

 Wireshark网络分析实战（第2版）

 	
 第1章 Wireshark版本2简介

 	
 第2章 熟练使用Wireshark排除网络故障

 	
 第3章 抓包过滤器的用法

 	
 第4章 显示过滤器的用法

 	
 第5章 基本信息统计工具的用法

 	
 第6章 高级信息统计工具的用法

 	
 第7章 Expert Information工具的用法

 	
 第8章 Ethernet和LAN交换

 	
 第9章 无线LAN

 	
 第10章 网络层协议及其运作方式

 	
 第11章 传输层协议分析

 	
 第12章 FTP、HTTP/1和HTTP/2

 	
 第13章 DNS协议分析

 	
 第14章 E-mail协议分析

 	
 第15章 NetBIOS和SMB协议分析

 	
 第16章 企业网应用程序行为分析

 	
 第17章 排除SIP、多媒体及IP电话故障

 	
 第18章 排除由低带宽或高延迟所引发的故障

 	
 第19章 网络安全和网络取证

 第1章　 Wireshark版本2简介

本章涵盖以下内容：

 	 Wireshark版本2基础知识；

 	 安置Wireshark（主机/程序）；

 	 在虚拟机和云上抓取数据；

 	 开始抓包；

 	 配置启动（start）窗口；

 	 保存、打印及导出数据。

1.1　Wireshark版本2基础知识

本章会介绍Wireshark所能行使的基本功能。本书前言谈论了与网络排障有关的内容，提到了有助于完成排障任务的各种工具。在得出需要动用Wireshark协议分析器的结论之后，就应先行测试，将其安置在网络中正确的位置，赋予其基本的配置，进行相应的优化，使其用起来更为顺手。

设置Wireshark执行简单的抓包任务虽然简单、直观，但该软件有诸多选项可在某些特殊情况下使用，这样的特殊情况包括：通过某条链路持续抓包的同时，希望将抓包文件分割为更小的文件，以及在查看抓包文件时，希望显示参与连接的设备名称而不只是设备的IP地址等。本章将会向读者传授如何配置Wireshark来应对这些特殊情况。

在简单介绍过Wireshark第2版之后，本章还会透露几个如何安置及启动该软件的秘诀。

本章首先会介绍安置Wireshark的秘诀，涉及如何安置以及在何处安置Wireshark来执行抓包任务。应将Wireshark软件安装在服务器上呢，还是应该将安装它的主机连接在交换机的某个端口上呢？应将Wireshark置于防火墙身前还是身后呢？应置于路由器的WAN一侧，还是LAN一侧呢？到底应在上述的哪个位置才能正确采集到自己想要得到的数据呢？这些问题的答案、安置Wireshark的诀窍以及更多与Wireshark抓包有关的内容请见1.2节。

最近几年，在虚拟机上抓包变得越来越重要，本章介绍的第二个秘诀就与此有关。用Wireshark监视虚拟机的实用安装及配置秘诀请见1.3节，近年来，所使用的大多数服务器都是虚拟机。

紧随而来的问题是如何监控驻留在云内的虚拟机，这同样十分重要。“在云内抓取数据”一节会讨论几个问题，其中包括如何解密在本端和云端之间加密（大多数情况都会如此行事）的数据，如何使用云内可用的分析工具，以及诸如Amazon AWS和Microsoft Azure之类的主要云提供商会提供哪些工具[1]。

启动Wireshark软件的秘诀以及配置、打印和导出数据的秘诀请见1.4节。该节会介绍如何操纵抓包文件，即如何保存抓取的数据，是要完整保存、部分保存，还是只准备保存经过过滤的数据呢？我们不但能以各种文件格式来导出抓取的数据，而且还能合并抓包文件（比如，将两份Wireshark抓包文件合二为一，这两份抓包文件中的数据分别从不同的路由器接口抓取）。

1.2　安置Wireshark

了解了网络故障的症状，决定动用Wireshark查明故障原委之前，应确定Wireshark（程序或主机）的安装或部署位置。为此，需要设法弄到一张精确的网络拓扑图（起码要清楚受故障影响的那部分网络的拓扑），并根据这张图来安置Wireshark。

安置Wireshark的原理非常简单。首先，应确定要抓取并监控由哪些（哪台）设备发出的流量；其次，要把安装了Wireshark的主机（或笔记本电脑）连接到受监控设备所连交换机；最后，开启交换机的端口监控功能（按Cisco的行话，该功能叫做端口镜像或交换式端口分析器[Switched Port Analyzer，SPAN]），把受监控设备发出的流量重定向给Wireshark主机。按此操作，便可抓取并查看所有进出受监控设备的流量了，这是最简单的抓包场景。

可用Wireshark监控LAN端口、WAN端口、服务器/路由器端口或接入网络的任何其他设备收发的流量。

以图1.1所示的网络为例，将Wireshark软件安装在左边的笔记本电脑和受监控的服务器S2上。

在这一最简单的抓包场景中，按图1.1所示方向配置端口镜像，即可监控到进出服务器S2的所有流量。当然，也可以直接将Wireshark安装在服务器S2上，如此行事，便能在服务器S2上直接观看进进出出的流量了。

[image: ..\18-1175（1-10章节）\0101.tif]

图1.1

某些厂商的交换机还支持以下流量监控特性。

 	监控整个VLAN的流量：即监控整个VLAN（服务器VLAN或语音VLAN）的所有流量。可借助该特性，在指定的某一具体VLAN内进行流量监控。

 	“多源归一”的流量监控方式：以图1.1为例，借助该特性，可让Wireshark主机同时监控到服务器S1和S2的流量。

 	方向选择：可配置交换机，令其将受监控端口的入站流量、出站流量或同时将出入站流量镜像（重定向）给监控端口。

1.2.1　准备工作　　　　

使用Wireshark抓包之前，请先访问Wireshark官网，下载并安装最新版本的Wireshark。

Wireshark软件的2.0版本以及后续更新发布在Wireshark官网的Download页面下。

每个Wireshark Windows安装包都会自带WinPcap驱动程序的最新稳定版本，WinPcap驱动程序为实时抓包所必不可缺。用于抓包的WinPcap驱动程序是UNIX libpcap库的Windows版本。

在安装过程中，会看到图1.2所示的软件包安装窗口。

[image: ..\18-1175（1-10章节）\0102.tif]

图1.2

通常，在图1.2所示的组件选择窗口中，只需选择安装所有组件。对于这样的选择，会安装以下组件。

 	 Wireshark组件：Wireshark软件版本2。

 	 TShark组件：一种命令行协议分析器。

 	 Wireshark 1组件：老版Wireshark软件，Wireshark版本1。选择安装该组件时，会同时安装老的Wireshark版本1。就个人经验而言，作者还是会在安装Wireshark未来的几个版本时，选择安装该组件。作者之所以会如此行事，是因为当Wireshark版本2无法正常抓包，或不知如何使用某些功能时，总是有顺手的老版Wireshark可用。

 	 Plugins & Extensions（插件及扩展功能）组件，由以下模块构成。

 	Dissector Plugins：包含某些扩展的解析（dissection）功能的插件。

 	Tree Statistics Plugins：扩展的统计信息。

 	MATE（Meta-Analysis and Tracing Engine）：可供用户配置的显示过滤引擎的扩展功能。

 	SNMP MIB：更细致的SNMP解析功能。

 	 Tools（工具）组件，由以下模块构成。

 	Editcap：读取抓包文件并将全部或部分数据包写入另一个抓包文件。

 	Text2Pcap：在ASCII十六进制dump文件中读取数据并将数据写入pcap抓包文件。

 	Reordercap：用时间戳来记录制抓包文件。

 	Mergecap：将多个已保存的抓包文件组合并为单个输出文件。

 	Capinfos：提供与抓包文件有关的信息。

 	Rawshark：原始数据包过滤器。

1.2.2　操作方法　　　　

现以一个典型的网络为例，来看一下部署在其中的网络设备的运作方式、如何在必要时配置这些设备，以及如何安置Wireshark，如图1.3所示。

[image: ..\18-1175三校改图\0103.tif]

图1.3

请读者仔细研究一下图1.3给出的简单而又常见的网络拓扑结构。

1．服务器流量监控

像服务器流量监控这样的需求，在实战中经常会有人提出。要想监控某台服务器收/发的流量，既可以在交换机上针对连接服务器的端口配置端口镜像，将流量重定向至Wireshark主机（如图1.3中的编号1所示），也可以在服务器上直接安装Wireshark。

2．路由器流量监控

可根据以下具体情形，来监控进出路由器的流量。

情形1：监控路由器连接交换机的LAN口的进出流量。

1．对于这种情形，如图1.3中的编号2所示，请将安装了Wireshark的笔记本电脑连接至路由器所连接的交换机。

2．在交换机上开启端口镜像功能，把与路由器LAN口相连的端口的流量重定向至连接Wireshark主机的端口。

情形2：监控安装在路由器上的交换模块的端口的进出流量。

1．对于这种情形，当路由器安装了一块交换模块（比如Cisco EtherSwitch或HWIC模块）时，如图1.3中的编号6（编号5所指为WAN端口，编号6所指为LAN端口）所示，可将交换模块视为标准交换机。

 [image: 未标题-1]　注意　

 路由器一般不支持端口镜像或SPAN功能。对于简单的家用/SOHO路由器，根本就没有相应的配置选项。安装在某几款Cisco路由器（比如Cisco 2800或3800）上的交换模块支持端口镜像功能，Cisco 6800等大型路由器就更不用说了。

2．此时，只能监控连接到交换模块的设备的流量。

情形3：监控未安装交换模块的路由器的WAN口的流量。

1．对于这种情形，可在路由器WAN口和服务提供商（SP）网络设备之间架设一台交换机，在该交换机上执行端口监控，如图1.4所示。

[image: ..\18-1175（1-10章节）\0104.tif]

图1.4

2．此时，要在交换机上开启端口镜像功能，将连接路由器WAN口的端口的流量重定向至连接了Wireshark笔记本电脑的端口。

 [image: 未标题-1]　注意　

 在SP网络与路由器WAN口之间部署一台交换机，是一项会导致网络中断的操作。但只要准备充分，断网的时长最多也就一两分钟。

情形4：嵌入了抓包功能的路由器。

最近几年，某些厂商将抓包功能集成进了路由器或路由器操作系统。12.4(20)T或更高版本的Cisco IOS路由器、15.2(4)S-3.7.0或更高版本的Cisco IOS-XE路由器、Juniper SRX/J系列路由器、Riverbed Stealhead路由器，以及诸多其他厂商的路由器都嵌入了抓包功能。

 [image: 未标题-1]　注意　

 启用路由器内置的抓包功能时，请确保路由器有足量的内存，不能因为开启该功能而影响路由器的运行速度。

监控路由器的流量时，有一点请务必留意：发往路由器的数据包并不一定都会得到转发。有些数据包或许会在途中走失，而路由器既有可能会因缓存溢出而对部分数据包忍痛割爱，也有可能会把某些数据包从接收端口原路送回。再就是，广播包不会得到路由器的转发。

3．防火墙流量监控

防火墙流量监控的手段有两种，一种是监控防火墙内口（如图1.5中的编号1所示）的流量，另外一种是监控防火墙外口（如图1.5中的编号2所示）的流量。当然，这两种方法有所不同。

[image: ..\18-1175（1-10章节）\0105.tif]

图1.5

监控防火墙内口，可以观看到内网用户发起的所有访问Internet的流量，其源IP地址均为分配给内网用户的内部IP地址。监控防火墙外口，能观看到所有经过防火墙放行的访问Internet的流量，这些流量的源IP地址均为外部IP地址（拜NAT所赐，分配给内网用户的内部IP地址被转换成了外部IP地址）；由内网用户发起，但防火墙未予放行的流量，监控防火墙外口是观察不到的。若有人从Internet发动对防火墙或内网的攻击，要想观察到攻击流量，观测点只能是防火墙外口。

 [image: 未标题-1]　注意　

 某些厂商的防火墙也像前文描述的路由器那样支持嵌入式抓包功能。

4．分路器和Hub

执行流量监控任务时，可能会用到以下两种设备。

 	分路器：可在受监控链路上用一种叫做分路器（Test Access Point，TAP）的设备来取代图1.4中的交换机。这是一种简单的“三通”（三端口）设备，执行流量监控时，其所起作用跟交换机相同。与交换机相比，TAP不但便宜而且使用方便。此外，TAP还会把错包原样传递给Wireshark，而LAN交换机则会把错包完全丢弃。交换机不但价格高昂，而且还得花时间来配置，当然它所支持的监控功能也更多（比如，一般的LAN交换机都支持简单网络管理协议[SNMP]）。排除网络故障时，最好能用可管理的交换机，哪怕是功能没那么丰富的可网管交换机也好。

 	Hub：可在受监控的链路上用一台Hub来取代图1.4中的交换机。Hub属于半双工设备。借此设备，路由器和SP设备之间穿行的每一个数据包都能被Wireshark主机看得一清二楚。使用Hub最大的坏处是，会显著加剧流量的延迟，从而对流量采集产生影响。如今，监控千兆端口的流量可谓是家常便饭，在这种情况下使用Hub，将会使链路速率骤降为百兆，这会对抓包产生严重影响。所以说，在抓包时一般都不用Hub。

1.2.3　幕后原理　　　　

要想弄清端口镜像（端口监控）的运作原理，需先理解LAN交换机的运作方式。以下所列为LAN交换机执行数据包转发任务时的举动。

 	LAN交换机会“坚持不懈”地学习接入本机的所有设备的MAC地址。

 	收到发往某MAC地址的数据帧时，LAN交换机只会将其从学得此MAC地址的端口外发。

 	收到广播帧时，交换机会从除接收端口以外的所有端口外发。

 	收到多播帧时，若未启用Cisco组管理协议（Cisco Group Management Protocol，CGMP）或Internet组管理协议（Internet Group Management Protocol，IGMP）监听特性，LAN交换机会从除接收端口以外的所有端口外发；若启用了以上两种特性之一，LAN交换机将会通过连接了相应多播接收主机的端口外发多播帧。

 	收到目的MAC地址未知的数据帧时（这种情况比较罕见），交换机会从除接收端口以外的所有端口外发。

现以图1.6所示网络为例，来说明第二层（L2）网络的运作方式。接入网络的每一台设备都会定期发送广播包。ARP请求消息和NetBIOS通告消息都属于广播包。广播包一经发出，就会传遍整个L2网络（如图中虚线箭头所示）。对于本例，所有交换机都会用学到M1的端口，外发目的MAC地址为M1的以太网帧[2]。

[image: ..\18-1175三校改图\0106.tif]

图1.6

当PC2要将一帧发给PC1时，该帧会被先发给直连PC2的交换机SW5。SW5已从左起第6个端口[3]学到了PC1的MAC地址M1，即该帧的目的MAC地址。同理，网络内的每台交换机都会通过学到M1的端口外发该帧，直至其最终抵达PC1。

因此，将交换机上的某端口配置为镜像端口，先把受监控端口的流量重定向至该端口，再接入安装了Wireshark的笔记本电脑，即可观察到所有进出受监控端口的流量。但若将笔记本电脑随便连接到交换机的某个端口，不做任何配置，则只能观察到进出该笔记本电脑的单播流量，以及网络内的广播和多播流量[4]。

1.2.4　拾遗补缺　　　　

用Wireshark抓包时，还需提防几种特殊情况。

在抓取整个VLAN的流量（VLAN流量监控）时，有几个重要事项需要铭记。第一个要注意的地方是，即便目的是要监控整个VLAN的流量，但Wireshark主机只能采集到与其直连的交换机承载的同一VLAN的流量。比方说，在一个交换式网络（LAN）内，有多台交换机的端口都被划入VLAN 10（多台交换机都拥有隶属于VLAN 10的端口），要是只让Wireshark主机直连某台接入层交换机，那必然采集不到VLAN 10内其他接入层交换机上的主机访问直连核心层交换机的服务器的流量。请看图1.7所示的网络，用户主机一般都分布在各个楼层，跟所在楼层的接入层交换机相连。各台接入层交换机会上连至1～2台（出于冗余）核心层交换机。Wireshark主机要想监控到某个VLAN的所有流量，就得与承载此VLAN流量的交换机直连。也就是，要想抓全VLAN 10的流量，Wireshark主机必须直连核心层交换机。

[image: ..\18-1175一校改图\0107.tif]

图1.7

在图1.7所示的网络中，若让Wireshark主机直连SW2，且在SW2上激活了相关端口的镜像功能，监控VLAN 30的流量，则只能抓取到进出SW2的P2、P4、P5端口的流量，以及由SW2承载的同一VLAN的流量。该Wireshark主机绝不可能采集到SW3和SW1之间来回穿行的VLAN 30的流量，以及连接在SW3或SW1上隶属于VLAN 30的不同设备之间的流量。

基于整个VLAN来实施抓包任务时，可能会抓到重复的数据包，是另外一个需要注意的地方。之所以会出现这种情况，是因为启用端口镜像时，对于在不同交换机端口之间交换的同一VLAN的流量，Wireshark主机会从流量接收端口的流入（input）方向及流量发送端口的流出（output）方向分别收取一遍。

在图1.8所示的交换机上激活了端口镜像功能，对VLAN 30的流量实施监控。对于服务器S4向S2发送的数据包，当其（从连接S4的交换机端口）流入VLAN 30时，Wireshark主机会收取一次；当其从（从连接S2的交换机端口）流出VLAN 30时，Wireshark主机会再收取一次。这么一来，便抓到了重复的流量。

[image: ..\18-1175一校改图\0108.tif]

图1.8

1.2.5　进阶阅读　　　　

欲了解与配置端口镜像有关的信息，请参阅各网络设备厂商提供的操作手册。有些厂商也把端口镜像称为端口监控或SPAN（Switched Port Analyzer）（Cisco公司）。

某些厂商的交换机还支持远程流量监控功能（能让直连本地交换机的Wireshark主机采集到远程交换机端口的流量）以及高级过滤功能（比如，在把流量重定向给Wireshark主机的同时，过滤掉具有指定MAC地址的主机发出的流量）。还有些高端交换机本身具备数据包的采集和分析功能。某些交换机甚至支持虚拟端口（例如，LAG或EtherChannel group）的流量监控。有关详情，请阅读交换机的随机文档。

1.3　在虚拟机上抓包

1.3.1　准备工作　　　　

最近几年，大量的服务器都在向虚拟化环境转移，即在单台硬件设备上虚拟出若干台服务器。

咱们先来定义一些术语。在虚拟化领域，有以下两个重要术语需要牢记。

 	虚拟机：是指安装在一或多个硬件平台上的模拟计算机系统。虚拟机主要用于虚拟服务器的环境。服务器虚拟化所使用的主要平台包括VMware ES、Microsoft Hyper-V或Citrix XenServer。

 	刀片式服务器：是指配备了多把服务器刀片和多台LAN交换机的刀箱，LAN交换机将服务器刀片与外部网络相连。

本节会逐一介绍上述组件，同时会讲解如何监控进出各组件的流量。

1.3.2　操作方法　　　　

现在介绍具体的监控方法。

1．在驻留于单一硬件平台的VM上抓包

图1.9所示为一个身怀多台虚拟机的硬件平台。

[image: ..\18-1175（1-10章节）\0109.tif]

图1.9

由图1.9可知，各操作系统（客户操作系统）分别运行了多个应用程序（App）。这些操作系统都运行于虚拟化软件之上，而虚拟化软件则运行于硬件平台之上。

如本章前文所述，要想实施抓包，有两种选择：在有待监控的主机上安装Wireshark；在LAN交换机上开启端口镜像功能，将连接受监控主机的网卡（NIC）的交换机端口的流量重定向至Wireshark主机。

那么，对于驻留于单一硬件上的虚拟化平台，有以下两种抓包方法。

1．在有待监视的指定服务器上安装Wireshark，直接在该服务器上抓包。

2．将安装了Wireshark的笔记本电脑连接至交换机，开启端口镜像功能，重定向进出服务器的流量。在图1.9所示的场景中，将笔记本电脑与交换机上的某个空闲端口（8口）相连，开启端口镜像功能，将1、2口的流量重定向至8口。不过，这种抓包方法可能会碰到问题。

第一种抓包方法非常直观，但第二种抓包方法可能会碰到某些问题。

如图1.9所示，服务器和LAN交换机之间通常会通过两条以上的链路互连。可把这样的连接方式称为链路聚合（LAG）、端口/网卡结对（teaming）或EtherChannel（如用Cisco交换机）。在监控服务器流量时，得检查连接服务器的交换机接口是运行于负载共享（load sharing）模式还是端口冗余（port redundancy）（也叫作故障切换或主备[Failover]）模式。若运行于端口冗余模式，则没什么好说的：请先确定连接服务器网卡的活跃交换机端口，再配置端口镜像，实施抓包。若运行于负载共享模式，则必须采用以下三种流量镜像方法之一。

 	方法A：镜像抓取LAG接口的流量。即镜像抓取由两个或两个以上的物理接口捆绑而成的虚拟接口的流量。交换机厂商一般会把这样的虚拟接口称为Port-Group接口或Port-Channel接口。

 [image: 未标题-1]　注意　

 将交换机上的多个物理端口捆绑在一起来使用，有很多称谓。最常用的是标准称谓——802.3ad（LAG），它随后被802.3AX LAG取代。Cisco的称谓是EtherChannel，各服务器和软件厂商的称谓包括端口结对或NIC结对（Microsoft）、端口绑定或网卡绑定（bonding）（各种Linux系统）、负载均衡（Load Based Teaming，LBT）等。重要的是要检查其具体的运行模式，是运行于负载共享模式还是端口冗余模式。请注意，负载共享模式只是在多个接口或多块网卡之间共享流量，但实现不了流量负载均衡，因为各个接口（或各块网卡）承载的流量并不完全均等。

 	 方法B：服务器NIC运行于端口冗余模式。请将连接服务器网卡的两个交换机物理端口（图1.10所示交换机的1、2两口，选项A）中的活跃端口的流量镜像至Wireshark主机[5]。

 	 方法C：在LAN交换机上配置两路端口镜像，将连接服务器双网卡的两个物理端口的流量同时镜像给Wireshark主机的双网卡。

图1.10所示为上述3种流量镜像方法。

[image: ..\18-1175三校改图\0110.tif]

图1.10

 	还有一个问题有可能也会碰到。在负载共享模式下抓包，若进出服务器的流量过高，采用方法A，将会把服务器两块网卡的流量镜像至Wireshark主机单网卡。比方说，会把服务器两块千兆网卡的流量镜像至Wireshark主机单千兆网卡。那么，只要服务器双网卡收发流量的速率总和超过Wireshark主机单网卡所能接收的流量的速率上限，Wireshark主机就不可能抓全所有的服务器流量，某些数据包势必会被丢弃。因此，要想在负载共享模式下抓全进出服务器的流量，请确保Wireshark主机的NIC的速率高于受监控的服务器网卡的速率，或采用流量镜像方法C（用双网卡抓包）。

 [image: 未标题-1]　注意　

 Wireshark并不适合在高速网络环境下抓包，只要流量的速率超过200～300Mbit/s，Wireshark就会明显不适。因此若有待抓取的流量过于密集，请配置抓包过滤器或选用相应的商业抓包软件。

2．在刀片服务器上抓包

图1.11所示为刀片式服务器机箱的硬件网络拓扑。

[image: ..\18-1175三校改图\0111.tif]

图1.11

图1.11所示刀片式服务器机箱（刀箱）包含以下部件。

 	刀片服务器：硬件刀片，通常安装在刀箱的正面。

 	服务器：虚拟服务器，也叫虚拟机，驻留于硬件刀片服务器之内。

 	内部LAN交换机：内部LAN交换机安装在刀箱的正面或背面。此类交换机一般都有12～16个内部（虚拟）端口（图1.11中的内口）和4～8个外部（物理）端口（图1.11中的外口）。

 	外部LAN交换机：安装在通信机架上的物理交换机，不属于刀箱。

监控服务器刀箱（里刀片服务器的流量）会更困难，因为进出刀片服务器的流量是没有办法直接抓取的。有以下几种流量监控方法。

 	刀箱内部流量监控：

 	要监控进出特定服务器的流量，请在虚拟服务器上安装Wireshark。此时，只需确定收发流量的虚拟网卡。检查虚拟机的网络设置即可确认这一点，还可以启动Wireshark，在Wireshark-Capture Interface界面确认接收流量的虚拟机网卡。

 	还可以将Wireshark安装在另一台虚拟机上，在刀箱内部交换机上开启端口镜像功能，将受监视虚拟机的流量重定向至安装了Wireshark的虚拟机。

 	刀片服务器与刀箱内部交换机所连服务器之间（见图1.11中的标号1）的流量监控。

 	要监控刀片服务器与刀箱内部交换机所连服务器之间的流量，请在刀箱内部交换机上开启端口镜像功能，将上连刀片服务器的内口（虚拟端口）流量重定向至下连Wireshark主机的外口（物理端口）。大多数厂商的刀箱都支持配置这种流量镜像方法。

 	刀箱内部交换机所连服务器与外部交换机所连设备之间（如图1.11中的标号2所示）的流量监控。

 	在内部或外部LAN交换机开启端口镜像功能，抓取流量。

1.3.3　幕后原理　　　　

如前所述，有多种虚拟化平台可供选择。本节会简单介绍VMware平台的运作方式，VMware也是比较受欢迎的虚拟化平台之一。

在每一种虚拟化平台上，都可以配置主机，令其为虚拟机提供CPU和内存资源，同时让虚拟机访问这些资源。

图1.12所示为一台配置了4台虚拟机（Account1、Account2、Term1和Term2）的虚拟化服务器（IP地址为192.168.1.110）。这4台虚拟机都是虚拟服务器，对于本例，有两台作为计费服务器，另外两台作为终端服务器。

[image: ..\18-1175（1-10章节）\0112.tif]

图1.12

进入配置菜单，点选Networking配置选项时，会出现vSwitch配置界面，如图1.13所示。在vSwitch配置界面的左侧，能看到连接了虚拟服务器的交换机内部端口；在右侧，则会看到交换机外部端口。

[image: ..\18-1175（1-10章节）\0113.tif]

图1.13

对于本例，左侧可以看到虚拟服务器Account1、Account2、Term1和Term2，右侧可以看到交换机物理端口vmnic0。

标准vSwitch和分布式vSwitch

VMware平台vSphere可提供两种虚拟交换机：标准vSwitch和分布式vSwitch。

 	标准vSwitch：只要安装了vSphere就能获得，无论vSphere具有什么样的许可（license）。

 	分布式vSwitch：只有安装具有Enterprise Plus许可的vSphere才能获得。

只有分布式vSwitch才支持端口镜像功能，配置方法请见VMware vSphere 6.0文档中心的Working With Port Mirroring一节。

1.4　开始抓包

交待过在网络中安置Wireshark的秘诀之后，本节将介绍如何启动Wireshark软件，以及如何配置Wireshark，以应对不同的抓包场景。

1.4.1　准备工作　　　　

在计算机上安装过Wireshark之后，需点击桌面→“开始”→“程序”菜单或快速启动栏上相应的图标，运行该数据包分析软件。

 [image: 未标题-1]　注意　

 为了保持一致性，本书根据2016年2月发布的Wireshark 2.0.2版编写而成。一般而言（当然也有特例），若Wireshark版本号X.Y.Z中的X发生变化，则X将成为该软件的主版本（比如，Wireshark版本2）。Wireshark的主版本每几年才会改变一次，其功能也会随之发生天翻地覆的变化。当Y发生变化时，通常表示Wireshark又增加了新功能或某些功能发生了重大改变。当Z发生变化时，一般表示修复了某些Bug或添加了新的协议解析器。由于Wireshark通常每隔几周都会发布新的次要版本，因此读者可以查阅相应的版本说明。

Wireshark一旦运行，便会弹出图1.14所示的窗口（Wireshark 2.0.2启动窗口）。

[image: ..\18-1175（1-10章节）\0114.tif]

图1.14

在Wireshark启动窗口中，可以看到下面这些信息。

 	主菜单：包括File、Edit、View、Capture和Statistics等各种工具菜单（在图1.14中被标注为1）。

 	快速启动工具条：提供了各种工具菜单中常用的菜单项图标（在图1.14中被标注为2）。

 	显示过滤器输入栏：可在其中输入并应用显示过滤器（在图1.14中被标注为3）。

在启动窗口的主区域，可以看见三个子区域。

 	Open区域，即新近打开的文件列表区域（在图1.14中被标注为4）。

 	Capture区域，可供输入抓包过滤器，同时显示本机各块网卡的流量（在图1.14中被标注为5）。

 [image: 未标题-1]　注意　

 Wireshark 版本2会在其启动窗口界面显示所有本机网卡的流量状况，与版本1相比，这是一处重大改进，可方便操作人员确定本机在用的活跃网卡，并用其来抓包。

 	Learn区域，可引领操作人员直接进入Wireshark手册页面。

1.4.2　操作方法　　　　

用Wireshark版本2抓包，其实非常简单。只要运行该软件，进入启动窗口，即可看见所有本机网卡及其流量状况，请看图1.15。

[image: ..\18-1175（1-10章节）\0115.tif]

图1.15

发起单网卡抓包的最简单的方法是直接用鼠标左键双击有流量经过的在用网卡（1）。还可以在先选中在用网卡的情况下，单击窗口上方快速启动栏里最左边的Capture按钮（2），或点击Capture菜单，选择Start菜单项（也可直接使用快捷键Ctrl + E）（3）。

1．多网卡抓包

要想同时发起多网卡抓包，只需先按下Ctrl或Shift键，再以鼠标左键单击的方式选中多块抓包网卡。如图1.16所示，已经同时选中了两块网卡，一块为无线网卡，另一块为有线网卡，名称分别为Wireless Network Connection和Local Area Connection。

[image: ..\18-1175（1-10章节）\0116.tif]

图1.16

选中两块网卡之后，再点击快速启动栏里的Capture按钮，那两块网卡就会开始抓包了。由图1.17可知，用来抓包的无线网卡和有线网卡的IP地址分别为10.0.0.4和169.254.170.91（自动分配的私有IP地址[APIPA]）。

 [image: 未标题-1]　注意　

 在设置计算机网卡的IP地址时，若设置为DHCP自动分配，但网络内不存在DHCP服务器时，操作系统便会为网卡自动分配APIPA地址。APIPA地址与其他私有地址一样，可在本地使用，但网卡一旦分配了此类地址，则通常表示本地DHCP服务器不可用。

多网卡抓包在很多情况下都会派上用场，比方说，只要Wireshark主机配备了两块物理网卡，即可同时监控两台不同服务器的流量或一台路由器的两个接口的流量。典型的双网卡抓包布局如图1.18所示。

[image: ..\18-1175（1-10章节）\0117.tif]

图1.17

[image: ..\18-1175（1-10章节）\0118.tif]

图1.18

2．如何配置实际用来抓包的网卡

1．要想对实际用来抓包的网卡做进一步的配置，请点击Capture菜单中的Options菜单项，Wireshark Capture Interface窗口会立刻弹出，如图1.19所示。

在图1.19所示的窗口中，可配置抓包网卡的以下参数。

2．可在主窗口内的网卡列表区域选择实际用来抓包的网卡，如无需配置网卡的其他参数，直接点击Start按钮即可开始抓包。

3．在左下角，有一个名为Enable promiscuous mode on all interfaces的复选框。一旦勾选，Wireshark主机便会抓取交换机（端口镜像功能）重定向给自己的所有数据包，哪怕数据包的目的（MAC/IP）地址不是本机地址；若取消勾选，则Wireshark主机只能抓取到目的（MAC/IP）地址为本机地址的数据包，外加广播及多播数据包。

[image: ..\18-1175三校改图\0119.tif]

图1.19

 [image: 未标题-1]　注意　

 在某些情况下，勾选该复选框后，Wireshark将无法从无线网卡抓包。因此，若选用无线网卡抓包，且一无所获时，请取消勾选该复选框。

4．在网卡列表区域的正下方，有一个抓包过滤器输入栏。第3章会介绍抓包过滤器。

在Wireshark Capture Interface窗口的顶端，可以看见三个选项卡：Input（默认打开）、Output和Options。

3．将抓到的数据存入多个文件

在Wireshark - Capture Interfaces窗口中，点击Output选项卡，会出现图1.20所示的窗口。

可在图1.20所示的窗口内配置Wireshark，令其将抓包数据存入多个文件。为此，请在Capture to a permanent file下的File一栏内填入一个包含文件名的绝对路径名（或点击Browse按钮选择路径），Wireshark会将抓包数据保存进该绝对路径所指向的文件。若勾选了Create a new file automatically after复选框，则可以设定条件，让Wireshark按照所指定的条件，将抓包数据存入多个文件，文件名的格式为File一栏内输入的“文件名”+“xxxxx时间戳”。该功能在某些情况下会非常管用，比方说，在有待监控的网络链路的流量极高或需要长期抓包的情况下。在这样的情况下，可以设定条件，让Wireshark在指定时间之后、在抓取到了指定规模的数据之后，或者在抓取到指定数量的数据包之后，将抓包数据存入一个新的文件。

[image: ..\18-1175（1-10章节）\0120.tif]

图1.20

4．设置抓包选项参数

1．在Wireshark - Capture Interfaces窗口中，点击Options选项卡，会出现图1.21所示的窗口。

[image: ..\18-1175（1-10章节）\0121.tif]

图1.21

2．在左上区域（1），可以勾选以下抓包显示选项（Display Options）。

 	Update list of packets in real-time：一经勾选，Wireshark抓包主窗口将会实时显示抓取到的所有数据包。

 	Automatically scroll during live capture：一经勾选，Wireshark抓包主窗口会在实时显示数据包时自动滚屏。

 	Hide capture info dialog：一经勾选，Wireshark将不再弹出与实际用来抓包的网卡相关联的流量统计窗口[6]。

3．在右上区域，可以勾选以下名称解析选项（Name Resolution）。

 	Resolve MAC address：一经勾选，就会让Wireshark在显示数据时，将MAC地址中的网络设备制造商ID（vendor ID）解析为相对应的厂商（网络设备制造商）名称。

 	Resolve network name：一经勾选，就会让Wireshark在显示数据时，将IP地址解析为相对应的DNS名称。

 	Resolve transport name：一经勾选，就会让Wireshark在显示数据时，将第四层协议端口号解析为相对应的应用程序名称（比如，将TCP端口号80解析并显示为HTTP，将UDP端口号25解析为并显示为SMTP，依此类推）。

 [image: 未标题-1]　注意　

 Wireshark的名称解析功能还存在某些不足。虽然Wireshark能缓存DNS名称，但解析IP地址会有一个DNS转换的过程，可能会减拖慢抓包的速度。该过程本身也会生成额外的DNS查询和响应消息，在抓包文件中自然可以看见与之相对应的数据包。名称解析失败的概率很高，因为正在查询的DNS服务器未必知道与抓包文件中的IP地址相对应的各种名称。综上所述，Resolve network name功能虽然有那么点作用，但在勾选时请仔细斟酌。

5．网卡管理

1．如图1.22所示，在Input选项卡的右下角有一个Manage Interfaces按钮，点击该按钮，会弹出Manage Interfaces窗口。该窗口由三个选项卡构成，分别为Local Interfaces、Pipes和Remote Interfaces。可在这几个选项卡中设置让Wireshark从哪块网卡抓取数据。

[image: ..\18-1175（1-10章节）\0122.tif]

图1.22

2．图1.23所示为点击Manage Interfaces按钮后弹出的Manage Interfaces窗口，在Local Interfaces选项卡中，可以看到所有可用的本机网卡，包括未在启动窗口的网卡列表区域出现的网卡。

[image: ..\18-1175（1-10章节）\0123.tif]

图1.23

3．Wireshark还能实时读取其他应用程序抓取的数据包。

6．从远程机器上抓包

要想从远程机器上抓包，请按以下步骤行事。

1．在远程机器上安装pcap驱动程序，也可以在远程机器上安装完整的Wireshark软件包。

2．在Wireshark启动窗口内选择Capture菜单，点击Options菜单项，在弹出的Wireshark- Capture Interfaces窗口中，点击Manage Interfaces按钮。在弹出的另一个Manage Interfaces窗口中，点击Remote Interfaces选项卡，如图1.24左侧所示。在Remote Interfaces选项卡中点击“+”按钮，会弹出图1.24右侧所示的Remote Interface窗口。

3．在Remote Interface窗口里输入以下参数。

 	 Host：输入远程机器的IP地址或主机名。

 	 Port：输入2002，若不填，则Wireshark会使用默认端口2002。

 	 Authentication：可以选择不验证（选择Null authentication单选按钮）；若选择验证（选择Password authentication单选按钮），需在Username和Password一栏里输入远程机器的用户名和密码。

[image: ..\18-1175（1-10章节）\0124.tif]

图1.24

4．登录有待采集数据的远程机器。

 	 安装WinPcap。无需安装Wireshark本身，只需安装WinPcap。

 	 配置防火墙，放行本机发往远程机器TCP 2002端口的流量。

 	 在系统账户列表里添加之前在Remote Interface窗口里输入的用户名和密码，并为其分配管理员权限。在Windows系统内，可通过“控制面板 | 用户账户和家庭安全 | 添加或删除用户账户 | 创建一个新账户”，来完成这一操作。

 	 进入Windows资源管理器，右键单击左侧的“计算机”图标，在右键菜单里点击“管理”。在弹出的“计算机管理”窗口中，点击左侧“服务和应用程序”下的“服务”，找到右侧的Remote Packet Capture Protocol服务[7]，如图1.25所示。

5．回到图1.24所示的运行于本机的Wireshark的Remote Interface窗口界面，单击OK按钮，远程机器的网卡将会出现在Local Interfaces选项卡中。现在，可选择用远程机器的网卡抓包了，操作起来与用本机网卡抓包一模一样。

[image: ..\18-1175（1-10章节）\0125a.tif]

图1.25

 [image: 未标题-1]　注意　

 远程主机抓包功能的应用场合有很多，比方说，可用来监控本机与远程主机之间的连接，甚至还可以监控两台远程主机之间的连接。执行远程主机抓包任务，可观察到进出远程主机的数据包，这样一来，就能判断出远程主机的流量能否顺利抵达其他设备。远程主机抓包是一项非常强大的功能。

7．开始抓包——在Linux/UNIX机器上抓包

Linux和UNIX系统都自带一款古老而又实用的抓包工具，名为TCPDUMP，实为tcpdump命令，它是Wireshark的“祖宗”。

要用TCPDUMP工具抓包，可执行以下（最常用的）命令。

 	从指定接口抓包：

 	命令语法为tcpdump -i <接口名>

 	比如，tcpdump -i eth0

 	将从指定接口抓到的数据包存入指定文件：

 	命令语法为tcpdump -w <文件名> -i <接口名>

 	比如，tcpdump -w test001 -i eth1

 	读取抓到的数据包文件：

 	语法为tcpdump -r <文件名>

 	比如，tcpdump -r test001

TCPDUMP工具抓包过滤器的写法详见第3章。

8．从远程通信设备采集数据

本节将介绍如何从远程通信设备抓取数据。由于有多家厂商的网络产品都支持该功能，因此本节只会提供在某些主要厂商的网络设备上开启该功能的通用配置指南。

该功能的常规理念是，某些厂商的网络设备具备本机抓包的功能，抓包完毕之后，还支持将抓包文件导出至外部主机。

按Cisco的说法，该功能名为嵌入式数据包捕获（EPC）功能，配置方法可在思科官网进行搜索。配置方法所在的文档提供了Cisco IOS和IOS-XE设备的EPC配置示例。

在Juniper设备上，要用monitor traffic命令来实现该功能，该命令的详细说明可在Juniper官网进行搜索。

在Checkpoint防火墙上，要用fw monitor实用工具来实现该功能，该实用工具的详细使用说明可在Checkpoint官网进行搜索。

更多与该功能有关的信息，请查阅具体厂商的设备文档。虽然一般不会先在LAN交换机、路由器、防火墙或其他通信设备上抓包，然后再下载抓包文件进行分析，但请读者别忘了这项功能，在必要时它可能还会派上用场。

1.4.3　幕后原理　　　　

Wireshark的抓包原理非常简单。将Wireshark主机的网卡接入有线或无线网络开始抓包时，介于有线（或无线）网卡和抓包引擎之间的软件驱动程序便会参与其中。在Windows和UNIX平台上，这一软件驱动程序分别叫作WinPcap和Libcap驱动程序；对于无线网卡，行使抓包任务的软件驱动程序名为AirPacP驱动程序。

1.4.4　拾遗补缺　　　　

若数据包的收发时间属于重要信息，且还要让Wireshark主机从一块以上的网卡抓包，则Wireshark主机就必须与抓包对象（受监控的主机或服务器）同步时间，可利用NTP（网络时间协议）让Wireshark主机/抓包对象与某个中心时钟源同步时间。

当网管人员需要观察Wireshark抓包文件，并对照检查抓包对象所生成的日志，以求寻得排障线索时，Wireshark主机与抓包对象的系统时钟是否同步将会变得无比重要。比方说，Wireshark抓包文件显示的发生TCP重传的时间点，与受监控服务器生成的日志显示的发生应用程序报错的时间点相吻合，则可以判断TCP重传是拜服务器上运行的应用程序所赐，与网络本身无关。

Wireshark软件所采用的时间取自OS（Windows、Linux等）的系统时钟。至于不同OS中NTP的配置方法，请参考相关操作系统配置手册。

以下所列为在Microsoft Windows 7操作系统内配置时间同步的方法。

1．单击任务栏最右边的时间区域，会弹出时间窗口。

2．在时间窗口中点击“更改日期和时间设置”，会弹出“日期和时间”窗口。

3．在“日期和时间”窗口中，点击“Internet时间”选项卡，再点击“更改设置”，会弹出“Internet时间设置”窗口。

4．在“Internet时间设置”窗口中，选中“与Internet时间服务器同步”复选框，在“服务器”后的输入栏内输入时间服务器（NTP）的IP地址，再点“确定”按钮。

 [image: 未标题-1]　注意　

 Microsoft Windows 7及后续版本的Windows操作系统会默认提供几个时间服务器（格式为域名）。可选择其中一个时间服务器，让网络内的所有主机都与其同步时间。

NTP是一种网络协议，网络设备之间可借此协议同步各自的时间。可把网络设备（路由器、交换机、防火墙）及服务器配置为NTP客户端，令它们与同一台NTP时间服务器（时钟源）对时（同步时间），时间精度要取决于那台时间服务器所处的层级（stratum）或等级（level）。NTP时间服务器所处层级越高，其所提供的时间也就越精确。直连原子时钟并提供NTP对时服务的设备被称为1级时钟源，其精度也最高。常用的NTP服务器为2～4级。

RFC 1059（NTPv1）是定义NTP的第一份标准文档，RFC 1119（NTPv2）则是第二份；目前常用的NTPv3和v4则分别定义于RFC 1305和RFC 5905。

NTP服务器IP地址表可从多处下载。

1.5　配置启动窗口

本节会介绍与Wireshark启动窗口有关的基本配置，同时会介绍抓包主窗口、文件格式以及可视选项的配置。

1.5.1　准备工作　　　　

启动Wireshark软件，首先映入眼帘的就是启动窗口。可在此窗口中调整以下各项配置参数，来满足抓包需求：

 	工具条配置；

 	抓包主窗口配置；

 	时间格式配置；

 	名称解析；

 	抓包时是否自动滚屏；

 	字体大小；

 	主窗口数据包属性栏的配置。

先来熟悉一下Wireshark启动窗口内的主菜单和几个常用的工具条（栏），如图1.26所示。

[image: ..\18-1175（1-10章节）\0126.tif]

图1.26

1．主菜单

Wireshark软件的主菜单位于主窗口的顶部，包括以下菜单。

 	File：用来执行抓包文件操作功能，包括打开或保存抓包文件，以及导出或打印抓包数据等功能。

 	Edit：用来查找并标记数据包，为数据包添加注释信息，还包括了最重要的preferences菜单项。第2章会介绍Edit菜单所囊括的各种功能。

 	View：用来配置Wireshark软件窗口的外观、指定数据包的颜色、定义字体大小、变更字体、定义是否在单独的窗口内显示数据包，以及是否在抓包主窗口内以折叠或以展开的折叠树形式显示数据包的内容等。

 	Go：用来快速定位指定的数据包，比方说，可利用Go菜单功能快速行进至抓包文件中的第一个数据包、最后一个数据包或某个具有指定编号的数据包等。

 	Capture：用来配置抓包选项和抓包过滤器。

 	Analyze：包含了各种数据包分析及显示选项功能，比如，显示过滤器配置功能、数据包解码功能以及Follow TCP/UDP Stream功能。

 	Statistics：用来显示各种统计信息。利用Statistics菜单功能，既可以获取基本的主机和对话统计信息，也可以生成智能的IO Graph和stream graph统计信息。

 	Telephony：用来显示IP电话协议和蜂窝协议流量信息。可用Telephony菜单功能显示并分析RTP和RTCP流量、SIP流及统计信息、GSM或LTE协议流量等。

 	Wireless：用来显示蓝牙和IEEE 802.11无线网络协议流量信息。第9章会介绍Wireless菜单所囊括的各种功能。

 	Tools：用于Lua操作。

 	Help：提供了用户帮助、抓包示例、软件更新等功能。

2．主工具条

主工具条中的各工具按钮分别对应了主菜单中的各种常用菜单项功能，可点击工具按钮来快速执行相应的任务。可勾选或取消勾选View菜单中的Main Toolbar菜单项，来显示或隐藏主工具条。

由图1.27可知，最左边的一组4个按钮与抓包操作有关，紧邻的一组4个按钮与文件操作有关，正中间的一组6个按钮与数据包的选择（跳转）操作有关，再靠右的两个按钮分别控制实时抓包自动滚屏和（数据包）配色方案的开启和关闭，最右边的一组4个按钮控制字体大小以及数据包属性栏。

[image: ..\18-1175（1-10章节）\0127.tif]

图1.27

3．显示过滤器工具条

显示过滤器工具条上有一个显示过滤器输入栏（1）外加3个按钮（2、3、4），如图1.28所示。

利用显示过滤器工具条，可以：

 	在显示过滤器输入栏内，手动输入显示过滤器表达式（支持自动补齐功能），或查看之前配置的显示过滤器；

 	管理显示过滤器表达式，能在Display Filter Expression对话窗口的帮助下，构造显示过滤表达式；

 	将新配置的显示过滤器表达添加为Filter Expression Preferences（首选过滤表达式），供日后使用；

 	利用预定义的过滤器表达式，并选择显示过滤器。

[image: ..\18-1175（1-10章节）\0128.tif]

图1.28

第4章会重点介绍Wireshark显示过滤器。

4．状态栏

在Wireshark主窗口的最底部，有一个状态栏，分3个区域，如图1.29所示。

[image: ..\18-1175三校改图\0129.tif]

图1.29

通过图1.29所示的Wireshark主窗口底部状态栏，可以执行下述操作。

 	观察到专家系统中的错误。

 	查看抓包文件属性，包括抓包文件信息（名称、长度、格式等信息）、抓包的开始和结束时间，以及某些常规统计信息。

 	观察到抓包文件的名称（在抓包期间，抓包文件名由Wireshark软件临时分配）。

 	获知抓包文件中包含的数据包的数量、Wireshark实际显示出的数据包的数量，以及Wireshark加载抓包文件所消耗的时间。

 	获悉当前所采用的模板（profile）。更多与Wireshark模板有关的信息，详见第2章。

1.5.2　操作方法　　　　

本节会按部就班地指导读者配置Wireshark启动窗口和抓包主窗口。

1．定制工具条

对于一般情况下的抓包，根本无须调整与Wireshark工具条有关的任何配置。但若要抓取无线网络中的数据（即要让Wireshark主机抓到无线网络里其他主机的无线网卡收发的数据），则需要在Wireshark启动窗口内激活Wireless工具条。为此，请点击启动窗口中的View菜单，并勾选Wireless Toolbar菜单项，如图1.30所示。

[image: ..\18-1175（1-10章节）\0130.tif]

图1.30

Wireless Toolbar菜单项一经勾选，便会在Wireshark窗口中激活Wireless工具条。对当前版本的Wireshark而言，Wireless工具条上只有一个名为802.11 Preferences的按钮，可点击该按钮启动Wireshark的Preferences配置窗口。第9章会详述无线LAN流量分析。

2．定制抓包主窗口

可按图1.31来配置Wireshark，定制其抓包主窗口的界面。

[image: ..\18-1175（1-10章节）\0131.tif]

图1.31

一般而言，无需对Wireshark抓包主窗口的界面做任何调整。但在某些情况下，也有可能需要取消勾选View菜单中的Packet Bytes菜单项，把抓包主窗口的空间都留给“数据包列表”区域（对应于View菜单中的Packet List菜单项）和“数据包结构”区域（对应于View菜单中的Packet Details菜单项）。

3．名称解析

在Wireshark软件里，名称解析功能一经启用，数据包中的L2（MAC）/L3（IP）地址以及第4层（UDP/TCP）端口号将会分别以有实际意义的名称示人，如图1.32所示。

[image: ..\18-1175（1-10章节）\0132.tif]

图1.32

由图1.32可知，MAC地址34:08:04:16:09:78归D-Link公司所有，IP地址31.13.93.36对应的网站域名为www.facebook.com，TCP端口号443对应的应用层协议为HTTPS。Wireshark软件把数据包中的MAC地址、IP地址以及TCP端口号，分别替换成了有意义的名称。

 [image: 未标题-1]　注意　

 Wireshark软件将数据包中的MAC地址转换（解析并显示）为网卡制造商的名称最为简单——只需查询转换表（存储在Wireshark安装目录下的.manuf文件内）；将IP地址转换（解析并显示）为域名，会借助于DNS，如前所述，这或多或少会影响性能；将TCP/UDP端口号转换为应用程序名，则要查询存储在Wireshark安装目录下的Services文件。

4．为数据包着色

通常，在使用Wireshark抓包时，应为抓取到的网络中的正常流量建立一个（视觉上的）基线模板。这样一来，便可以一边抓包，一边通过抓包主窗口显示出的数据包的色差，来发现潜在的令人生疑的以太网、IP或TCP流量。

要让Wireshark体现出这样的色差，请在抓包主窗口的数据包列表区域，选择一个可疑的或需要着色的数据包，同时单击右键，在弹出的菜单Colorize Conversation中点选Ethernet、IP或TCP/UDP（TCP和UDP只有一项可选，视数据包的第4层类型而定）子菜单项名下的各种颜色（color）菜单项。如此操作，会让该数据包所归属的（Ethernet、IP、UDP或TCP）对话中的所有其他数据包都以相同的颜色示人。

现举一个给抓包文件中隶属于某条TCP会话的所有数据包上色的例子，如图1.33所示。

[image: ..\18-1175（1-10章节）\0133.tif]

图1.33　（Ethernet、IP、UDP或TCP）会话着色

要取消配色规则，请按下列步骤行事。

1．点击View菜单。

2．选择Colorize Conversation菜单项，点击Reset Colorization子菜单项或按下Ctrl +空格键。

5．字体缩放

要缩放Wireshark抓包主窗口的字体，请按图1.34所示步骤行事。

1．点击View菜单。

2．放大字体，请点中间的菜单项Zoom In或按Crtl +“+”键。

3．缩小字体，请点中间的菜单项Zoom Out或按Crtl +“−”键。

[image: ..\18-1175（1-10章节）\0134.tif]

图1.34

[1]　译者注：本章其实并未包含“在云内抓取数据”相关内容。

[2]　译者注：原文是“In the example, all switches learn the MAC address M1 on the port they have received it from”，直译为“对于本例，所有交换机都会从接收MAC地址M1的端口学得M1”。按照原文的字面意思，交换机端口接收到的居然是MAC地址而非以太网帧。

[3]　译者注：原文是“the fifth port to the left”。

[4]　译者注：原文是“Therefore, when you configure a port monitor to a specific port, you will see all traffic coming in and out of it. If you connect your laptop to the network, without configuring anything, you will see only traffic coming in and out of your laptop, along with broadcasts and multicasts from the network”。

[5]　译者注：原文是“The server NICs are configured in the port redundancy: the port mirror from one port to two physical ports (in the diagram to ports 1 and 2 of the switch) ”，直译为“服务器NIC被配置为端口冗余：从一个端口到两个物理端口的端口（图1.10中交换机的1、2两口）镜像”。

[6]　译者注：此处图文不符，请读者知悉。

[7]　译者注：需要启动该服务，作者漏说了。

第2章　熟练使用Wireshark排除网络故障

本章涵盖以下内容：

 	 配置用户界面[1]和配置协议参数[2]；

 	 数据文件的导入和导出；

 	 定义配色规则；

 	 配置时间参数和汇总信息；

 	 构建排障模板。

2.1　概述

本章会讨论如何娴熟地将Wireshark作为网络排障工具来使用，先讲如何配置用户界面，再谈如何配置全局和协议参数，接下来将讨论Wireshark文件夹、配置文件、文件夹和插件[3]。

本章还会讲解Wireshark的配色规则及配置方法，同时会介绍新添加进Wireshark版本2的智能滚动条功能，该功能对识别流量模式和协议的运作方式非常有帮助。

最后，会以对Wireshark模板（profile）及其使用方法的介绍来结束本章。所谓模板，是指为了加快排障时间，降低排障难度，事先在Wireshark中针对不同的网络环境、网络故障或网络协议，分别定义并保存的用户界面、协议参数、显示/抓包过滤器以及配色规则。本章会细述Wireshark模板，本书还会提供一些对读者有帮助的模板。

2.2　配置用户界面及全局、协议参数

通过Edit菜单中的Preferences菜单项以及Preferences窗口中的Protocol配置选项，不但能控制Wireshark软件的显示界面，而且还能改变该软件对常规协议数据包的抓取和呈现方式。本节将介绍如何在Preferences窗口的Protocol配置界面中配置最常见的协议。

2.2.1　准备工作　　　　

点击Edit菜单中的Preferences菜单项，Preferences窗口会立刻弹出，如图2.1所示。

[image: ..\18-1175（1-10章节）\0201.tif]

图2.1

由图2.1可知，在Preferences窗口中，只要选择了窗口左边的配置选项，窗口的右边便会出现相应的配置参数。

2.2.2　配置方法　　　　

本节会介绍如何配置Preferences窗口中的Appearance（外观）配置选项，以及如何针对最常用的协议，配置Preferences窗口中的Protocol选项。Preferences窗口所含其余配置选项的配置方法请见本书后面的相关章节。

 [image: 未标题-1]　注意　

 由于本书旨在向读者传授Wireshark的使用诀窍，以及如何娴熟地将其作为排障工具来使用，因此不可能细述Wireshark的所有功能。Wireshark的简单功能请参阅其官网的用户手册，作者会重点讲解可以提高用户使用娴熟度的重要和特殊的功能。

先把目光放在Preferences窗口所含配置选项的设置上，看看这些配置选项能否对用户有所帮助。

1．常规的外观设置

图2.2所示为Wireshark Preferences窗口的Appearance（外观）配置选项，可以对该选项的内容进行配置，来提高使用体验。

[image: ..\18-1175（1-10章节）\0202.tif]

图2.2

Preferences窗口的Appearance配置选项可供配置的内容有：

 	显示过滤器和最新抓包文件的缓冲区的大小；

 	用户界面的语言（以后的版本将支持更多国家的语言）；

 	主工具条的显示风格——图标、文本或图标加文本。

2．抓包主窗口的布局设置

在Preferences窗口的Appearance（外观）配置选项中，有一个Layout子配置选项，用来设置数据包列表（Packet List）、数据包结构（Packet Details）和数据包内容（Packet Bytes）区域在Wireshark抓包主窗口里的呈现方式，如图2.3所示。

[image: ..\18-1175（1-10章节）\0203.tif]

图2.3

在图2.3所示的Preferences窗口中，可通过选择区域（Pane）的排列样式，来设置上述3个区域在Wireshark抓包主窗口中的呈现方式。

3．调整及添加数据包属性列

在Preferences窗口的Appearance（外观）配置选项中，有一个Columns子配置选项，用来添加或删除抓包主窗口的数据包列表区域里的数据包属性列（栏）。在默认情况下，出现在抓包主窗口的数据包列表区域里的数据包属性列有No.（编号）、Time（抓取时间）、Source（源地址）、Destination（目的地址）、Protocol（协议类型）、Length（长度）以及Info（信息），如图2.4所示。

要给数据包列表区域添加一个新列，可通过以下两个途径。

 	点击图2.4中的“+”号按钮，先在Type一栏里选择预定义的参数（比如，IP DSCP value、src port和dest port等）作为新的属性列，再在Title一栏里给它起个名字，最后单击OK按钮。

 	点击图2.4中的“+”号按钮，先在Type一栏里选择Custom（定制），再在Fields Name一栏里输入可在显示过滤器中露面的任一参数，然后在Title一栏里给它起个名字，最后点击OK按钮。下面举几个以定制方式在抓包主窗口中添加的数据包属性列的例子。

 	要想在抓包主窗口中新增一列，以便观看TCP数据包的TCP窗口大小，需在Fields Name一栏内输入显示过滤器参数tcp.window_size。

 	要想在抓包主窗口中新增一列，以便观看每个IP数据包包头中的TTL字段值，需在Fields Name一栏内输入显示过滤器参数ip.ttl。

 	要想在抓包主窗口中新增一列，以便观看每个RTP数据包中marker位置1的实例，需在Fields Name一栏内输入显示过滤器参数rtp.marker。

[image: ..\18-1175（1-10章节）\0204.tif]

图2.4

 [image: 未标题-1]　注意　

 还有一种添加新的数据包属性列的办法，那就是在抓包主窗口的数据包结构区域里选择数据包的某个字段，单击鼠标右键，在弹出的菜单中点击Apply as Column菜单项。这么一点，那个字段就会成为数据包列表区域里新的数据包属性列。

在分析网络故障时，酌情以定制方式添加数据包属性列，可加快定位故障的原因。与此有关的内容本书后文再叙。

4．设置字体和配色

在Preferences窗口的Appearance（外观）配置选项中，有一个Font and Colors子配置选项，用来更改字体大小、形状及颜色。可按图2.5所示来修改抓包主窗口的字体。

[image: ..\18-1175（1-10章节）\0205.tif]

图2.5

 [image: 未标题-1]　注意　

 若不知如何将抓包主窗口的字体恢复为默认设置，请按图2.5所示将Font选为Consolas，将Size选为11.0，将Font style选为Normal。

5．抓包设置

可通过Preferences窗口中的Capture设置选项，将主机或笔记本电脑的常用网卡设置为Wireshark默认抓包网卡。

在图2.6中，作者将自己笔记本电脑上名为Wireless Network Connection 2的无线网卡设置为Wireshark默认抓包网卡。Capture设置选项的其余配置参数保持原样。

[image: ..\18-1175（1-10章节）\0206.tif]

图2.6

6．配置显示过滤表达式首选项

可通过Preferences窗口中的Filter Expressions设置选项，来定义出现在抓包主窗口的显示过滤器工具条右边的显示过滤器表达式。

要定义这样的显示过滤器表达式，请按以下步骤行事。

1．在Preferences窗口中点击Filter Expressions设置选项，如图2.7所示。

[image: ..\18-1175（1-10章节）\0207.tif]

图2.7

2．点击“+”号按钮，先在Filter Expression一栏里输入显示过滤器表达式，再在Button Label一栏里为它起个名字，最后点击OK按钮。

3．点击OK按钮之后，之前输入的显示过滤器表达式将会以按钮的形式，出现在显示过滤器工具条的右侧。

4．由图2.8可知，图2.7中定义的那两个名为TCP-Z-WIN和TCP-RETR的滤器表达式以按钮的形式，出现在了抓包主窗口的显示过滤器工具条的右侧。

[image: ..\18-1175（1-10章节）\0208.tif]

图2.8

 [image: 未标题-1]　注意　

 如本章最后一节所述，在Wireshark中，可为每个模板分别配置不同的显示过滤器首选项。这样一来，就可以配置出各种模板，分别用来排除TCP、IP电话（IPT）等各种故障，或分别用来诊断各种网络协议故障。

如第4章所述，在Filter Expressions设置选项中，应按照Wireshark显示过滤器的格式来配置显示过滤表达式。

7．调整名称解析

Wireshark支持以下3个层级的名称解析。

 	第二层（L2）：Wireshark可把数据包的MAC地址的前半部分解析并显示为网卡芯片制造商的名称或ID。比方说，可把一个MAC地址的前3个字节14:da:e9解析并显示为AsusTeckC（ASUSTeK Computer Inc，华硕计算机公司）。

 	第三层（L3）：Wireshark可把数据包的IP地址解析并显示为DNS名称。比方说，可把157.166.226.46这一IP地址，解析并显示为CNN网站的Edition页面。

 	第四层（L4）：Wireshark可把TCP/UDP端口号解析并显示为应用程序（服务）名称。比方说，可把TCP 80端口解析并显示为HTTP，把UDP 53端口解析并显示为DNS。

图2.9所示为在Preferences窗口中点击过左侧的Name Resolution配置选项之后，在窗口右侧出现的配置内容。

[image: ..\18-1175（1-10章节）\0209.tif]

图2.9

在图2.9所示的Preferences窗口中，可从上到下配置下述内容。

 	第2层、第3层和第4层名称解析。

 	执行名称解析的方法（通过DNS和/或hosts文件），以及并发的DNS请求数量的上限（旨在确保Wireshark软件的运行速度不受影响）。

 	简单网络管理协议（SNMP）的对象标识符、ID以及是否要将它们转换为对象名称。

 	GeoIP以及是否启用它。有关详细信息，请参阅本书第10章[4]。

 [image: 未标题-1]　注意　

 对一个TCP/UDP数据包的源、目端口号而言，只有把目的端口号转换为应用程序名称才有意义。源端口号一般都是随机生成（高于1024），将其转换为应用程序名称没有任何意义。

 	Wireshark会默认解析第2层MAC地址和第4层TCP/UDP端口号，并按名称来显示。解析IP地址会拖慢Wireshark的运行速度，因为这会让Wireshark软件本身额外执行大量的DNS查询，所以在开启该功能之前应谨慎考虑。

8．调整Protocol配置选项里的IPv4配置参数

借助于Preferences窗口中的Protocols配置选项，可调整Wireshark对相关协议流量的抓取和呈现方式。点击配置选项Protocols左边的箭头，会出现多种协议配置子选项。图2.10所示为选择IPv4或IPv6协议配置子选项时，出现在Preferences窗口右侧的配置参数。

[image: ..\18-1175（1-10章节）\0210.tif]

图2.10

下面是对IPv4配置子选项名下的某些配置参数的解释。

 	Decode IPv4 TOS field as DiffServ field：制定IPv4协议标准之初，为了能在IPv4网络中保证服务质量，在IPv4包头中设立了一个叫做服务类型（ToS）的字段。后来，IETF又制定了一套IPv4服务质量的新标准（区分服务，DiffServ），打的也是IPv4包头中原ToS字段的主意，只是对其中各个位的置位方式有了新的定义。若未勾选该复选框，Wireshark便会按老的IPv4服务质量标准，来解析所抓IPv4数据包包头中的ToS字段。

 	Enable GeoIP lookups： GeoIP是一个数据库，Wireshark可根据该数据库里的内容来呈现（其所抓数据包IP包头中源和目的）IP地址所归属的地理位置。若勾选该复选框，Wireshark便会针对所抓IPv4和IPv6数据包的IP地址来呈现其所归属的地理位置。该子选项功能涉及名称解析，一旦开启，会拖慢Wireshark实时抓包速率。第10章会介绍如何配置GeoIP。

9．调整Protocol配置选项里的TCP和UDP配置参数

UDP是一种非常简单的协议，与Wireshark版本1相比，Wireshark版本2的Protocols配置选项里的UDP协议配置子选项几乎没有变化，可供配置的参数也不多，一般无需调整；而TCP协议则很是复杂，Protocols配置选项里TCP协议配置子选项中可供配置的参数较多，如图2.11所示。

[image: ..\18-1175（1-10章节）\0211.tif]

图2.11

调整TCP协议配置子选项名下的参数，其实也就是调整Wireshark对TCP报文段的解析方式，以下是对其中某些参数的解释。

 	Validate the TCP checksum if possible：Wireshark有时会抓到超多校验和错误（checksum errors）的数据包，这要归因于在抓包主机的网卡上开启的TCP Checksum offloading（TCP校验和下放）功能。该功能一开，便会导致Wireshark将抓到的本机生成的数据包显示为checksum errors（具体原因后文再表）。因此，若Wireshark抓到了超多校验和错误的数据包，则有必要先取消勾选该复选框，再去验证是否真的存在校验和问题。

 	Analyze TCP sequence numbers：要让Wireshark对TCP数据包做详尽分析，就必须勾选该复选框，因为TCP sequence numbers（TCP序列号）是TCP最重要的特性之一。

 	Relative sequence numbers：主机在建立TCP连接时，会随机选择一个序列号，并将其值存入相互交换的第一个报文段的TCP头部的序列号字段。只要勾选了该复选框，Wireshark就会把一股TCP数据流中第一个TCP报文段的（TCP头部的）序列号字段值显示为0，后续TCP报文段的序列号字段值将依次递增，从而隐藏了真实的序列号字段值。在大多数情况下，都应该让Wireshark显示TCP报文段的相对序列号（relative number），以方便网管人员查看。

 	Calculate conversation timestamps：该复选框一经勾选，在抓包主窗口的数据包结构区域中，只要是TCP数据包，就会在transmission control protocol树下多出一个timestamps结构，点击其前面的箭头，就能看到Wireshark记录的该TCP数据包在本股TCP数据流中的时间烙印（timestamp）。让Wireshark显示每个TCP数据包的时间烙印，将有助于排查时间敏感型TCP应用程序的故障。

2.2.3　幕后原理　　　　

通过修改Preferences窗口中Protocols选项下相关协议子配置选项的参数，便能开启或禁用Wireshark软件对相应协议流量的某些分析功能。需要注意的是，为了保证Wireshark软件的运行速度，应尽量禁用不必要的分析功能

对TOS和DiffServ的介绍，详见本书第10章。

SNMP是一种用来行使网络管理功能的协议。SNMP对象标识符（OID）的作用是标识对象及其在管理信息库（MIB）中的位置。所谓对象，既可以是一个计数器，对流入接口的数据包进行计数；也可以是路由器接口的IP地址、设备的名称及安装位置、CPU负载或任何其他可呈现或可测量的实体。

SNMP MIB按树形结构来构建，如图2.12所示。顶层MIB对象ID分属不同的标准组织。每家网络厂商都会为自己的网络产品定义私有分枝（包括受管理的对象）。

[image: ..\18-1175（1-10章节）\0212.tif]

图2.12

Wireshark在解析SNMP MIB时，不但会显示对象ID，还会显示其名称，这有助于排障人员识别受监控的数据。

2.3　抓包文件的导入和导出

将抓包文件分享给其他的运维团队或设备厂商的支持人员，以期查明网络故障的根本原因是常有的事儿。这样的抓包文件会包含很多数据包，而排障人员感兴趣的或许仅限于若干数据流或部分数据包。Wireshark不但支持将所抓数据有选择地导出至新的文件，甚至还能修改其格式，以便传输。本节将探讨Wireshark支持的各种抓包文件导入和导出功能。

2.3.1　准备工作　　　　

运行Wireshark软件，点击主工具条上的Capture按钮，开始抓包（或打开一个已保存的抓包文件）。

2.3.2　配置方法　　　　

在Wireshark主抓包窗口内，既可以把抓来的所有数据都保存进一个文件，也能以不同的格式或文件类型导出自己所需要的数据。

现在来讲解如何执行这些操作。

1．完整或部分导出抓包文件

既能把抓来的所有数据包（或抓包文件中的所有数据包）完整保存进一个文件，也能以各种文件格式和文件类型导出特定的数据。

要把抓来的所有数据包完整保存进一个文件（或将现有的抓包文件完整另存为一个新的文件），请按以下步骤行事。

 	点击File菜单里的Save菜单项（或按Ctrl+S键），在弹出窗口的“文件名”输入栏内输入有待保存的抓包文件的名称。

 	点击File菜单里的Save as菜单项（或按Shift +Ctrl +S键），在弹出窗口的“文件名”输入栏内输入有待保存的抓包文件的新名称。

若要保存抓包文件（或已抓数据包）中的部分数据（比如，经过显示过滤器过滤的数据），请按以下步骤行事。

 	点击File菜单里的Export Specified Packets菜单项，Export Specified Packets窗口会立刻弹出，如图2.13所示。

[image: ..\18-1175（1-10章节）\0213.tif]

图2.13

可在Export Specified Packets窗口的左下角区域，点击相应的单选按钮，来选择文件的导出方式。

 	要把抓包文件中的所有数据包或所有已抓数据包作为一个文件导出，请同时选择All packets和Captured单选按钮，再点Save按钮。

 	要把抓包文件（或已抓数据包）中经过显示过滤器过滤的数据包作为一个文件导出，请同时选择All packets和Displayed单选按钮，再点Save按钮。

 	要把已选中的数据包（即在数据包列表区域中用鼠标点选的数据包）作为一个文件导出，请选择Selected packets only单选框，再点Save按钮。

 	要把所有带标记的数据包（给数据包打标的方法是，先在“数据包列表”区域选中一个数据包，然后点击右键，在弹出的菜单中选择Mark/unmark packet 菜单项）作为一个文件导出，请选择Marked packets only单选按钮，再点Save按钮。

 	要把“数据包列表”区域中位列两个带标记的数据包之间的所有数据包作为一个文件导出，请选择First to last marked单选按钮，再点Save按钮。

 	要把抓包文件中编号（详见“数据包列表”区域里的“No.”列）连续的那部分数据包作为一个文件导出，请选择Range单选按钮，并在其后的输入栏内填写数据包的编号范围，再点Save按钮。

 	导出抓包文件时，要是希望放弃其中的某些数据包，请先在“数据包列表”区域里选中那些数据包并单击右键，在弹出的菜单中选择Ignore/Unignore packet tog菜单项；再然后，选择Export Specified Packets窗口中的Remove ignored packets复选框，再点Save按钮。

要以压缩的形式保存数据包，请先勾选Export Specified Packets窗口中的Compress with gzip复选框，再点Save按钮。

上述“存盘”操作既可以基于整个抓包文件中的所有数据包来进行，也可以基于抓包文件中经过显示过滤器过滤的数据包来进行。

2．保存数据的格式选取

Wireshark支持将抓到的数据以不同的格式来保存，以便用各种其他工具做进一步的分析。

通过点击File菜单的Export Packet Dissections菜单项里的各个子菜单项，可将抓包文件保存为以下格式。

 	纯文本格式（*.txt）：保存为纯文本ASCII文件格式。

 	PostScript（*.pst）：保存为PostScript文件格式。

 	逗号分割值格式（Comma Separated Values）（*.csv）：保存为逗号分割文件格式。这种格式的文件可为电子表格程序（比如，Microsoft Excel）所用。

 	C语言数组格式（*.c）：把数据包的内容以C语言数组的格式保存，便于导入C程序。

 	PSML格式（*.psml）：存为PSML文件格式。PSML是一种基于XML的文件格式，只能保存数据包的汇总信息。

 	PDML格式（*.pdml）：存为PDML文件格式。PSML也是一种基于XML的文件格式，但能保存数据包的详细信息。

3．数据打印

要想打印数据，请点击File菜单里的Print菜单项，Print窗口会立刻弹出，如图2.14所示。

可在Print窗口中做如下选择。

 	在窗口的右上角（1），可选择有待打印的数据包的具体内容。

 	勾选Summary line复选框，会打印出在数据包列表（Packet Summary）区域看到的数据包的内容。

 	勾选Details复选框，会打印出在数据包结构（Packet Details）区域看到的数据包的内容。

 	勾选Bytes复选框，会打印出在数据包内容（Packet Byte）区域看到的数据包的内容。

 	在窗口的左下区域，可选择有待打印的数据包（操作方法类似于文件保存，这在上一节已经提到）。

[image: ..\18-1175（1-10章节）\0214.tif]

图2.14

2.3.3　幕后原理　　　　

Wireshark支持以文本格式或PostScript格式来打印数据（以后一种格式打印时，打印机应为PostScript感知的打印机），同时支持将数据打印至一个文件。选妥了Print窗口中的各个选项，点击Print按钮之后，会弹出操作系统自带的常规“打印”窗口，可在其中选择具体的打印机来打印。

2.3.4　拾遗补缺　　　　

要查看Wireshark软件存储各种文件的系统文件夹，请点击Help菜单中的About Wireshark菜单项，在弹出的About Wireshark窗口中选择Folders选项卡，如图2.15所示。在About Wireshark窗口中，可以看到Wireshark软件存储各种文件的实际文件夹，在窗口的最右边，可以看到存储在那些文件夹中的文件类型。

[image: ..\18-1175（1-10章节）\0215.tif]

图2.15

点击Location下的链接，会进入存储相应文件的文件夹。

2.4　调整数据包的配色规则

Wireshark会根据事先定义的配色规则，用不同的颜色来分门别类地显示抓包文件中的数据。合理地定义配色规则，让匹配不同协议的数据包以不同的颜色示人（或让不同状态下的同一种协议的数据包呈现出多种颜色），能在排除网络故障时帮上大忙。

Wireshark支持基于各种过滤条件来配置新的配色规则。这样一来，就能够针对不同的场景定制不同的配色方案，同时还能以不同的模板来保存。也就是说，网管人员可在解决TCP故障时启用配色规则A，在解决SIP和IP语音故障时启用配色规则B。

 [image: 未标题-1]　注意　

 可通过定义模板（profile）的方式，来保存针对Wireshark软件自身的配置（比如，事先配置的配色规则和显示过滤器等）。要如此行事，请点击Edit菜单下的Configuration Profiles菜单项。

2.4.1　准备工作　　　　

要定义配色规则，请按以下步骤行事。

1．选择View菜单。

2．点击中下部的Coloring Rules菜单项，Coloring Rules-Default窗口会立刻弹出，如图2.16所示。

该窗口显示的是Wireshark默认启用的配色规则，包括TCP数据包、路由协议数据包以及匹配某些协议事件的数据包的配色规则。

[image: ..\18-1175（1-10章节）\0216.tif]

图2.16

2.4.2　操作方法　　　　

要调整配色规则，请按以下步骤行事。

 	要定义一条新的配色规则，请点击“+”按钮，如图2.17所示。

[image: ..\18-1175（1-10章节）\0217.tif]

图2.17

 	在Name栏内填入本配色规则的名称。比如，要想专为NTP协议数据包定制配色规则，那就在该输入栏内填入NTP。

 	在Filter字段内填入显示过滤表达式，指明本配色规则对哪些数据包生效。欲知更多与显示过滤器有关的内容，请阅读第4章。

 	点击Foreground按钮，为本配色规则选择一款前景色。此款颜色将成为受本配色规则约束的数据包在抓包主窗口的数据包列表区域里的前景色。

 	点击Background按钮，为本配色规则选择一款背景色。此款颜色将成为受本配色规则约束的数据包在抓包主窗口的数据包列表区域里的背景色。

 	要删除一条配色规则，请点击“−”按钮（在“+”按钮的右侧）。

 	要修改现有的配色规则，请双击该配色规则。

 	点击Import按钮，可导入现成的配色方案；点击Export按钮，可导出当前的配色方案。

 [image: 未标题-1]　注意　

 Coloring Rules窗口中配色规则的排放次序是有讲究的。请务必确保配色规则的排放次序与配色方案的执行次序相匹配。比方说，作用于应用层协议数据包的配色规则应置于作用于TCP/UDP数据包的配色规则之前，只有如此，方能避免Wireshark为了应用层协议数据包而干扰TCP/UDP数据包的颜色。

2.4.3　幕后原理　　　　

Wireshark软件中的许多操作都与显示过滤器紧密关联，定义配色规则也是如此，因为受配色规则约束的数据包都是经过预定义的显示过滤器过滤的数据包。

2.4.4　进阶阅读　　　　

 	可从Wireshark官方网站下载到很多经典的Wireshark数据包配色方案，在Internet上也能搜到许多其他的配色方案示例。

 	要想使用某个配色规则文件，请先将那些文件下载至本机，再在Wireshark中选择View菜单，单击Coloring Rules菜单项，在弹出的Coloring Rules-Default窗口中单击Import按钮，将文件导入。

2.5　配置时间参数

对时间显示格式的调整，会在Wireshark抓包主窗口数据包列表区域的Time列（默认为左边第2列）的内容里反映出来。在某些情况下，有必要让Wireshark以多种时间格式来显示数据包。比方说，在观察隶属同一连接的所有TCP数据包时，每个数据包的发送间隔时间是应该关注的重点；当所要观察的数据包抓取自多个来源时，则最应关注每个数据包的确切抓取时间。

2.5.1　准备工作　　　　

要配置Wireshark抓包主窗口数据包列表区域中数据包的时间显示格式，请进入View菜单，选择Time Display Format菜单项，其右边会出现如图2.18所示的子菜单。

[image: ..\18-1175（1-10章节）\0218.tif]

图2.18

2.5.2　配置方法　　　　

图2.18所示的Time Display Format菜单项的上半部分子菜单包含以下子菜单项。

 	Date and Time of Day：当通过Wireshark抓包来帮助排除网络故障，且故障发生的时间也是定位故障的重要依据时（比如，已获悉了故障发生的精确时间，且还想知道相同时间网络内发生的其他事件时），就应该根据具体情况，选择该子菜单项。

 	Seconds Since 1970-01-01（自1970年1月1日以来的秒数）：Epoch是指通用协调时间（格林威治标准时间的前称）的1970年1月1日早晨0点。这也是UNIX系统问世的大致时间。

 	Seconds Since Beginning of Capture（自开始抓包以来的秒数）：此乃Wireshark默认选项。

 	Seconds Since Previous Captured Packet（自抓到上一个数据包以来的秒数）：这也是一个常用选项，此菜单项一经点选，数据包列表区域的Time列将显示每个数据包的抓取时间差。当监控时间敏感型数据包（比如，TCP流量、实时视频流量、VoIP语音流量）时，就应该点选该子菜单项，因为此类数据包的发送时间间隔对用户体验有至关重要的影响。

 	Seconds Since Previous Displayed Packet：在应用过显示过滤器，让Wireshark只显示抓包文件中部分数据的情况下（比如，在只显示隶属于某条TCP流的所有数据包的情况下），通常都应该点选该子菜单项。此时，网管人员更关心的应该是隶属于某条TCP数据流的各个数据包之间的抓取时间差。

 	UTC Date and Time of Day：提供UTC时间。

Time Display Format菜单项的下半部分子菜单项涉及对时间精度的调整。只有对时间精度要求很高的情况下，才建议更改默认设置。

可使用Ctrl+Alt+任意数字键来调整上述时间格式选项。

2.5.3　幕后原理　　　　

为抓到的数据包留下时间烙印时，Wireshark依据的是操作系统的时间。在默认情况下，生效的是Seconds Since Beginning of Capture子菜单项功能。

2.6　构建排障使用的配置模板

可定义Wireshark配置模板，来保存针对Wireshark软件自身的各种配置（比如，外观、预定义的配色规则、抓包及显示过滤器等）。要如此行事，请进入Edit菜单，选择Configuration Profile菜单项。

Wireshark配置模板会保存下列信息。

 	对Edit菜单中Preferences菜单项包含的各配置选项的定义，包括：对Appearance和Protocols功能项的定义（比如，对Wireshark抓包主窗口的字体、属性列的列宽的定义）。

 	抓包过滤器。

 	显示过滤器和显示过滤器宏（详见第4章）。

 	配色规则。

 	定制的HTTP、IMF和LDAP头部（详见第12章）。

 	用户定义的解码方式，比如，作为某种功能的解码方式，用户可利用该功能临时性地改变Wireshark对特殊协议的解析方式。

所有配置模板文件都会保存在Wireshark软件Personal Configuration目录的 profiles目录下。

2.6.1　准备工作　　　　

运行Wireshark软件，点击主工具条上的Capture按钮，开始抓包（或打开一个已保存的抓包文件）。

2.6.2　操作方法　　　　

要打开现有的配置模板文件，请执行如下操作。

1．可点击状态栏最后边的Profile区域，选择准备采用的现有配置模板，如图2.19所示。

[image: ..\18-1175（1-10章节）\0219.tif]

图2.19

2．还可以进入Edit菜单，选择Configuration Profiles菜单项，在Configuration Profiles窗口中选择准备采用的现有配置模板，如图2.20所示。

[image: ..\18-1175（1-10章节）\0220.tif]

图2.20

要创建一个新的配置模板，可执行如下步骤。

1．右键单击状态栏最后边的Profile区域，在弹出的菜单中选择New菜单项，或者在图2.20所示的窗口中点击“+”号按钮。

2．新的配置模板创建之后，在profiles目录下会创建一个新的目录，如图2.21所示。

[image: ..\18-1175（1-10章节）\0221.tif]

图2.21

3．由图2.21可知，在新建的配置模板目录下（本例为Wireless模板及Wireless目录），可以看到包含抓包过滤器的cfilter文件、包含配色规则的colorfilters文件、保存HTTP字段配置的custom_http_header_fields文件，以及保存preference菜单项功能配置的preference文件。

2.6.3　幕后原理　　　　

创建新的模板时，Wireshark软件会在profiles目录下新建一个同名目录。此后，在关闭Wireshark或加载另一个配置模板时，一个名为recent的文件会诞生在那个新的模板目录内。该文件包含了常规的Wireshark窗口设置，包括可视工具栏、时间戳显示、字体缩放级别和列宽等配置。若在创建了新的配置模板之后还创建了抓包过滤器、显示过滤器和配色规则，则在那个新的模板目录内还会诞生别的文件（分别为cfilters、dfilters和colorfilters）。

2.6.4　拾遗补缺　　　　

如前所述，保存模板配置参数的文件都位于profiles目录下。那么，自然可以在不同的配置模板之间转移配置参数，比如，在默认的preference文件中，包含了以下与启动窗口中的显示过滤器工具条有关的配置参数[5]。

####### Filter Expressions ########

gui.filter_expressions.label: SIP

gui.filter_expressions.enabled: FALSE

gui.filter_expressions.expr: sip

gui.filter_expressions.label: RTP

gui.filter_expressions.enabled: FALSE

gui.filter_expressions.expr: rtp

若另一个配置模板也需要这样的配置参数，则只需将这些参数复制进该配置模板目录下的preference文件。

2.6.5　进阶阅读　　　　

在本书随后的相关章节内，会介绍具体的配置模板。第11章会介绍用于排除TCP性能故障的配置模板，第9章会介绍用于无线LAN分析的配置模板。

[1]　译者注：点击Edit菜单的Preferences菜单项，会弹出Preferences窗口。所谓配置用户界面，就是配置该窗口中Appearance配置选项里的内容。

[2]　译者注：即配置Preferences窗口中Protocol配置选项里的内容。

[3]　译者注：原文是“Next, we talk about Wireshark folders, configuration files, and folders and plugins”，译文按原文字面意思直译。

[4]　译者注：本书第10章并没有GeoIP相关内容。

[5]　译者注：原文是“You can of course copy parameters from one profile to another; for example, in the default performance file, you have these filters”。

第3章　抓包过滤器的用法

本章涵盖以下内容：

 	 配置抓包过滤器；

 	 配置Ethernet过滤器；

 	 配置基于主机或网络的过滤器；

 	 配置TCP/UDP及端口过滤器；

 	 配置复合型过滤器；

 	 配置字节偏移和净载匹配型过滤器。

3.1　简介

前两章介绍了如何安装Wireshark、如何配置该软件以行使其基本或智能化功能，以及该软件在网络中的部署（或安装）位置。本章及下一章将讨论Wireshark抓包过滤器和显示过滤器的用法。

抓包过滤器和显示过滤器的重要区别如下所列。

 	抓包过滤器配置于抓包之前：一经应用，Wireshark将只会抓取经过抓包过滤器过滤的数据（包或数据帧），其余数据一概不抓。本章将介绍该过滤器的用法。

 	显示过滤器配置于抓包之后：应用之时，Wireshark已抓得所有数据。网管人员可利用显示过滤器，让Wireshark只显示自己心仪的数据。这种过滤器的用法将在下一章介绍。

 [image: 未标题-1]　注意　

 抓包过滤器的配置语法派生自libpcap/WinPcap库中tcpdump的语法，而显示过滤器的配置语法则在若干年后定义。因此，两种过滤器的配置语法并不相同。

在某些情况下，可能只想让Wireshark抓取某块网卡收到的部分数据，举例如下。

 	只想让Wireshark从某条数据量极大的受监控链路上，抓取必要的数据包。

 	只想让Wireshark从某个受监控的VLAN内，抓取进/出某指定服务器的数据包。

 	只想让Wireshark抓取由某种或某几种应用程序生成的数据包（比如，若网管人员怀疑网络中存在的故障与DNS有关，便配置了抓包过滤器，让Wireshark只抓取进出Internet的DNS查询及响应消息）。

除了上面列举的几种情况之外，还有很多时候，也只需让Wireshark从网络中抓取特定而非全部数据包。抓包过滤器一经配置并加以应用，Wireshark将只会抓取经过其过滤的数据包，其余数据包一概不抓，网管人员可借此来采集自己心仪的数据包。

 [image: 未标题-1]　注意　

 使用抓包过滤器时，请务必考虑周全。在许多情况下，运行于网络中的某些应用程序会与某些看似不相关的东西（比如，看似不相关的某种协议或某台服务器）之间有着微妙的关联。因此，在使用Wireshark排除网络故障时，若开启了抓包过滤器，请确保未过滤掉某些看似不相关的数据包，否则将发现不了导致故障的真正原因。现举一个常见的简单示例。若故障的表象为HTTP应答缓慢，但“罪魁祸首”却是DNS服务器不响应DNS查询，那么配置抓包过滤器，让Wireshark只抓取发往/来自TCP 80端口的流量，再怎么分析抓包文件都将是徒劳无功。

本章会讲解复合型、字节偏移型和净载匹配型等多种抓包过滤器的配置方法。

3.2　配置抓包过滤器

配置抓包过滤器之前，建议读者考虑两个问题：要让Wireshark抓取什么样的数据包；配置抓包过滤器的目的何在。一定不要忘记，Wireshark会丢弃通不过抓包过滤器过滤检查的数据。

既可以使用Wireshark自带的预定义抓包过滤器，也可以使用自定义的抓包过滤器，本章会对此做重点介绍。

3.2.1　准备工作　　　　

打开Wireshark软件，按本章内容行事。

3.2.2　配置方法　　　　

抓包过滤器应在抓包之前配置妥当，配置步骤如下所列。

1．要配置抓包过滤器，请点击主工具条左边第4个Capture options按钮，如图3.1所示。

[image: ..\18-1175（1-10章节）\0301.tif]

图3.1

2．Wireshark - Capture Interfaces窗口会立刻弹出，如图3.2所示。

[image: ..\18-1175（1-10章节）\0302.tif]

图3.2

3．先选中用来抓包的网卡，再在Capture filter for selected interfaces文本框内输入待用的抓包过滤器表达式（可按第1章所述来判断哪块网卡为活跃网卡[在用网卡]）。在该输入栏中输入的抓包过滤器表达式会在相应网卡的Capture Filter栏下现身，如图3.3所示。图3.3显示的抓包过滤器tcp port http会让Wireshark只抓目的端口号为80的TCP流量。

[image: ..\18-1175（1-10章节）\0303.tif]

图3.3

4．抓包过滤器表达式输入完毕之后，只要Capture filter for selected interfaces文本框呈绿色，就表示表达式的语法合规，于是便可点击Start按钮，开始抓包。

要预先定义抓包过滤器，请按以下步骤行事。

1．要预先定义抓包过滤器，请按图3.4所示点击Capture菜单中的Capture Filters菜单项。

[image: ..\18-1175（1-10章节）\0304.tif]

图3.4

这会弹出图3.5所示的Capture Filters窗口。

[image: ..\18-1175（1-10章节）\0305.tif]

图3.5

2．在Capture Filters窗口中，可点击相关按钮来添加、删除、复制抓包过滤器。

3.2.3　幕后原理　　　　

在Wireshark - Capture Filters窗口中，可基于伯克利数据包过滤器（Berkeley Packet Filter，BPF）的语法来配置抓包过滤器。在填写完抓包过滤器所含字符串之后，点击Compile BPF按钮，BPF编译器将会检查所填字符串的语法，若通不过检查，会提示一条错误消息[1]。

除此以外，在Capture Filter窗口的文本框内输入抓包过滤器所含字符串时，若语法正确，文本框Filter部分的颜色会变绿，否则将会变红。

伯克利数据包过滤器（BPF）只会对输入进那个文本框的过滤器进行语法检查，不会检查其条件是否正确。比方说，若在文本框内只输入host不加任何参数，则文本框的颜色将会变红，表示通不过BPF编译器的检查；但若输入的是host 192.168.1.1000，文本框的颜色将会变绿，表示通过了BPF编译器的检查。

 [image: 未标题-1]　注意　

 BPF所遵循的语法来源于Steven McCanne 和Van Jacobson于1992年在伯克利大学劳伦斯伯克利实验室所写论文The BSD Packet Filter: A New Architecture for User-level Packet Capture。

构成抓包过滤器的字符串名为过滤表达式。这一表达式决定了Wireshark对数据包的态度（是抓取还是放弃）。过滤表达式由一个或多个原词（primitive）构成。每个原词一般都会包含一个标识符（名称或数字），这一标识符可能会位列一或多个限定符之后。限定符的种类有以下3种。

 	type（类型）：标识符（其形式为名称或数字）所指代的事物。可能存在的类型限定符包括主机名或主机地址标识符指代的host限定符、网络号标识符指代的net限定符、TCP/UDP端口号标识符指代的port限定符等。

 	dir（方向）：指明了发往和/或来自某个标识符（所指代的主机）的数据包的具体流动方向。比如，dir限定符src和dst分别表示数据包源于/发往某个标识符（所指代的主机）。

 	proto（协议类型）：精确指明了数据包所匹配的协议类型。比方说，proto限定符ether、ip和arp分别用来指明以太网帧、IP（Internet协议）数据包和ARP（地址解析协议）帧。

标识符是用来进行匹配的实际条件。标识符既可以是一个IP地址（比如，10.1.1.1），也可以是一个TCP/UDP端口号（比如，53），还可以是一个IP网络地址（比如，用来表示IP网络192.168.1.0/24的192.168.1）。

对抓包过滤器tcp dst port 135而言：

 	dst为dir限定符；

 	port为type限定符；

 	tcp为proto限定符。

3.2.4　拾遗补缺　　　　

可进入Wireshark - Capture Interfaces窗口进行配置，让不同的抓包过滤器生效于不同的网卡，如图3.6所示。

[image: ..\18-1175（1-10章节）\0306.tif]

