642945106 ’ '

=) 1] 211 TZHAPP ®

31 | HaERERE--epolliFiEiRESIT

2019-10-18 BXFERY

R IRFESEhY IR >

R Bks >
BH< 14:27 K/ 13.25M

77, RS, SKREMBIMELAMERIIEEER, WLEE,

EtRER, EEES C10K [IfHIT VIRANEINT, &E5IHTSMD RNEIMSHE:
F. AR, BT epoll SEM4DKREES], & Linux TEMREMNBRIZIA 2%, R
RSN, PEEERZINGAORTIER, BIAEMERAIEEET, RH{r—ehE
— T epoll BYEICES, MAE(IT—E L EESZ R AIFMIE.

SKEUBELSZ, ENFREERIEITERL

BRREH

EFFRARIRRBZET, BI5GB —T epoll HERRNEIEE, S 5IE eventpoll,
epitem %[eppoll_entry,

HAI5EE—T eventpoll XNMEHREHN, XPMNEIREWRBAIEREA epoll_create ZfFH
ZMBIEN— MR, R 77— epoll L, FEUNRIATHIER epoll_ctl 1
epoll_wait &, #EXIX eventpoll ZUEHITEME, XEboHUESBHRTFHE
epoll_create BIFEAIER {4 file BY private data FE&,

RS
/*
* This structure is stored inside the "private_data" member of the file
* structure and represents the main data structure for the eventpoll
* interface.
*/
struct eventpoll {
/* Protect the access to this structure */
spinlock_t lock;

* This mutex is used to ensure that files are not removed

* while epoll is using them. This is held during the event

* collection loop, the file cleanup path, the epoll file exit
* code and the ctl operations.

*/

struct mutex mtx;

/* Wait queue used by sys_epoll wait() */
[/ EABAFN BAFTH Z AT epoll_wait MM EFAFHEREBA S
wait_queue_head_t wq;

/* Wait queue used by file->poll() */

/1 ZABFNBAF 2 1% eventloop 1EN poll X ZM—Ll, MAFIZERHIBAS
// XN eventpoll AHE—/ file, FTLAEEA poll #:fE
wait_queue_head_t poll wait;

/* List of ready file descriptors */
/] XBAFRH R FRAER fd FIFR, SR ICRZ NP epitem
struct list _head rdllist;

/* RB tree root used to store monitored fd structs */
/] EERRPGEE R fd 14N
struct rb_root _cached rbr;

/*
* This is a single linked list that chains all the "struct epitem" that
* happened while transferring ready events to userspace w/out
* holding ->lock.

*/

struct epitem *ovflist;

/* wakeup_source used when ep_scan_ready_list is running */

struct wakeup_source *ws;

/* The user that created the eventpoll descriptor */

struct user_struct *user;

// Xs& eventloop X MIESA:, FRAEIT Linux F—4 & A AR
struct file *file;

/* used to optimize loop detection check */
int visited;
struct list_head visited_1list_link;

#ifdef CONFIG_NET_RX_BUSY_POLL
/* used to track busy poll napi_id */
unsigned int napi_id;

#endif

¥

{REEBRRITEREHIIER T epitem, XA epitem FEHa2 A FIE?

BABATER epoll_ctl 1ZI0— fd Y, WIZBSATEAIBIELE— epitem LI, FHA
BIXNEHEATER— N F oM, EI02 eventpoll MRV ERS, XYM==
BRZ rbr, XZfE, BEXE— fd LEEEFHAREEZEILIERN LAY epitem iz
=

Sl
/*

* Each file descriptor added to the eventpoll interface will
rbr" RB tree.
* Avoid increasing the size of this struct, there can be many thousands

* have an entry of this type linked to the

* of these on a server and we do not want this to take another cache 1line.
*/
struct epitem {
union {
/* RB tree node links this structure to the eventpoll RB tree */
struct rb_node rbn;
/* Used to free the struct epitem */

struct rcu_head rcu;

s

/* List header used to link this structure to the eventpoll ready list */

/] BIXA epitem #EF| eventpoll HIEM) rdllist K list F8%F
struct list_head rdllink;

/*

* Works together "struct eventpoll"->ovflist in keeping the
* single linked chain of items.

