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你好，我是盛延敏，今天是网络编程实战性能篇的答疑模块，欢迎回来。

在性能篇中，我主要围绕 C10K 问题进行了深入剖析，最后引出了事件分发机制和多线

程。可以说，基于 epoll 的事件分发能力，是 Linux 下高性能网络编程的不二之选。如果

你觉得还不过瘾，期望有更深刻的认识和理解，那么在性能篇的答疑中，我就带你一起梳理

一下 epoll 的源代码，从中我们一定可以有更多的发现和领悟。

今天的代码有些多，建议你配合文稿收听音频。
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在开始研究源代码之前，我们先看一下 epoll 中使用的数据结构，分别是 eventpoll、

epitem 和 eppoll_entry。

我们先看一下 eventpoll 这个数据结构，这个数据结构是我们在调用 epoll_create 之后内

核侧创建的一个句柄，表示了一个 epoll 实例。后续如果我们再调用 epoll_ctl 和

epoll_wait 等，都是对这个 eventpoll 数据进行操作，这部分数据会被保存在

epoll_create 创建的匿名文件 file 的 private_data 字段中。
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/*
 * This structure is stored inside the "private_data" member of the file
 * structure and represents the main data structure for the eventpoll
 * interface.
 */
struct eventpoll {
    /* Protect the access to this structure */
    spinlock_t lock;
 
    /*
     * This mutex is used to ensure that files are not removed
     * while epoll is using them. This is held during the event
     * collection loop, the file cleanup path, the epoll file exit
     * code and the ctl operations.
     */
    struct mutex mtx;
 
    /* Wait queue used by sys_epoll_wait() */
    // 这个队列里存放的是执行 epoll_wait 从而等待的进程队列

    wait_queue_head_t wq;
 
    /* Wait queue used by file->poll() */
    // 这个队列里存放的是该 eventloop 作为 poll 对象的一个实例，加入到等待的队列

    // 这是因为 eventpoll 本身也是一个 file, 所以也会有 poll 操作

    wait_queue_head_t poll_wait;
 
    /* List of ready file descriptors */
    // 这里存放的是事件就绪的 fd 列表，链表的每个元素是下面的 epitem
    struct list_head rdllist;
 
    /* RB tree root used to store monitored fd structs */
    // 这是用来快速查找 fd 的红黑树

    struct rb_root_cached rbr;
 
    /*
     * This is a single linked list that chains all the "struct epitem" that
     * happened while transferring ready events to userspace w/out
     * holding ->lock.
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你能看到在代码中我提到了 epitem，这个 epitem 结构是干什么用的呢？

每当我们调用 epoll_ctl 增加一个 fd 时，内核就会为我们创建出一个 epitem 实例，并且

把这个实例作为红黑树的一个子节点，增加到 eventpoll 结构体中的红黑树中，对应的字

段是 rbr。这之后，查找每一个 fd 上是否有事件发生都是通过红黑树上的 epitem 来操

作。
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     */
    struct epitem *ovflist;
 
    /* wakeup_source used when ep_scan_ready_list is running */
    struct wakeup_source *ws;
 
    /* The user that created the eventpoll descriptor */
    struct user_struct *user;
 
    // 这是 eventloop 对应的匿名文件，充分体现了 Linux 下一切皆文件的思想

    struct file *file;
 
    /* used to optimize loop detection check */
    int visited;
    struct list_head visited_list_link;
 
#ifdef CONFIG_NET_RX_BUSY_POLL
    /* used to track busy poll napi_id */
    unsigned int napi_id;
#endif
};
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/*
 * Each file descriptor added to the eventpoll interface will
 * have an entry of this type linked to the "rbr" RB tree.
 * Avoid increasing the size of this struct, there can be many thousands
 * of these on a server and we do not want this to take another cache line.
 */
struct epitem {
    union {
        /* RB tree node links this structure to the eventpoll RB tree */
        struct rb_node rbn;
        /* Used to free the struct epitem */
        struct rcu_head rcu;
    };
 
