
10 | MySQL为什么有时候会选错索引？

2018-12-05 林晓斌

前面我们介绍过索引，你已经知道了在MySQL中一张表其实是可以支持多个索引的。但是，你

写SQL语句的时候，并没有主动指定使用哪个索引。也就是说，使用哪个索引是由MySQL来确

定的。

不知道你有没有碰到过这种情况，一条本来可以执行得很快的语句，却由于MySQL选错了索

引，而导致执行速度变得很慢？

我们一起来看一个例子吧。

我们先建一个简单的表，表里有a、b两个字段，并分别建上索引：

CREATE TABLE `t` (

 `id` int(11) NOT NULL,

 `a` int(11) DEFAULT NULL,

 `b` int(11) DEFAULT NULL,

 PRIMARY KEY (`id`),

 KEY `a` (`a`),

 KEY `b` (`b`)

) ENGINE=InnoDB；

然后，我们往表t中插入10万行记录，取值按整数递增，即：(1,1,1)，(2,2,2)，(3,3,3) 直到

(100000,100000,100000)。

我是用存储过程来插入数据的，这里我贴出来方便你复现：

接下来，我们分析一条SQL语句：

你一定会说，这个语句还用分析吗，很简单呀，a上有索引，肯定是要使用索引a的。

你说得没错，图1显示的就是使用explain命令看到的这条语句的执行情况。

图1 使用explain命令查看语句执行情况

从图1看上去，这条查询语句的执行也确实符合预期，key这个字段值是’a’，表示优化器选择了索

引a。

不过别急，这个案例不会这么简单。在我们已经准备好的包含了10万行数据的表上，我们再做

如下操作。

delimiter ;;

create procedure idata()

begin

 declare i int;

 set i=1;

 while(i<=100000)do

 insert into t values(i, i, i);

 set i=i+1;

 end while;

end;;

delimiter ;

call idata();

mysql> select * from t where a between 10000 and 20000;

图2 session A和session B的执行流程

这里，session A的操作你已经很熟悉了，它就是开启了一个事务。随后，session B把数据都删

除后，又调用了 idata这个存储过程，插入了10万行数据。

这时候，session B的查询语句select * from t where a between 10000 and 20000就不会再选择

索引a了。我们可以通过慢查询日志（slow log）来查看一下具体的执行情况。

为了说明优化器选择的结果是否正确，我增加了一个对照，即：使用force index(a)来让优化器强

制使用索引a（这部分内容，我还会在这篇文章的后半部分中提到）。

下面的三条SQL语句，就是这个实验过程。

第一句，是将慢查询日志的阈值设置为0，表示这个线程接下来的语句都会被记录入慢查询日

志中；

第二句，Q1是session B原来的查询；

第三句，Q2是加了force index(a)来和session B原来的查询语句执行情况对比。

如图3所示是这三条SQL语句执行完成后的慢查询日志。

set long_query_time=0;