图3.6

当Wireshark主机安装了双网卡，且需让两块网卡分别抓包时，就有可能需要如此配置。

抓包过滤器所含字符串都保存在Wireshark安装目录下的cfilters文件内。该文件不但会保存预定义的抓包过滤器，还会保存用户手工配置的过滤器。可将该文件复制进其他的Wireshark主机。cfilters文件的具体位置要视Wireshark主机的操作系统及Wireshark软件的安装路径而定。

3.3　配置Ethernet过滤器

本书提及的Ethernet过滤器所指为第二层过滤器，即根据MAC地址来行使过滤功能的抓包过滤器。本节会介绍这种过滤器及其配置方法和使用方法。

3.3.1　准备工作　　　　

以下所列为一些简单的第二层过滤器。

 	ether host <Ethernet host>：让Wireshark只抓取源于或发往由标识符Ethernet host所指定的以太网主机的以太网帧（即所抓以太网流量的源或目的MAC地址，与Ethernet host所定义的MAC地址相匹配）。

 	ether dst <Ethernet host>：让Wireshark只抓取发往由标识符Ethernet host所指定的以太网主机的以太网帧（即所抓以太网流量的目的MAC地址，与Ethernet host所定义的MAC地址相匹配）。

 	ether src <Ethernet host>：让Wireshark只抓取由标识符Ethernet host所指定的以太网主机发出的以太网帧（即所抓以太网流量的源MAC地址，与Ethernet host所定义的MAC地址相匹配）。

 	ether broadcast：让Wireshark只抓取所有以太网广播流量。

 	ether multicast：让Wireshark只抓取所有以太网多播流量。

 	ether proto <protocol>：所抓以太网流量的以太网协议类型编号，与标识符<protocol>所定义的以太网协议类型编号相匹配。

 	vlan <vlan_id>：让Wireshark只抓取由标识符<vlan_id>所指定的VLAN的流量。

要想让抓包过滤器中的字符串起反作用，需在原词之前添加关键字not或符号“！”。举例如下。

抓包过滤器Not ether host <Ethernet host> 或 ! Ether host <Ethernet host>的意思是，让Wireshark舍弃源自或发往由标识符Ethernet host所指定的以太网主机的以太网流量（即所抓以太网流量的源或目的MAC地址，与Ethernet host所定义的MAC地址不匹配）。

3.3.2　配置方法　　　　

请看图2.6所示的网络，该网络中的一台路由器、一台服务器外加多台PC都连接到了同一台LAN交换机上。此外，有一台安装了Wireshark的笔记本也接入了该LAN交换机。在LAN交换机上已开启了端口镜像功能，并将整个VLAN 1（该LAN交换机上的所有端口都隶属于VLAN 1）的流量都重定向给了那台Wireshark主机。

图中紧随IP地址的符号/24所指为该IP地址的24位子网掩码，其二进制和十进制的写法为：11111111.11111111.11111111.00000000和255.255.255.0。

以下所列为以图3.7所示网络为基础，根据特定需求配置的若干抓包过滤器。

 	要是只想让Wireshark抓取源于或发往某一具体MAC地址的流量，如源于或发往图中PC3的流量，抓包过滤器应如此配置：ether host 00:24:d6:ab:98:b6。

 	要是只想让Wireshark抓取发往某一具体MAC地址的流量，如发往图中PC3的流量，抓包过滤器应如此配置：ether dst 00:24:d6:ab:98:b6。

 	要是只想让Wireshark抓取源于某一具体MAC地址的流量，如源于图中PC3的流量，抓包过滤器应如此配置：ether src 00:24:d6:ab:98:b6。

 	要是只想让Wireshark抓取以太网广播流量，抓包过滤器应如此配置：ether broadcast或ether dst ff:ff:ff:ff:ff:ff。

 	要是只想让Wireshark抓取以太网多播流量，抓包过滤器应如此配置：ether multicast。

 	要是只想让Wireshark抓取特定以太网类型的流量（以太网类型代码值用十六进制数表示），比如，只抓取以太网类型为0x0800的流量，抓包过滤器应如此配置：ether proto 0800。

[image: ..\18-1175（1-10章节）\0307.tif]

图3.7

3.3.3　幕后原理　　　　

Wireshark Ethernet抓包过滤器的运作原理非常简单：Wireshark抓包引擎会先拿用户事先指定的源和/或目的主机MAC地址，与抓取到的以太网流量的源和/或目的MAC地址相比较，再筛选出源和/或目的MAC地址相匹配的流量。

所谓以太网广播流量，是指目的MAC地址为广播地址（MAC地址为全1，其十六进制写法为ff:ff:ff:ff:ff:ff）的以太网流量。因此，只要启用了以太网广播过滤器，Wireshark就只会抓取目的MAC地址为ff:ff:ff:ff:ff:ff的以太网流量。以下所列为常见的以太网广播流量。

 	第三层IPv4广播流量，其所对应的第二层以太网帧为以太网广播帧。以目的IP地址为192.168.1.255（此乃C类广播地址）的IPv4数据包为例，与其相对应的第二层以太网帧的目的MAC地址就是以太网广播地址ff:ff:ff:ff:ff:ff。

 	有特殊用途的以太网广播流量，比如，IPv4 ARP（地址解析协议）流量，其目的MAC地址也是以太网广播地址ff:ff:ff:ff:ff:ff。

 [image: 未标题-1]　注意　

 一般而言，有特殊用途的以太网广播流量对网络设备之间的“互通有无”必不可缺。除IPv4 ARP流量之外，此类流量还包括RIP路由协议流量等。

可利用多播过滤器，让Wireshark只抓取IPv4/IPv6 多播流量。

 	但凡IPv4多播流量，其以太网帧的目的MAC地址必以01:00:5e打头。目的MAC地址以01:00:5e打头的所有以太网帧都将被视为以太网多播帧。

 	但凡IPv6多播流量，其以太网帧的目的MAC地址均以33:33打头。目的MAC地址以33:33打头的所有以太网帧也都被视为以太网多播帧。

以太网类型所指为以太网帧帧头的ETHER-TYPE字段，其值用来表示由以太网帧帧头所封装的高层协议流量的协议类型。若ETHER-TYPE字段值为0x0800、0x86dd以及0x0806，则以太网帧帧头所封装的分别是IPv4、IPv6以及ARP流量。

3.3.4　拾遗补缺　　　　

 	要想让Wireshark只抓取某一特定VLAN的流量，抓包过滤器的语法应为vlan <vlan number>。

 	要想让Wireshark只抓取某几个VLAN的流量，抓包过滤器的语法应为vlan <vlan number> and vlan <vlan number> and vlan <vlan number>…

3.4　配置主机和网络过滤器

所谓主机和网络过滤器，是指基于IP地址的第三层过滤器，本章会介绍此类过滤器的使用及配置方法。

3.4.1　准备工作　　　　

以下所列为一些简单的第三层过滤器。

 	ip或ipv6：让Wireshark只抓取IPv4或IPv6流量。

 	host <host>：让Wireshark只抓取源于或发往由标识符host所指定的主机名或IP地址的IP流量。

 	dst host <host>：让Wireshark只抓取发往由标识符host所指定的主机名或IP地址的IP流量。

 	src host <host>：让Wireshark只抓取源于由标识符host所指定的主机名或IP地址的IP流量。

 [image: 未标题-1]　注意　

 通过标识符host，既可以指定IP地址，也可以指定与某个IP地址相关联的主机名称。比如，抓包过滤器host www.packtpub.com一经配置，Wireshark就只会抓取发往或源于Packt网站的流量了，即所抓数据包的源或目的IP地址（在某种Hostname-to-IP address解析机制里）跟主机名称www.packtpub.com已经绑定。

 	gateway <host>：让Wireshark只抓取穿host而过的流量。标识符gateway所指定的host必须为主机名称，且必须同时在某种Hostname-to-IP address解析机制（比如，主机名文件、DNS或NIS等）以及Hostname-to-Ethernet address解析机制（比如，/etc/ethers文件等）里“登记在案”。也就是说，该过滤器一经配置，Wireshark所抓流量的源或目的MAC地址一定为标识符gateway所指定的host的MAC地址，但源或目的IP地址绝不会是标识符gateway所指定的host的IP地址。

 	net <net>：让Wireshark只抓取源于或发往由标识符net所标识的IPv4/IPv6网络号的流量。

 	dst net <net>：让Wireshark只抓取发往由标识符net所标识的IPv4/IPv6网络号的流量。

 	src net <net>：让Wireshark只抓取源于由标识符net所标识的IPv4/IPv6网络号的流量。

 	net <net> mask <netmask>：让Wireshark只抓取源于或发往由标识符net和mask共同指明的IPv4网络号的流量（对IPv6流量无效）。

 	dst net <net> mask <netmask>：让Wireshark只抓取发往由标识符net和mask共同指明的IPv4网络号的流量（对IPv6流量无效）。

 	src net <net> mask <netmask>：让Wireshark只抓取源于由标识符net和mask共同指明的IPv4网络号的流量（对IPv6流量无效）。

 	net <net>/<len>：让Wireshark只抓取源于或发往由标识符net指明的IPv4网络号的流量。

 	dst net <net>/<len>：让Wireshark只抓取发往由标识符net指明的IPv4网络号的流量。

 	src net <net>/<len>：让Wireshark只抓取源于由标识符net指明的IPv4网络号的流量。

 	broadcast：让Wireshark只抓取IP广播包

 	multicast：让Wireshark只抓取IP多播包。

 	ip proto <protocol code>：让Wireshark只抓取IP包头的协议类型字段值等于特定值（等于由标识符proto所指明的protocol code［协议代码］值）的数据包。IP数据包的种类繁多，随IP包头的协议类型字段值而异，比如，TCP数据包（协议类型字段值为6）、UDP数据包（协议类型字段值为17）和ICMP数据包（协议类型字段值等于1）等。

 [image: 未标题-1]　注意　

 可用 ip proto \<protocol name>（比如，ip proto \tcp）代替ip proto <protocol code>这样的写法。

 	ip6 proto <protocol>：让Wireshark只抓取IPv6主包头中下一个包头字段值等于特定值（等于由标识符proto所指明的protocol值）的IPv6数据包。请注意，无法使用该原词根据IPv6扩展包头链中的相关字段值来执行过滤。

 [image: 未标题-1]　注意　

 在IPv6包头中，有一个名为“下一个包头”的字段，用来指明本包头之后跟随的是哪一种可选扩展包头。IPv6数据包可以形成扩展包头层层嵌套的局面。对当前版本的Wireshark而言，其抓包过滤器不支持基于IPv6扩展包头链中的相关字段值来执行过滤。

 	icmp[icmptype]==<identifier>：让Wireshark只抓取特定类型[icmptype]的ICMP数据包。<identifier>表示的是ICMP头部中的类型字段值，比如，0（ICMP echo reply数据包）或8（ICMP echo request数据包）等。

3.4.2　配置方法　　　　

这就根据上一节的内容，来举几个抓包过滤器的配置实例。

 	要让Wireshark只抓取源于或发往主机10.10.10.1的所有流量，抓包过滤器应如此配置：host 10.10.10.1。

 	要让Wireshark只抓取源于或发往主机www.epubit.com的所有流量，抓包过滤器应如此配置：host www.epubit.com。

 	要让Wireshark只抓取发往主机10.10.10.1的所有流量（即目的IP地址为10.10.10.1的数据包），抓包过滤器应如此配置：dest host 10.10.10.1。

 	要让Wireshark只抓取源自主机10.10.10.1的所有流量（即源IP地址为10.10.10.1的数据包），抓包过滤器应如此配置：src host 10.10.10.1。

 	要让Wireshark只抓取源于或发往IP网络192.168.1.0/24的所有流量，抓包过滤器应如此配置：net 192.168.1或net 192.168.1.0 mask 255.255.255.0 或net 192.168.1.0/24。

 	要让Wireshark只抓取单播流量，抓包过滤器应如此配置：not broadcast或not multicast。

 	要让Wireshark只抓取源于或发往IPv6网络2001::/16的IPv6数据包，抓包过滤器应如此配置：net 2001::/16。

 	要让Wireshar只抓取源于或发往IPv6主机2001::1的所有流量，抓包过滤器应如此配置：host 2001::1。

 	要让Wireshark只抓取ICMP流量，抓包过滤器应如此配置：ip proto 1。

 	要让Wireshark只抓取ICMP echo request流量，抓包过滤器应如此配置：icmp[icmptype]==icmp-echo或icmp[icmptype]==8。在以上两个过滤器中，icmp-echo和8分别表示ICMP echo request数据包的名称和类型（即ICMP数据包的ICMP头部中的类型字段值和与之对应的名称）。

3.4.3　幕后原理　　　　

配置主机过滤器时，若根据主机名执行过滤，则Wireshark会通过某种名称解析机制把用户输入的主机名转换为IP地址，并抓取与这一IP地址相对应的流量。比方说，若所配抓包过滤器为host www.epubit.com，Wireshark会通过某种名称解析机制（多半为DNS）将其转换为某个IP地址，并抓取源于或发往这一IP地址的所有数据包。请注意，在此情形下，倘若CNN Web站点将访问它的流量转发给设有另一IP地址的其他Web站点，Wireshark也只会抓取IP地址为前者的数据包。

3.4.4　拾遗补缺　　　　

以下所列为一些常用的抓包过滤器。

 	ip multicast：用来抓取IP多播数据包。

 	ip broadcast：用来抓取IP广播数据包。

 	ip[2:2] == <number>：用来抓取特定长度的IP数据包（IP包头的第3、第4字节为IP包总长度字段，number表示IP包总长度字段值）。

 	ip[8] == <number>：用来抓取具有特定TTL（生存时间）的IP数据包（IP包头的第9字节为TTL字段，number表示TTL字段值）。

 	ip[12:4] ==ip[16:4]：表示数据包的源和目的IP地址相同（IP包头的第13至第16字节为源IP地址字段，第17～第20字节为目的IP地址字段）。

 	ip[9] == <number>：用来抓取指定协议类型的IP数据包（IP包头的第10字节为协议类型字段，number表示协议类型字段值）。

本章的最后一节会对上述过滤器的语法做进一步的解释。图3.8揭示了上述过滤器的基本原理，中括号内的那两个数字用来确定抓包过滤器所要“关注”的相关协议头部（图中所示为IP包头，还可以关注TCP、UDP或其他协议头部）的内容，第一个数字指明了抓包过滤器应从协议头部的第几个字节开始关注，第二个数字则定义了所要关注的字节数。

[image: ..\18-1175三校改图\0308.tif]

图3.8

3.4.5　进阶阅读　　　　

 	欲知更多与Wireshark抓包过滤器有关的内容，请访问tcpdump手册页的主页。

3.5　配置TCP / UDP及端口过滤器

本节会介绍使用Wireshark抓包时，如何根据第4层协议TCP/UDP的端口号来实施过滤，同时会介绍这种抓包过滤方法。

3.5.1　准备工作　　　　

以下所列为几种基本的第4层抓包过滤器。

 	port <port>：当根据第4层协议（如TCP或UDP）来实施抓包过滤时，这种第4层过滤器一经应用，Wireshark所抓数据包的（第4层协议的）源或目的端口号将匹配标识符port所指明的端口号。

 	dst port <port>：当根据第4层协议（如TCP或UDP）来实施抓包过滤时，这种第4层过滤器一经应用，Wireshark所抓数据包的（第4层协议的）目的端口号将匹配标识符port所指明的端口号。

 	src port <port>：当根据第4层协议（如TCP或UDP）来实施抓包过滤时，这种第4层过滤器一经应用，Wireshark所抓数据包的（第4层协议的）源端口号将匹配标识符port所指明的端口号。

以下所列为几种根据端口范围来执行过滤的第4层抓包过滤器。

 	tcp portrange <p1>-<p2>或udp portrange <p1>-<p2>：用来抓取源或目的端口范围介于p1和p2之间的TCP或UDP数据包。

 	tcp src portrange <p1>-<p2>或udp src portrange <p1>-<p2>：用来抓取源端口范围介于p1和p2之间的TCP或UDP数据包。

 	tcp dst portrange <p1>-<p2>或udp src portrange <p1>-<p2>：用来抓取目的端口范围介于p1和p2之间的TCP或UDP数据包。

除了端口号以外，抓包过滤器还能根据以下TCP标记来筛选数据包。

 	tcp-urg：用来抓取紧急指针标记位置1的TCP数据包。

 	tcp-rst：用来抓取RESET标记位置1的TCP数据包。

 	tcp-ack：用来抓取ACK标记位置1的TCP数据包。

 	tcp-syn：用来抓取SYN标记位置1的TCP数据包。

 	tcp-psh：用来抓取PUSH标记位置1的TCP数据包。

 	tcp-fin：用来抓取FIN位置1的TCP数据包。

3.5.2　配置方法　　　　

现根据上一节的内容，举几个抓包过滤器的配置实例，如下所列。

 	让Wireshark只抓目的端口号为80的数据包（HTTP流量），抓包过滤器应如此配置：dst port 80或dst port http。

 	让Wireshark只抓源或目的端口号为5060的数据包（SIP流量），抓包过滤器应如此配置：port 5060。

 	让Wireshark只抓所有用来发起（SYN标记位置1）TCP连接的数据包，抓包过滤器应如此配置：tcp-syn!=0。

 	让Wireshark只抓所有用来发起（SYN标记位置1）或终止（FIN标记位置1）TCP连接的数据包（TCP连接属于全双工连接，客户端与服务器之间会建立双向连接。也就是说，建立TCP连接时，客户端向服务器发起连接之后，服务器也会向客户端发起连接，终止连接亦然），抓包过滤器应如此配置：tcp [tcpflags] & (tcp-syn | tcp-fin) != 0。

 [image: 未标题-1]　注意　

 请注意，在过滤器tcp[tcpflags]&(tcp-syn|tcp-fin)!=0中，执行的是“位”运算（用的是“位与”运算符&），并非“逻辑”运算。举个例子，010 OR 101等于111，不等于000。

 	让Wireshark只抓所有RST标记位置1的TCP数据包，抓包过滤器应如此配置：tcp [tcpflags]& (tcp-rst) != 0。

 	要想让Wireshark只抓取特定长度的数据包，抓包过滤器的写法有以下两种。

 	less <length>：让Wireshark 只抓取不长于标识符less所指定的长度的数据包，其等价写法为：len <= <length>。

 	greater <length>：让Wireshark只抓取不短于标识符greater所指定的长度的数据包，其等价写法为：<len >= <length>。

 	让Wireshark只抓源或目的端口范围在2000～2500的TCP数据包，抓包过滤器的写法为：tcp portrange 2000-2500。

 	让Wireshark只抓源或目的端口范围在5000～6000之间的UDP数据包，抓包过滤器的写法为：udp portrange 5000-6000。

有些应用程序在运行时可能需要关联某段连续（而非某个具体）的TCP或UDP端口号，若要抓取涉及此类应用程序的流量，则可以根据端口范围来配置抓包过滤器。

3.5.3　幕后原理　　　　

第4层协议（主要是指TCP或UDP）属于互连末端应用程序的协议。末端节点A（比如，Web客户端）向末端节点B（比如，Web服务器）发出连接建立请求时，最常见的“举动”就是发送（第4层协议）报文。运行在那两个末端节点之上，用来发起或接收连接的进程的代号称为（第4层）端口号。第11章会对此展开深入探讨。

对TCP和UDP而言，端口号就是用来标识应用程序的代号。这两种第4层协议之间的差别在于，前者属于面向连接的可靠协议，而后者则是无连接（即不建立连接）的不可靠协议。还有一种名叫流控传输协议（Stream Control Transport Protocol，SCTP）的第4层协议，这是一种高级版本的TCP协议，也使用端口号。

TCP头部设有若干个标记位，这些标记位的主要作用是建立、维护及拆除连接。当TCP报文段的发送方将某一标记位置1时，其意在向TCP报文段的接收方传递某种信号。以下所列为TCP头部中几种常用的标记位。

 	syn：用来表示打开连接。

 	fin：用来表示拆除连接。

 	ack：用来确认通过TCP连接收到的数据。

 	rst：用来表示立刻拆除连接。

 	psh：用来表示应将数据提交给末端应用程序（进程）处理。

利用第4层抓包过滤器，既可以让Wireshark只抓取某指定的基于TCP的应用程序生成或接收的流量，也能够筛选出开启了某个标记位的TCP流量。

 [image: 未标题-1]　注意　

 在介绍过滤器tcp[tcpflags]&(tcp-syn|tcp-fin)!=0时，曾强调过使用的是运算符&，而不是更为常见的运算符&&。两种运算符的不同之处在于，使用前者（&或|）时，与运算是按位而不是按整个字段来执行的。

有趣的是，若将上面这种过滤器中的“!=”改为“==”，比如，在Wireshark中应用抓包过滤器tcp[tcpflags]&(tcprst)==1 时，将抓不到任何数据包。这是因为该抓包过滤器会让Wireshark用11111111与所抓TCP报文段的标记字段值执行“位与”运算，并检查结果是否为1。RST标记位置1的TCP报文段的标记字段值为00000010。因此，00000010与11111111执行“位与”运算的结果为00000010，并不等于1。

换言之，若将该过滤器写为tcp [tcpflags]&(tcp-rst)!=0，00000010和11111111之间的“位与”运算结果为00000010，不等于0，故而能够匹配RST标记位置1的TCP报文段。

3.5.4　拾遗补缺　　　　

下列第4层抓包过滤器可供读者在某些反常情况下（比如，当网络遭到攻击时）使用。

 	tcp[13] & 0x00 = 0：用来抓取所有标记位都未置1的TCP流量（在怀疑遭受空扫描[null scan]攻击时使用）。

 	tcp[13] & 0x01 = 1：用来抓取FIN位置1但ACK位置0的TCP流量。

 	tcp[13] & 0x03 = 3：用来抓取SYN和FIN位同时置1的TCP流量。

 	tcp[13] & 0x05 = 5：用来抓取RST和FIN位同时置1的TCP流量。

 	tcp[13] & 0x06 = 6：用来抓取SYN和RST位同时置1的TCP流量。

 	tcp[13] & 0x08 = 8：用来抓取PSH位置1但ACK位置0的TCP流量。

图3.9揭示了上述TCP抓包过滤器的幕后原理。由图中所示TCP头部的格式可知，在上述TCP抓包过滤器中，tcp[13]所含数字13指代的是TCP头部中的“标记”字段（自TCP头部的起始处偏移13个字节），而“=”后面的1、3、5等数字则表示的是标记字段中各TCP标记位的置位情况。

[image: ..\18-1175二校改图\0309.tif]

图3.9

3.5.5　进阶阅读　　　　

第11章会详细介绍TCP和UDP这两种第4层协议。

3.6　配置复合型过滤器

复合型过滤器也叫结构化过滤器，由多个过滤条件构成，过滤条件之间通过not、and或or之类的操作符来进行关联。

3.6.1　准备工作　　　　

结构化抓包过滤器的格式如下所示：

[not] primitive [and | or [not] primitive ...]

以下所列为创建Wireshark抓包过滤器时经常用到的操作符。

 	！或not

 	&&或and

 	|| 或or

对于以下按位运算符：

 	＆用来执行“位与”运算；

 	|用来执行“位或”运算。

3.6.2　配置方法　　　　

编写结构化抓包过滤器也很简单，只需根据本章前几节的内容“拼接”好满足需求的一个个条件即可。

下面给出一些经常会用到的结构化抓包过滤器。

 	要让Wireshark只抓单播数据包，抓包过滤器应如此配置：not broadcast and not multicast。

 	要让Wireshark只抓往来于www.youtube.com站点的HTTP流量，抓包过滤器应如此配置：host www.youtube.com and port 80。

 	要让Wireshark只抓往来于主机192.180.1.1的Telnet流量，抓包过滤器应如此配置：tcp port 23 and host 192.180.1.1。

 	要让Wireshark抓取所有Telnet流量，但由主机192.168.1.1发起的除外，抓包过滤器应如此配置：tcp port 23 and not src host 192.168.1.1。

 	要让Wireshark抓取所有访问服务器216.58.209.68和216.58.209.69的80端口的流量（HTTP流量），抓包过滤器应如此配置：((tcp) and (port 80) and ((dst host 216.58.209.68) or (dst host 216.58.209.69)))。

3.6.3　幕后原理　　　　

再举一个复杂的结构化抓包过滤器示例。

 	要让Wireshark抓取所有TCP源端口范围为5000～6000的Telnet流量（即源端口范围为5000～6000，目的端口号为23的TCP流量），抓包过滤器应如此配置：tcp dst port 23 and tcp src portrange 5000-6000。

3.6.4　拾遗补缺　　　　

最后举几个比较有意思的结构化抓包过滤器，其具体涵义由读者自行分析。

 	host www.mywebsite.com and not (port 80 or port 23)

 	host 192.168.0.50 and not tcp port 80

 	host 10.0.0.1 and not host 10.0.0.2

3.7　配置字节偏移和净载匹配型过滤器

就过滤功能而言，字节偏移和净载匹配型过滤器要更加灵活，网管人员可凭借该工具来配置自定义型抓包过滤器（自定义型过滤器是指所含字段为非Wireshark解析器预定义的过滤器，可针对私有协议流量实施过滤）。只要网管人员熟悉所接触的网络协议，且对协议数据包的结构摸得门清，就能针对包中所含特定字符串定制特殊的抓包过滤器，让Wireshark在抓包时根据这一过滤器来筛选流量。本节会讲解如何配置这种特殊类型的抓包过滤器，同时还会列举几个在实战中可能会经常用到的配置示例。

3.7.1　准备工作　　　　

要配置字节偏移和净载匹配型抓包过滤器，请运行Wireshark软件，并按3.2节所述步骤行事。

字节偏移和净载匹配型抓包过滤器一经应用，Wireshark便会用其中所含字符串与所抓数据包的相关协议头部中的某些字段值进行比对，并根据比对结果实施过滤。这种过滤器的格式有以下两种。

 	proto [offset:bytes]，其中offset是指让Wireshark从协议头部的第几个字节开始检查，bytes是指所要检查的字节数。比如，ip[8:1]会让Wireshark检查IP包头的第9个字节，而tcp [8:2]则会让Wireshark检查TCP头部的第9个和第10个两个字节。

 	proto [bytes]，其中bytes是指让Wireshark从协议头部的第几个字节开始检查。比如，ip [8]会让Wireshark检查IP包头的第9个字节。

有了上述过滤器，便可以让Wireshark在抓包时，根据IP、UDP、TCP等协议头部中的某些字段值来实施过滤。对于净载匹配型过滤器，还得知道下述信息。

 	proto [x:y]&z = 0：表示Wireshark所检查的字节（的二进制）与掩码z执行“位与”运算后得到的结果，应等于0（即数据包中有待检查的字段的所有位必须置0）。

 	proto [x:y]&z != 0：表示Wireshark所检查的字节（的二进制）与掩码z执行“位与”运算后得到的结果，应不等于0（即数据包中有待检查的字段的某些指定位[具体的位通过z来指定]必须全都置1）。

 	proto [x:y]&z = z：表示Wireshark所检查的字节（的二进制）与掩码z执行“位与”运算后得到的结果，应与z本身精确匹配。

 	proto [x:y] = z：表示Wireshark所检查的字节（的二进制）应与z精确匹配（即数据包中有待检查的字段的值，应精确等于z）[2]。

3.7.2　配置方法　　　　

1．要想针对IP层来实施过滤，字节偏移和净载匹配型抓包过滤器的格式为：

ip[Offset:Bytes]

2．要想根据第4层协议头部中的某些字段值，乃至应用程序的某些特征来实施过滤（比如，针对UDP、TCP头部中的某些字段值，或FTP、HTTP流量的某些特征来实施过滤），最常用的字节偏移和净载匹配型抓包过滤器有以下两种：

tcp[Offset:Bytes]

和

udp[Offset:Bytes]

3.7.3　幕后原理　　　　

下面给出了字节偏移和净载匹配型抓包过滤器的常规写法：

（proto [Offset in bytes from the start of the header : Number of bytes to check]）

proto （协议类型，如IP、UDP、TCP等）[协议头部前多少个字节数:抓包过滤器所要检查的字节数]　

下面举几个常用的字节偏移和净载匹配型抓包过滤器示例。

 	要让Wireshark只抓目的端口范围为50～100的TCP数据包，抓包过滤器应如此配置：tcp[2:2] > 50 and tcp[2:2] < 100，如图3.10所示。

[image: ..\18-1175（1-10章节）\0310.tif]

图3.10

中括号内的第一个数字2表示：抓包过滤器应从（Wireshark主机网卡所收数据包的）TCP头部的第2个字节起开始检查；第二个数字2则指明了检查范围为2字节长，即只检查TCP头部的目的端口号字段值。数字50和100则划定了端口范围（确定了TCP头部中目的端口号字段值的范围）。

 	要让Wireshark只抓窗口大小字段值低于8192的TCP数据包，抓包过滤器应如此配置：tcp[14:2] < 8192，如图3.11所示。

[image: ..\18-1175（1-10章节）\0311.tif]

图3.11

中括号内的第一个数字14表示：抓包过滤器应从（Wireshark主机网卡所收TCP数据包的）TCP头部的第14个字节起开始检查；第二个数字2则指明了检查范围为2字节长，即只检查TCP头部中窗口大小字段值；< 8192则指明了检查条件。

 	要让Wireshark只抓HTTP GET消息，抓包过滤器应如此配置：port 80 and tcp[((tcp[12:1] &0xf0) >> 2):3] = 0x474554。

(tcp[12:1]&0xf0)>>2指明了TCP头部的长度[3]。

3.7.4　拾遗补缺　　　　

下面再给几个刊载于tcpdump手册页的字节偏移和净载匹配型抓包过滤器示例。

 	要让tcpdump（或Wireshark）只抓取TCP源或目的端口号均为80的HTTP流量（其实是抓取源或目的端口号均为80，且只包含实际HTTP数据的TCP流量。也就是说，在这批数据包的TCP头部的SYN位、FIN位或ACK位中，有且只有1位置1），抓包过滤器应如此配置：tcp port 80 and (((ip[2:2] - ((ip[0]&0xf)<<2)) - ((tcp[12]&0xf0) >>2)) != 0)。

 	要让tcpdump（或Wireshark）抓取各条TCP会话中的首尾2个数据包，且这些数据包的源和目的IP地址均不隶属于抓包主机所在IP子网，抓包过滤器应如此配置：tcp[tcpflags] & (tcp-syn|tcp-fin) != 0 and not net <local-subnet>。请牢记，TCP连接为全双工，此过滤器一配，对于每条TCP连接，Wireshark都会抓到4个数据包，即建立连接三次握手时客户端和服务器之间交换的第一个数据包，外加关闭连接四次握手时两者之间互发的最后一个数据包。

 	要让tcpdump（或Wireshark）抓取以非以太网封装方式发送的IP多播或广播数据包，抓包过滤器应如此配置：ether[0] & 1 = 0 and ip[16] >= 224。

 	要让tcpdump（或Wireshark）抓取所有类型的ICMP数据包，但ICMP echo reply和echo request数据包除外（即抓取所有ICMP流量，但由IP ping程序生成的流量除外），抓包过滤器应如此配置：icmp[icmptype] != icmp-echo and icmp[icmptype] != icmp-echoreply。请注意，并不是只有执行 ping命令才能生成ICMP echo reply和echo request数据包，执行traceroute等操作也有可能会生成这两种类型的数据包。

3.7.5　进阶阅读　　

 	Wireshark官网提供了一款Wireshark抓包过滤器生成工具。虽然该工具生成的抓包过滤器未必总能有效，但用它来练练手还是不错的。

[1]　译者注：原文是“The Wireshark - Capture Filters window enables you to configure filters according to Berkeley Packet Filter (BPF). After writing a filter string, you can click on the Compile BPF button, and the BPF compiler will check your syntax, and if it's wrong you will get an error message”。在Wireshark第2版的Capture Filters窗口中，根本就没有什么Compile BPF按钮。要预定义新的抓包过滤器，只需先点击“+”号按钮，再到文本框内直接输入过滤器字符串，语法正确与否全看文本框Filter部分的颜色。在Capture Interfaces窗口里才有Compile BPF按钮。

[2]　译者注：原文是“proto[x:y] = z: proto[x:y] has the bits set exactly to z”。

[3]　译者注：TCP头部的第13个字节的头4位为有意义的位，是TCP头部的长度字段，用来指明TCP头部的长度；后4位预留，全都置0。TCP头部长度字段值乘以4，表示TCP头部的实际长度。以TCP头部的长度为默认20字节的情况为例，此时，TCP头部字段值为0x5。于是，TCP头部的第13个字节的值为0x50。0x50与0xf0执行“位与”运算的结果还是0x50（二进制值01010000），再执行右移两位的移位运算（>>2），得到10100（十进制值20，常规情况下的TCP头部的实际长度）。之所以要用这么复杂的表达式，是因为还得考虑TCP头部包含选项字段的情况。所以说，过滤表达式“(tcp[12:1]&0xf0)>>2”的作用是，只要是TCP报文段，不论TCP头部的长度为何，都能精确指明TCP头部的字节数）。于是，可以很容易地看出抓包过滤器“port 80 and tcp[((tcp[12:1] &0xf0) >> 2):3] = 0x474554”的真正含义，那就是让Wireshark先筛选出目的端口号为80的TCP报文段，再检查TCP净载的头三个字节是否分别精确匹配0x47、0x45和0x54，即那三个字节在Wireshark的数据包内容区域里是不是分别以G、E、T的面目示人（对应于HTTP GET命令）。

第4章　显示过滤器的用法

本章涵盖以下内容：

 	显示过滤器简介；

 	配置Ethernet、ARP、主机及网络过滤器；

 	配置TCP/UDP过滤器；

 	配置指定协议类型的过滤器；

 	配置字节偏移型过滤器；

 	配置显示过滤器宏。

4.1　显示过滤器简介

本节会讲解如何配置并使用Wireshark显示过滤器。显示过滤器要用在Wireshark抓取数据包之后（此时，Wireshark抓到的数据可能已经经过了抓包过滤器的过滤），使用它的目的是要让Wireshark按照要求显示已经抓取到的部分数据。

可根据以下限定规则来配置Wireshark显示过滤器，对已经抓取到的数据包做进一步的精挑细选。

 	根据某些参数，比如，IP地址、TCP/UDP端口号、URL或某台服务器的名称等。

 	根据某些条件，像“TCP目的端口号在1000～2000之间”或“数据包长度不应长于1000字节”这样的描述，都可以算作条件。

 	根据某些现象，比如，TCP重传、TCP重复确认、怪异的TCP确认方式、数据包中某些原本应该置0的标记位实际却置1、数据包“身背”协议错误状态码等现象。

 	根据各种应用程序参数，比如，短消息服务（Message Service，SMS）的始发地和目的地号码，或服务消息块（Server Message Block，SMB）、简单邮件传输协议（Simple Mail Transfer Protocol，SMTP）、服务器名称等。

通过网络传送的任何数据都可以过滤，在过滤时，还可以根据过滤条件生成相关统计信息和图形[1]。

本节会介绍Wireshark显示过滤器的各种配置方法，包括通过预制菜单配置、从数据包显示栏内截取、在Filter输入栏内直接输入过滤语句等。

 [image: 未标题-1]　注意

 请别忘了，捯饬显示过滤器时，有待过滤的所有数据都已被Wireshark抓获，显示出的数据只是经过显示过滤器筛选而已。也就是说，抓包文件依旧会保存Wireshark抓到的所有原始数据，可在应用显示过滤器之后，让Wireshark把经过筛选的数据单独保存为一个新的文件。

4.2　配置显示过滤器

配置显示过滤器时，可选择以下几种方法。

 	借助于显示过滤器表达式（Display Filter Expression）窗口。

 	在显示过滤器工具条的Filter输入栏里直接输入过滤语句（与此同时，Wireshark还可以照常抓包；此法注定会成为读者以后最常用的筛选所抓数据包的方法）。

 	在抓包主窗口的数据包结构区域中，将数据包的某个属性值选定为显示过滤器的过滤条件。

 	通过tshark或wireshark命令行来配置。

本节只介绍前3种显示过滤器的配置方法。

4.2.1　配置准备　　　　

每条显示过滤器通常都是由若干原词构成，原词之间通过连接符（比如，and或or等）连接，原词之前还可以添加not表示来相反的意思，其语法如下所列：

[not] Expression [and|or] [not] Expression...

其中：

 	Expression可以为任意原词形式的过滤表达式，比如，表示源IP地址的ip.src==192.168.1.1，表示TCP SYN标记位置1的tcp.flags.syn==1，表示发生TCP重传现象的tcp.analysis.retransmission等；

 	连接符and|or则用来连接各个过滤表达式；每个原词形式的过滤表达式则会包括任意长度的字符串以及一或多对括号，

表4.1所列为显示过滤表达式中条件操作符的用途。

表4.1　

 	 类似于C语言的操作符

 	 简写形式

 	 描述

 	 举例

 	 ==

 	 eq

 	 等于

 	 ip.addr == 192.168.1.1 或
 ip.addr eq 192.168.1.1

 	 !=

 	 ne

 	 不等于

 	 !ip.addr==192.168.1.1、
 ip.addr != 192.168.1.1或
 ip.addr ne 192.168.1.1

 	 >

 	 gt

 	 高（长、大）于

 	 frame.len > 64

 	 <

 	 lt

 	 低（短、小）于

 	 frame.len < 1500

 	 >=

 	 ge

 	 不高（长、大）于

 	 frame.len >= 64

 	 <=

 	 le

 	 不低（短、小）于

 	 frame.len <= 1500

 	

 	 is present

 	 符合某项参数、满足某个条件，或出现某个现象

 	 http.response

 	

 	 contains

 	 包含某个（串）字符

 	 http.host contains epubit

 	

 	 matchs

 	 某串字符匹配某个条件

 	 http.host matches www.epubit.com

在参数和条件操作符之间可以不留空格，也可以保留空格。

 [image: 未标题-1]　注意

 在显示过滤表达式中用条件操作符“！=”为eth.addr、ip.addr、tcp.port或udp.port等参数设定条件时，Wireshark总会为其配上黄色背景色，这表示该过滤表达式语法无误，但并不会生效，原因如下。

 当人们输入类似于ip.addr != 192.168.1.100这样的过滤表达式时，是希望Wireshark过滤掉抓包文件中源和目的IP地址均不为192.168.1.100的数据包。可惜，每个IP数据包必含2个IP地址，一为源IP地址，一为目的IP地址。Wireshark根据上面这条过滤表达式执行显示过滤功能时，只要发现源或目的IP地址至少有一个不为192.168.1.100，便会判定条件为真。出于这个原因，要想让Wireshark显示源和目的IP地址均不为192.168.1.100的数据包，显示过滤表达式的正确写法应该是：!(ip.addr == 192.168.1.100)。

表4.2所列为显示过滤表达式中逻辑关系操作符的用途。

表4.2

 	 类似于C语言的操作符

 	 简写形式

 	 描述

 	 举例

 	 &&

 	 and

 	 逻辑与

 	 ip.src==10.0.0.1 and tcp.flags.syn==1
 由IP主机10.0.0.1发出的所有SYN标记位置1，且只有该位置1的TCP数据包（即IP主机10.0.0.1建立或尝试建立TCP连接时发出的首个数据包）

 	 ||

 	 or

 	 逻辑或

 	 ip.addr==10.0.0.1 or ip.addr==10.0.02
 所有发往或源于IP主机10.0.0.1或10.0.0.2的数据包。

 	 !

 	 not

 	 逻辑非

 	 not arp and not icmp
 除ARP和ICMP数据包之外的所有数据包

4.2.2　配置方法　　　　

可选择之前提及的几种配置方法之一来配置显示过滤器。

要用显示过滤器表达式窗口来配置显示过滤器，请按以下步骤行事。

1．请把鼠标移动至过滤器工具条上的Expression按钮，如图4.1所示。

[image: ..\18-1175（1-10章节）\0401.tif]

图4.1

2．点击Expression按钮，Display Filter Expression窗口会立刻弹出，如图4.2所示。

[image: ..\18-1175（1-10章节）\0402.tif]

图4.2

Display Filter Expression窗口由以下几个重要区域构成。

 	Field Name（协议头部中的字段名称）：在该区域，可利用Wireshark预定义的协议模板来配置显示过滤器所含各参数。点最左边的小三角形，即可浏览到相关协议的各个属性（或协议头部中各字段的名称），并可选择相应的属性作为显示过滤器的参数。

例1

 [image: 未标题-1]　注意

 要想基于某一具体的IPv4地址来构造显示过滤器，就得先找到IPv4协议，点其左边的小三角形，暴露出Wireshark所支持的IPv4的各项属性（或IPv4包头中的各个字段），然后再选择ip.addr作为显示过滤器的参数即可。

例2

 [image: 未标题-1]　注意

 要想基于某一具体的TCP源或目的端口号来构造显示过滤器，需先找到TCP协议，点击左边的小三角形，暴露出Wireshark所支持的TCP的各项属性（或TCP头部的各个字段），然后再选择tcp.port作为显示过滤器的参数即可。

 	Relation（关系）：可从该区域选择条件操作符。选择“==”表示“等于”，选择“!=”表示“不等于”，依此类推。

例3

 [image: 未标题-1]　注意

 要想让Wireshark只显示包含SIP INVITE方法的数据包，需先在Field name下面找到SIP协议，点其左边的“+”号，在暴露出的Wireshark所支持的SIP协议的各项属性中选择sip.Method；然后在Relation区域中选择“==”；最后在Value区域中输入invite。

 	Value（值）：可在该区域的输入栏内输入事先从Filed Name区域中选择的协议头部字段（或协议属性）的字段值（或属性值）。

例4

 [image: 未标题-1]　注意

 要想让Wireshark只显示TCP头部中SYN标记位置1的数据包，需先在Field Name找到TCP协议，点击左边的小三角形，然后在暴露出的Wireshark所支持的TCP的各项属性（或TCP头部中的各个字段）中选择tcp.flags.syn，最后在Value区域的输入栏中输入1。

 	Predefined values（预定义值或预定义选项）：该区域是否有效，取决于定义显示过滤器时，在Field Name区域中所选择的协议类型或协议属性。该区域的内容既有可能是布尔值（True或Flase），也有可能是Wireshark为某种协议或某种协议的某项属性预先定义的一系列选项。

例5

 [image: 未标题-1]　注意

 在Field Name区域的TCP协议中，包含了一个名为tcp.option_kind的属性，此属性与TCP头部选项有关（欲知更多与TCP头部选项有关的信息，请阅读本书第11章）。若在配置显示过滤器时，选择了该属性，则只要点选Relation区域内的相关条件操作符，在Predefined values区域内便会出现Wireshark为该属性预先定义的某些选项。

 	Search（搜索）：用来搜索过滤器表达式。要是忘记了某个过滤表达式的写法，便可在该区域内输入过滤表达式所包含的字符，让Field Name区域显示包含这些字符的完整的协议相关过滤表达式。比方说，在Search输入栏内输入ip fragment时，Field Name区域便会显示出包含ip fragment字样的OpenFlow和Cisco NetFlow协议过滤表达式，如图4.3所示。

[image: ..\18-1175（1-10章节）\0403.tif]

图4.3

在Search输入栏内输入ipv4 fragment时，Field Name区域便会显示出包含ipv4 fragment字样的IPv4协议分片相关过滤表达式，如图4.4所示。

[image: ..\18-1175（1-10章节）\0404.tif]

图4.4

在显示过滤器工具条的Filter输入栏内直接输入显示过滤器的方法如下所示。

1．只要掌握了显示过滤器的配置语法，在显示过滤器工具条的Filter输入栏内直接输入显示过滤语句，可谓是一种最为方便的配置显示过滤器的方法了，如图4.5所示。

[image: ..\18-1175三校改图\0405.tif]

图4.5

2．向Filter输入栏内输入显示过滤语句所包含的字符时，输入栏的背景色可能会呈以下三种颜色之一。

 	绿色：表示输入的过滤语句正确，可应用于抓包文件。

 	红色：表示输入的过滤语句有误，在应用于抓包文件之前必须修改。

 	黄色：只要过滤语句中包含了操作符“!=”，Filter输入栏的背景色就会呈黄色，这并不表示过滤语句有误，只是提醒用户，过滤语句在应用于抓包文件之后，可能不会生效。

3．要应用输入的显示过滤器，请点击Filter输入栏靠右的“右箭头”按钮，或按回车键。

4．要选择先前定义的显示过滤器，请点击Expression按钮左边的“向下”按钮。

5．要管理显示过滤器和显示过滤器表达式，请点击Filter输入栏最左边的按钮，如图4.6所示。

[image: ..\18-1175（1-10章节）\0406.tif]

图4.6

6．只要在弹出的下拉菜单中选择Manage Display Filters菜单项，即可在Display Filter窗口中添加显示过滤器，以供将来使用（比如，为特定的配置模板添加专用的显示过滤器）。

7．在弹出的下拉菜单中选择Manage Filter Expressions菜单项，会进入Perference窗口的Filter Expression配置界面，可点击窗口右半边的“+”按钮添加显示过滤表达式。以这种方式添加的显示过滤表达式将会出现在显示过滤器工具条的最右侧，其目的是便于使用。

还可以在抓包主窗口的数据包结构区域内，将数据包的某个属性值指定为显示过滤器。

这是一种定义显示过滤器的快捷方法。可在抓包主窗口中的数据包结构区域内，把数据包的某个属性（特征或协议头部字段值）指定为显示过滤器。为此，请在该区域内选中相关数据包的某个属性，单击右键，在弹出的菜单中包含了几个与显示过滤器有关的菜单项，如图4.7所示。

[image: ..\18-1175（1-10章节）\0407.tif]

图4.7

以下是对图4.7所示的菜单中各菜单项的介绍。

 	Apply as Filter（直接作为显示过滤器使用）：只要点选了该菜单项下的各子菜单项，事先选定的数据包的属性将会作为显示过滤器（或其中的一项参数），并同时作用于抓包文件。

 	Prepare a Filter（作为有待应用的显示过滤器）：只要点选了该菜单项下的各子菜单项，事先选定的数据包的属性将会成为有待应用的显示过滤器（或其中的一项参数）（选定后，需点Apply按钮才能生效）。

以下所列为上述两个右键菜单项中都包含的两个子菜单项的作用。

 	Selected：将选定的字段或参数作为显示过滤参数。

 	Not Selected：以逻辑非的方式将选定的字段或参数作为显示过滤参数。

现举例对以上两个子菜单项的作用加以说明。若在某个HTTP数据包的hypertext transfer protocol下选中request.method：GET，同时单击右键，并在弹出的菜单中选择了Apply as Filter菜单项下的Selected子菜单项，则Wireshark将会在显示过滤器工具栏的Filter输入栏内自动生成显示过滤表达式http.request.method == GET；若选择了Apply as Filter菜单项下的Not Selected子菜单项，则Wireshark会在显示过滤器工具栏的Filter输入栏内自动生成显示过滤表达式!(http.request.method == "GET")。这也正是这两个子菜单项的区别所在。

此外，还可以使用Apply as Filter和Prepare a Filter菜单项所包含的and selected、or selected、and not selected或or not selected子菜单项来构造显示过滤表达式。

4.2.3　幕后原理　　　　

显示过滤器为Wireshark软件所独有。用Wireshark执行抓包分析任务时，有很多地方都会用到显示过滤器，相关内容会在本书后续章节随文讲解。

在显示过滤器工具条的Filter输入栏内输入显示过滤器时，可借助于自动补齐特性来完成过滤器的构造。试举一例，在Filter输入栏内输入tcp.f时，自动补齐特性将会生效，Wireshark会在该输入栏下自动列出所有以tcp.f打头的显示过滤器参数（即TCP数据包的属性或TCP头部中的字段），如图4.8所示。对于本例，以tcp.f打头的显示过滤器参数是tcp.flag（可利用该参数来引用TCP头部中的各标记位字段值）。

[image: ..\18-1175（1-10章节）\0408.tif]

图4.8

4.2.4　拾遗补缺　　　　

本节将介绍几个与Wireshark显示过滤器有关的操作技巧。

 	如何获悉显示过滤器所包含的参数？

 	在Wireshark抓包主窗口的数据包结构区域中，只要选中了任何一种协议头部的某个字段，与该字段相对应的显示过滤参数将会出现在抓包主窗口底部状态栏的左侧，如图4.9所示。

[image: ..\18-1175（1-10章节）\0409.tif]

图4.9

 	如何在数据包列表区域中添加新列？

 	可在Wireshark抓包主窗口的数据包结构区域中，把数据包的某个属性（或协议头部中的某个字段）作为数据包列表区域中的新列。具体的操作方法是，选中数据包的某个属性（或协议头部中的某个字段），点击右键，在弹出的菜单中选择Apply as Column菜单项。比方说，可把tcp.window_size_value属性作为数据包列表区域中的新列，以便在抓包时同步观察TCP窗口大小。TCP的性能与窗口大小息息相关，第11章会对此展开深入讨论。

4.3　配置Ethernet、ARP、主机和网络过滤器

本节会介绍如何配置第2层过滤器（基于Ethernet地址或Ethernet帧的某些属性来进行过滤）和第3层过滤器（基于IP地址或某IP数据包的某些属性来进行过滤）。此外，还会讲解如何配置地址解析协议（ARP）过滤器。

4.3.1　配置准备　　　　

配置Ethernet显示过滤器的目的，是要让Wireshark只显示相关的第二层Ethernet帧；配置IP显示过滤器的目的，则是让Wireshark只显示必要的第三层IP数据包。第一种过滤器所依据的是MAC地址或Ethernet帧的某些属性，第二种过滤器则要仰仗IP地址或IP数据包的某些属性。

以下两个显示过滤参数经常会在以“帧间间隔时间”为条件来行使过滤功能的显示过滤器中使用。

 	frame.time_delta：该参数是指当前帧与Wireshark所抓上一帧之间的（接收或抓取）时间间隔，即Wireshark在抓到了上一帧之后隔了多久，收到了当前帧。第6章会介绍其用法。

 	frame.time_delta_displayed：该参数是指当前帧与Wireshark显示出的上一帧之间的（抓取或接收）时间间隔，即Wireshark抓到了已显示出的上一帧（已抓到但未予显示的帧不算）后隔了多久，收到了当前帧。该参数的用法也将在第5章介绍。

 [image: 未标题-1]　注意

 分析Wireshark所抓数据帧之间的时间间隔，会对解决TCP性能问题提供很大的帮助。可在Wireshark IO Graphs工具生成的图形中利用以上两个参数，来监控TCP的性能。

以下所列为实战中常用的L2（Ethernet）显示过滤器。

 	eth.addr == <MAC Address>：让Wireshark只显示具有指定MAC地址的数据帧。

 	eth.dst == <MAC Address> 或eth.src == <MAC Address>：让Wireshark只显示具有指定源、目MAC地址的数据帧。

 	eth.type == <Protocol Type （十六进制数，格式为0xNNNN）>：让Wireshark只显示指定以太网类型的流量。

以下所列为实战中常用的ARP显示过滤器。

 	arp.opcode == <value>：让Wireshark只显示指定类型的ARP帧（ARP帧按其所含操作代码字段值，可分为ARP应答帧、ARP响应帧、RARP应答帧、RARP响应帧）。

 	arp.src.hw_mac == <MAC Address>：让Wireshark只显示由具有指定MAC地址的主机发出的ARP帧。

以下所列为实战中常用的IP显示过滤器。

 	ip.addr == <IP Address>：让Wireshark只显示发往或源自设有指定IP地址的主机的数据包。

 	ip.dst == <IP Address>或ip.src == <IP Address> 让Wireshark只显示由设有指定IP地址的主机发出的数据包，或只显示发往设有指定IP地址的主机的数据包。

 	ip.ttl == <value>、ip.ttl < value>或ip.ttl > <value>：让Wireshark只显示IP包头中TTL字段值为指定值的数据包。

 	ip.len = <value>或ip.len > <value>或ip.len < <value>：让Wireshark只显示指定长度的IP数据包（IP包头中有一个2字节的总长度字段）。

 	ip.version == <4/6>：让Wireshark只显示具有指定IP版本号的IP数据包（不论IPv4还是IPv6，IP包头都包含了一个1字节的版本号字段）。

4.3.2　配置方法　　　　

表4.3所列为若干常用的L2和L3 Wireshark显示过滤器的例子。

表4.3　

 	 地址格式

 	 语法

 	 举例

 	 MAC（以太网）地址

 	 eth.addr == xx:xx:xx:xx:xx:xx
 eth.addr == xx-xx-xx-xx-xx-xx
 eth.addr == xxxx.xxxx.xxxx
 在以上过滤表达式中，x为十六进制数0～f

 	 eth.addr == 00:50:7f:cd:d5:38
 eth.addr ==00-50-7f-cd-d5-38
 eth.addr == 0050.7fcd.d538

 	 以太网广播地址

 	 Eth.addr == ffff.ffff.ffff

 	

 	 IPv4主机地址

 	 ip.addr == x.x.x.x
 其中，x为0～255

 	 ip.addr == 192.168.1.1

 	 IPv4网络地址

 	 ip.addr == x.x.x.x/y
 其中，x为 0～255，y为0～32

 	 ip.addr == 192.168.200.0/24
 该过滤表达式涵盖了C类网络192.168.200.0/24中的所有IP地址

 	 IPv6主机地址

 	 ipv6.addr == x:x:x:x:x:x:x:x
 ipv6.addr == x::x:x:x:x
 在以上过滤表达式中，x为十六进制数0～f

 	 ipv6.addr == fe80::85ab:dc2e:ab12:e6c7

 	 IPv6网络地址

 	 ipv6.addr == x::/y
 其中，x为十六进制数0～f，y为0～128

 	 ipv6.addr == fe80::/16
 该过滤表达式涵盖了IPv6前缀fe80::/16所隶属的全部IPv6地址

表4.3给出了IPv4和IPv6地址与显示过滤器参数ip.addr和ipv6.addr配搭使用时的表示方法。只要Wireshark显示过滤器语句中包含有IPv4或IPv6地址，都可以采用与该表相同的表示方法。

Ethernet过滤器

Ethernet过滤器分为以下两类。

 	要让Wireshark只显示发往或源于具有某MAC地址的主机的数据帧，显示过滤器的写法应类似于：

 	eth.src == 10:0b:a9:33:64:18

 	eth.dst == 10:0b:a9:33:64:18

 	要让Wireshark只显示以太网广播帧，显示过滤器的写法为：

 	eth.dst == ffff.ffff.ffff或Eth.dst == ff:ff:ff:ff:ff:ff

ARP过滤器

以下所列为两种 ARP过滤器的写法。

 	要让Wireshark只显示ARP请求帧，显示过滤器的写法为：

 	arp.opcode == 1

 	要让Wireshark只显示ARP应答帧，显示过滤器的写法为：

 	arp.opcode == 2

IP和ICMP过滤器

 	要让Wireshark只显示由设有指定IP地址的主机发出的IP数据包，显示过滤器的写法应类似于：

 	ip.src == 10.1.1.254

 	要让Wireshark显示数据包时将设有某指定IP地址的主机发出的IP数据包排除在外，显示过滤器的写法应类似于：

 	！ip.src == 64.23.1.1

 	要让Wireshark只显示交换于某一对IP主机之间的所有IP数据包，显示过滤器的写法应类似于：

 	ip.addr == 192.168.1.1 and ip.addr == 200.1.1.1

 	要让Wireshark只显示发往IP多播目的地址的所有数据包，显示过滤器的写法为：

 	ip.dst == 224.0.0.0/4

 	要让Wireshark只显示发源于IP子网192.168.1.0/24的所有IP数据包，显示过滤器的写法为：

 	ip.src==192.168.1.0/24

 	要让Wireshark只显示发往或源于设有某个（或某些）IPv6地址的主机的IPv6数据包，显示过滤器的写法应类似于：

 	ipv6.addr == ::1

 	ipv6.addr == 2008:0:130F:0:0:09d0:666A:13ab

 	ipv6.addr == 2006:0:130f::9c2:876a:130b

 	ipv6.addr == ::

复杂的显示过滤器

 	要让Wireshark只显示由隶属于指定IP子网（比如10.0.0.0/24）的主机，发往域名中包含指定字符串的网站（比如sohu）的所有IP流量，显示过滤器的写法为：

 	ip.src == 10.0.0.0/24 and http.host contains "sohu"

 	要让Wireshark只显示由隶属于指定IP子网（比如10.0.0.0/24）的主机，访问域名以.com结尾的网站的所有IP流量，显示过滤器的写法为：

 	ip.addr == 10.0.0.0/24 or http.host matches "\.com$"

 	要让Wireshark只显示发源于指定IP子网（比如10.0.0.0/24）的所有IP广播流量，显示过滤器的写法为：

 	ip.src ==10.0.0.0/24 and eth.dst == ffff.ffff.ffff

 	要让Wireshark只显示所有广播包，但主机在执行ARP请求操作时所触发的广播包除外，显示过滤器的写法为：

 	not arp and eth.dst == ffff.ffff.ffff

 	要让Wireshark显示除ICMP包和ARP帧以外的所有流量，显示过滤器的写法为：

 	not arp && not icmp 或not arp and not icmp

4.3.3　幕后原理　　　　

本节将解释上一节所举显示过滤器示例的幕后原理。

 	以太网广播：以太网广播帧是指目的MAC地址为全1的以太网帧，正因如此，要让Wireshark只显示已抓取的所有以太网广播帧，显示过滤器应写成eth.dst == ffff.ffff.ffff（十六进制数F等于二进制数1111）。

 	 IPv4多播：IPv4多播数据包的目的IP地址范围介于224.0.0.0～239.255.255.255之间，若转换为二进制，则介于11100000.00000000.00000000.0000000～11101111.11111111. 11111111.11111111之间。
 仔细观察IPv4多播地址的二进制表示方式，应不难发现，IPv4多播地址一定是以1110打头。因此，要让Wireshark只显示已抓取的所有IPv4多播数据包，显示过滤器应写成ip.dst == 224.0.0.0/4。
 也就是说，首字节的头4位为1110（二进制数11100000等于十进制数224），掩码长度为4位的IP地址都属于IPv4多播地址范围，此类IPv4地址的首字节总是介于224～239之间。

 	 IPv6多播：IPv6多播地址的首字节总是ff，随后的一个字节由4位标记字段和4位范围字段组成。因此，要筛选出IPv6多播数据包，显示过滤器就应该写成ipv6.dst == ff00::/8。ff00::/8表示以ff打头的所有IPv6地址，即IPv6多播地址。

4.3.4　进阶阅读　　　　

 	欲知更多有关Ethernet（以太网）的内容，请参阅第8章。

4.4　配置TCP/UDP过滤器

TCP和UDP是IP协议族中的两种主要协议，都可供驻留在不同主机上的应用程序互通有无。只要在某台主机上执行了某款网络应用程序的客户端程序，便拉开了从某个TCP/UDP源端口（具体的端口号为操作系统随机选择，但通常都高于1024）向早已监听多时的该应用程序服务器端目的TCP/UDP端口（端口号一般为提前预设或已登记在案的固定端口号）建立TCP/UDP会话的序幕。上述源端口号和目的端口号，外加客户端主机和服务器端主机的IP地址，可唯一地标识某特定主机与服务器之间运行此款应用程序所建立的TCP/UDP会话。TCP和UDP头部自然也会包含源端口号字段和目的端口号字段。

TCP和UDP头部还包含其他字段。UDP头部的结构非常简单，而TCP头部的结构要复杂许多。因此，在配置显示过滤器时，TCP过滤器所涉及的过滤参数也会多得多。

本节会介绍各种类型的TCP/UDP显示过滤器的配置方法。

4.4.1　配置准备　　　　

配置显示过滤器之前，需要知道应让Wireshark从抓包文件里筛选出哪些数据包，并据此来精确编制显示过滤语句。

1．TCP和UDP端口号显示过滤器

要想根据TCP/UDP端口号来筛选数据包，可用以下显示过滤器。

 	tcp.port == <value>或udp.port == <value>：让Wireshark在显示数据包时，根据指定的TCP/UDP源、目端口号来筛选。

 	tcp.dstport == <value>或udp.dstport == <value>：让Wireshark在显示数据包时，根据指定的TCP/UDP目的端口号来筛选。

 	tcp.srcport == <value>或udp.srcport == <value>：让Wireshark在显示数据包时，根据指定的TCP/UDP源端口号来筛选。

2．TCP头部过滤器

UDP头部的结构非常简单，只包含源/目端口号字段、数据包长度字段，以及校验和字段。因此，对UDP数据包而言，最重要的特征就是源、目端口号。

TCP头部则截然不同。因为TCP是一种面向连接的协议，内置有可靠的传输机制，所以TCP头部要比UDP头部复杂得多。不过，Wireshark完全能够理解TCP所具备的面向连接以及可靠性保证等机制。Wireshark提供了tcp.flags、tcp.analysis等诸多功能强大的涉及TCP的显示过滤参数，只要运用得当，发现并解决TCP性能问题（比如，TCP重传、重复确认、零窗口等问题）或运作问题（TCP半开连接、会话重置等问题）自然不在话下。

以下所列为实战中常用的有关TCP的显示过滤参数。

 	tcp.analysis：可用该参数来作为分析与TCP重传、重复确认、窗口大小有关的网络性能问题的参照物。在这一过滤参数名下，还包含多个子参数（在Filter输入栏内，可借助自动补齐特性，来获取该参数名下完整的子参数列表），如下所列。

 	tcp.analysis.retransmission用来让Wireshark显示重传的TCP数据包。

 	tcp.analysis.duplicate_ack用来让Wireshark显示确认多次的TCP数据包。

 	tcp.analysis.zero_window用来让Wireshark显示被其标记为零窗口通告的TCP数据包（TCP会话一端的主机通过此类TCP数据包，向对端主机报告：本机TCP窗口大小为0，请贵机停止通过该会话发送数据）。

 [image: 未标题-1]　注意

 Wireshark在调用tcp.analysis参数筛选数据包时，并不会检查数据包的TCP头部，所依据的是其自带的专家系统对TCP传输机制的分析和理解。

 	tcp.flags：该参数一经调用，Wireshark就会检查数据包TCP头部中各标记位的置位情况。以下所列为该参数名下的几个子参数。

 	tcp.flags.syn == 1用来让Wireshark显示SYN标记位置1的TCP数据包。

 	tcp.flags.reset == 1用来让Wireshark显示RST标记位置1的TCP数据包。

 	tcp.flags.fin == 1用来让Wireshark显示FIN标记位置1的TCP数据包。

 	tcp.window_size_value < <value>：该过滤参数一经调用，Wireshark将会只显示TCP头部中窗口大小字段值低于指定值的数据包。可利用该参数来排除与TCP窗口过小有关的网络性能问题，此类问题有时要拜赐于参与TCP会话的网络设备反应过慢。

 [image: 未标题-1]　注意

 可利用tcp.flags 过滤参数，让Wireshark检查IP包的TCP头部中各标记位的置位情况。

4.4.2　配置方法　　　　

先举几个TCP/UDP显示过滤器的配置实例。

 	要让Wireshark只显示涌向HTTP服务器的所有流量，显示过滤器应如此配置：

 	tcp.dstport == 80

 	要让Wireshark只显示由IP子网10.0.0.0/24内的主机访问HTTP服务器的所有流量，显示过滤器应如此配置：

 	ip.src==10.0.0.0/24 and tcp.dstport == 80

 	要让Wireshark只显示在某条特定的TCP连接（比如，在抓包文件中编号为6的TCP连接）中发生重传的所有TCP数据包，显示过滤器应如此配置：

 	tcp.stream eq 6 && tcp.analysis.retransmission

要想让Wireshark只显示某条TCP会话从建立到终结，会话双方生成的所有数据包，请在抓包主窗口选择一个隶属于该TCP连接（也叫TCP Stream[TCP流]）的TCP数据包，同时点右键，在弹出的菜单中选择Follow TCP Stream菜单项。一条TCP Stream是指TCP会话双方从建立连接到终止连接那段时间内交换的所有数据包。只要点击过Follow TCP Stream菜单项，在Filter输入栏内会自动出现tcp.stream eq <value>的字样。这里的value就是Wireshark在抓包文件中为这条TCP连接分配的标识（编）号。对于前例，过滤参数中所引用的标识号为6，标识号可为任意数字（在所有抓包文件中，该标识号从1开始分配），如图4.10所示。

[image: ..\18-1175（1-10章节）\0410.tif]

图4.10

导致TCP重传的原因有很多，本书第11章会对此展开深入讨论。

 [image: 未标题-1]　注意

 当使用Wireshark分析TCP重传、重复确认，以及其他可能会影响网络性能的现象的原因时，应借助于tcp.analysis过滤参数及Follow TCP Stream菜单项把上述现象与具体的TCP连接建立起关联。

再举几个与TCP/UDP有关的显示过滤器配置实例。

 	要让Wireshark只显示某条特定TCP连接中出现窗口问题的TCP数据包，显示过滤器应如此配置：

 	tcp.stream eq 0 && (tcp.analysis.window_full||tcp.analysis.zero_window)

 	tcp.stream eq 0 and（tcp.analysis.window_full or tcp.analysis.zero_window）

 	要让Wireshark只显示IP地址为10.0.0.5的主机访问DNS服务器的流量，显示过滤器应如此配置：

 	ip.src == 10.0.0.5 && udp.port == 53

 	要让Wireshark只显示包含某指定字符串（区分大小写）的TCP数据包（比如，在百度中搜索关键字Windows），显示过滤器应如此配置：

 	tcp contains “Windows”

 	要让Wireshark只显示由IP地址为10.0.0.3的主机生成的所有TCP重传数据包，显示过滤器应如此配置：

 	ip.src ==10.0.0.3 and tcp.analysis.retransmission

 	要让Wireshark只显示涌向HTTP服务器的所有流量，显示过滤器应如此配置：

 	tcp.dstport == 80

 	要让Wireshark只显示由指定主机建立TCP连接时生成的所有数据包（若某台主机在执行某种形式的TCP端口扫描，或某台主机感染了蠕虫病毒时，就会批量生成此类数据包），显示过滤器应如此配置：

 	ip.src == 10.0.0.5 && tcp.flags.syn == 1 && tcp.flags.ack == 0

 	要让Wireshark只显示由指定主机发送的包含HTTP cookie的所有数据包，显示过滤器应如此配置：

 	ip.src == 10.0.0.3 &&（http.cookie || http.set_cookie）

4.4.3　幕后原理　　　　

图4.11和图4.12分别示出了IPv4包头和TCP头部的格式，由于UDP头部的结构比较简单，只包括源、目端口号字段、长度字段以及校验和字段，因此不再示出。先来看一下IP包头的结构。

[image: ..\18-1175三校改图\0411.tif]

图4.11

[image: ..\18-1175（1-10章节）\0412.tif]

图4.12

下面简单介绍一下IPv4包头中的若干重要字段。

 	版本：表示IP协议的版本号，其值为4。

 	IP包头长度：用来指明IP包头的长度，单位为4字节，其值一般为5，最大值为15（考虑了IP包头中含有选项字段的情况）。

 	ToS（服务类型）：一般都采用区分服务（Differentiated Services，DiffServ）的置位方式，用来区分不同类型流量的贵贱程度。

 [image: 未标题-1]　注意

 在发布于1981年9月的RFC 791中，曾把QoS字段命名为ToS（服务类型）字段，并针对该字段中的每一位定义了一套置位方式。在1998年发布的RFC 2474、RFC 2475，以及后来发布的其他Internet文档中，又围绕该字段定义了区分服务标准，并重新定义了一套置位方式，同时得到了广泛应用。

 	长度：表示整个IP包的总长度。

 	标识符、长度以及分片偏移：每个IP包都有一个ID（标识符）。当IP包以分片方式传送时，接收方能凭借这三个字段值来进行重组。

 	生存时间（TTL）：该字段的起始值为64、128或256（随发包主机的操作系统而异），数据包在转发过程中，路径沿途的每一台路由器都会将该字段值减1。这是为了防止网络中的数据包形成转发环路。若收到了TTL字段值为1的数据包，路由器在将其值递减为0，同时，还会做丢弃处理。

 	高层协议类型：用来指明IP包头所封装的高层协议类型，若其值为6，就表示IP包封装的是TCP报文段；若为1，则表示封装的是ICMP报文。

 	校验和：该字段包含的是IP包的校验和。IP包的发送方会采用某种错误检测机制，针对整个IP包计算一个值，并在发送时将该值填入校验和字段。收到IP包时，接收方也会先用相同的机制计算出一个值，再将该值与IP包的校验和字段值进行比对，若两值不等，则认为IP包在传送时发生了错误。

 	源、目IP地址：顾名思义，这2个字段值分别为IP包的源和目的IP地址。

 	选项：IPv4数据包一般不含该字段。

接下来，再来看一下紧随IP包头的TCP头部的结构。

下面来介绍一下TCP头部中的若干重要字段。

 	源、目端口号：这两个字段值，再加上IP包头中的源、目IP地址，即能唯一地标识一条TCP连接。

 	序列号：用来统计发送方通过TCP连接交付给接收方的数据的字节数。

 	确认号：该字段指明了（执行确认的）TCP发送方期待接收的下一个TCP数据包中的序列号字段值。本书第11章会对该字段的用途做深入探讨。

 	头部长度：用来表示TCP头部的长度，同时还能指明TCP头部中是否包含有选项字段。

 	预留：该字段为预留供将来使用的标记位字段。

 	标记位（8个）：作用包括发起连接（SYN位）、终止连接（FIN位）、重置连接（RST位）、快推数据至应用层（PSH位）。本书第11章会详细介绍这些TCP标记位。

 	接收方窗口大小：用来表示接收方分配的接收TCP数据的缓存容量。

 	校验和：用来存储经过校验和计算产生的值，计算范围“覆盖”TCP头部、数据以及IP头部中的某些字段。

 	选项：包括时间戳选项字段、接收方窗口扩张选项字段及最长报文段大小（MSS）选项字段等。MSS选项字段指明了该字段的通告方（即发出含MSS选项字段的TCP报文段的主机）希望（逆向）接收的TCP净载的最大长度。本书第11章将会对MSS选项字段做进一步的探讨。

4.4.4　拾遗补缺　　　　

TTL字段是IP包头中非常有用的字段。通过该字段值，就能弄清IP包所穿越的路由器的台数。在默认情况下，由不同操作系统生成的IP包的TTL字段值都比较固定（只有64、128和256这三种可能），而IP包在Internet上传输时所穿路由器的台数最多也不能超过30（在私有网络中，这一数字将会更低）。因此，若一IP包的TTL字段值为120，则其所穿路由器的台数必定为8；若TTL字段值为52，则所穿路由器的台数将会是12。

4.4.5　进阶阅读　　　　

 	欲进一步了解与TCP/IP协议栈有关的内容，请参阅第11章。

4.5　配置指定协议类型的过滤器

本节会介绍如何针对常用的应用层协议（比如，DNS协议、HTTP协议、FTP协议），来配置Wireshark显示过滤器。

本节的目标是要向读者传授如何在排除网络故障时，通过Wireshark显示过滤器来助一臂之力。在随后的章节里，也会出现与排除网络故障有关的内容。

4.5.1　配置准备　　　　

要配置显示过滤器，只需运行Wireshark软件，无需其他任何准备。

4.5.2　配置方法　　　　

本节会介绍如何针对若干常用的（应用层）协议，配置Wireshark显示过滤器。

1．HTTP显示过滤器

以下所列为一些在实战中常用的HTTP显示过滤器。

 	要让Wireshark只显示访问某指定主机名的HTTP协议数据包，显示过滤器应如此配置：

 	

 	http.host == <"hostname">[2]

 	要让Wireshark只显示包含HTTP GET方法的HTTP协议数据包，显示过滤器应如此配置：

 	

 	http.request.method ==“GET”

 	要让Wireshark只显示HTTP客户端发起的包含指定URI请求的HTTP协议数据包，显示过滤器应如此配置：

 	

 	http.request.uri == <"Full request URI">。比如，http.request.uri == "/v2/rating/　mail.google.com"。

 	要让Wireshark只显示HTTP客户端发起的包含某指定字符串的URI请求的HTTP协议数据包，显示过滤器应如此配置：

 	

 	http.request.uri contains "URI String"

 	比如，http.request.uri contains "mail.google.com"（只显示包含字符串“mail.google.com”的URI请求的HTTP协议数据包）。

 	要让Wireshark只显示网络中传播的所有包含cookie请求的HTTP协议数据包（请注意，cookie总是从HTTP客户端发往HTTP服务器），显示过滤器应如此配置：

 	

 	http.cookie

 	要让Wireshark只显示所有包含由HTTP服务器发送给HTTP客户端的cookie set命令的HTTP协议数据包，显示过滤器应如此配置：

 	

 	http.set_cookie

 	要让Wireshark只显示所有由Google HTTP服务器发送给本地HTTP客户端，且包含cookie set命令的HTTP协议数据包，显示过滤器应如此配置：

 	

 	(http.set_ cookie) && (http contains "google")

 	要让Wireshark只显示包含ZIP文件的HTTP数据包，显示过滤器应如此配置：

 	

 	http matches "\.zip" && http.request.method == "GET"

2．DNS显示过滤器

来举几个DNS显示过滤器示例。

 	要让Wireshark只显示所有DNS查询和DNS响应数据包，显示过滤器应如此配置：

 	dns.flags.response == 0 （DNS查询）

 	dns.flags.response == 1 （DNS响应）

 	要让Wireshark只显示所有answer count字段值大于或等于4的DNS响应数据包[3]，显示过滤器应如此配置：

 	dns.count.answers >= 4

3．FTP显示过滤器

以下所列为实战中常用的FTP显示过滤器。

 	要让Wireshark只显示所有包含特定的FTP请求命令的FTP数据包，显示过滤器应如此配置：

 	ftp.request.command == <"requested command">

 	要让Wireshark只显示所有通过TCP端口21传送的包含FTP命令的FTP数据包，显示过滤器应如此配置：

 	ftp

 	要让Wireshark只显示所有从TCP端口20或从其他端口发出的包含实际FTP数据的FTP数据包，显示过滤器应如此配置：

 	ftp-data

4.5.3　幕后原理　　　　

Wireshark显示过滤语句的正则表达式的语法，与Perl语言的正则表达式的语法相同。

以下所列为正则表达式中元字符的含义。

 	^：用来匹配行的开头。

 	$：用来匹配行的结尾。

 	|：用来表示二者任选其一。

 	()：起分组的作用。

 	*：匹配0次或多次前一模式（字符）。

 	+：匹配1次或多次前一模式（字符）。

 	？：匹配0次或1次前一模式（字符）。

 	{n}：精确匹配n次前一模式（字符）。

 	{n,}：匹配至少n次前一模式（字符）。

 	{n,m}：匹配既不能低于n次也不能高于m次前一模式（字符）。

可利用上述元字符来配置非常复杂的显示过滤器，下面举几个例子。

要让Wireshark只显示包含请求下载ZIP文件的GET命令的HTTP请求数据包，显示过滤器应如此配置：

http.request.method == "GET" && http matches "\.zip" && !(http.accept_encoding == "gzip, deflate") [4]。

要让Wireshark只显示发往域名以.com结尾的Web站点的HTTP数据包，显示过滤器应如此配置：

http.host matches ".com$"

4.6　配置字节偏移型过滤器

字节偏移型显示过滤器的通用格式为Protocols[x:y] == <value>。这种过滤器实际上就是先通过x来定位到数据包协议头部中的某个字段（即该字段位于协议头部起始处第x个字节），并检查接下来y个字节的值是否等于value。Wireshark会根据检查结果来显示抓包文件中的相关数据。

这种过滤器的应用场合非常广泛，只要熟知各种协议头部的格式，对其中各字段的位置及长度了然于胸，就能随心所欲地使用它在抓包文件中筛选出自己想看的数据包。

4.6.1　配置准备　　　　

除了要运行Wireshark软件，打开抓包文件以外，本节无需任何准备工作。字节偏移型显示过滤器的通用格式为：

Protocols[x:y] == <value>

其中，x指明了显示过滤器检查协议头部的位置（应从协议头部开始处的第几个字节开始检查），y表示显示过滤器所要检查的字节数。

4.6.2　配置方法　　　　

先举几个字节偏移型显示过滤器的例子，如下所示。

 	要让Wireshark只显示在以太网内传送的IPv4多播数据包，字节偏移型显示过滤器应如此配置：

 [image: 未标题-1]　注意

 eth.dst[0:3] == 01:00:5e（RFC 1112第6.4节规定，IPv4多播数据包在以太网内传送时，其以太网帧的多播目的MAC地址一定会在MAC地址空间01-00-5E-00-00-00～01-00-5E-FF-FF-FF之内）。

 	要让Wireshark只显示在以太网内传送的IPv6多播数据包，字节偏移型显示过滤器应如此配置：

 [image: 未标题-1]　注意

 eth.dst[0:2] == 33:33:00（RFC 2464第7节规定，IPv6多播数据包在以太网内传送时，其以太网帧的多播目的MAC地址一定是以33-33打头）。

4.6.3　幕后原理　　　　

网管人员只要熟知各种协议报文结构，便可利用字节偏移型显示过滤器，直接根据数据包协议头部的第某某字节到某某字节的内容，在Wireshark抓包文件中做一番筛选。对于上一节所举的Wireshark字节偏移型示例，就必须熟悉以太网帧的结构。

4.7　配置显示过滤器宏

配置显示过滤器宏，是创建复杂的显示过滤器的便捷通道，可以一次配置，多次使用。

4.7.1　配置准备　　　　

要配置显示过滤器宏，请进入Analyze菜单，选择Display Filter Macros菜单项，在弹出的Display Filter Macros窗口中点击“+”按钮，如图4.13所示。

[image: ..\18-1175（1-10章节）\0413.tif]

图4.13

4.7.2　配置方法　　　　

1．请先在Name文本框内输入一个名称，这也就是显示过滤器宏的名称，再在Text文本框里输入需多次使用的显示过滤语句，输入完毕后点OK按钮。

2．要调用显示过滤器宏，请在抓包主窗口的Filter输入栏内输入宏调用语句：

$(macro_name:parameter1;paramater2;parameter3 ...)

