474　 * the record with blanks) and db_store.

475　 */

476　static void

477　_db_writedat(DB *db, const char *data, off_t offset, int whence)

478　{

479　　　struct iovec　　　iov[2];

480　　　static char　　　 newline = NEWLINE;



481　　　/*

482　　　 * If we're appending, we have to lock before doing the lseek

483　　　 * and write to make the two an atomic operation.　If we're

484　　　 * overwriting an existing record, we don't have to lock.

485　　　 */

486　　　if (whence == SEEK_END) /* we're appending, lock entire file */

487　　　　　if (writew_lock(db->datfd, 0, SEEK_SET, 0) < 0)

488　　　　　　　err_dump("_db_writedat: writew_lock error");



489　　　if ((db->datoff = lseek(db->datfd, offset, whence)) == -1)

490　　　　　err_dump("_db_writedat: lseek error");

491　　　db->datlen = strlen(data) + 1;　　/* datlen includes newline */



492　　　iov[0].iov_base = (char *) data;

493　　　iov[0].iov_len　= db->datlen - 1;

494　　　iov[1].iov_base = &newline;

495　　　iov[1].iov_len　= 1;

496　　　if (writev(db->datfd, &iov[0], 2) != db->datlen)

497　　　　　err_dump("_db_writedat: writev error of data record");



498　　　if (whence == SEEK_END)

499　　　　　if (un_lock(db->datfd, 0, SEEK_SET, 0) < 0)

500　　　　　　　err_dump("_db_writedat: un_lock error");

501　}
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[472～491]　　调用函数_db_writedat写一个数据记录。当删除一记录时，调用函数_db_ writedat清空数据记录；这时_db_writedat并不对数据文件加写锁，因为db_delete对这条记录的散列链已经加了写锁，这保证不会再有其他进程能够读、写这条记录。在本节稍后处说明db_ store函数时，会遇到_db_writedat函数追加写数据文件的情况，此时就必需对该文件加锁。
 
定位到要写数据记录的位置。要写的字节数是记录长度加1个字节，这1个字节是表示记录终止的换行符。
 
[492～501]　　设置iovec数组，调用writev写数据记录和换行符。不能想当然地认为调用者缓冲区的尾端有空间可以追加换行符，所以应该将换行符写入另一个缓冲区，然后再从该缓冲区写至数据记录。如果正在对文件追加一条记录，那么就释放早先获得的锁。
 
502　/*

503　 * Write an index record.　_db_writedat is called before

504　 * this function to set the datoff and datlen fields in the

505　 * DB structure, which we need to write the index record.

506　 */

507　static void

508　_db_writeidx(DB *db, const char *key,

509　　　　　　　　 off_t offset, int whence, off_t ptrval)

510　　{

511　　　struct iovec　iov[2];

512　　　char　　　　 　asciiptrlen[PTR_SZ + IDXLEN_SZ + 1];

513　　　int　　　　　  len;



514　　　if ((db->ptrval = ptrval) < 0 || ptrval > PTR_MAX)

515　　　　　 err_quit("_db_writeidx: invalid ptr: %d", ptrval);

516　　　sprintf(db->idxbuf, "%s%c%lld%c%ld\n", key, SEP,

517　　　　(long long)db->datoff, SEP, (long)db->datlen);

518　　　len = strlen(db->idxbuf);

519　　　if (len < IDXLEN_MIN || len > IDXLEN_MAX)

520　　　　　err_dump("_db_writeidx: invalid length");

521　　　sprintf(asciiptrlen, "%*lld%*d", PTR_SZ, (long long)ptrval,

522　　　IDXLEN_SZ, len);



523　　　/*

524　　　 * If we’re appending, we have to lock before doing the lseek

525　　　 * and write to make the two an atomic operation.　If we’re

526　　　 * overwriting an existing record, we don’t have to lock.

527　　　 */

528　　　if (whence == SEEK_END)　　　　/* we’re appending */

529　　　　　if (writew_lock(db->idxfd, ((db->nhash+1)*PTR_SZ)+1,

530　　　　　　SEEK_SET, 0) < 0)

531　　　　　　　err_dump("_db_writeidx: writew_lock error");
 
[502～522]　　调用_db_writeidx函数写一条索引记录。在验证散列链中下一个指针有效后，创建索引记录，并将它的后半部分存放到idxbuf中。需要索引记录这一部分的长度以创建该记录的前半部分，而前半部分被存放到局部变量asciiptrlen中。
 
注意，使用强制类型转换使得sprintf语句的参数的长度与格式说明中相匹配，这样做是因为off_t和size_t数据类型的长度因平台不同而不同。32位系统也能提供64位文件偏移量，所以不能假定off_t数据类型的长度。
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[523～531]　　和_db_writedat一样，只有在追加新索引记录时这一函数才需要加锁。_db_ dodelete调用此函数是为了重写一条已有的索引记录。在这种情况下，调用者已经在散列链上加了写锁，所以不再需要加另外的锁。
 
532　　　 /*

533　　　  * Position the index file and record the offset.

534　　　  */

535　　　 if ((db->idxoff = lseek(db->idxfd, offset, whence)) == -1)

536　　　 　　err_dump("_db_writeidx: lseek error");



537　　　 iov[0].iov_base = asciiptrlen;

538　　　 iov[0].iov_len　= PTR_SZ + IDXLEN_SZ;

539　　　 iov[1].iov_base = db->idxbuf;

540　　　 iov[1].iov_len　= len;

541　　　 if (writev(db->idxfd, &iov[0], 2) != PTR_SZ + IDXLEN_SZ + len)

542　　　 　　err_dump("_db_writeidx: writev error of index record");



543　　　 if (whence == SEEK_END)

544　　　 　　if (un_lock(db->idxfd, ((db->nhash+1)*PTR_SZ)+1,

545　　　　　　　SEEK_SET, 0) < 0)

546　　  　　　　　err_dump("_db_writeidx: un_lock error");

547　}



548　/*

549　 * Write a chain ptr field somewhere in the index file:

550　 * the free list, the hash table, or in an index record.

551　 */

552　static void

553　_db_writeptr(DB *db, off_t offset, off_t ptrval)

554　{

555　　 char　　asciiptr[PTR_SZ + 1];



556　　 if (ptrval < 0 || ptrval > PTR_MAX)

557　　　　 err_quit("_db_writeptr: invalid ptr: %d", ptrval);

558　　 sprintf(asciiptr, "%*lld", PTR_SZ, (long long)ptrval);



559　　 if (lseek(db->idxfd, offset, SEEK_SET) == -1)

560　　　　 err_dump("_db_writeptr: lseek error to ptr field");

561　　 if (write(db->idxfd, asciiptr, PTR_SZ) != PTR_SZ)

562　　　　 err_dump("_db_writeptr: write error of ptr field");

563　}
 
[532～547]　　定位到开始写索引记录的位置，将该偏移量存入DB结构的idxoff字段。因为在两个独立的缓冲区中构建索引记录，所以调用writev将它存放到索引文件中。如果是追加写该文件，则释放在定位操作前获得的锁。从并发运行进程追加新记录到数据库的角度思考问题，那么这把锁使定位操作和写操作成为原子操作。
 

  773 

 
[548～563]　　_db_writeptr被用于将一散列链指针写至索引文件中。验证该指针在索引文件的边界范围内，然后将它转换成ASCII字符串。按指定的偏移量在索引文件中定位，然后将该指针ASCII字符串写入索引文件。
 
564　/*

565　 * Store a record in the database.　Return 0 if OK, 1 if record

566　 * exists and DB_INSERT specified, -1 on error.

567　 */

568　int

569　db_store(DBHANDLE h, const char *key, const char *data, int flag)

570　{



571　　　 DB　　　　　*db = h;

572　　　 int　　　　　rc, keylen, datlen;

573　　　 off_t　　　　ptrval;



574　　　 if (flag != DB_INSERT && flag != DB_REPLACE &&

575　　　 　flag != DB_STORE) {

576　　　　 　errno = EINVAL;

577　　　 　　return(-1);

578　　　 }

579　　　 keylen = strlen(key);

580　　　 datlen = strlen(data) + 1;　　　　/* +1 for newline at end */

581　　　 if (datlen < DATLEN_MIN || datlen > DATLEN_MAX)

582　　　　　err_dump("db_store: invalid data length");



583　　　 /*

584　　　  * _db_find_and_lock calculates which hash table this new record

585　　　  * goes into (db->chainoff), regardless of whether it already

586　　　  * exists or not. The following calls to _db_writeptr change the

587　　　  * hash table entry for this chain to point to the new record.

588　　　  * The new record is added to the front of the hash chain.

589　　　  */

590　　　 if (_db_find_and_lock(db, key, 1) < 0) { /* record not found */

591　　　 　　if (flag == DB_REPLACE) {

592　　　 　　  　rc = -1;

593　　　 　　　  db->cnt_storerr++;

594　　　 　　　  errno = ENOENT;　　　　　/* error, record does not exist */

595　　　 　　　  goto doreturn;

596　　　 　 }
 
[564～582]　　db_store函数的功能是将一条记录添加到数据库中。首先验证参数flag的值。然后，检查数据记录长度是否有效。如果无效，则删除core文件并终止。作为一个例子这样处理无可厚非，但如果构造正式应用的函数库，那么最好返回出错状态而非终止，这样可以给应用程序一个恢复的机会。
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[583～596]　　调用_db_find_and_lock以查看这个记录是否已经存在。如果记录并不存在且指定的标志为DB_INSERT或DB_STORE，或者记录存在且指定的标志为DB_REPLACE或DB_STORE，那么这些都是允许的。替换一条已有的记录意味着键不变，而数据记录很可能不同。注意，因为db_ store很可能会改变散列链，所以调用_db_find_and_lock的最后一个参数指明要对散列链加写锁。
 
597　　　　　　/*

598　　　　　　 * _db_find_and_lock locked the hash chain for us; read

599　　　　　　 * the chain ptr to the first index record on hash chain.

600　　　　　　 */

601　　　　　　ptrval = _db_readptr(db, db->chainoff);



602　　　　　　if (_db_findfree(db, keylen, datlen) < 0) {

603　　　　　　　　/*

604　　　　　　　　 * Can't find an empty record big enough. Append the

605　　　　　　　　 * new record to the ends of the index and data files.

606　　　　　　　　 */

607　　　　　　　　_db_writedat(db, data, 0, SEEK_END);

608　　　　　　　　_db_writeidx(db, key, 0, SEEK_END, ptrval);



609　　　　　　　　/*

610　　　　　　　　 * db->idxoff was set by _db_writeidx.　The new

611　　　　　　　　 * record goes to the front of the hash chain.

612　　　　　　　　 */

613　　　　　　　　_db_writeptr(db, db->chainoff, db->idxoff);

614　　　　　　　　db->cnt_stor1++;

615　　　　　　} else {

616　　　　　　　　/*

617　　　　　　　　 * Reuse an empty record. _db_findfree removed it from

618　　　　　　　　 * the free list and set both db->datoff and db->idxoff.

619　　　　　　　　 * Reused record goes to the front of the hash chain.

620　　　　　　　　 */

621　　　　　　　　_db_writedat(db, data, db->datoff, SEEK_SET);

622　　　　　　　　_db_writeidx(db, key, db->idxoff, SEEK_SET, ptrval);

623　　　　　　　　_db_writeptr(db, db->chainoff, db->idxoff);

624　　　　　　　　db->cnt_stor2++;

625　　　　　　}
 
[597～601]　　在调用_db_find_and_lock后，代码分成4种情况。前两种情况中，没有找到足够大的空闲记录，所以添加一条新纪录。读散列链上第一项的偏移量。
 
[602～614]　　第1种情况：调用_db_findfree在空闲链表中搜索一条已删除的记录，它的键长度和数据长度与参数keylen和datlen相同。如果没有找到对应大小的空闲记录，这意味着要将这条新记录追加到索引文件和数据文件的末尾。调用_db_writedat写数据部分，调用_db_writeidx写索引部分，调用_db_writeptr将新记录添加到对应的散列链的头部。将执行此种情况的计数器（cnt_stor1）值加1，以便观察数据库的运行状况。
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[615～625]　　第2种情况：_db_findfree找到对应大小的空记录，然后将这条空记录从空闲链表中移除（稍后就会看到_db_findfree的实现），写入新的索引记录和数据记录，然后，如同第1种情况一样，将新记录添加到对应的散列链的头部。将执行此种情况的计数器（cnt_stor2）值加1，以便观察数据库的运行状况。
 
626　　　 } else {　　 　　 　　 　　 /* record found */

627　　　 　　if (flag == DB_INSERT) {

628　　　　　　　　rc = 1; 　　 　　 /* error, record already in db */

629　　　　　　　　db->cnt_storerr++;

630　　　　　　　　goto doreturn;

631　　　 　　}



632　　　 　　/*

633　　　 　　 * We are replacing an existing record.　We know the new

634　　　 　　 * key equals the existing key, but we need to check if

635　　　 　　 * the data records are the same size.

636　　　 　　 */

637　　　 　　if (datlen != db->datlen) {

638　　　　　　　　_db_dodelete(db);　　/* delete the existing record */



639　　　　　　　　/*

640　　　　　　　　 * Reread the chain ptr in the hash table

641　　　　　　　　 * (it may change with the deletion).

642　　　　　　　　 */

643　　　　　　　　ptrval = _db_readptr(db, db->chainoff);



644　　　　　　　　/*

645　　　　　　　　 * Append new index and data records to end of files.

646　　　　　　　　 */

647　　　　　　　　_db_writedat(db, data, 0, SEEK_END);

648　　　　　　　　_db_writeidx(db, key, 0, SEEK_END, ptrval);



649　　　　　　　　/*

650　　　　　　　　 * New record goes to the front of the hash chain.

651　　　　　　　　 */

652　　　　　　　　_db_writeptr(db, db->chainoff, db->idxoff);

653　　　　　　　　db->cnt_stor3++;

654　　　 　　} else {
 
[626～631]　　另两种情况是具有相同键的记录在数据库中已存在，如果不想替换该记录，则设置表示一条记录已经存在的返回码，将存储出错计数的计数器cnt_storerr值加1，然后跳转至函数末尾，在此处理公共返回逻辑。
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[632～654]　　第3种情况：要替换一条已有记录，而新数据记录的长度与已有记录的长度不一样。调用_db_dodelete删除已有记录，将该删除记录放在空闲链表头部。然后，调用_db_writedat和_db_writeidx将新记录追加到索引文件和数据文件的末尾（也可以用其他方法，如可以再找一找是否有数据大小正好的已删除的记录项）。最后调用_db_writeptr将新记录添加到对应的散列链的头部。DB结构中的cnt_stor3计数器记录发生此种情况的次数。
 
655　　　　　　　　 /*

656　　　　　　　　  * Same size data, just replace data record.

657　　　　　　　　  */

658　　　　　　　　 _db_writedat(db, data, db->datoff, SEEK_SET);

659　　　　　　　　 db->cnt_stor4++;

660　　　　　　}

661　　　 }

662　　　 rc = 0; 　　　　/* OK */



663　　doreturn:　　/* unlock hash chain locked by _db_find_and_lock */

664　　　if (un_lock(db->idxfd, db->chainoff, SEEK_SET, 1) < 0)

665　　　　　err_dump("db_store: un_lock error");

666　　　return(rc);

667　}



668　/*

669　 * Try to find a free index record and accompanying data record

670　 * of the correct sizes.　We're only called by db_store.

671　 */

672　static int

673　_db_findfree(DB *db, int keylen, int datlen)

674　{

675　　 int　　　rc;

676　　 off_t　　offset, nextoffset, saveoffset;



677　　 /*

678　　 * Lock the free list.

679　　 */

680　　 if (writew_lock(db->idxfd, FREE_OFF, SEEK_SET, 1) < 0)

681　　　　　err_dump("_db_findfree: writew_lock error");



682　　　/*

683　　　* Read the free list pointer.

684　　　*/

685　　　saveoffset = FREE_OFF;

686　　　offset = _db_readptr(db, saveoffset);
 
[655～661]　　第4种情况：替换一条已有记录，而新数据记录的长度与已有记录的长度恰好一样。这是最容易的情况，只需要重写数据记录即可，并将这种情况的计数器（cnt_stor4）值加1。
 
[662～667]　　在正常情况下，设置表示成功的返回码，然后进入公共返回逻辑。对散列链解锁（这把锁是由调用_db_find_and_lock而加上的），然后返回调用者。
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[668～686]　　dbfindfree函数试图找到一个指定大小的空闲索引记录和相关联的数据记录。需要对空闲链表加写锁以避免与其他使用空闲链表的进程互相影响。在对空闲链表加写锁后，得到空闲链表的头指针地址。
 
687　　　 while (offset != 0) {

688　　　　　nextoffset = _db_readidx(db, offset);

689　　　　　if (strlen(db->idxbuf) == keylen && db->datlen == datlen)

690　　　　　　　break;　　　　　/* found a match */

691　　　　　saveoffset = offset;

692　　　　　offset = nextoffset;

693　　　 }



694　　　 if (offset == 0) {

695　　　 　　rc = -1;　　/* no match found */

696　　　 } else {

697　　　 　　/*

698　　　 　　 * Found a free record with matching sizes.

699　　　 　　 * The index record was read in by _db_readidx above,

700　　　 　　 * which sets db->ptrval.　Also, saveoffset points to

701　　　 　　 * the chain ptr that pointed to this empty record on

702　　　 　　 * the free list.　We set this chain ptr to db->ptrval,

703　　　 　　 * which removes the empty record from the free list.

704　　　 　　 */

705　　　 　　_db_writeptr(db, saveoffset, db->ptrval);

706　　　 　　rc = 0;



707　　　 　　/*

708　　　 　　 * Notice also that _db_readidx set both db->idxoff

709　　　 　　 * and db->datoff.　This is used by the caller, db_store,

710　　　 　　 * to write the new index record and data record.

711　　　 　　 */

712　　　 }



713　　　 /*

714　　　  * Unlock the free list.

715　　　  */

716　　　 if (un_lock(db->idxfd, FREE_OFF, SEEK_SET, 1) < 0)

717　　　 　　err_dump("_db_findfree: un_lock error");

718　　　 return(rc);

719　}
 
[687～693]　　_db_findfree中的while循环遍历空闲链表以搜寻一个能够匹配键长度和数据长度的索引记录项。在这个简单的实现中，只有当一个已删除记录的键长度及数据长度与要插入的新记录的键长度及数据长度一样时才重用已删除记录的空间。还有其他更好的算法，但复杂度会增加。
 
[694～712]　　如果找不到所要求键长度和数据长度的可用记录，则设置表示失败的返回码。否则，将已找到记录的下一个链指针写至前一记录的链表指针。这样就从空闲链表中移除了该记录。
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[713～719]　　一旦结束对空闲链表的操作，立即释放写锁。然后对调用者返回状态码。
 
720　　/*

721　　 * Rewind the index file for db_nextrec.

722　　 * Automatically called by db_open.

723　　 * Must be called before first db_nextrec.

724　　 */

725　　void

726　　db_rewind(DBHANDLE h)

727　　{

728　　　DB　　　　*db = h;

729　　　off_t    offset;



730　　　offset = (db->nhash + 1) * PTR_SZ; 　 　/* +1 for free list ptr */



731　　　/*

732　　　 * We're just setting the file offset for this process

733　　　 * to the start of the index records; no need to lock.

734　　　 * +1 below for newline at end of hash table.

735　　　 */

736　　　if ((db->idxoff = lseek(db->idxfd, offset+1, SEEK_SET)) == -1)

737　　　　　　err_dump("db_rewind: lseek error");

738　　}



739　　/*

740　　 * Return the next sequential record.

741　　 * We just step our way through the index file, ignoring deleted

742　　 * records.　db_rewind must be called before this function is

743　　 * called the first time.

744　　 */

745　　char *

746　　db_nextrec(DBHANDLE h, char *key)

747　　{

748　　　DB　　　 *db = h;

749　　　char　　 c;

750　　　char　　 *ptr;
 
[720～738]　　db_rewind函数用于把数据库重置到“起始状态”，将索引文件的文件偏移量设置为指向第一条索引记录（紧跟在散列表之后）。（回忆图20-2中索引文件的结构。）
 
[739～750]　　db_nextrec函数返回数据库的下一条记录。返回值是指向数据缓冲区的指针。如果调用者提供的key参数非空，将相应的键复制到该缓冲区中。调用者负责分配可以存放键的足够大的缓冲区。大小为IDXLEN_MAX字节的缓冲区足够存放任意键。
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记录按数据库文件中存放的顺序逐一返回。也就是说，记录并不按键值大小排序。另外，db_ nextrec并不跟随散列链表，所以已删除的记录也会被读取，但是不向调用者返回这种已删除记录。
 
751　　　/*

752　　　 * We read lock the free list so that we don't read

753　　　 * a record in the middle of its being deleted.

754　　　 */

755　　　if (readw_lock(db->idxfd, FREE_OFF, SEEK_SET, 1) < 0)

756　　　　　err_dump("db_nextrec: readw_lock error");



757　　　do {

758　　　　　/*

759　　　　　 * Read next sequential index record.

760　　　　　 */

761　　　　　if (_db_readidx(db, 0) < 0) {

762　　　　　　　ptr = NULL;　　　　/* end of index file, EOF */

763　　　　　　　goto doreturn;

764　　　　　}



765　　　　　/*

766　　　　　 * Check if key is all blank (empty record).

767　　　　　 */

768　　　　　ptr = db->idxbuf;

769　　　　　while ((c = *ptr++) != 0　&&　c == SPACE)

770　　　　　　　;　　/* skip until null byte or nonblank */

771　　　} while (c == 0);　 　/* loop until a nonblank key is found */



772　　　if (key != NULL)

773　　　　　strcpy(key, db->idxbuf);　　/* return key */

774　　　ptr = _db_readdat(db);　　/* return pointer to data buffer */

775　　　db->cnt_nextrec++;



776　　doreturn:

777　　　if (un_lock(db->idxfd, FREE_OFF, SEEK_SET, 1) < 0)

778　　　　　err_dump("db_nextrec: un_lock error");

779　　　return(ptr);

780　　}
 
[751～756]　　对空闲链表加读锁，使得正在读该链表时，其他进程不能从中移除记录。
 
[757～771]　　调用_db_readidx读下一个记录。传送给该函数的偏移量参数值为0，以此通知该函数从当前偏移量继续读索引记录。因为正在逐条顺序读索引文件，所以会读到已删除的记录。仅需返回有效记录，所以跳过键是全空格的记录（回忆_db_dodelete函数以设置全空格方式清除键）。
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[772～780]　　当找到一有效键时，如果调用者已提供缓冲区，则将该键复制到该缓冲区。然后读数据记录，并将返回值设置为指向包含数据记录的内部缓冲区的指针值。将统计计数器值加1，对空闲链表解锁，最后返回指向数据记录的指针。
 
通常在下列形式的循环中使用db_rewind和db_nextrec这两个函数：
 
db_rewind(db);

while ((ptr = db_nextrec(db, key)) != NULL) {

　　 /* process record */

}
 
前面曾警告过，记录的返回没有一定的顺序，它们并不按键的顺序返回。
 
如果db_nextrec函数在循环中被调用时数据库正在被修改，则db_nextrec返回的记录只是变化中的数据库在某一时间点的快照（snapshot）。db_nextrec被调用时总是返回一条“正确”的记录，也就是说它不会返回一条已删除的记录。但有可能一条记录刚被db_nextrec返回后就被删除。类似地，如果db_nextrec刚跳过一条已删除的记录，这条记录的空间就被一条新记录重用，除非用db_ rewind重新遍历一遍，否则在结果中看不到这条新的记录。如果通过db_nextrec获得一份数据库的准确的“冻结”的快照很重要，则在这段时间内应该不做插入和删除操作。
 
下面来看db_nextrec使用的加锁。因为并不使用任何散列链表，也不能判断每条记录属于哪条散列链。所以有可能当db_nextrec读取一条记录时，其索引记录正在被删除。为了防止这种情况， db_ nextrec对空闲链表加读锁，这样就可避免与_db_dodelete和_db_findfree相互影响。
 
在结束对db.c源文件的说明之前，对向文件末尾追加索引记录或数据记录时的加锁再做一些说明。在第1种和第3种情况中，db_store调用_db_writeidx和_db_writedat时，第3个参数为0，第4个参数为SEEK_END。这里，第4个参数作为一个标志用来告诉这两个函数，新的记录将被追加到文件的末尾。_db_writeidx用到的技术是对索引文件加写锁，加锁的范围从散列链的末尾到文件的末尾。这不会影响其他数据库的读进程和写进程（这些进程将对散列链加锁），但如果其他进程此时调用db_store来追加数据则会被锁住。_db_writedat使用的方法是对整个数据文件加写锁。同样这也不会影响其他数据库的读进程和写进程（它们甚至不对数据文件加锁），但如果其他用户此时调用db_store来向数据文件追加数据则会被锁住（见习题20.3）。
 
20.9　性能
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为了测试这一数据库函数库，也为了获得一些与典型应用的数据访问模式有关的时间测量数据，编写了一个测试程序。该程序接受两个命令行参数：要创建的子进程的个数和每个子进程向数据库写的数据记录的条数（nrec）。然后（通过调用db_open）创建一个空的数据库，通过fork创建指定数目的子进程，等待所有子进程结束。每个子进程执行以下步骤。
 
（1）向数据库写nrec条记录。
 
（2）通过键值读回nrec条记录。
 
（3）执行下面的循环nrec×5次。
 
（a）随机读一条记录。
 
（b）每循环37次，随机删除一条记录。
 
（c）每循环11次，随机插入一条记录并读取这条记录。
 
（d）每循环17次，随机替换一条记录为新记录。在连续两次替换中，一次用同样大小的记录替换，一次用比以前更长的记录替换。
 
（4）将此子进程写的所有记录删除。每删除一条记录，随机地查找10条记录。
 
DB结构的cnt_xxx变量记录对数据库进行的操作数，这些变量的值在函数中增加。每个子进程的操作数一般都会与其他子进程不一样，因为每个子进程用来选择记录的随机数生成器是根据其进程ID来初始化的。每个子进程操作的典型计数值见图20-6。
 
[image: 20-6.jpg]
 
图20-6　每个子进程操作的典型计数值
 
读取的次数大约是存储和删除的10倍，这可能是许多数据库应用程序的典型情况。
 
每一个子进程只对该子进程所写的记录执行这些操作（读取、存储和删除）。由于所有的子进程对同一个数据库进行操作（虽然对不同的记录），所以会使用并发控制。数据库中的记录总数与子进程数成比例。（当只有一个子进程时，一开始有nrec条记录写入数据库；当有两个子进程时，一开始有nrec×2条记录写入数据库，依此类推。）
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通过运行测试程序的3个不同版本来比较加粗粒度锁和加细粒度锁提供的并发，并且比较3种不同的加锁方式（不加锁、建议性锁和强制性锁）。第一个版本使用20.8节中的源代码，称为细粒度锁版本。第二个版本通过改变加锁调用而使用粗粒度锁，20.6节对此已介绍过。第三个版本将所有加锁例程均去掉，这样可以计算出加锁的开销。通过改变数据库文件的权限标志位，还可以使第一个版本和第二个版本（加细粒度锁和加粗粒度锁）使用建议性锁或强制性锁（本节所有的测试中，仅对加细粒度锁的实现测量了采用强制性锁的时间）。
 
本节所有的测试都是在一台运行Linux 3.2.0的Intel Core-i5系统上运行的。这个系统拥有4个内核，因此可以允许至多4个进程并发运行。
 
1．单进程的结果
 
图20-7显示了只有一个子进程运行的结果，nrec分别为2 000、6 000和12 000。
 
[image: 20-7.jpg]
 
图20-7　单子进程、不同的nrec和不同的加锁方法
 
最后12列显示的是以秒为单位的时间。在所有的情况下，用户CPU时间加上系统CPU时间都基本上等于时钟时间。这一组测试受CPU限制而不是受磁盘操作限制。
 
中间6列（建议性锁）对加粗粒度锁和加细粒度锁的结果基本一样。这是可以理解的，因为对于单个进程来说加粗粒度锁和加细粒度锁并没有区别，除了额外的fcntl调用。
 
比较不加锁和加建议性锁，可以看到加锁调用在系统CPU时间上增加了32%～73%。即使这些锁实际上并没有使用过（因为只有一个进程运行），fcntl系统调用仍会有一些时间的开销。用户CPU时间对4种不同的加锁方法基本上一样，这是因为用户代码基本上是一样的（除了调用fcntl的次数有些不同）。
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关于图20-7要注意的最后一点是强制性锁比建议性锁增加了13%～19%的系统CPU时间。由于对加强制性细粒度锁和加建议性细粒度锁的调用次数是一样的，所以增加的系统开销来自读和写。
 
最后的测试是有多个子进程的不加锁的程序。与预期的一样，结果是随机的错误。一般错误情况包括：添加到数据库中的记录找不到、测试程序异常退出等。几乎每次运行测试程序，都有不同的错误发生。这是典型的竞争条件——多个进程在没有任何加锁的情况下修改同一个文件，错误情况不可预测。
 
2．多进程的结果
 
下一组测试主要目的是比较粗粒度锁和细粒度锁的不同。前面说过，由于加细粒度锁时数据库的各个部分被锁住的时间比加粗粒度锁少，所以从直觉上说，加细粒度锁应该能提供更好的并发性。图20-8显示了nrec取2 000，子进程数从1～16的测试结果。
 
[image: 20-8.jpg]
 
图20-8　nrec=2000时不同加锁方法的比较
 
所有的用户时间、系统时间和时钟时间的单位均为秒。所有这些时间均是父进程与所有子进程的总和。关于这些数据有许多需要考虑。
 
首先要注意的是，当使用多进程时，用户时间和系统时间之和超过了时钟时间。乍看起来这有点奇怪，不过当采用多核时是正常的。此时，所有并发的进程在运行时其时间会累积起来；所显示的CPU处理时间是程序运行的所有核运转的时间之和。因为可以并发多个进程（每个核运行一个进程），所以CPU处理时间会超过时钟时间。
 
第 8 列（标记为“Δ时钟”），是加建议性粗粒度锁与加建议性细粒度锁的运行时钟时间的百分比差。从中可以看到使用细粒度锁得到了多大的并发性。在运行测试的系统上，对于单一进程加粗粒度锁与加细粒度锁相比效果几乎相同。而对于多进程，使用粗粒度锁的时间消耗会增大（约30%）。
 
我们希望从粗粒度锁到细粒度锁时钟时间会减少，当启用多进程后结果也确实如此。然而，我们预期当对任意数量的进程使用细粒度锁时系统时间仍然会保持较高值，因为使用细粒度锁会发出更多的fcntl调用。如果将图20-6中的fcntl调用次数加在一起，会发现对于粗粒度锁其平均值为87 858，对于细粒度锁其平均值为115 520。基于此，我们认为由于增加了31%的fcntl调用，所以会增加细粒度锁的系统时间。然而，在测试中加细粒度锁的两个进程其系统时间减少了，超过两个进程的系统时间只有小幅增加，这让人困惑。
 
出现这种情况有两个原因。首先，图20-7显示，当没有对锁进行竞争时，粗粒度锁和细粒度锁的时间之间没有显著的差别。这说明对于额外的fcntl调用所引起的CPU负载并没有影响测试程序的性能。其次，使用粗粒度锁时，持有锁的时间较长，这也就增加了其他进程因等待该锁而陷入阻塞的可能性；而使用细粒度锁时，加锁的时间较短，进程被阻塞的可能性就降低了。如果计算fcntl的阻塞次数，会发现在使用粗粒度锁时，进程阻塞频率更高。例如，当有 4 个进程时，使用粗粒度锁的阻塞次数几乎是使用细粒度锁的阻塞次数的5倍。正是这些粗粒度锁需要休眠和唤醒进程的额外时间增加了系统时间，最终降低了两种锁的系统时间差异。
 
最后一列（标记为“△系统”），是从加建议性细粒度锁到加强制性细粒度锁的系统 CPU时间百分比的增量。从这些值可以看到，随着并发数的增加，强制性锁显著增加了系统时间（20%～76%）。
 
由于所有这些测试的用户代码几乎一样（对加建议性细粒度锁和强制性细粒度锁增加了一些fcntl调用），因此预期对每一行的用户CPU时间应基本一样。
 
 
 当我们第一次运行这些测试时，测试显示对于多进程完成锁的使用，其粗粒度锁的用户时间几乎是细粒度锁的两倍。因为两个数据库版本是相同的，除了调用fcntl的次数不同，因此这说不通。在调查研究之后，我们发现使用粗粒度锁时会有更多的竞争，进程也就会等待更久，操作系统于是就决定降低CPU时钟频率来节约电量。在使用细粒度锁时，会有更多的活动，于是系统提高了CPU时钟频率。这使得使用粗粒度锁比使用细粒度锁运行得慢。在禁用系统频率调整特性后，我们的测试结果就没有这些偏差了，用户时间的差别也就小多了。
 

 
图20-8的第一行与图20-7中的nrec取2 000的那一行很相似。这与预期一致。
 
图20-9是图20-8中加建议性细粒度锁的数据图。我们绘制了进程数从1～16的时钟时间，也绘制了用户CPU时间除以进程数后的每进程用户CPU时间，另外还绘制了每进程系统CPU时间。
 
注意，这两个每进程CPU时间都是线性的，但时钟时间是非线性的。可能的原因是：当进程数增大时，操作系统用于进程切换的CPU时间增多。操作系统的开销会增加时钟时间，但不会影响单个进程的CPU时间。
 
用户CPU时间随进程数增加的原因可能是因为数据库中有了更多的记录。每一条散列链更长，所以_db_find_and_lock函数平均要运行更长时间来找到一条记录。
 
[image: ..\14-0434 UNIX环境高级编程（第3版）(改一校)改\2009.tif]
 
图20-9　图20-8中使用建议性细粒度锁的数据
 
20.10　小结
 
本章详细介绍了一个数据库函数库的设计与实现。考虑到篇幅，这个函数库尽可能小和简单，但也包括了多进程并发访问需要的对记录加锁的功能。
 
此外，还使用不同数量的进程以及不同的加锁方法：不加锁、建议性锁（细粒度锁和粗粒度锁）和强制性锁，研究了这个函数库的性能。可以看到加建议性锁比不加锁在时钟时间上增加了29%～59%，加强制性锁比加建议性锁耗时再增加约15%。
 
习题
 
20.1　在_db_dodelete中使用的加锁是比较保守的。例如，如果等到真正要用空闲链表时再加锁，则可获得更大的并发性。如果将调用writew_lock移到调用_db_writedat和_db _readptr之间会发生什么呢？
 
20.2　如果db_nextrec不对空闲链表加读锁而被读的记录正在被删除，描述在怎样的情况下，db_ nextrec会返回正确的键但是空的（不正确的）数据记录。（提示：查看_db _dodelete。）
 
20.3　20.8节的结尾部分描述了_db_writeidx和_db_writedat的加锁。我们说过这种加锁不会干涉除了调用db_store之外的其他的读进程和写进程。如果改为强制性锁，这还成立吗？
 
20.4　怎样把fsync集成到这个数据库函数库中？
 
20.5　在db_store中，先写数据记录，然后再写索引记录。如果将顺序颠倒，会发生什么？
 
20.6　建立一个新的数据库并写入一些记录。写一个程序调用db_nextrec来读数据库中的每条记录，并调用_db_hash来计算每条记录的散列值。根据每条散列链上的记录数画出直方图。 _db_hash中的散列函数是否能满足需求？
 
20.7　修改数据库函数，使得索引文件中散列链的数目可以在数据库建立时指定。
 
20.8　比较两种情况下数据库函数的性能：（a）数据库与测试程序在同一台机器上；（b）数据库与测试程序在不同的机器上，经由NFS进行访问。这个数据库函数库提供的记录锁机制还能工作吗？
 
20.9　只有当键缓冲区和数据缓冲区与其所需的大小精确匹配时，数据库才会返回空闲链表记录。请修改数据库以使空闲链表可以使用于较大的缓冲区来满足需求。应该如何更改数据库的永久格式来支持这种特性呢？
 
20.10　在实现了习题20.9的方案后，编写一个工具以使数据库格式可以从一种转换为另一种。
 


第21章　与网络打印机通信
 
21.1　引言
 
现在我们开发一个能够与网络打印机通信的程序。这些打印机通过以太网与多个计算机互联，并且通常既支持纯文本文件也支持PostScript文件。尽管一些应用程序也支持其他通信协议，但一般使用网络打印协议（Internet Printing Protocol，IPP）与打印机通信。
 
我们将描述两个程序：打印假脱机守护进程（print spooler daemon）将作业发送到打印机；命令行程序将打印作业提交到假脱机守护进程。因为假脱机守护进程必须处理很多操作（与客户端通信来提交作业、与打印机通信、读文件、扫描目录等），这就提供了一个机会来使用前面章节所提到的函数。例如，使用线程（第11章和第12章）来简化假脱机守护进程的设计，使用套接字（第16章）在调度文件打印的程序和打印假脱机守护进程之间通信，也可以在打印假脱机守护进程与网络打印机之间通信。
 
21.2　网络打印协议
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网络打印协议（IPP）为建立基于网络的打印系统指定了通信规则。通过将一个IPP服务器嵌入到带网卡的打印机中，打印机就能够对许多计算机系统的请求加以服务。这些计算机系统实际上并不需要在同一个物理网络中。因为IPP是建立在标准的因特网协议上的，所以任何一台能够与打印机建立TCP/IP连接的计算机都能向打印机提交打印作业。
 
IPP由一系列IETF标准文档（Requests For Comment，RFC）说明，这些文档可以在http://www.ietf.org/rfc.html上获得。IEEE相关的打印机工作组（Printer Working Group）制定的标准草案也可以在http://www.pwg.org/ipp上获得。图21-1列出了IPP的主要文档，还有许多其他文档进一步说明了过程管理、作业属性等信息。
 
[image: 21-1.jpg]
 
图21-1　基本的IPP文档
 
候选标准5100.12-2100指明实现提供的所有功能都要能够支持符合不同的IPP标准版本。有许多建议性的IPP协议扩展（具体的功能在IPP相关文档中定义）。将这些功能分组创建出不同的一致性分级；每一级是一个不同的协议版本。对于兼容性，每个更高的一致性级别要符合低版本定义的大多数要求。本章的示例中使用的是IPP 1.1版本。
 
IPP建立在超文本传输协议（Hypertext Transfer Protocol，HTTP）之上（21.3节）。HTTP又建立在TCP/IP之上。IPP报文的结构如图21-2所示。
 
[image: ..\14-0434 UNIX环境高级编程（第3版）(改一校)改\2102.tif]
 
图21-2　IPP报文结构
 
IPP是请求响应协议。客户端发送请求到服务器，服务器用响应报文回答这个请求。IPP首部包含一个域来指示所需操作，这些操作可以定义成提交打印作业、取消打印作业、获取作业属性、获取打印机属性、暂停和重启打印机、挂起一个作业和释放一个挂起的作业。
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图21-3显示了一个IPP首部的结构。前两个字节表示IPP版本号，对于1.1版本协议，每个字节的值是1。对于一个请求协议，接下来两个字节包含一个值来指示请求操作的类型。对于一个响应协议，这两个字节包含一个状态码。
 
[image: ..\..\..\UNIX环境高级编程（第3版）tu\2103.tif]
 
图21-3　IPP首部结构
 
接下来4字节包含一个整数以标识请求，使得请求和响应相匹配。接着是可选的属性，然后用属性结束标志终止。紧接着属性结束标志之后是任何与请求相关联的数据。
 
在首部，整数以有符号二进制补码以及大端字节序（即网络字节序）方式存储。属性按照组来存储。每个组都以标识该组的一个字节开始。在每一个组中，属性通常表示为：1字节的标志，然后是2字节属性名长度，接着是属性名，然后是2字节属性值长度，最后是属性值本身。属性值可以编码成字符串、二进制整数或者更为复杂的结构，如日期/时间戳。
 
图21-4显示了attributes-charset属性是如何编码成utf-8类型的值的。
 
[image: ..\..\..\UNIX环境高级编程（第3版）tu\2104.tif]
 
图21-4　IPP属性编码样例
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根据所请求的操作，一些属性需要在请求报文中提供，而另一些是可选的。例如，图12-5显示了用于为打印作业请求定义的属性。
 
[image: 21-5.jpg]
 
图21-5　打印作业请求的属性
 
IPP首部包含了文本和二进制混合数据。属性名存储为文本，而数据大小存储为二进制整数。这使得构建和分析首部的过程变得复杂，因为需要考虑诸如网络字节序、主机处理器是否在任意字节边界编址对齐之类的问题。一个较好的可选方案是将首部设计成仅包含文本。这样以稍微膨胀一些协议报文为代价简化处理过程。
 
21.3　超文本传输协议HTTP
 
HTTP V1.1由RFC 2616说明。HTTP也是请求响应协议。请求报文包含的一个开始行，跟着是首部行，接着是空白行，然后是一个可选的实体主体。在我们这种情况，实体主体包含IPP首部和数据。
 
HTTP首部是ASCII码，每行以回车（\r）和换行符（\n）结束。开始行包含一个method来指示客户端请求的操作、一个统一资源定位符（Uniform Resource Locator，URL）来描述服务器和协议、一个字符串来表示HTTP版本。IPP所用的方法仅为POST，用于将数据发送到服务器。
 
首部行指定属性，如实体主体的格式和长度。一个首部行包含一个属性名，后紧随一个冒号，接着是可选的空格符，然后是属性值，最后以回车和换行符结束。例如，为了指定实体主体包含IPP报文，应包含如下的首部行：
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Content-Type: application/ipp
 
下面是对于作者使用的Xerox Phaser 8560打印机的打印请求的HTTP首部样例。
 
POST /ipp HTTP/1.1^M

Content-Length: 21931^M

Content-Type: application/ipp^M

Host: phaser8560:631^M

^M
 
Content-Length行指明了HTTP报文中数据的字节大小。这个长度不包含了HTTP首部的大小，但包括IPP首部的大小。Host行指明了要发送报文的服务器主机名称和端口号。
 
每行后面的^M是换行符前的回车符。换行符不能被显示成可打印字符。注意，首部的最后一行是空的，只有回车和换行符。
 
HTTP响应报文的起始行包含了版本字符串，紧接着的是一个数字状态码和状态信息，最后以一个回车和换行结束。HTTP响应报文的剩余部分和请求报文的格式一样：首部之后是一个空白行和可选的实体主体。
 
打印机需要发送给我们如下的报文作为打印请求的回应：
 
HTTP/1.1 200 OKˆM

Content-Type: application/ippˆM

Cache-Control: no-cache, no-store, must-revalidateˆM

Expires: THU, 26 OCT 1995 00:00:00 GMTˆM

Content-Length: 215ˆM

Server: Allegro-Software-RomPager/4.34ˆM

ˆM
 
对于打印假脱机守护进程，我们只关心报文的第一行：它说明了请求成功或者用数字错误码以及一个短字符串表示请求失败。剩下的报文包含了附加信息，可以通过在客户端和服务器间的节点来控制缓存以及表明运行在服务器上的软件版本号。
 
21.4　打印假脱机技术
 
本章中我们开发的程序是一个基本的打印假脱机守护进程。一个简单的用户命令发送一个文件到打印假脱机守护进程；假脱机守护进程将其保存到磁盘，将请求送入队列，最终将文件发送到打印机。
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所有的UNIX系统至少提供一个打印假脱机系统。FreeBSD安装的是BSD的打印假脱机系统LPD（参见lpd(8)和Stevens [1990]第13章）。Linux和Mac OS X包括CUPS，即Common UNIX Printing System（参见cupsd(8)）。Solaris提供标准的System V打印假脱机守护进程（参见lp(1)和lpsched(1M)）。在本章中，我们的兴趣不在于这些假脱机系统本身，而是如何与网络打印机通信。我们需要开发一个假脱机系统能够解决多用户访问单一资源（打印机）问题。
 
我们使用一个简单的命令行程序读取一个文件，将其送到打印假脱机守护进程。这个命令行程序由一个选项来强制将文件按照文本来处理（默认是PostScript文件）。这个命令行程序是print。
 
在我们的打印假脱机守护进程printd中，使用多线程将任务分解给守护进程来完成。
 
 
 	一个线程在套接字上监听从运行print的客户端发来的新打印请求。
 
 	对于每个客户端产生一个独立的线程，将要打印的文件复制到假脱机区域。
 
 	一个线程与打印机通信，一次发送一个队列中的作业。
 
 	一个线程处理信号。
 

 
图21-6显示如何将这些组件整合在一起。
 
[image: ..\..\..\UNIX环境高级编程（第3版）tu\2106.tif]
 
图21-6　打印假脱机组件
 
打印配置文件是/etc/printer.conf。这个文件标识了运行打印假脱机守护进程的服务器主机名和网络打印机的主机名。以printserver关键字开始的行标识了假脱机守护进程。以printer关键字开始的行标识了打印机，空格符之后跟着打印机的主机名。
 
一个打印机配置文件样例可能包含下列行：
 
printserver　 fujin

printer　　　　phaser8560
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其中fujin是运行打印假脱机守护进程的计算机系统主机名，phaser8560是网络打印机的主机名。我们假设这些名字已经在/etc/hosts中列出或者已经通过正在使用的任意服务进行了注册，这样我们就可以将这些名字转换成网络地址。
 
可以在运行打印假脱机守护进程的同一台机器上运行print命令，也可以在同一个网络中的任意机器上运行它。我们只需配置在/etc/printer.conf中的printserver字段即可，因为只有守护进程需要知道打印机名称。
 
安全
 
拥有超级用户特权的程序可能让计算机系统受到攻击。这些程序通常并不比其他程序更脆弱，但是被攻破时将导致攻击者能够完全访问你的计算机系统。
 
本章中的打印假脱机守护进程拥有超级用户特权，在这个例子中能够将一个特权TCP端口号绑定一个套接字。为了使守护进程能更好地抵御攻击，我们可以：
 
 
 	按照最少特权的原则（8.11节）设计守护进程。我们获得一个绑定到特权端口的套接字之后，可以将守护进程的用户ID和组的ID更改为非root（如lp）。所有用于存储队列中打印作业的文件和目录的拥有者应该是非特权用户。如果被攻击，这种情况下攻击者只能通过守护进程访问打印子系统。虽然这仍然是一个隐患，但是比起攻击者可以完全访问系统，其危害性已大大降低了。
 
 	审计守护进程源代码中所有已知的潜在脆弱性漏洞，如缓冲区溢出。
 
 	对不期望或者可疑的行为做日志，这样可以引起管理员注意并进一步调查。
 

 
21.5　源代码
 
本章的源代码有5个文件，不包括在前面章节中所用的一些公共库例程。
 
ipp.h　　包含IPP定义的头文件。
 
print.h　　包含公用的常数、数据结构定义以及实用工具例程的声明的头文件。
 
util.c　　用于两个程序的实用工具例程。
 
print.c　　用于打印文件的命令行程序C代码。
 
printd.c　　用于打印假脱机守护进程的C代码。
 
我们按照所列次序依次分析每个文件。
 
首先从ipp.h头文件开始。
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　1　 #ifndef _IPP_H

　2　 #define _IPP_H

　3　 /*

　4　　* Defines parts of the IPP protocol between the scheduler

　5　　* and the printer.　 Based on RFC2911 and RFC2910.

　6　　*/



　7　 /*

　8　　* Status code classes.

　9　　*/

 10　 #define STATCLASS_OK(x)　　 　　((x)　>= 0x0000 && (x) <= 0x00ff)

 11　 #define STATCLASS_INFO(x)　 　　((x)　>= 0x0100 && (x) <= 0x01ff)

 12　 #define STATCLASS_REDIR(x)　　　((x)　>= 0x0300 && (x) <= 0x03ff)

 13　 #define STATCLASS_CLIERR(x) 　　((x)　>= 0x0400 && (x) <= 0x04ff)

 14　 #define STATCLASS_SRVERR(x) 　　((x)　>= 0x0500 && (x) <= 0x05ff)



 15　 /*

 16　　* Status codes.

 17　　*/

 18　 #define STAT_OK　　　　　　0x0000　/* success */

 19　 #define STAT_OK_ATTRIGN　 0x0001　/* OK; some attrs ignored */

 20　 #define STAT_OK_ATTRCON　 0x0002　/* OK; some attrs conflicted */



 21　 #define STAT_CLI_BADREQ　 0x0400　/* invalid client request */

 22　 #define STAT_CLI_FORBID　 0x0401　/* request is forbidden */

 23　 #define STAT_CLI_NOAUTH　 0x0402　/* authentication required */

 24　 #define STAT_CLI_NOPERM　 0x0403　/* client not authorized */

 25　 #define STAT_CLI_NOTPOS　 0x0404　/* request not possible */

 26　 #define STAT_CLI_TIMOUT　 0x0405　/* client too slow */

 27　 #define STAT_CLI_NOTFND　 0x0406　/* no object found for URI */

 28　 #define STAT_CLI_OBJGONE　0x0407　/* object no longer available */

 29　 #define STAT_CLI_TOOBIG 　0x0408　/* requested entity too big */

 30　 #define STAT_CLI_TOOLNG 　0x0409　/* attribute value too large */

 31　 #define STAT_CLI_BADFMT 　0x040a　/* unsupported doc format */

 32　 #define STAT_CLI_NOTSUP 　0x040b　/* attributes not supported */

 33　 #define STAT_CLI_NOSCHM 　0x040c　/* URI scheme not supported */

 34　 #define STAT_CLI_NOCHAR 　0x040d　/* charset not supported */

 35　 #define STAT_CLI_ATTRCON　0x040e　/* attributes conflicted */

 36　 #define STAT_CLI_NOCOMP　 0x040f　/* compression not supported */

 37　 #define STAT_CLI_COMPERR　0x0410　/* data can't be decompressed */

 38　 #define STAT_CLI_FMTERR　 0x0411　/* document format error */

 39　 #define STAT_CLI_ACCERR　 0x0412　/* error accessing data */
 
[1～14]　　ipp.h从标准的#ifdef开始，用于防止同一文件被包含两次的错误。然后定义IPP状态码的类（参见RFC 2911的第13节）。
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[15～39]　　定义基于RFC 2911的状态码，但是本程序不使用，这些状态码的使用留给读者作为练习（参见习题21.1）。
 
 40　#define STAT_SRV_INTERN　　0x0500　/* unexpected internal error */

 41　#define STAT_SRV_NOTSUP　　0x0501　/* operation not supported */

 42　#define STAT_SRV_UNAVAIL　 0x0502　/* service unavailable */

 43　#define STAT_SRV_BADVER　　0x0503　/* version not supported */

 44　#define STAT_SRV_DEVERR　　0x0504　/* device error */

 45　#define STAT_SRV_TMPERR　　0x0505　/* temporary error */

 46　#define STAT_SRV_REJECT　　0x0506　/* server not accepting jobs */

 47　#define STAT_SRV_TOOBUSY　 0x0507　/* server too busy */

 48　#define STAT_SRV_CANCEL　　0x0508　/* job has been canceled */

 49　#define STAT_SRV_NOMULTI　 0x0509　/* multi-doc jobs unsupported */



 50　/*

 51　 * Operation IDs

 52　 */

 53　#define OP_PRINT_JOB　　　　　　　0x02

 54　#define OP_PRINT_URI　　　    　 0x03

 55　#define OP_VALIDATE_JOB　       0x04

 56　#define OP_CREATE_JOB　　       0x05

 57　#define OP_SEND_DOC　　　  　　　0x06

 58　#define OP_SEND_URI　　　　  　　0x07

 59　#define OP_CANCEL_JOB　　　　　　0x08

 60　#define OP_GET_JOB_ATTR        0x09

 61　#define OP_GET_JOBS　　　　　　　0x0a

 62　#define OP_GET_PRINTER_ATTR    0x0b

 63　#define OP_HOLD_JOB　　　　　　　0x0c

 64　#define OP_RELEASE_JOB　       0x0d

 65　#define OP_RESTART_JOB　　　　　0x0e

 66　#define OP_PAUSE_PRINTER       0x10

 67　#define OP_RESUME_PRINTER   　 0x11

 68　#define OP_PURGE_JOBS　     　 0x12



 69　/*

 70　 * Attribute Tags.