*/
struct epitem *next;

/* The file descriptor information this item refers to */
//epoll I5WTiY fd
struct epoll_filefd ffd;

/* Number of active wait queue attached to poll operations */
/] — AT DB ZA epoll SEGIFTIETY, X HEICS T 250 ST T B 8

int nwait;

/* List containing poll wait queues */
struct list_head pwqlist;

/* The "container" of this item */
// 477 epollitem FJEN) eventpoll
struct eventpoll *ep;

/* List header used to link this item to the "struct file" items list */
struct list_head fllink;

/* wakeup_source used when EPOLLWAKEUP is set */

struct wakeup_source _ rcu *ws;

/* The structure that describe the interested events and the source fd */
struct epoll_event event;

15

BIRE— fd KEXEI— epoll 20, =B —1 eppoll_entry 74, eppoll_entry Y
T

R

/* Wait structure used by the poll hooks */

struct eppoll_entry {
/* List header used to link this structure to the "struct epitem" */
struct list_head 1link;

/* The "base" pointer is set to the container "struct epitem" */
struct epitem *base;

/*

* Wait queue item that will be linked to the target file wait
* queue head.
*/

wait_queue_entry_ t wait;

/* The wait queue head that linked the "wait" wait queue item */
wait_queue_head_t *whead;

}s

epoll_create

A IEER epoll B9ANR, B55=VER epoll_create REIZE— epoll L, XPMRELZ
WA T{ERIIE?

B4, epoll create XHENR flags SEUMERAYIGIE,

B 5L

/* Check the EPOLL_* constant for consistency. */
BUILD BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC);

if (flags & ~EPOLL_CLOEXEC)
return -EINVAL;
/*

ETE, NIZRIBENE eventpoll EEHNANEFEDE,

& =AY
/* Create the internal data structure ("struct eventpoll").
*/
error = ep_alloc(&ep);
if (error < Q)
return error;

EE T 3K, epoll create A epoll LA ES T ERAIEGFINEHEAE, B fd E34HEA
=, file E—1MERNXHE. XEFZRSRIT UNIX T8 EHEE, T8,

eventpoll FUSLHISREFE—HERZ GRS 1, EIEA fd_install REUEES SUFFISUEF
HRIAF5TRL T 4B5E.

XERE—MSBIEETEAMS, M anon_inode_get file RIRHE, epoII create
& eventpoll fEAER A file BY private data (RIFTHER, 1X#, EZ/5181 epoll 5C
PIBSHEAFRE AT, BETLARIEIBENE] eventpoll 39K T,

&a, XN XHEAZAER epoll BISEAITR, #R[ELS epoll create FUERZE.

& =2 A
/*
* Creates all the items needed to setup an eventpoll file. That is,
* a file structure and a free file descriptor.
*/
fd = get_unused_fd_flags(O0_RDWR | (flags & O_CLOEXEC));
if (fd < 0) {
error = fd;
goto out_free_ep;

}
file = anon_inode_getfile("[eventpoll]"”, &eventpoll fops, ep,
O_RDWR | (flags & O _CLOEXEC));
if (IS_ERR(file)) {
error = PTR_ERR(file);
goto out_free_fd;

}

ep->file = file;
fd_install(fd, file);
return fd;

epoll_ctl

ETXR, BIE—TEEZEWNEHRFINZE epoll SEAIFR., XFEMFET—T
epoll_ctl FREECIL T .

5% epoll =fl

B5%, epoll_ctl FEUEE epoll SLEIGIRIGRIEXTNIER M4, X—RIRFERR, UNIX
TR, epoll ULt E— PN ER I,

B & A5

// 13 epoll SEAIXS L) BE 44 ST AT
f = fdget(epfd);
if (If.file)

goto error_return;

ETR, SRERMINEEFNNANY, X8 tf {2 target file, BIEKEIERNBIRN
.

