
09 | (...x)：不是表达式、语句、函数，但它却能执行
2019-12-02 周爱民

JavaScript核心原理解析 进入课程

讲述：周爱民
时长 20:26 大小 18.72M



你好，我是周爱民，欢迎回到我的专栏。

从之前的课程中，你应该已经对语句执行和函数执行有了基本的了解。事实上，这两种执行

其实都是对顺序、分支与循环三种逻辑在语义上的表达。

也就是说，无论一门语言的语法有什么特异之处，它对“执行逻辑”都可以归纳到这三种语

义的表达方式上来。这种说法事实上也并不特别严谨，因为这三种基本逻辑还存在进一步抽

象的空间（这些也会是我将来会讨论到的内容，今天暂且不论）。

今天这一讲中，主要讨论的是第二种执行的一些细节，也就是对“函数执行”的进一步补

充。



 下载APP 

在上一讲中，我有意地将函数分成三个语义组件来讲述。我相信在绝大多数的情况下，或者

在绝大多数的语言教学中，都是不必要这样做的。这三个语义组件分别是指参数、执行体和

结果，将它们分开来讨论，最主要的价值就在于：通过改造这三个语义组件的不同部分，我

们可以得到不同的“函数式的”执行特征与效果。换而言之，可以通过更显式的、特指的或

与应用概念更贴合的语法来表达新的语义。与所谓“特殊可执行结构”一样，这些语义也用

于映射某种固定的、确定的逻辑。

语言的设计，本质就是为确定的语义赋以恰当的语法表达。

递归与迭代

如果循环是一种确定的语义，那么如何在函数执行中为它设计合适的语法表达呢？

递归绝对是一个好的、经典的求解思路。递归将循环的次数直接映射成函数“执行体”的重

复次数，将循环条件放在函数的参数界面中，并通过函数调用过程中的值运算来传递循环次

数之间的数值变化。递归作为语义概念简单而自然，惟一与函数执行存在（潜在的）冲突的

只是所谓栈的回收问题，亦即是尾递归的处理技巧等，但这些都是实现层面的要求，而与语

言设计无关。

由于递归并不改变函数的三个语义组件之任一，因此它与函数执行过程完全没有冲突，也没

有任何新的需求与设计。这句话的潜在意思是说，函数的三个语义组件都不需要为此作出任

何的设计修改，例如：

在这段代码中，是没有出现任何特殊的语法和运算 / 操作符的，它只是对函数、（变量或

常量的）声明、表达式以及函数调用等等的简单组合。

然而迭代不是。迭代也是循环语义的一种实现，它说明循环是“函数体”的重复执行——

而不是“递归”所理解的“函数调用自己”——的语义。这是一种可受用户代码控制的循

环体。你可以尝试创建这样一个简单的迭代函数：

复制代码
1 const f = x => x && f(--x);

复制代码
1 // 迭代函数

然而请仔细观察这样的两个实现，你需要注意在这个迭代函数中有“值 (value) 和状态

(done)”两个控制变量，并且它的实际执行代码与上面的函数 f() 是一样的：

也就是说，递归函数“f()”和迭代函数“foo()”其实是在实现相同的过程。只是由于“递

归完成与循环过程的结束”在这里是相同的语义，因此函数“f()”中不需要像迭代函数那

样来处理“状态 (done)”的传出。——递归函数“f()”，要么结束，要么无穷递归。

迭代对执行过程的重造和使用

在 JavaScript 中，是通过一个中间对象来使用迭代过程 _foo()_ 的。该中间对象称为迭代

器，foo() 称为迭代器函数，用于返回该迭代器。例如：

迭代器具有.next()方法用于一次（或每次）迭代调用。由于没有约定迭代调用的方式，

因此可以用任何过程来调用它。例如：

2

3

4

5

6

7

8

function foo(x = 5) {
 return {
 next: () => {
 return {done: !x, value: x && x--};
 }
 }
}

复制代码
1

2

3

4

5

// in 函数 f()
x && f(--x)

// in 迭代 foo()
x && x--

复制代码
1

2
var tor = foo(); // default `x` is 5
...

