
加餐 | 让JavaScript运行起来
2019-12-09 周爱民

JavaScript核心原理解析 进入课程

讲述：周爱民
时长 20:09 大小 18.46M



你好，我是周爱民。欢迎回到我的专栏。今天，是传说中的加餐时间，我将与你解说前 11

讲内容的整体体系和结论。

我们从一个问题讲起，那就是：JavaScript 到底是怎么运行起来的呢？

看起来这个问题最简单的答案是“解析→运行”。然而对于一门语言来说，“引擎解释与运

行”都是最终结果的表象，真正处于原点的问题其实是：“JavaScript 运行的是什么？”

在前 11 讲中，我是试图将 JavaScript 整个的运行机制摊开在你的面前，因此我们有两条

线索可以抓：



 下载APP 

从文本到脚本

我们先从第二条线索，也就是更基础层面的线索讲起。

JavaScript 的所谓“脚本代码”，在引擎层面看来，首先就是一段文本。在性质上，装载

a.js执行与eval('...')执行并没有区别，它们的执行对象都被理解为一个“字符

串”，也就是字符串这一概念本身所表示的、所谓的“字符序列”。

在字符序列这个层面上，最简单和最经济的处理逻辑是正向遍历，这也是为什么“语句解析

器”的开发者总是希望“语言的设计者”能让他们“一次性地、不需要回归地”解析代码的

原因。

回归（也就是查看之前“被 parser 过的代码”）就意味着解析器需要暂存旧数据，无法将

解析器做得足够简洁，进而无法将解析器放在小存储的环境中。根本上来说，JavaScript

解析引擎是“逐字符”地处理代码文本的。

JavaScript 从“逐字符处理”得到的引擎可以理解的对象，称为记号（Tokens）。这个概

念，是从第一讲就开始提的，你回顾第一讲的内容，在提出Tokens这个概念的时候，有这

样一句话：

一个记号是没有语义的，记号既可以是语言能识别的，也可以是语言不能识别的。唯有

把这二者同时纳入语言范畴，那么这个语言才能识别所谓的“语法错误”。

我之所以用“delete 运算”作为《JavaScript 核心原理解析》的开篇，是因为在我看来，

这讲的是一种“不知死，即不知生”的道理。如果你不知道一个东西是如何被毁灭的，那么

你也不知道它创生的意义。

然而，这个理解也可以倒过来，是所谓的“不知生，亦不知死”。也就是说，如果你都不知

道它被创造出来的时候是什么，那么你也不知道你毁灭了什么。

表面上，它是讲引用和执行过程；1.

在底下，讲的是引擎对“JavaScript 是什么”的理解。2.