 71　 */

 72　#define TAG_OPERATION_ATTR　　　0x01　/* operation attributes tag */

 73　#define TAG_JOB_ATTR　　　      0x02　/* job attributes tag */

 74　#define TAG_END_OF_ATTR        0x03　/* end of attributes tag */

 75　#define TAG_PRINTER_ATTR　     0x04　/* printer attributes tag */

 76　#define TAG_UNSUPP_ATTR        0x05　/* unsupported attributes tag */
 
[40～49]　　继续定义状态码。0x500～0x5ff是服务器错误码。RFC 2911中13.1.1节至13.1.5节描述了所有的状态码。
 
[50～68]　　接着定义各种操作ID。IPP中定义的每个操作有一个ID（参见RFC 2911的4.4.15节）。在本例中，仅用到打印作业操作。
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[69～76]　　属性标志限定了IPP中请求和响应报文的属性组。这些值定义在RFC 2910的3.5.1节。
 
 77　/*

 78　 * Value Tags.

 79　 */

 80　#define TAG_UNSUPPORTED　　　  0x10　/* unsupported value */

 81　#define TAG_UNKNOWN　　　　　　 0x12　/* unknown value */

 82　#define TAG_NONE　　　　　　　  0x13　/* no value */

 83　#define TAG_INTEGER　　　　    0x21　/* integer */

 84　#define TAG_BOOLEAN　　　　    0x22　/* boolean */

 85　#define TAG_ENUM　　　　　　　  0x23　/* enumeration */

 86　#define TAG_OCTSTR　　　　     0x30　/* octetString */

 87　#define TAG_DATETIME  　      0x31　/* dateTime */

 88　#define TAG_RESOLUTION    　  0x32　/* resolution */

 89　#define TAG_INTRANGE    　    0x33　/* rangeOfInteger */

 90　#define TAG_TEXTWLANG　       0x35　/* textWithLanguage */

 91　#define TAG_NAMEWLANG　       0x36　/* nameWithLanguage */

 92　#define TAG_TEXTWOLANG　　    0x41　/* textWithoutLanguage */

 93　#define TAG_NAMEWOLANG　　    0x42　/* nameWithoutLanguage */

 94　#define TAG_KEYWORD　　   　  0x44　/* keyword */

 95　#define TAG_URI　　　　       0x45　/* URI */

 96　#define TAG_URISCHEME　      0x46　/* uriScheme */

 97　#define TAG_CHARSET　 　     0x47　/* charset */

 98　#define TAG_NATULANG  　　   0x48　/* naturalLanguage */

 99　#define TAG_MIMETYPE        0x49　/* mimeMediaType */



100　struct ipp_hdr {

101　　 int8_t　major_version;　/* always 1 */

102　　 int8_t　minor_version;　/* always 1 */

103　　 union {

104　　　　　int16_t op; /* operation ID */

105　　　　　int16_t st; /* status */

106　　 } u;

107　　 int32_t request_id;　　 /* request ID */

108　　 char　　attr_group[1];　/* start of optional attributes group */

109　　 /* optional data follows */

110　};



111　#define operation u.op

112　#define status u.st



113　#endif /* _IPP_H */
 
[77～99]　　值标志指示每个属性和参数的格式，由RFC 2910的3.5.2节定义。
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[100～113]　　定义IPP首部的结构。请求报文与响应报文的首部一样，除了请求中的操作ID被响应中的状态码代替。
 
在头文件尾部我们用#endif来匹配文件开始的#ifdef。
 
下一个文件是print.h头文件。
 
 1　 #ifndef _PRINT_H

 2　 #define _PRINT_H



 3　 /*

 4　　* Print server header file.

 5　　*/

 6　 #include <sys/socket.h>

 7　 #include <arpa/inet.h>

 8　 #include <netdb.h>

 9　 #include <errno.h>



 10　#define CONFIG_FILE             "/etc/printer.conf"

 11　#define SPOOLDIR                "/var/spool/printer"

 12　#define JOBFILE                 "jobno"

 13　#define DATADIR                 "data"

 14　#define REQDIR                  "reqs"



 15　#if defined(BSD)

 16　#define LPNAME                  "daemon"

 17　#elif defined(MACOS)

 18　#define LPNAME                  "_lp"

 19　#else

 20　#define LPNAME                  "lp"

 21　#endif
 
[1～9]　　在这个头文件中包含所需要的所有头文件。应用程序只需简单地包含print.h，而不需要跟踪所有的头文件依赖关系。
 
[10～14]　　定义实现所需的文件和目录。包含打印守护进程和网络打印机主机名的配置文件在/etc/printer.conf中。需要打印的文件副本在目录/var/spool/printer/ data中；对于每个请求的控制信息在目录/var/spool/printer/reqs中。包含下一个作业编号的文件是/var/spool/printer/jobno。
 
目录必须由管理员创建并且由运行打印守护进程的账户所有。如果这些目录不存在，守护进程也不会创建这些目录，因为守护进程需要root权限来创建/var/spool中的目录。我们的设计初衷是当以root权限运行时，尽量让守护进程少做一些事情，以减少产生安全漏洞的可能。
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[15～21]　　接着定义运行打印守护进程的账户名。在Linux和Solaris中，这个账户名是lp。在Mac OS X中，账户名是_lp。FreeBSD没有为打印守护进程定义单独的账户，所以我们使用为系统守护进程保留的账户。
 
22　#define FILENMSZ　　64

23　#define FILEPERM　　(S_IRUSR|S_IWUSR)



24　#define USERNM_MAX　　 64

25　#define JOBNM_MAX　　　256

26　#define MSGLEN_MAX　　 512



27　#ifndef HOST_NAME_MAX

28　#define HOST_NAME_MAX　256

29　#endif



30　#define IPP_PORT　　　　631

31　#define QLEN　　　　　　 10



32　#define IBUFSZ　　　　　512　 /* IPP header buffer size */

33　#define HBUFSZ　　　　　512　 /* HTTP header buffer size */

34　#define IOBUFSZ　　　　 8192　/* data buffer size */



35　#ifndef ETIME

36　#define ETIME ETIMEDOUT

37　#endif



38　extern int getaddrlist(const char *, const char *,

39　　 struct addrinfo **);

40　extern char *get_printserver(void);

41　extern struct addrinfo *get_printaddr(void);

42　extern ssize_t tread(int, void *, size_t, unsigned int);

43　extern ssize_t treadn(int, void *, size_t, unsigned int);

44　extern int connect_retry(int, int, int, const struct sockaddr *,

45　　 socklen_t);

46　extern int initserver(int, const struct sockaddr *, socklen_t,

47　　 int);
 
[22～34]　　接下来定义限制和常量。FILEPERM是创建要打印的文件副本使用的权限。这个权限是被限制的，因为我们不希望普通用户在等待打印时能够读取他人的文件。我们定义HOST_NAME_MAX作为用sysconf不能够确定系统的限制时能够支持的最大的主机名。
 
IPP被定义为使用端口631。QLEN是传递给listen的backlog参数（具体细节见16.4节）。
 
[35～37]　　一些平台没有定义错误码ETIME，因此另外定义一个错误码，使得在这些系统上有意义。当读超时时，返回这个错误码（我们不希望在从套接字读的时候服务器无限期地阻塞）。
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[38～47]　　接着，定义所有包含在util.c中的公共例程（稍后将分析这些例程）。注意，图16-11中的connect_retry函数和图16-22中的initserver函数没有包含在util.c中。
 
48　/*

49　 * Structure describing a print request.

50　 */

51　struct printreq {

52　　　uint32_t size;　　　　             /* size in bytes */

53　　　uint32_t flags;　　　　　          /* see below */

54　　　char usernm[USERNM_MAX];         /* user’s name */

55　　　char jobnm[JOBNM_MAX];　         /* job’s name */

56　};



57　/*

58　 * Request flags.

59　 */

60　#define PR_TEXT        0x01          /* treat file as plain text */



61　/*

62　 * The response from the spooling daemon to the print command.

63　 */

64　struct printresp {

65　　　uint32_t retcode;　　　　　        /* 0=success, !0=error code */

66　　　uint32_t jobid;　　　　　　        /* job ID */

67　　　char msg[MSGLEN_MAX];　　         /* error message */

68　};



69　#endif /* _PRINT_H */
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[48～69]　　printreq结构和printresp结构定义了print程序和打印假脱机守护进程之间的协议。print程序发送printreq结构到打印假脱机守护进程，该结构定义了作业大小（以字节为单位）、作业性质、用户名和作业名。打印假脱机守护进程用printresp结构回应，该结构包括返回码、作业ID和错误消息（如果请求失败）。
 
PR_TEXT作业性质表明要打印的文件只能被视为纯文本（而不是PostScript）。我们为所有的标志定义一个掩码而非对每个标志定义一个独立的字段。尽管目前只定义了一个标志值，将来还可以增加更多性质来扩展这个协议。例如，我们可以在增加一个标志位用来请求双面打印。不需要改变结构的大小就可以有31个额外的标志位的空间。改变结构的大小意味着可能会引入客户端和服务器的兼容性问题，除非对两边同时更新。另一个可选方案就是增加一个报文版本号，以允许不同版本的结构有所改变。
 
注意，对协议结构中的所有整数显式地定义了一个长度，这可以在客户端与服务器的整数长度不同时避免错位的结构元素。
 
下一个文件我们考察util.c，该文件包含实用工具例程。
 
　1　#include "apue.h"

　2　#include "print.h"

　3　#include <ctype.h>

　4　#include <sys/select.h>



　5　#define MAXCFGLINE 512

　6　#define MAXKWLEN　 16

　7　#define MAXFMTLEN　16



　8　/*

　9　 * Get the address list for the given host and service and

 10　 * return through ailistpp. Returns 0 on success or an error

 11　 * code on failure. Note that we do not set errno if we

 12　 * encounter an error.

 13　 *

 14　 * LOCKING: none.

 15　 */

 16　int

 17　getaddrlist(const char *host, const char *service,

 18　　struct addrinfo **ailistpp)

 19　{

 20　　 int　　　　　　　　err;

 21　　 struct addrinfo hint;



 22　　 hint.ai_flags = AI_CANONNAME;

 23　　 hint.ai_family = AF_INET;

 24　　 hint.ai_socktype = SOCK_STREAM;

 25　　 hint.ai_protocol = 0;

 26　　 hint.ai_addrlen = 0;

 27　　 hint.ai_canonname = NULL;

 28　　 hint.ai_addr = NULL;

 29　　 hint.ai_next = NULL;

 30　　 err = getaddrinfo(host, service, &hint, ailistpp);

 31　　 return(err);

 32　}
 
[1～7]　　首先定义了这个文件中函数中的限制。MAXCFGLINE是打印机配置文件的行的最大长度、 MAXKWLEN是配置文件中关键字的最大长度、MAXFMTLEN是传给sscanf的格式化字符串的最大长度。
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[8～32]　　第一个函数是getaddrlist，是getaddrinfo（16.3.3节）的封装，因为我们常常用同样的结构来调用getaddrinfo。注意，在这个函数中不需要互斥锁。每个函数前面的LOCKING注释是用于多线程锁定的文档编写。这一注释列出了可能的关于锁的假设，告知该函数所需要获得或释放的锁，并告知调用这个函数所需要持有的锁。
 
 33　/*

 34　 * Given a keyword, scan the configuration file for a match

 35　 * and return the string value corresponding to the keyword.

 36　 *

 37　 * LOCKING: none.

 38　 */

 39　static char *

 40　scan_configfile(char *keyword)

 41　{

 42　　 int　　　　　　　n, match;

 43　　 FILE　　　　　　 *fp;

 44　　 char　　　　　　 keybuf[MAXKWLEN], pattern[MAXFMTLEN];

 45　　 char　　　　　　 line[MAXCFGLINE];

 46　　 static char　　 valbuf[MAXCFGLINE];



 47　　 if ((fp = fopen(CONFIG_FILE, "r")) == NULL)

 48　　　　　 log_sys("can't open %s", CONFIG_FILE);

 49　　 sprintf(pattern, "%%%ds %%%ds", MAXKWLEN-1, MAXCFGLINE-1);

 50　　 match = 0;

 51　　 while (fgets(line, MAXCFGLINE, fp) != NULL) {

 52　　　　　 n = sscanf(line, pattern, keybuf, valbuf);

 53　　　　　 if (n == 2 && strcmp(keyword, keybuf) == 0) {

 54　　　　　　　 match = 1;

 55　　　　　　　 break;

 56　　　　　 }

 57　　 }

 58　　 fclose(fp);

 59　　 if (match != 0)

 60　　　　　return(valbuf);

 61　　 else

 62　　　　　return(NULL);

 63　}
 
[33～46]　　scan_configfile函数搜索打印机配置文件中指定的关键字。
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[47～63]　　以读方式打开配置文件，根据搜索模式建立格式字符串。符号%%%ds建立一个格式指示器来限定字符串长度，这样在栈中存放字符串的缓冲区就不会溢出。在文件中一次读取一行，并且扫描被空格符分开的两个字符串；如果找到它们，就用关键字与第一个字符串比较。如果找到一个匹配或者读到文件尾，则循环结束并关闭文件。如果关键字匹配，则返回一个指向包含关键字后面的字符串的缓冲区的指针；否则返回NULL。
 
返回的字符串存放在静态缓冲区（valbuf）中，该缓冲区会被紧接的调用覆盖。因此，scan_ configfile不能用于多线程程序，除非能够小心地避免同时有多个线程调用它。
 
 64　/*

 65　 * Return the host name running the print server or NULL on error.

 66　 *

 67　 * LOCKING: none.

 68　 */

 69　char *

 70　get_printserver(void)

 71　{

 72　　 return(scan_configfile("printserver"));

 73　}



 74　/*

 75　 * Return the address of the network printer or NULL on error.

 76　 *

 77　 * LOCKING: none.

 78　 */

 79　struct addrinfo *

 80　get_printaddr(void)

 81　{

 82　　　int　　　　　　　  err;

 83　　　char　　　　　　　 *p;

 84　　　struct addrinfo  *ailist;



 85　　　if ((p = scan_configfile("printer")) != NULL) {

 86　　　　　　if ((err = getaddrlist(p, "ipp", &ailist)) != 0) {

 87　　　　　　　　　log_msg("no address information for %s", p);

 88　　　　　　　　　return(NULL);

 89　　　　　　}

 90　　　　　　return(ailist);

 91　　　}

 92　　　log_msg("no printer address specified");

 93　　　return(NULL);

 94　}
 
[64～73]　　get_printserver仅仅是一个简单的函数封装函数，它通过调用scan_configfile找到运行打印假脱机守护进程的计算机系统名。
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[74～94]　　使用get_printaddr函数找到网络打印机的地址。除了通过配置文件中的打印机名找到相应的网络地址之外，该函数与前面的函数类似。
 
get_printserver和get_printaddr均调用scan_configfile。如果不能打开打印机配置文件， scan_configfile就调用log_sys打印出错消息并退出。尽管get_printserver由客户端命令调用，get_printaddr由守护进程程序调用，但两者均可调用log_sys，因为通过设置一个全局变量可以安排日志函数将其打印到标准错误，而不是输出到日志文件。
 
 95　/*

 96　 * "Timed" read - timout specifies the # of seconds to wait before

 97　 * giving up (5th argument to select controls how long to wait for

 98　 * data to be readable).　Returns # of bytes read or -1 on error.

 99　 *

100　 * LOCKING: none.

101　 */

102　ssize_t

103　tread(int fd, void *buf, size_t nbytes, unsigned int timout)

104　{

105　　 int　　　　　　　 nfds;

106　　 fd_set　　　　　 readfds;

107　　 struct timeval　tv;



108　　 tv.tv_sec = timout;

109　　 tv.tv_usec = 0;

110　　 FD_ZERO(&readfds);

111　　 FD_SET(fd, &readfds);

112　　 nfds = select(fd+1, &readfds, NULL, NULL, &tv);

113　　 if (nfds <= 0) {

114　　　　　if (nfds == 0)

115　　　　　　　 errno = ETIME;

116　　　　　return(-1);

117　　}

118　　return(read(fd, buf, nbytes));

119　}
 
[95～107]　　tread的函数读取指定的字节数，在放弃以前至多阻塞timout秒。当我们从一个套接字或一个管道读数据时这个函数很有用。如果在指定的时间期限内没有接收数据，返回−1并将errno设为ETIME。如果在时间期限内有数据可用，返回最多nbytes字节的数据，但是如果数据没有及时到达，我们可以返回比要求的少的数据。
 
我们用tread在打印假脱机守护进程上防止拒绝服务攻击。一个恶意用户可能重复尝试连接到守护进程而不发送数据，只是为了阻止其他用户提交打印作业。通过一个合理时间内放弃的方式，我们防止这种情况发生。其巧妙之处在于选择一个合理的超时值，当系统负载比较低和任务花费更长时间时，该值足够大能够防止过早夭折。如果我们选择的值太大，通过允许守护进程程序消耗太多资源去处理挂起请求，可能导致拒绝服务攻击。
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[108～119]　　使用select等待指定的文件描述符可读。如果在要读取的数据可用之前超时， select返回0，这种情况将errno设为ETIME。如果select失败或超时，返回1；否则返回任何可用数据。
 
120　/*

121　 * "Timed" read - timout specifies the number of seconds to wait

122　 * per read call before giving up, but read exactly nbytes bytes.

123　 * Returns number of bytes read or -1 on error.

124　 *

125　 * LOCKING: none.

126　 */

127　ssize_t

128　treadn(int fd, void *buf, size_t nbytes, unsigned int timout)

129　{

130　　 size_t　nleft;

131　　 ssize_t nread;



132　　 nleft = nbytes;

133　　 while (nleft > 0) {

134　　　　　if ((nread = tread(fd, buf, nleft, timout)) < 0) {

135　　　　　　　　if (nleft == nbytes)

136　　　　　　　　　　 return(-1);     /* error, return -1 */

137　　　　　　　　else

138　　　　　　　　　　 break;　　　     /* error, return amount read so far */

139　　　　　} else if (nread == 0) {

140　　　　　　　　break;　　　　　      /* EOF */

141　　　　　}

142　　　　　nleft -= nread;

143　　　　　buf += nread;

144　　}

145　　return(nbytes - nleft);　　　/* return >= 0 */

146　}
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[120～146]　　还提供了tread的变体treadn，它仅读取指定的字节数。这和14.7节中描述的readn类似，但是附加了一个超时参数。
 
为了正好读取nbytes字节，必须进行多次read调用。其困难之处在于尝试将单个超时值应用到多个read调用。这里不想用闹钟，因为在多线程应用中信号会变乱；也不能依赖系统根据select的返回更新timeval结构，以指示剩余的时间，因为许多平台不支持这个（14.5.1节）。因此，这种情况需要折中并定义一个超时值应用到单独的read调用。它限制循环中每次迭代的等待时间，而不是限制总的等待时间。总等待的最大时间由nbytes×timout秒限定（最坏情况下，一次仅接收一个字节）。
 
用nleft记录要读取的剩余字节数。如果tread失败并在上一个迭代中已经接收到数据，则停止while循环并返回读取的字节数；否则返回1。
 
接下来是用于提交打印作业的命令程序。C源代码文件是print.c。
 
　1　/*

　2　 * The client command for printing documents. Opens the file

　3　 * and sends it to the printer spooling daemon. Usage:

　4　 *　　　print [-t] filename

　5　 */

　6　#include "apue.h"

　7　#include "print.h"

　8　#include <fcntl.h>

　9　#include <pwd.h>



 10　/*

 11　 * Needed for logging funtions.

 12　 */

 13　int log_to_stderr = 1;



 14　void submit_file(int, int, const char *, size_t, int);



 15　int

 16　main(int argc, char *argv[])

 17　{

 18　　　 int　　　　　　     fd, sockfd, err, text, c;

 19　　　 struct stat　　　  sbuf;

 20　　　 char　　　　　　　  *host;

 21　　　 struct addrinfo   *ailist, *aip;



 22　　　 err = 0;

 23　　　 text = 0;

 24　　　 while ((c = getopt(argc, argv, "t")) != -1) {

 25　　　　　　switch (c) {

 26　　　　　　case 't':

 27　　　　　　　　 text = 1;

 28　　　　　　　　 break;



 29　　　　　　case '?':

 30　　　　　　　　 err = 1;

 31　　　　　　　　 break;

 32　　　　 }

 33　　 }
 
[1～14]　　需要定义一个log_to_stderr整数，通过这个整数能够使用库中的日志函数。如果该整数设为非0值，错误消息将被送到一个标准错误流而非日志文件中。尽管在print.c中没有使用任何日志函数，但将util.o链接到print.o构建了一个可执行的print命令，并且util.c包含用于用户命令行程序和守护进程的函数。
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[15～33]　　支持一个选项，即-t，强行使文件按照文本格式打印（而不是其他格式，如PostScript格式）。使用getopt函数来处理命令选项。
 
 34　　 if (err || (optind != argc - 1))

 35　　　　　err_quit("usage: print [-t] filename");

 36　　 if ((fd = open(argv[optind], O_RDONLY)) < 0)

 37　　　　　err_sys("print: can't open %s", argv[optind]);

 38　　 if (fstat(fd, &sbuf) < 0)

 39　　　　　err_sys("print: can't stat %s", argv[optind]);

 40　　 if (!S_ISREG(sbuf.st_mode))

 41　　　　　err_quit("print: %s must be a regular file\n", argv[optind]);



 42　　 /*

 43　　　* Get the hostname of the host acting as the print server.

 44　　　*/

 45　　if ((host = get_printserver()) == NULL)

 46　　　　 err_quit("print: no print server defined");

 47　　if ((err = getaddrlist(host, "print", &ailist)) != 0)

 48　　　　　err_quit("print: getaddrinfo error: %s", gai_strerror(err));



 49　　for (aip = ailist; aip != NULL; aip = aip->ai_next) {

 50　　　　　if ((sfd = connect_retry(AF_INET, SOCK_STREAM, 0,

 51　　　　　　　aip->ai_addr, aip->ai_addrlen)) < 0) {

 52　　　　　　　　　　err = errno;
 
[34～41]　　当getopt处理完命令选项，将变量optind设为指向第一个非选项参数的下标。如果这是一个值而非最后一个参数的下标，那么说明它是错误的参数个数（只支持一个非选项参数）。错误处理包括：检查是否能够打开要打印的文件；检查是否是一个常规文件（而不是一个目录或者其他类型的文件）。
 
[42～48]　　通过调用util.c中的get_printserver函数取得打印假脱机守护进程名，并且调用getaddrlist（也在util.c中）将主机名转换成一个网络地址。
 
注意，指定服务名为“print”。在系统上安装打印假脱机守护进程时，需要确保/etc/services（或等价的数据库）有打印机服务的条目。当为守护进程选择一个端口时，最好选择特权端口，以防止恶意用户程序假装成一个打印假脱机守护进程，而实际上是要偷取打印文件的副本。这意味着端口号应小于1 024（回忆16.3.4节），并且守护进程运行时必须具有超级用户特权以便能够绑定一个保留端口。
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[49～52]　　使用getaddrinfo返回的地址列表来尝试连接到守护进程，然后使用能够连接的第一个地址发送文件到守护进程。
 
53　　　　 } else {

54　　　　　　　submit_file(fd, sfd, argv[optind], sbuf.st_size, text);

55　　　　　　　exit(0);

56　　　　　}

57　　 }

58　　 err_exit(err, "print: can’t contact %s", host);

59　 }



60　 /*

61　　* Send a file to the printer daemon.

62　　*/

63　　void

64　　submit_file(int fd, int sockfd, const char *fname, size_t nbytes,

65　　　　　　　　　int text)

66　{

67　　 int　　　　　　　　　 nr, nw, len;

68　　 struct passwd　　　 *pwd;

69　　 struct printreq　　 req;

70　　 struct printresp　　res;

71　　 char　　　　　　　 　 buf[IOBUFSZ];



72　　 /*

73　　　* First build the header.

74　　　*/

75　　 if ((pwd = getpwuid(geteuid())) == NULL) {

76　　　　　 strcpy(req.usernm, "unknown");

77　　 } else {

78　　　　　 strncpy(req.usernm, pwd->pw_name, USERNM_MAX-1);

79　　　　　 req.usernm[USERNM_MAX-1] = ’\0’;

80　　 }
 
[53～59]　　如果能够连接到打印假脱机守护进程，则调用submit_file将要打印的文件传送到守护进程，然后用返回值0表示成功后退出。如果不能连接到任何地址，那么就调用err_exit来打印错误消息并且返回1表示失败后退出（附录B包含了err_exit的源代码和其他错误例程）。
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[60～80]　　submit_file发送打印机请求到守护进程并读取响应消息。首先，建立printreq请求头。使用geteuid来获得调用者的有效用户ID并将其传给getpwuid以便查找在系统口令文件中的用户。将该用户名复制到请求头。如果不能识别用户，在请求首部中使用字符串"unknown"。从口令文件中复制用户名时，为避免写超出请求首部的用户名缓冲区，可以使用strncpy。如果用户名比缓冲区长，strncpy不会在缓冲区中存储终止null字节，因此我们需要自己来做。
 
81　　 req.size = htonl(nbytes);



82　　 if (text)

83　　　　　req.flags = htonl(PR_TEXT);

84　　 else

85　　　　　req.flags = 0;



86　　 if ((len = strlen(fname)) >= JOBNM_MAX) {

87　　　　　/*

88　　　　　 * Truncate the filename (+-5 accounts for the leading

89　　　　　 * four characters and the terminating null).

90　　　　　 */

91　　　　　strcpy(req.jobnm, "... ");

92　　　　　strncat(req.jobnm, &fname[len-JOBNM_MAX+5], JOBNM_MAX-5);

93　　 } else {

94　　　　　strcpy(req.jobnm, fname);

95　　 }



96　　 /*

97　　　* Send the header to the server.

98　　　*/

99　　 nw = writen(sockfd, &req, sizeof(struct printreq));

100　　if (nw != sizeof(struct printreq)) {

101　　　　if (nw < 0)

102　　　　　　 err_sys("can’t write to print server");

103　　　　else

104　　　　　　 err_quit("short write (%d/%d) to print server",

105　　　　　　　　nw, sizeof(struct printreq));

106　　}
 
[81～95]　　将要打印的文件转成网络字节序后，将其文件长度保存在请求首部。如果文件按纯文本格式打印，在请求首部保存PR_TEXT标志。通过将这些整数转化成网络字节序，可以在打印假脱机守护进程在其他计算机系统运行的同时在客户端系统上运行print命令。那么，即便这些系统使用不同字节序的处理器，这些命令仍可运行（在16.3.1节讨论过字节序）。
 
将作业名设为要打印的文件名。如果作业名的长度超出了报文所能容纳的作业名字段长度，那么仅复制可容纳的作业名的最后部分。这样就有效地将作业名的开头部分截去，并代入省略符，以表示该字段还有更多的字符。
 

  810 

 
[96～106]　　然后使用writen将请求头发送到守护进程（回忆一下我们曾在图14-24中介绍过的writen函数）。writen函数使用多个write调用来传输指定数量的数据。如果写入失败或者传输少于期望的数据，将打印错误消息然后退出。
 
107　　　/*

108　　　 * Now send the file.

109　　　 */

110　　 while ((nr = read(fd, buf, IOBUFSZ)) != 0) {

111　　　　　nw = writen(sockfd, buf, nr);

112　　　　　if (nw != nr) {

113　　　　　　　 if (nw < 0)

114　　　　　　　　　　err_sys("can’t write to print server");

115　　　　　　　 else

116　　　　　　　　　　err_quit("short write (%d/%d) to print server",

117　　　　　　　　　　　 nw, nr);

118　　　　}

119　　 }



120　　 /*

121　　　* Read the response.

122　　　*/

123　　 if ((nr = readn(sockfd, &res, sizeof(struct printresp))) !=

124　　　 sizeof(struct printresp))

125　　　　　err_sys("can’t read response from server");

126　　 if (res.retcode != 0) {

127　　　　　printf("rejected: %s\n", res.msg);

128　　　　　exit(1);

129　　 } else {

130　　　　　printf("job ID %ld\n", (long)ntohl(res.jobid));

131　　 }

132　　}
 
[107～119]　　将首部发送到守护进程后，发送要打印的文件。同时读取文件的IOBUFSZ字节并用writen发送数据到守护进程。如果写失败或者写少了，那么就打印错误信息并退出。
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[120～132]　　把要打印的文件发送给守护进程后，读取守护进程的响应数据。如果请求失败，返回码（retcode）为非零值，并且将响应中的本文形式的错误信息打印出来。如果请求成功，将打印作业ID，用户此后可以使用此ID引用该请求。（我们将写一个命令取消一个挂起的打印请求留作练习；作业ID可以用于取消作业请求，其作用是从打印队列中识别要删除的作业，参见习题21.5）。当submin_file返回到main函数时，退出，表明请求成功。
 
注意，一个成功的守护进程响应并不意味着打印机可以打印该文件，仅仅意味着守护进程成功地将其加入到打印作业队列。
 
现在print命令已经完全了解过了。我们要看的最后一个C源代码文件是打印假脱机守护进程。
 
　1　/*

　2　 * Print server daemon.

　3　 */

　4　#include "apue.h"

　5　#include <fcntl.h>

　6　#include <dirent.h>

　7　#include <ctype.h>

　8　#include <pwd.h>

　9　#include <pthread.h>

 10　#include <strings.h>

 11　#include <sys/select.h>

 12　#include <sys/uio.h>



 13　#include "print.h"

 14　#include "ipp.h"



 15　/*

 16　 * These are for the HTTP response from the printer.

 17　 */

 18　#define HTTP_INFO(x)　 ((x) >= 100 && (x) <= 199)

 19　#define HTTP_SUCCESS(x) ((x) >= 200 && (x) <= 299)



 20　/*

 21　 * Describes a print job.

 22　 */

 23　struct job {

 24　　　struct job　　　　*next;      /* next in list */

 25　　　struct job　　　　*prev;      /* previous in list */

 26　　　long　　　　　　　　jobid;     /* job ID */

 27　　　struct printreq　 req;　　   /* copy of print request */

 28　};



 29　/*

 30　 * Describes a thread processing a client request.

 31　 */

 32　struct worker_thread {

 33　　　struct worker_thread　*next;　　 /* next in list */

 34　　　struct worker_thread　*prev;　　 /* previous in list */

 35　　　pthread_t　　　　　　　　tid;　　　 /* thread ID */

 36　　　int　　　　　　　　　　　 sockfd;　 /* socket */

 37　};
 
[1～19]　　打印假脱机守护进程包括前面看到的IPP头文件，因为守护进程需要用这个协议与打印机通信。HTTP_INFO和HTTP_SUCCESS宏定义了HTTP请求的状态（IPP建立在HTTP之上）。RFC 2616第10节定义了HTTP状态码。
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[20～37]　　假脱机守护进程使用job和worker_thread结构来跟踪相应的打印作业和接受打印请求的线程。
 
 38　/*

 39　 * Needed for logging.

 40　 */

 41　int　　　　　　　　　　　log_to_stderr = 0;



 42　/*

 43　 * Printer-related stuff.

 44　 */

 45　struct addrinfo　　　　*printer;

 46　char　　　　　　　　　　 *printer_name;

 47　pthread_mutex_t　　　　configlock = PTHREAD_MUTEX_INITIALIZER;

 48　int　　　　　　　　　　　reread;



 49　/*

 50　 * Thread-related stuff.

 51　 */

 52　struct worker_thread　 *workers;

 53　pthread_mutex_t　　　　 workerlock = PTHREAD_MUTEX_INITIALIZER;

 54　sigset_t　　　　　　　　　mask;



 55　/*

 56　 * Job-related stuff.

 57　 */

 58　struct job　　　　　　　 *jobhead, *jobtail;

 59　int　　　　　　　　　　　　jobfd;
 
[38～41]　　日志函数需要定义log_to_stderr变量，并且将其设为0，将日志消息发送到系统日志而不是标准错误。在print.c中，即使在用户命令中不使用日志，也定义log_to_stderr并将其设置为1。如果将实用工具函数拆分为两个独立的文件：一个用于服务器，另一个用于客户端命令，则可以避免这种情况。
 
[42～48]　　使用全局指针变量printer来保存打印机的网络地址。在printer_name中保存打印机的主机名。configlock用于防止访问reread变量，该变量用来表示守护进程需要再次读取配置文件，原因可能是管理员改变了打印机网络地址。
 
[49～54]　　接着，定义与线程相关的变量。使用workers作为双向链表的头部，该表用于接收来自客户端的文件。采用workerlock互斥量来保护该表。变量mask用于线程的信号掩码。
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[55～59]　　对于挂起作业的链表，定义jobhead为表头，jobtail为表尾。该表也是双向链表，但是需要将作业加入到表尾，所以需要一个指针来记住表尾。至于表中工作者线程的顺序是无关紧要的。因此可以将它们加入到表头而不需要记住尾指针。jobfd是作业文件的文件描述符。
 
 60　int32_t　　　　　　　　 nextjob;

 61　pthread_mutex_t　　　 joblock = PTHREAD_MUTEX_INITIALIZER;

 62　pthread_cond_t　　　　 jobwait = PTHREAD_COND_INITIALIZER;



 63　/*

 64　 * Function prototypes.

 65　 */

 66　void　　　 init_request(void);

 67　void　　　 init_printer(void);

 68　void　　　 update_jobno(void);

 69　int32_t　 get_newjobno(void);

 70　void　　　 add_job(struct printreq *, int32_t);

 71　void　　　 replace_job(struct job *);

 72　void　　　 remove_job(struct job *);

 73　void　　　 build_qonstart(void);

 74　void　　　 *client_thread(void *);

 75　void　　　 *printer_thread(void *);

 76　void　　　 *signal_thread(void *);

 77　ssize_t   readmore(int, char **, int, int *);

 78　int 　 　　printer_status(int, struct job *);

 79　void　　　 add_worker(pthread_t, int);

 80　void　　　 kill_workers(void);

 81　void　　　 client_cleanup(void *);



 82　/*

 83　 * Main print server thread.　Accepts connect requests from

 84　 * clients and spawns additional threads to service requests.

 85　 *

 86　 * LOCKING: none.

 87　 */

 88　int

 89　main(int argc, char *argv[])

 90　{

 91　　 pthread_t　　　      tid;

 92　　 struct addrinfo     *ailist, *aip;

 93　　 int　　　　　　　　   sockfd, err, i, n, maxfd;

 94　　 char　　　　　　　    *host;

 95　　 fd_set　　　　　　　　rendezvous, rset;

 96　　 struct sigaction 　 sa;

 97　　 struct passwd       *pwdp;
 
[60～62]　　nextjob是接收的下一个打印作业的ID。互斥量joblock保护作业表，同时还有jobwait代表的条件变量。
 
[63～81]　　声明此文件中所有余下的函数的原型。提前做好这些工作可以使得在文件中放置函数时不用担心函数调用的顺序。
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[82～97]　　打印假脱机守护进程的main函数执行两个任务：初始化守护进程然后处理来自客户端的连接请求。
 
 98　　 if (argc != 1)

 99　　　　　err_quit("usage: printd");

100　　 daemonize("printd");



101　　 sigemptyset(&sa.sa_mask);

102　　 sa.sa_flags = 0;

103　　 sa.sa_handler = SIG_IGN;

104　　 if (sigaction(SIGPIPE, &sa, NULL) < 0)

105　　　　　log_sys("sigaction failed");

106　　 sigemptyset(&mask);

107　　 sigaddset(&mask, SIGHUP);

108　　 sigaddset(&mask, SIGTERM);

109　　 if ((err = pthread_sigmask(SIG_BLOCK, &mask, NULL)) != 0)

110　　　　　log_sys("pthread_sigmask failed");



111　　 n = sysconf(_SC_HOST_NAME_MAX);

112　　 if (n < 0) /* best guess */

113　　　　　n = HOST_NAME_MAX;

114　　 if ((host = malloc(n)) == NULL)

115　　　　　log_sys("malloc error");

116　　 if (gethostname(host, n) < 0)  

117　　　　　log_sys("gethostname error");  



118　　　if ((err = getaddrlist(host, "print", &ailist)) != 0) {  

119　　　　　 log_quit("getaddrinfo error: %s", gai_strerror(err));  

120　　　　　 exit(1);  

121　　　}
 
[98～100]　　守护进程没有任何选项（唯一的参数是命令名自身），所以如果argc不为1，调用err_quit打印错误信息然后退出。调用图13-1所示程序中的daemonize函数成为一个守护进程。在此之后，不能在标准错误上打印错误消息，而是对其记录日志。
 
[101～110]　　忽略SIGPIPE。接下来将要写套接字文件描述符，并且不想让写错误触发SIGPIPE， 因为其默认动作是杀死进程。下一步，设置线程信号掩码，包括SIGHUP和SIGTERM。创建的所有进程均继承这个信号掩码。使用SIGHUP信号告诉守护进程再次读取配置文件，SIGTERM信号告诉守护进程执行清理工作并优雅地退出。
 
[111～117]　　调用sysconf来获取主机名的最大长度。如果sysconf失败或者没有定义该限制，采用HOST_NAME_MAX作为最佳选择。有时，平台已经定义了此常量，但如果没有定义，则在print.h中选择属于自己的值。分配内存来保存主机名并调用gethostname来获取。
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[118～121]　　接下来，尝试找到用于守护进程提供打印假脱机服务的网络地址。
 
122　　　FD_ZERO(&rendezvous); 

123　　　maxfd = -1;

124　　　for (aip = ailist; aip != NULL; aip = aip->ai_next) {

125　　　　　 if ((sockfd = initserver(SOCK_STREAM, aip->ai_addr,

126　　　　　　　aip->ai_addrlen, QLEN)) >= 0) {

127　　　　　　　　FD_SET(sockfd, &rendezvous);

128　　　　　　　　if (sockfd > maxfd)

129　　　　　　　　　　 maxfd = sockfd;

130　　　　　　}

131　　　}

132　　　if (maxfd == -1)

133　　　　　 log_quit("service not enabled");



134　　　pwdp = getpwnam(LPNAME);

135　　　if (pwdp == NULL)

136　　　　　 log_sys("can’t find user %s", LPNAME);

137　　　if (pwdp->pw_uid == 0)

138　　　　　 log_quit("user %s is privileged", LPNAME);

139　　　if (setgid(pwdp->pw_gid) < 0 || setuid(pwdp->pw_uid) < 0)

140　　　　　 log_sys("can’t change IDs to user %s", LPNAME);



141　　　init_request();

142　　　init_printer();
 
[122～131]　　清零rendezvous变量，该变量将与select一起用来等待客户端连接请求。将最大文件描述符初始化为−1，以确保所分配的第一个文件描述符会大于maxfd。对于每个需要提供服务的网络地址，调用initserver（见图16-22）来分配和初始化一个套接字。如果initserver成功，将其文件描述符加入fd_set；如果该描述符大于现有最大值maxfd，将maxfd设为该描述符值。
 
[132～133]　　走完整个addrinfo结构列表后，如果maxfd仍为−1，不能启动打印假脱机服务，记录日志然后退出。
 
[134～140]　　守护进程需要超级用户特权来绑定一个套接字到保留端口。完成绑定后，通过将用户ID改变为lp的用户ID（回忆21.4节的安全方面的讨论）降低该程序特权。这里想遵循最小特权原则，以避免在守护进程中将系统暴露给任何可能的攻击。调用getpwnam来找到与用户lp相关的口令条目。如果没有此用户，或者lp具有超级用户特权，记录日志然后退出。否则，调用setuid将实际用户ID和有效用户ID改为lp用户ID。为了避免暴露系统，如果不能减少特权，那么就选择不提供任何服务。
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[141～142]　　调用init_request来初始化作业请求并确保只有一个守护进程副本正在运行。调用init_printer初始化打印机信息（稍后就可以看到这两个函数）。
 
143　　　err = pthread_create(&tid, NULL, printer_thread, NULL);

144　　　if (err == 0)

145　　　　　 err = pthread_create(&tid, NULL, signal_thread, NULL);

146　　　if (err != 0)

147　　　　　 log_exit(err, "can’t create thread");

148　　　build_qonstart();



149　　　log_msg("daemon initialized");



150　　　for (;;) {

151　　　　　 rset = rendezvous;

152　　　　　 if (select(maxfd+1, &rset, NULL, NULL, NULL) < 0)

153　　　　　　　　log_sys("select failed");

154　　　　　 for (i = 0; i <= maxfd; i++) {

155　　　　　　　　if (FD_ISSET(i, &rset)) {

156　　　　　　　　　　 /*

157　　　　　　　　　　　* Accept the connection and handle the request.

158　　　　　　　　　　　*/

159　　　　　　　　　　 if ((sockfd = accept(i, NULL, NULL)) < 0)

160　　　　　　　　　　　　　log_ret("accept failed");

161　　　　　　　　　　 pthread_create(&tid, NULL, client_thread,

162　　　　　　　　　　　 (void *)((long)sockfd));

163　　　　　　　　}

164　　　　　 }

165　　　}

166　　　exit(1);

167　}
 
[143～149]　　创建一个处理信号的线程和一个与打印机通信的线程。（通过限制打印机只与一个线程通信，可以简化与打印机相关的数据结构的锁定。）然后调用build_qonstart在/var/spool/ printer目录中搜索任何挂起的作业。对于找到的每个作业，将建立一个结构，让打印机线程将该作业的文件送到打印机。至此，完成守护进程的设置，因此记录一条日志消息，表明守护进程初始化成功完成。
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[150～167]　　将rendezvous fd_set结构复制到rset，然后调用select等待其中的一个文件描述符变为可读。必须复制rendezvous，因为select会修改传入的fd_set结构来包含满足事件的文件描述符。既然服务器已经将套接字初始化完毕，一个可读的文件描述符就意味着一个连接请求需要处理。当select返回时，检查rset来获取一个可读的文件描述符。如果找到一个，调用accept接受该请求。如果失败，记录日志然后继续检查更多的可读文件描述符。否则，创建一个线程来处理客户端请求。主线程main一直循环，将请求发送到其他线程处理，永远不应到达exit语句。
 
168　/*

169　 * Initialize the job ID file. Use a record lock to prevent

170　 * more than one printer daemon from running at a time.

171　 *

172　 * LOCKING: none, except for record-lock on job ID file.

173　 */

174　void

175　init_request(void)

176　{

177　 int　        n;

178　 char         name[FILENMSZ];



179　 sprintf(name, "%s/%s", SPOOLDIR, JOBFILE);

180　 jobfd = open(name, O_CREAT|O_RDWR, S_IRUSR|S_IWUSR);

181　 if (write_lock(jobfd, 0, SEEK_SET, 0) < 0)

182　　　　log_quit("daemon already running");

183　 /*

184　　* Reuse the name buffer for the job counter.

185　　*/

186　 if ((n = read(jobfd, name, FILENMSZ)) < 0)

187　　　　log_sys("can’t read job file");

188　 if (n == 0)

189　　   nextjob = 1;

190　 else

191　　　　nextjob = atol(name);

192　}
 
[168～182]　　函数init_request做两件事：在作业文件/var/spool/printer/jobno上放一个记录锁，然后读该文件并确定下一个要赋值的作业编号。在整个文件上放置一把写锁，表明守护进程正在运行。如果当前已有一个守护进程正在运行，想启动另外一个打印假脱机守护进程副本，该程序将无法获得写锁，然后就退出。因此，同时只能有一个守护进程在运行。（图13-6中使用过这种技术，在14.3节中讨论过write_lock宏。）
 
[183～192]　　作业文件包含一个ASCII码的整数字符串来表示下一个作业编号。如果文件刚创建并且为空，那么将nextjob设置为1。否则，使用atol将字符串转换为整数并将其作为下一个作业编号。让jobfd对于作业文件保持打开状态，因此当作业创建时能够更新作业编号。不能关闭该文件，因为这将释放已经放置在上面的写锁。
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在一个长整型数长度为64位的系统上，至少需要一个21字节的缓冲区来存放代表最大长整型数的字符串。这里重用文件名缓冲区，因为在print.h 中FILENMSZ定义为64。
 
193　/*

194　 * Initialize printer information from configuration file.

195　 *

196　 * LOCKING: none.

197　 */

198　void

199　init_printer(void)

200　{

201　　 printer = get_printaddr();

202　　 if (printer == NULL)

203　　　　　exit(1); /* message already logged */

204　　 printer_name = printer->ai_canonname;

205　　 if (printer_name == NULL)

206　　　　 printer_name = "printer";

207　　 log_msg("printer is %s", printer_name);

208　}



209　/*

210　 * Update the job ID file with the next job number.

211　 * Doesn’t handle wrap-around of job number.

212　 *

213　 * LOCKING: none.

214　 */

215　void

216　update_jobno(void)

217　{

218　　 char   buf[32];



219　　 if (lseek(jobfd, 0, SEEK_SET) == -1)

220　　　　　log_sys("can’t seek in job file");

221　　sprintf(buf, "%d", nextjob);

222　　if (write(jobfd, buf, strlen(buf)) < 0)

223　　　　 log_sys("can’t update job file");

224　}
 
[193～208]　　init_printer用于设置打印机名和地址。调用get_printaddr（来自util.c）获得打印机地址。如果失败，记录日志并退出。当找不到打印机地址时，get_printaddr会记录自己的错误信息日志。如果打印机地址未找到，将addrinfo中的ai_canonname设为打印机名。如果该字段为空，将打印机名设为默认值。注意，将正在使用的打印机名也记录在日志中，以帮助管理员能够诊断假脱机系统的问题。
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[209～224]　　update_jobno函数用于在作业文件/var/spool/printer/jobno中写入下一个作业编号。首先，找到文件开头。然后，将整数作业编号转换为一个字符串并写入文件。如果写入失败，记录日志并退出。作业编号自动递增。如何处理回绕的作业编号留作一个练习（见习题21.9）。
 
225　/*

226　 * Get the next job number.

227　 *

228　 * LOCKING: acquires and releases joblock.

229　 */

230　int32_t

231　get_newjobno(void)

232　{

233　　 int32_t jobid;



234　　 pthread_mutex_lock(&joblock);

235　　 jobid = nextjob++;

236　　 if (nextjob <= 0)

237　　　　　nextjob = 1;

238　　 pthread_mutex_unlock(&joblock);

239　　 return(jobid);

240　}



241　/*

242　 * Add a new job to the list of pending jobs. Then signal

243　 * the printer thread that a job is pending.

244　 *

245　 * LOCKING: acquires and releases joblock.

246　 */

247　void

248　add_job(struct printreq *reqp, int32_t jobid)

249　{

250　　 struct job *jp;



251　　 if ((jp = malloc(sizeof(struct job))) == NULL)

252　　　　　 log_sys("malloc failed");

253　　 memcpy(&jp->req, reqp, sizeof(struct printreq));
 
[225～240]　　get_newjobno函数用于获得下一个作业编号。首先将joblock互斥量锁住。递增nextjob变量，并处理回绕的情况。然后解锁互斥量并返回递增前的nextjob值。多个线程可以同时调用get_newjobno；需要串行化访问下一个作业编号，因此每个线程得到一个唯一的作业编号。（见图11-9，考察在这种情况下，如果不串行化线程会发生什么情况。）
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[241～253]　　add_job函数用于在挂起的打印作业列表中增加一个新的作业请求。首先为job结构分配空间。如果失败，记录日志并退出。此时，打印请求已经安全地存储在磁盘上；当打印假脱机守护进程重启时，会重新读取这些请求。当为新作业分配完空间，将客户端的请求结构复制到作业结构。在print.h中一个job结构包含一对列表指针，一个作业ID和一个从客户端print命令发送过来的printreq结构副本。
 
254　　jp->jobid = jobid;

255　　jp->next = NULL;

256　　pthread_mutex_lock(&joblock);

257　　jp->prev = jobtail;

258　　if (jobtail == NULL)

259　　　　 jobhead = jp;

260　　else

261　　　　 jobtail->next = jp;

262　　jobtail = jp;

263　　pthread_mutex_unlock(&joblock);

264　　pthread_cond_signal(&jobwait);

265　}

266　/*

267　 * Replace a job back on the head of the list.

268　 *

269　 * LOCKING: acquires and releases joblock.

270　 */

271　void

272　replace_job(struct job *jp)

273　{

274　　 pthread_mutex_lock(&joblock);

275　　 jp->prev = NULL;

276　　 jp->next = jobhead;

277　　 if (jobhead == NULL)

278　　　　　jobtail = jp;

279　　 else

280　　　　　jobhead->prev = jp;

281　　 jobhead = jp;

282　　 pthread_mutex_unlock(&joblock);

283　}
 
[254～265]　　保存作业ID并锁住joblock互斥量以获得对打印作业链表的独占访问。将在该链表尾增加新的作业结构。将新的作业结构的前项指针（previous pointer）指向链表中最后一个作业。如果链表为空，将jobhead指向新的结构。否则，将链表中最后一项的后项指针（next pointer）指向新的结构。然后设置jobtail指向新的结构。对互斥量解锁，然后给打印机线程发信号，告诉该线程另一个作业可用了。
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[266～283]　　函数replace_job用于将作业插入到挂起作业队列头部。需要获得joblock互斥量，将job结构中的前项指针设为NULL，将后项指针指向表头。如果表为空，将jobtail指向插入的job结构。否则，将表中第一个作业结构的前项指针指向插入的job结构。然后将jobhead指向插入的job结构，成为新的表头。最后，释放joblock互斥量。
 
284　/*

285　 * Remove a job from the list of pending jobs.

286　 *

287　 * LOCKING: caller must hold joblock.

288　 */

289　void

290　remove_job(struct job *target)

291　{

292　　 if (target->next != NULL)

293　　　　　target->next->prev = target->prev;

294　　 else

295　　　　　jobtail = target->prev;

296　　 if (target->prev != NULL)

297　　　　　target->prev->next = target->next;

298　　 else

299　　　　　jobhead = target->next;

300　}



301　/*

302　 * Check the spool directory for pending jobs on start-up.