复制代码
1

2

3

// 在循环语句中处理迭代调用
var tor = foo(5), result = tor.next();
while (!result.done) {

除了一些简单的、概念名词上的置换外，这些与你所见过的绝大多数有关“迭代器与生成

器”的介绍并没有什么不同。并且你也应当理解，正是这个“.next()”调用的界面维护了迭

代过程的上下文，以及值之间的相关性（例如一个值序列的连续性）。

根据约定，如果有一个对象“包含”这样一个迭代器函数（以返回一个迭代器），那么这个

对象就是可迭代的。基于 JavaScript 中“对象是属性集（所以所有包含的东西都必然是属

性）”的概念，这个迭代函数被设计为称为“Symbol.iterator”的符号属性。例如：

现在，你可以使用这个可迭代对象了：

现在，你看到了这一讲标题中的代码：

不过，不同的是，标题中的代码是不能执行的。

展开语法

问题的关键点在于：...x是什么？

4

5

6

 console.log(result.value);
 result = tor.next();
}

复制代码
1

2
let x = new Object;
x[Symbol.iterator] = foo; // default `x` is 5

复制代码
1

2
> console.log(...x);
5 4 3 2 1

复制代码
1 (...x)

在形式上，“…”看起来像是一个运算符，而x是它的操作数。但是，如果稍微深入地问一

下这个问题，就会令人生疑了。例如：如果它是运算符，那么运算的返回值是什么？

答案是，它既不返回值，也不返回引用。

那么如果它不是运算符，或者说...x也并不是表达式，或许它们可以被理解为“语

句”吗？即使如此，与上面相同的问题也会存在。例如：如果它是语句，那么该语句的返回

值是什么？

答案是，既不是空（Empty），也不是其它结果值（Result）。因此它也不是语句（并且，

因为 console.log() 是表达式，而表达式显然也“不可能包含语句”）。

所以，...x既不是表达式，也不是语句。它不是我们之前讲过的任何一种概念，而仅仅只

是“语法”。作为语法，ECMAScript 在这里规定它只是对一个确定的语义的封装。

在语义上，它用于“展开一个可迭代对象”。

如何做到呢？

为什么我要绕这么大个圈子来介绍这个“简单的”展开语法呢？又或者说，ECMAScript 为

什么要弄出这么一个“新”概念呢？

这与函数的第三个语义组件——“值”是有关的。在 JavaScript 中——也包括在绝大多数

支持函数的语言中，函数只能返回一个值。然而，如果迭代器表达的是一个重复执行的执行

体，并且每次执行都返回一个值，那么又怎么可能用“返回一个值”的函数来返回呢？

与此类似，语句也只有一个这样的单值返回，所以批语句执行也仍然只是返回最后一行的结

果。并且，一旦...x被理解为语句，那么它就不能用作操作数，成为一个表达式的部分。

这在概念上是不容许的。所以，当在“函数”这个级别表达多次调用时，尽管它可以通

过“对象（迭代对象）”来做形式上的封装，却无法有效的表达“多次调用的多个结果

值”。这才是展开语法被设计出来的原因。

如果可迭代对象表达的是“多个值”，那么可以作用于它的操作或运算通常应该是那些面

向“值的集合（Collections）”的。更确切地说，它是可以面向“索引集合（Indexed

Collections）”和“键值集合（Keyed Collections）”设计的语法概念。因此在现在的，

以及将来的 ECMAScript 规范中，你将会看到它的操作——例如通常包括的合并、映射、

筛选等等，将在包括对象、数组、集（Set）、图（Map）等等数据的处理中大放异彩。

而现在，其实我想问的问题是，在函数中是如何做到迭代处理的呢？

内部迭代过程

迭代的本质是多次函数调用，在 JavaScript 内部实现这一机制，本质上就是管理这些多次

调用之间的关系。这——显然的——包括一个循环过程，和至少一个循环控制变量。

这个迭代有一个开启过程，简单的如展开语法（“…”），复杂的如 for…of 语句。这些语

法 / 语法结构通过类似如下两个步骤来完成迭代的开启：

但是如同我在之前的课程，以及上面的讨论中一再强调的这是“一个执行过程”，既然是过

程，那么就存在过程被中断的可能。简单的示例如下：

是的，这个过程什么也不会发生。如果是在经典的 while 循环里面，那么它的 result 和

tor，以及 foo() 调用所开启的那个函数闭包都被当前上下文管理或回收。然而，如果在一

个展开过程，或者 for…of 循环中，相应的“语法”管理上述这些组件的时候又需要怎样的

处理呢？例如：

复制代码
1

2
var tor = foo(5), result = tor.next();
while (!result.done) ...

