
27 | I/O多路复用遇上线程：使用poll单线程处理所有I/O事件
2019-10-09 盛延敏

网络编程实战 进入课程

讲述：冯永吉
时长 08:37 大小 7.90M

你好，我是盛延敏，这里是网络编程实战第 27 讲，欢迎回来。

我在前面两讲里，分别使用了 fork 进程和 pthread 线程来处理多并发，这两种技术使用简

单，但是性能却会随着并发数的上涨而快速下降，并不能满足极端高并发的需求。就像第

24 讲中讲到的一样，这个时候我们需要寻找更好的解决之道，这个解决之道基本的思想就

是 I/O 事件分发。

关于文稿中的代码，你可以去GitHub上查看或下载完整代码。

重温事件驱动

基于事件的程序设计: GUI、Web





 下载APP 

https://github.com/froghui/yolanda

事件驱动的好处是占用资源少，效率高，可扩展性强，是支持高性能高并发的不二之选。

如果你熟悉 GUI 编程的话，你就会知道，GUI 设定了一系列的控件，如 Button、Label、

文本框等，当我们设计基于控件的程序时，一般都会给 Button 的点击安排一个函数，类似

这样：

这个设计的思想是，一个无限循环的事件分发线程在后台运行，一旦用户在界面上产生了某

种操作，例如点击了某个 Button，或者点击了某个文本框，一个事件会被产生并放置到事

件队列中，这个事件会有一个类似前面的 onButtonClick 回调函数。事件分发线程的任

务，就是为每个发生的事件找到对应的事件回调函数并执行它。这样，一个基于事件驱动的

GUI 程序就可以完美地工作了。

还有一个类似的例子是 Web 编程领域。同样的，Web 程序会在 Web 界面上放置各种界

面元素，例如 Label、文本框、按钮等，和 GUI 程序类似，给感兴趣的界面元素设计

JavaScript 回调函数，当用户操作时，对应的 JavaScript 回调函数会被执行，完成某个计

算或操作。这样，一个基于事件驱动的 Web 程序就可以在浏览器中完美地工作了。

在第 24 讲中，我们已经提到，通过使用 poll、epoll 等 I/O 分发技术，可以设计出基于套

接字的事件驱动程序，从而满足高性能、高并发的需求。

事件驱动模型，也被叫做反应堆模型（reactor），或者是 Event loop 模型。这个模型的

核心有两点。

第一，它存在一个无限循环的事件分发线程，或者叫做 reactor 线程、Event loop 线程。

这个事件分发线程的背后，就是 poll、epoll 等 I/O 分发技术的使用。

第二，所有的 I/O 操作都可以抽象成事件，每个事件必须有回调函数来处理。acceptor 上

有连接建立成功、已连接套接字上发送缓冲区空出可以写、通信管道 pipe 上有数据可以

1

2

3

4

// 按钮点击的事件处理

void onButtonClick(){

}

复制代码

读，这些都是一个个事件，通过事件分发，这些事件都可以一一被检测，并调用对应的回调

函数加以处理。

几种 I/O 模型和线程模型设计

任何一个网络程序，所做的事情可以总结成下面几种：

这几个过程和套接字最相关的是 read 和 send 这两种。接下来，我们总结一下已经学过的

几种支持多并发的网络编程技术，引出我们今天的话题，使用 poll 单线程处理所有 I/O。

fork

第 25 讲中，我们使用 fork 来创建子进程，为每个到达的客户连接服务。文稿中的这张图

很好地解释了这个设计模式，可想而知的是，随着客户数的变多，fork 的子进程也越来越

多，即使客户和服务器之间的交互比较少，这样的子进程也不能被销毁，一直需要存在。使

用 fork 的方式处理非常简单，它的缺点是处理效率不高，fork 子进程的开销太大。

read：从套接字收取数据；

decode：对收到的数据进行解析；

compute：根据解析之后的内容，进行计算和处理；

encode：将处理之后的结果，按照约定的格式进行编码；

send：最后，通过套接字把结果发送出去。

pthread

第 26 讲中，我们使用了 pthread_create 创建子线程，因为线程是比进程更轻量级的执行

单位，所以它的效率相比 fork 的方式，有一定的提高。但是，每次创建一个线程的开销仍

然是不小的，因此，引入了线程池的概念，预先创建出一个线程池，在每次新连接达到时，

从线程池挑选出一个线程为之服务，很好地解决了线程创建的开销。但是，这个模式还是没

有解决空闲连接占用资源的问题，如果一个连接在一定时间内没有数据交互，这个连接还是

要占用一定的线程资源，直到这个连接消亡为止。

single reactor thread

前面讲到，事件驱动模式是解决高性能、高并发比较好的一种模式。为什么呢？

因为这种模式是符合大规模生产的需求的。我们的生活中遍地都是类似的模式。比如你去咖

啡店喝咖啡，你点了一杯咖啡在一旁喝着，服务员也不会管你，等你有续杯需求的时候，再

