
31丨性能篇答疑--epoll源码深度剖析
2019-10-18 盛延敏

网络编程实战 进入课程

讲述：冯永吉
时长 14:27 大小 13.25M

你好，我是盛延敏，今天是网络编程实战性能篇的答疑模块，欢迎回来。

在性能篇中，我主要围绕 C10K 问题进行了深入剖析，最后引出了事件分发机制和多线

程。可以说，基于 epoll 的事件分发能力，是 Linux 下高性能网络编程的不二之选。如果

你觉得还不过瘾，期望有更深刻的认识和理解，那么在性能篇的答疑中，我就带你一起梳理

一下 epoll 的源代码，从中我们一定可以有更多的发现和领悟。

今天的代码有些多，建议你配合文稿收听音频。

基本数据结构





 下载APP 

加微信：642945106 发送“赠送”领取赠送精品课程
发数字“2”获取众筹列表

在开始研究源代码之前，我们先看一下 epoll 中使用的数据结构，分别是 eventpoll、

epitem 和 eppoll_entry。

我们先看一下 eventpoll 这个数据结构，这个数据结构是我们在调用 epoll_create 之后内

核侧创建的一个句柄，表示了一个 epoll 实例。后续如果我们再调用 epoll_ctl 和

epoll_wait 等，都是对这个 eventpoll 数据进行操作，这部分数据会被保存在

epoll_create 创建的匿名文件 file 的 private_data 字段中。

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

/*
 * This structure is stored inside the "private_data" member of the file
 * structure and represents the main data structure for the eventpoll
 * interface.
 */
struct eventpoll {
 /* Protect the access to this structure */
 spinlock_t lock;

 /*
 * This mutex is used to ensure that files are not removed
 * while epoll is using them. This is held during the event
 * collection loop, the file cleanup path, the epoll file exit
 * code and the ctl operations.
 */
 struct mutex mtx;

 /* Wait queue used by sys_epoll_wait() */
 // 这个队列里存放的是执行 epoll_wait 从而等待的进程队列

 wait_queue_head_t wq;

 /* Wait queue used by file->poll() */
 // 这个队列里存放的是该 eventloop 作为 poll 对象的一个实例，加入到等待的队列

 // 这是因为 eventpoll 本身也是一个 file, 所以也会有 poll 操作

 wait_queue_head_t poll_wait;

 /* List of ready file descriptors */
 // 这里存放的是事件就绪的 fd 列表，链表的每个元素是下面的 epitem
 struct list_head rdllist;

 /* RB tree root used to store monitored fd structs */
 // 这是用来快速查找 fd 的红黑树

 struct rb_root_cached rbr;

 /*
 * This is a single linked list that chains all the "struct epitem" that
 * happened while transferring ready events to userspace w/out
 * holding ->lock.

复制代码

你能看到在代码中我提到了 epitem，这个 epitem 结构是干什么用的呢？

每当我们调用 epoll_ctl 增加一个 fd 时，内核就会为我们创建出一个 epitem 实例，并且

把这个实例作为红黑树的一个子节点，增加到 eventpoll 结构体中的红黑树中，对应的字

段是 rbr。这之后，查找每一个 fd 上是否有事件发生都是通过红黑树上的 epitem 来操

作。

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

 */
 struct epitem *ovflist;

 /* wakeup_source used when ep_scan_ready_list is running */
 struct wakeup_source *ws;

 /* The user that created the eventpoll descriptor */
 struct user_struct *user;

 // 这是 eventloop 对应的匿名文件，充分体现了 Linux 下一切皆文件的思想

 struct file *file;

 /* used to optimize loop detection check */
 int visited;
 struct list_head visited_list_link;

#ifdef CONFIG_NET_RX_BUSY_POLL
 /* used to track busy poll napi_id */
 unsigned int napi_id;
#endif
};

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

/*
 * Each file descriptor added to the eventpoll interface will
 * have an entry of this type linked to the "rbr" RB tree.
 * Avoid increasing the size of this struct, there can be many thousands
 * of these on a server and we do not want this to take another cache line.
 */
struct epitem {
 union {
 /* RB tree node links this structure to the eventpoll RB tree */
 struct rb_node rbn;
 /* Used to free the struct epitem */
 struct rcu_head rcu;
 };

