
35 | 答疑：编写高性能网络编程框架时，都需要注意哪些问题？
2019-10-28 盛延敏

网络编程实战 进入课程

讲述：冯永吉
时长 00:39 大小 630.12K



你好，我是盛延敏，这里是网络编程实战的第 35 讲，欢迎回来。

这一篇文章是实战篇的答疑部分，也是本系列的最后一篇文章。非常感谢你的积极评论与留

言，让每一篇文章的留言区都成为学习互动的好地方。在今天的内容里，我将针对评论区的

问题做一次集中回答，希望能帮助你解决前面碰到的一些问题。

有关这部分内容，我将采用 Q&A 的形式来展开。

为什么在发送数据时，会先尝试通过 socket 直接发送，再由框架接管呢？

这个问题具体描述是下面这样的。



 下载APP 

当应用程序需要发送数据时，比如下面这段，在完成数据读取和回应的编码之后，会调用

tcp_connection_send_buffer 方法发送数据。

而 tcp_connection_send_buffer 方法则会调用 tcp_connection_send_data 来发送数

据：

在 tcp_connection_send_data 中，如果发现当前 channel 没有注册 WRITE 事件，并且

当前 tcp_connection 对应的发送缓冲无数据需要发送，就直接调用 write 函数将数据发送

出去。

复制代码
1

2

3

4

5

6

7

8

9

10

11

12

13

// 数据读到 buffer 之后的 callback
int onMessage(struct buffer *input, struct tcp_connection *tcpConnection) {
 printf("get message from tcp connection %s\n", tcpConnection->name);
 printf("%s", input->data);

 struct buffer *output = buffer_new();
 int size = buffer_readable_size(input);
 for (int i = 0; i < size; i++) {
 buffer_append_char(output, rot13_char(buffer_read_char(input)));
 }
 tcp_connection_send_buffer(tcpConnection, output);
 return 0;
}

复制代码
1

2

3

4

5

6

int tcp_connection_send_buffer(struct tcp_connection *tcpConnection, struct buf
 int size = buffer_readable_size(buffer);
 int result = tcp_connection_send_data(tcpConnection, buffer->data + buffer-
 buffer->readIndex += size;
 return result;
}

复制代码
1

2

3

4

5

6

7

8

// 应用层调用入口
int tcp_connection_send_data(struct tcp_connection *tcpConnection, void *data,
 size_t nwrited = 0;
 size_t nleft = size;
 int fault = 0;

 struct channel *channel = tcpConnection->channel;
 struct buffer *output_buffer = tcpConnection->output_buffer;

这里有同学不是很理解，为啥不能做成无论有没有 WRITE 事件都统一往发送缓冲区写，再

把 WRITE 事件注册到 event_loop 中呢？

这个问题问得非常好。我觉得有必要展开讲讲。

如果用一句话来总结的话，这是为了发送效率。

我们来分析一下，应用层读取数据，进行编码，之后的这个 buffer 对象是应用层创建的，

数据也在应用层这个 buffer 对象上。你可以理解，tcp_connection_send_data 里面的

data 数据其实是应用层缓冲的，而不是我们 tcp_connection 这个对象里面的 buffer。

如果我们跳过直接往套接字发送这一段，而是把数据交给我们的 tcp_connection 对应的

output_buffer，这里有一个数据拷贝的过程，它发生在 buffer_append 里面。

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

 // 先往套接字尝试发送数据
 if (!channel_write_event_is_enabled(channel) && buffer_readable_size(output
 nwrited = write(channel->fd, data, size);
 if (nwrited >= 0) {
 nleft = nleft - nwrited;
 } else {
 nwrited = 0;
 if (errno != EWOULDBLOCK) {
 if (errno == EPIPE || errno == ECONNRESET) {
 fault = 1;
 }
 }
 }
 }