SIFER]
/* Get the "struct file *" for the target file */
/] FARFEIER M, Wik BT, 25 EET
tf = fdget(fd);
if (Itf.file)

goto error_fput;

BIETR, #TT7—RFINEERRIE, LIRIERFPENNSEESIZRY, il epfd BRIZE
— epoll SLHIFHR, MAR— P EBIUHERFT.

SipRie
/* The target file descriptor must support poll */
/] BERANSRR poll, AR T /e Jo R
error = -EPERM;
if (!tf.file->f op->poll)
goto error_tgt_fput;
< »

ANEIRE T — 1 ELER epoll SLHIFIR, FETLUEIT private_data FREVZ RIGIEERY
eventpoll L7,

LT
/*
* At this point it is safe to assume that the "private_data" contains
* our own data structure.
*/
ep = f.file->private_data;

IRMER

E K epoll_ctl i@ B Ef I nimAs, EOENGERKEAFEEZERS, X2
epoll IHAEEIMEG. TN (RB-tree) 2—MENAIEHES, X eventpoll 1B

T AL BMIRER 7 SRR A X HEIAT, TIXERRITRHIRTIE eventpoll #UEEH
=,
&) &S

/* RB tree root used to store monitored fd structs */
struct rb_root_cached rbr;

MNTFE MRS HERT, EE— I epitem S5Z3IM, epitem {F/ILLEERH
AT REL R ELL BN,

8 E i
/*
* Try to lookup the file inside our RB tree, Since we grabbed "mtx"
* above, we can be sure to be able to use the item looked up by
* ep_find() till we release the mutex.
*/
epi = ep_find(ep, tf.file, fd);

TREME—R YR, (EAZXMENT R, epitem AR MECEEES, LUERTLAZA/N
IRFraE i — A R — AN, EHEFRE RS ep0||_fi|efd *’JMGE?—EEJZE’\J
epoll_filefd AILAESRIEE AT ERITAIHERF, EXINE — XN EAIT A,

A LABRIXMNERECESFIRRRRY, FRRRSIHRMIE /N, WISREMER], FUHRRRSIHSL
HEIAFRAR.

& =AY
struct epoll filefd {
struct file *file; // pointer to the target file struct corresponding to the fd
int fd; // target file descriptor number
} __packed;

/* Compare RB tree keys */
static inline int ep_cmp_ffd(struct epoll filefd *pi,

struct epoll filefd *p2)

return (pl->file > p2->file ? +1:
(pl->file < p2->file ? -1 : pl->fd - p2->fd));

E T BB S, IREME— ADD 2/, HBEEMREHREING AT — X
TR, MaEA ep_insert 7 X5 =AYEMN.

& =AY
case EPOLL_CTL_ADD:
if (lepi) {
epds.events |= POLLERR | POLLHUP;
error = ep_insert(ep, &epds, tf.file, fd, full_check);
} else
error = -EEXIST;
if (full_check)
clear_tfile_check_list();
break;
4 3
ep_insert

ep_insert B1ScHIMT SR mizASUEHER B BIT T /proc/sys/fs/epoll/max_user watches
HitiREEAE, MRES 7 NEZREER,

B =il

user_watches = atomic_long_read(&ep->user->epoll watches);

if (unlikely(user_watches >= max_user_watches))

return -ENOSPC;
< »
Y 2 \ y -
NRE D BCREIFAIWBILENE.

B =AY

if (!(epi = kmem_cache_alloc(epi_cache, GFP_KERNEL)))
return -ENOMEM;

/* Item initialization follow here ... */

INIT_LIST _HEAD(&epi->rdllink);
INIT_LIST HEAD(&epi->fllink);
INIT_LIST HEAD(&epi->pwqglist);
epi->ep = ep;
ep_set_ffd(&epi->ffd, tfile, fd);
epi->event = *event;

epi->nwait = 0;

epi->next = EP_UNACTIVE_PTR;

BETRUSFEIFREE, ep_insert SNIIARIBAN X HEAFIRERERZEL, []U]
BREZIBIT REY ep_ptable_queue_proc #HITIRER. AlﬁlﬂméixE:FﬁAE’Jﬂ}%