 /* List header used to link this structure to the eventpoll ready list */

复制代码

防止断
更 请务

必加

首发微
信：1

71614
3665

每次当一个 fd 关联到一个 epoll 实例，就会有一个 eppoll_entry 产生。eppoll_entry 的

结构如下：

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

 // 将这个 epitem 连接到 eventpoll 里面的 rdllist 的 list 指针

 struct list_head rdllink;

 /*
 * Works together "struct eventpoll"->ovflist in keeping the
 * single linked chain of items.
 */
 struct epitem *next;

 /* The file descriptor information this item refers to */
 //epoll 监听的 fd
 struct epoll_filefd ffd;

 /* Number of active wait queue attached to poll operations */
 // 一个文件可以被多个 epoll 实例所监听，这里就记录了当前文件被监听的次数

 int nwait;

 /* List containing poll wait queues */
 struct list_head pwqlist;

 /* The "container" of this item */
 // 当前 epollitem 所属的 eventpoll
 struct eventpoll *ep;

 /* List header used to link this item to the "struct file" items list */
 struct list_head fllink;

 /* wakeup_source used when EPOLLWAKEUP is set */
 struct wakeup_source __rcu *ws;

 /* The structure that describe the interested events and the source fd */
 struct epoll_event event;
};

1

2

3

4

5

6

7

8

9

/* Wait structure used by the poll hooks */
struct eppoll_entry {
 /* List header used to link this structure to the "struct epitem" */
 struct list_head llink;

 /* The "base" pointer is set to the container "struct epitem" */
 struct epitem *base;

 /*

复制代码

epoll_create

我们在使用 epoll 的时候，首先会调用 epoll_create 来创建一个 epoll 实例。这个函数是

如何工作的呢?

首先，epoll_create 会对传入的 flags 参数做简单的验证。

接下来，内核申请分配 eventpoll 需要的内存空间。

在接下来，epoll_create 为 epoll 实例分配了匿名文件和文件描述字，其中 fd 是文件描述

字，file 是一个匿名文件。这里充分体现了 UNIX 下一切都是文件的思想。注意，

10

11

12

13

14

15

16

17

 * Wait queue item that will be linked to the target file wait
 * queue head.
 */
 wait_queue_entry_t wait;

 /* The wait queue head that linked the "wait" wait queue item */
 wait_queue_head_t *whead;
};

1

2

3

4

5

6

/* Check the EPOLL_* constant for consistency. */
BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC);

if (flags & ~EPOLL_CLOEXEC)
 return -EINVAL;
/*

复制代码

1

2

3

4

5

/* Create the internal data structure ("struct eventpoll").
*/
error = ep_alloc(&ep);
if (error < 0)
 return error;

复制代码

拼课微
信：1

71614
3665

eventpoll 的实例会保存一份匿名文件的引用，通过调用 fd_install 函数将匿名文件和文件

描述字完成了绑定。

这里还有一个特别需要注意的地方，在调用 anon_inode_get_file 的时候，epoll_create

将 eventpoll 作为匿名文件 file 的 private_data 保存了起来，这样，在之后通过 epoll 实

例的文件描述字来查找时，就可以快速地定位到 eventpoll 对象了。

最后，这个文件描述字作为 epoll 的文件句柄，被返回给 epoll_create 的调用者。

epoll_ctl

接下来，我们看一下一个套接字是如何被添加到 epoll 实例中的。这就要解析一下

epoll_ctl 函数实现了。

查找 epoll 实例

首先，epoll_ctl 函数通过 epoll 实例句柄来获得对应的匿名文件，这一点很好理解，UNIX

下一切都是文件，epoll 的实例也是一个匿名文件。

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

/*
 * Creates all the items needed to setup an eventpoll file. That is,
 * a file structure and a free file descriptor.
 */
fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC));
if (fd < 0) {
 error = fd;
 goto out_free_ep;
}
file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep,
 O_RDWR | (flags & O_CLOEXEC));
if (IS_ERR(file)) {
 error = PTR_ERR(file);
 goto out_free_fd;
}
ep->file = file;
fd_install(fd, file);
return fd;

