
22 | 缓存架构：如何减少不必要的计算？
2020-01-13 李智慧

后端技术面试38讲 进入课程

讲述：李智慧
时长 11:27 大小 9.19M



上一篇我们讲到，互联网应用的主要挑战就是在高并发情况下，大量的用户请求到达应用系

统服务器，造成了巨大的计算压力。互联网应用的核心解决思路就是采用分布式架构，提供

更多的服务器，从而提供更多的计算资源，以应对高并发带来的计算压力及资源消耗。

那么有没有办法减少到达服务器的并发请求压力呢？或者请求到达服务器后，有没有办法减

少不必要的计算，降低服务器的计算资源消耗，尽快返回计算结果给用户呢？

有，解决的核心就是缓存。

所谓缓存，就是将需要多次读取的数据暂存起来，这样在后面，应用程序需要多次读取的时

候，就不必从数据源重复加载数据了，这样就可以降低数据源的计算负载压力，提高数据响



 下载APP 



应速度。

一般说来，缓存可以分成两种，通读缓存和旁路缓存。

通读（read-through）缓存，应用程序访问通读缓存获取数据的时候，如果通读缓存有应

用程序需要的数据，那么就返回这个数据；如果没有，那么通读缓存就自己负责访问数据

源，从数据源获取数据返回给应用程序，并将这个数据缓存在自己的缓存中。这样，下次应

用程序需要数据的时候，就可以通过通读缓存直接获得数据了。

通读缓存在架构中的位置与作用如下图：

旁路（cache-aside）缓存，应用程序访问旁路缓存获取数据的时候，如果旁路缓存中有应

用程序需要的数据，那么就返回这个数据；如果没有，就返回空（null）。应用程序需要自

己从数据源读取数据，然后将这个数据写入到旁路缓存中。这样，下次应用程序需要数据的

时候，就可以通过旁路缓存直接获得数据了。

旁路缓存在架构中位置与作用如下图：



通读缓存

互联网应用中主要使用的通读缓存是 CDN 和反向代理缓存。

CDN（Content Delivery Network）即内容分发网络。我们上网的时候，App 或者浏览

器想要连接到互联网应用的服务器，需要网络服务商，比如移动、电信这样的服务商为我们

提供网络服务，建立网络连接才可以上网。

而这些服务商需要在全国范围内部署骨干网络、交换机机房才能完成网络连接服务，这些交

换机机房可能会离用户非常近，那么互联网应用能不能在这些交换机机房中部署缓存缓存服

务器呢？这样，用户就可以近距离获得自己需要的数据，既提高了响应速度，又节约了网络

带宽和服务器资源。

当然可以。这个部署在网络服务商机房中的缓存就是 CDN，因为距离用户非常近，又被称

作网络连接的第一跳。目前很多互联网应用大约 80% 以上的网络流量都是通过 CDN 返回

的。



CDN 只能缓存静态数据内容，比如图片、CSS、JS、HTML 等内容。而动态的内容，比如

订单查询、商品搜索结果等必须要应用服务器进行计算处理后才能获得。因此，互联网应用

的静态内容和动态内容需要进行分离，静态内容和动态内容部署在不同的服务器集群上，使

用不同的二级域名，即所谓的动静分离，一方面便于运维管理，另一方面也便于 CDN 进行

缓存，使 CDN 只缓存静态内容。

反向代理缓存也是一种通读缓存。我们上网的时候，有时候需要通过代理上网，这个代理是

代理我们的客户端上网设备。而反向代理则代理服务器，是应用程序服务器的门户，所有的

网络请求都需要通过反向代理才能到达应用程序服务器。既然所有的请求都需要通过反向代

理才能到达应用服务器，那么在这里加一个缓存，尽快将数据返回给用户，而不是发送给应

用服务器，这就是反向代理缓存。



用户请求到达反向代理缓存服务器，反向代理检查本地是否有需要的数据，如果有就直接返

回，如果没有，就请求应用服务器，得到需要的数据后缓存在本地，然后返回给用户。

旁路缓存

CDN 和反向代理缓存通常会作为系统架构的一部分，很多时候对应用程序是透明的。而应

用程序在代码中主要使用的是对象缓存，对象缓存是一种旁路缓存。

不管是通读缓存还是旁路缓存，缓存通常都是以 <key, value> 的方式存储在缓存中，比

如，CDN 和反向代理缓存中，每个 URL 是一个 key，那么 URL 对应的文件内容就是 

value。而对象缓存中，key 通常是一个 ID，比如用户 ID，商品 ID 等等，而 value 则是一

个对象，就是 ID 对应的用户对象或者商品对象。

对于 <key, value> 的数据格式，我们在前面在数据结构讨论过，比较快速的存取方式是使

用 Hash 表。因此通读缓存和旁路缓存在实现上，基本上用的是 Hash 表。

程序中使用的对象缓存，可以分成两种。一种是本地缓存，缓存和应用程序在同一个进程中

启动，使用程序的堆空间存放缓存数据。本地缓存的响应速度快，但是缓存可以使用的内存

空间相对比较小，但是对于大型互联网应用所需要缓存的数据通以 T 计，这时候就要使用

远程的分布式缓存了。

分布式缓存是指将一组服务器构成一个缓存集群，共同对外提供缓存服务，那么应用程序在

每次读写缓存的时候，如何知道要访问缓存集群中的哪台服务器呢？我们以 Memcached 

为例，看看分布式缓存的架构：



