
10 | 如何使用异步设计提升系统性能？
2019-08-13 李玥

消息队列高手课 进入课程

讲述：李玥
时长 12:36 大小 11.55M

你好，我是李玥，这一讲我们来聊一聊异步。

对于开发者来说，异步是一种程序设计的思想，使用异步模式设计的程序可以显著减少线程

等待，从而在高吞吐量的场景中，极大提升系统的整体性能，显著降低时延。

因此，像消息队列这种需要超高吞吐量和超低时延的中间件系统，在其核心流程中，一定会

大量采用异步的设计思想。

接下来，我们一起来通过一个非常简单的例子学习一下，使用异步设计是如何提升系统性能

的。

异步设计如何提升系统性能？





 下载APP 



假设我们要实现一个转账的微服务 Transfer( accountFrom, accountTo, amount)，这个

服务有三个参数：分别是转出账户、转入账户和转账金额。

实现过程也比较简单，我们要从账户 A 中转账 100 元到账户 B 中：

1. 先从 A 的账户中减去 100 元；

2. 再给 B 的账户加上 100 元，转账完成。

对应的时序图是这样的：

在这个例子的实现过程中，我们调用了另外一个微服务 Add(account, amount)，它的功

能是给账户 account 增加金额 amount，当 amount 为负值的时候，就是扣减响应的金

额。

需要特别说明的是，在这段代码中，我为了使问题简化以便我们能专注于异步和性能优化，

省略了错误处理和事务相关的代码，你在实际的开发中不要这样做。

1. 同步实现的性能瓶颈

首先我们来看一下同步实现，对应的伪代码如下：

1

2

Transfer(accountFrom, accountTo, amount) {
  // 先从 accountFrom 的账户中减去相应的钱数

复制代码



上面的伪代码首先从 accountFrom 的账户中减去相应的钱数，再把减去的钱数加到

accountTo 的账户中，这种同步实现是一种很自然方式，简单直接。那么性能表现如何

呢？接下来我们就来一起分析一下性能。

假设微服务 Add 的平均响应时延是 50ms，那么很容易计算出我们实现的微服务 Transfer

的平均响应时延大约等于执行 2 次 Add 的时延，也就是 100ms。那随着调用 Transfer 服

务的请求越来越多，会出现什么情况呢？

在这种实现中，每处理一个请求需要耗时 100ms，并在这 100ms 过程中是需要独占一个

线程的，那么可以得出这样一个结论：每个线程每秒钟最多可以处理 10 个请求。我们知

道，每台计算机上的线程资源并不是无限的，假设我们使用的服务器同时打开的线程数量上

限是 10,000，可以计算出这台服务器每秒钟可以处理的请求上限是： 10,000 （个线程）*

10（次请求每秒） = 100,000 次每秒。

如果请求速度超过这个值，那么请求就不能被马上处理，只能阻塞或者排队，这时候

Transfer 服务的响应时延由 100ms 延长到了：排队的等待时延 + 处理时延 (100ms)。也

就是说，在大量请求的情况下，我们的微服务的平均响应时延变长了。

这是不是已经到了这台服务器所能承受的极限了呢？其实远远没有，如果我们监测一下服务

器的各项指标，会发现无论是 CPU、内存，还是网卡流量或者是磁盘的 IO 都空闲的很，

那我们 Transfer 服务中的那 10,000 个线程在干什么呢？对，绝大部分线程都在等待 Add

服务返回结果。

也就是说，采用同步实现的方式，整个服务器的所有线程大部分时间都没有在工作，而是都

在等待。

如果我们能减少或者避免这种无意义的等待，就可以大幅提升服务的吞吐能力，从而提升服

务的总体性能。

3

4

5

6

7

  Add(accountFrom, -1 * amount)
  // 再把减去的钱数加到 accountTo 的账户中

  Add(accountTo, amount)
  return OK
}



2. 采用异步实现解决等待问题

接下来我们看一下，如何用异步的思想来解决这个问题，实现同样的业务逻辑。

细心的你可能已经注意到了，TransferAsync 服务比 Transfer 多了一个参数，并且这个参

数传入的是一个回调方法 OnComplete()（虽然 Java 语言并不支持将方法作为方法参数传

递，但像 JavaScript 等很多语言都具有这样的特性，在 Java 语言中，也可以通过传入一个

回调类的实例来变相实现类似的功能）。

这个 TransferAsync() 方法的语义是：请帮我执行转账操作，当转账完成后，请调用

OnComplete() 方法。调用 TransferAsync 的线程不必等待转账完成就可以立即返回了，

待转账结束后，TransferService 自然会调用 OnComplete() 方法来执行转账后续的工作。

异步的实现过程相对于同步来说，稍微有些复杂。我们先定义 2 个回调方法：

整个异步实现的语义相当于：

