
16 | [a, b] = {a, b}：让你从一行代码看到对象的本质
2019-12-20 周爱民

JavaScript核心原理解析 进入课程

讲述：周爱民
时长 20:35 大小 18.85M



你好，我是周爱民。欢迎回到我的专栏。

接下来的两讲，我要讲的仍然是 JavaScript 中的面向对象。有所不同的是，今天这一讲说

的是JavaScript 中的对象本质，而下一讲要说的，则是它最原始的形态（也通常称为原子

对象）。

说回今天的话题，所谓的“对象本质”，就是从根本上来问，对象到底是什么？

对象的前生后世

要知道，面向对象技术并不是与生俱来、顺理成章就成为了占有率最高的编程技术的。



 下载APP 

在早期，面向对象技术其实并不太受待见，因为它的抽象层级比较高，也就意味着它离具体

的机器编程比较远，没有哪种硬件编程技术（在当时）是需要所谓的面向对象的。最核心的

那部分编程逻辑通常就是写寄存器、响应中断，或者是发送指令。这些行为都是面向机器逻

辑的，与什么面向对象之类的都无关。

最早，大概是 1967 年的时候，艾伦（Alan Kay）提出了这么一个称为“对象”的抽象概

念和基于它的面向对象编程（object-oriented programming），这也成为他所发明的

Smalltalk 这个语言中的核心概念之一。

然而，回顾这段历史，这个所谓的“对象”的抽象概念中，只包含了数据和行为两个部分，

分别称为状态保存和消息发送，再进一步地说，也就是我们今天讲的“属性”和“方法”。

并且，在这个基础上，有了这些状态（或称为数据）的局部保存、保护和隐藏等概念，也就

是我们现在说的对象成员的可见性问题。

你看，这里没有继承，也没有多态。历史中，最早出现的所谓对象，其实只是对数据的封

装！

所以你会看到最近十余年来，无数的业界大师、众多的语言流派对所谓的“继承”，以及与

此相关的“多态”特性发起非难。追根溯源，就在于这两个概念并非是“面向对象”思想的

必然产物，因而它们的存在将有可能增加系统抽象的复杂性。

具体到你所了解的 JavaScript，一些新的面向对象特性也总会在 ECMAScript 规范的草案

阶段碰壁。

例如，近两年来最受非议的“Class Fields”提案，在添加了“私有字段”这个概念之后，

却将“保护属性”这个皮球扔给了远末成熟的注解提案。究其原因呢，则是“字段”与“继

承性”之间存在概念和实现模型的冲突。

这也不枉我常常说 tc39 中存在着大量的“OOP 敌视者”，尽管是玩笑，但也确实反映

了“面向对象编程思想”在这门语言中恶劣的生存状态。

然而并不仅仅如此。最近这些年的新语言，除了使用类似“字段”“记录”这样的抽象概念

来驱逐面向对象之外，还对函数式编程洞开怀抱。在我看来，这既是流行的趋势，也确实是

计算机编程语言进化的必然方向。但是，这也带来了更深层面的问题，使得面向对象的生存

环境进一步恶化。

为什么呢？

你看，面向对象的封装、继承和多态三个核心概念中，多态有一部分是与继承性相关的，去

掉继承性，多态就死了一半。而另一半，又被“接口（Interface）”这个概念给干掉了。

