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1 /] BUREHX
2 struct buffer {

3 char *data; // SEBRZEIH

4 int readIndex; /] BMERUUE
5 int writeIndex; /] BEHRBENUE
6 int total_size; /] BXN

7 0}

buffer 335+AJ writelndex FRR T HEIATLABANAIUE; readindex xR 7 HaialLUEH
BIEEEAIE, EPLIEZEHM readindex B writelndex UK EEESHEUEIZESD, T
£FEERD M writeindex BIEFHREREIRNE T LIS HAYERD .
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1 void make_room(struct buffer xbuffer, int size) {
2 if (buffer_writeable_size(buffer) >= size) {
3 return;
4 +
5 // SR front_spare 1 writeable BYX/MIMERAILIESHEMNE, MIEAEEIEFRIEZER
6 if (buffer_front_spare_size(buffer) + buffer_writeable_size(buffer) >= siz
7 int readable = buffer_readable_size(buffer);
8 int i
9 for (i = 0; i < readable; i++) {

10 memcpy (buffer->data + i, buffer->data + buffer->readIndex + i, 1);
11 }



12 buffer->readIndex = 0;

13 buffer->writeIndex = readable;
14 } else {

15 /] TREHRK

16 void *tmp = realloc(buffer->data, buffer->total_size + size);
17 if (tmp == NULL) {

18 return;

19 }

20 buffer->data = tmp;

21 buffer->total_size += size;

22 }

23 }
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1 1int handle_read(void *xdata) {
2



3 struct tcp_connection xtcpConnection = (struct tcp_connection *) data;
4 struct buffer *input_buffer = tcpConnection->input_buffer;
5 struct channel *channel = tcpConnection->channel;
6
7 if (buffer_socket_read(input_buffer, channel->fd) > 0) {
8 // NFfERHEIEEH Buffer ERAYEHE
9 if (tcpConnection->messageCallBack != NULL) {
10 tcpConnection->messageCallBack(input_buffer, tcpConnection);
11 }
12 } else {
13 handle_connection_closed(tcpConnection);
14 }
}

£ buffer socket read FREE, EMA readv EFFENMEHNXBENEGE, — 2 buffer 37
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& buffer IR BERIE, XE buffer append ERESTEHERIENEAI make room X

£, SEhk buffer MR A,

1 dnt buffer_socket_read(struct buffer xbuffer, int fd) {

2 char additional_buffer[INIT_BUFFER_SIZE];

3 struct dovec vec[2];

4 int max_writable = buffer_writeable_size(buffer);

5 vec[0].iov_base = buffer->data + buffer->writeIndex;
6 vec[0].iov_len = max_writable;

7 vec[l].iov_base = additional_buffer;

8 vec[l].iov_len = sizeof(additional_buffer);

9 int result = readv(fd, vec, 2);

10 if (result < 0) {

11 return -1;

12 } else if (result <= max_writable) {

13 buffer->writeIndex += result;

14 } else {

15 buffer->writeIndex = buffer->total_size;

16 buffer_append(buffer, additional_buffer, result - max_writable);
17 }

18 return result;

19 }
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int tcp_connection_send_buffer(struct tcp_connection *tcpConnection, struct bu

int size = buffer_readable_size(buffer);
int result = tcp_connection_send_data(tcpConnection, buffer->data + buffer
buffer->readIndex += size;

return result;

ANERAI=RET channel ;25 E WRITE 44, FHE=81 tcp_connection XIMRYAIXLE)
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int tcp_connection_send_data(struct tcp_connection *tcpConnection, void xdata,

size_t nwrited = 0;
size_t nleft = size;
int fault = 0;

struct channel *channel = tcpConnection->channel;
struct buffer xoutput_buffer = tcpConnection->output_buffer;