而这个记号（Tokens），就是引擎从文本到脚本，JavaScript 引擎也好、语言也好，它们

创造出来的第一个东西——也是在创世原点唯一的东西。

记号，要么是可识别的，要么是不能识别的。并且，它们必须同时纳入语言范畴。这个“必

须同时纳入”，决定了二者不是相互孤立的元素，而是同一体系下的东西，也就是所谓

的“体系的完整性”。

引用与静态语言的处理

看完底层的线索，我们再来看看 JavaScript 运行机制的表面线索。

引用（References）是静态语言与引擎之间的桥梁，它是 ECMAScript 规范中最大的一个

挑战，你理解了“规范层面的引用（References）”，也就基本上理解了 ECMAScript 规

范整个的叙述框架。这个框架的核心在于——ECMAScript 的目的是描述“引擎如何实

现”，而不是“描述语言是什么”。

规范层面中的引用与引擎的核心设计有关。

在 JavaScript 语言层面，它希望引擎是一个执行器，更具体的描述是：引擎的核心是一个

表达式计算的、连续的执行过程。表达式计算是整个 JavaScript 语言中最核心的预设，一

旦超出这个预设，JavaScript 语言的结构体系就崩溃了。

所以，本质上来说，JavaScript 的所谓“语句能执行”也是一个或一组表达式计算过程，

而且所有的计算都必须能描述成一个基本的模式：opCode -> opData，也就是用操作符

去处理操作数。

这个相信你也明白了，这回到了我们计算理论最初的原点，是我们学习计算机这门课程最初

的那个设定：计算实现的就是”计算求解“的过程。它的另一个公式化的表达就是著名

的”算法 + 数据结构 = 程序“。

当然，这个说得有点远了，在这个概念集合中，最关键的点在于“执行过程最终是表达式计

算”。因此，语句执行也是表达式计算，函数调用也是表达式计算，各种特殊执行结果还是

表达式计算。

这些“计算”总会有一个返回值，是什么呢？

你可以参考文章里的这张图，它说明了 JavaScript 中最核心的两种执行过程（它们都被称

为 _evaluating_）是如何最终被统一的。

在语句执行的层面，它返回一个语句的完成状态，这个状态中包括了一个“value”域，它

必须且必然会是 JavaScript 语言理解的类型，也就是 typeof() 所识别的所有的值。这样一

来，任何“语句”“代码”或“代码文本”就都可以被执行了，并且都可以使用

console.log() 输出结果给你了。

这其中最重要的一件事是，在任何语句执行并得到结果时，如果它“当时”是一个所谓

的“引用”，那么这个引用就必须先调用“GetValue(x)”来得到值，然后放到这

个“value”域中去。因为“引用”是一个规范层面的东西，它不是 JavaScript 语言能理解

的，也无法展示给开发者。

最后，ECMAScript 约定：可以在“value”域中放上Empty，这表明语句执行“没有

值”。它能表明有值，也能表明无值，仍然是“概念完整性”。

而到了表达式执行时（注意函数调用也是表达式执行的一种），这个过程又被重来了一回。

不过表达式执行会返回两个东西：它要么直接返回一个“上面的完成结果所理解的值”，要

么返回一个包含这样的值的“引用”。

你可能会说了，不对呀——你刚才还说所谓“概念的完整性”，是“要么返回东西，要么

返回没有东西”啊。

对的，在表达式执行这个体系里面，“没有东西”是所谓的“不可发现的引用

（UnresolvableReference）”。

所以，完整的概念集是：值（value）、引用（Reference）和不可发现的引用

（UnresolvableReference）。

一个不可发现的引用是能被处理的，例如delete x，或者typeof x。所有“能处理引用

的”运算符都能处理它。当然，在严格模式中，会在语法分析阶段就报异常，那是另一个层

面的东西，有机会的时候我们再聊。这里，在 JavaScript 语言层面，它仍然在维护一种简

单的完整性。

那么，为什么要有“引用”这么个东西呢？

你想想，如果没有引用，你就得将所有的东西都直接当成一个被处理的对象，例如用 1G 的

内存来处理一个 1G 文本的记号。这显然不可行。我们可以用一个简单的法子来解决，就是

加一个指针指向它，在不需要访问它的“内容”时，我们就访问这个指针好了。而引用，也

就是所有在“不访问内容”的情况下，用于指向这个内容的一个结构。它叫什么名字其实都

好、都行，重点的是：

所以本质上，引用还是指向值、代表值的一个概念，它只是“获得值的访问能力”的一个途

径。最终的结果仍然指向原点：计算值、求值。

结构与体系的回顾

它代表这个东西，r(x)。1.

它包含这个东西，所以可以 x = GetValue®。2.