复制代码

复制代码

接下来，获得添加的套接字对应的文件，这里 tf 表示的是 target file，即待处理的目标文

件。

再接下来，进行了一系列的数据验证，以保证用户传入的参数是合法的，比如 epfd 真的是

一个 epoll 实例句柄，而不是一个普通文件描述符。

如果获得了一个真正的 epoll 实例句柄，就可以通过 private_data 获取之前创建的

eventpoll 实例了。

1

2

3

4

// 获得 epoll 实例对应的匿名文件

f = fdget(epfd);
if (!f.file)
 goto error_return;

1

2

3

4

5

/* Get the "struct file *" for the target file */
// 获得真正的文件，如监听套接字、读写套接字

tf = fdget(fd);
if (!tf.file)
 goto error_fput;

复制代码

1

2

3

4

5

6

/* The target file descriptor must support poll */
// 如果不支持 poll，那么该文件描述字是无效的

error = -EPERM;
if (!tf.file->f_op->poll)
 goto error_tgt_fput;
...

复制代码

1

2

3

4

5

/*
 * At this point it is safe to assume that the "private_data" contains
 * our own data structure.
 */
ep = f.file->private_data;

复制代码

红黑树查找

接下来 epoll_ctl 通过目标文件和对应描述字，在红黑树中查找是否存在该套接字，这也是

epoll 为什么高效的地方。红黑树（RB-tree）是一种常见的数据结构，这里 eventpoll 通

过红黑树跟踪了当前监听的所有文件描述字，而这棵树的根就保存在 eventpoll 数据结构

中。

对于每个被监听的文件描述字，都有一个对应的 epitem 与之对应，epitem 作为红黑树中

的节点就保存在红黑树中。

红黑树是一棵二叉树，作为二叉树上的节点，epitem 必须提供比较能力，以便可以按大小

顺序构建出一棵有序的二叉树。其排序能力是依靠 epoll_filefd 结构体来完成的，

epoll_filefd 可以简单理解为需要监听的文件描述字，它对应到二叉树上的节点。

可以看到这个还是比较好理解的，按照文件的地址大小排序。如果两个相同，就按照文件文

件描述字来排序。

1

2

/* RB tree root used to store monitored fd structs */
struct rb_root_cached rbr;

复制代码

1

2

3

4

5

6

/*
 * Try to lookup the file inside our RB tree, Since we grabbed "mtx"
 * above, we can be sure to be able to use the item looked up by
 * ep_find() till we release the mutex.
 */
epi = ep_find(ep, tf.file, fd);

复制代码

1

2

3

4

5

6

7

struct epoll_filefd {
 struct file *file; // pointer to the target file struct corresponding to the fd
 int fd; // target file descriptor number
} __packed;

/* Compare RB tree keys */
static inline int ep_cmp_ffd(struct epoll_filefd *p1,

复制代码

在进行完红黑树查找之后，如果发现是一个 ADD 操作，并且在树中没有找到对应的二叉树

节点，就会调用 ep_insert 进行二叉树节点的增加。

ep_insert

ep_insert 首先判断当前监控的文件值是否超过了 /proc/sys/fs/epoll/max_user_watches

的预设最大值，如果超过了则直接返回错误。

接下来是分配资源和初始化动作。

8

9

10

11

12

 struct epoll_filefd *p2)
{
 return (p1->file > p2->file ? +1:
 (p1->file < p2->file ? -1 : p1->fd - p2->fd));
}

1

2

3

4

5

6

7

8

9

case EPOLL_CTL_ADD:
 if (!epi) {
 epds.events |= POLLERR | POLLHUP;
 error = ep_insert(ep, &epds, tf.file, fd, full_check);
 } else
 error = -EEXIST;
 if (full_check)
 clear_tfile_check_list();
 break;

复制代码

1

2

3

user_watches = atomic_long_read(&ep->user->epoll_watches);
if (unlikely(user_watches >= max_user_watches))
 return -ENOSPC;

复制代码

1

2

3

4

if (!(epi = kmem_cache_alloc(epi_cache, GFP_KERNEL)))
 return -ENOMEM;

 /* Item initialization follow here ... */

复制代码

再接下来的事情非常重要，ep_insert 会为加入的每个文件描述字设置回调函数。这个回调

函数是通过函数 ep_ptable_queue_proc 来进行设置的。这个回调函数是干什么的呢？其

实，对应的文件描述字上如果有事件发生，就会调用这个函数，比如套接字缓冲区有数据

了，就会回调这个函数。这个函数就是 ep_poll_callback。这里你会发现，原来内核设计

也是充满了事件回调的原理。

ep_poll_callback

5

6

7

8

9

10

11

12

 INIT_LIST_HEAD(&epi->rdllink);
 INIT_LIST_HEAD(&epi->fllink);
 INIT_LIST_HEAD(&epi->pwqlist);
 epi->ep = ep;
 ep_set_ffd(&epi->ffd, tfile, fd);
 epi->event = *event;
 epi->nwait = 0;
 epi->next = EP_UNACTIVE_PTR;

