Q TzAPr ®

34 | BCHFESIEREHTTPIRSER (=) : TCPFLHLE
HTTPHYEER

2019-10-25 BX3ESY

\Q /:\“
® 9 “‘
PFS

ReF, BRI, XEREMWEMESLTASE 34 iF, WilESkK,

ik : BkE
A< 09:18 K/ 8.52M

X, FRAJGELESE 33 HANERE, ST RN B RIEEZE =R IEERS, FER
ML SRTEAEZRIZ N HTTP f8XA9THEE, 7ELtEM FFERK HTTP S4REIRS SRS,

buffer Y&

MEEESMES. SMERETERIIAER buffer xR, buffer, BB, HME—
MEPXER, %7 7 NEERFRICRIVEIELUN FERTERFRIEE.

INRENERFRICREEE, SMHOIERIFREEARRIbE buffer WRIBINELE,
Y, NMARERFFEARME buffer SSRPAVERELGIER, X, buffer IRAALIZ HFHY
NEBWEZHIEE.

MRERIEREFIEE, NAERAME buffer WSIGIIEHE, FEiY, SHLEREE
REAMTERERT CRIREREISEIERELZE, B buffer WRPIISANEUE.

o/, buffer WHRERRALUMESBAE S (input buffer) FEHES (output
buffer) WANAAMER, RAE, ERMHIEFE T, BAMEHNSREEXEM.

ARSI T—KE, T buffer JRAGRIT.

readindex writelndex

front_spare_size readable_size writeable_size

TEZ buffer WSRIEIELE,

B S5
1 /] BUREHX
2 struct buffer {

3 char *data; // SEBRZEIH

4 int readIndex; /] BMERUUE
5 int writeIndex; /] BEHRBENUE
6 int total_size; /] BXN

7 0}

buffer 335+AJ writelndex FRR T HEIATLABANAIUE; readindex xR 7 HaialLUEH
BIEEEAIE, EPLIEZEHM readindex B writelndex UK EEESHEUEIZESD, T
£FEERD M writeindex BIEFHREREIRNE T LIS HAYERD .

WEERTERERS, 2 readindex I writelndex RSB NIRRT, BIEIHSH
front_space_size KIFZEESRK, MXNMXIFHIEIECEZIBEUE, X NMHE, ME
FFE—TEA buffer WKRRVEN, IBAEELELNBE, StER, SFEHIBE
EMf#Es), BNMEPXWNAISHIMaTE T,

make_room FREHERXMERRY, WMRADEEANESTERNBIATHFIENE, Mk
ENREEDIN EANEEE S —ER LISW TR, MafaXHrBaiEl, RE4a
B LETREE, S GETAL, ALEEIESRA—MNESRIAREAST
8], BAILABHTHRIEEE. TH—KERFRE 7iX NI

readindex writelndex

front_spare_size readable_size writeable_size

pa)
BRI EIIERS
‘x’ . BETSABHTREETE
pa
readable_size writeable_size
readindex writelndex

ER make room BRI,

B S5
1 void make_room(struct buffer xbuffer, int size) {
2 if (buffer_writeable_size(buffer) >= size) {
3 return;
4 +
5 // SR front_spare 1 writeable BYX/MIMERAILIESHEMNE, MIEAEEIEFRIEZER
6 if (buffer_front_spare_size(buffer) + buffer_writeable_size(buffer) >= siz
7 int readable = buffer_readable_size(buffer);
8 int i
9 for (i = 0; i < readable; i++) {

10 memcpy (buffer->data + i, buffer->data + buffer->readIndex + i, 1);
11 }

12 buffer->readIndex = 0;

13 buffer->writeIndex = readable;
14 } else {

15 /] TREHRK

16 void *tmp = realloc(buffer->data, buffer->total_size + size);
17 if (tmp == NULL) {

18 return;

19 }

20 buffer->data = tmp;

21 buffer->total_size += size;

22 }

23 }

SR, MRABED HEIKR, IEHOAE, SMMAEFXAY KEF. XEXBIHEA
realloc FRERTSREITXAN &,

T EXSKEIRT LA T #FERE.

readindex writelndex
ZHl
readindex writelndex SaEARSTX
.................... '
front_spare_size readable_size writeable_size
=

EiRF R E

EREFIEREEERTE tcp_connection.c FEY handle_read ke, EXNREE, B
A buffer socket read REURUCRBERFAIEIER, FHEEHE DR buffer XI5
th, ZERAILAERI, FAi1iE buffer XS0 tcp_connection XIS {Ei%4E N FIFEFEILER
LbIREREN messageCallBack SEFH TIRIAUARIT TIE, XEBDRILEBIE HTTP iR3ETH
EFF.