 if (!fault && nleft > 0) {
 // 拷贝到 Buffer 中，Buffer 的数据由框架接管
 buffer_append(output_buffer, data + nwrited, nleft);
 if (!channel_write_event_is_enabled(channel)) {
 channel_write_event_enable(channel);
 }
 }

 return nwrited;
}

但是，如果增加了一段判断来直接往套接字发送，其实就跳过了这段拷贝，直接把数据发往

到了套接字发生缓冲区。

在绝大部分场景下，这种处理方式已经满足数据发送的需要了，不再需要把数据拷贝到

tcp_connection 对象中的 output_buffer 中。

如果不满足直接往套接字发送的条件，比如已经注册了回调事件，或者 output_buffer 里

面有数据需要发送，那么就把数据拷贝到 output_buffer 中，让 event_loop 的回调不断

地驱动 handle_write 将数据从 output_buffer 发往套接字缓冲区中。

复制代码
1

2

3

4

5

6

7

8

int buffer_append(struct buffer *buffer, void *data, int size) {
 if (data != NULL) {
 make_room(buffer, size);
 // 拷贝数据到可写空间中
 memcpy(buffer->data + buffer->writeIndex, data, size);
 buffer->writeIndex += size;
 }
}

复制代码
1

2

3

4

// 先往套接字尝试发送数据
if (!channel_write_event_is_enabled(channel) && buffer_readable_size(output_buf
 nwrited = write(channel->fd, data, size)
 ...

复制代码
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

// 发送缓冲区可以往外写
// 把 channel 对应的 output_buffer 不断往外发送
int handle_write(void *data) {
 struct tcp_connection *tcpConnection = (struct tcp_connection *) data;
 struct event_loop *eventLoop = tcpConnection->eventLoop;
 assertInSameThread(eventLoop);

 struct buffer *output_buffer = tcpConnection->output_buffer;
 struct channel *channel = tcpConnection->channel;

 ssize_t nwrited = write(channel->fd, output_buffer->data + output_buffer->
 if (nwrited > 0) {
 // 已读 nwrited 字节
 output_buffer->readIndex += nwrited;
 // 如果数据完全发送出去，就不需要继续了

你可以这样想象，在一个非常高效的处理条件下，你需要发送什么，都直接发送给了套接字

缓冲区；而当网络条件变差，处理效率变慢，或者待发送的数据极大，一次发送不可能完成

的时候，这部分数据被框架缓冲到 tcp_connection 的发送缓冲区对象 output_buffer

中，由事件分发机制来负责把这部分数据发送给套接字缓冲区。

关于回调函数的设计

在 epoll-server-multithreads.c 里面定义了很多回调函数，比如 onMessage，

onConnectionCompleted 等，这些回调函数被用于创建一个 TCPServer，但是在

tcp_connection 对照中，又实现了 handle_read handle_write 等事件的回调，似乎有两

层回调，为什么要这样封装两层回调呢？

这里如果说回调函数，确实有两个不同层次的回调函数。

第一个层次是框架定义的，对连接的生命周期管理的回调。包括连接建立完成后的回调、报

文读取并接收到 output 缓冲区之后的回调、报文发送到套接字缓冲区之后的回调，以及连

接关闭时的回调。分别是 connectionCompletedCallBack、messageCallBack、

writeCompletedCallBack，以及 connectionClosedCallBack。

16

17

18

19

20

21

22

23

24

25

26

27

 if (buffer_readable_size(output_buffer) == 0) {
 channel_write_event_disable(channel);
 }
 // 回调 writeCompletedCallBack
 if (tcpConnection->writeCompletedCallBack != NULL) {
 tcpConnection->writeCompletedCallBack(tcpConnection);
 }
 } else {
 yolanda_msgx("handle_write for tcp connection %s", tcpConnection->name)
 }

}

复制代码
1

2

3

4

5

6

7

8

struct tcp_connection {
 struct event_loop *eventLoop;
 struct channel *channel;
 char *name;
 struct buffer *input_buffer; // 接收缓冲区
 struct buffer *output_buffer; // 发送缓冲区

 connection_completed_call_back connectionCompletedCallBack;