3．现举例加以说明。配置一个名叫test01的显示过滤器宏，其作用是让Wireshark只显示指定源IP地址和指定目的端口号的TCP数据包。

4．先配置显示过滤器宏：在Name文本框内输入test01，作为显示过滤器宏的名称；在Text文本框内输入ip.src==$1 && tcp.dst port==$2。其中，$1和$2用来取代传递给显示过滤器宏的参数。然后，点OK按钮。最后，在Display Filter macros窗口内再点一次OK按钮，保存这一显示过滤器宏。

5．再调用显示过滤器宏test01：若要让Wireshark只显示所有源IP地址为10.0.0.4，目的端口号为80的数据包，则需在抓包主窗口的Filter输入栏内输入${test01:10.0.0.4；80}。其中，10.0.0.4和80分别表示要传递给宏test01的IP地址参数和TCP端口号参数。

4.7.3　幕后原理　　　　

显示过滤器宏的运作原理非常简单：先用符号“$”加编号作为显示过滤器的位置参数；当随后在Filter输入栏内调用显示过滤器宏时，相关显示过滤参数会按编号的顺序传递进来。

[1]　译者注：作者的原意应该是，显示过滤器可与Wireshark的其他功能或内置工具配搭使用。

[2]　译者注：原文是“Display all HTTP packets going to hostname:http.request.method == <"Request methods">”，原文有误。

[3]　译者注：即只显示答案部分（answer section）包含的DNS资源记录不低于4条的DNS响应数据包。要是读者不明所以，请先弄清DNS协议数据包的结构。

[4]　译者注：原文是“look for HTTP GET commands that contain ZIP files: http.request.method == "GET" && http matches "\.zip" && !(http.accept_encoding =="gzip, deflate")”。译者认为原文有误，在译者看来，只要把显示过滤器配置为http contains "\.zip" && http.request.method== "GET"，甚至直接配置为http contains "\.zip"就够了。

第5章　基本信息统计工具的用法

本章涵盖以下内容：

 	Statistics菜单中Capture File Properties（抓包文件属性）工具的用法；

 	Statistics菜单中Resolved Addresses（经过解析的地址）工具的用法；

 	Statistics菜单中Protocol Hierarchy（协议层级）工具的用法；

 	Statistics菜单中Conversations（会话）工具的用法；

 	Statistics菜单中Endpoints（端点）工具的用法；

 	Statistics菜单中HTTP工具的用法；

 	Statistics菜单中Flow Graph（数据流图）工具的用法；

 	基于IP的信息统计报表的创建方法。

5.1　简介

Wireshark之所以普及，其自带的一整套信息统计工具功不可没。Wireshark的信息统计工具既包括可列出端点及端点间对话的简单统计工具（Endpoints工具和Conversations工具），也包括Flow Graph和I/O Graph这样的高级工具。

本章及下一章将会讲解如何使用上述信息统计工具。本章会介绍能提供网络基本信息的简单信息工具。所谓网络基本信息是指：网络中哪些设备之间有过“交流”、哪些设备“话多”哪些设备“话少”，以及在链路上呼啸而过的数据包的长度等信息。在下一章，将介绍Flow Graph和I/O Graph等高级信息统计工具，这样的工具可让网管人员更详细地了解网络中的风吹草动。

有一些出现在Statistics菜单中的工具本书不会提及，这些工具要么是用途一目了然（比如，Packet Lengths[数据包长度]工具），要么几乎没什么用处（比如，ANSP和BACnet工具等）。还有一些工具会在其他相关章节介绍，比如，Service Response Time（服务行响应时间）和DNS工具。

Wireshark自带的信息统计工具，都在其主窗口的Statistics菜单名下。要使用这些工具，请点击Statistics菜单下相应的菜单项或子菜单项。

5.2　Statistics菜单中Capture File Properties工具的用法

本节会介绍如何通过Wireshark来获悉在网络中穿梭往来的数据包的总体信息。Wireshark 2 Statistics菜单里的Capture File Properties菜单项取代了Wireshark1相同菜单里的Summary菜单项。

5.2.1　准备工作　　　　

启动Wireshark软件，先打开一个抓包文件（或双击一块网卡，开始抓包），再选择Statistics菜单。

5.2.2　使用方法　　　　

1．Capture File Properties工具归于Statistics菜单名下，要想使用此工具，请在Statistics菜单中点击Capture File Properties菜单项，如图5.1所示。

[image:]

图5.1

Capture File Properties窗口会立刻弹出，如图5.2所示。

[image: 0502]

图5.2

2．从图5.2中可以看到，该窗口的上半部分包含以下区域。

 	File：通过该区域中的信息，可以了解抓包文件的各种属性，比如，抓包文件的名称、路径信息，以及抓包文件所含数据包的“规模”（length）等信息。

 	Time：通过该区域中的信息，可以获悉抓包的开始、结束以及持续时间。

 	Capture：通过该区域中的信息，可以得知安装了Wireshark的主机的硬件及操作系统信息。

 	Interfaces：通过该区域中的信息，可以了解到有关抓包网卡的信息，包括该网卡在操作系统注册表中的信息（左侧）、在抓包时是否启用了抓包过滤器、网卡类型以及对所抓数据包大小的限制。

 	Statistics：通过该区域中的信息，可以了解到本次抓包（或Wireshark所展示的当前抓包文件）的常规统计信息，比如，所抓数据包的数量、Wireshark显示出的数据包的数量等。

5.2.3　幕后原理　　　　

Capture File Properties窗口所提供的信息默认来源于所有已抓取的数据包，但若应用了显示过滤器，则来源于经过过滤的数据包。要是有人问：“通过Wireshark能得知网络中平均每秒过往的数据包的个数及字节数吗？”在Capture File Properties窗口中就能找到答案。

5.2.4　拾遗补缺　　　　

通过Capture File Properties窗口，可以了解到在整个抓包过程中，平均每秒过往的所有数据包以及经过显示过滤器过滤的数据包的个数及字节数。

5.3　Statistics菜单中Resolved Addresses工具的用法

本节会介绍Wireshark第2版的一项新功能：已抓数据包的IP地址、TCP/UDP目的端口号，以及以太网（MAC）地址的名称转换功能。

5.3.1　准备工作　　　　

启动Wireshark软件，先打开一个抓包文件（或双击一块网卡，开始抓包），再选择Statistics菜单。

5.3.2　使用方法　　　　

在Statistics菜单中点击Resolved Addresses菜单项，会弹出Resolved Addresses窗口，如图5.3所示。

[image:]

图5.3

Resolved Addresses窗口提供了以下信息。

 	Comment（注释信息）：若要查看注释信息，请点击Show按钮，激活Comment菜单项。

 	hosts（IPv4/IPv6地址DNS解析信息）：提供了所抓数据包的IP地址的DNS名称。

 	IPv4/IPv6 Hash Table（IPv4/IPv6地址哈希表）：提供了所抓数据包的IP地址的哈希值。

 	Service（服务或应用程序名称信息）：提供了公认的TCP或UDP端口名称。

 	Ethernet Addresses、Ethernet Manufacturers和Ethernet Well-Known Addresseses：提供了MAC地址信息以及拥有MAC地址的网卡制造商的信息。

5.3.3　幕后原理　　　　

要将所抓数据包的IP地址解析为DNS名称，Wireshark需借助于安装它的主机的名称解析机制，即要借助于DNS解析机制或位于Wireshark主目录中的Wireshark hosts文件。

至于MAC地址中的前三个字节与网卡制造商名称之间的对应关系，Wireshark则会参照IEEE 802委员会制定的MAC地址转换表。

公认的TCP和UDP端口号及相应的服务名称由IANA定义。

5.3.4　拾遗补缺　　　　

借助于Wireshark的这项新功能，可以了解到抓包文件中与各种名称有关有用信息，对网络故障排除很有帮助。

5.4　Statistics菜单中Protocol Hierarchy工具的用法

本节会介绍如何通过Wireshark来获悉在网络中穿梭往来的数据包所归属的协议层级。

5.4.1　准备工作　　　　

启动Wireshark软件，先打开一个抓包文件（或双击一块网卡，开始抓包），再选择Statistics菜单。

5.4.2　使用方法　　　　

1．Protocol Hierarchy工具归于Statistics菜单名下，要想使用此工具，请在Statistics菜单中点击Protocol Hierarchy菜单项，如图5.4所示。

[image: 0504]

图5.4

Protocol Hierarchy Statistics窗口会立刻弹出。透过该窗口，可以了解到抓包文件所含数据包归属的协议类型的分布情况。

2．图5.5所示为Wireshark以每协议为基础呈现的数据包的分布情况统计信息。

[image:]

图5.5

下面是对Protocol Hierarchy Statistics窗口中每一列的解释。

 	Protocol：用来表示数据包所归属的协议名称。

 	Percent Packets：指明了抓包文件所含数据包在每一种协议类型中的占比情况（按数据包的个数来统计）。

 	Packets：指明了每一种协议类型的数据包的个数。

 	Percent Bytes：指明了抓包文件所含数据包在每一种协议类型中的占比情况（按数据包的字节数来统计）。

 	Bytes：指明了每一种协议类型的数据包的字节数。

 	Bit/s：指明了某种协议类型的数据包在抓包时段内的传输速率。

 	End Packets：指明了隶属于该协议类型的数据包的纯粹数量。试举一例，若TCP协议的Packets和End Packets数量分别为5762和4571个，这就表示此抓包文件中以TCP头部封装的数据包的总数为5762个，但只有4571个纯TCP数据包，即这些数据包的TCP头部之后再无高层协议头部，而其他的1191个数据包在TCP头部之后还紧跟了高层协议头部（比如，HTTP头部）。

 	End Bytes：指明了隶属于该协议类型的数据包的纯粹字节数。

 	End Bit/s：指明了隶属于该协议类型的纯粹的数据包在抓包时段内的传输速率。

 [image: 未标题-1]　注意

 End Packets、End Bytes以及End Bit/s分别指明了只算某种协议的数据包（即此种协议的头部为数据包中的最高层协议头部）的个数、字节数以及在抓包时段内的传输速率。以TCP为例，虽然FTP、HTTP、SSL数据包都可算作TCP数据包，但这些应用层协议在建立或终止TCP连接时发出TCP数据包，是不含高层头部信息的（比如，用来建立HTTP连接的TCP SYN数据包等），此类数据包便算作纯TCP数据包。若Internet Protocol Version 4（IPv4数据包）所对应的End Packets、End Bytes以及End Bit/s三列的都是0，则是因为该抓包文件中的IPv4数据包全都包含了更高层的协议头部。

在图5.5中，有两个地方值得关注。

 	Wireshark抓到了1842个DHCPv6数据包。若受监控的网络为纯IPv4网络，请禁用网络设备及主机的IPv6和DHCPv6功能。

 	Wireshark抓到的CPHA（CheckPoint High Availability，CheckPoint高可用性）数据包的数量超过了20万个，占在受监控网络里所抓数据包总数的74.7%。此类数据包是归属同一集群的两台CheckPoint防火墙之间互发的HA同步数据包，主要作用是在防火墙之间的更新会话表。此类数据包的发送量一旦过高，便会严重影响网络性能。解决方法是在两台防火墙之间开通一条专用直连链路，让两者在相互同步会话表时，不再影响网络。

5.4.3　幕后原理　　　　

简而言之，由Protocol Hierarchy工具生成的统计信息也是根据抓包文件的内容计算而得。读者需关注以下两点。

 	该工具生成的所有Percent（占比）信息都是针对同一层次的协议类型而言。比方说，在图5.6中，逻辑链路控制帧、IPv4数据包、IPv6数据包、ARP帧、Cisco ISL帧的Percent Packets分别为0.5%、88.8%、1.0%、9.6%和0.1%。这表示上述5种数据包在Wireshark抓到的所有以太网帧（Ethernet）中所占比重分别为0.5%、88.8%、1.0%、9.6%和0.1%，五者相加正好等于100%。

[image:]

图5.6

 	此外，在图5.7中，TCP数据包占总数据包的75.70%，但HTTP数据包只占总数据包的12.74%，除此之外，就只有在总数据包中占2.90%的SSL数据包算是TCP数据包了（也就是说，除了HTTP数据包和SSL数据包之外，再无其他的TCP数据包）。这是因为，Wireshark在统计高层协议数据包时，只认高层协议头部。对于本例，所有端口号为80或443但不含HTTP或SSL头部的TCP数据包（比如，用来建立连接的TCP SYN数据包，或不含HTTP头部只含HTTP数据的TCP数据包），都未被算作为HTTP或SSL数据包。

[image:]

图5.7

5.4.4　拾遗补缺　　　　

要让Wireshark在Protocol Hierarchy工具生成的统计信息中，把不含高层协议头部但只含高层协议数据的TCP数据包，也算作该高层协议数据包，请在首选项窗口（点Edit菜单，选择Preferences菜单项）中，点Protocol前的箭头，选中TCP协议，取消勾选Allow subdissector to reassemble TCP streams复选框。也可以在抓包主窗口中随便选择一个TCP数据包，在数据包结构区域内选择TCP头部，单击右键，在弹出的菜单中选择Protocol Preferences菜单项，取消勾选Allow subdissector to reassemble TCP streams子菜单项。

5.5　Statistics菜单中Conversations工具的用法

本节会介绍如何获取网络中的设备间的对话信息。

5.5.1　准备工作　　　　

启动Wireshark软件，先打开一个抓包文件（或双击一块网卡，开始抓包），再选择Statistics菜单。

5.5.2　使用方法　　　　

Conversations工具归于Statistics菜单名下，要想使用此工具，请在Statistics菜单中点击Conversations菜单项，如图5.8所示。

[image:]

图5.8

Conversations窗口会立刻弹出，如图5.9所示。

[image: 0508]

图5.9

可点选图5.9所示Conversations窗口中相应的选项卡，来观看网络中的主机之间在第2、3、4层上的对话。

 	Ethernet：来观察具有不同MAC地址的主机间发生过什么样的交流。

 	IPv4：来观察具有不同IPv4地址的主机间有过什么样的沟通。

 	TCP或UDP：来观察具有不同IPv4地址的主机间所建立的各种TCP（或UDP）对话。

通过观察主机之间在第2、3、4层上的对话，既可以发现发生在第2层的广播风暴，也可以查明发生在第3、4层的Internet链路负载过高等问题。

 [image: 未标题-1]　注意

 若网管人员发现内网有大量数据包都涌向某一特定公网IP地址的80端口，则应试着在自己的主机上用浏览器也访问一下这一IP地址，看看该Web站点为什么受内网用户的热捧。

 要是一无所获，请访问任何一个标准的域名解析Web站点（比如，http://who.is/），并输入这一公网IP地址，便可得知内网用户的HTTP流量都发到什么样的网站去了。

要想用相应的名称来取代在Conversations窗口的各选项卡中露面的MAC地址、IP地址，以及TCP/UDP端口号，需勾选左下角的Name resolution复选框（图5.9中的1）。但在此之前，还应在主窗口的View菜单的Name Resolution菜单项下点选相应的子菜单项。

还可以勾选Conversations窗口左下角的Limit to display filter复选框（图5.9中的2），应用显示过滤器。这样一来，Conversations窗口将只会显示经过显示过滤器过滤的信息。

Wireshark版本2的Conversations窗口多了一项新功能，要通过Graph按钮来触发（图5.9中的5）。只要在TCP选项卡中先选中一条TCP对话，再点击Graph按钮，便会弹出TCP Time Sequence（tcptrace）窗口。选择Statistics菜单的TCP Stream Graphs菜单项，点击其Time Sequence（tcptrace）子菜单，也会弹出TCP Time Sequence（tcptrace）窗口，下一章会对此进行介绍。

要将选项卡的信息以CSV或YAML的格式复制进剪贴板，请点击Copy按钮（图5.9中的3）[1]。

在TCP或UDP选项卡中，先选中一行（一条TCP或UDP对话），再点击Follow Stream按钮（图5.9中的4）。这么一点，便会生成一个已应用于抓包文件的显示过滤器，在Wireshark主窗口的数据包列表区域，将只会显示隶属于该TCP或UDP对话的数据包。

在Conversations窗口中，还可以按图5.10所示，先选中一条会话，单击右键，在弹出的菜单里选择与过滤器和数据包上色功能有关的菜单项或子菜单项。

[image:]

图5.10

Wireshark 2.0版本可以选择在Conversations 窗口中现身的各种协议选项卡（点击Conversation Types按钮，在弹出的菜单中选择相应的协议选项卡），而Wireshark 1.0版本的Conversations窗口会出现全套协议选项卡，而且是固化的。

5.5.3　幕后原理　　　　

网络对话（conversation）是指发生于一对指定端点（主机、服务器或网络设备）间的所有流量。比方说，一次IP对话是指交换于具有不同IP地址的两台主机间的所有流量；而一次TCP或UDP对话则包括了4大特征（源、目IP地址外加源、目端口号）全都匹配的数据包。

5.5.4　拾遗补缺　　　　

借助Conversations工具，能发现各种不易觉察的网络问题。

根据Ethernet 对话统计信息（在Conversations窗口中点击Ethernet选项卡，便会呈现Ethernet 对话统计信息），可以观察到下述信息。

 	广播包的数量是否过于庞大。若是，则很有可能遭遇了广播风暴（要是情况比较严重，估计在Ethernet对话统计信息中，都看不到一个单播包）。

 [image: 未标题-1]　注意

 将Wireshark主机接入发生了严重广播风暴的网络时，Wireshark每秒会抓取到数以万计的数据包，这不但会导致其停止显示数据包，而且还会使得主机屏幕卡顿。此时，只有断开Wireshark主机网卡的网线，才能看清抓到的数据包。

 	是否存在大多数数据包的源MAC地址全都相同的现象（即大多数数据包是否都是由具有某特定MAC地址的主机发出）。若是，则可能是某块主机的网卡发生了故障。此时，只要瞥一眼Address A的前半部分——网卡芯片制造商的ID（比如ibm或cisco），或许就知道是哪台主机的网卡出故障了。

 [image: 未标题-1]　注意

 虽然MAC地址的前半部分标明了网卡芯片制造商的ID，但这只表示网络中有某台主机安装了该网卡芯片制造商生产的网卡，而PC机或笔记本电脑制造商却未必生产网卡。因此，还得登录以太网交换机，查看该MAC地址是从哪个端口学得，这样才好找到那台因网卡发生故障而生成巨流的主机。

根据IP对话统计信息（在Conversations窗口中点击IPv4选项卡，便会呈现IPv4对话统计信息），可以观察到下述信息。

 	是否有某个（或若干）IP地址有极高的曝光率。若有，且这个（或这几个）IP地址归服务器所有，则纯属正常；不过，出现这种情况，也有可能是有人在用黑客工具扫描网络，或某台PC机生成了过多的流量所导致。

 	是否有人用黑客工具扫描网络（第19章会对此做深入探讨）。网络扫描也分为两种：一种是正常扫描，比如，SNMP网管系统发出ping包探测网络设备是否健在；另一种是异常扫描，即有人用黑客工具扫描网络（或中了病毒的主机不由自主地扫描网络）。

 	通过图5.11，可以清楚地看见有台主机正在扫描网络。

[image:]

图5.11

图5.11显示了一个经典的IP扫描场景：有一个IP地址（192.168.110.58）正按序向隶属于同一IP子网的IP地址（从192.170.3.44～58）快速发出ping包（图5.11只显示出了一小部分IP对话）。随后，又继续扫描IP子网192.170.4.0（图中并未显示）。实际上，是网络中一台设有IP地址192.168.110.58的主机感染上了蠕虫病毒，中招的主机持续发送巨量ping包，其后果是导致网络链路（比如，WAN链路）严重拥塞。

根据TCP/UDP对话统计信息（在Conversations窗口中点击TCP或UDP选项卡，便会呈现TCP或UDP对话统计信息），可以观察到下述信息。

 	是否有某一台主机打开了过多的TCP（或UDP）连接。对单台主机而言，打开10～20个连接纯属正常，但若连接数过百，那就应该去好好查一查了。

 	是否有主机试图与稀奇古怪的TCP/UDP目的端口号建立连接。若有，则表示网络可能遇到了麻烦。

在图5.12中，通过观察TCP选项卡中的信息，可以很容易地发现有人在执行标准的TCP端口扫描。

[image:]

图5.12

由图5.12可知，有一个IP地址（10.0.0.1）不停地尝试连接另一个IP地址（81.218.230.244）的各个端口（TCP 1、3、4、6、7等端口）。

这是一个典型的TCP扫描，10.0.0.1向81.218.230.244的每个端口分别各发两个数据包：从源端口63033和63038向目的端口1发送两个数据包；从源端口63650和63655向端口3发送两个数据包，依此类推。

在Conversations窗口的各选项卡中，只要点击Address A一栏，便会立刻发现是否有人执行扫描。

5.6　Statistics菜单中Endpoints工具的用法

本节会介绍如何查看抓包文件中与数据包的发送或接收端点（Endpoint）有关的统计信息。

5.6.1　准备工作　　　　

启动Wireshark软件，先打开一个抓包文件（或双击一块网卡，开始抓包），再选择Statistics菜单。

5.6.2　使用方法　　　　

1．Endpoints工具归于Statistics菜单名下，要想使用此工具，请在Statistics菜单中点击Endpoints菜单项，如图5.13所示。

[image:]

图5.13

2．Endpoints窗口将立刻弹出，如图5.14所示。

[image:]

图5.14

可点击Endpoints窗口内相应的选项卡，来观察与第2、3、4层端点（Ethernet端点、IP端点、TCP/UDP端点）有关的统计信息。

以Endpoints窗口中的TCP选项卡为例，从左到右可以观察到：

 	TCP端点的IP地址和端口号（分别对应Address和Port一栏）；

 	TCP端点收发数据包的总数和总字节数（分别对应Packets和Bytes一栏）；

 	TCP端点发出的数据包的个数和字节数（分别对应Tx Packets和Tx Bytes一栏）；

 	TCP端点收到的数据包的个数和字节数（分别对应Rx Packets和Rx Bytes一栏）[2]。

在Endpoints窗口的底部，有以下复选框或按钮。

 	Name resolution：一经勾选，Endpoints窗口中的所有第2、3、4层地址都会以相应的名称示人，但在此之前，还应在主窗口的View菜单的Name Resolution菜单项下点选相应的子菜单项。

 	Limit to display filter：一经勾选，Endpoints窗口将只会显示经过显示过滤器过滤的信息（在抓包主窗口中已经应用了显示过滤器）。

 	Copy：点此按钮，便会将选项卡里的信息以CSV或YAML的格式复制进剪贴板。

 	Map：在GeoIP配置妥当的情况下，点此按钮会根据端点IP的归属地来显示其在地图上的地理信息。有关GeoIP配置，详见第10章。

5.6.3　幕后原理　　　　

借助于Endpoints窗口，即可获悉Wireshark探测到的与所有第2、3、4层端点有关的统计信息。通过这些统计信息，可以很好的解释以下现象。

 	Ethernet端点（MAC地址）少，IP端点（IP地址）多：对于这种现象，可能是因为所有进出本地LAN（IP子网）的IP流量都由一台路由器来负责转发。也就是说，对于源或目的IP地址不隶属于本地IP子网的所有数据包，其源或目的MAC地址都会是那台路由器内网LAN口的MAC地址，这属于正常情况。

 	IP端点（IP地址）少，TCP端点（TCP端口号）多：说白一点，就是每个IP端点都试图建立或已经建立了多条TCP连接。对于这种现象，可能正常也可能不正常。若建立或试图建立多条TCP连接的IP端点为服务器，这就属于正常情况；否则，极有可能是有人在发动网络攻击（比如，TCP SYN攻击）。

5.6.4　拾遗补缺　　　　

现以从某网络中心弄来的一份抓包文件为例，来教读者如何查看Wireshark生成的Endpoints统计信息。

在Endpoints窗口中，点击Ethernet选项卡，如图5.15所示。首先，可判断出在该网络中心的内部网络中，绝大部分流量都被一台Cisco设备和一台HP设备垄断（1）。其次，可以发现内部网络中有几台设备的MAC地址不归任何网络设备厂商所有（2）。再次，可以了解内部网络中广播帧（3）、生成树协议帧（4）和IPv4和IPv6多播帧（5）（如本书第10章所述，IPv6多播帧的MAC地址以33:33:00打头）的发送情况。最后，还可以观察到内部网络中Cisco私有协议（CDP、VTP、DTP、UDLD、PAgP）帧的发送情况。

[image:]

图5.15

如图5.16所示，点击过IPv4选项卡之后，即可看出，发往Internet的数据包有一大半（13031个数据包）都发给了IP地址54.230.47.224（该抓包文件获取自一条宽带上网线路）。

[image:]

图5.16

为了弄清IP地址为54.230.47.224的主机为什么这么受内网用户的追捧，作者在浏览器中输入该IP地址。不过，无论是通过HTTP还是通过HTTPS访问，浏览器都报了错，如图5.17所示。

[image:]

图5.17

为了继续查明IP地址54.230.47.224究竟是什么网站，作者点击了TCP选项卡，同时勾选了Name resolution复选框，如图5.18所示。

[image: 0518]

图5.18

1．Endpoints窗口显示出了与IP地址54.230.47.224相对应的DNS名称。当然，还得在View菜单的Name Resolution菜单项下点选Resolve Network Address子菜单项，然后让Wireshark刷新主机表。

 [image: 未标题-1]　注意

 Wireshark软件的某些窗口（功能）会在运作时自动刷新主机表，而另一些窗口（功能）则不然。作者使用的2.0.3版Wireshark 的Endpoints窗口不会自动刷新。此时，要勾选Limit to display filter复选框，让Wireshark刷新Endpoints窗口的主机表。要是无须使用显示过滤器，可在刷新主机表之后取消勾选Limit to display filter复选框。

2．选中待查的主机，单击右键，先在弹出的菜单中选择Apply a filter | Selected，再返回Wireshark主抓包窗口。

3．在Wireshark主抓包窗口中，先选中一个数据包，再到数据包结构区域的IPv4包头结构中（的源或目的地址字段）选中待查的主机名，点击右键，在弹出的菜单中选择Copy | Description，如图5.19所示（用Ctrl+Shift+D组合键也能起到相同效果）：

[image:]

图5.19

4．如图5.20所示，将复制进剪切板里的字符复制进浏览器，在“掐头去尾”后按回车键，即可查明IP地址54.230.47.224到底是什么样的网站了。

[image:]

图5.20

在浏览器里用该网站的DNS名称来访问，就能成功地打开该网站了。

5.7　Statistics菜单中HTTP工具的用法

本节会介绍如何查看抓包文件中有关HTTP流量的统计信息。

5.7.1　准备工作　　　　

启动Wireshark软件，先打开一个抓包文件（或双击一块网卡，开始抓包），再选择Statistics菜单。

5.7.2　使用方法　　　　

HTTP工具归于Statistics菜单名下，要想使用此工具，请在Statistics菜单中点击HTTP菜单项，如图5.21所示。

[image:]

图5.21

以下所列为HTTP菜单项名下的子菜单项。

 	Packet Counter：可用来了解抓包文件中HTTP数据包的总数，以及其中HTTP请求数据包和HTTP响应数据包分别为多少。

 	Requests：可用来了解主机请求访问的Web站点的分布情况，以及所访问的Web站点上的具体资源（指向资源的URL）。

 	Load Distribution：可用来了解抓包文件中HTTP数据包（包括HTTP请求和HTTP响应数据包）在各Web站点间的分布情况（即访问过哪些Web站点）。

首先，来看一下Packet Counter子菜单项的用法。

1．点击Statistics | HTTP | Packet Counter。

2．Packet Counter窗口会立刻弹出，如图5.22所示。

[image: 0521]

图5.22

Packet Counter窗口显示了HTTP请求和HTTP响应数据包的总数。

3．要想基于某个指定的Web站点，来生成并查看有关HTTP请求的统计信息，可先在Display filter输入栏里输入显示过滤表达式http.host contains <host_name>或http.host ==<host_name>（具体输入哪一个，要看是想精确匹配Web站点的域名，还是想只匹配域名中的某个字符串），再点击Apply按钮。

其次，来介绍一下Requests子菜单项的用法。

1．点击Statistics | HTTP | Requests，会弹出Requests窗口，如图5.23所示。

[image:]

图5.23

2．要想基于某个指定的Web站点来生成有关HTTP请求的统计信息，可先在Display filter输入栏里输入显示过滤表达式http.host contains <host_name>或http.host==<host_name>（具体输入哪一个，要看是想精确匹配Web站点的域名，还是想只匹配域名中的某个字符串），再点击Apply按钮。

3．举个例子，要想看看内网用户都访问了Web站点www.ndi-com.com上的哪些资源，请在Display filter输入栏里输入显示过滤表达式http.host == ndi-com.com，如图5.24所示。

[image:]

图5.24

最后，来研究一下Load Distribution子菜单项的用法。

1．点击Statistics | HTTP | Load Distribution。

2．Load Distribution窗口会立刻弹出，如图5.25所示。

[image:]

图5.25

3．可点击最左边的小三角形展开HTTP Response和HTTP Requests项，来观看Wireshark基于所有IP数据包生成的有关HTTP负载分配的统计信息。

第12章会讲解如何利用上述工具来执行HTTP分析。

5.7.3　幕后原理　　　　

在访问某个Web站点时，浏览器通常会发出多次HTTP请求，从多个位置下载资源。比如，当访问CNN Web站点时，浏览器会被该Web站点传回的HTTP响应消息牵引至CNN网站的Edition页面，然后需要借助若干URL从多个位置请求（下载）资源。

5.7.4　拾遗补缺　　　　

要想对HTTP数据包做进一步的分析，还需借助于特殊的工具。Fiddler是最常使用的HTTP数据包分析工具，大家可以自行下载并研究使用。

Fiddler是一款专门为排除HTTP协议故障而开发的软件，其用户界面能详尽的显示与HTTP有关的数据。

5.8　配置Flow Graph（数据流图），查看TCP流

本节会介绍Statistics菜单中Flow Graph工具的用法。

5.8.1　配置准备　　　　

启动Wireshark软件，先打开一个抓包文件（或双击一块网卡，开始抓包），再选择Statistics菜单。

5.8.2　配置方法　　　　

点击Flow Graph菜单项，Flow窗口会立刻弹出，如图5.26所示。

[image:]

图5.26

在Flow窗口中，可以看到数据包的抓取时间（最左边）、数据包的源、目地址（视箭头的指向而定），以及数据包的源、目端口号（视箭头的指向而定）。

点击任何一个会话箭头，都能在Wireshark抓包主窗口的数据包列表区域里定位到相应的数据包。

Flow窗口内置有若干功能项（复选框）可供选择，下面是对这些功能项的解释。

 	Show（Limit to display filter复选框，图5.26中的1）：显示所有捕获的数据包，或只显示由显示过滤器过滤的数据包。

 	Flow type（图5.26中的2）：可在下拉菜单中选择所要查看的各种数据流。若点选TCP Flows菜单项，则Wireshark会根据抓包文件中的所有数据包或所有经过显示过滤器过滤的数据包，来生成含TCP标记、序列号、ACK号以及报文段长度的TCP数据流图。在针对抓包文件应用显示过滤器http.request，且同时勾选Limit to display复选框并将Flow type设置为TCP Flows的情况下，Flow窗口将只会显示PSH位置1（详见第12章）的TCP流（实为包含HTTP GET命令的HTTP数据包）。

 	Address（图5.26中的3）：只有IP（network）地址一种选项。

5.8.3　幕后原理　　　　

只是根据抓包文件生成简单的统计信息而已。

5.8.4　拾遗补缺　　　　

TCP故障有时很是让人头疼，要想弄清故障的原委，就必须绘制出TCP端点间的数据流图。一般而言，绘制TCP数据流图的最佳方式是借助于某款绘图软件，这样的软件应具有友好的图形界面。当然，也可以用不同颜色的彩色铅笔在纸上手工绘制。

针对Wireshark开发的Cascade Pilot软件包正是绘制TCP数据流图的绝佳工具。

图5.27所示为作者自制的TCP数据流图。

[image:]

图5.27

借助于图5.27，可清楚地观察到TCP连接的建立方式（Frame 2～4）；客户机10.0.0.5如何向服务器77.234.41.58发出HTTP POST命令，并获得了服务器的回应（220（OK））（Frame 5～7）；TCP连接的按序拆除方式（Frame 8～11）。

在本书的第12章以及与应用层协议有关的其他各章，读者还会看到更多类似自制的TCP数据流图。万事开头难，TCP数据流图只要多画几次，即可熟能生巧。

5.9　生成与IP属性有关的统计信息

本节会介绍如何让Wireshark基于抓包文件生成与各种IP属性有关的统计信息。所谓IP属性是指源IP地址、目的IP地址以及IP协议类型等。

5.9.1　准备工作　　　　

启动Wireshark软件，先打开一个抓包文件（或双击一块网卡，开始抓包），再选择Statistics菜单，在其底部有以下两个菜单项，如图5.28所示。

 	IPv4 Statistics菜单项。

 	IPv6 Statistics菜单项。

[image:]

图5.28

以下所列为IPv4/IPv6 Statistics菜单项名下的子菜单项：

 	All Addresses子菜单项；

 	Destinations and Ports子菜单项；

 	IP Protocols Types子菜单项；

 	Source and Destination Address子菜单项。

5.9.2　使用方法　　　　

要让Wireshark基于抓包文件生成有关IP地址的统计信息，请按以下步骤行事。

1．点击Statistics | IPv4 Statistics | All Addresses或Statistics | IPv6 Statistics | All Addresses。

2．All Addresses窗口会立刻弹出，如图5.29所示。

[image:]

图5.29

3．图5.29所示信息一目了然，无需解释。重要的是，可在Display filter输入栏里输入过滤器。比方说，可输入显示过滤器tcp.analysis.retransmission，让Wireshark在All Addresses窗口中显示涉及TCP重传的IP地址，如图5.30所示。由图5.30可知，IP地址10.10.10.30涉及1262次TCP重传。

[image:]

图5.30

4．使用其他工具也能展示相同的信息。比如，使用本章之前介绍的Statistics菜单中的Conversations工具，或者直接在Wireshark抓包主窗口中应用相应的显示过滤器。

要让Wireshark基于抓包文件生成有关目的IP地址和目的UDP/TCP端口号的统计信息，请按以下步骤行事。

1．点击Statistics | IPv4 Statistics | Destination and Ports或Statistics | IPv6 Statistics | Destination and Ports。

2．Destination and Ports窗口会立刻弹出，可在Display filter输入栏内输入显示过滤表达式（比如，tcp.analysis.zero_window），对原生信息加以过滤，如图5.31所示。

[image:]

图5.31

要让Wireshark基于抓包文件生成有关IP协议类型的统计信息，请按以下步骤行事。

1．点击Statistics | IPv4 Statistics | Protocol Types或Statistics | IPv6 Statistics | Protocol Types。

2．IP Protocol Types窗口会立刻弹出，如图5.32所示。

[image:]

图5.32

要让Wireshark基于抓包文件生成有关源、目IP地址的统计信息，请按以下步骤行事。

1．点击Statistics | IPv4 Statistics | Source and Destination Addresses或Statistics | IPv6 Statistics | Source and Destination Addresses。

2．Source and Destination Addresses窗口会立刻弹出，如图5.33所示。

[image:]

图5.33

本章作为示例呈现的抓包文件为CAP_05_08。

5.9.3　幕后原理　　　　

不涉及任何幕后原理，只是让Wireshark基于抓包文件生成相应的统计信息而已。

5.9.4　拾遗补缺　　　　

Wireshark内置了诸多统计信息生成工具（比如，Capture File Properties工具、Protocol Hierarchy工具、Conversations工具和Endpoints工具等），可利用这些工具来生成各式各样的统计信息。排除网络故障时，由这些工具生成的统计信息或许能帮上网管人员的大忙。

[1]　译者注：原文是“To copy table data, click on the Copy button (3)”。

[2]　译者注：译者安装的Wireshark的Endpoints窗口和图5.14完全不同，根本就没有那么多列，译文酌改。

第6章　高级信息统计工具的用法

本章涵盖以下内容：

 	配置支持显示过滤器的I/O Graphs工具，来定位与网络性能有关的问题；

 	用I/O Graphs工具测量网络的吞吐量；

 	I/O Graphs工具的高级配置方法（启用Y轴unit参数）；

 	TCP Stream Graphs菜单项中Time Sequence（Stevens）子菜单项的用法；

 	TCP Stream Graphs菜单项中Time Sequence（tcptrace）子菜单项的用法；

 	TCP Stream Graphs菜单项中Throughput子菜单项的用法；

 	TCP Stream Graphs菜单项中Round Trip Time子菜单项的用法；

 	TCP Stream Graphs菜单项中Window Scaling子菜单项的用法。

6.1　简介

上一章介绍了内置于Wireshark软件的基本信息统计工具的用法，这些工具包括Capture File Properties工具、Protocol Hierarchy工具、Conversations工具和Endpoints工具等。本章会介绍I/O Graphs、TCP Stream Graphs等高级信息统计工具，同时还会对UDP multicast streams等高级工具做简单介绍。

凭借本章所要介绍的Wireshark高级信息统计工具，可以更为细致入微地观察到网络中的风吹草动。Wireshark高级信息统计工具主要有以下两种。

 	I/O Graphs工具：借助于该工具，同时配搭预先定义的显示过滤器，即可生成各种易于阅读的信息统计图表。比如，可生成单IP主机吞吐量统计图表、两台或多台主机间流量负载统计图表、应用程序网络吞吐量统计图表、TCP现象分布统计图表、帧间时间间隔统计图表，以及TCP序列号和确认号之间的时间间隔统计图表等。

 	TCP Stream Graphs工具：利用该工具，便可深窥单条TCP连接（TCP数据流）的内在。因此，该工具能帮助网管人员分析TCP故障，定位故障起因。

Wireshark版本2对I/O Graphs和TCP Stream Graphs这两样工具又做了大幅优化。本章会介绍这两种工具的使用方法，还会在后面的相关章节讨论如何利用这两种工具来定位并解决网络故障。

6.2　配置支持显示过滤器的I/O Graphs工具，来定位与网络性能有关的问题

本节会介绍I/O Graphs工具的使用方法，以及如何配置该工具来排除网络故障。

6.2.1　配置准备　　　　

启动Wireshark软件，先打开一个抓包文件（或双击一块网卡，开始抓包），再点击Statistics菜单中的I/O Graphs菜单项，会弹出I/O Graphs窗口。若在抓包过程中如此行事，通过观察I/O Graphs窗口显示的信息，便可获知网络的实时统计信息。

6.2.2　配置方法　　　　

Statistics菜单中的I/O Graphs菜单项一经点击，I/O Graphs窗口会立刻弹出，如图6.1所示。

[image:]

图6.1

在I/O Graphs窗口中，上半部分为图形显示区域，该区域的下面是显示过滤器配置区域，可在此配置显示过滤器，并根据显示过滤器来展示相关图形。由图6.1可知，在默认情况下，图形的X轴表示的是时间（单位为秒），Y轴表示的是流量速率（单位为数据包/秒）。

显示过滤器配置区域下面还有若干按钮、下拉菜单以及单/复选框。

可利用以下按钮和单选框，来控制图形的显示方式。

 	左下角的+/-号和复制按钮：用于图形的添加、删除及复制。

 	Mouse drags/zooms单选按钮和右下角的Reset按钮：分别点选那两个单选按钮，便能以不同的方式缩放图形；点击Reset按钮，可使图形恢复初始大小。

可利用以下下拉菜单和复选框，来配置图形的X轴（时间轴）参数。

 	Interval下拉菜单：可在该下拉菜单中指定一个计时单位，计时单位的取值范围为1毫秒～10分钟。

 [image: 未标题-1]　注意

 若把X轴的Interval参数值指定为1秒（1s），且图形显示区域中的图形反映出的峰值为1000，则意味着在抓包时间段内，Wireshark测量出的流量传输峰值速率为1000个数据包/秒。可要是把X轴的Tick Interval参数值更改为100毫秒（100ms），那么图形显示区域中的图形反映出的峰值状况势必有所不同，这是因为计时单位从1秒被调整为了100毫秒。

 	Time of day（一天当中的具体时刻）复选框：一旦勾选，图形的X轴的时间格式将会按一天当中的具体时刻来显示；若取消勾选，则图形的X轴的时间格式将会以抓包时长来显示。

可利用以下复选框来配置Y轴（速率轴）参数。

 	Log scale复选框：一经勾选，Y轴长度将会以对数（Logarithmic）方式呈现；取消勾选，Y轴长度将会以线性方式呈现。

下面给出图形配置方法。

 	在I/O Graphs窗口中，可添加、删除、复制以及更改图形，步骤如下所列。

1．I/O Graphs窗口刚启动时，会默认基于抓包文件中的所有数据包生成并显示以X轴和Y轴构成的图形。

2．要让Wireshark将经过显示过滤器过滤的数据包以图形的方式体现出来，请点击窗口左下角的“+”按钮。

3．在新行的Name一栏为有待生成的图形指定一个名称。

4．在Display filter一栏按照显示过滤器的语法输入显示过滤表达式。与抓包主窗口的显示过滤器输入栏一样，在输入过程中，可以借助Wireshark的语法自动补齐特性。

5．通过Color和Style一栏为有待生成的图形指定颜色及风格（可保留默认设置）。

6．可选择的图形风格包括Line（线状）、Impulse（脉冲）、Bar（粗线）、Dot（点状）、Square（方块）、Diamond（菱形）等。若有待生成的是流量图，则应选Line风格，而Dot风格则适合用来生成事件分析（比如，TCP重传、重复确认等事件分析）图。

7．若要了解数据包的平均传输速率（亦即在每个计时单位内的平均传输速率），可在Smoothing一栏中选择一个值。

图6.2所示为针对抓包文件CAP_1674_06_02，不加过滤以及施加显示过滤器tcp.analysis.duplicate_ack和tcp.analysis.fast_retransmission时，用I/O Graphs工具生成的流量图。

[image:]

图6.2

由图6.2可知，X轴所表示的流量计时单位为10毫秒（Interval下拉菜单项为10ms），Y轴所表示的流量速率单位为数据包/ 10毫秒。名为All packets的图1体现了抓包文件中所有数据包的流量状况，未经任何过滤，该图的显示风格为线状（Line）；名为Duplicate Ack的图2体现了对抓包文件施加过滤器tcp.analysis.duplicate_ack时的流量状况，该图的显示风格为点状（Dot）；名为Fast Retransmission的图3体现了对抓包文件施加过滤器tcp.analysis.fast_retransmissionn时的流量状况，该图的显示风格为方框状（Square）。这三幅流量图在I/O Graphs窗口均以极度放大的方式显示，着重显示了自开始抓包以来的第52.5～52.86秒之间的流量状况。

流量在第52.53～52.54秒达到了第一次高峰：6个数据包/10毫秒（图6.2中的1），接下来的两次流量高峰都是12个数据包/10毫秒（图6.2中的4和9）。

至于TCP重复确认事件，在第52.61秒发生了一次（2），在52.62秒发生了6次（3），在52.68秒发生了两次（5），在52.69秒发生了两次（6），在52.60秒发生了5次（8）。此外，在52.60秒还发生了一次快速重传事件（7）。

在Wireshark抓包主窗口应用了相同的显示过滤器之后，即可在数据包列表区域观察到与I/O Graphs窗口相对应的TCP重复确认和快速重传事件，如图6.3所示。此时，可以很容易地观察到从第52.62秒开始的6次TCP重复确认事件。

[image:]

图6.3

在本书以后探讨各种协议的章节里，读者会了解到I/O Graph工具精确制图的重要性，以及应该在何时、何处让该工具生成合适的图形。

6.2.3　幕后原理　　　　

I/O Graphs工具是Wireshark软件中最重要的工具之一，网管人员可借此工具来在线监控网络性能，或对网络故障做离线分析。

使用I/O Graphs工具时，如何配置与X轴和Y轴参数结合使用的显示过滤器是重中之重。

Y轴可用的计量参数有两种。第一种是速率参数——是用对应于X轴的计时单位来计量的数据包的个数（packets）、字节数（bytes）和位数（bits）。第二种参数包括SUM、COUNT FRAMES、COUNT FIELDS、MAX、MIN、AVG和LOAD，如图6.4所示。有一些网络性能指标在使用图形方式表示时，只能使用Y轴的第二种参数，无法使用第一种速率参数。6.4节会介绍第二种Y轴计量参数的使用方法。

[image:]

图6.4

还有一个重要功能值得关注，那就是显示过滤器配置区域最左边的Smoothing（新版本改为SMA period）一栏，如图6.5所示。Smooth（平滑）意味着I/O Graphs工具在生成图形时不会绘制每个样本的值，而是会在单位时间内累积最新的10、20、50、100、200……个样本，建立并绘制这些样本（10、20、50、100、200……个样本）的平均值。

[image:]

图6.5

在测量链路的带宽/吞吐量并生成相应的图形时，会用到Smoothing参数，读者稍后即知。

6.2.4　拾遗补缺　　　　

要查看I/O Graphs窗口的快捷功能菜单项列表，请将鼠标移动到图形显示区域，点击右键，如图6.6所示。

[image:]

图6.6

可在图6.6显示的菜单中选择适当的菜单项来操纵图形的显示方式。比如，缩放整个图形，或缩放图形的X或Y轴等。

6.3　用IO Graphs工具测量链路的吞吐量

I/O Graphs工具同样是测量网络吞吐量的一把利器。借助于该工具，同时再配搭预先设定的显示过滤器，便可测量出各种流量的吞吐量。本节会举几个测量网络吞吐量的实例。

6.3.1　使用准备　　　　

把Wireshark主机连接到已激活端口镜像功能的交换机端口（具体操作步骤详见第1章），应保证能通过该交换机端口接收到过往于有待监控的主机或服务器的所有流量。启动Wireshark软件，先双击相应的网卡开始抓包，再点击Statistics菜单中的IO Graphs菜单项。

所谓测量网络吞吐量，既可以指测量两台末端设备之间（PC到服务器、IP电话到IP电话、PC到Internet）的通信线路的流量，也可以指测量发往具体的某一种应用程序的流量[1]，请看图6.7。

[image:]

图6.7

测量某条链路、某一对末端设备之间或某条连接的流量，了解流量的来源，往往是定位网络故障的第一步。

常规的流量测量方法包括测量主机到主机的流量、测量发往某指定服务器的所有流量、测算发往某指定服务器上运行的某种应用程序的所有流量、统计某指定服务器发生的与TCP性能有关的所有现象等。

6.3.2　测量方法　　　　

本节会给出若干测算网络流量时常用的显示过滤器。

1．测量下载/上传流量

图6.8和图6.9所示为根据抓包文件CAP_1674_06_03，用I/O Graphs工具生成的流量图。生成抓包文件时，有一台IP地址为10.0.0.10的PC在浏览网页的同时还在观看YouTube网站上的视频。

[image: 0608]

图6.8

[image: 0609]

图6.9

在图6.8和图6.9所示的I/O Graphs窗口中，配置了两个显示过滤器，并根据这两个显示过滤器分别生成了名为Downstream和Upstream的流量图。

 	Downstream流量图：显示了发往IP地址10.0.0.10的所有流量（根据显示过滤器ip.dst==10.0.0.10生成），颜色为红（上面的线状图），表示的是下载（下行）流量。

 	Upstream流量图：显示了源于IP地址10.0.0.10的所有流量（根据显示过滤器ip.src==10.0.0.10生成），颜色为绿（下面的线状图），表示的是上传（上行）流量。

由图6.8可知，流量图Downstream和Upstream显示的测量结果所根据的参数是：将X轴的计时单位（Interval）配置为1秒，将Y轴的流量速率单位配置为数据包的个数/秒。于是，可以得出结论：用户在观看视频时，上下行数据包的个数之比约为1∶2。

根据图6.9所示的流量图Downstream和Upstream，可以获知观看高清视频所占用的合理带宽（单位为bit/s）。对于本例，用户观看的是YouTube网站上的视频。如读者所见，最初的下载流量峰值速率为10Mbit/s（点开视频窗口出现小的圆形箭头时），从那时起，持续观看视频的下载流量峰值速率为6Mbit/s。

由图6.8和图6.9还可以看出，上传和下载流量是非常不对称的，大部分流量都是下载流量。图6.10给出了答案。

[image:]

图6.10

由图6.10可知，IP地址为10.0.0.10的主机从googlevideo.com每收到（下载）两个数据包，必定会回发（上传）一个确认数据包，这就是上下行数据包的个数之比为1:2的原因所在（见图6.8）。然而，要是观察数据包的长度，则可以看到IP地址为10.0.0.10的主机每次接收的两个数据包的长度为1506字节，而每次回发的确认数据包的长度只有54字节。

2．测量两台末端设备之间的若干条数据流

要测量两台端设备之间的流量，应配置显示过滤器，让Wireshark筛选出相应的流量。

用Wireshark打开抓包文件CAP_1674_06_04，点击Statistics | Conversations，会立刻弹出Conversations窗口，如图6.11所示。在图6.11中，可以看到三条最繁忙的连线，如下所列。

 	终端服务器客户端192.168.1.192向终端服务器172.30.0.10发起的一条连线。

 	终端服务器172.30.0.10向数据库服务器172.30.0.22发起的两条连线。

[image:]

图6.11

针对上述3条连线配置的显示过滤器如下所列。

 	ip.addr==172.30.0.22 && tcp.port==57604 && ip.addr==172.30.0.10 && tcp.port==445

 	ip.addr==172.30.0.22 && tcp.port==58479 && ip.addr==172.30.0.10 && tcp.port==445

 	ip.addr==192.168.1.192 && tcp.port==45214 && ip.addr==172.30.0.10 && tcp.port==　3389

图6.12所示为基于抓包文件CAP_1674_06_04，用I/O Graphs工具，分别根据上述显示过滤器生成的名为MS-TSC、C-S Traffic 1、C-S Traffic 2的流量图。透过这三张流量图，可以观察到在终端服务器172.30.0.10向数据库服务器172.30.0.22发起的连线中有两次流量高峰。流量图C-S Traffic 1体现了右边的那次流量高峰（棕色），流量图C-S Traffic 2则体现了左边的那次（绿色）。

[image:]

图6.12

由于后两条连线（终端服务器->数据库服务器）所生成的流量远高于第一条连线（终端服务器客户端->终端服务器）所生成的流量，因此在图6.12中根本就看不清流量图MS-TSC（图中的虚线为作者添加）。为了看清流量图MS-TSC，作者取消勾选了流量图C-S Traffic 1、C-S Traffic 2，如图6.13所示。

[image:]

图6.13

由图6.13可知，第一条连线（终端服务器客户端->终端服务器）所生成的流量的峰值速率为240000bit/s（图中的虚线为作者添加）。

3．测量应用程序生成的流量

要想测量由某一种应用程序所生成的网络流量，从而达到评判其性能的目的，需先围绕该应用程序所监听的TCP/UDP端口号，或访问该应用程序所触发的TCP/UDP连接，配置显示过滤器，筛选相关流量。

借助I/O Graphs窗口，生成与某种应用程序挂钩的流量图的方法多种多样，下面介绍其中的一种。

 	在抓包主窗口的数据包列表区域内，任选一个隶属于由该应用程序所触发的UDP/TCP数据包（即在交换于固定的IP地址+固定的UDP/TCP端口号之间的数据流中任选一个UDP/TCP数据包）。

 	在选定的UDP/TCP数据包上单击右键，在弹出的菜单中选择Follow UDP stream或Follow TCP stream菜单项。

 	这么一点，将会导致Wireshark在其抓包主窗口顶部的Filter输入栏内自动生成一个显示过滤表达式，其格式为tcp.streameq<number>或 udp.streameq<number>，其中number表示这股TCP/UDP数据流在抓包文件中的编号。

 	进入IO Graphs窗口，点击“+”号按钮，将这一显示过滤表达式复制进Display Filter输入栏。在IO Graphs窗口的图形显示区域内，会显示出Wireshark针对这条TCP或UDP数据流生成的图形，如图6.14所示。

[image:]

图6.14

4．结合TCP事件分析功能来揭示TCP流在传输过程中发生的变故

要获悉某条指定的TCP数据流中发生了多少次干扰该数据流传输的事件，请按下列步骤行事。

1．用Wireshark打开一个抓包文件（本例打开的抓包文件文件名为CAP_1674_06_06，也可以在Wireshark启动窗口内双击一块网卡，开始抓包），点击Statistics | I/O Graph，激活I/O Graphs窗口。

2．在I/O Graphs窗口中，针对抓包文件应用显示过滤器tcp.stream eq 0，生成第一幅流量图。该图会显示抓包文件中编号为0的这股TCP流的流量速率。

3．针对抓包文件应用显示过滤器tcp.stream eq 0 and tcp.analysis.retransmissions，生成第二幅流量图。该图会显示抓包文件中编号为0的这股TCP流的流量速率。该图会显示抓包文件中编号为0的这股TCP流中发生的TCP重传事件（可据此来获悉是否存在末端设备传递数据不畅等现象）。

以上两幅流量图如图6.15所示。

[image:]

图6.15

第10章会介绍如何使用I/O Graphs工具来深入分析TCP流量。

6.3.3　幕后原理　　　　

I/O Graphs工具的强大之处要立足于操作者对显示过滤器的熟练配置，并生成通俗易懂的各种形状的图形。通过I/O Graphs工具，可以基于数据包的任何特征来制定显示过滤器，随意监控流量。

6.3.4　拾遗补缺　　　　

I/O Graphs工具的强大之处体现在，可把由各种显示过滤器筛选出的流量，以各种图形的方式加以展现。在显示过滤器的帮助下，无论是哪一种数据包，无论其具有哪一种特征，都能通过/IO Graphs工具以各种图形的方式加以展示。

用I/O Graphs工具生成必要的图形，可以一目了然地在抓包文件（本例抓包文件名为CAP_1674_06_07）中查看指定用户发送的SMS消息。

1．配置显示过滤器，筛选出包含Submit_SM命令的SMPP（Short Message Peer to Peer）数据包。Submit_SM命令是发送SMS的SMPP命令。

2．要筛选这种SMPP数据包，显示过滤表达式的写法为smpp.destination_addr == "phone number"。对于本例，请在I/O Graphs窗口中输入显示过滤器smpp.source_addr == 0529992525，如图6.16所示。

[image:]

图6.16

通过I/O Graphs工具生成的图形，还可以直观反映抓包文件（CAP_1674_06_08）中HTTP请求的次数。

1．用Wireshark打开一个抓包文件（或在Wireshark启动窗口内双击一块网卡，开始抓包），点击Statistics | I/O Graphs，激活I/O Graphs窗口。

2．在I/O Graphs窗口中输入显示过滤器http.request。

3．会得到图6.17所示的图形。

[image:]

图6.17

图6.17可以很直观地反映出含HTTP请求的数据包的速率（单位为数据包/秒）。

本节的目的是展示I/O Graphs工具的基本功能。在介绍相关协议的随后章节里，会使用I/O Graphs工具来深入分析各种协议的行为。

6.4　启用Y轴其他参数的I/O Graphs工具的高级用法

前几节都是在介绍I/O Graphs工具的常规用法，在由该工具生成的有关反映网络性能的图形中，采用的Y轴参数（对应于I/O Graphs窗口中显示过滤器配置区域的Y Axis一栏中下拉菜单的各个菜单项）仅限于Packets/Interval（数据包/计时单位）、Bytes/Interval（字节/计时单位）或Bits/Interval（位/计时单位）。不过，还有一些网络性能指标在使用图形方式表示时，是无法使用以上三种速率单位的。比如，某些查询和响应消息之间的时差、数据帧接收（抓取）时间间隔、网络延迟，以及本节将要测量的其他网络性能指标。这也正是Y Axis一栏的下拉菜单还包含其他菜单项的原因所在，在Wireshark版本1的I/O Graphs窗口中，这些菜单项对应于Y轴区域内Unit下拉菜单中的Advanced选项。

6.4.1　使用准备　　　　

在I/O Graphs窗口的显示过滤器配置区域内，点击Y Axis一栏的下拉菜单，如图6.18所示。

[image:]

图6.18

除了之前介绍过的Packet、Bytes和Bits以外，还有以下菜单项（Y轴参数）可供选择。

 	SUM（Y Field）：只要在其右边的Y Field输入栏内填入适当的条件（比如，显示过滤参数ip.len），Wireshark就会统计在每个计时单位内（具体的计时单位通过选择控制X轴参数的Interval下拉菜单项来指定），实际传输的IP数据包的总字节数（即累加相关IP数据包包头的总长度字段值，可通过在Filter输入栏内填入显示过滤表达式来指明具体计算哪一类IP数据包的总字节数），并生成相关图形[2]。

 	COUNT FRAMES（Y Field）：只要在其右边的Y Field输入栏中填入适当的条件，Wireshark就会统计在每个计时单位内发生的匹配该条件的现象，并生成相关图形。

 	COUNT FIELDS（Y Field）：只要在其右边的Y Field输入栏中填入适当的条件（比如，某种协议头部中的字段名），Wireshark就会统计出在每个计时单位内所传数据包中该字段出现的次数，并生成相关图形。

 	MAX（Y Field）：只要在其右边的Y Field输入栏中填入适当的参数，Wireshark就会统计出在每个计时单位内所传数据包中相关参数的最高值，并生成相关图形。

 	MIN（Y Field）：只要在其右边的Y Field输入栏中填入适当的参数，Wireshark就会统计出在每个计时单位内所传数据包中相关参数的最低值，并生成相关图形。

 	AVG（Y Field）：只要在其右边的Y Field输入栏中填入适当的参数，Wireshark就会统计出在每个计时单位内所传数据包中相关参数的平均值。

 	LOAD（Y Field）：用来生成与响应时间有关的图形。

在Y Field输入栏内，可填入适当的条件，让I/O Graphs工具根据所填条件生成相应的图形。

6.4.2　使用方法　　　　

要使用含Y轴其他参数的I/O Graphs工具的高级功能，请按以下步骤行事。

1．启动Wireshark软件，先打开一个抓包文件（或双击一块网卡，开始抓包），点击Statistics菜单中的IO Graph菜单项。

2．在弹出的I/O Graphs窗口的显示过滤器配置区域中，点击Y Axis一栏的下拉菜单。

3．该下拉菜单除了包含Packet、Bytes和Bits菜单项以外，还包含了以SUM（Y Field）为首的其他菜单项（Y轴高级参数）。

4．可供选择的高级参数包括SUM（Y Field）、COUNT FRAMES（Y Field）、COUNT FIELDS（Y Field）、MAX（Y Field）、MIN（Y Field）、AVG（Y Field）、LOAD（Y Field）。

5．在下拉菜单的右边，还有一个Y Field输入栏，只有在其中填入了适当的条件，与其对应的Graph方能在IO Graphs窗口的图形显示区域露面。

接下来，将以举例的方式来说明含Y轴其他参数的I/O Graphs工具的高级用法。

1．生成数据帧接收（抓取）时间间隔统计图形

排除网络故障时，通过观察Wireshark抓包文件中相关数据帧（封装TCP报文段的数据帧）的抓取时间间隔，通常有助于判断出是否存在与TCP的性能和语音/视频等交互式应用的性能有关的问题。让I/O Graphs工具生成（封装TCP/UDP报文段的）数据帧抓取间隔时间统计图形，无疑是一种比较直观的了解TCP/UDP性能的方法。在使用I/O Graphs工具时，要配搭显示过滤参数frame.time_delta和frame.time_delta_displayed。

图6.19所示的I/O Graphs窗口基于抓包文件CAP_06_09。

[image:]

图6.19

由图6.19可知，在I/O Graphs窗口中配置了以下参数。

 	在显示过滤器配置区域内，应用了显示过滤器ip.src == 212.143.195.13，其作用是从抓包文件中筛选出源IP地址为212.143.195.13的IP数据包（从IP地址为212.143.195.13的公网Web站点发往抓包主机的IP数据包）。

 	在Y Axis一栏的下拉菜单中，选择了AVG (Y Axis)菜单项，用来显示平均帧间间隔时间。

 	在Y Field输入栏内，填入了显示过滤参数frame.time_delta，该参数是指当前帧与Wireshark所抓上一帧之间的（接收或抓取）时间间隔，即Wireshark在抓到了上一帧之后隔了多久，收到了当前帧。

 	在Interval下拉菜单中，选择了菜单项1ms。

 	以自抓包开始以来第176秒为中心，高度放大图形显示区域。

由经过高度放大的图形显示区域可知，Y轴的时间参数以微秒为单位，编号为9391的数据包和Wireshark所抓的前一个数据包之间的间隔时间为6349微秒。

可让I/O Graphs工具使用Y轴参数MAX (Y Field)/MIN (Y Field)/AVG (Y Field)，同时生成三幅图形。

图6.20所示为让I/O Graphs工具使用Y轴参数MAX (Y Field)/MIN (Y Field)/AVG (Y Field)，并施加显示过滤参数frame.time_delta，同时生成的以下三幅图形。

 	第一幅图（名称以AVG打头）。

 	在Display filter输入栏里填入了显示过滤语句ip.src ==212.143.195.13，目的是先在抓包文件中筛选出源IP地址为212.143.195.13的所有IP数据包，再根据筛选结果生成该图。

 	在Y Axis一栏的下拉菜单里选择了AVG(Y Field)菜单项。在其右边的Y Field输入栏内输入了显示过滤参数frame.time_delta，目的是让Wireshark生成在单位时间（10ms）内抓到的源IP地址为212.143.195.13的IP数据包（帧）的平均时间间隔图。

 	第二幅图（名称以MIN打头）。

 	在Display filter输入栏里填入了显示过滤语句ip.src ==212.143.195.13，目的是先在抓包文件中筛选出源IP地址为212.143.195.13的所有IP数据包，再根据筛选结果生成该图。

 	在Y Axis一栏的下拉菜单里选择了MIN(Y Field)菜单项，在其右边的Y Field输入栏内输入了显示过滤参数frame.time_delta，目的是让Wireshark生成在单位时间（10ms）内抓到的源IP地址为212.143.195.13的IP数据包（帧）的最短时间间隔图。

 	第三幅图（名称以MAX打头）。

 	在Display Filter输入栏里填入了显示过滤语句ip.src ==212.143.195.13，目的是先在抓包文件中筛选出源IP地址为212.143.195.13的所有IP数据包，再根据筛选结果生成该图。

 	在Y Axis一栏的下拉菜单里选择了MAX(Y Field)菜单项，在其右边的Y Field输入栏内输入了显示过滤参数frame.time_delta，目的是让Wireshark生成在单位时间（10ms）内抓到的源IP地址为212.143.195.13的IP数据包（帧）的最长时间间隔图。

[image: 0620]

图6.20

在图6.20所示的I/O Graphs窗口中，为了以更直观的方式体现那三幅图的区别，为第一幅图选择的图形风格为Impluse（脉冲线），为第二幅图选择的图形风格为Square（方框），为第三幅图选择的图形风格为Diamond（菱框）。图6.20中由Wireshark生成的在单位时间内抓取数据包（帧）的最长、最短以及平均间隔时间图到底有什么作用呢？能在排查网络故障时助我们一臂之力吗？在介绍具体协议的第10章和第19章会给出答案。

2．获悉TCP流中发生了多少次TCP事件

与TCP有关的事件多种多样，比如TCP重传事件、滑动窗口事件、重复ACK（或等不来ACK）事件等。要了解在某个时间段内发生过多少次与TCP有关的事件，还得动动I/O Graphs窗口中Calc下列菜单栏里Count（*）菜单项功能的脑筋，具体操作步骤如下所列。

图6.21所示为由抓包文件CAP_1674_06_10生成的Conversation窗口，窗口中可以看到两条TCP流（两次TCP对话）。

[image:]

图6.21

要想通过I/O Graphs工具来了解在这两次TCP对话期间发生过多少次TCP事件，请按以下步骤行事。

1．点击Statistics菜单中的I/O Graphs菜单项，打开I/O Graphs窗口。

2．在I/O Graphs窗口中，创建以下两幅图。

 	第一幅图：在该图形的Display filter输入栏内输入显示过滤器ip.addr==10.0.0.1 && tcp.port==57449 && ip.addr==92.122.12.174 && tcp.port==80。

 	第二幅图：在该图形的Display filter输入栏内输入显示过滤器ip.addr==10.0.0.1 && tcp.port==57627 && ip.addr==88.221.159.148 && tcp.port==80

 [image: 未标题-1]　注意

 可让Wireshark自动生成上述显示过滤器，具体方法是在Conversations窗口的TCP选项卡内选中一条TCP对话，单击右键，在弹出的Prepare a Filter菜单中选择Selected|A<->B，便会在Wireshark抓包主窗口中的显示过滤器工具栏内自动生成类似的显示过滤器。可将其复制进I/O Graphs窗口内相应图形的Display filter输入栏。在Wireshark抓包主窗口的数据包列表区域，选中隶属于该TCP对话的任一数据包，点击右键，在弹出的Follow菜单中选择TCP Stream子菜单项，也能让Wireshark自动生成起相同效果的显示过滤器。

3．配置Y轴参数。

 	在那两幅图形的Y Axis下拉菜单中选择COUNT FRAMES（Y Field）菜单项。

 	在Y Field 输入栏内，填入指代所有TCP事件的显示过滤参数tcp.analysis，也可以填入代具体TCP事件的显示过滤参数，比如tcp.analysis.retransmissionst或tcp.analysis.zero_window等。

 	当填入显示过滤参数tcp.analysis时，I/O Graphs窗口会显示图6.22所示的图形。

[image:]

图6.22

透过图6-22，能够很直观地观察到TCP事件分别集中发生在两个时段，可高度放大那两个时段的图形，来了解具体发生的TCP事件。

3．统计Y Field输入栏所指定的数据包的属性

Y Axis下拉菜单的COUNT FIELDS（Y Field）菜单项的功能是，统计Y Field输入栏所指定的数据包的属性（或协议的特征）在抓包文件（包含数据包）中出现的次数。在进行统计之前，可在Display filter输入栏内输入显示过滤器，对抓包文件做第一步的筛选。

COUNT FIELDS（Y Field）菜单项的使用方法如下所列。

 	在图形的Display filter输入栏内，输入显示过滤器。

 	在图形的Y Axis下拉菜单中，选择COUNT FIELDS（Y Field）菜单项。

 	在图形Y Field输入栏内，输入有待统计的数据包的属性（或协议特征）。

这就来举一个使用COUNT FIELDS（Y Field）菜单项的例子，如图6.23所示，该图所示的I/O Graphs窗口生成自抓包文件CAP_1674_06_11。

[image:]

图6.23

透过图6.23，可以很直观地了解到在指定时间单位（本例为1秒）内，I/O Graphs工具统计出的DNS A记录和AAAA记录在抓包文件（所含数据包）中出现的次数。峰值较高的图统计的是IPv4 DNS A记录，峰值较低的图统计的是IPv6 DNS AAAA记录。

6.4.3　幕后原理　　　　

I/O Graphs工具是Wireshark软件所奉献的最高效也是最强大的工具之一。标准的I/O Graphs工具可用来生成与网络性能有关的基本信息统计图，一旦启用了Y轴的其他参数，便可让I/O Graphs工具生成各种更为直观的图形（比如，生成与单股或多股TCP数据流有关的高级信息统计图）。

在I/O Graphs窗口的显示过滤器配置区域内，有一个Display filter输入栏，只要输入正确的显示过滤表达式，便可让I/O Graphs工具基于某一对主机的IP地址、某台服务器的IP地址或某条TCP连接来生成相关统计图形。要想获知流量的细节，就得启用Y轴的其他参数，激活IO Graphs工具的高级功能，下面举两个例子。

 	先在Display filter输入栏内输入显示过滤器，从抓包文件中筛选出TCP流量；再借助启用了Y轴其他参数的I/O Graphs工具，来获悉某条TCP数据流中各数据包之间的延迟差异[3]。

 	先在Display filter输入栏内输入显示过滤器，从抓包文件中筛选出视频/RTP流量；再借助启用了Y轴其他参数的I/O Graphs工具，来统计RTP数据包中M（Marker）位置1的数据包的数量[4]。

6.4.4　拾遗补缺　　　　

只要在I/O Graphs窗口的图形展示区域点对了地方（把鼠标移动到相关图形上时，若图形的左下角出现“click to select packet xxx（x=y）”字样，就表示点对了地方），就能在Wireshark抓包主窗口的数据包列表区域定位到相应的参考数据包。

6.5　TCP Stream Graphs菜单项中Time-Sequence（Stevens）子菜单项的用法

TCP Stream Graphs工具是Wireshark提供的用来深度分析应用程序行为的工具集。本节以及随后的几节会介绍如何使用这套工具来洞察应用程序的举动，并定位相关故障原因。

6.5.1　使用准备　　　　

启动Wireshark软件，打开一个抓包文件，或双击一块网卡开始抓包。虽然可在抓包的同时使用TCP Stream Graphs菜单项中的Time-Sequence(Stevens)工具，但该工具并不会在线实时生成统计信息，故建议在使用该工具之前，先停止抓包。

6.5.2　使用方法　　　　

要观看由TCP Stream Graphs菜单项下Time-Sequence（Stevens）工具生成的统计信息，请按以下步骤行事。

1．在抓包主窗口的数据包列表区域内，选中一个隶属于有待监控的某股TCP数据流的数据包。

 [image: 未标题-1]　注意

 在数据包列表区域内，隶属于某股TCP流的数据包，必然是有来有往。因此，在该区域内选择数据包，让TCP Stream Graphs工具生成统计信息时，要看清方向（要关注数据包的源和目的IP地址）。比方说，要让TCP Stream Graphs工具生成与HTTP下载流量有关的统计信息，就应该选择下行方向的数据包（即数据包的源IP地址为公网地址[源端口号一般为80]，目的IP地址为内网地址）。

2．选择Statistics菜单下的TCP Stream Graphs菜单项，点击其名下的Time-Sequence Graph （Stevens）子菜单项。

Sequence Numbers（Stevens）窗口会立刻弹出，如图6.24所示。

[image:]

图6.24

Time-Sequence Graphs（Stevens）子菜单项所生成的图形实际上反映的是，随着时间的推移，受监控的TCP对话在某个方向所传数据的字节数。出现在图6.34中的是一条几乎连续的斜线，中间有几处断裂。

 [image: 未标题-1]　注意

 Sequence Numbers（Stevens）窗口中的Y轴表示（TCP）序列号，作用是统计通过指定TCP对话传递的数据的字节数，但在图6.34中，作者将速率单位写成了数据包/秒。其实，数据包/秒和字节/秒没有区别——图中的每一个点都指向一个数据包（详见本节后文）。

在第10章会讲解该图所表示的内容，以及如何借助其来解决网络故障。

3．若受监控的TCP对话正在传输文件，那么为了获悉传输速率，只需计算单位时间内所传输的数据包的字节数，如图6.25所示。

[image:]

图6.25

4．由图6.25可知，该TCP连接（对话）在6秒内传输了350000字节，传输速率约为58000字节/秒，或58kbit/s。

5．Sequence Numbers（Stevens）窗口的Mouse | drags单选按钮是默认点选的。此时，可以按住鼠标左键上、下、左、右拖拽图形。比方说，可以拖拽图形靠近Y轴，来查看指定数据包的序列号。

 [image: 未标题-1]　注意

 在点选了Mouse | drags单选按钮的情况下，还可以用鼠标滚轮或同时按下Ctrl和“+”或“−”键缩放图形。

6．Mouse | zooms单选按钮一经点选，便开启了图形的局部放大功能。图6.26所示为如何对图形局部放大两次，以获悉特定的时间周期内TCP对话的细节。由图6.26可知，局部放大的时段为自抓包开始的第16～第19秒之间。

[image:]

图6.26

7．以下是对Sequence Numbers（Stevens）窗口内的其他配置按钮、菜单的介绍。

 	Type下拉菜单：位于窗口左下角，在Mouse | drags单选按钮的上面。该菜单名下的各个菜单项包括Time/Sequence (Stevens)、Round Trip Time、Throughput、Time/Sequence (tcptrace)、Window Scaling，如图6.27所示，这些菜单项分别对应不同类型的TCP流图。

[image:]

图6.27

 	Stream输入栏：位于窗口右下角，用来显示图形中呈现的TCP流在抓包文件中的编号，也可以指定编号，让Wireshark生成相应TCP流的图形。

 	Switch Direction按钮：位于Stream输入栏的右边。该按钮一经点击，Wireshark便会针对相反方向的同一条TCP对话生成流量图。若之前选择显示TCP对话为从服务器到客户机的数据下载方向，则相反方向是指客户机响应服务器的同一条TCP对话的数据上传方向——对于一条TCP对话而言，在上传方向，一般都是客户机发给服务器的TCP确认报文段。

 	Reset按钮：位于Switch Direction按钮的下方。该按钮一经点击，图形将会恢复原状。

 	Help按钮：一经点击，Wireshark便会弹出帮助手册，并自动定位至TCP Stream Graphs相关主题。

 	Save As按钮：用来将图形保存至硬盘，存盘文件支持的格式有.pdf、.png、.bmp或.jpg。

6.5.3　幕后原理　　　　

要想针对某股TCP数据流，统计抓包时段内在某个指定方向上传输的数据包的字节数（包括应用程序头部），只需统计相关数据包的TCP头部中的序列号字段值。TCP Stream Graph菜单项下的Time-Sequence Graph (Stevens)工具行使的就是这个功能，只是以图形的方式加以呈现。

图中的每一个点实际上都对应抓包文件中的一个TCP报文段，而每一个点所对应的Y轴的坐标值，都表示相应TCP报文段的序列号字段值（相对序列号）。这样统计出来的字节数实际上只包括了在某个方向上传输的（经由TCP头部封装的）应用程序数据（包含应用程序头部，但不含以太网头部、IP包头及TCP头部），如图6.28所示。

[image:]

图6.28

通过TCP Stream Graphs菜单项中的Time-Sequence Graph (Stevens)工具所生成的图形，对分析基于TCP的应用程序的举动大有裨益（对此将后文再表）。比方说，一条“连绵不断”的斜线就预示着正常的文件传输，而斜线要是“时断时续”，则表示文件传输存在问题；斜线的角度越大，就表示文件的传输速率极高，反之，则表示文件传输缓慢（当然，还得视X、Y轴的刻度而定）。

6.5.4　拾遗补缺　　　　

在Sequence Numbers（Stevens）窗口内，一旦点选了Mouse | drags单选按钮，用鼠标左键单击图形中的一个点，即可在抓包主窗口的数据包列表区域定位到与其相对应的数据包。由图6.29可知，在抓包开始的第15.24秒，该TCP对话发出了8119号数据包，其序列号字段值略高于872,000，约0.1秒之后，又发出了8191号数据包，其序列号字段值与8119号数据包相同。

[image:]

图6.29

只要在图6.29所示的Sequence Numbers（Stevens）窗口中点击表示8119号和8191号数据包的那两个点，即可在Wireshark抓包主窗口的数据包列表区域定位到8119号和8191号数据包。图6.30所示为点击8119号数据包的结果，由图可知，8119号数据包捕获于第15.248秒，其TCP头部中的序列号字段值为872674。

[image:]

图6.30

图6.31所示为点击8191号数据包的结果，由图可知，8191号数据包捕获于第15.25秒，其TCP头部中的序列号字段值仍为872674。

[image:]

图6.31

观看图形时，一定要清楚此图是针对哪一种应用程序生成的。用TCP Stream Graphs菜单项中Time-Sequence Graph（Stevens）工具生成的相似的图形，对A应用程序来说可能是正常的，但对B应用程序来说则未必。

6.6　TCP Stream Graphs菜单项中Time-Sequence（tcptrace）子菜单项的用法

TCP Stream Graphs菜单项中的Time-Sequence（tcptrace）子菜单项功能脱胎于UNIX tcpdump工具，可提供有待监控的TCP连接的诸多详细信息。可用这些信息来分析与此TCP连接有关的种种问题，包括TCP确认、TCP重传，以及TCP窗口大小等信息。

6.6.1　使用准备　　　　

启动Wireshark软件，打开一个抓包文件，或双击一块网卡，开始抓包。虽然可在抓包的同时使用TCP Stream Graphs菜单项中的Time-Sequence（tcptrace）工具，但该工具并不会在线实时生成统计信息，故建议在使用之前，先停止抓包。本节使用的示例抓包文件为CAP_1674_06_05和CAP_1674_06_14。

6.6.2　使用方法　　　　

要观看由TCP Stream Graphs菜单项下Time-Sequence（tcp-trace）工具生成的统计信息图，请按以下步骤行事。

1．在抓包主窗口的数据包列表区域内，选中一个隶属于有待监控的某股TCP数据流的数据包。对于本例，选中的是抓包文件CAP_1674_06_05中的第100号数据包，隶属于编号为0的TCP流。

 [image: 未标题-1]　注意

 在数据包列表区域内，隶属于某股TCP流的数据包，必然是有来有往。因此，在选择数据包，让TCP Stream Graphs工具生成统计信息时，要看清方向（要关注数据包的源和目的IP地址）。比方说，要让TCP Stream Graphs工具生成与HTTP下载流量有关的统计信息，就应该选择下行方向的数据包（即数据包的源IP地址为公网地址[源端口号一般为80]，目的IP地址为内网地址）。

2．从Statistics菜单中选择TCP Stream Graphs Time Sequence（tcptrace）。选择Statistics菜单下的TCP Stream Graphs菜单项，点击其名下的Time-Sequence（tcp-trace）子菜单项。

3．Sequence Numbers（tcptrace）窗口会立刻弹出，如图6.32所示。出现在图形顶部的副标题列出了抓包文件名。

[image:]

图6.32

4．图6.33所示为在图6.32特定区域用鼠标圈出一块然后进行放大之后的样子。

[image:]

图6.33

5．Sequence Numbers（tcptrace）窗口中的图形反映的是，抓包时段内受监控的TCP对话在某个方向上传输数据的进展情况。在图6.33中，可以看到：

 	一条条短的垂直蓝线，表示通过受监控的TCP对话（连接）发送的TCP报文段；

 	蓝线下面的棕线图形，表示逆向的TCP确认报文段；

 	蓝线上面的绿线图形，表示数据包发送过程中接收端TCP窗口大小。棕线和绿线之间的空间表示TCP接收端剩余的TCP缓冲区的大小，TCP接收端的TCP缓冲区用来限制TCP发送端向TCP接收端发送的数据量。当棕线和绿线彼此靠拢直至重叠时，就表示接收端窗口渐满，发送端需降速或停止发送数据。

6．对图6.43中的图形进一步地放大，如图6.34所示。

[image: 0634]

图6.34

通过图6.34所示的图形，可以了解到以下情况：

 	发送端在抓包开始的第75秒发出了几个数据包；

 	那几个数据包在发出后约80～90毫秒（抓包开始的第75.08～第75.09秒）得到了接收端的确认；

 	接收端的空闲窗口大小约为7000字节，对应于Y轴的序列号区间271000～264000。

要想在Wireshark抓包主窗口的数据包列表区域里验证上述情况，请先在Sequence Numbers（tcptrace）窗口中点选Mouse | drags单选按钮，再到该窗口的图形区域用鼠标点击其中表示数据包的蓝色短线。这么一点，便会在数据包列表区域定位到相应的数据包，通过Info一栏即可了解到该数据包的一般信息，如图6.35所示。

由图6.35所示的Wireshark抓包主窗口可知，发送端发出了6个携带数据的IP数据包，其源IP地址为10.0.0.10，目的IP地址为172.217.22.80。这6个数据包是同一个TCP数据包的所有分段，故而会在开始抓包的第74.99秒左右集中发送。接下来，还可以看到接收端发出的6个纯TCP确认报文段，通过Info一栏，可以获悉接收端的空闲接收窗口大小约为7,000字节，与图6.34所示图形中绿线和棕线之间的Y轴距离匹配。

[image:]

图6.35

6.6.3　幕后原理　　　　

TCP Stream Graphs菜单项下的Time-Sequence（tcptrace）子菜单项功能脱胎于UNIX tcpdump命令，启用该菜单项功能，就会让Wireshark统计（指定TCP对话在特定方向上）由TCP接收端所通告的TCP窗口大小（TCP接收端分配给该TCP会话的系统缓存容量）、重传的数据包以及对所收数据的确认（ACK）情况等。

由Time-Sequence（tcptrace）子菜单项功能生成的图形反映出的信息量极其丰富，可为网络排障的诊断提供重要的线索。这样的曲线图能栩栩如生地反映出TCP数据发送过程中的诸多现象，比如，TCP窗口的填充速度高于预期以及大量TCP重传等现象。

6.6.4　拾遗补缺　　　　

在某些情况下，尤其是用TCP高速数据传输的情况下，由Time-Sequence（tcptrace）工具生成的图形看起来可能像是一条斜率完美而又从不间断的直线，但只要对这道直线加以放大，便会发现某些问题。

图6.36所示为用Time-Sequence（tcptrace）工具基于抓包文件CAP_1674_06_14生成的图形。

[image: 0636]

图6.36

对图6.36所示Sequence Numbers窗口中的图形加以放大，即可发现在数据发送过程中存在的发送停顿、TCP重传等问题，如图6.37所示。

[image:]

图6.37

由图6.37可知，在第58.8～59.8秒之间，发送端只发送了14000字节的数据（Y轴序列号之差），与该TCP对话的其他时段所发数据相比，该时段发送速率极为缓慢。

经过放大的图形中的每个小竖条都表示携带应用层数据的TCP报文段，其TCP起始序列号（小竖条的尾部所在位置）和终止序列号（小竖条的头部所在位置）都与Y轴（Sequence Number）上的数字相对应。脱离于大部队的小竖条表示TCP重传，而灰色的小竖条则表示重复确认。第11章会细述诸如TCP重传和重复确认之类的TCP事件。

6.7　TCP Stream Graphs菜单项中Throughput Graph子菜单项的用法

借助于TCP Stream Graphs菜单项中的Throughput Graph子菜单项功能，不但能了解某条TCP连接的吞吐量，而且还能根据具体的应用程序，判断TCP连接是否稳定。

6.7.1　使用准备　　　　

启动Wireshark软件，打开一个抓包文件，或双击一块网卡，开始抓包。虽然可在抓包的同时使用TCP Stream Graphs菜单项中的Throughput Graph工具，但该工具并不会在线实时生成统计信息，故建议在使用其之前，先停止抓包。

6.7.2　使用方法　　　　

要观看由TCP Stream Graphs菜单项下Throughput Graph工具生成的统计信息图，请按以下步骤行事。

1．在抓包主窗口的数据包列表区域内，选中一个隶属于有待监控的某股TCP数据流的数据包。

2．选择Statistics菜单下的TCP Stream Graphs菜单项，点击其名下的Throughput Graph子菜单项。

3．Throughput窗口会立刻弹出，如图6.38所示。

[image: 0637b]

图6.38

图6.37所示的Throughput窗口呈现的是示例抓包文件CAP_1674_06_14中编号为0的TCP流的吞吐量图。透过此图，可以了解到以下情况。

 	TCP连接的吞吐量。对于本例，这条编号为0的TCP连接的吞吐量约为700～800kbit/s。

 	TCP报文段的长度（TCP数据净载的长度）。

 [image: 未标题-1]　注意

 在数据网络领域，对数据单元的学名（正式名称）的定义随数据单元本身所处OSI层而异——在第2层叫帧（比如，以太网帧），在第3层叫数据包（比如，IP数据包），在第4层叫报文段（segment）或数据报（datagram）（比如，TCP报文段或UDP数据报）。协议数据单元（Protocol Data Unit，PDU）是上述各种数据单元的通用名称。在大多数情况下，都会使用帧或数据包之类的术语，本书也是如此，但有很多时候会引起混淆。不管怎样，重要的是要理解本书所讨论的内容与哪一层有关，具体的称谓如何并不重要。

Throughput Graph 工具所生成的图形所能呈现的网络状况或许不如 Time-Sequence（tcptrace）和Time-Sequence（Stevens）工具所反映的那么全面，但仍可以栩栩如生地反映出应用程序吞吐量的骤然降低，从而预示着网络存在问题。

6.7.3　幕后原理　　　　

TCP Stream Graphs菜单项下的Throughput Graph工具只统计单位时间内在某一指定方向上发送的数据包的字节数，亦即统计数据包的TCP头部中的序列号字段值，然后再以图形的方式加以呈现。因此，以此统计出来的吞吐量（流量传输速率）实际上只是在某个方向上传输的经由TCP头部封装的应用程序数据（包含应用程序头部，不含IP包头及TCP头部）的吞吐量，单位为字节/秒（byte/s）。

6.7.4　拾遗补缺　　　　

若TCP连接的数据传输速率非常稳定，则Throughput Graph工具生成的图形将几乎不会有太大的波动，如图6.39左侧的图形所示；否则，Throughput Graph工具生成的图形会忽高忽低，出现大幅波动，如图6.39右侧的图形所示。

[image:]

图6.39

I/O Graphs工具也可以生成类似的吞吐量图。需要注意的是，I/O Graphs工具会基于抓包文件包含的数据包生成双向的吞吐量图，而Throughput Graph工具只会基于指定的数据包所隶属的某条TCP流生成单向的吞吐量图。若在I/O Graphs窗口中应用了正确的显示过滤器，则同样可以生成Throughput Graph工具所生成的单向TCP对话的吞吐量图（单位为字节/秒）。

6.8　TCP Stream Graphs菜单项中Round Trip Time Graph子菜单项的用法

借助于TCP Stream Graphs菜单项中的Round Trip Time Graph子菜单项功能，能了解到某条TCP连接中特定方向上的所有TCP报文段的往返时间（RTT）。所谓某TCP报文段的往返时间，是指TCP接收方从发出具有某特定序列号字段值的TCP报文段，到收到接收方的TCP确认报文段所经历的时间。通过观察Round Trip Time Graph工具生成的图形，可以很好地了解指定TCP连接的性能。

6.8.1　使用准备　　　　

启动Wireshark软件，打开一个抓包文件，或双击一块网卡，开始抓包。虽然可在抓包的同时使用TCP Stream Graphs菜单项中的Round Trip Time Graph工具，但该工具并不会在线实时生成统计信息，故建议在使用其之前，先停止抓包。

本小节会用Round Trip Time Graph工具基于抓包文件CAP_1674_06_13中编号为8的TCP流（隶属于该TCP流的一个数据包是抓包文件中的第85号数据包）来生成示例图形。

6.8.2　使用方法　　　　

要观看由TCP Stream Graphs菜单项下Round Trip Time Graph工具生成的统计信息图，请按以下步骤行事。

1．在抓包主窗口的数据包列表区域内，选中一个隶属于有待监控的某股TCP数据流的数据包。

2．选择Statistics菜单下的TCP Stream Graph菜单项，点击其名下的Round Trip Time Graph子菜单项。

3．Round Trip Time窗口会立刻弹出，如图6.40所示。

[image:]

图6.40

4．由图6.39可知，通过该TCP对话发送的大多数字节（序列号）在很短的时间内都得到了确认，只是有些不太稳定性，会影响TCP的性能。

5．要想用I/O Graphs工具生成这一图形，请使用显示过滤器tcp.analysis.ack_rtt[5]。

6．在Round Trip Time窗口内，可点选Mouse | zooms单选按钮，启用图形的局部放大功能，更细致地观察该TCP对话在发送某些字节（序列号）时的确认情况。

6.8.3　幕后原理　　　　

由TCP Stream Graphs菜单项下Round Trip Time Graph工具生成的图形实际上为（通过该TCP会话发送的TCP报文段的TCP头部的）序列号字段值与（收到的相应确认TCP报文段所耗）时间之间的关系图。也就是说，该图会记录下该TCP连接中在指定方向上传输的每一个TCP报文段从发出直至收到接收方的确认所消耗的时间。

6.8.4　拾遗补缺　　　　

在Wireshark抓包主窗口的数据包列表区域内，选中一个TCP（纯）ACK数据包，便可在其数据包结构区域的底部查看到显示过滤参数tcp.analysis.ack_rtt的值，如图6.41所示。

[image:]

图6.41

要是Round Trip Time Graph工具生成的图形所反映的TCP RTT值并不稳定，也不能说就一定存在问题，这或许是应用程序的天性使然。TCP发送方要耗时良久才能等来相应的TCP确认报文段，原因不外有三：真的存在问题；服务器正在等待响应；用户在浏览Web服务器的同时，又点开了新的连接。

在Wireshark版本2的TCP Stream Graphs菜单项名下的所有子菜单项窗口中，右下角都有一个Type下拉菜单，可利用其来任意切换各种图形。

6.9　TCP Stream Graphs菜单项中Window Scaling Graph子菜单项的用法

借助于TCP Stream Graphs菜单项中的Window Scaling Graph子菜单项功能，能了解到通过TCP连接传送数据时，由接收方所通告的窗口大小。对于任何一条TCP连接，当接收方发送TCP报文段，确认收到的数据时，会以设置TCP头部中窗口字段值的形式，向发送方通告本方接收数据的能力。通过观察Window Scaling Graph工具生成的图形，即可很好地了解指定TCP连接的性能。

6.9.1　使用准备　　　　

启动Wireshark软件，打开一个抓包文件，或双击一块网卡，开始抓包。虽然可在抓包的同时使用TCP Stream Graphs菜单项中的Window Scaling Graph工具，但该工具并不会在线实时生成统计信息，故建议在使用之前，先停止抓包。

6.9.2　使用方法　　　　

要观看由TCP Stream Graphs菜单项下Window Scaling Graph工具生成的统计信息图，请按以下步骤行事。

1．在抓包主窗口的数据包列表区域内，选中一个隶属于有待监控的某股TCP数据流的数据包。

2．选择Statistics菜单下的TCP Stream Graph菜单项，点击其名下的Window Scaling Graph子菜单项。

3．Window Scaling窗口会立刻弹出，如图6.42所示。

[image: 0641]

图6.42

透过图6.42，可以很明显地看出由接收方或发送方所导致的数据传输性能下降问题。原因可能是服务器或客户端主机反应较慢，不能迅速处理收到的所有数据。于是，接收方便以降低接收窗口的形式，告知发送方：自己的接收能力有限，请不要发得太快。

6.9.3　幕后原理　　　　

TCP Stream Graphs菜单项下的Window Scaling Graph工具会记录在TCP连接的指定方向上传递的每一个TCP报文段的（TCP头部的）窗口字段值，然后再以图形的方式加以呈现。与TCP窗口有关的内容，详见第10章。

6.9.4　拾遗补缺　　　　

当TCP接收方所通告的窗口变窄时，相关应用程序的吞吐量也会相应降低。TCP窗口大小完全受控于建立TCP连接的两个端点（亦即服务器和客户端主机），TCP窗口大小的变化与网络自身的性能无关。

[1]　译者注：原文是“When measuring the throughput, we can measure it on a communication line between end devices (PC to server, phone to phone, PC to the internet) or to a specific application”。

[2]　译者注：原文只有一句“Draws a graph with the summary of a parameter in the tick interval”。译者不才，一句英文要用这么多汉字来译，要是读者嫌烦，请视而不见。

[3]　译者注：原文是“On the left—TCP stream. On the right—time delta between frames in the stream”。

[4]　译者注：原文是“On the left—video/RTP stream. On the right—occurrence of a marker bit”。

[5]　译者注：原文是“If you want to see this graph in the I/O graphs, use the tcp.analysis.ack_rtt filter”。按照作者的描述，用I/O Graphs工具应该生成不了图6.40所示的图形。

第7章　Expert Information工具的用法

本章将介绍Expert Information工具的用法，该工具可对网络中的各种风吹草动（各种网络事件或网络故障）做深层次的分析。本章涵盖以下内容：

 	如何借助Expert Information工具排除网络故障；

 	认识Errors事件；

 	认识Warnings事件；

 	认识Notes事件。

7.1　简介

Expert Information工具是内置于Wireshark软件中的最强大的工具之一，该工具不但能在抓包过程中自动识别网络中发生的异常情况，甚至还能给出导致异常情况的具体原因。本章将介绍Expert Information工具的用法。本书后文还会细述如何将该工具与其他工具相结合，来发现并解决网络故障。

 [image: 未标题-1]　注意

 用Wireshark对网络、通信链路、主机服务器做第一次检查时，即可动用Expert Information工具，让Wireshark自行诊断抓到的首批流量。这样一来，便可在对流量做进一步的分析之前，获悉在网络中发生的与故障相关联的各种事件。应把注意力集中在持续发生的事件，比如，TCP重传、以太网校验和错误、DNS问题以及IP地址冲突等事件。

7.2节会介绍在排除网络故障时如何使用Expert Information工具，随后几节会描述如何解读由该工具生成的信息。

7.2　如何使用Expert Information工具排障网络故障

借助于Expert Information工具，可获知由Wireshark软件在抓包过程或抓包文件中识别出的各种网络事件和异常情况。本节会介绍如何启动Expert Information工具，以及如何发现各种网络事件。

7.2.1　使用准备　　　　

启动Wireshark软件，先打开一个抓包文件，或双击一块网卡，开始抓包。

7.2.2　使用方法　　　　

要使用Expert Information工具，请在抓包主窗口内选择Analyze菜单，点击其名下的Expert Information菜单项，如图7.1所示。

[image:]

图7.1

Expert Information窗口会立刻弹出，该窗口会显示一张事件列表，如图7.2所示。

[image: 0702]

图7.2

由图7.2可知，在Expert Information窗口的事件列表中，会把Wireshark软件在抓包文件（本例为CAP_07_01）中感知到的所有有效事件按严重程度（Severity）——Error、Warning、Note、Chat，以及Packet Comment（如存在）——由高到低依次列出。

 [image: 未标题-1]　注意

 在Expert Information窗口的事件列表里，最右边的一栏名为Count，Count栏里的数字显示的是各种事件发生的次数。

以下所列为可能出现在Severity一栏里的事件。

 	Error：表示Wireshark在抓到的数据包中感知到或识别出了严重的错误。比如，感知到了“畸形”数据包（畸形的SPOOLSS或GTP协议数据包等），或者识别出了某些数据包的某种协议头部的某些字段值跟预期值不符（比如，以太网帧的以太网校验和错误，以及IPv4数据包的IP包头的校验和字段值跟预期值不符［IPv4数据包通不过校验和检查］等）。图7.3所示为当Wireshark识别出某些以太网帧存在以太网校验和错误时，在Expert Information窗口中显示的Error事件的各种子事件。

[image:]

图7.3

点击Error左侧的小三角形，即可展开该Error子事件，观察到该子事件名下（符合该Error子事件特征）的所有数据包。点击任一数据包，都可以在抓包主窗口的数据包列表区域定位到该数据包。

 	Warning：表示Wireshark在抓到的数据包中感知到或识别出了一般性问题。比如，感知到了存在TCP zero window、TCP window full、TCP报文段失序、TCP报文段丢失等现象，或识别出了相关网络协议在运作时生成的数据包的内容与正常情况不一致。所谓一般性问题几乎都是应用程序问题或通信问题。图7.4所示为Wireshark在抓包文件中感知到的符合Warning事件特征的各种子事件。

[image:]

图7.4

 	Note：表示Wireshark在抓到的数据包中感知到了可能会引发故障的异常现象。比如，感知到了TCP重传、重复确认以及快速重传等现象。虽然上述现象可能会对网络产生严重影响，但也属于TCP的正常行为。Wireshark认为某些数据包符合Notes事件的特征，只是想提醒用户，这些数据包有导致问题的嫌疑。图7.5所示为Note事件的各种子事件。比如，TCP重传和TCP重复确认等。发生了这样的事件，可能会对网络性能产生影响（比如，某种应用程序的运行速度变慢），但仍属于TCP协议的正常行为。

[image:]

图7.5

 	Chat：被Wireshark归类为Chat事件的数据包都符合常规流量的特征。Chat事件的子事件包括TCP window update（TCP窗口更新）、TCP connection establish request（TCP连接建立请求）（SYN）、TCP connection establish acknowledge（TCP连接建立确认）（SYN + ACK）、TCP connection finish（TCP连接建立终止）（FIN）、TCP connection reset（TCP连接重置）（RST）以及包含多种状态码的各种HTTP事件（比如，HTTP GET和HTTP POST）等，如图7.6所示。

[image:]

图7.6

 	Packet Comment：可在抓包主窗口的数据包列表区域内给每个数据包添加注释信息。Wireshark会把含注释信息的数据包一一记录在案，并归类为Packet Comment事件，置入Expert Information窗口。

 [image: 未标题-1]　注意

 要想给某个数据包添加注释信息，请先在抓包主窗口的数据包列表区域选中该数据包，再单击右键，在弹出的菜单中点击Packet Comment菜单项（见图7.7），然后在弹出的Packet xxx（数据包编号）Comment 窗口内输入所要添加的注释信息。

[image:]

图7.7

Expert Information工具的常规操作说明如下。

 	在Expert Information窗口的底部，有Limit to Display Filter和Group by summary复选框，外加一个Search输入栏，可在该输入栏内输入指定的关键字，来搜索相应的事件。

 	在Expert Information窗口中，点击事件名称之前的小三角形，展开该事件，再点击该事件名下的数据包，即可在Wireshark抓包主窗口的数据包列表区域定位到该数据包[1]。

 [image: 未标题-1]　注意

 需要注意的是，在某些情况下，Wireshark感知到的某些Warning事件可能无关紧要，但识别出的某些Note事件却偏偏会影响网络性能。排除网络故障时，需关注其内在，切勿只看表面。只有如此，方能查明故障的来源。

 	Expert Information窗口中事件列表的第三列名为Gruop，表示该事件所属的分类或分组。由图7.8可知，事件列表中的第一行（Warning事件的第1个子类）属于TCP协议的Sequence类事件（1）。事件列表中的第3行（Warning事件的第3个子类）属于RPC_Browser协议的Protocol类（2）。事件列表中的第7行（Note事件的第2个子类）属于IPv4协议的Sequence类（3）。Group名称相同的事件都符合相同的特征，比方说，发生在某种协议的数据包上的与序列号参数有关的Sequence类事件。

[image:]

图7.8

7.2.3　幕后原理　　　　

Expert Information工具是内置于Wireshark中的一套专家系统，能自动提供与网络异常状况有关的信息，在某些情况下，还能给出导致网络异常的可能原因。对于这套专家系统的诊断结果，无论是否合乎情理，总是需要再三分析。

Wireshark摆乌龙的情况时有发生，既有可能是杯弓蛇影，谎报军情（误报故障）；也有可能会一叶障目（感知不到网络的异常状况）。

 [image: 未标题-1]　注意

 不要忘记，解决网络故障靠的是网管人员的大脑以及知识储备。Wireshark虽然非常智能，但毕竟只是工具。

当出于某种原因（有利或不利原因），只能抓到部分数据（未能抓全数据）时，由于Wireshark并不知道自己所抓数据不完整，因此便会通过Expert Information工具来指出网络中存在异常状况。本书后文所举诸多示例都涉及这种情况。

7.2.4　拾遗补缺　　　　

可基于Expert Information工具所生成的事件信息或划定的事件分类，来配置显示过滤器，让Wireshark只显示符合某种事件特征的数据包。为此，请按以下步骤行事。

1．点击抓包主窗口中显示过滤器输入栏右边的Expression按钮。

2．在弹出的Display Filter Expression窗口的左侧找到Expert-Expert Info配置选项（在底部的Search一栏内输入expert，可自动定位到Expert-Expert Info配置选项）。

3．点击Expert-Expert Info配置选项前面的小三角形，将显示出_ws.expert.message- Message、_ws.expert.group-Group和_ws.expert.severity-Severity level 这三个显示过滤参数，如图7.9所示。

[image:]

图7.9

下面是对那三个显示过滤参数的解释。

 	expert.group所指为Expert Information工具生成的专家消息（expert message）所属的编组（或分类）。当显示过滤器中包含该参数时，Wireshark便会根据专家消息的类型（比如，校验和问题、TCP序列号问题以及安全性问题等）来进行过滤。

 	expert.message所指为Expert Information工具生成的具体的专家消息。当显示过滤器中包含该参数时，Wireshark便会根据专家消息中特定的字串（若关系词［relation］为contains，则为包含特定的字串；若关系词为matches，则为匹配特定的字串）来筛选数据包。

 	expert.severity所指为Wireshark对感知到的事件按出故障概率的高低（事件的严重程度），呈现在Expert Information窗口中的事件类别的名称（Error、Warning、Note等）。可供该参数选择的条件包括Error、Warning、Note等。若在显示过滤器中包含该参数，则Wireshark在执行过滤功能时，所依据的条件就是数据包的特征是否符合特定的事件类别。

还有一种根据Expert Information工具所生成的事件来配置显示过滤器的方法。请在Expert Information窗口的事件列表中选中一个符合指定事件特征的数据包，点击鼠标右键，会弹出图7.10所示的菜单。

[image:]

图7.10

以下是对图7.10所示的菜单中各菜单项的功能介绍。

 	Apply as Filter（直接作为显示过滤器使用）：只要点选了该菜单项下的各子菜单项，选定的数据包所具备的事件特征将会作为显示过滤器（或其中的一项参数），并同时作用于抓包文件。

 	Prepare a Filter（作为有待应用的显示过滤器）：只要点选了该菜单项下的各子菜单项，选定的数据包所具备的事件特征将会成为有待应用的显示过滤器（或其中的一项参数）（选定后，需点Apply按钮才能生效）。

 	Find：一经点选，便会在Wireshark抓包主窗口的数据包列表区域内定位到下一个具备的该事件特征的数据包。

 	Colorize：用来调整具备各种事件特征的数据包的配色规则。

 	Look Up：针对指定的事件特征执行百度（Google）搜索。

 	Copy：用来将Summary一栏内的事件信息复制为文本。

7.2.5　进阶阅读　　　　

 	第8章以及涉及协议的相关章节。

7.3　认识Error事件

本节将引领读者去认识由Wireshark在抓包时（或抓包文件中）所感知到或识别出的各种Error事件，比如，抓到了校验和错误或格式错误的数据包时。

7.3.1　准备工作　　　　

运行Wireshark软件，先打开一个抓包文件（或双击一块网卡，开始抓包），再启动Expert Information工具。

7.3.2　操作方法　　　　

1．点击抓包主窗口中Analyze菜单下的Expert Information菜单项，打开Expert Information窗口。在Expert Information窗口的事件列表中，Error事件会默认位居前列。

由图7.11可知，Wireshark在抓包文件中感知到了校验和类的Error事件。就本例而言，既有可能是抓包文件中真的存在校验和错误的以太网帧，也有可能是checksum offload参数方面的配置问题。

[image: 0711]

图7.11

2．点击Error左边的小三角形，展开Error事件，点击该事件名下的一个数据包，即可在Wireshark抓包主窗口的中定位到该数据包，如图7.12所示。

[image: 0712]

图7.12

由图7.12所示Wireshark主窗口数据包结构区域的信息可知，那个编号为7的帧存在校验和错误。在本节所用的抓包文件（文件名为CAP_07_05）中可以看到，存在校验和错误的所有以太网帧都是出自一台设备。要想得知错误事件是因何而起，便可从那台设备开始检查。与以太网本身以及以太网故障有关的更多信息，详见第8章。

7.3.3　幕后原理　　　　

校验和机制是一种错误检测机制，用来检测数据包在传输过程中是否发生了损坏。现以IP校验和计算来说明其原理：生成IP数据包的设备先把整个数据包按16位分成若干等份，再计算每一等份的二进制反码之和，然后计算二进制反码之和的反码。也就是说，最终的计算结果为“每等份”的反码之和的反码。那样的计算结果将被存入该IP数据包的校验和字段。接收IP数据包的设备会执行步骤相同的计算（执行计算时，要算上实际的校验和字段值），并判断最终的计算结果是否为0。若不为0，则表示IP数据包在传输过程中发生了损坏。错误检查机制既可以基于完整的数据包来执行，也可以基于协议头部来执行。每一种协议（Ethernet、IP、TCP、UDP）都有自己的一套错误检查机制。