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

/*
 * This is the callback that is used to add our wait queue to the
 * target file wakeup lists.
 */
static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,poll_table
{
 struct epitem *epi = ep_item_from_epqueue(pt);
 struct eppoll_entry *pwq;

 if (epi>nwait >= 0 && (pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL))) {
 init_waitqueue_func_entry(&pwq->wait, ep_poll_callback);
 pwq->whead = whead;
 pwq->base = epi;
 if (epi->event.events & EPOLLEXCLUSIVE)
 add_wait_queue_exclusive(whead, &pwq->wait);
 else
 add_wait_queue(whead, &pwq->wait);
 list_add_tail(&pwq->llink, &epi->pwqlist);
 epi->nwait++;
 } else {
 /* We have to signal that an error occurred */
 epi->nwait = -1;
 }
}

复制代码

ep_poll_callback 函数的作用非常重要，它将内核事件真正地和 epoll 对象联系了起来。它

又是怎么实现的呢？

首先，通过这个文件的 wait_queue_entry_t 对象找到对应的 epitem 对象，因为

eppoll_entry 对象里保存了 wait_quue_entry_t，根据 wait_quue_entry_t 这个对象的地

址就可以简单计算出 eppoll_entry 对象的地址，从而可以获得 epitem 对象的地址。这部

分工作在 ep_item_from_wait 函数中完成。一旦获得 epitem 对象，就可以寻迹找到

eventpoll 实例。

接下来，进行一个加锁操作。

下面对发生的事件进行过滤，为什么需要过滤呢？为了性能考虑，ep_insert 向对应监控文

件注册的是所有的事件，而实际用户侧订阅的事件未必和内核事件对应。比如，用户向内核

订阅了一个套接字的可读事件，在某个时刻套接字的可写事件发生时，并不需要向用户空间

传递这个事件。

1

2

3

4

5

6

7

8

9

10

11

/*
 * This is the callback that is passed to the wait queue wakeup
 * mechanism. It is called by the stored file descriptors when they
 * have events to report.
 */
static int ep_poll_callback(wait_queue_entry_t *wait, unsigned mode, int sync, void *key
{
 int pwake = 0;
 unsigned long flags;
 struct epitem *epi = ep_item_from_wait(wait);
 struct eventpoll *ep = epi->ep;

复制代码

1 spin_lock_irqsave(&ep->lock, flags);

复制代码

1

2

3

4

/*
 * Check the events coming with the callback. At this stage, not
 * every device reports the events in the "key" parameter of the
 * callback. We need to be able to handle both cases here, hence the

复制代码

接下来，判断是否需要把该事件传递给用户空间。

如果需要，而且该事件对应的 event_item 不在 eventpoll 对应的已完成队列中，就把它放

入该队列，以便将该事件传递给用户空间。

我们知道，当我们调用 epoll_wait 的时候，调用进程被挂起，在内核看来调用进程陷入休

眠。如果该 epoll 实例上对应描述字有事件发生，这个休眠进程应该被唤醒，以便及时处理

事件。下面的代码就是起这个作用的，wake_up_locked 函数唤醒当前 eventpoll 上的等

待进程。

5

6

7

8

 * test for "key" != NULL before the event match test.
 */
if (key && !((unsigned long) key & epi->event.events))
 goto out_unlock;

1

2

3

4

5

6

7

8

9

10

11

12

13

14

if (unlikely(ep->ovflist != EP_UNACTIVE_PTR)) {
 if (epi->next == EP_UNACTIVE_PTR) {
 epi->next = ep->ovflist;
 ep->ovflist = epi;
 if (epi->ws) {
 /*
 * Activate ep->ws since epi->ws may get
 * deactivated at any time.
 */
 __pm_stay_awake(ep->ws);
 }
 }
 goto out_unlock;
}