select * from t where a between 10000 and 20000; /*Q1*/

select * from t force index(a) where a between 10000 and 20000;/*Q2*/

图3 slow log结果

可以看到，Q1扫描了10万行，显然是走了全表扫描，执行时间是40毫秒。Q2扫描了10001行，

执行了21毫秒。也就是说，我们在没有使用force index的时候，MySQL用错了索引，导致了更

长的执行时间。

这个例子对应的是我们平常不断地删除历史数据和新增数据的场景。这时，MySQL竟然会选错

索引，是不是有点奇怪呢？今天，我们就从这个奇怪的结果说起吧。

优化器的逻辑

在第一篇文章中，我们就提到过，选择索引是优化器的工作。

而优化器选择索引的目的，是找到一个最优的执行方案，并用最小的代价去执行语句。在数据库

里面，扫描行数是影响执行代价的因素之一。扫描的行数越少，意味着访问磁盘数据的次数越

少，消耗的CPU资源越少。

当然，扫描行数并不是唯一的判断标准，优化器还会结合是否使用临时表、是否排序等因素进行

综合判断。

我们这个简单的查询语句并没有涉及到临时表和排序，所以MySQL选错索引肯定是在判断扫描

行数的时候出问题了。

那么，问题就是：扫描行数是怎么判断的？

MySQL在真正开始执行语句之前，并不能精确地知道满足这个条件的记录有多少条，而只能根

据统计信息来估算记录数。

这个统计信息就是索引的“区分度”。显然，一个索引上不同的值越多，这个索引的区分度就越

好。而一个索引上不同的值的个数，我们称之为“基数”（cardinality）。也就是说，这个基数越

大，索引的区分度越好。

我们可以使用show index方法，看到一个索引的基数。如图4所示，就是表t的show index 的结果

。虽然这个表的每一行的三个字段值都是一样的，但是在统计信息中，这三个索引的基数值并不

同，而且其实都不准确。

图4 表t的show index 结果

那么，MySQL是怎样得到索引的基数的呢？这里，我给你简单介绍一下MySQL采样统计的方

法。

为什么要采样统计呢？因为把整张表取出来一行行统计，虽然可以得到精确的结果，但是代价太

高了，所以只能选择“采样统计”。

采样统计的时候，InnoDB默认会选择N个数据页，统计这些页面上的不同值，得到一个平均

值，然后乘以这个索引的页面数，就得到了这个索引的基数。

而数据表是会持续更新的，索引统计信息也不会固定不变。所以，当变更的数据行数超过1/M的

时候，会自动触发重新做一次索引统计。

在MySQL中，有两种存储索引统计的方式，可以通过设置参数innodb_stats_persistent的值来选

择：

设置为on的时候，表示统计信息会持久化存储。这时，默认的N是20，M是10。

设置为off的时候，表示统计信息只存储在内存中。这时，默认的N是8，M是16。

由于是采样统计，所以不管N是20还是8，这个基数都是很容易不准的。

但，这还不是全部。

你可以从图4中看到，这次的索引统计值（cardinality列）虽然不够精确，但大体上还是差不多

的，选错索引一定还有别的原因。

其实索引统计只是一个输入，对于一个具体的语句来说，优化器还要判断，执行这个语句本身要

扫描多少行。

接下来，我们再一起看看优化器预估的，这两个语句的扫描行数是多少。

图5 意外的explain结果

rows这个字段表示的是预计扫描行数。

其中，Q1的结果还是符合预期的，rows的值是104620；但是Q2的rows值是37116，偏差就大

了。而图1中我们用explain命令看到的rows是只有10001行，是这个偏差误导了优化器的判断。

到这里，可能你的第一个疑问不是为什么不准，而是优化器为什么放着扫描37000行的执行计划

不用，却选择了扫描行数是100000的执行计划呢？

这是因为，如果使用索引a，每次从索引a上拿到一个值，都要回到主键索引上查出整行数据，

这个代价优化器也要算进去的。

而如果选择扫描10万行，是直接在主键索引上扫描的，没有额外的代价。

优化器会估算这两个选择的代价，从结果看来，优化器认为直接扫描主键索引更快。当然，从执

行时间看来，这个选择并不是最优的。

使用普通索引需要把回表的代价算进去，在图1执行explain的时候，也考虑了这个策略的代价 ，

但图1的选择是对的。也就是说，这个策略并没有问题。

所以冤有头债有主，MySQL选错索引，这件事儿还得归咎到没能准确地判断出扫描行数。至于

为什么会得到错误的扫描行数，这个原因就作为课后问题，留给你去分析了。

既然是统计信息不对，那就修正。analyze table t 命令，可以用来重新统计索引信息。我们来看

一下执行效果。

图6 执行analyze table t 命令恢复的explain结果

这回对了。

所以在实践中，如果你发现explain的结果预估的rows值跟实际情况差距比较大，可以采用这个

方法来处理。

其实，如果只是索引统计不准确，通过analyze命令可以解决很多问题，但是前面我们说了，优