去和服务员提（触发事件）, 服务员满足了你的需求，你就继续可以喝着咖啡玩手机。整个

柜台的服务方式就是一个事件驱动的方式。

我在文稿中放了一张图解释了这一讲的设计模式。一个 reactor 线程上同时负责分发

acceptor 的事件、已连接套接字的 I/O 事件。

single reactor thread + worker threads

但是上述的设计模式有一个问题，和 I/O 事件处理相比，应用程序的业务逻辑处理是比较

耗时的，比如 XML 文件的解析、数据库记录的查找、文件资料的读取和传输、计算型工作

的处理等，这些工作相对而言比较独立，它们会拖慢整个反应堆模式的执行效率。

所以，将这些 decode、compute、enode 型工作放置到另外的线程池中，和反应堆线程

解耦，是一个比较明智的选择。我在文稿中放置了这样的一张图。反应堆线程只负责处理

I/O 相关的工作，业务逻辑相关的工作都被裁剪成一个一个的小任务，放到线程池里由空闲

的线程来执行。当结果完成后，再交给反应堆线程，由反应堆线程通过套接字将结果发送出

去。

样例程序

从今天开始，我们会接触到为本课程量身定制的网络编程框架。使用这个网络编程框架的样

例程序已经放到文稿中：

1

2

3

4

5

6

7

8

9

10

11

12

13

#include <lib/acceptor.h>
#include "lib/common.h"
#include "lib/event_loop.h"
#include "lib/tcp_server.h"

char rot13_char(char c) {
 if ((c >= 'a' && c <= 'm') || (c >= 'A' && c <= 'M'))
 return c + 13;
 else if ((c >= 'n' && c <= 'z') || (c >= 'N' && c <= 'Z'))
 return c - 13;
 else
 return c;
}

复制代码

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

// 连接建立之后的 callback
int onConnectionCompleted(struct tcp_connection *tcpConnection) {
 printf("connection completed\n");
 return 0;
}

// 数据读到 buffer 之后的 callback
int onMessage(struct buffer *input, struct tcp_connection *tcpConnection) {
 printf("get message from tcp connection %s\n", tcpConnection->name);
 printf("%s", input->data);

 struct buffer *output = buffer_new();
 int size = buffer_readable_size(input);
 for (int i = 0; i < size; i++) {
 buffer_append_char(output, rot13_char(buffer_read_char(input)));
 }
 tcp_connection_send_buffer(tcpConnection, output);
 return 0;
}

// 数据通过 buffer 写完之后的 callback
int onWriteCompleted(struct tcp_connection *tcpConnection) {
 printf("write completed\n");
 return 0;
}

// 连接关闭之后的 callback
int onConnectionClosed(struct tcp_connection *tcpConnection) {
 printf("connection closed\n");
 return 0;
}

int main(int c, char **v) {
 // 主线程 event_loop
 struct event_loop *eventLoop = event_loop_init();

 // 初始化 acceptor
 struct acceptor *acceptor = acceptor_init(SERV_PORT);

 // 初始 tcp_server，可以指定线程数目，如果线程是 0，就只有一个线程，既负责 acceptor，也负

 struct TCPserver *tcpServer = tcp_server_init(eventLoop, acceptor, onConnectionCompl
 onWriteCompleted, onConnectionClosed,
 tcp_server_start(tcpServer);