复制代码

1

2

3

4

5

/* If this file is already in the ready list we exit soon */
if (!ep_is_linked(&epi->rdllink)) {
 list_add_tail(&epi->rdllink, &ep->rdllist);
 ep_pm_stay_awake_rcu(epi);
}

复制代码

查找 epoll 实例

epoll_wait 函数首先进行一系列的检查，例如传入的 maxevents 应该大于 0。

和前面介绍的 epoll_ctl 一样，通过 epoll 实例找到对应的匿名文件和描述字，并且进行检

查和验证。

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

/*
 * Wake up (if active) both the eventpoll wait list and the ->poll()
 * wait list.
 */
if (waitqueue_active(&ep->wq)) {
 if ((epi->event.events & EPOLLEXCLUSIVE) &&
 !((unsigned long)key & POLLFREE)) {
 switch ((unsigned long)key & EPOLLINOUT_BITS) {
 case POLLIN:
 if (epi->event.events & POLLIN)
 ewake = 1;
 break;
 case POLLOUT:
 if (epi->event.events & POLLOUT)
 ewake = 1;
 break;
 case 0:
 ewake = 1;
 break;
 }
 }
 wake_up_locked(&ep->wq);
}

复制代码

1

2

3

4

5

6

7

/* The maximum number of event must be greater than zero */
if (maxevents <= 0 || maxevents > EP_MAX_EVENTS)
 return -EINVAL;

/* Verify that the area passed by the user is writeable */
if (!access_ok(VERIFY_WRITE, events, maxevents * sizeof(struct epoll_event)))
 return -EFAULT;

复制代码

复制代码

还是通过读取 epoll 实例对应匿名文件的 private_data 得到 eventpoll 实例。

接下来调用 ep_poll 来完成对应的事件收集并传递到用户空间。

ep_poll

还记得第 23 讲里介绍 epoll 函数的时候，对应的 timeout 值可以是大于 0，等于 0 和小

于 0 么？这里 ep_poll 就分别对 timeout 不同值的场景进行了处理。如果大于 0 则产生了

一个超时时间，如果等于 0 则立即检查是否有事件发生。

1

2

3

4

5

6

7

8

9

10

11

12

/* Get the "struct file *" for the eventpoll file */
f = fdget(epfd);
if (!f.file)
 return -EBADF;

/*
 * We have to check that the file structure underneath the fd
 * the user passed to us _is_ an eventpoll file.
 */
error = -EINVAL;
if (!is_file_epoll(f.file))
 goto error_fput;

1

2

3

4

5

/*
 * At this point it is safe to assume that the "private_data" contains
 * our own data structure.
 */
ep = f.file->private_data;

复制代码

1

2

/* Time to fish for events ... */
error = ep_poll(ep, events, maxevents, timeout);

复制代码

1

2

*/
static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events,int maxevents

复制代码

https://time.geekbang.org/column/article/143245

接下来尝试获得 eventpoll 上的锁：

获得这把锁之后，检查当前是否有事件发生，如果没有，就把当前进程加入到 eventpoll

的等待队列 wq 中，这样做的目的是当事件发生时，ep_poll_callback 函数可以把该等待

进程唤醒。

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

{
int res = 0, eavail, timed_out = 0;
unsigned long flags;
u64 slack = 0;
wait_queue_entry_t wait;
ktime_t expires, *to = NULL;

if (timeout > 0) {
 struct timespec64 end_time = ep_set_mstimeout(timeout);
 slack = select_estimate_accuracy(&end_time);
 to = &expires;
 *to = timespec64_to_ktime(end_time);
} else if (timeout == 0) {
 /*
 * Avoid the unnecessary trip to the wait queue loop, if the
 * caller specified a non blocking operation.
 */
 timed_out = 1;
 spin_lock_irqsave(&ep->lock, flags);
 goto check_events;
}

1 spin_lock_irqsave(&ep->lock, flags);

复制代码

1

2

3

4

5

6

7

8

9

10

if (!ep_events_available(ep)) {
 /*
 * Busy poll timed out. Drop NAPI ID for now, we can add
 * it back in when we have moved a socket with a valid NAPI
 * ID onto the ready list.
 */
 ep_reset_busy_poll_napi_id(ep);

 /*
 * We don't have any available event to return to the caller.