1. 异步从 accountFrom 的账户中减去相应的钱数，然后调用 OnDebit 方法；

2. 在 OnDebit 方法中，异步把减去的钱数加到 accountTo 的账户中，然后执行

OnAllDone 方法；

1

2

3

4

5

6

7

8

9

10

11

12

13

TransferAsync(accountFrom, accountTo, amount, OnComplete()) {
  // 异步从 accountFrom 的账户中减去相应的钱数，然后调用 OnDebit 方法。

  AddAsync(accountFrom, -1 * amount, OnDebit(accountTo, amount, OnAllDone(OnComplete())
}
// 扣减账户 accountFrom 完成后调用

OnDebit(accountTo, amount, OnAllDone(OnComplete())) {
  //  再异步把减去的钱数加到 accountTo 的账户中，然后执行 OnAllDone 方法

  AddAsync(accountTo, amount, OnAllDone(OnComplete()))
}
// 转入账户 accountTo 完成后调用

OnAllDone(OnComplete()) {
  OnComplete()
}

复制代码

OnDebit()：扣减账户 accountFrom 完成后调用的回调方法；

OnAllDone()：转入账户 accountTo 完成后调用的回调方法。



3. 在 OnAllDone 方法中，调用 OnComplete 方法。

绘制成时序图是这样的：

你会发现，异步化实现后，整个流程的时序和同步实现是完全一样的，区别只是在线程模型

上由同步顺序调用改为了异步调用和回调的机制。

接下来我们分析一下异步实现的性能，由于流程的时序和同步实现是一样，在低请求数量的

场景下，平均响应时延一样是 100ms。在超高请求数量场景下，异步的实现不再需要线程

等待执行结果，只需要个位数量的线程，即可实现同步场景大量线程一样的吞吐量。

由于没有了线程的数量的限制，总体吞吐量上限会大大超过同步实现，并且在服务器

CPU、网络带宽资源达到极限之前，响应时延不会随着请求数量增加而显著升高，几乎可

以一直保持约 100ms 的平均响应时延。

看，这就是异步的魔力。

简单实用的异步框架: CompletableFuture

在实际开发时，我们可以使用异步框架和响应式框架，来解决一些通用的异步编程问题，简

化开发。Java 中比较常用的异步框架有 Java8 内置的CompletableFuture和 ReactiveX 的

RxJava，我个人比较喜欢简单实用易于理解的 CompletableFuture，但是 RxJava 的功能

更加强大。有兴趣的同学可以深入了解一下。

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletableFuture.html
https://github.com/ReactiveX/RxJava


Java 8 中新增了一个非常强大的用于异步编程的类：CompletableFuture，几乎囊获了我

们在开发异步程序的大部分功能，使用 CompletableFuture 很容易编写出优雅且易于维护

的异步代码。

接下来，我们来看下，如何用 CompletableFuture 实现的转账服务。

首先，我们用 CompletableFuture 定义 2 个微服务的接口：

可以看到这两个接口中定义的方法的返回类型都是一个带泛型的 CompletableFeture，尖

括号中的泛型类型就是真正方法需要返回数据的类型，我们这两个服务不需要返回数据，所

以直接用 Void 类型就可以。

1

2

3

4

5

6

7

8

9

10

11

/**
 * 账户服务

 */
public interface AccountService {
    /**
     * 变更账户金额

     * @param account 账户 ID
     * @param amount 增加的金额，负值为减少

     */
    CompletableFuture<Void> add(int account, int amount);
}

复制代码

1

2

3

4

5

6

7

8

9

10

11

12

/**
 * 转账服务

 */
public interface TransferService {
    /**
     * 异步转账服务

     * @param fromAccount 转出账户

     * @param toAccount 转入账户

     * @param amount 转账金额，单位分

     */
    CompletableFuture<Void> transfer(int fromAccount, int toAccount, int amount);
}