303　 *

304　 * LOCKING: none.

305　 */

306　void

307　build_qonstart(void)

308　{

309　　 int　　　　　           fd, err, nr;

310　　 int32_t　　　　         jobid;

311　　 DIR　　　　　　　        *dirp;

312　　 struct dirent　        *entp;

313　　 struct printreq        req;

314　　 char                   dname[FILENMSZ], fname[FILENMSZ];



315　　 sprintf(dname, "%s/%s", SPOOLDIR, REQDIR);

316　　 if ((dirp = opendir(dname)) == NULL)

317　　　　　return;
 
[284～300]　　remove_job将给定的作业从挂起的作业列表中删除。调用者必须已经持有joblock互斥量。如果后项指针不为空，将下一个条目的前项指针指向被删除目标的前项指针所指向的条目。否则，该条目为列表中最后一个，因此将jobtail指向被删除目标的前项指针所指向的条目。如果被删除目标的前项指针不为空，将前一个条目的后项指针指向被删除目标的后项指针所指向的条目。否则，这个是表中第一个条目，因此将jobhead指向被删除目标后面的那个条目。
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[301～317]　　当守护进程启动时，调用build_qonstart从存储在/var/spool/printer/reqs中的磁盘文件建立一个内存中的打印作业列表。如果不能打开该目录，表示没有打印作业要处理，因此就返回。
 
318　　　while ((entp = readdir(dirp)) != NULL) {

319　　　　　 /*

320　　　　　　* Skip "." and ".."

321　　　　　　*/

322　　　　　 if (strcmp(entp->d_name, ".") == 0 ||

323　　　　　　 strcmp(entp->d_name, "..") == 0)

324　　　　　　　 continue;



325　　　　　 /*

326　　　　　　* Read the request structure.

327　　　　　　*/

328　　　　　 sprintf(fname, "%s/%s/%s", SPOOLDIR, REQDIR, entp->d_name);

329　　　　　 if ((fd = open(fname, O_RDONLY)) < 0)

330　　　　　　　　continue;

331　　　　　 nr = read(fd, &req, sizeof(struct printreq));

332　　　　　 if (nr != sizeof(struct printreq)) {

333　　　　　　　　if (nr < 0)

334　　　　　　　　　　 err = errno;

335　　　　　　　　else

336　　　　　　　　　　 err = EIO;

337　　　　　　　　close(fd);

338　　　　　　　　log_msg("build_qonstart: can’t read %s: %s",

339　　　　　　　　　fname, strerror(err));

340　　　　　　　　unlink(fname);

341　　　　　　　　sprintf(fname, "%s/%s/%s", SPOOLDIR, DATADIR,

342　　　　　　　　　entp->d_name);

343　　　　　　　　unlink(fname);

344　　　　　　　　continue;

345　　　　　 }

346　　　　　 jobid = atol(entp->d_name);

347　　　　　 log_msg("adding job %d to queue", jobid);

348　　　　　 add_job(&req, jobid);

349　　　}

350　　　closedir(dirp);

351　 }
 
[318～324]　　在目录中一次读取一个条目，忽略.和..。
 
[325～345]　　对于每个条目，创建一个文件完全路径名并只读打开。如果open调用失败，跳过该文件。否则，将读取保存在文件中的printreq结构。如果不能读取整个结构，关闭该文件，记录日志并unlink该文件。然后建立相应数据文件的完全路径名，再unlink该文件。
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[346～351]　　如果能够读取一个完整的printreq结构，将文件名转换为作业ID（文件名就是其作业ID），记录日志，然后将请求加入到挂起的打印作业列表。当读完整个目录，readdir返回NULL，关闭目录然后返回。
 
352　　/*

353　　 * Accept a print job from a client.

354　　 *

355　　 * LOCKING: none.

356　　 */

357　 void *

358　 client_thread(void *arg)

359　 {

360　　　 int　　　　　　　　　    n, fd, sockfd, nr, nw, first;

361　　　 int32_t　　　　　　     jobid;

362　　　 pthread_t　　　　　     tid;

363　　　 struct printreq　      req;

364　　　 struct printresp　     res;

365　　　 char　　　　　　　       name[FILENMSZ];

366　　　 char　　　　　　　　     buf[IOBUFSZ];



367　　　 tid = pthread_self();

368　　　 pthread_cleanup_push(client_cleanup, (void *)((long)tid));

369　　　 sockfd = (long)arg;

370　　　 add_worker(tid, sockfd);



371　　　 /*

372　　　　* Read the request header.

373　　　　*/

374　　　 if ((n = treadn(sockfd, &req, sizeof(struct printreq), 10)) !=

375　　　　 sizeof(struct printreq)) {

376　　　　　 res.jobid = 0;

377　　　　　 if (n < 0)

378　　　　　　　　res.retcode = htonl(errno);

379　　　　　 else

380　　　　　　　　res.retcode = htonl(EIO);

381　　　　　 strncpy(res.msg, strerror(res.retcode), MSGLEN_MAX);

382　　　　　 writen(sockfd, &res, sizeof(struct printresp));

383　　　　　 pthread_exit((void *)1);

384　　　 }
 
[352～370]　　当连接请求被接受时，main 中派生出client_thread。其作用是从客户端print命令中接收要打印的文件。为每个客户端打印请求分别创建一个独立的线程。
 
首先是安装线程清理处理程序（见11.5节中线程清理处理程序的讨论）。清理处理程序是client_ cleanup，将在后面用到。它仅带一个参数：线程ID。然后调用add_worker来创建一个worker_ thread结构并将其加入到活跃的客户端线程列表中。
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[371～384]　　此时，完成了线程的初始化任务，因此从客户端读取请求头。如果客户端发送的数据少于期望或遇到错误，则响应一个消息，该消息指出错误的原因，然后调用pthread_exit结束线程。
 
385　　 req.size = ntohl(req.size);

386　　 req.flags = ntohl(req.flags);



387　　 /*

388　　　* Create the data file.

389　　　*/

390　　 jobid = get_newjobno();

391　　 sprintf(name, "%s/%s/%ld", SPOOLDIR, DATADIR, jobid);

392　　 fd = creat(name, FILEPERM);

393　　 if (fd < 0) {

394　　　　　res.jobid = 0;

395　　　　　res.retcode = htonl(errno);

396　　　　　log_msg("client_thread: can't create %s: %s", name,

397　　　　　　 strerror(res.retcode));

398　　　　　strncpy(res.msg, strerror(res.retcode), MSGLEN_MAX);

399　　　　　writen(sockfd, &res, sizeof(struct printresp));

400　　　　　pthread_exit((void *)1);

401　　 }



402　　 /*

403　　　* Read the file and store it in the spool directory.

404　　　* Try to figure out if the file is a PostScript file

405　　　* or a plain text file.

406　　　*/

407　　 first = 1;

408　　 while ((nr = tread(sockfd, buf, IOBUFSZ, 20)) > 0) {

409　　　　　if (first) {

410　　　　　　　 first = 0;

411　　　　　　　 if (strncmp(buf, "%!PS", 4) != 0)

412　　　　　　　　　　req.flags |= PR_TEXT;

413　　　　　}
 
[385～401]　　将请求头中的整数字段转换成主机字节序，调用get_newjobno来保存这个打印请求的下一个作业编号。建立作业数据文件，名为/var/spool/printer/data/jobid，jobid是请求的作业ID。采用权限许可来防止其他人读取这些文件（print.h中定义FILEPERM为S_IRUSR|S_ IWUSR）。如果不能创建该文件，记录错误日志，发送失败响应给客户端，调用pthread_exit结束线程。
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[402～413]　　读取来自客户端的文件内容，要将其写入数据文件的私有副本中。但是在写任何东西之前，需要在第一次循环时检查一下是否是PostScript文件。如果该文件不是以%!PS模式开头，可以假定为其为纯文本文件，这种情况下在请求头中设置PR_TEXT标志。（如果在print命令中有-t标志，那么客户端也会设置此标志。）尽管PostScript程序不要求以模式%!PS开始，但文档格式指南（Adobe Systems [1999]）强烈推荐这种方式。
 
414　　　　　nw = write(fd, buf, nr);

415　　　　　if (nw != nr) {

416　　　　　　　 res.jobid = 0;

417　　　　　　　 if (nw < 0)

418　　　　　　　　　　res.retcode = htonl(errno);

419　　　　　　　 else

420　　　　　　　　　　res.retcode = htonl(EIO);

421　　　　　　　 log_msg("client_thread: can’t write %s: %s", name,

422　　　　　　　　 strerror(res.retcode));

423　　　　　　　 close(fd);

424　　　　　　　 strncpy(res.msg, strerror(res.retcode), MSGLEN_MAX);

425　　　　　　　 writen(sockfd, &res, sizeof(struct printresp));

426　　　　　　　 unlink(name);

427　　　　　　　 pthread_exit((void *)1);

428　　　　　}

429　　 }

430　　 close(fd);



431　　 /*

432　　　* Create the control file. Then write the

433　　　* print request information to the control

434　　　* file.

435　　　*/

436　　 sprintf(name, "%s/%s/%d", SPOOLDIR, REQDIR, jobid);

437　　 fd = creat(name, FILEPERM);

438　　 if (fd < 0) {

439　　　　　res.jobid = 0;

440　　　　　res.retcode = htonl(errno);

441　　　　　log_msg("client_thread: can’t create %s: %s", name,

442　　　　　　strerror(res.retcode));

443　　　　　strncpy(res.msg, strerror(res.retcode), MSGLEN_MAX);

444　　　　　writen(sockfd, &res, sizeof(struct printresp));

445　　　　　sprintf(name, "%s/%s/%d", SPOOLDIR, DATADIR, jobid);

446　　　　　unlink(name);

447　　　　　pthread_exit((void *)1);

448　　 }
 
[414～430]　　将来自客户端的数据写入到数据文件。如果write失败，记录错误日志，关闭数据文件的文件描述符，发送出错消息给客户端，删除数据文件，调用pthread_exit退出。注意，不需要显式关闭套接字文件描述符。当调用pthread_exit时，线程清理处理程序会处理这些事情。
 
当接收到所有要打印的数据，关闭数据文件的文件描述符。
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[431～448]　　接下来，创建文件/var/spool/printer/reqs/jobid以记住打印请求。如果失败，记录错误日志，发送出错响应给客户端，删除数据文件，终止线程。
 
449　　 nw = write(fd, &req, sizeof(struct printreq));

450　　 if (nw != sizeof(struct printreq)) {

451　　　　 res.jobid = 0;

452　　　　 if (nw < 0)

453　　　　　　　 res.retcode = htonl(errno);

454　　　　　else

455　　　　　　　 res.retcode = htonl(EIO);

456　　　　　log_msg("client_thread: can’t write %s: %s", name,

457　　　　　　 strerror(res.retcode));

458　　　　　close(fd);

459　　　　　strncpy(res.msg, strerror(res.retcode), MSGLEN_MAX);

460　　　　　writen(sockfd, &res, sizeof(struct printresp));

461　　　　　unlink(name);

462　　　　　sprintf(name, "%s/%s/%d", SPOOLDIR, DATADIR, jobid);

463　　　　　unlink(name);

464　　　　　pthread_exit((void *)1);

465　　 }

466　　 close(fd);



467　　 /*

468　　　* Send response to client.

469　　　*/

470　　 res.retcode = 0;

471　　 res.jobid = htonl(jobid);

472　　 sprintf(res.msg, "request ID %d", jobid);

473　　 writen(sockfd, &res, sizeof(struct printresp));



474　　 /*

475　　　* Notify the printer thread, clean up, and exit.

476　　　*/

477　　 log_msg("adding job %d to queue", jobid);

478　　 add_job(&req, jobid);

479　　 pthread_cleanup_pop(1);

480　　 return((void *)0);

481　}
 
[449～465]　　将printreq结构写入控制文件。如果出错，则记录日志，关闭控制文件描述符，发送失败响应给客户端，删除数据和控制文件，终止线程。
 
[466～473]　　关闭控制文件的文件描述符，并发送消息给客户端，该消息包括作业ID和成功状态（retcode设为0）。
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[474～481]　　调用add_job将接收的文件加入到挂起作业列表中，调用pthread_cleanup_pop完成清理过程。当返回时线程终止。
 
注意，线程退出之前，必须关闭不再使用的任何文件描述符。与线程终止不同，当一个线程退出并且进程中仍有其他线程时，文件描述符不会自动关闭。如果不关闭不需要的文件描述符，终将耗尽资源。
 
482　　/*

483　　 * Add a worker to the list of worker threads.

484　　 *

485　　 * LOCKING: acquires and releases workerlock.

486　　 */

487　　void

488　　add_worker(pthread_t tid, int sockfd)

489　　{

490　　　 struct worker_thread　　*wtp;



491　　　 if ((wtp = malloc(sizeof(struct worker_thread))) == NULL) {

492　　　　　　log_ret("add_worker: can't malloc");

493　　　　　　pthread_exit((void *)1);

494　　　 }

495　　　 wtp->tid = tid;

496　　　 wtp->sockfd = sockfd;

497　　　 pthread_mutex_lock(&workerlock);

498　　　 wtp->prev = NULL;

599　　　 wtp->next = workers;

500　　　 if (workers != NULL)

501　　　　　　workers ->prev = wtp;

502　　　 

503　　　 workers = wtp;

504　　　 pthread_mutex_unlock(&workerlock);

505　　}



506　　/*

507　　 * Cancel (kill) all outstanding workers.

508　　 *

509　　 * LOCKING: acquires and releases workerlock.

510　　 */

511　　void

512　　kill_workers(void)

513　　{

514　　　 struct worker_thread　　*wtp;



515　　　 pthread_mutex_lock(&workerlock);

516　　　 for (wtp = workers; wtp != NULL; wtp = wtp->next)

517　　　　　　pthread_cancel(wtp->tid);

518　　　 pthread_mutex_unlock(&workerlock);

519　　}
 
[482～505]　　add_worker将一个worker_thread结构加入活动线程列表中。分配该结构需要的内存，初始化它，锁住workerlock互斥量，将结构加入到列表的头部，然后解锁互斥量。
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[506～519]　　kill_workers函数遍历工作者线程列表,然后一一删除。遍历列表时持有workerlock互斥量。注意，pthread_cancel仅仅将线程列入删除计划，实际的删除动作在每个线程到达下一个删除点时发生。
 
520　　/*

521　　 * Cancellation routine for the worker thread.

522　　 *

523　　 * LOCKING: acquires and releases workerlock.

524　　 */

525　　void

526　　client_cleanup(void *arg)

527　　{

528　　　 struct worker_thread　　*wtp;

529　　　 pthread_t　　　　　　　　 tid;



530　　　 tid = (pthread_t)((long)arg);

531　　　 pthread_mutex_lock(&workerlock);

532　　　 for (wtp = workers; wtp != NULL; wtp = wtp->next) {

533　　　　　　if (wtp->tid == tid) {

534　　　　　　　　 if (wtp->next != NULL)

535　　　　　　　　　　　wtp->next->prev = wtp->prev;

536　　　　　　　　 if (wtp->prev != NULL)

537　　　　　　　　　　　wtp->prev->next = wtp->next;

538　　　　　　　　 else

539　　　　　　　　　　　workers = wtp->next;

540　　　　　　　　 break;

541　　　　　　}

542　　　 }

543　　　 pthread_mutex_unlock(&workerlock);

544　　　 if (wtp != NULL) {

545　　　　　　close(wtp->sockfd);

546　　　　　　free(wtp);

547　　　 }

548　　}
 
[520～542]　　函数client_cleanup是与客户端命令通信的工作者线程的线程清理程序。当线程调用pthread_exit时，或者用一个非0参数调用pthread_cleanup_pop，或者响应一个删除请求时， client_cleanup函数会被调用。其参数是终止线程的线程ID。
 
锁住workerlock互斥量然后搜索工作者线程列表，直到找到一个匹配的线程ID。当找到一个匹配时，从列表中删除工作者线程结构并且停止搜索。
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[543～548]　　解锁workerlock互斥量，关闭线程用于和客户端通信的套接字文件描述符，然后释放worker_thread结构的内存。
 
既然要获得workerlock互斥量，当kill_workers函数正在遍历列表时，如果一个线程到达一个删除点时，必须等待直到kill_workers释放互斥量时才可以继续处理。
 
549　　/*

550　　 * Deal with signals.

551　　 *

552　　 * LOCKING: acquires and releases configlock.

553　　 */

554　　void *

555　　signal_thread(void *arg)

556　　{

557　　　　int　　　err, signo;



558　　　　for (;;) {

559　　　　　err = sigwait(&mask, &signo);

560　　　　　if (err != 0)

561　　　　　　　 log_quit("sigwait failed: %s", strerror(err));

562　　　　　switch (signo) {

563　　　　　case SIGHUP:

564　　　　　　　 /*

565　　　　　　　　* Schedule to re-read the configuration file.

566　　　　　　　　*/

567　　　　　　　 pthread_mutex_lock(&configlock);

568　　　　　　　 reread = 1;

569　　　　　　　 pthread_mutex_unlock(&configlock);

570　　　　　　　 break;



571　　　　　case SIGTERM:

572　　　　　　　 kill_workers();

573　　　　　　　 log_msg("terminate with signal %s", strsignal(signo));

574　　　　　　　 exit(0);



575　　　　　default:

576　　　　　　　 kill_workers();

577　　　　　　　 log_quit("unexpected signal %d", signo);

578　　　　　}

579　　　}

580　　}
 
[549～562]　　函数signal_thread由负责处理信号的线程运行。在main函数中初始化信号掩码，该掩码包括SIGHUP和SIGTERM。这里，调用sigwait来等待这些信号中的一个出现。如果sigwait失败，记录出错日志并退出。
 
[563～570]　　如果接收到SIGHUP，然后获得configlock互斥量，将reread变量设为1，释放互斥量。这就告诉打印机守护进程在其处理循环的下一次迭代时再次读取配置文件。
 
[571～574]　　如果接收到SIGTERM，调用kill_workers来杀死所有的工作者线程，记录日志，然后调用exit终止进程。
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[575～580]　　如果接收到非期望的信号，则杀死工作者线程并调用log_quit来记录日志然后退出。
 
581　 /*

582　　* Add an option to the IPP header.

583　　*

584　　* LOCKING: none.

585　　*/

586　 char *

587　 add_option(char *cp, int tag, char *optname, char *optval)

588　 {

589　　　int　　 n;

590　　　union {

591　　　　　 int16_t s;

592　　　　　 char c[2];

593　　 }　　　　　 u;



594　　 *cp++ = tag;

595　　 n = strlen(optname);

596　　 u.s = htons(n);

597　　 *cp++ = u.c[0];

598　　 *cp++ = u.c[1];

699　　 strcpy(cp, optname);

600　　 cp += n;

601　　 n = strlen(optval);

602　　 u.s = htons(n);

603　　 *cp++ = u.c[0];

604　　 *cp++ = u.c[1];

605　　 strcpy(cp, optval);

606　　 return(cp + n);

607　 }
 
[581～593]　　函数add_option用于在送到打印机的IPP首部中添加一个选项，回忆图21-4，属性的格式是1字节的描述属性类型的标志，然后是以2字节的二进制整数形式存储的属性名字的长度，接着是名字，属性值的长度，最后是属性值本身。
 
IPP没有打算去控制嵌入在首部的二进制整数的对齐方式。一些处理器架构，例如SPARC，并不能从任意地址装入一个整数。这意味着不能通过如下方式在IPP首部存放一个整数：该方式将一个指针转换成int16_t指向在首部存放整数的地址。相反，需要一次复制1字节整数。这就是为什么我们定义一个包含16位整数和2字节数组的union。
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[594～607]　　在首部存储标志并将属性名字的长度转换为网络字节序。一次复制1个字节到首部。接着复制属性名字。重复这个过程，继续复制属性值，并返回首部中下一个应该开始的部分的地址。
 
608　 /*

609　　* Single thread to communicate with the printer.

610　　*

611　　* LOCKING: acquires and releases joblock and configlock.

612　　*/

613　 void *

614　 printer_thread(void *arg)

615　 {

616　　　struct job　　　  *jp;

617　　　int　　　　　　　    hlen, ilen, sockfd, fd, nr, nw, extra;  

618　　　char　　　　　　　  *icp, *hcp, *p;  

619　　　struct ipp_hdr　  *hp;  

620　　　struct stat　　    sbuf;  

621　　　struct iovec　　   iov[2];  

622　　　char　　　　　　    name[FILENMSZ];  

623　　　char　　　　　　    hbuf[HBUFSZ];

624　　　char　　　　　　    ibuf[IBUFSZ];

625　　　char　　　　　　    buf[IOBUFSZ];

626　　　char　　　　　　    str[64];

627　　　struct timespec ts = { 60, 0 };　 /* 1 minute */



628　　　for (;;) {

629　　　　　 /*

630　　　　　　* Get a job to print.

631　　　　　　*/

632　　　pthread_mutex_lock(&joblock);

633　　　while (jobhead == NULL) {

634　　　　　 log_msg("printer_thread: waiting...");

635　　　　　 pthread_cond_wait(&jobwait, &joblock);

636　　　}

637　　　remove_job(jp = jobhead);

638　　　log_msg("printer_thread: picked up job %d", jp->jobid);

639　　　pthread_mutex_unlock(&joblock);

640　　　update_jobno();
 
[608～627]　　函数printer_thread由与网络打印机通信的线程运行。使用icp和ibuf来建立IPP首部。使用hcp和hbuf建立HTTP首部。需要在独立的缓冲区中建立首部。HTTP首部包括ASCII表示的长度字段，而且在拼装出IPP首部之前，并不知道应该预留多大的空间。在一次调用中使用writev来写这两个头。
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[628～640]　　打印机线程在一个等待将作业传送到打印机的无限循环中运行。使用joblock互斥量来保护作业列表。如果作业没有挂起，使用pthread_cond_wait来等待到来的作业。当一个作业准备好时，调用remove_job将其从列表中删除。此时仍持有互斥量，因此释放互斥量并调用update_jobno将下一个作业号编写入到/var/spool/printer/jobno。
 
641　　　　 /*

642　　　　　* Check for a change in the config file.

643　　　　　*/

644　　　　 pthread_mutex_lock(&configlock);

645　　　　 if (reread) {

646　　　　　　 freeaddrinfo(printer);

647　　　　　　 printer = NULL;

648　　　　　　 printer_name = NULL;

649　　　　　　 reread = 0;

650　　　　　　 pthread_mutex_unlock(&configlock);

651　　　　　　 init_printer();

652　　　　 } else {

653　　　　　　 pthread_mutex_unlock(&configlock);

654　　　　 }



655　　　　 /*

656　　　　　* Send job to printer.

657　　　　　*/

658　　　　 sprintf(name, "%s/%s/%ld", SPOOLDIR, DATADIR, jp->jobid);

659　　　　 if ((fd = open(name, O_RDONLY)) < 0) {

660　　　　　　 log_msg("job %ld canceled - can't open %s: %s",

661　　　　　　　 jp->jobid, name, strerror(errno));

662　　　　　　 free(jp);

663　　　　　　 continue;

664　　　　 }

665　　　　 if (fstat(fd, &sbuf) < 0) {

666　　　　　　　log_msg("job %ld canceled - can't fstat %s: %s",

667　　　　　　　　jp->jobid, name, strerror(errno));

668　　　　　　　free(jp);

669　　　　　　　close(fd);

670　　　　　　　continue;

671　　　　 }
 
[641～654]　　现在有了要打印的作业，检查一下配置文件有无改变。锁住configlock互斥量并检查reread变量。如果该值非0，那么释放旧的addrinfo列表，清空指针，解锁互斥量，然后调用init_printer来重新初始化指针信息。既然从main线程初始化后只有这个上下文可以查看并可能更改打印机信息，因此除了使用configlock互斥量来保护reread标志的状态外，不需要任何其他的同步手段。
 
注意，尽管在此函数中获得和释放两个不同互斥量，但是并没有同时持有两个互斥量，因此不需要建立一个锁层次（见11.6.2节）。
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[655～671]　　如果不能打开数据文件，则记录出错日志，释放job结构，然后继续。打开文件之后，调用fstat来找到文件的大小。如果失败，记录出错日志并清理，然后继续。
 
672　　　　 if ((sockfd = connect_retry(AF_INET, SOCK_STREAM, 0,

673　　　　　　printer->ai_addr, printer->ai_addrlen)) < 0) {

674　　　　　　　 log_msg("job %d deferred - can’t contact printer: %s",

675　　　　　　　　 jp->jobid, strerror(errno));

676　　　　　　　 goto defer;

677　　　　 }



678　　　　 /*

679　　　　　* Set up the IPP header.

680　　　　　*/

681　　　　 icp = ibuf;

682　　　　 hp = (struct ipp_hdr *)icp;

683　　　　 hp->major_version = 1;

684　　　　 hp->minor_version = 1;

685　　　　 hp->operation = htons(OP_PRINT_JOB);

686　　　　 hp->request_id = htonl(jp->jobid);

687　　　　 icp += offsetof(struct ipp_hdr, attr_group);

688　　　　 *icp++ = TAG_OPERATION_ATTR;

689　　　　 icp = add_option(icp, TAG_CHARSET, "attributes-charset",

690　　　　　　"utf-8");

691　　　　 icp = add_option(icp, TAG_NATULANG,

692　　　　　 "attributes-natural-language", "en-us");

693　　　　 sprintf(str, "http://%s/ipp", printer_name);

694　　　　 icp = add_option(icp, TAG_URI, "printer-uri", str);

695　　　　 icp = add_option(icp, TAG_NAMEWOLANG,

696　　　　　 "requesting-user-name", jp->req.usernm);

697　　　　 icp = add_option(icp, TAG_NAMEWOLANG, "job-name",

698　　　　　 jp->req.jobnm);
 
[672～677]　　打开一个连接到打印机的流套接字。如果connect_retry调用失败，跳到defer处，在这里清理、延迟一段时间，然后再尝试。
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[678～698]　　接下来，建立IPP首部。其操作是打印作业（print-job）请求。使用htons将2字节的操作ID从主机转换为网络字节序，使用htonl将4字节的作业ID从主机转换为网络字节序。完成首部的初始化之后，设置标志值来指示其后跟随操作属性。调用add_option将属性添加到报文中。图12-5列出了打印作业请求所需的操作属性，前3个是必需的。将字符集设为UTF-8，该字符集是打印机必须支持的；指定语言为en-us，即代表美国英语（U.S. English）；另外一个必需的属性是URI（Uniform Resource Identifier），将其设为http://printer_name/ipp。
 
推荐使用requesting-user-name属性，但不是必需的。job-name属性也是可选的。print命令将要打印的文件名作为作业名发送，该名字能够帮助用户区别多个要处理的作业。
 
699　　　　 if (jp->req.flags & PR_TEXT) {

700　　　　　　　p = "text/plain";

701　　　　　　　extra = 1;

702　　　　 } else {

703　　　　　　　p = "application/postscript";

704　　　　　　　extra = 0;

705　　　　 }

706　　　　 icp = add_option(icp, TAG_MIMETYPE, "document-format", p);

707　　　　 *icp++ = TAG_END_OF_ATTR;

708　　　　 ilen = icp - ibuf;



709　　　　 /*

710　　　　　* Set up the HTTP header.

711　　　　　*/

712　　　　 hcp = hbuf;

713　　　　 sprintf(hcp, "POST /ipp HTTP/1.1\r\n");

714　　　　 hcp += strlen(hcp);

715　　　　 sprintf(hcp, "Content-Length: %ld\r\n",

716　　　　　 (long)sbuf.st_size + ilen + extra);

717　　　　 hcp += strlen(hcp);

718　　　　 strcpy(hcp, "Content-Type: application/ipp\r\n");

719　　　　 hcp += strlen(hcp);

720　　　　 sprintf(hcp, "Host: %s:%d\r\n", printer_name, IPP_PORT);

721　　　　 hcp += strlen(hcp);

722　　　　 *hcp++ = ’\r’;

723　　　　 *hcp++ = ’\n’;

724　　　　 hlen = hcp - hbuf;
 
[699～708]　　提供的最后一个属性是document-format。如果省略该属性，则假定文件格式是打印机默认格式。对于PostScript打印机，格式可能是PostScript，但是一些打印机可以自动检测格式并在PostScript与纯文本或PCL（HP的打印机命令语言）格式间做选择。如果PR_TEXT标志被设置，则将文档格式设置为text/plain。否则，设置为application/postscript。然后在属性结束处用结束属性标志定界并计算IPP首部的大小。
 
整数extra用来记录任何可能需要传输到打印机的附加字符。稍后会看到，需要发送一个附加字符以能够可靠地打印纯文本。当要计算内容长度时，需要考虑这个附加字符。
 

  835 

 
[709～724]　　现在知道了IPP首部的大小，可以建立HTTP首部。将Context-Length设为IPP首部的字节长度加上要打印文件的大小再加上需要发送的附加字符的长度。Content-Type为application/ ipp。用回车换行符结束HTTP首部。最后，计算HTTP首部的大小。
 
725　　　　 /*

726　　　　　* Write the headers first. Then send the file.

727　　　　　*/

728　　　　 iov[0].iov_base = hbuf;

729　　　　 iov[0].iov_len = hlen;

730　　　　 iov[1].iov_base = ibuf;

731　　　　 iov[1].iov_len = ilen;

732　　　　 if (writev(sockfd, iov, 2) != hlen + ilen) {

733　　　　　　　log_ret("can’t write to printer");

734　　　　　　　goto defer;

735　　　　 }



736　　　　 if (jp->req.flags & PR_TEXT) {

737　　　　　　　/*

738　　　　　　　 * Hack: allow PostScript to be printed as plain text.

739　　　　　　　 */

740　　　　　　　if (write(sockfd, "\b", 1) != 1) {

741　　　　　　　　　 log_ret("can’t write to printer");

742　　　　　　　　　 goto defer;

743　　　　　　　}

744　　　　 }



745　　　　 while ((nr = read(fd, buf, IOBUFSZ)) > 0) {

746　　　　　　　if ((nw = writen(sockfd, buf, nr)) != nr) {

747　　　　　　　　　 if (nw < 0)

748　　　　　　　　　　　log_ret("can’t write to printer");

749　　　　　　　　　 else

750　　　　　　　　　　　log_msg("short write (%d/%d) to printer", nw, nr);

751　　　　　　　　　 goto defer;

752　　　　　　　}

753　　　　 }
 
[725～735]　　将iovec数组的第一个元素指向HTTP首部，第二个元素指向IPP首部。然后采用writev将两个首部送往打印机。如果写失败或者写入少于请求的字节数，则记录日志并跳转到defer，在这里清理并延迟一段时间，然后再次尝试。
 
[736～744]　　即使指明了纯文本，Phaser 8560还是会自动检测文档格式。为了防止它识别出要以纯文本格式打印的文件的开头，将退格作为第一个发送字符，这个字符不会被打印出来，并且能够使自动识别文件格式功能失效。这就可以打印PostScript源文件而不用打印PostScript文件的镜像。
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[745～753]　　通过IOBUFSZ块将数据文件发往打印机。当套接字缓冲区满的时候，write的发送少于请求，因此可以用write处理这种情况。当写首部时，不必担心这种情况，因为它们都很小，但要打印的文件却是很大的。
 
754　　　　 if (nr < 0) {

755　　　　　　　log_ret("can’t read %s", name);

756　　　　　　　goto defer;

757　　　　 }



758　　　　 /*

759　　　　　* Read the response from the printer.

760　　　　　*/

761　　　　 if (printer_status(sockfd, jp)) {

762　　　　　　　unlink(name);

763　　　　　　　sprintf(name, "%s/%s/%d", SPOOLDIR, REQDIR, jp->jobid);

764　　　　　　　unlink(name);

765　　　　　　　free(jp);

766　　　　　　　jp = NULL;

767　　　　 }

768　 defer:

769　　　　 close(fd);

770　　　　 if (sockfd >= 0)

771　　　　　　　close(sockfd);

772　　　　 if (jp != NULL) {

773　　　　　　　replace_job(jp);

774　　　　　　　nanosleep(&ts, NULL);

775　　　　 }

776　　 }

777　 }



778　 /*

779　 * Read data from the printer, possibly increasing the buffer.

780　 * Returns offset of end of data in buffer or -1 on failure.

781　 *

782　 * LOCKING: none.

783　 */

784　ssize_t

785　readmore(int sockfd, char **bpp, int off, int *bszp)
 
[754～757]　　读到文件末尾时，read返回0。如果读失败，记录错误信息日志并跳至defer。
 
[758～767]　　将文件发送给打印机后，调用printer_status来读取打印机对于请求的响应。如果成功，printer_status返回一个非0值，就可以删除数据文件和控制文件。然后释放job结构，将其指针设为NULL，然后到达defer标签。
 
[768～777]　　在defer标签处，关闭打开的数据文件描述符。如果套接字描述符是有效的，也将其关闭。如出错，jp指向要打印作业的作业结构，这样就可以将作业放在挂起作业列表的头部然后延迟1分钟。如果成功，jp为NULL，此时只需回到循环开始处，获得下一个要打印的作业。
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[778～785]　　readmore函数用于读取来自打印机的部分响应消息。
 
786　{ 

787　　 ssize_t nr; 

788　　 char　　 *bp = *bpp; 

789　　 int　　　bsz =*bszp;



790　　 if (off >= bsz) { 

791　　　　　bsz += IOBUFSZ; 

792　　　　　if ((bp = realloc(*bpp, bsz)) == NULL) 

793　　　　　　　 log_sys("readmore: can’t allocate bigger read buffer"); 

794　　　　　*bszp =bsz; 

795　　　　　*bpp =bp;

796　　 } 

797　　 if ((nr = tread(sockfd, &bp[off], bsz-off, 1)) > 0) 

798　　　　 return(off+nr); 

799　　 else 

800　　　　　return(-1); 

801　}



802　/* 

803　 * Read and parse the response from the printer. Return 1 

804　 * if the request was successful, and 0 otherwise. 

805　 * 

806　 * LOCKING: none. 

807　 */ 

808　int 

809　printer_status(int sfd, struct job *jp) 

810　{ 

811　　 int　　　        i, success, code, len, found, bufsz, datsz; 

812　　 int32_t         jobid;

813　　 ssize_t         nr; 

814　　 char   　       *bp, *cp, *statcode, *reason, *contentlen; 

815　　 struct ipp_hdr  h;



816　　/* 

817　　 * Read the HTTP header followed by the IPP response header. 

818　　 * They can be returned in multiple read attempts. Use the 

819　　 * Content-Length specifier to determine how much to read. 

820　　 */
 
[786～801]　　如果到达缓冲区尾部，通过相应的参数bpp和bszp重新分配一个大一点的缓冲区并返回该新的缓冲区的起始地址以及缓冲区大小。上述任何一种情况下，从缓冲区已读数据的末尾开始读取缓冲区所能容纳的尽可能多的数据。返回相应的已读数据的新偏移量。如果read失败，或者超时，返回1。
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[802～820]　　printer_status函数读取打印机对一个打印作业请求的响应消息。不知道打印机会如何响应：也许会在多个报文中回送一个响应，也许在一个报文中回送完整的响应，或者包括一个中间确认，诸如HTTP 100 Continue报文。需要处理所有的可能性。
 
821　　success =0 ; 

822　　bufsz =IOBUFSZ; 

823　　if ((bp = malloc(IOBUFSZ)) == NULL) 

824　　　　　log_sys("printer_status: can’t allocate read buffer");



825　　 while ((nr = tread(sfd, bp, bufsz, 5)) > 0) { 

826　　　　　/* 

827　　　　　 * Find the status. Response starts with "HTTP/x.y" 

828　　　　　 * so we can skip the first 8 characters. 

829　　　　　 */ 

830　　　　　 cp = bp + 8; 

831　　　　　 datsz =nr; 

832　　　　　 while (isspace((int)*cp)) 

833　　　　　　　　cp++; 

834　　　　　 statcode =cp; 

835　　　　　 while (isdigit((int)*cp))

836　　　　　　　　cp++; 

837　　　　　 if (cp == statcode) { /* Bad format; log it and move on */ 

838　　　　　　　　log_msg(bp); 

839　　　　　 } else { 

840　　　　　　　*cp++ =’\0’; 

841　　　　　　　reason =cp; 

842　　　　　　　while (*cp != ’\r’ && *cp != ’\n’) 

843　　　　　　　　　 cp++; 

844　　　　　　　*cp =’\0’; 

845　　　　　　　code =atoi(statcode); 

846　　　　　　　if (HTTP_INFO(code)) 

847　　　　　　　　　 continue; 

848　　　　　　　if (!HTTP_SUCCESS(code)) { /* probable error: log it */ 

849　　　　　　　　　 bp[datsz] =’\0’;

850　　　　　　　　　 log_msg("error: %s", reason); 

851　　　　　　　　　 break; 

852　　　　　　　}
 
[821～838]　　分配一个缓冲区并读取来自打印机的数据，期望5秒之内有可用的响应。跳过HTTP/1.1和报文开始的所有空格，然后是数字状态码。如果不是，在日志中记录报文的内容。
 
[839～844]　　如果在响应中找到一个数字状态码，将其开始的非数字字符转换成null字节（这一字符是某种形式的空白）。接下来是一个表明原因的字符串（文本消息）。搜索回车或换行符，并采用null字节结束文本字符串。
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[845～852]　　调用atoi函数将状态码字符串转化成一个整数。如果仅是提供信息的报文，将其忽略并继续循环。我们期望看到的要么是成功消息要么是出错消息。如果得到出错消息，记录出错日志并退出循环。
 
853　　　　　　　/* 

854　　　　　　　 * HTTP request was okay, but still need to check 

855　　　　　　　 * IPP status. Search for the Content-Length. 

856　　　　　　　 */ 

857　　　　　　　i = cp - bp; 

858　　　　　　　for (;;) { 

859　　　　　　　　　 while (*cp != ’C’ && *cp != ’c’ && i < datsz) { 

860　　　　　　　　　　　　cp++; 

861　　　　　　　　　　　　i++; 

862　　　　　　　　　 } 

863　　　　　　　　　 if (i >= datsz) { /* get more header */ 

864　　　　　　　　　　　　if ((nr = readmore(sfd, &bp, i, &bufsz)) < 0) { 

865　　　　　　　　　　　　　　 goto out; 

866　　　　　　　　　　　　} else { 

867　　　　　　　　　　　　　　 cp =&bp[i]; 

868　　　　　　　　　　　　　　 datsz += nr; 

869　　　　　　　　　　　　} 

870　　　　　　　　　 }



871　　　　　　　　　 if (strncasecmp(cp, "Content-Length:", 15) == 0) {

872　　　　　　　　　　　　cp += 15; 

873　　　　　　　　　　　　while (isspace((int)*cp)) 

874　　　　　　　　　　　　　　 cp++; 

875　　　　　　　　　　　　contentlen =cp; 

876　　　　　　　　　　　　while (isdigit((int)*cp)) 

877　　　　　　　　　　　　　　 cp++; 

878　　　　　　　　　　　　*cp++ =’\0’; 

879　　　　　　　　　　　　i = cp - bp; 

880　　　　　　　　　　　　len =atoi(contentlen); 

881　　　　　　　　　　　　break; 

882　　　　　　　　　 } else { 

883　　　　　　　　　　　　cp++; 

884　　　　　　　　　　　　i++; 

885　　　　　　　　　 } 

886　　　　　　　}
 
[853～870]　　如果HTTP请求成功，需要检查IPP状态。搜索整个报文直到找到Content-Length属性。HTTP首部的关键字是大小写敏感的，因此需要同时检查小写和大写字符。如果缓冲区空间耗尽，需要调用readmore，通过它再调用realloc增加缓冲区大小。因为缓冲区地址可能改变，需要调整cp指向正确的缓冲区位置。
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[871～886]　　使用strncasecmp函数进行大小写敏感比较。如果找到Content-Length属性字符串，就搜索它的值。将数字字符串转换为整数并退出这个for循环。如果比较失败，继续逐个字节搜索缓冲区。如果直到缓冲区末尾仍未找到Content-Length属性，就从打印机读取更多数据并继续搜索。
 
887　　　　　　　if (i >= datsz) { /* get more header */ 

888　　　　　　　　　 if ((nr = readmore(sfd, &bp, i, &bufsz)) < 0) { 

889　　　　　　　　　　　　goto out; 

890　　　　　　　　　 } else { 

891　　　　　　　　　　　　cp =&bp[i]; 

892　　　　　　　　　　　　datsz += nr; 

893　　　　　　　　　 } 

894　　　　　　　}



895　　　　　　　found =0 ; 

896　　　　　　　while (!found) { /* look for end of HTTP header */ 

897　　　　　　　　　 while (i < datsz - 2) { 

898　　　　　　　　　　　　if (*cp == ’\n’ && *(cp + 1) == ’\r’ && 

899　　　　　　　　　　　　　*(cp + 2) == ’\n’) { 

900　　　　　　　　　　　　　　found =1 ; 

901　　　　　　　　　　　　　　cp += 3; 

902　　　　　　　　　　　　　　i += 3; 

903　　　　　　　　　　　　　　break; 

904　　　　　　　　　　　　} 

905　　　　　　　　　　　　cp++; 

906　　　　　　　　　　　　i++; 

907　　　　　　　　　 } 

908　　　　　　　　　 if (i >= datsz) { /* get more header */ 

909　　　　　　　　　　　　if ((nr = readmore(sfd, &bp, i, &bufsz)) < 0) { 

910　　　　　　　　　　　　　　 goto out; 

911　　　　　　　　　　　　} else { 

912　　　　　　　　　　　　　　 cp =&bp[i];

913　　　　　　　　　　　　　　 datsz += nr; 

914　　　　　　　　　　　　} 

915　　　　　　　　　 } 

916　　　　　　　}



917　　　　　　　if (datsz - i < len) { /* get more header */ 

918　　　　　　　　　 if ((nr = readmore(sfd, &bp, i, &bufsz)) < 0) { 

919　　　　　　　　　　　　goto out; 

920　　　　　　　　　 } else { 

921　　　　　　　　　　　　cp =&bp[i]; 

922　　　　　　　　　　　　datsz += nr;
 
[887～916]　　现在知道报文的长度了（通过Content-Length属性）。如果耗尽缓冲区，那么从打印机再次读取。接下来搜索HTTP首部的末尾（空白行）。如果找到了，就设置found标志并跳过空白行。无论何时调用readmore，都要将cp设置为与之前指向的缓冲区偏移量相同，以防止重分配时缓冲区地址改变。
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[917～922]　　如果找到HTTP首部的末尾，计算HTTP首部所用的字节数。如果读取的值减去HTTP首部的大小后不等于IPP报文的数据长度（该值从内容长度Content-Length中计算），需要读取更多的数据。
 
923　　　　　　　　　 }

924　　　　　　　}



925　　　　　　　memcpy(&h, cp, sizeof) (struct ipp_hdr);

926　　　　　　　i = ntohs(h.status);

927　　　　　　　jobid = ntohl(h.request_id);



928　　　　　　　if (jobid != jp->jobid) {

929　　　　　　　　　 /*

930　　　　　　　　　　* Different jobs. Ignore it.

931　　　　　　　　　　*/

932　　　　　　　　　 log_msg("jobid %d status code %d", jobid, i);

933　　　　　　　　　 break;

934　　　　　　　}



935　　　　　　　if (STATCLASS_OK(i))

936　　　　　　　　　 success = 1;

937　　　　　　　break;

938　　　　　}

939　　　 }



940　　 out:

941　　　　free(bp);

942　　　　if (nr < 0) {

943　　　　　　 log_msg("jobid %d: error reading printer response: %s",

944　　　　　　　 jobid, strerror(errno));

945　　　　}

946　　　　return(success);

947　 }
 
[923～927]　　从IPP首部中获取状态和作业ID。两者均以网络字节序的整数形式存储，因此需要调用ntohs和ntohl将其转换为主机字节序。
 
[928～939]　　如果作业ID不匹配，表明并非是对我们请求的响应，那么记录日志并退出外层while循环。如果IPP状态指示为成功，保存返回值并退出循环。
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[940～947]　　在退出之前，要释放用来存放响应报文的缓冲区。如果打印请求成功则返回1，否则失败，返回0。
 
这里总结本章中这个扩展的例子。本章中的程序在Xerox Phaser 8560网络PostScript打印机上测试。遗憾的是，当文档格式设置为text/plain时，这个打印机并没有禁止它的自动识别格式功能。我们使用了一个小技巧，使得在想要以纯文本格式对待一个文档时，打印机不自动识别文档格式。一种替代的方法是使用诸如a2ps(1)这样的实用工具将源打印成一个PostScript程序。a2ps(1)可以在打印前封装PostScript程序。
 
21.6　小结
 
本章仔细考查了两个完整的程序：一个打印假脱机守护进程将作业发送到网络打印机和一个命令行程序将打印作业提交到假脱机守护进程。这给我们一个机会，考查在一个实际程序中使用前面章节所讲述的许多特性，如线程、I/O多路技术、文件I/O、套接字I/O以及信号。
 
习题
 
21.1　将ipp.h中所列的IPP错误码转换成错误消息。然后修改打印假脱机守护进程，当IPP首部指示有打印机错误时，在printer_status函数结尾处记录日志。
 
21.2　增强print命令和printd守护进程，使得用户可以请求双面打印，并支持横向打印和纵向打印。
 
21.3　修改打印假脱机守护进程，当其开始时，能够联系打印机并找出所支持的特性，这样守护进程就不会请求打印机不支持的选项。
 
21.4　写一个命令行程序来报告挂起的打印作业状态。
 
21.5　写一个命令行程序来取消一个挂起的打印作业。使用作业ID作为命令参数来指明取消哪个作业。如果防止一个用户取消另一个用户的打印作业？
 
21.6　在打印假脱机守护进程中支持多个打印机，并包括将一个打印作业从本打印机移到另一个打印机的方式。
 
21.7　解释为什么在打印机守护进程中，当信号处理线程捕捉到SIGHUP并将reread设置为1时，不需要唤醒打印机线程？
 
21.8　在printer_status函数中，通过查找HTTP的Content-Length属性搜索IPP报文的长度。这一技术在使用块传输编码的打印机上不起作用。在RFC 2616中查找块消息是如何格式化的，然后修改printer_status，使其也能够支持这种形式的响应。
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21.9　在update_jobno函数中，当下一个作业编号从最大正值回绕到1时（参见get_newjobno），可能会将一个较大的编号改写为一个较小的编号。这可能导致守护进程重启时读到一个错误的编号。对于这一问题是否有简单的解决方法？
 


附录A　函数原型
 
本附录包含了正文中说明过的标准ISO C、POSIX和UNIX系统的函数原型。通常我们想了解的是函数的参数（fgets的哪一个参数是文件指针？）或者返回值（sprintf返回的是指针还是计数值？）。这些函数原型还说明了要包含哪些头文件，以获得特定常量的定义，或获得ISO C函数原型，以帮助在编译时进行错误检测。
 
每个函数原型的引用页号出现在为该函数列出的第一个头文件的右边。引用页号提供的是包含该函数原型的页。为获得该函数原型的附加信息可参阅该页。
 
某些函数原型仅受本书说明的4种平台中某几种的支持。另外，某些平台支持的函数标志在另一些平台上并不提供支持。对于这些情况，我们通常列出提供支持的平台。但是对于有些情况，我们列出了不提供支持的平台。
 
 
 本附录中标注的页码为英文版原书的页码，与书中页边标注的页码对应。
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void　　　　 　abort(void);

　　　　　　　　　　　　　　　 <stdlib.h>　　　　　　　　　　　　　　　　　　　　　p. 365

　　　　　　　　　　　　　　　 此函数不返回值



int　　　　　　accept(int sockfd, struct sockaddr *restrict addr,

　　　　　　　　　　　　socklen_t *restrict len);

　　　　　　　　　　　　　　　 <sys/socket.h>　　　　　　　　　　　　　　　　　　 p. 608

　　　　　　　　　　　　　　　 返回值：若成功，返回文件（套接字）描述符；若出错则返回−1



int　　　　　　access(const char *path, int mode);

　　　　　　　　　　　　　　　 <unistd.h>　　　　　　　　　　　　　　　　　　　　　p. 102

　　　　　　　　　　　　　　　 mode：R_OK、W_OK、X_OK、F_OK

　　　　　　　　　　　　　　　 返回值：若成功，返回0；若出错，返回−1



int　　　　　　aio_cancel(int fd, struct aiocb *aiocb);

　　　　　　　　　　　　　　　 <aio.h>　　　　　　　　　　　　　　　　　　　　　　　p. 514

　　　　　　　　　　　　　　　 返回值：AIO_ALLDONE、AIO_CANCELED、AIO_NOTCANCELED；

　　　　　　　　　　　　　　　 若出错，返回−1



int　　　　　　aio_error(const struct aiocb *aiocb);

　　　　　　　　　　　　　　　 <aio.h>　　　　　　　　　　　　　　　　　　　　　　　p. 513

　　　　　　　　　　　　　　　 返回值：若操作成功，返回0；若操作仍在进行中，返回EINPROGRESS；

　　　　　　　　　　　　　　　 若操作失败，返回错误码；若出错，返回−1



int　　　　　　aio_fsync(int op, struct aiocb *aiocb);

　　　　　　　　　　　　　　　 <aio.h>　　　　　　　　　　　　　　　　　　　　　　　p. 513

　　　　　　　　　　　　　　　 返回值：若成功，返回0；若出错，返回−1



int　　　　　　aio_read(struct aiocb *aiocb);

　　　　　　　　　　　　　　　 <aio.h>　　　　　　　　　　　　　　　　　　　　　　　p. 512

　　　　　　　　　　　　　　　 返回值：若成功则，返回0；若出错则返回−1



ssize_t　　　 aio_return(const struct aiocb *aiocb);

　　　　　　　　　　　　　　　 <aio.h>　　　　　　　　　　　　　　　　　　　　　　　p. 513

　　　　　　　　　　　　　　　 返回值：异步操作的结果；若出错，返回−1



int　　　　　　aio_suspend(const struct aiocb *const list[], int nent, 

　　　　　　　　　　　　　　　 const struct timespec *timeout);

　　　　　　　　　　　　　　　 <aio.h>　　　　　　　　　　　　　　　　　　　　　　　p. 514

　　　　　　　　　　　　　　　 返回值：若成功，返回0；若出错，返回−1



int　　　　　　aio_write(struct aiocb *aiocb);

　　　　　　　　　　　　　　　 <aio.h>　　　　　　　　　　　　　　　　　　　　　　　p. 512

　　　　　　　　　　　　　　　 返回值：若成功，返回0；若出错，返回−1



unsigned

int　　　　　　alarm(unsigned int seconds);

　　　　　　　　　　　　　　　 <unistd.h>　　　　　　　　　　　　　　　　　　　　　 p. 338

　　　　　　　　　　　　　　　 返回值：0或以前设置的闹钟时间的余留秒数



int　　　　　　atexit(void (*func)(void));