于是，整个 OOP 的体系中就只剩下“封装”还算在概念上能独善其身。这也与上面说到的

艾伦有关，毕竟他提出的“面向对象”最初的意图也就在于提高封装性。

然而，一旦引入“函数式编程”，情况就发生了变化。

函数式语言根本不考虑数据封装问题，逻辑之间的数据是由函数界面（也就是函数参数）来

传递的，而函数自身又强调“无副作用”，也就意味着它不影响函数之外的数据——那函

数外也就没有任何数据封装（例如隐蔽）的要求了。

所以，简单地说，函数式一出，面向对象的最后一根稻草——“封装”特性也就扑街了！

你看看，面向对象到底怎么了？混了半个世纪了，最终落下个谁谁都嫌弃、人人都喊打的局

面，连个打根儿上起就存在的核心抽象概念，都被人家掘断了气儿。

讲到这，你是不是觉得我给你扯的太远了？其实不是的。

这一讲的标是“x = y”这样一个赋值表达式，而赋值表达式右边的“y”，正是这样的一

个“对象”。我与你说了半天的这些所谓“三个核心概念”，在这一行代码中，被瓦解掉了

2/3，剩下的，正是最最原始的东西：

你看，聊了半天，我又圆回来了吧：对象，其实是一个数据结构；解构赋值，就是将这个结

构解构了，拿去赋值。

要紧的地方在于：对象，是怎样的一个数据结构呢？

所谓对象，是对数据的封装；

所谓解构，就是从封装的对象中，抽取数据。

两种数据结构

其实所谓的“某某编程思想”，本质上就是在说两个东西：一个，是在编程中怎么管理数

据，另一个则是怎么组织逻辑。

而结构化，又或者说具体到“数据结构”，无非是在说将系统中的数据用统一的、确切的、

有限的数据样式给管理起来。这些样式，小到一个位（bit）、一个字节（byte），大到一

个库（Database）、一个节点（Node），都是对数据加以规划的结果。编程的思想，在

机器指令的编码与数据集群的管理里面，都是如出一辙的。在所有的这些思想的背后，都有

一个核心的问题：

在我们的单机系统，或者说像 JavaScript 这类应用环境的编程语言中，这些数据是假设被

放在“有限的存储空间里面”的。这个假设模拟了内存和指令带宽的基本性能。

那么，在这样有限的存储空间里面如何存储数据呢？又或者说，如何得到一个“最高的抽象

层级的数据结构”，以便于通过编程语言来处理操作呢？

一个数据结构的抽象层次越是低级，那么对它的编程就越是复杂。例如说，如果你需要面

向“位（bit）”来编程，那么差不多就需要写机器指令，或者手工去搬动逻辑电路的开关

了。

所谓“最高的抽象层级”，在一个“有限的存储空间”里面，其实只能表达为一个“块”。

简单地说，你只能称呼“一堆数据”为“一堆数据”，因为你当不了解它们的具体性质时，

你只能这样称呼它。而“块”其实是对“有限空间”的边界分解，设定了“有限空间”，那

么对应的，也就出来了“块”这个概念。

而由此带来的问题是：在一个有限空间中，如何找到一个“块”？

如果从这些“块”的相关位置出发，以位置关系来看，就只有两个解：

如何抽象“一堆”的数据，使得它们能被方便和有效地管理。

为所有连续的块添加一个连续的“索引”；1.

为所有不连续的块添加一个唯一的“名字”。2.