为什么要定义这四个回调函数呢？

因为框架需要提供给应用程序和框架的编程接口，我把它总结为编程连接点，或者叫做

program-hook-point。就像是设计了一个抽象类，这个抽象类代表了框架给你提供的一个

编程入口，你可以继承这个抽象类，完成一些方法的填充，这些方法和框架类一起工作，就

可以表现出一定符合逻辑的行为。

比如我们定义一个抽象类 People，这个类的其他属性，包括它的创建和管理都可以交给框

架来完成，但是你需要完成两个函数，一个是 on_sad，这个人悲伤的时候干什么；另一个

是 on_happy，这个人高兴的时候干什么。

这样，我们可以试着把 tcp_connection 改成这样：

9

10

11

12

13

14

15

16

 message_call_back messageCallBack;
 write_completed_call_back writeCompletedCallBack;
 connection_closed_call_back connectionClosedCallBack;

 void * data; //for callback use: http_server
 void * request; // for callback use
 void * response; // for callback use
};

复制代码
1

2

3

4

5

abstract class People{
 void on_sad();

 void on_happy();
}

复制代码
1

2

3

4

5

6

7

8

9

abstract class TCP_connection{
 void on_connection_completed();

 void on_message();

 void on_write_completed();

 void on_connectin_closed();
}

这个层次的回调，更像是一层框架和应用程序约定的接口，接口实现由应用程序来完成，框

架负责在合适的时候调用这些预定义好的接口，回调的意思体现在“框架会调用预定好的接

口实现”。

比如，当连接建立成功，一个新的 connection 创建出来，

connectionCompletedCallBack 函数会被回调：

第二个层次的回调，是基于 epoll、poll 事件分发机制的回调。通过注册一定的读、写事

件，在实际事件发生时，由事件分发机制保证对应的事件回调函数被及时调用，完成基于事

件机制的网络 I/O 处理。

在每个连接建立之后，创建一个对应的 channel 对象，并为这个 channel 对象赋予了读、

写回调函数：

复制代码
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

struct tcp_connection *
tcp_connection_new(int connected_fd, struct event_loop *eventLoop,
connection_completed_call_back connectionCompletedCallBack,
connection_closed_call_back connectionClosedCallBack,
message_call_back messageCallBack,
write_completed_call_back writeCompletedCallBack) {
 ...
 // add event read for the new connection
 struct channel *channel1 = channel_new(connected_fd, EVENT_READ, handle_rea
 tcpConnection->channel = channel1;

 //connectionCompletedCallBack callback
 if (tcpConnection->connectionCompletedCallBack != NULL) {
 tcpConnection->connectionCompletedCallBack(tcpConnection);
 }

 ...
}

复制代码
1

2
// add event read for the new connection
struct channel *channel1 = channel_new(connected_fd, EVENT_READ, handle_read, h

handle_read 函数，对应用程序屏蔽了套接字的读操作，把数据缓冲到 tcp_connection

的 input_buffer 中，而且，它还起到了编程连接点和框架的耦合器的作用，这里分别调用

了 messageCallBack 和 connectionClosedCallBack 函数，完成了应用程序编写部分代码

在框架的“代入”。

handle_write 函数则负责把 tcp_connection 对象里的 output_buffer 源源不断地送往套

接字发送缓冲区。

复制代码
1

2

3

4

5

6

7

8

9

10

11

12

13

14

int handle_read(void *data) {
 struct tcp_connection *tcpConnection = (struct tcp_connection *) data;
 struct buffer *input_buffer = tcpConnection->input_buffer;
 struct channel *channel = tcpConnection->channel;

 if (buffer_socket_read(input_buffer, channel->fd) > 0) {
 // 应用程序真正读取 Buffer 里的数据
 if (tcpConnection->messageCallBack != NULL) {
 tcpConnection->messageCallBack(input_buffer, tcpConnection);
 }
 } else {
 handle_connection_closed(tcpConnection);
 }
}