5L, WNHINHERF FIRESEMRE, SERAXD |>_<|§SZ, ttﬁuﬁ?%%é%;q:zﬁéﬁﬁ
T, FHEAEEXNRE, XMNEEFELE ep_poll callback, XB{REKI, FERZIZIT
R 7 BHEENRE,

B = HilAChY
/*
* This is the callback that is used to add our wait queue to the
* target file wakeup lists.
*/
static void ep_ptable queue_proc(struct file *file, wait_queue_head_t *whead,poll table
{
struct epitem *epi = ep_item_from_epqueue(pt);
struct eppoll_entry *pwq;
if (epi>nwait >= @ && (pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL))) {
init_waitqueue_func_entry(&pwqg->wait, ep_poll callback);
pwqg->whead = whead;
pwqg->base = epi;
if (epi->event.events & EPOLLEXCLUSIVE)
add_wait_queue_exclusive(whead, &pwqg->wait);
else
add_wait_queue(whead, &pwqg->wait);
list_add_tail(&pwqg->1link, &epi->pwqglist);
epi->nwait++;
} else {
/* We have to signal that an error occurred */
epi->nwait = -1;
}
}
< »

ep_poll_callback

ep_poll_callback RERIWERIFEERE, ©REAZEMHEIEMA epoll WREXRTER, ©
N2 EALIEIR?

Et XANIAERY wait_queue_entry t JISIREIRIRIAY epitem IT&R, A
eppoll_entry SHREBRF 7 wait_quue _entry t, RIE wait_quue entry t XNII5ATME
LRI LA BRI & eppoll_entry X9gAUEIE, MTIRILAZRE epitem ITSRAYMLE, 1XER
D ITETE ep_item _from wait REH5E. —BIXE epitem XI5, MATLAFITIRE!
eventpoll sCfl,

& =AY
/ *
* This is the callback that is passed to the wait queue wakeup
* mechanism. It is called by the stored file descriptors when they
* have events to report.
*/
static int ep_poll callback(wait_queue_entry_t *wait, unsigned mode, int sync, void *ke
{
int pwake = 0;
unsigned long flags;
struct epitem *epi = ep_item_from_wait(wait);
struct eventpoll *ep = epi->ep;
< »
BTR, BT —DINSHEE.
& =AY
spin_lock_irqgsave(&ep->lock, flags);
< »

TEXRENSEGHTIR, MTAZEELER? ATHEEERE, ep_insert [@XIR IR
HEMAEFrBRIEE, MR MRTRNSEA RO IRZEEXIR, tan, BFRERZ
IR T —1MEEFNESE, BRI ZEEFNTSSEEAER, HAEERRAFTE
1BIBXNNE

& =2 A
/*
* Check the events coming with the callback. At this stage, not

* every device reports the events in the "key" parameter of the
* callback. We need to be able to handle both cases here, hence the

* test for "key" != NULL before the event match test.
*/
if (key && !((unsigned long) key & epi->event.events))
goto out_unlock;

EK, #MESERCZEHEBERAPTE.,

& =AY
if (unlikely(ep->ovflist != EP_UNACTIVE_PTR)) {
if (epi->next == EP_UNACTIVE_PTR) {
epi->next = ep->ovflist;
ep->ovflist = epi;
if (epi->ws) {
/*
* Activate ep->ws since epi->ws may get
* deactivated at any time.
*/
__pm_stay_awake(ep->ws);
}
}

goto out_unlock;

}

WMRFE, MEIZSEHXIRNAY event_item AE eventpoll IIAIE TG, FHIEEH
NZBAF, LMEE ZSHEBE AP =IE.