某些操作系统支持一种名为checksum offload（校验和计算下放）的功能，这也是为了节省CPU资源。也就是说，操作系统把执行IP、TCP、UDP校验和计算这样的网络功能下放给了NIC（网卡），让NIC以硬件的方式执行相关计算（只要NIC驱动支持），不再由TCP/IP协议栈来完成。若开启了出站方向（TX）上的checksum offload功能，NIC便会在数据包即将上线传送之前，完成相关校验和计算。而Wireshark在抓取本机生成的数据包时，会在其到达NIC之前完成，而此时由本机生成的数据包的IP、TCP、UDP头部的校验和字段值并不正确（对于本机生成的数据包，其IP、TCP、UDP头部的校验和字段值的填写任务归NIC负责）。于是，Wireshark就会感知到数据包校验和有误之类的Error事件。

因为如此，即便Wireshark通过Expert Information工具反映出抓到了许多校验和出错的数据包，但只要这些数据包的源IP地址为本机IP，那就有极有可能是拜赐于checksum offload机制。

可配置Wireshark，令其不检查所抓数据包的IP或TCP校验和。

 	要关闭IP校验和的检查，请点击抓包主窗口的Edit菜单下的Preferences菜单项，在弹出的Preferences窗口中，点击Protocol左边的小三角形，选择IPv4协议配置选项，取消选中Validate the IPv4 checksum if possible复选框，最后点击OK按钮。

 	要关闭TCP校验和的检查，请点击抓包主窗口的Edit菜单下的Preferences菜单项，在弹出的Preferences窗口中，点击Protocol左边的小三角形，选择其中的TCP协议配置选项，取消选中Validate the TCP checksum if possible复选框，最后点击OK按钮。

7.3.4　拾遗补缺　　　　

对于Wireshark自称抓到畸形数据包这种情况，要一分为二来看待。出现这种情况，既有可能是因为Wireshark抓到了真的畸形数据包，也有可能是拜Wireshark软件自身的bug所赐。此时，可使用其他抓包工具来定位问题。可访问Wireshark官网，报告该软件可能存在的bug。

 [image: 未标题-1]　注意

 当Wireshark自称抓到了大把畸形数据包或通不过校验和检查的数据包时，问题极有可能出在checksum offload机制或Wireshark的协议解码器上面。对任何一个网络而言，穿梭于其中的数据包只要有1%～2%的“害群之马”（即具备Error事件特征的数据包），不但会导致事故频发（比如，会导致TCP重传），而且还会使得网速明显慢过预期。因此，只要网络用起来大致正常，Wireshark是不可能抓到那么多真的害群之马的。

7.3.5　进阶阅读　　　　

 	第8章。

7.4　认识Warning事件

如前所述，当Wireshark在抓到的数据包中感知到了一般性问题时，便会通过Expert Information工具生成Warning事件信息，而所谓的一般性问题几乎都是应用程序问题或通信问题。本节会介绍什么是Warnings事件。

7.4.1　准备工作　　　　

运行Wireshark软件，先打开一个抓包文件（或双击一块网卡，开始抓包）。

7.4.2　操作方法　　　　

1．点击抓包主窗口中Analyze菜单下的Expert Information菜单项，打开Expert Information窗口。

2．Warning事件将会是默认出现在Expert Information窗口的事件列表中的第二种事件。若Wireshark在抓包文件中未识别出Error事件，则Warning事件会首先出现在Expert Information窗口的事件列表中。图7.13所示为Wireshark在抓包文件CAP_07_04中识别出的Warning事件。

[image:]

图7.13

下面是对Warnings事件名下的几种常见子事件的简单介绍。

 	含Reassembly字样的子事件：大多是指Wireshark抓到了未能重组的数据包。一般而言，这都是Wireshark协议解析器问题。

 	与TCP窗口有关的两种子事件（在Summary一栏里含Window字样的子事件）：几乎都是指Wireshark感知到了网络中存在TCP zero window或window full问题。一般而言，都是建立TCP连接的端设备（客户端或服务器）忙不过来所致。

 	与重置TCP连接有关的子事件（在Summary一栏里含Connection reset (RST)字样的子事件）：出现这种事件并不意味着网络故障。第11章会进一步地解释TCP重置机制。

 	与TCP报文段丢失有关的子事件（在Summary一栏里含Previous segment not capture、Previous segment lost以及out of order segment字样的子事件）：这几种子事件都属于TCP故障，将会在第11章讲解。

3．要想了解某种Warning事件的更多信息，请选中一个Warning事件，单击右键，在弹出的菜单中选择Look Up子菜单，执行百度（Google）查询。

7.4.3　幕后原理　　　　

Wireshark能感知到抓包文件中数据包所具备的种种特征，举例如下。

 	Wireshark会关注数据包TCP头部中的窗口大小字段值，并会检测该字段值是否递减为0，若是，便会通过Expert Information工具生成相关信息。

 	Wireshark能识别出TCP报文段是否在传输途中失序，若是，便会通过Expert Information工具生成相关信息；所谓失序是指TCP报文段未按发送主机发出的顺序到达接收主机。

 	Wireshark能感知到接收主机在通过TCP收到数据之后，是否做出了确认，若否，便会通过Expert Information工具生成相关信息。

凭借Wireshark所提供的以上信息，再结合其他信息，定能有效定位与TCP有关的故障。本书第11章会细述如何排除涉及TCP的故障。

7.4.4　拾遗补缺　　　　

请注意，Warning事件只是Wireshark自认为不符合协议常规运作方式的非关键事件。比方说，以下两种Warning事件。

 	TCP reset（TCP重置）：TCP重置事件虽然属于TCP协议运作的一部分，但终止TCP连接应采用常规的四次握手（TCP FIN），而不是TCP重置。因此，一旦发生TCP reset事件，既有可能是因为网络真的出了问题，也有可能是因为TCP应用程序的开发人员选择以TCP 重置方式终止连接。

 	TCP zero window（TCP零窗口）：表示TCP接收主机缓存已满，无法通过TCP连接接收新的数据。图7.13还呈现了另外一种TCP协议Sequence类的Warning事件（Summary一栏包含“TCP window specified by the receiver…”字样），这可能表示TCP连接的某个端点存在问题，但这仍属于TCP的一种运作方式[2]。

在图7.13所示的事件列表中，有些Warning事件的Summary一栏包含了“Unknown header”、“BER Error: Wrong tag in tagged type”等字样。Wireshark之所以会通过Expert Information工具生成这些Warning事件，是因为从抓包文件中识别出了格式有误的数据包[3]。与各种Error事件一样，重要的是要理解Warning事件本身，而不应只关注其类别和颜色。

7.4.5　进阶阅读　　　　

 	第8章以及涉及协议的相关章节。

7.5　认识Note事件

如前所述，Wireshark只要在抓包文件或抓到的数据包中，感知到或识别出可能会导致问题的异常现象（TCP重传、重复确认以及快速重传等现象），便会通过Expert Information工具生成Notes事件信息。虽然这些异常现象可能会影响网络的性能（比如，影响网速），但有时也属于TCP的正常行为。

7.5.1　准备工作　　　　

运行Wireshark软件，打开一个抓包文件（或双击一块网卡，开始抓包）。

7.5.2　操作方法　　　　

1．点击抓包主窗口中Analyze菜单下的Expert Information菜单项，打开Expert Information窗口。

2．Note事件将会是默认出现在Expert Information窗口的事件列表中的第三种事件，如图7.14所示。

[image: 0714]

图7.14

下面是对Note事件名下的几种常见子事件的简单介绍。

 	TCP重传、重复确认以及快速重传这三种子事件（即Summary一栏里包含Retransmissions、fast retransmission、Duplicate ACK字样的子事件）：通常都预示着网速慢、丢包或通过TCP传输数据的主机（应用程序）忙不过来。

 	与TCP keep-alive机制有关的子事件（即Summary一栏里含keep-alive字样的子事件）：通常预示着TCP或基于TCP的应用程序存在问题。

 	与IP数据包的生存时间有关的子事件（即Summary一栏里含time to live字样的子事件）：通常预示着路由问题。

 [image: 未标题-1]　注意

 Note事件名下的其他几类子事件将会在TCP和应用程序相关章节中讨论。

7.5.3　幕后原理　　　　

Wireshark能感知到其所抓数据包的种种特征，举例如下。

 	对于TCP数据包，Wireshark能通过检查其TCP头部中的序列号字段和确认号字段值，来发现并提示存在TCP重传或与TCP序列号有关的其他问题。

 	对于IP数据包，Wireshark会检查其IP包头的TTL字段值，若该字段值为1，便会发现并提示存在路由环路问题。

 	Wireshark还能识别出看起来正常但其实有问题的TCP keep-alive数据包。

凭借Wireshark所提供的以上信息，再结合其他信息，定能有效定位影响网络性能的故障。

7.5.4　拾遗补缺　　　　

本节介绍的Note事件名下的每一种子事件，并非是由固定的某一种类型的网络故障所导致。以TCP重传现象为例，这种现象既有可能是因为丢包错误所导致，也有可能是因为网络状况差（带宽低、延迟高）而引发的数据包未能按时到达所导致，还有可能是拜服务器或客户端停止响应所赐。Wireshark能够通过Expert Information工具提示存在TCP重传这样的现象。至于如何定位原因及解决问题？请继续阅读本书。

7.5.5　进阶阅读　　　　

 	第8章以及涉及协议的相关章节。

[1]　译者注：原文是“To go to the event in the packet capture pane, simply click on the packet under the event in the expert window, and it will lead you to it”。

[2]　译者注：原文是“An indication to a slow end device on the connection; here we have another behavior of the protocol that can be due to a problem on one of the sides of the connection, but this is still how TCP works”，译文未按原文字面意思翻译。

[3]　译者注：原文是“Messages like unknown header, BER error: wrong tag in tagged type, and so on. These messages indicate that there are problems in the packet structure。

第8章　Ethernet和LAN交换

本章涵盖以下内容：

 	发现广播及错包风暴；

 	生成树协议分析；

 	VLAN及VLAN tagging问题分析。

8.1　简介

本章将关注如何发现并解决第2层网络故障，重点讲解Ethernet相关故障（比如，广播/多播风暴和错包风暴），以及如何定位故障之源头。此外，本章还会介绍几种第2层协议及技术（比如，生成树协议和VLAN技术）。

由于第2层故障会影响高层协议的运作，因此在解决网络故障时，只有先确保网络的第2层完好无损，才有继续排查第3、4层协议的必要性。比如，若在第2层存在丢包现象，则势必会导致TCP（第4层协议）重传，但最终的表象将会是应用程序无法运行或运行缓慢。

8.2　发现广播和错包风暴

广播/多播及错包风暴应属通信网络中的最难解决的故障之一了。导致此类故障的原因有很多，比如，第2层环路、针对第2层的攻击、网络适配器（网卡）故障，或某款应用程序（某台主机上的某个服务）持续不断地在网络中发包等。本节会介绍几个发现、分类以及解决此类故障的秘诀。

 [image: 未标题-1]　注意

 广播/多播风暴是指在网络中传播的广播包的数量每秒高达数千乃至数万。一般而言，广播风暴发生之日，便是网络瘫痪之时。

8.2.1　准备工作　　　　

当网络中发生了广播风暴，网管人员得到征召前去处理时，收到不外是“网速怎么这么慢呀”或“为什么××应用打不开了呀”之类的反馈。

要想精确定位故障原因，必须具备以下常识。

 	路由器是不会转发广播流量的。

 	VLAN之间也不会交换广播流量，每个VLAN都是一个单独的广播域，所以说一个VLAN也被称为一个广播域。

 	任何一台LAN交换机都不会转发错包（比如，CRC校验检查失败的数据包、长度低于下限64字节的数据包等）。

 	除非做了特殊配置，否则LAN交换机必会转发多播流量。

 	只有开启多播路由功能的路由器（只有做了特殊配置的路由器）才会转发多播流量。

 	在每一个Ethernet LAN中，都会存在数量合理的广播数据包；若非如此，主机之间便不能正常通信。倘若广播数据包的数量过多，则反过来又会影响网络的正常运行。

 	交换机或路由器会把广播/多播流量转发至控制平面/CPU进行处理，但前提是已经做过了配置，让这两种设备如此行事，或开启了交换机的3层功能。这可能会影响控制平面的正常运作（比如，会导致OSPF邻接关系不稳定）[1]。

 [image: 未标题-1]　注意

 广播包数量过多跟广播风暴完全是两码事。广播包过多（比如，每秒几百个）会加重网络的负担，但几乎不会降低用户对网络的使用体验，而广播风暴则会彻底导致网络瘫痪。应弄清网络在正常运作时广播包的占比情况，并为此设定一个基准值，排障期间可拿该基准值作为参考。

8.2.2　操作方法　　　　

要查明导致广播或错包风暴的原因，请按以下步骤行事。

1．因为最先感觉出网络慢或断网的肯定是用户，所以应首先向他们咨询以下问题。

 	是总部的网络有问题，还是某个分支机构的网络有问题？

 	是整个网络有问题，还是某个VLAN有问题？

 	是整个公司（办公楼）的网络有问题，还是某一层楼的网络有问题？

当然，在询问用户的时候可千万不要使用VLAN这样的专业词汇，用户可不懂网络。应该这么问：是贵部门内部使用的某些应用程序有问题，还是整个公司的所有应用程序使用起来都有问题？这么问的目的是确定网络故障的影响范围。

 [image: 未标题-1]　注意

 在一个组织机构的网络中，VLAN通常都基于每个（或若干）部门、每个（或若干）地理区域、每个（或若干）行政职能单位来划分。比如，既可以把整个人力资源部或财务部的PC划入一个VLAN，也可以把运行同一套业务软件的PC划入一个VLAN。这样一来，只要问一下某个部门的某位员工，或使用某款业务软件的某位操作人员，就能够缩小排障范围了。

2．第二个问题应该比较好问：是所有联网应用程序都不能用了呢，还是用起来卡得要命？若发生了广播风暴，网络会变得非常之卡，一般的联网应用程序都将完全不能使用。到了如此田地，网管人员应扪心自问：

 	是生成树问题吗？

 	是某台设备触发了广播风暴吗？

 	是路由环路问题吗（第10章将深入探讨环路问题问题）？

经常有人问作者：“网络中广播包的数量达到多少才算是过多呢？”

该问题的答案不止一个，要取决于网络设备的配置、网络设备所运行的协议，以及网络中主机的数量。

在一个运转正常的网络中，每台设备每分钟制造1～2个广播包（最多不超过4～5个）应算是合理。比如，若网络中每个VLAN内有100台设备，则每秒广播包的数量最多不应超过9～10个（5个广播包×100台设备/60秒）。倘若真的超过了这一数字，只要每秒数不过千，并且网管人员知道广播包的出处，也不能说网络存在问题。

1．生成树问题

只要生成树协议发生故障，那么充斥于网络中的广播包的数量将会达到每秒数千甚至上万（生成树协议的运作方式，以及因其故障而导致广播风暴的原因请见下一节）。此时，用来抓包的Wireshark软件，甚至连安装Wireshark的主机，可能都会卡死。为了隔离故障（要让网络在第2层无环），应关掉Wireshark，立刻找到并拔掉多插的那根网线（光纤）。然后，需登录交换机，检查STP相关配置，查看STP的运行状态及日志输出。

2．某台设备（主机）触发了广播风暴

当广播风暴是由某台设备（主机）所引起时，通常具有以下典型特征。

 	广播包速率极高（数千甚至上万个/秒）[2]。

 	在绝大多数情况下，广播包都发源于单一源头，但在遭到攻击时除外（当网络遭受攻击时，广播包可能来源于多处）。

 	广播包速率恒定，亦即Wireshark所抓广播数据帧之间的时间间隔几乎完全相等。

现在，将以图8.1至图8.3为例，来讲解如何根据上述三大典型特征去定位由某台主机所触发的广播风暴。

由图8.1可知，Wireshark抓到了大把广播包，广播包的源MAC地址都一模一样（归一块HP网卡所有），目的MAC地址自然是ff:ff:ff:ff:ff:ff。

[image:]

图8.1　广播包泛滥

图8.1所示抓包主窗口Time属性栏所启用的时间格式是“当前帧与Wireshark所显示出的上一帧之间的接收时间间隔（单位为秒）”（seconds since the previous displayed packet）。可在抓包主窗口的View菜单的Time Display Format菜单项下，选择数据包在Time属性栏里所呈现的时间格式。

图8.2[3]所示为通过Wireshark IO Graphs工具所生成的图形，由图可知，目的MAC地址为ff:ff:ff:ff:ff:ff的广播包的速率已经高达5000个/秒。

[image:]

图8.2　广播包泛滥：IO Graphs工具生成的图形

图8.3所示为由Statistics菜单名下的Conversations工具生成的Conversations窗口。借此窗口，可以观看到设备之间发生的以太网、IPv4、TCP/UDP对话。通过该窗口中Ethernet或IPv4标签栏内的信息都可以看出，网络中充斥着大量的广播数据包（只用了18秒就抓到了87142个源MAC地址和源IP地址都相同的广播包）。

[image:]

图8.3　广播包泛滥：Conversations工具生成的Conversations窗口

对于本例，导致广播风暴的罪魁祸首是一个叫做SMB Mailslot的服务。在MAC地址和IP地址已知的情况下，应该很快就能找到那台发送广播包的主机。只要仔细检查该主机，禁用运行于其上的SMB Mailslot服务，便可以解决广播风暴问题了。

 [image: 未标题-1]　注意

 在禁用生产网络内任何一台主机上的某个服务（特别是隶属于主机操作系统的服务）之前，应再三斟酌。在禁用之后，要等主机或网络稳定运行一段时间之后，才能离开。

排障动作执行完毕后，建议再用Wireshark抓包，来验证广播风暴是否消失。

3．有时间规律可循的广播风暴

还有一种广播风暴，发作起来极有规律（比如，每隔固定的时间便发作一次），请看图8.4。

[image:]

图8.4　发作起来极有规律的广播风暴

由图8.4可知，在IO Graphs工具所生成的图形中，X轴参数计时单位（Tick interval）被设成了1分钟，此外，还针对Graph 2和Graph 3分别应用了下面这两个显示过滤器。

 	针对Graph 2（所生成的图形颜色为红色，形状为脉冲[impulse]）应用了显示过滤器eth.addr == ff:ff:ff:ff:ff:ff，意在筛选出所有以太网广播数据包。

 	针对Graph 3（所生成的图形颜色为绿色，形状为点状[dot]）应用了显示过滤器arp.opcode ==1，意在筛选出所有ARP请求数据包。

通过IO Graphs窗口的图形显示区域中的红、绿两种图形，可以很容易地看出，ARP请求数据包每隔5分钟就要来一次大规模喷发。只要点一下图形显示区域中任一绿色“小点”，就能在抓包主窗口的数据包列表区域定位到相应的ARP请求数据包。

图8.5所示为每5分钟喷发一次的ARP请求流量在Wireshark抓包主窗口数据包列表区域里的样子。

[image:]

图8.5　ARP扫描

由图8.5可知，所谓ARP请求流量定期喷发问题，是因一台D-Link路由器扫描内网所致。这台路由器的上述举动是好是坏还不好判断，熟知网络内运行的各种网络设备的习性，在任何情况下都不是坏事。

8.2.3　幕后原理　　　　

在以太网内，第3层IP广播包在传播之前会被先封装为第2层以太网帧。对于设有IPv4地址的设备所发出的每一个IP广播包（其目的IP地址为子网广播地址，详见第10章），封装其的以太网帧的目的MAC地址必定为全F（十六进制）。

以下所列为在IP网络中常见的几种广播包。

 	支撑TCP/IP协议正常运行的广播包，比如，ARP请求数据包、DHCP请求数据包等。

 	某些应用层协议生成的广播包，比如，NetBIOS名字服务（NetBIOS Name Service，NBNS）查询数据包、NetBIOS服务器消息（NetBIOS Server Message Block，SMB）通告数据包，以及网络时间协议（Network Time Protocol，NTP）数据包等。

 	某些应用程序（比如，Dropbox、Microsoft Network Load Balancing或某些证券期货类行情应用）也会生成广播包。

IPv6只分单播、多播和任播，并无广播一说。因此，IPv6协议要依靠多播来行使IPv4协议通过广播来完成的诸多功能，比如，邻居发现功能（相当于IPv4的地址解析功能）、地址自动分配功能（DHCP）。与此有关的内容将在本书后文介绍。

8.2.4　拾遗补缺　　　　

在作者处理过的众多案例里，经常会碰到同一个问题，那就是如何配置LAN交换机上的多播/广播风暴控制特性（在Cisco交换机上，要通过storm-control broadcast/multicast level命令来激活该特性）。据作者所知，有很多人在配置多播/广播风暴控制特性时，都会把广播（或多播）数据包的速率配置为50、100或200个/秒，但如此配置，考虑的还不够全面。只要在网络中部署了基于广播（或多播）的应用程序，广播（或多播）包的流动速率将会超过上述配置值。这样一来，必将导致交换机向网管系统发送trap消息，甚至会自动shutdown多播数据包速率超限的端口。交换机到底会如何行事，则要视其多播/广播风暴特性的配置参数来决定（Cisco交换机依靠storm-control action{shutdown | trap}命令来决定是发送trap消息，还是shutdown相关端口）。

其实，只要把广播（或多播）数据包的速率阈值指定的再高一点就可以规避上述问题了。当广播风暴来临时，网络中广播包的速率将会接近每秒上万。因此，把广播（或多播）数据包的速率阈值设置为每秒1000～2000，则既可以起到安全防护的目的，也不会对常规的网络操作造成任何影响。

要是读者不习惯把广播（或多播）数据包的速率阈值指定的过高，那就应该对网络流量进行审计，以获悉末端工作站在使用网络的高峰期发出的广播流量的速率，并将这一速率（可适当提高）设置为阈值。

8.2.5　进阶阅读　　　　

 	与IPv4有关的内容，详见本书第10章。

8.3　生成树协议故障分析

读者应该都和生成树协议（STP）打过交道，最起码也听说过这种协议。作者之所以给本节冠以“生成树协议故障分析”之名，是因为该协议有以下三种主要版本。

 	（常规的）生成树协议（Spanning Tree Protocol，STP）：基于1998年颁布的IEEE 802.1D标准（亦称802.1D-1998）。

 	快速生成树协议（Rapid Spanning Tree Protocol，RSTP）：基于2001年颁布的IEEE 802.1W标准，后被追加至802.1D标准（亦称802.1D-2004）。

 	多生成树（Multiple Spanning Tree，MST）：最初定义于IEEE 802.1S标准，后来并入了IEEE 802.1Q标准。

除以上列出的3个STP版本之外，Cisco及其他网络设备厂商也开发出了几个STP的私有版本。本节将聚焦于STP标准版本STP/RSTP/MST，重点关注如何排除与此有关的故障。

8.3.1　分析准备　　　　

查明STP故障的最佳途径就是登录LAN交换机，执行LAN交换机厂商的相关命令（比如，Cisco IOS或JUNOS 命令）去发现并解决故障。若在LAN交换机上启用了SNMP功能，则网管控制台会收到与STP有关的SNMP trap信息，除非因STP故障导致交换机与网管系统之间失去联系。

本节的主旨是如何利用Wireshark来协助排除STP故障，尽管并不建议在STP故障发生之初就立刻动用Wireshark。请打开笔记本，启动Wireshark，开始在LAN里抓包吧。

8.3.2　分析方法　　　　

要解决STP故障，先得回答网络中与STP有关的以下两个问题。

 	网络中运行的是哪个版本的STP？

 	在故障显现的同时，发生过任何网络拓扑变更事件吗？

1．网络中运行的是哪个版本的STP

通过对网桥协议数据单元（Bridge Protocol Data Unit，BPDU）的解析，Wireshark能识别出网络中运行的是哪个版本的STP。BPDU是一种在开启STP功能的交换机之间传递的信令帧，以（第2层）多播方式发送。

运行STP的交换机会发出以下两个版本的BPDU：

 	运行常规STP的交换机会发出协议版本ID字段值为0的BPDU；

 	运行RSTP/MST的交换机会发出协议版本ID字段值为3的BPDU。

 [image: 未标题-1]　注意

 在定义STP的相关标准文档中，根本就没有出现过switch（交换机）这样的字眼，只能看见bridge（网桥）或multiport bridge（多口网桥）之类的同义词。本书会交替使用网桥和交换机这两个术语。

2．发生过多次网络拓扑变更事件吗

解决STP故障时，应重点关注网络中是否多次发生拓扑变更事件。对STP而言，网络拓扑发生变动也属正常，但若发生的次数太多，则会对网络性能产生影响，因为这会让交换机老化MAC，进而导致单播帧的泛洪。

典型的拓扑变更事件包括LAN链路中断、LAN内有新交换机上线运行等。图8.6所示为Wireshark抓到的表示发生拓扑变更事件的BPDU。

[image:]

图8.6　STP：拓扑变更

若Wireshark感知出超多的网络拓扑变更事件（一般都是由用户频繁开关PC所引起），请登录LAN交换机，在用来直连主机（不支持STP的设备）的端口上激活portfast（速端口）特性（Cisco交换机的私有特性，其他网络设备厂商也有类似特性，其具体称谓请查阅各厂商的随机文档）。

 [image: 未标题-1]　注意

 对于运行常规STP（IEEE 802.1D）的Cisco交换机而言，主机一旦接入，须坐等约1分钟，才能开始正常收发数据包。在此期间，该主机将无法与任何其他网络设备通信。为防止此类情况的发生，Cisco交换机支持一种名叫portfast的特性，只要在直连主机的交换机端口上激活该特性，主机在正常收发数据之前将只需稍等片刻（通常为8～10秒）。

倘若在执行上述操作之后，网络拓扑变更事件依旧持续发生，那就需要开展更深层次的排障工作。请注意，虽然Wireshark感知出的网络拓扑变更事件都是由直连末端工作站的交换机端口所引发，但也有可能是因两台交换机之间的互连链路翻动（Up/Down）所致。

8.3.3　幕后原理　　　　

开发生成树协议的目的，是要确保LAN中不产生第2层环路。若用多条链路把两台或两台以上的交换机连在一起，LAN中将会产生环路，如图8.7所示。

[image:]

图8.7　生成树协议：环路如何创建

现在来看一下LAN中的广播风暴是如何因环路而起的。

 	工作站A把一广播包发送进LAN。这一广播包可以是ARP帧、NetBIOS数据包或其他任何目的MAC地址（十六进制）为全F的以太网帧。

 	由于交换机会向除接收端口以外的所有端口转发广播包，因此从端口1收到广播包之后，SW1会从端口2、3外发。

 	收到广播包之后，SW2和SW3会分别通过各自的端口2外发给SW4。

 	SW4会把从端口2和端口3收到的广播包，再分别从端口3和端口2外发。

 	现在，便诞生了2个一模一样、无限循环的广播包，广播包的发源地SW1上的端口3和端口2也将会分别收到一个。

 	SW1会再次从端口3和端口2外发，其余交换机也会无止境地复制广播包，成千上万个广播包很快会封锁整个LAN。当然，到底有多快，则要取决于那几台交换机的转发速度。

启用了生成树协议的交换机之间会在逻辑层面自动构建树状拓扑（无环拓扑），从而能起到预防环路的效果。也就是说，交换机之间势必会有被生成树协议阻断的冗余链路，若在用链路故障，生成树协议也能感知得到，会自动让交换机激活先前被阻断的冗余链路。

图8.8所示为在一个交换机之间冗余链路多多的LAN内，STP是怎样创建树状拓扑结构的。

[image: 0808]

图8.8　生成树：原拓扑Vs.树状拓扑

运行STP的LAN交换机之间会以多播方式互发一种称为BPDU的信令帧。由图8.9可知，PBDU的目的MAC地址为以太网多播地址，源MAC地址为生成其的LAN交换机的MAC地址。

[image:]

图8.9　BPDU的源和目的MAC地址

BPDU会封装在802.3 Ethernet帧内发送，其格式（即配置BPDU的格式）如图8.10所示。

[image:]

图8.10　生成树BPDU以太网帧的格式

对BPDU帧的各个字段的解释请见表8.1。

表8.1　

 	 字段名

 	 长度 （单位为字节）

 	 描述

 	 值

 	 Wireshark中引用该字段的显示过滤参数

 	 协议ID

 	 2

 	 协议标识符

 	 始终为0

 	 stp.protocol

 	 版本

 	 1

 	 STP的版本

 	 常规 STP = 0
 RSTP = 2
 MST = 3

 	 stp.version

 	 消息类型

 	 1

 	 BPDU的类型

 	 常规STP = 0
 RSTP = 2
 MST = 2

 	 stp.type

 	 标记

 	 1

 	 协议标记

 	 详见图8.10

 	 stp.flags

 	 根网桥ID

 	 8

 	 根网桥的标识符，由根网桥优先级和根网桥的硬件（MAC）地址构成

 	 根网桥的优先级值+根网桥的MAC地址

 	 stp.root.prio
 stp.root.ext
 stp.root.hw

 	 通向根网桥的路径开销

 	 4

 	 将数据帧转发至根网桥的成本

 	 其值由STP计算而得。在根网桥发出的BPDU中，该字段值为0

 	 stp.root.cost

 	 网桥ID

 	 8

 	 发出本BPDU的网桥标识符，由该网桥的优先级值和硬件（MAC）地址构成

 	 发出本BPDU的网桥的优先级值+网桥的MAC地址

 	 stp.bridge.prio
 stp.bridge.ext
 stp.bridge.hw

 	 端口ID

 	 2

 	 端口标识符

 	 发出本BPDU的交换机端口的标识符

 	 stp.port

 	 消息寿命

 	 2

 	 根据当前BPDU“判断”出的由根网桥生成的“原始”BPDU的寿命

 	 由根网桥生成的每个BPDU的消息寿命字段值都是0，BPDU只要被其他网桥中继转发一次，消息寿命字段值都会加1

 	 stp.msg_age

 	 最长寿命

 	 2

 	 BPDU自被根网桥生成之时起，可在网络中“存活”的最长时间

 	 通常=20

 	 stp.max_age

 	 Hello时间

 	 2

 	 网桥定期发送BPDU的间隔时间

 	 通常=2秒

 	 stp.hello

 	 转发延迟

 	 2

 	 交换机端口在侦听和学习状态逗留的时间

 	 通常=15秒

 	 stp.forward

若让网络中的交换机运行MSTP，则相应的BPDU帧里势必会包含更多的内容，以承载与MSTP有关的参数。

端口状态

对运行常规STP的交换机而言，其端口会呈以下几种STP状态。

 	禁用（Disabled）：处于该状态下的交换机端口既不会转发任何数据帧，也不会侦听BPDU。

 	阻塞（Blocking）：处于该状态下的交换机端口不会转发任何数据帧，但会侦听BPDU。

 	侦听（Listening）：处于该状态下的交换机端口只能收发BPDU，既不能转发数据帧，也不能获悉其MAC地址。

 	学习（Learning）：处于该状态下的交换机端口虽然不能转发数据帧，但可解析收到的数据帧，且能根据获悉到的MAC地址构建MAC地址表。

 	转发（Forwarding）：处于该状态下的交换端口能正常收发BPDU，能正常学习并构建MAC地址表，自然也能正常转发数据帧。

将设备接入LAN交换机时，交换机端口的STP状态会经历以下变迁。

 	从禁用状态变迁至侦听状态，要花20秒的时间。

 	从侦听状态变迁至学习状态，要花15秒的时间。

 	从学习状态变迁至转发状态，要花15秒的时间。

对运行RSTP/MSTP的交换机而言，其端口会呈以下几种STP状态。

 	丢弃（Discarding）：处于该状态下的交换机端口会丢弃所有数据帧。

 	学习（Learning）：处于该状态下的交换机端口不能转发数据帧，但可解析收到的数据帧，且能根据获悉到的MAC地址构建MAC地址表。

 	转发（Forwarding）：处于该状态下的交换端口能正常收、发BPDU，能正常构建MAC地址表，自然也正常转发数据帧。

运行RSTP/MSTP的LAN交换机的端口从丢弃状态过渡到转发状态一般只需短短几秒，具体时长要视LAN的拓扑结构和复杂程度而定。

8.3.4　拾遗补缺　　　　

排除STP故障时，最好是直接登录LAN交换机查看其日志。要是在网络中还部署有基于SNMP的网管系统，通过观察并分析LAN交换机发送的SNMP trap信息，也会对故障排除有所帮助。

接下来，将以三个STP版本的BPDU帧为例，让读者熟悉BPDU帧的某些重要字段。

图8.11所示为运行常规STP的交换机发出的BPDU。通过该BPDU的源MAC地址字段值，可判断出BPDU发送交换机为一台Nortel交换机；通过根网桥ID字段值和网桥ID字段值（两个字段里包含的MAC地址一模一样），可判断出那台Nortel交换机就是LAN中的根交换机；通过端口ID字段值（0x8003），可判断出是那台Nortel交换机上编号为3的端口发出了该BPDU。

[image: 0811]

图8.11　STP根交换机发出的生成树BPDU帧

图8.12所示为RSTP的BPDU帧。通过协议ID字段值（2），可判断出该BPDU由运行RSTP的交换机发出；通过标记字段值（0x3c，即2、3、4、5位置1），可判断出发出该BPDU的交换机端口为STP指定端口。

[image: 0812]

图8.12　生成树BPDU帧包含的重要信息

图8.13所示为运行MSTP的交换机发出的BPDU帧。由图可知，在标准BPDU的常规信息之后还附着了MST扩展信息。

[image:]

图8.13　包含扩展信息的MST BPDU帧

8.4　VLAN和VLAN tagging故障分析

VLAN（Virtual LAN）是一项以虚拟的方式分割一台物理交换机的技术，其目的是用一台物理交换机虚拟出多个相互隔离的LAN，虚拟LAN中的“虚拟”一词也正是来源于此。本节会介绍VLAN流量的监控方法。

本节的目的是要让读者掌握如何通过Wireshark来分析与VLAN有关故障。当然，解决相关故障的最直接的方法则是登录交换机，执行相关排障或修复命令。

8.4.1　分析准备　　　　

对VLAN流量的监控有以下两种方式：

 	监控在某个VLAN内传播的流量；

 	监控通过Trunk端口传播的带VLAN标记的流量。

监控在某个VLAN内传播的流量非常简单，只要稍作配置即可实现。现在来重点谈一谈监控带VLAN标记的流量需要注意什么。

使用Wireshark抓取通过Trunk端口传播的流量时，未见得能够看到数据包中的VLAN标记。Wireshark能否显示出数据包的VLAN标记，要取决于安装Wireshark的操作系统、实际用来抓包的网卡（NIC）以及网卡驱动程序。

 [image: 未标题-1]　注意

 操作系统和网卡是否支持接收带VLAN标记的数据包，要完全取决于操作系统开发商和网卡芯片制造商。有关详情请查阅操作系统/网卡使用手册，或执行百度（Google）搜索。

图8.14所示的网络由好几个VLAN组成，其拓扑结构也颇为经典。上面一台核心层交换机（SW1）分别通过一条Trunk链路（所谓Trunk链路，是指用来传递带VLAN标记的以太网帧的链路）与下面两台接入层交换机（SW2和SW3）相连。该网络由VLAN 10、20、30这三个VLAN组成，各个VLAN的主机之间不能彼此通信。

8.4.2　分析方法　　　　

请以正确的方法把Wireshark主机与图8.14所示交换机相连，这就来看看如何相连。

[image: 0814]

图8.14　VLAN标记

1．监控在某个VLAN内传播的流量

要想监控整个VLAN的流量，请按以下步骤行事。

1．将Wireshark主机接入核心层交换机上的某个端口。

2．在SW1上配置端口镜像，把受监控VLAN的流量重定向给连接了Wireshark主机的端口。试举一例，要想监控在VLAN 10内传播的流量，而Wireshark主机连接的是SW1上的端口4，那么在Cisco交换机SW1上应执行如下命令。

 	Switch(config)#monitor session 1 source vlan 10

 	Switch(config)#monitor session 1 destination interface fastethernet0/4

上述命令一配，Wireshark便可以抓到由SW1转发的VLAN 10的流量了。

 [image: 未标题-1]　注意

 每家交换机厂商都有自己的一套端口镜像的配置方法，要想获悉具体的配置命令，请登录它们的官网搜索以下关键字：SPAN（Cisco）；port mirror或port mirroring（HP、Dell、Juniper及其他厂商）。在刀片服务器机箱内执行流量监控时，一般只能监控到某个物理端口的流量；借助于某些软件（比如，Cisco Nexus 1000V软交换机），可以监控到刀片服务器机箱里指定服务器的流量。

2．监控通过Trunk端口传播的带VLAN标记的流量

监控通过Trunk端口传播的带VLAN标记的流量会麻烦点儿。麻烦出在实际用来抓包的网卡以及网卡驱动程序对待VLAN标记的态度上。

可按以下简单的步骤，来验证Wireshark主机所配备的网卡是否支持抓取带VLAN标记的数据包。

1．在交换机上开启端口镜像功能，让Wireshark主机直接抓取从Trunk端口重定向而来的数据包，观看其是否携带VLAN标记。若是，便说明Wireshark主机所配备的网卡支持抓取带VLAN标记的数据包，请继续抓包。

2．若否，则需要配置Wireshark主机所配备的网卡。假设Wireshark主机的操作系统为Windows 7，请点击“控制面板”→“网络和Internet”→“查看网络状态和任务”→“本地连接”，在弹出的“本地连接 状态”窗口中按图8.15所示步骤行事。

[image:]

图8.15　关闭抓包网卡的优先级和VLAN（Priority & VLAN）属性

选择了Priority & VLAN Disabled之后，再点OK，网卡就会把数据包中的VLAN标记传递给WinPcap驱动程序和Wireshark软件了。

 [image: 未标题-1]　注意

 图8.15是以配置一台联想（Lenovo）笔记本自带的Realtek网卡来举例，机器不同、网卡不同，配置方法也必不相同，但配置原理必然相同。原理是，在网卡上禁用数据包的VLAN标记剔除功能，让网卡把带VLAN标记的数据包原封不动地传递给WinPcap驱动。如此一来，通过Wireshark软件，就能看见数据包以太网帧头中的VLAN标记了。

8.4.3　幕后原理　　　　

所谓VLAN标记，是数据帧帧头内一块4字节的数据，其中记录了该帧所归属的VLAN ID以及其他信息。VLAN标记的格式如图8.17所示。收到数据包之后，大多数网卡及其驱动程序都会原封不动地交给高层处理。只要在配备了这些网卡的主机上安装Wireshark软件，在抓获的数据包中必将包括VLAN ID（见图8.16）。但还有一些具备复杂功能的网卡（比如，Intel和 Broadcom吉比特芯片组的网卡），在保留默认配置的情况下，能自身消化掉数据包中的VLAN ID。此时，要想让VLAN ID在Wireshark抓获的数据包中露面，就必须更改此类网卡的默认配置，禁用其消化VLAN ID的功能。

[image:]

图8.16　抓包网卡对以太网帧的处理方式

配置NIC驱动时，应确保其保留以太网帧的VLAN标记，将以太网帧原封不动地转发给由Wireshark提供的WinPcap驱动程序。

[image:]

图8.17　给以太网帧打上VLAN标记的方法

图8.18所示为一个打了VLAN标记的以太网帧，该帧携带的VLAN标记为20（VLAN ID=20）。

[image:]

图8.18　带VLAN标记的数据包

8.4.4　拾遗补缺　　　　

有时，可能会抓到携带双VLAN标记的以太网帧，这种以太网帧遵循的是IEEE 802.1ad标准。此类以太网帧中的第一个VLAN标记叫做S标记（S-tag）（IEEE 802.1ad），由服务提供商的边界设备所打；第二个VLAN标记名为C标记（C-tag）（IEEE 802.1Q），由（服务提供商的）客户的设备所打。这一给以太网帧打两个以太网标记的机制也被称为Q-in-Q机制。

8.4.5　进阶阅读　　　　

 	欲知更多与WinPcap有关的信息，请访问WinPcap主页。

 	欲知更多与UNIX/Linux tcpdump库有关的信息，请访问tcpdump主页。

[1]　译者注：原文是 Broadcasts/multicasts are forwarded to the control plane/CPU of the switch or router, if it is configured to do so or enabled with layer 3 capabilities. This may result in control plane instability (for example, OSPF adjacency flaps)”。

[2]　译者注：原文是“Significant number of broadcasts per second (thousands and more)”。其实，其他原因所导致的广播风暴也有这样的特征。

[3]　译者注：本书明明是介绍Wireshark第2版，但是第8章的这几幅图还是基于Wireshark第1版。

第9章　无线LAN

本章涵盖以下内容：

 	认识无线网络及其标准；

 	无线网络射频故障、故障分析及故障排除；

 	无线LAN抓包。

9.1　学习目标

读完本章，读者不但能学会如何分析无线LAN流量，还将掌握如何诊断用户申告的无线网络连通性及性能故障。

9.2　认识无线网络及其标准

十多年来，无线LAN越来越受人们的欢迎，现已成为小型网络设备保持在线的重要联网方式之一。从宏观角度来看，无线网络可分为下几种类型（见图9.1）。

 	无线个人区域网络（Wireless Personal Area Networks，WPAN）：无线设备彼此之间的距离保持在5～10米之内，比如，特设（ad-hoc）网络。

 	无线局域网（Wireless Local Area Network，WLAN）：无线设备彼此之间的距离可保持在100米之内。

 	无线城域网（Wireless Metropolitan Area Network，WMAN）：无线设备彼此之间的距离保持在100米～5千米（3.1英里）之内，通常该网络会覆盖城郊。

[image:]

图9.1　无线网络的类型

先来简单认识一下各种WLAN的标准。自20世纪90年代中期以来，IEEE 802.11委员会一直致力于开发无线LAN的标准，已经颁布了从802.11b到802.11ac等若干标准，如表9.1所列。

表9.1

 	标准
 	802.11b
 	802.11a
 	802.11g
 	802.11n
 	802.11ac

 	年代
 	1999
 	1999
 	2003
 	2009
 	2013

 	频率
 	2.4GHz
 	5GHz
 	2.4GHz
 	2.4/5GHz
 	5GHz

 	通道数
 	3
 	<=24
 	3
 	动态
 	动态

 	传输技术
 	DSSS
 	OFDM
 	DSSS/OFDM
 	OFDM
 	OFDM

 	数据速率（Mbit/s）
 	1、2、5.5、11
 	6、9、12、18、24、36、48、54
 	6、9、12、18、24、36、48、54-OFDM
 	[image:]450
 	1300（Wavel）、
 6930（Wave2）

9.2.1　认识WLAN设备、协议及术语　　　　

对网管人员而言，通晓无线射频（wireless radio）原理以及各种WLAN设备的运作机制，将有助于理解并排除用户申告的各种无线网络故障。

9.2.2　接入点（AP）　　　　

无线LAN网络离不开AP这种硬件，无线工作站/设备（名为STA）只有先连接到AP，才能和有线网络通信。AP一般都会以有线方式与上游的交换机/路由器相连。

9.2.3　无线局域网控制器（WLC）　　　　

无线局域网控制器（WLC）也是一种硬件，可通过IEEE CAPWAP（无线接入点的控制和配置）协议（该协议基于Cisco轻量级接入点协议[LWAPP]）来管理大量的轻量级无线AP，并与这些AP进行通信。AP和控制器之间会通过CAPWAP，来同时传输控制流量（DTLS加密）及数据流量（可选择使用DTLS加密）。

AP的部署模式可分独立式（见图9.2）和集中式（见图9.3）两种。

 	独立部署模式：顾名思义，按照该部署模式，AP将得到单独部署及维护。该部署模式也是中小企业最常用的部署模式。在中小企业的网络内，只需要部署几台AP。

 	集中部署模式：按照该部署模式，将会部署大量的AP。AP的配置、安全性/策略的设置以及软件/固件的更新等都会由无线LAN控制器来统一管理。AP和控制器之间可通过第2层/第3层网络来打通。如前所述，AP要由运行CAPWAP协议的无线控制器来管理，数据流量以及控制流量也会通过这种协议来传送。

[image: 0903]

图9.2　无线AP的独立部署模式

[image:]

图9.3　无线AP的集中部署模式

对用来组建无线LAN的各种设备有了基本了解之后，再来见识一下与无线网络技术有关的一些术语。

 	STA：使用无线服务的无线工作站或无线客户端。

 	AP：为无线客户端提供无线服务的设备。

 	DS：分布式系统，互连AP的LAN。

 	BSS：基本服务集（Basic Service Set），由一组相互通信的无线设备构成，这些无线设备的通信介质具备相同的特征（比如，相同的射频和调制方案）。

 	ESS：扩展服务集（Extended Service Set），由位于同一逻辑网段（比如，同一IP子网和VLAN）的若干基本服务集构成。

要想更好地理解以上术语，请细看图9.4。

[image:]

图9.4　无线LAN分布系统和服务集

9.3　无线网络射频故障、故障分析及故障排除

9.3.1　排障准备　　　　

当有用户投诉无线网络无法连接或频繁掉线时，应第一时间携带配有无线网卡的笔记本赶赴用户所在位置（离用户使用无线网络的地方越近越好），验证无线网络是否正常。

9.3.2　排障方法　　　　

要想找出无线网络故障的根本原因，请按以下步骤行事。

1．确定用户的无线网络到底是完全不能使用，还是用的不爽（频繁掉线、网速慢、无线信号时强时弱等都算用的不爽）？

2．确定无线网络用的不爽的具体地点，是在整栋大楼/整个楼层的不同区域呢，还是在某个特定的区域？

1．无线网络连接不上

若所有用户都连接不上无线网络，则应登录覆盖受故障影响区域的AP（独立部署模式），检查其运行及健康状态。

若AP由控制器集中管理，则可以登录控制器的图形用户界面（GUI）来检查AP的运行和健康状态，尤其是要检查由AP提供无线服务的SSID。图9.5所示为一台Cisco无线控制器的用户管理界面显示的AP的信息（包括AP的数量、开机时间等）。

[image:]

图9.5　一台Cisco无线控制器的用户管理界面显示的AP列表及AP的状态信息

请注意，AP发现控制器、加入无线网络域以及下载配置/策略会有一个过程，要花费一定的时间。建议读者参考相关厂商的排障文档来诊断并解决故障。

若AP从无线控制器的用户管理界面中消失不见，则AP和无线控制器之间可能存在连通性问题。通过抓包来诊断AP与无线控制器之间连通性问题的方法，与诊断两台PC之间的连通性问题的方法相同。

 [image: 未标题-1]　注意

 需要注意的是，并非所有的AP都会广播SSID。因此，若用户投诉某个SSID消失不见，很可能是它并未得到AP的广播。此时，请试着手工指明有待加入的无线网络的SSID以及相应的通行证——用户名/密码。

2．无线网络质量不佳或频繁掉线

若用户申告无线网络用的不爽，请按以下步骤行事。

图9.6所示为Windows操作系统提供的定位WiFi故障的标配工具，通过该工具可以了解到无线网络的以下特征。

 	信号强度，即接收信号强度指示符（RSSI，Received Signal Strength Indicator）。

 	无线接入点ID，即SSID（Service Set Identification）。

 	无线网络所启用的安全协议。

 	射频类型（图9.6中所示的Windows 7系统接入的是802.11n无线网络）

[image:]

图9.6　安装Window 7系统的PC“感知”的无线网络及其特征

还可以使用专用软件（比如，Acrylic WiFi免费版、用于Windows的Homedale、用于Apple Mac的NetSpot免费版，或macOS无线诊断工具）来勘察WiFi网络。可利用这些工具，来发现可用的无线网络，勘察无线网络的信号强度、信道、链路质量等更多详细信息。这样一来，便可获知用户所在位置的无线网络的概要信息，以及可能存在的频率干扰、信号干扰、射频问题。某些软件还支持监控特定周期内的无线信号质量。

请注意图9.7所示的Acrylic界面的Rssi一栏下的数字。数值越高，就表示与之相对应的无线网络信号越强。

 	−60dBm及以上：表示无信号质量上佳。

 	−80dBm～−60dBm：表示无线信号质量尚可。

 	−80 dBm～−90dBm：表示无线信号较弱。

 	−90 dBm及以下：表示无线信号极弱。

[image:]

图9.7　Acrylic软件界面呈现的无线网络、RSSI等级以及无线网络的速度

若Rssi栏下的数字为−80dBm以上，则表示无线信号的质量在中等以上，要是用户依然不断投诉，那就应该看看是否存在信道干扰问题或其他射频问题了。信噪比（SNR，Signal-to-Noise Ratio）是衡量无线网络质量的重要参数之一，该参数所指为无线网络环境中信号功率与噪声功率之间的比率。

 [image: 未标题-1]　注意

 来介绍一下作者的无线网络设计经验：要想让无线网络承载标准的企业级应用程序流量，信号强度不能低于−75dBm；要想跑VoIP流量的话，信号强度至少应在−65dBm以上。

要想检查无线网络是否存在信号干扰问题，需部署具备特殊功能的软件，来随时监控无线网络的信号强度。有一款名为inSSIDer的软件不但能监控周边指定无线AP的信号强弱（RSSI），还能图形的方式精确加以呈现，图9.8所示为这款软件的运行界面。

[image:]

图9.8　inSSIDer软件的无线网络监控界面

请检查是否存在以下问题。

 	所在区域是否有不同的AP运行于同一信道。

 	NSR值是否过低。当信号强度偏低（RSSI值低于−90dBm）和/或噪声偏高时，NSR值一般会偏低。

802.11网络所使用的是为ISM（工业、科学和医疗）预留的2.4 GHz频带，该频带无需授权即可使用。因此，该频带会受到各种东西（比如，无线监控探头、微波炉、无绳电话/耳机、无线游戏机控制台/控制器、运动检测器，甚至是荧光灯，如图9.9所示）的干扰而导致数据传输不畅。

[image: 0910]

图9.9　802.11网络干扰源

在可能存在信号干扰的区域（比如，机场、港口以及军事区域等），可使用无线频谱分析仪来检查是否存在信号干扰问题。主流的频谱分析仪生产厂商包括Fluke Networks、Agilent以及Anritsu等。

用Wireshark抓取并分析WiFi控制帧。首先，应检查AP能否正常广播Beacon（信标）帧，无线工作站能否收到Beacon帧。图9.10所示为Wireshark抓取的Beacon帧的帧结构。

[image:]

图9.10　AR发出的Beacon帧的帧结构

AP会定期发出Beacon帧，并在其中包含与自身所提供的无线网络有关的信息，以宣告该无线网络的存在。信息包括无线网络的SSID、无线网络所启用的安全方法，以及时间戳等其他参数。

无线工作站/设备（配备的无线网卡）也会持续扫描所有802.11射频信道，监听Beacon帧，来选择最佳AP并与之关联。为了向AP和指定的SSID注册，无线工作站需要确认Beacon帧。

无线工作站还会发出探测请求（Probe Request）帧来查探附近的AP和无线网络。若探测请求帧所查探的无线网络与之兼容，则该无线网络的AP会回复探测响应（Probe Response）帧。探测响应帧中包含了Beacon帧中的所有参数，无线工作站可据此调整加入无线网络所需要的参数。

接收并确认过Beacon帧之后，无线工作站将通过标准的DHCP过程获取其IP地址相关参数；与DHCP有关的内容详见第10章。

9.4　无线LAN抓包

9.4.1　抓包选项　　　　

若在安装了Wireshark的无线工作站上抓取本机与网络内其他有线/无线设备之间的流量，且只准备分析常规的网络流量，无需分析无线网络的802.11控制流量或射频/链路层信息，则不用特殊设置。只需运行Wireshark软件，指明用来抓包的无线网卡，应用必要的抓包过滤器，令该无线网卡以混杂模式运行即可。

 [image: 未标题-1]　注意

 要用Wireshark抓取无线工作站上运行的不同进程之间的流量，应将Loopback接口指定为抓包网卡。

若既要抓取安装了Wireshark的无线工作站收发的流量，又要抓取网络内不同无线设备之间的流量，同时还得分析无线网络的802.11控制数据包或射频/链路层信息，则必须让抓包网卡在监视模式下运行，如图9.11所示（安装在Apple macOS Sierra 10.12.6上的Wireshark版本10.6）。这样的抓包方式俗称隔空（Over-the-Air，OTA）抓包。

[image:]

图9.11　Wireshark网卡抓包选项

请注意，Wireshark隔空（OTA）抓包的能力有限；有几款商业软件可以更为全面地监控无线网络的流量。

 [image: 未标题-1]　注意

 某些基于UNIX的操作系统和Apple macOS（10.6或更高版本）内置了一些工具，比如，airportd、airport utility、Wireless Diagnostics和tcpdump，都可用来抓取并分析无线网络的流量。

9.4.2　抓包准备　　　　

对可用的抓包选项有了基本的认识之后，应该去了解无线工作站如何关联无线网络，以及在关联之后如何访问网络服务/获取数据了。

 	为了关联到一个无线网络，无线工作站要接收AP发出的Beacon帧和/或与AP交换探测请求/探测响应帧。

 	成功关联之后，无线工作站会通过无线网络的身份验证并获得访问权限。

 	无线网络会根据事先定义的策略，向无线工作站授予IPv4/IPv6地址。

 	对于需要通过Web验证才能接入的无线网络，用户需要接受无线服务提供商的条款和条件。这一验证过程可能不是必须的，视提供无线网络接入服务的提供商的策略而定。

上述接入过程的每一步都有可能会出现问题，这些问题可能会让无线工作站无法关联到无线网络，以至于不能获取数据。本节会探讨以下常见问题：

 	无线工作站无法加入拥有指定的SSID的无线网络；

 	成功关联到某个无线网络之后，通不过身份验证。

9.4.3　抓包方法　　　　

请参阅9.3节，并确保无线网络射频/链路层能正常运作。

1．无线工作站无法加入拥有指定SSID的无线网络

运行Wireshark软件，让无线网卡在监控模式下抓包，同时应用显示过滤器，过滤掉本无线工作站（安装了Wireshark的排障主机）自身收发的流量。

 [image: 未标题-1]　注意

 如本书前文所述，可在抓包主窗口中的数据包结构区域内选中指定数据包的某个属性（特征或协议头部字段），单击右键，选择Apply as Column菜单项，将该属性（特征、协议头部字段）新增为数据包列表区域里的数据包属性列。比方说，可将无线网络的数据速率、信号强度以及有助于排除网络故障的所有东西添加为数据包列表区域里的数据包属性列[1]。

来看一下一台刚开机的Apple无线设备加入某SSID的情况。由图9.12可知，该无线设备发出了一个探测请求帧，AP也回复了一个探测响应帧。本例使用的显示过滤器为（wlan.fc == 0x4000）or（wlan.fc == 0x5008）。

[image:]

图9.12　探测请求帧和探测响应帧

请注意，探测请求帧属于广播帧，其目的MAC地址全为F（十六进制）。

由图9.13可知，一个有效的探测响应帧不但会在其802.11射频信息头部中包含射频/链路层信息（比如频率、信道及SNR等信息），还会在802.11 MAC地址头部中包含发送方信息及BSS信息等。

[image:]

图9.13　探测响应帧的头部详情（射频、AP及BSS信息）

图9.14所示为探测响应帧的帧主体（frame body）包含的无线网络的SSID、无线网络支持的速率（Mbit/s）等参数[2]。要确保探测响应帧的帧主体包含的所有参数与发出探测请求帧的无线工作站的无线网卡兼容。

[image:]

图9.14　探测请求帧的帧主体的内容

得到响应之后，无线工作站将会与由AP提供服务的具有指定SSID的无线网络相关联。图9.15所示为互发过探测请求帧和探测响应帧之后，无线工作站为了与AP成功关联进一步交换的消息。

[image:]

图9.15　无线工作站与AP相关联催生的消息

查看由AP发送的关联响应帧（图9.15中的最后一个帧）的帧主体，其状态代码字段值为0x0000，如图9.16所示。这表示无线工作站与通告指定SSID的AP关联成功。

[image:]

图9.16　无线工作站与AP关联：状态代码

2．成功关联到某个无线网络之后，通不过身份验证

关联成功之后，若Wireshark能抓到无线工作站与AP之间交换的用户数据流量，则AP所通告的无线网络极有可能未启用任何安全策略。这种情况在商场或酒店非常常见，这些场所的无线网络一般会都获准顾客接入，至少在接入时不会在设备层面执行验证。不过，接入无线网络之后，顾客在无线设备上浏览网页时，大多需要通过应用层面的身份验证。此时，顾客需要输入通行证——用户名/密码，或许还得接受某些条款或条件才能继续享用无线服务。

在解决无线网络验证问题之前，先得了解一下网线网络的验证框架和各种验证方法。

可扩展身份验证协议（Extensible Authentication Protocol，EAP）是当今最为常见的身份验证框架之一，得到了各个无线设备生产厂商的广泛支持。该框架本身虽非验证机制，但提供了通用的验证和协商方法（名为EAP方法）。目前，有40种以上的EAP方法（比如，LEAP、EAP-TLS、EAP-MD5、EAP-FAST、EAP-IKEv2等）可用来保证设备间的安全通信。

注意：

 	EAP定义于RFC 5274，原先定义于RFC 3748；

 	RFC 4017对无线LAN专用的EAP方法提出了要求；

 	欲了解EAP数据包所使用的类型和代码[3]，请参阅IANA EAP注册信息表；

 	IEEE 802.1X定义了EAP数据包在LAN内的封装方法（EAP over LAN），俗称EAPoL。

现以图9.17所示的Wireshark截屏为例，来讲解成功关联至无线网络之后，发生的验证经过。

[image: 0918]

图9.17　EAP认证过程

由图9.17可知，应用了显示过滤器(wlan.da == 78:88:6d:43:90:ad or wlan.sa == 78:88:6d:43:90:ad)&& (eapol.type == 0)。其中，78:88:6d:43:90:ad为无线工作站配备的无线网卡的MAC地址。

 	9#数据包：AP向无线工作站发出EAP验证请求，表明自己的身份。

 	10#数据包：无线工作站（一台Apple设备）响应验证请求，表明自己的身份。

 	12#数据包：AP提出使用EAP-TLS方法建立安全隧道，来保护所有EAP通信（这种EAP验证方法名为受保护的EAP[Protected EAP，PEAP]）。

 	13#数据包：Apple设备开始向AP发出v1.2的TLS数据包。

 	15～46#数据包：AP和Apple设备交换更多的数据包，以完成身份验证过程。

 	48#数据包：该EAP数据包由AP发出，其包头的代码字段值为3，如图9.18所示，表示EAP认证成功。

[image:]

图9.18　EAP数据包包头的代码字段值为3，表示EAP验证成功

EAP验证顺利完成之后，无线工作站和AP还得完成4次握手，意在让两种设备独立证明自身的合法性，且无需公开之前的共享密钥，如图9.19所示。这可让无线网络免受任何形式的无赖AP的危害。4次握手执行完毕之后，无线工作站才可以访问无线网络内的数据。

[image:]

图9.19　4次握手

9.4.4　拾遗补缺　　　　

Riverbed公司的AirPcap

在之前讨论的场景中，Apple设备（一台Apple Mac笔记本电脑）要求采用并执行了一种非常特殊的身份验证和封装方法。还可以使用市面上有售的各种商业工具（比如，Riverbed公司出品的AirPcap无线网络适配器[可与Wireshark紧密结合]以及 SteelCentral数据包分析仪）来进行抓包分析。Riverbed公司的产品包可生成全面的报告，并达到完全可视化的效果。

在无线工作站、AP及控制器之间抓取流量的更多手段

本章前文只涉及无线工作站和AP之间的交互，以及相关的流量抓取。Cisco和Aruba/HPE等无线设备厂商出品的AP和/或无线控制器还能以嗅探（sniffer）模式运行。在这种模式下运行时，AP/WLC会发出特殊的UDP流量（目的UDP端口号可以指定，比如，5555）。在安装了Wireshark的无线工作站上，可配置显示过滤器（指明目的UDP端口号5555）来抓取并筛选出这种流量，Wireshark版本2会将这种流量解码为peekremote（Wireshark版本1会解码为airopeek）流量。能抓到这样的流量，不但可以确认AP和无线工作站之间畅通无阻，还能用来验证无线网络的各种射频/链路层参数。

在正常情况下，无线工作站和AP之间的所有控制/数据流量的净载均已加密，用Wireshark无法解密。建议读者在遇到重大无线网络故障时联系相关厂商，看看有没有可能在AP/WLC上解密这些流量。

此外，当采用集中部署模式时，AP和WLC之间的数据/控制流量都会通过CAPWAP隧道传输。可用Wireshark抓取并解码经过CAPWAP封装的流量（抓包方式类似于抓取同一网络内两台PC之间的流量）。

 [image: 未标题-1]　注意

 要想用Wireshark解码CAPWAP控制流量，请在Wireshark主窗口中选择Preferences | Protocols | CAPWAP-CONTROL，勾选右边的Cisco Wireless Controller Support复选框。若取消勾选该复选框，Wireshark在显示CAPWAP控制数据包时，会将其标为畸形（malformed）数据包。

[1]　译者注：整段原文为“As discussed in previous chapters, locate the field of interest in a given frame, right-click on it, and select Apply as Column to add the field as a column. For example, you can add data rate, strength, and so on, which will be very helpful during troubleshooting”。

[2]　译者注：原文是“The next image shows SSID, supported rates in Mbps, and other capabilities in the 802.11 wireless LAN header”。原文有误，译文酌改。

[3]　译者注：作者所说的“类型”和“代码”应该分别是EAP数据包的“数据”部分的第一个字节类型字段值，以及EAP数据包包头的代码字段值。这两个字段的作用解释起来太过复杂，请读者自行查阅相关文档。

第10章　网络层协议及其运作方式

本章涵盖以下内容：

 	IPv4协议的运作原理；

 	IPv4地址解析协议的运作方式及故障排除；

 	ICMP协议的运作方式及故障分析/排除；

 	IPv4单播路由选择的运作方式及故障分析；

 	与IP数据包分片有关的故障分析；

 	IPv4多播路由选择运作原理；

 	IPv6协议的运作原理；

 	IPv6扩展头部；

 	ICMPv6协议的运作方式及故障分析/排除；

 	IPv6自动配置特性；

 	基于DHCPv6的地址配置；

 	IPv6邻居发现协议的运作原理和故障分析。

10.1　简介

本章聚焦于OSI参考模型的第3层，会讲解如何用Wireshark观察第3层协议（IPv4/IPv6）的举动以及如何分析单、多播数据包。此外，还将介绍IPv4地址解析协议（ARP）、IPv6邻居发现协议（ND）以及动态/无状态IPv6地址配置机制，同时会探讨如何排除与上述协议和机制有关的故障。

读完本章，读者将会掌握如何用Wireshark分析并排除端到端的IPv4和IPv6单、多播连通性故障。

虽然排除网络故障的方法多种多样，但最实用和最有效的方法莫过于自下而上的排障方法了。该方法始于OSI参考模型的最底层（物理层）。当端点之间丧失连通性时，采用该方法的排障思路是：先检查最底层的要素，并依次检查较高一层，直至查明故障原因。图10.1所示为自下而上的排障思路。

[image:]

图10.1　ISO自下而上的网络故障排除方法

10.1.1　IPv4协议的运作原理　　　　

在OSI参考模型中，网络层的作用是通过网络层地址让设备具备全局唯一性，同时让分属不同网络的末端系统之间建立连接，传送数据。网络层还要负责从上层（传输层）接收报文段，用包含源、目标识符的网络层头部封装报文段，并将封装后的数据包转发至远程末端系统。

IP是一种网络层协议，最常用的网络层协议是IPv4协议[1]。IPv4包头的格式如图10.2所示。

[image: 1002]

图10.2　IPv4数据包包头的格式

图10.3所示为Wireshark抓到的IPv4数据包的包头的样子。

[image:]

图10.3　IPv4数据包的包头结构

10.1.2　IP编址　　　　

IPv4地址是分配给IP网络内每台联网设备的逻辑网络层标识符，在该IP网络内具备唯一性。IPv4地址是一个长度为32位的标识符，分为网络ID部分和主机ID部分，其格式如图10.4所示。

[image:]

图10.4　IPv4地址格式

网络ID用来标识主机所在IP网络。同一IP网络内的所有节点共享相同的网络ID[2]。主机ID用来标识同一IP网络内的每台主机。在为同一网络内的节点分配IP地址时，每个节点的主机ID必须具备唯一性。子网掩码总是会随IP地址一起分配给主机，子网掩码的作用是指明IP地址的网络ID部分。比方说，若IP地址10.0.0.1的子网掩码为255.255.255.0，则表示该IP地址的前三个字节为网络ID，最后一个字节为主机ID。

虽然IPv4地址的长度是32位（二进制），但总会用点分十进制来表示。具体的表示方法为：先将一个长度32位的IP地址按8位编组分为4个字节，再将每个字节的8位二进制数转换为十进制数，最后将那4个十进制数用“.”隔开。

IPv4地址可分为以下3种类型。

 	单播地址：用于点对点通信，按此通信方式，数据将会从某一发送节点传送至相同或不同网络内的某一接收节点。IPv4单播地址的范围为1.0.0.0～223.255.255.255。

 	多播地址：用于点对多点通信，按此通信方式，数据将会从某一发送节点传送至相同或不同网络内的多个接收节点。IPv4多播地址的范围为224.0.0.0～239.255.255.255。

 	广播地址：用于点对多点通信，按此通信方式，数据将会从某一发送节点传送至同一网络内的所有接收节点。每个IP子网的最后一个IP地址就是IP广播地址。IP地址255.255.255.255名为有限广播地址。

10.2　IPv4地址解析协议的运作方式及故障排除

Ethernet（以太网技术）是一种最受欢迎的主流LAN（局域网）技术，数据传输速率低至10Mbit/s，高至400Gbit/s。Ethernet数据链路层协议用48位MAC地址作为数据链路层标识符。本节将探讨IPv4 ARP的运作方式及故障排除。

10.2.1　准备工作　　　　

按照自下而上的排障方法，要想解决任何一个IP连通性问题，首先得确保能把相关主机的IP地址通过ARP成功解析为对应的MAC地址。

10.2.2　排障方法　　　　

请看图10.5所示的LAN拓扑。

[image: 1005]

图10.5　LAN拓扑

在图10.5所示LAN内，假设PC1尝试访问PC2。

1．在PC1（10.1.1.101）上ping PC2（10.1.1.102）。若PC1对PC2的MAC地址不得而知，便会发出ARP请求数据包，目的是获悉PC2的MAC地址[3]。

2．在PC1上执行arp-a命令，检查其ARP缓存表，看看能否发现与IP地址10.1.1.102相对应的MAC地址。

3．如能发现，则表示PC1发出了ARP请求数据包，并收到了PC2回复的ARP应答数据包。

4．如未发现，请将Wireshark主机连接到交换机上的一个空闲端口，开启交换机的端口镜像功能，开始抓包。应该将连接PC1和PC2的交换机端口的入向和出向流量重定向给Wireshark主机。图10.6所示为Wireshark抓到的ARP数据包。

[image:]

图10.6　Wireshark抓到的ARP请求数据包

5．查看Wireshark是否抓到了PC1发出的ARP请求数据包。由图10.6可知，PC1发出了ARP请求数据包。ARP数据包的目的MAC地址为广播地址ff.ff.ff.ff.ff.ff，读者想必已经注意到了。

 	若只从连接PC1的交换机端口的入向抓到了该ARP请求数据包，但未从连接PC2的交换机端口的出向抓到，则很有可能是交换机丢弃了ARP数据包。

 	若从连接PC1的交换机端口的入向也未抓到该ARP请求数据包，请检查PC1和交换机之间的物理线缆。

 	若从连接PC1和PC2的交换机端口都抓到了ARP请求数据包，但却未抓到ARP应答数据包，请检查PC2。

6．检查Wireshark是否抓到了ARP应答数据包。图10.7所示为PC2发给PC1的ARP应答数据包的格式。可以看出，该ARP应答数据包将会以单播方式发往PC1的MAC地址。

 	若从连接PC2的交换机端口的入向抓到了ARP应答数据包，但未从连接PC1的交换机端口的出向抓到，则极有可能是交换机丢弃了ARP应答数据包。

 	若从连接PC2的交换机端口的入向也未抓到ARP应答数据包，请检查PC2和交换机之间的物理线缆。

 	若从连接PC1和PC2的两个交换机端口都抓到了ARP应答数据包，但PC1的ARP缓存表中没有相应的ARP记录，请检查PC1。

[image: 1007]

图10.7　Wireshark抓到的ARP应答数据包

表10.1所列为与ARP有关的显示过滤器。

表10.1　Wireshark ARP相关显示过滤器

 	 显示过滤表达式

 	 描述

 	 显示过滤器示例

 	 Arp

 	 从抓包文件中筛选出所有ARP数据包

 	 arp

 	 arp.opcode==<opcode>

 	 根据ARP数据包中Opcode字段值来筛选数据包。Opcode字段值为1，表示所有ARP请求数据包；Opcode字段值为2，表示所有ARP应答数据包

 	 arp.opcode==1
 arp.opcode==2

 	 arp.src.hw_mac==<mac>

 	 根据ARP数据包中“Sender hardware address”字段值来筛选数据包

 	 arp.src.hw_mac==
 fa:16:3e:ce:50:b0

 	 arp.dst.hw_mac==<mac>

 	 根据ARP数据包中“Target hardware address”字段值来筛选数据包

 	 arp.dst.hw_mac==
 Fa:16:3e:ce:50:b0

 	 arp.isgratuitous==<>

 	 从抓包文件中筛选出所有免费（Gratuitous）ARP数据包

 	 arp.isgratuitous==true

1．ARP攻击和缓解措施

ARP是一种非常简单的协议，并没有内置任何身份验证或其他安全机制，很容易遭到攻击。网络中的恶意之徒既可以利用ARP来发动ARP中毒攻击，从而达到窃取数据的目的，也可以先执行ARP扫描，再发展为拒绝服务（DoS）攻击。本节将介绍各种基于ARP的攻击手段，并讲解如何使用Wireshark来检测这些攻击。

ARP中毒和中间人（Man-in-the-Middle）攻击

攻击者用其主机太网卡的MAC地址来污染受攻击主机的ARP缓存，是中间人攻击的一种手段。ARP缓存一旦受到污染，每台受攻击主机只要与其他设备通信，其所有流量便会被攻击主机所截取。攻击主机在读取流量之后，还可以奉还给实际的目的主机。

之所以把上述攻击手段归为中间人攻击，是因为攻击设备位居任意两台受攻击设备的通信路径之间。此外，由于发动攻击的主机能用错误信息来污染受攻击主机的ARP缓存，因此也有人把这种攻击手段称为ARP中毒。

图10.8所示为这一中间人攻击的示例。

[image:]

图10.8　ARP中毒攻击

图10.9所示为发动ARP中毒攻击的同时，Wireshark抓到的相关数据包。

[image:]

图10.9　遭受ARP中毒（欺骗）攻击期间，Wireshark抓到的相关数据包

由图10.9可知，攻击主机发出包含MAC地址f0:de:f1:ae:77:69的ARP应答数据包，来回应IP为10.0.0.100和10.0.0.101的主机发出的ARP请求数据包。在生产网络内，Wireshark可能会在几秒钟之内抓到成千上万个数据包，可应用显示过滤器，来筛选出自己感兴趣的数据包。

免费ARP

当一主机欲验证其IP地址是否与其他主机冲突时，便会发出一种特殊的ARP数据包——免费ARP（Gratuitous ARP，GARP）数据包。这种ARP数据包的Sender IP address字段值与Target IP address字段值相同，如图10.10所示。网络中存在GARP数据包，并不表示发生了异常情况。有些设备会主动发出GARP数据包。比如，某些厂商的家用宽带路由器会定期发送免费ARP数据包，目的是要刷新内网主机的ARP缓存，使其避免遭受ARP欺骗攻击。GARP数据包的目的MAC地址为广播地址。

[image:]

图10.10　GARP数据包

虽然在生产网络中应该能够抓到GARP数据包，但恶意之徒也可以释放包含任一IP地址外加本机MAC地址的GARP数据包，来达到窃取数据的目的。

可应用Wireshark显示过滤器arp.isgratuitous，从包含海量数据包的抓包文件中筛选出GARP数据包，如图10.11所示。

[image:]

图10.11　用来筛选GARP数据包的显示过滤器

基于ARP扫描的DoS攻击

为了建立网络设备清单，网管人员的一般做法是发出ARP请求数据包，扫描子网内的所有IP地址。在这种情况下，由网管系统生成的ARP请求数据包的Target hardware address字段值将不断改变，但Sender IP address和Sender hardware address字段值将始终保持不变，分别为安装管理系统的服务器的IP地址和MAC地址。收到ARP请求数据包之后，末端主机会提取其中的Sender IP address和Sender hardware address字段值，来填充本机ARP缓存表。这也是末端主机的默认行为，目的是为了提高通信效率。可惜，任何恶意之徒都可以利用这一默认行为发动ARP扫描攻击。具体的攻击手法是，在发出ARP请求数据包时不停地更改Sender IP address和Sender hardware address字段值，最终达到污染LAN网络内所有末端主机的ARP缓存表的目的。

IPv4 LAN的正常运作离不开ARP请求和ARP应答这两种数据包。以下所列为作者对这种ARP数据包的某些看法。

 	ARP请求数据包源于多个不同的MAC地址（即源MAC地址字段值多有不同）。

 	这大多属于正常情况——ARP请求数据包是LAN中IP设备间相互通信的支柱，但前提是数目不能过多[4]。

 	若发出ARP请求数据包的设备的MAC地址未在本LAN的网络设备清单里登记，则很有可能是攻击。

 	ARP请求数据包大都源自于单一MAC地址。

 	若该MAC地址归安装了网管系统的服务器所有，则纯属正常。

 	若该MAC地址归一台宽带路由器所有，则可能是该路由器在执行网络扫描。

 	要是无法确定该MAC地址归哪台设备所有，则网络很有可能正面临着蠕虫病毒或ARP中毒攻击。请务必仔细查找原因[5]！

可使用Wireshark Statistics菜单中的某些工具来辨别网络是否正面临ARP扫描。请在Statistics菜单中点击Protocol Hierarchy菜单项，结果如图10.12所示。通过观察Protocol Hierarchy Statistics窗口中ARP帧的占比情况，即可了解到网络内是否正面临任何ARP扫描攻击。

[image:]

图10.12　Statistics菜单中Protocol Hierarchy工具

10.2.3　幕后原理　　　　

LAN内的IP主机之间要想互相通信，除了要知道对方主机的IPv4或IPv6地址（目的IP地址）以外，还得获悉其48位MAC地址。

ARP的用途就是根据已知目的主机的IPv4地址，解析出与其对应的MAC地址。ARP数据包的格式如图10.13所示。

[image:]

图10.13　ARP数据包的格式

执行MAC地址解析的节点会发出目的MAC地址为广播地址（ff.ff.ff.ff.ff.ff）的ARP请求数据包。在ARP请求数据包中，操作代码字段值为1，发送方硬件地址字段值为发出该ARP请求数据包的节点的MAC地址，发送方协议地址字段值为发出该ARP请求数据包的节点的IP地址，目标硬件地址字段值为0，目标协议地址字段值为MAC地址解析对象的IP地址。

响应节点（MAC地址解析对象）将以单播方式（向执行MAC地址解析的节点）回复操作代码字段值为2的ARP应答数据包。

 [image: 未标题-1]　注意

 由于ARP数据包的目的MAC地址是广播地址，因此ARP协议的作用域仅为本地LAN。要想向本IP子网内（MAC地址未知、IP地址已知）的主机发送IP数据包（数据包的源IP地址和目的IP地址隶属同一IP子网），就得先行发送ARP请求数据包，解析出相应主机的MAC地址。要想向本IP子网之外的主机发送IP数据包（数据包的源IP地址和目的IP地址分属不同IP子网），也得先行发送ARP请求数据包，解析出本子网中默认网关（出口路由器）的MAC地址。

10.3　ICMP协议的运作方式及故障分析/排除

Internet控制消息协议（ICMP）是一种网络层协议，主要用途是为IP协议提供报错及诊断信息。ping和traceroute便是仰仗ICMP消息来检测并报告IP协议故障的实用工具。ICMP消息在网络中传播时要套上标准的IP包头。对一个ICMP数据包而言，其IP包头的协议类型字段值为1，IP包头之后紧跟ICMP净载。ICMP消息的格式如图10.14所示。

[image:]

图10.14　ICMP消息的格式

在各种ICMP消息中，用来验证网络连通性的是ICMP echo request和echo reply消息，这两种ICMP消息的类型字段值分别为8和0。

10.3.1　排障准备　　　　

按照自下而上的排障方法，解决末端应用程序故障（比如，Web服务或Mail服务故障）时，应首先检查数据链路层。一旦按照上一节所述步骤检查过数据链路层之后，就应该去检查端点之间的网络层连通性了，常用的故障检测及排查工具（比如，ping和traceroute）在这个阶段会派上大用场。

10.3.2　排障方法　　　　

请看图10.15所示的IPv4网络。

[image: 1015]

图10.15　IPv4网络拓扑

在图10.15所示的网络中，在PC1上ping PC2，所生成的ICMP数据包的以太网帧头和IP包头的源、目地址字段值分别是PC1和PC2的MAC地址和IP地址，因为PC1和PC2隶属同一个LAN（IP子网）[6]。

1．在PC1（10.1.100.101）上ping PC2（10.1.100.102），会导致PC1向PC2发出ICMP echo request消息。

2．若执行ping命令的终端窗口出现time out字样，就表示PC1未收到PC2回复的ICMP echo reply消息，请继续在PC1的终端窗口内执行arp–a命令，验证PC2的MAC地址是否在本机ARP缓存表中现身[7]。

3．请将Wireshark主机连接到SW1上的一个空闲端口，开启交换机的端口镜像功能，开始抓包。

4．检查Wireshark是否抓到了PC1发出的ICMP echo request消息。图10.16所示为Wireshark抓到的PC1发往PC2的ICMP echo request消息。

 	若从连接PC1和PC2的交换机端口都抓到了PC1发往PC2的ICMP echo request消息，但未抓到PC2回复的ICMP echo reply消息，请登录PC2，检查其防火墙等相关设置。

 	若从连接PC1的交换机端口抓到了PC2回复的ICMP echo reply消息，但从连接PC2的端口未抓到，请检查交换机SW1是否丢弃了该ICMP消息。

 	若从连接PC1的端口也未抓到ICMP echo request消息，请检查PC1和SW1之间的物理线缆。

[image:]

图10.16　Wireshark抓到的ICMP echo request数据包

5．检查Wireshark是否抓到了PC2发出的ICMP echo reply消息。图10.17所示为Wireshark抓到的从PC2发往PC1的ICMP echo reply消息。

[image:]

图10.17　Wireshark抓到的ICMP echo reply数据包

 	若从连接PC1和PC2的交换机端口都抓到了ICMP echo reply消息，则表示一切正常[8]。

 	若从连接PC2的交换机端口抓到了ICMP echo reply消息，但从连接PC1的端口未抓到，请检查交换机是否丢弃了该ICMP消息。

 	若从连接PC2的端口也未抓到ICMP echo reply消息，请检查PC2和SW1之间的物理线缆。

表10.2所列为与ICMP有关的显示过滤器。

表10.2

 	 显示过滤表达式

 	 描述

 	 显示过滤器示例

 	 Icmp

 	 筛选出所有ICMP数据包

 	 icmp

 	 icmp.type==<type>

 	 基于ICMP消息中的类型字段值来筛选数据包。类型字段值为8表示所有ICMP echo request消息，类型字段值为0表示所有ICMP echo reply消息

 	 icmp.type==0
 icmp.type==8

 	 icmp.code==<code>

 	 基于ICMP消息中的代码字段值来筛选数据包

 	 icmp.code==0

1．ICMP攻击和缓解措施

虽然ICMP是一款强大的IPv4协议报错和诊断工具，但也可以利用它来发动DoS攻击。

2．ICMP泛洪（flood）袭击

ICMP泛洪攻击是一种常见的DoS攻击，表象为网络内的恶意之徒向目标主机（某台服务器）发出大量的ICMP数据包，如图10.18所示。

[image: 1018]

图10.18

可使用Wireshark Statistics菜单中的某些工具来辨别网络是否面临ARP扫描。请在Statistics菜单中点击Protocol Hierarchy菜单项，结果如图10.18所示。通过观察Protocol Hierarchy Statistics窗口中ICMP帧（Frame）的占比情况，即可了解到网络内是否面临任何ICMP泛洪攻击。由图10.18可知，Wireshark在几秒之内便抓到了6万条ICMP消息，ICMP消息在所有数据包中独占99%以上，这就表示网络正遭受ICMP泛洪攻击。

ICMP smurf攻击

ICMP smurf攻击属于另外一种分布式DoS攻击，具体的攻击方式是，恶意之徒向一或多台目的主机发出大量的ICMP echo request数据包，在数据包的IP包头的源IP地址字段则会填入目标受攻击主机的IP地址。如此一来，受攻击主机将会收到大量的ICMP echo reply数据包，从而达到恶意消耗其资源的目的。

由图10.19可知，攻击主机冒充PC1的IP地址，向PC2发出ICMP echo request数据包。于是，PC1将被迫接收PC2发出的ICMP echo reply数据包，造成了资源的无谓消耗。

[image: 1019]

图10.19　ICMP smurf攻击示例

若在交换机上激活了L2安全特性，则攻击主机将无法执行MAC地址欺骗（意即攻击主机在发出ICMP echo request数据包时，只能冒充PC1的IP地址，无法冒充其MAC地址）。那么，在攻击主机发动攻击时，用Wireshark抓包，并仔细观察ICMP数据包的源MAC地址，即可识别出攻击主机的MAC地址，然后，便可shutdown学得该MAC地址的交换机端口，从而阻断攻击。

10.3.3　幕后原理　　　　

要想在图10.20所示网络中验证PC1和PC3之间的IP连通性，可在PC1上ping PC3。

[image:]

图10.20

在PC1 ping PC3所生成的ICMP echo request数据包中（类型字段值为8），源IP地址为10.1.100.101，目的IP地址为10.1.200.101。该数据包会先抵达默认网关（R1），数据包转发路径沿途的每台路由器都会根据自己的转发表来转发它。收到该ICMP echo request数据包后，PC3将回复ICMP echo reply（类型字段值为0）。要是ping不通，就表示PC1和PC3之间不具备IP连通性。

10.4　IPv4单播路由选择的运作方式及故障分析

IPv4单播路由选择是指将单播数据包从某IP网络内的一台主机转发至相同或不同IP网络内的另一台主机的过程。数据包可能会穿越路径沿途的一或多台路由器，每一台路由器都会检查数据包的IP包头，提取其中的目的IP地址字段值，并对照自己的路由表来做出转发决策。

10.4.1　分析准备　　　　

将Wireshark主机接入交换机，启动Wireshark软件，在交换机上开启端口镜像功能，把受监控主机的流量重定向至Wireshark主机。数据包分片的主要影响对象是交互式应用（比如，数据库），应该在这些地方查找故障。

10.4.2　分析方法　　　　

若IP子网10.1.100.0/24内的PC1要向IP子网10.1.200.0/24内的PC4发送数据，会按以下步骤行事。

1．PC1生成数据，封之以IP包头，先生成IP数据包。该IP数据包的源IP地址字段值为10.1.100.101，目的IP地址字段值为10.1.200.102。

2．PC1再给IP数据包封装以太网头部，生成以太网帧。该以太网帧的源MAC地址字段值为PC1的MAC地址，目的MAC地址字段值为R1（默认网关）的MAC地址。PC1会把该以太网帧转发给SW1。

3．SW1是一台纯第2层交换机。在检查过以太网帧的帧头并对照自己的MAC地址表之后，SW1将该以太网帧转发给了MAC地址匹配帧头中目的MAC地址字段值的设备（本例为R1）。

4．收到以太网帧之后，R1会剥离以太网帧头，露出IP数据包，因为帧头中目的MAC地址字段值匹配本机（连接IP子网10.1.200.0/24的以太网接口的）MAC地址。R1在继续检查IP数据包的包头并对照过本机路由表之后，发现要想将该IP数据包转发至最终的目的网络 10.1.200.0/24，需先转发给下一跳路由器R2。

5．R1先将IP包头中的TTL字段值减1，再用以太网帧头封装该IP数据包，生成一个新的以太网帧。该以太网帧的源MAC地址字段值为R1的MAC地址，目的MAC地址字段值为R2的MAC地址。该以太网帧将顺利抵达R2。

6．R2会执行类似于R1的转发动作——先移除以太网帧头，将IP包头中的TTL字段值减1，查询本机路由表，封装一个新的以太网帧头，将新的以太网帧转发至R3。

7．收到该以太网帧之后，R3会移除以太网帧头，将IP包头中的TTL字段值减1，查询本机路由表，封装一个新的以太网帧头。该以太网帧的源MAC地址字段值为R3的MAC地址，目的MAC地址字段值为PC4的MAC地址。

8．收到该以太网帧之后，PC4会移除以太网帧头和IP包头，将其中的数据提交给相应的应用程序。

可以看出，在执行IP路由选择的过程中，数据包转发路径沿途的路由器会修改IP数据包的IP包头中的某些字段值（比如，TTL字段值），封装IP数据包的以太网帧的源、目MAC地址字段值也会逐跳发生改变。在PC1和PC4间的数据包转发路径上，只要发生任何故障（比如，以太网封装故障、TTL处理故障、MTU故障等），都有可能导致两台末端主机间的数据传输中断。接下来，将会介绍如何用Wireshark来分析这样的IP单播路由选择故障。

1．涉及IP数据包生存时间（TTL）的故障和攻击

如本书前文所述，穿越路由器在将IP数据包外发至下一跳路由器之前，会将包头中的TTL字段值减1。若路由器收到TTL字段值为1的数据包，且其目的IP地址字段值非本机地址，便会默认丢弃该数据包，同时生成类型字段值为11的ICMP错误消息（学名为ICMP time to live exceeded in transit[ICMP传送过程中生存时间到期]消息）。这可以确保处于转发环路中的数据包不会在节点之间来来回回，永不消失，最多途经255台路由器（TTL字段可能的最大值为255）之后，将会被彻底丢弃。

当Wireshark抓到TTL字段值低于5的数据包时，其内置的Expert Information工具即可感知得到，会用扎眼的颜色为那样的数据包上色，如图10.21所示。欲了解具体情况，请按以下步骤行事。

1．在Wireshark抓包主窗口内选择Analyze菜单，点击其名下的Expert Information菜单项。

2．在弹出的Expert Information窗口中选择相关Warning或Note事件，以了解详情。

[image:]

图10.21

恶意之徒可利用IP数据包的TTL字段来发动DoS攻击，具体的手法是发送大量TTL字段值低于5的数据包。收到这样的数据包之后，穿越路由器会交由CPU处理，以生成ICMP错误消息，这将会严重消耗路由器的CPU资源。可在路由器上开启各种保护措施（比如，CPU保护机制或CPU流量限率功能），来缓解此类攻击。

2．IP地址冲突

当IP地址冲突涉及关键网络设备时，所表现出的症状为服务器访问速度变慢、上网速度变慢、所有设备都ping不通等。

 	当某台服务器的访问速度明显变慢时，其IP地址跟别的设备发生冲突是原因之一。要证实这一点，应先试着ping一下这一IP地址。

 [image: 未标题-1]　注意

 对安装了某些操作系统的主机而言，当IP地址跟别的设备发生冲突时，其网卡驱动程序将会失效（若主机的操作系统为Windows，在屏幕的右下角还会弹出一个提示框，提示IP地址冲突）。然而，安装了另外一些操作系统的主机在IP地址跟别的设备发生冲突时，其网卡驱动程序非但不会失效，而且也不会生成任何提示信息，这才是进一步引发故障的导火索。

 	在命令行界面（CLI）（Windows操作系统的cmd或Linux系统的任何shell）里执行arp –a命令，若在命令的输出中发现刚ping的目的IP地址与两个不同的MAC地址挂钩，则表明存在IP地址冲突。

 	执行百度（Google）搜索，看看那两个MAC地址的前三个字节跟哪个网卡芯片制造商有瓜葛。这有助于加快定位引发IP地址冲突的元凶。

 	要想得知拥有那两个MAC地址的主机分别跟交换机的哪个端口相连，请登录交换机（当然，交换机必须是可网管交换机），根据其生成的MAC地址表来判断。有多款软件都可以显示出连接到每一台交换机的设备的信息（包括设备的MAC地址、IP地址、DNS名称等）。可在百度（Google）上搜索switch port mapper或switch port mapping tools，来下载这些软件。

 	要是ping和arp双管齐下也看不出个所以然，请把Wireshark主机接入LAN交换机，启用端口镜像功能，抓取相关VLAN的流量。Wireshark能提供更多与IP地址冲突有关的线索。

图10.22所示为Wireshark生成的有关IP地址冲突的提示信息。

[image:]

图10.22

当同一LAN内有两台（或两台以上的）设备设有相同的IP地址时，若在一台主机上ping这一IP地址，将会导致主机的ARP缓存表包含该IP地址的两条（或多条）ARP缓存记录，每一条都会分别与一个不同的MAC地址相对应。

对于安装了某些操作系统的主机（比如，安装了Windows操作系统的主机）而言，若IP地址跟别的设备冲突，则其不但会弹出窗口，提示IP地址冲突，而且还会让网卡驱动程序失效。

对于安装了另外一些操作系统的主机而言，若IP地址跟别的设备冲突，则其不会有任何表示。此时，就得ping和arp命令双管齐下。

在执行抓包任务时，只要看见Wireshark抓到了身背duplicate IP字样的数据包，一定不能掉以轻心。

10.5　与IPv4数据包分片有关的故障分析

对超长的数据包分片是IP网络中的一种常见机制。当IP数据包的长度超过其所穿链路的MTU值时，在通过该链路发送之前，需先分为几片。一般而言，IP数据包以分片方式发送也不能说不正常，但却有可能会对性能造成影响。恶意之徒也会钻IP数据包分片机制的空子，来发动DoS攻击。

10.5.1　TCP路径MTU发现　　　　

虽然与IP包头相关联的转发语义允许任何穿越路由器对IP数据包进行分片，但由于接收主机只有在重组IP数据包之后，才能做进一步的处理，因此很可能会产生性能问题。于是，可让穿越路由器不对IP数据包进行分片，而是发送信号通知发送方：“转发路径中有一条链路的MTU值较低，请你自行调整MSS”。该机制被称为路径MTU发现（Path MTU Discovery，PMTUD），借助于该机制，便可检测出构成数据包转发路径的链路的最低MTU值，发送方可以调整有待发送的IP数据包的MSS，使得数据传输更为高效。

10.5.2　分析方法　　　　

当IP包以分片方式发送时，若使用Wireshark软件抓包，在抓包主窗口中会看见身背Fragmented IP protocol字样的数据包，同时还会夹杂出现TCP或UDP数据包，如图10.23所示。