复制代码
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

// 发送缓冲区可以往外写
// 把 channel 对应的 output_buffer 不断往外发送
int handle_write(void *data) {
 struct tcp_connection *tcpConnection = (struct tcp_connection *) data;
 struct event_loop *eventLoop = tcpConnection->eventLoop;
 assertInSameThread(eventLoop);

 struct buffer *output_buffer = tcpConnection->output_buffer;
 struct channel *channel = tcpConnection->channel;

 ssize_t nwrited = write(channel->fd, output_buffer->data + output_buffer->
 if (nwrited > 0) {
 // 已读 nwrited 字节
 output_buffer->readIndex += nwrited;
 // 如果数据完全发送出去，就不需要继续了
 if (buffer_readable_size(output_buffer) == 0) {
 channel_write_event_disable(channel);
 }
 // 回调 writeCompletedCallBack
 if (tcpConnection->writeCompletedCallBack != NULL) {

tcp_connection 对象设计的想法是什么，和 channel 有什么联系和区
别？

tcp_connection 对象似乎和 channel 对象有着非常紧密的联系，为什么要单独设计一个

tcp_connection 呢？

在文稿中，我也提到了，开始的时候我并不打算设计一个 tcp_connection 对象的，后来我

才发现非常有必要存在一个 tcp_connection 对象。

第一，我需要在暴露给应用程序的 onMessage，onConnectionCompleted 等回调函数

里，传递一个有用的数据结构，这个数据结构必须有一定的现实语义，可以携带一定的信

息，比如套接字、缓冲区等，而 channel 对象过于单薄，和连接的语义相去甚远。

第二，这个 channel 对象是抽象的，比如 acceptor，比如文稿里提到的 socketpair 等，

它们都是一个 channel，只要能引起事件的发生和传递，都是一个 channel，基于这一

点，我也觉得最好把 chanel 作为一个内部实现的细节，不要通过回调函数暴露给应用程

序。

第三，在后面实现 HTTP 的过程中，我发现需要在上下文中保存 http_request 和

http_response 数据，而这个部分数据放在 channel 中是非常不合适的，所以才有了最后

的 tcp_connection 对象。

21

22

23

24

25

26

27

 tcpConnection->writeCompletedCallBack(tcpConnection);
 }
 } else {
 yolanda_msgx("handle_write for tcp connection %s", tcpConnection->name)
 }

}

复制代码
1

2

3

4

5

6

7

8

struct tcp_connection {
 struct event_loop *eventLoop;
 struct channel *channel;
 char *name;
 struct buffer *input_buffer; // 接收缓冲区
 struct buffer *output_buffer; // 发送缓冲区

 connection_completed_call_back connectionCompletedCallBack;

简单总结下来就是，每个 tcp_connection 对象一定包含了一个 channel 对象，而

channel 对象未必是一个 tcp_connection 对象。

主线程等待子线程完成的同步锁问题

有人在加锁这里有个疑问，如果加锁的目的是让主线程等待子线程初始化 event_loop，那

不加锁不是也可以达到这个目的吗？主线程 while 循环里面不断判断子线程的 event_loop

是否不为 null 不就可以了？为什么一定要加一把锁呢？

要回答这个问题，就要解释多线程下共享变量竞争的问题。我们知道，一个共享变量在多个

线程下同时作用，如果没有锁的控制，就会引起变量的不同步。这里的共享变量就是每个

eventLoopThread 的 eventLoop 对象。

这里如果我们不加锁，一直循环判断每个 eventLoopThread 的状态，会对 CPU 增加很大

的消耗，如果使用锁 - 信号量的方式来加以解决，就变得很优雅，而且不会对 CPU 造成过

9

10

11

12

13

14

15

16

 message_call_back messageCallBack;
 write_completed_call_back writeCompletedCallBack;
 connection_closed_call_back connectionClosedCallBack;

 void * data; //for callback use: http_server
 void * request; // for callback use
 void * response; // for callback use
};