复制代码
1

2

3

while (!result.done) {
 break;
}

复制代码
1

2

3

4

function touch(x) {
 if (x==2) throw new Error("hard break");
}

测试如下：

这个示例是一个简单异常，但如果这个异常发生于 for…of 中：

在这两种示例中，异常都是发生于 foo2() 这个函数调用的一个外部处理过程中，而等到用

户代码有机会操作时，已经处于 consolel.log() 调用或 for…of 循环中了，如果用户在这里

设计异常处理过程，那么 foo2() 中的 touch(x) 管理和涉及的资源都无法处理。因此，

ECMAScript 设计了另外两个方法来确保 foo2() 中的代码在“多次调用”中仍然是受控

的。这包括两个回调方法：

tor.return()，当迭代正常过程退出时回调

tor.throw()，当迭代过程异常退出时回调

5

6

7

8

9

10

11

12

13

14

15

16

17

// 迭代函数
function foo2(x = 5) {
 return {
 next: () => {
 touch(x); // some process methods
 return {done: !x, value: x && x--};
 }
 }
}

// 示例
let x = new Object;
x[Symbol.iterator] = foo2; // default `x` is

复制代码
1

2
> console.log(...x);
Error: hard break

复制代码
1

2

3

4

5

> for (let i of x) console.log(i);
5
4
3
Error: hard break

这并不难于证实：

现在如果给 tor 的 return 属性加一个回调函数，会发生什么呢？

测试一下：

结果是RETURN!？

什么鬼？！

异常处理

并且如果你试图在 tor.throw 中去响应 foo() 迭代中的异常，却什么也得不到。例如：

复制代码
1

2
> Object.getOwnPropertyNames(tor.constructor.prototype)
['constructor', 'next', 'return', 'throw']

复制代码
1

2

3

4

5

6

7

8

9

10

// 迭代函数
function foo2(x = 5) {
 return {
 // 每次.next() 都不会返回 done 状态，因此可列举无穷次
 "next": () => new Object, // result instance, etc.
 "return": () => console.log("RETURN!")
 }
}
let x = new Object;
x[Symbol.iterator] = foo2; // default `x` is 5

复制代码
1

2

3

列举 x，第一次迭代后即执行 break;
> for (let i of x) break;
RETURN!

复制代码
1

2
// 迭代函数
function foo3(x = 5) {

在测试中，异常直接被抛给了全局：

继续！显然可以把这个例子跟最开始使用的 foo() 组合起来，foo() 迭代可以正确的得到5

4 3 2 1，而上面的 return/throw 可以捕获过程的退出或异常。例如：

测试：

3

4

5

6

7

8

9

10

 return {
 // 第一个.next() 执行时即发生异常
 "next": () => { throw new Error },
 "throw": () => console.log("THROW!")
 }
}
let x = new Object;
x[Symbol.iterator] = foo3;

复制代码
1

2

3

> console.log(...x);
Error
 at Object.next (repl:4:27)

复制代码
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

// 迭代函数
function foo4(x = 5) {
 return {
 // foo() 中的 next
 next: () => {
 return {done: !x, value: x && x--};
 },

 // foo2() 和 foo3() 中的 return 和 throw
 "return": () => console.log("RETURN!"),
 "throw": () => console.log("THROW!")
 }
}