复制代码

紧接着是一个无限循环, 这个循环中通过调用 schedule_hrtimeout_range，将当前进程陷

入休眠，CPU 时间被调度器调度给其他进程使用，当然，当前进程可能会被唤醒，唤醒的

条件包括有以下四种：

1. 当前进程超时；

2. 当前进程收到一个 signal 信号；

3. 某个描述字上有事件发生；

4. 当前进程被 CPU 重新调度，进入 for 循环重新判断，如果没有满足前三个条件，就又

重新进入休眠。

对应的 1、2、3 都会通过 break 跳出循环，直接返回。

11

12

13

14

15

 * We need to sleep here, and we will be wake up by
 * ep_poll_callback() when events will become available.
 */
 init_waitqueue_entry(&wait, current);
 __add_wait_queue_exclusive(&ep->wq, &wait);

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

// 这个循环里，当前进程可能会被唤醒，唤醒的途径包括

//1. 当前进程超时

//2. 当前进行收到一个 signal 信号

//3. 某个描述字上有事件发生

// 对应的 1.2.3 都会通过 break 跳出循环

// 第 4 个可能是当前进程被 CPU 重新调度，进入 for 循环的判断，如果没有满足 1.2.3 的条件，就又重

for (;;) {
 /*
 * We don't want to sleep if the ep_poll_callback() sends us
 * a wakeup in between. That's why we set the task state
 * to TASK_INTERRUPTIBLE before doing the checks.
 */
 set_current_state(TASK_INTERRUPTIBLE);
 /*
 * Always short-circuit for fatal signals to allow
 * threads to make a timely exit without the chance of
 * finding more events available and fetching
 * repeatedly.
 */
 if (fatal_signal_pending(current)) {
 res = -EINTR;
 break;
 }
 if (ep_events_available(ep) || timed_out)

复制代码

如果进程从休眠中返回，则将当前进程从 eventpoll 的等待队列中删除，并且设置当前进

程为 TASK_RUNNING 状态。

最后，调用 ep_send_events 将事件拷贝到用户空间。

25

26

27

28

29

30

31

32

33

34

35

36

37

38

 break;
 if (signal_pending(current)) {
 res = -EINTR;
 break;
 }

 spin_unlock_irqrestore(&ep->lock, flags);

 // 通过调用 schedule_hrtimeout_range，当前进程进入休眠，CPU 时间被调度器调度给其他进程使用

 if (!schedule_hrtimeout_range(to, slack, HRTIMER_MODE_ABS))
 timed_out = 1;

 spin_lock_irqsave(&ep->lock, flags);
}

1

2

3

// 从休眠中结束，将当前进程从 wait 队列中删除，设置状态为 TASK_RUNNING，接下来进入 check_even
 __remove_wait_queue(&ep->wq, &wait);
 __set_current_state(TASK_RUNNING);

复制代码

1

2

3

4

5

6

7

8

9

10

11

12

//ep_send_events 将事件拷贝到用户空间

/*
 * Try to transfer events to user space. In case we get 0 events and
 * there's still timeout left over, we go trying again in search of
 * more luck.
 */
if (!res && eavail &&
 !(res = ep_send_events(ep, events, maxevents)) && !timed_out)
 goto fetch_events;

return res;

复制代码

ep_send_events

ep_send_events 这个函数会将 ep_send_events_proc 作为回调函数并调用

ep_scan_ready_list 函数，ep_scan_ready_list 函数调用 ep_send_events_proc 对每个已

经就绪的事件循环处理。

ep_send_events_proc 循环处理就绪事件时，会再次调用每个文件描述符的 poll 方法，以

便确定确实有事件发生。为什么这样做呢？这是为了确定注册的事件在这个时刻还是有效

的。

可以看到，尽管 ep_send_events_proc 已经尽可能的考虑周全，使得用户空间获得的事件

通知都是真实有效的，但还是有一定的概率，当 ep_send_events_proc 再次调用文件上的

poll 函数之后，用户空间获得的事件通知已经不再有效，这可能是用户空间已经处理掉

了，或者其他什么情形。还记得第 22 讲吗，在这种情况下，如果套接字不是非阻塞的，整

个进程将会被阻塞，这也是为什么将非阻塞套接字配合 epoll 使用作为最佳实践的原因。

在进行简单的事件掩码校验之后，ep_send_events_proc 将事件结构体拷贝到用户空间需

要的数据结构中。这是通过 __put_user 方法完成的。

Level-triggered VS Edge-triggered

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

// 这里对一个 fd 再次进行 poll 操作，以确认事件

revents = ep_item_poll(epi, &pt);