    /* List header used to link this structure to the eventpoll ready list */
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每次当一个 fd 关联到一个 epoll 实例，就会有一个 eppoll_entry 产生。eppoll_entry 的

结构如下：
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    // 将这个 epitem 连接到 eventpoll 里面的 rdllist 的 list 指针

    struct list_head rdllink;
 
    /*
     * Works together "struct eventpoll"->ovflist in keeping the
     * single linked chain of items.
     */
    struct epitem *next;
 
    /* The file descriptor information this item refers to */
    //epoll 监听的 fd
    struct epoll_filefd ffd;
 
    /* Number of active wait queue attached to poll operations */
    // 一个文件可以被多个 epoll 实例所监听，这里就记录了当前文件被监听的次数

    int nwait;
 
    /* List containing poll wait queues */
    struct list_head pwqlist;
 
    /* The "container" of this item */
    // 当前 epollitem 所属的 eventpoll
    struct eventpoll *ep;
 
    /* List header used to link this item to the "struct file" items list */
    struct list_head fllink;
 
    /* wakeup_source used when EPOLLWAKEUP is set */
    struct wakeup_source __rcu *ws;
 
    /* The structure that describe the interested events and the source fd */
    struct epoll_event event;
};
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/* Wait structure used by the poll hooks */
struct eppoll_entry {
    /* List header used to link this structure to the "struct epitem" */
    struct list_head llink;
 
    /* The "base" pointer is set to the container "struct epitem" */
    struct epitem *base;
 
    /*
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epoll_create

我们在使用 epoll 的时候，首先会调用 epoll_create 来创建一个 epoll 实例。这个函数是

如何工作的呢?

首先，epoll_create 会对传入的 flags 参数做简单的验证。

接下来，内核申请分配 eventpoll 需要的内存空间。

在接下来，epoll_create 为 epoll 实例分配了匿名文件和文件描述字，其中 fd 是文件描述

字，file 是一个匿名文件。这里充分体现了 UNIX 下一切都是文件的思想。注意，
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     * Wait queue item that will be linked to the target file wait
     * queue head.
     */
    wait_queue_entry_t wait;
 
    /* The wait queue head that linked the "wait" wait queue item */
    wait_queue_head_t *whead;
};
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/* Check the EPOLL_* constant for consistency.  */
BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC);
 
if (flags & ~EPOLL_CLOEXEC)
    return -EINVAL;
/*
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/* Create the internal data structure ("struct eventpoll").
*/
error = ep_alloc(&ep);
if (error < 0)
  return error;
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eventpoll 的实例会保存一份匿名文件的引用，通过调用 fd_install 函数将匿名文件和文件

描述字完成了绑定。

这里还有一个特别需要注意的地方，在调用 anon_inode_get_file 的时候，epoll_create

将 eventpoll 作为匿名文件 file 的 private_data 保存了起来，这样，在之后通过 epoll 实

例的文件描述字来查找时，就可以快速地定位到 eventpoll 对象了。

最后，这个文件描述字作为 epoll 的文件句柄，被返回给 epoll_create 的调用者。

epoll_ctl

接下来，我们看一下一个套接字是如何被添加到 epoll 实例中的。这就要解析一下

epoll_ctl 函数实现了。

查找 epoll 实例

首先，epoll_ctl 函数通过 epoll 实例句柄来获得对应的匿名文件，这一点很好理解，UNIX

下一切都是文件，epoll 的实例也是一个匿名文件。
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/*
 * Creates all the items needed to setup an eventpoll file. That is,
 * a file structure and a free file descriptor.
 */
fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC));
if (fd < 0) {
    error = fd;
    goto out_free_ep;
}
file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep,
             O_RDWR | (flags & O_CLOEXEC));
if (IS_ERR(file)) {
    error = PTR_ERR(file);
    goto out_free_fd;
}
ep->file = file;
fd_install(fd, file);
return fd;
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接下来，获得添加的套接字对应的文件，这里 tf 表示的是 target file，即待处理的目标文