复制代码



然后我们来实现转账服务：

在转账服务的实现类 TransferServiceImpl 里面，先定义一个 AccountService 实例，这个

实例从外部注入进来，至于怎么注入不是我们关心的问题，就假设这个实例是可用的就好

了。

然后我们看实现 transfer() 方法的实现，我们先调用一次账户服务 accountService.add()

方法从 fromAccount 扣减响应的金额，因为 add() 方法返回的就是一个

CompletableFeture 对象，可以用 CompletableFeture 的 thenCompose() 方法将下一

次调用 accountService.add() 串联起来，实现异步依次调用两次账户服务完整转账。

客户端使用 CompletableFuture 也非常灵活，既可以同步调用，也可以异步调用。

1

2

3

4

5

6

7

8

9

10

11

12

13

14

/**
 * 转账服务的实现

 */
public class TransferServiceImpl implements TransferService {
    @Inject
    private  AccountService accountService; // 使用依赖注入获取账户服务的实例

    @Override
    public CompletableFuture<Void> transfer(int fromAccount, int toAccount, int amount) 
      // 异步调用 add 方法从 fromAccount 扣减相应金额

      return accountService.add(fromAccount, -1 * amount)
      // 然后调用 add 方法给 toAccount 增加相应金额

      .thenCompose(v -> accountService.add(toAccount, amount));    
    }
}

复制代码

1

2

3

4

5

6

7

8

9

10

11

12

public class Client {
    @Inject
    private TransferService transferService; // 使用依赖注入获取转账服务的实例

    private final static int A = 1000;
    private final static int B = 1001;
 
    public void syncInvoke() throws ExecutionException, InterruptedException {
        // 同步调用

        transferService.transfer(A, B, 100).get();
        System.out.println(" 转账完成！");
    }
 

复制代码



在调用异步方法获得返回值 CompletableFuture 对象后，既可以调用

CompletableFuture 的 get 方法，像调用同步方法那样等待调用的方法执行结束并获得返

回值，也可以像异步回调的方式一样，调用 CompletableFuture 那些以 then 开头的一系

列方法，为 CompletableFuture 定义异步方法结束之后的后续操作。比如像上面这个例子

中，我们调用 thenRun() 方法，参数就是将转账完成打印在控台上这个操作，这样就可以

实现在转账完成后，在控制台打印“转账完成！”了。

小结

简单的说，异步思想就是，当我们要执行一项比较耗时的操作时，不去等待操作结束，而是

给这个操作一个命令：“当操作完成后，接下来去执行什么。”

使用异步编程模型，虽然并不能加快程序本身的速度，但可以减少或者避免线程等待，只用

很少的线程就可以达到超高的吞吐能力。

同时我们也需要注意到异步模型的问题：相比于同步实现，异步实现的复杂度要大很多，代

码的可读性和可维护性都会显著的下降。虽然使用一些异步编程框架会在一定程度上简化异

步开发，但是并不能解决异步模型高复杂度的问题。

异步性能虽好，但一定不要滥用，只有类似在像消息队列这种业务逻辑简单并且需要超高吞

吐量的场景下，或者必须长时间等待资源的地方，才考虑使用异步模型。如果系统的业务逻

辑比较复杂，在性能足够满足业务需求的情况下，采用符合人类自然的思路且易于开发和维

护的同步模型是更加明智的选择。

思考题

课后给你留 2 个思考题：

13

14

15

16

17

18

    public void asyncInvoke() {
        // 异步调用

        transferService.transfer(A, B, 100)
                .thenRun(() -> System.out.println(" 转账完成！"));
    }
}