/*
 * If the event mask intersect the caller-requested one,
 * deliver the event to userspace. Again, ep_scan_ready_list()
 * is holding "mtx", so no operations coming from userspace
 * can change the item.
 */
if (revents) {
 if (__put_user(revents, &uevent->events) ||
 __put_user(epi->event.data, &uevent->data)) {
 list_add(&epi->rdllink, head);
 ep_pm_stay_awake(epi);
 return eventcnt ? eventcnt : -EFAULT;
 }
 eventcnt++;
 uevent++;

复制代码

https://time.geekbang.org/column/article/141573

在前面的文章里，我们一直都在强调 level-triggered 和 edge-triggered 之间的区别。

从实现角度来看其实非常简单，在 ep_send_events_proc 函数的最后，针对 level-

triggered 情况，当前的 epoll_item 对象被重新加到 eventpoll 的就绪列表中，这样在下

一次 epoll_wait 调用时，这些 epoll_item 对象就会被重新处理。

在前面我们提到，在最终拷贝到用户空间有效事件列表中之前，会调用对应文件的 poll 方

法，以确定这个事件是不是依然有效。所以，如果用户空间程序已经处理掉该事件，就不会

被再次通知；如果没有处理，意味着该事件依然有效，就会被再次通知。

epoll VS poll/select

最后，我们从实现角度来说明一下为什么 epoll 的效率要远远高于 poll/select。

首先，poll/select 先将要监听的 fd 从用户空间拷贝到内核空间, 然后在内核空间里面进行

处理之后，再拷贝给用户空间。这里就涉及到内核空间申请内存，释放内存等等过程，这在

大量 fd 情况下，是非常耗时的。而 epoll 维护了一个红黑树，通过对这棵黑红树进行操

作，可以避免大量的内存申请和释放的操作，而且查找速度非常快。

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

// 这里是 Level-triggered 的处理，可以看到，在 Level-triggered 的情况下，这个事件被重新加回到

// 这样，下一轮 epoll_wait 的时候，这个事件会被重新 check
else if (!(epi->event.events & EPOLLET)) {
 /*
 * If this file has been added with Level
 * Trigger mode, we need to insert back inside
 * the ready list, so that the next call to
 * epoll_wait() will check again the events
 * availability. At this point, no one can insert
 * into ep->rdllist besides us. The epoll_ctl()
 * callers are locked out by
 * ep_scan_ready_list() holding "mtx" and the
 * poll callback will queue them in ep->ovflist.
 */
 list_add_tail(&epi->rdllink, &ep->rdllist);
 ep_pm_stay_awake(epi);
}

复制代码

https://time.geekbang.org/column/article/143245
https://time.geekbang.org/column/article/143245

下面的代码就是 poll/select 在内核空间申请内存的展示。可以看到 select 是先尝试申请栈

上资源, 如果需要监听的 fd 比较多, 就会去申请堆空间的资源。

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

int core_sys_select(int n, fd_set __user *inp, fd_set __user *outp,
 fd_set __user *exp, struct timespec64 *end_time)
{
 fd_set_bits fds;
 void *bits;
 int ret, max_fds;
 size_t size, alloc_size;
 struct fdtable *fdt;
 /* Allocate small arguments on the stack to save memory and be faster */
 long stack_fds[SELECT_STACK_ALLOC/sizeof(long)];

 ret = -EINVAL;
 if (n < 0)
 goto out_nofds;

 /* max_fds can increase, so grab it once to avoid race */
 rcu_read_lock();
 fdt = files_fdtable(current->files);
 max_fds = fdt->max_fds;
 rcu_read_unlock();
 if (n > max_fds)
 n = max_fds;

 /*
 * We need 6 bitmaps (in/out/ex for both incoming and outgoing),
 * since we used fdset we need to allocate memory in units of
 * long-words.
 */
 size = FDS_BYTES(n);
 bits = stack_fds;
 if (size > sizeof(stack_fds) / 6) {
 /* Not enough space in on-stack array; must use kmalloc */
 ret = -ENOMEM;
 if (size > (SIZE_MAX / 6))
 goto out_nofds;

 alloc_size = 6 * size;
 bits = kvmalloc(alloc_size, GFP_KERNEL);
 if (!bits)
 goto out_nofds;
 }
 fds.in = bits;
 fds.out = bits + size;
 fds.ex = bits + 2*size;
 fds.res_in = bits + 3*size;