件。

再接下来，进行了一系列的数据验证，以保证用户传入的参数是合法的，比如 epfd 真的是

一个 epoll 实例句柄，而不是一个普通文件描述符。

如果获得了一个真正的 epoll 实例句柄，就可以通过 private_data 获取之前创建的

eventpoll 实例了。
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// 获得 epoll 实例对应的匿名文件

f = fdget(epfd);
if (!f.file)
    goto error_return;
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/* Get the "struct file *" for the target file */
// 获得真正的文件，如监听套接字、读写套接字

tf = fdget(fd);
if (!tf.file)
    goto error_fput;
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/* The target file descriptor must support poll */
// 如果不支持 poll，那么该文件描述字是无效的

error = -EPERM;
if (!tf.file->f_op->poll)
    goto error_tgt_fput;
...
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/*
 * At this point it is safe to assume that the "private_data" contains
 * our own data structure.
 */
ep = f.file->private_data;
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红黑树查找

接下来 epoll_ctl 通过目标文件和对应描述字，在红黑树中查找是否存在该套接字，这也是

epoll 为什么高效的地方。红黑树（RB-tree）是一种常见的数据结构，这里 eventpoll 通

过红黑树跟踪了当前监听的所有文件描述字，而这棵树的根就保存在 eventpoll 数据结构

中。

对于每个被监听的文件描述字，都有一个对应的 epitem 与之对应，epitem 作为红黑树中

的节点就保存在红黑树中。

红黑树是一棵二叉树，作为二叉树上的节点，epitem 必须提供比较能力，以便可以按大小

顺序构建出一棵有序的二叉树。其排序能力是依靠 epoll_filefd 结构体来完成的，

epoll_filefd 可以简单理解为需要监听的文件描述字，它对应到二叉树上的节点。

可以看到这个还是比较好理解的，按照文件的地址大小排序。如果两个相同，就按照文件文

件描述字来排序。
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/* RB tree root used to store monitored fd structs */
struct rb_root_cached rbr;
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/*
 * Try to lookup the file inside our RB tree, Since we grabbed "mtx"
 * above, we can be sure to be able to use the item looked up by
 * ep_find() till we release the mutex.
 */
epi = ep_find(ep, tf.file, fd);
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struct epoll_filefd {
 struct file *file; // pointer to the target file struct corresponding to the fd
 int fd; // target file descriptor number
} __packed;
 
/* Compare RB tree keys */
static inline int ep_cmp_ffd(struct epoll_filefd *p1,
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在进行完红黑树查找之后，如果发现是一个 ADD 操作，并且在树中没有找到对应的二叉树

节点，就会调用 ep_insert 进行二叉树节点的增加。

ep_insert

ep_insert 首先判断当前监控的文件值是否超过了 /proc/sys/fs/epoll/max_user_watches

的预设最大值，如果超过了则直接返回错误。

接下来是分配资源和初始化动作。
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                            struct epoll_filefd *p2)
{
 return (p1->file > p2->file ? +1:
     (p1->file < p2->file ? -1 : p1->fd - p2->fd));
}
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case EPOLL_CTL_ADD:
    if (!epi) {
        epds.events |= POLLERR | POLLHUP;
        error = ep_insert(ep, &epds, tf.file, fd, full_check);
    } else
        error = -EEXIST;
    if (full_check)
        clear_tfile_check_list();
    break;
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user_watches = atomic_long_read(&ep->user->epoll_watches);
if (unlikely(user_watches >= max_user_watches))
    return -ENOSPC;
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if (!(epi = kmem_cache_alloc(epi_cache, GFP_KERNEL)))
        return -ENOMEM;
 
    /* Item initialization follow here ... */
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再接下来的事情非常重要，ep_insert 会为加入的每个文件描述字设置回调函数。这个回调