当定位与网络或应用程序性能有关的故障（比如，数据库客户端与服务器端之间的连接异常缓慢）时，请执行以下步骤来验证网络中是否存在IP包分片现象。

1．检查数据库客户端与服务器端之间的IP连通性，以确保不存在其他网络层面的故障。

2．用Wireshark抓取数据库客户端与服务器端之间的流量，检查是否存在IP包分片的现象。图10.23所示为Wireshark抓到经过分片的IP数据包时的景像。

[image: 1023]

图10.23

3．如怀疑性能问题与IP包分片有关，请调整转发路径中相关链路的MTU值，或找一位真正有本事的DBA去调整数据库软件及数据库服务器的配置参数，让服务器不把经过分片的IP包传送至网络。

4．一般而言，在诸如以太网之类的网络环境中，封装在每个IP数据包中的数据净载（包括TCP头部在内）不应超过1480字节。因此，封装在单个TCP报文段内且由数据库服务器软件生成的每个数据单元的长度不应超过1460字节。

若IP数据包的某些协议头部会增加自身的长度（比如，当启用了某种隧道传输机制或者需要让TCP头部包含某些选项字段时），请告知DBA，让其设法降低封装进单个TCP报文段中的数据单元的长度。在调整由数据库软件生成的数据单元的最大长度时，应该让DBA注意把握分寸，要尽量让装载了TCP报文段的IP数据包刚好不分片。

利用IP数据包分片机制发动的攻击

在IP网络内出现IP数据包分片虽属正常现象，但恶意之徒也可以利用该现象来发动DoS攻击。这种攻击名为极小分片攻击（Tiny Fragment Attack），具体的攻击手段是，攻击者向受害主机发送数量庞大的经过分片的短IP数据包。由于受害主机会重新组装那些经过分片的短IP数据包，因此会严重影响其性能，或导致其缓冲区溢出。

图10.24所示为Wireshark抓到的长度为100字节、经过分片的IP包；攻击者甚至可以发出更短的经过分片的数据包，对受害主机实施DoS攻击。

 [image: 未标题-1]　注意

 Wireshark在抓到经过分片的数据包时，会默认执行重组操作，让多个经过分片的数据包以单IP包的面目示人。这会让排障人员以为网络内未发生IP数据包分片现象。

[image:]

图10.24

要让Wireshark显示真正的经过分片的数据包，需要做一番设置，具体步骤如下所列。

1．点击Edit菜单的Preference菜单项。

2．在弹出的Preference窗口中，点击Protocols配置选项右边的小三角形，查找并点击IPv4配置子选项。

3．取消勾选Reassemble fragmented IPv4 datagrams复选框，点击OK按钮。

10.5.3　幕后原理　　　　

要想透彻弄清IP数据包的分片机制，需先理解以下两个定义数据单元长度（所指为通过网络传送的数据的单位长度）的重要术语，如图10.25所示。

 	最大传输（或传送）单元（MTU）：是指由IP包头和数据部分组成的IP数据包的长度[9]。

 	最大报文段大小（MSS）：是指TCP报文段内数据净载的最大长度，亦即TCP向IP交付的每个数据单元的最大长度[10]。

[image:]

图10.25

图10.26所示为IPv4数据包的分片机制。

[image:]

图10.26

原始的大IP数据包流入NIC或路由器接口，该IP数据包过长，需要分片发送。这一大IP数据包会被分为若干小IP数据包发送（具体分为几个，要视大IP数据包的原始长度而定）。

IP数据包以分片方式发送时，IP包头中的以下字段将发挥作用。

 	标识符（ID）：其值等于原始数据包包头的ID字段值。

 	标记字段中的位b（bit 0）：总是置0。

 	标记字段中的位1（DF位）：置0，表示本IP数据包可被分片；置1，表示本IP数据包不能被分片。

 	标记字段中的位2（MF位）：置0，表示本IP数据包是最后一个分片；置1，表示本IP数据包是众多分片之一，且不是最后一个分片。

 	分片偏移：表示分片IP数据包中数据净载的首字节，相对于原始IP数据包（未分片IP数据包）中数据净载的首字节的偏移字节数。

对于IPv4数据包，生成它的主机以及转发路径沿途的路由器都可以对它进行分片。

PMTUD要仰仗IP包头中的DF（不分片，Do not Fragment）标记位来运作。当一台穿越路由器收到IP数据包时，若发现数据包的长度高于外发接口的IP MTU值，且包头中的DF标记位置1，便会一丢了之，同时生成类型字段值为3、代码字段值为4的ICMP消息（类型字段值为3的ICMP消息被归类为目的不可达类ICMP消息，类型字段值为3、代码字段值为4的ICMP消息名为ICMP“需要分片，但不分片位置1”消息，亦名PTB消息）。该ICMP消息将会被发送给数据包的发送主机，其内容会包含路由器外发接口的MTU值。

由图10.27可知，对位于数据包转发路径R1->R3中的R2而言，数据包的外发接口的MTU值为100。当R2从R1收到任何长度超过100的IP数据包时，都会一丢了之，并生成类型字段值为3、代码字段值为4的ICMP消息。

[image:]

图10.27

如图10.28所示，R2丢弃了经过分片的数据包，同时生成了类型字段值为3、代码字段值为4的ICMP消息。数据包的发送主机会根据该ICMP消息通告的MTU值调整所发IP包的MSS，进行有效的数据传输。

[image:]

[image:]

图10.28

表10.3所列为与IP数据包分片有关的显示过滤器。

表10.3

 	 显示过滤表达式

 	 描述

 	 显示过滤器示例

 	 ip.flags.mf==<flag>

 	 筛选出所有MF标记位置1的经过分片的数据包

 	 ip.flags.mf==1

 	 ip.fragment

 	 筛选出所有经过分片的数据包

 	 ip.fragment

 	 ip.flags.df==<flag>

 	 筛选出所有DF标记位置1的数据包

 	 ip.flags.df==1

10.6　IPv4多播路由选择运作原理

IPv4多播路由是指将数据包从单一源主机转发至位于相同或不同IPv4网络内的一或多台接收主机的过程。多播数据包的源IP地址总是单播IP地址，目的IP地址一定是多播IP地址（224.0.0.0～239.255.255.255）。仰仗多播来接收流量的末端应用程序会通过带外机制解析多播IP地址，利用某种多播组成员协议（比如，IGMP）来加入相应的多播组（即宣告自己有意接收该多播组地址的流量）。运行多播应用程序的主机将会向直连路由器发送IGMP加入消息，以期订阅相应的多播流量。

直连多播接收主机且具备多播路由功能的路由器被称为最后一跳路由器（LHR），直连多播源主机且具备多播路由功能的路由器被称为第一跳路由器（FHR）。LHR会运行诸如PIM之类的多播路由协议，并遵循最短路径，构造出一颗通往FHR的多播树。FHR会把多播数据流量放到这棵多播树上传送。多播的部署模式有若干种，以下所列为最为常见的两种模式。

 	稀疏模式：按此模式部署，有一台多播路由器将会被指定为公共的聚合点（Rendezvous Point，RP）路由器，每台LHR都会构造通往RP的多播树。这种多播树名为共享树。FHR从与己直连的多播源主机收到多播流量后，会以单播方式先转发给RP，RP会通过共享树转发给多播接收主机。

 	特定源多播模式：按此模式部署，每台LHR都会构造通往直连多播源主机的FHR的多播树，无需部署RP。

10.6.1　运作原理　　　　

现以图10.29为例，来说明多播路由选择运作原理。假设多播接收主机希望从直连R1的多播源主机接收目的IP地址为239.1.1.1的多播流[11]。

[image: 1029]

图10.29

对于本例，RP的IP地址为10.1.8.8，RP路由器直连R2。

 	多播接收主机向与己直连的多播路由器（R3、R4）发出IGMP加入请求消息，希望订阅目的IP地址为239.1.1.1的多播流量。收到IGMP加入请求消息之后，LHR路由器（R3和R4）会构造通往RP的共享树。R3和R4都把R2作为上游路由器，来构造通往RP的多播共享树。

 	直连多播源主机的FHR（R1）收到第一个多播数据包之后，会封装进PIM注册消息，以单播方式发送给RP。

 	图10.30所示为R1发往RP的PIM注册消息，其中包含（封装）了源IP地址为10.1.17.7目的IP地址为239.1.1.1的多播数据包。PIM注册消息本身为单播IP数据包，IP包头中的源IP地址字段值为10.1.12.1（FHR路由器的IP地址），目的IP地址字段值为10.1.8.8（RP的IP地址）。

[image:]

图10.30

 	收到PIM注册消息之后，RP会移除单播IP包头，提取其中的多播数据包，将其放到共享树上转发。

 	收到RP发来的多播数据包之后，LHR的默认行为是另行构造一颗通往多播源主机的多播树，该树为最短路径树。

虽然单、多播流量的转发过程各不相同，但转发路径沿途中的路由器处理单、多播IP包头的方式并没有太大差异。比如，任何路由器在转发单、多播数据包时的都会将包头的TTL字段值减1。所以说，适用于排除IPv4单播路由故障的分析方法同样适用于排除IPv4多播路由故障。

10.6.2　拾遗补缺　　　　

多播应用有一大半都是音频或视频类应用程序，而多播流量的接收速率是排除网络故障时的重要指标之一。Wireshark可基于抓包文件生成UDP多播流量统计信息表，该表会列出多播流量的各种分析指标（比如，Packet/s、Avg BW和Max BW等）。在排除多播流量故障时，该表将非常有用。要用Wireshark生成UDP多播流量统计信息表来分析多播流量故障，请按以下步骤行事。

1．点击Statistics菜单中的UDP Multicast Streams菜单项。

2．在弹出的UDP Multicast Streams窗口中应用显示过滤器，筛选出相应的多播流，观察其各项速率指标。

10.7　IPv6协议的运作原理

随着20世纪90年代初互联网泡沫的破灭，依赖IP网络的企业变得越来越多，从而导致IPv4地址空间日益枯竭。业界很快意识到要用一种新的网络层协议，来适应并满足不断增长的联网需求。于是，下一代IP（IPng）的研发拉开了序幕。

起初，业界只是在努力扩展流协议（ST2），企图尽快解决IP地址耗尽问题，但该问题却因为网络地址转换（NAT）和动态地址分配（比如，DHCP）等功能的诞生，而得到了一定程度的缓解，这也使得业界有足够的时间来研发IPng。研发IPng的目的不仅是要解决网络地址空间不足的问题，还得同时兼顾IPv4协议所面临的限制和其他问题。最终，ST2被正式命名为IPv5，IPng则被正式命名为IPv6。

IPv6地址的长度为128位，地址空间巨大[12]。IPv6地址的长度虽然是IPv4地址的4倍，但IPv6包头的结构却得到了精简，从而使得网络设备对IPv6数据包的处理更为高效[13]。IPv6包头的格式如图10.31所示。

[image:]

图10.31

图10.32所示为Wireshark抓到的IPv6数据包。

[image:]

图10.32

10.7.1　IPv6编址　　　　

与IPv4地址一样，IPv6地址也是为接入网络的每一台设备分配的逻辑网络层标识符，同样具备唯一性。IPv6地址的长度为128位，由网络前缀和接口ID两部分构成。IPv4地址的表示方法虽为用点号隔开的4个十进制数，但IPv6地址却用由用冒号隔开的8块16位二进制数来表示。IPv6地址的格式如图10.33所示。

[image:]

图10.33

网络前缀用来标识主机所驻留的网络，接口ID则用来标识网络内的主机。虽然在表示IPv6地址时，为了提高书写效率，用8组十六进制数替代128位二进制数，但遵循以下书写原则，可使得IPv6地址看起来更为简洁：

 	IPv6地址中的所有前导0全都可以省略；

 	连续的十六进制数0可以用::来表示；

 	在IPv6地址内，::只能出现一次；

IPv6地址分为若干种类型，以下所列为主要类型。

 	本地链路地址：指定链路范围内不可路由的单播地址，用于本地链路上主机间的通信，包含这种地址的数据包不能逾越任何一台路由器。所有控制平面的协议数据包（比如，OSPF Hello数据包）会包含此类地址。任何支持IPv6功能的接口（网卡）都会配备一个本地链路地址。本地链路地址的范围为fe80::/10。

 	全局单播地址：全局可路由单播地址，作用域为整个公网。全局单播地址的范围是2000::/3，大多数联网设备的IPv6地址都出自该范围。

 	本地唯一地址：私网范围的单播地址，不能在公网上路由，地址范围为fc00::/8和fd00::/8。

 	多播地址：与IPv4地址一样，用于点对多点通信，地址范围是ff00::/8。

还有其他几种类型的IPv6地址，比如，嵌入IPv4地址的IPv6地址以及恳求节点多播地址，为控制篇幅，这里不再赘述。

读者势必已经注意到，IPv6并没有广播地址，所有类型的广播通信都可以用IPv6多播地址来满足。如前所述，IPv6多播地址的范围为ff00::/8，第一组十六进制数的后4位的值指明了多播地址的范围。比方说，1表示目的地址为该地址的IPv6多播数据包的发送范围为本地节点，2为本地链路，5为本地站点，E为公网范围。表10.4所列为各种IPv6多播地址和范围及用途：

表10.4

 	 地址

 	 范围

 	 用途

 	 FF01::1

 	 本地节点

 	 所有节点

 	 FF01::2

 	 本地节点

 	 所有路由器

 	 FF02::1

 	 本地链路

 	 所有节点

 	 FF02::2

 	 本地链路

 	 所有路由器

 	 FF02::5

 	 本地链路

 	 OSPFv3路由器

 	 FF02::6

 	 本地链路

 	 OSPFv3 DR路由器

 	 FF02::1:FFXX:XXXX

 	 本地链路

 	 恳求节点

10.8　IPv6扩展头部

IPv4包头还可以包含IP选项字段，主要用来传达额外的网络层信息。不过，收到包含IP选项字段的IPv4数据包之后，路由器都会交给CPU处理，在路由器的内部，通过慢速路径来转发数据包，会引发性能问题。在IPv6领域，可以用独立而又灵活的IPv6扩展头部来编码那样的网络层信息，而又不增加IPv6包头的长度。对IPv6数据包而言，IPv6扩展头部位于IPv6包头和传输层头部之间，通过设置IPv6包头和扩展头部中下一个头部字段值，来标识存在的IPv6扩展头部。

表10.5所列为某些常见的IPv6扩展头部。

表10.5

 	 IP协议号（IPv6 NH字段值）

 	 扩展头部名称

 	 描述

 	 参考

 	 0

 	 IPv6逐跳选项扩展头部

 	 可选的扩展头部，用来传达额外的信息，数据包转发路径沿途中的每台路由器都会处理这样的信息。路由器可能会把含这种扩展头部的IPv6数据包交由CPU处理

 	 RFC 8200

 	 44

 	 分片扩展头部

 	 用于处理分片事宜，作用类似于IPv4包头中与数据包分片有关的字段，但IPv6数据包的分片只能由源主机执行

 	 RFC 8200

 	 50

 	 安全封装净载扩展头部

 	 用来传达安全信息，可提供机密性、身份验证和完整性等

 	 RFC 4303

 	 60

 	 目的扩展头部

 	 用来向IPv6数据包的最终目的接收主机传达某些指令

 	 RFC 8200

图10.34所列为含扩展头部的IPv6数据包的格式。

[image:]

图10.34

图10.35所示为Wireshark抓到的含扩展头部的IPv6数据包。

[image:]

图10.35

10.8.1　IPv6扩展头部和攻击　　　　

IPv6虽然在设计上考虑了安全性，但恶意之徒仍可利用扩展头部来发动DoS攻击。如前所述，由于流量转发路径沿途的所有穿越路由器都要处理IPv6数据包中的逐跳扩展头部，因此会消耗这些路由器的大量CPU资源。同理，若将大量包含IPv6目的扩展头部的数据包转发给指定的主机或服务器，同样会消耗它们的大量资源。

10.8.2　准备工作　　　　

将Wireshark主机接入交换机，启动Wireshark软件，在交换机上开启端口镜像功能，将受监控主机的流量重定向至Wireshark主机。观察Wireshark抓包主窗口，看看能不能抓到包含扩展头部的IPv6数据包。

10.8.3　操作方法　　　　

图10.36所示为Wireshark抓到的包含扩展头部的IPv6数据包。

[image:]

图10.36

由图10.36可知，应用显示过滤器ipv6.dst_opt，即可筛选出包含目的扩展头部的所有IPv6数据包。应用显示过滤器ipv6.hop_opt，则可筛选出包含逐跳扩展头部的所有IPv6数据包。

应用显示过滤器虽可筛选出包含扩展头部的IPv6数据包，缩小流量的审查范围，但仍需执行额外的手动分析，来判断网络中出现的那些IPv6数据包是正常流量还是攻击流量。

IPv6数据包分片

如前所述，分片是指将一个大IP包分为多个小包，目的是要顺利通过转发路径沿途MTU值最低的链路。IPv6数据包的分片方式与IPv4数据包完全不同。以下所列为两种IP数据包在分片方面的主要区别。

 	任何穿越路由器都能对IPv4数据包分片（只要IPv4包头中的DF位置0），而IPv6数据包只能在源主机分片，任何穿越路由器都不得对IPv6数据包分片。

 	IPv4数据包的包头会直接携带与分片有关的详细信息，而经过分片的IPv6数据包会携带专为IPv6定义的单独的扩展头部，这样的扩展头部只会出现在经过分片的IPv6数据包中。

10.8.4　幕后原理　　　　

由图10.37可知，对位于IPv6数据包转发路径R1->R3中的R2而言，数据包的外发接口的MTU值为1280，该接口所连链路是转发路径中MTU值最低的链路。

[image:]

图10.37

在默认情况下，当R2从R1收到大于1280的IPv6数据包时，会一丢了之，同时还会生成类型字段值为2的ICMPv6错误消息，如图10.38所示。

[image:]

图10.38

由图10.38可知，R2在丢弃R1发来的大IPv6数据包的同时，向R1（实际生成IPv6数据包的设备）发出了类型字段值为2的ICMPv6错误消息，消息中包含了IPv6数据包外发接口的MTU值。

R1会缓存R2发出的ICMP消息，并根据其中的MTU值切分IPv6数据包，如图10.39所示。

[image:]

图10.39

由图10.40可知，IPv6分片扩展头部包含了与IPv6数据包分片有关的所有详细信息。IPv4数据包的包头会直接携带与分片有关的详细信息，而IPv6数据包的分片信息包含在单独的扩展头部里。

[image:]

图10.40

恶意之徒会利用IPv6数据包的分片机制来发动DoS攻击。攻击者可发出大量包含IPv6分片扩展头部的数据包，让受攻击主机不停地重组经过分片的数据包，导致其内存耗尽。

表10.6所列为与IPv6数据包分片有关的显示过滤器。

表10.6

 	 过滤表达式

 	 描述

 	 显示过滤器示例

 	 ipv6.hop_opt

 	 筛选出所有带逐跳扩展头部的IPv6数据包

 	 ipv6.hop_opt

 	 ipv6.dst_opt

 	 筛选出所有带目的扩展头部的IPv6数据包

 	 ipv6.dst_opt

 	 ipv6.fragment

 	 筛选出所有带分片扩展头部的IPv6数据包

 	 ipv6.fragment

10.9　ICMPv6协议的运作方式及故障分析/排除

ICMPv6是为IPv6开发的ICMP增强版，不但具备协议报错和路径诊断功能，还得到了进一步扩展，兼具其他网络层功能。以下所列为ICMPv6的重要用途：

 	用来发现IPv6路由器和邻居节点；

 	用来执行IPv6无状态自动配置；

 	用来执行路径MTU发现；

 	检测并隔离故障。

ICMPv6是IPv6的组成部分，包含ICMPv6消息的IPv6数据包的包头或扩展头部的下一个头部字段值为58。ICMPv6消息的格式如图10.41所示。

[image:]

图10.41

ICMPv6消息多种多样，分别用来行使协议报错、信息通告或路径发现等功能。本节将专注于ICMPv6的故障检测及隔离功能，后文将介绍ICMPv6的更多应用。

10.9.1　排障准备　　　　

当启用IPv6功能的末端主机面临连通性故障时，可利用ping和traceroute等工具来检测并定位故障。ping IPv6地址会触发执行路径诊断功能的ICMPv6消息。可在IPv6流量转发路径沿途的一或或多台主机上安装Wireshark，在不同的位置抓取IPv6数据包，进行分析。

10.9.2　排障方法　　　　

1．图10.42所示为如何在R1上诊断通往R3（IPv6地址为2001::3）的路径是否通畅。在R1上ping 2001::3，便会令其生成ICMPv6 echo request消息，该消息会首先送达R2。

[image:]

图10.42

2．图10.43所示为Wireshark抓到的R1发出的目的地址为R3的ICMPv6 echo request消息（类型字段值为128的ICMPv6消息）。

[image:]

图10.43

3．收到ICMPv6 echo request消息之后，R3会回复ICMPv6 echo reply消息。

图10.44所示为Wireshark抓到的R3回复给R1的ICMPv6 echo reply消息。

[image:]

图10.44

在故障期间执行长ping操作时，可能会发生间歇性丢包现象。用Wireshark打开一个很大的抓包文件，即便筛选出所有ICMPv6数据包，应该也很难看出哪些ICMPv6 echo request消息在发出之后，并未收到相应的ICMPv6 echo reply消息。此时，Expert Information工具便有了用武之地，请按以下步骤行事。

1．在Wireshark抓包主窗口内选择Analyze菜单，点击其名下的Expert Information菜单项。

2．在弹出的Expert Information窗口中选择并展开相关的Warning事件。

Warning事件会统计并记录抓包文件中未收到回应的所有ICMPv6 echo request消息，如图10.45所示。

[image:]

图10.45

10.10　IPv6地址自动配置特性

IPv6最大的优点之一是支持网络设备（主机）自动配置其接口（网卡）的IPv6地址。有了这一优点，支持IPv6功能的设备便可以即插即用的方式接入IPv6网络。

10.10.1　准备工作　　　　

当激活了IPv6地址自动配置特性的末端主机无法联网时，首先应确保其网卡是否正确且自动地设有本地链路地址。对于UNIX/Linux主机，执行ifconfig –a命令，即可显示其网卡所设IPv6地址。若网卡并未设置任何IPv6地址，则问题可能出在主机操作系统的IPv6协议栈上。若网卡设有IPv6本地链路地址，则接下来应启动Wireshark，开始抓包，看看能否抓到与路由器交换的ICMPv6路由器恳求和ICMPv6路由器通告消息。

10.10.2　运作方式　　　　

1．在图10.46所示的网络中，IPv6地址自动配置特性一经激活，那台IPv6主机就应该会发出目的地址为所有路由器多播地址的ICMPv6路由器恳求消息。

[image:]

图10.46

2．查看Wireshark抓包文件，验证IPv6主机是否发出了ICMPv6路由器恳求消息。

3．图10.47所示为Wireshark抓到的IPv6主机发出的ICMPv6路由器恳求消息。不难发现，ICMPv6路由器恳求消息的源链路层地址选项包含了该主机的MAC地址。为了执行地址解析，收到ICMPv6路由器恳求消息的任何路由器都将缓存这一MAC地址。

[image:]

图10.47

4．检查路由器是否发出了ICMPv6路由器通告消息，消息中会包含可供末端主机执行IPv6地址自动配置的详细信息。

5．图10.48所示为Wireshark抓到的路由器发出的ICMPv6路由器通告消息，其目的地址为所节点多播地址（ff02::1）。由于LAN内的所有节点都将监听这一多播IPv6地址，因此都能接收并处理消息中包含的信息。

[image:]

图10.48

6．ICMPv6路由器通告消息用来传达（路由器通告的）IPv6前缀（前缀长度不超过64位）及相关信息。由图10.48可知，路由器通告的IPv6前缀为2001:db8:1000 ::/64。有两个计时器变量——有效周期（Valid Lifetime）和首选周期（Preferred Lifetime）——会随该IPv6前缀一并通告，这两个参数分别表示该IPv6前缀可供“on-link确定”（on-link determination）和“自动化地址自动配置”（automatic address autoconfiguration）使用的时长（单位为秒）[14]。

若Wireshark未抓到图10.48所示的ICMPv6路由器通告消息，则需要检查路由器的配置，确保路由器激活了IPv6自动配置功能，通告了相关前缀。

10.10.3　幕后原理　　　　

具备IPv6功能的设备自动配置本机接口（网卡）的IPv6地址的行为，被称为无状态地址自动配置（Stateless Address Auto Configuration，SLAAC）。如前文所述，无论什么设备，只要激活了IPv6功能，便会为本机网卡默认分配隶属于fe80::/10的本地链路地址。按照IPv6地址格式的要求，IPv6地址中的接口ID（最后64位）部分应具备全网唯一性。那么，如何确保每台IPv6设备为本机接口（网卡）自动配置的IPv6地址一定具备全网唯一性呢？在LAN内，MAC地址是为主机的每块网卡分配的数据链路层标识符，自然具备全网唯一性。这是为了确保能将数据帧送达正确的主机。IPv6自动配置特性可充分利用MAC地址所具备的全网唯一性。不过， 头疼的是MAC地址的长度为48位，而接口ID的长度则是64位。MAC地址则由24位组织唯一标识符（Organizational Unique Identifier，OUI）和24位厂商分配的标识符（Vendorassigned Identifier）构成。因此，要按以下步骤将48位MAC地址转换为64位EUI-64地址格式：

 	在MAC地址的OUI和供应商分配的标识符之间，插入一个十六进制值FFFE（转换自16位的二进制值）；

 	将OUI中的U/L标记位（第7位）置1。

图10.49演示了上述步骤。

[image:]

图10.49

IPv6主机会把转换后得到的64位EUI-64地址再结合64位网络前缀{fe80::/10 + 54位全0}，自动配置为本机网卡的128位IPv6本地链路地址，该地址在本地链路具备唯一性。顾名思义，包含本地链路地址的IPv6数据包的作用域为本地链路，因此这样的IPv6数据包无法被转发至本LAN网络之外。

IPv6 SLAAC（无状态地址自动配置）机制是指先让路由器通告全局唯一的公网IPv6前缀，再借助于末端主机所具备的生成EUI-64地址的能力，最终为末端主机的网卡自动配置全局唯一的IPv6地址。ICMPv6具备信令协议的功能，路由器可利用该协议，向LAN网络中的末端主机通告IPv6前缀。以下所列为两种用来行使上述信令功能的ICMPv6消息：

 	路由器恳求消息；

 	路由器通告消息。

任何启用IPv6自动配置功能的末端主机都会发出ICMPv6路由器恳求消息。这种ICMPv6消息的源地址一般为主机网卡的本地链路地址，目的地址为所有路由器本地链路多播地址（ff02::2）。图10.50所示为ICMPv6路由器恳求消息的格式。

[image:]

图10.50

接入LAN的路由器会定期发出ICMPv6路由器通告消息，消息中会包含供末端主机自动配置IPv6地址所需的IPv6前缀及相关信息。这种ICMPv6消息的源地址为路由器接口的本地链路地址，目的地址为所有节点本地链路多播地址（ff02::1）。图10.51所示为ICMPv6路由器通告的格式。

[image:]

图10.51

10.11　基于DHCPv6的地址分配

IPv6 SLAAC支持即插即用，简单而又容易使用，但并非自动配置IPv6地址的唯一方法。DHCPv6是另一种集中式的IPv6地址分配方法，兼具地址分配和管理的功能。本节将探讨如何分析某些最为常见的DHCPv6故障。

10.11.1　分析准备　　　　

确保DHCPv6服务器已配置妥当，能为请求获取地址的DHCP客户端分配IPv6地址。在UNIX/Linux主机上，执行ifconfig –a命令，将列出本机网卡的IPv6地址。若发现网卡的IPv6地址并非由DHCPv6服务器分配，请在LAN内部署Wireshark主机，开始抓包。

10.11.2　分析方法　　　　

1．检查末端主机是否发出了DHCPv6恳求（SOLICIT）消息。该消息是客户端主机发出的第一条DHCPv6消息，用来定位在线提供IPv6地址的一或多台DHCPv6服务器。DHCPv6恳求消息的源地址为该客户端主机的本地链路地址，目的地址为本地链路范围多播地址，也叫作所有DHCP中继地址（ff02::1:2）。

2．若Wireshark未抓到DHCPv6恳求消息，则有可能是客户端主机配置不当或无法正常运作，需要执行如下操作。

 	检查主机网卡是否启用了IPv6功能。

 	检查是否为该网卡分配了本地链路地址。

 	检查该网卡是否激活，是否从DHCPv6服务器获取了IPv6地址。

3．若Wireshark抓到了DHCPv6恳求消息，请确保消息中包含了客户端ID选项。DHCPv6服务器要利用该选项所包含的信息来分辨DHCPv6客户端，这些信息有助于DHCPv6服务器对该客户端的关联以及将相同的地址重新分配给客户端。DHCPv6服务器会忽略不含客户端ID选项的DHCPv6恳求消息。因此，若Wireshark抓到了这样的DHCPv6恳求消息，则DHCPv6服务器不为发出该消息的客户端主机分配IPv6地址也在意料之中（见图10.52）。

[image:]

图10.52

4．接下来，要检查Wireshark是否抓到了DHCPv6通告（Advertise）消息。只要顺利接收了包含客户端ID选项的了DHCPv6恳求消息，DHCPv6服务器便会以单播方式回复DHCPv6通告消息。若网络内的DHCPv6服务器不止一台，则所有服务器都将回复DHCPv6通告消息。

5．若Wireshark没有抓到DHCPv6通告消息，则可能是DHCPv6服务器配置不当或不能正常运作。

 	检查LAN内是否有DHCPv6服务器正在侦听IPv6地址ff02::1:2，检查方式是在DHCPv6客户端上执行ICMPv6 ping ff02::1:2命令。如能ping通该地址，则表示网络内存在侦听DHCPv6恳求消息的DHCPv6服务器。

 	到DHCPv6服务器上检查DHCPv6地址池的配置。

 	检查DHCPv6服务器的IPv6或DHCPv6协议栈是否存在问题，具体的检查方法要视不同类型的DHCPv6服务器而定。

6．图10.53所示为Wireshark抓到的DHCPv6服务器发出的DHCPv6通告消息。不难发现，该消息将以单播方式发送给希望获取IPv6地址的DHCPv6客户端。DHCPv6通告消息会包含服务器标识符选项，在网络内不止一台DHCPv6服务器的情况下，DHCPv6客户端要靠服务器标识符选项中的信息来辨别DHCPv6服务器。若DHCPv6通告消息中未包含客户端标识符选项（来自DHCPv6恳求消息），则DHCP客户端将忽略该消息。

[image:]

图10.53

7．验证DHCPv6客户端是否发出了DHCPv6请求（Request）消息，如图10.54所示。

[image:]

图10.54

8．若抓到了DHCPv6请求消息，请检查消息中是否包含了相关的客户端ID和服务器ID选项。由于该消息的目的地址为所有DHCP中继地址，因此LAN内的所有DHCPv6服务器都能接收到。

9．最后，要观察Wireshark是否抓到了DHCPv6应答（Reply）消息。收到DHCPv6客户端发出的DHCPv6请求消息之后，DHCPv6服务器会先从本机地址池中分配IPv6地址，再发出DHCPv6应答消息通告该地址。若LAN内的DHCPv6服务器不止一台，则DHCPv6客户端主机将会根据DHCPv6应答消息中的服务器标识符选项，来辨别分配IPv6地址的DHCPv6服务器。

10．由图10.55可知，DHCPv6应答消息是真正包含IPv6地址信息的消息。DHCPv6应答消息的源地址为DHCPv6服务器的本地链路地址，将以单播方式发往DHCPv6客户端主机。

[image:]

图10.55

10.11.3　幕后原理　　　　

图10.56所示为在基于DHCPv6的IPv6地址分配过程中，DHCPv6服务器与DHCPv6客户端之间的交互过程。

[image:]

图10.56

由DHCP客户端主机率先发出的DHCPv6恳求消息属于UDP数据包，UDP目的端口号为547。DHCPv6恳求消息将以泛洪方式发送，其目的地址为DHCPv6多播地址ff02::1:2，源地址为DHCP客户端主机的IPv6本地链路地址。

收到DHCPv6恳求消息之后，DHCPv6服务器将回复DHCPv6通告消息。该消息将以单播方式发往DHCPv6客户端主机（其目的地址为DHCPv6客户端主机的IPv6本地链路地址）。要是网络中存在不止一台DHCPv6服务器，则所有DHCPv6服务器都将回复DHCPv6通告消息。每台服务器都会在消息中包含各自的服务器ID选项。

收到DHCPv6通告消息之后，DHCPv6客户端会发出DHCPv6请求消息。该消息会包含服务器ID选项，以指明请求地址分配的DHCPv6服务器。

收到DHCPv6请求消息之后，DHCPv6服务器会从本机池分配IPv6地址，发出包含IPv6前缀及相关详细信息（比如，IPv6前缀的生命周期）的DHCPv6应答消息。

表10.7所列为与IPv6 DHCP有关的显示过滤器。

表10.7

 	 显示过滤参数

 	 描述

 	 显示过滤器示例

 	 dhcpv6

 	 筛选出所有DHCPv6数据包

 	 dhcpv6

 	 dhcpv6.msgtype==<>

 	 根据消息类型，筛选出所有DHCPv6数据包

 	 dhcpv6.msgtype==solicit
 dhcpv6.msgtype==advertise

 	 dhcpv6.iaaddr.ip==<>

 	 筛选出具有指定IA地址的所有DHCPv6数据包

 	 dhcpv6.iaaddr.ip==<addr>

10.12　IPv6邻居发现协议的运作原理和故障分析

当第3层网络内的设备通过IPv6来寻址时，就得用IPv6邻居发现（ND）协议来解析与IPv6地址相关联的MAC地址。与IPv4协议所使用的ARP不同，IPv6 ND要借助于某些种类的ICMPv6消息，来行使地址解析功能。

ICMPv6邻居恳求（neighbor solicitation）消息是ICMPv6消息的一种，请求执行MAC地址解析的节点会发出这种ICMPv6消息，去查询IPv6地址的链路层地址。该消息在功能上类似于IPv4的ARP请求消息。由于IPv6没有广播一说，因此ICMPv6邻居恳求消息的目的地址为IPv6受恳求节点多播地址。ICMPv6邻居恳求消息的格式如图10.57所示。

[image:]

图10.57

ICMPv6邻居通告（neighbor advertisement）也是ICMPv6消息的一种，回应MAC地址解析的节点会发出这种消息（消息中会包含与IPv6地址相关联的MAC地址），来回复ICMPv6 邻居恳求消息。这种消息在功能上类似于IPv4的ARP应答消息。ICMPv6邻居通告消息会以单播方式发往请求执行MAC地址解析的节点。

ICMPv6邻居通告消息的格式如图10.58所示。

[image:]

图10.58

10.12.1　排障方法　　　　

1．如图10.59所示，假设PC1（2001:DB8::1）准备访问PC2（2001:DB8::2）。

[image:]

图10.59　IPv6拓扑

2．在PC1上ping PC2，将会让PC1生成ICMPv6邻居恳求消息，意在解析PC2的MAC地址。

3．检查PC1的IPv6邻居表，看看能否发现与IPv6地址2001:DB8::2相对应的MAC地址。查看IPv6邻居表的命令随PC1所安装的OS而异。

 	若PC1安装的OS为macOS，执行ndp –na命令，即可列出IPv6邻居的详细信息。

 	若PC1安装的OS为Windows，请执行netsh interface ipv6 show neighbor命令。

4．若发现了与IPv6地址2001:DB8::2相对应的MAC地址，则可以肯定PC2收到了PC1发出的ICMPv6邻居恳求消息，并且回复了ICMPv6邻居通告消息（见图10.60）。

[image:]

图10.60

5．若未发现与IPv6地址2001:DB8::2相对应的MAC地址，请将Wireshark主机连接到交换机上的一个空闲端口，开启交换机的端口镜像功能开始抓包。应该将连接PC1和PC2的交换机端口的入向和出向流量重定向给Wireshark主机。

6．检查Wireshark是否抓到了PC1发出的ICMPv6邻居恳求消息。图10.61所示为Wireshark抓到的PC1发出的ICMPv6邻居恳求消息，PC1的MAC地址包含在“源链路层地址”（Source link-layer address）选项中。

[image:]

图10.61

 	若Wireshark从连接PC1的交换机端口的入向抓到了ICMPv6邻居恳求消息，但未从连接PC2的交换机端口的出向抓到，则可能是交换机丢弃了该消息。

 	若Wireshark未从连接PC1的交换机端口抓到ICMPv6邻居恳求消息，请检查PC1的网卡与交换机之间的物理线缆。

 	若Wireshark从连接PC1和PC2的交换机端口都抓到了ICMPv6邻居恳求消息，但未抓到ICMPv6邻居通告消息，请检查PC2。

7．同理，检查Wireshark是否抓到了PC2发出的ICMPv6邻居通告消息。

 	若Wireshark从连接PC2的端口的入向抓到了ICMPv6邻居通告消息，但未从连接PC1的端口的出向抓到，则很可能是交换机丢弃了ICMPv6邻居通告消息。

 	若Wireshark未从连接PC2的交换机端口的入向抓到ICMPv6邻居通告消息，请检查PC2和交换机之间的物理线缆。

 	若Wireshark从连接PC1和PC2的交换机端口都抓到了ICMPv6邻居通告消息，但PC1 IPv6邻居表中仍未出现与PC2的IPv6地址相关联的MAC地址，请检查PC1。

表10.8所列为与IPv6 邻居发现机制有关的显示过滤器。

表10.8

 	 显示过滤参数

 	 描述

 	 显示过滤器示例

 	 icmpv6.type==<type>

 	 根据ICMPv6消息的类型字段值，来筛选数据包。类型字段值=135，将筛选出所有IPv6邻居恳求数据包；类型字段值=136，将筛选出所有IPv6邻居通告数据包

 	 icmpv6.type==135
 icmpv6.type==136

 	 icmpv6.nd.ns.target_address==<ipv6_addr>

 	 根据目标IPv6地址字段值，来筛选ICMPv6邻居恳求数据包

 	 icmpv6.nd.ns.target_address==2001:DB8::2

 	 icmpv6.nd.ns.target_address==<ipv6_addr>

 	 根据目标IPv6地址字段值，来筛选ICMPv6邻居通告数据包

 	 icmpv6.nd.na.target_address==2001:db8::1

IPv6地址冲突检测

在IPv4网络中，IP地址冲突总是让人头疼。由于IPv4协议并没有内置地址冲突检测机制，因此生产网络中一旦发生IP地址冲突，就有酿成重大事故的可能。有鉴于此，IPv6协议采用了重复地址检测（Duplicate Address Detection，DAD）机制的设计。

10.12.2　DAD的运作方式　　　　

当通过静态（手工指定）或动态机制（比如，SLAAC或DHCPv6）为主机的网卡分配IPv6地址时，在启用新分配的IPv6地址之前，主机会发出一条ICMPv6 邻居恳求消息，同时将其目的地址字段值设置为该IPv6地址。若有待执行DAD验证的IPv6地址是主机网卡唯一可用的IPv6地址，则主机会将该ICMPv6邻居恳求消息的源地址设置为全0，如图10.62所示。

[image:]

图10.62

如本节前文所述，ICMPv6邻居恳求消息的目的地址为受恳求节点多播地址（因此LAN内的所有节点都能收到该消息）。在ICMPv6邻居恳求消息发出之后，若得到了任何一个节点的响应（收到ICMPv6邻居通告消息），主机即可检测出另一节点设有相同的IPv6地址，便不会让冲突的IPv6地址生效。若未从任何一个节点收到ICMPv6邻居通告消息，主机就可以安全地启用该IPv6地址了。

[1]　译者注：原文是“IP is the network layer protocol and is the most commonly deployed network layer protocol of the internet and other network is IPv4”。

[2]　译者注：这句正确的的表达方式应该是“为同一IP网络内的所有节点分配的IP地址的网络ID相同”。

[3]　译者注：原文是“Trigger ping probes from PC1 (10.1.1.101) to PC2 (10.1.1.102). This will trigger an ARP request from PC1 to PC2”。第一句是废话；第二句直译为“这将触发从PC1到PC2的ARP请求”。

[4]　译者注：原文是“If the sources are legitimate, it is a normal operation”，译文未按原文翻译。

[5]　译者注：原文是“If the source is not legitimate, it could be an attack”。

[6]　译者注：原文是“In the preceding diagram, when a Ping probe is triggered from PC1 to PC2, there will not be any change in IP or Ethernet header from PC1 to PC2 as they both are in same LAN”。作者所说的“change”（变化）可能是指，当PC1和PC2不隶属同一IP子网时，在PC1上ping PC2，所生成的数据包的以太网帧头的目的MAC地址字段值将不再是PC2的MAC地址，而是网关路由器以太网接口的MAC地址。

[7]　译者注：原文为“If there is no echo reply from PC2, make sure that the MAC address for PC2 is populated in the local ARP cache table”。译文酌改。

[8]　译者注：原文是“If the echo reply is seen in port connecting PC1 and PC2, then everything is working fine”。直译为“如果从连接PC1和PC2的端口上看见了echo reply，则一切正常”，请问要怎样才能在端口上“看见”数据包呢？

[9]　译者注：原文是“This is the size of the IP packet including the header and the data”。译文虽按字面意思翻译，但作者给MTU下的定义有待商榷。

[10]　译者注：图10.25对MSS的定义是错误的，MSS不包含TCP/UDP头部的长度。

[11]　译者注：原文是“assume that the receivers are joining a stream using 239.1.1.1 as multicast address from the source connected to R1”。

[12]　译者注：原文是“IPv6 is of 128-bit size and therefore provides a very large address space”，前半句直译为“IPv6的长度为128位……”。

[13]　译者注：原文是“While the size of an IPv6 address is four times larger than IPv4, the header size is simplified for efficient packet processing”，直译为“IPv6地址的长度虽然是IPv4地址的4倍，但IPv6包头的大小得到了精简……”。

[14]　译者注：原文是“This prefix will be advertised with a twotimer variable. The Valid lifetime is the length of the time this prefix can be used on the link as a valid address. The Preferred lifetime is the length of the time this address generated from the received prefix prefers”。译者认为作者对ICMPv6 消息的“前缀信息选项”的有效周期（Valid lifetime）和首选周期（Preferred lifetime）字段的解释是错误的，译文按TCP/IP Illustrated, Volume 1: The Protocols, Second Edition一书第411页翻译。

第11章　传输层协议分析

本章涵盖以下内容：

 	UDP的运作原理；

 	UDP协议分析及故障排除；

 	TCP的运作原理；

 	排除TCP连通性故障；

 	解决TCP重传问题；

 	TCP滑动窗口机制；

 	对TCP的改进——选择性ACK和时间戳选项；

 	排除与TCP的数据传输吞吐量有关的故障。

11.1　简介

本章将聚焦于OSI参考模型的传输层，会深入分析各种第4层协议（TCP、UDP、SCTP）的运作方式。传输层协议是主机之间的通信协议，负责运行于不同主机上的末端应用程序之间的数据交换。用户数据报协议（UDP）是一种简单的无连接协议，只用来将数据报传递给既定的接收主机，不依赖任何可靠性机制。传输控制协议（TCP）则是一种面向连接的协议，其主要用途是在末端应用程序之间提供可靠的、拥塞感知的数据传输服务。

超过80%的互联网流量把TCP作为传输层协议。任何一款对丢包敏感的末端应用程序对可靠性的要求都很高，此类应用程序都会用TCP作为传输层协议。比如，基于HTTP的Web服务器就使用TCP作为传输层协议。TCP虽能提供可靠性，但由于会重传丢掉的数据，因此将会造成数据延迟传送。某些末端应用（比如，IP语音/视频）对丢包不甚敏感，但对抖动/延迟非常敏感，此类应用程序应使用UDP而非TCP来作为传输层协议。

本章将讨论各种传输层协议的基本原理、常见故障，以及如何用Wireshark来分析并排除协议故障。

11.2　UDP的运作原理

UDP是一种轻量级传输层协议，只能提供尽力而为的服务。对于能够容忍丢包或由应用层来维系可靠性的末端应用而言，UDP是传输层协议的理想选择。比方说，简单文件传输协议（TFTP）（一种极为简单的文件传输协议）就用UDP作为传输层协议。TFTP会在应用层对收到的每块数据报进行确认。因此，即便UDP并没有内置任何可靠性机制，这样的应用程序仍然可以使用UDP作为传输层协议。

对一个IP数据包而言，其IP包头中的协议类型字段值为17，就表示该IP数据包封装的是UDP数据报。UDP头部的格式如图11.1所示。

[image:]

图11.1　UDP头部的格式

生成UDP流的主机会从UDP端口范围1024～65535中随机选择一个本机未使用的端口号，作为隶属于该流（的UDP数据包或数据报）的UDP源端口号。UDP流的目的端口号用来标识在目的主机上运行的末端应用程序。目的端口号一般出自众所周知的UDP应用程序端口范围1～1023。

表11.1给出了几个众所周知的UDP应用程序端口号。

表11.1　总所周知的UDP应用程序端口号

 	 应用程序名

 	 UDP端口号

 	 域名系统（DNS）

 	 53

 	 BOOTP服务器

 	 67

 	 BOOTP客户端

 	 68

图11.2所列为Wireshark抓到的UDP数据包。

[image:]

图11.2　Wireshark抓到的UDP数据包

11.3　UDP协议分析和故障排除

基于UDP的大多数应用程序虽然都能容忍丢包，但任何一条大量丢包的UDP流都有可能会导致非常糟糕的终端用户体验。本节将探讨UDP流传输故障的一些常见原因，同时会介绍如何用Wireshark来分析并排除此类故障。

11.3.1　排障准备　　　　

当UDP流中断传输时，首先应验证源、目主机之间的网络连通性，用ping或traceroute等工具即可验证。可按第10章所述方法来排除任何网络连通性故障。若源、目主机之间可以正常连通（网络连通性正常），请按下一小节所述步骤行事。

11.3.2　排障方法　　　　

在图11.3所示的网络中，PC1（10.1.100.101）和PC3（10.1.200.101）上安装的UDP应用程序之间无法传递UDP流。

[image: 1103]

图11.3　UDP排障示例拓扑

1．请登录防火墙或其他安全设备，开通相应的UDP端口。若流量传输路径中的硬件防火墙或终端主机上开启的软件防火墙未开通相应的UDP端口，则势必会中断UDP流的转发。

2．弄清UDP流的目的UDP端口号，检查PC3是否正监听该UDP端口。登录PC3，执行某些命令，或者进行UDP端口扫描，均可完成这项检查。

3．若有登录PC3的权限，执行netstat命令，即可得知该主机是否正监听相应的UDP目的端口。

4．若没有登录PC3的权限，则可通过UDP端口扫描来进行检查，有多款扫描工具可用来完成这项检查。若PC3未监听相应的UDP端口，便会在丢弃UDP流的同时发出某种ICMP消息（ICMP目的端口不可达消息）。

5．若PC3正监听相应的UDP端口，下一步就得用Wireshark抓包进行相关分析了。由于UDP属于无连接的协议，因此建议在靠近那两个端点（PC1和PC3）的地方分别同时抓包，抓包地点离PC1和PC3越近越好。

抓到隶属于该UDP流的UDP数据包之后，应先检查UDP数据包的UDP校验和是否正确，如图11.4所示。收到UDP数据包时，若校验和检查失败，目的主机将丢弃该包。由于UDP属于无连接协议，因此主机在发现UDP校验和错误之后，不会生成任何错误信息或执行相关确认。在默认情况下，Wireshark可能不检查所抓UDP数据包的校验和。要让Wireshark执行这项检查，还需要做一番设置。

[image:]

图11.4　UDP校验和

1．点击Edit菜单的Preference菜单项。

2．在弹出的Preference窗口中，点击Protocols配置选项右边的小三角形，找到并点击UDP配置子选项。

3．勾选Validate the UDP checksum if possible复选框，点击OK按钮。

4．若UDP校验和正确，要对照观看两份抓包文件中隶属于该UDP流的UDP数据包，以确保UDP流能正确发往目的主机。

5．可应用显示过滤器，让Wireshark只显示出隶属于指定UDP流的所有UDP数据包，这样一来，就可以很方便地比较两份抓包文件了。每一条UDP流在每一份抓包文件中都有自己的索引（编）号，如图11.5所示。为了筛选出（即让Wireshark只显示）隶属于指定UDP流的所有UDP数据包，需要在显示过滤器中将该索引号作为参数。图11.5所示为显示过滤器一经应用，Wireshark便会按序列出具有相同源/目IP地址和源/目UDP端口号的所有数据包。

[image:]

图11.5　UDP流索引

6．在对照观看过两份抓包文件之后，若未发现任何问题，则可能是主机的TCP/IP协议栈问题。

表11.2所列为用来筛选UDP数据包的显示过滤器。

表11.2

 	 过滤表达式

 	 描述

 	 显示过滤器示例

 	 udp

 	 筛选出所有UDP数据包

 	 udp

 	 udp.stream eq<>

 	 筛选出具有指定UDP流索引号的所有UDP数据包

 	 udp.stream eq 2

 	 udp.port==<>

 	 根据UDP头部中的UDP源或目的端口号字段值，筛选UDP数据包

 	 udp.port==65000

 	 udp.srcport==<>

 	 根据UDP头部中的UDP源端口号字段值，筛选UDP数据包

 	 udp.srcport==65000

 	 udp.dstport==<>

 	 根据UDP头部中的UDP目的端口号字段值，筛选UDP数据包

 	 udp.dstport==65000

11.4　TCP的运作原理

TCP是一种极为可靠的传输层协议，用来在两台主机之间建立面向连接的数据传输通道。对丢包非常敏感的终端应用程序可用TCP作为传输层协议。一大半Internet流量都通过TCP来传输。有许多应用程序都基于TCP，比如，E-mail、点对点（peer-to-peer）文件共享，以及著名的WWW等。从应用层接收数据之后，TCP会先将数据切分为在网络中传递的一个个数据单元，再分别用TCP头部封装。以TCP头部封装的数据单元被称为TCP报文段（segment）。如前所述，由于TCP属于面向连接的协议，因此在传递数据单元之前端点之间会通过三次握手建立连接。TCP端点之间会相互确认自己收到的每个TCP报文段，任何丢失的报文段都会得到重新传送，这样一来，即可保证用TCP传输的数据单元的可靠性。

对一个IP数据包而言，其IP包头中的协议类型字段值为6，就表示该IP数据包封装的是TCP数据报。TCP头部的格式如图11.6所示。

[image:]

图11.6　TCP头部的格式

比之UDP头部（长度为固定的8字节），TCP头部的长度一般为20字节，但长短并不固定，随其所包含的TCP选项而定。序列号和确认号字段在保证终端应用数据传输的可靠性方面起着关键性的作用。更多细节请见本章后文。

表11.3给出了几个众所周知的TCP应用程序端口号。

表11.3　几个众所周知的TCP应用程序端口号

 	 应用程序

 	 TCP端口号

 	 WWW/HTTP

 	 80

 	 简单邮件传输协议（SMTP）

 	 25

 	 安全Shell（SSH）

 	 22

图11.7所示为Wireshark抓到的TCP数据包。

[image:]

图11.7　Wireshark抓到的TCP数据包

11.5　排除TCP连通性故障

一对TCP进程在彼此通信时，会先建立TCP连接，通过TCP连接发送数据，数据发送完毕之后再关闭TCP连接。用浏览器浏览网页、通过邮件客户端连接邮件服务器、利用Telnet工具访问路由器，或使用基于TCP的其他应用程序时，都会经历上述过程。

建立TCP连接时，客户端会从TCP源端口向服务器端TCP目的端口发出连接建立请求。在建立或关闭TCP连接的过程中，可能会发生某些故障。本节的主要目标就是要利用Wireshark来分析并解决这些故障。

11.5.1　排障准备　　　　

对于下列任何一种故障，都可以借助Wireshark来分析其起因。

 	尝试运行某种基于TCP的应用程序，但其根本无法运行。比如，尝试用浏览器打开网页，但一无所获。

 	试图用E-mail客户端收取邮件，但却连不上E-mail服务器。

 	故障的起因可能很简单，比如，服务器宕机、服务器上的相关服务并未启动、通往服务器所在IP子网的路由失效等。

 	故障的起因也可能很复杂，比如，DNS故障、IP地址冲突、服务器内存因不足而无法接受客户端所发起的连接等。

本节将聚焦于如何借助Wireshark来解决上述故障。

11.5.2　排障方法　　　　

本小节将重点关注使用Wireshark诊断TCP连接故障时，应遵循的排障思路。TCP连通性故障一般会导致某些应用程序无法运行。

当某款应用程序的客户端软件（比如，数据库客户端软件、E-mail客户端软件或视频监控客户端软件等）连接不上其服务器端，并且连提示信息都没有的时候，应尝试按以下步骤解决故障。

1．验证安装服务器端软件的主机和服务器端软件是否都能正常运行。

2．验证客户端软件是否能正常运行，检查安装客户端软件的主机是否连网正常，检查该主机的IP地址是否配置正确（一般而言，主机的IP地址配置分手工配置和DHCP自动分配两种）。

3．在安装客户端软件的主机上ping服务器主机，验证IP连通性能否正常建立。

4．在运行客户端软件的同时，启动Wireshark开始抓包分析。应重点观察在抓包主窗口数据包列表区域中露面的TCP数据包，看看是否存在以下现象。

 	客户端主机连发3次SYN位置1的TCP报文段，但服务器端主机未作任何回应。

 	客户端主机发出了SYN位置1的TCP报文段之后，收到了RST位置1的TCP确认报文段。

只要发现了以上两种现象中的任何一种，那么不是应用程序自身的问题（比如，应用程序的服务器端软件没有启动），就是有防火墙从中作祟，封锁了相关流量。

由图11.8所示的Wireshark抓包主窗口的截屏可知，IP地址为10.0.0.3的内网主机无法访问IP地址为81.218.31.171的Web服务器（详见编号为61～63的数据包，这3个数据包由内网主机10.0.0.3发出，全都是SYN位置1的TCP报文段）。这既有可能是因为有防火墙从中作祟，也有可能是因为Web服务器出了故障。通过图11.8还可以得知，同一台主机可以正常访问另外一台IP地址为108.160.163.43的Web服务器（详见编号为65～67的数据包）。现在可以得出结论，IP地址为10.0.0.3的内网主机并不是所有网站都不能访问，只是不能访问IP地址为81.218.31.171的网站。

[image:]

图11.8

再举一个类似的TCP连接故障示例，这个故障要更加复杂，如图11.9所示。用户需要登录一台IP地址为135.82.12.1的视频监控服务器，去监控远程站点。故障现象是：用户在内网主机10.0.0.3的浏览器内输入该视频监控服务器的IP地址135.82.12.1时，可以看到登录界面，却无法登录进系统。由图11.9所示的Wireshark抓包主窗口的截屏可知，内网主机10.0.0.3已经建立了通往目的IP地址135.82.12.1 TCP 80（HTTP）端口的连接，看起来似乎一切正常。

[image:]

图11.9

可只要在那份抓包文件中筛选出目的IP地址为135.82.12.1（视频监控服务器）的所有流量，便可以发现，内网主机10.0.0.3还在尝试建立通往目的IP地址135.82.12.1的TCP 6036端口的连接。

由图11.10所示的Wireshark抓包主窗口的截屏可知，内网主机10.0.0.3在尝试建立通往目的IP地址135.82.12.1的TCP 6036端口的连接时，连接被重置（IP地址为135.82.12.1的视频服务器回复的是RST位和ACK位同时置1的TCP报文段）。

[image:]

图11.10

原来，那台视频监控服务器的用户名/密码认证功能要通过TCP 6036端口来完成，而网络中设于防火墙上的安全策略阻断了TCP目的端口号为6036的流量，却没有阻断TCP目的端口号为80的流量。

简而言之，若某款基于TCP/UDP协议的应用软件无法正常使用，请确保支撑该软件的客户端及服务器端程序运行的所有TCP/UDP端口，没有被任何网络设备（如防火墙、路由器等）或其他应用程序（如Windows防火墙、瑞星杀毒软件、360安全卫士等）封锁。

 [image: 未标题-1]　注意

 当有新的应用程序上线运行时，最好在安装其客户端程序和服务器端程序的主机上分别安装Wireshark，将支撑该应用程序运行的所有TCP/UDP端口都了解清楚。只有如此，才能降低防火墙“误拒流量”事件发生的概率，软件开发人员未必会告诉你应用程序在网络层面的所作所为（有时，他们自己可能也搞不清楚）。

11.5.3　幕后原理　　　　

建立TCP连接时，要经历三次握手过程，如图11.11所示。

[image:]

图11.11

三次握手过程分三步进行。

1．TCP客户端发出SYN标记位置1的TCP报文段，以期建立TCP连接。在此报文段中：

 	会指明本方TCP初始序列号，即TCP客户端发往TCP服务器的首字节的编号；

 	会指明本方窗口大小，即客户端操作系统分配给TCP进程的缓存大小（内存空间）；

 	会让TCP头部携带某些选项，比如，MSS或选择性确认选项（Selective ACK）等。

2．收到TCP客户端发出的TCP连接请求报文段后，TCP服务器会回复TCP报文段进行确认。在此报文段中：

 	会将SYN和ACK标记位同时置1；

 	会指明本方TCP初始序列号，即TCP服务器发往TCP客户端的首字节的编号；

 	会指明本方窗口大小，即服务器端操作系统分配给TCP进程的缓存大小（内存空间）；

 	会根据TCP客户端传递过来的（TCP头部中的）选项，设置自己的TCP头部的各个选项。

3．收到TCP服务器发出的SYN和ACK标记位同时置1的TCP报文段后，TCP客户端会发出TCP报文段进行确认。在此报文段中：

 	会将ACK标记位置1；

 	会指明本方窗口大小，即客户端操作系统分配给TCP进程的缓存大小。尽管已在首个（SYN标记位置1的）TCP报文段中通告过该参数，但该参数对服务器至关重要，服务器必须实时掌握客户端的窗口大小，反之亦然。

在建立三次握手过程中，经常会在TCP头部中露面的选项如下所列。

 	最长报文段长度（Maximum Segment Size，MSS）：建立TCP连接时，客户端和服务器端通常都会在本方发出的SYN标记位置1的报文段中包含这一选项，向对方宣告自己期望接收的TCP报文段的最大长度。所谓“TCP报文段的最大长度”（MSS值），是指TCP数据部分的长度，不包括IP包头和TCP头部。

 	窗口扩张（Windows Scale，WSopt）：有了WSopt选项，就能定义一个作用于16位窗口大小字段的扩张因子（scale factor），以起到大幅提高窗口大小字段容量的目的。该选项包含了一个8位shift count字段，取值范围为0～14。WSopt选项只能在SYN标记位置1的TCP报文段中露面，若shift count字段值为3，则窗口大小的扩张因子为23，这就使得窗口大小字段的容量暴增8倍。

 	选择性确认支持（SACK-Permitted）：SACK-Permitted选项用来表示TCP报文段的发送方是否支持SACK功能，只会在TCP三次握手的前两个TCP报文段中露面。还有一个SACK选项，则用来通知TCP发送方，本方已接收并缓存了非连续数据块，发送方可根据SACK选项中的信息来判断究竟是哪个（些）数据块传丢，从而重传相应的数据块。

 	时间戳（Timestamps options，TSopt）：供TCP发送方根据接收方回复的相应ACK报文段，测量TCP连接的RTT。

三次握手结束时，TCP客户端和TCP服务器：

 	会一致同意建立TCP连接；

 	能获悉对方（所传数据的）初始序列号值；

 	能得知对方可用来接收数据的缓存容量（TCP窗口大小）。

 [image: 未标题-1]　注意

 建立TCP连接时，三次握手缺了任何一次，TCP连接都无法成功建立，这包括：客户端在发出第一个（SYN标记位置1的）TCP报文段之后，收不到服务器端发出的SYN和ACK标记位同时置1的TCP报文段，或收到了服务器端发出的RST位置1的TCP报文段；在前两次握手成功之后，服务器收不到客户端发出的ACK标记位置1的TCP报文段等情形。

可先指定一条TCP流，再让Wireshark生成隶属于该流的TCP报文段的交互详图，如图11.12所示。

[image:]

图11.12

要想生成该图，请按以下步骤行事。

1．在Wireshark抓包主窗口的数据包列表区域中选择一个隶属于指定TCP流的TCP数据包，单击右键，选择Flow菜单中的TCP Stream菜单项。

2．选择Statistics菜单中的Flow Graph菜单项，在弹出的Flow窗口中勾选Limit to Display filter复选框。

11.5.4　拾遗补缺　　　　

以下所列为作者总结的排除TCP相关故障的经验。

 	当TCP客户端发出SYN标记位置1的TCP报文段，请求建立TCP连接时，若收到了RST标记位置1的TCP报文段，请检查是不是防火墙封掉了该TCP客户端所要连接的TCP目的端口。

 	TCP客户端在发起TCP连接时，若连发三次SYN标记位置1的TCP报文段都未得到回应，则不是应用程序的服务器端（软件或主机）未能正常运作，就是防火墙封掉了该TCP客户端所要连接的TCP目的端口。

 	当出现第4层连通性故障时，请务必核实网络中是否部署有开启了NAT或PAT功能的设备，这些设备可能会干扰UDP或TCP的正常运作。

对于Wireshark所抓TCP数据流中的第一个TCP报文段，其TCP头部中的序列号字段值总是以0示人，后续TCP报文段的序列号字段值将依次递增，这就是所谓的相对序列号（relative sequence number）。说其相对，是因为在这第一个TCP报文段的TCP头部中，序列号字段的实际值为一个0～232之间的整数，由TCP进程随机选择，但Wireshark为了便于跟踪，将该值设置（并显示）为0。TCP标准并未对如何选择TCP头部中的序列号字段的初始值做任何硬性规定。

由图11.13可知，Wireshark把TCP SYN报文段中的序列号字段值设置为0，并标记为相对序列号，这并非该SYN报文段的实际的序列号字段值。可以设置Wireshark，令其保留TCP报文段的实际的序列号字段值，如图11.14所示。

[image:]

图11.13

[image:]

图11.14

请按以下步骤行事。

1．点击Edit菜单的Preferences菜单项。

2．在弹出的Preferences窗口中，点击Protocols配置选项右边的小三角形，查找并点击TCP配置子选项。

3．取消勾选Relative sequence numbers复选框，点击OK按钮。

11.6　解决TCP重传问题

当TCP发送方发出一个或数个TCP报文段后，便会坐等TCP接收方对相关报文段的确认，若等不来确认报文段，TCP发送方便会重新传送。显而易见，若TCP发送方重新传送（已经发出过的）TCP报文段，则表明相应的TCP报文段很可能未被TCP接收方接收，或TCP接收方发出的确认报文段丢失。导致TCP重传的原因很多，发现TCP重传因何而起将是本节的重点。

11.6.1　排障准备　　　　

当用户普遍反应某种或某些基于TCP的应用程序的运行速度明显变慢时，TCP重传可能正是罪魁祸首之一。此时，应借助于端口镜像技术，用Wireshark抓取相关应用程序客户端或服务器端所驻留的主机的流量，并进行流量分析。

本节会介绍如何使用Wireshark来帮助定位和解决TCP重传问题。

11.6.2　排障方法　　　　

1．启动Wireshark软件，选择正确的网卡抓取流量。

2．点击Analyze菜单下的Expert Information菜单项。

3．在弹出的Expert Information窗口中，重点关注Note事件，看看Wireshark是否感知到了TCP重传事件（即看看是否出现含Retransmissions字样的Note事件的子事件）。

4．若是，请点击与Retransmissions字样相关联的子事件之前的小三角形，再单击其名下的每一行，便可在抓包主窗口的数据包列表区域定位到相应的TCP重传数据包。

5．现在，作者要问：TCP重传是因何而起呢？

 [image: 未标题-1]　注意

 用Wireshark从某条通信链路、某条连接Internet的宽带线路或服务器上的某块网卡抓取流量时，抓到的流量会涉及众多IP地址，牵涉到多种应用程序，甚至是同一种应用程序的不同访问模式（比如，同一数据库的不同查表模式）。此时，最重要的是要找到发生TCP重传现象的具体的TCP数据流。

可通过以下3种方法来查明TCP重传的源头。

 	在Expert Information窗口的Note事件中，对于TCP重传子事件名下的每一行，在抓包主窗口的数据包列表区域都能定位到与其相对应的TCP重传数据包（适合有经验的网管人员）。

 	在Wireshark抓包主窗口的Filter输入栏内，输入显示过滤表达式_ws.expert.message == "This frame is a (suspected) retransmission"，然后点击Apply按钮。Wireshark会立刻筛选出抓包文件中所有的TCP重传数据包。

 	在应用过上述显示过滤表达式之后，点击Statistics菜单下的Conversations菜单项，在弹出的Conversations窗口中，勾选底部的Limit to display filter复选框，让Wireshark显示出存在TCP重传现象的所有IP及TCP会话。

1．案例分析1——发生在单一源IP地址和众多目的IP地址之间的TCP重传

由图11.15所示的Wireshark截屏可知，IP地址为10.0.0.5的主机在访问Internet时（即连接多个Internet Web站点的TCP 80端口时）发生了多次TCP重传现象。由于TCP重传全都是由主机10.0.0.5发起，因此可以断定，主机10.0.0.5向众多Internet Web站点发出TCP报文段之后，并未按时收到相应的确认报文段。这既有可能是因为主机10.0.0.5发出的TCP报文段在Internet链路上传丢，Internet Web站点由于无法收到这些报文段，故而未能按时确认，也有可能是Internet Web站点发出的确认报文段在Internet链路上传丢，主机10.0.0.5不能按时收到确认报文段，误以为自己发出的TCP报文段传丢，而发起了TCP重传[1]。

[image:]

图11.15

显而易见，一定是Internet链路出了问题。该如何印证这一观点呢？

1．点击Statistics菜单中的I/O Graphs菜单项。

2．观察I/O Graphs工具生成的流量统计信息图，如图11.16所示。由I/O Graphs工具生成的流量统计信息图可以看出，在使用Wireshark抓包的时段内，Internet链路的负载几乎为空，之所以会出现这种情况，既有可能是本方Internet链路中断，也有可能是ISP网络内的上游链路中断[2]。

[image:]

图11.16

3．可登录用来连接Internet链路的设备或通过SNMP网管软件，来了解连接Internet链路的（路由器/交换机）接口的状态及丢包情况。当然，要想通过SNMP网管软件了解相关信息，还需在网络设备上激活SNMP代理功能。

2．案例分析2——发生在同一条TCP连接中的TCP重传

若TCP重传现象只发生在同一股TCP数据流之中，则预示着某种应用程序运行速度缓慢，如图11.17所示。

[image:]

图11.17

要借助Wireshark来分析发生在同一条TCP连接中的TCP重传问题，请按以下步骤行事。

1．点击Statistics菜单下的Conversations菜单项，在弹出的Conversations窗口中，勾选底部的Limit to display filter复选框。拜图11.17所示Wireshark抓包主窗口的Filter输入栏内的显示过滤器（用Wireshark版本2抓包时，该显示过滤器应写成_ws.expert.message == "This frame is a (suspected) retransmission"）所赐，Conversations窗口只会显示TCP重传有关的信息。

2．点击Conversations窗口中的IPv4选项卡，便可获知与TCP重传问题有关的主机的IP地址，如图11.18所示。

[image:]

图11.18

3．点击Conversations窗口中的TCP选项卡，便可获知TCP重传发生在哪些源、目端口号之间，如图11.19所示。

[image:]

图11.19

要想进一步分析TCP重传到底因何而起，请按以下步骤行事。

1．借助于Wireshark软件Statistics菜单下的I/O Graphs工具，检测通信链路是否拥塞。

 [image: 未标题-1]　注意

 使用I/O Graphs工具来判断通信链路的负载状况时，若I/O Graphs窗口的图形显示区域内表示流量速率的曲线几乎呈一条直线，并接近受监控链路的带宽阈值，则可以说明通信链路的负载极高。若通信链路的负载较低，则I/O Graphs窗口的图形显示区域内表示流量速率的曲线会起起伏伏，有很大的落差。

2．若通信链路负载不高，则应该去找找TCP服务器端的原因。对于本例，TCP服务器端（主机）和客户端（主机）的IP地址分别为10.1.1.200和10.90.30.12。通过图11.19可以看出，TCP重传大多是由TCP客户端10.90.30.12发起，因此可以初步断定TCP服务器端反应慢。

3．通过图11.17可以看出，Wireshark检测出存在TCP重传问题的TCP连接所承载的应用为FTP-DATA。通过图11.19可以看出，FTP服务器（IP地址为10.1.1.200）是以FTP passive（被动）模式运行。此外，还可以判断出，FTP客户端10.90.30.12已先行打开了一条目的IP地址为10.1.1.200，目的TCP端口为2350的TCP连接，以期执行FTP数据上传。然后，又新建了好几条目的IP地址为10.1.1.200，目的TCP端口为1972的TCP连接（可能为多线程FTP）。FTP客户端10.90.30.12通过这几条TCP连接执行FTP数据上传时，发生了多次重传。于是，可以断定是FTP服务器（IP地址为10.1.1.200）反应慢，导致了多次TCP重传（实际情况也正是如此）。

3．案例分析3——有规律可循的TCP重传现象

当发现网络中存在TCP重传现象时，应仔细观察所有的TCP重传报文段是否都具有相同的特征，这一点非常重要。

由图11.20所示的Wireshark截屏可知，Wireshark感知到的所有TCP重传现象均发生于同一条TCP连接。都是由IP主机192.168.1.21（TCP服务器端）从TCP源端口号139（NebBIOS会话服务[NetBIOS Session Service]端口），向IP主机192.168.1.99（TCP客户端）的TCP目的端口号1064发起的TCP重传。

[image:]

图11.20

这看起来很像是应用程序服务器端的问题，但回过头再看Wireshark抓包主窗口的数据包列表区域所显示的所有TCP重传报文段，便可以发现一些很有意思的事情，如图11.21所示。

[image:]

图11.21

由图11.21可知，所有TCP重传报文段在时间间隔上都有规律可循——每隔30毫秒便发生一次TCP重传。作者已经把Wireshark抓包主窗口的数据包列表区域中Time一栏的显示格式，更改为了seconds since the previously displayed packet。

对于本例，导致TCP重传的真正原因是，IP主机192.168.1.99（TCP客户端）上运行的财务软件使得该主机每隔30～36秒变慢一次。

4．案例分析4——因应用程序故障而导致的TCP重传

当应用程序的客户端或服务器端发生故障时，也会导致TCP重传问题。在这种情况下，通过Wireshark抓包可观察到：在相关TCP连接中，会连续发生5次TCP重传，但每次TCP重传的时间间隔各不相同。连续发生5次TCP重传之后，发起TCP重传的主机就会认为TCP连接中断。此时，发起TCP重传的主机或许还会发出RST位置1的TCP报文段，尝试关闭TCP连接（视具体的应用程序的实现方法而定）。TCP连接中断之后，应该会发生以下两件事情之一。

 	TCP客户端发出SYN位置1的TCP报文段，试图重新建立TCP连接。对于实际操纵应用程序的最终用户而言，可能会暂时感觉到软件“动弹不得”，10～15秒之后将会恢复正常。

 	TCP客户端不发SYN位置1的TCP报文段，最终用户必须重新启动应用程序（或重启应用程序的某个功能）。

图11.22所示为5次TCP重传之后，TCP客户端与服务器端之间通过三次握手重新建立TCP连接的过程。

[image:]

图11.22

5．案例5——因抖动而导致的TCP重传

TCP颇能容忍延迟，但却不能容忍抖动（抖动是指每个TCP报文段之间的延迟变化）。当网络发生抖动时，便会触发TCP重传。要想得知TCP重传是否因抖动而起，请按以下步骤行事。

1．当然，首先要ping TCP连接的目标端IP地址，观察ping命令输出中Time值的变化情况，获得通信链路延迟（及延迟变化）的第一手信息。

2．检查导致抖动的具体原因，抖动可能会由以下原因所致。

 	链路拥塞或链路状态不稳定。此时，可通过ping命令的输出来了解延迟的变化情况。链路时通时断便属于链路状态不稳定。

 	安装应用程序服务器端软件的主机资源不足或硬件配置太低。此时，TCP重传只会发生在与某种应用程序相关联的TCP连接之中。

 	网络设备过载（CPU或内存资源不足）。此时，需登录网络设备，来了解其资源使用情况。

3．借助于第18章介绍的Wireshark软件内置的各种工具，来查找原因。

TCP报文段的重传是TCP协议的天性之一，但前提是重传的频率不能太高。当重传的TCP报文段达到TCP报文段总数的0.5%时，就会对性能产生严重影响；若达到了5%，相应的TCP连接将会中断。当然，这还要取决于具体的应用程序对TCP重传的敏感程度。

6．解决TCP重传问题的思路

当通过Wireshark抓包，发现某条链路（是指Internet链路、连接安装了TCP服务器端软件的主机的链路，或连接某个远程站点网络的WAN链路）上存在TCP重传现象时，应按以下思路解决重传问题。

1．归纳总结：TCP重传总是与某台特定主机（某个IP地址）、某条特定TCP连接或某种具体的应用程序相关联吗？

2．逐一排除：TCP重传是由链路状态不稳定（链路丢包）、TCP服务器端主机或客户端主机“反应慢”、应用程序“反应慢”或是由其他原因所导致吗？

3．若上述原因均不存在，请检查网络中是否存在抖动现象。

11.6.3　幕后原理　　　　

本小节将探讨TCP的常规运行方式，以及该协议在运作时可能会发生的问题。

1．TCP序列号/确认机制的常规运作方式

重传机制是内置于TCP的众多机制之一，其作用是恢复受损、丢失、重复或失序交付的数据。

重传机制的实现方法非常简单：发送方先为通过TCP传输的数据按字节编号（序列号机制），然后再通过TCP报文段的形式发出，并期待接收方的确认；若在一定的时长内未得到确认，发送方将重传数据。

收到TCP报文段之后，接收方会检查序列号（字段值），以验证报文段是否是按序抵达；若否，则对报文段重新排序，并按正确的顺序交付给应用层。

TCP序列号/确认机制的运作方式如下所列。

1．建立TCP连接时，双方会彼此通告自己的初始序列号。

2．开始发送数据时，用来承载数据的TCP报文段的头部中会包含序列号（字段值）。第一个TCP报文段中的序列号表示本报文段所承载的数据净载的首字节编号。后续TCP报文段中的序列号则等于：上一个TCP报文段的序列号，加上该报文段所承载的数据的字节数，再加上1（见图11.23）。

3．每发出一个TCP报文段，发送方便会在发出的那一刻，启动一个RTO（Retransmission Timeout，重传超时）计时器，若在该计时器到期之前，未收到接收方发出的确认报文段，便会重新传送。

 [image: 未标题-1]　注意

 TCP重传超时机制基于Van Jacobson碰撞避免及控制算法，该算法决定了TCP可以容忍网络的高延迟，但不能容忍剧烈的抖动。

4．收到TCP报文段之后，接收方会发出相应的确认报文段，确认接收，同时告知发送方发出下一个报文段。

可通过图11.23所示的Wireshark抓包主窗口截图来研究TCP序列号/确认机制的运作方式。

[image: 1123]

图11.23

HTTP客户端主机10.0.0.7正从HTTP服务器62.219.24.171下载文件（已配置Wireshark，在其抓包主窗口的数据包列表区域新增了tcp.seq和tcp.ack数据包属性列，具体的添加方法请参考2.2.2节）。

由图11.23可知，HTTP服务器62.219.24.171连续发出2个序列号分别为120185105和120186557的TCP报文段。收到这两个报文段之后，HTTP客户端10.0.0.7发出了确认号为120188009的确认报文段，通知HTTP服务器发出下一个报文段。随后，HTTP服务器便发出了序列号为120188009的报文段，后面还紧跟一个序列号为120189461的报文段。再往后，就是上述过程的重复。

HTTP服务器62.219.24.171和HTTP客户端10.0.0.7之间的上述交流过程，如图11.24所示。

[image:]

图11.24

2．何为TCP重传，因何而起

发出TCP报文段之后，若发送方没有收到或不能按时收到相应的确认报文段，便会出现以下两种情况：

 	发送方会按之前所述，重传未得到确认的TCP报文段；

 	发送方会降速传输。

通过图11.25不难发现，只要发生TCP重传，发送方便会降速传输（为清晰起见，作者为该图添加了红色直线［需要在Wireshark中显示］）。

[image:]

图11.25

11.6.4　拾遗补缺　　　　

TCP不惧怕网络的高延迟，就怕延迟发生剧烈的变化。定义TCP在网络发生抖动（以及其他诸多变化）时的算法被称为Van Jacobson算法（该算法以其发明人命名）。根据Van Jacobson算法的定义，对延迟而言，TCP所能容忍的极限是网络的平均延迟的3～4倍。也就是说，若正常情况时网络的延迟为100ms，TCP容忍300～400ms的延迟应该不成问题，但前提是延迟的变化不能太大（即不能有剧烈的抖动）。

11.7　TCP滑动窗口机制

TCP端点在建立TCP会话之初，会在交换TCP报文段时，通过TCP头部包含的窗口大小字段值，来通告本方接收缓存的容量，并会据此控制本方可接收及处理的数据量。每个TCP端点都会维护一个本地接收窗口（receive window，RWND）。该窗口的容量便是TCP接收方可以接收并缓存以进一步处理的数据量的上限。TCP端点在发出TCP报文段时，会在TCP头部的窗口大小字段中填入这一RWND值。TCP发送方会根据TCP接收方通告的RWND值，来确定滑动窗口的容量。在未得到确认的情况下，TCP发送方可以发送的TCP报文段的数量受TCP接收方通告的窗口大小字段值的限制[3]。

TCP发送方会对等待确认的在途（outstanding）TCP段的数量进行管理，以此来维护滑动窗口。TCP发送方在收到已经发出的在途报文段的确认报文段后，将会向右滑动图11.26所示窗口。

[image:]

图11.26[4]

要是没有滑动窗口机制，TCP发送方在发出一个报文段之后，必须收到TCP接收方的确认报文段，才能发出下一个报文段，这将对TCP数据传输的总吞吐量产生重大影响。

11.7.1　准备工作　　　　

把Wireshark主机接入交换机，激活交换机的端口镜像功能，将有待监控的连接服务器的交换机端口的流量重定向至Wireshark主机[5]。用抓包过滤器筛选出指定的TCP流，让Wireshark只显示隶属于指定的TCP流的所有TCP数据包，分析起TCP窗口滑动机制来会容易很多。要筛选出指定的TCP流，请在Wireshark抓包主窗口的数据包列表区域内选中一个隶属于该TCP流的一个TCP数据包，然后执行以下操作。

1．点击Analyze菜单。

2．选择Follow菜单项。

3．点击TCP Stream子菜单项。

11.7.2　运作方法　　　　

在图11.27中，PC1正与PC3建立TCP会话，希望进行数据传输。

[image: 1127]

图11.27

检查交换于PC1和PC3之间的TCP报文段的TCP头部，观察其窗口大小字段值是否大于0。若窗口大小字段值为0，则TCP接收方将无法接收任何报文段，数据传输将会（暂时）中断。

图11.28和图11.29所示为TCP zero window现象。由图11.28可知，由于TCP接收方（10.0.0.1）[6]不能通过新建的TCP会话接收任何数据，因此在收到任何TCP端点发出的用来新建TCP会话的SYN位置1的TCP报文段（后文简称SYN报文段）时，都会回复SYN位和ACK位同时置1的TCP报文段（后文简称SYN+ACK报文段），并将TCP头部的窗口大小字段值设置为0。一般而言，只要TCP接收方（腾出了缓存空间）可以接收新的数据，便会发出窗口大小字段值不为0的TCP确认报文段。收到窗口大小字段值为0的TCP确认报文段之后，数据发送方会发出一种特殊的TCP报文段，探测TCP接收方的TCP接收窗口是否仍然为0。这种特殊的TCP报文段被称为TCP ZeroWindowProbe报文段（Wireshark会让这种TCP报文段身背TCP ZeroWindowProbe字样）。收到身背TCP ZeroWindowProbe字样的TCP报文段之后，数据接收方必须要进行确认，在TCP确认报文段内会通告本方接收窗口大小。TCP ZeroWindowProbe报文段的发送频率受控于一种叫做TCP Persist的计时器。数据发送方在第一次探测之前，需等待TCP Persist计时器到期，以后的每次探测所等待的时间都将是上一次的两倍，直到数据接收方的TCP接收窗口不再为0。TCP ZeroWindowProbe报文段只包含（有待发送的下一个）1字节数据，数据接收方接纳或不接纳这个1字节数据，要视自己的TCP接收缓存的富裕程度而定。

[image: 1128]

图11.28

[image:]

图11.29

收到了窗口大小字段值为0的TCP确认报文段之后，若数据发送方仍然“不管不顾”，继续向接收窗口为0的数据接收方传送数据，这一举动就被称为TCP Zero Window Violation。若Wireshark在所抓数据包中感知到了数据发送方的这一举动，便会让相关TCP报文段身背TCP Zero Window Violation字样。出现TCP Zero Window Violation现象，一般都表示相关应用程序的TCP实现方式存在瑕疵。

重启服务器（PC1）之后，PC1就应该能够在建立TCP会话之初通告正常的窗口容量了。由图11.30可知，收到PC3（10.0.0.9）发来的SYN报文段后，PC1（10.0.0.1）回复了SYN+ACK报文段，通告了非0的窗口容量。此外，PC1还在SYN+ACK报文段中包含了WSopt选项，通告了窗口扩张因子9。这一扩张因子和窗口大小字段值共同决定了PC1的接收窗口大小。更多与WSopt选项有关的信息，请见11.5节。

[image:]

图11.30

此后，PC1和PC3会通过对方发出后续的TCP报文段，来提高或降低TCP报文段的发送频率。

11.7.3　幕后原理　　　　

以下所列为TCP滑动窗口机制的运作方式。

1．TCP连接建立之后，发送方开始向接收方传送包含数据的TCP报文段，后者会使用接收缓存（窗口）来存放。

2．收到了包含数据的TCP报文段后，接收方会发出TCP确认（ACK）报文段，向发送方确认已收数据字节。接收方发出TCP确认报文段，就表示其接收缓存（窗口）“腾出”了相应的空间[7]。

3．发送方发出包含数据的TCP报文段，接收方发出TCP确认报文段，确认数据的接收，同时消耗接收缓存中的数据，给接收缓存腾出空间。这一过程会一直持续，直到数据传完为止。

4．当接收方发出TCP确认报文段确认数据的接收时，若顺带提升或降低了TCP头部中的窗口大小字段值，则意味着发送方应相应提高或降低数据的传送速率，具体的计算公式如图11.31所示（可能会因不同的TCP版本而做出某些调整）。

[image:]

图11.31

TCP头部中的窗口大小字段的长度为16位，该字段可能的最大值为65535。大多数硬件都可以处理超过65535字节的TCP段。要想通告高于65535的窗口容量，就得在TCP会话建立阶段发出的TCP报文段中包含WSopt选项，通告窗口扩张因子。TCP发送方会根据以下公式来计算TCP接收方实际的接收窗口容量。

 	实际的接收窗口容量[字节] =窗口大小字段值*（2扩张因子）

举个例子，若TCP接收方通告的窗口大小字段值为457，窗口扩张因子为6，则其实际的接收窗口容量为29248字节。

Wireshark会计算并显示TCP接收方实际的接收窗口容量，如图11.32所示。

[image:]

图11.32

11.8　对TCP的改进——选择性ACK和时间戳选项

为了增强TCP的性能，协议设计者花了不少时间对TCP做出了多处改进。本节会探讨对TCP做出的几处重要改进，还会介绍如何用Wireshark进行相关的分析。

11.8.1　做好准备　　　　

在感觉到TCP流的数据传输性能大幅下降，明显不及预期时，请将Wireshark主机接入网络，用Wireshark抓取相应的TCP流量进行分析。

11.8.2　分析方法　　　　

为保持向后兼容，要求TCP对等体双方在连接建立的三次握手期间，用TCP头部中的选项（比如，选择性ACK[SACK]或TCP时间戳），来协商是否同时支持某项增强功能。TCP头部中的相关选项会在SYN报文段和SYN+ACK报文段中露面。

1．TCP选择性ACK（SACK）选项

TCP SACK功能是TCP的一种可选功能，建立TCP连接时，端点之间会互发包含TCP SACK-Permitted选项的SYN报文段和SYN+ACK报文段，来探测对方是否支持该功能。TCP SACK-Permitted选项会在SYN报文段和SYN+ACK报文段的TCP头部中现身[8]。当支持TCP SACK功能的TCP端点发出SYN报文段（建立TCP连接）时，会在其TCP头部中包含TCP SACK-Permitted选项，以此向TCP对等体表明本端点支持SACK功能。

图11.33所示为TCP SACK-Permitted选项在SYN报文段和SYN+ACK报文段中的样子[9]。若SACK-Permitted选项未在Wireshark抓取的TCP SYN报文段和SYN+ACK报文段中露面，那就表示发出报文段的主机的OS不支持TCP SACK功能。如今，新型OS一般都支持并默认启用TCP SACK功能。

[image:]

图11.33

当TCP接收方想要有选择地确认某些报文段时，会在ACK报文段的TCP头部置入SACK选项，其中会包含相关序列号[10]。由图11.34可知，接收方发出的ACK报文段的确认号为3321，表示希望接收的TCP报文段的下一个序列号为3321（已累积接收了3320个字节的数据）。不过，该ACK报文段的TCP头部还包含一个SACK选项，该选项携带了一个SACK Block（SACK Block描述的是收到的超出累积ACK号的数据），其序列号范围为3845～4369。也就是说，TCP接收方所缓存的数据有一个“窟窿”，其序列号范围为3321～3844[11]。更多与TCP SACK功能的运作原理有关的内容详见本节后文。

[image:]

图11.34

2．TCP时间戳选项

与SACK-Permitted选项一样，TCP时间戳选项也会出现在SYN报文段和SYN/ACK报文段的TCP头部。支持RTT测量功能的TCP端点发出SYN报文段时（为了建立TCP连接），会在其TCP头部中置入TCP时间戳选项，表明本端点具备RTT测量功能。当TCP连接的两端都支持该功能时，TCP时间戳选项将会在后续的所有TCP报文段的头部中露面。

图11.35所示为TCP时间戳选项在TCP SYN报文段和SYN+ACK报文段中的样子。若TCP时间戳选项未在Wireshark抓取的TCP SYN报文段和SYN+ACK报文段中露面，那就表示发出报文段的主机OS不支持TCP RTT测量功能。如今，新型OS一般都支持并默认启用TCP RTT功能。

[image: 1135{}]

图11.35

由图11.35可知，发出TCP SYN报文段时，发送方在时间戳选项的TSval（时间戳值）字段中填入了本机时间，在TSecr（时间戳回显应答）字段中填入了0。

收到TCP SYN报文段后，在回复SYN+ACK报文段时，接收方应该在时间戳选项的TSval字段中填入本机时间，在TSecr字段中填入TCP SYN报文段的时间戳选项的TSval字段值。图11.36所示为TCP接收方在ACK报文段的时间戳选项中填入的TSecr和TSval字段值。TCP发送方会根据本机时钟、本机发出的报文段的TSval字段值，以及接收方回复的ACK报文段的TSecr字段值，来测量TCP会话的RTT值[12]。更多与TCP RTT测量功能的运作原理有关的内容详见本节后文。

[image:]

图11.36

11.8.3　运作原理　　　　

1．TCP选择性确认功能

在本章之前的内容里，介绍了TCP头部包含的序列号和确认号如何巩固TCP数据传输的可靠性。不过，默认的TCP确认和重传机制有时会影响TCP会话的数据传输吞吐量，这得归咎于TCP的天性——TCP发送方必须重传滑动窗口范围内所有未得到确认的报文段，无论这样的报文有没有传丢。图11.37可以更好地帮助读者理解TCP的这一天性。

[image:]

图11.37

为了简化说明，将该TCP会话的窗口容量（window）定义为5个TCP报文段，将序列号（Seq）按报文段的数量编号，如图11.38所示。根据窗口容量，TCP发送方可在收到确认报文段之前发出5个报文段。于是，TCP发送方连发5个报文段，Seq = 2、3、4、5、6。TCP接收方收到了Seq = 2、4、5、6的报文段，未收到Seq = 3的报文段。在进行确认时，TCP接收方将ACK报文段的确认号设置为3（Ack = 3）。如前所述，要是依着TCP的天性，TCP发送方不但会重传Seq = 3的报文段，还会重传窗口中未得到确认的其余报文段。

[image: 1138]

图11.38

也就是说，TCP发送方会重复发送接收方已经收到的报文段，从而导致该TCP会话的数据吞吐量大幅降低。

TCP SACK功能可以解决这一问题，解决方法是让TCP接收方有选择地确认已接收的非累积的报文段。TCP SACK功能是TCP的一种可选功能，TCP端点之间将会在建立连接之初，通过在SYN报文段和SYN+ACK报文段内置入SACK-Permitted选项，来探测对方是否支持该功能。

续接前例，让TCP发送方和接收方同时启用TCP SACK功能。请注意，在建立TCP连接时，TCP发送方和接收方会分别在SYN报文段和SYN+ACK报文段内置入SACK-Permitted选项，表明本方支持TCP SACK功能。现在，在TCP接收方未收到Seq = 3的报文段时，还是会发出确认号为3（Ack = 3）的确认报文段，但会在其TCP头部中置入SACK选项，该选项会携带一个SACK Block，用其来表示本方已经收到了Seq=4、5、6报文段，独缺Seq = 3的报文段。这样一来，TCP发送方只需重传TCP接收方并未收到的报文段。这就避免了重复发送接收方已经收到的报文段，从而显著提高了该TCP会话的数据传输吞吐量。

2．TCP时间戳

某些终端TCP应用程序能从连续的RTT（Round Trip Time，往返时间）测量中受益。TCP RTT测量功能在执行时要借助于TCP头部中的时间戳选项。TCP时间戳选项会在所有报文段的TCP头部中露面。该选项包含两个字段TSval和TSecr[13]。发出TCP SYN报文段时，发送方会在时间戳选项的TSval（时间戳值）字段中填入本机时间，在TSecr（时间戳回显应答）字段中填入0。在回复ACK报文段时，接收方应该在时间戳选项的TSval字段中填入本机时间，在TSecr字段中填入最新收到的TCP SYN报文段中时间戳选项的TSval字段值[14]。

TCP发送方会根据本机时钟、本机发出的报文段的TSval字段值，以及接收方回复的ACK报文段的TSecr字段值，来测量TCP连接的RTT值。为了追求准确性，大多数TCP实现会基于每窗口中的一或两个报文段而非一个报文段，来执行RTT测量[15]。