化器可不止是看扫描行数。

依然是基于这个表t，我们看看另外一个语句：

从条件上看，这个查询没有符合条件的记录，因此会返回空集合。

在开始执行这条语句之前，你可以先设想一下，如果你来选择索引，会选择哪一个呢？

为了便于分析，我们先来看一下a、b这两个索引的结构图。

图7 a、b索引的结构图

如果使用索引a进行查询，那么就是扫描索引a的前1000个值，然后取到对应的id，再到主键索

引上去查出每一行，然后根据字段b来过滤。显然这样需要扫描1000行。

如果使用索引b进行查询，那么就是扫描索引b的最后50001个值，与上面的执行过程相同，也是

需要回到主键索引上取值再判断，所以需要扫描50001行。

所以你一定会想，如果使用索引a的话，执行速度明显会快很多。那么，下面我们就来看看到底

是不是这么一回事儿。

mysql> select * from t where (a between 1 and 1000) and (b between 50000 and 100000) order by b limit 1;

图8是执行explain的结果。

图8 使用explain方法查看执行计划 2

可以看到，返回结果中key字段显示，这次优化器选择了索引b，而rows字段显示需要扫描的行

数是50198。

从这个结果中，你可以得到两个结论：

1. 扫描行数的估计值依然不准确；

2. 这个例子里MySQL又选错了索引。

索引选择异常和处理

其实大多数时候优化器都能找到正确的索引，但偶尔你还是会碰到我们上面举例的这两种情况：

原本可以执行得很快的SQL语句，执行速度却比你预期的慢很多，你应该怎么办呢？

一种方法是，像我们第一个例子一样，采用 force index强行选择一个索引。MySQL会根据

词法解析的结果分析出可能可以使用的索引作为候选项，然后在候选列表中依次判断每个索引需

要扫描多少行。如果force index指定的索引在候选索引列表中，就直接选择这个索引，不再评估

其他索引的执行代价。

我们来看看第二个例子。刚开始分析时，我们认为选择索引a会更好。现在，我们就来看看执行

效果：

图9 使用不同索引的语句执行耗时

可以看到，原本语句需要执行2.23秒，而当你使用force index(a)的时候，只用了0.05秒，比优化

器的选择快了40多倍。

也就是说，优化器没有选择正确的索引，force index起到了“矫正”的作用。

不过很多程序员不喜欢使用force index，一来这么写不优美，二来如果索引改了名字，这个语句

mysql> explain select * from t where (a between 1 and 1000) and (b between 50000 and 100000) order by b limit 1;

也得改，显得很麻烦。而且如果以后迁移到别的数据库的话，这个语法还可能会不兼容。

但其实使用force index最主要的问题还是变更的及时性。因为选错索引的情况还是比较少出现

的，所以开发的时候通常不会先写上force index。而是等到线上出现问题的时候，你才会再去修

改SQL语句、加上force index。但是修改之后还要测试和发布，对于生产系统来说，这个过程不

够敏捷。

所以，数据库的问题最好还是在数据库内部来解决。那么，在数据库里面该怎样解决呢？

既然优化器放弃了使用索引a，说明a还不够合适，所以第二种方法就是，我们可以考虑修改

语句，引导MySQL使用我们期望的索引。比如，在这个例子里，显然把“order by b limit 1” 改

成 “order by b,a limit 1” ，语义的逻辑是相同的。

我们来看看改之后的效果：

图10 order by b,a limit 1 执行结果

之前优化器选择使用索引b，是因为它认为使用索引b可以避免排序（b本身是索引，已经是有序

的了，如果选择索引b的话，不需要再做排序，只需要遍历），所以即使扫描行数多，也判定为

代价更小。

现在order by b,a 这种写法，要求按照b,a排序，就意味着使用这两个索引都需要排序。因此，扫

描行数成了影响决策的主要条件，于是此时优化器选了只需要扫描1000行的索引a。

当然，这种修改并不是通用的优化手段，只是刚好在这个语句里面有limit 1，因此如果有满足条

件的记录， order by b limit 1和order by b,a limit 1 都会返回b是最小的那一行，逻辑上一致，才

可以这么做。

如果你觉得修改语义这件事儿不太好，这里还有一种改法，图11是执行效果。

图11 改写SQL的explain

在这个例子里，我们用limit 100让优化器意识到，使用b索引代价是很高的。其实是我们根据数

mysql> select * from (select * from t where (a between 1 and 1000) and (b between 50000 and 100000) order by b limit 100)alias limit 1;