　　　　　　　　　　　　　　　 <stdlib.h>　　　　　　　　　　　　　　　　　　　　　 p. 200

　　　　　　　　　　　　　　　 返回值：若成功，返回0；若出错，返回非0



int　　　　　　bind(int sockfd, const struct sockaddr *addr, socklen_t len);

　　　　　　　　　　　　　　　 <sys/socket.h>　　　　　　　　　　　　　　　　　　　p. 604

　　　　　　　　　　　　　　　 返回值：若成功，返回0；若出错，返回−1



void　　　　 　*calloc(size_t nobj, size_t size);

　　　　　　　　　　　　　　　 <stdlib.h>　　　　　　　　　　　　　　　　　　　　　 p. 207

　　　　　　　　　　　　　　　 返回值：若成功，返回非空指针；若出错，返回NULL



speed_t　　　　cfgetispeed(const struct termios *termptr);

　　　　　　　　　　　　　　　 <termios.h>　　　　　　　　　　　　　　　　　　　　　p. 692

　　　　　　　　　　　　　　　 返回值：返回波特率值



speed_t　　　　cfgetospeed(const struct termios *termptr);

　　　　　　　　　　　　　　　 <termios.h>　　　　　　　　　　　　　　　　　　　　　p. 692

　　　　　　　　　　　　　　　 返回值：返回波特率值



int　　　　　　cfsetispeed(struct termios *termptr, speed_t speed);

　　　　　　　　　　　　　　　 <termios.h>　　　　　　　　　　　　　　　　　　　　　p. 692

　　　　　　　　　　　　　　　 返回值：若成功，返回0；若出错，返回−1



int　　　　　　cfsetospeed(struct termios *termptr, speed_t speed);

　　　　　　　　　　　　　　　 <termios.h>　　　　　　　　　　　　　　　　　　　　　p. 692

　　　　　　　　　　　　　　　 返回值：若成功，返回0；若出错，返回−1



int　　　　　　chdir(const char *path);

　　　　　　　　　　　　　　　 <unistd.h>　　　　　　　　　　　　　　　　　　　　　 p. 135

　　　　　　　　　　　　　　　 返回值：若成功，返回0；若出错，返回−1



int　　　　　　chmod(const char *path, mode_t mode);

　　　　　　　　　　　　　　　 <sys/stat.h>　　　　　　　　　　　　　　　　　　　　 p. 106

　　　　　　　　　　　　　　　 mode：S_IS[UG]ID、S_ISVTX、

　　　　　　　　　　　　　　　　　　 S_I[RWX](USR|GRP|OTH)

　　　　　　　　　　　　　　　 返回值：若成功，返回0；若出错，返回−1



int　　　　　　chown(const char *path, uid_t owner, gid_t group);

　　　　　　　　　　　　　　　 <unistd.h>　　　　　　　　　　　　　　　　　　　　　 p. 109

　　　　　　　　　　　　　　　 返回值：若成功，返回0；若出错，返回−1



void　　　 　　clearerr(FILE *fp);

　　　　　　　　　　　　　　　 <stdio.h>　　　　　　　　　　　　　　　　　　　　　　p. 151



int　　　　　　clock_getres(clockid_t clock_id, struct timespec *tsp);

　　　　　　　　　　　　　　　 <sys/time.h>　　　　　　　　　　　　　　　　　　　　 p. 190

　　　　　　　　　　　　　　　 clock_id：CLOCK_REALTIME、CLOCK_MONOTONIC、

　　　　　　　　　　　　　　　　　　　　　CLOCK_PROCESS_CPUTIME_ID、

　　　　　　　　　　　　　　　　　　　　　CLOCK_THREAD_CPUTIME_ID

　　　　　　　　　　　　　　　 返回值：若成功，返回0；若出错，返回−1



int　　　　　　clock_gettime(clockid_t clock_id, struct timespec *tsp);

　　　　　　　　　　　　　　　 <sys/time.h>　　　　　　　　　　　　　　　　　　　　 p. 189

　　　　　　　　　　　　　　　 clock_id：CLOCK_REALTIME、CLOCK_MONOTONIC、

　　　　　　　　　　　　　　　　　　　　　CLOCK_PROCESS_CPUTIME_ID、

　　　　　　　　　　　　　　　　　　　　　CLOCK_THREAD_CPUTIME_ID

　　　　　　　　　　　　　　　 返回值：若成功，返回0；若出错，返回−1



int　　　　　　clock_nanosleep(clockid_t clock_id, int flags, 

　　　　　　　　　　　　　　　　　 const struct timespec *reqtp,

　　　　　　　　　　　　　　　　　 structtimespec *remtp);

　　　　　　　　　　　　　　　 <time.h>　　　　　　　　　　　　　　　　　　　　　　　p. 375

　　　　　　　　　　　　　　　 clock_id：CLOCK_REALTIME、CLOCK_MONOTONIC、

　　　　　　　　　　　　　　　　　　　　　CLOCK_PROCESS_CPUTIME_ID、

　　　　　　　　　　　　　　　　　　　　　CLOCK_THREAD_CPUTIME_ID

　　　　　　　　　　　　　　　 flags：TIMER_ABSTIME

　　　　　　　　　　　　　　　 返回值：若休眠够要求的时间，返回0；若失败，返回错误码



int　　　　　　clock_settime(clockid_t clock_id, const struct timespec *tsp);

　　　　　　　　　　　　　　　 <sys/time.h>　　　　　　　　　　　　　　　　　　　　 p. 190

　　　　　　　　　　　　　　　 clock_id：CLOCK_REALTIME、CLOCK_MONOTONIC、

　　　　　　　　　　　　　　　　　　　　　CLOCK_PROCESS_CPUTIME_ID、

　　　　　　　　　　　　　　　　　　　　　CLOCK_THREAD_CPUTIME_ID

　　　　　　　　　　　　　　　 返回值：若成功，返回0；若出错，返回−1



int　　　　　　close(int fd);

　　　　　　　　　　　　　　　 <unistd.h>　　　　　　　　　　　　　　　　　　　　　 p. 66

　　　　　　　　　　　　　　　 返回值：若成功，返回0；若出错，返回−1



int　　　　　　closedir(DIR *dp);

　　　　　　　　　　　　　　　 <dirent.h>　　　　　　　　　　　　　　　　　　　　　 p. 130

　　　　　　　　　　　　　　　 返回值：若成功，返回0；若出错，返回−1



void　　 　　　closelog(void);

　　　　　　　　　　　　　　　 <syslog.h>　　　　　　　　　　　　　　　　　　　　　 p. 470



unsigned

char　　　 　　*CMSG_DATA(struct cmsghdr *cp);

　　　　　　　　　　　　　　　 <sys/socket.h>　　　　　　　　　　　　　　　　　　　p. 645

　　　　　　　　　　　　　　　 返回值：一个指针，指向与cmsghdr结构相关联的数据



struct

cmsghdr　　　 *CMSG_FIRSTHDR(struct msghdr *mp);

　　　　　　　　　　　　　　　 <sys/socket.h>　　　　　　　　　　　　　　　　　　　p. 645

　　　　　　　　　　　　　　　 返回值：一个指针，指向与msghdr结构相关联的第一个cmsghdr结构；

　　　　　　　　　　　　　　　 若无这样的结构，返回NULL

unsigned

int　　　　　　CMSG_LEN(unsigned int nbytes);

　　　　　　　　　　　　　　　 <sys/socket.h>　　　　　　　　　　　　　　　　　　　p. 645

　　　　　　　　　　　　　　　 返回值：为nbytes长的数据对象分配的长度



struct

cmsghdr　　　 *CMSG_NXTHDR(struct msghdr *mp, struct cmsghdr *cp);

　　　　　　　　　　　　　　　 <sys/socket.h>　　　　　　　　　　　　　　　　　　　p. 645

　　　　　　　　　　　　　　　 返回值：一个指针，指向与msghdr结构相关联的下一个msghdr结构，

　　　　　　　　　　　　　　　 该msghdr结构给出了当前的cmsghdr结构；若当前cmsghdr结构

　　　　　　　　　　　　　　　 已是最后一个，返回NULL



int　　　　　　connect(int sockfd, const struct sockaddr *addr, 

　　　　　　　　　　　　 socklen_t len);

　　　　　　　　　　　　　　　 <sys/socket.h>　　　　　　　　　　　　　　　　　　　p. 605

　　　　　　　　　　　　　　　 返回值：若成功，返回0；若出错，返回−1



int　　　　　　creat(const char *path, mode_t mode);

　　　　　　　　　　　　　　　 <fcntl.h>　　　　　　　　　　　　　　　　　　　　　　p. 66

　　　　　　　　　　　　　　　 mode：S_IS[UG]ID、S_ISVTX、

　　　　　　　　　　　　　　　　　　 S_I[RWX](USR|GRP|OTH)

　　　　　　　　　　　　　　　 返回值：若成功，返回为只写打开的文件描述符；若出错，返回−1



char　　　 　　*ctermid(char *ptr);

　　　　　　　　　　　　　　　 <stdio.h>　　　　　　　　　　　　　　　　　　　　　　p. 694

　　　　　　　　　　　　　　　 返回值：若成功，返回指向控制终端名的指针；若出错，返回指向

　　　　　　　　　　　　　　　 空字符串的指针



int　　　　　　dprintf(int fd, const char *restrict format, ...);

　　　　　　　　　　　　　　　 <stdio.h>　　　　　　　　　　　　　　　　　　　　　　p. 159

　　　　　　　　　　　　　　　 返回值：若成功，返回输出字符数；若输出出错，返回负值



int　　　　　　dup(int fd);

　　　　　　　　　　　　　　　 <unistd.h>　　　　　　　　　　　　　　　　　　　　　 p. 79

　　　　　　　　　　　　　　　 返回值：若成功，返回新的文件描述符；若出错，返回−1



int　　　　　　dup2(int fd, int fd2);

　　　　　　　　　　　　　　　 <unistd.h>　　　　　　　　　　　　　　　　　　　　　 p. 79

　　　　　　　　　　　　　　　 返回值：若成功，返回新的文件描述符；若出错，返回−1



void　　　 　　endgrent(void);

　　　　　　　　　　　　　　　 <grp.h>　　　　　　　　　　　　　　　　　　　　　　　 p. 183



void　　　 　　endhostent(void);

　　　　　　　　　　　　　　　 <netdb.h>　　　　　　　　　　　　　　　　　　　　　　p. 597



void　　　 　　endnetent(void);

　　　　　　　　　　　　　　　 <netdb.h>　　　　　　　　　　　　　　　　　　　　　 p. 598



void　　　 　　endprotoent(void);

　　　　　　　　　　　　　　　 <netdb.h>　　　　　　　　　　　　　　　　　　　　　 p. 598



void　　　 　　endpwent(void);

　　　　　　　　　　　　　　　 <pwd.h>　　　　　　　　　　　　　　　　　　　　　　　p. 180



void　　　 　　endservent(void);

　　　　　　　　　　　　　　　 <netdb.h>　　　　　　　　　　　　　　　　　　　　　 p. 599



void　　　 　　endspent(void);

　　　　　　　　　　　　　　　 <shadow.h>　　　　　　　　　　　　　　　　　　　　　p. 182

　　　　　　　　　　　　　　　 平台：Linux 3.2.0、Solaris 10



int　　　　　　execl(const char *path, const char *arg0, ... /* (char *) 0 */ );

　　　　　　　　　　　　　　　 <unistd.h>　　　　　　　　　　　　　　　　　　　　　p. 249

　　　　　　　　　　　　　　　 返回值：若出错，返回−1；若成功，不返回



int　　　　　　execle(const char *path, const char *arg0, ... /* (char *) 0,

　　　　　　　　　　　　char *const envp[] */ );

　　　　　　　　　　　　　　　 <unistd.h>　　　　　　　　　　　　　　　　　　　　　p. 249

　　　　　　　　　　　　　　　 返回值：若出错，返回−1；若成功，不返回



int　　　　　　execlp(const char *filename, const char *arg0, ... 

　　　　　　　　　　　　/* (char *) 0 */ );

　　　　　　　　　　　　　　　 <unistd.h>　　　　　　　　　　　　　　　　　　　　　p. 249

　　　　　　　　　　　　　　　 返回值：若出错，返回−1；若成功，不返回



int　　　　　　execv(const char *path, char *const argv[]);

　　　　　　　　　　　　　　　 <unistd.h>　　　　　　　　　　　　　　　　　　　　　p. 249

　　　　　　　　　　　　　　　 返回值：若出错，返回−1；若成功，不返回



int　　　　　　execve(const char *path, char *const argv[], 

　　　　　　　　　　　　char *const envp[]);

　　　　　　　　　　　　　　　 <unistd.h>　　　　　　　　　　　　　　　　　　　　　p. 249

　　　　　　　　　　　　　　　 返回值：若出错，返回−1；若成功，不返回



int　　　　　　execvp(const char *filename, char *const argv[]);

　　　　　　　　　　　　　　　 <unistd.h>　　　　　　　　　　　　　　　　　　　　　p. 249

　　　　　　　　　　　　　　　 返回值：若出错，返回−1；若成功，不返回



void　　　 　　_Exit(int status);

　　　　　　　　　　　　　　　 <stdlib.h>　　　　　　　　　　　　　　　　　　　　　p. 198

　　　　　　　　　　　　　　　 这个函数从不返回



void　　 　　　_exit(int status);

　　　　　　　　　　　　　　　 <unistd.h>　　　　　　　　　　　　　　　　　　　　　p. 198

　　　　　　　　　　　　　　　 这个函数从不返回



void　　 　　　exit(int status);

　　　　　　　　　　　　　　　 <stdlib.h>　　　　　　　　　　　　　　　　　　　　　p. 198

　　　　　　　　　　　　　　　 这个函数从不返回



int　　　　　　faccessat(int fd, const char *path, int mode, int flag);

　　　　　　　　　　　　　　　 <unistd.h>　　　　　　　　　　　　　　　　　　　　　p. 102

　　　　　　　　　　　　　　　 mode：R_OK、W_OK、X_OK、F_OK

　　　　　　　　　　　　　　　 flag：AT_EACCESS

　　　　　　　　　　　　　　　 返回值：若成功，返回0；若出错，返回−1



int　　　　　　fchdir(int fd);

　　　　　　　　　　　　　　　 <unistd.h>　　　　　　　　　　　　　　　　　　　　　p. 135

　　　　　　　　　　　　　　　 返回值：若成功，返回0；若出错，返回−1



int　　　　　　fchmod(int fd, mode_t mode);

　　　　　　　　　　　　　　　 <sys/stat.h>　　　　　　　　　　　　　　　　　　　　p. 106

　　　　　　　　　　　　　　　 mode：S_IS[UG]ID、S_ISVTX、

　　　　　　　　　　　　　　　　　　 S_I[RWX](USR|GRP|OTH)

　　　　　　　　　　　　　　　 返回值：若成功，返回0；若出错，返回−1



int　　　　　　fchmodat(int fd, const char *path, mode_t mode, int flag);

　　　　　　　　　　　　　　　 <sys/stat.h>　　　　　　　　　　　　　　　　　　　　p. 106

　　　　　　　　　　　　　　　 mode：S_IS[UG]ID, S_ISVTX,

　　　　　　　　　　　　　　　　　　 S_I[RWX](USR|GRP|OTH)

　　　　　　　　　　　　　　　 flag：AT_SYMLINK_NOFOLLOW

　　　　　　　　　　　　　　　 返回值：若成功，返回0；若出错，返回−1



int　　　　　　fchown(int fd, uid_t owner, gid_t group);

　　　　　　　　　　　　　　　 <unistd.h>　　　　　　　　　　　　　　　　　　　　　p. 109

　　　　　　　　　　　　　　　 返回值：若成功，返回0；若出错，返回−1



int　　　　　　fchownat(int fd, const char *path, uid_t owner, 

　　　　　　　　　　　　　gid_tgroup, int flag);

　　　　　　　　　　　　　　　 <unistd.h>　　　　　　　　　　　　　　　　　　　　　p. 109

　　　　　　　　　　　　　　　 flag：AT_SYMLINK_NOFOLLOW

　　　　　　　　　　　　　　　 返回值：若成功，返回0；若出错，返回−1





int　　　　　　fclose(FILE *fp);

　　　　　　　　　　　　　　　 <stdio.h>　　　　　　　　　　　　　　　　　　　　　 p. 150

　　　　　　　　　　　　　　　 返回值：若成功，返回0；若出错，返回EOF



int　　　　　　fcntl(int fd, int cmd, ... /* int arg */ );

　　　　　　　　　　　　　　　 <fcntl.h>　　　　　　　　　　　　　　　　　　　　　 p. 82

　　　　　　　　　　　　　　　 cmd：F_DUPFD、F_DUPFD_CLOEXEC、F_GETFD、

　　　　　　　　　　　　　　　　　　F_SETFD、F_GETFL、F_SETFL、F_GETOWN、

　　　　　　　　　　　　　　　　　　F_SETOWN、F_GETLK、F_SETLK、F_SETLKW

　　　　　　　　　　　　　　　 返回值：若成功，依赖于cmd；若出错，返回−1



int　　　　　　fdatasync(int fd);

　　　　　　　　　　　　　　　 <unistd.h>　　　　　　　　　　　　　　　　　　　　　p. 81

　　　　　　　　　　　　　　　 返回值：若成功，返回0；若出错，返回−1

　　　　　　　　　　　　　　　 平台：Linux 3.2.0、Solaris 10



void　　　 　　FD_CLR(int fd, fd_set *fdset);

　　　　　　　　　　　　　　　 <sys/select.h>　　　　　　　　　　　　　　　　　　 p. 503



int　　　　　　FD_ISSET(int fd, fd_set *fdset);

　　　　　　　　　　　　　　　 <sys/select.h>　　　　　　　　　　　　　　　　　　 p. 503

　　　　　　　　　　　　　　　 返回值：若fd在描述符集中，返回非0值；否则，返回0



FILE　　　　　*fdopen(int fd, const char *type);

　　　　　　　　　　　　　　　 <stdio.h>　　　　　　　　　　　　　　　　　　　　　 p. 148

　　　　　　　　　　　　　　　 type："r"、"w"、"a"、"r+"、"w+"、"a+"

　　　　　　　　　　　　　　　 返回值：若成功，返回文件指针；若出错，返回NULL



DIR　　　　　　*fdopendir(int fd);

　　　　　　　　　　　　　　　 <dirent.h>　　　　　　　　　　　　　　　　　　　　　p. 130

　　　　　　　　　　　　　　　 返回值：若成功，返回指针；若出错，返回NULL



void　　　 　　FD_SET(int fd, fd_set *fdset);

　　　　　　　　　　　　　　　 <sys/select.h>　　　　　　　　　　　　　　　　　　 p. 503



void　　　 　　FD_ZERO(fd_set *fdset);

　　　　　　　　　　　　　　　 <sys/select.h>　　　　　　　　　　　　　　　　　　 p. 503



int　　　　　　feof(FILE *fp);

　　　　　　　　　　　　　　　 <stdio.h>　　　　　　　　　　　　　　　　　　　　　 p. 151

　　　　　　　　　　　　　　　 返回值：若到达流的文件尾端，返回非0（真）；否则，返回0（假）



int　　　　　　ferror(FILE *fp);

　　　　　　　　　　　　　　　 <stdio.h>　　　　　　　　　　　　　　　　　　　　　 p. 151

　　　　　　　　　　　　　　　 返回值：若流出错，返回非0（真）；否则，返回0（假）



int　　　　　　fexecve(int fd, char *const argv[], char *const envp[]);

　　　　　　　　　　　　　　　 <unistd.h>　　　　　　　　　　　　　　　　　　　　　p. 249

　　　　　　　　　　　　　　　 返回值：若出错，返回−1；若成功，不返回值



int　　　　　　fflush(FILE *fp);

　　　　　　　　　　　　　　　 <stdio.h>　　　　　　　　　　　　　　　　　　　　　 p. 147

　　　　　　　　　　　　　　　 返回值：若成功，返回0；若出错，返回EOF



int　　　　　　fgetc(FILE *fp);

　　　　　　　　　　　　　　　 <stdio.h>　　　　　　　　　　　　　　　　　　　　　 p. 150

　　　　　　　　　　　　　　　 返回值：若成功，返回下一个字符；若已到达文件尾端或出错，返回EOF



int　　　　　　fgetpos(FILE *restrict fp, fpos_t *restrict pos);

　　　　　　　　　　　　　　　 <stdio.h>　　　　　　　　　　　　　　　　　　　　　 p. 158

　　　　　　　　　　　　　　　 返回值：若成功，返回0；若出错，返回非0



char　　　 　　*fgets(char *restrict buf, int n, FILE *restrict fp);

　　　　　　　　　　　　　　　 <stdio.h>　　　　　　　　　　　　　　　　　　　　　 p. 152

　　　　　　　　　　　　　　　 返回值：若成功，返回buf；若已到达文件尾端或出错，返回NULL



int　　　　　　fileno(FILE *fp);

　　　　　　　　　　　　　　　 <stdio.h>　　　　　　　　　　　　　　　　　　　　　 p. 164

　　　　　　　　　　　　　　　 返回值：与该流相关联的文件描述符；若出错，返回−1



void　　　 　　flockfile(FILE *fp);

　　　　　　　　　　　　　　　 <stdio.h>　　　　　　　　　　　　　　　　　　　　　 p. 443



FILE　　　 　　*fmemopen(void *restrict buf, size_t size, 

　　　　　　　　　　　　　 const char *restrict type);

　　　　　　　　　　　　　　　 <stdio.h>　　　　　　　　　　　　　　　　　　　　　 p. 171

　　　　　　　　　　　　　　　 type："r"、"w"、"a"、"r+"、"w+"、"a+"

　　　　　　　　　　　　　　　 返回值：若成功，返回流指针；若错误，返回NULL



FILE　　　 　　*fopen(const char *restrict path, const char *restrict type);

　　　　　　　　　　　　　　　 <stdio.h>　　　　　　　　　　　　　　　　　　　　　 p. 148

　　　　　　　　　　　　　　　 type："r"、"w"、"a"、"r+"、"w+"、"a+"

　　　　　　　　　　　　　　　 返回值：若成功，返回文件指针；若出错，返回NULL



pid_t　　　　　fork(void);

　　　　　　　　　　　　　　　 <unistd.h>　　　　　　　　　　　　　　　　　　　　　p. 229

　　　　　　　　　　　　　　　 返回值：若在子进程中，返回0；若在父进程中，返回子进程ID；

　　　　　　　　　　　　　　　 若出错，返回−1



long　　　 　　fpathconf(int fd, int name);

　　　　　　　　　　　　　　　 <unistd.h>　　　　　　　　　　　　　　　　　　　　　p. 42

　　　　　　　　　　　　　　　 name：_PC_ASYNC_IO、_PC_CHOWN_RESTRICTED、

　　　　　　　　　　　　　　　　　　 _PC_FILESIZEBITS、_PC_LINK_MAX、

　　　　　　　　　　　　　　　　　　 _PC_MAX_CANON、_PC_MAX_INPUT、

　　　　　　　　　　　　　　　　　　 _PC_NAME_MAX、_PC_NO_TRUNC、_PC_PATH_MAX、

　　　　　　　　　　　　　　　　　　 _PC_PIPE_BUF、_PC_PRIO_IO、_PC_SYMLINK_MAX、

　　　　　　　　　　　　　　　　　　 _PC_SYNC_IO、_PC_TIMESTAMP_RESOLUTION、

　　　　　　　　　　　　　　　　　　 _PC_2_SYMLINKS、_PC_VDISABLE

　　　　　　　　　　　　　　　 返回值：若成功，返回相应值；若出错，返回−1



int　　　　　　fprintf(FILE *restrict fp, const char *restrict format, ...);

　　　　　　　　　　　　　　　 <stdio.h>　　　　　　　　　　　　　　　　　　　　　 p. 159

　　　　　　　　　　　　　　　 返回值：若成功，返回输出字符数；若输出出错，返回负值



int　　　　　　fputc(int c, FILE *fp);

　　　　　　　　　　　　　　　 <stdio.h>　　　　　　　　　　　　　　　　　　　　　 p. 152

　　　　　　　　　　　　　　　 返回值：若成功，返回c；若出错，返回EOF



int　　　　　　fputs(const char *restrict str, FILE *restrict fp);

　　　　　　　　　　　　　　　 <stdio.h>　　　　　　　　　　　　　　　　　　　　　 p. 153

　　　　　　　　　　　　　　　 返回值：若成功，返回非负值；若出错，返回EOF



size_t　　　　fread(void *restrict ptr, size_t size, size_t nobj, 

　　　　　　　　　　　FILE *restrict fp);

　　　　　　　　　　　　　　　 <stdio.h>　　　　　　　　　　　　　　　　　　　　　 p. 156

　　　　　　　　　　　　　　　 返回值：读的对象数



void　　　 　　free(void *ptr);

　　　　　　　　　　　　　　　 <stdlib.h>　　　　　　　　　　　　　　　　　　　　　p. 207



void　　　 　　freeaddrinfo(struct addrinfo *ai);

　　　　　　　　　　　　　　　 <sys/socket.h>　　　　　　　　　　　　　　　　　　 p. 599

　　　　　　　　　　　　　　　 <netdb.h>



FILE　　　 　　*freopen(const char *restrict path, const char *restrict type, 

　　　　　　　　　　　 　　FILE *restrict fp);

　　　　　　　　　　　　　　　 <stdio.h>　　　　　　　　　　　　　　　　　　　　　 p. 148

　　　　　　　　　　　　　　　 type："r"、"w"、"a"、"r+"、"w+"、"a+"

　　　　　　　　　　　　　　　 返回值：若成功，返回文件指针；若出错，返回NULL



int　　　　　　fscanf(FILE *restrict fp, const char *restrict format, ...);

　　　　　　　　　　　　　　　 <stdio.h>　　　　　　　　　　　　　　　　　　　　　 p. 162

　　　　　　　　　　　　　　　 返回值：赋值的输入项数；若输入出错或在任一转换前已到达文件

　　　　　　　　　　　　　　　 尾端，返回EOF



int　　　　　　fseek(FILE *fp, long offset, int whence);

　　　　　　　　　　　　　　　 <stdio.h>　　　　　　　　　　　　　　　　　　　　　 p. 158

　　　　　　　　　　　　　　　 whence：SEEK_SET、SEEK_CUR、SEEK_END

　　　　　　　　　　　　　　　 返回值：若成功，返回0；若出错，返回−1



int　　　　　　fseeko(FILE *fp, off_t offset, int whence);

　　　　　　　　　　　　　　　 <stdio.h>　　　　　　　　　　　　　　　　　　　　　 p. 158

　　　　　　　　　　　　　　　 whence：SEEK_SET、SEEK_CUR、SEEK_END

　　　　　　　　　　　　　　　 返回值：若成功，返回0；若出错，返回−1



int　　　　　　fsetpos(FILE *fp, const fpos_t *pos);

　　　　　　　　　　　　　　　 <stdio.h>　　　　　　　　　　　　　　　　　　　　　 p. 158

　　　　　　　　　　　　　　　 返回值：若成功，返回0；若出错，返回非0



int　　　　　　fstat(int fd, struct stat *buf);

　　　　　　　　　　　　　　　 <sys/stat.h>　　　　　　　　　　　　　　　　　　　　p. 93

　　　　　　　　　　　　　　　 返回值：若成功，返回0；若出错，返回非−1



int　　　　　　fstatat(int fd, const char *restrict path, 

　　　　　　　　　　　　　　 struct stat *restrict buf, int flag);

　　　　　　　　　　　　　　　 <sys/stat.h>　　　　　　　　　　　　　　　　　　　　p. 93

　　　　　　　　　　　　　　　 flag：AT_SYMLINK_NOFOLLOW

　　　　　　　　　　　　　　　 返回值：若成功；返回0；若出错，返回−1



int　　　　　　fsync(int fd);

　　　　　　　　　　　　　　　 <unistd.h>　　　　　　　　　　　　　　　　　　　　　p. 81

　　　　　　　　　　　　　　　 返回值：若成功，返回0；若出错则返回−1



long　　　 　　ftell(FILE *fp);

　　　　　　　　　　　　　　　 <stdio.h>　　　　　　　　　　　　　　　　　　　　　 p. 158

　　　　　　　　　　　　　　　 返回值：若成功，返回当前文件位置指示器；若出错，返回−1L



off_t　　　　　ftello(FILE *fp);

　　　　　　　　　　　　　　　 <stdio.h>　　　　　　　　　　　　　　　　　　　　　 p. 158

　　　　　　　　　　　　　　　 返回值：若成功，返回当前文件位置指示器；若出错，返回(off_t)-1



key_t　　　　　ftok(const char *path, int id);

　　　　　　　　　　　　　　　 <sys/ipc.h>　　　　　　　　　　　　　　　　　　　　 p. 557

　　　　　　　　　　　　　　　 返回值：若成功，返回键；若出错，返回(key_t)-1



int　　　　　　ftruncate(int fd, off_t length);

　　　　　　　　　　　　　　　 <unistd.h>　　　　　　　　　　　　　　　　　　　　　p. 112

　　　　　　　　　　　　　　　 返回值：若成功，返回0；若出错，返回−1



int　　　　　　ftrylockfile(FILE *fp);

　　　　　　　　　　　　　　　 <stdio.h>　　　　　　　　　　　　　　　　　　　　　 p. 443

　　　　　　　　　　　　　　　 返回值：若成功，返回0；若不能获取锁，返回非0数值



void　　　 　　funlockfile(FILE *fp);

　　　　　　　　　　　　　　　 <stdio.h>　　　　　　　　　　　　　　　　　　　　　 p. 443



int　　　　　　futimens(int fd, const struct timespec times[2]);

　　　　　　　　　　　　　　　 <sys/stat.h>　　　　　　　　　　　　　　　　　　　 p. 126

　　　　　　　　　　　　　　　 返回值：若成功，返回0；若出错，返回−1



int　　　　　　fwide(FILE *fp, int mode);

　　　　　　　　　　　　　　　 <stdio.h>　　　　　　　　　　　　　　　　　　　　　 p. 144

　　　　　　　　　　　　　　　 <wchar.h>

　　　　　　　　　　　　　　　 返回值：若流是宽定向的，返回正值；若流是字节定向的，返回负值；

　　　　　　　　　　　　　　　 若流是未定向的，返回0



size_t　　　　 fwrite(const void *restrict ptr, size_t size, size_t nobj, 

　　　　　　　　　　　　FILE *restrict fp);

　　　　　　　　　　　　　　　 <stdio.h>　　　　　　　　　　　　　　　　　　　　　 p. 156

　　　　　　　　　　　　　　　 返回值：写的对象数



const

char　　　 　　*gai_strerror(int error);

　　　　　　　　　　　　　　　 <netdb.h>　　　　　　　　　　　　　　　　　　　　　 p. 600

　　　　　　　　　　　　　　　 返回值：指向描述错误的字符串的指针



int　　　　　　getaddrinfo(const char *restrict host, const char *restrict service,

　　　　　　　　　　　　　　　const struct addrinfo *restrict hint, 

　　　　　　　　　　　　　　　struct addrinfo **restrict res);

　　　　　　　　　　　　　　　 <sys/socket.h>　　　　　　　　　　　　　　　　　　 p. 599

　　　　　　　　　　　　　　　 <netdb.h>

　　　　　　　　　　　　　　　 返回值：若成功，返回0；若出错，返回非0错误码



int　　　　　　getc(FILE *fp);

　　　　　　　　　　　　　　　 <stdio.h>　　　　　　　　　　　　　　　　　　　　　 p. 150

　　　　　　　　　　　　　　　 返回值：若成功，返回下一个字符；若已到达文件尾端或出错，返回EOF



int　　　　　　getchar(void);

　　　　　　　　　　　　　　　 <stdio.h>　　　　　　　　　　　　　　　　　　　　　 p. 150

　　　　　　　　　　　　　　　 返回值：若成功，返回下一个字符；若已到达文件尾端或出错，返回EOF



int　　　　　　getchar_unlocked(void);

　　　　　　　　　　　　　　　 <stdio.h>　　　　　　　　　　　　　　　　　　　　　 p. 444

　　　　　　　　　　　　　　　 返回值：若成功，返回下一个字符；若已到达文件尾或者出错，返回EOF



int　　　　　　getc_unlocked(FILE *fp);

　　　　　　　　　　　　　　　 <stdio.h>　　　　　　　　　　　　　　　　　　　　　 p. 444

　　　　　　　　　　　　　　　 返回值：若成功，返回下一个字符；若已到达文件尾或者出错，返回EOF



char　　　 　　*getcwd(char *buf, size_t size);

　　　　　　　　　　　　　　　 <unistd.h>　　　　　　　　　　　　　　　　　　　　　p. 136

　　　　　　　　　　　　　　　 返回值：若成功，返回buf；若出错，返回NULL

gid_t　　　　　getegid(void);

　　　　　　　　　　　　　　　 <unistd.h>　　　　　　　　　　　　　　　　　　　　　p. 228

　　　　　　　　　　　　　　　 返回值：调用进程的有效组ID



char　　　 　　*getenv(const char *name);

　　　　　　　　　　　　　　　 <stdlib.h>　　　　　　　　　　　　　　　　　　　　　p. 210

　　　　　　　　　　　　　　　 返回值：指向与name关联的value的指针；若未找到，返回NULL



uid_t　　　　　geteuid(void);

　　　　　　　　　　　　　　　 <unistd.h>　　　　　　　　　　　　　　　　　　　　　p. 228

　　　　　　　　　　　　　　　 返回值：调用进程的有效用户ID



gid_t　　　　　getgid(void);

　　　　　　　　　　　　　　　 <unistd.h>　　　　　　　　　　　　　　　　　　　　　p. 228

　　　　　　　　　　　　　　　 返回值：调用进程的实际组ID



struct

group　　　　　*getgrent(void);

　　　　　　　　　　　　　　　 <grp.h>　　　　　　　　　　　　　　　　　　　　　　　p. 183

　　　　　　　　　　　　　　　 返回值：若成功，返回指针；若出错或到达文件尾端，返回NULL



struct

group　　　　　*getgrgid(gid_t gid);

　　　　　　　　　　　　　　　 <grp.h>　　　　　　　　　　　　　　　　　　　　　　　p. 182

　　　　　　　　　　　　　　　 返回值：若成功，返回指针；若出错，返回NULL



struct

group　　　　　*getgrnam(const char *name);

　　　　　　　　　　　　　　　 <grp.h>　　　　　　　　　　　　　　　　　　　　　　　p. 182

　　　　　　　　　　　　　　　 返回值：若成功，返回指针；若出错，返回NULL



int　　　　　　getgroups(int gidsetsize, gid_t grouplist[]);

　　　　　　　　　　　　　　　 <unistd.h>　　　　　　　　　　　　　　　　　　　　　p. 184

　　　　　　　　　　　　　　　 返回值：若成功，返回附属组ID数量；若出错，返回−1



struct

hostent　　　 *gethostent(void);

　　　　　　　　　　　　　　　 <netdb.h>　　　　　　　　　　　　　　　　　　　　　 p. 597

　　　　　　　　　　　　　　　 返回值：若成功，返回指针；若出错，返回NULL



int　　　　　　gethostname(char *name, int namelen);

　　　　　　　　　　　　　　　 <unistd.h>　　　　　　　　　　　　　　　　　　　　　p. 188

　　　　　　　　　　　　　　　 返回值：若成功，返回0；若出错，返回−1



char　　　 　　*getlogin(void);

　　　　　　　　　　　　　　　 <unistd.h>　　　　　　　　　　　　　　　　　　　　　p. 275

　　　　　　　　　　　　　　　 返回值：若成功，返回指向登录名字符串的指针；若出错，返回NULL



int　　　　　　getnameinfo(const struct sockaddr *restrict addr, 

　　　　　　　　　　　　　　　socklen_t alen, char *restrict host,

　　　　　　　　　　　　　　　socklen_t hostlen, char *restrict service,

　　　　　　　　　　　　　　　socklen_t servlen, unsigned int flags);

　　　　　　　　　　　　　　　 <sys/socket.h>　　　　　　　　　　　　　　　　　　 p. 600

　　　　　　　　　　　　　　　 <netdb.h> 

　　　　　　　　　　　　　　　 flags：NI_DGRAM、NI_NAMEREQD、NI_NOFQDN、

　　　　　　　　　　　　　　　　　　 　NI_NUMERICHOST、NI_NUMERICSCOPE、

　　　　　　　　　　　　　　　　 　　　NI_NUMERICSERV

　　　　　　　　　　　　　　　 返回值：若成功，返回0；若出错，返回非0值



struct

netent　　　　*getnetbyaddr(uint32_t net, int type);

　　　　　　　　　　　　　　　 <netdb.h>　　　　　　　　　　　　　　　　　　　　　 p. 598

　　　　　　　　　　　　　　　 返回值：若成功，返回指针；若出错，返回NULL



struct

netent　　　　*getnetbyname(const char *name);

　　　　　　　　　　　　　　　 <netdb.h>　　　　　　　　　　　　　　　　　　　　　 p. 598

　　　　　　　　　　　　　　　 返回值：若成功，返回指针；若出错，返回NULL



struct

netent　　　　*getnetent(void);

　　　　　　　　　　　　　　　 <netdb.h>　　　　　　　　　　　　　　　　　　　　　 p. 598

　　　　　　　　　　　　　　　 返回值：若成功，返回指针；若出错，返回NULL



int　　　　　　getopt(int argc, char * const argv[], const char *options);

　　　　　　　　　　　　　　　 <fcntl.h>　　　　　　　　　　　　　　　　　　　　　 p. 662

　　　　　　　　　　　　　　　 extern int opterr, optind, optopt;

　　　　　　　　　　　　　　　 extern char *optarg;

　　　　　　　　　　　　　　　 返回值：下一个选项字符；若所有选项被处理完，返回−1



int　　　　　　getpeername(int sockfd, struct sockaddr *restrict addr,

　　　　　　　　　　　　　　　　　socklen_t *restrict alenp);

　　　　　　　　　　　　　　　 <sys/socket.h>　　　　　　　　　　　　　　　　　　 p. 605

　　　　　　　　　　　　　　　 返回值：若成功，返回0；若出错，返回−1



pid_t　　　　　getpgid(pid_t pid);

　　　　　　　　　　　　　　　 <unistd.h>　　　　　　　　　　　　　　　　　　　　　p. 294

　　　　　　　　　　　　　　　 返回值：若成功，返回进程组ID；若出错，返回−1



pid_t　　　　　getpgrp(void);

　　　　　　　　　　　　　　　 <unistd.h>　　　　　　　　　　　　　　　　　　　　　p. 293

　　　　　　　　　　　　　　　 返回值：调用进程的进程组ID



pid_t　　　　　getpid(void);

　　　　　　　　　　　　　　　 <unistd.h>　　　　　　　　　　　　　　　　　　　　　p. 228

　　　　　　　　　　　　　　　 返回值：调用进程的进程ID



pid_t　　　　　getppid(void);

　　　　　　　　　　　　　　　 <unistd.h>　　　　　　　　　　　　　　　　　　　　　p. 228

　　　　　　　　　　　　　　　 返回值：调用进程的父进程ID



int　　　　　　getpriority(int which, id_t who);

　　　　　　　　　　　　　　　 <sys/resource.h>　　　　　　　　　　　　　　　　　 p. 277

　　　　　　　　　　　　　　　 which：PRIO_PROCESS、PRIO_PGRP、PRIO_USER

　　　　　　　　　　　　　　　 返回值：若成功，返回−NZERO～NZERO−1的nice值；若出错，返回−1



struct

protoent　　　*getprotobyname(const char *name);

　　　　　　　　　　　　　　　 <netdb.h>　　　　　　　　　　　　　　　　　　　　　　p. 598

　　　　　　　　　　　　　　　 返回值：若成功，返回指针；若出错，返回NULL



struct

protoent　　　*getprotobynumber(int proto);

　　　　　　　　　　　　　　　 <netdb.h>　　　　　　　　　　　　　　　　　　　　　　p. 598

　　　　　　　　　　　　　　　 返回值：若成功，返回指针；若出错，返回NULL



struct

protoent　　　*getprotoent(void);

　　　　　　　　　　　　　　　 <netdb.h>　　　　　　　　　　　　　　　　　　　　　　p. 598

　　　　　　　　　　　　　　　 返回值：若成功，返回指针；若出错，返回NULL



struct

passwd　　　　*getpwent(void);

　　　　　　　　　　　　　　　 <pwd.h>　　　　　　　　　　　　　　　　　　　　　　　p. 180

　　　　　　　　　　　　　　　 返回值：若成功，返回指针；若出错或到达文件尾端，返回NULL



struct

passwd　　　　*getpwnam(const char *name);

　　　　　　　　　　　　　　　 <pwd.h>　　　　　　　　　　　　　　　　　　　　　　　p. 179

　　　　　　　　　　　　　　　 返回值：若成功，返回指针；若出错，返回NULL



struct

passwd　　　　*getpwuid(uid_t uid);

　　　　　　　　　　　　　　　 <pwd.h>　　　　　　　　　　　　　　　　　　　　　　　p. 179

　　　　　　　　　　　　　　　 返回值：若成功，返回指针；若出错，返回NULL



int　　　　　　getrlimit(int resource, struct rlimit *rlptr);

　　　　　　　　　　　　　　　 <sys/resource.h>　　　　　　　　　　　　　　　　　 p. 220

　　　　　　　　　　　　　　　 resource：RLIMIT_CORE, RLIMIT_CPU,

　　　　　　　　　　　　　　　　　　　　　RLIMIT_DATA, RLIMIT_FSIZE,

　　　　　　　　　　　　　　　　　　　　　RLIMIT_NOFILE, RLIMIT_STACK,

　　　　　　　　　　　　　　　　　　　　　RLIMIT_AS（FreeBSD 8.0、Linux 3.2.0、

　　　　　　　　　　　　　　　　　　　　　　　　　　 Solaris 10）,

　　　　　　　　　　　　　　　　　　　　　RLIMIT_MEMLOCK（FreeBSD 8.0、Linux 3.2.0、

　　　　　　　　　　　　　　　　　　　　　　　　　　　　　 Mac OS X 10.6.8）,

　　　　　　　　　　　　　　　　　　　　　RLIMIT_MSGQUEUE（Linux 3.2.0）,

　　　　　　　　　　　　　　　　　　　　　RLIMIT_NICE（Linux 3.2.0）,

　　　　　　　　　　　　　　　　　　　　　RLIMIT_NPROC（FreeBSD 8.0、Linux 3.2.0、 

　　　　　　　　　　　　　　　　　　　　　　　　　　　　Mac OS X 10.6.8）,

　　　　　　　　　　　　　　　　　　　　　RLIMIT_NPTS（FreeBSD 8.0）,

　　　　　　　　　　　　　　　　　　　　　RLIMIT_RSS（FreeBSD 8.0、Linux 3.2.0、 

　　　　　　　　　　　　　　　　　　　　　　　　　　　Mac OS X 10.6.8）,

　　　　　　　　　　　　　　　　　　　　　RLIMIT_SBSIZE（FreeBSD 8.0）,

　　　　　　　　　　　　　　　　　　　　　RLIMIT_SIGPENDING（Linux 3.2.0）,

　　　　　　　　　　　　　　　　　　　　　RLIMIT_SWAP（FreeBSD 8.0）,

　　　　　　　　　　　　　　　　　　　　　RLIMIT_VMEM（Solaris 10）

　　　　　　　　　　　　　　　 返回值：若成功，返回0；若出错，返回−1



char　　　 　　*gets(char *buf);

　　　　　　　　　　　　　　　 <stdio.h>　　　　　　　　　　　　　　　　　　　　　 p. 152

　　　　　　　　　　　　　　　 返回值：若成功，返回buf；若已到达文件尾端或出错，返回NULL



struct

servent　　　 *getservbyname(const char *name, const char *proto);

　　　　　　　　　　　　　　　 <netdb.h>　　　　　　　　　　　　　　　　　　　　　 p. 599

　　　　　　　　　　　　　　　 返回值：若成功，返回指针；若出错，返回NULL



struct

servent　　　 *getservbyport(int port, const char *proto);

　　　　　　　　　　　　　　　 <netdb.h>　　　　　　　　　　　　　　　　　　　　　 p. 599

　　　　　　　　　　　　　　　 返回值：若成功，返回指针；若出错，返回NULL



struct

servent　　　 *getservent(void);

　　　　　　　　　　　　　　　 <netdb.h>　　　　　　　　　　　　　　　　　　　　　 p. 599

　　　　　　　　　　　　　　　 返回值：若成功，返回指针；若出错，返回NULL



pid_t　　　　　getsid(pid_t pid);

　　　　　　　　　　　　　　　 <unistd.h>　　　　　　　　　　　　　　　　　　　　　p. 296

　　　　　　　　　　　　　　　 返回值：若成功，返回会话首进程的进程组ID；若出错，返回−1



int　　　　　　getsockname(int sockfd, struct sockaddr *restrict addr,

　　　　　　　　　　　　　　　socklen_t *restrict alenp);

　　　　　　　　　　　　　　　 <sys/socket.h>　　　　　　　　　　　　　　　　　　 p. 605

　　　　　　　　　　　　　　　 返回值：若成功，返回0；若出错，返回−1



int　　　　　　getsockopt(int sockfd, int level, int option, void *restrict val,

　　　　　　　　　　　　　　 socklen_t *restrict lenp);

　　　　　　　　　　　　　　　 <sys/socket.h>　　　　　　　　　　　　　　　　　　 p. 624

　　　　　　　　　　　　　　　 返回值：若成功，返回0；若出错，返回−1



struct

spwd　　　　　 *getspent(void);

　　　　　　　　　　　　　　　 <shadow.h>　　　　　　　　　　　　　　　　　　　　　p. 182

　　　　　　　　　　　　　　　 返回值：若成功，返回指针；若出错，返回NULL

　　　　　　　　　　　　　　　 平台：Linux 3.2.0、Solaris 10



struct

spwd　　　　　 *getspnam(const char *name);

　　　　　　　　　　　　　　　 <shadow.h>　　　　　　　　　　　　　　　　　　　　　p. 182

　　　　　　　　　　　　　　　 返回值：若成功，返回指针；若出错，返回NULL

　　　　　　　　　　　　　　　 平台：Linux 3.2.0、Solaris 10



int　　　　　　gettimeofday(struct timeval *restrict tp, 

　　　　　　　　　　　　　　　 void *restrict tzp);

　　　　　　　　　　　　　　　 <sys/time.h>　　　　　　　　　　　　　　　　　　　　p. 190

　　　　　　　　　　　　　　　 返回值：总是返回0



uid_t　　　　　getuid(void);

　　　　　　　　　　　　　　　 <unistd.h>　　　　　　　　　　　　　　　　　　　　　p. 228

　　　　　　　　　　　　　　　 返回值：调用进程的实际用户ID



struct

tm　　　　　　 *gmtime(const time_t *calptr);

　　　　　　　　　　　　　　　 <time.h>　　　　　　　　　　　　　　　　　　　　　　p. 192

　　　　　　　　　　　　　　　 返回值：指向分解的tm结构的指针；若出错，返回NULL



int　　　　　　grantpt(int fd);

　　　　　　　　　　　　　　　 <stdlib.h>　　　　　　　　　　　　　　　　　　　　　p. 723

　　　　　　　　　　　　　　　 返回值：若成功，返回0；若出错，返回−1



uint32_t　　　htonl(uint32_t hostint32);

　　　　　　　　　　　　　　　 <arpa/inet.h>　　　　　　　　　　　　　　　　　　　p. 594

　　　　　　　　　　　　　　　 返回值：以网络字节序表示的32位整数



uint16_t　　　htons(uint16_t hostint16);

　　　　　　　　　　　　　　　 <arpa/inet.h>　　　　　　　　　　　　　　　　　　　p. 594

　　　　　　　　　　　　　　　 返回值：以网络字节序表示的16位整数



const

char　　　　　 *inet_ntop(int domain, const void *restrict addr,

　　　　　　　　　　　　　　 char *restrict str, socklen_t size);

　　　　　　　　　　　　　　　 <arpa/inet.h>　　　　　　　　　　　　　　　　　　　p. 596

　　　　　　　　　　　　　　　 返回值：若成功，返回地址字符串指针；若出错，返回NULL



int　　　　　　inet_pton(int domain, const char *restrict str, 

　　　　　　　　　　　　　 void *restrict addr);

　　　　　　　　　　　　　　　 <arpa/inet.h>　　　　　　　　　　　　　　　　　　　p. 596

　　　　　　　　　　　　　　　 返回值：若成功，返回1；若格式无效，返回0；若出错，返回−1



int　　　　　　initgroups(const char *username, gid_t basegid);

　　　　　　　　　　　　　　　 <grp.h>　　 /* Linux & Solaris */ 　　　　　　　p. 184

　　　　　　　　　　　　　　　 <unistd.h> /* FreeBSD & Mac OS X */

　　　　　　　　　　　　　　　 返回值：若成功，返回0；若出错，返回−1



int　　　　　　ioctl(int fd, int request, ...);

　　　　　　　　　　　　　　　 <unistd.h>　　 /* System V */ 　　　　　　　　　 p. 87

　　　　　　　　　　　　　　　 <sys/ioctl.h> /* BSD and Linux */

　　　　　　　　　　　　　　　 返回值：若出错，返回−1；若成功，返回其他值



int　　　　　　isatty(int fd);

　　　　　　　　　　　　　　　 <unistd.h>　　　　　　　　　　　　　　　　　　　　　p. 695

　　　　　　　　　　　　　　　 返回值：若为终端设备，返回1（真）；否则，返回0（假）



int　　　　　　kill(pid_t pid, int signo);

　　　　　　　　　　　　　　　 <signal.h>　　　　　　　　　　　　　　　　　　　　　p. 337

　　　　　　　　　　　　　　　 返回值：若成功，返回0；若出错，返回−1



int　　　　　　lchown(const char *path, uid_t owner, gid_t group);

　　　　　　　　　　　　　　　 <unistd.h>　　　　　　　　　　　　　　　　　　　　　p. 109

　　　　　　　　　　　　　　　 返回值：若成功，返回0；若出错，返回−1



int　　　　　　link(const char *existingpath, const char *newpath);

　　　　　　　　　　　　　　　 <unistd.h>　　　　　　　　　　　　　　　　　　　　　p. 116

　　　　　　　　　　　　　　　 返回值：若成功，返回0；若出错，返回−1



int　　　　　　linkat(int efd, const char *existingpath, int nfd, 

　　　　　　　　　　　　const char *newpath, int flag);

　　　　　　　　　　　　　　　 <unistd.h>　　　　　　　　　　　　　　　　　　　　　p. 116

　　　　　　　　　　　　　　　 flag：AT_SYMLINK_NOFOLLOW

　　　　　　　　　　　　　　　 返回值：若成功，返回0；若出错，返回−1



int　　　　　　lio_listio(int mode, struct aiocb *restrict const list[restrict],

　　　　　　　　　　　　　　 int nent, struct sigevent *restrict sigev);