= SHES
1 1int handle_read(void *xdata) {
2

3 struct tcp_connection xtcpConnection = (struct tcp_connection *) data;
4 struct buffer *input_buffer = tcpConnection->input_buffer;
5 struct channel *channel = tcpConnection->channel;
6
7 if (buffer_socket_read(input_buffer, channel->fd) > 0) {
8 // NFfERHEIEEH Buffer ERAYEHE
9 if (tcpConnection->messageCallBack != NULL) {
10 tcpConnection->messageCallBack(input_buffer, tcpConnection);
11 }
12 } else {
13 handle_connection_closed(tcpConnection);
14 }
}

£ buffer socket read FREE, EMA readv EFFENMEHNXBENEGE, — 2 buffer 37

%, BIM—1EIXER additional buffer, ZRTLUXEEME, 210 buffer I95%7

NEBH

TREEEFRIEEER, MEERBENEMA buffer BRI SEE. BEERAGINIE
i, —BHMHNEREERREIERID T buffer WHREBASEFRRARIS AN, el
& buffer IR BERIE, XE buffer append ERESTEHERIENEAI make room X

£, SEhk buffer MR A,

1 dnt buffer_socket_read(struct buffer xbuffer, int fd) {

2 char additional_buffer[INIT_BUFFER_SIZE];

3 struct dovec vec[2];

4 int max_writable = buffer_writeable_size(buffer);

5 vec[0].iov_base = buffer->data + buffer->writeIndex;
6 vec[0].iov_len = max_writable;

7 vec[l].iov_base = additional_buffer;

8 vec[l].iov_len = sizeof(additional_buffer);

9 int result = readv(fd, vec, 2);

10 if (result < 0) {

11 return -1;

12 } else if (result <= max_writable) {

13 buffer->writeIndex += result;

14 } else {

15 buffer->writeIndex = buffer->total_size;

16 buffer_append(buffer, additional_buffer, result - max_writable);
17 }

18 return result;

19 }

EEFRIEAIRLE

SIS

N AEFRETERTREEIER, RI5EM T read-decode-compute-encode 372
&, 1Bid1E buffer WHREBA encode LAFRIEEE, TEA
tcp_connection_send buffer, & buffer ERIEIEBIERFE P X AEHE.

1

o UM W N

SHIES

int tcp_connection_send_buffer(struct tcp_connection *tcpConnection, struct bu

int size = buffer_readable_size(buffer);
int result = tcp_connection_send_data(tcpConnection, buffer->data + buffer
buffer->readIndex += size;

return result;

ANERAI=RET channel ;25 E WRITE 44, FHE=81 tcp_connection XIMRYAIXLE)
TEIBRRERX, MERAER write REBEIEREXHE. NRX—XEERT, FERIR
FERIEHIEUERE N FIZE] tcp_connection JFRAYAIEE MXF, FE event loop jEAf
WRITE 4, XHFHUIEMAERERE, NAEFERXEOEIE.

SHIHE

1 /) NREEBAN

2
3

© 00 N O U »H

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

int tcp_connection_send_data(struct tcp_connection *tcpConnection, void xdata,

size_t nwrited = 0;
size_t nleft = size;
int fault = 0;

struct channel *channel = tcpConnection->channel;
struct buffer xoutput_buffer = tcpConnection->output_buffer;

/] FEEEFEHRIEEIE
if (!channel_write_event_registered(channel) && buffer_readable_size(outpu
nwrited = write(channel->fd, data, size);
if (nwrited >= 0) {
nleft = nleft - nwrited;
} else {
nwrited = 0;
if (errno != EWOULDBLOCK) {
if (errno == EPIPE || errno == ECONNRESET) {
fault = 1;

if (!fault && nleft > 0) {
// ¥WZE| Buffer #, Buffer RIEUEHIEZIEE

27 buffer_append(output_buffer, data + nwrited, nleft);
28 if (!channel_write_event_registered(channel)) {

29 channel_write_event_add(channel);

30 }

31 }

32

33 return nwrited;

34}

HTTP {HYEEIR
TmE, FAFE TCP p9ERE L, 0 HTTP BITHAE,
B, BITELRENT— http_server £5#3, X/ http_server AR LFIE—

TCPServer, RIAIRELNAEFIBEIERIAEER, RFEEEZ http_request F[]
http_response 514,

SHIRTD
1 typedef 1int (*request_callback) (struct http_request *httpRequest, struct http_
2
3 struct http_server {
4 struct TCPserver x*tcpServer;
5 request_callback requestCallback;
6 1}

res http server EBH, ERERESTHIRIAYENT, BFEATAURSGE{LA http_request XJ
%, XIEEBEEY http_onMessage EIERERTTHEY. 1E http onMessage BR#E]
2, ARRYR parse_http_request FeRHRSIAFAT.