SiFRe]
/* If this file is already in the ready list we exit soon */
if (lep_is_linked(&epi->rdllink)) {
list_add_tail(&epi->rdllink, &ep->rdllist);
ep_pm_stay awake_rcu(epi);
}
< »

A8, SFAEA epoll_wait BAHE, EREHEGIER, ERZERERBEERANA
fR. fN5Ri% epoll LB EXRHEAFERMALE, XMARHEROZIFIGEE, LIERIGER
S, TERCEHMERXMMERI, wake_up_locked BRZIERE =T eventpoll LRI

I,

SIFR]
/*
* Wake up (if active) both the eventpoll wait list and the ->poll()
* wait list.
*/
if (waitqueue_active(&ep->wq)) {
if ((epi->event.events & EPOLLEXCLUSIVE) &&
I'((unsigned long)key & POLLFREE)) {
switch ((unsigned long)key & EPOLLINOUT_BITS) {
case POLLIN:
if (epi->event.events & POLLIN)
ewake = 1;
break;
case POLLOUT:
if (epi->event.events & POLLOUT)
ewake = 1;
break;
case @:
ewake = 1;
break;

}
wake_up_locked(&ep->wq);

B epoll £f)

epoll wait BREIETHIT—RKIIAEE, HIEENAT maxevents Wiz AT O,

& =AY
/* The maximum number of event must be greater than zero */
if (maxevents <= @ || maxevents > EP_MAX_EVENTS)
return -EINVAL;
/* Verify that the area passed by the user is writeable */
if (laccess_ok(VERIFY_WRITE, events, maxevents * sizeof(struct epoll _event)))
return -EFAULT;
< »
\ s —
FMIBIEMARY epoll_ctl —F, @id epoll SLAFFIRSNAYER EFI#IAT, FHEHITH

BEFIGUE,

& SRS

/* Get the "struct file *" for the eventpoll file */
= fdget(epfd);
if (If.file)
return -EBADF;

/*
* We have to check that the file structure underneath the fd
* the user passed to us _is_ an eventpoll file.
*/
error = -EINVAL;
if (lis_file_epoll(f.file))
goto error_fput;

rFs
v

B EEISIER epoll SLAIXIRIER SHAY private_data 5% eventpoll L4,

B & 0
/ *
* At this point it is safe to assume that the "private_data" contains
* our own data structure.
*/
ep = f.file->private_data;
< >
ETRER ep_poll RIS EFEERIFRFZIEL.,
B S HA
/* Time to fish for events ... */
error = ep_poll(ep, events, maxevents, timeout);
< >

ep_poll

EIEEE 23 HEBNA epoll FREAIAHIR, XIMAY timeout {ETL,Lxejﬂ: 0, &F 0 F/h
F 0 47 iXE ep_poll HHBIRT timeout RAENERIIZ ST TR, WMRATF 0 NF=4ET
—/NERRTE, WREFTF 0 NZEMEERRE E#FZQEO

8 KL
*/

static int ep_poll(struct eventpoll *ep, struct epoll event _ _user *events,int maxevent

https://time.geekbang.org/column/article/143245

{

int res = 0, eavail, timed_out = 9;
unsigned long flags;

ued slack = 0;

wait_queue_entry_t wait;

ktime_t expires, *to = NULL;

if (timeout > @) {
struct timespec64 end_time = ep_set_mstimeout(timeout);
slack = select_estimate_accuracy(&end_time);
to = &expires;
*to = timespec64 to ktime(end_time);
} else if (timeout == 0) {
/*
* Avoid the unnecessary trip to the wait queue loop, if the
* caller specified a non blocking operation.
*/
timed_out = 1;
spin_lock_irgsave(&ep->lock, flags);
goto check_events;

1 M RE13K1E eventpoll EAYEA:

& =AY
spin_lock_irqgsave(&ep->lock, flags);

FS
v

REXIBYZE, REISRIEREEMRE, NRLE, FEIRIHEMAZ eventpoll
BIEFNG wqg B, XHEFEHRIBREHEEERERS, ep poll callback ERERTLIEIZSE
HFEMERE,

B &
if (lep_events_available(ep)) {
/*
* Busy poll timed out. Drop NAPI ID for now, we can add
* it back in when we have moved a socket with a valid NAPI
* ID onto the ready list.
*/
ep_reset_busy poll napi_id(ep);

/*
* We don't have any available event to return to the caller.