　　　　　　　　　　　　　　　 <aio.h>　　　　　　　　　　　　　　　　　　　　　　　p. 515

　　　　　　　　　　　　　　　 mode：LIO_NOWAIT、LIO_WAIT

　　　　　　　　　　　　　　　 返回值：若成功，返回0；若出错，返回−1



int　　　　　　listen(int sockfd, int backlog);

　　　　　　　　　　　　　　　 <sys/socket.h>　　　　　　　　　　　　　　　　　　 p. 608

　　　　　　　　　　　　　　　 返回值：若成功，返回0；若出错，返回−1



struct

tm　　　　　　 *localtime(const time_t *calptr);

　　　　　　　　　　　　　　　 <time.h>　　　　　　　　　　　　　　　　　　　　　　p. 192

　　　　　　　　　　　　　　　 返回值：指向分解的tm结构的指针；若出错，返回NULL



void 　　　　　longjmp(jmp_buf env, int val);

　　　　　　　　　　　　　　　 <setjmp.h>　　　　　　　　　　　　　　　　　　　　　p. 215

　　　　　　　　　　　　　　　 这个函数不返回



off_t　　　　　lseek(int fd, off_t offset, int whence);

　　　　　　　　　　　　　　　 <unistd.h>　　　　　　　　　　　　　　　　　　　　　p. 67

　　　　　　　　　　　　　　　 whence：SEEK_SET、SEEK_CUR、SEEK_END

　　　　　　　　　　　　　　　 返回值：若成功，返回新的文件偏移量；若出错，返回−1



int　　　　　　lstat(const char *restrict path, struct stat *restrict buf);

　　　　　　　　　　　　　　　 <sys/stat.h>　　　　　　　　　　　　　　　　　　　　p. 93

　　　　　　　　　　　　　　　 返回值：若成功，返回0；若出错，返回−1



void 　　　　　*malloc(size_t size);

　　　　　　　　　　　　　　　 <stdlib.h>　　　　　　　　　　　　　　　　　　　　　p. 207

　　　　　　　　　　　　　　　 返回值：若成功，返回非空指针；若出错，返回NULL



int　　　　　　mkdir(const char *path, mode_t mode);

　　　　　　　　　　　　　　　 <sys/stat.h>　　　　　　　　　　　　　　　　　　　　p. 129

　　　　　　　　　　　　　　　 mode：S_IS[UG]ID、S_ISVTX、

　　　　　　　　　　　　　　　　　　 S_I[RWX](USR|GRP|OTH)

　　　　　　　　　　　　　　　 返回值：若成功，返回0；若出错，返回−1



int　　　　　　mkdirat(int fd, const char *path, mode_t mode);

　　　　　　　　　　　　　　　 <sys/stat.h>　　　　　　　　　　　　　　　　　　　　p. 129

　　　　　　　　　　　　　　　 mode：S_IS[UG]ID、S_ISVTX、

　　　　　　　　　　　　　　　　　　 S_I[RWX](USR|GRP|OTH)

　　　　　　　　　　　　　　　 返回值：若成功，返回0；若出错，返回−1



char　　　　　 *mkdtemp(char *template);

　　　　　　　　　　　　　　　 <stdlib.h>　　　　　　　　　　　　　　　　　　　　　p. 169

　　　　　　　　　　　　　　　 返回值：若成功，返回指向目录名的指针；若出错，返回NULL



int　　　　　　mkfifo(const char *path, mode_t mode);

　　　　　　　　　　　　　　　 <sys/stat.h>　　　　　　　　　　　　　　　　　　　　p. 553

　　　　　　　　　　　　　　　 mode：S_IS[UG]ID、S_ISVTX、

　　　　　　　　　　　　　　　　　　 S_I[RWX](USR|GRP|OTH)

　　　　　　　　　　　　　　　 返回值：若成功，返回0；若出错，返回−1



int　　　　　　mkfifoat(int fd, const char *path, mode_t mode);

　　　　　　　　　　　　　　　 <sys/stat.h>　　　　　　　　　　　　　　　　　　　　p. 553

　　　　　　　　　　　　　　　 mode：S_IS[UG]ID、S_ISVTX、

　　　　　　　　　　　　　　　　　　 S_I[RWX](USR|GRP|OTH)

　　　　　　　　　　　　　　　 返回值：若成功，返回0；若出错，返回−1



int　　　　　　mkstemp(char *template);

　　　　　　　　　　　　　　　 <stdlib.h>　　　　　　　　　　　　　　　　　　　　　p. 169

　　　　　　　　　　　　　　　 返回值：若成功，返回文件描述符；若出错，返回−1



time_t　　　　 mktime(struct tm *tmptr);

　　　　　　　　　　　　　　　 <time.h>　　　　　　　　　　　　　　　　　　　　　　 p. 192

　　　　　　　　　　　　　　　 返回值：若成功，返回日历时间；若出错，返回−1



void 　　　　　*mmap(void *addr, size_t len, int prot, int flag, int fd, 

　　　　　　　　　　　off_t off);

　　　　　　　　　　　　　　　 <sys/mman.h>　　　　　　　　　　　　　　　　　　　　p. 525

　　　　　　　　　　　　　　　 prot：PROT_READ、PROT_WRITE、PROT_EXEC、PROT_NONE

　　　　　　　　　　　　　　　 flag：MAP_FIXED、MAP_SHARED、MAP_PRIVATE

　　　　　　　　　　　　　　　 返回值：若成功，返回映射区的起始地址；若出错，返回MAP_FAILED



int　　　　　　mprotect(void *addr, size_t len, int prot);

　　　　　　　　　　　　　　　 <sys/mman.h>　　　　　　　　　　　　　　　　　　　　p. 527

　　　　　　　　　　　　　　　 返回值：若成功，返回0；若出错，返回−1

int　　　　　　msgctl(int msqid, int cmd, struct msqid_ds *buf);

　　　　　　　　　　　　　　　 <sys/msg.h>　　　　　　　　　　　　　　　　　　　　 p. 562

　　　　　　　　　　　　　　　 cmd：IPC_STAT、IPC_SET、IPC_RMID

　　　　　　　　　　　　　　　 返回值：若成功，返回0，若出错，返回−1



int　　　　　　msgget(key_t key, int flag);

　　　　　　　　　　　　　　　 <sys/msg.h>　　　　　　　　　　　　　　　　　　　　 p. 562

　　　　　　　　　　　　　　　 flag：IPC_CREAT、IPC_EXCL

　　　　　　　　　　　　　　　 返回值：若成功，返回消息队列ID；若出错，返回−1



ssize_t　　　 msgrcv(int msqid, void *ptr, size_t nbytes, long type, int flag);

　　　　　　　　　　　　　　　 <sys/msg.h>　　　　　　　　　　　　　　　　　　　　 p. 564

　　　　　　　　　　　　　　　 flag：IPC_NOWAIT、MSG_NOERROR

　　　　　　　　　　　　　　　 返回值：若成功，返回消息数据部分的长度；若出错，返回−1



int　　　　　　msgsnd(int msqid, const void *ptr, size_t nbytes, int flag);

　　　　　　　　　　　　　　　 <sys/msg.h>　　　　　　　　　　　　　　　　　　　　 p. 563

　　　　　　　　　　　　　　　 flag：IPC_NOWAIT

　　　　　　　　　　　　　　　 返回值：若成功，返回0；若出错，返回−1



int　　　　　　msync(void *addr, size_t len, int flags);

　　　　　　　　　　　　　　　 <sys/mman.h>　　　　　　　　　　　　　　　　　　　　p. 528

　　　　　　　　　　　　　　　 flag：MS_ASYNC、MS_INVALIDATE、MS_SYNC

　　　　　　　　　　　　　　　 返回值：若成功，返回0；若出错，返回−1



int　　　　　　munmap(void *addr, size_t len);

　　　　　　　　　　　　　　　 <sys/mman.h>　　　　　　　　　　　　　　　　　　　　p. 528

　　　　　　　　　　　　　　　 返回值：若成功，返回0；若出错，返回−1



int　　　　　　nanosleep(const struct timespec *reqtp, 

　　　　　　　　　　　　　 struct timespec *remtp);

　　　　　　　　　　　　　　　 <time.h>　　　　　　　　　　　　　　　　　　　　　　p. 374

　　　　　　　　　　　　　　　 返回值：若休眠够要求的时间，返回0；若出错，返回−1



int　　　　　　nice(int incr);

　　　　　　　　　　　　　　　 <unistd.h>　　　　　　　　　　　　　　　　　　　　 p. 276

　　　　　　　　　　　　　　　 返回值：若成功，返回新的nice值减掉NZERO；若出错，返回-1



uint32_t　　　ntohl(uint32_t netint32);

　　　　　　　　　　　　　　　 <arpa/inet.h>　　　　　　　　　　　　　　　　　　　p. 594

　　　　　　　　　　　　　　　 返回值：以主机字节序表示的32位整数



uint16_t　　　ntohs(uint16_t netint16);

　　　　　　　　　　　　　　　 <arpa/inet.h>　　　　　　　　　　　　　　　　　　　p. 594

　　　　　　　　　　　　　　　 返回值：以主机字节序表示的16位整数



int　　　　　　open(const char *path, int oflag, ... /* mode_t mode */ );

　　　　　　　　　　　　　　　 <fcntl.h>　　　　　　　　　　　　　　　　　　　　　 p. 62

　　　　　　　　　　　　　　　 oflag：O_RDONLY、O_WRONLY、O_RDWR、O_EXEC、

　　　　　　　　　　　　　　　　　　　 O_SEARCH;

　　　　　　　　　　　　　　　　　　　 O_APPEND、O_CLOEXEC、O_CREAT、

　　　　　　　　　　　　　　　　　　　 O_DIRECTORY、O_DSYNC、O_EXCL、

　　　　　　　　　　　　　　　　　　　 O_NOCTTY、O_NOFOLLOW、O_NONBLOCK、

　　　　　　　　　　　　　　　　　　　 O_RSYNC、O_SYNC、O_TRUNC、O_TTY_INIT

　　　　　　　　　　　　　　　 mode：S_IS[UG]ID、S_ISVTX、

　　　　　　　　　　　　　　　　　　 S_I[RWX](USR|GRP|OTH)

　　　　　　　　　　　　　　　 返回值：若成功，返回文件描述符；若出错，返回-1

　　　　　　　　　　　　　　　 平台：在FreeBSD 8.0和Mac OS X 10.6.8中还有一个O_FSYNC标志



int　　　　　　openat(int fd, const char *path, int oflag, ... 

　　　　　　　　　　　　　 /* mode_t mode */ );

　　　　　　　　　　　　　　　 <fcntl.h>　　　　　　　　　　　　　　　　　　　　　 p. 62

　　　　　　　　　　　　　　　 oflag：O_RDONLY、O_WRONLY、O_RDWR、O_EXEC、

　　　　　　　　　　　　　　　　　　　 O_SEARCH;

　　　　　　　　　　　　　　　　　　　 O_APPEND、O_CLOEXEC、O_CREAT、

　　　　　　　　　　　　　　　　　　　 O_DIRECTORY、O_DSYNC、O_EXCL、

　　　　　　　　　　　　　　　　　　　 O_NOCTTY、O_NOFOLLOW、O_NONBLOCK、

　　　　　　　　　　　　　　　　　　　 O_RSYNC、O_SYNC、O_TRUNC、O_TTY_INIT

　　　　　　　　　　　　　　　 mode：S_IS[UG]ID、S_ISVTX、

　　　　　　　　　　　　　　　　　　 S_I[RWX](USR|GRP|OTH)

　　　　　　　　　　　　　　　 返回值：若成功，返回文件描述符；若出错，返回-1

　　　　　　　　　　　　　　　 平台：在FreeBSD 8.0和Mac OS X 10.6.8中还有一个O_FSYNC标志



DIR　　　　　　*opendir(const char *path);

　　　　　　　　　　　　　　　 <dirent.h>　　　　　　　　　　　　　　　　　　　　　p. 130

　　　　　　　　　　　　　　　 返回值：若成功，返回指针；若出错，返回NULL



void 　　　　　openlog(const char *ident, int option, int facility);

　　　　　　　　　　　　　　　 <syslog.h>　　　　　　　　　　　　　　　　　　　　　p. 470

　　　　　　　　　　　　　　　 option：LOG_CONS、LOG_NDELAY、LOG_NOWAIT、

　　　　　　　　　　　　　　　　　　　　LOG_ODELAY、LOG_PERROR、LOG_PID

　　　　　　　　　　　　　　　 facility：LOG_AUTH、LOG_AUTHPRIV、LOG_CRON、

　　　　　　　　　　　　　　　　　　　　　LOG_DAEMON、LOG_FTP、LOG_KERN、

　　　　　　　　　　　　　　　　　　　　　LOG_LOCAL[0-7]、LOG_LPR、LOG_MAIL、

　　　　　　　　　　　　　　　　　　　　　LOG_NEWS、LOG_SYSLOG、LOG_USER、LOG_UUCP



FILE 　　　　　*open_memstream(char **bufp, size_t *sizep);

　　　　　　　　　　　　　　　 <stdio.h>　　　　　　　　　　　　　　　　　　　　　 p. 173

　　　　　　　　　　　　　　　 返回值：若成功，返回流指针；若出错，返回NULL



FILE 　　　　　*open_wmemstream(wchar_t **bufp, size_t *sizep);

　　　　　　　　　　　　　　　 <wchar.h>　　　　　　　　　　　　　　　　　　　　　 p. 173

　　　　　　　　　　　　　　　 返回值：若成功，返回流指针；若出错，返回NULL



long 　　　　　pathconf(const char *path, int name);

　　　　　　　　　　　　　　　 <unistd.h>　　　　　　　　　　　　　　　　　　　　　p. 42

　　　　　　　　　　　　　　　 name：_PC_ASYNC_IO、_PC_CHOWN_RESTRICTED、

　　　　　　　　　　　　　　　　　　 _PC_FILESIZEBITS、_PC_LINK_MAX、

　　　　　　　　　　　　　　　　　　 _PC_MAX_CANON、_PC_MAX_INPUT、

　　　　　　　　　　　　　　　　　　 _PC_NAME_MAX、_PC_NO_TRUNC、_PC_PATH_MAX、

　　　　　　　　　　　　　　　　　　 _PC_PIPE_BUF、_PC_PRIO_IO、_PC_SYMLINK_MAX、

　　　　　　　　　　　　　　　　　　 _PC_SYNC_IO、_PC_TIMESTAMP_RESOLUTION、

　　　　　　　　　　　　　　　　　　 _PC_2_SYMLINKS、_PC_VDISABLE

　　　　　　　　　　　　　　　 返回值：若成功，返回相应值；若出错，返回-1



int　　　　　　pause(void);

　　　　　　　　　　　　　　　 <unistd.h>　　　　　　　　　　　　　　　　　　　　　p. 338

　　　　　　　　　　　　　　　 返回值：-1，errno设置为EINTR



int　　　　　　pclose(FILE *fp);

　　　　　　　　　　　　　　　 <stdio.h>　　　　　　　　　　　　　　　　　　　　　 p. 541

　　　　　　　　　　　　　　　 返回值：若成功，返回popen函数中cmdstring的终止状态；若出错，返回-1



void 　　　　　perror(const char *msg);

　　　　　　　　　　　　　　　<stdio.h>　　　　　　　　　　　　　　　　　　　　　　p. 15



int　　　　　　pipe(int fd[2]);

　　　　　　　　　　　　　　　 <unistd.h>　　　　　　　　　　　　　　　　　　　　　p. 535

　　　　　　　　　　　　　　　 返回值：若成功，返回0；若出错，返回−1



int　　　　　　poll(struct pollfd fdarray[], nfds_t nfds, int timeout);

　　　　　　　　　　　　　　　 <poll.h>　　　　　　　　　　　　　　　　　　　　　　 p. 506

　　　　　　　　　　　　　　　 返回值：准备就绪的描述符数；若超时，返回0；若出错，返回−1



FILE 　　　　　*popen(const char *cmdstring, const char *type);

　　　　　　　　　　　　　　　 <stdio.h>　　　　　　　　　　　　　　　　　　　　　 p. 541

　　　　　　　　　　　　　　　 type："r", "w"

　　　　　　　　　　　　　　　 返回值：若成功，返回文件指针；若出错，返回NULL



int　　　　　　posix_openpt(int oflag);

　　　　　　　　　　　　　　　 <stdlib.h>　　　　　　　　　　　　　　　　　　　　　p. 722

　　　　　　　　　　　　　　　 <fcntl.h>

　　　　　　　　　　　　　　　 oflag：O_RWDR、O_NOCTTY

　　　　　　　　　　　　　　　 返回值：若成功，返回下一个可用的PTY主设备文件描述符；若出错，返回−1



ssize_t　　　 pread(int fd, void *buf, size_t nbytes, off_t offset);

　　　　　　　　　　　　　　　 <unistd.h>　　　　　　　　　　　　　　　　　　　　　p. 78

　　　　　　　　　　　　　　　 返回值：读到的字节数；若已到达文件尾端，返回0；若出错，返回−1



int　　　　　　printf(const char *restrict format, ...);

　　　　　　　　　　　　　　　 <stdio.h>　　　　　　　　　　　　　　　　　　　　　 p. 159

　　　　　　　　　　　　　　　 返回值：若成功，返回输出字符数；若输出出错，返回负值



int　　　　　　pselect(int maxfdp1, fd_set *restrict readfds,

　　　　　　　　　　　　 fd_set *restrict writefds, fd_set *restrict exceptfds,

　　　　　　　　　　　　 const struct timespec *restrict tsptr,

　　　　　　　　　　　　 const sigset_t *restrict sigmask);

　　　　　　　　　　　　　　　 <sys/select.h>　　　　　　　　　　　　　　　　　　 p. 506

　　　　　　　　　　　　　　　 返回值：准备就绪的描述符数；若超时，返回0；若出错，返回−1



void 　　　　　psiginfo(const siginfo_t *info, const char *msg);

　　　　　　　　　　　　　　　 <signal.h>　　　　　　　　　　　　　　　　　　　　　p. 379



void 　　　　　psignal(int signo, const char *msg);

　　　　　　　　　　　　　　　 <signal.h>　　　　　　　　　　　　　　　　　　　　　p. 379

　　　　　　　　　　　　　　　 <siginfo.h> /* on Solaris */



int　　　　　　pthread_atfork(void (*prepare)(void), void (*parent)(void), 

　　　　　　　　　　　　 　　　 void (*child)(void));

　　　　　　　　　　　　　　　 <pthread.h>　　　　　　　　　　　　　　　　　　　　 p. 458

　　　　　　　　　　　　　　　 返回值：若成功，返回0；否则，返回错误编号



int　　　　　　pthread_attr_destroy(pthread_attr_t *attr);

　　　　　　　　　　　　　　　 <pthread.h>　　　　　　　　　　　　　　　　　　　　 p. 427

　　　　　　　　　　　　　　　 返回值：若成功，返回0；否则，返回错误编号



int　　　　　　pthread_attr_getdetachstate(const pthread_attr_t *attr, 

　　　　　　　　　　　　　　　　　　　　　　　　 int *detachstate);

　　　　　　　　　　　　　　　 <pthread.h>　　　　　　　　　　　　　　　　　　　　 p. 428

　　　　　　　　　　　　　　　 返回值：若成功，返回0；否则，返回错误编号



int　　　　　　pthread_attr_getguardsize(const pthread_attr_t 

　　　　　　　　　　　　　　　　　　　　　　　　*restrict attr,

　　　　　　　　　　　　　　　　　　　　　　　size_t *restrict guardsize);

　　　　　　　　　　　　　　　 <pthread.h>　　　　　　　　　　　　　　　　　　　　 p. 430

　　　　　　　　　　　　　　　 返回值：若成功，返回0；否则，返回错误编号



int　　　　　　pthread_attr_getstack(const pthread_attr_t *restrict attr,

　　　　　　　　　　　　　　　　　　　　　void **restrict stackaddr,

　　　　　　　　　　　　　　　　　　　　　size_t *restrict stacksize);

　　　　　　　　　　　　　　　 <pthread.h>　　　　　　　　　　　　　　　　　　　　 p. 429

　　　　　　　　　　　　　　　 返回值：若成功，返回0；否则，返回错误编号

int　　　　　　pthread_attr_getstacksize(const pthread_attr_t 

　　　　　　　　　　　　　　　　　　　　　　　*restrict attr,

　　　　　　　　　　　　　　　　　　　　　　　 size_t *restrict stacksize);

　　　　　　　　　　　　　　　 <pthread.h>　　　　　　　　　　　　　　　　　　　　 p. 430

　　　　　　　　　　　　　　　 返回值：若成功，返回0；否则，返回错误编号



int　　　　　　pthread_attr_init(pthread_attr_t *attr);

　　　　　　　　　　　　　　　 <pthread.h>　　　　　　　　　　　　　　　　　　　　 p. 427

　　　　　　　　　　　　　　　 返回值：若成功，返回0；否则，返回错误编号



int　　　　　　pthread_attr_setdetachstate(pthread_attr_t *attr, 

　　　　　　　　　　　　　　　　　　　　　　　　int detachstate);

　　　　　　　　　　　　　　　 <pthread.h>　　　　　　　　　　　　　　　　　　　　 p. 428

　　　　　　　　　　　　　　　 detachstate：PTHREAD_CREATE_DETACHED、

　　　　　　　　　　　　　　　　　　　　　　　　PTHREAD_CREATE_JOINABLE

　　　　　　　　　　　　　　　 返回值：若成功，返回0；否则，返回错误编号



int　　　　　　pthread_attr_setguardsize(pthread_attr_t *attr, 

　　　　　　　　　　　　　　　　　　　　　　　size_t guardsize);

　　　　　　　　　　　　　　　 <pthread.h>　　　　　　　　　　　　　　　　　　　　 p. 430

　　　　　　　　　　　　　　　 返回值：若成功，返回0；否则，返回错误编号



int　　　　　　pthread_attr_setstack(const pthread_attr_t *attr, 

　　　　　　　　　　　　　　　　　　　 void *stackaddr, size_t *stacksize);

　　　　　　　　　　　　　　　 <pthread.h>　　　　　　　　　　　　　　　　　　　　 p. 429

　　　　　　　　　　　　　　　 返回值：若成功，返回0；否则，返回错误编号



int　　　　　　pthread_attr_setstacksize(pthread_attr_t *attr, 

　　　　　　　　　　　　　　　　　　　　　　　size_t stacksize);

　　　　　　　　　　　　　　　 <pthread.h>　　　　　　　　　　　　　　　　　　　　 p. 430

　　　　　　　　　　　　　　　 返回值：若成功，返回0；否则，返回错误编号



int　　　　　　pthread_barrierattr_destroy(pthread_barrierattr_t *attr);

　　　　　　　　　　　　　　　 <pthread.h>　　　　　　　　　　　　　　　　　　　　 p. 441

　　　　　　　　　　　　　　　 返回值：若成功，返回0；否则，返回错误编号



int　　　　　　pthread_barrierattr_getpshared(const pthread_barrierattr_t 

　　　　　　　　　　　　　　　　　　　　　　　　　　　*restrict attr,

　　　　　　　　　　　　　　　　　　　　　　　　　 int *restrict pshared);

　　　　　　　　　　　　　　　 <pthread.h>　　　　　　　　　　　　　　　　　　　　 p. 441

　　　　　　　　　　　　　　　 返回值：若成功，返回0；否则，返回错误编号



int　　　　　　pthread_barrierattr_init(pthread_barrierattr_t *attr);

　　　　　　　　　　　　　　　 <pthread.h>　　　　　　　　　　　　　　　　　　　　 p. 441

　　　　　　　　　　　　　　　 返回值：若成功，返回0；否则，返回错误编号



int　　　　　　pthread_barrierattr_setpshared(pthread_barrierattr_t *attr, 

　　　　　　　　　　　　　　　　　　　　　　　　　　int pshared);

　　　　　　　　　　　　　　　 <pthread.h>　　　　　　　　　　　　　　　　　　　　 p. 441

　　　　　　　　　　　　　　　 pshared：PTHREAD_PROCESS_PRIVATE、

　　　　　　　　　　　　　　　　　　　　　 PTHREAD_PROCESS_SHARED

　　　　　　　　　　　　　　　 返回值：若成功，返回0；否则，返回错误编号



int　　　　　　pthread_barrier_destroy(pthread_barrier_t *barrier);

　　　　　　　　　　　　　　　 <pthread.h>　　　　　　　　　　　　　　　　　　　　 p. 418

　　　　　　　　　　　　　　　 返回值：若成功，返回0；否则，返回错误编号



int　　　　　　pthread_barrier_init(pthread_barrier_t *restrict barrier,

　　　　　　　　　　　　　　　　　　　　 constpthread_barrierattr_t 

　　　　　　　　　　　　　　　　　　　　　 *restrict attr,

　　　　　　　　　　　　　　　　　　　　 unsigned int count);

　　　　　　　　　　　　　　　 <pthread.h>　　　　　　　　　　　　　　　　　　　　 p. 418

　　　　　　　　　　　　　　　 返回值：若成功，返回0；否则，返回错误编号



int　　　　　　pthread_barrier_wait(pthread_barrier_t *barrier);

　　　　　　　　　　　　　　　 <pthread.h>　　　　　　　　　　　　　　　　　　　　 p. 419

　　　　　　　　　　　　　　　 返回值：若成功，返回0或者PTHREAD_BARRIER_SERIAL_THREAD；  

　　　　　　　　　　　　　　　 否则，返回错误编号



int　　　　　　pthread_cancel(pthread_t tid);

　　　　　　　　　　　　　　　 <pthread.h>　　　　　　　　　　　　　　　　　　　　 p. 393

　　　　　　　　　　　　　　　 返回值：若成功，返回0；否则，返回错误编号



Void 　　　　　pthread_cleanup_pop(int execute);

　　　　　　　　　　　　　　　 <pthread.h>　　　　　　　　　　　　　　　　　　　　 p. 394



void　　　　　pthread_cleanup_push(void (*rtn)(void *), void *arg);

　　　　　　　　　　　　　　　 <pthread.h>　　　　　　　　　　　　　　　　　　　　 p. 394



int　　　　　　pthread_condattr_destroy(pthread_condattr_t *attr);

　　　　　　　　　　　　　　　 <pthread.h>　　　　　　　　　　　　　　　　　　　　 p. 440

　　　　　　　　　　　　　　　 返回值：若成功，返回0；否则，返回错误编号



int　　　　　　pthread_condattr_getclock(const pthread_condattr_t 

　　　　　　　　　　　　　　　　　　　　　　　　*restrict attr,

　　　　　　　　　　　　　　　　　　　　　　　clockid_t *restrict clock_id);

　　　　　　　　　　　　　　　 <pthread.h>　　　　　　　　　　　　　　　　　　　　 p. 441

　　　　　　　　　　　　　　　 返回值：若成功，返回0；否则，返回错误编号



int　　　　　　pthread_condattr_getpshared(const pthread_condattr_t 

　　　　　　　　　　　　　　　　　　　　　　　　　 *restrict attr,

　　　　　　　　　　　　　　　　　　　　　　　　int *restrict pshared);

　　　　　　　　　　　　　　　 <pthread.h>　　　　　　　　　　　　　　　　　　　　 p. 440

　　　　　　　　　　　　　　　 返回值：若成功，返回0；否则，返回错误编号



int　　　　　　pthread_condattr_init(pthread_condattr_t *attr);

　　　　　　　　　　　　　　　 <pthread.h>　　　　　　　　　　　　　　　　　　　　 p. 440

　　　　　　　　　　　　　　　 返回值：若成功，返回0；否则，返回错误编号



int　　　　　　pthread_condattr_setclock(pthread_condattr_t *attr, 

　　　　　　　　　　　　　　　　　　　　　　　clockid_t clock_id);

　　　　　　　　　　　　　　　 <pthread.h>　　　　　　　　　　　　　　　　　　　　 p. 441

　　　　　　　　　　　　　　　 返回值：若成功，返回0；否则，返回错误编号



int　　　　　　pthread_condattr_setpshared(pthread_condattr_t *attr, 

　　　　　　　　　　　　　　　　　　　　　　　　 int pshared);

　　　　　　　　　　　　　　　 <pthread.h>　　　　　　　　　　　　　　　　　　　　 p. 440

　　　　　　　　　　　　　　　 pshared：PTHREAD_PROCESS_PRIVATE、

　　　　　　　　　　　　　　　　　　　　 PTHREAD_PROCESS_SHARED

　　　　　　　　　　　　　　　 返回值：若成功，返回0；否则，返回错误编号



int　　　　　　pthread_cond_broadcast(pthread_cond_t *cond);

　　　　　　　　　　　　　　　 <pthread.h>　　　　　　　　　　　　　　　　　　　　 p. 415

　　　　　　　　　　　　　　　 返回值：若成功，返回0；否则，返回错误编号



int　　　　　　pthread_cond_destroy(pthread_cond_t *cond);

　　　　　　　　　　　　　　　 <pthread.h>　　　　　　　　　　　　　　　　　　　　 p. 414

　　　　　　　　　　　　　　　 返回值：若成功，返回0；否则，返回错误编号



int　　　　　　pthread_cond_init(pthread_cond_t *restrict cond,

　　　　　　　　　　　　　　　　　　const pthread_condattr_t *restrict attr);

　　　　　　　　　　　　　　　 <pthread.h>　　　　　　　　　　　　　　　　　　　　 p. 414

　　　　　　　　　　　　　　　 返回值：若成功，返回0；否则，返回错误编号



int　　　　　　pthread_cond_signal(pthread_cond_t *cond);

　　　　　　　　　　　　　　　 <pthread.h>　　　　　　　　　　　　　　　　　　　　 p. 415

　　　　　　　　　　　　　　　 返回值：若成功，返回0；否则，返回错误编号



int　　　　　　pthread_cond_timedwait(pthread_cond_t *restrict cond,

　　　　　　　　　　　　　　　　　　　　　pthread_mutex_t *restrict mutex,

　　　　　　　　　　　　　　　　　　　　　const struct timespec 

　　　　　　　　　　　　　　　　　　　　　　 *restrict timeout);

　　　　　　　　　　　　　　　 <pthread.h>　　　　　　　　　　　　　　　　　　　　 p. 414

　　　　　　　　　　　　　　　 返回值：若成功，返回0；否则，返回错误编号



int　　　　　　pthread_cond_wait(pthread_cond_t *restrict cond,

　　　　　　　　　　　　　　　　　　pthread_mutex_t *restrict mutex);

　　　　　　　　　　　　　　　 <pthread.h>　　　　　　　　　　　　　　　　　　　　 p. 414

　　　　　　　　　　　　　　　 返回值：若成功，返回0；否则，返回错误编号



int　　　　　　pthread_create(pthread_t *restrict tidp, 

　　　　　　　　　　　　　　　　 const pthread_attr_t *restrict attr,

　　　　　　　　　　　　　　　　 void *(*start_rtn)(void *), 

　　　　　　　　　　　　　　　　 void *restrict arg);

　　　　　　　　　　　　　　　 <pthread.h>　　　　　　　　　　　　　　　　　　　　 p. 385

　　　　　　　　　　　　　　　 返回值：若成功，返回0；否则，返回错误编号



int　　　　　　pthread_detach(pthread_t tid);

　　　　　　　　　　　　　　　 <pthread.h>　　　　　　　　　　　　　　　　　　　　 p. 397

　　　　　　　　　　　　　　　 返回值：若成功，返回0；否则，返回错误编号



int　　　　　　pthread_equal(pthread_t tid1, pthread_t tid2);

　　　　　　　　　　　　　　　 <pthread.h>　　　　　　　　　　　　　　　　　　　　 p. 385

　　　　　　　　　　　　　　　 返回值：若相等，返回非0数值；否则，返回0



void 　　　　　pthread_exit(void *rval_ptr);

　　　　　　　　　　　　　　　 <pthread.h>　　　　　　　　　　　　　　　　　　　　 p. 389



void 　　　　　*pthread_getspecific(pthread_key_t key);

　　　　　　　　　　　　　　　 <pthread.h>　　　　　　　　　　　　　　　　　　　　 p. 449

　　　　　　　　　　　　　　　 返回值：线程特定数据值；若没有值与该键关联，返回NULL



int　　　　　　pthread_join(pthread_t thread, void **rval_ptr);

　　　　　　　　　　　　　　　 <pthread.h>　　　　　　　　　　　　　　　　　　　　 p. 389

　　　　　　　　　　　　　　　 返回值：若成功，返回0；否则，返回错误编号



int　　　　　　pthread_key_create(pthread_key_t *keyp, 

　　　　　　　　　　　　　　　　　　　void (*destructor)(void *));

　　　　　　　　　　　　　　　 <pthread.h>　　　　　　　　　　　　　　　　　　　　 p. 447

　　　　　　　　　　　　　　　 返回值：若成功，返回0；否则，返回错误编号



int　　　　　　pthread_key_delete(pthread_key_t key);

　　　　　　　　　　　　　　　 <pthread.h>　　　　　　　　　　　　　　　　　　　　 p. 448

　　　　　　　　　　　　　　　 返回值：若成功，返回0；否则，返回错误编号



int　　　　　　pthread_kill(pthread_t thread, int signo);

　　　　　　　　　　　　　　　 <signal.h>　　　　　　　　　　　　　　　　　　　　　p. 455

　　　　　　　　　　　　　　　 返回值：若成功，返回0；否则，返回错误编号



int　　　　　　pthread_mutexattr_destroy(pthread_mutexattr_t *attr);

　　　　　　　　　　　　　　　 <pthread.h>　　　　　　　　　　　　　　　　　　　　 p. 431

　　　　　　　　　　　　　　　 返回值：若成功，返回0；否则，返回错误编号



int　　　　　　pthread_mutexattr_getpshared(const pthread_mutexattr_t 

　　　　　　　　　　　　　　　　　　　　　　　　　　*restrict attr,

　　　　　　　　　　　　　　　　　　　　　　　　　int *restrict pshared);

　　　　　　　　　　　　　　　 <pthread.h>　　　　　　　　　　　　　　　　　　　　 p. 431

　　　　　　　　　　　　　　　 返回值：若成功，返回0；否则，返回错误编号



int　　　　　　pthread_mutexattr_getrobust(const pthread_mutexattr_t 

　　　　　　　　　　　　　　　　　　　　　　　　　 *restrict attr,

　　　　　　　　　　　　　　　　　　　　　　　　 int *restrict robust);

　　　　　　　　　　　　　　　 <pthread.h>　　　　　　　　　　　　　　　　　　　　 p. 432

　　　　　　　　　　　　　　　 返回值：若成功，返回0；否则，返回错误编号

int　　　　　　pthread_mutexattr_gettype(const pthread_mutexattr_t 

　　　　　　　　　　　　　　　　　　　　　　　　*restrict attr,

　　　　　　　　　　　　　　　　　　　　　　　int *restrict type);

　　　　　　　　　　　　　　　 <pthread.h>　　　　　　　　　　　　　　　　　　　　 p. 434

　　　　　　　　　　　　　　　 返回值：若成功，返回0；否则，返回错误编号



int　　　　　　pthread_mutexattr_init(pthread_mutexattr_t *attr);

　　　　　　　　　　　　　　　 <pthread.h>　　　　　　　　　　　　　　　　　　　　 p. 431

　　　　　　　　　　　　　　　 返回值：若成功，返回0；否则，返回错误编号



int　　　　　　pthread_mutexattr_setpshared(pthread_mutexattr_t *attr, 

　　　　　　　　　　　　　　　　　　　　　　　　 int pshared);

　　　　　　　　　　　　　　　 <pthread.h>　　　　　　　　　　　　　　　　　　　　 p. 431

　　　　　　　　　　　　　　　 pshared：PTHREAD_PROCESS_PRIVATE、

　　　　　　　　　　　　　　　　　　　　 PTHREAD_PROCESS_SHARED

　　　　　　　　　　　　　　　 返回值：若成功，返回0；否则，返回错误编号



int　　　　　　pthread_mutexattr_setrobust(pthread_mutexattr_t *attr, 

　　　　　　　　　　　　　　　　　　　　　　　　int robust);

　　　　　　　　　　　　　　　 <pthread.h>　　　　　　　　　　　　　　　　　　　　 p. 432

　　　　　　　　　　　　　　　 robust：PTHREAD_MUTEX_ROBUST、

　　　　　　　　　　　　　　　　　　　　PTHREAD_MUTEX_STALLED

　　　　　　　　　　　　　　　 返回值：若成功，返回0；否则，返回错误编号



int　　　　　　pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type);

　　　　　　　　　　　　　　　 <pthread.h>　　　　　　　　　　　　　　　　　　　　 p. 434

　　　　　　　　　　　　　　　 type：PTHREAD_MUTEX_NORMAL、

　　　　　　　　　　　　　　　　　　　PTHREAD_MUTEX_ERRORCHECK、

　　　　　　　　　　　　　　　　　　　PTHREAD_MUTEX_RECURSIVE、

　　　　　　　　　　　　　　　　　　　PTHREAD_MUTEX_DEFAULT

　　　　　　　　　　　　　　　 返回值：若成功，返回0；否则，返回错误编号



int　　　　　　pthread_mutex_consistent(pthread_mutex_t *mutex);

　　　　　　　　　　　　　　　 <pthread.h>　　　　　　　　　　　　　　　　　　　　 p. 433

　　　　　　　　　　　　　　　 返回值：若成功，返回0；否则，返回错误编号



int　　　　　　pthread_mutex_destroy(pthread_mutex_t *mutex);

　　　　　　　　　　　　　　　 <pthread.h>　　　　　　　　　　　　　　　　　　　　 p. 400

　　　　　　　　　　　　　　　 返回值：若成功，返回0；否则，返回错误编号



int　　　　　　pthread_mutex_init(pthread_mutex_t *restrict mutex,

　　　　　　　　　　　　　　　　　　　const pthread_mutexattr_t *restrict attr);

　　　　　　　　　　　　　　　 <pthread.h>　　　　　　　　　　　　　　　　　　　　 p. 400

　　　　　　　　　　　　　　　 返回值：若成功，返回0；否则，返回错误编号



int　　　　　　pthread_mutex_lock(pthread_mutex_t *mutex);

　　　　　　　　　　　　　　　 <pthread.h>　　　　　　　　　　　　　　　　　　　　 p. 400

　　　　　　　　　　　　　　　 返回值：若成功，返回0；否则，返回错误编号



int　　　　　　pthread_mutex_timedlock(pthread_mutex_t *restrict mutex,

　　　　　　　　　　　　　　　　　　　　　 const struct timespec *restrict tsptr);

　　　　　　　　　　　　　　　 <pthread.h>　　　　　　　　　　　　　　　　　　　　 p. 407

　　　　　　　　　　　　　　　 <time.h>

　　　　　　　　　　　　　　　 返回值：若成功则，返回0；否则，返回错误编号



int　　　　　　pthread_mutex_trylock(pthread_mutex_t *mutex);

　　　　　　　　　　　　　　　 <pthread.h>　　　　　　　　　　　　　　　　　　　　 p. 400

　　　　　　　　　　　　　　　 返回值：若成功，返回0；否则，返回错误编号



int　　　　　　pthread_mutex_unlock(pthread_mutex_t *mutex);

　　　　　　　　　　　　　　　 <pthread.h>　　　　　　　　　　　　　　　　　　　　 p. 400

　　　　　　　　　　　　　　　 返回值：若成功，返回0；否则，返回错误编号



int　　　　　　pthread_once(pthread_once_t *initflag, void (*initfn)(void));

　　　　　　　　　　　　　　　 <pthread.h>　　　　　　　　　　　　　　　　　　　　 p. 448

　　　　　　　　　　　　　　　 pthread_once_t initflag= PTHREAD_ONCE_INIT;

　　　　　　　　　　　　　　　 返回值：若成功，返回0；否则，返回错误编号



int　　　　　　pthread_rwlockattr_destroy(pthread_rwlockattr_t *attr);

　　　　　　　　　　　　　　　 <pthread.h>　　　　　　　　　　　　　　　　　　　　 p. 439

　　　　　　　　　　　　　　　 返回值：若成功，返回0；否则，返回错误编号



int　　　　　　pthread_rwlockattr_getpshared(const pthread_rwlockattr_t 

　　　　　　　　　　　　　　　　　　　　　　　　　　 *restrict attr,

　　　　　　　　　　　　　　　　　　　　　　　　　 int *restrict pshared);

　　　　　　　　　　　　　　　 <pthread.h>　　　　　　　　　　　　　　　　　　　　 p. 440

　　　　　　　　　　　　　　　 返回值：若成功，返回0；否则，返回错误编号



int　　　　　　pthread_rwlockattr_init(pthread_rwlockattr_t *attr);

　　　　　　　　　　　　　　　 <pthread.h>　　　　　　　　　　　　　　　　　　　　 p. 439

　　　　　　　　　　　　　　　 返回值：若成功，返回0；否则，返回错误编号



int　　　　　　pthread_rwlockattr_setpshared(pthread_rwlockattr_t *attr, 

　　　　　　　　　　　　　　　　　　　　　　　　　 int pshared);

　　　　　　　　　　　　　　　 <pthread.h>　　　　　　　　　　　　　　　　　　　　 p. 440

　　　　　　　　　　　　　　　 pshared：PTHREAD_PROCESS_PRIVATE、

　　　　　　　　　　　　　　　　　　　　 PTHREAD_PROCESS_SHARED

　　　　　　　　　　　　　　　 返回值：若成功，返回0；否则，返回错误编号



int　　　　　　pthread_rwlock_destroy(pthread_rwlock_t *rwlock);

　　　　　　　　　　　　　　　 <pthread.h>　　　　　　　　　　　　　　　　　　　　 p. 409

　　　　　　　　　　　　　　　 返回值：若成功，返回0；否则，返回错误编号



int　　　　　　pthread_rwlock_init(pthread_rwlock_t *restrict rwlock,

　　　　　　　　　　　　　　　　　　　 const pthread_rwlockattr_t 

　　　　　　　　　　　　　　　　　　　　　*restrict attr);

　　　　　　　　　　　　　　　 <pthread.h>　　　　　　　　　　　　　　　　　　　　 p. 409

　　　　　　　　　　　　　　　 返回值：若成功，返回0；否则，返回错误编号



int　　　　　　pthread_rwlock_rdlock(pthread_rwlock_t *rwlock);

　　　　　　　　　　　　　　　 <pthread.h>　　　　　　　　　　　　　　　　　　　　 p. 410

　　　　　　　　　　　　　　　 返回值：若成功，返回0；否则，返回错误编号



int　　　　　　pthread_rwlock_timedrdlock(pthread_rwlock_t *restrict rwlock,

　　　　　　　　　　　　　　　　　　　　　　　 const struct timespec 

　　　　　　　　　　　　　　　　　　　　　　　　　*restrict tsptr);

　　　　　　　　　　　　　　　 <pthread.h>　　　　　　　　　　　　　　　　　　　　 p. 413

　　　　　　　　　　　　　　　 <time.h>

　　　　　　　　　　　　　　　 返回值：若成功，返回0；否则，返回错误编号



int　　　　　　pthread_rwlock_timedwrlock(pthread_rwlock_t *restrict rwlock,

　　　　　　　　　　　　　　　　　　　　　　　 const struct timespec 

　　　　　　　　　　　　　　　　　　　　　　　　　*restrict tsptr);

　　　　　　　　　　　　　　　 <pthread.h>　　　　　　　　　　　　　　　　　　　　 p. 413

　　　　　　　　　　　　　　　 <time.h>

　　　　　　　　　　　　　　　 返回值：若成功，返回0；否则，返回错误编号



int　　　　　　pthread_rwlock_tryrdlock(pthread_rwlock_t *rwlock);

　　　　　　　　　　　　　　　 <pthread.h>　　　　　　　　　　　　　　　　　　　　 p. 410

　　　　　　　　　　　　　　　 返回值：若成功，返回0；否则，返回错误编号



int　　　　　　pthread_rwlock_trywrlock(pthread_rwlock_t *rwlock);

　　　　　　　　　　　　　　　 <pthread.h>　　　　　　　　　　　　　　　　　　　　 p. 410

　　　　　　　　　　　　　　　 返回值：若成功，返回0；否则，返回错误编号



int　　　　　　pthread_rwlock_unlock(pthread_rwlock_t *rwlock);

　　　　　　　　　　　　　　　 <pthread.h>　　　　　　　　　　　　　　　　　　　　 p. 410

　　　　　　　　　　　　　　　 返回值：若成功，返回0；否则，返回错误编号



int　　　　　　pthread_rwlock_wrlock(pthread_rwlock_t *rwlock);

　　　　　　　　　　　　　　　 <pthread.h>　　　　　　　　　　　　　　　　　　　　 p. 410

　　　　　　　　　　　　　　　 返回值：若成功，返回0；否则，返回错误编号



pthread_t　　 pthread_self(void);

　　　　　　　　　　　　　　　 <pthread.h>　　　　　　　　　　　　　　　　　　　　　p. 385

　　　　　　　　　　　　　　　 返回值：调用线程的线程ID



int　　　　　　pthread_setcancelstate(int state, int *oldstate);

　　　　　　　　　　　　　　　 <pthread.h>　　　　　　　　　　　　　　　　　　　　 p. 451

　　　　　　　　　　　　　　　 state：PTHREAD_CANCEL_ENABLE、

　　　　　　　　　　　　　　　　　 　　PTHREAD_CANCEL_DISABLE

　　　　　　　　　　　　　　　 返回值：若成功，返回0；否则，返回错误编号



int　　　　　　pthread_setcanceltype(int type, int *oldtype);

　　　　　　　　　　　　　　　 <pthread.h>　　　　　　　　　　　　　　　　　　　　 p. 453

　　　　　　　　　　　　　　　 type：PTHREAD_CANCEL_DEFERRED、

　　　　　　　　　　 　　　　　　　　 PTHREAD_CANCEL_ASYNCHRONOUS

　　　　　　　　　　　　　　　 返回值：若成功，返回0；否则，返回错误编号



int　　　　　　pthread_setspecific(pthread_key_t key, const void *value);

　　　　　　　　　　　　　　　 <pthread.h>　　　　　　　　　　　　　　　　　　　　 p. 449

　　　　　　　　　　　　　　　 返回值：若成功，返回0；否则，返回错误编号



int　　　　　　pthread_sigmask(int how, const sigset_t *restrict set, 

　　　　　　　　　　　　　　　　　　　sigset_t *restrict oset);

　　　　　　　　　　　　　　　 <signal.h>　　　　　　　　　　　　　　　　　　　　　p. 454

　　　　　　　　　　　　　　　 how：SIG_BLOCK、SIG_UNBLOCK、SIG_SETMASK

　　　　　　　　　　　　　　　 返回值：若成功，返回0；否则，返回错误编号



int　　　　　　pthread_spin_destroy(pthread_spinlock_t *lock);

　　　　　　　　　　　　　　　 <pthread.h>　　　　　　　　　　　　　　　　　　　　 p. 417

　　　　　　　　　　　　　　　 返回值：若成功，返回0；否则，返回错误编号



int　　　　　　pthread_spin_init(pthread_spinlock_t *lock, int pshared);

　　　　　　　　　　　　　　　 <pthread.h>　　　　　　　　　　　　　　　　　　　　 p. 417

　　　　　　　　　　　　　　　 pshared：PTHREAD_PROCESS_PRIVATE、

　　　　　　　　　　　　　　　　　　　 　 PTHREAD_PROCESS_SHARED

　　　　　　　　　　　　　　　 返回值：若成功，返回0；否则，返回错误编号



int　　　　　　pthread_spin_lock(pthread_spinlock_t *lock);

　　　　　　　　　　　　　　　 <pthread.h>　　　　　　　　　　　　　　　　　　　　 p. 418

　　　　　　　　　　　　　　　 返回值：若成功，返回0；否则，返回错误编号



int　　　　　　pthread_spin_trylock(pthread_spinlock_t *lock);

　　　　　　　　　　　　　　　 <pthread.h>　　　　　　　　　　　　　　　　　　　　 p. 418

　　　　　　　　　　　　　　　 返回值：若成功，返回0；否则，返回错误编号



int　　　　　　pthread_spin_unlock(pthread_spinlock_t *lock);

　　　　　　　　　　　　　　　 <pthread.h>　　　　　　　　　　　　　　　　　　　　 p. 418

　　　　　　　　　　　　　　　 返回值：若成功，返回0；否则，返回错误编号



void 　　　　　pthread_testcancel(void);

　　　　　　　　　　　　　　　 <pthread.h>　　　　　　　　　　　　　　　　　　　　 p. 453



char 　　　　　*ptsname(int fd);

　　　　　　　　　　　　　　　 <stdlib.h>　　　　　　　　　　　　　　　　　　　　　p. 723

　　　　　　　　　　　　　　　 返回值：若成功，返回指向PTY从设备名的指针；若出错，返回NULL



int　　　　　　putc(int c, FILE *fp);

　　　　　　　　　　　　　　　 <stdio.h>　　　　　　　　　　　　　　　　　　　　　 p. 152

　　　　　　　　　　　　　　　 返回值：若成功，返回c；若出错，返回EOF



int　　　　　　putchar(int c);

　　　　　　　　　　　　　　　 <stdio.h>　　　　　　　　　　　　　　　　　　　　　 p. 152

　　　　　　　　　　　　　　　 返回值：若成功，返回c；若出错，返回EOF



int　　　　　　putchar_unlocked(int c);

　　　　　　　　　　　　　　　 <stdio.h>　　　　　　　　　　　　　　　　　　　　　 p. 444

　　　　　　　　　　　　　　　 返回值：若成功，返回c；若出错，返回EOF



int　　　　　　putc_unlocked(int c, FILE *fp);

　　　　　　　　　　　　　　　 <stdio.h>　　　　　　　　　　　　　　　　　　　　　 p. 444

　　　　　　　　　　　　　　　 返回值：若成功，返回c；若出错，返回EOF



int　　　　　　putenv(char *str);

　　　　　　　　　　　　　　　 <stdlib.h>　　　　　　　　　　　　　　　　　　　　　p. 212

　　　　　　　　　　　　　　　 返回值：若成功，返回0；若出错，返回非0



int　　　　　　puts(const char *str);

　　　　　　　　　　　　　　　 <stdio.h>　　　　　　　　　　　　　　　　　　　　　 p. 153

　　　　　　　　　　　　　　　 返回值：若成功，返回非负值；若出错，返回EOF



ssize_t　　　 pwrite(int fd, const void *buf, size_t nbytes, off_t offset);

　　　　　　　　　　　　　　　 <unistd.h>　　　　　　　　　　　　　　　　　　　　　p. 78

　　　　　　　　　　　　　　　 返回值：若成功，返回已写的字节数；若出错，返回-1



int　　　　　　raise(int signo);

　　　　　　　　　　　　　　　 <signal.h>　　　　　　　　　　　　　　　　　　　　　p. 337

　　　　　　　　　　　　　　　 返回值：若成功，返回0；若出错，返回-1



ssize_t　　　 read(int fd, void *buf, size_t nbytes);