第一个思考题是，我们实现转账服务时，并没有考虑处理失败的情况。你回去可以想一下，

在异步实现中，如果调用账户服务失败时，如何将错误报告给客户端？在两次调用账户服务

的 Add 方法时，如果某一次调用失败了，该如何处理才能保证账户数据是平的？

第二个思考题是，在异步实现中，回调方法 OnComplete() 是在什么线程中运行的？我们

是否能控制回调方法的执行线程数？该如何做？欢迎在留言区写下你的想法。

感谢阅读，如果你觉得这篇文章对你有帮助的话，也欢迎把它分享给你的朋友。

© 版权归极客邦科技所有，未经许可不得传播售卖。 页面已增加防盗追踪，如有侵权极客邦将依法追究其法律责任。

上一篇 09 | 学习开源代码该如何入手？

下一篇 11 | 如何实现高性能的异步网络传输？

笑傲流云
2019-08-13

个人的思路，欢迎老师点评下哈。 

精选留言 (22)  写留言



1，调用账户失败，可以在异步callBack里执行通知客户端的逻辑； 
2，如果是第一次失败，那后面的那一步就不用执行了，所以转账失败；如果是第一次成功
但是第二次失败，首先考虑重试，如果转账服务是幂等的,可以考虑一定次数的重试，如果
不能重试，可以考虑采用补偿机制，undo第一次的转账操作。 …
展开

作者回复: 👍👍👍

  13

senekis
2019-08-13

老师，我一直有一个困惑，就是想不明白为何异步可以节省线程。每次发起一个异步调用
不都会创建一个新的线程吗？我理解了好几次，感觉只是异步处理线程在等待时可以让出
时间片给其他线程运行啊？一直想不明白这个问题，困扰了好久，求老师解惑。

展开

作者回复: 太多的线程会造成频繁的cpu上下文切换，你可以想象一下，假设你的小公司只有8台电

脑，你雇8个程序员一直不停的工作显然是效率最高的。考虑到程序员要休息不可能连轴转，雇佣

24个人，每天三班倒，效率也还行。 

 

但是，你要雇佣10000个人，他们还是只能用这8台电脑，大部分时间不都浪费在换人、交接工作

上了吗？

 12  9

付永强
2019-08-13

老师可能里面过多提到线程这两个字，所以很多人把异步设计理解成节约线程，其实李玥
老师这里想说明的是异步是用来提高cup的利用率，而不是节省线程。 
异步编程是通过分工的方式，是为了减少了cpu因线程等待的可能，让CPU一直处于工作状
态。换句话说，如果我们能想办法减少CPU空闲时间，我们的计算机就可以支持更多的线
程。 …
展开

作者回复: 👍👍👍 

线程就是为了能自动分配CPU时间片而生的。

  4



linqw
2019-08-13

尝试回答课后习题，老师有空帮忙看下哦 
思考题一、如果在异步实现中，如果调用账户服务失败，可以以账单的形式将转账失败的
记录下来，比如客户在转账一段时间后 
查看账单就可以知道转账是否成功，只要保证转账失败，客户的钱没有少就可以。两次调
用账户服务，感觉可以这样写 …
展开

作者回复: 总结的非常好！ 

 

有一点需要改进一下，转账服务的实现中，异常处理的部分，还是需要先检查再补偿，否则有可

能出现重复补偿的情况。

  3

Better me
2019-08-13

对于思考题: 
1、应该可以通过编程式事物来保证数据的完整性。如何将错误结果返回给客户端，感觉这
边和老师上次答疑网关如何接收服务端秒杀结果有点类似，通过方法回调，在回调方法中
保存下转账成功或失败 
2、在异步实现中，回调方法 OnComplete()在执行OnAllDone()回调方法的那个线程，…
展开

作者回复: 👍👍👍

  2

谢清
2019-08-13

学习了，一点思路，欢迎老师点评 
第一个问题： 
两次add方法保持最终一致性，第一次add失败不在调用第二次，告知客户转账失败；第一
次成功调第二次失败，告知用户：转账进行中，转账对象收款中；可设置补偿策略，还是
失败的话，转账后台人工介入补偿，还是不行则人工还原账户金额并告知用户：转账失…
展开

  1

蓝魔丶



2019-08-13

老师，转账例子代码中给转入账号加钱写错了吧

展开

作者回复: 感谢指正，我尽快让编辑小姐姐改正。

  1

monalisali
2019-08-14

老师，问个问题：如何CPU和内存占有率都很高，用异步可以解决吗？

作者回复: 这个问题异步解决不了。如果说真的cpu或者磁盘占用率达到100%了，并且你的代码

逻辑没什么问题，那这就是程序的极限了。

 1 

monalisali
2019-08-14

思考题一： 
可以写一个兜底函数类似与catch，所有异常都走到这个函数中。然后通过传入catch的参
数来判断错误类型，并决定后续操作 
 
转入方法也类似，先判断下转出方法是否成功，成功了再执行。

展开

 