* We need to sleep here, and we will be wake up by

* ep_poll callback() when events will become available.
*/

init_waitqueue_entry(&wait, current);

__add_wait_queue_exclusive(&ep->wq, &wait);

EEERE—RER, XNMEAPEI AR schedule hrtimeout range, EHanHiER
ANARER, CPU RYEEEESEEA EMATEERS, 298, HRIHETURESKIREE, A2y
L EIEB L T IOF:

1. SRS ;

2. ZRIHEWEI— signal (58

3. EMNEd = EESEMRE;

4. HEnARER CPU EFTAE, @ for BIAERFINT, MRSEHRERI=1NRME, X
EIANAER.

XIRZRY 1. 2. 3 #p=iBi break BEHER, BEEIRME,

B = ALY
/] XAMERE, HETHRE AT e S M, MeEE IR R
//1. HRTEHRE R
//2. HErdH TR E]—4 signal f§%5

/73. FEARRT EHERA
// RRIf) 1.2.3 #ieid@id break kG
// 4 DR MATEREY cPU ERTREE, N for TEIMAUFINT, WIHREATEE 1.2.3 HIKM, BN
for (55) {
/*
* We don't want to sleep if the ep_poll callback() sends us
* a wakeup in between. That's why we set the task state
* to TASK_INTERRUPTIBLE before doing the checks.
*/
set_current_state(TASK_INTERRUPTIBLE);
/*
* Always short-circuit for fatal signals to allow
* threads to make a timely exit without the chance of
* finding more events available and fetching
* repeatedly.
*/
if (fatal_signal pending(current)) {
res = -EINTR;
break;

}

if (ep_events_available(ep) || timed_out)

break;
if (signal_pending(current)) {
res = -EINTR;

break;

spin_unlock_irgrestore(&ep->lock, flags);

// WLIHA schedule_hrtimeout_range, 4uTHEFEIEAIRIR, CPU B[R] 4 5 4% 1 B 25 At i RE AT
if (!schedule_hrtimeout_range(to, slack, HRTIMER_MODE_ABS))

timed_out = 1;

spin_lock_irgsave(&ep->lock, flags);

SNERBFEMNAIRTIRE], WISZBHHFEM eventpoll BIEREEATIRIER, FHRIRS LR
7259 TASK_RUNNING A7,

SRS
// MARHRAER, RN wait BAZIHMIRR, & EIRAN TASK_RUNNING, 2 FKi#EN check_ever

__remove_wait_queue(&ep->wq, &wait);
__set_current_state(TASK_RUNNING);

/o, VA ep_send_events EEHENZIAF AL

AR

//ep_send_events K345 LB H P[]
/*
* Try to transfer events to user space. In case we get @ events and
* there's still timeout left over, we go trying again in search of
* more luck.
*/
if (!res && eavail &&
I(res = ep_send_events(ep, events, maxevents)) && !timed_out)
goto fetch_events;

return res;

ep_send_events

ep_send _events XM RESIE ep_send events proc {EARIEREGFFER
ep_scan_ready list BR%{, ep scan ready list ERELIEFE ep_send events proc XN E
ZNERIEHEIRLIE,

ep_send_events_proc EIMMEFMESMHR, SEXERSNHEAF poll I7i%, LA
ERERSIAESMHRE. NTAXERIE? X287 HE TN SEHEX N ZIEEERL
i,

BJLAEE, RE ep_send events proc EERATEENEEREE, FEEREPTEBREHIISEG
BEAIEEESLBNY, EXREE—ERIE, = ep_send_events_proc BIRERAS4 LR
poll Rz e, BAFRTEREHNEHENCEAHEER, XA TaeEEis
T, HEBEMAABR. 5B 22 15, EXMERT, NRERFAEIEEEN,
NMHRESRE, XTUENMTABIFEEEREFES epoll FRIFAREIENRE.

ER TR BB 5, ep_send_events_proc EEAEMNE N ZIBFZEE
BREHREEF. XEET _put_user J3iE5TkAY,

& =AY
/] REXAS fd BRRGET poll #AE, LAERIAFIE
revents = ep_item_poll(epi, &pt);
/*
* If the event mask intersect the caller-requested one,
* deliver the event to userspace. Again, ep_scan_ready_list()
* is holding "mtx", so no operations coming from userspace
* can change the item.
*/
if (revents) {
if (__put_user(revents, &uevent->events) ||
__put_user(epi->event.data, &uevent->data)) {
list_add(&epi->rdllink, head);
ep_pm_stay_awake(epi);
return eventcnt ? eventcnt : -EFAULT;
}
eventcnt++;
uevent++;
< »

Level-triggered VS Edge-triggered

https://time.geekbang.org/column/article/141573

FRIEER, Bi1—E#E8)F level-triggered 0 edge-triggered Z[BHIXH!.