Memcached 将多台服务器构成一个缓存集群，缓存数据存储在每台服务器的内存中。事

实上，使用缓存的应用程序服务器通常也是以集群方式部署的，每个程序需要依赖一个 

Memcached 的客户端 SDK，通过 SDK 的 API 访问 Memcached 的服务器。

应用程序调用 API，API 调用 SDK 的路由算法，路由算法根据缓存的 key 值，计算这个 

key 应该访问哪台 Memcached 服务器，计算得到服务器的 IP 地址和端口号后，API 再调

用 SDK 的通信模块，将 <key, value> 值以及缓存操作命令发送给具体的某台 

Memcached 服务器，由这台服务器完成缓存操作。

那么，路由算法又是如何计算得到 Memcached 的服务器 IP 端口呢？比较简单的一种方

法，和 Hash 算法一样，利用 key 的 Hash 值对服务器列表长度取模，根据余数就可以确

定服务器列表的下标，进而得到服务器的 IP 和端口。

缓存注意事项

使用缓存可以减少不必要的计算，能够带来三个方面的好处：

缓存的数据通常存储在内存中，距离使用数据的应用也更近一点，因此相比从硬盘上获

取，或者从远程网络上获取，它获取数据的速度更快一点，响应时间更快，性能表现更

好。

1.

缓存的数据通常是计算结果数据，比如对象缓存中，通常存放经过计算加工的结果对

象，如果缓存不命中，那么就需要从数据库中获取原始数据，然后进行计算加工才能得

2.



但是缓存也不是万能的，如果不恰当地使用缓存，也可能会带来问题。

首先就是数据脏读的问题，缓存的数据来自数据源，如果数据源中的数据被修改了，那么缓

存中的数据就变成脏数据了。

主要解决办法有两个，一个是过期失效，每次写入缓存中的数据都标记其失效时间，在读取

缓存的时候，检查数据是否已经过期失效，如果失效，就重新从数据源获取数据。缓存失效

依然可能会在未失效时间内读到脏数据，但是一般的应用都可以容忍较短时间的数据不一

致，比如淘宝卖家更新了商品信息，那么几分钟数据没有更新到缓存，买家看到的还是旧数

据，这种情况通常是可以接受的，这时候，就可以设置缓存失效时间为几分钟。

另一个办法就是失效通知，应用程序更新数据源的数据，同时发送通知，将该数据从缓存中

清除。失效通知看起来数据更新更加及时，但是实践中，更多使用的还是过期失效。

此外，并不是所有数据使用缓存都有意义。在互联网应用中，大多数数据访问都是有热点

的，比如热门微博会被更多阅读，热门商品会被更多浏览。那么将这些热门的数据保存在缓

存中是有意义的，因为缓存通常使用内存，存储空间比较有限，只能存储有限的数据，热门

数据存储在缓存中，可以被更多次地读取，缓存效率也比较高。

相反，如果缓存的数据没有热点，写入缓存的数据很难被重复读取，那么使用缓存就不是很

有必要了。

小结

缓存是优化软件性能的杀手锏，任何需要查询数据、请求数据的场合都可以考虑使用缓存。

缓存几乎是无处不在的，程序代码中可以使用缓存，网络架构中可以使用缓存，CPU、操

作系统、虚拟机也大量使用缓存，事实上，缓存最早就是在 CPU 中使用的。对于一个典型

到结果对象，因此使用缓存可以减少 CPU 的计算消耗，节省计算资源，同样也加快了处

理的速度。

通过对象缓存获取数据，可以降低数据库的负载压力；通过 CDN、反向代理等通读缓存

获取数据，可以降低服务器的负载压力。这些被释放出来的计算资源，可以提供给其他

更有需要的计算场景，比如写数据的场景，间接提高整个系统的处理能力。

3.



© 版权归极客邦科技所有，未经许可不得传播售卖。 页面已增加防盗追踪，如有侵权极客邦将依法追究其法律责任。

的互联网应用而言，使用缓存可以解决绝大部分的性能问题，如果需要优化软件性能，那么

可以优先考虑哪里可以使用缓存改善性能。

除了本篇提到的系统架构缓存外，客户端也可以使用缓存，在 App 或者浏览器中缓存数

据，甚至都不需要消耗网络带宽资源，也不会消耗 CDN、反向代理的内存资源，更不会消

耗服务器的计算资源。

思考题

我们从 Memcached 路由算法讲到余数 Hash 算法，但是，这种算法在 Memcached 服务

器集群扩容，也就是增加服务器的时候，会遇到较大的问题，问题是什么呢？应该如何解

决？

欢迎你在评论区写下你的思考，也欢迎把这篇文章分享给你的朋友或者同事，一起交流进步

一下。

上一篇 21丨分布式架构：如何应对高并发的用户请求

下一篇 加餐 | 软件设计文档示例模板



holybell
2020-01-13

关于思考题，使用Memcached服务器数量参与hash余数算法，会导致服务器数量增减的
时候，相同的路由被重新计算到不同的机器上，这就会导致每次增删Memcached服务器
的时候，会导致大量的缓存失效，针对这个问题可以采用一致性哈希算法，将所有的服务
器连接成一个逻辑上的环，采用一个不会改变运算逻辑的hash函数，当一个key计算出has
h值的时候落到环上的某一个点，之后顺时针找到最近的一个服务器即可，这样即使删除…
展开

  1

俊杰
2020-01-13

会导致大量缓存不命中，可以用一致性哈希算法解决

展开

 

精选留言 (2)  写留言


