
07 | 行锁功过：怎么减少行锁对性能的影响？

2018-11-28 林晓斌

在上一篇文章中，我跟你介绍了MySQL的全局锁和表级锁，今天我们就来讲讲MySQL的行锁。

MySQL的行锁是在引擎层由各个引擎自己实现的。但并不是所有的引擎都支持行锁，比如

MyISAM引擎就不支持行锁。不支持行锁意味着并发控制只能使用表锁，对于这种引擎的表，同

一张表上任何时刻只能有一个更新在执行，这就会影响到业务并发度。InnoDB是支持行锁的，

这也是MyISAM被InnoDB替代的重要原因之一。

我们今天就主要来聊聊InnoDB的行锁，以及如何通过减少锁冲突来提升业务并发度。

顾名思义，行锁就是针对数据表中行记录的锁。这很好理解，比如事务A更新了一行，而这时候

事务B也要更新同一行，则必须等事务A的操作完成后才能进行更新。

当然，数据库中还有一些没那么一目了然的概念和设计，这些概念如果理解和使用不当，容易导

致程序出现非预期行为，比如两阶段锁。

从两阶段锁说起

我先给你举个例子。在下面的操作序列中，事务B的update语句执行时会是什么现象呢？假设字

段id是表t的主键。

这个问题的结论取决于事务A在执行完两条update语句后，持有哪些锁，以及在什么时候释放。

你可以验证一下：实际上事务B的update语句会被阻塞，直到事务A执行commit之后，事务B才

能继续执行。

知道了这个答案，你一定知道了事务A持有的两个记录的行锁，都是在commit的时候才释放的。

也就是说，在 InnoDB事务中，行锁是在需要的时候才加上的，但并不是不需要了就立刻释

放，而是要等到事务结束时才释放。这个就是两阶段锁协议。

知道了这个设定，对我们使用事务有什么帮助呢？那就是，如果你的事务中需要锁多个行，要把

最可能造成锁冲突、最可能影响并发度的锁尽量往后放。我给你举个例子。

假设你负责实现一个电影票在线交易业务，顾客A要在影院B购买电影票。我们简化一点，这个

业务需要涉及到以下操作：

1. 从顾客A账户余额中扣除电影票价；

2. 给影院B的账户余额增加这张电影票价；

3. 记录一条交易日志。

也就是说，要完成这个交易，我们需要update两条记录，并insert一条记录。当然，为了保证交

易的原子性，我们要把这三个操作放在一个事务中。那么，你会怎样安排这三个语句在事务中的

顺序呢？

试想如果同时有另外一个顾客C要在影院B买票，那么这两个事务冲突的部分就是语句2了。因为

它们要更新同一个影院账户的余额，需要修改同一行数据。

根据两阶段锁协议，不论你怎样安排语句顺序，所有的操作需要的行锁都是在事务提交的时候才

释放的。所以，如果你把语句2安排在最后，比如按照3、1、2这样的顺序，那么影院账户余额

这一行的锁时间就最少。这就最大程度地减少了事务之间的锁等待，提升了并发度。

好了，现在由于你的正确设计，影院余额这一行的行锁在一个事务中不会停留很长时间。但是，

这并没有完全解决你的困扰。

如果这个影院做活动，可以低价预售一年内所有的电影票，而且这个活动只做一天。于是在活动

时间开始的时候，你的MySQL就挂了。你登上服务器一看，CPU消耗接近100%，但整个数据库

每秒就执行不到100个事务。这是什么原因呢？

这里，我就要说到死锁和死锁检测了。

死锁和死锁检测

当并发系统中不同线程出现循环资源依赖，涉及的线程都在等待别的线程释放资源时，就会导致

这几个线程都进入无限等待的状态，称为死锁。这里我用数据库中的行锁举个例子。

这时候，事务A在等待事务B释放id=2的行锁，而事务B在等待事务A释放id=1的行锁。 事务A和

事务B在互相等待对方的资源释放，就是进入了死锁状态。当出现死锁以后，有两种策略：

一种策略是，直接进入等待，直到超时。这个超时时间可以通过参数

innodb_lock_wait_timeout来设置。

另一种策略是，发起死锁检测，发现死锁后，主动回滚死锁链条中的某一个事务，让其他事

务得以继续执行。将参数innodb_deadlock_detect设置为on，表示开启这个逻辑。

在InnoDB中，innodb_lock_wait_timeout的默认值是50s，意味着如果采用第一个策略，当出现

死锁以后，第一个被锁住的线程要过50s才会超时退出，然后其他线程才有可能继续执行。对于

在线服务来说，这个等待时间往往是无法接受的。

但是，我们又不可能直接把这个时间设置成一个很小的值，比如1s。这样当出现死锁的时候，确

实很快就可以解开，但如果不是死锁，而是简单的锁等待呢？所以，超时时间设置太短的话，会

出现很多误伤。

所以，正常情况下我们还是要采用第二种策略，即：主动死锁检测，而且

innodb_deadlock_detect的默认值本身就是on。主动死锁检测在发生死锁的时候，是能够快速发

现并进行处理的，但是它也是有额外负担的。

你可以想象一下这个过程：每当一个事务被锁的时候，就要看看它所依赖的线程有没有被别人锁

住，如此循环，最后判断是否出现了循环等待，也就是死锁。

那如果是我们上面说到的所有事务都要更新同一行的场景呢？

每个新来的被堵住的线程，都要判断会不会由于自己的加入导致了死锁，这是一个时间复杂度是

O(n)的操作。假设有1000个并发线程要同时更新同一行，那么死锁检测操作就是100万这个量级

的。虽然最终检测的结果是没有死锁，但是这期间要消耗大量的CPU资源。因此，你就会看到

CPU利用率很高，但是每秒却执行不了几个事务。

根据上面的分析，我们来讨论一下，怎么解决由这种热点行更新导致的性能问题呢？问题的症结

在于，死锁检测要耗费大量的CPU资源。