SHNE
// buffer ZRAEZR{ZEEIFRY, FEELWEEPSEUERIBIR T
/] ERIXERRERBWEIS AR, FTLAEMEEIERBRIIEH
int http_onMessage(struct buffer xinput, struct tcp_connection *tcpConnection)

yolanda_msgx("get message from tcp connection %s", tcpConnection->name);

struct http_request *httpRequest = (struct http_request *) tcpConnection->
struct http_server xhttpServer = (struct http_server x) tcpConnection->dat

if (parse_http_request(input, httpRequest) == 0) {

10 char xerror_response = "HTTP/1.1 400 Bad Request\r\n\r\n";

11 tcp_connection_send_data(tcpConnection, error_response, sizeof(error_r
12 tcp_connection_shutdown(tcpConnection);

13 }

14
15 /1 ESETETBH request HUE, ETRE{TRIGIIAIE
16 if (http_request_current_state(httpRequest) == REQUEST_DONE) {
17 struct http_response xhttpResponse = http_response_new();
18
19 //httpServer 2EEM requestCallback [EF
20 if (httpServer->requestCallback != NULL) {
21 httpServer->requestCallback(httpRequest, httpResponse);
22 }
23
24 // 18 httpResponse KiEFIEEFEEEDXF
25 struct buffer *xbuffer = buffer_new();
26 http_response_encode_buffer (httpResponse, buffer);
27 tcp_connection_send_buffer (tcpConnection, buffer);
28
29 if (http_request_close_connection(httpRequest)) {
30 tcp_connection_shutdown (tcpConnection);
31 http_request_reset(httpRequest);
32 1
33 1
34}
RICE HEIRY HTTP #0057 FAIM 16 i#8K1, HTTP BILiRERIFERF. #2

1TRHED9 HTTP $RSMMYAGIAS.

H
Ht

IBXRAE | Zf% | URL % | MXARZAR | [B1%FE | $R9T
kEFERA | (=l [E%F | #]17
kEFERE | (=l [E% | #]1T
[@% | H#1T

TBEKIENX

parse_http_request B ESIKIRIANLR, FERICR T HBIET LIEFTMEPIRE.
RIERET LERIBIRR, EHRSETRY T {E5 B REQUEST_STATUS,
REQUEST HEADERS, REQUEST BODY #1 REQUEST DONE PUMNBNER, B NERFRITAY

IiEEEARE.

ERTIRSITRY, SolEdEN CRLF RIEEMTRRINERBRENREST, HNS TR,
BRBYERTSIRFIREADIRAR.

’

FERFTLERIRERY, ESBEEN CRLF BIZEETRAESRBIE—A key-value 3¢,
BEYEXESFARIFADRARA.

&a, NREHEIESFR, RIBEITLER TIE.

parse_http_request B{Z45ek ¥ HTTP #RSCEETAITIMTER:

SHIKTD
1 1dnt parse_http_request(struct buffer xinput, struct http_request xhttpRequest)
2 int ok = 1;
3 while (httpRequest->current_state != REQUEST_DONE) {
4 if (httpRequest->current_state == REQUEST_STATUS) {
5 char *crlf = buffer_find_CRLF(input);
6 if (crlf) {
7 int request_line_size = process_status_line(input->data + inpu
8 if (request_line_size) {
9 input->readIndex += request_line_size; // request line si.
10 input->readIndex += 2; //CRLF size
11 httpRequest->current_state = REQUEST_HEADERS;
12 }
13 }
14 } else if (httpRequest->current_state == REQUEST_HEADERS) {
15 char xcrlf = buffer_find_CRLF(input);
16 if (crlf) {
17 [**
18 * <start>------- <colon>:—--—--- <crlf>
19 */
20 char xstart = input->data + input->readIndex;
21 int request_line_size = crlf - start;
22 char *colon = memmem(start, request_line_size, ": ", 2);
23 if (colon != NULL) {
24 char xkey = malloc(colon - start + 1);
25 strncpy(key, start, colon - start);
26 key[colon - start] = '\0';
27 char xvalue = malloc(crlf - colon - 2 + 1);
28 strncpy(value, colon + 1, crlf - colon - 2);
29 value[crlf - colon - 2] = '"\0';
30
31 http_request_add_header (httpRequest, key, value);
32
33 input->readIndex += request_line_size; //request line siz
34 input->readIndex += 2; //CRLF size
35 } else {