 // main thread for acceptor
 event_loop_run(eventLoop);
}

这个程序的 main 函数部分只有几行, 因为是第一次接触到，稍微展开介绍一下。

第 49 行创建了一个 event_loop，即 reactor 对象，这个 event_loop 和线程相关联，每

个 event_loop 在线程里执行的是一个无限循环，以便完成事件的分发。

第 52 行初始化了 acceptor，用来监听在某个端口上。

第 55 行创建了一个 TCPServer，创建的时候可以指定线程数目，这里线程是 0，就只有一

个线程，既负责 acceptor 的连接处理，也负责已连接套接字的 I/O 处理。这里比较重要的

是传入了几个回调函数，分别对应了连接建立完成、数据读取完成、数据发送完成、连接关

闭完成几种操作，通过回调函数，让业务程序可以聚焦在业务层开发。

第 57 行开启监听。

第 60 行运行 event_loop 无限循环，等待 acceptor 上有连接建立、新连接上有数据可读

等。

样例程序结果

运行这个服务器程序，开启两个 telnet 客户端，我们看到服务器端的输出如下：

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

 $./poll-server-onethread
[msg] set poll as dispatcher
[msg] add channel fd == 4, main thread
[msg] poll added channel fd==4
[msg] add channel fd == 5, main thread
[msg] poll added channel fd==5
[msg] event loop run, main thread
[msg] get message channel i==1, fd==5
[msg] activate channel fd == 5, revents=2, main thread
[msg] new connection established, socket == 6
connection completed
[msg] add channel fd == 6, main thread
[msg] poll added channel fd==6
[msg] get message channel i==2, fd==6
[msg] activate channel fd == 6, revents=2, main thread
get message from tcp connection connection-6
afadsfaf
[msg] get message channel i==2, fd==6
[msg] activate channel fd == 6, revents=2, main thread
get message from tcp connection connection-6

复制代码

这里自始至终都只有一个 main thread 在工作，可见，单线程的 reactor 处理多个连接时

也可以表现良好。

总结

这一讲我们总结了几种不同的 I/O 模型和线程模型设计，并比较了各自不同的优缺点。从

这一讲开始，我们将使用自己编写的编程框架来完成业务开发，这一讲使用了 poll 来处理

所有的 I/O 事件，在下一讲里，我们将会看到如何把 acceptor 的连接事件和已连接套接字

的 I/O 事件交由不同的线程处理，而这个分离，不过是在应用程序层简单的参数配置而

已。

思考题

和往常一样，给大家留两道思考题：

1. 你可以试着修改一下 onMessage 方法，把它变为期中作业中提到的 cd、ls 等

command 实现。

2. 文章里服务器端的 decode-compute-encode 是在哪里实现的？你有什么办法来解决

业务逻辑和 I/O 逻辑混在一起么？

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

afadsfaf
fdafasf
[msg] get message channel i==1, fd==5
[msg] activate channel fd == 5, revents=2, main thread
[msg] new connection established, socket == 7
connection completed
[msg] add channel fd == 7, main thread
[msg] poll added channel fd==7
[msg] get message channel i==3, fd==7
[msg] activate channel fd == 7, revents=2, main thread
get message from tcp connection connection-7
sfasggwqe
[msg] get message channel i==3, fd==7
[msg] activate channel fd == 7, revents=2, main thread
[msg] poll delete channel fd==7
connection closed
[msg] get message channel i==2, fd==6
[msg] activate channel fd == 6, revents=2, main thread
[msg] poll delete channel fd==6
connection closed

欢迎你在评论区写下你的思考，或者在 GitHub 上上传你的代码，也欢迎把这篇文章分享

给你的朋友或者同事，一起交流一下。

© 版权归极客邦科技所有，未经许可不得传播售卖。 页面已增加防盗追踪，如有侵权极客邦将依法追究其法律责任。

上一篇 26 | 使用阻塞I/O和线程模型：换一种轻量的方式

下一篇 28 | I/O多路复用进阶：子线程使用poll处理连接I/O事件

fxzhang
2019-10-09

老师可否讲解linux下如何开发的，最近想换工作，但是之前都在windows下面开发，想自
学一下linux下是如何开发的，但是有一种找不到开头不知道该怎么学习的感觉，很无力

作者回复: 先学习一下Linux下的安装、配置、管理，把工作环境放到Linux下面，让Linux成为你

的工作效率机器；

其次，慢慢学习Bash，感受一下Linux的能力；

精选留言 (7)  写留言

接下来就是学习一些 Linux下的程序设计，如I/O、网络等。

如果你能把这篇系列的所有代码都改一遍，运行一遍，就是一个良好的开头。

加油~

  1

Berry Wang
2019-10-12

“文稿中的这张图很好地解释了这个设计模式，可想而知的是，随着客户数的变多，fork
的子进程也越来越多，即使客户和服务器之间的交互比较少，这样的子进程也不能被销
毁，一直需要存在。” 老师这里的子进程需要一直存在是为什么呢？

展开

 1 

向东
2019-10-10

老师能否对事件分发调用event_loop的event_activate方法执行callback的部分涉及回调
部分讲详细点呢？

作者回复: 第四篇会详细进行分解讲述。

 

卡卡
2019-10-09

老师的代码 github上有 地址有同学已经发出来啦

展开

作者回复: 👍

 1 

沉淀的梦想
2019-10-09

onWriteCompleted是在什么情况被回调的呢？在整个测试中似乎都没有被回调

作者回复: 写完成之后，你可以打印一段话看看是否被回调到。

 

刘丹
2019-10-09

请问 lib 目录下的代码能贴出来给大家学习吗？

展开

作者回复: https://github.com/froghui/yolanda

 

hello world
2019-10-09

老师完整的代码可以贴出来吗

展开

作者回复: https://github.com/froghui/yolanda

 3 