11.8.4　拾遗补缺　　　　

上一节虽然介绍了两个TCP选项，但还有以下几个TCP选项可用来行使另外的功能：

 	TCP验证选项；

 	最长报文段长度（Maximum Segment Size，MSS）选项；

 	TCP压缩过滤器选项；

 	多路径TCP选项；

11.9　排除与TCP的数据传输吞吐量有关的故障

业界推出了多种工具可用来测量网络的吞吐量，这样的工具所仰仗的测量机制大多都属于带外测量机制。在使用这些测量工具时，需要建立测试TCP会话，并执行性能监控。这些工具虽然非常有用，但会根据生成的流量来执行性能计算。对于以TCP作为传输协议的受SLA约束的终端应用程序（SLA constrained end applications using TCP as transport protocol）而言，需要有一种机制来确保其所生成的TCP流能达到既定的吞吐量。为了满足这一需求，就得通过一种简单而又有效的机制来测量每一条TCP流的吞吐量。这样的测量机制还应该满足其他各种需求，包括性能基准测试以及基于SLA的服务保证等。

有许多原因都有可能会影响TCP流的吞吐量性能，本章前文已经揭示了其中的一些原因，比如，TCP重传以及TCP会话重置等。本节将介绍如何使用Wireshark来测量并分析TCP流的吞吐量。

11.9.1　测量准备　　　　

要想测量一条TCP流的数据传输吞吐量，必须先把它抓到。可在终端服务器上安装Wireshark（如该服务器支持安装）或在TCP流的传输路径中部署Wireshark主机，来抓取流量。如前文所述，可在抓取流量的同时，应用相关显示过滤器，让Wireshark只显示有待测量的TCP流。

11.9.2　测量方法　　　　

测量TCP流的吞吐量。测量方法是在Wireshark中先筛选出隶属于相关TCP流的所有数据包，再借助于I/O Graphs工具生成该流的吞吐量图。生成吞吐量图的步骤如下所列。

1．点击Statistics菜单，选择I/O Graphs菜单项。

2．在弹出的I/O Graphs窗口内，点击左下角的“+”，在Display filter一栏下输入显示过滤器tcp.stream == <stream number>，让Wireshark根据由该过滤器筛选出的数据包生成吞吐量图。

3．具体的实例如图11.39所示。

[image:]

图11.39

4．若Wireshark所测量的指定TCP流的吞吐量符合预期，则可以得出结论：该TCP流的吞吐量正常。若低于预期，则需要展开进一步分析，如下所列。

5．检查TCP接收方通告的窗口容量是否一直维持较高的水平。若RWND容量较低，则会使得TCP流的数据传输吞吐量变低，因为在等待TCP接收方确认之前，TCP发送方所能发出的报文段的数据会降低。

6．用Expert Information工具为指定的TCP流生成专家信息，重点关注Error和Warning事件，这会对了解吞吐量下降的起因很有帮助。至于如何使用Wireshark的Expert Information工具，请参阅第6章。

7．由图11.40可知，涉及TCP丢包的Warning事件的总数为173次，涉及重复确认的事件那就更多了。Expert Information工具生成的专家信息能提示网络中发生的TCP报文段失序、TCP连接遭重置以及TCP零窗口等错误事件。

[image:]

图11.40

8．在Wireshark抓包主窗口的数据包列表区域内，若有多个数据包都身背TCP Retransmission字样（见图11.41），则表示TCP重传事件多次发生，网络中可能存在非常严重的丢包现象。此时，请使用ping等网络连通性检查工具，验证底层网络的健康状况。当然，也可以从网络的多个位置抓包，这将有助于研判发生丢包的具体位置。

[image:]

图11.41

9．若抓到了大量身背Out-Of-Order（失序）字样的数据包，则很有可能是隶属于同一条TCP流的数据包通过多条路径转发。由于那些路径的延迟各不相同，故而使得某些数据包后发先至（失序抵达目的节点）。就理论而言，流量转发路径中的所有节点应执行逐流级多路径负载均衡，以便隶属于同一条流的所有数据包始终遵循同一条路径。当参与负载均衡的多链路之一（间歇性或持续）翻动的情况下，或流量转发路径中存在只支持逐包级多路径负载均衡的老式节点的情况下，就极有可能造成数据包失序的局面。

10．若Wireshark抓到了大量身背TCP Window Full字样的数据包，则表示TCP接收方不能按照TCP发送方的发送速率处理TCP报文段。要是这种数据包频繁出现，可能需要慎重调整TCP接收端的RWND。

11．可配置TCP端点所运行的OS，激活某些TCP增强功能，比如，激活TCP选择性确认功能，开启TCP快速重传功能，或增大RWND容量，来全面提示TCP会话的数据传输吞吐量。

11.9.3　幕后原理　　　　

提升TCP会话的数据传输吞吐量，会牵涉到方方面面，需要在TCP端点上激活各种TCP功能。这些TCP功能的运作原理已经在本章介绍过了。

[1]　译者注：本书明明是基于Wireshark版本2，但书中的很多图片还是Wireshark版本1的截图，图11.15中的显示过滤器在Wireshark版本2中要写成“_ws.expert.message == "This frame is a (suspected) retransmission"”。

[2]　译者注：图11.16所示的Wireshark截图还是基于Wireshark版本1。

[3]　译者注：原文是“It can send TCP segments to a peer of size defined in the window size before waiting for an acknowledgment”，译文酌改。

[4]　译者注：此图描绘的TCP窗口并不准确，建议读者查阅《TCP/IP Illustrated,Volume1(Second Edition)》一书的图15.9。

[5]　译者注：原文是“Connect the Wireshark on the server and capture the packets”，直译为“连接服务器上的Wireshark并抓包”。

[6]　译者注：原文为“10.0.0.9”。

[7]　译者注：原文是“After several packets, the receiver sends an ACK to the sender, confirming the acceptance of the bytes sent by it. Sending the ACK empties the receiver window”。译者认为，在TCP接收方，若应用程序不去读取或消耗TCP接收缓存中的数据，发出TCP确认报文段是不能让TCP接收缓存腾出空间的。

[8]　译者注：原文是“TCP SACK is a TCP option that will be included in the SYN and SYN/ACK segments”。TCP选择性ACK功能会涉及2个TCP选项：SACK-Permitted选项和SACK选项，只有前者才会在TCP连接建立时露面，后者则会在报文段失序或丢失时现身。作者通篇未提SACK-Permitted选项，译者对译文做了相应的修改。

[9]　译者注：原文是“As seen in the preceding example, TCP SACK option will be seen in SYN and SYN/ACK segments”。其实出现在图中的TCP选项是SACK-Permitted选项。

[10]　译者注：原文是“When the receiver wants to selectively acknowledge some of the segments, it includes the relevant sequence number in the SACK option”。译文还是按照原文翻译，不过作者的说法并不精确，SACK选项的终极目的是填堵TCP接收方所缓存的数据的一个或多个“窟窿”。建议读者阅读TCP/IP Illustrated,Volume1, Second Edition一书的13.3节和14.6～14.8节。

[11]　译者注：原文是“In the preceding example, the receiver acknowledges that it is expecting the segment with sequence number 3321. But it also includes SACK with sequence number 3845 to 4369 in the same segment”。如果按照原文的字面意思直接翻译，应该没有几个读者能看明白，译者参考TCP/IP Illustrated,Volume1, Second Edition对译文做了全面调整。

[12]　译者注：原文是：“The receiver should include TSecr only in the Ack packet. As shown in the preceding example, the receiver is replying with TSecr and TSval included. The sender will use the combination of these two to derive the RTT value”。译者认为作者的表述有误，对译文做了调整。

[13]　译者注：原文是“This option carries two fields as TSval and TSecr”。TCP时间戳选项除了TSval和TSecr字段之外，还有另外两个字段kind和length，字段值分别为8和10。

[14]　译者注：原文是“The the sender will include local time when the segment is sent out in TSval field and TSecr will be set to 0. The receiver upon acknowledging a segment will include local time in the TSval and include the TSval from the last received segment from the sender”。译者认为原文表述有误，对译文做了调整。

[15]　译者注：原文是“For efficiency, most implementation will perform RTT measurement in one or two segments in each window instead of performing it on a per segment basis.”译文按照原文的字面意思翻译，不过原文对TCP RTT测量的表述是错误的。译者本想根据TCP/IP Illustrated,Volume1, Second Edition一书的14.3节调整译文，但实在涉及太多铺垫，请读者自行查阅该书的14.3节。

第12章　FTP、HTTP/1和HTTP/2

本章涵盖以下主题：

 	FTP故障分析；

 	筛选HTTP流量；

 	配置Preferences窗口中Protocols选项下的HTTP协议参数；

 	HTTP故障分析；

 	导出HTTP对象；

 	HTTP数据流分析；

 	HTTPS协议流量分析——SSL/TLS基础。

12.1　介绍

文件传输协议（FTP）的主要用途是跨TCP/IP网络传输文件。它是一种运行于TCP 20和21端口的协议，这两个端口分别用来传输数据和发送控制命令。

HTTP和HTTPS都用来浏览网页，或用来连接驻留于单位内部网络或托管在云内的某些软件。HTTPS协议是HTTP协议的安全版本，HTTPS中的那个S表示：HTTP协议传输的安全性由SSL/TLS（安全套接字层/传输层安全）来保证。在使用网银、Web邮箱或基于HTTP协议但需安全性保障的应用时，就会用到HTTPS协议。

自1991年起，HTTP历经多次修订，其版本从最初的0.9、1.0、1.1直至2015年发布的最新的2.0版本。

本章会介绍上述协议，讲解它们的运作方式，向读者传授如何使用Wireshark分析网络中与这些协议有关的常见故障。

12.2　FTP故障分析

FTP有以下两种操作模式。

 	Active模式（ACTV）：当FTP以此模式运行时，FTP客户端会先发起一条通往FTP服务器端的控制连接，后者随后会主动发起一条通往前者的数据连接。

 	Passive模式（PASV）：当FTP以此模式运行时，FTP客户端会先后发起通往FTP服务器端的控制和数据连接各一。

FTP的这两种模式都很常用，本节后文将细述各自的原理。

12.2.1　分析准备　　　　

处理FTP故障时，若怀疑存在连通性故障，或发现数据传输缓慢等迹象，请在LAN交换机上启用端口镜像功能，将下列端口的流量重定向至Wireshark主机：

 	连接FTP服务器的端口；

 	连接FTP客户机的端口；

 	连接FTP流量穿越链路的端口。

必要时，还需在Wireshark中应用显示及抓包过滤器。

12.2.2　分析方法　　　　

排查FTP性能问题时，应遵循以下排障思路[1]。

1．首先，应确保在第2、3、4层方面（以太网、IP、TCP）没有故障，前面几章已经介绍过了解决第2、3、4层故障之法。在许多情况下，数据传输缓慢都与第2、3、4层故障有关，跟FTP应用本身无关。可在FTP客户端主机上ping FTP服务器的IP地址（在执行ping命令时，用大包ping，比如，1500字节的数据包）。根据ping命令的结果，即可了解FTP流量传输路径的延迟或通断情况。

2．检查Wireshark抓包文件中是否有身背TCP Retransmission和Duplicate ACK字样的数据包。若有，则需进一步查明这样的数据包是只涉及FTP流量，还是涉及所有TCP协议流量。

 	若涉及所有TCP协议流量，则说明不单是FTP流量传输缓慢，而是整个网络都有故障。

 	若身背TCP Retransmission和Duplicate ACK字样的数据包只涉及FTP流量，且那些数据包的源或目的IP地址相同，则说明FTP流量传输缓慢很可能是拜FTP服务器或客户机反应慢所赐。

3．通过FTP传输文件时，若使用Wireshark抓包，则相应的流量在I/O Graphs窗口中将会呈“直边梯形”的趋势，在TCP Graph（time-sequence）窗口中将会出现一条笔直的斜线。

4．图12.1（TCP Graph[time-sequence]窗口）呈现了一次有问题的FTP传输过程。

[image:]

图12.1　TCP Graph（time-sequence）窗口呈现的有问题的FTP传输

5．图12.2所示为Wireshark I/O Graphs窗口（应用了适当的显示过滤器）呈现出的这次有问题的FTP文件传输状况。

[image: 1202]

图12.2　I/O Graphs窗口呈现的有问题的FTP文件传输

6．图12.3所示为由这次FTP文件传输所生成的数据包在Wireshark抓包主窗口的数据包列表区域中的真面目。由图12.3可知，这些数据包被Wireshark识别为存在以下TCP window问题。

 	FTP服务器15.216.111.13向FTP客户端10.0.0.2发出了身背TCP Window Full字样的TCP报文段（编号为5763的数据包），也就是说，Wireshark已识别出前者发出的这一TCP报文段，将会是填满后者接收缓存的最后一个TCP报文段。

 	FTP客户端10.0.0.2向FTP服务器15.216.111.13发出了窗口大小字段值为0的TCP报文段（编号为5778的数据包，身背TCP ZeroWindow字样），其目的是让后者停止传送数据。

 	FTP服务器持续向FTP客户端发出了身背TCP ZeroWindowProbe字样的TCP报文段，意在探测后者的TCP接收窗口是否仍然为0。FTP客户端发出窗口大小字段值为0的TCP确认报文段（身背TCP ZeroWindowProbeAck字样），其目的是请求FTP服务器暂停发送数据。FTP服务器和客户端之间的上述交流过程，详见Wireshark抓到的编号范围为5793～5931的数据包。

 	片刻之后，FTP客户端向FTP服务器发出了窗口大小字段值不为0的TCP确认报文段（编号为5939的数据包，身背TCP Window Update字样），让后者继续传输数据。

[image:]

图12.3　有问题的FTP传输，问题原因——FTP客户端主机反应迟钝

7．之前所描述的这一有问题的FTP数据传输过程，是因FTP客户端主机反应迟钝所致。仔细检查那台主机，关停其上所运行的某些进程之后，便解决了问题。

导致FTP连通性故障的原因包括FTP服务器无法提供服务（比如，主机宕机或FTP服务未能正常启动等）、防火墙封锁了FTP连接、安装在FTP服务器或客户端主机上的某些软件破坏了FTP协议的正常运作等。排查此类故障时，应遵循以下思路。

1．核实FTP文件传输所依赖的TCP连接能否正常建立，为此，应检查Wireshark能否抓全与此FTP连接配套的TCP三次握手（SYN/SYN+ACK/ACK）报文段。若与FTP文件传输配套的TCP连接未能正常建立，则不出以下原因。

 	防火墙封锁了支撑FTP文件传输的TCP连接。此时，应赶紧去找管理防火墙的网络管理员。

 	FTP服务器无法提供服务，需登录安装FTP服务器端软件的主机，检查主机自身及FTP服务器端软件的运行情况。

 	安装在FTP服务器（主机）上的某个软件干扰了FTP协议的正常运作。杀毒软件、VPN客户端软件、防火墙软件或其他安全防护软件都有可能会阻挡来自FTP客户端的FTP连接。

 	检查安装FTP客户端软件的主机，看看是不是VPN客户端软件或防火墙软件阻碍其发起FTP连接。

2．当FTP运行于Active模式时，客户端会先向服务器发起一条控制连接，后者再向前者发起一条数据连接。因此，需配置防火墙，令其在两个方向上放行必要的FTP流量，或将FTP的运行模式改为Passive模式。

12.2.3　幕后原理　　　　

FTP有两种运行模式：Active模式和Passive模式。以Active模式运行时，FTP服务器会在控制连接建立之后，主动打开一条通往FTP客户端的数据连接；运行于Passive模式时，数据连接则会由后者向前者主动发起。现在来了解一下上述两种FTP模式的原理。

图12.4所示为FTP Passive模式的原理。

[image: 1204]

图12.4　FTP Passive模式的原理

1．FTP客户端发起通往FTP服务器的FTP控制连接，这条TCP连接的源端口号为FTP客户端随机选定（本例为TCP 1024端口），目的端口号为众所周知的TCP 21端口。

2．FTP服务器以TCP 21端口进行回应，与FTP客户端的TCP 1024端口建立FTP控制连接。

3．控制连接成功建立之后，需要传递数据时，FTP客户端将再次发起通往FTP服务器的FTP数据连接，这条TCP连接的源端口号为“P（FTP控制端口号）+1”（本例为1025），目的端口号为FTP服务器指定的高于1024的任一TCP端口号（本例为TCP 2000端口），这一端口号会通过先前建立的控制连接通告给FTP客户端。

4．FTP服务器以TCP 2000端口进行回应，与FTP客户端的TCP1025端口建立FTP数据连接。

当FTP以Active模式运行时，情况会略有不同。

1．FTP客户端发起通往FTP服务器的FTP控制连接，这条TCP连接的源端口号为FTP客户端随机选定（本例为TCP 1024端口），目的端口号为众所周知的TCP 21端口（见图12.5）。

[image:]

图12.5　FTP Active模式的原理

2．FTP服务器以TCP 21端口进行回应，与FTP客户端的TCP 1024端口建立FTP控制连接。

3．控制连接成功建立之后，需要传递数据时，FTP服务器将主动发起通往FTP客户端的FTP数据连接，这条TCP连接的源端口号为众所周知的TCP 20端口，目的端口号为“P（FTP控制端口号）+1”（本例为1025）。

4．FTP服务器以TCP 20端口进行回应，与FTP客户端的TCP 1025端口建立FTP数据连接。

12.2.4　拾遗补缺　　　　

FTP是一种比较简单的应用层协议，在大多数情况下，FTP故障都不难排查。下面举几个作者参与排除过的FTP故障的实例。

 	故障实例1：FTP服务器和客户端之间通过一条国际专线互连，用户普遍感觉FTP文件传输缓慢，并指责提供专线的运营商不给力。但据运营商反映，那条国际专线的带宽利用率只有不到20%。经作者核查，确认了这一点。作者使用Wireshark进行抓包分析，分析结果表明，不存在任何与TCP有关的问题（比如，TCP重传或窗口问题）。无奈之下，作者登录进安装FTP服务器端软件的主机，卸载掉了原有的FTP服务器端软件，安装了另一款软件（免费的FTP服务器端软件遍地皆是），FTP文件传输的性能就得到了极大地改善。看来，这只不过是FTP服务器端软件效率低下所引发的FTP文件传输缓慢问题。

 	故障实例2：有一用户反映，他在连接FTP服务器时，每次都是尝试了5、6次之后，遭到了FTP服务器的拒绝。动用Wireshark之后，作者抓到了很多身背FTP Connection refused字样的数据包（用户投诉的原因也正在于此），这看起来像是FTP服务器不响应。作者登录进安装FTP服务器端软件的主机，重启了FTP服务之后，问题便无影无踪。经过检查，原来是主机上安装的杀毒软件干扰了FTP服务器端软件的运行。

 [image: 未标题-1]　注意

 作者通过以上两个实例是想传达这样一个理念，那就是排除网络故障时，即便有Wireshark（或其他软件）助一臂之力，也得具备最基本的IT常识。

12.3　筛选HTTP流量

可使用多种方法来配置用来筛选HTTP流量的显示过滤器。本节会重点关注常用的过滤HTTP流量的显示过滤器。

12.3.1　准备工作　　　　

将Wireshark主机接入LAN交换机，激活交换机的端口镜像功能，将有待监控的连接服务器的交换机端口流量重定向至Wireshark主机；运行Wireshark软件，选择正确的网卡，开始抓包。

12.3.2　操作方法　　　　

配置HTTP显示过滤器的方法包括：直接在抓包主窗口的Filter输入栏内输入HTTP显示过滤表达式；在抓包主窗口的数据包结构区域内，将HTTP数据包的某个HTTP属性值指定为显示过滤器的过滤条件；点击抓包主窗口中过滤器工具条上的Expression按钮，在弹出的Display Filter Expression窗口中构造HTTP显示过滤器（具体配置方法详见第4章）。

用来筛选HTTP流量的显示过滤器分为以下几类。

基于名称的HTTP显示过滤器

 	要让Wireshark只显示访问某指定域名（www.packtpub.com）的HTTP请求数据包，显示过滤器的写法为：http.host == "www.packtpub.com" 。

 	要让Wireshark只显示发往包含了指定字符串的域名（比如，包含PacktPub的域名）的HTTP请求数据包，显示过滤器的写法为http.host contains "packtpub"。

 	要让Wireshark只显示 Referer头部内容为http://www.packtpub.com/的HTTP请求数据包，显示过滤器的写法为http.referer =="http: //www. packtpub.com/"（亦即让Wireshark只显示从http://www. packtpub.com/链接过来的所有HTTP请求数据包）。

基于HTTP请求方法的显示过滤器

 	要让Wireshark显示包含GET请求的所有HTTP数据包，显示过滤器的写法为http.request.method == GET。

 	要让Wireshark显示所有HTTP请求数据包，显示过滤器的写法为http. request。

 	要让Wireshark显示所有HTTP响应数据包，显示过滤器的写法为http. Response。

 	要让Wireshark显示包含所有HTTP数据包，但包含GET方法的HTTP请求数据包除外，显示过滤器的写法为http.request and nothttp. request.method == GET。

基于HTTP状态码的显示过滤器

 	要让Wireshark显示包含HTTP错误状态码的HTTP响应数据包，显示过滤器的写法为http.response.code >= 400。

 	要让Wireshark只显示包含HTTP客户端错误状态码的HTTP响应数据包，显示过滤器的写法为http.response.code >= 400 and http.response. code <= 499。

 	要让Wireshark只显示包含HTTP服务器端错误状态码的HTTP响应数据包，显示过滤器的写法为http.response.code >= 500 and http. response.code <= 599。

 	要让Wireshark只显示状态码为404的HTTP响应数据包，显示过滤器的写法为http.response.code == 404。

在配置由非特殊字符作为参数值的HTTP显示过滤器（比如，http.host == packtpub）时，可以不用为参数值加“" "”。但在配置由特殊字符作为参数值的HTTP显示过滤器（比如，http.host =="packtpub\r\n"）时，就必须为参数值加“" "”。

12.3.3　幕后原理　　　　

本小节将引领读者回顾一遍HTTP协议的细节。

1．HTTP方法

RFC 2616定义了几种主要的HTTP请求方法。在RFC 2616发布之后，又有数种HTTP请求方法问世，这些HTTP请求方法刊登在了RFC 2616的升级版（RFC 2817、RFC 5785、RFC 6266和RFC 6585）以及其他的HTTP标准（RFC 2518、3252和5789）中。

以下所列为定义于RFC 2616的几种基本的HTTP请求方法。

 	OPTIONS：HTTP客户端可使用该方法让Web服务器告知其所支持的功能。

 	GET：HTTP客户端可使用该方法请求Web服务器发送某个资源。

 	HEAD：与GET方法类似。借助于该方法，HTTP客户端可在不获取实际资源的情况下，让Web服务器发送资源的概况信息。

 	POST：HTTP客户端可利用该方法向Web服务器传送数据。比方说，当使用webmail时，就会调用该方法去传送邮件操作命令。

 	DELETE：借助于该方法，HTTP客户端可请求Web服务器删除由URL指定的资源。

 	PUT：HTTP客户端可利用该方法向Web服务器写入数据。有些Web服务器允许用户通过PUT方法在其上创建页面，但在如此操作之前，一般要通过用户名/密码认证。

 	TRACE：当HTTP客户端发起HTTP请求时，HTTP请求报文可能会穿越防火墙、代理服务器或网关等设备，这些设备可能会修改原始的HTTP请求数据包中的内容。借助于TRACE方法，HTTP客户端就能让Web服务器弹回（loopback）一条TRACE响应报文，其中会携带后者实际收到的HTTP请求报文。HTTP客户端可借此了解原始HTTP请求报文是否被损坏或修改过。

 	CONNECT：用来连接代理设备。

2．状态码

HTTP状态码共分5类，如表12.1所列。

表12.1　HTTP状态码

 	 类别

 	 名称

 	 含义

 	 1xx

 	 信息状态码

 	 用来表示一般性信息

 	 2xx

 	 成功状态码

 	 用来表示由HTTP客户端所请求执行的动作已被Web服务器成功接收、接受或处理

 	 3xx

 	 重定向状态码

 	 用来告知HTTP客户端使用其他位置来访问其所感兴趣的资源

 	 4xx

 	 客户端错误状态码

 	 用来表示HTTP客户端错误

 	 5xx

 	 服务器端错误状态码

 	 用来表示HTTP错误

12.3.4　拾遗补缺　　　　

使用Wireshark分析HTTP流量时，在抓包主窗口的数据包结构区域内，经常可以看见某些HTTP数据包的Hypertext Transfer Protocol树状区域下会多一个名为Line-based text data:text/html的结构，如图12.6所示。

[image:]

图12.6　Web服务器反馈的信息及解释

该结构的名称Line-based text data: text/html在图12.6中被标记为1，点击其前面的小三角形，将会暴露出由Web服务器返回的错误信息（图12.6中的2和3）。

12.4　配置Preferences窗口中Protocols选项下的HTTP协议参数

使用Wireshark抓取并分析HTTP协议流量之前，可调整Preferences窗口中Protocols选项下HTTP协议的某些参数。对这些参数的调整，会影响到Wireshark对HTTP协议流量的解析，本节将讲解如何调整这些参数。

12.4.1　配置准备　　　　

启动Wireshark软件，按下一小节内容的指示行事。

12.4.2　配置方法　　　　

1．点击Edit菜单下的Preferences菜单项。

2．在弹出的Preferences窗口中，点击Protocols配置选项前的小三角形，选择HTTP协议，如图12.7所示。

[image:]

图12.7　Preferences窗口中protocol选项下的HTTP协议配置参数

在图12.7所示的Perferences窗口中，那4个复选框是默认勾选的。只要勾选了那4个复选框，即便HTTP协议数据包在IP层被分片传送，Wireshark也会重组HTTP头部和主体。在TCP Ports字样旁，有一个输入栏，其中默认填写了若干TCP端口号，Wireshark会把发往/源于这些端口号的TCP流量当做HTTP流量来解码。在某些情况下，要想用其他TCP端口来跑HTTP流量，且希望Wireshark将发往/源于此端口号的TCP流量视为HTTP流量，请将该TCP端口号添加进TCP Ports之后的输入栏。在SSL/TLS Ports字样旁的输入栏内，默认只有TCP 443端口，该输入栏的作用等同于TCP Ports字样旁的输入栏，要想用其他TCP端口来跑HTTPS流量，且希望Wireshark将发往/源于此端口号的TCP流量视为HTTPS流量，需将该TCP端口号填入此输入栏。

Custom HTTP headers fields身旁的Edit按钮

在图12.7所示Perferences窗口中Custom HTTP headers fields字样旁，有一个Edit按钮，可借助于该按钮功能来创建http.header旗下的HTTP显示过滤参数。

试举一例，请看图12.8。

[image:]

图12.8　HTTP头部-age

要想让Wireshark直接将HTTP响应数据包中的Age头部作为HTTP显示过滤参数来引用，请按以下步骤行事。

1．点击HTTP Perferences窗口中Custom HTTP headers fields之后的Edit按钮（图12.9中被标记为1的区域）。

[image: 1209]

图12.9　Custom HTTP headers fields按钮功能

2．在弹出的Custom HTTP headers fields table窗口中，点击New按钮（图12.9中被标记为2的区域）。

3．在弹出的小窗口的Header name输入栏内（图中被标记为3的区域）输入HTTP头部的名称Age（区分大小写）。

4．在Field desc字段内输入相关注释信息，作者输入的是“Aging time of …”。

5．先点击小窗口中的OK按钮，再点击Custom HTTP header fields Table窗口中的OK按钮。

6．现在，在Wireshark抓包主窗口的Filter输入栏内，就可以用显示过滤参数http.header. Age来直接引用Age头部中的内容了。比方说，可应用显示过滤器http.header.Age contains 88482，让Wireshark筛选出Age头部中包含该请求编号的所有HTTP数据包。

7．还可以按照上述方法构造其他的HTTP显示过滤参数。

 [image: 未标题-1]　注意

 若HTTP数据包中包含有私自定义的头部，且需要根据此类HTTP头部来筛选HTTP流量时，便可以使用上述方法来构造HTTP显示过滤参数。

12.4.3　幕后原理　　　　

在HTTP Perferences窗口中，设立了几个含Reassemble（重组）字样的复选框。设立的原因是，IP分片的情况时有发生，一旦发生，承载HTTP流量的TCP报文段也会分布在隶属于同一个IP数据包的不同分片内。只要勾选了那几个复选框，Wireshark在解码时会重组分布在各IP数据包的不同分片内的HTTP头部和主体。

12.4.4　拾遗补缺　　　　

通常，Wireshark只会把目的端口号为80，且包含有效HTTP头部的TCP数据包识别为HTTP数据包。要想让Wireshark把所有目的端口号为80的TCP流量都识别为HTTP数据包，请按以下步骤行事。

1．点击Edit菜单下的Preferences菜单项，在弹出的Preferences窗口中，点击Protocols选项前的小三角形，在其中选择TCP协议。

2．在Preferences窗口中，取消勾选Allow dissector to reassemble TCP streams复选框。

12.5　HTTP故障分析

本节将重点关注如何分析HTTP故障。HTTP故障的原因包括Web服务器或HTTP客户端主机反应迟钝、TCP性能问题以及本节将要呈现的某些其他原因。

12.5.1　分析准备　　　　

若有个别用户反映网页打开过慢，请借助于端口镜像功能，将交换机上连接该用户主机的端口的流量重定向给Wireshark主机；若用户普遍反映网页打开过慢，则需要将交换机上连接Internet链路或连接Web服务器基础设施的端口的流量重定向给Wireshark主机。

12.5.2　分析方法　　　　

网页打开过慢的原因有很多，请按以下思路来查找原因。

1．首先，要确保Internet链路以及网络的核心链路没有过载。其次，应观察交换机上相关端口的统计信息，确保未发生任何与通信链路有关的问题（比如，收到了错包或存在丢包）（详情请见第5章和第6章）。

2．要判断网页打开过慢是否与TCP性能问题（详见第11章）有关，请按以下步骤行事。

 	检查Wireshark抓包文件，看看是否抓到了数量众多的身背Duplicate ACK或Retransmission等字样的TCP报文段（在正常情况下，身负上述字样的TCP报文段的数量不应超过TCP报文段总量的1%）。

 	检查Wireshark抓包文件，看看是否抓到了重置HTTP连接的TCP报文段（RST标记位置1的TCP报文段）。若是，则有可能是防火墙在“捣鬼”或是目标Web站点有访问限制。

3．要判断网页打开过慢是否拜赐于DNS故障，可能存在的DNS故障如下所列。

 	DNS解析缓慢。

 	DNS服务器无法解析域名，或有待查询的域名不正确。

4．经过一翻排查之后，若发现网页打开过慢与上述问题无关，请将排障目标对准HTTP协议。

 [image: 未标题-1]　注意

 排除网络故障时，应将视野放宽到整个网络环境甚至是整个IT环境。HTTP与TCP息息相关，而DNS解析速度则与用户对互联网应用的体验密不可分。因Web服务器反应迟钝而导致的TCP重传，会使得网页打开过慢；而DNS服务器反应迟钝，也会使得网页打开看似变慢。因此，需遵循上述思路，按部就班地解决问题。

若用户普遍反应网页打开过慢，应检查如下事宜。

 	检查通信链路（Internet链路或网络核心链路）是否过载。

 	检查通信链路的传输延迟（在用户主机上ping Internet上或服务器区域内的Web站点）。

 	设法查明Web站点传回的HTTP（响应数据包中包含的）信息状态码。当使用浏览器打开网页时若发生了HTTP访问错误，浏览器一般都会显示出由Web服务器传回的HTTP错误状态码，但并非总是如此。

 	在Wireshark抓包主窗口的Filter输入栏内输入显示过滤表达式http.response>= 400，看看Wireshark抓到了多少含有HTTP错误状态码的数据包。在本节后续内容中，会举几个与此有关的重要示例。

表12.2～表12.5列出了HTTP的各种状态码。

表12.2　HTTP信息状态码

 	 状态码

 	 原因短语

 	 解释

 	 100

 	 Continue

 	 表示HTTP请求成功执行完毕，会话可以继续

 	 101

 	 Switching
 protocols

 	 表示Web服务器根据HTTP客户端的指定，将协议切换为Upgrade头部中列出的协议

表12.3　HTTP成功状态码

 	 状态码

 	 原因短语

 	 解释

 	 200

 	 OK

 	 HTTP请求正常

 	 201

 	 Created

 	 表示HTTP请求已经执行，新的资源已经创建

 	 202

 	 Accepted

 	 表示HTTP请求已被接受，仍在处理

 	 203

 	 Non-authoritative
 information

 	 表示实体首部所含信息并非来自于源端服务器，而是来自资源的一份副本

 	 204

 	 No content

 	 表示HTTP响应数据包中只包含若干HTTP头部和一状态行，不含实体的主体部分

 	 205

 	 Reset content

 	 Web服务器会用该状态码告知浏览器清除当前页面中所有表单元素

 	 206

 	 Partial content

 	 表明HTTP请求部分成功执行

表12.4　HTTP重定向状态码

 	 状态码

 	 原因短语

 	 解释

 	 应对措施

 	 300

 	 Multiple choices

 	 当Web服务器返回该状态码时，便表示（HTTP客户端所请求的）URL实际指向多个资源（譬如，所请求的HTML文件有英语和法语两个版本）。Web服务器在返回该状态码的同时，还会提供一个选项列表，让用户选择

 	 —

 	 301

 	 Moved permanently

 	 表示HTTP客户端所请求的资源被永久性转移，Web服务器应在HTTP响应数据包的Location头部中包含资源目前所处的位置（URL）

 	 —

 	 302

 	 Moved
 temporarily
 (found)

 	 表示HTTP客户端所请求的资源被临时转移，Web服务器应在HTTP响应数据包的Location头部中包含资源目前所处的位置（URL），但将来对资源的请求应使用原先的URL

 	 在遇到这种情况时，在Web浏览器中通常只会显示原因短语Found。然后，Web浏览器会另发一个HTTP请求数据包，其GET方法所引用的URL将指向资源目前所处的位置

 	 303

 	 See other

 	 Web服务器会用此代码告知HTTP客户端：请用另一URL来获取资源。新的URL位于HTTP响应数据包中的Location头部

 	 —

 	 304

 	 Not modified

 	 若HTTP客户端发起的是条件GET请求，且所请求的资源最近未被修改，Web服务器便会返回此状态码

 	 —

 	 305

 	 Use proxy

 	 Web服务器用此代码来表示必须通过某一代理设备来访问所请求的资源，代理的位置位于HTTP响应数据包中的Location头部

 	 请检查相关代理设备的情况

表12.5　HTTP客户端错误状态码

 	 状态码

 	 原因短语

 	 解释

 	 应对措施

 	 400

 	 Bad request

 	 表示Web服务器无法识别HTTP请求数据包中的语法。HTTP客户端在重发HTTP请求之前，应做修改

 	 请检查所要访问的Web站点的域名或IP地址是否正确

 	 401

 	 Authorization required

 	 HTTP客户端对资源的访问遭Web服务器拒绝，因为前者未能通过认证

 	 请检查用户名/密码

 	 402

 	 Payment required

 	 预留供将来使用

 	

 	 403

 	 Forbidden

 	 表明HTTP请求遭Web服务器拒绝，这可能是因为Web服务器有访问限制

 	 请检查访问“凭证”。另外，也有可能是因为Web服务器负载过重

 	 404

 	 Not found

 	 表示所请求的资源不存在于Web服务器

 	 这既有可能是因为资源遭到了删除，或原本就不存在，也有可能是因为URL拼写错误

 	 405

 	 Method not
 allowed

 	 表示Web服务器不支持或不允许HTTP客户端用来请求资源的HTTP方法

 	

 	 406

 	 Not acceptable

 	 HTTP客户端可通过参数来说明自己愿意接受何种类型的实体。当Web服务器上的资源与HTTP客户端可接受的URL不匹配时，便会返回此状态码

 	 请检查/升级Web浏览器

 	 407

 	 Proxy authentication required

 	 类似于状态码401，但为客户端代理服务器所用，该服务器的作用是对HTTP客户端所要访问的资源进行认证

 	 HTTP客户端在访问资源之前需先通过代理服务器的认证

 	 408

 	 Request timed out

 	 Web服务器在处理HTTP请求时若超出了所允许的时间，便会返回此状态码

 	 检查响应时间及网络负载状态

 	 409

 	 Conflict

 	 表示由HTTP客户端所提交的HTTP请求因与某些既定的规则相冲突，而未能完成

 	 可能是因为通过HTTP上传的文件旧于Web
 服务器所存，或存在与之类似的问题。请检查HTTP客户端的“所作所为”

 	 410

 	 Gone

 	 类似于状态码404，只是HTTP客户端通过URL所请求的资源以前确实存在

 	 一般都是Web
 服务器问题，既有可能是文件被删除，也有可能是文件存放位置发生了改变

 	 411

 	 Content length
 required

 	 表示HTTP客户端发出的HTTP请求数据包缺少Content-Length头部，但Web服务器要求在HTTP请求数据包中包含这一头部

 	 Web浏览器与Web服务器不兼容，请升级Web浏览器

 	 412

 	 Precondition
 failed

 	 若HTTP客户端发起的是条件GET请求，且启用某一条件无法满足时，Web服务器会返回此状态码

 	 WEB浏览器与Web服务器不兼容，请升级Web浏览器

 	 413

 	 Request entity
 too long

 	 当HTTP客户端所发送的HTTP请求数据包中的实体的主体部分过长，Web服务器无法处理时，便会返回此状态码

 	 Web服务器限制

 	 414

 	 Request URI
 too long

 	 当HTTP客户端所发送的HTTP请求数据包中的URL过长，Web服务器无法处理时，便会返回此状态码

 	 Web服务器限制

 	 415

 	 Unsupported
 media type

 	 若Web服务器不支持或无法识别HTTP客户端所发（HTTP请求数据包中的）实体内容的类型，则会返回此状态码

 	 Web服务器限制

图12.10呈现了一个Wireshark识别出的HTTP客户端错误的简单示例。要想让Wireshark生成图12.10所示的内容，请按以下步骤行事。

1．在Wireshark抓包主窗口的数据包列表区域中，选中一个身背HTTP 4xx状态码的数据包，点击右键。

2．在弹出的菜单中点击Follow TCP Stream菜单项，将会看到图12.10所示的窗口。

[image: 1210]

图12.10　HTTP客户端错误示例

现在，来解读一下图12.10中所示的内容。

 	HTTP客户端所要访问的网址为www.888poker.com//poker-client/broadcast.htm（在图12.10中分别被标记为1和3）。

 	访问此网址的HTTP请求经由网址http://www.888poker.com/poker-client/promotions. htm链接而来（在图12.10中被标记为2）。

 	Web服务器返回的HTTP状态码为404 Not Found（在图12.10中被标记为4）。

需要澄清的是，作者从不赌博，只是在用Wireshark执行排障任务时顺手截了个屏（www.888poker.com是一个赌博网站）。

表12.6给出了HTTP服务器端的错误状态码。

表12.6　HTTP服务器错误状态码

 	 状态码

 	 原因短语

 	 解释

 	 应对措施

 	 500

 	 Internal server error

 	 Web服务器遭遇意外情况时，便会返回此状态码。所谓意外情况，是指服务器因出错而无法完成HTTP客户端对某一URL的访问请求

 	 当Web服务器上运行有CGI程序时，Perl代码中的错误会导致其返回此状态码

 	 501

 	 Not implemented

 	 表示Web服务器未能执行HTTP客户端的访问请求

 	 Web服务器故障

 	 502

 	 Bad gateway

 	 充当代理或网关的服务器从请求响应链中的下一个环节收到无效响应（比如，该服务器无法连接到其父网关）时，便会返回此代码

 	 服务器故障

 	 503

 	 Service unavailable

 	 表示有待访问的服务或请求访问的资源当前处于失效状态

 	 Web服务器故障

 	 504

 	 Gateway timeout

 	 类似于状态码408，但返回此状态码的是网关或代理设备

 	 服务器宕机或停止响应

 	 505

 	 HTTP version not supported

 	 表示Web服务器不支持（HTTP客户端用来）与其通信的HTTP协议的版本

 	 Web服务器不支持（HTTP客户端使用的）HTTP协议的版本

浏览网页时，有诸多原因会导致Web浏览器提示Service unavailable（code 503）错误。现在来举一个用Wireshark排除此类故障的示例。有一小型办公网络，里面总有用户反映：用Web浏览器打开Facebook的主页，一点问题都没有，但打开之后，只要点主页里任何一个链接，就会弹出一个提示Service unavailable的新页面 。由图12.11所示的Wireshark截屏可知，是网络中的一台防火墙在捣鬼。

[image:]

图12.11　HTTP service unavailable：防火墙捣鬼

12.5.3　幕后原理　　　　

用Web浏览器以HTTP方式打开网页的同时，用Wireshark抓包，能观察到以下情况。

1．TCP连接的建立过程（TCP三次握手过程）。

2．身负GET字样的HTTP请求数据包。

3．用来承载下载数据的TCP数据包。

在大多数情况下，用Web浏览器访问某个网站的主页时，可能会建立10条以上的HTTP连接。比方说，在访问某些新闻站点的主页时，Web浏览器会同时打开多条HTTP连接，分别用来加载其经济、体育、生活、天气等各个“频道”的数据。甚至会出现访问某个页面时，Web浏览器打开上百条HTTP连接加载数据的情况。

对一个需要通过多条HTTP连接才能加载完毕的Web页面来说，在打开每条HTTP连接时，都会衍生出DNS查询/响应数据包、TCP三次握手报文段、包含HTTP GET方法的HTTP请求数据包，但Web浏览器中显示的内容都是由后续的TCP数据包承载。

12.5.4　拾遗补缺　　　　

用Wireshark分析抓到的HTTP数据包时，若在抓包主窗口的数据包内容区域看不到有用的信息，请在数据包列表区域选中一个隶属于某条HTTP连接的数据包，点击右键，在弹出的菜单中选择Follow TCP Stream菜单项。Wireshark会立刻弹出一个Follow TCP Stream窗口，其中会显示出通过该HTTP连接传递的全部数据。

还有一款常用来分析HTTP流量的流量分析攻击，名叫Fiddler。Fiddler属于自由软件，其主要用途为调试HTTP，如何使用该工具不在本书探讨范围之内。

12.6　导出HTTP对象

在Wireshark抓包主窗口File菜单的Export Objects菜单项下，有一个HTTP子菜单项，可利用该子菜单功能从抓包文件中导出有关HTTP的统计信息（即通过HTTP访问的Web站点信息和资源信息）。

12.6.1　导出准备　　　　

请选择抓包主窗口的File菜单，点击其Export Objects菜单项下的HTTP子菜单项。

12.6.2　导出方法　　　　

要想从Wireshark抓包文件中导出HTTP对象，请按以下步骤行事。

1．请在使用Wireshark抓包的同时（或打开一个之前保存的抓包文件），选择抓包主窗口的File菜单，点击其Export Objects菜单项下的HTTP子菜单项。HTTP Object List窗口会立刻弹出，如图12.12所示。

[image:]

图12.12　HTTP Object List窗口

2．在HTTP Object List窗口中，会列出被访问过的Web站点的名称，以及各Web站点上被访问过的文件信息（包括每个文件的类型、大小、名称等）。

3．可点击HTTP Object List窗口底部的Save As或Save All按钮，来保存文件数据。

4．在HTTP Object List窗口的Content Type一栏中，可能会出现以下内容。

 	文件类型text/plain、text/html、text/javascript：表示通过HTTP访问的文件类型为文本文件，若为text/javascript，则需仔细检查，因为可能存在安全隐患。

 	文件类型image/jpeg、image/gif：表示通过HTTP访问的文件类型为图像，可用图片浏览工具来打开此类文件。

 	文件类型application/json、application/javascript等：表示通过HTTP访问的文件类型为应用程序。

 	Wireshark可识别的其他文件类型。

 [image: 未标题-1]　注意

 要想让File菜单中Export Objects菜单项下的HTTP子菜单项功能生效，需先在TCP首选项设置窗口（点击Edit菜单中的Preferences菜单项，在弹出的Preferences窗口中，点击左侧Protocols之前的小三角形，选中TCP协议）中点选allow subdissector to reassemble TCP streams之后的复选框，激活Wireshark的TCP数据包重组功能。

还可点击图12.12所示的HTTP Object List窗口的Save All按钮，选择一个目录来存储从抓包文件中导出的所有HTTP对象。HTTP对象既可以是图片文件（图中所示1052和1072号数据包所承载的内容），也可以是文本文件（1019和1022号数据包所承载的内容），还可以是其他格式的文件。

12.6.3　幕后原理　　　　

只要点击File菜单中Export Objects菜单项下的HTTP子菜单项，Wireshark就会扫描当前所抓数据包（或打开的抓包文件）中的HTTP数据流，对各种HTML对象（比如，HTML文档、图片文件、可执行文件以及其他可读文件格式）进行重组，好让用户将这些对象存盘。稍后，可以使用适当的程序来读取这些HTTP对象（若为可执行文件，则可以通过双击的方式来执行）。Wireshark所具备的这一功能是一把双刃剑，既能用来窃取机密，也可以起到备份的作用（比如，可用来备份通过E-mail发出的附件）。

12.6.4　拾遗补缺　　　　

下列软件亦可以图形化的方式来执行Wireshark所具备的上述功能：

 	Xplico；

 	NetworkMiner。

 [image: 未标题-1]　注意

 用File菜单中Export Objects菜单项下的HTTP子菜单项功能监控HTTP流量时，要是发现有人从路数不正的网站下载了可疑的应用程序，且应用程序的文件名也十分可疑时，请百度（Google）一下，这很可能预示着危险（本书与网络安全有关的章节会对此展开深入探讨）。

12.7　HTTP数据流分析

前文已经简单介绍了Wireshark软件的Follow TCP Stream特性，该特性对网络监控非常有用，能让网管人员窥探到所抓TCP数据流的内在。本节会讲解如何借助于Follow TCP Stream特性分析HTTP流量。

12.7.1　分析准备　　　　

将Wireshark主机接入LAN交换机，激活交换机的端口镜像功能，把受监控端口的流量重定向至Wireshark主机；启动Wireshark软件，选择正确的网卡，开始抓包。

12.7.2　分析方法　　　　

要想在Wireshark软件中打开Follow TCP Stream窗口，请按以下步骤行事。

1．在Wireshark抓包主窗口的数据包列表区域中，从有待分析的那股HTTP数据流中选择一个数据包，单击右键。

2．在弹出的菜单中点击Follow TCP Stream菜单项，即可让Wireshark只显示隶属于这股HTTP数据流的数据包了。在Wireshark抓包主窗口的Filter输入栏内，不但可以看见这股HTTP数据流在抓包文件中的编号，还会弹出图12.13所示的Follow TCP Stream窗口。

[image:]

图12.13　Follow TCP Stream窗口

3．借助于Follow TCP Stream窗口中的内容，即可窥探到HTTP数据流的内在。由图12.13可知，这股HTTP数据流包含了以下内容。

 	HTTP客户端在执行HTTP请求操作时使用了GET方法（图12.13中的1）。

 	HTTP客户端所访问的主机名为www.epubit.com（图12.13中的2）。

 	执行HTTP请求操作的浏览器为Mozilla Firefox（图12.13中的3）。

 	HTTP请求数据包中Referrer头部字段值为http://www.epubit.com（图12.13中的4）。

 	在HTTP响应数据包中返回的信息状态码为220 OK（图12.13中的5）。

 	Web服务器为Apache Web服务器（图12.13中的6）。

4．借助于Follow TCP Stream窗口，定位网络故障会变得非常简单，再举两个例子。

 	可发现偷偷用Kazaa（类似于BT）客户端“做种”的内网用户（一般的单位应该都不会允许这种行为），如图12.14所示。

[image:]

图12.14　Follow TCP Stream窗口

 	可发现软件bug，请看图12.15。只需把图12.15中圈里的文字放到百度（Google）里一搜，马上就可以知道这属于历史遗留性bug。

[image: 1215]

图12.15　Follow TCP Stream窗口

5．借助于Follow TCP Stream窗口，还可以发现错误或bug消息。

 	病毒或蠕虫——若在Follow TCP Stream窗口中看见了blast、probe或Xprobe之类的单词，则十有八九与病毒或蠕虫有关。要是看见以上述单词命名的可执行文件（扩展名为.exe），则更要保持十二分地警惕（与此有关的内容详见第19章）。

12.7.3　幕后原理　　　　

通过Follow TCP Stream功能筛选出的HTTP数据流囊括了HTTP客户端与Web服务器之间从建立HTTP TCP连接的三次握手，到关闭HTTP TCP连接的四次握手之间的所有TCP报文段。该功能能够将HTTP数据流一股股地相互隔开，对排除网络故障大有裨益。

12.7.4　拾遗补缺　　　　

使用Follow TCP Stream功能还可以发现并定位许多故障，后文会做进一步的探讨。

12.8　HTTPS协议流量分析——SSL/TLS基础

HTTPS协议是HTTP协议的安全版本，HTTPS中的那个S表示HTTP协议传输的安全性由SSL/TLS（安全套接字层/传输层安全）来保证。在使用网银、webmail服务或基于HTTP协议但需安全性保障的应用时，就会用到HTTPS协议

本节将介绍HTTPS协议的运作方式及其排障方法。

12.8.1　分析准备　　　　

将Wireshark主机接入LAN交换机，激活交换机的端口镜像功能，将受监控端口的流量重定向至Wireshark主机；运行Wireshark软件，选择正确的网卡，开始抓包。HTTPS协议通过TCP 443端口来通信，应关注Wireshark抓到的源或目的TCP端号为443的所有流量。

12.8.2　分析方法　　　　

要使用Wireshark分析HTTPS协议流量，请按以下步骤行事。

1．需掌握HTTPS握手阶段的步骤，与此有关的内容详见下一小节。

2．应关注Wireshark抓到的HTTPS握手消息的顺序，应确保此类数据包按图12.16所示顺序出现在Wireshark抓包主窗口的数据包列表区域，这些数据包应身负图12.16中括号里的文字。

[image:]

图12.16　HTTPS安全连接的建立过程

3．以下所列为RFC 2246定义的各种常见的HTTPS告警（alert）消息（以及各自的告警等级）。消息的告警等级表示消息的错误严重程度，关键性错误告警消息会导致会话的终结。

 	close_notify（告警等级=0）：用来通知接收方，发送方将不会在该HTTPS会话上传输任何消息。在此之后，接收方将忽略收到的任何数据。

 	unexpected_message（10）：当HTTPS客户端或服务器收到不应收到的消息时，便会返回此消息。这属于关键性错误告警消息，表示HTTPS客户端或服务器在实现上存在重大缺陷。

 	bad_record_mac（20）：当HTTPS客户端或服务器收到了包含错误MAC（消息认证码）的记录时，便会返回此消息。这属于关键性错误告警消息，表示HTTPS客户端或服务器在实现上存在重大缺陷。

 	decryption_failed（21）：当HTTPS客户端或服务器收到了以错误的方法加密的TLS密文时，便会返回此消息。这属于关键性错误告警消息，表示HTTPS客户端或服务器在实现上存在重大缺陷。

 	record_overflow（22）：当HTTPS客户端或服务器收到的TLS密文记录的长度超出所允许的范围时，便会返回此消息。这属于致命性错误告警消息，表示HTTPS客户端或服务器在实现上存在重大缺陷。

 	decompression_failure（30）：当HTTPS客户端或服务器无法对收到的记录进行解压缩时，便会返回此消息。这属于关键性错误告警消息，表示HTTPS客户端或服务器在实现上存在重大缺陷。

 	handshake_failure（40）：表示HTTPS客户端和服务器在握手时无法就使用的安全参数达成一致意见。这属于关键性错误告警消息，表示HTTPS客户端或服务器在实现上存在重大缺陷。

 	bad_certificate（42）：表示证书损坏、签名不正确或类似的错误。

 	unsupported_certificate（43）：表示接收方不支持发送方发出的证书类型。

 	certificate_revoked（44）：表示证书被其签发者撤销。

 	certificate_expired（45）：表示证书无效或过期。

 	certificate_unknown（46）：表示证书不被接受，但原因不明。

 	illegal_parameter（47）：表示收到的握手消息中有字段“越界”或与别的字段不一致。这属于关键性错误告警消息，表示HTTPS客户端或服务器在实现上存在重大缺陷。

 	unknown_ca（48）：表示收到了有效证书，但因与已知的受信CA不匹配而不被接受。这属于致命性错误告警消息，表示HTTPS客户端或服务器在实现上存在重大缺陷。

 	access_denied（49）：表示收到了有效证书，但证书中的身份通不过访问控制检查。

 	decode_error（50）：当HTTPS客户端或服务器收到的SSL/TLS消息过长或其中有字段越界，以至于无法解码时，便会返回此消息。这属于关键性错误告警消息，表示HTTPS客户端或服务器在实现上存在重大缺陷。

 	decrypt_error（51）：表示握手加密操作失败，可能的情况有：签名验证失败、密钥交换失败、finished消息验证识失败等。

 	export_restriction（60）：表示SSL/TLS实现违反出口限制。

 	protocol_version（70）：此告警消息由HTTPS服务器发送，表示客户端使用了无法识别的协议版本。

 	insufficient_security（71）：此告警消息由HTTPS服务器发送，表示客户端使用的加密套件的比服务器所要求的要弱。

 	internal_error（80）：表示此告警消息的发送方遭遇内存分配或硬件故障等内部错误。

 	user_canceled（90）：表示HTTPS握手操作被用户取消，并非协议故障。

 	no_renegotiation（100）：HTTPS客户端或服务器都可以发出此消息，来响应初始握手之后的hello请求消息。

只要遭遇上面提及的任何一种HTTPS告警信息，HTTPS连接都无法建立。

12.8.3　幕后原理　　　　

SSL和TLS协议都能用来保证某些特殊应用程序（比如，HTTP、SNMP、Telnet等）的安全性。SSL版本1、2、3是Netscape公司于20世纪90年代中期为其Navigator浏览器开发的，而TLS协议则是IETF的标准协议，先后定义于RFC 2246、RFC 4492、RFC 5246和RFC 6176。TLS 1.0于1999年1月以SSL 3.0升级版的形式首次在RFC 2246中露面。

TLS握手协议用来建立TLS连接，其规程如下所列。

1．服务器与客户端相互交换Hello消息，就用来保护数据的加密算法的选定达成一致意见，同时交换用来生成密钥的随机数。

2．服务器与客户端相互交换加密参数，就预主密钥的选用达成一致意见。

3．服务器与客户端相互交换证书及加密信息，彼此认证。

4．服务器与客户端根据预主密钥生成主密钥，同时交换随机数。

5．服务器与客户端验证对方是否计算出了相同的安全参数，同时验证TLS握手本身是否被攻击者所乘。

来看一下HTTPS协议的运作原理。由图12.17可知，要建立SSL/TLS连接，需先完成标准的TCP三次握手（图12.17中编号为157～159的数据包），本次TLS握手则始于编号为160的数据包。现在，来研究一下本次TLS握手的细节。

[image:]

图12.17　HTTPS安全连接建立过程：数据包的交互细节

1．服务器与客户端选择加密算法。

 	客户端通过编号为160的数据包发出Client Hello消息（图12.17中用1来标记），开始TLS握手协商。

 	服务器回之以Server Hello消息（编号为162的数据包，图12.17中用2来标记）。

2．服务器向客户端发送证书（编号为163的数据包，图12.17中用3来标记）。

3．客户端通过该证书来验证服务器，接受证书，生成预主密钥（编号为165的数据包，图12.17中用4来标记）。

4．服务器生成主密钥（编号为166的数据包，图12.17中用5来标记）。

5．服务器与客户端之间的握手完成，开始实际的数据通信（编号为167的数据包）

 [image: 未标题-1]　注意

 上面提到的步骤4是指RFC 4507中定义的一种机制，其作用是让TLS服务器在无需保存每客户端会话状态的同时，能迅速恢复会话。TLS服务器可借此机制，将会话状态封装进ticket，并通过编号为166的数据包转发给客户端。客户端随后可使用自己获取到的ticket来恢复TLS会话。比方说，当使用浏览器恢复一条通往webmail（Gmail等）账户的TLS连接时，就会用到该机制，这种情况在实际的使用中非常常见。

在步骤4和5之后，服务器与客户端将开始实际的数据通信。

这就通过Wireshark来观察TLS握手过程的每一步。

在步骤1中，客户端发出Client Hello消息，这也是TLS握手过程中生成的首个数据包。图12.18所示为Client Hello消息（其数据包编号为160）所包含的内容。

[image:]

图12.18　Client Hello消息

以下是对Client Hello消息中某些内容的解释。

 	图12.18所示区域1显示的是TLS数据包记录层头部的内容类型字段值。该字段值为22，即表明此TLS数据包为握手协议消息（与之对应的显示过滤表达式为ssl.record.content_type == 22）。

 	图12.18所示区域2显示的是TLS数据包中记录的类型字段值。该字段值为1，即表明此TLS数据包包含由客户端发往服务器的Client Hello握手协议消息。

 	图12.18所示区域3显示的是客户端所支持的TLS协议的版本。

 	图12.18所示区域4显示的是将会在密钥生成过程中所使用的客户端时间。

 	图12.18所示区域5显示的是由客户端生成，将会在密钥生成过程中使用的随机数。

 	图12.18所示区域6显示的是客户端所支持的各种加密算法，优先使用的加密算法排列在先。

 	图12.18所示区域7显示的是客户端所支持的各种数据压缩方法。

图12.19所示为Server Hello消息（其数据包编号为162）的内容。

 	图12.19所示区域1显示的是TLS数据包记录层头部的内容类型字段值。该字段值为22，即表明此TLS数据包为握手协议消息（与之对应的显示过滤表达式为ssl.record.content_type == 22）。

 	图12.19所示区域2显示的是本次会话所使用的TLS协议的版本。

 	图12.19所示区域3显示的是TLS数据包中记录数据的类型字段值。该字段值为2，即表明此TLS数据包包含由服务器发往客户端的Server Hello握手协议消息。

 	图12.19所示区域4显示的是将会在密钥生成过程中所使用的服务器端时间。

 	图12.19所示区域5显示的是由服务器生成，将会在密钥生成过程中使用的随机数。

 	图12.19所示区域6显示的是本次TLS会话所采用的加密算法，从客户端发出的加密算法列表中选取。

 	图12.19所示区域7显示的是本次TLS会话所采用的数据压缩方法。

[image: 1219]

图12.19　Server Hello消息

图12.20所示为编号为163的数据包，其中包含了服务器向客户端颁发的证书。

 	图12.20所示区域1显示的是服务器发送的Certificate命令，其中包括了服务器的证书。点击左边的“+”，可以了解到证书的发布者、有效期以及其他信息。

 	图12.20所示区域2显示的是服务器发送的Server Key Exchange消息（通常都使用Diffie-Hellman算法来完成密钥的交换），其中会包括必要的参数（公钥、签名等信息）。

 	图12.20所示区域3显示的是服务器发送的Server Hello Done消息，表示服务器完成了本阶段的TLS握手。

[image: 1220]

图12.20　服务器向客户端颁发的证书

图12.21所示为编号为165的数据包，是客户端对服务器发出163号数据包的响应。到了这一步，客户端将接受服务器发送的证书，同时生成预主密钥。

 	图12.21所示区域1显示的是客户端发送的Client Key Exchange消息，其中包含有由客户端创建的预主密钥，该预主密钥在发送时会以服务器发送的公钥加密。服务器和客户端会根据Client Hello和Server Hello消息中的数据，来生成对称加密密钥。

 	图12.21所示区域2显示的是客户端向服务器发出的Change Cipher Spec消息。这表示客户端要求服务器在后续通信中启用加密模式。

[image: 1221]

图12.21　客户端接受服务器发送的证书，同时生成预主密钥

最后一步，服务器向客户端发送New Session Ticket消息，如图12.22所示。

[image:]

图12.22　New Session Ticket消息

12.8.4　拾遗补缺　　　　

有个问题作者曾被多次问及，该问题是：用SSL/TLS加密的信息有被破解的可能吗？只要握有目标服务器所提供的私钥，当然可以破解通过SSL/TLS加密的信息，不过，要想得到这一私钥却不太容易。

窃取这一私钥的方法有很多，在某些情况下，这些方法还非常奏效。显而易见，与此有关的内容不在本书探讨范围之列。如真能获取这一私钥，请点击Edit菜单中的Preferences菜单项，在弹出的Preferences窗口中，点击左边的Protocol配置选项前的小三角形，找到并单击SSL协议，在右边的Pre-Shared-Key对话框中输入该密钥，就能解密Wireshark抓到的经过SSL/TLS加密的数据包了。

[1]　译者注：以下论述使用的插图基于Wireshark版本1。

第13章　DNS协议分析

本章涵盖以下主题：

 	分析DNS资源记录的类型；

 	分析DNS的常规运作机制；

 	分析DNSSEC的常规运作机制；

 	排除DNS故障。

13.1　简介

DNS（域名系统）协议是一种用来在名称（域名、主机名）和IP地址之间相互解析的协议。Internet不过是相互连接的网域的集合，每个网域都用IP地址作为标识符。一般人很难记得每个网域或每台设备的IP地址，但要记得它们的名称可就容易多了。因此，要用某种动态机制将它们的名称转换为IP地址。

DNS采用的是基于分布式的客户端/服务器通信模型。DNS是一种应用层协议，客户端将会向服务器发送包含域名的DNS查询消息，服务器会回之以DNS响应消息，消息中会包含与域名相关联的IP地址。DNS运行于UDP 53端口。DNS服务器会维护一个数据库，库里登记了与一个个唯一的与域名相关联的IP地址。数据库还可以保存本域的域名或主机名。将域名转换为IP地址的功能被称为DNS查询。

DNS名称空间基于分层的树形结构，也就是说，可被划分为不同的域，这使其具有高度的灵活性和可扩展性。图13.1所示为DNS的层级。

[image:]

图13.1　DNS的层级

本章将探讨DNS协议的基本原理、功能、常见问题，以及如何使用Wireshark分析并排除该协议故障。

13.2　分析DNS资源记录类型

DNS数据库由集结在一起的DNS资源记录构成，每条DNS记录就是数据库中的一条记录，由标签、类别、类型以及数据（包含了请求处理相关记录的说明）构成。虽然DNS资源记录的种类有很多，可用来满足不同的功能，但常见的DNS资源记录只有A记录、AAAA记录和CNAME记录。

本节将介绍几种常见的DNS资源记录，以及如何使用Wireshark来分析相关的DNS行为和故障。

13.2.1　分析准备　　　　

只有先抓到DNS查询和DNS响应数据包，才能进一步分析DNS资源记录的类型。为此，请将Wireshark主机接入LAN交换机，激活交换机的端口镜像功能，将有待监控的交换机端口（连接DNS服务器或需要使用DNS的主机的端口）的流量重定向至Wireshark主机；运行Wireshark软件，双击正确的网卡，开始抓包。

13.2.2　分析方法　　　　

在上图中，让DNS客户端向DNS名称服务器发出DNS查询消息，抓取DNS查询数据包，分析其所包含的DNS记录[1]。通过各种机制都可以让DNS客户端发出DNS查询消息，具体所使用的机制随DNS客户端的配置、软件版本、硬件平台而异。下面举几个让DNS客户端触发DNS查询的例子。

 	用户通过主机访问Web站点www.packtpub.com（比如，在浏览器里输入http://www. packtpub.com，然后按下回车键）。若主机不知道这一域名的IP地址，则其解析器会向本地DNS服务器（主机的TCP/IP配置的DNS服务器配置项里已经填入这台DNS服务器的IP地址）发出DNS查询消息，请求该DNS服务器告知域名www.packtpub.com的IP地址。

 	在主机上打开一个终端窗口，ping一个已知的域名。比方说，在安装了Ubuntu或其他Linux发行版的主机上，执行ping xyz.com命令，便会让该主机发出DNS查询消息，以求解析域名xyz.com的IPv4地址。执行ping6 xyz.com命令，则让该主机发出DNS查询消息，以求解析域名xyz.com的IPv6地址。

 	在主机上使用诸如dig之类的工具（一种基于CLI的工具），可让主机发出包含各种DNS资源记录的DNS查询消息。

图13.2所示为Wireshark抓到的查询AAAA记录类型的客户端发出的DNS查询消息。在DNS查询消息的查询（query）或问题（question）部分（section）中，每个查询的类型字段值将会被设置为DNS标准查询字段值。任何一个查询都必须包括与请求解析的DNS资源记录相对应的域名（查询名称）外加请求解析的DNS资源记录的类型。

[image: 1302]

图13.2　DNS查询消息

图13.3所示的DNS响应消息是DNS服务器对图13.2所示的DNS查询消息的回应。为了便于分析，Wireshark还专门标注了与该DNS响应消息相对应的DNS查询消息的数据包编号。该DNS响应消息回应了DNS客户端对域名的AAAA记录的查询。

[image: 1303]

图13.3　DNS响应消息

在正常情况下，对于请求查询任一DNS记录类型的每一条DNS查询消息，必然会收到DNS服务器发出的包含相应答案的DNS响应消息。若未收到服务器发出的任何DNS响应消息或收到了负面回应，则表示存在某些问题，需要做进一步的分析。比方说，若DNS服务器的数据库里没有客户端所要查询的域名的DNS资源记录类型，便会回复包含错误信息的DNS响应消息。

13.2.3　幕后原理　　　　

每一种DNS资源记录都有不同的用途。本小节将介绍几种常见的DNS资源记录及其用途。

1．SOA记录

权威起始（SOA）记录是一种包含权威信息（比如，每个DNS区［zone］的全局参数和配置信息）的DNS资源记录。DNS区是DNS域的一部分，会有一台或多台DNS服务器来专门负责记录并维护每个DNS区下辖的所有域名信息。对SOA的定义以及SOA资源记录的格式请见RFC 1035。

图13.4所示为DNS响应消息中包含的SOA资源记录。每个DNS区只有一条SOA资源记录，记录中包含了以下详细信息。

[image:]

图13.4　SOA记录

 	区名：定义了本DNS域内DNS区的名称。

 	主名称服务器：指明了本DNS域的主DNS服务器的域名。主名称服务器担当本区的主数据记录源服务器。

 	责任人邮箱：本DNS区的责任人的邮箱信息。

 	序列号：每执行一次区域传输，其值便会按顺序递增。可将该值视为DNS数据库的当前版本。

 	时间参数：包括刷新和重试时间间隔。

2．A资源记录

A资源记录（也被称为地址记录）用来存储与域名相关联的IPv4地址的DNS资源记录。这是Internet上最常见的一种DNS资源记录。为了实现负载均衡，可将多个IP地址与同一个域名相关联。因此，在DNS响应数据包的答案（Answers）中经常会出现多条A记录。

图13.5所示为Wireshark抓到的DNS响应数据中的A记录，不难发现，有多个IP地址与同一域名相关联。由图13.5可知，两个IP地址192.168.2.2和192.168.0.6都与主机名csr2.company1.com相关联。收到包含域名csr2.company1.com的A记录的DNS查询消息后，DNS服务器会回复包含多个答案对象的DNS响应消息，每一个答案对象都包含一个IP地址及相关信息。DNS客户端主机采用哪个IP地址来执行相关访问，取决于本机实现。

[image:]

图13.5　DNS A记录

3．AAAA资源记录

AAAA资源记录（也叫作IPv6地址记录）用来存储与域名关联的IPv6地址的DNS资源记录。为了实现负载均衡，可将多个IPv6地址与同一个域名相关联。因此，在DNS响应数据包的答案（Answers）中经常会出现多条AAAA记录。

包含AAAA记录的DNS应答消息如图13.3所示。与A记录一样，若请求解析的域名与多个IPv6地址相关联，则DNS响应消息中也会包含多条AAAA记录。

4．CNAME资源记录

CNAME资源记录（亦称为规范名称记录）也是一种DNS资源记录，用来指明某个域名是另一个域名的别名。一条CNAME记录总是指向另一个域名，不会指向任何一个IP地址。这种DNS记录有助于将一个域名无缝更改为另一个域名，更改期间不会影响末端用户的访问。

由图13.6可知，foo.example.com是为bar.example.com起的别名。当DNS服务器收到包含域名foo.example.com的DNS请求消息时，会回复包含CNAME记录的DNS响应消息，指出bar.example.com是foo.example.com的别名。DNS客户端主机会发出包含域名bar.example.com的DNS查询消息，以求解析其IP地址。上述的一切对DNS客户端主机都是透明的，这样一来，变更域名就变得容易多了。

[image:]

图13.6　CNAME记录

13.2.4　拾遗补缺　　　　

上一小节介绍了几种常见的DNS资源记录以及各自的语义。业界用到的DNS资源记录的种类还有很多。对其他几种资源记录的介绍以及对每种资源记录和说明，请在IANA官网中自行搜索。

13.3　分析DNS的常规运作机制

本节会介绍验证DNS能否正常运作的方法。读者将会认识DNS的运作机制以及可能发生的故障。

13.3.1　分析准备　　　　

请将Wireshark主机接入LAN交换机，激活交换机的端口镜像功能。

13.3.2　分析方法　　　　

将有待监控的交换机端口（连接DNS服务器或需要使用DNS功能的主机的端口）的流量重定向至Wireshark主机；运行Wireshark软件，双击正确的网卡，开始抓包。

DNS故障主要分为两类：

 	无法解析域名；

 	解析缓慢。

1．若上述两类故障现象只存在于个别用户主机，需在LAN交换机上开启端口镜像功能，并设法将该主机生成的流量重定向至Wireshark主机。此时，只需关注由这台主机生成的流量。

2．若上述两类故障现象普遍存在于网络，需在LAN交换机上开启端口镜像功能，并设法将连接DNS服务器（或连接Internet线路）的端口的流量重定向至Wireshark主机。

 	若使用的DNS服务器部署在内网（即在所有内网主机的TCP/IP配置中，DNS服务器配置项填的是内网IP地址），在开启LAN交换机的端口镜像功能时，应将连接了内网DNS服务器的交换机端口的流量重定向至Wireshark主机。

 	若使用的DNS服务器部署在外部网络（即在所有内网主机的TCP/IP配置中，DNS服务器配置项填的是外网IP地址，比如，ISP的DNS服务器IP地址），在开启LAN交换机的端口镜像功能时，应将连接了通向那台外网DNS服务器的ISP链路的交换机端口的流量重定向至Wireshark主机。

13.3.3　幕后原理　　　　

域名或名称解析是DNS协议的主要功能之一，在上网冲浪时会用到。然而，在某些单位的内部网络中，DNS协议同样发挥着非常重要的作用。在定义DNS协议的标准文档中，将DNS的功能归纳为以下三项。

 	域名空间：定义了DNS名称的构成及分配方法。

 	域名注册：定义了如何注册DNS名称，以及通过DNS服务器网络传递DNS名称的方法。

 	域名解析：定义了如何将域名解析为IP地址。

本章将重点介绍DNS的域名解析功能，无论是上网冲浪，还是收发邮件，或是访问内网服务器，都会用到DNS的这一功能。

1．DNS服务器IP地址的配置

要排除DNS相关故障，首先应确保DNS客户端主机设有正确的DNS服务器的IP地址。DNS服务器的IP地址配置无误，才能保证解析出的待查域名的IP地址不受欺骗，解析IP地址是DNS查询功能的一部分。可通过以下两种方法为DNS客户端主机配置DNS服务器的IP地址：

 	手动设置DNS服务器的IP地址；

 	动态分配DNS服务器的IP地址。

按照第1种方法，需在DNS客户端主机上手工配置DNS服务器的IP地址信息。具体的配置方法随DNS客户端主机安装的OS而异。比方说，对于各种Linux OS，应将DNS服务器的IP地址填入/etc/resolv.conf文件。

按照第2种方法（动态DNS，DDNS），需开启某种动态配置协议，令其通告DNS服务器的IP地址信息。大型网络经常将DHCP作为动态地址分配协议来用。可借助DHCP来动态通告一台或多台DNS服务器及其IP地址。

由图13.7可知，DNS服务器的IP地址信息作为DHCP应答消息的一个选项，被通告给了DHCP客户端主机。

[image:]

图13.7　DHCP应答消息包含的DNS配置信息

在IPv6网络环境中，可将DNS服务器的IP地址信息包含进IPv6路由器通告消息进行通告。任何开启IPv6自动配置功能的客户端主机都会接受IPv6 路由器通告消息中的DNS服务器的IP地址。

2．DNS协议的基本运作机制

应用程序（Web浏览器和邮件客户端等）会通过内置于操作系统的解析器与DNS服务器沟通。解析器需要事先得知DNS服务器的IP地址，才能与之沟通（这一IP地址既可以是内网地址，也可以是外网或公网地址）。查询DNS服务器的方式随操作系统而异。解析器和DNS服务器之间会相互交换DNS请求和DNS响应消息，如图13.8所示。

[image:]

图13.8

每个单位都可以在自己的内部网络中部署DNS服务器，该服务器需要与ISP的DNS服务器交互。对于家庭或小型分支机构网络，既可以由连接Internet的宽带路由器充当DNS服务器，也可以直接使用ISP的DNS服务器。也就是说，需要在每台主机的TCP/IP配置中，把宽带路由器的IP地址或ISP提供的DNS服务器的IP地址填入“DNS服务器配置项”。

 	若使用宽带路由器充当DNS服务器，则内网主机发出的DNS查询消息，会先被宽带路由器上的DNS服务器处理；若该DNS服务器无法处理（查询不到相关域名），宽带路由器将会向ISP的DNS服务器发出查询请求。

 	若直接使用ISP的DNS服务器，则内网主机发出的DNS查询消息，将直接交由ISP网络内的DNS服务器处理。

3．DNS名称空间

DNS名称空间基于分层的树形结构，如图13.9所示，以下是对其结构的简要描述。

 	若干根名称服务器。

 	若干顶级域（Top Level Domain，TLD）名称服务器。

 	每个顶级域名都有属于自己的域名服务器。每个顶级域名还会包含众多二级域名。每台顶级域名城服务器是级别最高的域名服务器，比如，国家/区域域名服务器。

 	众多二级域（Second Level Domains，SLD），包含隶属于各组织机构或国家（地区）的域或域名。隶属于二级域的域名由指定的组织机构或国家（地区）来管理。

[image:]

图13.9

现以图13.10为例，对几个重要的DNS术语下定义。

 	域（Domain）：一个域是指由域名空间中所有分枝构成的一颗子树，域的名称（域名）就是这颗子树的端节点的名称，比如图13.10所示的二级域ndi-com.com。

 	区（Zone）：所有的顶级域以及众多二级（或低级）域都以授权（delegation）的方式，被划分成了更小也更容易管理的单元（unit），这样的单元被称为区。会有一或多台DNS服务器来专门负责记录并维护每个区下辖的所有域名信息。

[image:]

图13.10

4．DNS解析过程

以下两种情况会动用DNS服务器来执行域名解析。

 	组织机构内部网络通信：DNS服务器将会部署在内部网络，用来把内网域名解析为内部IP地址。

 	互联网通信：在浏览网页、收发E-mail之前，需要借助于DNS服务器，把公网域名解析为公网IP地址。

有时，还会出现组织机构内部网络中的主机需借助DNS服务器，同时访问内网和公网的情况。对于这种情况，当需要执行内网域名解析时，内网主机发出的DNS查询消息会由内网DNS服务器直接处理；当需要执行公网域名解析时，内网DNS服务器会把内网主机发出的DNS查询消息，转交给ISP的DNS服务器处理。

该怎样在自用的主机或PC上配置DNS服务器的IP地址呢？就理论而言，若只是为了上网冲浪，则可将世界上任何一台提供DNS解析服务的DNS服务器的IP地址（比如，Google的DNS服务器8.8.8.8），配置为本机使用的DNS服务器。但通常人们都会在主机的DNS服务器配置项中填入离自己最近的DNS服务器的IP地址（比如，提供上网线路的ISP的DNS服务器的IP地址）。若需同时访问内网和公网，则应将内网DNS服务器和ISP的DNS服务器分别配置为“首选DNS服务器”和“备用DNS服务器”。

有很多实用工具都可用来检测本机配置的DNS服务器的应答效果，如下所列。

 	Google的Namebench。

 	GRC的DNS Benchmark。

要是本机配置的DNS服务器的应答效果不佳，就应该换一个DNS服务器的IP地址试试。

13.3.4　拾遗补缺　　　　

当运行于主机的应用程序进程需查询某一指定域名或服务器名的IP地址时，会与本机解析器交互，而本机解析器则与本机配置的DNS服务器交互。当DNS服务器的数据库中没有待查的域名记录时，便会以递归（recursive）或反复（iterative）这两种模式之一，来响应查询请求[2]。

如图13.11所示，当用户想访问Web站点www.packtpub.com（比如，在浏览器里输入http://www.packtpub.com，然后按下回车键）时，若主机不知道这一域名的IP地址，则其解析器会向本地DNS服务器（主机的TCP/IP配置的DNS服务器配置项里已经填入这台DNS服务器的IP地址）发出DNS查询消息（图13.1中的消息1），请求该DNS服务器告知域名www.packtpub.com的IP地址。

[image: 1311]

图13.11

若本地DNS服务器也不知道域名www.packtpub.com的IP地址，且对packtpub.com域或COM TLD的名字服务器的IP地址同样不得而知，则会将主机发出的DNS查询消息转发给另一台DNS服务器，以期查得相应的IP地址。对于本例，本地DNS服务器将会联系根名字服务器之一（根名字服务器的IP地址“世人皆知”）（图13.11中的消息2），根名字服务器会返回DNS响应消息，其中包含了COM TLD的名字服务器的IP地址（图10.8中的消息3）。

有了上述信息之后，本地DNS服务器继续联络COM TLD的名字服务器（图13.11中的消息4），COM TLD的名字服务器会返回packtpub.com域的名字服务器的IP地址（图13.11中的消息5）。

向packtpub.com域的名字服务器发出DNS查询消息（图13.11中的消息6），packtpub.com域的名字服务器做出了应答（图13.11中的消息7）之后，本地DNS服务器便知道了Web站点www.packtpub.com的IP地址。

此时，本地DNS服务器将会向主机发出DNS响应消息（图13.11中的消息8），告知其Web站点www.packtpub.com的IP地址。这样一来，用户便可以在主机上成功访问该Web站点了。

在上述DNS查询/解析过程中，主机发出的是DNS递归查询请求，要求本地DNS服务器返回精确的待查域名的IP地址（或返回出错说明）。本地DNS服务器执行的是DNS递归解析操作，同时还得执行DNS反复查询操作——由其发出的DNS查询消息并不要求packtpub. com域或COM TLD的名字服务器给出精确答案。也就是说，本地DNS服务器同时在执行DNS反复查询和递归解析操作，而根名字服务器或COM TLD的名字服务器执行是的DNS反复解析操作。一言以蔽之，收到DNS递归查询消息（RD标记位置1的DNS查询消息）时，DNS服务器（若支持DNS递归解析功能）一定要精确给出被查域名的IP地址（或返回出错说明）；收到DNS反复查询消息（RD标记位置0的DNS查询消息）时，DNS服务器只要提供更靠近被查域名的所在区（zone）的名字服务器的IP地址即可。根名字服务器、TLD名字服务器以及某些SLD名字服务器只支持反复解析操作，而ISP的DNS服务器一般都支持递归解析操作。

13.4　分析DNSSEC的常规运作机制

将域名解析为相应的IP地址，是DNS的主要作用，所以说该协议是支撑Internet平稳运行的重要支柱协议之一。DNS虽然发挥着非常重要的作用，但它既不包含任何数据完整性检测机制，也无法验证数据来源的权威性。缺乏安全性就会让恶意之徒有机可乘。恶意之徒可以发动攻击，设法让用户解析出重要域名的虚假IP地址，从而将所有用户流量牵引至设有该IP地址的恶意服务器。DNS缓存中毒攻击就是这样一种已知的DNS攻击，该攻击利用DNS的安全漏洞来窃取数据。

DNS安全扩展（DNSSEC，DNS Security Extension）在安全方面对DNS协议做出了全面改进，引入了分区签名（zone signing）的概念，有助于保障DNS资源记录的数据完整性和来源权威性。

13.4.1　分析准备　　　　

DNSSEC对现有的DNS数据包的格式进行了扩展，从抓包的角度来看，无需考虑加密。只要在交换机上开启端口镜像功能，Wireshark便能够抓到DNSSEC数据包，与抓取传统的DNS数据包没有任何区别。

13.4.2　分析方法　　　　

用Wireshark打开抓包文件，按以下步骤检查DNS数据包。

1．检查DNS客户端发出的DNS查询消息是否包含了DNSSEC选项。该选项包含在DNS查询消息的附加记录（Additional records）字段内。

由图13.12可知，该DNS查询消息的附加记录字段的DO（DNSSEC OK）标记位置1，这表示DNS客户端希望获取并有能力处理DNSSEC相关信息。

[image:]

图13.12

2．收到DNS查询消息后，DNS服务器将回复DNS响应消息，消息中会携带包含了资源记录签名（RRSIG，Resource Record Signature）的受请求记录的相关细节（比如，DNS域名A记录的IP地址）。这些都是与资源记录相关联的数字签名。

图13.13所示为DNS服务器回复的包含RRSIG资源记录的DNS响应消息。

[image:]

图13.13

3．DNS客户端发出包含DNSKEY资源记录的DNS查询消息，以求解析域名，如图13.14所示[3]。

[image: 1314]

图13.14

4．DNS服务器发出包含公钥（用来给该资源记录添加签名）的DNS响应消息进行回复，如图13.15所示。

[image:]

图13.15

5．客户端使用这些详细信息对收自DNS服务器的资源记录执行完整性校验[4]。

13.4.3　幕后原理　　　　

开发DNSSEC这项技术的目的是要提高DNS资源记录的安全性，具体的实现方法是对DNS资源记录进行额外的完整性验证。DNSSEC的运作机制是对资源记录加以数字化签名，签名的动作起始于分层的DNS树形结构的根服务器。

DNSKEY和RRSIG对DNSSEC的运作起着极为重要的作用。以下所列为DNSSEC客户端和DNSSEC服务器之间简化版交互过程（见图13.16）。

[image:]

图13.16

1．DNS客户端主机发出DNS查询消息，消息中包含的附加记录字段的DO标记位置1。这是向DNS服务器表明，本客户端支持DNSSEC，希望资源记录附带数字签名。

2．收到DNS查询消息之后，DNS服务器会回复包含RRSIG的DNS响应消息。RRSIG是由委托签名者进行数字签名的资源记录。

3．DNS客户端向DNS服务器另发另一条DNS请求消息，请求解析同一个域名，但在消息中将记录类型设置为DNSKEY。这是用来签名该资源记录的公钥[5]。

4．DNS服务器用DNSKEY回复所请求的域[6]。

5．DNS客户端用DNSKEY执行哈希计算，并将计算结果与RRSIG进行比较，来验证数据的完整性。

6．若完整性验证失败，则资源记录有被篡改之嫌，DNS客户端将弃之不用。

13.4.4　拾遗补缺　　　　

上一小节对DNSSEC的运作机制做了简要介绍。欲知与DNSSEC、与分区签名以及与DNSSEC如何使用签名链有关的详细信息，请参阅以下RFC。

 	RFC 4033：DNS security introduction and requirements

 	RFC 4034：Resource records for the DNSSEC

 	RFC 4035：Protocol modifications for the DNSSEC

13.5　排除DNS故障

本节将介绍如何解决DNS相关故障，比如，DNS解析缓慢。读者将学会如何用Wireshark来分析此类故障。

13.5.1　排障准备　　　　

可通过查看Wireshark抓取的DNS请求消息和DNS响应消息的时间戳，来判断DNS解析的速度是快还是慢。为此，应将Wireshark主机部署在离DNS客户端主机最近的地方抓取DNS数据包。

13.5.2　排障方法　　　　

如何定位故障？

 	上网冲浪时，若网页打开缓慢，请按以下步骤行事。

1．在交换机上开启端口镜像功能，将其连接Internet链路的端口的流量重定向至Wireshark主机。使用第6章介绍过的I/O Graphs工具，测量过往于该端口的流量的速率，以此来核实Internet链路是否过载。

2．检查Wireshark是否抓到了数量惊人的身背TCP Retransmission或TCP Duplicate ACK字样的数据包。若是，则表示存在TCP传输问题。

3．检查Wireshark是否抓到了数量惊人的身背TCP Window字样的数据包。若是，则表示存在TCP窗口问题。

 	若不存在上述问题，则需检查是否存在DNS解析问题。对于有待解决的DNS解析问题，要按以下两种情况来处理：

 	故障表象为内部网站的页面打开缓慢；

 	故障表象为互联网网站的页面打开缓慢。

 	上述故障可通过以下两种方式来解决。

 	对于第一种情况，需开启端口镜像功能，将连接内网DNS服务器的交换机端口的流量重定向至Wireshark主机。

 	对于第二种情况，需开启端口镜像功能，将连接Internet链路的交换机端口的流量重定向至Wireshark主机。

 	弄清DNS解析所花费的时间，找出解析缓慢的原因。有数种弄清DNS解析所耗时间的方法，如下所列。

 	最简单的方法是，在Wireshark数据包列表区域内，选中一个隶属于DNS数据流的DNS数据包，单击右键，在弹出的菜单中点击Follow UDP Stream菜单项。然后，观察Wireshark数据包列表区域中的Time列，就可以弄清相关域名的DNS解析时间了。

 	另一种方法是，借助于内置于Wireshark的I/O Graphs工具[7]。在I/O Graphs窗口中，要先在Y轴坐标区域的Unit选项的下拉菜单里选择Advanced选项；再到陡然增大的I/O Graphs窗口中，选择“Clac：”下拉菜单栏中的AVG(*)菜单项，同时在其右边的Fitler输入栏内填入显示过滤参数dns. time；选择“Style：”下拉菜单栏中的Dot菜单项；最后点击相关Graph按钮，激活I/O Graphs窗口中与该Graph相对应的图形，于是便得到了在整个抓包时段内的DNS响应时间的汇总图，如图13.17所示。

[image:]

图13.17

由图13.17可知，在抓包时段内，绝大多数DNS解析的响应时间都在100毫秒以内，这完全可以接受；但还可以观察到，有两次DNS解析响应过慢，一次为300ms，另一次为450ms，分别发生在抓包的开始和收尾阶段。

在单位的内部网络中，合理的DNS解析响应时间应在几十毫秒以内；上网冲浪时，合理的响应时间不应超过100ms。200ms之内的响应时间则勉强可以接受。

13.5.3　幕后原理　　　　

如13.3.4节所述，DNS的运作模式会对域名解析的整体性能产生影响。比方说，若一台DNS服务器按递归模式执行解析，可能还得继续查询其他DNS服务器，从而增加了域名解析的时间（具体增加的时长取决于其他DNS服务器的响应速度和相关网络路径的延迟）。在设有多台DNS服务器的IP地址的情况下，若首选DNS服务器的缓存中没有相关资源记录，则反复模式将有助于查询其他DNS服务器。

13.5.4　拾遗补缺　　　　

Wireshark只是测量域名解析速度的工具之一（当然，也可以使用它来解决DNS解析缓慢的故障），其他很多工具都可以用来执行类似的任务。比如dig。这是一个基于CLI的工具，可在大多数Linux OS中使用。该工具可以生成包含任何一种资源记录的DNS查询消息，并测量域名解析所花费的时间。

图13.18所示为使用该工具测量域名解析速度的例子。

[image:]

图13.18

[1]　译者注：原文是“In the previous diagram, trigger a DNS query from the client to the name server and capture the DNS query packet for record type analysis”。作者说的“上图”不知是哪一幅图。

[2]　译者注：原文中作者对DNS递归解析和反复解析的解释有误，译者对译文做了大幅调整，如有不妥，请指正。

[3]　译者注：原文是“The DNS client now requests DNSKEY for the domain name as follows”。

[4]　译者注：原文是“The client uses the details to validate the integrity of the resource record received from the DNS server”。译文按原文字面意思直译。

[5]　译者注：原文是“The DNS client will send another request to the server for the same domain name but with the record type set to DNSKEY. This is the public key used to sign the resource record”。 译文按原文字面意思直译。

[6]　译者注：原文是“The DNS server will reply with the DNSKEY for the requested domain”。译文按原文字面意思直译。

[7]　译者注：以下表述所用的图片还是基于Wireshark版本1。

第14章　E-mail协议分析

本章涵盖以下内容：

 	E-mail协议的常规运作方式；

 	POP、IMAP和SMTP故障分析；

 	分析E-mail协议的错误状态码，并据此筛选E-mail流量[1]；

 	分析恶意及垃圾邮件。

14.1　简介

E-mail是电子商务得到大力推广的主因之一。有了E-mail，每个人都能以迅捷有效的方式通过Internet实时传递文字消息及其他数字信息（比如，文件和图像）。要想使用E-mail，每个人都需有一个人类可读的邮箱地址，地址格式为username@domainname.com。有许多电子邮件提供商都在Internet上提供E-mail服务，任何人都可以注册并获得免费的电子邮箱。

有多种应用层协议可用来收发电子邮件，这些协议协同运作，就能让隶属于相同或不同E-mail域内的用户之间端到端地交换电子邮件。最常用的三种应用层协议是POP3、IMAP和SMTP。

 	POP3：邮局协议版本3（Post Office Protocol 3 ）的主要作用是让E-mail客户端从E-mail服务器收取邮件。E-mail客户端会发出POP3命令（比如，LOGIN、LIST、RETR、DELE、QUIT）来访问并操纵（检索或删除）邮件服务器上的电子邮件。POP3运行于TCP 110端口，将邮件下载到本地客户端之后，便会从服务器上删除邮件。

 	IMAP：Internet邮件访问协议（Internet Mail Access Protocol）是另一种用来从电子邮件服务器收取邮件的应用层协议。与POP3不同，IMAP可让用户从多台客户端设备同时读取并访问邮件。按照当前的态势，拥有多台设备（笔记本电脑、智能手机等）的用户访问电子邮箱的情况非常普遍，通过IMAP，即可随时从任何设备访问邮箱。IMAP的最新版本为版本4，运行于TCP 143端口。

 	SMTP：简单邮件传输协议（Simple Mail Transfer Protocol）是一种将E-mail从邮件客户端发给邮件服务器的应用层协议。当发件人和收件人隶属于不同的E-mail域时，就得用SMTP在隶属于不同的E-mail域的服务器之间交换邮件。SMTP运行于TCP 25端口。

由图14.1可知，E-mail客户端将邮件发给邮件服务器用到的是SMTP，从服务器获取邮件用到的是POP3或IMAP。隶属于不同E-mail域的邮件服务器之间交换邮件用到的是SMTP。

[image:]