海罗沃德
2019-08-14

老师能否对比一下异步和StreamingData，据说StreamingData可以让线程使用率更高，
效率比异步处理也更高，这是怎么实现的？

展开

作者回复: 你说的“StreamingData“指的是Lambda表达式还是流计算，或是其他什么技术呢？

能具体说一下吗？

 1 

Liam



2019-08-14

异步实现里面还是要用线程池限制一下线程数吧，否则没有达到减少线程的效果

作者回复: 是的，一般都会使用线程池。

 

DAV 🍃
2019-08-13

请教一下，在整个消息队列的场景里面怎么融合异步调用？举例，A发送消息到消息队列，
消费进程处理后如何通过回调形式返回结果给A?

展开

作者回复: 可以继续学习后面的课程，我们会有相应的源码分析。

 

川杰
2019-08-13

老师，请教个问题，吞吐量增加可以理解，因为请求发生后就直接返回了，从而避免了后
续等待的延时；但是，以今天内容为例： 
1、TransferAsync请求发生，直接返回，并开启新线程处理OnDebit函数； 
2、OnDebit处理完毕，开启新线程处理OnAllDone函数； 
3、OnAllDone函数处理完毕； …
展开

作者回复: 第一，OnDebit()和OnAllDone()可以在同一个线程中执行。没必要每个回调方法都开

启一个新的线程。 

 

第二，由于不需要等待，执行每个异步方法的耗时会非常短。 

 

第三，可以使用线程池来避免反复创建销毁线程的开销，所以只需要很少的线程。 

 

最后一个问题，“通知转账成功”这个业务逻辑，不一定非得在接收请求的那个线程里面执行，

可以直接在OnAllDone()里面通知转账成功。

 

许童童



2019-08-13

如何将错误报告给客户端？ 
javascript中用.catch捕获异常 
 
在两次调用账户服务的 Add 方法时，如果某一次调用失败了，该如何处理才能保证账户数
据是平的？ …
展开

作者回复: 👍👍👍

 

亚洲舞王.尼古拉斯....
2019-08-13

1.老师，能否解释一下为什么“使用异步编程模型之后，在少量请求之下，时延依旧是100
ms，但是在大量请求之下，异步的实现不需要等待线程的执行结果”？少量请求不也不需
要等待吗 
2.如果使用异步方式实现，我的onComplete()方法在另一个线程里执行，我怎么通知我的
客户端我执行成功还是失败呢？

展开

作者回复: A1：是的，异步方式下少量和大量请求都不需要等待执行结果。 

 

A2： 在onComplete()方法中通知。

 

广训
2019-08-13

accountService如果本身是自己处理逻辑，那将其放入一个事务中就解决部分失败。如果
调用三方服务，就比较麻烦。需要把两步操作都留存，失败的列表每天都要处理。 
 
一般都有专门的异步线程池来运行异步task任务，比如spring 的async。

展开

 

Jxin
2019-08-13

1.提个问题，为什么要1w个线程？java的线程模型不是1:1的吗，实际在跑的线程仅有核数



*2，1w这个数量不是造成了内存浪费和上下文切换成本吗。 
2.异步异常回传，并传回当前操作绑定在线程本地空间的事务实例。只有当两次都成功才
提交两个add的事务。（事务不能声明，只能手动开启和提交了）

展开

 

A:春哥大魔王
2019-08-13

jdk1.8之前没有completablefuture应该用什么搞异步呢？

作者回复: 一般是传一个回调方法，就像我们这节课讲的那样。

 1 

leslie
2019-08-13

其实异步减少的是等待时间。关于第一个思考题：调用失败是不是就可以抛出error，直接
不执行第一步；代码中是否少了相应的查询操作进行核对啊，否则万一就根本没有执行成
功呢。操作完成后相应的查询核对应当时候放到了后面吧：有问题再进行相应的类似于回
滚之类的操作。 
    第二个问题oncomplete()在什么线程中执行这个不是很清楚：不过我觉得可以通过线…
展开

 

HadesFX
2019-08-13

1.可以增加异步调用后的返回值用来判断是否成功。 
2.应该是存在一个默认线程池，使用线程池中的线程，可能存在一个配置自定义线程池的
方法用来定制控制数量。 
不知道理解的对不对。

展开

 