　　　　　　　　　　　　　　　 <unistd.h>　　　　　　　　　　　　　　　　　　　　　p. 71

　　　　　　　　　　　　　　　 返回值：读到的字节数；若已到达文件尾端，返回0；若出错，返回-1



struct

dirent　　　　*readdir(DIR *dp);

　　　　　　　　　　　　　　　 <dirent.h>　　　　　　　　　　　　　　　　　　　　　p. 130

　　　　　　　　　　　　　　　 返回值：若成功，返回指针；若在目录尾或出错，返回NULL



ssize_t　　　 readlink(const char *restrict path, char *restrict buf, 

　　　　　　　　　　　　　size_t bufsize);

　　　　　　　　　　　　　　　 <unistd.h>　　　　　　　　　　　　　　　　　　　　　p. 123

　　　　　　　　　　　　　　　 返回值：若成功，返回读取的字节数；若出错，返回-1



ssize_t　　　 readlinkat(int fd, const char* restrict path,

　　　　　　　　　　　　　　 char *restrict buf, size_t bufsize);

　　　　　　　　　　　　　　　 <unistd.h>　　　　　　　　　　　　　　　　　　　　　p. 123

　　　　　　　　　　　　　　　 返回值：若成功，返回读取的字节数；若出错，返回-1



ssize_t　　　 readv(int fd, const struct iovec *iov, int iovcnt);

　　　　　　　　　　　　　　　 <sys/uio.h>　　　　　　　　　　　　　　　　　　　　 p. 521

　　　　　　　　　　　　　　　 返回值：若成功，返回已读的字节数；若出错，返回-1



void 　　　　　*realloc(void *ptr, size_t newsize);

　　　　　　　　　　　　　　　 <stdlib.h>　　　　　　　　　　　　　　　　　　　　　p. 207

　　　　　　　　　　　　　　　 返回值：若成功，返回非空指针；若出错，返回NULL



ssize_t　　　 recv(int sockfd, void *buf, size_t nbytes, int flags);

　　　　　　　　　　　　　　　 <sys/socket.h>　　　　　　　　　　　　　　　　　　 p. 612

　　　　　　　　　　　　　　　 flags：MSG_PEEK, MSG_OOB, MSG_WAITALL,

　　　　　　　　　　　　　　　　　　　 MSG_CMSG_CLOEXEC（Linux 3.2.0）,

　　　　　　　　　　　　　　　　　　　 MSG_DONTWAIT（FreeBSD 8.0、Linux 3.2.0、

　　　　　　　　　　　　　　　　　　　　　　　　　　 Solaris 10）,

　　　　　　　　　　　　　　　　　　　 MSG_ERRQUEUE（Linux 3.2.0）,

　　　　　　　　　　　　　　　　　　　 MSG_TRUNC（Linux 3.2.0）

　　　　　　　　　　　　　　　 返回值：数据的字节长度；若无可用数据或对等方已经按序结束，

　　　　　　　　　　　　　　　 返回0；若出错，返回-1



ssize_t　　　 recvfrom(int sockfd, void *restrict buf, size_t len, int flags,

　　　　　　　　　　　　　struct sockaddr *restrict addr, 

　　　　　　　　　　　　　socklen_t *restrict addrlen);

　　　　　　　　　　　　　　　 <sys/socket.h>　　　　　　　　　　　　　　　　　　 p. 613

　　　　　　　　　　　　　　　 flags：MSG_PEEK, MSG_OOB, MSG_WAITALL,

　　　　　　　　　　　　　　　　　　　 MSG_CMSG_CLOEXEC（Linux 3.2.0）,

　　　　　　　　　　　　　　　　　　　 MSG_DONTWAIT（FreeBSD 8.0、Linux 3.2.0、

　　　　　　　　　　　　　　　　　　　　　　　　　　 Solaris 10）,

　　　　　　　　　　　　　　　　　　　 MSG_ERRQUEUE（Linux 3.2.0）,

　　　　　　　　　　　　　　　　　　　 MSG_TRUNC（Linux 3.2.0）

　　　　　　　　　　　　　　　 返回值：数据的字节长度；若无可用数据或对等方已经按序

　　　　　　　　　　　　　　　 结束，返回0；若出错，返回-1



ssize_t　　　 recvmsg(int sockfd, struct msghdr *msg, int flags);

　　　　　　　　　　　　　　　 <sys/socket.h>　　　　　　　　　　　　　　　　　　 p. 613

　　　　　　　　　　　　　　　 flags：MSG_PEEK, MSG_OOB, MSG_WAITALL,

　　　　　　　　　　　　　　　　　　　 MSG_CMSG_CLOEXEC（Linux 3.2.0）,

　　　　　　　　　　　　　　　　　　　 MSG_DONTWAIT（FreeBSD 8.0、Linux 3.2.0、

　　　　　　　　　　　　　　　　　　　　　　　　　　　Solaris 10）,

　　　　　　　　　　　　　　　　　　　 MSG_ERRQUEUE（Linux 3.2.0）,

　　　　　　　　　　　　　　　　　　　 MSG_TRUNC（Linux 3.2.0）

　　　　　　　　　　　　　　　 返回值：数据的字节长度；若无可用数据或对等方已经按序

　　　　　　　　　　　　　　　 结束，返回0；若出错，返回-1



int　　　　　　remove(const char *path);

　　　　　　　　　　　　　　　 <stdio.h>　　　　　　　　　　　　　　　　　　　　　 p. 119

　　　　　　　　　　　　　　　 返回值：若成功，返回0；若出错，返回−1



int　　　　　　rename(const char *oldname, const char *newname);

　　　　　　　　　　　　　　　 <stdio.h>　　　　　　　　　　　　　　　　　　　　　 p. 119

　　　　　　　　　　　　　　　 返回值：若成功，返回0；若出错，返回−1



int　　　　　　renameat(int oldfd, const char *oldname, int newfd, 

　　　　　　　　　　　　　const char *newname);

　　　　　　　　　　　　　　　 <stdio.h>　　　　　　　　　　　　　　　　　　　　　 p. 119

　　　　　　　　　　　　　　　 返回值：若成功，返回0；若出错，返回−1



void 　　　　　rewind(FILE *fp);

　　　　　　　　　　　　　　　 <stdio.h>　　　　　　　　　　　　　　　　　　　　　 p. 158



void 　　　　　rewinddir(DIR *dp);

　　　　　　　　　　　　　　　 <dirent.h>　　　　　　　　　　　　　　　　　　　　　p. 130



int　　　　　　rmdir(const char *path);

　　　　　　　　　　　　　　　 <unistd.h>　　　　　　　　　　　　　　　　　　　　　p. 130

　　　　　　　　　　　　　　　 返回值：若成功，返回0；若出错，返回−1



int　　　　　　scanf(const char *restrict format, ...);

　　　　　　　　　　　　　　　 <stdio.h>　　　　　　　　　　　　　　　　　　　　　 p. 162

　　　　　　　　　　　　　　　 返回值：赋值的输入项数；若输入出错或在任一转换前已到达文件

　　　　　　　　　　　　　　　 尾端，返回EOF



void 　　　　　seekdir(DIR *dp, long loc);

　　　　　　　　　　　　　　　 <dirent.h>　　　　　　　　　　　　　　　　　　　　　p. 130



int　　　　　　select(int maxfdp1, fd_set *restrict readfds,

　　　　　　　　　　　　fd_set *restrict writefds, fd_set *restrict exceptfds,

　　　　　　　　　　　　struct timeval *restrict tvptr);

　　　　　　　　　　　　　　　 <sys/select.h>　　　　　　　　　　　　　　　　　　 p. 502

　　　　　　　　　　　　　　　 返回值：准备就绪的描述符数；若超时，返回0；若出错，返回−1



int　　　　　　sem_close(sem_t *sem);

　　　　　　　　　　　　　　　 <semaphore.h>　　　　　　　　　　　　　　　　　　　p. 580

　　　　　　　　　　　　　　　 返回值：若成功，返回0；若出错，返回−1



int　　　　　　semctl(int semid, int semnum, int cmd, ... 

　　　　　　　　　　　　/* union semun arg */ );

　　　　　　　　　　　　　　　 <sys/sem.h>　　　　　　　　　　　　　　　　　　　　 p. 567

　　　　　　　　　　　　　　　 cmd：IPC_STAT、IPC_SET、IPC_RMID、GETPID、

　　　　　　　　　　　　　　　　　　GETNCNT、GETZCNT、GETVAL、SETVAL、

　　　　　　　　　　　　　　　　　　GETALL、SETALL

　　　　　　　　　　　　　　　 返回值：（返回值取决于命令）；若出错，返回−1



int　　　　　　sem_destroy(sem_t *sem);

　　　　　　　　　　　　　　　 <semaphore.h>　　　　　　　　　　　　　　　　　　　p. 582

　　　　　　　　　　　　　　　 返回值：若成功，返回0；若出错，返回−1



int　　　　　　semget(key_t key, int nsems, int flag);

　　　　　　　　　　　　　　　 <sys/sem.h>　　　　　　　　　　　　　　　　　　　　p. 567

　　　　　　　　　　　　　　　 flag：IPC_CREAT、IPC_EXCL

　　　　　　　　　　　　　　　 返回值：若成功，返回信号量ID；若出错，返回−1



int　　　　　　sem_getvalue(sem_t *restrict sem, int *restrict valp);

　　　　　　　　　　　　　　　 <semaphore.h>　　　　　　　　　　　　　　　　　　　p. 582

　　　　　　　　　　　　　　　 返回值：若成功，返回0；若出错，返回−1



int　　　　　　sem_init(sem_t *sem, int pshared, unsigned int value);

　　　　　　　　　　　　　　　 <semaphore.h>　　　　　　　　　　　　　　　　　　　p. 582

　　　　　　　　　　　　　　　 返回值：若成功，返回0；若出错，返回−1



int　　　　　　semop(int semid, struct sembuf semoparray[], size_t nops);

　　　　　　　　　　　　　　　 <sys/sem.h>　　　　　　　　　　　　　　　　　　　　p. 568

　　　　　　　　　　　　　　　 返回值：若成功，返回0；若出错，返回−1



sem_t 　　　　*sem_open(const char *name, int oflag, ... /* mode_t mode,

　　　　　　　　　　　　　　unsigned int value */ );

　　　　　　　　　　　　　　　 <semaphore.h>　　　　　　　　　　　　　　　　　　　p. 579

　　　　　　　　　　　　　　　 flag：IPC_CREAT、IPC_EXCL

　　　　　　　　　　　　　　　 返回值：若成功，返回指向信号量的指针；若出错，返回SEM_FAILED



int　　　　　　sem_post(sem_t *sem);

　　　　　　　　　　　　　　　 <semaphore.h>　　　　　　　　　　　　　　　　　　　p. 582

　　　　　　　　　　　　　　　 返回值：若成功，返回0；若出错，返回−1



int　　　　　　sem_timedwait(sem_t *restrict sem, 

　　　　　　　　　　　　　　　　const struct timespec *restrict tsptr);

　　　　　　　　　　　　　　　 <semaphore.h>　　　　　　　　　　　　　　　　　　　p. 581

　　　　　　　　　　　　　　　 <time.h>

　　　　　　　　　　　　　　　 返回值：若成功，返回0；若出错，返回−1



int　　　　　　sem_trywait(sem_t *sem);

　　　　　　　　　　　　　　　 <semaphore.h>　　　　　　　　　　　　　　　　　　　p. 581

　　　　　　　　　　　　　　　 返回值：若成功，返回0；若出错，返回−1



int　　　　　　sem_unlink(const char *name);

　　　　　　　　　　　　　　　 <semaphore.h>　　　　　　　　　　　　　　　　　　　p. 580

　　　　　　　　　　　　　　　 返回值：若成功，返回0；若出错，返回−1



int　　　　　　sem_wait(sem_t *sem);

　　　　　　　　　　　　　　　 <semaphore.h>　　　　　　　　　　　　　　　　　　　p. 581

　　　　　　　　　　　　　　　 返回值：若成功，返回0；若出错，返回−1



ssize_t　　　 send(int sockfd, const void *buf, size_t nbytes, int flags);

　　　　　　　　　　　　　　　 <sys/socket.h>　　　　　　　　　　　　　　　　　　 p. 610

　　　　　　　　　　　　　　　 flags：MSG_EOR, MSG_OOB, MSG_NOSIGNAL,

　　　　　　　　　　　　　　　　　　　 MSG_CONFIRM（Linux 3.2.0）,

　　　　　　　　　　　　　　　　　　　 MSG_DONTROUTE（FreeBSD 8.0、Linux 3.2.0、

　　　　　　　　　　　　　　　　　　　　　　　　　　　　　Mac OS X 10.6.8、Solaris 10）,

　　　　　　　　　　　　　　　　　　　 MSG_DONTWAIT（FreeBSD 8.0、Linux 3.2.0、

　　　　　　　　　　　　　　　　　　　　　　　　　　　Mac OS X 10.6.8、Solaris 10）,

　　　　　　　　　　　　　　　　　　　 MSG_EOF（FreeBSD 8.0、Mac OS X 10.6.8）,

　　　　　　　　　　　　　　　　　　　 MSG_MORE（Linux 3.2.0）

　　　　　　　　　　　　　　　 返回值：若成功，返回发送的字节数；若出错，返回−1



ssize_t 　　　sendmsg(int sockfd, const struct msghdr *msg, int flags);

　　　　　　　　　　　　　　　 <sys/socket.h>　　　　　　　　　　　　　　　　　　 p. 611

　　　　　　　　　　　　　　　 flags：MSG_EO, MSG_OOB, MSG_NOSIGNAL,

　　　　　　　　　　　　　　　　　　　 MSG_CONFIRM（Linux 3.2.0）,

　　　　　　　　　　　　　　　　　　　 MSG_DONTROUTE（FreeBSD 8.0、Linux 3.2.0、Mac OS X 10.6.8、  

　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　 Solaris 10）,

　　　　　　　　　　　　　　　　　　　 MSG_DONTWAIT（FreeBSD 8.0、Linux 3.2.0、Mac OS X 10.6.8、  

　　　　　　　　　　　　　　　　　　　　　　　　　　　　　 Solaris 10）,

　　　　　　　　　　　　　　　　　　　 MSG_EOF（FreeBSD 8.0、Mac OS X 10.6.8）,

　　　　　　　　　　　　　　　　　　　 MSG_MORE（Linux 3.2.0）

　　　　　　　　　　　　　　　 返回值：若成功，返回发送字节数；若出错，返回−1



ssize_t　　　 sendto(int sockfd, const void *buf, size_t nbytes, int flags,

　　　　　　　　　　　　const struct sockaddr *destaddr, socklen_t destlen);

　　　　　　　　　　　　　　　 <sys/socket.h>　　　　　　　　　　　　　　　　　　 p. 610

　　　　　　　　　　　　　　　 flags：MSG_EOR, MSG_OOB, MSG_NOSIGNAL,

　　　　　　　　　　　　　　　　　　　 MSG_CONFIRM（Linux 3.2.0）,

　　　　　　　　　　　　　　　　　　　 MSG_DONTROUTE（FreeBSD 8.0、Linux 3.2.0、Mac OS X 10.6.8、Solaris 10）,

　　　　　　　　　　　　　　　　　　　 MSG_DONTWAIT（FreeBSD 8.0、Linux 3.2.0、Mac OS X 10.6.8、Solaris 10）,

　　　　　　　　　　　　　　　　　　　 MSG_EOF（FreeBSD 8.0、Mac OS X 10.6.8）,

　　　　　　　　　　　　　　　　　　　 MSG_MORE（Linux 3.2.0）

　　　　　　　　　　　　　　　 返回值：若成功，返回发送的字节数；若出错，返回−1



void 　　　　　setbuf(FILE *restrict fp, char *restrict buf);

　　　　　　　　　　　　　　　 <stdio.h>　　　　　　　　　　　　　　　　　　　　　 p. 146



int　　　　　　setegid(gid_t gid);

　　　　　　　　　　　　　　　 <unistd.h>　　　　　　　　　　　　　　　　　　　　　p. 258

　　　　　　　　　　　　　　　 返回值：若成功，返回0；若出错，返回−1



int　　　　　　setenv(const char *name, const char *value, int rewrite);

　　　　　　　　　　　　　　　 <stdlib.h>　　　　　　　　　　　　　　　　　　　　　p. 212

　　　　　　　　　　　　　　　 返回值：若成功，返回0；若出错，返回−1



int　　　　　　seteuid(uid_t uid);

　　　　　　　　　　　　　　　 <unistd.h>　　　　　　　　　　　　　　　　　　　　　p. 258

　　　　　　　　　　　　　　　 返回值：若成功，返回0；若出错，返回−1



int　　　　　　setgid(gid_t gid);

　　　　　　　　　　　　　　　 <unistd.h>　　　　　　　　　　　　　　　　　　　　　p. 256

　　　　　　　　　　　　　　　 返回值：若成功，返回0；若出错，返回−1



void 　　　　　setgrent(void);

　　　　　　　　　　　　　　　 <grp.h>　　　　　　　　　　　　　　　　　　　　　　　p. 183



int　　　　　　setgroups(int ngroups, const gid_t grouplist[]);

　　　　　　　　　　　　　　　 <grp.h>　　 /* Linux */ 　　　　　　　　　　　　　 p. 184

　　　　　　　　　　　　　　　 <unistd.h> /* FreeBSD, Mac OS X, and Solaris */

　　　　　　　　　　　　　　　 返回值：若成功，返回0；若出错，返回−1



void 　　　　　sethostent(int stayopen);

　　　　　　　　　　　　　　　 <netdb.h>　　　　　　　　　　　　　　　　　　　　　 p. 597



int　　　　　　setjmp(jmp_buf env);

　　　　　　　　　　　　　　　 <setjmp.h> 　　　　　　　　　　　　　　　　　　　　 p. 215

　　　　　　　　　　　　　　　 返回值：若直接调用，返回0；若从longjmp返回，返回非0



int　　　　　　setlogmask(int maskpri);

　　　　　　　　　　　　　　　 <syslog.h>　　　　　　　　　　　　　　　　　　　　　p. 470

　　　　　　　　　　　　　　　 返回值：前日志记录优先级屏蔽字值



void 　　　　　setnetent(int stayopen);

　　　　　　　　　　　　　　　 <netdb.h>　　　　　　　　　　　　　　　　　　　　　 p. 598



int　　　　　　setpgid(pid_t pid, pid_t pgid);

　　　　　　　　　　　　　　　 <unistd.h>　　　　　　　　　　　　　　　　　　　　　p. 294

　　　　　　　　　　　　　　　 返回值：若成功，返回0；若出错，返回−1



int　　　　　　setpriority(int which, id_t who, int value);

　　　　　　　　　　　　　　　 <sys/resource.h>　　　　　　　　　　　　　　　　　 p. 277

　　　　　　　　　　　　　　　 which：PRIO_PROCESS、PRIO_PGRP、PRIO_USER

　　　　　　　　　　　　　　　 返回值：若成功，返回0；若出错，返回−1



void 　　　　　setprotoent(int stayopen);

　　　　　　　　　　　　　　　 <netdb.h>　　　　　　　　　　　　　　　　　　　　　 p. 598



void 　　　　　setpwent(void);

　　　　　　　　　　　　　　　 <pwd.h>　　　　　　　　　　　　　　　　　　　　　　　p. 180



int　　　　　　setregid(gid_t rgid, gid_t egid);

　　　　　　　　　　　　　　　 <unistd.h>　　　　　　　　　　　　　　　　　　　　　p. 257

　　　　　　　　　　　　　　　 返回值：若成功，返回0；若出错，返回−1



int　　　　　　setreuid(uid_t ruid, uid_t euid);

　　　　　　　　　　　　　　　 <unistd.h>　　　　　　　　　　　　　　　　　　　　　p. 257

　　　　　　　　　　　　　　　 返回值：若成功，返回0；若出错，返回−1



int　　　　　　setrlimit(int resource, const struct rlimit *rlptr);

　　　　　　　　　　　　　　　 <sys/resource.h>　　　　　　　　　　　　　　　　　 p. 220

　　　　　　　　　　　　　　　 resource：RLIMIT_CORE, RLIMIT_CPU,

　　　　　　　　　　　　　　　　　　　　　RLIMIT_DATA, RLIMIT_FSIZE,

　　　　　　　　　　　　　　　　　　　　　RLIMIT_NOFILE、RLIMIT_STACK,

　　　　　　　　　　　　　　　　　　　　　RLIMIT_AS（FreeBSD 8.0、Linux 3.2.0、

　　　　　　　　　　　　　　　　　　　　　　　　　　 Solaris 10）,

　　　　　　　　　　　　　　　　　　　　　RLIMIT_MEMLOCK（FreeBSD 8.0、Linux 3.2.0、

　　　　　　　　　　　　　　　　　　　　　　　　　　　　　 Mac OS X 10.6.8）,

　　　　　　　　　　　　　　　　　　　　　RLIMIT_MSGQUEUE（Linux 3.2.0）,

　　　　　　　　　　　　　　　　　　　　　RLIMIT_NICE（Linux 3.2.0）,

　　　　　　　　　　　　　　　　　　　　　RLIMIT_NPROC（FreeBSD 8.0、Linux 3.2.0、

　　　　　　　　　　　　　　　　　　　　　　　　　　　　 Mac OS X 10.6.8）,

　　　　　　　　　　　　　　　　　　　　　RLIMIT_NPTS（FreeBSD 8.0）,

　　　　　　　　　　　　　　　　　　　　　RLIMIT_RSS（FreeBSD 8.0、Linux 3.2.0、

　　　　　　　　　　　　　　　　　　　　　　　　　　　　 Mac OS X 10.6.8）,

　　　　　　　　　　　　　　　　　　　　RLIMIT_SBSIZE（FreeBSD 8.0）,

　　　　　　　　　　　　　　　　　　　　RLIMIT_SIGPENDING（Linux 3.2.0）,

　　　　　　　　　　　　　　　　　　　　RLIMIT_SWAP（FreeBSD 8.0）,

　　　　　　　　　　　　　　　　　　　　RLIMIT_VMEM（Solaris 10）

　　　　　　　　　　　　　　　 返回值：若成功，返回0；若出错，返回−1



void 　　　　　setservent(int stayopen);

　　　　　　　　　　　　　　　 <netdb.h>　　　　　　　　　　　　　　　　　　　　　 p. 599



pid_t　　　　　setsid(void);

　　　　　　　　　　　　　　　 <unistd.h>　　　　　　　　　　　　　　　　　　　　　p. 295

　　　　　　　　　　　　　　　 返回值：若成功，返回进程组ID；若出错，返回−1



int　　　　　　setsockopt(int sockfd, int level, int option, const void *val, 

　　　　　　　　　　　　　　socklen_t len);

　　　　　　　　　　　　　　　 <sys/socket.h>　　　　　　　　　　　　　　　　　　 p. 624

　　　　　　　　　　　　　　　 返回值：若成功，返回0；若出错，返回−1



void 　　　　　setspent(void);

　　　　　　　　　　　　　　　 <shadow.h>　　　　　　　　　　　　　　　　　　　　　p. 182

　　　　　　　　　　　　　　　 平台：Linux 3.2.0、Solaris 10



int　　　　　　setuid(uid_t uid);

　　　　　　　　　　　　　　　 <unistd.h>　　　　　　　　　　　　　　　　　　　　　p. 256

　　　　　　　　　　　　　　　 返回值：若成功，返回0；若出错，返回−1



int　　　　　　setvbuf(FILE *restrict fp, char *restrict buf, int mode, 

　　　　　　　　　　　　 size_t size);

　　　　　　　　　　　　　　　 <stdio.h>　　　　　　　　　　　　　　　　　　　　　 p. 146

　　　　　　　　　　　　　　　 mode：_IOFBF、_IOLBF、_IONBF

　　　　　　　　　　　　　　　 返回值：若成功，返回0；若出错，返回非0



void 　　　　　*shmat(int shmid, const void *addr, int flag);

　　　　　　　　　　　　　　　 <sys/shm.h>　　　　　　　　　　　　　　　　　　　　 p. 574

　　　　　　　　　　　　　　　 flag：SHM_RND、SHM_RDONLY

　　　　　　　　　　　　　　　 返回值：若成功，返回指向共享存储段的指针；若出错，返回−1



int　　　　　　shmctl(int shmid, int cmd, struct shmid_ds *buf);

　　　　　　　　　　　　　　　 <sys/shm.h>　　　　　　　　　　　　　　　　　　　　 p. 573

　　　　　　　　　　　　　　　 cmd：IPC_STAT, IPC_SET, IPC_RMID,

　　　　　　　　　　　　　　　　　　SHM_LOCK（Linux 3.2.0、Solaris 10）,

　　　　　　　　　　　　　　　　　　SHM_UNLOCK（Linux 3.2.0、Solaris 10）

　　　　　　　　　　　　　　　 返回值：若成功，返回0；若出错，返回−1



int　　　　　　shmdt(const void *addr);

　　　　　　　　　　　　　　　 <sys/shm.h>　　　　　　　　　　　　　　　　　　　　 p. 574

　　　　　　　　　　　　　　　 返回值：若成功，返回0；若出错，返回−1



int　　　　　　shmget(key_t key, size_t size, int flag);

　　　　　　　　　　　　　　　 <sys/shm.h>　　　　　　　　　　　　　　　　　　　　 p. 572

　　　　　　　　　　　　　　　 flag：IPC_CREAT、IPC_EXCL

　　　　　　　　　　　　　　　 返回值：若成功，返回非负共享存储ID；若出错，返回−1



int　　　　　　shutdown(int sockfd, int how);

　　　　　　　　　　　　　　　 <sys/socket.h>　　　　　　　　　　　　　　　　　　 p. 592

　　　　　　　　　　　　　　　 how：SHUT_RD、SHUT_WR、SHUT_RDWR

　　　　　　　　　　　　　　　 返回值：若成功，返回0；若出错，返回−1



int　　　　　　sig2str(int signo, char *str);

　　　　　　　　　　　　　　　 <signal.h>　　　　　　　　　　　　　　　　　　　　　p. 380

　　　　　　　　　　　　　　　 返回值：若成功，返回0；若出错，返回−1

　　　　　　　　　　　　　　　 平台：Solaris 10



int　　　　　　sigaction(int signo, const struct sigaction *restrict act,

　　　　　　　　　　　　　 struct sigaction *restrict oact);

　　　　　　　　　　　　　　　 <signal.h>　　　　　　　　　　　　　　　　　　　　　p. 350

　　　　　　　　　　　　　　　 返回值：若成功，返回0；若出错，返回−1



int　　　　　　sigaddset(sigset_t *set, int signo);

　　　　　　　　　　　　　　　 <signal.h>　　　　　　　　　　　　　　　　　　　　　p. 344

　　　　　　　　　　　　　　　 返回值：若成功，返回0；若出错，返回−1



int　　　　　　sigdelset(sigset_t *set, int signo);

　　　　　　　　　　　　　　　 <signal.h>　　　　　　　　　　　　　　　　　　　　　p. 344

　　　　　　　　　　　　　　　 返回值：若成功，返回0；若出错，返回−1



int　　　　　　sigemptyset(sigset_t *set);

　　　　　　　　　　　　　　　 <signal.h>　　　　　　　　　　　　　　　　　　　　　p. 344

　　　　　　　　　　　　　　　 返回值：若成功，返回0；若出错，返回−1



int　　　　　　sigfillset(sigset_t *set);

　　　　　　　　　　　　　　　 <signal.h>　　　　　　　　　　　　　　　　　　　　　p. 344

　　　　　　　　　　　　　　　 返回值：若成功，返回0；若出错，返回−1



int　　　　　　sigismember(const sigset_t *set, int signo);

　　　　　　　　　　　　　　　 <signal.h>　　　　　　　　　　　　　　　　　　　　　p. 344

　　　　　　　　　　　　　　　 返回值：若真，返回1；若假，返回0；若出错，返回−1



void 　　　　　siglongjmp(sigjmp_buf env, int val);

　　　　　　　　　　　　　　　 <setjmp.h>　　　　　　　　　　　　　　　　　　　　　p. 356

　　　　　　　　　　　　　　　 此函数不返回



void 　　　　　(*signal(int signo, void (*func)(int)))(int);

　　　　　　　　　　　　　　　 <signal.h>　　　　　　　　　　　　　　　　　　　　　p. 323

　　　　　　　　　　　　　　　 返回值：若成功，返回以前的信号处理配置；若出错，返回SIG_ERR



int　　　　　　sigpending(sigset_t *set);

　　　　　　　　　　　　　　　 <signal.h>　　　　　　　　　　　　　　　　　　　　　p. 347

　　　　　　　　　　　　　　　 返回值：若成功，返回0；若出错，返回−1



int　　　　　　sigprocmask(int how, const sigset_t *restrict set, 

　　　　　　　　　　　　　　　sigset_t *restrict oset);

　　　　　　　　　　　　　　　 <signal.h>　　　　　　　　　　　　　　　　　　　　　p. 346

　　　　　　　　　　　　　　　 how：SIG_BLOCK、SIG_UNBLOCK、SIG_SETMASK

　　　　　　　　　　　　　　　 返回值：若成功，返回0；若出错，返回−1



int　　　　　　sigqueue(pid_t pid, int signo, const union sigval value)

　　　　　　　　　　　　　　　 <signal.h>　　　　　　　　　　　　　　　　　　　　　p. 376

　　　　　　　　　　　　　　　 返回值：若成功，返回0；若出错，返回−1



int　　　　　　sigsetjmp(sigjmp_buf env, int savemask);

　　　　　　　　　　　　　　　 <setjmp.h>　　　　　　　　　　　　　　　　　　　　　p. 356

　　　　　　　　　　　　　　　 返回值：若直接调用，返回0；若从siglongjmp调用返回，

　　　　　　　　　　　　　　　 返回非0值



int　　　　　　sigsuspend(const sigset_t *sigmask);

　　　　　　　　　　　　　　　 <signal.h>　　　　　　　　　　　　　　　　　　　　　p. 359

　　　　　　　　　　　　　　　 返回值：−1，errno设置为EINTR



int　　　　　　sigwait(const sigset_t *restrict set, int *restrict signop);

　　　　　　　　　　　　　　　 <signal.h>　　　　　　　　　　　　　　　　　　　　　p. 454

　　　　　　　　　　　　　　　 返回值：若成功，返回0；否则，返回错误编号



unsigned

int　　　　　　sleep(unsigned int seconds);

　　　　　　　　　　　　　　　 <unistd.h>　　　　　　　　　　　　　　　　　　　　　p. 373

　　　　　　　　　　　　　　　 返回值：0或未休眠的秒数



int　　　　　　snprintf(char *restrict buf, size_t n, 

　　　　　　　　　　　　　const char *restrict format, ...);

　　　　　　　　　　　　　　　 <stdio.h>　　　　　　　　　　　　　　　　　　　　　 p. 159

　　　　　　　　　　　　　　　 返回值：若缓冲区足够大，返回存入数组的字符数；若编码出错，

　　　　　　　　　　　　　　　 返回负值



int　　　　　　sockatmark(int sockfd);

　　　　　　　　　　　　　　　 <sys/socket.h>　　　　　　　　　　　　　　　　　　 p. 626

　　　　　　　　　　　　　　　 返回值：若在标记处，返回1；若没在标记处，返回0；若出错，

　　　　　　　　　　　　　　　 返回−1



int　　　　　　socket(int domain, int type, int protocol);

　　　　　　　　　　　　　　　 <sys/socket.h>　　　　　　　　　　　　　　　　　　 p. 590

　　　　　　　　　　　　　　　 type：SOCK_STREAM、SOCK_DGRAM、SOCK_SEQPACKET

　　　　　　　　　　　　　　　 返回值：若成功，返回文件（套接字）描述符；若出错，返回−1



int　　　　　　socketpair(int domain, int type, int protocol, int sockfd[2]);

　　　　　　　　　　　　　　　 <sys/socket.h>　　　　　　　　　　　　　　　　　　 p. 630

　　　　　　　　　　　　　　　 type：SOCK_STREAM、SOCK_DGRAM、SOCK_SEQPACKET

　　　　　　　　　　　　　　　 返回值：若成功，返回0；若出错，返回−1



int　　　　　　sprintf(char *restrict buf, const char *restrict format, ...);

　　　　　　　　　　　　　　　 <stdio.h>　　　　　　　　　　　　　　　　　　　　　 p. 159

　　　　　　　　　　　　　　　 返回值：若成功，返回存入数组的字符数；若编码出错，返回负值



int　　　　　　sscanf(const char *restrict buf, 

　　　　　　　　　　　　const char *restrict format, ...);

　　　　　　　　　　　　　　　 <stdio.h>　　　　　　　　　　　　　　　　　　　　　 p. 162

　　　　　　　　　　　　　　　 返回值：赋值的输入项数；若输入出错或在任一转换前已到达

　　　　　　　　　　　　　　　 文件尾端，返回EOF



int　　　　　　stat(const char *restrict path, struct stat *restrict buf);

　　　　　　　　　　　　　　　 <sys/stat.h>　　　　　　　　　　　　　　　　　　　　p. 93

　　　　　　　　　　　　　　　 返回值：若成功，返回0；若出错，返回−1



int　　　　　　str2sig(const char *str, int *signop);

　　　　　　　　　　　　　　　 <signal.h>　　　　　　　　　　　　　　　　　　　　　p. 380

　　　　　　　　　　　　　　　 返回值：若成功，返回0；若出错，返回−1

　　　　　　　　　　　　　　　 平台：Solaris 10



char　　　　　*strerror(int errnum);

　　　　　　　　　　　　　　　 <string.h>　　　　　　　　　　　　　　　　　　　　　p. 15

　　　　　　　　　　　　　　　 返回值：指向消息字符串的指针



size_t　　　　 strftime(char *restrict buf, size_t maxsize, 

　　　　　　　　　　　　　const char *restrict format,

　　　　　　　　　　　　　const struct tm *restrict tmptr);

　　　　　　　　　　　　　　　 <time.h>　　　　　　　　　　　　　　　　　　　　　　p. 192

　　　　　　　　　　　　　　　 返回值：若有空间，返回存入数组的字符数；否则，返回0



size_t　　　　strftime_l(char *restrict buf, size_t maxsize, 

　　　　　　　　　　　　　　const char *restrict format,

　　　　　　　　　　　　　　 const struct tm *restrict tmptr, locale_t locale);

　　　　　　　　　　　　　　　 <time.h>　　　　　　　　　　　　　　　　　　　　　　p. 192

　　　　　　　　　　　　　　　 返回值：若有空间，返回存入数组的字符数；否则，返回0



char　　　　　*strptime(const char *restrict buf, const char *restrict format,

　　　　　　　　　　　　　　struct tm *restrict tmptr);

　　　　　　　　　　　　　　　 <time.h>　　　　　　　　　　　　　　　　　　　　　　p. 195

　　　　　　　　　　　　　　　 返回值：指向上次解析的字符的下一个字符的指针；否则，返回NULL



char　　　　　*strsignal(int signo);

　　　　　　　　　　　　　　　 <string.h>　　　　　　　　　　　　　　　　　　　　　p. 380

　　　　　　　　　　　　　　　 返回值：说明该信号字符串的指针



int　　　　　　symlink(const char *actualpath, const char *sympath);

　　　　　　　　　　　　　　　 <unistd.h>　　　　　　　　　　　　　　　　　　　　　p. 123

　　　　　　　　　　　　　　　 返回值：若成功，返回0；若出错，返回−1



int　　　　　　symlinkat(const char *actualpath, int fd, const char *sympath);

　　　　　　　　　　　　　　　 <unistd.h>　　　　　　　　　　　　　　　　　　　　　p. 123

　　　　　　　　　　　　　　　 返回值：若成功，返回0；若出错，返回−1



void 　　　　　sync(void);

　　　　　　　　　　　　　　　 <unistd.h>　　　　　　　　　　　　　　　　　　　　　p. 81



long　　　　　 sysconf(int name);

　　　　　　　　　　　　　　　 <unistd.h> 　　　　　　　　　　　　　　　　　　　　 p. 42

　　　　　　　　　　　　　　　 name：_SC_ARG_MAX、_SC_ASYNCHRONOUS_IO、

　　　　　　　　　　　　　　　　　　 _SC_ATEXIT_MAX、_SC_BARRIERS、

　　　　　　　　　　　　　　　　　　 _SC_CHILD_MAX、_SC_CLK_TCK、

　　　　　　　　　　　　　　　　　　 _SC_CLOCK_SELECTION、_SC_COLL_WEIGHTS_MAX、

　　　　　　　　　　　　　　　　　　 _SC_DELAYTIMER_MAX、_SC_HOST_NAME_MAX、

　　　　　　　　　　　　　　　　　　 _SC_IOV_MAX、_SC_JOB_CONTROL、

　　　　　　　　　　　　　　　　　　 _SC_LINE_MAX、_SC_LOGIN_NAME_MAX、

　　　　　　　　　　　　　　　　　　 _SC_MAPPED_FILED、_SC_MEMORY_PROTECTION、

　　　　　　　　　　　　　　　　　　 _SC_NGROUPS_MAX、_SC_OPEN_MAX、

　　　　　　　　　　　　　　　　　　 _SC_PAGESIZE、_SC_PAGE_SIZE、

　　　　　　　　　　　　　　　　　　 _SC_READER_WRITER_LOCKS、

　　　　　　　　　　　　　　　　　　 _SC_REALTIME_SIGNALS、_SC_RE_DUP_MAX、

　　　　　　　　　　　　　　　　　　 _SC_RTSIG_MAX、_SC_SAVED_IDS、

　　　　　　　　　　　　　　　　　　 _SC_SEMAPHORES、_SC_SEM_NSEMS_MAX、

　　　　　　　　　　　　　　　　　　 _SC_SEM_VALUE_MAX、_SC_SHELL、

　　　　　　　　　　　　　　　　　　 _SC_SIGQUEUE_MAX、_SC_SPIN_LOCKS、

　　　　　　　　　　　　　　　　　　 _SC_STREAM_MAX、_SC_SYMLOOP_MAX、

　　　　　　　　　　　　　　　　　　 _SC_THREAD_SAFE_FUNCTIONS、

　　　　　　　　　　　　　　　　　　 _SC_THREADS、_SC_TIMER_MAX、

　　　　　　　　　　　　　　　　　　 _SC_TIMERS、_SC_TTY_NAME_MAX、

　　　　　　　　　　　　　　　　　　 _SC_TZNAME_MAX、_SC_VERSION、

　　　　　　　　　　　　　　　　　　 _SC_XOPEN_CRYPT、_SC_XOPEN_REALTIME、

　　　　　　　　　　　　　　　　　　 _SC_XOPEN_REALTIME_THREADS、_SC_XOPEN_SHM

　　　　　　　　　　　　　　　　　　 _SC_XOPEN_VERSION

　　　　　　　　　　　　　　　 返回值：若成功，返回相应值；若出错，返回−1



void 　　　　　syslog(int priority, char *format, ...);

　　　　　　　　　　　　　　　 <syslog.h>　　　　　　　　　　　　　　　　　　　　　p. 470



int　　　　　　system(const char *cmdstring);

　　　　　　　　　　　　　　　 <stdlib.h>　　　　　　　　　　　　　　　　　　　　　p. 265

　　　　　　　　　　　　　　　 返回值：shell的终端状态



int　　　　　　tcdrain(int fd);

　　　　　　　　　　　　　　　 <termios.h>　　　　　　　　　　　　　　　　　　　　　p. 693

　　　　　　　　　　　　　　　 返回值：若成功，返回0；若出错，返回−1



int　　　　　　tcflow(int fd, int action);

　　　　　　　　　　　　　　　 <termios.h>　　　　　　　　　　　　　　　　　　　　　p. 693

　　　　　　　　　　　　　　　 action：TCOOFF、TCOON、TCIOFF、TCION

　　　　　　　　　　　　　　　 返回值：若成功，返回0；若出错，返回−1



int　　　　　　tcflush(int fd, int queue);

　　　　　　　　　　　　　　　 <termios.h>　　　　　　　　　　　　　　　　　　　　　p. 693

　　　　　　　　　　　　　　　 queue：TCIFLUSH、TCOFLUSH、TCIOFLUSH

　　　　　　　　　　　　　　　 返回值：若成功，返回0；若出错，返回−1



int　　　　　　tcgetattr(int fd, struct termios *termptr);

　　　　　　　　　　　　　　　 <termios.h>　　　　　　　　　　　　　　　　　　　　　p. 683

　　　　　　　　　　　　　　　 返回值：若成功，返回0；若出错，返回−1



pid_t　　　　 tcgetpgrp(int fd);

　　　　　　　　　　　　　　　 <unistd.h>　　　　　　　　　　　　　　　　　　　　　p. 298

　　　　　　　　　　　　　　　 返回值：若成功，返回前台进程组ID；若出错，返回-1



pid_t　　　　 tcgetsid(int fd);

　　　　　　　　　　　　　　　 <termios.h>　　　　　　　　　　　　　　　　　　　　 p. 299

　　　　　　　　　　　　　　　 返回值：若成功，返回会话首进程的进程组ID；若出错，返回−1



int　　　　　　tcsendbreak(int fd, int duration);

　　　　　　　　　　　　　　　 <termios.h>　　　　　　　　　　　　　　　　　　　　　p. 693

　　　　　　　　　　　　　　　 返回值：若成功，返回0；若出错，返回−1



int　　　　　　tcsetattr(int fd, int opt, const struct termios *termptr);

　　　　　　　　　　　　　　　 <termios.h>　　　　　　　　　　　　　　　　　　　　　p. 683

　　　　　　　　　　　　　　　 opt：TCSANOW、TCSADRAIN、TCSAFLUSH

　　　　　　　　　　　　　　　 返回值：若成功，返回0；若出错，返回−1



int　　　　　　tcsetpgrp(int fd, pid_t pgrpid);

　　　　　　　　　　　　　　　 <unistd.h>　　　　　　　　　　　　　　　　　　　　　 p. 298

　　　　　　　　　　　　　　　 返回值：若成功，返回0；若出错，返回−1



long　　　　　 telldir(DIR *dp);

　　　　　　　　　　　　　　　 <dirent.h>　　　　　　　　　　　　　　　　　　　　　 p. 130

　　　　　　　　　　　　　　　 返回值：与dp关联的目录中的当前位置



time_t　　　　 time(time_t *calptr);

　　　　　　　　　　　　　　　 <time.h>　　　　　　　　　　　　　　　　　　　　　　 p. 189

　　　　　　　　　　　　　　　 返回值：若成功，返回时间值；若出错，返回−1



clock_t　　　　times(struct tms *buf);

　　　　　　　　　　　　　　　 <sys/times.h>　　　　　　　　　　　　　　　　　　　 p. 280

　　　　　　　　　　　　　　　 返回值：若成功，经过的墙上时钟时间；若出错，返回−1



FILE　　　　　 *tmpfile(void);

　　　　　　　　　　　　　　　 <stdio.h>　　　　　　　　　　　　　　　　　　　　　　p. 167

　　　　　　　　　　　　　　　 返回值：若成功，返回文件指针；若出错，返回NULL



char　　　　　 *tmpnam(char *ptr);

　　　　　　　　　　　　　　　 <stdio.h>　　　　　　　　　　　　　　　　　　　　　　p. 167

　　　　　　　　　　　　　　　 返回值：指向唯一路径名的指针；若出错，返回NULL



int　　　　　　truncate(const char *path, off_t length);

　　　　　　　　　　　　　　　 <unistd.h>　　　　　　　　　　　　　　　　　　　　　p. 112

　　　　　　　　　　　　　　　 返回值：若成功，返回0；若出错，返回−1



char　　　　　 *ttyname(int fd);

　　　　　　　　　　　　　　　 <unistd.h>　　　　　　　　　　　　　　　　　　　　　p. 695

　　　　　　　　　　　　　　　 返回值：指向终端路径名的指针；若出错，返回NULL



mode_t　　　　umask(mode_t cmask);

　　　　　　　　　　　　　　　 <sys/stat.h>　　　　　　　　　　　　　　　　　　　　p. 104

　　　　　　　　　　　　　　　 返回值：之前的文件模式创建屏蔽字



int　　　　　　uname(struct utsname *name);

　　　　　　　　　　　　　　　 <sys/utsname.h>　　　　　　　　　　　　　　　　　　 p. 187

　　　　　　　　　　　　　　　 返回值：若成功，返回非负值；若出错，返回−1



int　　　　　　ungetc(int c, FILE *fp);

　　　　　　　　　　　　　　　 <stdio.h>　　　　　　　　　　　　　　　　　　　　　 p. 151

　　　　　　　　　　　　　　　 返回值：若成功，返回c；若出错，返回EOF



int　　　　　　unlink(const char *path);

　　　　　　　　　　　　　　　 <unistd.h>　　　　　　　　　　　　　　　　　　　　　p. 117

　　　　　　　　　　　　　　　 返回值：若成功，返回0；若出错，返回−1



int　　　　　　unlinkat(int fd, const char *path, int flag);

　　　　　　　　　　　　　　　 <unistd.h>　　　　　　　　　　　　　　　　　　　　　p. 117

　　　　　　　　　　　　　　　 flag：AT_REMOVEDIR

　　　　　　　　　　　　　　　 返回值：若成功，返回0；若出错，返回−1



int　　　　　　unlockpt(int fd);

　　　　　　　　　　　　　　　 <stdlib.h>　　　　　　　　　　　　　　　　　　　　　p. 723

　　　　　　　　　　　　　　　 返回值：若成功，返回0；若出错，返回−1



int　　　　　　unsetenv(const char *name);

　　　　　　　　　　　　　　　 <stdlib.h>　　　　　　　　　　　　　　　　　　　　　p. 212

　　　　　　　　　　　　　　　 返回值：若成功，返回0；若出错，返回−1



int　　　　　　utimensat(int fd, const char *path, 

　　　　　　　　　　　　　 const struct timespec times[2], int flag);

　　　　　　　　　　　　　　　 <sys/stat.h>　　　　　　　　　　　　　　　　　　　　p. 126

　　　　　　　　　　　　　　　 flag：AT_SYMLINK_NOFOLLOW

　　　　　　　　　　　　　　　 返回值：若成功，返回0；若出错，返回−1



int　　　　　　utimes(const char *path, const struct timeval times[2]);

　　　　　　　　　　　　　　　 <sys/time.h>　　　　　　　　　　　　　　　　　　　　p. 127

　　　　　　　　　　　　　　　 返回值：若成功，返回0；若出错，返回−1



int　　　　　　vdprintf(int fd, const char *restrict format, va_list arg);

　　　　　　　　　　　　　　　 <stdarg.h>　　　　　　　　　　　　　　　　　　　　　p. 161

　　　　　　　　　　　　　　　 <stdio.h>

　　　　　　　　　　　　　　　 返回值：若成功，返回输出字符数；若输出出错，返回负值



int　　　　　　vfprintf(FILE *restrict fp, const char *restrict format, 

　　　　　　　　　　　　　va_list arg);

　　　　　　　　　　　　　　　 <stdarg.h>　　　　　　　　　　　　　　　　　　　　　p. 161

　　　　　　　　　　　　　　　 <stdio.h>

　　　　　　　　　　　　　　　 返回值：若成功，返回输出字符数；若输出出错，返回负值



int　　　　　　vfscanf(FILE *restrict fp, const char *restrict format, va_list arg);

　　　　　　　　　　　　　　　 <stdarg.h> 　　　　　　　　　　　　　　　　　　　　 p. 163

　　　　　　　　　　　　　　　 <stdio.h>

　　　　　　　　　　　　　　　 返回值：指定的输入项目数；若输入出错或在任一转换前文件

　　　　　　　　　　　　　　　 结束，返回EOF



int　　　　　　vprintf(const char *restrict format, va_list arg);

　　　　　　　　　　　　　　　 <stdarg.h>　　　　　　　　　　　　　　　　　　　　　p. 161

　　　　　　　　　　　　　　　 <stdio.h>

　　　　　　　　　　　　　　　 返回值：若成功，返回输出字符数；若输出出错，返回负值



int　　　　　　vscanf(const char *restrict format, va_list arg);

　　　　　　　　　　　　　　　 <stdarg.h>　　　　　　　　　　　　　　　　　　　　　p. 163

　　　　　　　　　　　　　　　 <stdio.h>

　　　　　　　　　　　　　　　 返回值：指定的输入项目数；若输入出错或在任一转换前文件

　　　　　　　　　　　　　　　 结束，返回EOF



int　　　　　　vsnprintf(char *restrict buf, size_t n,

　　　　　　　　　　　　　 const char *restrict format, va_list arg);

　　　　　　　　　　　　　　　 <stdarg.h>　　　　　　　　　　　　　　　　　　　　　p. 161

　　　　　　　　　　　　　　　 <stdio.h>

　　　　　　　　　　　　　　　 返回值：若缓冲区足够大，返回存入数组的字符数；若编码

　　　　　　　　　　　　　　　 出错，返回负值



int　　　　　　vsprintf(char *restrict buf, const char *restrict format, 

　　　　　　　　　　　　　va_list arg);

　　　　　　　　　　　　　　　 <stdarg.h>　　　　　　　　　　　　　　　　　　　　　p. 161

　　　　　　　　　　　　　　　 <stdio.h>

　　　　　　　　　　　　　　　 返回值：若成功，返回存入数组的字符数；若编码出错，返回负值



int　　　　　　vsscanf(const char *restrict buf, const char *restrict format, 

　　　　　　　　　　　　 va_list arg);

　　　　　　　　　　　　　　　 <stdarg.h>　　　　　　　　　　　　　　　　　　　　　p. 163

　　　　　　　　　　　　　　　 <stdio.h>

　　　　　　　　　　　　　　　 返回值：指定的输入项目数；若输入出错或在任一转换前文件

　　　　　　　　　　　　　　　 结束，返回EOF



void 　　　　　vsyslog(int priority, const char *format, va_list arg);

　　　　　　　　　　　　　　　 <syslog.h>　　　　　　　　　　　　　　　　　　　　　p. 472

　　　　　　　　　　　　　　　 <stdarg.h>

　　　　　　　　　　　　　　　 平台：FreeBSD 8.0、Linux 3.2.0、Mac OS X 10.6.8、Solaris 10



pid_t　　　　　wait(int *statloc);

　　　　　　　　　　　　　　　 <sys/wait.h>　　　　　　　　　　　　　　　　　　　　p. 238

　　　　　　　　　　　　　　　 返回值：若成功，返回进程ID；若出错，返回0或−1



int　　　　　　waitid(idtype_t idtype, id_t id, siginfo_t *infop, int options);

　　　　　　　　　　　　　　　 <sys/wait.h>　　　　　　　　　　　　　　　　　　　　p. 244

　　　　　　　　　　　　　　　 idtype：P_PID、P_PGID、P_ALL

　　　　　　　　　　　　　　　 options：WCONTINUED、WEXITED、WNOHANG、WNOWAIT、WSTOPPED

　　　　　　　　　　　　　　　 返回值：若成功，返回0；若出错，返回−1

　　　　　　　　　　　　　　　 平台：Linux 3.2.0、Solaris 10



pid_t　　　　　waitpid(pid_t pid, int *statloc, int options);

　　　　　　　　　　　　　　　 <sys/wait.h>　　　　　　　　　　　　　　　　　　　　p. 238

　　　　　　　　　　　　　　　 options：WCONTINUED、WNOHANG、WUNTRACED

　　　　　　　　　　　　　　　 返回值：若成功，返回进程ID；若出错，返回0或−1



pid_t　　　　　wait3(int *statloc, int options, struct rusage *rusage);

　　　　　　　　　　　　　　　 <sys/types.h>　　　　　　　　　　　　　　　　　　　 p. 245

　　　　　　　　　　　　　　　 <sys/wait.h>

　　　　　　　　　　　　　　　 <sys/time.h>

　　　　　　　　　　　　　　　 <sys/resource.h>

　　　　　　　　　　　　　　　 options：WNOHANG、WUNTRACED

　　　　　　　　　　　　　　　 返回值：若成功，返回进程ID；若出错，返回0或−1

　　　　　　　　　　　　　　　 平台：FreeBSD 8.0、Linux 3.2.0、Mac OS X 10.6.8、Solaris 10



pid_t　　　　　wait4(pid_t pid, int *statloc, int options, struct rusage *rusage);

　　　　　　　　　　　　　　　 <sys/types.h>　　　　　　　　　　　　　　　　　　　 p. 245

　　　　　　　　　　　　　　　 <sys/wait.h>

　　　　　　　　　　　　　　　 <sys/time.h>

　　　　　　　　　　　　　　　 <sys/resource.h>

　　　　　　　　　　　　　　　 options：WNOHANG、WUNTRACED

　　　　　　　　　　　　　　　 返回值：若成功，返回进程ID；若出错，返回0或−1

　　　　　　　　　　　　　　　 平台：FreeBSD 8.0、Linux 3.2.0、Mac OS X 10.6.8、Solaris 10



ssize_t　　　　write(int fd, const void *buf, size_t nbytes);

　　　　　　　　　　　　　　　 <unistd.h>　　　　　　　　　　　　　　　　　　　　　 p. 72

　　　　　　　　　　　　　　　 返回值：若成功，返回已写的字节数；若出错，返回−1



ssize_t　　　　writev(int fd, const struct iovec *iov, int iovcnt);

　　　　　　　　　　　　　　　 <sys/uio.h>　　　　　　　　　　　　　　　　　　　　　p. 521

　　　　　　　　　　　　　　　 返回值：若成功，返回已写的字节数；若出错，返回−1


 


附录B　其他源代码
 
B.1　本书使用的头文件
 
本书中的大多数程序都包含头文件apue.h，如图B-1所示。其中定义了常量（如MAXLINE）和我们自编函数的原型。
 
大多数程序都需要包含下列头文件：<stdio.h>、<stdlib.h>（其中有exit函数原型）和<unistd.h>（其中包含所有标准UNIX函数的原型），因此头文件apue.h自动包含了这些系统头文件，同时还包含了<string.h>。这样就减少了本书中所有程序的长度。
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/*

 * Our own header, to be included before all standard system headers.