一种头痛医头的方法，就是如果你能确保这个业务一定不会出现死锁，可以临时把死锁检

测关掉。但是这种操作本身带有一定的风险，因为业务设计的时候一般不会把死锁当做一个严

重错误，毕竟出现死锁了，就回滚，然后通过业务重试一般就没问题了，这是业务无损的。而关

掉死锁检测意味着可能会出现大量的超时，这是业务有损的。

另一个思路是控制并发度。根据上面的分析，你会发现如果并发能够控制住，比如同一行同时

最多只有10个线程在更新，那么死锁检测的成本很低，就不会出现这个问题。一个直接的想法

就是，在客户端做并发控制。但是，你会很快发现这个方法不太可行，因为客户端很多。我见过

一个应用，有600个客户端，这样即使每个客户端控制到只有5个并发线程，汇总到数据库服务

端以后，峰值并发数也可能要达到3000。

因此，这个并发控制要做在数据库服务端。如果你有中间件，可以考虑在中间件实现；如果你的

团队有能修改MySQL源码的人，也可以做在MySQL里面。基本思路就是，对于相同行的更新，

在进入引擎之前排队。这样在InnoDB内部就不会有大量的死锁检测工作了。

可能你会问，如果团队里暂时没有数据库方面的专家，不能实现这样的方案，能不能从设

计上优化这个问题呢？

你可以考虑通过将一行改成逻辑上的多行来减少锁冲突。还是以影院账户为例，可以考虑放在多

条记录上，比如10个记录，影院的账户总额等于这10个记录的值的总和。这样每次要给影院账

户加金额的时候，随机选其中一条记录来加。这样每次冲突概率变成原来的1/10，可以减少锁等

待个数，也就减少了死锁检测的CPU消耗。

这个方案看上去是无损的，但其实这类方案需要根据业务逻辑做详细设计。如果账户余额可能会

减少，比如退票逻辑，那么这时候就需要考虑当一部分行记录变成0的时候，代码要有特殊处

理。

小结

今天，我和你介绍了MySQL的行锁，涉及了两阶段锁协议、死锁和死锁检测这两大部分内容。

其中，我以两阶段协议为起点，和你一起讨论了在开发的时候如何安排正确的事务语句。这里的

原则/我给你的建议是：如果你的事务中需要锁多个行，要把最可能造成锁冲突、最可能影响并

发度的锁的申请时机尽量往后放。

但是，调整语句顺序并不能完全避免死锁。所以我们引入了死锁和死锁检测的概念，以及提供了

三个方案，来减少死锁对数据库的影响。减少死锁的主要方向，就是控制访问相同资源的并发事

务量。

最后，我给你留下一个问题吧。如果你要删除一个表里面的前10000行数据，有以下三种方法可

以做到：

第一种，直接执行delete from T limit 10000;

第二种，在一个连接中循环执行20次 delete from T limit 500;

第三种，在20个连接中同时执行delete from T limit 500。

你会选择哪一种方法呢？为什么呢？

你可以把你的思考和观点写在留言区里，我会在下一篇文章的末尾和你讨论这个问题。感谢你的

收听，也欢迎你把这篇文章分享给更多的朋友一起阅读。

上期问题时间

上期我给你留的问题是：当备库用–single-transaction做逻辑备份的时候，如果从主库的binlog传

来一个DDL语句会怎么样？

假设这个DDL是针对表t1的， 这里我把备份过程中几个关键的语句列出来：

Q1:SET SESSION TRANSACTION ISOLATION LEVEL REPEATABLE READ;

Q2:START TRANSACTION WITH CONSISTENT SNAPSHOT；

/* other tables */

Q3:SAVEPOINT sp;

/* 时刻 1 */

Q4:show create table `t1`;

/* 时刻 2 */

Q5:SELECT * FROM `t1`;

/* 时刻 3 */

Q6:ROLLBACK TO SAVEPOINT sp;

/* 时刻 4 */

/* other tables */

在备份开始的时候，为了确保RR（可重复读）隔离级别，再设置一次RR隔离级别(Q1);

启动事务，这里用 WITH CONSISTENT SNAPSHOT确保这个语句执行完就可以得到一个一致性

视图（Q2)；

设置一个保存点，这个很重要（Q3）；

show create 是为了拿到表结构(Q4)，然后正式导数据 （Q5），回滚到SAVEPOINT sp，在这

里的作用是释放 t1的MDL锁 （Q6。当然这部分属于“超纲”，上文正文里面都没提到。

DDL从主库传过来的时间按照效果不同，我打了四个时刻。题目设定为小表，我们假定到达后，

如果开始执行，则很快能够执行完成。

参考答案如下：

1. 如果在Q4语句执行之前到达，现象：没有影响，备份拿到的是DDL后的表结构。

2. 如果在“时刻 2”到达，则表结构被改过，Q5执行的时候，报 Table definition has changed,

please retry transaction，现象：mysqldump终止；

3. 如果在“时刻2”和“时刻3”之间到达，mysqldump占着t1的MDL读锁，binlog被阻塞，现象：

主从延迟，直到Q6执行完成。

4. 从“时刻4”开始，mysqldump释放了MDL读锁，现象：没有影响，备份拿到的是DDL前的表

结构。

评论区留言点赞板：

@Aurora 给了最接近的答案；

@echo＿陈 问了一个好问题；

@壹笙☞漂泊 做了很好的总结。

	07 | 行锁功过：怎么减少行锁对性能的影响？
	从两阶段锁说起
	死锁和死锁检测
	小结
	上期问题时间