复制代码

第二，select/poll 从休眠中被唤醒时，如果监听多个 fd，只要其中有一个 fd 有事件发

生，内核就会遍历内部的 list 去检查到底是哪一个事件到达，并没有像 epoll 一样, 通过 fd

直接关联 eventpoll 对象，快速地把 fd 直接加入到 eventpoll 的就绪列表中。

总结

在这次答疑中，我希望通过深度分析 epoll 的源码实现，帮你理解 epoll 的实现原理。

47

48

49

 fds.res_out = bits + 4*size;
 fds.res_ex = bits + 5*size;
 ...

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

static int do_select(int n, fd_set_bits *fds, struct timespec64 *end_time)
{
 ...
 retval = 0;
 for (;;) {
 unsigned long *rinp, *routp, *rexp, *inp, *outp, *exp;
 bool can_busy_loop = false;

 inp = fds->in; outp = fds->out; exp = fds->ex;
 rinp = fds->res_in; routp = fds->res_out; rexp = fds->res_ex;

 for (i = 0; i < n; ++rinp, ++routp, ++rexp) {
 unsigned long in, out, ex, all_bits, bit = 1, mask, j;
 unsigned long res_in = 0, res_out = 0, res_ex = 0;

 in = *inp++; out = *outp++; ex = *exp++;
 all_bits = in | out | ex;
 if (all_bits == 0) {
 i += BITS_PER_LONG;
 continue;
 }

 if (!poll_schedule_timeout(&table, TASK_INTERRUPTIBLE,
 to, slack))
 timed_out = 1;
...

复制代码

epoll 维护了一棵红黑树来跟踪所有待检测的文件描述字，黑红树的使用减少了内核和用户

空间大量的数据拷贝和内存分配，大大提高了性能。

同时，epoll 维护了一个链表来记录就绪事件，内核在每个文件有事件发生时将自己登记到

这个就绪事件列表中，通过内核自身的文件 file-eventpoll 之间的回调和唤醒机制，减少了

对内核描述字的遍历，大大加速了事件通知和检测的效率，这也为 level-triggered 和

edge-triggered 的实现带来了便利。

通过对比 poll/select 的实现，我们发现 epoll 确实克服了 poll/select 的种种弊端，不愧

是 Linux 下高性能网络编程的皇冠。我们应该感谢 Linux 社区的大神们设计了这么强大的

事件分发机制，让我们在 Linux 下可以享受高性能网络服务器带来的种种技术红利。

© 版权归极客邦科技所有，未经许可不得传播售卖。 页面已增加防盗追踪，如有侵权极客邦将依法追究其法律责任。

上一篇 30 | 真正的大杀器：异步I/O探索

下一篇 32 | 自己动手写高性能HTTP服务器（一）：设计和思路

精选留言 (5)  写留言

tamzr
2019-10-20

老师，能系统讲一下边缘触发饥饿问题和解决方案？面试常遇到，期待ing ～

  1

鱼向北游
2019-10-18

select这种是把等待队列和就绪队列混在一起，epoll根据这两种队列的特性用两种数据结
构把这两个队列分开，果然在程序世界没有解决不了的事情，如果有，就加一个中间层

作者回复: 你这个理解倒是比较有趣，程序是伟大的。

  1

影帝
2019-10-20

我发现看留言学到的更多。🤓

展开

 

沉淀的梦想
2019-10-19

缺乏C语言和linux内核基础的人读起这些源码来相当吃力，虽然老师讲得很好

 

TM
2019-10-18

hi 老师您好，有个问题想咨询下。把 redis 的 backlog 设置为 1，然后在 redis 里 debug
sleep 50，然后发起两个请求，一个成功连接，另一个会出 『opration timeout』 ，而不
是 connect timeout，然后大概是 26 s ，反复试了几次、都是26s左右的时间。很奇怪这
个报错是内核爆出来的吗？为什么是26s这个时间呢？扩展是 phpredis，php 底层 socket
超时是 60s。

展开

作者回复: 你好像问过一次了吧，这个我认为不是内核报出来的，我建议你debug一下。

 