函数是通过函数 ep_ptable_queue_proc 来进行设置的。这个回调函数是干什么的呢？其

实，对应的文件描述字上如果有事件发生，就会调用这个函数，比如套接字缓冲区有数据

了，就会回调这个函数。这个函数就是 ep_poll_callback。这里你会发现，原来内核设计

也是充满了事件回调的原理。

ep_poll_callback
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    INIT_LIST_HEAD(&epi->rdllink);
    INIT_LIST_HEAD(&epi->fllink);
    INIT_LIST_HEAD(&epi->pwqlist);
    epi->ep = ep;
    ep_set_ffd(&epi->ffd, tfile, fd);
    epi->event = *event;
    epi->nwait = 0;
    epi->next = EP_UNACTIVE_PTR;
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/*
 * This is the callback that is used to add our wait queue to the
 * target file wakeup lists.
 */
static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,poll_table 
{
    struct epitem *epi = ep_item_from_epqueue(pt);
    struct eppoll_entry *pwq;
 
    if (epi>nwait >= 0 && (pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL))) {
        init_waitqueue_func_entry(&pwq->wait, ep_poll_callback);
        pwq->whead = whead;
        pwq->base = epi;
        if (epi->event.events & EPOLLEXCLUSIVE)
            add_wait_queue_exclusive(whead, &pwq->wait);
        else
            add_wait_queue(whead, &pwq->wait);
        list_add_tail(&pwq->llink, &epi->pwqlist);
        epi->nwait++;
    } else {
        /* We have to signal that an error occurred */
        epi->nwait = -1;
    }
}
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ep_poll_callback 函数的作用非常重要，它将内核事件真正地和 epoll 对象联系了起来。它

又是怎么实现的呢？

首先，通过这个文件的 wait_queue_entry_t 对象找到对应的 epitem 对象，因为

eppoll_entry 对象里保存了 wait_quue_entry_t，根据 wait_quue_entry_t 这个对象的地

址就可以简单计算出 eppoll_entry 对象的地址，从而可以获得 epitem 对象的地址。这部

分工作在 ep_item_from_wait 函数中完成。一旦获得 epitem 对象，就可以寻迹找到

eventpoll 实例。

接下来，进行一个加锁操作。

下面对发生的事件进行过滤，为什么需要过滤呢？为了性能考虑，ep_insert 向对应监控文

件注册的是所有的事件，而实际用户侧订阅的事件未必和内核事件对应。比如，用户向内核

订阅了一个套接字的可读事件，在某个时刻套接字的可写事件发生时，并不需要向用户空间

传递这个事件。
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/*
 * This is the callback that is passed to the wait queue wakeup
 * mechanism. It is called by the stored file descriptors when they
 * have events to report.
 */
static int ep_poll_callback(wait_queue_entry_t *wait, unsigned mode, int sync, void *key
{
    int pwake = 0;
    unsigned long flags;
    struct epitem *epi = ep_item_from_wait(wait);
    struct eventpoll *ep = epi->ep;
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 * Check the events coming with the callback. At this stage, not
 * every device reports the events in the "key" parameter of the
 * callback. We need to be able to handle both cases here, hence the
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接下来，判断是否需要把该事件传递给用户空间。

如果需要，而且该事件对应的 event_item 不在 eventpoll 对应的已完成队列中，就把它放

入该队列，以便将该事件传递给用户空间。

我们知道，当我们调用 epoll_wait 的时候，调用进程被挂起，在内核看来调用进程陷入休

眠。如果该 epoll 实例上对应描述字有事件发生，这个休眠进程应该被唤醒，以便及时处理

事件。下面的代码就是起这个作用的，wake_up_locked 函数唤醒当前 eventpoll 上的等

待进程。
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 * test for "key" != NULL before the event match test.
 */
if (key && !((unsigned long) key & epi->event.events))
    goto out_unlock;
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if (unlikely(ep->ovflist != EP_UNACTIVE_PTR)) {
  if (epi->next == EP_UNACTIVE_PTR) {
      epi->next = ep->ovflist;
      ep->ovflist = epi;
      if (epi->ws) {
          /*
           * Activate ep->ws since epi->ws may get
           * deactivated at any time.
           */
          __pm_stay_awake(ep->ws);
      }
  }
  goto out_unlock;
}
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/* If this file is already in the ready list we exit soon */
if (!ep_is_linked(&epi->rdllink)) {
    list_add_tail(&epi->rdllink, &ep->rdllist);
    ep_pm_stay_awake_rcu(epi);
}
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查找 epoll 实例