/] FEEEFEHRIEEIE
if (!channel_write_event_registered(channel) && buffer_readable_size(outpu
nwrited = write(channel->fd, data, size);
if (nwrited >= 0) {
nleft = nleft - nwrited;
} else {
nwrited = 0;
if (errno != EWOULDBLOCK) {
if (errno == EPIPE || errno == ECONNRESET) {
fault = 1;

if (!fault && nleft > 0) {
// ¥WZE| Buffer #, Buffer RIEUEHIEZIEE



27 buffer_append(output_buffer, data + nwrited, nleft);
28 if (!channel_write_event_registered(channel)) {

29 channel_write_event_add(channel);

30 }

31 }

32

33 return nwrited;

34}
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1 typedef 1int (*request_callback) (struct http_request *httpRequest, struct http_
2
3 struct http_server {
4 struct TCPserver x*tcpServer;
5 request_callback requestCallback;
6 1}

res http server EBH, ERERESTHIRIAYENT, BFEATAURSGE{LA http_request XJ
%, XIEEBEEY http_onMessage EIERERTTHEY. 1E http onMessage BR#E]
2, ARRYR parse_http_request FeRHRSIAFAT.
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// buffer ZRAEZR{ZEEIFRY, FEELWEEPSEUERIBIR T
/] ERIXERRERBWEIS AR, FTLAEMEEIERBRIIEH
int http_onMessage(struct buffer xinput, struct tcp_connection *tcpConnection)

yolanda_msgx("get message from tcp connection %s", tcpConnection->name);

struct http_request *httpRequest = (struct http_request *) tcpConnection->
struct http_server xhttpServer = (struct http_server x) tcpConnection->dat

if (parse_http_request(input, httpRequest) == 0) {

10 char xerror_response = "HTTP/1.1 400 Bad Request\r\n\r\n";

11 tcp_connection_send_data(tcpConnection, error_response, sizeof(error_r
12 tcp_connection_shutdown(tcpConnection);



13 }

14
15 /1 ESETETBH request HUE, ETRE{TRIGIIAIE
16 if (http_request_current_state(httpRequest) == REQUEST_DONE) {
17 struct http_response xhttpResponse = http_response_new();
18
19 //httpServer 2EEM requestCallback [EF
20 if (httpServer->requestCallback != NULL) {
21 httpServer->requestCallback(httpRequest, httpResponse);
22 }
23
24 // 18 httpResponse KiEFIEEFEEEDXF
25 struct buffer *xbuffer = buffer_new();
26 http_response_encode_buffer (httpResponse, buffer);
27 tcp_connection_send_buffer (tcpConnection, buffer);
28
29 if (http_request_close_connection(httpRequest)) {
30 tcp_connection_shutdown (tcpConnection);
31 http_request_reset(httpRequest);
32 1
33 1
34}
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parse_http_request B{Z45ek ¥ HTTP #RSCEETAITIMTER:
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1 1dnt parse_http_request(struct buffer xinput, struct http_request xhttpRequest)
2 int ok = 1;
3 while (httpRequest->current_state != REQUEST_DONE) {
4 if (httpRequest->current_state == REQUEST_STATUS) {
5 char *crlf = buffer_find_CRLF(input);
6 if (crlf) {
7 int request_line_size = process_status_line(input->data + inpu
8 if (request_line_size) {
9 input->readIndex += request_line_size; // request line si.
10 input->readIndex += 2; //CRLF size
11 httpRequest->current_state = REQUEST_HEADERS;
12 }
13 }
14 } else if (httpRequest->current_state == REQUEST_HEADERS) {
15 char xcrlf = buffer_find_CRLF(input);
16 if (crlf) {
17 [ **
18 * <start>------- <colon>:—--—--- <crlf>
19 */
20 char xstart = input->data + input->readIndex;
21 int request_line_size = crlf - start;
22 char *colon = memmem(start, request_line_size, ": ", 2);
23 if (colon != NULL) {
24 char xkey = malloc(colon - start + 1);
25 strncpy(key, start, colon - start);
26 key[colon - start] = '\0';
27 char xvalue = malloc(crlf - colon - 2 + 1);
28 strncpy(value, colon + 1, crlf - colon - 2);
29 value[crlf - colon - 2] = '"\0';
30
31 http_request_add_header (httpRequest, key, value);
32
33 input->readIndex += request_line_size; //request line siz
34 input->readIndex += 2; //CRLF size
35 } else {