36 // EENXEIRAE: RHE, SiRBEXNE&E—1T

37 input->readIndex += 2; //CRLF size

38 httpRequest->current_state = REQUEST_DONE;
39 }

40 }

41 }

42 }

43 return ok;

44 }

SESE TR request BUE, EF RHTHRIDIIAZIIE. Ak, BIET—
http_response X45:, FER T NAEFREERIZEREL requestCallback, T, Bl
T— buffer X35, REL http response _encode buffer FA3ki& http response HaYEL

&, TRIE HTTP iR AR NAYFTI AR,

BJLAEZ, http_response_encode_buffer ig& 74l Content-Length 2 http_response
&8, LAK http_response B9 body BB EUE.

SHICES

1 void http_response_encode_buffer(struct http_response xhttpResponse, struct bu
2 char buf[32];

3 snprintf(buf, sizeof buf, "HTTP/1.1 %d ", httpResponse->statusCode);

4 buffer_append_string(output, buf);

5 buffer_append_string(output, httpResponse->statusMessage);

6 buffer_append_string(output, "\r\n");

-

8 if (httpResponse->keep_connected) {

9 buffer_append_string(output, "Connection: close\r\n");

10 } else {

11 snprintf(buf, sizeof buf, "Content-Length: %zd\r\n", strlen(httpRespon:
12 buffer_append_string(output, buf);

13 buffer_append_string(output, "Connection: Keep-Alive\r\n");

14 }

15

16 if (httpResponse->response_headers != NULL && httpResponse->response_heade
17 for (int i = 0; i < httpResponse->response_headers_number; i++) {

18 buffer_append_string(output, httpResponse->response_headers[i].key
19 buffer_append_string(output, ": ");
20 buffer_append_string(output, httpResponse->response_headers[i].vali
21 buffer_append_string(output, "\r\n");
22 }
23 }
24
25 buffer_append_string(output, "\r\n'");

26 buffer_append_string(output, httpResponse->body) ;

27 }

5oy HTTP BRSSRE6IF

WE, WE— HTTP RES=50IFHREIFEREA, RAILMEMRT, LUK GitHub &F

FEEIXAMF.

EXMFH, REZAIERSDZE onRequest callback B2, XE, onRequest 75584
£ parse_http_request Zf5, AILURIEARAY http_request ER, HITITEILIE,
PlIFiErFRRZEIFERES, RIE http request BY URL path, R[] 7TARRY
http_response 2584, tbill, ZiEgkARBRAES, REIRIZE 200 1 HTML 8=,

B SIS
1 #include <lib/acceptor.h>
2 #include <lib/http_server.h>
3 #include "lib/common.h"
4 #include "1lib/event_loop.h"
5
6 // BUEER buffer Z/FHY callback
7 dnt onRequest(struct http_request xhttpRequest, struct http_response xhttpResp:
8 char xurl = httpRequest->url;
9 char xquestion = memmem(url, strlen(url), "?", 1);
10 char *path = NULL;
11 if (question != NULL) {
12 path = malloc(question - url);
13 strncpy(path, url, question - url);
14 } else {
15 path = malloc(strlen(url));
16 strncpy(path, url, strlen(url));
17 }
18
19 if (strcmp(path, "/") == 0) {
20 httpResponse->statusCode = OK;
21 httpResponse->statusMessage = "OK";
22 httpResponse->contentType = "text/html";
23 httpResponse->body = "<html><head><title>This is network programming</:
24 } else if (strcmp(path, "/network") == 0) {
25 httpResponse->statusCode = 0K;
26 httpResponse->statusMessage = "OK";
27 httpResponse->contentType = "text/plain";
28 httpResponse->body = "hello, network programming";
29 } else {
30 httpResponse->statusCode = NotFound;
31 httpResponse->statusMessage = "Not Found";
32 httpResponse->keep_connected = 1;