epoll_wait 函数首先进行一系列的检查，例如传入的 maxevents 应该大于 0。

和前面介绍的 epoll_ctl 一样，通过 epoll 实例找到对应的匿名文件和描述字，并且进行检

查和验证。

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

/*
 * Wake up ( if active ) both the eventpoll wait list and the ->poll()
 * wait list.
 */
if (waitqueue_active(&ep->wq)) {
    if ((epi->event.events & EPOLLEXCLUSIVE) &&
                !((unsigned long)key & POLLFREE)) {
        switch ((unsigned long)key & EPOLLINOUT_BITS) {
        case POLLIN:
            if (epi->event.events & POLLIN)
                ewake = 1;
            break;
        case POLLOUT:
            if (epi->event.events & POLLOUT)
                ewake = 1;
            break;
        case 0:
            ewake = 1;
            break;
        }
    }
    wake_up_locked(&ep->wq);
}
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/* The maximum number of event must be greater than zero */
if (maxevents <= 0 || maxevents > EP_MAX_EVENTS)
    return -EINVAL;
 
/* Verify that the area passed by the user is writeable */
if (!access_ok(VERIFY_WRITE, events, maxevents * sizeof(struct epoll_event)))
    return -EFAULT;
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还是通过读取 epoll 实例对应匿名文件的 private_data 得到 eventpoll 实例。

接下来调用 ep_poll 来完成对应的事件收集并传递到用户空间。

ep_poll

还记得第 23 讲里介绍 epoll 函数的时候，对应的 timeout 值可以是大于 0，等于 0 和小

于 0 么？这里 ep_poll 就分别对 timeout 不同值的场景进行了处理。如果大于 0 则产生了

一个超时时间，如果等于 0 则立即检查是否有事件发生。
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/* Get the "struct file *" for the eventpoll file */
f = fdget(epfd);
if (!f.file)
    return -EBADF;
 
/*
 * We have to check that the file structure underneath the fd
 * the user passed to us _is_ an eventpoll file.
 */
error = -EINVAL;
if (!is_file_epoll(f.file))
    goto error_fput;

1

2

3

4

5

/*
 * At this point it is safe to assume that the "private_data" contains
 * our own data structure.
 */
ep = f.file->private_data;
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/* Time to fish for events ... */
error = ep_poll(ep, events, maxevents, timeout);
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*/
static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events,int maxevents

复制代码

https://time.geekbang.org/column/article/143245


接下来尝试获得 eventpoll 上的锁：

获得这把锁之后，检查当前是否有事件发生，如果没有，就把当前进程加入到 eventpoll

的等待队列 wq 中，这样做的目的是当事件发生时，ep_poll_callback 函数可以把该等待

进程唤醒。
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{
int res = 0, eavail, timed_out = 0;
unsigned long flags;
u64 slack = 0;
wait_queue_entry_t wait;
ktime_t expires, *to = NULL;
 
if (timeout > 0) {
    struct timespec64 end_time = ep_set_mstimeout(timeout);
    slack = select_estimate_accuracy(&end_time);
    to = &expires;
    *to = timespec64_to_ktime(end_time);
} else if (timeout == 0) {
    /*
     * Avoid the unnecessary trip to the wait queue loop, if the
     * caller specified a non blocking operation.
     */
    timed_out = 1;
    spin_lock_irqsave(&ep->lock, flags);
    goto check_events;
}

1 spin_lock_irqsave(&ep->lock, flags);
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if (!ep_events_available(ep)) {
    /*
     * Busy poll timed out.  Drop NAPI ID for now, we can add
     * it back in when we have moved a socket with a valid NAPI
     * ID onto the ready list.
     */
    ep_reset_busy_poll_napi_id(ep);
 
    /*
     * We don't have any available event to return to the caller.
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紧接着是一个无限循环, 这个循环中通过调用 schedule_hrtimeout_range，将当前进程陷