复制代码
1

2

3

4

5

6

7

8

9

10

11

12

13

14

// 由主线程调用，初始化一个子线程，并且让子线程开始运行 event_loop
struct event_loop *event_loop_thread_start(struct event_loop_thread *eventLoopT
 pthread_create(&eventLoopThread->thread_tid, NULL, &event_loop_thread_run,

 assert(pthread_mutex_lock(&eventLoopThread->mutex) == 0);

 while (eventLoopThread->eventLoop == NULL) {
 assert(pthread_cond_wait(&eventLoopThread->cond, &eventLoopThread->mute
 }
 assert(pthread_mutex_unlock(&eventLoopThread->mutex) == 0);

 yolanda_msgx("event loop thread started, %s", eventLoopThread->thread_name)
 return eventLoopThread->eventLoop;
}

多的影响。

关于 channel_map 的设计，特别是内存方面的设计。

我们来详细介绍一下 channel_map。

channel_map 实际上是一个指针数组，这个数组里面的每个元素都是一个指针，指向了创

建出的 channel 对象。如文稿中所说，我们用数据下标和套集字进行了映射，这样虽然有

些元素是浪费了，比如 stdin，stdout，stderr 代表的套接字 0、1 和 2，但是总体效率是

非常高的。

你在这里可以看到图中描绘了 channel_map 的设计。

而且，我们的 channel_map 还不会太占用内存，在最开始的时候，整个 channel_map 的

指针数组大小为 0，当这个 channel_map 投入使用时，会根据实际使用的套接字的增长，

按照 32、64、128 这样的速度成倍增长，这样既保证了实际的需求，也不会一下子占用太

多的内存。

此外，当指针数组增长时，我们不会销毁原来的部分，而是使用 realloc() 把旧的内容搬过

去，再使用 memset() 用来给新申请的内存初始化为 0 值，这样既高效也节省内存。

总结

以上就是实战篇中一些同学的疑问。

© 版权归极客邦科技所有，未经许可不得传播售卖。 页面已增加防盗追踪，如有侵权极客邦将依法追究其法律责任。

在这篇文章之后，我们的专栏就告一段落了，我希望这个专栏可以帮你梳理清楚高性能网络

编程的方方面面，如果你能从中有所领悟，或者帮助你在面试中拿到好的结果，我会深感欣

慰。

如果你觉得今天的答疑内容对你有所帮助，欢迎把它转发给你的朋友或者同事，一起交流一

下。

上一篇 34 | 自己动手写高性能HTTP服务器（三）：TCP字节流处理和HTTP协议实现

CCC
2019-10-28

真的非常谢谢老师，这个专栏我大多数文章都看了两遍以上，很多操作系统的细节关联的
都搜了不少，很多以前只是了解的东西做到了真的理解了，再次谢谢老师！

展开

 

精选留言 (4)  写留言

tt
2019-10-28

自己是做后端开发的，平常的开发工作也时常需要深入到TCP的底层去排除问题。学习完
这个课程，真的是大大丰富了自己的网络知识细节。

尤其是最后的实战部分。最近在研究PYTHON和JAVASCRIPT中的异步编程模型和事件循
环，但对它们的底层实现细节不清楚，看了老师的实战代码，里面也有事件循环，也有C…
展开

作者回复: 感谢支持，有收获是对我工作最大的肯定

 

传说中的成大大
2019-10-28

这是老师给我吗收拾的细软,让我们下山了吗？o(╥﹏╥)o

作者回复: 江湖还在，继续交流哦

 

MoonGod
2019-10-28

谢谢老师的解答，整个系列受益匪浅。

展开

作者回复: 非常欣慰，感谢支持

 