当然，关键点在于所谓的“连续”和“不连续”。“连续”“不连续”，在语义上就是二分

的，所以也就只需要两个解。其中”索引“比较简单，它就对应于连续性本身，表达为可计

算的特性是“a[i]”，也就是 a 的下标 _i_。

而”名字“对应于“找到块”这一目的本身，表达为一个可计算的函数“f()”。你可以认

为这里的f是find的简写。于是一旦系统认为一个函数“f()”可以用于找到它需要计算的

数据，那么数据就可以理解为“b[f()]”，而其中的函数 *f()* 如何实现，则可以交给“另外

的一个系统”去完成了。

那么，重要的是为什么不能将“i”也理解为“找到 i”呢？

如果是这样，那么这个所谓的“索引”其实也可以作为名字啊？对的，如果这样来理解，那

么也可以为上面的“a[i]”引入一个用于计算索引的函数 f，只是该函数 _f()_ 的唯一作用就

是返回了“i”。也就是：

现在，我们看到了这两个数据结构——一种是“连续的块”，另一种是“不连续的块”，

它们都存在一种统一的“找到块的模式”，也就是：通过一个函数来找到块。

进一步地阐释的话，对于索引数组来说，这个函数是取数组成员的“索引”；对于关联数组

来说，这个函数是取数组成员的“名字”。其中后者，也就“关联数组”是用一对“名 /

值”来创建的数组，在实现中为了将无穷尽的“名字”收敛在一个有限范围内，通常是用值

的 HASH 作为名字。

所以，在“怎么管理数据”这个问题上，你可以将所有数据看成只具有两种数据结构的构

成，一种称为索引数组（对应于可索引的块），另一种称为关联数组（对应于不可索引的

块）。而究其根本来说，索引数组其实是关联数组的一个特例——被存取的数据所关联的

名字就是它的索引。

复制代码
1

2

3

4

5

function f() {
 return i
}

a[i] === a[f()];

JavaScript 中的“对象”，在本质上就是这样的一个关联数组。同时，所谓的“数组

（Array）”——也就是索引数组（Index array），正是作为关联数组的一个特例来实现

的。这样一来，JavaScript 就实现了两种数据结构的大统一：

解构

所以，对象不过是“稍微复杂一点的数据结构”，相比起来，它并不比稍早一点出现的“记

录 / 结构体”更复杂。从抽象的演进过程来说，对象只是“没有顺序存储限制，以及添加

了成员名字的”结构体而已。

图引自：《程序原本》“10.1 抽象本质上的一致性”

在前面的文章里我就讲过，计算的本质是求“值”，因此几乎所有的引用类型呢，最终都会

将“与它的相关的运算结果”指向“值”。至于这一切背后的原因，其实也很简单，就是物

理的计算系统最终也只能接收“字节、位”等等这样的值类型数据。但是在高级语言中，或

者应用编程中呢，程序员又需要高层级的抽象来简化编程，所以才会有结构体，以及我们在

这里讲到的对象。

还原这个过程，也就意味着“结构”是应用编程的必须，而“解构”是底层计算的必须。从

一个“结构（这里是指数据结构，或者对象等复杂的结构）”中把那些值数据取出来，就称

为解构。这一讲的代码标题，就是这样的一个“解构赋值”，它的目的呢，也正是“从一个

结构中提取值”。你仔细看这行代码：

数组（Array class）是一种对象（Object class）；1.

对象本质上是关联数组（Associative array）。2.

等号右侧是一个对象的字面量，它的语义是将a、b两个数据变成“对象”这个数据结构中

的两个成员。其中，由于 a、b 都是既已约定的名字，所以在作为对象成员的时候，“名字

+ 值”就都已经具备了，完全符合“关联数组（或名 / 值数据对）”的语义要求。

而再看它的左侧，是一个数组？不是的，这称为一个“（数组）赋值模板”。

所谓赋值模板，不过是“变量名字”和“它的值”之间的位置关系的一个“说明”，这个说

明是描述型的、声明风格的。因此它事实上在 JavaScript 语法解析阶段就完成了处理，根

本不会“产生”任何运行期的执行过程。

所以左侧的“赋值模板”只是说明了一堆被声明的变量，也就是说，它们跟代码var x,

y, z = 100中的x,y,z这样的名字声明没有任何差异，在处理上也是一样的。但是，这

些赋值模板中声明的变量，每一个都“绑定”了一段赋值过程。这样的“赋值过程”在之前

讲函数的非简单参数时也讲过（参见第 8 讲），就是“初始器赋值”。在 ECMAScript

中，尽管它们调用的是相同的“赋值过程”，但这两者之间是有语义上的区别的。具体来

说，就是：

因此，对于标题中的代码来说，存在三种在语义上并不相同的逻辑：

复制代码
1 [a, b] = {a, b}

当赋值模板用作声明（var/let/const）时，上面的“赋值过程”将作为值绑定的初始

器；

当该模板用作赋值运算的右操作数时，右操作数将作为“赋值过程”的传入参数。

复制代码
1

2

3

4

5

6

7

8

9

// 1. lhsKind is assignment, call DestructuringAssignmentEvaluation
[a, b] = {a, b}