入休眠，CPU 时间被调度器调度给其他进程使用，当然，当前进程可能会被唤醒，唤醒的

条件包括有以下四种：

1. 当前进程超时；

2. 当前进程收到一个 signal 信号；

3. 某个描述字上有事件发生；

4. 当前进程被 CPU 重新调度，进入 for 循环重新判断，如果没有满足前三个条件，就又

重新进入休眠。

对应的 1、2、3 都会通过 break 跳出循环，直接返回。
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     * We need to sleep here, and we will be wake up by
     * ep_poll_callback() when events will become available.
     */
    init_waitqueue_entry(&wait, current);
    __add_wait_queue_exclusive(&ep->wq, &wait);
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// 这个循环里，当前进程可能会被唤醒，唤醒的途径包括

//1. 当前进程超时

//2. 当前进行收到一个 signal 信号

//3. 某个描述字上有事件发生

// 对应的 1.2.3 都会通过 break 跳出循环

// 第 4 个可能是当前进程被 CPU 重新调度，进入 for 循环的判断，如果没有满足 1.2.3 的条件，就又重

for (;;) {
    /*
     * We don't want to sleep if the ep_poll_callback() sends us
     * a wakeup in between. That's why we set the task state
     * to TASK_INTERRUPTIBLE before doing the checks.
     */
    set_current_state(TASK_INTERRUPTIBLE);
    /*
     * Always short-circuit for fatal signals to allow
     * threads to make a timely exit without the chance of
     * finding more events available and fetching
     * repeatedly.
     */
    if (fatal_signal_pending(current)) {
        res = -EINTR;
        break;
    }
    if (ep_events_available(ep) || timed_out)
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如果进程从休眠中返回，则将当前进程从 eventpoll 的等待队列中删除，并且设置当前进

程为 TASK_RUNNING 状态。

最后，调用 ep_send_events 将事件拷贝到用户空间。
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        break;
    if (signal_pending(current)) {
        res = -EINTR;
        break;
    }
 
    spin_unlock_irqrestore(&ep->lock, flags);
 
    // 通过调用 schedule_hrtimeout_range，当前进程进入休眠，CPU 时间被调度器调度给其他进程使用

    if (!schedule_hrtimeout_range(to, slack, HRTIMER_MODE_ABS))
        timed_out = 1;
 
    spin_lock_irqsave(&ep->lock, flags);
}

1
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3

// 从休眠中结束，将当前进程从 wait 队列中删除，设置状态为 TASK_RUNNING，接下来进入 check_even
    __remove_wait_queue(&ep->wq, &wait);
    __set_current_state(TASK_RUNNING);
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//ep_send_events 将事件拷贝到用户空间

/*
 * Try to transfer events to user space. In case we get 0 events and
 * there's still timeout left over, we go trying again in search of
 * more luck.
 */
if (!res && eavail &&
    !(res = ep_send_events(ep, events, maxevents)) && !timed_out)
    goto fetch_events;
 
 
return res;
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ep_send_events

ep_send_events 这个函数会将 ep_send_events_proc 作为回调函数并调用

ep_scan_ready_list 函数，ep_scan_ready_list 函数调用 ep_send_events_proc 对每个已

经就绪的事件循环处理。

ep_send_events_proc 循环处理就绪事件时，会再次调用每个文件描述符的 poll 方法，以

便确定确实有事件发生。为什么这样做呢？这是为了确定注册的事件在这个时刻还是有效

的。

可以看到，尽管 ep_send_events_proc 已经尽可能的考虑周全，使得用户空间获得的事件

通知都是真实有效的，但还是有一定的概率，当 ep_send_events_proc 再次调用文件上的

poll 函数之后，用户空间获得的事件通知已经不再有效，这可能是用户空间已经处理掉

了，或者其他什么情形。还记得第 22 讲吗，在这种情况下，如果套接字不是非阻塞的，整

个进程将会被阻塞，这也是为什么将非阻塞套接字配合 epoll 使用作为最佳实践的原因。

在进行简单的事件掩码校验之后，ep_send_events_proc 将事件结构体拷贝到用户空间需

要的数据结构中。这是通过 __put_user 方法完成的。

Level-triggered VS Edge-triggered
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// 这里对一个 fd 再次进行 poll 操作，以确认事件

revents = ep_item_poll(epi, &pt);
 