讲完 JavaScript 整个运行机制的两条线索后，就是加餐的最后一部分内容了，我会直接为

你解说前 11 讲的主题。

模块一：体系 1

讲述的是“规范引用”，将“规范引用”与传统概念中的引用区别开来。用 Result 来指代

执行结果的“引用状态和值状态未区分”。同时指明，“状态未区分”的原因是：同一个标

识符，在作为 _lhs_ 和 _rhs_ 的时候意义是不同的；并且，在计算没有“推进到”下一步之

前，上一步的 Result 是无法确知“将作为”lhs/_rhs_ 的哪一种操作数的。

JavaScript 确实有一部分表达式（或操作）是能处理“规范引用”的，例如delete x就是

其中之一。有关哪些运算能处理“规范引用”，建议你自己翻阅 ECMAScript，并从中归

纳。

这一讲的核心是讲六种声明。所有声明（语句）都是没有返回值的（返回 Empty），因为

它没有返回值，所以它对其他执行过程没有影响。也就是说，声明语句必须能被理解为“静

态分析的结果”，而不是“动态执行的结果”。

前者称为“声明语义”，后者称为“执行语义”。声明语义就是静态语言的处理，执行语义

就是动态语言的处理。这是两种语言范型的分水岭。

这一讲的核心是讲表达式执行与（看起来跟它相似的）语句声明之间的区别。虽然两种看起

来都相似，但其实只有这一讲的才是“表达式连等”。

在这一讲结尾的部分，我做了一个总结：有关“引用”的介绍，以及“语句”和“表达

式”之间的差异与分别，自此暂告段落。

1 | delete 0

2 | var x = y = 100

3 | a.x = a = {n:2}

4 | export default function() {}

这一讲的核心是讲“名字”的使用。“有名字 / 没有名字”是一对概念，而“没有名

字”就称为“default”，那就是将概念收敛到了唯一一个：名字。所有有关

export/import 的处理，就是名字与它所代表的东西之间的关系映射。

而“模块装载的过程”必须发生在用户代码之前，一共包括了两个意思：

这一讲的要点不是讲语句执行，而是讲块级作用域，更进一步的，它是在讲作用域的“识

别”与处理。它颠覆读者认知的地方在于提出：绝大多数语句并没有块级作用域，因为它们

不需要。

而需要块级作用域的 for 语句，根本的需求是需要处理多次迭代中的变量暂存。这个是有很

大开销的，这与“计算机语言”的一个核心原理有关：迭代需要循环控制变量，这是命令式

语言有变量的根源（之一），也是函数式语言需要处理递归的根源。

“需不需要存储计算过程中的变量”，也是命令式语言与函数式语言的分水岭。

以上是前 5 讲的内容。 到现在为止，在第一模块中，我们主要提出的是语言的三个层面的

概念：

NOTE: 这主要是在《程序原本》前三章中的概念，包括“数、逻辑和抽象”。部分涉

及到第四章，也就是“语言”中的概念。

引擎必须有一个依赖顺序来“初始化”那些名字，这个与 export 语句是“声明”有关，

声明意味着它是静态完成的（名字总是被静态声明的）；

1.

用户代码需要依赖那些名字，这与 import 语句不是“声明”有关，它不是声明，那么它

需要通过“执行”来得到结果的，而这些“执行”必须在用户代码之前。其顺序，就是

所谓模块装载树的遍历。

2.

5 | for (let x of [1,2,3]) …

第一层概念：记号

第二层概念：引用、值

第三层概念：表达式、语句、名字、环境 / 作用域 、（顺序执行的三种基础）逻辑

这些概念其实基本上都是在“代码的静态组织”过程中就完成 / 实现了的。你使用一门语

言，其实本质上就是在跟第三层概念打交道，而 ECMAScript 或者引擎是工作在第二个层

面的。第一个层面，则是物理层面与逻辑层面的、最初的映射。

模块二：体系 2

接下来，我们讨论第 6~11 讲。

这一讲是讲了真正的语句执行。仍然是“不知死，即不知生”的讲法，break x与语句的

关系，同delete x与引用的关系其实差不多。

而且这一讲也提出了“语句以执行的完成状态”为结果，这个伏笔要留到第 8 讲来解开。

讲述了特殊的可执行结构。如果按照第一讲中所表达的“JavaScript 引擎的核心是一个表

达式计算的、连续的执行过程”，那么将所有显式的、隐式的“执行行为”合起来看，才

是“执行逻辑”的全体。正如你不了解每一种特殊的可执行结构，也就不了解“${1}”为什

么是最“晚”出现的语言特性之一。因为它是对其他执行结构的“集大成者”。

当然还有一点特殊之处也是你需要了解的，eval(str) 是执行语句，而`${str}`是执行表达

式。本质上来说，JavaScript 为这两种执行都找到了“执行一个字符串”的模式，这仍然

是“概念完整性”。

NOTE：试试如下代码：

6 | x: break x;

7 | ${1}

复制代码
1

2

3

4

5

> `${{}}`
'[object Object]'

> eval('{}')
undefined

表面上看是讲一个箭头函数，实际上是在讲函数式语言。关键处是解开第 6 讲伏笔的这一

句：

语句执行是命令式范型的体现，而函数执行代表了 JavaScript 中的对函数式范型的理

解。

另外，这一讲把函数分成了三个语法组件：参数、执行体、结果。这是非常重要的一个点，

它引导了后面两讲的讨论方式。

这一讲说的是如何改造函数的三个语法组件中的“执行体”。这一讲提出了“改造三个语法

组件”的意义，也就是说，函数式语言无论如何变、语法如何处理，其实本质上，就是在这

三个点上做手脚、玩花样。

这一讲说的是如何改造函数的三个语法组件中的“参数”和“结果”。

NOTE: 这一讲也为将来“再讲循环”留了一个伏笔，不过这并不是前 20 讲的内容，这

是“更远的将来”。^^.