 */

#ifndef _APUE_H

#define _APUE_H



#define _POSIX_C_SOURCE 200809L



#if defined(SOLARIS)　　　　　　　/* Solaris 10 */

#define _XOPEN_SOURCE 600

#else

#define _XOPEN_SOURCE 700

#endif



#include <sys/types.h>　　　　　　/* some systems still require this */

#include <sys/stat.h>

#include <sys/termios.h>　　　　　/* for winsize */



#if defined(MACOS) || !defined(TIOCGWINSZ)

#include <sys/ioctl.h>

#endif



#include <stdio.h>　　　　　　　 /* for convenience */

#include <stdlib.h>　　　　　　　/* for convenience */

#include <stddef.h>　　　　　　　/* for offsetof */

#include <string.h>　　　　　　　/* for convenience */

#include <unistd.h>　　　　　　　/* for convenience */

#include <signal.h>　　　　　　　/* for SIG_ERR */



#define　MAXLINE　4096　　　　　 /* max line length */



/*

 * Default file access permissions for new files.

 */

#define　FILE_MODE　　(S_IRUSR | S_IWUSR | S_IRGRP | S_IROTH)



/*

 * Default permissions for new directories.

 */

#define　DIR_MODE　　　(FILE_MODE | S_IXUSR | S_IXGRP | S_IXOTH)



typedef　void　　　　　Sigfunc(int);　　　　　　/* for signal handlers */



#define　min(a,b)　　　　((a) < (b) ? (a) : (b))

#define　max(a,b)　　　　((a) > (b) ? (a) : (b))



/*

 * Prototypes for our own functions.

 */

char　　　*path_alloc(size_t *);　　　　　　　　　　/* Figure 2.16 */

long　　　 open_max(void);　　　　　　　　　　　　　 /* Figure 2.17 */



int　　　　set_cloexec(int);　　　　　　　　　　　　 /* Figure 13.9 */

void　　　 clr_fl(int, int);

void　　　 set_fl(int, int);　　　　　　　　　　　　 /* Figure 3.12 */



void　　　 pr_exit(int);　　　　　　　　　　　　　　　/* Figure 8.5 */



void　　　 pr_mask(const char *);　　　　　　　　　 /* Figure 10.14 */

Sigfunc　*signal_intr(int, Sigfunc *);　　　　　　/* Figure 10.19 */



void　　　 daemonize(const char *);　　　　　　　　/* Figure 13.1 */



void　　　 sleep_us(unsigned int);　　　　　　　　 /* Exercise 14.5 */

ssize_t　 readn(int, void *, size_t);　　　　　　 /* Figure 14.24 */

ssize_t　 writen(int, const void *, size_t);　　 /* Figure 14.24 */



int　　　　fd_pipe(int *);　　　　　　　　　　　　　 /* Figure 17.2 */

int　　　　recv_fd(int, ssize_t (*func)(int,

　　　　　　　　　 　const void *, size_t));　　　　 /* Figure 17.14 */

int　　　　send_fd(int, int);　　　　　　　　　　　　/* Figure 17.13 */

int　　　　send_err(int, int,

 　　　　 　　　　　onst char *);　　　　　　　　　　/* Figure 17.12 */

int　　　　serv_listen(const char *);　　　　　　　/* Figure 17.8 */

int　　　　serv_accept(int, uid_t *);　　　　　　　/* Figure 17.9 */

int　　　　cli_conn(const char *);　　　　　　　　 /* Figure 17.10 */

int　　　　buf_args(char *, int (*func)(int,

　　　　　　　　　　 char **));　　　　　　　　　　　 /* Figure 17.23 */



int　　　　tty_cbreak(int);　　　　　　　　　　　　　/* Figure 18.20 */

int　　　　tty_raw(int);　　　　　　　　　　　　　　 /* Figure 18.20 */

int　　　　tty_reset(int);　　　　　　　　　　　　　 /* Figure 18.20 */

void　　　 tty_atexit(void);　　　　　　　　　　　　/* Figure 18.20 */

struct termios *tty_termios(void);　　　　　　　 /* Figure 18.20 */



int　　　　ptym_open(char *, int);　　　　　　　　 /* Figure 19.9 */

int　　　　ptys_open(char *);　　　　　　　　　　　 /* Figure 19.9 */

#ifdef　　TIOCGWINSZ

pid_t　　 pty_fork(int *, char *, int, const struct termios *,

　　　　　　　　　　　const struct winsize *);　　　/* Figure 19.10 */

#endif



int　　　　lock_reg(int, int, int, off_t, int, off_t); /* Figure 14.5 */



#define　 read_lock(fd, offset, whence, len) \

　　　　　　　lock_reg((fd), F_SETLK, F_RDLCK, (offset), (whence), (len))

#define　 readw_lock(fd, offset, whence, len) \

　　　　　　　lock_reg((fd), F_SETLKW, F_RDLCK, (offset), (whence), (len))

#define　 write_lock(fd, offset, whence, len) \

　　　　　　　lock_reg((fd), F_SETLK, F_WRLCK, (offset), (whence), (len))

#define　 writew_lock(fd, offset, whence, len) \

　　　　　　　lock_reg((fd), F_SETLKW, F_WRLCK, (offset), (whence), (len))

#define　 un_lock(fd, offset, whence, len) \

　　　　　　　lock_reg((fd), F_SETLK, F_UNLCK, (offset), (whence), (len))



pid_t　　　lock_test(int, int, off_t, int, off_t);　　　　　/* Figure 14.6 */



#define　 is_read_lockable(fd, offset, whence, len) \

　　　　　　　(lock_test((fd), F_RDLCK, (offset), (whence), (len)) == 0)

#define　 is_write_lockable(fd, offset, whence, len) \

　　　　　　　 (lock_test((fd), F_WRLCK, (offset), (whence), (len)) == 0)



void　　　 err_msg(const char *, ...);　　　　　　　/* Appendix B */

void　　　 err_dump(const char *, ...) __attribute__((noreturn));

void　　　 err_quit(const char *, ...) __attribute__((noreturn));

void　　　 err_cont(int, const char *, ...);

void　　　 err_exit(int, const char *, ...) __attribute__((noreturn));

void　　　 err_ret(const char *, ...);

void　　　 err_sys(const char *, ...) __attribute__((noreturn));



void　　　 log_msg(const char *, ...);　　　　　　/* Appendix B */

void　　　 log_open(const char *, int, int);

void　　　 log_quit(const char *, ...) __attribute__((noreturn));

void　　　 log_ret(const char *, ...);

void　　　 log_sys(const char *, ...) __attribute__((noreturn));

void　　　 log_exit(int, const char *, ...) __attribute__((noreturn));



void　　　 TELL_WAIT(void);　　　　　　　　　　　　/* parent/child from Section 8.9 */

void　　　 TELL_PARENT(pid_t);

void　　　 TELL_CHILD(pid_t);

void　　　 WAIT_PARENT(void);

void　　　 WAIT_CHILD(void);



#endif　　/* _APUE_H */
 
图B-1　头文件apue.h
 
程序中先包括apue.h，然后再包括一般系统头文件，这样就使我们易于做到下列各点：可以先定义一些在此后包括的头文件可能要求的部分；能够控制头文件被包括的顺序；能够重定义某些部分，而这正是为隐藏两个系统之间的差别而需要解决的。
 
B.2　标准出错例程
 
我们提供了两套出错函数，用于本书中大多数实例以处理各种出错情况。一套以err_开头，并向标准错误输出一条出错消息。另一套以log_开头，用于守护进程（见第13章），它们多半没有控制终端。
 
之所以提供我们自己的出错函数，是为了能够编写只有一行C代码的出错处理程序，例如：
 
if (出错条件)

　　err_dump(带任意参数的printf格式);
 
这样就不再需要使用下列代码：
 
if (出错条件) {

　　char buf[200];



　　sprintf(buf, 带任意参数的printf格式);

　　perror(buf);

　　abort();

}
 

  898 

 
我们的出错处理函数使用了ISO C的变长参数表功能。其详细说明见Kernighan和Ritchie[1988]的7.3节。应当注意的是，这个ISO C功能与早期系统（如SVR3和4.3BSD）提供的varargs功能不同。宏的名字相同，但更改了某些宏的参数。
 
图B-2列出了各个出错函数之间的区别。
 
[image: B-2.jpg]
 
图B-2　标准出错函数
 
图B-3包括了输出至标准错误的各个出错函数。
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#include "apue.h"

#include <errno.h>　　　　　/* for definition of errno */

#include <stdarg.h>　　　　 /* ISO C variable aruments */



static void　err_doit(int, int, const char *, va_list);



/*

 * Nonfatal error related to a system call.

 * Print a message and return.

 */

void

err_ret(const char *fmt, ...)

{

　　va_list　　　　ap;



　　va_start(ap, fmt);

　　err_doit(1, errno, fmt, ap);

　　va_end(ap);

}



/*

 * Fatal error related to a system call.

 * Print a message and terminate.

 */

void

err_sys(const char *fmt, ...)

{

　　va_list　　　　ap;



　　va_start(ap, fmt);

　　err_doit(1, errno, fmt, ap);

　　va_end(ap);

　　exit(1);

}



/*

 * Nonfatal error unrelated to a system call.

 * Error code passed as explict parameter.

 * Print a message and return.

 */

void

err_cont(int error, const char *fmt, ...)

{

　　va_list　　　　ap;



　　va_start(ap, fmt);

　　err_doit(1, error, fmt, ap);

　　va_end(ap);

}



/*

 * Fatal error unrelated to a system call.

 * Error code passed as explict parameter.

 * Print a message and terminate.

 */

void

err_exit(int error, const char *fmt, ...)

{

　　va_list　　　ap;



　　va_start(ap, fmt);

　　err_doit(1, error, fmt, ap);

　　va_end(ap);

　　exit(1);

}



/*

 * Fatal error related to a system call.

 * Print a message, dump core, and terminate.

 */

void

err_dump(const char *fmt, ...)

{

　　va_list　　　ap;



　　va_start(ap, fmt);

　　err_doit(1, errno, fmt, ap);

　　va_end(ap);

　　abort();　　　　/* dump core and terminate */

　　exit(1);　　　　/* shouldn't get here */

}



/*

 * Nonfatal error unrelated to a system call.

 * Print a message and return.

 */

void

err_msg(const char *fmt, ...)

{

　　va_list　　　ap;



　　va_start(ap, fmt);

　　err_doit(0, 0, fmt, ap);

　　va_end(ap);

}



/*

 * Fatal error unrelated to a system call.

 * Print a message and terminate.

 */

void

err_quit(const char *fmt, ...)

{

　　va_list　　　ap;



　　va_start(ap, fmt);

　　err_doit(0, 0, fmt, ap);

　　va_end(ap);

　　exit(1);

}



/*

 * Print a message and return to caller.

 * Caller specifies "errnoflag".

 */

static void

err_doit(int errnoflag, int error, const char *fmt, va_list ap)

{

　　char　　　　buf[MAXLINE];



　　vsnprintf(buf, MAXLINE-1, fmt, ap);

　　if (errnoflag)

　　　　snprintf(buf+strlen(buf), MAXLINE-strlen(buf)-1, ": %s",

　　　　　strerror(error));

　　strcat(buf, "\n");

　　fflush(stdout);　　　　　/* in case stdout and stderr are the same */

　　fputs(buf, stderr);

　　fflush(NULL);　　　　　　/* flushes all stdio output streams */

}
 
图B-3　输出至标准错误的出错函数
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图B-4包括了各log_XXX出错函数。若进程不以守护进程方式运行，那么调用者应当定义变量log_ to_stderr，并将其设置为非0值。在这种情况下，出错消息被发送至标准错误。若log_to_stderr标志为0，则使用syslog设施（见13.4节）。
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/*

 * Error routines for programs that can run as a daemon.

 */



#include "apue.h"

#include <errno.h>　　　　　　/* for definition of errno */

#include <stdarg.h>　　　　　/* ISO C variable arguments */

#include <syslog.h>



static void　log_doit(int, int, int, const char *, va_list ap);



/*

 * Caller must define and set this: nonzero if

 * interactive, zero if daemon

 */

extern int　log_to_stderr;



/*

 * Initialize syslog(), if running as daemon.

 */

void

log_open(const char *ident, int option, int facility)

{

　　if (log_to_stderr == 0)

　　　　openlog(ident, option, facility);

}



/*

 * Nonfatal error related to a system call.

 * Print a message with the system's errno value and return.

 */

void

log_ret(const char *fmt, ...)

{

　　va_list　　　ap;



　　va_start(ap, fmt);

　　log_doit(1, errno, LOG_ERR, fmt, ap);

　　va_end(ap);

}



/*

 * Fatal error related to a system call.

 * Print a message and terminate.

 */

void

log_sys(const char *fmt, ...)

{

　　va_list　　　ap;



　　va_start(ap, fmt);

　　log_doit(1, errno, LOG_ERR, fmt, ap);

　　va_end(ap);

　　exit(2);

}



/*

 * Nonfatal error unrelated to a system call.

 * Print a message and return.

 */

void

log_msg(const char *fmt, ...)

{

　　va_list　　　ap;



　　va_start(ap, fmt);

　　log_doit(0, 0, LOG_ERR, fmt, ap);

　　va_end(ap);

}



/*

 * Fatal error unrelated to a system call.

 * Print a message and terminate.

 */

void

log_quit(const char *fmt, ...)

{

　　va_list　　　ap;



　　va_start(ap, fmt);

　　log_doit(0, 0, LOG_ERR, fmt, ap);

　　va_end(ap);

　　exit(2);

}



/*

 * Fatal error related to a system call.

 * Error number passed as an explicit parameter.

 * Print a message and terminate.

 */

void

log_exit(int error, const char *fmt, ...)

{

　　va_list　　　ap;



　　va_start(ap, fmt);

　　log_doit(1, error, LOG_ERR, fmt, ap);

　　va_end(ap);

　　exit(2);

}



/*

 * Print a message and return to caller.

 * Caller specifies "errnoflag" and "priority".

 */

static void

log_doit(int errnoflag, int error, int priority, const char *fmt,

　　　　　va_list ap)

{

　　Char　　　　buf[MAXLINE];



　　vsnprintf(buf, MAXLINE-1, fmt, ap);

　　if (errnoflag)

　　　　snprintf(buf+strlen(buf), MAXLINE-strlen(buf)-1, ": %s",

　　　　　strerror(error));

　　strcat(buf, "\n");

　　if (log_to_stderr) {

　　　　fflush(stdout);

　　　　fputs(buf, stderr);

　　　　fflush(stderr);

　　} else {

　　　syslog(priority, "%s", buf);

　　}

}
 
图B-4　用于守护进程的出错函数
 


附录C　部分习题答案
 
第1章
 
1.1　这个习题利用ls(1)命令的下面两个参数：-i打印文件或目录的i节点编号（4.14节详细讨论了i节点）；-d仅打印目录信息，而不是打印目录中所有文件的信息。
 
执行下列命令：
 
$ ls -ldi /etc/. /etc/..　　　　　　 -i要求打印i节点编号

162561 drwxr-xr-x　66 root　　 4096 Feb　5 03:59 /etc/./

　　　2 drwxr-xr-x　19 root　　 4096 Jan 15 07:25 /etc/../

$ ls -ldi /. /..　　　　　　　　　　　.和..的i节点编号均为2　

　　　2 drwxr-xr-x　19 root　　 4096 Jan 15 07:25 /./

　　　2 drwxr-xr-x　19 root　　 4096 Jan 15 07:25 /../


 
1.2　UNIX系统是多道程序或多任务系统，所以，在图1-6所示程序运行的同时其他两个进程也在运行。
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1.3　因为perror的msg参数是一个指针，perror就可以改变msg指向的字符串。然而使用限定符const限制了perror不能修改msg指针指向的字符串。而对于strerror，其错误号参数是整数类型，并且C是按值传递所有参数，因此即使strerror函数想修改参数的值也修改不了，也就没有必要使用const属性。（如果对C中函数参数的处理不是很清楚，可参见Kernighan和Ritchie[1988]的5.2节。）
 
1.4　在2038年。将time_t数据类型定为64位整型，就可以解决该问题了。如果它现在是32位整型，那么为使应用程序正常工作，应当对其重编译。但是这一问题还有更糟糕之处。某些文件系统及备份介质以32位整型存放时间。对于这些同样需要加以更新，但又需要能读旧的格式。
 
1.5　大约248天。
 
第2章
 
2.1　下面是FreeBSD中使用的技术。在头文件<machine/_types.h>中定义可在多个头文件中出现的基本数据类型。例如：
 
#ifndef _MACHINE__TYPES_H_

#define _MACHINE__TYPES_H_



typedef int　　　　　　　__int32_t;

typedef unsigned int　 __uint32_t;

　　[image: ]



typedef __uint32_t　　 __size_t;

　　[image: ]



#endif　/* _MACHINE__TYPES_H_ */


 
在每个可以定义基本数据类型size_t的头文件中，包含下面的语句序列。
 
#ifndef _SIZE_T_DECLARED

typedef __size_t　　　size_t;

#define _SIZE_T_DECLARED

#endif
 
这样，实际上只执行一次size_t的typedef。
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2.3　如果OPEN_MAX是未确定的或大得出奇（即等于LONG_MAX），那么可以使用getrlimit得到每个进程的最大打开文件描述符数。因为可以修攺对每个进程的限制，所以我们不能将前一个调用得到的值高速缓存起来（它可能已被更改），见图C-1。
 
#include "apue.h"

#include <limits.h>

#include <sys/resource.h>



#define OPEN_MAX_GUESS　256



long

open_max(void)

{

　　long openmax;

　　struct rlimit rl;



　　if ((openmax = sysconf(_SC_OPEN_MAX)) < 0 ||

　　　openmax == LONG_MAX) {

　　　　if (getrlimit(RLIMIT_NOFILE, &rl) < 0)

　　　　　　err_sys("can't get file limit");

　　　　if (rl.rlim_max == RLIM_INFINITY)

　　　　　　openmax = OPEN_MAX_GUESS;

　　　　else

　　　　　　openmax = rl.rlim_max;

　　}

　　return(openmax);

}
 
图C-1　标识最大可能文件描述符的替换方法
 
第3章
 
3.1　所有磁盘I/O都要经过内核的块缓存区（也称为内核的缓冲区高速缓存）。唯一例外的是对原始磁盘设备的I/O，但是我们不考虑这种情况（Bach[1986]的第3章讲述了这种缓存区高速缓存的操作）。既然read或write的数据都要被内核缓冲，那么术语“不带缓冲的I/O”指的是在用户的进程中对这两个函数不会自动缓冲，每次read或write就要进行一次系统调用。
 
3.3　每次调用open函数就分配一个新的文件表项。但是因为两次打开的是同一个文件，则两个文件表项指向相同的v节点。调用dup引用已存在的文件表项（此处指fd1的文件表项），见图C-2。当F_SETFD作用于fd1时，只影响fd1的文件描述符标志；F_SETFL作用于fd1时，则影响fd1及fd2指向的文件表项。
 
[image: ..\..\..\UNIX环境高级编程（第3版）tu\c02.tif]
 
图C-2　open和dup的结果
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3.4　如果fd是1，执行dup2(fd, 1)后返回1，但没有关闭文件描述符1（见3.12节）。调用3次dup2后，3个描述符指向相同的文件表项，所以不需要关闭描述符。
 
如果fd为3，调用3次dup2后，有4个描述符指向相同的文件表项，这种情况下就需要关闭描述符3。
 
3.5　因为shell从左到右处理命令行，所以
 
./a.out > outfile 2>&1
 
首先设置标准输出到outfile，然后执行dup将标准输出复制到描述符2（标准错误）上，其结果是将标准输出和标准错误设置为同一个的文件，即描述符1和2指向同一个文件表项。而对于命令行
 
./a.out 2>&1 > outfile
 
由于首先执行dup，所以描述符2成为终端（假设命令是交互执行的），标准输出重定向到outfile。结果是描述符1指向outfile的文件表项，描述符2指向终端的文件表项。
 
3.6　这种情况下，仍然可以用lseek和read函数读文件中任意一个位置的内容。但是write函数在写数据之前会自动将文件偏移量设置为文件尾，所以写文件时只能从文件尾端开始。
 
第4章
 
4.1　stat函数总是跟随符号链接（见图4-17），所以该程序决不会显示文件类型是“符号链接”。例如，正如本书正文中所示，/dev/cdrom是/dev/sr0的一个符号链接，但是stat函数的结果只显示/dev/cdrom是一个块特殊文件，而不报告它是一个符号链接。若符号链接指向一个不存在的文件，stat会出错返回。
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4.2　将关闭该文件的所有访问权限。
 
$ umask 777

$ date > temp.foo

$ ls -l temp.foo

----------　1 sar　　　　　 29 Feb　5 14:06 temp.foo


 
4.3　下面的命令显示了关闭用户读权限时所发生的情况。
 
$ data > foo

$ chmod u-r foo　　 关闭用户读权限

$ ls -l foo　　　　　验证文件的权限

--w-r--r--　1 sar　　　　　29 Feb　5 14:21 foo

$ cat foo　　　　　　读文件

cat: foo: Permission denied


 
4.4　如果用open或creat创建已经存在的文件，则该文件的访问权限位不变。运行图4-9中的程序可以验证这点。
 
$ rm foo bar　　　　　　删除文件

$ data > foo　　　　　　创建文件

$ data > bar

$ chmod a-r foo bar　 关闭所有的读权限

$ ls -l foo bar　　　　验证其权限

--w-------　 1 sar　　 29 Feb　5 14:25 bar

--w-------　 1 sar　　 29 Feb　5 14:25 foo

$ ./a.out　　　　　　　 运行图4-9程序

$ ls -l foo bar　　　　检查文件的权限和大小

--w-------　 1 sar　　　0 Feb　5 14:26 bar

--w-------　 1 sar　　　0 Feb　5 14:26 foo


 
可以看出访问权限没有改变，但是文件被截断了。
 
4.5　目录的长度从来不会是0，因为它总是包含.和..两项。符号链接的长度指其路径名包含的字符数，由于路径名中至少有一个字符，所以长度也不为0。
 
4.7　当创建新的core文件时，内核对其访问权限有一个默认设置，在本例中是rw-r--r--。这一默认值可能会也可能不会被umask的值修改。shell对创建的重定向的新文件也有一个默认的访问权限，本例中为rw-rw-rw-，这个值总是被当前的umask修改，在本例中umask为02。
 
4.8　不能使用du的原因是它需要文件名，如
 
du tempfile
 
或目录名，如
 
du .
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只有当unlink函数返回时才释放tempfile的目录项，du .命令没有计算仍然被tempfile占用的空间。本例中只能使用df命令查看文件系统中实际可用的空闲空间。
 
4.9　如果被删除的链接不是该文件的最后一个链接，则不会删除该文件。此时，文件的状态更改时间被更新。但是，如果被删除的链接是最后一个链接，则该文件将被物理删除。这时再去更新文件的状态更改时间就没有意义，因为包含文件所有信息的i节点将会随着文件的删除而被释放。
 
4.10　用opendir打开一个目录后，递归调用函数dopath。假设opendir使用一个文件描述符，并且只有在处理完目录后才调用closedir释放描述符，这就意味着每次降一级就要使用另外一个描述符。所以进程可打开的最大描述符数就限制了我们可以遍历的文件系统树的深度。Single UNIX Specification的XSI扩展中说明的ftw允许调用者指定使用的描述符数，这隐含着可以关闭描述符并且重用它们。
 
4.12　chroot函数被因特网文件传输协议（Internet File Transfer Protocol，FTP）程序用于辅助安全性。系统中没有账户的用户（也称为匿名FTP）放在一个单独的目录下，利用chroot将此目录当作新的根目录，就可以阻止用户访问此目录以外的文件。
 
chroot也用于在另一台机器上构造一个文件系统层次结构的副本，然后修改此副本，不会更改原来的文件系统。这可用于测试新软件包的安装。
 
chroot只能由超级用户执行，一旦更改了一个进程的根，该进程及其后代进程就再也不能恢复至原先的根。
 
4.13　首先调用stat函数取得文件的3个时间值，然后调用utimes设置期望的值。在调用utimes时我们不希望改变的值应当是stat中相应的值。
 
4.14　finger(1)对邮箱调用stat函数，最近一次的修改时间是上一次接收邮件的时间，最近访问时间是上一次读邮件的时间。
 
4.15　cpio和tar存储的只是归档文件的修改时间（st_mtim）。因为文件归档时一定会读它，所以该文件的访问时间对应于创建归档文件的时间，因此没有存储其访问时间。cpio的-a选项可以在读输入文件后重新设置该文件的访问时间，于是创建归档文件不改变文件的访问时间。（但是，重置文件的访问时间确实改变了状态更改时间。）状态更改时间没有存储在文挡上，因为即使它曾被归档，在抽取时也不能设置其值。（utimes函数极其相关的futimens和utimensta函数可以更改的仅仅是访问时间和修改时间。）
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对tar来说，在抽取文件时，其默认方式是复原归档时的修改时间值，但是tar的-m选项则将修改时间设置为抽取文件时的时间，而不是复原归档时的修改时间值。对于tar，无论何种情况，在抽取后，文件的访问时间均是抽取文件时的时间。
 
另一方面，cpio将访问时间和修改时间设置为抽取文件时的时间。默认情况下，它并不试图将修改时间设置为归档时的值。cpio的-m选项将文件的修改时间和访问时间设置为归档时的值。
 
4.16　内核对目录树的深度没有内在的限制，但是如果路径名的长度超出了PATH_MAX，则有许多命令会失败。图C-3程序创建了一个深度为1 000的目录树，每一级目录名有45个字符。在所有平台上我们都能构建这样的结构，但并不是在所有平台上都能用getcwd得到第1 000级目录的绝对路径名。在Mac OS X 10.6.8中，当到达长路径的目录尾部时，getcwd就不再成功了。在FreeBSD 8.0、Linux 3.2.0和Solaris 10中，getcwd可以获得路径名，但是需要多次调用realloc得到一个足够大的缓冲区。在Linux 3.2.0上运行该程序后得到：
 
$ ./a.out

getcwd failed, size = 4096: Numerical result out of range

getcwd failed, size = 4196: Numerical result out of range

...　　　　　　　　　　　　　　省略了418行

getcwd failed, size = 45896: Numerical result out of range

getcwd failed, size = 45996: Numerical result out of range

length = 46004

　　　　　　　　　　　　　　　　显示46004字节的路径名


 
然而，不能用cpio归档此目录，因为文件名太长了。事实上，cpio在所有4种平台上都不能归档此目录。于此对比的是，在FreeBSD 8.0、Linux 3.2.0和Mac OS X 10.6.8上，可以用tar归档此目录。然而，在Linux 3.2.0上，我们不能从归档文件中抽取出目录的层次结构。
 
#include "apue.h"

#include <fcntl.h>



#define　DEPTH　　1000　　　　　/* directory depth */

#define　STARTDIR "/tmp"

#define　NAME　　 "alonglonglonglonglonglonglonglonglonglongname"

#define　MAXSZ　　(10*8192)



int

main(void)

{

　　int　　   i;

　　size_t　　size;

　　char　　　*path;



　　if (chdir(STARTDIR) < 0)

　　　　err_sys("chdir error");



　　for (i = 0; i < DEPTH; i++) {

　　　　if (mkdir(NAME, DIR_MODE) < 0)

　　　　　　err_sys("mkdir failed, i = %d", i);

　　　　if (chdir(NAME) < 0)

　　　　　　err_sys("chdir failed, i = %d", i);

　　}



　　if (creat("afile", FILE_MODE) < 0)

　　　　err_sys("creat error");



　　/*

　　 * The deep directory is created, with a file at the leaf.

　　 * Now let's try to obtain its pathname.

　　 */

　　path = path_alloc(&size);

　　for ( ; ; ) {

　　　　if (getcwd(path, size) != NULL) {

　　　　　　break;

　　　　} else {

　　　　　　err_ret("getcwd failed, size = %ld", (long)size);

　　　　　　size += 100;

　　　　　　if (size > MAXSZ)

　　　　　　　　err_quit("giving up");

　　　　　　if ((path = realloc(path, size)) == NULL)

　　　　　　　　err_sys("realloc error");

　　　　}

　　}

　　printf("length = %ld\n%s\n", (long)strlen(path), path);



　　exit(0);

}
 
图C-3　创建深目录树
 
4.17　/dev目录关闭了一般用户的写访问权限，以防止普通用户删除目录中的文件名。这就意味着unlink失败。
 
第5章
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5.2　fgets函数读入数据，直到行结束或缓冲区满（当然会留出一个字节存放终止null字节）。同样，fputs只负责将缓冲区的内容输出直到遇到一个null字节，而并不考虑缓冲区中是否包含换行符。所以，如果将MAXLINE设得很小，这两个函数仍然会正常工作；只不过在缓冲区较大时，函数被执行的次数要多于MAXLINE值设置得较大的时候。
 
如果这些函数删除或添加换行符（如gets和puts函数的操作），则必需保证对于最长的行，缓冲区也足够大。
 
5.3　当printf没有输出任何字符时，如printf("");，函数调用返回0。
 
5.4　这是一个比较常见的错误。getc以及getchar的返回值是int类型，而不是char类型。由于EOF经常定义为1，那么如果系统使用的是有符号的字符类型，程序还可以正常工作。但如果使用的是无符号字符类型，那么返回的EOF被保存到字符c后将不再是1，所以，程序会进入死循环。本书说明的4种平台都使用带符号字符，所以实例代码都能工作。
 
5.5　使用方法为：先调用fflush后调用fsync。fsync所使用的参数由fileno函数获得。如果不调用fflush，所有的数据仍然在内存缓冲区中，此时调用fsync将没有任何效果。
 
5.6　当程序交互运行时，标准输入和标准输出均为行缓冲方式。每次调用fgets时标准输出设备将自动冲洗。
 
5.7　基于BSD系统的fmemopen的实现如图C-4所示。
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#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <errno.h>



/*

 * Our internal structure tracking a memory stream

 */

struct memstream

{

　　Char　　　*buf;　　　　/* in-memory buffer */

　　size_t　　 rsize;　　 /* real size of buffer */

　　size_t　　 vsize;　　 /* virtual size of buffer */

　　size_t　　 curpos;　　/* current position in buffer */

　　int　　　  flags;　　 /* see below */

};



/* flags */

#define MS_READ　　　　 0x01　　　　/* open for reading */

#define MS_WRITE　　　　0x02　　　　/* open for writing */

#define MS_APPEND　　  0x04　　　　/* append to stream */

#define MS_TRUNCATE　　0x08　　　　/* truncate the stream on open */

#define MS_MYBUF　　　　0x10　　　　/* free buffer on close */



#ifndef MIN

#define MIN(a, b) ((a) < (b) ? (a) : (b))

#endif



static int mstream_read(void *, char *, int);

static int mstream_write(void *, const char *, int);

static fpos_t mstream_seek(void *, fpos_t, int);

static int mstream_close(void *);

static int type_to_flags(const char *__restrict type);

static off_t find_end(char *buf, size_t len);



FILE *

fmemopen(void *__restrict buf, size_t size,

　　 const char *__restrict type)

{

　　struct memstream *ms;

　　FILE *fp;



　　if (size == 0) {

　　　　errno = EINVAL;

　　　　return(NULL);

　　}

　　if ((ms = malloc(sizeof(struct memstream))) == NULL) {

　　　　errno = ENOMEM;

　　　　return(NULL);

　　}

　　if ((ms->flags = type_to_flags(type)) == 0) {

　　　　errno = EINVAL;

　　　　free(ms);

　　　　return(NULL);

　　}

　　if (buf == NULL) {

　　　　if ((ms->flags & (MS_READ|MS_WRITE)) !=

　　　　　(MS_READ|MS_WRITE)) {

　　　　　　errno = EINVAL;

　　　　　　free(ms);

　　　　　　return(NULL);

　　　　}

　　　　if ((ms->buf = malloc(size)) == NULL) {

　　　　　　errno = ENOMEM;

　　　　　　free(ms);

　　　　　　return(NULL);

　　　　}

　　　　ms->rsize = size;

　　　　ms->flags |= MS_MYBUF;

　　　　ms->curpos = 0;

　　} else {

　　　　ms->buf = buf;

　　　　ms->rsize = size;

　　　　if (ms->flags & MS_APPEND)

　　　　　　ms->curpos = find_end(ms->buf, ms->rsize);

　　　　else

　　　　　　ms->curpos = 0;

　　}

　　if (ms->flags & MS_APPEND) {　　　　　　　 /* "a" mode */

　　　　ms->vsize = ms->curpos;

　　} else if (ms->flags & MS_TRUNCATE) {　  /* "w" mode */

　　　　ms->vsize = 0;

　　} else {　　　　　　　　　　　　　　　　　　　/* "r" mode */

　　　　ms->vsize = size;

　　}

　　fp = funopen(ms, mstream_read, mstream_write,

　　　mstream_seek, mstream_close);

　　if (fp == NULL) {

　　　　if (ms->flags & MS_MYBUF)

　　　　　　free(ms->buf);

　　　　free(ms);

　　}

　　return(fp);

}



static int

type_to_flags(const char *__restrict type)

{

　　const char *cp;

　　int flags = 0;



　　for (cp = type; *cp != 0; cp++) {

　　　　 switch (*cp) {

　　　　 case 'r':

　　　　　　 if (flags != 0)

　　　　　　　　 return(0);　/* error */

　　　　　　 flags |= MS_READ;

　　　　　　 break;



　　　　 case 'w':

　　　　　　 if (flags != 0)

　　　　　　　　 return(0);　/* error */

　　　　　　 flags |= MS_WRITE|MS_TRUNCATE;

　　　　　　 break;



　　　　 case 'a':

　　　　　　 if (flags != 0)

　　　　　　　　 return(0);　/* error */

　　　　　　 flags |= MS_APPEND;

　　　　　　 break;



　　　　case '+':

　　　　　　 if (flags == 0)

　　　　　　　　 return(0);　/* error */

　　　　　　 flags |= MS_READ|MS_WRITE;

　　　　　　 break;



　　　　 case 'b':

　　　　　　 if (flags == 0)

　　　　　　　　 return(0);　/* error */

　　　　　　 break;



　　　　 default:

　　　　　　 return(0);　　/* error */

　　　　 }

　　}

　　return(flags);

}



static off_t

find_end(char *buf, size_t len)

{

　　off_t off = 0;



　　while (off < len) {

　　　　if (buf[off] == 0)

　　　　　　 break;

　　　　off++;

　　}

　　return(off);

}



static int

mstream_read(void *cookie, char *buf, int len)

{

　　int nr;

　　struct memstream *ms = cookie;



　　if (!(ms->flags & MS_READ)) {

　　　　errno = EBADF;

　　　　return(-1);

　　}

　　if (ms->curpos >= ms->vsize)

　　　　return(0);



　　/* can only read from curpos to vsize */

　　nr = MIN(len, ms->vsize - ms->curpos);

　　memcpy(buf, ms->buf + ms->curpos, nr);

　　ms->curpos += nr;

　　return(nr);

}



static int

mstream_write(void *cookie, const char *buf, int len)

{

　　int nw, off;

　　struct memstream *ms = cookie;



　　if (!(ms->flags & (MS_APPEND|MS_WRITE))) {

　　　　errno = EBADF;

　　　　return(-1);

　　}

　　if (ms->flags & MS_APPEND)

　　　　off = ms->vsize;

　　else

　　　　off = ms->curpos;

　　nw = MIN(len, ms->rsize - off);

　　memcpy(ms->buf + off, buf, nw);

　　ms->curpos = off + nw;

　　if (ms->curpos > ms->vsize) {

　　　　ms->vsize = ms->curpos;

　　　　if (((ms->flags & (MS_READ|MS_WRITE)) ==

　　　　　(MS_READ|MS_WRITE)) && (ms->vsize < ms->rsize))

　　　　　　*(ms->buf + ms->vsize) = 0;

　　}

　　if ((ms->flags & (MS_WRITE|MS_APPEND)) &&

　　　!(ms->flags & MS_READ)) {

　　　　if (ms->curpos < ms->rsize)

　　　　　　*(ms->buf + ms->curpos) = 0;

　　　　else

　　　　　　*(ms->buf + ms->rsize - 1) = 0;

　　}

　　return(nw);

}



static fpos_t

mstream_seek(void *cookie, fpos_t pos, int whence)

{

　　int off;

　　struct memstream *ms = cookie;



　　switch (whence) {

　　case SEEK_SET:

　　　　off = pos;

　　　　break;

　　case SEEK_END:

　　　　off = ms->vsize + pos;

　　　　break;

　　case SEEK_CUR:

　　　　off = ms->curpos + pos;

　　　　break;

　　}

　　if (off < 0 || off > ms->vsize) {

　　　　errno = EINVAL;

　　　　return -1;

　　}

　　ms->curpos = off;

　　return(off);

}



static int

mstream_close(void *cookie)

{

　　struct memstream *ms = cookie;



　　if (ms->flags & MS_MYBUF)

　　　　free(ms->buf);

　　free(ms);

　　return(0);

}
 
图C-4　BSD系统的fmemopen实现
 
第6章
 
6.1　6.3节讲述了在Linux和Solaris系统中访问阴影口令文件的函数。不能使用6.2节所述函数返回的pw_passwd字段值与加密口令相比较，因为此字段不是加密的口令。正确的方法是使用阴影口令文件中对应用户的加密口令字段来进行比较。
 
在FreeBSD和Mac OS X中，口令文件的阴影是自动建立的。FreeBSD 8.0中，仅当调用者的有效用户ID为0时，getpwnam或getpwuid函数返回的passed结构中的pw_passwd字段包含有加密口令。在Mac OS X 10.6.8上，加密口令不能通过这些接口访问。
 
6.2　在Linux 3.2.0和Solaris 10中，图C-5程序输出加密口令。当然，除非有超级用户权限，否则调用getspnam将返回EACCES错误。
 
#include "apue.h"

#include <shadow.h>



int

main(void)　　　　　/* Linux/Solaris version */

{

　　struct spwd　　*ptr;



　　if ((ptr = getspnam("sar")) == NULL)

　　　　err_sys("getspnam error");

　　printf("sp_pwdp = %s\n", ptr->sp_pwdp == NULL ||

　　　ptr->sp_pwdp[0] == 0 ?　"(null)" : ptr->sp_pwdp);

　　exit(0);

}
 
图C-5　在Linux和Solaris系统中输出加密口令
 
在FreeBSD 8.0中，具有超级用户权限时，图C-6程序将输出加密口令，否则pw_passed的返回值为星号（*）。在Mac OS X 10.6.8中，不管其运行时的用户权限是什么都输出星号。
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#include "apue.h"

#include <pwd.h>



int

main(void)　　　　　/* FreeBSD/Mac OS X version */

{

　　struct passwd　　　*ptr;



　　if ((ptr = getpwnam("sar")) == NULL)

　　　　err_sys("getpwnam error");

　　printf("pw_passwd = %s\n", ptr->pw_passwd == NULL ||

　　　ptr->pw_passwd[0] == 0 ?　"(null)" : ptr->pw_passwd);

　　exit(0);

}
 
图C-6　在FreeBSD和Mac OS X中输出加密口令
 
6.5　图C-7程序以类似于date命令的格式输出日期。
 
#include "apue.h"

#include <time.h>



int

main(void)

{

　　time_t　　　　　caltime;

　　struct tm　　　*tm;

　　char　　　　　　line[MAXLINE];



　　if ((caltime = time(NULL)) == -1)

　　　　err_sys("time error");

　　if ((tm = localtime(&caltime)) == NULL)

　　　　err_sys("localtime error");

　　if (strftime(line, MAXLINE, "%a %b %d %X %Z %Y\n", tm) == 0)

　　　　err_sys("strftime error");

　　fputs(line, stdout);

　　exit(0);

}
 
图C-7　以date (1)的格式输出日期和时间
 
图C-7中程序的运行结果如下：
 
$ ./a.out　　　　　　　　　　　　　 作者的默认格式是美国东部

Wed Jul 25 22:58:32 EDT 2012

$ TZ=US/Mountain ./a.out　　　　 美国山地时间

Wed Jul 25 20:58:32 MDT 2012

$ TZ=Japan ./a.out　　　　　　　　日本

Thu Jul 26 11:58:32 JST 2012


 
第7章
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7.1　原因在于printf的返回值（输出的字符数）变成了main函数的返回值。为了验证这一结论，改变打印字符串的长度，然后运行程序，查看返回值是否与新的字符串长度值匹配。当然，并不是所有的系统都会出现该情况。还要注意的是，如果在gcc中允许ISO C扩展的编译选项，返回值将总是0，这是标准要求的。
 
7.2　当程序处于交互运行方式时，标准输出通常处于行缓冲方式，所以当输出换行符时，上次的结果才被真正输出。如果标准输出被定向到一个文件，而标准输出处于全缓冲方式，则当标准I/O清理操作执行时，结果才真正被输出。
 
7.3　由于agrc和argv的副本不像environ一样保存在全局变量中，所以在大多数UNIX系统中没有其他办法。
 
7.4　当C程序解引用一个空指针出错时，执行该程序的进程将终止。可以利用这种方法终止进程。
 
7.5　定义如下：
 
typedef void　 Exitfunc(void);

int atexit(Exitfunc *func);


 
7.6　calloc将分配的内存空间初始化为0。但是ISO C并不保证0值与浮点0或空指针的值相同。
 
7.7　只有通过exec函数执行一个程序时，才会分配堆和栈（见8.10节）。
 
7.8　可执行文件（a.out）包含了用于调试core文件的符号表信息。用strip(1)命令可以删除这些信息，对两个a.out文件执行这条命令，它们的大小减为798 760和6 200字节。
 
7.9　没有使用共享库时，可执行文件的大部分都被标准I/O库所占用。
 
7.10　这段代码不正确。因为在自动变量val已经不存在之后，代码还通过指针引用这个已经不存在的自动变量。自动变量val在复合语句开始的左花括号之后声明了，但当该复合语句结束时，即在匹配的右花括号之后，自动变量就不存在了。
 
第8章
 
8.1　为了仿真子进程终止时关闭标准输出的行为，在调用exit之前加下列代码行：
 
fclose(stdout);
 
为了观察其效果，用下面几行代替程序中调用printf的语句。
 
i = printf("pid = %ld, glob = %d, var = %d\n",

　　(long)getpid(), glob, var);

sprintf(buf, "%d\n", i);

write(STDOUT_FILENO, buf, strlen(buf));
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还需要定义变量i和buf。
 
这里假设子进程调用exit时关闭标准I/O流，但不关闭文件描述符STDOUT_FILENO。有些版本的标准I/O库会关闭与标准输出相关联的文件描述符从而引起write标准输出失败。在这种情况下，调用dup将标准输出复制到另一个描述符，write则使用新复制的文件描述符。
 
8.2　可以通过图C-8程序来说明这个问题。
 
#include "apue.h"



static void　f1(void), f2(void);



int

main(void)

{

　　f1();

　　f2();

　　_exit(0);

}



static void

f1(void)

{

　　pid_t　pid;



　　if ((pid = vfork()) < 0)

　　　　err_sys("vfork error");

　　/* child and parent both return */

}



static void

f2(void)

{

　　char　　　 buf[1000];　　　　　/* automatic variables */

　　int　　　　i;



　　for (i = 0; i < sizeof(buf); i++)

　　　　buf[i] = 0;

}
 
图C-8　错误使用vfork的例子
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当函数f1调用vfork时，父进程的栈指针指向f1函数的栈帧，见图C-9。vfork使得子进程先执行然后从f1返回，接着子进程调用f2，并且f2的栈帧覆盖了f1的栈帧，在f2中子进程将自动变量buf的值置为0，即将栈中的1 000个字节的值都置为0。从f2返回后子进程调用_exit，这时栈中main栈帧以下的内容已经被f2修改了。然后，父进程从vfork调用后恢复继续，并从f1返回。返回信息虽然常常保存在栈中，但是多半可能已经被子进程修改了。对于这个例子，父进程恢复继续执行的结果要依赖于你所使用的UNIX系统的实现特征（如返回信息保存在栈帧中的具体位置、修改动态变量时覆盖了哪些信息等）。通常的结果是一个core文件，但在你的系统中，产生的结果可能不同。
 
8.4　在图8-13中，我们先让父进程输出，但是当父进程输出完毕子进程要输出时，要让父进程终止。是父进程先终止还是子进程先执行输出，要依赖于内核对两个进程的调度（另一个竞争条件）。在父进程终止后，shell会开始执行下一个程序，它也许会干扰子进程的输出。为了避免这种情况，要在子进程完成输出后才终止父进程。用下面的语句替换程序中fork后面的代码。
 
else if (pid == 0) {

　　WAIT_PARENT();　　　　　　　　/* parent goes first */

　　charatatime("output from child\n");

　　TELL_PARENT(getppid());　　/* tell parent we're done */

} else {

　　 charatatime("output from parent\n");

　　 TELL_CHILD(pid);　　　　　　/* tell child we're done */

　　 WAIT_CHILD();　　　　　　　　/* wait for child to finish */

}
 
[image: ..\..\..\UNIX环境高级编程（第3版）tu\c09.tif]
 
图C-9　调用vfork时的栈帧
 
由于只有终止父进程才能开始下一个程序，而该程序让子进程先运行，所以不会出现上面的情况。
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8.5　对argv[2]打印的是相同的值（/home/sar/bin/testinterp）。原因是execlp在结束时调用了execve，并且与直接调用execl的路径名相同。回忆图8-15。
 
8.6　图C-10程序创建了一个僵死进程。
 
#include "apue.h"



#ifdef SOLARIS

#define PSCMD　　　"ps -a -o pid,ppid,s,tty,comm"

#else

#define PSCMD　　　"ps -o pid,ppid,state,tty,command"

#endif



int

main(void)

{

　　pid_t　pid;



　　if ((pid = fork()) < 0)

　　　　err_sys("fork error");

　　else if (pid == 0)　　　/* child */

　　　　exit(0);



　　/* parent */

　　sleep(4);

　　system(PSCMD);



　　exit(0);

}
 
图C-10　创建一个僵死进程并用ps查看其状态
 
执行程序结果如下（ps(1)用Z表示僵死进程）：
 
$ ./a.out

 PID　PPID S TT　　　　 COMMAND

2369　2208 S pts/2　　　-bash

7230　2369 S pts/2　　　./a.out

7231　7230 Z pts/2　　　[a.out] 

7232　7230 S pts/2　　　sh -c ps -o pid,ppid,state,tty,command

7233　7232 R pts/2　　　ps -o pid,ppid,state,tty,command


 
第9章
 
9.1　因为init是登录 shell的父进程，当登录shell终止时它收到SIGCHLD信号量，所以init进程知道什么时候终端用户注销。
 

  923 

 
网络登录没有包含init，在utmp和wtmp文件中的登录项和相应的注销项是由一个处理登录并检测注销的进程写的（本例中为telnetd）。
 
第10章
 
10.1　当程序第一次接收到发送给它的信号时就终止了。因为一捕捉到信号，pause函数就返回。
 
10.2　栈帧见图C-11。
 
[image: ..\..\..\UNIX环境高级编程（第3版）tu\c11.tif]
 
图C-11　longjmp前后的栈帧
 
在sig_alrm中通过longjmp返回sleep2，有效地避免了继续执行sig_int。从这一点，sleep2返回main（回忆图10-8）。
 
10.4　在第一次调用alarm和setjmp之间又有一次竞争条件。如果进程在调用alarm和setjmp之间被内核阻塞了，闹钟时间超过后就调用信号处理程序，然后调用longjmp。但是由于没有调用过setjmp，所以没有设置env_alrm缓冲区。如果longjmp的跳转缓冲区没有被setjmp初始化，则说明longjmp的操作是未定义的。
 
10.5　参见Don Libes的论文“Implementing Software Timers”（C users Journal, Vol. 8, no. 11, Nov. 1990）中的例子。可以访问http://www.kohala.com/start/ libes.timers.txt 获得该论文的电子版。
 