图14.1

为了维护终端用户的隐私，大多数邮件服务器都会在传输层启用各种加密机制。若要在安全传输层（TLS）上启用上述E-mail协议，则这些协议的传输层端口号将有别于传统的传输层端口号。比方说，POP3 over TLS运行于TCP 995端口，IMAP4 over TLS运行于TCP 993端口，SMTP over TLS则运行于TCP 465端口。

本章将探讨上述E-mail协议的常规运作方式，以及如何用Wireshark来进行基本的故障分析和故障排除。

14.2　E-mail协议的常规运作方式

如上一节所述，常用的E-mail协议包括POP3、SMTP以及IMAP4。这几种协议不是运行于E-mail服务器与客户端之间，就是运行于E-mail服务器之间。

还有一种收取邮件的方法是，通过Web方式来访问邮箱，像Gmail、Sina以及Hotmail之类的邮件服务器都可以通过Web方式来访问。

本节将重点关注最常用的E-mail客户端/服务器协议和E-mail服务器/服务器协议：POP3 和SMTP，会讨论这两种协议的常规运作方式。

14.2.1　准备工作　　　　

将Wireshark主机接入交换机，在交换机上启用端口镜像功能，把存在邮件收发问题的用户主机的流量重定向至Wireshark主机。若遭遇大面积用户投诉，则需要将通往邮件服务器的通信链路的流量重定向至Wireshark主机。

14.2.2　操作方法　　　　

POP3是一种运行于E-mail客户端与服务器之间的协议；SMTP则是运行于E-mail服务器之间的协议。

1．POP3协议的运作方式

POP3协议的主要作用是让E-mail客户端从E-mail服务器收取邮件。当E-mail客户端无法从E-mail服务器收取邮件时，请按以下步骤行事。

1．检查E-mail客户端的用户名/密码是否配置正确。

2．应用显示过滤器POP，让Wireshark显示出所有POP数据包。请注意，应用显示过滤器POP只能让Wireshark显示出TCP端口号为110的所有数据包。在启用了TLS的情况下，显示过滤器就不能这么写了，要写成tcp.port == 995，才能让Wireshark只显示运行于TLS上的所有POP3数据包。

3．检查E-mail客户端能否顺利通过E-mail服务器的验证。由图14.2所示的Wireshark截屏可知，该E-mail账户的用户名和密码分别以doronn@和u6F打头（用户名和密码的后半部分未予显示）。

[image: 1402]

图14.2

4．要想看到图14.2所示内容，需先在Wireshark抓包主窗口的数据包列表区域内选择一个隶属于POP3数据流的数据包，点击右键，在弹出的菜单中点击Follow TCP Stream菜单项。

5．在POP用户验证阶段，只要用户名/密码有误，POP3连接便会中断。图14.3所示的Wireshark截屏展示了一次POP3认证失败的例子。由图可知，收到服务器的Logon failure提示之后，客户端主动断开了相应的TCP连接。

[image:]

图14.3

6．此时，得借助于特殊的显示过滤器，让Wireshark只显示出感兴趣的数据包。比方说，应用显示过滤器pop.request.command =="USER"，即可筛选出包含指定用户名的POP请求数据包；应用显示过滤器pop.request.command =="PASS"，即可筛选出包含指定密码的POP数据包。如图14.4所示。

[image:]

图14.4

7．邮件客户端从邮件服务器下载邮件时，很容易导致窄带链路过载，这一点请务必关注。可借助于之前介绍过的I/O Graphs工具，并配搭显示过滤表达式POP，来检查链路的带宽利用率。

8．应时刻关注Wireshark是否抓到了身背TCP Retransmission、TCP Zero Window、TCP Window Full等字样的数据包。若身负上述字样的数据包全都隶属于POP3数据流，则表示存在通信线路过载、服务器反应慢等问题。这些问题都有可能导致E-mail客户端无法从E-mail服务器收取邮件。

当POP3协议用TLS进行加密时，数据包的净载信息全不可见，与此有关的内容，请见本章后文。

2．IMAP协议的运作方式

IMAP类似于POP3，邮件客户端也可以使用IMAP从邮件服务器获取邮件。IMAP的常规运作方式如下所列。

1．打开E-mail客户端，输入相关账户的用户名和密码。

2．撰写一封新的邮件，随便用一个E-mail账户发送。

3．在E-mail客户端上用IMAP收取邮件。E-mail客户端软件不同，收取邮件的方法也必然不同。点击相关按钮，让E-mail客户端接收邮件。

4．检查本地E-mail客户端是否收到了那封邮件。

3．SMTP的运作机制

SMTP的常规用途如下所列。

 	SMTP是一种运行于服务器之间的邮件传输协议。

 	可将某些邮件客户端软件配置为用SMTP来发送邮件（把待发邮件从客户端交付给服务器），用POP3或IMAP4从服务器收取邮件

SMTP的常规运作方式如下所列。

 	本地E-mail客户端通过DNS等域名解析机制解析用户设置的SMTP服务器域名的IP地址。

 	如未启用SSL/TLS，E-mail客户端便会发起通往目的端口号25的TCP连接。如果启用了SSL/TLS，则会发起通往目的端口号465的TCP连接。

 	E-mail客户端与服务器交换SMTP消息，进行身份验证。客户端发出AUTH LOGIN，触发登录验证。成功登录之后，客户端就能够发送邮件了。

 	E-mail客户端发出SMTP消息，比如，包含发件人和收件人E-mail地址的"MAIL FROM:<>", "RCPT TO:<>"[2]。

 	排队成功后，便会从SMTP服务器获得OK响应[3]。

图14.5所示为SMTP客户端和服务器之间交换的SMTP消息流。

[image:]

图14.5

14.2.3　幕后原理　　　　

本节将会用Wireshark来揭示前面介绍的几种E-mail协议的常规运作方式。

E-mail客户端软件与服务器沟通时，大多都是借助于POP3协议，偶尔也会使用SMTP协议。当需要对邮件服务器执行某些操作时（比如，需要在客户端软件界面中查看远程邮件服务器上邮件的主题，但并不下载那些邮件时），将会用到IMAP4协议。E-mail服务器之间的沟通大都使用SMTP协议。

 [image: 未标题-1]　注意

 IMAP4和POP3协议的区别是，前者允许用户直接通过邮件客户端软件对服务器上的邮件进行操作，而不用将邮件事先全部下载；当使用后者收取邮件时，所有邮件都会从邮件服务器上清除，并下载至本机客户端软件。也就是说，IMAP4协议提供的是邮件客户端与服务器之间的双向通信，在邮件客户端软件内执行的操作，都会被反馈至邮件服务器；而使用邮件客户端软件通过POP3协议收取邮件时，操作结果不会被反馈给邮件服务器。

SMTP状态码由三个部分构成，其构造方式使得SMTP消息包含的错误信息一目了然。SMTP状态码的构造方法和细节将在下一小节讨论。

1．POP3

POP是一种E-mail客户端用来从服务器收取邮件的应用层协议。图14.6中的Wireshark截屏示出了一次典型的POP3会话建立过程。

[image:]

图14.6

该过程的步骤如下所列。

1．E-mail客户端主机与服务器之间以三次握手的方式建立TCP连接。

2．E-mail服务器向客户端主机发送身负OK Messaging Multiplexor字样的POP3数据包。

3．操作E-mail客户端主机的用户输入邮箱的用户名/密码。

4．POP3协议运作的帷幕正式拉开。E-mail客户端主机发出身背NOOP（no operation）字样的POP3数据包，测试服务器是否已经打开了POP3连接。E-mail客户端主机发出身负STAT（status）字样的POP3数据包，要求服务器回发有关邮箱的统计信息，比如，邮件数和总字节数。服务器发出身背OK 0 0字样的POP3数据包（编号为1042）作为应答，表示邮件数和总字节数均为0。

5．当发现服务器上的邮箱里无邮件可供收取时，E-mail客户端主机会发出身背QUIT字样的POP3数据包（编号为1048），服务器会发出身负OK字样的POP3数据包（编号为1136）进行确认。随后，E-mail客户端主机会拆除先前建立起的TCP连接（编号为1137、1138和1227的数据包）。

6．在启用了加密连接的情况下，E-mail客户端主机和服务器之间的交流过程应如图14.7中的Wireshark截屏所示。以三次握手方式建立起TCP连接之后（1），E-mail客户端主机和服务器之间会彼此交换几个POP数据包（2），然后双方会建立起TLS连接（3），以加密方式传输数据。

[image:]

图14.7

2．IMAP

IMAP的常规运作方式如下所列。

1．E-mail客户端通过DNS等域名解析机制解析IMAP服务器域名的IP地址。

如图14.8所示，在未启用SSL/TSL的情况下，E-mail客户端会建立通往目的端口143的TCP连接。在启用了SSL的情况下，则会建立通往目的端口993的TCP连接。

[image:]

图14.8

2．TCP连接建立之后，E-mail客户端发出IMAP能力（capability）消息，请求服务器发送其所支持的功能。

3．随后，E-mail客户端需要执行访问服务器的验证。验证通过之后，服务器回复响应代码3，表明登录成功，如图14.9所示。

[image:]

图14.9

4．E-mail客户端发出IMAP FETCH命令，从服务器提取所有邮件。

5．E-mail客户端一经关闭，便会发出退出登录（logout）消息并清除TCP会话。

3．SMTP

SMTP的常规运作方式如下所列。

1．E-mail客户端通过DNS等域名解析机制解析SMTP服务器域名的IP地址。

2．在未启用SSL/TSL的情况下，E-mail客户端会建立通往SMTP服务器监听的目的端口为25的TCP连接（见图14.10）。在启用了SSL的情况下，则会建立通往目的端口465的TCP连接。

[image:]

图14.10

3．成功建立TCP会话之后，E-mail客户端会发送AUTH LOGIN（登录验证）消息，同时提示用户输入用户名/密码，如图14.11所示。

[image:]

图14.11

4．用户名和密码会被发送至SMTP客户端，进行账户验证[4]。

5．如果验证通过，SMTP将发送响应代码235[5]，如图14.12所示。

[image:]

图14.12

6．E-mail客户端先将发件人E-mail地址发送给SMTP服务器。若发件人地址有效，则SMTP服务器会回复响应代码250。

7．收到SMTP服务器的OK响应后，E-mail客户端会发送收件人E-mail地址。若收件人地址有效，则SMTP服务器会回复响应代码250。

8．随后，客户端将推送实际的电子邮件消息。SMTP将回复响应代码250和响应参数OK: queued[6]。

9．排队成功消息确保邮件成功发送，并排队向收件人地址交付[7]。

14.2.4　拾遗补缺　　　　

E-mail有时也会成为网络中的杀手级应用，对使用非对称线路接入Internet的小型企业网络来说则更是如此。在发送文本格式的邮件时，并不会消耗多少网络带宽；可要是在发送邮件时携带几MB甚至几十MB的附件，且Internet链路的上行带宽又过窄，网络中的其他用户就会在相当长的一段时间内感觉上网卡顿。这样的事儿在小型企业网络中可谓屡见不鲜。

另一个问题是，有些用户会把邮件客户端软件配置为在启动时自动从邮件服务器下载新邮件。在长假（或双休日）后的第一个工作日，要是有人一来上班就反映上网卡顿，则很有可能是公司所有员工正同时打开邮件客户端软件从邮件服务器收取邮件。

1．Wireshark软件的SSL解密功能

如本章前文所述，所有E-mail协议（SMTP、IMAP和POP3）都支持SSL/TLS，其协议消息的传输层信息都经过了加密，用Wireshark无法查看实际的信息。需要E-mail客户端使用的SSL密钥才能解密信息。

具体步骤如下所列。

1．确定E-mail客户端所用的SSL密钥。获取SSL的过程会随硬件和应用程序而异[8]。

 	在macOS中，进入Applications | Utilities，打开Keychain Access，便会列出各种应用程序的所有证书和密钥。确定E-mail客户端所用的SSL密钥。

 	在Windows中，进入Microsoft Management Console (MMC)，点击Certificates，便会列出各种应用程序的所有证书[9]。确定正确的证书，将其导出。

2．确定E-mail客户端的SSL密钥后，启动Wireshark软件，点击Edit | Preference。在弹出的Preference窗口中，如图14.13所示。

[image:]

图14.13

3．点击Protocols左边的小三角形，找到并点击SSL配置选项。

4．点击(Pre)-Master-Secret log filename下面的Browse按钮，将E-mail客户端所用的SSL密钥导入，点击OK按钮。

5．上述操作可让Wireshark用SSL密钥解密抓到的E-mail协议消息。

14.3　POP、IMAP和SMTP故障分析

本节将探讨如何使用Wireshark分析各种E-mail协议出现的故障。

14.3.1　分析准备　　　　

当有个别用户反映存在邮件收发故障时，请把Wireshark主机接入交换机，在交换机上启用端口镜像功能，把存在邮件收发问题的用户主机的流量重定向至Wireshark主机。若遭遇大面积用户投诉，则需要将通往邮件服务器的通信链路的流量重定向至Wireshark主机。

14.3.2　分析方法　　　　

要弄清具体是哪一种E-mail协议出现了故障，首先需要辨明方向。我们以图14.14为例进行分析。

[image:]

图14.14

举个例子，若用户申告邮件发送失败，则需关注SMTP；若申告邮件接收失败，则需关注IMAP或POP3（具体关注哪一种协议，要视E-mail客户端实际采用的协议而定）。

1．辨明方向之后，请检查通往相关E-mail协议的目的端口号的TCP会话能否成功建立。

2．由图14.15可知，E-mail客户端主机无法建立通往服务器143端口的TCP会话。此时，应按第10章和第11章所述，排除网络层和传输层故障。

[image:]

图14.15

3．若TCP会话成功建立，则应继续检查应用程序层协议（E-mail客户端软件）能否顺利通过服务器的身份验证。借助Wireshark，不但可以观察到用户名/密码有误，还可以发现歹人对E-mail服务器的恶意访问，如图14.16所示。

[image:]

图14.16

4．检查用户名和密码，确保使用了正确的用户名和密码执行身份验证。

当感觉到邮件服务器之间沟通缓慢时，请按以下步骤行事[10]。

1．核实两台邮件服务器是否位于同一站点。

 	若位于同一站点，则很可能是邮件服务器反应慢或应用程序问题。一般不太可能是网络传输问题，若两台邮件服务器都部署在通过高速LAN链路互连的数据中心内，则更是如此。

 	若位于不同的站点（比如，两台邮件服务器分别位于通过低速WAN链路互连的异地站点内），请检查WAN链路的负载状况。当发送包含较大附件的邮件时，极有可能会导致低速WAN链路的拥塞。

2．检查Wireshark抓包文件，看看是否抓到了身背TCP Retransmission、TCP ZeroWindow、TCP WindowFull等字样，且隶属于SMTP数据流的数据包。图14.17所示为Wireshark抓到了众多身负TCP Retransmission字样，且隶属于SMTP数据流的数据包时的情形。

[image:]

图14.17

3．核实问题是否出在E-mail（SMTP）服务器“反应慢”上面。当读者看见图14.18所示的Wireshark截屏时，应该知道作者使用了Statistics菜单下Conversation工具中的TCP标签功能。在勾选了Limit to display filter复选框（让显示过滤参数tcp.analysis retransmission生效），点击过Conversation窗口中的Packets一列（按数据包数量的多少重新排序）之后，可以看到有793个重传的SMTP（TCP 25端口）数据包，而172.16.30.247和172.16.30.2 TCP 445端口（Microsoft DS）之间、172. 16.30.180和192.5.11.198 TCP 80端口（HTTP）之间的TCP重传数据包则分别高达9014和2139个。

[image:]

图14.18

由此可以判断出SMTP协议本身并无问题，邮件发送不畅只是受到了恶劣网络环境的影响。

4．检查Wireshark抓包文件，看看是否抓到了身背SMTP状态代码的数据包。由图14.19可知，Wireshark抓到了身背SMTP状态代码451的数据包。状态代码451表示邮件（SMTP）服务器发生了local error in processing错误。

 [image: 未标题-1]　注意

 当某种应用（层协议）发生故障时，其客户端或服务器端主机一般都会生成与故障有关的日志信息。通过阅读这些信息或根据这些信息执行Google搜索，一般都能得出导致故障的原因。本书后文会举几个这方面的例子。

[image: 1419]

图14.19

SMTP状态码列表详见RFC 1893。

5．要想弄清SMTP对话双方所交换的数据包中是否包含了SMTP错误状态码，请配置并应用图14.20所示的Wireshark显示过滤器。

[image: 1420]

图14.20

现在来解读一下在图14.20中现身的几个SMTP错误状态码。

 	状态码421：表示邮件服务不可用（图14.20中标记为1的区域）。

 	状态码451：表示SMTP服务器无法响应，请稍后再试，这可能预示着服务器负载过高或服务器故障（图14.20中标记为2的区域）。

 	状态码451：表示用户配额超限（图14.20中标记为3的区域，在该区域内还出现了SMTP状态码250，具体原因稍后解释）。

 	状态码452：表示用户邮箱空间超限（图14.20中标记为4的区域）。

 	状态码450：表示主机未发现（图14.20中标记为5的区域，在该区域内还出现了SMTP状态码250，具体原因稍后解释）。

 [image: 未标题-1]　注意

 在同一条SMTP协议消息中可以包含多个状态码，某些其他（应用层）协议的协议消息也是如此。在Wireshark抓包主窗口的数据包列表区域内，只能看见SMTP协议消息中的第一个或头几个状态码。要想查看一条SMTP协议消息中所包含的全部状态码，请按图14.21那样先在数据包列表区域内选中某个SMTP数据包，再到数据包结构区域内查看。

[image:]

图14.21

若发现有多条SMTP消息都包含不止一个状态码，则表示邮件服务器不可用。此时，需联系邮件服务器管理员。

14.3.3　幕后原理　　　　

上一节介绍了每一种E-mail协议（SMTP、IMAP和POP3）的常规运作方式。将E-mail协议正常运作时抓到的数据包，与协议故障时抓到的数据包进行比对，会有助于查明故障的起因。

14.4　分析E-mail协议的错误状态码，并据此筛选E-mail流量

本节将探讨如何根据E-mail协议的错误状态码，用Wireshark筛选相关E-mail流量，进行故障分析。

14.4.1　分析准备　　　　

根据故障情形，在E-mail客户端或服务器端抓包。在启用SSL/TLS的情况下，需要在Wireshark中指明SSL密钥，解密相关E-mail流量，才能根据错误状态码筛选流量。否则，E-mail流量包含的错误状态码将会被加密，不会在经过筛选的E-mail流量中露面[11]。

14.4.2　分析方法　　　　

每一种E-mail协议都会通过不同类型的错误状态码，在E-mail客户端和服务器之间通报发生的故障或问题。本小节将探讨如何根据错误状态码，用Wireshark筛选每种E-mail协议的流量。

1．SMTP

排除或分析与E-mail收发有关的故障时，E-mail服务器日志或Wireshark抓到的SMTP协议数据包中包含的SMTP状态码会提供非常有用的排障线索。借助于在E-mail服务器和客户端之间交换的（SMTP协议数据包所包含的）各种状态码，即可判断SMTP协议是否正常运作。根据状态码过滤SMTP协议数据包的方法多种多样，本小节会介绍几种常用的方法。

应用显示过滤器smtp.response，可以筛选出包含响应状态码的所有SMTP消息。在状态码已知的情况下，可应用显示过滤器smtp.response.code == <code>，进一步执行精细化过滤，如图14.22所示。

[image:]

图14.22

由于SMTP响应状态码全都用数字来表示，因此Wireshark支持根据状态码的范围来执行过滤。比方说，应用显示过滤器smtp.response.code > 200，可以筛选出状态码高于200的所有SMTP消息，如图14.23所示。

[image:]

图14.23

还可以根据响应参数来筛选SMTP消息。应用显示过滤器smtp.rsp.parameters == <param>，即可根据响应参数来执行过滤。图14.24中的显示过滤器用来筛选包含AUTH LOGIN参数的SMTP数据包。

[image:]

图14.24

更多与SMTP状态码有关的详细信息，请见下一小节。

2．IMAP

在E-mail客户端和服务器之间，会通过OK、NO、BAD、BYE之类的状态响应消息来表示任何一条IMAP命令执行的结果以及执行失败的原因。每条IMAP命令都与OK、NO、BAD等状态响应消息相关联，在状态响应消息中可能还会包含命令专有的附加信息。有些状态响应消息会包含附加信息，也有一些则不含附加信息。

比方说，IMAP命令DELETE与响应信息OK、NO和BAD相关联。状态响应消息为OK的命令DELETE，表示该命令执行成功（不含附加信息）。当IMAP命令LOGIN与状态响应消息NO相关联时，状态响应消息中还会包含附加信息，比如，会包含表示登录尝试失败的“invalid username or password”（无效的用户名或密码）。

应用显示过滤器imap.request，可筛选出从E-mail客户端发往服务器的所有IMAP COMMAND消息（见图14.25）。在具体命令已知的情况下，可应用显示过滤器imap.request. command ==“<>”，做进一步的筛选。

[image:]

图14.25

应用显示过滤器imap.response，可筛选出E-mail服务器发往客户端的所有IMAP状态响应消息。可用显示过滤器imap.response.status == <>，根据响应状态（比如，OK、NO或BAD）做进一步的筛选，如图14.26所示。

[image:]

图14.26

3．POP3

与IMAP一样，POP3也会通过状态响应消息来通报E-mail客户端和服务器之间的任何故障。在POP3状态响应消息中，除了会包含+ OK和-ERR之类的响应提示符以外，还会包含相关的附加信息。

由图14.27可知，该POP3响应消息的响应提示符（Response indicator）为-ERR，响应描述（Response description）中包含的是ERR（错误）原因。对于该POP3响应消息而言，ERR（错误）原因与登录失败有关。

[image:]

图14.27

应用显示过滤器pop.request或pop.response，可分别筛选出E-mail客户端发往服务器的所有POP3请求消息或E-mail服务器发往客户端的所有POP3响应消息。可为显示过滤器pop.request或pop.response添加响应提示符参数，对POP3数据包做进一步的筛选，如图14.28所示。

[image:]

图14.28

由图14.28左上角所示的显示过滤器可知，添加的响应提示符参数为+ OK和-ERR。

14.4.3　幕后原理　　　　

本章介绍的三种E-mail协议的通信机制在概念上全都相同：E-mail客户端发出命令，等待与命令有关的响应消息或状态码（见图14.29）。成功执行了E-mail客户端发出的命令或请求后，服务器会发出具有正面意义的状态码（比如，OK）。执行命令时若出现任何问题或执行失败，服务器便会发送具有负面意义的响应码（比如，NO或BAD）。更多与E-mail协议错误状态码的有关详细信息，请见下一小节。

[image:]

图14.29

14.4.4　拾遗补缺　　　　

每一种E-mail协议的响应码及其相关语义请见定义该E-mail协议的RFC。本小节会介绍某些常见的响应码，并给出定义相关响应码的RFC，这几份RFC提供了这些响应码的附加信息。

1．IMAP响应码（RFC 5530）

RFC 5530提供了所有IMAP响应码以及每个响应码的具体含义。可从IANA的官网上搜索并获取IMAP响应码一览表。

2．POP3响应码（RFC 2449）

RFC 2449提供了所有POP3响应码以及每个响应码的具体含义。可从IANA的官网上搜索获取POP3响应码一览表。

3．SMTP和SMTP错误状态码（RFC 3463）

SMTP状态码的构造方式如下所列。

class. subject. detail

举个例子，一条包含状态码450的SMTP消息具有如下含义。

 	class 4：表示存在临时性问题。

 	subject 5：指明了邮件递送协议的状态。

 	detail 0：表示其他或未定义的协议状态（RFC 3463 3.6节）

表14.1所列为SMTP状态码的各种类别码（class）。

表14.1

 	 SMTP状态码

 	 含义

 	 描述

 	 2.x.xxx

 	 成功

 	 操作成功

 	 4.x.xxx

 	 持续出现暂时性的故障

 	 临时情况（暂时性的故障）导致邮件服务器无法发送邮件。暂时性的故障是因服务器负载过重或网络拥塞所致。通常，（在邮件发送失败之后，）重新发送将会取得成功

 	 5.x.xxx

 	 持久性的故障

 	 持久性的故障导致邮件服务器无法发送邮件。所谓持久性的故障一般都是指服务器故障或兼容性问题

表14.2所列为SMTP状态码的各种主题码（subject）。

表14.2

 	 SMTP状态码

 	 含义

 	 x.0.xxx

 	 其他或未定义状态

 	 x.1.xxx

 	 地址状态

 	 x.2.xxx

 	 邮箱状态

 	 x.3.xxx

 	 邮件系统状态

 	 x.4.xxx

 	 网络及路由状态

 	 x.5.xxx

 	 邮件递送协议状态

 	 x.6.xxx

 	 邮件内容或媒体状态

 	 x.7.xxx

 	 安全或策略状态

SMTP状态码的细节码（detail）着实太多，难以全部罗列，详情请参考RFC 3463。

表14.3所列为常见的SMTP状态码。

表14.3

 	 SMTP状态码

 	 含义

 	 原因

 	 220

 	 服务就绪

 	 （邮件）服务正在运行，随时准备执行邮件“投递”任务

 	 221

 	 服务关闭

 	 一般为正常，表示邮件服务器上的服务在不用时关闭

 	 250

 	 对邮件的操作请求已执行完毕

 	 邮件发送成功

 	 251

 	 非本地用户，邮件将会被转发

 	 一切正常

 	 252

 	 用户通不过验证

 	 用户通不过服务器的验证，邮件无法递送

 	 421

 	 服务不可用

 	 邮件发送服务不可用，服务器无法处理收到的邮件，这可能是因为服务器问题（邮件递送服务未开启）或服务器限制问题

 	 422

 	 邮件大小问题

 	 收件人邮箱已满或邮件服务器对所收邮件的大小有限制

 	 431

 	 内存溢出或磁盘空间已满

 	 邮件服务器内存溢出或磁盘空间已满

 	 432

 	 邮件接收队列被停止

 	 服务器故障（邮件递送服务未开启）

 	 441

 	 收件服务器无响应

 	 发件服务器表示收件服务器不响应

 	 442

 	 连接故障

 	 通往收件服务器的连接（链距）存在故障

 	 444

 	 无法路由

 	 服务器无法确定递送邮件的下一跳

 	 445

 	 邮件服务器拥塞

 	 邮件服务器临时性拥塞

 	 447

 	 邮件递送逾期

 	 收件系统认为邮件太“旧”，这通常都表示队列和传输问题

 	 450

 	 操作请求未被接受

 	 邮件可能未被递送，这通常都归咎于远程邮件服务器上的邮件递送服务有问题

 	 451

 	 无效命令

 	 表示命令乱序或不被支持。收件服务器终止执行操作请求，主要原因是其负载过重

 	 452

 	 操作请求未被接收

 	 收件服务器存储空间不足

 	 500

 	 语法错误

 	 由服务器发出的命令未被识别为有效的SMTP或ESMTP命令

 	 512

 	 DNS错误

 	 无法定位收件服务器

 	 530

 	 认证问题

 	 收件服务器要求认证，或已将发件服务器录入了黑名单

 	 542

 	 收件地址遭拒

 	 表示收件人地址遭到收件服务器的拒绝。这通常是因为收件人地址通不过反垃圾邮件系统、IDS/IPS、智能防火墙或其他安全设备的检查

14.5　分析恶意及垃圾邮件

本节将介绍如何借助Wireshark对恶意及垃圾邮件做一些简单的分析，还会讲解如何根据分析的结果，在E-mail服务器上过滤垃圾邮件。

14.5.1　分析准备　　　　

在大多数情况下，垃圾邮件从域外发来，受众为本企业内的用户。因此，在E-mail服务器上抓包分析才是最佳做法。

14.5.2　分析方法　　　　

1．首先，要识别邮件消息的数据部分。可应用显示过滤器来筛选出包含邮件数据的数据包，这种显示过滤器的构造方式为：具体的E-mail协议名称 || 相关邮件数据格式。举个例子，应用显示过滤器pop || data-text-lines，即可筛选出使用POP3协议的包含数据的邮件[12]。

2．如图14.30所示，根据包含邮件数据的数据包的长度，可以看出该邮件只是一封文字邮件，并不是很大，不带任何附件。因此，基本可以判断，这封邮件并非垃圾邮件。

[image:]

图14.30

3．如图14.31所示，根据包含邮件数据的数据包的长度，可以看出，该邮件非常之大，似乎包含了附件。

[image:]

图14.31

4．选中一个数据包，用Follow Stream功能，以明文方式显示出这封邮件的内容，如图14.32所示。

[image:]

图14.32

由图14.32可知，该电子邮件包含了一个PDF文件。可通过发件人邮箱地址、收件人邮箱地址、邮件主题等相关信息来确定该邮件是否是垃圾邮件。当然，也可以使用某些恶意软件检测应用程序来检测邮件携带的附件。

要是有多封电子邮件都携带类似的附件，请先确定邮件的公共发件人邮箱地址，再到服务器上创建垃圾邮件规则，将该发件人邮箱地址标记为垃圾邮箱地址，或直接过滤此类邮件。

14.5.3　运作原理　　　　

大多数E-mail服务器不但支持垃圾邮件检测，而且还会自动针对此类邮件创建过滤规则。还可以在E-mail服务器上根据发件人/收件人邮箱地址或根据域和IP地址，自定义过滤规则。

当E-mail服务器通过IMAP/POP3从内部客户端或通过SMTP从外部E-mail服务器接收邮件时，会检查本机邮件过滤器，在通过过滤器规则检查的情况下，才会将邮件转发至相应的收件箱。只要有任何一条过滤器规则与邮件包含的某些属性或元数据匹配，服务器都将过滤掉该邮件。

在E-mail客户端主机上，可选择使用E-mail扫描软件来提高安全性。此类软件会在E-mail客户端主机执行额外检查，将可疑邮件标记为垃圾邮件或恶意邮件，向用户发出警告。

[1]　译者注：原文是“Filtering and analyzing different error codes”。

[2]　译者注：原文是“It sends SMTP message such as "MAIL FROM:<>", "RCPT TO:<>" carrying sender and receiver email addresses”。译文按原文字面意思直译。

[3]　译者注：原文是“Upon successful queuing, we get an OK response from the SMTP server”。译文按原文字面意思直译。

[4]　译者注：原文是“The username and password will be sent to the SMTP client for account verification”。原文就是“发送至SMTP客户端”。

[5]　译者注：原文是“SMTP will send a response code of 235 if authentication is successful”。译文按原文字面意思直译。

[6]　译者注：原文是“The client will now push the actual email message. SMTP will respond with a response code of 250 and the response parameter OK: queued”。译文按原文字面意思直译。

[7]　译者注：原文是“The successfully queued message ensures that the mail is successfully sent and queued for delivery to the receiver address”。译文按原文字面意思直译。

[8]　译者注：原文是“Depending on the hardware and application, the procedure to get the SSL may vary”。译文按原文字面意思直译。

[9]　译者注，原文是“In Windows, go to Microsoft Management Console (MMC) and then to Certificates. This will list all the certificates for different applications”。打开MMC之后，还要点击“文件”|“添加删除管理单元”，选择“证书”，点击“添加”按钮，按照提示操作，才能在“控制台根节点”下出现“证书”配置项。

[10]　译者注：以下描述所用的插图基于Wireshark版本1。

[11]　译者注：原文是“Otherwise, the error code will be decrypted and it may not list in the filtered output”。按原文的字面意思直译为“否则，错误代码将会被解密，不会在过滤的输出中列出”。

[12]　译者注：原文是“For example, use pop || data-text-lines to filter the mails with data using the POP3 protocol”。作者想表达的原意应该是“举个例子，应用显示过滤器pop || data-text-lines，即可筛选出包含邮件数据的POP3数据包”。译文还是按照原文的字面意思翻译。

第15章　NetBIOS和SMB协议分析

本节涵盖以下内容：

 	NetBIOS名称、数据报和会话服务；

 	SMB/SMB2/SMB3的详细信息和运作方式；

 	NetBIOS和SMB协议的各种故障以及分析方法；

 	连通性和性能问题；

 	数据库流量及常见故障分析；

 	导出SMB对象。

15.1　介绍

Wireshark存在的最大价值之一，就是能用它来分析流淌于网络中的各种应用程序生成的流量，从而为排除应用程序故障提供依据。当应用程序运行缓慢时，可能的原因包括LAN问题（一般都与无线LAN有关）、WAN问题（WAN链路带宽不足或延迟过高）、安装应用程序服务器端/客户机端软件的主机运行缓慢（TCP窗口问题），以及应用程序自身问题等。

本章将深入探讨常用应用程序的运作方式，同时会介绍如何定位及解决与这些应用程序有关的故障。首先，会介绍如何探查及归类流淌于网络中的流量的类型。其次，会分析各种应用程序的运作方式，介绍不同的网络状况对那些应用程序的影响。

本章还会介绍如何使用Wireshark解决常见诸于企业网内的各种应用程序的故障。这些应用程序包括NetBIOS应用和SMB应用。

15.2　认识NetBIOS协议

网络基本输入/输出系统（Network Basic Input/Output System，NetBIOS）是一套开发于20世纪80年代初期用于LAN通信的协议，目的是为会话层（OSI参考模型的第5层）提供服务。若干年前，这套协议被Microsoft公司相中，将它用作为Windows操作系统在LAN内的网络通信协议。随后，Microsoft又把它与TCP/IP融合在了一起（RFC 1101和RFC 1102）。

如今，NetBIOS协议能提供以下三项服务。

 	名称服务（端口号137）：用于名称注册以及名称/IP地址间的解析，也叫做NetBIOS-NS。

 	数据报发布服务（端口号138）：用于客户端和服务器的服务发布，也被称为NetBIOS-DGM。

 	会话服务（端口号139）：用于主机间的会话协商、文件访问和打开目录等，亦名NetBIOS-SSN。

NBNS提供名称注册以及将NetBIOS名转换为IP地址的功能。所谓注册是指客户机以其NetBIOS名称向域控制器注册。客户机在注册时，会发出NetBIOS注册请求数据包（name registration request数据包），服务器会回复注册响应数据包（positive name registration response或negative name registration response数据包）来告知其是否注册成功（或名称已被另一台设备使用）。Microsoft网络环境以WINS来实现，并且由于大多数网络都不使用它，因此后来它被DNS取代[1]。NBNS运行于UDP 137端口。

客户端和服务器会利用NBDS，来行使服务宣告功能。网络中的主机可借助于NBDS来宣告：本机NetBIOS名称、本机可向网络中的其他主机提供哪些服务，以及如何访问这些服务等。NBDS运行于UDP 138端口。

NBSS的作用包括在主机间建立会话，跨网络打开、保存或执行远程（主机上的）文件。NBSS运行于UDP 139端口。

NetBIOS协议族中还包括SMB（服务器消息块）和SPOOLS等协议。当SMB协议运行于NBSS之上（即SMB数据由NetBIOS会话服务数据包来承载）时，该协议所起作用为事务操纵；当SMB协议运行于NBDS之上（即SMB数据由NetBIOS数据报服务数据包来承载）时，该协议将用于服务通告。SPOOLS协议则用于打印服务。对NetBIOS协议族的深层次讨论超出了本书的范围。要想排除NetBIOS协议故障，需要遵照本章内容里的指示——注意观察Wireshark抓到的NetBIOS会话服务数据包所包含的SMB错误代码以及Wireshark的专家提示。

15.3　认识SMB协议

在前文已经简要介绍了SMB，也见识了相关的过滤器。为了温故知新，这里再简单介绍一遍SMB。SMB是一种协议，可利用该协议来提供目录浏览、文件复制，打印机访问等服务，还可以通过该协议来执行某些跨网操作。通用Internet文件系统（Common Internet File System，CIFS）是SMB的一种表现形式或表现方式。

SMB既可以运行于会话层协议（比如，NetBIOS）之上（按照其最初的设计），也可以直接运行于TCP 445端口。SMB 2.0由Microsoft公司于2006年在Windows Vista中引入，目的是减少SMB 1.0协议所需的命令和子命令。虽然SMB 2.0在推出时算是一种私有协议，但Microsoft公司也发布了相关标准，允许其他厂商的OS（通过SMB）与Windows操作系统互操作。

SMB 2.1随Windows 7和Server 2008 R2一起发布，与SMB 2.0相比，性能得到了很大的提升。

SMB 3.0（前称为SMB 2.2）随Windows 8和Server 2012推出。为了支持数据中心计算环境中出现的虚拟化，SMB 3.0的性能（与早期的版本相比）又得到了显著的提升。

15.3.1　幕后原理　　　　

SMB的运作模式为客户端/服务器模式，客户端向服务器发出具体的请求，服务器根据请求做出相应地回应。大多数请求都涉及访问文件系统，而其他形式的请求则涉及进程间通信（IPC）。IPC是一种便于不同进程之间相互通信的机制，无论这些进程在同一台设备上运行，还是在由网络隔开的不同设备上运行。

15.4　NetBIOS/SMB协议故障分析

本节将讨论NetBIOS协议族的常见故障以及解决故障的方法。NetBIOS协议族极为复杂，故障点超多，本节只介绍该协议容易在什么地方出故障，以及解决常见故障的方法。

15.4.1　分析准备　　　　

NetBIOS协议主要用于Windows主机间的通信，也可以用于Mac/Linux主机与Windows主机间的通信。如果在部署了上述机型的网络环境中出现断网、网速慢等问题，NetBIOS协议故障也有可能是原因之一。Wireshark是定位上述问题的绝佳工具，它能显示出奔流于网络中的流量，而Windows自带的某些工具则能显示出客户机与服务器间的交互情况。

15.4.2　分析方法　　　　

要解决NetBIOS协议故障，请在LAN交换机上开启端口镜像功能，将连接了相关客户机主机或服务器的端口的流量重定向至Wireshark主机。接下来，会举几个NetBIOS协议出故障的例子。

Wireshark内置有若干显示过滤表达式，可专门用来筛选NetBIOS协议流量，在Display Filter Expression窗口中能找到这些显示过滤表达式（在Wireshark抓包主窗口中点击Filter输入栏右边的Expression按钮，就会弹出Display Filter Expression窗口）。

 	以netbios打头的显示过滤表达式，作用于包含NetBIOS命令的流量。

 	以nbns打头的显示过滤表达式，作用于NetBIOS名字服务流量。

 	以nbds打头的显示过滤表达式，作用于NetBIOS数据报服务流量。

 	以nbss打头的显示过滤表达式，作用于NetBIOS会话服务流量。

 	以smb打头的显示过滤表达式，作用于SMB流量。

1．分析准备

首先，要了解一下网络流量的整体状况，然后在其中寻找异常流量。

1．将Wireshark主机与LAN交换机相连，连哪个端口都可以，只要该端口与连接了故障主机的端口隶属同一VLAN（同一广播域）。

2．在Wireshark抓包主窗口的Filter输入栏内输入显示过滤表达式nbns.flags. response == 0，点击Apply按钮。所有NetBIOS名字服务请求数据包会立刻浮出水面，此类数据包都以广播方式发送，如图15.1所示。

[image:]

图15.1　NetBIOS名字服务（NBNS）请求数据包

3．在图15.1所示的Wireshark截屏中，能看见以下几种NetBIOS名字服务请求数据包。

 	主机10.0.0.103发出的包含用名称WORKGROUP和ETTI来注册的name registration request数据包（1）。NetBIOS名字服务（NBNS）服务器会发出positive name registration response或negative name registration response数据包，对发出name registration request数据包的主机进行回应（拒绝或接受注册）。主机在发出name registration request数据包之后若收不到任何回应，将会自认为注册成功。

 	用来查询具有指定名称的主机的name query request数据包（2、3、4）。若网络中部署了NBNS服务器（域控制器），Wireshark还将抓到以下两种NBNS响应数据包中的一种。

 	代码字段值为3，表示所查名称不存在的negative name registration response数据包。

 	包含所查名称的positive name registration response数据包，其代码字段值为0。

4．不应抓到由源IP地址为169.254打头的主机发出的任何NBNS请求数据包（5）。以169.245打头的IP地址是OS自行分配的私有IP地址（APIPA）。当Windows主机被配置为以DHCP方式获取IP地址，但获取不到任何IP地址时，便会自行配置一个APIPA地址。

5．在Wireshark抓包主窗口的Filter输入栏内输入显示过滤表达式tcp.port == 138 or udp.port == 138，点击Apply按钮，所有NetBIOS数据报服务数据包会立刻浮出水面。NetBIOS数据报服务数据包的目的IP地址一定是广播地址，源、目端口则是TCP或UDP 138端口。图11.20所示为Wireshark抓到的NetBIOS数据报服务数据包，主机发出此类数据包的目的是，通告本机所行使的功能（是工作站、数据库服务器还是打印机服务器等）。通过图15.2，可以判断出下述信息。

 	IP主机172.16.100.10的主机名是FILE-SRV，其所行使的功能包括工作站、服务器和SQL Server（Workstation，Server，SQL Server）（1）。

 	IP主机172.16.100.204的主机名是GOLF，其所行使的功能包括工作站、服务器和打印排队服务器（Workstation，Server，Print Queue Server）（2）。

[image:]

图15.2　NetBIOS数据报服务数据包

6．某些蠕虫或病毒也会设法让主机发出NetBIOS名字服务数据包，来达成扫描网络的目的。要想得知网络中是否有主机感染了蠕虫或病毒，需要仔细分析抓包文件，看看NetBIOS名字服务流量是否高得离谱。

7．仔细分析抓包文件，关注广播数据包的数量。正常情况下，一台主机每分钟发出的广播数据包的合理数量应为5～10个，若超过了这一数字范围，就要找到发包主机，对其仔细检查。

 [image: 未标题-1]　注意

 分析Wireshark抓到的数据包时，对异常流量模式的判断并无定式可循，需借助于Wireshark专家系统（Expert System）工具、百度（Google）和常识来加以判断。

2．具体问题

在日常运维过程中，可能会碰到以下问题。

 	在需要使用SMB协议的网络中，Wireshark可能会抓到包含SMB错误代码的NetBIOS会话服务数据包。SMB协议是一种能让主机隔网浏览其他主机的目录，从其他主机复制文件或执行其他操作的协议。

 	若SMB错误代码为0，则表示SMB协议或SMB应用程序的状态正常。在检查Wireshark抓到的NetBIOS会话服务数据包时，如发现其SMB头部中的错误代码不为0，那就表示SMB协议或SMB应用程序存在问题，应仔细检查相关应用。

 	在图 15.3 所示的 Wireshark 截屏中，可以看到一个 SMB 错误代码为 0xC0000022（STATUS_ACCESS_DENIED）的NetBIOS会话服务数据包。这一SMB错误代码是网管人员理应关注的众多SMB错误代码之一。由图15.3所示的Wireshark截屏可知，一台主机（IP地址以203打头，IP地址的后3个字节因故省略）在访问一台服务器（IP地址为10.1.70.95）上的目录\\NAS01\HOMEDIR时，遭到了拒绝。

[image:]

图15.3　SMB错误代码为0xC0000022（STATUS_ACCESS_DENIED）的NetBIOS会话服务数据包

 	使用基于NetBIOS协议的应用程序，以远程访问的方式，浏览一台Windows主机的主目录时，弹出了标有“拒绝访问”（ACCESS DENIED）或类似字样的对话框。当然，该应用程序也可能会有自己的报错方式。执行上述操作的同时，若使用Wireshark抓包，在抓到的相关NetBIOS会话服务数据包中必能看见精确的SMB错误状态码，只要将NT Status后的内容复制进百度（Google）搜索栏里进行搜索，必能搜到访问遭拒的具体原因。

 	在图 15.4 所示的 Wireshark 截屏中，可以看到一个 SMB 错误代码为 0xC0000016（STATUS_MORE_PROCESSING_REQUIRED）（2）的NetBIOS会话服务数据包。由图15.4所示的Wireshark截屏可知，那台IP地址以203打头的主机试图访问（访问形式为建立会话）（1）IP地址为10.1.70.95的服务器上的目录\\NAS01\ SAMIM（3）时，发生了错误。

[image: 1504]

图15.4　SMB错误代码为0xC0000016（STATUS_MORE_PROCESSING_REQUIRED）的NetBIOS会话服务数据包

 	根据上述SMB错误代码，在微软的MSDN上进行查询，即可获知出错的原因为“There is no more data available to read on the designated named pipe”（在指定的命名管道里无更多的数据可供读取）。

 	将（2）处“NT Status”之后的内容（STATUS_MORE_PROCESSING_REQUIRED）或出错的原因复制进百度（Google），搜索后得知是访问凭证问题，需与系统管理员协商解决。

 	要让Wireshark只显示出抓包文件中SMB错误码为非0的NetBIOS会话服务数据包，请先在Filter输入栏内输入显示过滤表达式smb.nt_status != 0x0，再点击Apply按钮，如图15.5所示。

[image:]

图15.5　SMB错误码为非0的NetBIOS会话服务数据包

15.4.3　拾遗补缺　　　　

为了让读者更好地理解NetBIOS协议，本小节会举几个与该协议有关的抓包示例。

1．示例1——应用程序卡顿

通过图15.6所示的Wireshark截屏，可推断出该应用程序卡顿的原因。

[image:]

图15.6　基于NetBIOS协议的应用程序卡顿

仔细观察Wireshark截屏中的数据包，不难发现下述情况。

 	一台主机（IP地址以203打头）在请求访问一台服务器（IP地址为10.1.70.95）上的目录\\NAS01\SAMIM时（对应于身背PATH\\NAS01\SAMIM字样的数据包），遭到了服务器的拒绝（对应于身背STATUS_ACCESS_DENIED字样的数据包）（图15.6中的1）。

 	那台主机向服务器发出取消访问的请求（对应于身背Logoff Andx Request字样的数据包），得到了服务器的确认（服务器发出了身背Logoff Andx Response字样的数据包）（图15.6中的2）。

 	由于安装在那台主机上实际发出目录访问请求的应用程序一直在等待，因此主机和服务器之间会互发身背TCP Keep-Alive字样的数据包，来保持TCP连接（图15.6中的3）。

 	片刻之后，那台主机向服务器发出断开连接的请求（对应于身背Tree Disconnect Request字样的数据包），征得了服务器的同意（对应于服务器发出了身背Tree Disconnect Response字样的数据包）（图15.6中的4）。

 	安装在那台主机上实际发出目录访问请求的应用程序继续等待，主机和服务器之间继续互发身背TCP Keep-Alive字样的数据包，来保持TCP连接（图15.6中的5）。

 	服务器发出RST位置1的TCP数据包，断开之前建立的TCP连接（图15.6中的6）。

现在知道为什么最终用户反映该应用程序卡顿了吧？

2．示例2——由SMB协议引发的广播风暴

有一次，作者接到了客户的紧急求助电话。客户在电话里反映：其公司总部（HQ）与某一远程站点之间通信中断。以下所列为该客户的HQ网络与那个远程站点网络的基本资料。

 	远程站点网络隶属于IP子网172.30.121.0/24，默认网关的IP地址为172.30.121.254。

 	HQ网络的IP地址段为172.30.0.0/24。HQ网络与远程站点网络之间通过运营商提供的L3 MPLS IP-VPN网络互连。

为了查明断网的原因，作者执行了如下排障动作。

 	作者在远程站点网络内的一台主机上ping HQ网络内的一台服务器，但ping不通。

 	作者致电提供MPLS IP-VPN网络的运营商；运营商告知作者，据它们的网管系统显示，那条MPLS VPN链路负载为空。

 	作者继续在那台主机上ping其默认网关（远程站点网络内的路由器）的IP地址172.30.121.254，同样ping不通。也就是说，问题出在远程站点的本地LAN内，主机与默认网关（路由器）之间无法通信。

 	作者将安装了Wireshark的笔记本电脑接入LAN交换机，开启端口镜像功能，抓取连接了路由器（内部LAN接口）的端口的流量。于是，作者看到了图15.7中的景象。

[image: 1507]

图15.7　广播风暴

 	由图15.7可知，IP主机172.30.121.1几乎是每隔1微秒（1）便发出一个协议属性为SMB Mailslot（4），身背Write Mail Slot字样（5）的广播数据包（3）。

 	为弄清身背Write Mail Slot字样的广播包的发送频率，作者动用了Wireshark自带的I/O Graphs工具，该工具给出的结果是5000个数据包/秒，如图15.8所示。而那台路由器的内部LAN接口只是10Mbit/s接口，根本就承受不了那么多蜂拥而来的广播包（即便是该接口的速率为100Mbit/s或1000Mbit/s，也同样无法承受）。

 	作者在Google和Microsoft站点上搜索了一翻，但一无所获。于是，便开始逐一停止运行于IP主机172.30.121.1上的可疑服务。在停止可疑服务的同时，保持对Wireshark抓包主窗口数据包列表区域的关注（见图15.8）。当作者关停了一个名为LS3Bcast.exe的服务时，Wireshark就抓不到身背Write Mail Slot字样的广播包了。看来这个名叫LS3Bcast.exe的服务才是导致断网的罪魁祸首。

[image:]

图15.8　SMB广播风暴时的流量速率

15.5　数据库流量及常见故障分析

有些读者一定会对作者在本章安排这么一节内容而感到不解。在IT领域里，网络技术与数据库技术毕竟是截然不同的两个分支。精通数据库和应用程序开发技术的人一般都不懂网络技术，反之亦然，当然少数绝世牛人除外。所以说，一般不会让网络工程师去排除数据库故障，也不可能让DBA去排除网络故障。不过，通过抓取并分析流淌在网络中的流量，网络工程师可以帮助DBA解决某些数据库故障。

在大多数情况下，当应用程序无法使用时，最终用户会首先认定是网络问题，从而对网络技术人员心存不满。因此，网络技术人员必须能准确判断故障是否真的跟网络有关。在某些特殊场合下，网络技术人员或许还要用Wireshark抓取并分析网络中的流量，去配合DBA协查数据库故障。

15.5.1　分析准备　　　　

当有用户反映网络太慢的时候，网络技术人员首先需要判断网络是不是真的太慢。为此，请按后文所述步骤行事。

15.5.2　分析方法　　　　

若怀疑是数据库故障，请按以下步骤行事。

1．当有用户投诉网络太慢时，需要弄清楚以下事宜。

 	遭遇的是大面积用户投诉，还是个别用户投诉？影响的是总部站点网络内的用户，还是某个分支机构网络内的用户？若整个网络内的用户都受到了影响，则可以断定故障并非出在用来互连总部和分支机构网络的WAN线路上面。

 	是所有用户都反映网速慢，还是安装了某种应用程序的那一类用户反映网速慢？若为后一种情况，则应把注意力放到该应用程序上面。

 	是运行该应用程序客户端软件的主机与服务器之间的通信链路过载吗？导致链路过载的是该应用程序生成的流量吗？

 	是所有应用程序都运行缓慢，还是需要访问数据库的个别应用程序运行缓慢？是运行应用程序客户的PC太老太忙，还是服务器的资源不足呢？

2．在弄清了上述事宜之后，请按以下步骤行事。

 	配置LAN交换机，将其连接某台PC、服务器或路由器（用来连接远程站点网络的WAN路由器）的端口的流量，甚至是某个VLAN的流量，重定向至Wireshark主机。打开Wireshark软件，开始抓包。

 	在抓包的同时，点击Analyze菜单下的Expert Information菜单项，启动Expert Information窗口。要注意观察该窗口中各标签栏内与TCP有关的各种事件（尤其是Error和Warning事件），了解与这些事件相对应的数据包的源、目IP地址和源、目TCP端口号信息。这些信息将有助于快速定位故障的原因。

 [image: 未标题-1]　注意

 用Wireshark抓取并分析Internet链路的流量时，一定会观察到很多来自/发往Internet Web站点或E-mail服务器的TCP数据包都身背了TCP Retransmission或TCP Duplicate ACK等字样。没有办法，访问Internet就是这样。然而，用Wireshark抓取并分析内网流量时，身背TCP Retransmission等字样的TCP数据包最多只应占总TCP流量的0.1%～0.5%。

3．若判断是网络中的主机、服务器或其他网络设备发生故障，请按本书之前各章所述来解决故障。不过，某些网络自身的问题也会对数据库应用的行为产生影响。在下面这个例子中，读者可以看到一客户机通过一条往返延迟为35～40毫秒的链路[2]，与服务器通信时的举动。

 	由图15.9可知，Wireshark截屏中所示数据包全都归属于编号为8的TCP数据流（1），前三个TCP数据包是建立TCP连接的三次握手（TCP SYN/SYN-ACK/ACK）TCP报文段。作者已将Wireshark显示出的第一个数据包的时间设置为参考时间（2）（选中第一个数据包，点击右键，选择弹出菜单中的Set/Unset Time Reference菜单项）。构成这条编号为8的TCP数据流的TCP数据包的总数为371（3）。

[image:]

图15.9　编号为8的TCP流

 	由图15.10可知，客户机从每次发出数据库查询，到收到来自服务器的查询响应，所耗时间约为35毫秒。

[image:]

图15.10　数据库的查询和响应之间的时间监控

 	由于这条编号为8的TCP数据流由371个数据包构成，因此客户机完成数据库查询所耗时间约为13秒（371×35毫秒）[3]。再加上因无线网络质量所导致的某些TCP重传，使得操纵该客户机的用户要等待10～15秒（或更长的时间）才能完成本次数据库查询任务。

4．在这种情况下，应与DBA协商如何通过改进数据库应用程序来降低过往于网络的数据包的数量。或者，可以让那台客户机不要通过无线网络去访问服务器，改用其他方式（比如，终端服务器或Web方式）去访问服务器。

5．有时，通过Wireshark抓包分析，还可以发现应用程序自身的问题。在图15.11所示的Wireshark截屏中，可以看见客户机向服务器连续发送了5个身背TCP Retransmission字样的TCP数据包。之后，客户机与服务器之间又重新通过三次握手，建立起了TCP连接（3）。这很像是TCP故障，但只有当用户在该应用程序客户端软件的特定窗口内执行某些操作时，才能在Wireshark抓包主窗口的数据包列表区域内看见上述景象。出现这样的问题，是由于该应用程序设计失当，每当用户执行上述操作时，服务器端软件就会停止响应客户端软件发起的TCP连接。

[image:]

图15.11　TCP重传

15.5.3　幕后原理　　　　

常言道，隔行如隔山，网络技术人员肯定玩不转数据库。不过，网络技术人员有义务配合DBA去排除与数据库有关的故障，这也是作者在本章安排这些内容的目的。

15.5.4　拾遗补缺　　　　

在Wireshark抓包主窗口的数据包列表区域中，选中一个隶属于某条数据库客户端与数据库服务器间TCP会话的数据包，点击右键，选择弹出菜单中的Follow TCP Stream菜单项，Follow TCP Stream窗口会立刻弹出。可让DBA通过该窗口所示内容，来了解经由网络传输了哪些数据。

若数据库客户端与数据库服务器之间的网络延迟较高（比如，数据库客户端通过移动蜂窝网络访问数据库服务器），则实际操纵应用程序的用户就会觉得卡顿。此时，需考虑让用户采用其他方式来访问数据库服务器（比如，采用终端服务器或Web方式）。

数据库服务器的运作方式也很重要。若某台数据库服务器需要从另一台文件服务器获取数据，即便数据库客户端与该数据库服务器之间通信正常，但只要前两者之间的通信出现问题，还是会对数据库应用产生影响。在排除数据库相关故障时，请务必弄清待查目标的各个环节。

对网络技术人员而言，最重要的是要跟真正有本事的DBA处好关系，说不定哪天就能用上人家。

15.6　导出SMB对象

可利用Wireshark内置的导出对象（Export Objects）功能，来导出抓包文件中事关SMB的统计信息[4]。

15.6.1　导出准备　　　　

要导出SMB对象，请选择File | Export Objects | SMB/SMB2。

15.6.2　导出方法　　　　

要导出SMB对象，请按以下步骤行事。

1．既可以在抓包的同时导出SMB对象，也可以基于抓包文件来导出SMB对象，如图15.12所示。

[image:]

图15.12　导出SMB对象

2．在Expert SMB Object List窗口中，可以获悉被（别的主机以SMB方式）访问过的SMB服务器（的路径）列表，包括每台SMB服务器上被（别的主机以SMB方式）访问过的文件。可据此了解到SMB访问过程中生成的数据包的数量（Packet）、以SMB方式访问过的SMB服务器的主机名\路径（Hostname）、以SMB方式访问过的内容的类型（比如，FILE[文件]）（包括访问方式：读或读/写）（Content Type）、内容的大小（Size），以及内容（文件）的名称（Filename）[5]。

3．可点击Save或Save all按钮将数据保存为本机文件。

4．在Content Type一栏下，会出现以下内容。

 	FILE：表明通过SMB访问的内容是指定SMB服务器提供的文件。

 	PIPE：如本章前文所述，SMB也用于IPC。对于这一IPC机制，SMB系统提供命名管道服务。比方说，Microsoft公司的RPC over SMB实现会利用命名管道基础设施来运作。与命名管道有关的详细信息超出了本书的范围，由Wireshark感知到的任何其他文件也是如此。

 [image: 未标题-1]　注意

 要让Wireshark的导出SMB对象功能生效，请先选择Edit | Preferences，在弹出的Preferences窗口中，点击Protocols配置选项左边的小三角形，找到并选择TCP配置选项，勾选右边的Allow subdissector to reassemble TCP streams复选框，再点击OK按钮。

成功导出并保存SMB对象后，应该能够看到Wireshark通过数据包重组功能构建的数据（通过SMB访问过的文件、图片或其他任何内容）。

15.6.3　幕后原理　　　　

导出SMB对象功能一经启用（只要点开了Expert SMB Object List窗口），Wireshark便会扫描当前打开的抓包文件中的SMB数据包（或当前抓取到的SMB数据包），重组SMB对象，并允许用户将SMB对象数据存盘。然后，便可用适当的应用程序打开保存下来的对象，若对象为可执行文件，则双击即可运行。导出SMB对象功能用处多多，包括监听及文件备份（比如，偷看或备份通过文件共享访问过的文件）。

[1]　译者注：原文是“The Microsoft environment was implemented with WINS, and as most networks did not use it, it was later replaced by DNS”。译文按原文字面意思直译。

[2]　译者注：通过后面的抓包文件可以看出，这条链路应该是无线链路，这么重要的信息作者却偏未指明。

[3]　译者注：应该是371/2×35毫秒。

[4]　译者注：原文是“Exporting SMB objects is a simple feature for exporting SMB statistics”。

[5]　译者注：原文是“From here, you can get a list of the servers that were accessed, including the files that were accessed in each one of them. You can see the packet number, hostname, content type (with operation mode, read or read/write), size, and filename”译文酌改。

第16章　企业网应用程序行为分析

本章涵盖以下主题：

 	摸清流淌于网络中的流量的类型；

 	Microsoft终端服务器（MS-TS）和Citrix协议和故障分析；

 	数据库流量及常见故障分析；

 	SNMP流量分析。

16.1　简介

Wireshark存在的最大价值之一，就是能用它来分析流淌于网络中的各种应用程序的流量，从而为排除应用程序故障提供依据。当应用程序运行缓慢时，可能的原因包括：LAN问题（一般都与无线LAN有关）、WAN问题（WAN链路带宽不足或延迟过高）、安装应用程序服务器端/客户机端软件的主机运行缓慢（TCP窗口问题），以及应用程序自身问题等。

本章将深入探讨企业网内常用的应用程序的运作方式，同时会介绍如何定位及解决与这些应用程序有关的故障。首先，会介绍如何探查及归类流淌于网络中的流量的类型。其次，会分析各种企业网应用程序的运作方式，介绍不同的网络状况对那些应用程序的影响。

本章还会介绍如何使用Wireshark解决常见诸于企业网内的各种应用程序的故障。这些应用程序包括Microsoft终端服务器和Citrix、数据库应用以及SNMP（简单网络管理协议）应用。

16.2　摸清流淌于网络中的流量的类型

在一个全新的网络环境中处理故障时，第一件事就是要摸清流淌于网络中的流量的类型。运行于网络中的应用程序五花八门，支撑应用程序的协议类型多种多样，它们之间还会彼此影响，相互干扰。

在某些情况下，网络中还会划分多个VLAN，存在多个虚拟转发实例（VRF），部署多座刀箱（blade server），每个刀箱里还会配备连接到虚拟背板交换机端口的刀片服务器。在同一座网络基础设施里运行的每一样东西都有可能会相互影响。

 [image: 未标题-1]　注意

 很多人都分不清VLAN和VRF的区别。两者的用途虽大致相同，但使用场合却全然不同。VLAN用在LAN中行使第一、二层的隔离任务；VRF则是指共存于同一台路由器上的多个路由表实例，常用在SP网络中行使第三层的隔离任务。在SP网络中，VRF一般都会跟多协议标签交换（MPLS）技术结合使用，用来提供同一客户不同站点间的IP（第三层）连通性，同时还能在不同客户之间的实现网络隔离。

本节会探讨如何借助Wireshark来洞察流淌于网络中的流量的类型。

 [image: 未标题-1]　注意

 术语“刀箱”（blade server）是指刀片服务器的机箱，其正面安装的是刀片服务器，背面则配有LAN交换机。这一称谓随厂商而异，IBM称其为刀片中心（blade center），HP则将其命名为刀片系统（blade system）。

16.2.1　分析准备　　　　

在一个全新的网络环境中处理故障时，首先应把Wireshark主机接入网络，通过抓包来弄清网络中究竟流淌着哪些流量。在执行上述操作时，请按以下原则行事。

 	若故障涉及一台服务器，则应在LAN交换机上开启端口镜像功能，将连接该服务器的端口的所有流量重定向给Wireshark主机，以此来弄清该服务器都接收或发送了何种类型的流量。

 	若故障涉及一远程分支机构网络，则应设法将路由器上连接该分支机构网络的WAN端口的流量重定向给Wireshark主机，以此来弄清进出该分支机构网络的流量的类型。

 	若故障涉及Internet链路（比如，用户普遍反应网页打开缓慢），则应设法将奔流于该Internet链路的所有流量重定向给Wireshark主机，以此来弄清该Internet链路究竟承载了何种类型的流量。

本节会介绍如何借助Wireshark软件，来摸清流淌于网络中的流量的类型，以及如何排除相应的网络故障。

16.2.2　分析方法　　　　

要借助Wireshark软件来分析流淌于网络中的流量的类型，请按以下步骤行事。

1．按照之前提及的三原则之一，将相关流量重定向给Wireshark主机。

2．可利用Wireshark软件自带的下列工具，来分析所抓流量。

 	利用Statistics菜单下的Protocol Hierarchy工具，来观察并了解所抓流量的协议类型及占比情况。

 	利用Statistics菜单下的Conversations工具，来了解所抓流量在各个协议层级上的源头和归宿。

3．凭借Protocol Hierarchy工具所生成的信息，能获知流淌于网络中的流量的类型，如图16.1所示。

[image:]

图16.1

通过图16.1，可了解到穿梭于网络中的各种流量的分布情况。

 	以太网帧：其麾下的子协议流量包括IPv4流量、逻辑链路控制协议（Logical-Link Control）流量，以及配置测试协议流量（Configuration Test Protocol [loopback]）。

 	IPv4（Internet Protocol Version 4）数据包：其麾下的子协议流量包括UDP流量、TCP流量、PIM流量、IGMP以及GRE流量等。

若点击各种协议左边的“+”，则会显示出其麾下所有类型的上层协议流量。

要想了解某种协议流量的吞吐量，请点击其“父协议”左边的“+”，直至该协议暴露为止，如图16.2所示。通过图16.2，可获知HTTP流量在本次抓包时间段内的平均传输速率。

[image: 1602]

图16.2

若继续点击Hypertext Transfer Protocol协议左边的“+”，则可了解到经由HTTP封装的各种数据（XML、MIME、JavaScript等）在本次抓包时间段内的平均传输速率。

16.2.3　拾遗补缺　　　　

在某些情况下（比如，准备网络统计报表，向领导汇报时），需要以图形方式来呈现与网络的各种性能指标有关的统计信息。可使用以下工具来完成这项工作：

 	Etherape（用于Linux）；

 	Compass（用于Windows）。

16.3　Microsoft终端服务器和Citrix故障分析

微软终端服务器（Microsoft Terminal Server，MS-TS）基于远程桌面协议（Remote Desktop Protocol，RDP）和Citrix Metaframe独立计算架构（Independent Computing Architecture，ICA），是一种在本机和远程PC（或瘦客户端）之间实施桌面控制的应用程序。需要注意的是，这种桌面控制型应用程序会通过网络来传递远程主机的屏幕的变化情况。若屏幕的变化不大，则MS-TS应用基本不会占用多少带宽，否则，便会“吃掉”大量带宽。

还有一事值得关注，那就是由安装桌面控制型应用程序的主机生成的流量是完全不对称的。对主控端而言，下行流量速率少则数10kbit/s，多则数Mbit/s；而上行流量速率则最多只有几kbit/s。在设计运行此类应用程序的网络时，切莫遗忘这一点。

本节会举几个与桌面控制型应用有关的典型故障案例，同时会细述故障解决方法。为求表述简洁，作者会把上述所有桌面控制类应用统称为Microsoft 终端服务器（MS-TS）。本章后文每一次提及Microsoft 终端服务器应用时，其实是指代所有桌面控制类应用，包括Citrix Metaframe。

16.3.1　分析准备　　　　

当有用户反应MS-TS应用程序运行缓慢时，应首先问清楚慢在什么地方。然后，再到连接客户主机或受控端主机的LAN交换机上开启端口镜像功能，将相关端口的流量重定向至Wireshark主机。

16.3.2　分析方法　　　　

要想准定位MS-TS相关故障，首先应向一线用户询问具体遇到了什么问题，并按以下步骤行事。

1．当用户反应与MS-TS有关的应用程序运行速度缓慢时，应问他们：是屏幕中的数据呈现速度慢，还是窗口切换速度慢？

2．若得到的回答是窗口切换速度不慢，则说明并非MS-TS问题。要是MS-TS出了问题，就会出现窗口切换速度缓慢、鼠标键盘操作结果回显迟钝等现象。

3．若得到的回答是基于MS-TS运行的应用程序生成报表的速度变慢，则很有可能是该应用程序的后台数据库问题，并非MS-TS或Citrix问题。

4．若通信链路负载较高，则使用MS-TS相关应用的最终用户势必会反映，输入回显延迟较高。这是因为MS-TS应用的主要用途就是传输远程主机的屏幕变化情况，只要用户打字速度过快，在通信链路拥塞的情况下，就会感觉输入回显迟钝。

5．要想利用Wireshark获知通信链路的负载状况，请按以下步骤行事。

 	启用Wireshark自带的I/O Graphs工具。

 	在I/O Graphs窗口中，输入相关Wireshark显示过滤器，监控（MS-TS主控端的）上下行链路的负载状况。

 	在I/O Graphs窗口中的Y轴坐标区域内，选择Unit下拉菜单中的Bits/Tick菜单项。

6．按照上述设置，Wireshark I/O Graphs窗口看起来应该如图16.3所示。

7．由图16.3所示的流量模式可知，运行MS-TS主控端程序的主机会生成极高的下行流量，但却不怎么生成上行流量。请注意，在图16.3所示的I/O Graphs中，Y轴坐标的单位为Bits/Tick，即bit/s（在X轴区域内的Tick interval下拉菜单中，选择的是“1 sec”）。在抓包开始后的第485～500秒那段时间内，通信链路上的流量吞吐量达到了顶峰。也就是在那段时间内，用户感觉到了MS-TS应用运行缓慢（比如，鼠标或键盘操作结果回显缓慢等）。

 [image: 未标题-1]　注意

 Citrix ICA客户端在连接应用服务器（presentation server）时，所使用的TCP目的端口号是 2598或1494。

[image:]

图16.3

8．请别忘了，用户通过MS-TS主控端连接到MS-TS服务器之后，操纵的软件其实是安装在MS-TS服务器上的某种应用的客户端软件，也就是说MS-TS服务器还得作为客户端去连接别的应用服务器。因此，若MS-TS服务器“不给力”，也会让用户产生MS-TS应用运行缓慢的错觉。

9．若确诊为MS-TS故障，则有必要弄清故障具体出在网络层面还是系统层面，此时应执行如下操作。

 	应借助于Wireshark自带的I/O Graphs工具来了解通信链路的负载状况。如MS-TS应用运行缓慢确实是因为通信链路负载过高（见图16.3），则可以通过扩容链路带宽来解决。

 	应检查MS-TS服务器的性能状况。运行MS-TS应用的服务器的内存消耗量都颇为可观，因此需检查其内存（RAM）使用情况。

16.3.3　幕后原理　　　　

MS-TS、Citrix Metaframe等应用在运行时，需要通过网络来传输远程服务器的屏幕变化情况。用户要先从客户端（即安装了MS-TS客户端软件的主机或瘦客户端）连接到终端服务器，再使用安装在终端服务器上的各种应用程序客户端软件，来连接各应用服务器。图16.4所示为终端服务器的运作原理。

[image:]

图16.4

16.3.4　拾遗补缺　　　　

许多终端服务器软件的生产厂商都吹嘘自己的产品能在两个方面提升企业的生产率。厂商的销售人员首先会说他们的产品能方便IT人员对用户终端和各种软件客户端的管理，理由是各种应用程序的客户端软件都只需在终端服务器上安装，这样一来，就不用管理每个用户的PC以及其上所安装的各种软件了。其次，那些销售人员还会说，他们的产品一经部署，网络流量就会大大降低。

对于第一种说法，作者倒也不准备抬杠，而且该话题与本书的内容无关。不过，作者绝不认可第二种说法。在有多个用户同时连接终端服务器的网络环境中，网络流量的高低要取决于用户操作什么样的应用程序。

 	在操作基于文本或字符的应用程序（比如，ERP[企业资源规划]类应用程序）时，用户都是先输入数据，再点击某个按钮，最后查看结果。对于使用终端客户端的用户而言，要先连接到终端服务器，才能操作安装在终端服务器上的ERP客户端软件。此时，终端服务器会连接ERP程序的后台数据库。上述第二种说法能否成立，将取决于应用程序开发人员对后台数据库的设计，预期的流量（终端服务器与数据库服务器之间的流量）速率约为几十至几百kbit/s之间。

 	在终端客户端上操作诸如Word、PowerPoint之类的办公软件时，到底会生成多少流量则完全取决于用户的操作行为。若只是编辑普通的Word文档，几十到几百kbit/s 的流量也就够了。可要是编辑PowerPoint文档的话，则至少需要几百kbit/s甚至是几Mbit/s的流量。要是以全屏方式预览PowerPoint文档（打开PPT文件后，再按一下F5键），吞吐量将高达8～10Mbit/s。

 	通过终端客户端上网冲浪时，所耗带宽将会在几百kbit/s到几Mbit/s之间，具体的数字要取决于用户的上网行为。那要是在线观看高清视频呢？还是别这么干为妙。

在部署任何终端应用之前，都必须再三测试，以弄清该应用所耗实际带宽。有一次，有家软件公司为使其软件界面上的logo更为清晰醒目，便把它安置在了软件窗口的右上角，还让它每秒闪烁个10来次。该软件作为终端应用一经部署，便让一条带宽为2Mbit/s的通信链路拥堵不堪，这当然要归功于那个在软件窗口上闪来闪去的logo。有些东西要是没有事先测试，你就永远不知道它会怎样。

16.4　数据库流量及常见故障分析[1]

有些读者一定会对作者在本章安排这么一节内容而感到不解。在IT领域里，网络技术与数据库技术毕竟是截然不同的两个分支。精通数据库和应用程序开发技术的人一般都不懂网络技术，反之亦然，当然少数绝世牛人除外。所以说，一般不会让网络工程师去排除数据库故障，也不可能让DBA去排除网络故障。不过，通过抓取并分析流淌在网络中的流量，网络工程师可以帮助DBA解决某些数据库故障

在大多数情况下，当应用程序无法使用时，最终用户会首先认定是网络问题，从而对网络技术人员心存不满。因此，网络技术人员必须能准确判断故障是否真的跟网络有关。在某些特殊场合下，网络技术人员或许还要动用Wireshark抓取并分析网络中的流量，去配合DBA协查数据库故障。

16.4.1　分析准备　　　　

当有用户反映网络太慢的时候，网络技术人员首先需要判断网络是不是真的太慢。为此，请按下一小节所述步骤行事。

16.4.2　分析方法　　　　

若怀疑是数据库故障，请按以下步骤行事。

1．当有用户投诉网络太慢时，需要弄清楚以下事宜。

 	遭遇的是大面积用户投诉，还是个别用户投诉？影响的是总部站点网络内的用户，还是某个分支机构网络内的用户？若整个网络内的用户都受到了影响，则可以断定故障并非出在用来互连总部和分支机构网络的WAN线路上面。

 	是所有用户都反映网速慢，还是安装了某种应用程序的那一类用户反映网速慢？若为后一种情况，则应把注意力放到该应用程序上面。

 	是运行该应用程序客户端软件的主机与服务器之间的通信链路过载吗？导致链路过载的是该应用程序生成的流量吗？

 	是所有应用程序都运行缓慢，还是需要访问数据库的个别应用程序运行缓慢？是运行应用程序客户的PC太老太忙，还是服务器的资源不足呢？

2．在弄清了上述事宜之后，请按以下步骤行事。

 	配置LAN交换机，将其连接某台PC、服务器或路由器（用来连接远程站点网络的WAN路由器）的端口的流量，甚至是某个VLAN的流量，重定向至Wireshark主机。打开Wireshark软件，开始抓包。

 	在抓包的同时，点击Analyze菜单下的Expert Information菜单项，Expert Information窗口会立刻弹出。要注意观察该窗口中各标签栏内与TCP有关的各种事件（尤其是Error和Warning事件），了解与这些事件相对应的数据包的源、目IP地址和源、目TCP端口号信息。这些信息将有助于快速定位故障的原因。

 [image: 未标题-1]　注意

 用Wireshark抓取并分析Internet链路的流量时，一定会观察到很多来自/发往Internet Web站点或E-mail服务器的TCP数据包都身背了TCP Retransmission或TCP Duplicate ACK等字样。没有办法，访问Internet就是这样。然而，用Wireshark抓取并分析内网流量时，身背TCP Retransmission等字样的TCP数据包最多只应占总TCP流量的0.1%～0.5%。

3．若判断是网络中的主机、服务器或其他网络设备发生故障，请按本书之前各章所述来解决故障。不过，某些网络自身的问题也会对数据库应用的行为产生影响。在下面这个例子中，读者可以看到一客户机通过一条往返延迟为35～40毫秒的链路，与服务器通信时的举动。

4．由图16.5可知，Wireshark截屏中所示数据包全都归属于编号为8的TCP数据流（1），前三个TCP数据包是建立TCP连接的三次握手（TCP SYN/SYN-ACK/ACK）TCP报文段。作者已将Wireshark显示出的第一个数据包的时间设置为参考时间（2）（选中第一个数据包，点击右键，选择弹出菜单中的Set/Unset Time Reference菜单项）。构成这条编号为8的TCP数据流的TCP数据包的总数为371（3）。

[image:]

图16.5

5．由图16.6可知，客户机从每次发出数据库查询，到收到来自服务器的查询响应，所耗时间约为35毫秒。

[image:]

图16.6

6．由于这条编号为8的TCP数据流由371个数据包构成，因此客户机完成数据库查询所耗时间约为13秒（371×35毫秒）[2]。再加上因无线网络质量所导致的某些TCP重传，使得操纵该客户机的用户要等待10～15秒或更长的时间才能完成本次数据库查询任务。

7．在这种情况下，应与DBA协商如何通过改进数据库应用程序来降低过往于网络的数据包的数量。或者，可以让那台客户机不要通过无线网络去访问服务器，改用其他方式（比如，终端服务器或Web方式）去访问服务器。

8．有时，通过Wireshark抓包分析，还可以发现应用程序自身的问题。在图16.7所示的Wireshark截屏中，可以看见客户机向服务器连续发送了5个身背TCP Retransmission字样的TCP数据包。之后，客户机与服务器之间又重新通过三次握手，建立起了TCP连接（3）。这很像是TCP故障，但只有当用户在该应用程序客户端软件的特定窗口内执行某些操作时，才能在Wireshark抓包主窗口的数据包列表区域内看见上述景象。出现这样的问题，是由于该应用程序设计失当，每当用户执行上操作时，服务器端软件就会停止响应客户端软件发起的TCP连接。

[image:]

图16.7

16.4.3　幕后原理　　　　

常言道，隔行如隔山，网络技术人员肯定玩不转数据库。不过，网络技术人员有义务配合DBA去排除与数据库有关的故障，这也是作者在本章安排这些内容的目的。

16.4.4　拾遗补缺　　　　

在Wireshark抓包主窗口的数据包列表区域中，选中一个隶属于某条数据库客户端与数据库服务器间TCP会话的数据包，点击右键，选择弹出菜单中的Follow TCP Stream菜单项，Follow TCP Stream窗口会立刻弹出。可以让DBA通过该窗口所示内容来了解经由网络传输了哪些数据。

若数据库客户端与数据库服务器之间的网络延迟较高（比如，数据库客户端通过移动蜂窝网络访问数据库服务器），则实际操纵应用程序的用户就会觉得卡顿。此时，需考虑让用户采用其他方式来访问数据库服务器（比如，采用终端服务器或Web方式）。

数据库服务器的运作方式同样重要。若某台数据库服务器需要从另一台文件服务器获取数据，即便数据库客户端与该数据库服务器之间通信正常，但只要前两者之间的通信出现问题，还是会对数据库应用产生影响。在排除数据库相关故障时，请务必弄清待查目标的各个环节。

对网络技术人员而言，最重要的是要跟真正有本事的DBA处好关系，说不定哪天就能用上人家。

16.5　SNMP流量分析

SNMP是一种名气很大的协议，可利用其来定期收集网络设备的数据和统计信息，从而达到集中管理并监控网络中各种设备的目的。除了监控功能之外，被赋予适当权限的SNMP服务器还可以利用该协议来配置并修改网络设备的设置。支持SNMP的设备通常包括交换机、路由器、服务器、工作站、主机、VoIP电话等。

SNMP有三个版本：SNMPv1、SNMPv2c和SNMPv3，知道这一点非常重要。后期推出的SNMP版本v2c和v3在性能和安全性方面要更胜一筹。

SNMP包括以下3个组件。

 	正在被SNMP管理的设备（名为被管设备）。

 	SNMP代理：在被管设备上运行的一款软件，该软件从被管设备收集数据，将数据存储进名为管理信息库（Managed Information Base，MIB）的数据库。SNMP代理会根据配置定期将数据/统计信息、事件以及SNMP trap导出至SNMP服务器（通过UDP 161端口）。

 	SNMP服务器：也称为网络管理服务器（Network Management Server，NMS）。该服务器需要跟网络内的所有SNMP代理通信，采集SNMP代理导出的数据，构建中心数据库。借助于SNMP服务器，管理网络的IT人员即可远程监控、管理和配置网络及网络设备了。

在网络设备中实现的某些功能独特的MIB大多都是厂商专有的，这一点请读者务必牢记。几乎所有的网络设备厂商都在宣传其设备实现了这样的MIB。

16.5.1　分析准备　　　　

与SNMP有关的故障通常都会由网管团队反映。故障表象包括：SNMP服务器无法在指定的时间间隔内从某台被管设备获取任何统计信息或SNMP trap，要不就是SNMP服务器与被管设备之间完全失联。要解决此类故障，请按下一小节所述步骤行事。

16.5.2　分析方法　　　　

在出现SNMP故障的情况下，请按以下步骤行事。

当有网管团队成员反映出现SNMP故障时，需弄清以下事宜。

1．涉及SNMP故障的设备是新近接入网络的新设备吗？换而言之，该设备的SNMP功能是否启用，能否正常运作？

 	若为新近接入网络的新设备，请与该设备的管理员联系，并检查该设备的SNMP相关配置，比如，团体（community）字串的配置。

 	若SNMP相关配置正确无误，请确保该设备所设NMS的IP地址正确无误，并检查相关的密码设置。

 	若启用了支持加密的SNMPv3，请务必检查与加密有关的配置，比如，传输方法的配置。

 	若上述配置看起来正确无误，请确保该被管设备与NMS之间具备IP连通性，在被管设备上ping NMS的IP地址即可验证是否具备IP连通性。

2．若被管设备的SNMP功能能够正常运作，但NMS在指定时间内仍未从该设备采集到任何统计或告警信息。

 	应检查该设备的控制平面或管理平面是否存在问题，使其无法将SNMP统计信息传递给NMS。请注意，对网络中的大多数设备而言，SNMP进程是所有进程中优先级最低的，也就是说，若该设备总是运行高优先级进程，便会将SNMP请求和响应消息缓存在队列中。

 	SNMP故障涉及网络中的个别设备还是同时涉及多台设备？

 	检查网络（被管设备和NMS之间的网络）本身是否存在任何故障？比方说，在L2生成树协议收敛期间，被管设备和SNMP服务器之间可能会出现丢包，NMS将会管理不到被管设备。

16.5.3　幕后原理　　　　

如本节前文所述，SNMP是一种简单而又直接的协议，与SNMP标准以及MIB OID有关的所有信息都能在Internet上搜到。

[1]　译者注：本节内容与15.5节重复。

[2]　译者注：应该是371/2×35毫秒。

第17章　排除SIP、多媒体及IP电话故障

本章涵盖以下内容：

 	IP电话技术的原理及常规运作方式；

 	SIP的运作原理、消息及错误状态码；

 	IP上的视频和RTSP；

 	Wireshark的RTP流分析和过滤功能；

 	Wireshark的VoIP呼叫重放功能。

17.1　简介

应把语音、视频及多媒体流量的传递一分为二来看待。首先，是多媒体流量（即实际的语音或视频流量）的传递；其次，是信令流量的传递，信令的作用包括语音/视频呼叫的建立和终止、邀请参与者参与通话/视频等。一直以来，有以下两个协议族可用来提供语音或视频的信令功能。

 	ITU-T协议族：包括框架性协议H.323、起注册及地址解析作用的H.225协议，以及起控制作用的H.245协议。

 	IETF协议族：包括信令协议SIP（RFC 3261及其更新版本）以及用来描述会话参数的SDP（会话描述协议）（RFC 4566）。

在过去几年，ITU-T协议族已被逐步淘汰，如今的大多数多媒体应用使用的都是IETF协议族，这也是本章重点关注的内容。图17.1所示为供多媒体应用使用的IETF协议族的架构。

无论是ITU-T协议族还是IETF协议族，全都采用RTP和RTCP（RFC 3550及其更新版本）来传输实际的多媒体流量，前者用于多媒体流的传输，后者则用来控制并保证多媒体流的质量。

图17.1所示为在IP网络中用来传递多媒体流量的IETF协议族的架构。

[image:]

图17.1

图17.1中呈现的所有协议都基于TCP/IP协议族，本章会探讨其中的大多数协议，同时会讲解如何用Wireshark分析音频流和视频流。

17.2　IP电话技术的原理及常规运作方式

IP电话技术是指将模拟的语音呼叫信号转换为IP数据包并放到IP网络中传送的技术。要先用呼叫信令协议（比如，SIP）在端点之间建立呼叫会话，再用身为应用层协议的实时传输协议（RTP）通过IP网络传送多媒体流。音频（或视频）数据包在传送过程中会封以RTP头部，一般都通过UDP传送[1]。

本节会讲解IP电话技术的常规运作方式，同时还会通过Wireshark抓包分析，来说明在端到端的传递音频流的过程中RTP和RTCP是如何发挥作用的。

17.2.1　分析准备　　　　

由于IP电话会把模拟呼叫转换为数字呼叫，因此只能抓取经过IP电话转换后的IP数据包。Wireshark无法抓取任何模拟信号。

17.2.2　分析方法　　　　

1．RTP的运作方式

打开一个Wireshark抓包文件，点击Telephony菜单，选择RTP | RTP Streams，如图17.2所示。

[image:]

图17.2

RTP Streams窗口会立刻弹出，Wireshark会把识别出的所有RTP流汇集成表，并在该窗口中加以呈现，如图17.3所示。

[image:]

图17.3

通过RTP Streams窗口，便可获知每一条RTP流的以下细节。

 	Source Address：RTP流的源IP地址，可以是一部IP电话或一台电话会议单元的IP地址。

 	Source Port：RTP流的UDP源端口号。生成RTP流的设备会随机选择一个本机未用的UDP端口号，作为该RTP流的UDP源端口号。

 	Destination Address：RTP流的目的IP地址。

 	Destination Port：RTP流的UDP目的端口号。生成RTP流的设备会从RTP所用的UDP端口号段中选择一个端口号，作为该RTP流的UDP目的端口号。为了支持并发呼叫，有一个UDP端口号段都可用作为RTP流的目的端口号，该号段的范围为16384～32767。

 	SSRC：同步源标识符，即RTP流的标识符。

 	Payload：RTP流的净载类型（通常所指为编码类型）。

 	RTP流的其他属性信息，包括抓到的隶属于RTP流的数据包的总数、丢包数、数据包之间的最长间隔时间、最长抖动时间及平均抖动时间。

在RTP Streams窗口中选中相关的RTP流，点击右键，在弹出的菜单中选择Prepare Filter菜单项，即可筛选出隶属于该RTP流的所有数据包，用Follow TCP/UDP Stream功能也可以起到相同效果[2]。

以下是对图17.4所示RTP数据包做标记之处的解释，次序为从上到下。

 	RTP数据包所使用的信令协议以及信令数据包的编号。

 	RTP数据包的净载所含音频的编码类型，对于本例，该RTP数据包的编码类型为G.711。

 	RTP数据包的序列号，每个RTP数据包都包含一个序列号字段，发送方每发出一个RTP数据包，都会将序列号字段值加1。

 	RTP数据包的时间戳，表示RTP数据包中净载数据的首字节的采样时间。

[image: 1704]

图17.4

RTP数据包的序列号和时间戳可用来测量RTP流量的服务质量。

2．RTCP的运作方式

RTP和RTCP协议所使用的端口号并不固定，RTP协议流量的源和目的端口号总是为偶数，而与之对应的RTCP协议流量的源和目的端口号则总是分别采用下一个奇数。比方说，如RTP协议流量的源和目的端口为23978和8228，那么与之对应的RTCP协议流量的源和目的端口号将会是23979和8229。于是，在知道RTP数据包的源、目端口号的情况下，即可得知配套的RTCP数据包的源、目端口号[3]。

图17.5所示的RTP数据包隶属于源IP地址为14.50.201.48，目的IP地址为172.18.110.203，源UDP端口号为23978，目的UDP端口号为8228的RTP流。与该RTP流相关联的SSRC为0x252eb528。在知道了RTP流的UDP源、目端口号23979和8228之后，即可确定与其相关联的RTCP流的UDP源、目端口号。

[image:]

图17.5

由图17.6可知，该数据包的Sender SSRC字段值为0x252eb528，与图17.5中所示RTP数据包的SSRC匹配。该数据包是RTCP消息的一种——RTCP发送方报告（Sender report）消息，包含了发送发向接收方通报的在传RTP流的详细信息。需要确保下述信息。

 	Fraction lost值为0或在可容忍的合理范围之内。该计数器用来显示当前和上一条发送方报告之间RTP数据包的丢包数量[4]。

 	Cumulative number of packets lost值为0或在可容忍的合理范围之内。该计数器用来显示对应的RTP流中RTP数据包的总丢包数。

 	Interarrival jitter值在可容忍的合理范围内。该计数器用来显示对收到的数据包做出的抖动测量[5]。

[image:]

图17.6

只要发现上述计数器的值不在合理的范围之内，端到端的RTP流就有可能会发生故障。RTCP协议的用途及其信息通报机制详见本章后文。

17.2.3　幕后原理　　　　

拨打IP电话所建立的端到端的呼叫过程完全仰仗RTP和RTCP这两种协议[6]，如图17.7所示。RTP是一种应用层协议，用来在端点之间传输多媒体音频和视频流。

[image:]

图17.7

1．RTP的运作原理

RTP用来承载实际的多媒体数据。在RTP之前，有各种用于视频和音频压缩的编解码类型[7]。图17.8所示为RTP数据包的封装方式。

[image:]

图17.8

RTP头部包含了与RTP流自身以及流向有关的详细信息，这些信息可用于会话识别、弹性以及实时的抖动/延迟测量。RTP提供的机制包括定时恢复、丢包检测及纠正，净载及来源识别，以及多媒体同步等[8]。

RTP将UDP用作为传输层协议。图17.9所示为RTP数据包的结构。

[image:]

图17.9

下面是对RTP头部所含各字段的解释。

 	版本（V）：其值用来表示RTP协议的版本号。

 	填充（P）位：该位置1时，表示RTP数据包的末尾填充有一或多个不属于净载数据部分的字节。

 	扩展（X）位：该位置1时，表示RTP标准头部之后还紧跟着扩展头部。

 	SCRC计数（CC）：其值指明了RTP固定头部之后SCRC字段的数量。

 	Marker（M）位：用来标记RTP流中的重要事件。比如，可将该位置1，来标识视频帧的边界。

 	净载类型：用来指明RTP净载数据的格式，以便接收端应用程序解释。

 	序列号：发送方每发出一个RTP数据包，便会将该字段值加1，接收方可据此检测RTP数据包是否丢失。

 	时间戳：其值指明了RTP数据包中首字节的采样时间。

 	同步源（SSRC）：其值为随机选择，用来标识RTP数据流，以使同一条RTP会话中没有任何两个同步源具有相同的SSRC标识符。

 	贡献源标识符列表（CSRC）：其值用来指明对RTP数据包中净载数据有贡献的贡献源（亦即RTP视频流的来源）。

图17.10所示为序列号字段和时间戳字段在RTP数据包所起的作用。

[image:]

图17.10

由图17.10可知，发送方每发出一个RTP数据包，便会将序列号字段值加1；而时间戳字段值则为RTP数据包中净载数据的首字节的采样时间。时间戳字段值所表示的时间是连续的、单调增长的，即使在没有数据输入或不发送数据时也应如此。对于RTP数据包1，序列号字段值和时间戳字段值都是1；对于RTP数据包2，那两个字段值分别为2和12（12指明了对RTP数据包2的净载数据的首字节的采样时间），依此类推。接收方能根据序列号字段值来判断RTP数据包的发送顺序，凭借时间戳字段值来获悉RTP数据包离开发送方的时间。接收方应用程序正是凭借RTP头部中这两个字段来回放音频/视频流的。

2．RTCP的运作原理

RTCP明确定义了在会话的源和目的之间交换的报告[9]。

RTCP需与RTP协同运作，发送方和接收方之间会以交换RTCP数据包的方式，来监控RTP数据包的质量并控制RTP流的传输。每一条RTP流，都会与一条RTCP流相对应，后者用来提供与前者有关的各种报告。报告包含统计信息，比如，已发出的RTP数据包的数量、RTP数据包的丢包数、网络的抖动情况，以及单/双向网络的延迟情况等。应用程序可以利用这些报告来调整发送方传送RTP流的速率或行使诊断目的。