/*
 * If the event mask intersect the caller-requested one,
 * deliver the event to userspace. Again, ep_scan_ready_list()
 * is holding "mtx", so no operations coming from userspace
 * can change the item.
 */
if (revents) {
    if (__put_user(revents, &uevent->events) ||
        __put_user(epi->event.data, &uevent->data)) {
        list_add(&epi->rdllink, head);
        ep_pm_stay_awake(epi);
        return eventcnt ? eventcnt : -EFAULT;
    }
    eventcnt++;
    uevent++;
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在前面的文章里，我们一直都在强调 level-triggered 和 edge-triggered 之间的区别。

从实现角度来看其实非常简单，在 ep_send_events_proc 函数的最后，针对 level-

triggered 情况，当前的 epoll_item 对象被重新加到 eventpoll 的就绪列表中，这样在下

一次 epoll_wait 调用时，这些 epoll_item 对象就会被重新处理。

在前面我们提到，在最终拷贝到用户空间有效事件列表中之前，会调用对应文件的 poll 方

法，以确定这个事件是不是依然有效。所以，如果用户空间程序已经处理掉该事件，就不会

被再次通知；如果没有处理，意味着该事件依然有效，就会被再次通知。

epoll VS poll/select

最后，我们从实现角度来说明一下为什么 epoll 的效率要远远高于 poll/select。

首先，poll/select 先将要监听的 fd 从用户空间拷贝到内核空间, 然后在内核空间里面进行

处理之后，再拷贝给用户空间。这里就涉及到内核空间申请内存，释放内存等等过程，这在

大量 fd 情况下，是非常耗时的。而 epoll 维护了一个红黑树，通过对这棵黑红树进行操

作，可以避免大量的内存申请和释放的操作，而且查找速度非常快。
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// 这里是 Level-triggered 的处理，可以看到，在 Level-triggered 的情况下，这个事件被重新加回到

// 这样，下一轮 epoll_wait 的时候，这个事件会被重新 check
else if (!(epi->event.events & EPOLLET)) {
    /*
     * If this file has been added with Level
     * Trigger mode, we need to insert back inside
     * the ready list, so that the next call to
     * epoll_wait() will check again the events
     * availability. At this point, no one can insert
     * into ep->rdllist besides us. The epoll_ctl()
     * callers are locked out by
     * ep_scan_ready_list() holding "mtx" and the
     * poll callback will queue them in ep->ovflist.
     */
    list_add_tail(&epi->rdllink, &ep->rdllist);
    ep_pm_stay_awake(epi);
}
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下面的代码就是 poll/select 在内核空间申请内存的展示。可以看到 select 是先尝试申请栈

上资源, 如果需要监听的 fd 比较多, 就会去申请堆空间的资源。
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int core_sys_select(int n, fd_set __user *inp, fd_set __user *outp,
               fd_set __user *exp, struct timespec64 *end_time)
{
    fd_set_bits fds;
    void *bits;
    int ret, max_fds;
    size_t size, alloc_size;
    struct fdtable *fdt;
    /* Allocate small arguments on the stack to save memory and be faster */
    long stack_fds[SELECT_STACK_ALLOC/sizeof(long)];
 
    ret = -EINVAL;
    if (n < 0)
        goto out_nofds;
 
    /* max_fds can increase, so grab it once to avoid race */
    rcu_read_lock();
    fdt = files_fdtable(current->files);
    max_fds = fdt->max_fds;
    rcu_read_unlock();
    if (n > max_fds)
        n = max_fds;
 