let x = new Object;
x[Symbol.iterator] = foo4

Ok，成功是成功了！但是，“RETURN/THROW“呢？

这里简直就是迭代的地狱！

是谁的退出与异常？

回顾之前的内容，迭代过程并不是一个语法执行的过程，而是应该理解为一组函数执行的过

程；对于这一批函数执行过程中的结束行为，也应该理解为函数内的异常或退出。因此，尽

管在 for…of 的表面上看，是 break 发生了语句中的中止，而在迭代处理的内部发生的，

却是“一个迭代过程的退出”。与此同样复杂的是，在这一批函数的多个执行上下文中，无

论是在哪儿发生了异常，其实只有外层的第一个能捕获异常的环境能响应这个异常。

简单地说：“退出 (RETURN)”是执行过程的，“异常 (THROW)”是外部的。

JavaScript 中，迭代被处理为两个实现用的组件，一个是（循环的）迭代过程，另一个是

（循环的）迭代控制变量。表现在 tor 这个迭代对象上来看，就是（对于循环来说，）“如

果谁使用迭代变量 tor，那么就是谁管理迭代过程”。

这个“管理循环过程”意味着：

这两个过程总是发生在“管理循环过程”的行为框架中。例如在下面这个过程中：

复制代码1

2
>>console.log(...x);
5 4 3 2 1

如果迭代结束（无论它因为什么结束），那么触发 tor.return 事件；

如果发现异常（只要是当前环境能捕获到的异常），那么触发 tor.throw 事件。

复制代码
1

2

3

for (let i of x) {
 if (i == 2) break;
}

由于 for .. of语句将获得 x 对象的迭代变量 tor，那么它也将管理 x 对象的迭代过程。

因此，在 for 语句 break 之后（在 for 语句将会退出自己的作用之前），它也就必须

去“通知”x 对象迭代过程也结束了，于是这个语句触发了 tor.return 事件。

同样，如果是一个数组展开过程：

那么将是...x这个“展开语法”来负责上述的迭代过程的管理和“通知”，这个语法在它

所在的位置上是无法响应异常的。该语法所在位置是一个表达式，不可能在它内部使用

try..catch语句。

复制代码
1 console.log(...x);

复制代码
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

function touch(x) {
 if (x==2) throw new Error("hard break");
}

// 迭代函数
function foo5(x = 5) {
 return {
 // foo2() 中的 next
 next: () => {
 touch(x); // some process methods
 return {done: !x, value: x && x--};
 },

 // foo3() 中的 return 和 throw
 "return": () => console.log("RETURN!"),
 "throw": () => console.log("THROW!")
 }
}

let x = new Object;
x[Symbol.iterator] = foo5;

try {
 console.log(...x);
}
catch(e) {} // m

这段示例代码将 mute 掉一切：既没有 console.log() 输出，也没有异常信息，tor 的

return/throw 一个也没有发生。

对于 x 这个可迭代对象，以及 foo5() 这个迭代器函数来说，世界是安静的：它既不知道自

己发生了什么，也不知道它的外部世界发生了什么。因为...x这个语法既没有管理迭代过

程（因此不理解 tor 的退出 /return 行为），也没有在异常发生时向内“通知”tor.throw

事件的能力。

知识回顾

标题中的示例是不能执行的，因为其中的括号并不是表达式中分组运算符，也不是语句中的

函数调用，也不是声明中的形式参数表。声明中的...x被定义为“展开语法”，是逻辑的

映射（它返回的是处理逻辑），而不是“值”或“引用”。它在不同的位置被 JavaScript

解释成不同的语义，包括对象展开和数组展开，并通过一组特定的代码来实现上述的语义。

在...x被理解为数组展开时，本质上是将x视为一个可迭代对象，并通过一个迭代变量（例

如 tor）来管理它的迭代过程。在 JavaScript 中的迭代对象 x 的生存周期是交由使用它的

表达式、语句或语法来管理的，包括在必要的时候通过 tor 来向内通知 return/throw 事

件。

在本讲的示例中，展开语法“…x”是没有向内通知的能力的，而“for … of”可以隐式地

向内通知。对于后者，for…of 中的 break 和 continue，以及的循环正常退出都能够通知

return 事件，但它并没有内向通知 throw 的能力，因为 for…of 语句本身并不捕获和处理

throw。

思考题

欢迎你在进行深入思考后，与其他同学分享自己的想法，也让我有机会能听听你的收获。

既然上面的过程完全不使用 tor.throw，那么它被设计出来做什么？

...x为什么称为“展开语法”，为什么 ECMAScript 不提供一个表达式 / 语句之外的概

念来指代它？

continue 在那种情况下触发 tor.return？

yield* x 将导致什么？

© 版权归极客邦科技所有，未经许可不得传播售卖。 页面已增加防盗追踪，如有侵权极客邦将依法追究其法律责任。

上一篇 08 | x => x：函数式语言的核心抽象：函数与表达式的同一性

下一篇 加餐 | 捡豆吃豆的学问（上）：这门课讲的是什么？

由作者筛选后的优质留言将会公开显示，欢迎踊跃留言。

精选留言  写留言