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

N——

IE1TIX

_i

return 0;

nt main(int c, char *xv) {
/] FELZIE event_loop
struct event_loop *eventLoop = event_loop_init();

// ¥R tcp_server, AILUBTEEHIZEE, WRELER 0, MIREXNKIERE acceptor+i/o; |
//tcp_server HCm— event_loop

struct http_server xhttpServer = http_server_new(eventLoop, SERV_PORT, onR
http_server_start(httpServer);

// main thread for acceptor
event_loop_run(eventLoop);

MEFRZE, BATRTLUBITNLSESH] curl S5$RpAE. (RElLARRFES MR

g2t curl 85, XIERR T RARIRERFE A LIBESH A B KA.

O© 0 N o u b W N =

N =
o M W N R O

$

*

*

N X AN AN AN AN V V V V V

SHNE

curl -v http://127.0.0.1:43211/

Trying 127.0.0.1...
TCP_NODELAY set
Connected to 127.0.0.1 (127.0.0.1) port 43211 (#0)
GET / HTTP/1.1
Host: 127.0.0.1:43211
User-Agent: curl/7.54.0
Accept: */*

HTTP/1.1 200 OK
Content-Length: 116
Connection: Keep-Alive

Connection #0 to host 127.0.0.1 left 1dintact
html><head><title>This is network programming</title></head><body><hl>Hello,

< C ® 127.0.0.1:4321
" mE W [. - [m -

Hello, network programming

B4

X—HBENEEHAR T B NMREERNFT R ESEN, 5IANT buffer X5, FHELERM
B0 HTTP A9451E, B4E http_server, http request. http response, FEmk7T
HTTP S4eEIRS=smE. SCHIRRFFIFMESIRHAYEE D, RS 7 — 1N=8R) HTTP RS
2EIERF,

BEW
MIER—H, BARMEMETEA:

F—E, (FReLUAEE HTTP iRSSesR1EIN MIME RUSERES), HFAFiEK /photo E&E
Y, RE—KER.

X

FE, ERAINFRT, ERERSERNSRANRT, (RETLUFEFHENE, iR
=R RIIERE.

WIMFEFEXE MRNEE, BRPEXENESERIRINARSERS, —ERiR—
.

@ E=EwE

[285 g AE 3K 6%

MIREEISEY, REBITNEG iz
BESEEN

BIAR R e B FEERAIm

MARAR: RiE TRIBARE), 20FREFIE, BiETHERN 2R,

© WRFREFRHLATE, REVFAIAMSERER. THCEMGERER, MEENIREBRSEREE#ESRE.
8

33 | HEHFESMAEHTTPIRSS R (Z)

/OB NS ERRAERISY]
TR 35| 28 RESIENERRIERN, SRR
fBIEEE (5)
tt
2019-10-28

B, JFHEANEE, FHARRNC++HIESTIRENRER, ZIMRICRBILRSEE
EFRISRAY.

RZHER, tbiltcp connection, XIRAYSLIEFEBERIEREL, F—1SEEZtcp_conn
ectionfgft, XFitEZTFthisigst. MMEMAILL" new"EREAVREFIHELFC++AYH4...
BFF v

FERIES: BHY, ERMREEXREETS

'?2 MoonGod
=7 2019-10-26

ANERAIBNZHET channel i&BEM WRITE 44, HEXE0 tcp_connection SIRMAIAIEE
MTEHIERERX, MEREER write REUSEIBERXEE.

ZInyF, XERBER, NERREMETIeE RBwriteEHEHE—TREETXER, Z
[FUIRigBwriteS= 4, MEEM— T 7T A~E?

BF v

RERIE: FRIFNEER, BRFG—EEMD T, R~

g Steiner

& 2019-10-25
IHEFAN T, HENWERZINNEIEECSE—MESR, ARIEEZIE
(="~")
BV

FERE: REFFFEANIEERE

@ Bkt

2019-10-25
ZITRRE LERE =,
BIERENT, RIMREESD

LRI IE P X2 RRVER, BRIMERIMEdE, FMIEGMEF mERIRER.
RV

RIBEE: Y, NECHTHIE, BRI,

AP fEiRRA X
2019-10-25

FBNERR A BIBFERER T HEENAERMZS TR EEHAR (EERIERZEE
—rmmt 2R —ERERE buffers A EiZEFRINIE tcpconnecti HEERINME, MTEHIA

AT PR BESAEEREE B8N TAD DE—MEs ZEmRE—NE
e
51