    /*
     * We need 6 bitmaps (in/out/ex for both incoming and outgoing),
     * since we used fdset we need to allocate memory in units of
     * long-words. 
     */
    size = FDS_BYTES(n);
    bits = stack_fds;
    if (size > sizeof(stack_fds) / 6) {
        /* Not enough space in on-stack array; must use kmalloc */
        ret = -ENOMEM;
        if (size > (SIZE_MAX / 6))
            goto out_nofds;
 
 
        alloc_size = 6 * size;
        bits = kvmalloc(alloc_size, GFP_KERNEL);
        if (!bits)
            goto out_nofds;
    }
    fds.in      = bits;
    fds.out     = bits +   size;
    fds.ex      = bits + 2*size;
    fds.res_in  = bits + 3*size;
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第二，select/poll 从休眠中被唤醒时，如果监听多个 fd，只要其中有一个 fd 有事件发

生，内核就会遍历内部的 list 去检查到底是哪一个事件到达，并没有像 epoll 一样, 通过 fd

直接关联 eventpoll 对象，快速地把 fd 直接加入到 eventpoll 的就绪列表中。

总结

在这次答疑中，我希望通过深度分析 epoll 的源码实现，帮你理解 epoll 的实现原理。
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    fds.res_out = bits + 4*size;
    fds.res_ex  = bits + 5*size;
    ...
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static int do_select(int n, fd_set_bits *fds, struct timespec64 *end_time)
{
    ...
    retval = 0;
    for (;;) {
        unsigned long *rinp, *routp, *rexp, *inp, *outp, *exp;
        bool can_busy_loop = false;
 
        inp = fds->in; outp = fds->out; exp = fds->ex;
        rinp = fds->res_in; routp = fds->res_out; rexp = fds->res_ex;
 
        for (i = 0; i < n; ++rinp, ++routp, ++rexp) {
            unsigned long in, out, ex, all_bits, bit = 1, mask, j;
            unsigned long res_in = 0, res_out = 0, res_ex = 0;
 
            in = *inp++; out = *outp++; ex = *exp++;
            all_bits = in | out | ex;
            if (all_bits == 0) {
                i += BITS_PER_LONG;
                continue;
            }
        
        if (!poll_schedule_timeout(&table, TASK_INTERRUPTIBLE,
                   to, slack))
        timed_out = 1;
...
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epoll 维护了一棵红黑树来跟踪所有待检测的文件描述字，黑红树的使用减少了内核和用户

空间大量的数据拷贝和内存分配，大大提高了性能。

同时，epoll 维护了一个链表来记录就绪事件，内核在每个文件有事件发生时将自己登记到

这个就绪事件列表中，通过内核自身的文件 file-eventpoll 之间的回调和唤醒机制，减少了

对内核描述字的遍历，大大加速了事件通知和检测的效率，这也为 level-triggered 和

edge-triggered 的实现带来了便利。

通过对比 poll/select 的实现，我们发现 epoll 确实克服了 poll/select 的种种弊端，不愧

是 Linux 下高性能网络编程的皇冠。我们应该感谢 Linux 社区的大神们设计了这么强大的

事件分发机制，让我们在 Linux 下可以享受高性能网络服务器带来的种种技术红利。
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tamzr
2019-10-20

老师，能系统讲一下边缘触发饥饿问题和解决方案？面试常遇到，期待ing ～

  1

鱼向北游
2019-10-18

select这种是把等待队列和就绪队列混在一起，epoll根据这两种队列的特性用两种数据结
构把这两个队列分开，果然在程序世界没有解决不了的事情，如果有，就加一个中间层

作者回复: 你这个理解倒是比较有趣，程序是伟大的。

  1

影帝
2019-10-20

我发现看留言学到的更多。🤓

展开

 

沉淀的梦想
2019-10-19

缺乏C语言和linux内核基础的人读起这些源码来相当吃力，虽然老师讲得很好

 

TM
2019-10-18

hi 老师您好，有个问题想咨询下。把 redis 的 backlog 设置为 1，然后在 redis 里 debug
sleep 50，然后发起两个请求，一个成功连接，另一个会出 『opration timeout』 ，而不
是 connect timeout，然后大概是 26 s ，反复试了几次、都是26s左右的时间。很奇怪这
个报错是内核爆出来的吗？为什么是26s这个时间呢？扩展是 phpredis，php 底层 socket
超时是 60s。

展开

作者回复: 你好像问过一次了吧，这个我认为不是内核报出来的，我建议你debug一下。

 