36 // EENXEIRAE: RHE, SiRBEXNE&E—1T

37 input->readIndex += 2; //CRLF size

38 httpRequest->current_state = REQUEST_DONE;
39 }

40 }

41 }

42 }

43 return ok;

44 }

SESE TR request BUE, EF RHTHRIDIIAZIIE. Ak, BIET—
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1 void http_response_encode_buffer(struct http_response xhttpResponse, struct bu
2 char buf[32];

3 snprintf(buf, sizeof buf, "HTTP/1.1 %d ", httpResponse->statusCode);

4 buffer_append_string(output, buf);

5 buffer_append_string(output, httpResponse->statusMessage);

6 buffer_append_string(output, "\r\n");

-

8 if (httpResponse->keep_connected) {

9 buffer_append_string(output, "Connection: close\r\n");

10 } else {

11 snprintf(buf, sizeof buf, "Content-Length: %zd\r\n", strlen(httpRespon:
12 buffer_append_string(output, buf);

13 buffer_append_string(output, "Connection: Keep-Alive\r\n");

14 }

15

16 if (httpResponse->response_headers != NULL && httpResponse->response_heade
17 for (int i = 0; i < httpResponse->response_headers_number; i++) {

18 buffer_append_string(output, httpResponse->response_headers[i].key
19 buffer_append_string(output, ": ");
20 buffer_append_string(output, httpResponse->response_headers[i].vali
21 buffer_append_string(output, "\r\n");
22 }
23 }
24
25 buffer_append_string(output, "\r\n'");

26 buffer_append_string(output, httpResponse->body) ;



27 }
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1 #include <lib/acceptor.h>
2 #include <lib/http_server.h>
3 #include "lib/common.h"
4 #include "1lib/event_loop.h"
5
6 // BUEER buffer Z/FHY callback
7 dnt onRequest(struct http_request xhttpRequest, struct http_response xhttpResp:
8 char xurl = httpRequest->url;
9 char xquestion = memmem(url, strlen(url), "?", 1);
10 char *path = NULL;
11 if (question != NULL) {
12 path = malloc(question - url);
13 strncpy(path, url, question - url);
14 } else {
15 path = malloc(strlen(url));
16 strncpy(path, url, strlen(url));
17 }
18
19 if (strcmp(path, "/") == 0) {
20 httpResponse->statusCode = OK;
21 httpResponse->statusMessage = "OK";
22 httpResponse->contentType = "text/html";
23 httpResponse->body = "<html><head><title>This is network programming</:
24 } else if (strcmp(path, "/network") == 0) {
25 httpResponse->statusCode = 0K;
26 httpResponse->statusMessage = "OK";
27 httpResponse->contentType = "text/plain";
28 httpResponse->body = "hello, network programming";
29 } else {
30 httpResponse->statusCode = NotFound;
31 httpResponse->statusMessage = "Not Found";
32 httpResponse->keep_connected = 1;
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return 0;

nt main(int c, char *xv) {
/] FELZIE event_loop
struct event_loop *eventLoop = event_loop_init();

// ¥R tcp_server, AILUBTEEHIZEE, WRELER 0, MIREXNKIERE acceptor+i/o; |
//tcp_server HCm— event_loop

struct http_server xhttpServer = http_server_new(eventLoop, SERV_PORT, onR
http_server_start(httpServer);

// main thread for acceptor
event_loop_run(eventLoop);
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curl -v http://127.0.0.1:43211/

Trying 127.0.0.1...
TCP_NODELAY set
Connected to 127.0.0.1 (127.0.0.1) port 43211 (#0)
GET / HTTP/1.1
Host: 127.0.0.1:43211
User-Agent: curl/7.54.0
Accept: */*

HTTP/1.1 200 OK
Content-Length: 116
Connection: Keep-Alive

Connection #0 to host 127.0.0.1 left 1dintact
html><head><title>This is network programming</title></head><body><hl>Hello,
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