据特征诱导了一下优化器，也不具备通用性。

第三种方法是，在有些场景下，我们可以新建一个更合适的索引，来提供给优化器做选

择，或删掉误用的索引。

不过，在这个例子中，我没有找到通过新增索引来改变优化器行为的方法。这种情况其实比较

少，尤其是经过DBA索引优化过的库，再碰到这个bug，找到一个更合适的索引一般比较难。

如果我说还有一个方法是删掉索引b，你可能会觉得好笑。但实际上我碰到过两次这样的例子，

最终是DBA跟业务开发沟通后，发现这个优化器错误选择的索引其实根本没有必要存在，于是

就删掉了这个索引，优化器也就重新选择到了正确的索引。

小结

今天我们一起聊了聊索引统计的更新机制，并提到了优化器存在选错索引的可能性。

对于由于索引统计信息不准确导致的问题，你可以用analyze table来解决。

而对于其他优化器误判的情况，你可以在应用端用force index来强行指定索引，也可以通过修改

语句来引导优化器，还可以通过增加或者删除索引来绕过这个问题。

你可能会说，今天这篇文章后面的几个例子，怎么都没有展开说明其原理。我要告诉你的是，今

天的话题，我们面对的是MySQL的bug，每一个展开都必须深入到一行行代码去量化，实在不是

我们在这里应该做的事情。

所以，我把我用过的解决方法跟你分享，希望你在碰到类似情况的时候，能够有一些思路。

你平时在处理MySQL优化器bug的时候有什么别的方法，也发到评论区分享一下吧。

最后，我给你留下一个思考题。前面我们在构造第一个例子的过程中，通过session A的配合，

让session B删除数据后又重新插入了一遍数据，然后就发现explain结果中，rows字段从10001

变成37000多。

而如果没有session A的配合，只是单独执行delete from t 、call idata()、explain这三句话，会看

到rows字段其实还是10000左右。你可以自己验证一下这个结果。

这是什么原因呢？也请你分析一下吧。

你可以把你的分析结论写在留言区里，我会在下一篇文章的末尾和你讨论这个问题。感谢你的收

听，也欢迎你把这篇文章分享给更多的朋友一起阅读。

上期问题时间

我在上一篇文章最后留给你的问题是，如果某次写入使用了change buffer机制，之后主机异常

重启，是否会丢失change buffer和数据。

这个问题的答案是不会丢失，留言区的很多同学都回答对了。虽然是只更新内存，但是在事务提

交的时候，我们把change buffer的操作也记录到redo log里了，所以崩溃恢复的时候，change

buffer也能找回来。

在评论区有同学问到，merge的过程是否会把数据直接写回磁盘，这是个好问题。这里，我再为

你分析一下。

merge的执行流程是这样的：

1. 从磁盘读入数据页到内存（老版本的数据页）；

2. 从change buffer里找出这个数据页的change buffer 记录(可能有多个），依次应用，得到新

版数据页；

3. 写redo log。这个redo log包含了数据的变更和change buffer的变更。

到这里merge过程就结束了。这时候，数据页和内存中change buffer对应的磁盘位置都还没有修

改，属于脏页，之后各自刷回自己的物理数据，就是另外一个过程了。

评论区留言点赞板：

@某、人 把02篇的redo log更新细节和change buffer的更新串了起来；

@Ivan 回复了其他同学的问题，并联系到Checkpoint机制；

@约书亚 问到了merge和redolog的关系。

	10 | MySQL为什么有时候会选错索引？
	优化器的逻辑
	索引选择异常和处理
	小结
	上期问题时间