MNILIAEREHSLAFERER, £ ep_send_events_proc BRERIRE, FXI level-
triggered &%, ZHBIRY epoll item XISHEFINZE eventpoll FIFLETIRF, XHEHE T
—x epoll_wait AT, XL epoll item S EW TR,

ERIEHANRR, ERZENIBFPZEENEMFIERTZE, STERARINIUGY poll 75
%, UEXNSUEAZKAE. L, IRAFZEREFERLEREZEN, MAs
WRRIBA, WWRKELE, EREZFMHRAER, NESBmXE,

RS

// XHE Level-triggered [MAbEE, FWTLLEZR], £ Level-triggered MIEHLT, XAFAF4: E HhnlH £
/] XFE, F—# epoll_wait MIEHME, XANFFSWE check
else if (!(epi->event.events & EPOLLET)) {

/*
If this file has been added with Level
Trigger mode, we need to insert back inside
the ready list, so that the next call to
epoll wait() will check again the events
availability. At this point, no one can insert
into ep->rdllist besides us. The epoll_ctl()
callers are locked out by
ep_scan_ready_list() holding "mtx" and the

* * * * * * * * *

poll callback will queue them in ep->ovflist.
*/

list add_tail(&epi->rdllink, &ep->rdllist);

ep_pm_stay_awake(epi);

epoll VS poll/select

&E, FAIINEMAEFRIRB—TATA epoll FEREmET poll/select,

B5%, poll/select SoiGE LRI fd MRF AR NEINZEE), ARERZT AR T
WiEZfE, BENGAPTE. XERSRIAZTERERT, BIRFESFIRE, Xfi&
RE fd [BERT, 2IFEFEIRY, M epoll 4HF T —NELER, BENIXIRRLATHTE
8, ALUERKERNAFHBSIIRMAVEE, MEEREEIERER,

https://time.geekbang.org/column/article/143245
https://time.geekbang.org/column/article/143245

TERMBHZE poll/select TERZZRIRIBERFHER. FILIEER select 2=l HIEK
LRI NRFERITA fd EHRE, MieXHRIBEETENER.

8 S S

int core_sys_select(int n, fd_set _ _user *inp, fd_set _ user *outp,
fd_set __user *exp, struct timespec64 *end_time)

fd_set_bits fds;

void *bits;

int ret, max_fds;

size t size, alloc_size;

struct fdtable *fdt;

/* Allocate small arguments on the stack to save memory and be faster */
long stack_fds[SELECT_STACK_ALLOC/sizeof(long)];

ret = -EINVAL;
if (n < Q)

goto out_nofds;

/* max_fds can increase, so grab it once to avoid race */
rcu_read_lock();

fdt = files_fdtable(current->files);

max_fds = fdt->max_fds;

rcu_read_unlock();

if (n > max_fds)

n = max_fds;

/*
* We need 6 bitmaps (in/out/ex for both incoming and outgoing),
* since we used fdset we need to allocate memory in units of

* long-words.

*/
size = FDS_BYTES(n);
bits = stack fds;

if (size > sizeof(stack_fds) / 6) {
/* Not enough space in on-stack array; must use kmalloc */
ret = -ENOMEM;
if (size > (SIZE_MAX / 6))

goto out_nofds;

alloc_size = 6 * size;
bits = kvmalloc(alloc_size, GFP_KERNEL);
if (!bits)

goto out_nofds;

}

fds.in = bits;

fds.out = bits + size;
fds.ex = bits + 2*size;

fds.res_in = bits + 3*size;

fds.res_out = bits + 4*size;
fds.res_ex = bits + 5*size;