RTCP有几种报告类型，发送方和接收方会根据收发的数据来彼此更新报告的内容[10]。以下所列为RTCP消息的几种类型：

 	发送方报告（类型200）；

 	接收方报告（类型201）；

 	来源描述（类型202）；

 	BYE（类型203）；

 	应用程序专有（类型204）。

RFC 3550对每一种RTCP数据包都做了详细说明。通过图17.11所示的RTCP发送方报告消息，可以了解到发送方向接收方通报的已发RTP数据包的个数/字节数，以及时间戳等信息。

[image:]

图17.11

17.3　SIP的运作原理、消息及错误代码

SIP（RFC 3261及各种扩展）是一种信令及控制协议，可用在一或多个参与者之间创建、修改及终止会话。在建立多媒体会话交换SIP消息的过程中，包含会话参数信息的SDP（RFC 4566）消息也会被封装在SIP消息中传递。多媒体会话创建之后，实际的语音或视频流才会被封装进RTP数据包中传送，可通过RTCP协议来进行控制（RTCP为可选协议）。

在IETF制定的SIP标准文档中，把SIP会话的端点命名为用户代理（User Agent，UA）。因此，创建SIP会话的过程实际上就是UA之间进行协商，对会话参数达成一致意见的过程。至于提供定位会话参与者、注册、呼叫转发以及其他服务的网络主机，则被称为服务器（server），UA可以向服务器发送注册请求消息、会话邀请请求消息以及其他各种请求消息。

本节将介绍用来传递多媒体流量的IETF协议族中的信令协议——SIP，同时会详述如何使用Wireshark来验证SIP是否运作正常。

17.3.1　准备工作　　　　

要想建立端到端呼叫流，可在不同SIP端点之间创建SIP会话[11]。

应尽量将Wireshark主机连接在多条公共SIP会话交汇的网络设备上抓包。在图17.12所示的网络拓扑中，应该将Wireshark主机连接在IP地址为172.18.110.203的节点上进行抓包，因为该节点终结了两条SIP会话[12]。

[image:]

图17.12

17.3.2　操作方法　　　　

1．打开Wireshark抓包文件，点击Telephony菜单中的SIP Flows菜单项，如图17.13所示。

[image:]

图17.13

2．在弹出的SIP Flows窗口中，会列出Wireshark从抓包文件中识别出的所有SIP流。点击Telephony菜单中的SIP Statistics菜单项，在弹出的SIP Statistics窗口中则会列出抓包文件中与SIP流量有关的统计信息。图17.14所示为Wireshark SIP Flows窗口。

[image:]

图17.14

3．由图17.14可知，Wireshark从抓包文件中识别出了两条SIP流。一个直连UA（SIP号码为4085267260）的CUBE或CCM（IP地址为172.18.110.20）发起通往另一个CUBE（主机名为cube1.entcomp1.com）的SIP会话[13]。

4．在Wireshark抓包主窗口的数据包列表区域内，用Follow UDP/TCP Stream功能筛选出一条有待分析的SIP流，并生成相应的显示过滤器。点击Statistics 菜单中的Flow Graph菜单项[14]。

5．在弹出的Flow窗口中勾选Limit to display filter复选框，让Wireshark只生成指定SIP流的图形。图中会列出交换于SIP端点之间的所有SIP消息，分析起来十分方便。

6．除了能用Follow UDP/TCP Stream功能生成显示过滤器之外，还可以将本地UUID作为显示过滤器的参数。可以利用这种显示过滤器，筛选出与本地UUID相关联的所有SIP会话。当端点（本例为IP电话）触发第一条SIP会话时，会包括自己的ID作为本地UUID，通往远程端点的路径沿途的后续SIP会话都会包含该UUID[15]。对于本例，IP Phone 1的本地UUID为025ac8cd-0010-5000-a000-acbc3296f7dd。

7．图17.15所示为根据上述过滤方法筛选出的与指定的本地UUID相关联的所有SIP会话。在图17.15中，可以看到下两条SIP会话：

 	从172.18.110.200向172.18.110.203发起的SIP会话；

 	从172.18.110.203向172.18.110.206发起的SIP会话。

[image:]

图17.15

8．点击Statistics菜单中的Flow Graph菜单项，在弹出的Flow Graph窗口中，勾选Limit to display filter复选框，即可让隶属那两条SIP会话所有SIP数据包浮出水面，如图17.16所示。

[image:]

图17.16

17.3.3　幕后原理　　　　

1．当某一UA（用户代理设备）希望建立多媒体会话时，将会向远端UA发送包含INVITE字样的SIP呼叫控制请求消息，后者也会发出SIP响应消息回应前者，两者相互交流的过程如图17.17所示。

[image:]

图17.17

 [image: 未标题-1]　注意

 按SIP协议的行话来讲，末端用户设备被称为用户代理设备（User Agent，UA）。UA既可以发起呼叫也可以接收呼叫。IP电话、摄像头、具备语音或视频功能的客户端软件，以及能参与SIP会话的任何软、硬件都属于UA。

2．在身负INVITE字样的SIP消息发出之后，对端也应该会回复身背Trying、Session Progress、Ringing字样或组合字样的SIP消息。

3．图17.17所示为SIP会话的发起方和响应方之间的交流过程。

 	会话发起方发出身背INVITE字样的SIP呼叫控制请求数据包，这必然是建立SIP会话的首个数据包。

 	会话应答方会立刻回复身背Trying（状态码100）和Session Progress（状态码183）字样的SIP响应数据包，3秒之后，还会回复身背Ringing（状态码180）字样的SIP响应数据包。此后，当有人提起电话听筒时，会话应答方还会继续发出身背OK字样的SIP响应数据包。

4．若UA之间的通话要通过电话交换机来转接，则SIP会话的建立过程应该如图17.18所示。诸如IP电话交换机、呼叫管理器、CUBE、IP PBX之类的VoIP术语，读者一定都耳熟能详，其实它们都是指能在末端设备之间居中调停的电话交换机。在图17.18所示的拓扑中，中间有多个CUBE，有助于建立端到端呼叫流[16]。

[image:]

图17.18

5．左侧的CUBE或交换机（IP为172.18.110.200）向居中的交换机（IP为172.18.110.203）发出身背INVITE字样的SIP呼叫控制请求数据包。

6．居中的交换机回复身背Trying字样的SIP响应数据包。

7．居中的交换机向右侧的CUBE或交换机（IP为172.18.110.206）发出身背INVITE字样的SIP请求数据包。

8．右侧的交换机先回复身背Trying字样（状态码100）的SIP响应数据包，再发出包含Ring字样（状态码180）的SIP响应数据包[17]。

9．收到右侧的交换机发出的包含Ringing字样（状态码180）的SIP响应数据包时，居中的交换机会将该消息转发给左侧的交换机。

10．在应答呼叫时，目的端点将会向右侧交换机上的通信管理器发出包含OK字样（状态码200）的SIP响应数据包。在这种SIP消息的消息主体中包含了SDP的内容。SDP的内容包括接收RTP流的UDP端口信息以及由目的端点（也被称为SDP Offer）提供的音频（及视频）的编码格式列表。这种包含OK字样（状态码200）的SIP响应数据包将穿越SBC（172.18.110.203）和通信管理器（172.18.110.200），直至抵达发起SIP会话的UA[18]。

11．图17.19所示为包含OK字样（状态码200）的SIP响应消息。由消息主体中的SDP数据可知，接收该消息的主叫（发起SIP会话的）UA将会把UDP 25944端口作为发送RTP音频流的目的UDP端口。此外，SIP响应消息的SDP数据还包含了其他信息，比如，被叫（响应SIP会话的）UA所支持的音频和视频的编码格式。

[image:]

图17.19

12．收到包含OK字样（状态码200）的SIP响应消息之后，发起SIP会话的UA将会回复身背ACK字样的SIP呼叫控制请求消息，消息中会包含本机选择的音频编码格式以及接收RTP语音流的端口信息。这条身背ACK字样的SIP呼叫控制请求消息会穿越SBC（172.18.110.203）和通信管理器（172.18.110.206），直至抵达响应SIP会话的UA。收到这条SIP呼叫控制请求消息之后，响应SIP会话的UA在发送RTP音频流时会使用目的UDP端口8260，在接收RTP音频流时则使用UDP 25944端口，如图17.20所示。

[image: 1720]

图17.20

13．当用户挂断电话时，SIP设备之间会交换身背BYE字样的SIP消息，终止SIP会话。

14．只要在任何阶段收到了错误消息，连接将无法建立[19]。

不要忘记，SIP消息通过UDP报文段来承载，而UDP协议是一种非面向连接、不可靠的传输层协议。在网络质量堪忧的情况下，包含INVIATE方法的SIP呼叫控制请求消息有可能会在传输途中丢失。所以说，如果SIP会话发起方收不到任何SIP响应消息，则很有可能是其发出的包含INVIATE方法的SIP呼叫控制请求消息因网络质量问题而未能抵达SIP会话接收方。

以下所列为SIP响应消息中所包含的各种状态码以及相关解释，它们几乎都定义于RFC 3261，另有说明的除外。

1．状态码1XX——临时/信息状态码

当SIP会话接收方收到SIP会话发起方发出的SIP控制请求消息，且正在做进一步处理时，便会向SIP会话发起方发出包含状态码1××的的SIP响应消息（来通报此事）。表17.1所列为各种临时/信息状态码以及相关描述。

表17.1

 	 状态码

 	 事件名

 	 描述

 	 100

 	 Trying

 	 表示服务器已收到并接受了（SIP会话发起方发出的）SIP控制请求消息，且正在对本次呼叫做进一步的处理

 	 180

 	 Ringing

 	 表示接收本次呼叫的UA正在（发出振铃）提醒用户。当接收本次呼叫的UA发出振铃时，将会向主叫端UA回发包含此状态码的SIP响应消息

 	 181

 	 Call forward

 	 表示呼叫被前传至另一目的地

 	 182

 	 Queued

 	 表示被叫方暂时不便接听（比如，占线），服务器会暂时接管呼叫，以便稍后再试

 	 183

 	 Session
 progress

 	 表示接收方服务器正在处理会话。与会话处理有关的详细信息，将会由包含此状态码的SIP响应消息头部中的某些字段来承载

2．状态码2XX——成功状态码

当SIP会话接收方成功接收、识别并接受了SIP会话发起方发出的SIP控制请求消息时，便会向SIP会话发起方发出包含状态码2××的SIP响应消息来通报此事。表17.2所列为各种成功状态码以及相关描述。

表17.2

 	 状态码

 	 事件名

 	 描述

 	 200

 	 Ok

 	 表示SIP会话发起方发出的SIP控制请求消息已被SIP会话接收方接受并成功处理

 	 202
 （定义于RFC 3265）

 	 Accepted

 	 表示SIP会话发起方发出的SIP控制请求消息已被SIP会话接收方接受且正在处理，但操作尚未完成

3．状态码3XX——重定向状态码

当SIP会话接收方只有采取重定向操作才能完成SIP会话发起方发出的请求时，便会向后者发出包含状态码3××的SIP响应消息来通报此事。表17.3所列为各种重定向状态码以及相关描述。

表17.3

 	 状态码

 	 事件名

 	 描述

 	 300

 	 Multiple
 choices

 	 表示接收SIP控制请求消息的服务器在解析过消息中所含目的地址之后，发现有很多转发选择，亦即呼叫可被转发至多个指定位置。服务器可在包含此状态码的SIP响应消息的消息主体中列出资源的特征及位置，好让（发出SIP控制请求消息的）UA从中选择一个最合适的呼叫目的地址，并将SIP控制请求消息重定向至该地址

 	 301

 	 Moved
 permanently

 	 译者注：原文对SIP状态码301～380的描述照抄自RFC 3261。在译者看来，若未对SIP消息的格式做详细介绍，按字面意思翻译这些内容没有任何意义，且作者添加这些内容只是为了凑字数，跟本书主题无关，故而略过不译

 	 302

 	 Moved
 temporarily

 	

 	 305

 	 Use proxy

 	

 	 380

 	 Alternative
 service

 	

4．状态码4XX——客户端错误状态码

当SIP会话发起方发出的SIP控制请求消息包含了错误的语法，或消息不能被SIP会话接收方（服务器）解析时，后者便会向前者发出包含状态码4××的SIP响应消息来通报此事。表17.4所列为各种客户端错误状态码以及相关描述。

表17.4

 	 状态码

 	 事件名

 	 描述

 	 400

 	 Bad request

 	 表示SIP会话接收方（服务器）因SIP控制请求消息中包含了错误的语法而无法对其进行解析

 	 401

 	 Unauthorized

 	 表示SIP会话接收方（服务器）收到了UA发出的SIP控制请求消息，但需要对UA执行认证

 	 402

 	 Payment
 required

 	 预留以供将来使用

 	 403

 	 Forbidden

 	 表示SIP会话接收方（服务器）能识别UA发出的SIP控制请求消息，但拒绝对其进行处理。UA不应重复发送之前曾发出过的SIP控制请求消息

5．状态码5XX——服务器错误状态码

若SIP会话发起方收到了包含状态码5××的SIP响应消息，则表示SIP会话接收方（服务器）无法解析本机发出的有效的SIP控制请求消息。表17.5所列为各种服务器错误状态码以及相关描述。

表17.5

 	 状态码

 	 事件名

 	 描述

 	 500

 	 Server internal
 error

 	 表示服务器因异常状况无法处理UA发出的SIP呼叫控制请求消息

 	 501

 	 Not implemented

 	 表示接收SIP控制请求消息的服务器不支持发出此消息的UA请求执行的功能

6．状态码6XX——全局故障状态码

收到包含状态码6××的SIP响应消息，则意味着SIP会话发起方之前（通过发出SIP控制请求消息）所请求的功能在任何一台服务器都无法执行。表17.6所列为各种全局故障状态码以及相关描述。

表17.6

 	 状态码

 	 事件名

 	 描述

 	 600

 	 Busy
 everywhere

 	 表示能成功联络上接收方系统，但此时该用户繁忙，无意接受呼叫，且无任何可替代的目标端系统（比如，语音信箱服务器）能够接收呼叫

 	 603

 	 Decline

 	 表示能成功联络上接收端UA，但该用户明确表态不愿意参与呼叫，且无任何可替代的目标端系统（比如，语音信箱服务器）愿意接收呼叫

 	 604

 	 Does not exist
 anywhere

 	 当SIP会话发起方希望联络某个用户时，会向服务器发出SIP控制请求消息，在消息中会包含该用户所在位置（URI）。若服务器所持权威信息表明，该用户不存在，便会回复包含状态码604的SIP响应消息

 	 606

 	 Not acceptable

 	 表示SIP会话发起方能成功联络上用户的代理（agent），但在前者发出的SIP控制请求消息的消息主体中，由SDP描述的会话中的某些属性不被后者接受

17.4　IP上的视频和RTSP

据Internet协会发布的互联网报告显示，IP视频流量占全球Internet总流量的70%以上。在娱乐和教育行业，利用成熟的IP网络传输视频内容十分盛行。可用各种编解码器将视频内容编码成比特流，并使用RTP作为传输协议，来端到端地交付视频数据。

视频流量既可以是流视频，也可以是一对一的视频通话。无论哪种形式，RTP都会雷打不动地作为交付视频数据的协议，不过可使用不同的控制平面信令协议来建立视频呼叫会话。比方说：

 	SIP可用作为视频呼叫的信令协议；

 	RTSP可用作为流视频的信令协议。

本节会介绍这两种协议，同时会讲解如何使用Wireshark来分析这两种协议的正常运作方式。

17.4.1　分析准备　　　　

实施抓包的端口镜像工作既可以在客户端完成，也可以在服务器端完成。请将Wireshark主机连接到端点附近，开始抓包、分析[20]。

17.4.2　分析方法　　　　

SIP信令协议（见图17.21）[21]。

[image:]

图17.21

当使用SIP作为信令协议时，端点之间的SIP消息交换机制，以及视频流量转发路径沿途任何一对CUBE/SIP代理之间的SIP消息交换机制，都与上一节所述完全相同。发起视频呼叫时，端点之间交换的其他信息如下所列。

1．当端点之间发起视频呼叫时，在状态码为200（身背OK字样）的SIP响应消息的SDP数据中，不但会包含音频流的RTP信息，还会包含视频流的RTP信息。

2．图17.22所示为状态码为200的SIP响应消息，其SDP数据包含了音频流和视频流的多媒体描述细节。

[image:]

图17.22

3．由图17.22可知，该SIP响应消息通告的视频编码格式为H.264；通告的接收音频流和视频流的UDP端口分别为23978和30290。

4．由图17.23可知，收到图17.22所示状态码为200的SIP响应消息后，远程视频端点在发送RTP视频流时选择的编码格式为H.264，已将UDP 30290端口作为该RTP视频流的目的端口。

[image:]

图17.23

实时流媒体协议（RTSP）

与SIP消息一样，RTSP消息同样包含用来通告RTP音频/视频流信息的SDP数据。

1．打开Wireshark抓包文件，应用显示过滤器rtsp，筛选出所有RTSP数据包。

2．点击Statistics 菜单中的Flow Graph菜单项。

3．在弹出的Flow Graph窗口中，勾选Limit to display filter复选框，让Wireshark只生成指定RTSP流的图形。图中会出现交换于客户端和多媒体服务器之间的所有RTSP消息。图17.24所示为客户端（IP为10.83.218.91）与多媒体服务器（IP为184.72.239.149）建立RSTP会话的过程。

[image:]

图17.24

4．点击Telephony菜单中的RTSP | Packet Counter子菜单项，如图17.25所示。在弹出的Packet Counters窗口中，会列出抓包文件中与RTSP流量有关的统计信息。

[image:]

图17.25

5．RSTP的常规运作方式详见下一小节。

17.4.3　运作原理　　　　

跟受控于SIP的音频流量一样，受RTSP控制的音频或视频流量也要由RTP来承载。RTSP在运作方式上似乎是在刻意模仿HTTP，所使用的语法也几乎相同。

表17.7所列为常见的RTSP方法（命令），其中C表示客户端，S表示服务器。

表17.7

 	 方法

 	 方向

 	 作用

 	 OPTIONS

 	 C到S或S到C

 	 确定服务器/客户端所具备的可选功能

 	 DESCRIBE

 	 C到S

 	 获取对流媒体的描述

 	 GET_PARAMETERS

 	 C到S

 	 获取URI中参数的值

 	 ANNOUNCE

 	 C到S或S到C

 	 宣告并描述一条新会话

 	 SETUP

 	 C到S

 	 创建一条流媒体会话

 	 PLAY

 	 C到S

 	 开始交付流媒体

 	 RECORD

 	 C到S

 	 开始记录流媒体

 	 PAUSE

 	 C到S

 	 暂停交付流媒体

 	 REDIRECT

 	 S到C

 	 重定向至另一台服务器

 	 TEARDOWN

 	 S到C

 	 停止交付流媒体，释放相关资源

表17.8所列为RTSP响应状态码的分类情况。

表17.8

 	 状态码编号

 	 类型

 	 含义

 	 1xx

 	 信息

 	 表示服务器收到RTSP请求消息，正在进行处理

 	 2xx

 	 成功

 	 表示服务器已接受、识别并认可了客户端通过RTSP请求消息所传达的操作请求

 	 3xx

 	 重定向

 	 服务器告知客户端，要想完成通过RTSP请求消息所传达的操作请求，还需采取进一步的行动

 	 4xx

 	 客户端错误

 	 表示客户端发出的RTSP消息中包含了错误的语法，或服务器未执行客户端通过RTSP消息传达的操作请求

 	 5xx

 	 服务器错误

 	 表示服务器未能执行客户端通过RTSP消息传达的明显有效的操作请求

1．视频客户端（IP为10.83.218.91）通过TCP目的端口554发起建立RTSP会话，如图17.26所示。

[image:]

图17.26

2．会话建立之后，客户端会发出包含OPTIONS方法及资源信息（所指为客户端请求观看的视频信息）的RTSP请求消息。由图17.27所示的RTSP请求消息可知，客户端请求观看的资源为mp4:BigBuckBunny_175k.mov，来自184.72.239.149。

[image: 1727]

图17.27

3．服务器会回复包含OK字样（状态码200）的RTSP响应消息。这条RTSP响应消息还可以用来通告服务器所具备的能力。RTSP响应消息中包含的Cseq编号来自RSTP请求消息。

4．客户端发出包含DESCRIBE方法的RTSP请求消息，描述URI指向的资源，如图17.28所示。这条RTSP请求消息用于从服务器获取内容描述或多媒体对象。在后续的每一条RTSP请求消息中，CSeq编号都会递增。

[image:]

图17.28

5．服务器会回复包含OK字样（状态码200）的RTSP响应消息。这条RTSP响应消息会携带SDP数据，其中包含了与会话和内容有关的信息。由图17.29所示RTSP响应消息的SDP数据可知，服务器向客户端通告的音频流和视频流的编码方式分别为Dynamic-RTP类型96和Dynamic-RTP类型97。

[image:]

图17.29

6．与SIP会话不同，RTSP会话不通过SDP数据来交换RTP端口信息，而是通过SETUP方法来通告。客户端会发出携带SETUP方法的RTSP请求消息，消息中包含了用来传递RTP音频流的UDP端口号。

7．由图17.30所示的RTSP请求消息可知，客户端向服务器通告的RTP音频流的UDP端口号为50960，RTCP流量的端口号为50961。

[image:]

图17.30

8．RTP视频流的端口信息也会通过包含SETUP方法的RTSP请求消息通告。

9．收到服务器回复的包含OK字样（状态码200）的RTSP响应消息之后，客户端会发出包含其他方法（比如，PLAY方法）的RTSP请求消息通告，开启音频/视频流的接收。

17.4.4　拾遗补缺　　　　

RFC 7826提议了RTSP v2.0，废弃了定义于RFC 2326的RTSP v1.0。

17.5　Wireshark的RTP流分析和过滤功能

Wireshark内置有各种分析RTP音频流和视频流的工具，非常好用。本节会介绍这些工具以及在排障时如何使用这些工具。

17.5.1　分析准备　　　　

当个别视频客户端出现故障时，请将连接该客户端主机的交换机端口的流量重定向至Wireshark主机。当所有视频客户端都出现故障时，请将Wireshark主机接入汇聚所有客户端主机的上层交换机，开启端口镜像，将相关交换机端口的流量重定向至Wireshark主机。

17.5.2　分析方法　　　　

1．启动Wireshark软件，双击正确的网卡开始抓包，点击Telephony菜单，选择RTP | RTP Streams，如图17.31所示。

[image: 1731a]

图17.31

2．在弹出的RTP Streams窗口中，Wireshark会把识别出的所有RTP流汇集成表加以呈现，如图17.32所示。

[image:]

图17.32

 	Find Reverse：由语音通话（或多媒体呼叫）所生成的RTP数据流必然是一来一回，在RTP Streams窗口内选中一条（或多条）RTP流之后，点击此按钮，该RTP流便会和与之配套的逆向RTP流同时以亮灰色面目示人。

 	Prepare Filter：在RTP Streams窗口内选中一条（或多条）RTP流之后，点此按钮，在Wireshark抓包主窗口的Filter输入栏内，便会基于选中的RTP流，创建与之配套的显示过滤器。

 	Analyze：在RTP Streams窗口内选中一条（或多条）RTP流之后，点此按钮，会立刻弹出RTP Stream Analysis窗口。在Wireshark抓包主窗口中先选中一个RTP数据包，再点击Telephony菜单，选择RTP菜单项中的Stream Analysis子菜单项，也会弹出相同的窗口。RTP Stream Analysis窗口会显示相关RTP流在正向和逆向传送过程中的各种指标。

3．在RTP Stream Analysis窗口中，可通过点击Forward、Reverse和Graph选项卡，来显示与正向和逆向RTP流相关联的各种指标。在图17.33所示的RTP Stream Analysis窗口中，可以看到正向和逆向RTP流的抖动、延迟及丢包等各种指标。

[image: 1732]

图17.33

4．图17.34所示为RTP Stream Analysis窗口的Graph标签功能，Wireshark以图形方式反映了指定RTP流在正向和逆向传播过程中的抖动情况。

[image:]

图17.34

17.5.3　幕后原理　　　　

当前大多数音频流和视频流都使用RTP作为应用层协议，与所用的呼叫信令协议无关[22]。RTP协议不但能提供可靠性（通过在应用层对数据包排序），还可以有效地控制抖动和延迟（将音频和视频净载切分为块，通过一个个RTP数据包来转发）。

RTP的运作方式详见17.2.2节。

17.6　Wireshark的VoIP呼叫重放功能

Wireshark的音频播放功能得到了增强，可用该功能编码RTP音频流，并播放音频的实际内容。点击RTP Stream Analysis窗口中的Play Streams按钮，即可实现音频的播放。只要一点击Play Streams按钮，Wireshark便会合并正向和逆向的音频流，让用户收听实际的音频对话。

17.6.1　重放准备　　　　

当个别音频客户端出现故障时，请将连接该客户端主机的交换机端口的流量重定向至Wireshark主机。当所有音频客户端都出现故障时，请将Wireshark主机接入汇聚所有客户端主机的上层交换机，开启端口镜像，将相关交换机端口的流量重定向至Wireshark主机。

17.6.2　重放方法　　　　

1．启动Wireshark软件，双击正确的网卡开始抓包，点击Telephony菜单，选择RTP | RTP Streams，如图17.35所示。

[image:]

图17.35

2．在弹出的RTP Streams窗口中，选择一条感兴趣的RTP流，点击Find Reverse按钮，将会同时选中与其配套的逆向流，再点击Analyze按钮，关联两个方向的RTP流，图17.36所示的RTP Stream Analysis窗口会立刻弹出。

[image: 1735]

图17.36

3．点击Play Streams按钮，在弹出的RTP Plays窗口中点击左下角的Play按钮，即可收听音频的实际内容了。

4．Wireshark的RTP播放功能不支持重放RTP视频流，因此不能用来观看视频的实际内容。

17.6.3　幕后原理　　　　

Wireshark内置了用来编码音频流的音频编解码器，可用其来解码音频文件的内容。Wireshark会用G.711编解码器，将RTP音频流保存为后缀名为.au的文件格式，允许用户回放抓取到的音频对话。

17.6.4　拾遗补缺　　　　

目前，Wireshark天生支持播放以G.711格式编码的RTP音频流。若音频流的编码格式为G.729，则Wireshark无法播放。

[1]　译者注：原文是“The audio (or video) packets will be encapsulated with RTP header and typically run over UDP”。原文直译为“音频（或视频）数据包以RTP头部封装并在UDP上运行”。

[2]　译者注：原文是“Select the relevant stream from the pop-up window or use the follow the stream option”。

[3]　译者注：原文是“Get the UDP port number of the RTP call flow and increment it by 1 and use the same to filter the associated RTCP packets. For example, if the UDP port is 24950, which is used for RTP packets, UDP port 24951 will be used for RTCP packets”。

[4]　译者注：原文是“Fraction lost: This is zero or well within the tolerance range. This counter shows the number of RTP data packets lost between the current and previous Sender report”。译文按原文字面意思直译。

[5]　译者注：原文是“Interarrival jitter: This is well within the range. This counter shows the jitter measurement of the received packets”。译文按照原文字面意思直译。

[6]　译者注：原文是“IP telephony heavily leverages RTP and RTCP for end to end call flow”。

[7]　译者注：原文是“RTP is used for carrying the media. Preceding RTP, we have various types of codec for voice and video compression”译文按原文字面意思直译。

[8]　译者注：原文是“The RTP header carries details specific to the flow and the direction that can be used for session identification, resiliency and real-time jitter/delay measurement. RTP provides mechanisms for timing recovery, loss detection and correction, payload and source identification, and media synchronization”译文按原文字面意思直译。

[9]　译者注：原文是“RTCP specifies reports that are exchanged between the source and destination of the session”。译文按原文字面意思直译。

[10]　译者注：原文是“RTCP has several report types, in which the sender and receiver update each other on the data that was sent and received”。译文还是按照原文字面意思直译。

[11]　译者注：原文是“In order to establish, end-to-end call flow, SIP sessions may be created between different SIP endpoints”。译文按原文字面意思直译。

[12]　译者注：原文是“It is more optimal to perform the Wireshark capture in a switch or router that is common to multiple sessions. In the preceding topology, we performed the capture on 172.18.110.203 as it is the terminating node for two SIP sessions”。

[13]　译者注：原文是“A cube or CCM with IP address 172.18.110.200 connected to UA with SIP number 4085267260 is initiating the SIP session to the cube with a host name of cube1.entcomp1.com”。

[14]　译者注：原文是“Follow the relevant TCP stream for the SIP packet using the display filters and get the Flow Graph for the SIP flow by navigating to Statistics | Flow Graph”。

[15]　译者注：原文是“When the endpoint (IP Phone in this case) triggers the first SIP session, it includes its own ID as a local UUID, which will be carried over in all subsequent SIP sessions along the path towards the remote endpoint”。译文按原文字面意思直译。

[16]　译者注：原文是“In the preceding topology, there are multiple CUBEs in between that help to establish end to end call flow”。按原文字面意思直译。

[17]　译者注：原文是“The switch 172.18.110.206 sends Trying (code 100), and then the session progresses (code 183) to the switch”。图17.8中并未出现状态码为183的SIP响应数据包，译文酌改。

[18]　译者注：整段原文为“The destination endpoint sends SIP 200 OK to the communications manager at 172.18.110.206 when the call is answered. The SIP 200 OK message carries SDP content in the message body. The SDP provides information about RTP UDP port number and the list audio and video codec offered by the destination end point (also referred to as SDP Offer).”The SIP 200 OK message traverses SBC (172.18.110.203), communication manager (172.18.110.200) and reaches the origination endpoint”。

[19]　译者注：原文是“If an error message is received at any stage, the connection will not be established”。译文按原文字面意思直译。

[20]　译者注：原文是“Port mirroring to capture the packet can be done either on the client side or on the server side. Connect Wireshark close to the endpoint and capture the packets for analysis”。

[21]　译者注：原文就是“SIP signaling protocol”。

[22]　译者注：原文是“Irrespective of the call signaling protocol used, most of the current audio and video streams use RTP as the application layer protocol”。译文按原文字面意思直译。

第18章　排除由低带宽或高延迟所引发的故障

本章涵盖以下主题：

 	测量网络带宽及应用程序生成的流量速率；

 	借助Wireshark来获知链路的延迟及抖动状况；

 	分析网络瓶颈、问题及故障排除[1]。

18.1　简介

端到端的服务和应用程序的性能在很大程度上受制于各种网络参数，比如，带宽、延迟、抖动和丢包率。终端应用程序不同，其SLA约束也必不相同。比方说，涉及大文件交换的应用程序（比如，文件传输类应用[FTP、TFTP]）对带宽和丢包非常敏感，而多媒体类应用（比如，传递语音和视频流量）非常在意延迟和抖动。

测量一款末端程序的性能，要取决于该应用程序的SLA约束，因此需要测量各种网络参数[2]。

本章将探讨如何测量这些网络参数，同时会介绍如何定位并解决由低带宽、高延迟、高抖动或高丢包率所导致的网络故障。

18.2　测量网络带宽及应用程序生成的流量速率

监控网络及带宽的利用率是网络运营商的主要职责之一。这或多或少是出于各种商业目的，比方说：

 	为了确保低优先级或垃圾流量不阻塞网络，避免影响高优先级流量；

 	WAN提供商为了确保在接入电路上提供承诺的流量速率；

 	根据监控的结果来完成网络容量规划，对带宽进行提速或降速。

在前述大多数排障和分析场景中，抓包地点都会尽量靠近安装应用程序的主机。为了精确测量WAN电路的带宽利用率，可能还需要做出额外的考量。在图18.1所示的拓扑中，可能会用WAN-路由器1的GE接口上连WAN提供商，但WAN链路的承诺访问速率（CAR）却可能会低很多（比如10Mbit/s）。通常，WAN提供商会在入站方向限制带宽，将流量速率限制为10Mbit/s，丢弃任何超限的流量。因此，在WAN路由器1一侧抓包，抓到的数据可能并不准确。反过来讲，客户也可以实施诸如流量整形之类的功能，让WAN路由器缓存流量，以确保发往WAN提供商的出站流量的速率不超过CAR。所以说，合适的抓包位置要视网络的部署方式而定。

[image:]

图18.1

本节将探讨如何用Wireshark测量WAN电路的速率，以及每一种应用程序流量所占用的带宽。

18.2.1　测量准备　　　　

根据网络的部署方式，需要将抓包工具部署在合适的位置。

 	在启用了流量整形的情况下，可在WAN路由器的出站方向抓包[3]。

 	若未启用流量整形，则可在WAN提供商网络或远程WAN路由器的入站方向抓包。

18.2.2　测量方法　　　　

为了测量一条WAN链路的带宽，需要朝这条链路上以接近其实际带宽的速率“打”一些流量，来测试其能否承受。可选用商业的流量生成工具（比如iPerf、IXIA以及Spiren）来生成各种类型的流量。有很多开源的流量生成工具（比如Scapy、tcpreplay以及playcap）也可以生成各种类型的流量。

要测量一条通信链路的平均带宽利用率，请按以下步骤行事[4]。

1．选择Statistics菜单中的Capture File Properties菜单项[5]。

在弹出的Capture File Propertie窗口中（见图18.2），会列出在通信链路上抓到的数据包的数量、数据包的平均传输速率（单位为MB/s和Mbit/s）以及数据包的平均长度等。

[image:]

图18.2

2．还可以让Capture File Propertie窗口只显示一或多条数据流的带宽占用情况。为此，要先应用相应的显示过滤器，再点击Statistics菜单中的Capture File Properties菜单项。

图18.3所示为编号为13的TCP数据流的带宽占用情况。

[image:]

图18.3

3．使用Wireshark自带的I/O Graphs工具，可以获悉电路的最高可用带宽。为此，请从Statistics菜单中选择I/O Graphs菜单项。

4．在默认情况下，Wireshark会基于抓包文件中的所有数据包，生成I/O Graphs窗口中的流量速率图。可对I/O Graphs窗口中的X轴和Y轴参数若如下修改。

X轴（时间轴）参数的配置

 	在Tick interval（计时单位）下拉菜单中指定一个计时单位：计时单位的取值范围为0.001秒～10分钟。

 	在Pixels per tick（时间刻度）下拉菜单中指定一个时间刻度：时间刻度的取值范围为1～10。

 	View as time of day（以一天当中的具体时刻来显示）复选框：一旦勾选，图形的X轴的时间格式将会是一天当中的具体时刻；若未勾选，图形的X轴的时间格式将会是抓包时长。

Y轴（速率轴）参数的配置

 	在Unit（速率单位）下拉菜单中选择一个菜单项，指定一个速率单位。可选菜单项包括Packets/Tick、Bytes/Tick、Bits/Tick或Advanced。

 	在Scale（范围）下拉菜单中指定Y轴的范围（长度）：Y轴长度有线性（Linear）和对数（Logarithmic）两种表现形式，可分别从下拉菜单中选择。当然，也可以沿用默认值Auto或根据需求从下拉菜单中指定一个值。

 	Smooth（平滑速率）参数：若要了解数据包的平均传输速率（亦即在每个计时单位内的平均传输速率），可在Smooth下拉菜单中选择除No filter以外的其他值，取值范围在4～1024之间。

在图18.4所示的I/O Graphs窗口中，将X轴的Tick interval（计时单位）参数和Pixels per tick（时间刻度）参数分别设置为1秒和10，将Y轴的Unit（速率单位）参数设置为Bytes/Tick。因此，I/O Graphs窗口所示图形的速率单位为字节/秒。

[image: 1804]

图18.4

I/O Graphs窗口的右下角还有一个View as time of day（以一天当中的具体时刻来显示）复选框，一旦勾选，图形的X轴的时间格式将会按一天当中的具体时刻来显示；若取消勾选，图形的X轴的时间格式将会按抓包时长来显示。这个复选框非常有用，在勾选它的情况下，即可了解到通信链路拥堵的具体时间。

5．在I/O Graphs窗口中可借助显示过滤器，针对不同的数据流来生成流量速率图。

图18.5所示为借助于显示过滤器，让I/O Graphs工具根据不同的流量生成的不同颜色的流量速率图。

[image:]

图18.5

6．借助于Endpoints工具，并进行适当的排序，即可确定消耗带宽最多的主机或末端应用程序。为此，请点击Statistics菜单中的Endpoints菜单项。

可点击Endpoints窗口内相应的选项卡，来观察与第2、3、4层端点（Ethernet端点、IP端点、TCP/UDP端点）有关的统计信息。在图18.6所示的Endpoints窗口中，可以观察到各IPv4端点收发的数据包的数量和字节数，还能基于这些信息做相应的排序。

[image:]

图18.6

7．借助于Conversations工具（需要配搭显示过滤器），可以精确了解某条数据流的细节。为此，请点击Statistics菜单的Conversations菜单项。

图18.7所示的Conversations窗口显示了抓包文件中每一条TCP对话（TCP数据流）的持续时间以及传送的数据包的数量。

[image:]

图18.7

18.2.3　幕后原理　　　　

有以下3个术语与网络带宽利用率紧密相关，分清这三个术语对理解网络带宽利用率至关重要。

 	速度（Speed）：电路或链路可以通行的最高流量[6]。

 	带宽（Bandwidth）：指一条通信链路每秒所能传输的总的比特数（单位为bit/s）。在默认情况下，带宽等于链路的速度。

 	吞吐量（Throughput）：指一条通信链路的两个端点之间每秒所能传输的应用程序的流量（单位为bit/s）。

链路的速度以及带宽取决于各种因素，包括链路类型、链路提供商提供的CAR以及本机配置。在默认情况下，大多数网络设备都能以线速转发流量，也就是说，能以相关链路所能支持的最高带宽转发流量。

按照最新的网络部署方案，WAN服务提供商都会将千兆以太网技术作为最后一公里的接入技术。千兆以太网的速度为1Gbit/s，但具体的带宽要随WAN服务提供商提供的CAR而异。

即便WAN路由器能按WAN链路的线速转发流量，服务提供商也会根据CAR对流量进行限速。

18.2.4　拾遗补缺　　　　

在外发流量时，任何网络设备都会采用先进先出（First In First Out，FIFO）的队列机制。因此，若垃圾流量过多，则此类低优先级流量便会占用所有带宽，使得高优先级的关键业务流量惨遭丢弃。在网络内部署服务质量（QoS）即可避免这种情况。可开启QoS，将队列机制从FIFO更改为基于优先级的队列，以防垃圾流量或低优先级流量占用所有带宽，从而保证高优先级的关键业务流量得以优先传送。

18.3　借助Wireshark来获知链路的延迟及抖动状况

但凡网络应用，其性能都要受延迟和抖动的制约。要想监控一条通信链路的延迟和抖动状况，可在链路一端的主机上长ping链路对端的主机，同时仔细观察ping命令的输出。而Wireshark并不能直接测量出端到端的网络延迟，但能通过帧间延迟（inter-frame delay）状况来反映延迟对网络流量乃至各种网络应用的影响。

本节将介绍如何利用Wireshark来获悉通信链路的延迟及抖动状况，下一节会讲解如何发现由延迟和抖动所导致的故障。

18.3.1　操作准备　　　　

要想得知一条通信线路的延迟状况，首先，应在链路一端的主机上ping链路对端的主机，通过仔细观察ping命令的输出来做一个初步的了解；然后，再在LAN交换机上开启端口镜像功能，将连接该通信链路的端口的流量重定向至Wireshark主机。

18.3.2　操作方法　　　　

要利用Wireshark来获悉某股TCP或UDP数据流中的帧间延迟状况，请按以下步骤行事。

1．筛选出该股数据流。

 	在Wireshark抓包主窗口的数据包列表区域内选中一个隶属于该股TCP或UDP数据流的数据包。

 	点击右键，在弹出的菜单中选择Follow TCP Stream或Follow UDP Stream菜单项。

 	把在Wireshark抓包主窗口的Filter输入栏内自动生成的显示过滤表达式（图18.8中的位置1）复制进缓冲区。

[image: 1808]

图18.8

2．点击Wireshark抓包主窗口中Statistics菜单下的I/O Graphs菜单项。

3．在弹出的I/O Graphs窗口中，点击Y轴区域中的Unit下列菜单，选择Advanced菜单项（图18.8中的位置2）。

4．在陡然增大的I/O Graphs窗口中，将已复制进缓冲区的显示过滤表达式，粘贴进Graph 1按钮右边的Filter输入栏（图18.8中的位置3）。

5．点击Filter输入栏右边的Calc下拉菜单，选择AVG(*)菜单项（图18.8中的位置4）。

6．在Calc下拉菜单右边的输入栏（图18.8中的位置5）里输入显示过滤表达式frame.time_delta_displayed。

7．按下Graph按钮，在I/O Graphs窗口上半部分的图形显示区域中（图18.8中的位置6），将会显示出那股数据流中各数据包之间的平均延迟时间（单位为毫秒）。

8．在Wireshark抓包主窗口中，点击Statistics菜单中TCP Stream Graph菜单项下的Round Trip Time Graph子菜单项，会弹出TCP Graph窗口，如图18.9所示。通过TCP Graph窗口观察到的情况与图18.8相同。

9．由图18.9可知，隶属于那股数据流的TCP数据包的RTT值短则10毫秒，长则200～300毫秒。

[image:]

图18.9

10．要想获悉发送方从发出TCP报文段到得到接收方的确认所花费的时间（即传输层延迟状况），请在I/O Graphs窗口中用显示过滤表达式tcp.analysis.ack_rtt替换frame.time_delta_displayed。

18.3.3　幕后原理　　　　

Wireshark软件只是先从线路上抓包，然后再记录并能以不同的方式显示出先后抓到的数据包之间的时间差。需要注意的是，通过Wireshark抓包分析，可以发现网络中存在高延迟或高抖动现象，但却不一定能得知是因何而起。

延迟（delay）是指源端主机从发出数据包到收到目的端主机发回的相应的回馈数据包所花费的时间，这通常也被称为RTT 。只需借助于ping命令之类的工具，便可以测量出网络链路的延迟。延迟的单位可以是秒、毫秒或微秒等。

在IP网络中，抖动（jitter）是指延迟的变化程度。比方说，在主机A上ping 主机B 100次（即让主机A向主机B发送100个 ICMP echo request数据包），若每ping一次的延迟都固定为100毫秒，则可以认为网络链路没有抖动；若ping 100次的平均延迟为100毫秒，但每ping一次的延迟则为80～120毫秒不等，则可以说在本次ping操作期间，网络链路的抖动率延迟的变化率最高达到了20%。

18.3.4　拾遗补缺　　　　

除了ping命令以外，还有许多图形化的ping工具，可从相关网站免费下载。

18.4　分析网络瓶颈、问题及故障排除

本书前文所讨论的问题和故障排除大多是相关的，可能会导致网络瓶颈问题[7]。任何一条质量不佳的链路、一台不稳定的路由器或者容量规划不合理的网络设计，都有可能会制造带宽瓶颈，从而影响端到端的应用程序的性能。

本节会介绍如何用Wireshark分析网络瓶颈问题。

18.4.1　分析准备　　　　

为了确定瓶颈问题，可能需要在多处反复抓包，以进行分析和瓶颈隔离。在理想情况下，在端点上抓包将是确定受影响的应用程序流量的良好开端，然后可使用其他工具（比如，ping实用程序）来缩小抓包范围[8]。

18.4.2　分析方法　　　　

1．应用显示过滤器，筛选出解析应用程序服务器的IP地址的DNS数据包，检查平均解析时间。为此，要先在Wireshark抓包主窗口的显示过滤器输入栏内输入显示过滤器DNS，再选择Statistics菜单中的I/O Graphs菜单项。

 	检查DNS数据包的数量，判断DNS服务器的能否处理得过来。若处理不过来，则需考虑给DNS服务器做硬件升级。

 	检查DNS解析的时间增量是否在阈值范围内。DNS解析中的任何延迟都会在末端应用程序会话建立中引入延迟[9]。

图18.10是DNS数据包的I/O图，用来检查名称解析中的延迟[10]。

[image: 1810]

图18.10

2．检查WAN链路的带宽利用率是否超出其峰值以及日常工作时段的阈值[11]。请按照18.2节所述步骤，来确定LAN和WAN端的带宽利用率。本节定义的过程不但可用来确定带宽利用率，还可用来检查带宽是被关键业务流量占用还是被垃圾流量占用。

 	若抓包文件显示WAN链路的带宽被完全占用，且流量主要为关键业务流量，则可能需要对链路带宽进行扩容[12]。

 	若抓包文件显示WAN链路的带宽被完全占用，且流量主要为非关键业务流量，则可能需要开启某种队列及QoS机制，对非关键业务流量进行限速。

3．检查穿越链路（LAN链路、WAN链路）是否存在高延迟/高抖动问题。具体的检查方法详见18.3节。抓包文件显示链路延迟（单位为秒）完全异常[13]。

由图18.11所示的I/O Graphs窗口可知，链路的延迟峰值高达10秒，而链路的延迟平均值则超过了1秒。通过这条链路转发的流量将会受到严重影响，可能需要排除链路层面的故障（检查电源、清理光纤等）。

[image: 1811]

图18.11

4．检查应用程序服务器，判断其硬件是否需要升级。需要检查服务器在正常及高峰时段内的并发连接数，并判断服务器能否处理得过来。

5．借助Endpoints工具，即可观察到服务器的并发连接数。

由图18.12所示的Endpoints窗口可知，服务器10.1.100.254所建立的并发连接数为8850。请确保客户端主机未受任何感染，发起的连接建立请求的数量在合理范围之内。若并发连接数超出了服务器所能处理的上限，则需考虑对服务器进行硬件升级。

[image:]

图18.12

18.4.3　运作原理　　　　

本节介绍了如何用Wireshark解决网络瓶颈问题。具体的解决方法随网络中流淌的流量类型而异。在解决的过程中，可能会涉及多种协议。比方说，客户端主机尝试与应用程序服务器通信时，会先通过某种名称解析协议（比如，DNS协议）来解析服务器的IP地址。

解析出服务器的IP地址之后，若应用程序采用的传输层协议为TCP（比如，HTTP或FTP），则客户端主机会发出TCP SYN报文段，以期建立TCP会话。若应用程序采用的传输层协议为UDP（比如，QUIC），则客户端主机会通过UDP数据报来发出应用程序的请求。接收到请求之后，服务器会将数据注入网络传送给客户端主机。

任何网络设备（L2交换机和L3路由器）在转发流量时都会遵循最佳路径。若存在等价路径，路由器便会执行负载均衡，用不同的路径来转发不同的流。

端到端的性能受制于各种因素。就会话处理和数据传输性能而言，主要受末端应用程序服务器的处理能力和内存容量的限制。不同客户端和服务器之间的端到端数据传输性能同样受网络容量规划的限制。

18.4.4　拾遗补缺　　　　

可利用各种网络流量分析工具，定期从所有或指定的网络设备采集网络数据，全面了解网络性能。这对网络容量规划很有帮助。以下所列为可跨多平台使用的网络流量分析工具：

 	Cisco Netflow；

 	Juniper J-Flow；

 	sFlow。

[1]　译者注：原文是“Analyzing network bottlenecks, issues, and troubleshooting”。虽然原文明显不通，但还是按原文翻译。

[2]　译者注：原文是“Measuring the performance of an end application varies depending on the SLA constraints of the end application, and therefore we need to measure different network parameters”。译文按原文字面意思直译。

[3]　译者注：原文是“If traffic shaping is enabled, we can capture the packet in the outbound direction on WAN routers”。后半句确切的说法应该是“要设法将WAN路由器连接WAN提供商网络的接口的出向流量重定向至Wireshark主机。”

[4]　译者注：原文的以下内容基于Wireshark版本1，译文会尽量转换为Wireshark版本2。

[5]　译者注：原文是“Select Summary from Statistics”。

[6]　译者注：原文是“Maximum amount of traffic that can traverse the circuit or link”。

[7]　译者注：原文是“The problems and troubleshooting discussed in the previous recipes are mostly related, and may result in networking bottleneck issues”。译文按原文字面意思直译。

[8]　译者注：整段原文是“In order to identify bottleneck issues, we may need to reiterate the capture at multiple locations for analysis and bottleneck isolation. Ideally, packet capture at endpoints will be a good start to identify the application traffic that is impacted, and we then use other tools,such as the ping utility, to possibly narrow down the capture points”。译文按照原文字面意思直译。

[9]　译者注：原文是“Check whether the time delta for resolution is within the threshold. Any delay in resolution will introduce a delay in end application session establishment”。译文按照原文字面意思直译。

[10]　译者注：原文是“The preceding graph is the I/O graph of DNS packets used to check the delay in name resolution”。译文按照原文字面意思直译。

[11]　译者注：原文是“Check that the WAN bandwidth utilization is within the threshold at its peak and during normal business hours”。译文按原文字面意思直译。

[12]　译者注：原文是“If the capture shows the WAN bandwidth utilization is completely utilized and the traffic is mostly business-critical, you may need a bandwidth upgrade”。

[13]　译者注：原文是“Capture showing a link delay in seconds is completely abnormal”。译文按原文字面意思直译。

第19章　网络安全和网络取证

本章涵盖以下主题：

 	发现异常流量模式；

 	发现基于MAC地址和基于ARP的攻击；

 	发现ICMP扫描和TCP SYN端口扫描；

 	发现DoS和DDoS攻击；

 	定位高级TCP攻击；

 	发现针对某些应用层协议的暴力攻击。

19.1　简介

信息安全是IT领域中的重要环节，其主要目标是加固组织机构的信息系统，使之能对抗来自内部或外部的形形色色的攻击。那些来自内部或外部的攻击，都得通过网络来发动，无非是源于内部或外部网络而已，因此同样可以被Wireshark（或类似的其他工具）所感知。

要想使得网络免受恶意流量的攻击，首先需要分清什么是正常流量，然后才能识别出恶意流量是如何伪装成正常流量的。可能会形成攻击的恶意或异常流量包括ARP、IP或TCP扫描流量，单方面的DNS响应流量，TCP标记位置位方式古怪的TCP流量，源/目的IP地址或源/目的（TCP /UDP）端口号怪异的流量等。

能分清何为网络问题，何为安全问题，同样十分重要。比方说，若网络中出现了ICMP扫描行为，则既有可能是恶意软件所为，也有可能是网管软件在探索网络设备时的必要之举；而TCP扫描行为也未必只有蠕虫病毒才能引发，软件bug同样可以触发。本章会对此展开深入探讨。

本章首先会讲解正常流量与异常流量之间的差别，然后会介绍形形色色的攻击手段，以及如何发现并制止这些攻击。

19.2　发现异常流量模式

本节会讲解何为正常流量，何为异常流量，同时会介绍两者之间的差别。

19.2.1　准备工作　　　　

首先，应安置好Wireshark主机。现以图19.1为例，来介绍如何安置Wireshark主机。

1．若怀疑攻击流量来自于互联网，请将Wireshark主机置于防火墙之前（图19.1所示位置1）；若怀疑来自于互联网的攻击流量已被防火墙放行，请将Wireshark主机置于防火墙之后（图19.1所示位置2）。

2．若怀疑恶意流量发源于远程站点（分支机构）网络，请将Wireshark主机置于图19.1所示位置4或位置3处（需在主站点网络的核心交换机上开启端口镜像功能）。安置好Wireshark主机之后，可根据分配给各远程站点的IP网络号来配置显示过滤器，筛选并逐一比对发源于各远程站点网络的流量，以求定位出恶意流量的来源。

3．若判断出恶意流量发源于某一具体的远程站点，请将Wireshark主机置于图19.1所示位置7或位置6处（需在远程站点网络的核心交换机上开启端口镜像功能），亦即远程站点WAN路由器的WAN侧或LAN侧。

4．若怀疑攻击流量发源于某台PC机或服务器，请将Wireshark主机置于图19.1所示位置8处，同时在（连接Wireshark主机以及可能产生恶意流量的PC机或服务器的）交换机上开启端口镜像功能，将相应端口的流量重定向至Wireshark主机。

[image:]

图19.1　安置Wireshark主机

其次，应仔细观察抓取到（并筛选出）的各类流量，尝试判断哪些是正常流量，哪些是值得关注的异常流量。

在执行上述操作之前，请确保手头能有一份最新的网络拓扑结构详图，这份网络拓扑图应包括以下内容。

 	IP编址详情（比如，服务器的IP地址、各站点LAN的IP网络号等）。

 	网络设备（路由器、交换机等网络通信设备）的IP地址及拓扑连接状况。

 	网络安全设备（防火墙、IPS/IDS、WAF、数据库防火墙、应用防火墙、防病毒系统以及能生成、过滤或转发流量的其他网络安全设备）的IP地址及拓扑连接状况。

 	网络所承载的应用程序类型、各类应用程序所使用的UDP/TCP端口号，以及安装各类应用程序服务器端软件的服务器主机的IP地址等。

19.2.2　操作方法　　　　

若怀疑恶意流量发源于内网，对内网流量抓包分析时，应关注下列事宜。

 	流量的源、目IP地址是否异常。

 	正常：流量的源或目的IP地址均在合法的IP地址范围之内（隶属于已分配的内网IP地址范围）。

 	异常：流量的源或目的IP地址不在合法的IP地址范围之内（ 不隶属于已分配的内网IP地址范围）。

 	流量的源、目TCP/UDP端口号是否异常。

 	正常：流量的源、目端口号与运行于网络中的应用层协议相匹配。比方说，若在内网中运行的应用层协议包括HTTP、NetBIOS、RDP、FTP、POP3、SMTP、DNS等，则Wireshark所抓到的源、目（TCP/UDP）端口号为80、137/138/139、3389、20/21、25、110、53的流量都属于正常流量。

 	异常：流量的源、目端口号与应用层协议不匹配。比如，若某台Web服务器明明未开启远程桌面服务，但却总是莫名其妙地收到RTP流量，则发往该服务器的RTP流量就属于异常流量。

 	TCP流量的标记位的置位方式是否异常。

 	正常：在建立TCP连接时，Wireshark应抓到相关的三次握手TCP报文段（SYN位置1；SYN和ACK位同时置1；ACK位置1）；在快速拆除TCP连接时，Wireshark应抓到相应的RST位置1的TCP报文段；在关闭TCP连接时，Wireshark应抓到4次握手报文段（双方各自发出FIN位置1/FIN位和ACK位同时置1的TCP报文段）。

 	异常：若通过Wireshark抓包了解到，有大量SYN位置1的TCP数据包涌向一或多台主机，而且这些TCP数据包的源IP地址还千奇百怪，这就属于异常流量（通常，这意味着有人在执行TCP端口扫描，详情请见后文）。此外，标记位置位方式怪异（比如，RST或FIN位与URG位同时置1）的TCP流量也属于异常流量。

 	某台（或某几台）主机的上、下行流量的速率是否总是固定不变。

 	正常：一般而言，对任何一台主机来说，由其生成的上下行流量的速率都不应该总是固定不变，这是因为用户使用网络的行为总会不断变化。下载文件、浏览网页、收发邮件、使用远程桌面时所生成的流量的速率肯定各不相同。

 	异常（在某些情况下）：若发现由一台主机所生成的上下行流量的速率总是固定不变，则使用主机的用户不是在网上收听广播、观看视频，就是在偷着P2P下载，或是有黑客入侵了该主机。此时，需仔细检查。图19.2所示为通过Wireshark I/O Graphs工具观察到的上述异常情况。

[image:]

图19.2　某主机所生成的流量的速率总是恒定不变

 	广播流量是否异常。

 	正常：网络中每台主机在特定时间段内发出的广播包的数量应该在合理范围之内。比方说，NetBIOS广播包、ARP广播包、DHCP广播包以及应用程序广播包的数量都在合理范围之内。

 	异常：单台主机每秒发出数十、数百乃至数千个广播包。

 	DNS流量是否异常。

 	正常：对于“正儿八经”地执行DNS查询的主机来说，每秒最多也只会生成几十个DNS查询数据包。

 	异常：有巨量DNS查询或响应数据包在网络中泛滥；Wireshark抓到了很多DNS响应数据包，但却未抓到配套的DNS查询数据包。

19.2.3　幕后原理　　　　

网络取证跟电视里的刑侦剧所描述的场景颇为类似。网络工程师跟警察一样，都是先接到“报案”（用户申告），再抵达“犯罪现场”（网络机房），然后开始查找“罪犯”留下的“蛛丝马迹”。

不同之处在于，警察要查找的是罪犯遗留的指纹和DNA，而网络工程师则要抓包分析流量是否异常，观察异常流量所具有的特征（模式）。

本节会深入探讨各种网络攻击手段，同时会描述当网络遭受攻击时将会出现的异常状况。此外，还将详述如何发现并化解攻击。

以下所列为几种最为常见的网络攻击手段。

 	病毒：是指能对计算机软、硬件构成伤害的应用程序。杀毒软件可发现并清除病毒。

 	蠕虫：是指能自我复制并自动通过网络来传播的应用程序。蠕虫爆发时，会导致网络带宽资源、计算机CPU资源的极度消耗。在杀灭蠕虫的那一刻，所有的一切都将恢复正常。

 	DoS（拒绝服务）和DDoS（分布式拒绝服务）攻击：发动这两种攻击的目的，都是要让合法用户无法正常访问网络资源。由于这两种攻击的破坏力惊人，加之发动的方法截然不同，因此不但很容易发现，区别也比较明显。

 	中间人攻击：是指当甲、乙双方进行通信时，丙方在中间先截取两者互发的消息，在偷窥或篡改之后，再传递给甲、乙双方的行为。

 	扫描：包括ICMP扫描（能转换为DoS或DDoS攻击）、TCP端口扫描（比如，发出大量SYN位置1、目的端口号不断变化的TCP数据包）等。

 	应用层攻击：不停地尝试连接某台服务器上所运行的某种应用程序所监听的TCP/UDP端口，意在让服务器宕机，或让OS/应用程序无法行使正常功能。

接下来，会细述上述攻击手段。

19.2.4　拾遗补缺　　　　

当网络遭受攻击时，迹象之一就是有服务器、PC、通信链路或其他网元莫名其妙地变慢、变卡。

 	当某台服务器突然变慢时，除了要检查是否存在软硬件或网络故障之外，还得考虑它是否正遭受攻击。

 	若中心站点网络与某分支机构网络间的互连链路突然变慢，既有可能是因为链路（在传输正常流量时）拥塞，也有可能是有人正在发动DOS/DDoS攻击，在链路上传送“垃圾”流量，导致链路不畅。

 	若一台PC突然变慢，或许是在执行常规任务，但也不能排除已被攻陷，正尽其所有处理能力执行黑客下达的指令。

可部署下列软硬件系统以使网络免受攻击。

 	防火墙：用途是防止未经授权的流量进出指定的网络区域，可部署在Internet边界、内网服务器之前、两个网络区域之间，甚至能以软件的形式安装在用户的PC中。

 	NAC（网络访问控制）系统：用途是防止未经授权的用户或设备接入网络。

 	IDS/IPS（入侵检测/入侵防护系统）：用途是识别具有攻击属性的流量，生成告警记录或对那些流量加以拦截（视配置而定）。IDS/IPS既可以是一台独立的物理设备，部署于防火墙和Internet链路接入交换机之间，也可以以软件或功能模块的形式驻留于硬件防火墙之内。

 	Web应用防火墙（WAF）、应用防火墙、数据库防火墙以及其他应用层防护设备：这些第7层设备可窥得数据包的内在，能防止针对应用层的攻击。

 	Web和E-mail过滤器：可扫描并检测HTTP和E-mail流量的内容，并根据检测结果，来决定是否放行流量。

上述系统既可以是一台台单独的物理设备，也可以分别以软件的形式安装在虚拟机（VM）上，还可以以功能模块的方式集成进同一台物理设备。

19.3　发现基于MAC地址和基于ARP的攻击

借助于Wireshark，可以很容易地发现基于MAC地址（第2层）和基于ARP（介于第2、3层之间）的攻击。此类攻击通常都以扫描攻击（详见本节）或中间人攻击的面目示人。本节将介绍几种常见的攻击，以及发动攻击的具体手段。

19.3.1　准备工作　　　　

若ARP请求数据包在网络中泛滥成灾，或观察到以太网帧帧头中包含了非常规的MAC地址时，请在LAN交换机上开启端口镜像功能，将相关端口流量重定向至Wireshark主机，进行抓包分析。

19.3.2　操作方法　　　　

要想发现基于MAC地址和基于ARP的攻击，请按以下步骤行事。

1．若网络未划分任何VLAN，请将Wireshark主机连接到LAN交换机上的任一端口，开始抓包分析。

2．观察Wireshark抓包主窗口，看看ARP数据包是否层出不穷。由于ARP请求数据包为广播包，因此在网络未划分VLAN的前提下，可把Wireshark主机连接到LAN交换机的任一端口，且无需开启端口镜像功能。图19.3所示的Wireshark截屏清楚地展示了一次典型的ARP扫描行为。需要注意的是，ARP扫描也可以用来办正事。比如，某些安装了SNMP网管软件的主机会通过ARP扫描，来发现同一LAN内的网络设备；某些宽带路由器也会通过内网接口（LAN口）不停地发送免费（gratuitous）ARP数据包。但若ARP数据包“层出不穷”，且来路不正，则应仔细查明原因。

[image:]

图19.3　ARP扫描时的流量模式

3．通过图19.3所示的ARP数据包，可判断出网络中可能存在以下攻击行为。

 	Wireshark抓到的所有ARP数据包均来源于同一台主机，发包主机所设IP地址应该是192.168.43.191，但其通过ARP数据包查询的主机身处的IP子网却是10.0.0.0/24。之所以会出现这种情况，原因之一是这台主机的同一块网卡设有两个IP地址，这在实战中非常常见。第二个原因是，有人在获悉了网络中一台服务器的MAC地址（图中所示ARP数据包的源MAC地址）之后，将自己所用主机的网卡的MAC地址改成了那台服务器的MAC地址（每块网卡的MAC地址都是可以修改的）。

 	有人正在网络中发动中间人攻击。对中间人攻击的介绍详见第10章。

19.3.3　幕后原理　　　　

ARP请求数据包的目的MAC地址一定是广播地址，主机发出ARP请求数据包是为查询指定IP地址的MAC地址。若网络中ARP请求数据包泛滥成灾，且ARP数据包的源、目IP地址或内容异常，则可认为网络中有ARP攻击的征兆。

19.3.4　拾遗补缺　　　　

某些安装了SNMP网管软件的主机会不断发出ARP请求数据包，来探索同一LAN内的网络设备（执行ARP扫描）；还有些宽带路由器也会通过内网接口（LAN口）不停地发送免费ARP数据包。因此，若Wireshark抓包结果表明网络中存在ARP扫描现象，也未必是有人在发动攻击，关键是要弄清ARP请求数据包的源头。更多与ARP扫描有关的内容详见第10章。

19.4　发现ICMP和TCP SYN/端口扫描

扫描是指不停地针对某个网络发送探测类数据包的行为，目的是查明网络中主机的IP地址、服务器所侦听的端口号，以及其中部署的系统和应用程序的资源类型。

19.4.1　准备工作　　　　

当网络中有用户反应网速过慢，或网管系统检测出服务器或通信链路的负载过高时，往往就预示着有人正在对网络进行扫描。若网络中部署有安全信息及事件管理系统（Security Information and Event Management System，SIEM），当有人发动扫描攻击时，可能会生成告警信息。如怀疑有人对网络进行扫描，则应尽量在离攻击目标最近的地方安置Wireshark主机，进行抓包分析。

19.4.2　操作方法　　　　

要想发现扫描攻击，请按以下步骤行事。

1．在离攻击目标最近的地方安置Wireshark，进行抓包分析。

 	若Internet链路拥塞，且流量来历不明，请在Internet链路接入交换机上开启端口镜像功能，将连接Internet链路的端口的流量重定向至Wireshark主机。

 	若用户反映对某台服务器的访问速度突然变慢，请在服务器接入交换机上开启端口镜像功能，将连接该服务器的端口的流量重定向至Wireshark主机。

 	若用户反映对某一远程站点网络的访问速度突然变慢，请设法将连接该远程站点网络的WAN链路的流量重定向至Wireshark主机。

2．在抓包时，若Wireshark主机或Wireshark软件自身毫无反应，则很有可能是攻击流量太过汹涌，以至于它们难以招架。此时，可先关闭Wireshark软件（若抓包主机的OS为Windows，请按Ctrl+Alt+Del组合键，点击“任务管理器”按钮，在弹出的“Windows任务管理器”窗口中结束wireshark.exe进程；若为UNIX，请执行kill命令，终结Wireshark软件的进程），再重启该软件，将其配置为以多个文件的形式来保存抓到的数据包（具体配置方法详见第1章）。

3．扫描攻击的手段五花八门，但都需要发出大量的ICMP或TCP数据包进行探测。因此，当网络遭受扫描攻击时，若使用Wireshark抓包，必能抓到超多来历不明的ICMP和/或TCP数据包。现举几个例子来加以说明。

4．图19.4所示为一个饱受扫描攻击之苦的网络。位于远程分支机构网络中的所有用户都在反映，当他们访问中心站点网络内的服务器（图19.4中的左下角）时，感觉网速极慢。

[image:]

图19.4　处理远程站点网速慢时，Wireshark主机的安置方法

当作者在某个远程站点网络内安置好Wireshark主机（见图19.4），抓取并分析奔流在通往中心站点网络的WAN链路上的流量时，发现其中夹杂着大量异常的ICMP echo request数据包（图19.5中的3）。之所是说这些ICMP数据包异常，是因为它们的源IP地址全都隶属于IP网络192.168.110.0/24（图19.5中的1），它们的目的IP地址则是五花八门（图19.5中的2）。至于这些ICMP数据包的目的IP地址怎么个五花八门，详见图19.5所示的Wireshark抓包截屏。

仔细观察图19.5所示的Wireshark抓包主窗口中数据包列表区域里的Time列，不难发现，Wireshark抓取到的ICMP echo request数据包之间的时间间隔很短。当网络遭受扫描攻击时，则势必会在短时间内收到密集的探测流量。

[image: 1905]

图19.5　ICMP扫描的特征：目的IP地址五花八门

点击Wireshark抓包主窗口中的Statistics菜单，选择Conversations菜单项，启动Conversations窗口，点击IPv4选项卡（图19.6中的3），可以观察到图19.6所示的景象。

[image:]

图19.6　ICMP随机扫描时的对话

在Conversations窗口的IPv4选项卡内，点击Address A列（图19.6中的1），让该标签页中的IP会话（IPv4 Conversations）按源IP地址排序。用鼠标滑轮进行滚动，可以发现，那些异常的ICMP echo request数据包的源IP地址全都隶属于IP子网192.168.110.0/24，目的IP地址则五花八门（图19.6只是显示了众多异常的ICMP echo request数据包的一小部分，它们的源IP地址都是192.168.110.12，目的IP地址虽然五花八门，但都隶属于IP子网192.169.204.0/24。也就是说，主机192.168.110.12正在以发送ICMP echo request数据包的方式，扫描目的IP子网192.169.204.0/24）。

上述局面由蠕虫病毒造成。感染了蠕虫病毒的计算机会发出ICMP echo request数据包，来扫描整个网络，只要有主机对这些数据包进行回应，便会感染上蠕虫病毒，然后会发起新一轮的ICMP扫描。中心站点网络和各分支机构网络间的WAN链路正是被那些进进出出的ICMP echo request数据包弄得拥堵不堪。

 [image: 未标题-1]　注意

 通过Wireshark抓包分析，发现某条链路（或通信信道）上充斥着大量ICMP echo request数据包时，切勿掉以轻心。这既有可能是安装了SNMP网管软件的主机在探索网络设备，也有可能是感染了蠕虫病毒的主机或服务器在扫描整个网络。

5．TCP SYN扫描是另外一种常见的扫描攻击。具体的攻击手段是，攻击者不断发出SYN标记位置1、目的端口号五花八门的TCP探测类数据包，等待监听相应端口的主机回复SYN和ACK标记位同时置1的TCP数据包。一旦等到了回复（扫描成功），攻击者可以进一步实施以下攻击手段。

 	攻击者可继续发出SYN标记位置1的TCP数据包，诱使监听目标端口的受攻击主机回复SYN和ACK标记位同时置1的TCP数据包，但攻击者绝不会回复ACK标记位置1的TCP数据包，这会使得攻击主机与受攻击主机之间建立起多条TCP半开连接（half-open connection）。如此行事的目的是，让受攻击主机的资源消耗殆尽，此乃DoS攻击的一种形式。

 	持续回复ACK标记位置1的TCP数据包，以正常的三次握手方式，与受攻击主机建立多条无用的TCP连接，目的同样是消耗受攻击主机的资源，起到DoS攻击的效果。

6．当网络遭受TCP-SYN扫描攻击时，用Wireshark抓包，在抓包主窗口中的数据包列表区域所见到的数据包的特征将会与下面几图所示一致。

 	在Wireshark抓包主窗口的数据包列表区域中，可能会看见攻击主机向受攻击主机（被扫描的主机）发出多个SYN标记位置1，且源端口号几乎一致，但目的端口号各不相同的TCP扫描类数据包。只因受攻击主机未监听相应的TCP端口，故而那些TCP扫描类数据包多半得不到回应，如图19.7所示。

[image: 1907]

图19.7　TCP扫描攻击——无响应

 	在Wireshark抓包主窗口的数据包列表区域中，可能会看见两类TCP数据包：第一类是攻击主机向受攻击主机（被扫描的主机）发出多个SYN标记位置1，且源端口号不断变化，但目的端口号几乎一致的TCP扫描类数据包；第二类是受攻击主机分别回复的RST标记位置1的TCP数据包，如图19.8所示。之所以会存在这种情况，是因为受攻击主机的身前部署有防火墙（既有可能是安装在受攻击主机OS里的软件防火墙，也有可能是安置在网络边界的硬件防火墙），是防火墙代替受攻击主机回复了RST标记位置1的TCP数据包，以达到快速拆除TCP连接的目的。

[image:]

图19.8　TCP SYN攻击——连接遭重置

 	在Wireshark抓包主窗口的数据包列表区域中，可能会看见单一源IP地址（攻击主机的IP地址）向单一目的IP地址（受攻击主机的IP地址）发出多个SYN标记位置1，但目的端口号各不相同的TCP数据包，如图19.9所示。不过，受攻击主机会针对其中的某些端口号（比如，图19.9中的TCP 111、113、118、1421、1422、1423端口）回复RST位置1的TCP数据包，快速拆除连接；会针对另外一些端口号（比如，图19.9中的TCP 135、139端口）回复SYN和ACK标记位同时置1的TCP数据包，同意与攻击主机继续建立TCP连接。前一种情况是因为受攻击主机未监听TCP 111、113、118、1421、1422、1423端口（或这些端口不在防火墙的开放范围之列）；后一种情况是因为受攻击主机监听了TCP 135、139端口，且防火墙开放了对这些目的端口的访问。

[image: 1909]

图19.9　TCP会话发起——三次握手

7．仔细观察Wireshark抓包主窗口的数据包列表区域，寻找异常的流量特征。比方说，若ICMP数据包满屏皆是，则极有可能存在ICMP扫描行为。此时，需要留意ICMP数据包的具体类型（ICMP数据包根据ICMP头部中的类型字段值和代码字段值来分类，由ping命令触发的ICMP echo request数据包只是ICMP数据包的一种，其他常见的ICMP数据包还包括ICMP echo reply和ICMP timestamp request数据包等）、ICMP数据包的源/目IP地址等。若发现ICMP数据包的源IP地址单一，目的IP地址有规律可循（比如，从194.90.15.1按序递增至194.90.15.254），并且ICMP数据包的类型不是ICMP echo request就是ICMP timestamp request，则可认定是ICMP恶意扫描。

 	若怀疑网络中存在ICMP恶意扫描行为，可先在Wireshark抓包主窗口的Filter输入栏内输入显示过滤表达式icmp，筛选出ICMP流量；再到数据包列表区域中点击Destnation列，让ICMP数据包按目的IP地址排序。如此操作，就可以很容易判断是否存在ICMP恶意扫描行为。

 	图19.10所示的Wireshark截屏展示了一次典型的ICMP恶意扫描行为。

[image:]

图19.10　CMP恶意扫描

8．还有一种针对特定应用程序的扫描，其手段是向某种应用层协议所使用（监听）的端口，发送TCP扫描类数据包。如遭遇此类攻击，在Wireshark抓包主窗口的数据包列表区域中会呈现以下特征。

 	NetBIOS扫描：在Wireshark抓包主窗口的数据包列表区域中，会看到大量发往NetBIOS相关端口的TCP扫描类数据包。

 	HTTP扫描：在Wireshark抓包主窗口的数据包列表区域中，会看到攻击者先行发出的目的端口号为80、SYN标记位置1的TCP扫描类数据包；若得到了HTTP服务器的回应，还将看到攻击者随后发出的HTTP请求数据包。

 	SMTP扫描：在Wireshark抓包主窗口的数据包列表区域中，会看见大量的目的端口号为25，且SYN标记位置1的TCP数据包。

 	SIP扫描：在Wireshark抓包主窗口的数据包列表区域中，会看到大量发往5060端口的TCP扫描类数据包。

若有针对其他应用层协议的扫描行为，在Wireshark抓包主窗口的数据包列表区域中，会看到大量发往相应目的端口的TCP扫描类数据包。

19.4.3　幕后原理　　　　

大多数扫描攻击所遵循的步骤是，先进行ARP扫描，再进行ICMP扫描，最后进行TCP或UDP端口扫描。扫描攻击的原理非常简单，如下所列。

 	攻击者通过扫描工具在LAN内执行ARP扫描（以广播方式发出ARP请求数据包，以期掌握同一LAN内其他设备的IP地址和MAC地址）。

 	攻击者通过扫描工具针对某一目的IP网络执行ICMP扫描（发出ICMP echo request数据包，以期获得该网络内主机的回应）。

 	若ARP扫描和ICMP扫描能得到其他设备的回应，则攻击者会通过扫描工具向这台（或这批）设备的IP地址发出目的端口号不一的TCP/UDP扫描类数据包。若发现有设备监听并开放了某个（或某些）TCP/UDP端口，则攻击者会继续发动与此端口号相对应的应用程序扫描。

 	执行应用程序扫描时，攻击者会通过扫描工具发送包含特定命令（内容）的攻击数据包，以此做进一步地入侵。

19.4.4　拾遗补缺　　　　

近年来，大多数新型入侵检测系统/入侵防护系统（IDS/IPS）都能识别和/或拦截ICMP扫描攻击、TCP扫描攻击，以及其他各种扫描攻击。这些攻击都是特征明显，手法简单粗暴。只要在Internet链路上部署IDS/IPS，或接入部署了IDS/IPS的ISP，一般都不太可能遭受上述手法简单粗暴的扫描攻击。

按照运作方式，IDS/IPS分可为以下两类。

 	基于NetFlow/Jflow的IDS/IPS：能识别出从多个来源涌入的扫描流量。此类IDS/IPS既可以直接拦截这些流量，也可以根据流量的源IP地址，来调整路由设备的路由表，阻断发源于ISP网络的扫描流量。

 	基于内容的IDS/IPS：先根据流量的内部特征来判断其是否属于恶意流量，然后再决定是放行还是丢弃。

由于部署在网络边界的安全设备管不着发源于内网的攻击流量，因此相对于外部攻击而言，内部攻击要更为常见。19.6节会对某些极为精巧的内部攻击展开深入探讨。

要想有效阻止发源于Internet的攻击，要么在Internet边界部署IDS/IPS，要么就从提供IDS/IPS服务的ISP申请Internet链路。要想阻止由内部发起的攻击，除了要严格执行本单位制定的安全策略以外，还得借助于安全防护软件（比如，杀毒软件和防火墙软件等）。

19.4.5　拾遗补缺　　　　

上一小节提到的安全策略，是指由各单位制定并需要严格执行的一套与安全有关的规章制度。与此有关的更多信息在Internet上随处可查。

19.5　发现DoS和DDoS攻击

发动拒绝服务（DoS）/分布式拒绝服务（DDoS）攻击的目的，是要让用户访问不到原本可以正常访问的某些网络资源。这些网络资源如下所示。

 	通信链路资源：攻击者以生成巨流的方式发动DoS/DDoS攻击，让垃圾流量充斥通信链路，导致链路拥塞。

 	应用程序及网络服务资源（Web服务、E-mail服务等）：攻击者以某种方式发动DoS/ DDoS攻击，让安装网络应用程序或提供网络服务的服务器宕机或资源耗尽，无法处理用户发起的服务请求。

之前提及的各种扫描攻击，最终都有可能会转化为DoS/DDoS攻击。若某些扫描攻击导致通信链路的拥塞或服务器处理能力的下降，达到了拒绝用户访问的目的，则这样的扫描攻击可被称为DoS/DDoS攻击。

本节会介绍几种常见的DoS/DDoS攻击，同时会讲解如何发现并阻止这些攻击。

19.5.1　准备工作　　　　

当某一网络资源（比如，某条通信链路、某种网络服务）突然无法访问或访问速度突然变得很慢时，这往往意味着有人正针对其发动DoS/DDoS攻击。

在确定了受攻击的网络资源之后，请设法将相关流量重定向至Wireshark主机，再启动Wireshark软件，开始抓包。本节会介绍几种常见的DoS/DDoS攻击，同时会细述各自的特征。

19.5.2　操作方法　　　　

请将Wireshark主机接入LAN交换机，在该交换机上开启端口镜像功能，设法将可能遭受DoS/DDoS攻击的网络资源所承受的流量重定向至Wireshark主机。一般而言，可能遭受DoS/DDoS攻击的网络资源不是一台莫名其妙变慢的服务器，就是一条负载猛然增高的链路。当然，也可以是突然无法访问或访问速度突然变慢的其他任何网络资源。

 	当一条通信链路（比如，一条Internet链路）突然变慢时，请将Wireshark主机接入网络，设法通过端口镜像技术，将那条链路所承载的流量重定向至Wireshark主机。

 	仔细观察Wireshark抓包主窗口数据包列表区域，密切关注流量的源IP地址。

 	图19.11所示为作者抓到的源于/发往一台服务器的流量。

[image:]

图19.11　TCP SYN攻击——攻击主机的源IP地址各不相同

 	根据源IP地址对抓到的数据包做升序排列后，可以看出，对于Wireshark抓到的发往公网IP地址94.23.71.12的所有数据包，其源IP地址的前三个字节一模一样，而最后一个字节居然在数字上是连续的。

 [image: 未标题-1]　注意

 通过图19.11还可以看出，数据包之间的时间间隔全都介于11～12微秒之间（作者在View菜单的Time Display Format菜单项中点选了Seconds Since Previous Displayed Packet子菜单项）。要是读者抓到了以这样的频率发送的SYN标记位置1的TCP数据包，请务必多加小心，这往往就意味着DoS/DDoS攻击。

 	由于所抓数据包的源IP地址非常怪异，因此需要借助于Statistics菜单中的Conversations工具，来看看它们的MAC地址到底是什么，如图19.12所示。

[image:]

图19.12　TCP SYN攻击——动用Conversations工具

 	由图19.12可知，与那批源IP地址相对应的MAC地址只有一个，也就是作者监控的那台服务器的MAC地址。

 [image: 未标题-1]　注意

 在抓到了被怀疑是起TCP SYN扫描作用的数据包时，应仔细核查数据包的源IP地址和源MAC地址。安装了某些操作系统的主机在感染了蠕虫病毒之后，可能会批量生成源IP地址为非本机所设IP地址的数据包，但这些数据包的源MAC地址却一定是其网卡的MAC地址。

 	TCP SYN扫描也有可能会从单一源头发起，也就是说，用来执行TCP SYN扫描的数据包的源IP地址只有一个，如图19.13所示。这种数据包的特征有二：TCP头部中SYN标记位会置1；目的TCP端口号五花八门。此时，使用Wireshark抓包，结果将会是以下三种情况之一。

 	只能抓到用于TCP SYN扫描的数据包。

 	除了起TCP SYN扫描作用的数据包之外，还能抓到与其相对应的TCP重置（reset）数据包。

 	既能抓到起TCP SYN扫描作用的数据包，也能抓到受攻击主机与攻击主机间建立TCP三次握手的其余TCP数据包。

 	以下所列为上述TCP SYN扫描攻击可能造成的各种后果。

 	要是只能抓到起TCP SYN扫描作用的数据包，那么受攻击主机将一切无恙。但若抓到了受攻击主机发出的与攻击主机建立TCP三次握手的数据包，受攻击服务器则岌岌可危。

 	只要攻击主机与受攻击主机之间建立了过多的TCP连接（SYN/SYN- ACK/ACK）或半开连接（(SYN/SYN-ACK），后者就会因为资源消耗过大，而变得越来越慢。

 	图19.13所示为一次典型的TCP SYN扫描攻击。像这样的扫描攻击只要能使通信链路拥堵，或让服务器停止提供服务，就立刻转化为了DoS/DDoS攻击。

[image:]

图19.13　TCP SYN DDoS泛洪攻击

19.5.3　运作原理　　　　

拒绝服务（DoS）攻击的目的是要让原本可以访问的网络服务不可访问。DoS攻击的实施手段是设法消耗受攻击的网络服务的资源（比如，网络服务所驻留的主机的CPU、内存资源等），使其无法提供正常的服务。

DoS攻击的源头一般只有一个，而DDoS攻击的源头则可以有很多。

19.5.4　拾遗补缺　　　　

DoS/DDoS攻击有时很难觉察，因为攻击者在发动攻击时会将相应的攻击流量伪装为正常流量。举例如下。

 	可以伪装为由网管系统发出的用来发现网络设备的ICMP echo request数据包（ping包）。

 	可以伪装为可被Web服务器正常接收的包含GET方法的HTTP请求数据包。

 	可以伪装为SNMP GET请求数据包。

因此，要想发现DoS/DDoS攻击，不但要查明可疑数据包的来源，还得关注其数量，甚至还需知其内在。图19.14所示的Wireshark截屏显示了作者用Follow TCP Stream右键菜单项功能关注的一条指定的TCP数据流。

[image:]

图19.14　TCP SYN DDoS攻击

19.6　发现高级TCP攻击

高级TCP攻击是指攻击者发出精心打造的TCP数据包，让受攻击设备不知如何处理，或者在安全设备那里蒙混过关。虽然部署在当今网络中的新型防火墙能够识别并阻止此类攻击，但作者认为仍有必要对其做简要介绍。

19.6.1　准备工作　　　　

作者只要在一个新的网络环境中执行排障任务，通常都会把安装了Wireshark的笔记本接入该网络，观察其所承载的流量。首先，作者会把笔记本连接到LAN交换机，观察抓到的广播流量。然后，会启用端口镜像功能，将交换机上连接关键服务器或重要通信链路的端口的流量重定向至Wireshark主机，仔细观察抓到的流量。

19.6.2　操作方法　　　　

在分析Wireshark抓到的流量时，若发现TCP流量具备以下特征，则很可能是有人在发动高级TCP攻击。

 	若发现了大量目的IP地址相同、目的端口号千奇百怪，且ACK标记位置1的TCP数据包（见图19.15），则可认定有人在发动名为ACK扫描的高级TCP攻击。这种攻击的目的是破坏已经建立的TCP连接。

[image:]

图19.15　TCP ACK扫描

 	若发现了大量标记位置位方式怪异（比如，URG、FIN和RST标记位同时置1，或者SYN和FIN标记位同时置1）的TCP数据包，则可认定有人在发动高级TCP攻击。图19.16所示为有人在执行名为Xmas的扫描攻击时，Wireshark抓到的URG、FIN和RST标记位同时置1的TCP数据包。

[image:]

图19.16　TCP数据包的TCP头部的标记位置位方式怪异

图19.17所示为所有标记位全都置0的TCP数据包。在发动名为空扫描（Null scan）的高级TCP攻击时，便会生成这种标记位置位方式极为怪异的TCP数据包。

[image:]

图19.17　TCP空扫描

 	若发现了大量目的IP地址相同、目的端口号千奇百怪，且ACK和FIN标记位同时置1的TCP数据包（见图19.18），则可认定有人在发动名为FIN-ACK扫描的高级TCP攻击。这种攻击的目的是破坏已经建立的TCP连接或对目的主机进行流量泛洪。

[image:]

图19.18　TCP FIN-ACK扫描

19.6.3　运作原理　　　　

上面提到的种种高级TCP攻击，无非遵循两个思路：发出大量RST或FIN位置1（ACK位置0或置1均可）的TCP数据包，扫描目标主机可能监听的各TCP端口，目的是破坏其已经（通过各监听端口）建立的TCP连接；发出大量标记位置位方式怪异的TCP数据包，让目标主机忙于处理，以达到拒绝服务的目的。

新型防火墙或IDS/IPS能识别并阻挡绝大多数所谓的高级TCP攻击。

19.6.4　拾遗补缺　　　　

在怀疑遭受攻击，动用Wireshark进行抓包分析时，虽可利用显示过滤器来匹配各类攻击流量的特征，但最好还是彻查抓到的所有流量，从中寻找异常流量模式。

19.6.5　进阶阅读　　　　

 	欲知更多与扫描攻击有关的信息，请访问Nmap官网页面。

19.7　发现针对某些应用程序的暴力破解攻击

在本章的最后一节，会介绍几种暴力破解攻击。暴力破解攻击是一种以试错为手段，窃取受害人信息的攻击方法。比如，尝试定位某些单位的服务器、探索用户目录以及破解密码。

19.7.1　准备攻击　　　　

不论是探测攻击还是破解攻击，一般都不会在网络中掀起大风大浪（说确切点，流量不会大起大落），因此其攻击行为只有IDS等网络安全防护设备才能觉察，要不然就得靠网管人员的直觉来发现类似的网络入侵了。本节会介绍如何识别暴力破解攻击。

19.7.2　操作方法　　　　

若怀疑有人在网络中实施暴力破解攻击，请按以下步骤来加以定位。

1．在LAN交换机上启用端口镜像功能，设法将相关端口（连接了疑似遭受暴力破解攻击的服务器的端口）的流量重定向至Wireshark主机。

2．要想发现DNS探测攻击，需要在抓包文件中筛选出DNS流量，仔细检查询问本单位主机（服务器）域名的DNS查询数据包。图19.19所示的Wireshark抓包文件展示了一次针对icomm.com域的DNS探测攻击。不难发现，攻击主机（IP地址10.0.0.1）正在执行DNS探测攻击，该主机向DNS服务器（10.0.0.138）发出了诸多DNS查询数据包，企图探测icomm.com域旗下的多台主机的IPv4和IPv6地址（查询DNS A记录和AAAA记录）。

 	由于该攻击主机所探测的大部分主机的域名都不存在，因此Wireshark抓到了很多身背No such name字样的DNS响应数据包（详见图19.19中的2、3、4、5）。

 	需要注意的是，如在Wireshark抓包文件中发现有身背No such name字样的DNS响应数据包，并不意味着一定有人在执行DNS探测攻击。此时，需要从身背No such name字样的DNS响应数据包的数量，以及与之对应的DNS查询数据包的源IP地址来判断是否存在DNS探测攻击。

[image:]

图19.19　DNS暴力破解攻击

3．要想发现HTTP探测攻击（发动HTTP探测攻击的目的，是要探测出Web服务器上有哪些资源），需要仔细检查Wireshark抓到的相关HTTP流量。

 	要仔细检查HTTP请求数据包的内容，看看里面是否有攻击者留下的足迹，如图19.20所示。

[image:]

图19.20　HTTP暴力破解攻击——探测资源

 	应关注身背HTTP错误码4xx的HTTP应答数据包的数量。为此，请先在Wireshark抓包主窗口中点击Statistics菜单的HTTP菜单项中的Packet Counter子菜单项，再在弹出的HTTP/Packet Counter Stats Tree窗口中输入IP，点Create Stat按钮，如图19.21所示。在HTTP/Packet Counter with filter窗口中点击HTTP Response Packets之前的“+”号，要是发现Wireshark抓到了太多含HTTP状态码4xx的HTTP响应数据包，则表示有人正在执行HTTP扫描攻击。

[image:]

图19.21　HTTP扫描攻击的特征

19.7.3　幕后原理　　　　

对目标网络进行探测，向其发送探测类数据包，是暴力破解攻击的第一步。发送探测类数据包目的，当然是希望目标网络内的主机予以回应。只要网络安全措施能落实到位，加之那些探测又漫无目的，当黑客探测网络时，表现出的征兆包括在Wireshark抓包文件中会发现大量身背Not Found或Forbidden字样，以及包含各种错误状态码的（HTTP、SMTP、SIP）数据包。

19.7.4　拾遗补缺　　　　

要想从Wireshark抓包文件中筛选出含错误状态码的HTTP应答数据包，显示过滤器的写法是http.response.code >=400。对于某些其他协议（比如SIP），其协议数据包也会携带类似于HTTP协议的错误状态码，同样可以利用相似的显示过滤器，基于错误状态码对数据包进行筛选。要想从抓包文件中筛选出由某些知名扫描工具生成的攻击流量，请先在Wireshark抓包主窗口中点击Edit菜单中的Find Packet菜单项，再到弹出的Find Packet窗口中选择String和Packet bytes单选按钮，在Filter输入栏里填入知名扫描工具的名称，最后点击Find按钮即可。图19.22所示为如何从Wireshark抓包文件中筛选出由Nmap生成的数据包。Nmap是众多扫描工具中知名度最高的一个。

[image:]

图19.22　从Wireshark抓包文件中筛选出包含关键字nmap.org的数据包

在Filter输入栏里填入nmap.org（1），点击Find按钮，Wireshark抓包主窗口的数据包列表区域就只会显示由Nmap扫描工具生成的数据包（即包含关键字nmap.org的数据包）了，如图19.23所示。

[image: 1923]

图19.23　从Wireshark抓包文件中筛选的出包含关键字nmap.org的数据包

暴力破解攻击到了最后一步，攻击者所要做的就是企图以猜测密码的方式，来攻陷服务器或网络设备。

图19.24所示为攻击者尝试攻陷一台受到良好保护的FTP服务器时的情况。

[image:]

图19.24　破解FTP服务器

由于攻陷的目标是FTP服务器，因此攻击者先以匿名的方式（使用用户名anonymous和密码mozilla@example.com）尝试登录（1）和（2）。FTP服务器接受了攻击者的登录请求（3）。攻击者登录之后就可以执行匿名用户获准执时的命令（4）。

图19.25所示为攻击者以别的用户名登录FTP服务器时的情况。

[image: 1925]

图19.25　破解FTP服务器——无效的用户名

由图19.25可知，攻击者以用户名root（1）、admin（2）和administrator（3）分别尝试登录。

因为攻击者未能提供正确的密码，所以FTP服务器将其拒之门外，同时向其发出身背TCP ZeroWindow字样，包含you could at least say goodbye内容的FTP数据包。

EPUB/cover.jpg
Packt £RsE

(L]

EPUB/cover.xhtml
[image: Cover]