这一讲其实讲的是怎么读 ECMAScript 规范。

不过它是以“最小化的”三个规范说明，来讲述了 ECMAScript 层面是如何一步一步地将

JavaScript 搭建出来的。这一讲里面有很多概念和观念，一旦你弄明白了，对 ECMAScript

也好，JavaScript 也好，都能起到“点化”的作用。

其实这里有很重要的一点引导，是这样一句话：

8 | x => x

9 | (…x)

10 | x = yield x

11 | throw 1;

其中的“result of evaluating…”基本上算是 ECMAScript 中一个约定俗成的写法，不

管是执行语句还是表达式，都是如此。

这句话很重要，它从 ECMAScript 规范层面、从语句叙述的层面“一致化了”语句执行和

表达式执行。注意：这就是上面那张图的出处！

这是第二模块的内容。 根本上来说，承接我们这一模块的总标题“JavaScript 是如何运行

的”，我主要为你讲述了三层概念：

参考前面的图，既然执行结果被统一为“result”，且执行被统一为“evaluating”，那么

运算就被统一成“result of evaluating…”，并且结果（如果返回给计算系统的外部的

话）就是一个能被理解的 result.value。

NOTE: 这个概念层次的构建，以及最终对它要达到的效果的预期，你可以参考阅读《程

序原本》第 4.6 节，它的标题是：将“计算机程序设计”教成语言课，是本末倒置的。

模块三：体系 3

回顾上面的内容，

总体上来看，它们是在陈述一件事情：“抽象的语言”如何处理“物理的代码”。

这仍然是一个体系。

NOTE: 回顾前两大模块的标题，其实这个“体系 3”我是一开始就告诉了你的：

从零开始：JavaScript 语言是如何构建起来的

从表达式到执行引擎：JavaScript 是如何运行的

第三层概念：表达式执行、函数执行、函数执行的扩展。

第二层概念：在规范层面如何统一“表达式执行和函数执行”。

第一层概念：语言体系的建立。

“体系 1”说的是“物理到逻辑”的映射

“体系 2”说的是“语言体系的建立”

© 版权归极客邦科技所有，未经许可不得传播售卖。 页面已增加防盗追踪，如有侵权极客邦将依法追究其法律责任。

最后

本来课程设计中并没有今天这一讲的加餐。按原定的计划，就是用第 11 讲最后的“小

结”算作引导你的、对之前内容最终回顾了。

但是考虑到课程进度和实际上的难度，才有了上一次的和今天的加餐。尤其是今天的内容，

其实就是对上一讲——第 11 讲的小结内容的展开，希望你能对照着，重新来理解和梳理这

门课程。

希望这份加餐会让你后续的课程变得轻松一些。今天就到这里，下一讲我们开始讲面向对

象。

上一篇 加餐 | 捡豆吃豆的学问（下）：这门课该怎么学？

潇潇雨歇
2019-12-09

精选留言 (6)  写留言

结合《程序原本》重新回顾前几讲，有趣

展开

  2

行问
2019-12-09

引用还是指向值、代表值的一个概念，它只是“获得值的访问能力”的一个途径。最终的
结果仍然指向原点：计算值、求值。

对于这句话，我是通过“数学分析”来理解的，我是基于“映射”来构建，幸好，老师最
后也是说到了以下： …
展开

作者回复: 🤓，有一人知，也即是世人知。幸矣。

图是编辑忘发了，我请他们补上～

 1  1

青史成灰
2019-12-14

老师，关于上面“为什么要有‘引用’这么个东西呢”的解释，读下来感觉和C++的指针
很像，指针是内存的地址，指向堆内存中的对象，需要访问指针指向的成员时，直接解引
用这个指针，v = *p，就和此处的x=GetValue(r)一样。 不知道这样理解是否正确？

展开

作者回复: 这是不一样的。

在第一讲的回复内容中，我给leslee的回复里面讲过“JavaScript中的引用”，与“ECMAScript

中的引用”不是同一个东西。你这里所谈的指针概念，与“JavaScript中的引用”类似，它的细节

和作用，你可以看看上面这一讲关于leslee的回复。

另外，在给Smallfly的回复中，我详细讲了ECMAScript中的引用是怎样的一个结构。你也可以阅

读一下。

在这里：https://time.geekbang.org/column/article/164312

（不过因为这个工具的设计问题，我没办法直接指到他们的评论回复，请查找一下）


1



sprinty
2019-12-09

知识密度太大。

展开

 

许童童
2019-12-09

老师还是很良心的，时不时就来给我们一个加餐。

展开

 

行问
2019-12-09

eval(str) 是执行语句，而{$str}是执行表达式

这里是 {$str} 正确，还是 ${str} 正确？

展开

作者回复: 这里是有排版错误，后一个是`${str}`。我的意思是，同一个字符串(仅指它的字面文

本)，这里是它作为语句和表达式执行的两种方式。但是，如果str理解成“变量”，而不是“变量

的字面文本”，那么就不是我的原意了。

 1 