10.7　如果仅仅调用_exit，则进程终止状态不能表示该进程是由于SIGABRT信号而终止的。
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10.8　如果信号是由其他用户的进程发出的，进程必须设置用户ID为根或者是接收进程的所有者，否则kill不能执行。所以实际用户ID为信号的接收者提供了更多的信息。
 
10.10　对于本书作者所用的一个系统，每60～90分钟增加一秒，这个误差是因为每次调用sleep都要调度一次将来的时间事件，但是由于CPU调度，有时并没有在事件发生时立即被唤醒。另外一个原因是进程开始运行和再次调用sleep都需要一定量的时间。
 
cron守护进程这样的程序每分钟都要获取当前时间，它首先设置一个休眠周期，然后在下一分钟开始时唤醒。（将当前时间转换成本地时间并查看tm_sec值。）每一分钟，设置下一个休眠周期，使得在下一分钟开始时可以唤醒。大多数调用是sleep(60)，偶尔有一个sleep(59)用于在下一分钟同步。但是，若在进程中花费了许多时间执行命令或者系统的负载重、调度慢，这时休眠值可能远小于60。
 
10.11　在Linux 3.2.0、Mac OS X 10.6.8和Solaris 10中，从来没有调用过SIGXFSZ的信号处理程序，一旦文件的大小达到1 024时，write就返回24。
 
在FreeBSD 8.0中，当文件大小已达到1 000字节，在下一次准备写100字节时调用该信号处理程序，write返回1，并且将errno设置为EFBIG（文件太大）。
 
在所有4种平台上，如果在当前文件偏移量处（文件尾端）尝试再一次write，将收到SIGXFSZ信号，write将失败，返回−1，并将errno设置为EFBIG。
 
10.12　结果依赖于标准I/O库的实现：fwrite函数如何处理一个被中断的write。
 
例如，在Linux 3.2.0上，当使用fwrite函数写一个大的缓冲区时，fwrite以相同的字节数直接调用write。在write系统调用当中，闹钟时间到，但我们直到写结束才看到信号。看上去就好像在write系统调用进行当中内核阻塞了信号。
 
与此不同的是，在Solaris 10中，fwrite函数调用以8 KB的增量调用write，直到写完整个要求的字节数。当闹钟时间到，会被捕捉到，中断write回到fwrite。当从信号处理程序返回时，返回到fwrite函数内部的循环，并继续以8 KB的增量写。
 
第11章
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11.1　图C-12给出了一个没有使用自动变量，而采用动态内存分配的程序。
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#include "apue.h"

#include <pthread.h>



struct foo {

　　int a, b, c, d;

};



void

printfoo(const char *s, const struct foo *fp)

{

　　fputs(s, stdout);

　　printf("　structure at 0x%lx\n", (unsigned long)fp);

　　printf("　foo.a = %d\n", fp->a);

　　printf("　foo.b = %d\n", fp->b);

　　printf("　foo.c = %d\n", fp->c);

　　printf("　foo.d = %d\n", fp->d);

}



void *

thr_fn1(void *arg)

{

　　struct foo *fp;



　　if ((fp = malloc(sizeof(struct foo))) == NULL)

　　　　　err_sys("can't allocate memory");

　　fp->a = 1;

　　fp->b = 2;

　　fp->c = 3;

　　fp->d = 4;

　　printfoo("thread:\n", fp);

　　return((void *)fp);

}



int

main(void)

{

　　int err;

　　pthread_t tid1;

　　struct foo *fp;



　　err = pthread_create(&tid1, NULL, thr_fn1, NULL);

　　if (err != 0)

　　　　err_exit(err, "can't create thread 1");

　　err = pthread_join(tid1, (void *)&fp);

　　if (err != 0)

　　　　err_exit(err, "can't join with thread 1");

　　printfoo("parent:\n", fp);

　　exit(0);

}
 
图C-12　线程返回值的正确使用
 
11.2　要改变挂起作业的线程ID，必须持有写模式下的读写锁，防止ID在改变过程中有其他线程在搜索该列表。目前定义该接口的方式存在的问题在于：调用job_ find找到该作业以及调用job_remove从列表中删除该作业这两个时间之间作业ID可以改动。这个问题可以通过在job结构中嵌入引用计数和互斥量，然后让job_find增加引用计数的方法来解决。这样修改ID的代码就可以避免对列表中非零引用计数的任何作业进行ID改动的情况。
 
11.3　首先，列表是由读写锁保护的，但条件变量需要互斥量对条件进行保护。其次，每个线程等待满足的条件应该是有某个作业进行处理时需要的条件，所以需要创建每线程数据结构来表示这个条件。或者，可以把互斥量和条件变量嵌入到queue结构中，但这意味着所有的工作线程将等待相同的条件。如果有很多工作线程存在，当唤醒了许多线程但又没有工作可做时，就可能出现惊群效应问题，最后导致CPU资源的浪费，并且增加了锁的争夺。
 
11.4　这根据具体情况而定。总的来说，两种情况都可能是正确的，但每一种方法都有不足之处。在第一种情况下，等待线程会被安排在调用pthread_cond_broadcast之后运行。如果程序运行在多处理器上，由于还持有互斥锁（pthread_cond_wait返回持有的互斥锁），一些线程就会运行而且马上阻塞。在第二种情况下，运行线程可以在第3步和第4步之间获取互斥锁，然后使条件失效，最后释放互斥锁。接着，当调用pthread_cond_broadcast时，条件不再为真，线程无需运行。这就是为什么唤醒线程必须重新检查条件，不能仅仅因为pthread_cond_wait返回就假定条件就为真。
 
第12章
 
12.1　就像人们首先会猜到的，这并不是一个多线程问题。这些标准I/O例程事实上是线程安全的。我们调用fork时，每个进程获得了标准I/O数据结构的一份副本。程序运行时把标准输出定向到终端时，输出是行缓冲的，所以每次打印一行时，标准I/O库就把该行写到终端上。但是，如果把标准输出重定向到文件的话，则标准输出就是全缓冲的。当缓冲区满或者进程关闭流时，输出才会写到文件。在这个例子中，执行fork时，缓冲区中包含了还未写的几个打印行，所以当父进程和子进程最终冲洗缓冲区中的副本时，最初的复制内容就会写入文件。
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12.3　理论上来讲，如果在信号处理程序运行时阻塞所有的信号，那么就能使函数成为异步信号安全的。问题是我们并不能知道调用的某个函数可能并没有屏蔽已经被阻塞的信号，这样通过另一个信号处理程序可能会使该函数变成可重入的。
 
12.4　在FreeBSD 8.0上，程序抛出core。用gdb的话，可以看到程序初始化过程将调用线程函数，这些函数调用getenv找到环境变量LIBPTHREAD_SPINLOOPS和LIBPTHREAD_YIELDLOOPS的值。然而，我们的线程安全版本的getenv回调pthread库函数会处于一种中间的不一致状态。另外，线程初始化函数会调用malloc，并在malloc中调用getenv来查找环境变量MALLOC_OPTIONS的值。
 
为了避开这个问题，我们可以合理假定程序启动是单线程的，并使用一个标志来指示线程初始化已经通过我们的getenv来完成了。但这个标志为假时，我们版本的getenv会和不可重入版本一样操作（并且避免调用任何pthread函数和malloc）。然后我们提供一个独立的初始化函数来调用pthread_once，而非从getenv里面来调用它。这就要求在调用getenv之前程序调用我们的初始化函数。这就解决了我们的问题，因为只有程序启动初始化完成后才能进行。当程序调用了我们的初始化函数后，这个版本的getenv就是线程安全的。
 
12.5　如果希望在一个程序中运行另一个程序，还需要fork（即在调用exec之前）。
 
12.6　图C-13给出了使用select实现线程安全的sleep函数，延迟一定数量的时间。它是线程安全的，因为它并不使用任何未经保护的全局或静态数据，并且只调用其他线程安全的函数。
 
#include <unistd.h>

#include <time.h>

#include <sys/select.h>



unsigned

sleep(unsigned seconds)

{

　　int n;

　　unsigned slept;

　　time_t start, end;

　　struct timeval tv;



　　tv.tv_sec = seconds;

　　tv.tv_usec = 0;

　　time(&start);

　　n = select(0, NULL, NULL, NULL, &tv);

　　if (n == 0)

　　　　return(0);

　　time(&end);

　　slept = end - start;

　　if (slept >= seconds)

　　　　return(0);

　　return(seconds - slept);

}
 
图C-13　sleep的线程安全实现
 
12.7　很多时候条件变量的实现都使用互斥锁来保护它的内部结构。由于这是实现细节，因而通常是被隐藏起来的，所以在fork处理程序中没有可移植的方法获取或释放锁。既然在调用fork后并不能确定条件变量中的内部锁状态，所以在子进程中使用条件变量是不安全的。
 
第13章
 
13.1　如果进程调用chroot，它就不能打开/dev/log。解决的办法是，守护进程在调用chroot之前调用选项为LOG_NDELAY的openlog。它打开特殊设备文件（UNIX域数据报套接字）并生成一个描述符，即使调用了chroot之后，该描述符仍然是有效的。这种场景在诸如ftpd（文件传输协议守护进程）这样的守护进程中出现，为了安全起见，专门调用了chroot，但仍需要调用syslog来对出错条件记录日志。
 
13.4　图C-14展示了一种解决方案。
 

  928～929 

 
#include "apue.h"



int

main(void)

{

　　FILE *fp;

　　char *p;



　　daemonize("getlog");

　　p = getlogin();

　　fp = fopen("/tmp/getlog.out", "w");

　　if (fp != NULL) {

　　　　if (p == NULL)

　　　　　　fprintf(fp, "no login name\n");

　　　　else

　　　　　　fprintf(fp, "login name: %s\n", p);

　　}

　　exit(0);

}
 
图C-14　调用daemonize然后获得登录名
 
其结果依赖于不同的系统实现。daemonize关闭所有打开文件描述符，然后向/dev/null再打开前3个。这意味着进程不再有控制终端，所以getlogin不能在utmp文件中看到进程的登录项。于是在Linux 3.2.0 和Solaris 10中，我们发现守护进程没有登录名。
 
但是在FreeBSD 8.0和Mac OS X 10.6.8中，登录名是由进程表维护的，并且在执行fork时复制。也就是说，除非其父进程没有登录名（如系统自引导时调用init），否则进程总能获得其登录名。
 
第14章
 
14.1　测试程序如图C-15所示。
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#include "apue.h"

#include <fcntl.h>

#include <errno.h>



void

sigint(int signo)

{

}



int

main(void)

{

 　　pid_t pid1, pid2, pid3;

 　　int fd;



 　　setbuf(stdout, NULL);

 　　signal_intr(SIGINT, sigint);



 　　/*

 　　 * Create a file.

 　　 */

 　　if ((fd = open("lockfile", O_RDWR|O_CREAT, 0666)) < 0)

 　　　　　err_sys("can't open/create lockfile");



 　　/*

 　　 * Read-lock the file.

 　　 */

 　　if ((pid1 = fork()) < 0) {

 　　　　　err_sys("fork failed");

 　　} else if (pid1 == 0) {　　/* child */

 　　　　　if (lock_reg(fd, F_SETLK, F_RDLCK, 0, SEEK_SET, 0) < 0)

 　　　　　　　 err_sys("child 1: can't read-lock file");

 　　　　　printf("child 1: obtained read lock on file\n");

 　　　　　pause();

 　　　　　printf("child 1: exit after pause\n");

 　　　　　exit(0);

 　　} else {　　　　/* parent */

 　　　　　sleep(2);

 　　}



 　　/*

 　　 * Parent continues ... read-lock the file again.

 　　 */

 　　if ((pid2 = fork()) < 0) {

 　　　　　err_sys("fork failed");

 　　} else if (pid2 == 0) {　　/* child */

 　　　　　if (lock_reg(fd, F_SETLK, F_RDLCK, 0, SEEK_SET, 0) < 0)

 　　　　　　　err_sys("child 2: can't read-lock file");

 　　　　　printf("child 2: obtained read lock on file\n");

 　　　　　pause();

 　　　　　printf("child 2: exit after pause\n");

 　　　　　exit(0);

 　　} else {　　　/* parent */

 　　　　　sleep(2);

 　　}



 　　/*

 　　 * Parent continues ... block while trying to write-lock

 　　 * the file.

 　　 */

 　　if ((pid3 = fork()) < 0) {

 　　　　　err_sys("fork failed");

 　　} else if (pid3 == 0) {　　/* child */

 　　　　　if (lock_reg(fd, F_SETLK, F_WRLCK, 0, SEEK_SET, 0) < 0)

 　　　　　　　 printf("child 3: can't set write lock: %s\n",

 　　　　　　　　 strerror(errno));

 　　　　　printf("child 3 about to block in write-lock...\n");

 　　　　　if (lock_reg(fd, F_SETLKW, F_WRLCK, 0, SEEK_SET, 0) < 0)

 　　　　　　　 err_sys("child 3: can't write-lock file");

 　　　　　printf("child 3 returned and got write lock????\n");

 　　　　　pause();

 　　　　　printf("child 3: exit after pause\n");

 　　　　　exit(0);

 　　} else {　　　/* parent */

 　　　　　sleep(2);

 　　}



 　　/*

 　　 * See if a pending write lock will block the next

 　　 * read-lock attempt.

 　　 */

 　　if (lock_reg(fd, F_SETLK, F_RDLCK, 0, SEEK_SET, 0) < 0)

 　　　　　printf("parent: can't set read lock: %s\n",

 　　　　　　strerror(errno));

 　　else

 　　　　　printf("parent: obtained additional read lock while"

 　　　　　　" write lock is pending\n");

 　　printf("killing child 1...\n");

 　　kill(pid1, SIGINT);

 　　printf("killing child 2...\n");

 　　kill(pid2, SIGINT);

 　　printf("killing child 3...\n");

 　　kill(pid3, SIGINT);

 　　exit(0);

}
 
图C-15　判断记录锁的行为
 
在FreeBSD 8.0、Linux 3.2.0和Mac OS X 10.6.8上，记录锁的行为是相同的，后增加的读者可使未决的写者不断等待。运行该程序得到
 
child 1: obtained read lock on file

child 2: obtained read lock on file

child 3: can't set write lock: Resource temporarily unavailable

child 3 about to block in write-lock...

parent: obtained additional read lock while write lock is pending

killing child 1...

child 1: exit after pause

killing child 2...

child 2: exit after pause

killing child 3...

child 3: can't write-lock file: Interrupted system call
 
14.2　大多数系统将数据类型fd_set定义为只包含一个成员的结构，该成员为一个长整型数组。数组中每一位（bit）对应于一个描述符。4个FD_宏通过开、关或测试指定的位对这个数组进行操作。
 
将之定义为一个包含数组的结构而不仅仅是一个数组的原因是：通过C语言的赋值语句，可以使fd_set类型的变量相互赋值。
 
14.3　大多数系统允许用户在包括头文件<sys/select.h>前定义常量FD_SETSIZE。例如，我们可以写下面这样的代码来定义fd_set数据类型，使其可以包含2 048个描述符：
 
#define FD_SETSIZE 2048

#include <sys/select.h>
 
遗憾的是，事情并非如此简单。为了在现代系统使用该技术，我们需要做以下几件事情。
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（1）在包含任何头文件之前，我们需要定义哪种符号来防止包含<sys/select.h>。一些系统会使用一个单独的符号来保护fd_set类型的定义，我们也需要如此定义。
 
例如，在FreeBSD 8.0中，我们需要定义_SYS_SELECT_H_来防止包含<sys/select.h>，定义_FD_SET来防止包含fd_set数据类型的定义。
 
（2）有时，为了和旧应用程序兼容，<sys/types.h>定义了fd_set的大小，所以我们必须首先包含它，然后去掉FD_SETSIZE的定义。注意，一些系统用__FD_SETSIZE来代替。
 
（3）想能够使用select时，我们需要重新定义FD_SETSIZE（或__FD_SETSIZE）来最大化文件描述符的数量。
 
（4）我们需要取消定义第一步定义的符号。
 
（5）最终，我们能够包含<sys/select.h>。
 
在运行程序之前，我们需要配置系统允许我们打开所需的文件描述符数量，这样我们能够实际利用的文件描述符数量达到FD_SETSIZE个。
 
14.4　下面列出了功能类似的函数。
 
[image: p752.jpg]
 
没有与sigfillset对应的FD_xxx函数。对信号量集来说，指向信号量集的指针总是第一个参数，信号编号是第二个参数。对于描述符来说，描述符编号是第一个参数，指向描述符集的指针是第二个参数。
 
14.5　利用select实现的程序见图C-16。
 
#include "apue.h"

#include <sys/select.h>



void

sleep_us(unsigned int nusecs)

{

　　struct timeval　tval;



　　tval.tv_sec = nusecs / 1000000;

　　tval.tv_usec = nusecs % 1000000;

　　select(0, NULL, NULL, NULL, &tval);

}
 
图C-16　用select实现sleep_us函数
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利用poll实现的程序见图C-17。
 
#include <poll.h>



void

sleep_us(unsigned int nusecs)

{

　　struct pollfd　　　dummy;

　　int　　　　　　　　　timeout;



　　if ((timeout = nusecs / 1000) <= 0)

　　　　　timeout = 1;

　　poll(&dummy, 0, timeout);

}
 
图C-17　用poll实现sleep_us函数
 
如BSD usleep(3)手册页中所说明的，usleep使用nanosleep函数，该函数没有与调用进程设置的定时器交互。
 
14.6　不行。我们可以使TELL_WAIT创建一个临时文件，其中1个字节用做父进程的锁，另外1个字节用做子进程的锁。WAIT_CHILD使得父进程等待获取子进程字节上的锁，TELL_PARENT使得子进程释放子进程字节上的锁。但是问题在于，调用fork会释放所有子进程中的锁，使得子进程开始运行时不具有任何它自己的锁。
 
14.7　图C-18中示出了一种解决方法。
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#include "apue.h"

#include <fcntl.h>



int

main(void)

{

 　　int i, n;

 　　int fd[2];



 　　if (pipe(fd) < 0)

 　　　　err_sys("pipe error");

 　　set_fl(fd[1], O_NONBLOCK);



 　　/* write 1 byte at a time until pipe is full */

 　　for (n = 0; ; n++) {

 　　　　　if ((i = write(fd[1], "a", 1)) != 1) {

 　　　　　　　 printf("write ret %d, ", i);

 　　　　　　　 break;

 　　　　　}

 　　}

 　　printf("pipe capacity = %d\n", n);

 　　exit(0);

}
 
图C-18　用非阻塞写计算管道的容量
 
下表列出了在本书所述的4种平台上计算出来的值。
 
[image: p754.jpg]
 
这些值可能与对应的PIPE_BUF值不同，其原因是，PIPE_BUF被定义为可被自动原子地写至一个管道的最大数据量。这里，我们计算的是一个管道独立于任何原子性限制可保持的数据量。
 
14.10　图14-27中的程序是否更新输入文件的上一次访问时间依赖于操作系统以及文件所属的文件系统的类型。在所有4种平台中，当文件具有给定操作系统默认的文件系统类型，上一次访问时间就会更新。
 
第15章
 
15.1　如果管道的写端总是不关闭，则读者就决不会看到文件结束符。分页程序就会一直阻塞在读标准输入。
 
15.2　父进程向管道写完最后一行以后就终止，当父进程终止时管道的读端自动关闭。但是由于子进程（分页程序）要等待输出的页，所以父进程可能比子进程领先一个管道缓冲区。如果正在运行的是一个可对命令行进行编辑的交互式shell，如Korn shell，那么当父进程终止时，shell多半会改变终端的模式并打印一个提示。这个无疑会影响已经对终端模式进行修改的分页程序（由于大部分分页程序在等待处理下一个页面时将终端置为非正规模式）。
 
15.3　因为执行了shell，所以popen返回一个文件指针。但是shell不能执行不存在的命令，因此在标准错误上打印下面信息后终止：
 
sh: line 1: ./a.out: No such file or directory
 
其退出状态为127（该值取决于shell的类型）。pclose返回该命令的终止状态，这如同从waitpid返回一样。
 
15.4　当父进程终止时，用shell看它的终止状态。对于Bourne shell、Bourne-again shell和Korn shell，所用的命令是echo $?，打印的结果是128加信号编号。
 
15.5　首先加入下面的声明：
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FILE　*fpin, *fpout;
 
然后用fdopen关联管道描述符和标准I/O流，并将流设置为行缓冲的。在从标准输入读的while循环之前做此工作。
 
if ((fpin = fdopen(fd2[0], "r")) == NULL)

　　 err_sys("fdopen error");

if ((fpout = fdopen(fd1[1], "w")) == NULL)

　　 err_sys("fdopen error");

if (setvbuf(fpin, NULL, _IOLBF, 0) < 0)

　　 err_sys("setvbuf error");

if (setvbuf(fpout, NULL, _IOLBF, 0) < 0)

　　 err_sys("setvbuf error");
 
while循环中的write和read用下面的语句代替：
 
if (fputs(line, fpout) == EOF)

　　 err_sys("fputs error to pipe");

if (fgets(line, MAXLINE, fpin) == NULL) {

　　 err_msg("child closed pipe");

　　 break;

}
 
15.6　system函数调用了wait，终止的第一个子进程是由popen产生的。因为该子进程不是system创建的，所以它将再次调用wait并一直阻塞到sleep完成。然后system返回。当pclose调用wait时，由于没有子进程可等待所以返回出错，导致pclose也返回出错。
 
15.7　尽管具体细节会随平台不同而不同（见图C-19），但是select表明描述符是可读的。调用read读完所有的数据后，返回0就表明到达了文件尾端。但是对于poll来说，若返回POLLHUP事件，则表明也许仍有数据可读。但是一旦读完了所有的数据，read就返回0表明到达了文件尾端。在读完了所有的数据后，POLLIN事件就不会再返回了，即使需要再调用一次read以接收文件尾端通知（返回值为0）。
 
[image: c-19.jpg]
 
图C-19　select和poll的管道行为
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图C-19中所示的条件包括R（可读）、W（可写）、E（异常）、HUP（挂断）、ERR（错误）和INV（无效文件描述符）。对于引用已被读者关闭的管道的输出描述符来说，select表明该描述符是可写的。但当我们调用write时，产生SIGPIPE信号。如果忽略该信号或从其信号处理程序中返回，write就会失败，将error设置成EPIPE。而对于poll，具体的行为则会根据平台的不同而不同。
 
15.8　子进程向标准错误写的内容同样也会在父进程的标准错误中出现。只要在cmdstring中包含shell重定向2>&1，就可以将标准错误发回给父进程。
 
15.9　popen函数fork一个子进程，子进程执行shell。然后shell再调用fork，最后由shell的子进程执行命令串。当cmdstring终止时，shell恰好在等待该事件。然后shell退出，而这一事件又是pclose中的waitpid所等待的。
 
15.10　解决的办法是打开（open）FIFO两次：一次读；一次写。我们决不会使用为写而打开的描述符，但是使该描述符打开就可在客户数从1变为0时，阻止产生文件尾端。打开FIFO两次需要注意下列操作方式（如非阻塞open所要求的）：第一次以非阻塞、只读方式open；第二次以阻塞、只写方式open。（如果先用非阻塞、只写方式open，将返回错误。）然后关闭读描述符的非阻塞属性。参见图C-20所示的代码。
 
#include "apue.h"

#include <fcntl.h>



#define　FIFO　　　"temp.fifo"



int

main(void)

{

 　　int　　　fdread, fdwrite;



 　　unlink(FIFO);

 　　if (mkfifo(FIFO, FILE_MODE) < 0)

 　　　　 err_sys("mkfifo error");

 　　if ((fdread = open(FIFO, O_RDONLY | O_NONBLOCK)) < 0)

 　　　　　err_sys("open error for reading");

 　　if ((fdwrite = open(FIFO, O_WRONLY)) < 0)

 　　　　　err_sys("open error for writing");

 　　clr_fl(fdread, O_NONBLOCK);

 　　exit(0);

}
 
图C-20　以非阻塞方式打开FIFO进行读、写操作
 
15.11　随意读取现行队列中的消息会干扰客户进程-服务器进程协议，导致丢失客户进程请求或者服务器进程的响应。只要知道队列的标识符或者该队列允许所有的用户读，进程就可以读队列。
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15.13　由于服务器进程和各客户进程可能会将段连接到不同的地址，所以在共享存储段中决不会存储实际物理地址。相反，当在共享存储段中建立链表时，链表指针的值会设置为共享存储段内另一对象的偏移量。偏移量为所指对象的实际地址减去共享存储段的起始地址。
 
15.14　图C-21显示了相关的事件。
 
[image: c-21.jpg]
 
图C-21　图15-33中父进程和子进程之间的交替过程
 
第16章
 
16.1　图C-22显示了一个打印系统字节序的程序。
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#include <stdio.h>

#include <stdlib.h>

#include <inttypes.h>



int

main(void)

{

 　　uint32_t　　　　　　i = 0x04030201;

 　　unsigned char　　 *cp = (unsigned char *)&i;



 　　if (*cp == 1)

 　　　　　printf("little-endian\n");

 　　else if (*cp == 4)

 　　　　　printf("big-endian\n");

 　　else

 　　　　　printf("who knows?\n");

 　　exit(0);

}
 
图C-22　判断系统字节序
 
16.3　对于我们将要监听的每个端点，需要绑定到一个合适的地址，并对应每个描述符在fd_set结构中写一条记录。然后使用select等待从多个端点来的连接请求。回忆16.4节，当一个连接请求达到时，一个被动的端点将会变得可读。当一个连接请求真的到达时，我们接受该请求，并如以前一样处理。
 
16.5　在main过程中，通过调用我们的signal函数（见图10-18）来捕捉SIGCHLD，该函数将使用sigaction来安装处理程序指定可重启的系统调用选项。下一步，从serve函数中删除waitpid调用。当fork完子进程来处理请求后，父进程关闭新的文件描述符并继续监听新的连接请求。最后，需要一个针对于SIGCHLD的信号处理程序，如下：
 
　　void

　　sigchld(int signo)

　　{

　　　　while (waitpid((pid_t)-1, NULL, WNOHANG) > 0)

　　　　　　 ;

　　 }
 
16.6　为了允许异步套接字I/O，需要使用F_SETOWN fcntl命令建立套接字所有权，然后使用FIOASYNC ioctl命令允许异步信号。为了不允许异步套接字I/O，只要简单地禁用异步信号即可。我们混合使用fcntl和ioctl命令的理由是，想找到最可移植的方法。代码如图C-23所示。
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#include "apue.h"

#include <errno.h>

#include <fcntl.h>

#include <sys/socket.h>

#include <sys/ioctl.h>

#if defined(BSD) || defined(MACOS) || defined(SOLARIS)

#include <sys/filio.h>

#endif



int

setasync(int sockfd)

{

 　　int n;



 　　if (fcntl(sockfd, F_SETOWN, getpid()) < 0)

 　　　　return(-1);

 　　n = 1;

 　　if (ioctl(sockfd, FIOASYNC, &n) < 0)

 　　　　return(-1);

 　　return(0);

}



int

clrasync(int sockfd)

{

 　　int n;



 　　n = 0;

 　　if (ioctl(sockfd, FIOASYNC, &n) < 0)

　　　　　return(-1);

 　　return(0);

}
 
图C-23　允许与不允许异步套接字I/O
 
第17章
 
17.1　常规管道提供了一个字节流接口。为了确定消息边界，我们必须增加给每个消息增加一个头部来指示长度。但这个仍涉及两个额外的复制操作：一个是写入至管道，另一个是从管道读出。更加有效的方法是仅将管道用于告知主线程有一个新消息可用。我们用单个字节用作通知。采用这种方法，我们需要移动mymesg结构到threadinfo结构，并使用一个互斥量（mutex）和一个条件变量（condition variable）来防止辅助线程在主线程完成之前重新使用mymesg结构。解决方案如图C-24所示。
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#include "apue.h"

#include <poll.h>

#include <pthread.h>

#include <sys/msg.h>

#include <sys/socket.h>



#define NQ　　　　 3　　　　　/* number of queues */

#define MAXMSZ　　512　　　　/* maximum message size */

#define KEY　　　 0x123　　　/* key for first message queue */



struct mymesg {

 　　long　　　　　mtype;

 　　char　　　　　mtext[MAXMSZ+1];

};



struct threadinfo {

 　　int　　　　　　　　　qid;

 　　int　　　　　　　　　fd;

 　　int　　　　　　　　　len;

 　　pthread_mutex_t　　mutex;

 　　pthread_cond_t　　 ready;

 　　struct mymesg　　  m;

};



void *

helper(void *arg)

{

 　　int　　　　　　　　　　　n;

 　　struct threadinfo　　 *tip = arg;



 　　for(;;) {

 　　　　　memset(&tip->m, 0, sizeof(struct mymsg));

 　　　　　if ((n = msgrcv(tip->qid, &tip->m, MAXMSZ, 0,

 　　　　　　MSG_NOERROR)) < 0)

 　　　　　　　err_sys("msgrcv error");

 　　　　　tip->len = n;

 　　　　　pthread_mutex_lock(&tip->mutex);

 　　　　　f (write(tip->fd, "a", sizeof(char)) < 0)

 　　　　　　　err_sys("write error");

 　　　　　pthread_cond_wait(&tip->ready, &tip->mutex);

 　　　　　pthread_mutex_unlock(&tip->mutex);

 　　}

}



int

main()

{

 　　char　　　　　　　　　　　c;

 　　int　　　　　　　　　　　 i, n, err;

 　　int　　　　　　　　　　　 fd[2];

 　　int　　　　　　　　　　　 qid[NQ];

 　　struct pollfd　　　　   pfd[NQ];

 　　struct threadinfo　  　ti[NQ];

 　　pthread_t　　　　　　　　tid[NQ];



 　　for (i = 0; i < NQ; i++) {

 　　　　　if ((qid[i] = msgget((KEY+i), IPC_CREAT|0666)) < 0)

　　　　　　　　err_sys("msgget error");



 　　　　　printf("queue ID %d is %d\n", i, qid[i]);



 　　　　　if (socketpair(AF_UNIX, SOCK_DGRAM, 0, fd) < 0)

　　　　　　　　err_sys("socketpair error");

 　　　　　pfd[i].fd = fd[0];

 　　　　　pfd[i].events = POLLIN;

 　　　　　ti[i].qid = qid[i];

 　　　　　ti[i].fd = fd[1];

 　　　　　if (pthread_cond_init(&ti[i].ready, NULL) != 0)

　　　　　　　　err_sys("pthread_cond_init error");

 　　　　　if (pthread_mutex_init(&ti[i].mutex, NULL) != 0)

　　　　　　　　err_sys("pthread_mutex_init error");

 　　　　　if ((err = pthread_create(&tid[i], NULL, helper,

 　　　　　　&ti[i])) != 0)

　　　　　　　　err_exit(err, "pthread_create error");

 　　}



 　　for (;;) {

 　　　　　if (poll(pfd, NQ, -1) < 0)

　　　　　　　　err_sys("poll error");

 　　　　　for (i = 0; i < NQ; i++) {

　　　　　　　　if (pfd[i].revents & POLLIN) {

　　　　　　　　　　 if ((n = read(pfd[i].fd, &c, sizeof(char))) < 0)

　　　　　　　　　　　　　err_sys("read error");

　　　　　　　　　　 ti[i].m.mtext[ti[i].len] = 0;

　　　　　　　　　　 printf("queue id %d, message %s\n", qid[i],

　　　　　　　　　　　ti[i].m.mtext);

　　　　　　　　　　 pthread_mutex_lock(&ti[i].mutex);

　　　　　　　　　　 pthread_cond_signal(&ti[i].ready);

　　　　　　　　　　 pthread_mutex_unlock(&ti[i].mutex);

　　　　　　　　}

 　　　　　}

 　　}



 　　exit(0);

}
 
图C-24　使用管道的XSI消息轮询
 
17.3　声明指定了标识符集合的属性（如数据类型）。如果声明也导致分配了存储单元，那么这就是定义。
 
在头文件opend.h中，我们用extern存储类声明了3个全局变量，这时并没有为它们分配存储单元。在文件main.c中，我们定义了3个全局变量。有时，我们也会在定义全局变量时就初始化它，但通常是使用C的默认值。
 
17.5　select和poll返回就绪的描述符个数作为函数值。当将这些就绪描述符都处理完后，操作client数组的循环就可以终止。
 
17.6　建议的解决方案存在的第一个问题是，在文件可能发生变化的地方，调用stat和调用unlink之间存在竞争。第二个问题是，如果名字是一个指向UNIX域套接字文件的符号链接，那么stat会报告名字是一个套接字（回想一下后面跟一个符号链接的stat函数），但是调用unlink时，实际上我们是删除了这个符号链接而不是套接字文件。为了解决第二个问题，应该使用lstat而不是stat，但这解决不了第一个问题。
 
17.7　第一种选择是将两个文件描述符在一个控制消息中的发送，每一个文件描述符存储在相邻的内存位置中。下面的代码展示了这种方法：
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struct msghdr msg;

struct cmsghdr *cmptr;

int *ip;

if ((cmptr = calloc(1, CMSG_LEN(2*sizeof(int)))) == NULL)

　　　err_sys("calloc error");

msg.msg_control = cmptr;

msg.msg_controllen = CMSG_LEN(2*sizeof(int));

/* continue initializing msghdr... */

cmptr->cmsg_len = CMSG_LEN(2*sizeof(int));

cmptr->cmsg_level = SOL_SOCKET; 

cmptr->cmsg_type = SCM_RIGHTS;

ip = (int *)CMSG_DATA(cmptr);

*ip++ = fd1;

*ip = fd2;
 
这种方法在本书中涉及的4个平台上全都可以工作。第二种选择是将两个独立的cmsghdr结构打包到一个消息中。
 
struct msghdr msg;

struct cmsghdr *cmptr;

　

if ((cmptr = calloc(1, 2*CMSG_LEN(sizeof(int)))) == NULL)

　　　 err_sys("calloc error");

msg.msg_control = cmptr;

msg.msg_controllen = 2*CMSG_LEN(sizeof(int));

/* continue initializing msghdr... */

cmptr->cmsg_len = CMSG_LEN(sizeof(int));

cmptr->cmsg_level = SOL_SOCKET;

cmptr->cmsg_type = SCM_RIGHTS;

*(int *)CMSG_DATA(cmptr) = fd1;

cmptr = CMPTR_NXTHDR(&msg, cmptr);

cmptr->cmsg_len = CMSG_LEN(sizeof(int));

cmptr->cmsg_level = SOL_SOCKET;

cmptr->cmsg_type = SCM_RIGHTS;

*(int *)CMSG_DATA(cmptr) = fd2;
 
与第一种方法不同，这个方法只在FreeBSD 8.0上能工作。
 
第18章
 
18.1　注意，由于终端是非规范模式的，所以必须要用换行符而不是回车符终止reset命令。
 
18.2　它为128个字符建了一张表，根据用户的要求设置最高位（奇偶校验位）。然后使用8位I/O处理奇偶位的产生。
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18.3　如果你使用的是窗口终端，那么你无需登录两次。在两个分开的窗口之间，你可以做这样的实验。在Solaris中，运行stty -a，并且将标准输入重定向到运行vi的终端。结果显示vi设置MIN为1、TIME为1。read调用会一直等待，直到至少键入一个字符，但是该字符输入后，只对后继的字符等待十分之一秒即返回。
 
第19章
 
19.1　telnetd和rlogind两个服务器均以超级用户权限运行，所以它们都可以成功地调用chown和chmod。
 
19.2　执行pty -n stty -a以避免伪终端从设备的termios结构和winsize结构初始化。
 
19.4　很不幸，fcntl的F_SETFL命令不允许改变读写状态。
 
19.5　有3个进程组：（1）登录shell，（2）pty父进程和子进程，（3）cat进程。前两个进程组组成了一个会话，其中，登录shell为会话首进程。第二个会话仅包含cat进程。第一个进程组（登录shell）是后台进程组，其他两个进程组是前台进程组。
 
19.6　首先，当cat从其行规程模块接收到文件结束符时会终止。这导致PTY从设备终止，进而导致PTY主设备终止。接着，对于正从PTY主设备读取的pty父进程产生一个文件结束符。该父进程将SIGTERM信号发送给子进程，于是子进程终止。（子进程不捕捉该信号。）最后，父进程调用main函数尾端的exit(0)。
 
图8-29所示程序的相关输出为：
 
cat　　 e =　　 270, chars =　　 274, stat =　　0:

pty　　 e =　　 262, chars =　　　40, stat =　 15: F　　X

pty　　 e =　　 288, chars =　　 188, stat =　　0:
 
19.7　这可通过使用shell的echo命令和date(1)命令实现，它们都在一个子shell中：
 
#!/bin/sh

(echo "Script started on " `date`;

 pty "${SHELL:-/bin/sh}";

 echo "Script done on " `date`) | tee typescript
 
19.8　PTY从设备上的行规程能够回显，所以pty从其标准输入所读取的以及写向PTY主设备的按默认都回显。尽管程序（ttyname）从不读取数据，但是该回显也可通过从设备上的行规程模块实现。
 
第20章
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20.1　_db_dodelete中保守的加锁操作是为了避免和db_nextrec发生竞争条件。如果没有使用写锁保护_db_writedat调用，则有可能在db_nextrec读某个记录时，该记录已被删除：db_nextrec首先读入一个索引记录，判定该记录非空，接着读数据记录，但是在它调用_db_readidx和_db _readdat之间，该记录却可能被_db_dodelete删除了。
 
20.2　假定db_nextrec调用_db_readidx，它将记录的键读入索引缓冲区。然后，该进程被内核调度进程暂停，另一个进程运行，它刚好调用db_delete删除了这一条记录，使得索引文件和数据记录文件中对应部分都被清空。当第一个进程恢复执行并调用_db_readdat（在db_nextrec函数体中）时，返回的是空数据记录。db_nextrec中的读锁使得读入索引记录的过程和读入数据记录的过程是一个原子操作（对于其他操作同一数据库的合作进程而言）。
 
20.3　强制性锁对其他的读进程和写进程产生了影响。在_db_writeidx和_db_writedat设置的锁被解除之前，其他的读操作和写操作都将被阻塞。
 
20.5　在写索引记录之前写数据记录，通过这一方法来防止如下情形：若该进程在两次写之间被杀死从而产生不正常的记录。如果进程先写索引记录，而在写数据记录之前被杀死，那么就会得到一个有效的索引记录，但它却指向一个无效的数据记录。
 
第21章
 
21.5　这里有一些提示。有两个地方可以检查队列中的作业：打印守护进程的队列和网络打印机的内部队列。注意，不要让一个用户可以取消其他用户的打印作业。当然，超级用户可以取消任何作业。
 
21.7　不需要唤醒守护进程，因为知道需要打印一个文件时才需要重读配置文件。printer_thread函数在每次向打印机发送作业之前检查是否需要重读配置文件。
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21.9　需要使用null字节来终止写到作业文件的字符串（strlen在计算字符串长度时不包含终止null字节）。有两种简单的方法：要么对写入的字节数加1，要么使用dprintf函数而不是调用sprintf和write。
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IEEE. 1990. Information Technology—Portable Operating System Interface(POSIX)Part 1: System Application Program Interface(API)[C Language]. IEEE (Dec.).
 
 
 这是第一个POSIX标准，它定义了基于UNIX操作系统的C语言系统界面标准。这常称为POSIX.1。现在它是Open Group[2008]发布的Single UNIX Specification的一部分。
 

 
ISO. 1999. International Standard ISO/IEC 9899—Programming Language C. ISO/IEC.
 
 
 C语言及标准函数库的官方标准。虽然该标准在2011年被新版本取代，但是本书中描述的系统仍然遵循该标准1999年的版本。
 

 
ISO. 2011. International Standard ISO/IEC 9899, Information Technology—Programming Languages—C. ISO/IEC.
 
 
 C语言及标准库官方标准的最新版，替代1999年版。该标准的PDF版本可以在线购买，购买网址为http://www.ansi.org或http://www.iso.org。
 

 
Kernighan, B.W., and Pike, R. 1984. The UNIX Programming Environment. Prentice Hall, Englewood Cliffs, NJ.
 
 
 这本书是对UNIX程序设计附加细节的参考书，包含了许多UNIX命令和实用程序，如grep、 sed、 awk和Bourne shell。
 

 
Kernighan, B.W., and Ritchie, D. M. 1988. The C Programming Language, Second Edition. Prentice Hall, Englewood Cliffs, NJ.
 
 
 这本书说明C程序设计语言的ANSI标准。附录B中包含了ANSI标准定义的函数库说明。
 

 
Kerrisk, M. 2010. The Linux Programming Interface. No Starch Press, San Francisco, CA.
 
 
 如果觉得这本书篇幅太大，这里只是一半的篇幅，但只关注Linux编程接口。
 

 
Kleiman, S. R. 1986. “Vnodes: An Architecture for Multiple File System Types in Sun Unix,” Proceedings of the 1986 Summer USENIX Conference, pp. 238-247, Atlanta, GA.
 
 
 说明了原先的v节点实现。
 

 
Knuth, D. E. 1998. The Art of Computer Programming, Volume 3: Sorting and Searching, Second Edition. Addison-Wesley, Boston, MA.
 
 
 描述分类和搜索算法。
 

 
Korn, D. G., and Vo, K. P. 1991. “SFIO: Safe/Fast String/File IO,” Proceedings of the 1991 Summer USENIX Conference, pp. 235-255, Nashville, TN.
 
 
 说明了标准I/O函数库的一种替代品。这个库可在http://www.research.att.com/sw/tools/sfio 获得。
 

 
Krieger, O., Stumm, M., and Unrau, R. 1992. “Exploiting the Advantages of Mapped Files for Stream I/O,” Proceedings of the 1992 Winter USENIX Conference, pp. 27-42, San Francisco, CA.
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 一种标准I/O函数库的替代品，它基于映射文件。
 

 
Leffler, S. J., McKusick, M. K., Karels, M. J., and Quarterman, J. S. 1989. The Design and Implementation of the 4.3BSD UNIX Operatin System. Addison-Wesley, Reading, MA.
 
 
 这本书对4.3BSD UNIX系统进行完整的说明，所说明的是4.3BSD的Tahoe版。现已绝版。
 

 
Lennert, D. 1987. “How to Write a UNIX Daemon,” ;login:, vol. 12, no. 4, pp. 17-23 (July/August).
 
 
 说明如何编写UNIX系统中的守护进程。
 

 
Libes, D. 1990. “expect: Curing Those Uncontrollable Fits of Interaction,” Proceedings of the 1990 Summer USENIX Conference, pp. 183-192, Anaheim, CA.
 
 
 对expect程序及其实现的说明。
 

 
Libes, D. 1991. “expect: Scripts for Controlling Interactive Processes,” Computing Systems, vol. 4, no.2, pp. 99-125(Spring).
 
 
 本文提供了很多expect脚本。
 

 
Libes, D. 1994. Exploring Expect. O’Reilly & Associates, Sebastopol, CA.
 
 
 使用expect程序的一本全书。
 

 
Lions, J. 1977. A Commentary on the UNIX Operating System. AT&T Bell Laboratories, Murray Hill, NJ.
 
 
 说明第6版UNIX System的源代码。只供AT&T的雇员、签有合同的人员及内部使用，但在AT&T之外也有大量副本流传。
 

 
Lions, J. 1996. Lions’ Commentary on UNIX 6th Edition. Peer-to-Peer Communications, San Jose, CA.
 
 
 说明第6版UNIX System的源代码，是1977经典著作的公开可用版。
 

 
Litwin, W. 1980. “Linear Hashing: A New Tool for File and Table Addressing,” Proceedings of the 6th International Conference on Very Large Databases, pp. 212-223, Montreal, Canada.
 
 
 说明线性散列技术的一篇文章。
 

 
McKusick, M. K., Bostic, K., Karels, M. J., and Quarterman, J. S. 1996. The Design and Implementation of the 4.4BSD Operating System. Addison-Wesley, Reading, MA.
 
 
 一本完整地描述4.4BSD操作系统的著作。
 

 
McKusick, M. K., and Neville-Neil, G. V. 2005. The Design and Implementation of the FreeBSD Operating System. Addison-Wesley, Boston, MA.
 
 
 一本完整地描述FreeBSD操作系统5.2版的著作。
 

 
McDougall, R., and Mauro, J. 2007. Solaris Internals: Solaris 10 and OpenSolaris Kernel Architecture, Second Edition. Prentice Hall, Upper Saddle River, NJ.
 
 
 一本讲解Solaris 10操作系统内部结构的书。书中也包括OpenSolaris的内容。
 

 
Morris, R., and Thomopson, K. 1979. “UNIX Password Security,” Communications of the ACM, vol. 22, no. 11, pp. 594-597 (Nov.).
 
 
 说明UNIX口令方案设计的历史演变。
 

 
Nemeth, E., Snyder, G., Seebass, S., and Hein, T. R. 2001. UNIX System Administration Handbook, Third Edition. Prentice Hall, Upper Saddle River, NJ.
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 一本详细说明了管理UNIX系统的很多细节的书。
 

 
The Open Group. 2008. The Single UNIX Specification, Version 4. The Open Group, Berkshire, UK.
 
 
 POSIX和X/Open标准组合成一种规范。其HTML版可在http://www.opengroup.org上免费阅读。
 

 
Pike, R., Presotto, D., Dorward, S., Flandrena, B., Thompson, K., Trickey, H., and Winterbottom, P. 1995. “Plan 9 from Bell Labs,” Plan 9 Programmer’s Manual Volume 2. AT&T, Reading, MA.
 
 
 这本书描述Plan 9操作系统，Plan 9是由研发UNIX系统的同一部门开发的。
 

 
Plauger, P. J. 1992. The Standard C Library. Prentice Hall, Englewood Cliffs, NJ.
 
 
 这是一本ANSI C函数库的全书，包含了该库完整的C语言实现。
 

 
Presotto, D. L., and Ritchie, D. M. 1990. “Interprocess Communication in the Ninth Edition UNIX System,” Software Practice and Experience, vol. 20, no. S1, pp. S1/3-S1/17 (June).
 
 
 本文说明Research UNIX System第9版提供的IPC设施，它是由AT&T贝尔实验室的信息科学研究部开发的。这种IPC的基础是流输入输出系统，它也包括全双工管道，通过它在进程之间可以传送文件描述符，还包括对服务器的唯一客户连接。本文的一个副本也刊载在AT&T[1990b]。
 

 
Rago, S. A. 1993. UNIX System V Network Programming. Addison-Wesley, Reading, MA.
 
 
 这本书书描述UNIX System V Release 4的基于STREAMS的网络编程环境。
 

 
Raymond, E. S., ed. 1996. The New Hacker’s Dictionary, Third Edition. MIT Press, Cambridge, MA.
 
 
 这本书中定义了大量计算机黑客的术语。
 

 
Salus, P. H. 1994. A Quarter Century of UNIX. Addison-Wesley, Reading, MA.
 
 
 从1969至1994年间的UNIX系统的历史。
 

 
Seltzer, M., and Olson, M. 1992. “LIBTP: Portable, Modular Transactions for UNIX,” Proceedings of the 1992 Winter USENIX Conference, pp. 9-25, San Francisco, CA.
 
 
 说明对db(3)库的修改，它来自实现了事务的4.4BSD。
 

 
Seltzer, M., and Yigit, O. 1991. “A New Hashing Package for UNIX,” Proceedings of the 1991 Winter USENIX Conference, pp.173-184, Dallas, TX.
 
 
 说明dtm(3)库及其各种实现，以及一种新的散列处理软件包。
 

 
Singh, A. 2006. Mac OS X Internals: A Systems Approach. Addison-Wesley, Upper Saddle River, NJ.
 
 
 关于Mac OS X操作系统设计的1600页的内容。
 

 
Stevens, W. R. 1990. UNIX Nerwork Programming. Prentice Hall, Englewood Cliffs, NJ.
 
 
 详细说明UNIX系统下的网络编程。该书的后续版本的内容与其第1版相比有很大变动。
 

 
Stevens, W. R., Fenner, B., and Rudoff, A. M. 2004. UNIX Network Programming, Volume 1, Third Edition. Addison-Wesley, Boston, MA.
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 详细说明UNIX系统下的网络编程。其第2版进行了重新设计并分成两卷，第3版则做了更新。
 

 
Stonebraker, M. R. 1981. “Operating System Support for Database Management,” Communications of the ACM, vol. 24, no. 7, pp. 412-418 (July).
 
 
 描述操作系统的服务以及它们如何对数据库操作产生影响。
 

 
Strang, J. 1986. Programming with curses. O’Reilly & Associates, Sebastopol, CA.
 
 
 一本有关伯克利版本的curses的书。
 

 
Strang, J., Mui, L., and O’Reilly, T. 1988. termcap & terminfo, Third Edition. O’Reilly & Associates, Sebastopol, CA.
 
 
 一本有关termcap和terminfo的书。
 

 
Sun Microsystems. 2005. STREAMS Programming Guide. Sun Microsystems, Santa Clara, CA.
 
 
 说明在Solaris平台上的STREAMS编程。
 

 
Thompson, K. 1978. “UNIX Implementation,” The Bell Syst ern Technical Journal, vol. 57, no. 6, pp. 1931-1946 (July-Aug.).
 
 
 说明UNIX第7版的某些实现细节。
 

 
Vo, Kiem-Phong. 1996. “Vmalloc: A General and Efficient Memory Allocator,” Software Practice and Experience, vol. 26, no. 3, pp. 357-374.
 
 
 说明一种灵活的存储分配器。
 

 
Wei, J., and Pu, C. 2005. “TOCTTOU Vulnerabilities in UNIX_Style File Systems: An Anatomical Study,” Proceedings of the 4th USENIX Conference on File and Storage Technologoes (FAST’05), pp. 155-167, San Francisco, CA.
 
 
 说明UNIX文件系统接口中TOCTTOU的弱点。
 

 
Weinberger, P. J. 1982. “Making UNIX Operating Systems Safe for Database,”The Bell Systern Technical Journal, vol. 61, no. 9, pp. 2407-2422 (Nov.).
 
 
 说明在早期UNIX系统中实现数据库的某些问题。
 

 
Weinstock, C. B., and Wulf, W. A. 1988. "Quick Fit: An Efficient Algorithm for Heap Storage Allocation," SIGPLAN Notices, vol. 23, no. 10, pp. 141-148.
 
 
 描述了适用于各种应用程序的内存分配算法。
 

 
Williams, T. 1989. “Session Management in System V Release 4,” Proceedings of the 1989 Winter USENIX Conference, pp. 365-375, San Diego, CA.
 
 
 说明POSIX.1接口所基于的在SVR4中的会话计体系结构，包括进程组、作业控制和控制终端。这本书也描述了现存方法的安全性。
 

 
X/Open. 1989. X/Open Portability Guide. Prentice Hall, Englewood Cliffs, NJ.
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 这本书为七卷本，包括下列各部分内容：命令和公用程序（第1卷）、系统界面和头文件（第2卷）、补充定义（第3卷）、程序设计语言（第4卷）、数据管理（第5卷）、窗口管理（第6卷）以及网络服务（第7卷）。
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