// 2. lhsKind is varBinding, call BindingInitialization,
// and env will be current function scope.
var [a, b] = {a, b}

// 3. lhsKind is lexicalBinding, call BindingInitialization and current env
let [a, b] = {a, b

当然，其结果都是一样的，也就是左侧的a和b都将被赋以左侧对象{a, b}所解构出来

的“值”。但是，如果你运行标题中的代码，你会发现它“可能”与你的预期并不一样。例

如左侧的a和b与原来有的变量“a、b”并不一样（假设这些变量是有的话）。

在上面的三个例子中，示例三的 let/const 赋值将不成立，因为右侧的对象将不能被创建出

来。例如：

但前两个示例在代码逻辑上是可以成立的，只是“一般来说”运行会抛出异常。例如：

现在你可以思考一个小小的问题：

这就回到今天这一讲的标题的核心话题了。

两种数据结构的统一

既然我已经说过，对象和数组在本质上都是存放“一堆数据”的结构，而差异只是查找的过

程不同。那么，模拟它们不同的查找过程，也就可以在这些结构之间完成统一的“赋值行

为”。

复制代码
1

2
> let [a, b] = {a, b}
ReferenceError: a is not defined

复制代码
1

2

3

4

5

6

“赋值未声明变量”
> a = 100, b = 200;

示例代码（与使用 var 声明相同）
> [a, b] = {a, b};
TypeError: {(intermediate value)(intermediate value)} is not iterable

有什么办法可以让这个代码可以执行呢？

“数组赋值模板”其实是引用了数组的下标索引过程，ECMAScript 将索引次序用专门的增

序来管理，并将右操作数视作为“迭代器”来取值。注意，你确实需要留意这两者之间的区

别，重点在于：“迭代器”的取值是序列的，但并没有确定使用数组的下标（例如序号）。

所以，只要让右侧的对象成为一个“可迭代对象”，那么赋值表达式就可以知道如何将它赋

给左侧的模板了。这并不难：

当然，你也可以不借用数组的迭代器。这是一个更简单的版本：

也就是说，只需要将“对象成员”的列举，变成“对象成员的值”的列举，那么关联数组就

可以用作索引数组了。当然，在代码中你也通常不需要这样写。只要写成下面这样就足够

了：

复制代码
1

2

3

4

5

6

7

8

9

10

模拟成数组的迭代器
> Object.prototype[Symbol.iterator] = function() {
 return Array.prototype[Symbol.iterator].call(Object.values(this));
};

测试
> a = 100, b = 200;

> [a, b] = {a, b}
...

复制代码
1

2

3

4

5

Object.prototype[Symbol.iterator] = function*() {
 yield* Object.values(this);
};

...

复制代码
1

2
> [a, b] = Object.values({a, b})
...

既然将对象赋给数组（赋值模板）是可行的，那么将数组赋给“对象（赋值模板）”又是否

可行呢？答案当然是“可以”。不过仍然和上面的问题一样，你得有办法在模板中“描

述”索引与名字之间的关系才行。例如：

如果你直接使用像标题一样的代码（并且将它们反过来的话），例如：

那么由于没有这种关系描述，所以右侧的数组被“强制地”作为一个对象来使用，因此变成

了取a、b这两个成员的值。当然，它的结果就是不可预知的了。这种不可预知，来自

于“将右侧数组作为对象”的并尝试取得具体的成员这样的行为，并且还受到它的原型对象

的影响。

当然，也有使类似行为不受到原型影响的办法，这就是“人人都爱”的所谓“展开语法

（Spread syntax）”。

关于展开语法的特点，我之前在第 9 讲中也已经讲过了，你可以复习一下那一讲的内

容。展开语法与这一讲略有关联的事情是：“对象展开（Object spread）”，以及与它相

关的“剩余参数（Rest paraments）”这两种东西，都将只处理那些“可列举的、自有

的”属性。因此，展开过程并不受对象原型的影响。例如：

复制代码
1

2

3

4

5

在对象赋值模板中声明变量名与索引的关系
> ({0: x, 1: y} = [a, b])