5, select/poll NABRF#IREERS, INRETEA fd, REEFPE— fd BFEHEHLK
£, IZmBHNERRY list TICEZIEEM— 1N SEEIL, FHgE R epoll —#, &id fd
ELEXEf eventpoll 3952, HuEHE fd EEEMNAZI eventpoll BFEZEFIERS,

B = HilACh
static int do_select(int n, fd_set_bits *fds, struct timespec64 *end_time)
{

retval = 0;
for (55) {
unsigned long *rinp, *routp, *rexp, *inp, *outp, *exp;
bool can_busy loop = false;
inp = fds->in; outp = fds->out; exp = fds->ex;
rinp = fds->res_in; routp = fds->res_out; rexp = fds->res_ex;
for (i = @; i < n; ++rinp, ++routp, ++rexp) {
unsigned long in, out, ex, all bits, bit = 1, mask, j;
unsigned long res_in = @, res_out = 0, res_ex = 0;
in = *inp++; out = *outp++; ex = *exp++;
all bits = in | out | ex;
if (all_bits == @) {
i += BITS_PER_LONG;
continue;
}
if (!poll_schedule_timeout(&table, TASK_INTERRUPTIBLE,
to, slack))
timed_out = 1;
< »
B4

EXREREF, HARBBLREST epoll RURISSEI, FRERE epoll ISR,

epoll 4P T — R BISRIRERFF A RIS (HEd =, BLIWRIERRD T Rz B
FRIXENEIEENUNATOE, KRS T 1H8E.

[Eft, epoll &7 —MERFKICRMESMH, AREB N XHESHREMNEECSEICE
XANESHTIRT, BERZESHI file-eventpoll Z[BRIENEFIREETLHE, T
X PRIZIIAFRIEP, AKINER 7 SHENFINAINE, Xt level-triggered #
edge-triggered AYSCIIH R 7 {EF.

BRI poll/select BISEIR, ibﬂ]ivﬁ)b epoll #LFER T poll/select RuFpFhiskin, Aig

2 Linux FEMREMNEREZENER. BlINiZRST Linux Tj:IZE’th@ﬂJlxrl'Tm/Aﬁ'EkEl’J
SRS, 1A Linux "F_IL)\ES"%_%TE EMEBRRSS BRI SRAIFIRP T ALIF.

@ E=adial

W 28 4R FE SE &k

MIEERE 6L, REBETNERTE

2302
HIAR AP T A E R

MARAR: RiE TRBEARIE 1, 20IFREREL, BIETHER I EEZR.

© WRIRVFREFRHLATE, REFAIAMSEHRESE, NECEMGEER, MEENIREDISKSERE EERT.

t—& 30| HIERIKRSR: FEI/OREK
TR 32| BCaIFERM4REHTTPIRSS (—) @ IR

tamazr

2e¢ 2019-10-20
ZIM, BERGH— NMAOSRUATEEEFIASER? mAFEE8E, HFing ~
J i)
% Sk
2 2019-10-18

selectiIXFPEICFHFAFIFNAMAEBATIEE—IE, epolARIEXFFIAG RV E BT LTRSS
MBS T, RAEEFHFIREBASTHER, WRE, mil—TFEE

fFERE: (RXMIERERIRER, EFREAHAR.

] 1
é ;!619—10—20
KRN EBSFEINESZ.
BFF v
& s}

@ JUERSE
= 2019-10-19

RZ CIESHlinuxRZERIR NIEXLRIDEAZ], BRE ISR
& ifs]

&
2019-10-18

hi ZI0&sF, BNIURESIAT. 18 redis BY backlog iIRE4 1, RGTE redis B debug
sleep 50, ARKERMEK, — 1 HINERE, 5— 1=t [opration timeout] , A
&2 connect timeout, AIFAIERE 26s, REX T/UR. #E26sAGHATE. REFIEX
MRERNZIBRHKAE? AHAR26sIXANTEIR? T ER phpredis, php JEE socket
FBATZ 60s,

BFF v

FERE: (RFREET—RTIE, XPANTEAZREEL, BE{(Rdebug—T.
< »

(3 i)