> console.log(x, y);
100 200

复制代码
1 {a, b} = [a, b]

复制代码
1

2

3

4

5

6

7

测试变量
> var a = 100, b = 200;

将数组展开到一个对象（的成员）
> obj = {...[a,b]}
{0: 100, 1: 200}

知识回顾

这一讲的话题，重点在于从抽象层面认识对象与数组这两种东西，以及它们更为学术的名词

概念：关联数组和索引数组。

由于索引数组本质上是关联数组的特例，所以在 JavaScript 中，用关联数组（也就是对

象）来实现索引数组（也就是一般概念上的数组对象）是合理的，并且也是有着很深层面的

理论根基的一个设计。

由于两种数据结构既相关、又相同，因此在它们之间相互转换的行为，其实就是一个名字和

索引变换的游戏，这也是本讲中会再次讨论“展开语法”的原因：展开语法是在两种数据类

型之间的一个桥梁。

当然，这一讲的标题尽管并不能直接运行，但“如何让它能运行”这个问题所涉及的知识，

与我们计算机领域中较深层面的运行原理，以及较高层次的抽象结构之间，都存在着密不可

分的关系。无论是出于理解 JavaScript 代码的目的，还是出于理解语言中最本质的那些假

设或前设，我都非常建议你尝试一下这篇文章中的示例代码。

思考题

最后，作为一个小小的思考与练习，我希望你能够在学习完这一讲之后回答一个问题：

谢谢你的收听，希望你喜欢我的分享，也欢迎你把文章分享给你的朋友。

8

9

10

11

12

或，将对象展开到一个数组
> iterator = function*() { yield* Object.values(this) };
> obj[Symbol.iterator] = iterator;
> arr = [...obj]
[100, 200

“有迭代器的对象”在哪些场合中可以替代“索引数组”？

© 版权归极客邦科技所有，未经许可不得传播售卖。 页面已增加防盗追踪，如有侵权极客邦将依法追究其法律责任。

上一篇 15 | return Object.create(new.target.prototype)：做框架设计的基本功：写一个根类

下一篇 17 | Object.setPrototypeOf(x, null)：连Brendan Eich都认错，但null值还活着

Astrogladiator-埃蒂...
2019-12-20

“有迭代器的对象”在哪些场合中可以替代“索引数组”？
正如文中老师所讲的那样， 究其根本来说，索引数组其实是关联数组的一个特例——被存
取的数据所关联的名字就是它的索引。关联数组可以通过实现对象迭代器的接口去实现。
所以说有迭代器的对象可以适应于那些键名是非数字的场合。但是索引数组是一组连续的
数据在一块内存区间，一般会有初始大小，而用迭代器实现的关联数组是非连续的数据…
展开

作者回复: 对于JavaScript来说，索引数组的连续性意义不大。不过也正是为了解决这个问题才引

用了TypedArray。

对于你开始的问题，其实没有太好的答案。在本文里面，这种可替代性更多的是一种尝试。真正

有用的是用户自定义的Symbol.iterator，而不是直接引用Array.prototype中的。然而一旦是用户

自定义，就与确定的需求和场景有关了。

精选留言 (2)  写留言

另外，事实上字符串也有这样的性质，亦即是字符串可用"...str"这样的语法。所以一个非常有趣的

例子就是把一个字符串塞给Set，利用Set没有重复元素的特性来得到“字符串中的有效字符统

计”。例如：

``` 

str='abccccd'; 

console.log((new Set(str)).size); // 4 

console.log(...new Set(str)); // a b c d 

``` 


所以，我想用这个例子来说明的是：很难确定地讲这个东西在“哪些场合”下有用。理解它的性

质和本质，在需要的时候能找到高效的解，就可以了。

  3

许童童
2019-12-22

当需要遍历一个数组的时候，比如for of时，但对其遍历的顺序不是特别敏感时，是可以用
可迭代的对象来替代索引数组的。

展开

 

