
12 | 为什么我的MySQL会“抖”一下？

2018-12-10 林晓斌

平时的工作中，不知道你有没有遇到过这样的场景，一条SQL语句，正常执行的时候特别快，但

是有时也不知道怎么回事，它就会变得特别慢，并且这样的场景很难复现，它不只随机，而且持

续时间还很短。

看上去，这就像是数据库“抖”了一下。今天，我们就一起来看一看这是什么原因。

你的SQL语句为什么变“慢”了

在前面第2篇文章《日志系统：一条SQL更新语句是如何执行的？》中，我为你介绍了WAL机

制。现在你知道了，InnoDB在处理更新语句的时候，只做了写日志这一个磁盘操作。这个日志

叫作redo log（重做日志），也就是《孔乙己》里咸亨酒店掌柜用来记账的粉板，在更新内存写

完redo log后，就返回给客户端，本次更新成功。

做下类比的话，掌柜记账的账本是数据文件，记账用的粉板是日志文件（redo log），掌柜的记

忆就是内存。

掌柜总要找时间把账本更新一下，这对应的就是把内存里的数据写入磁盘的过程，术语就是

flush。在这个flush操作执行之前，孔乙己的赊账总额，其实跟掌柜手中账本里面的记录是不一

致的。因为孔乙己今天的赊账金额还只在粉板上，而账本里的记录是老的，还没把今天的赊账算

进去。

当内存数据页跟磁盘数据页内容不一致的时候，我们称这个内存页为“脏页”。内存数据写

https://time.geekbang.org/column/article/68633

入到磁盘后，内存和磁盘上的数据页的内容就一致了，称为“干净页”。

不论是脏页还是干净页，都在内存中。在这个例子里，内存对应的就是掌柜的记忆。

接下来，我们用一个示意图来展示一下“孔乙己赊账”的整个操作过程。假设原来孔乙己欠账10

文，这次又要赊9文。

图1 “孔乙己赊账”更新和flush过程

回到文章开头的问题，你不难想象，平时执行很快的更新操作，其实就是在写内存和日志，而

MySQL偶尔“抖”一下的那个瞬间，可能就是在刷脏页（flush）。

那么，什么情况会引发数据库的flush过程呢？

我们还是继续用咸亨酒店掌柜的这个例子，想一想：掌柜在什么情况下会把粉板上的赊账记录改

到账本上？

第一种场景是，粉板满了，记不下了。这时候如果再有人来赊账，掌柜就只得放下手里的活

儿，将粉板上的记录擦掉一些，留出空位以便继续记账。当然在擦掉之前，他必须先将正确

的账目记录到账本中才行。

这个场景，对应的就是InnoDB的redo log写满了。这时候系统会停止所有更新操作，把

checkpoint往前推进，redo log留出空间可以继续写。我在第二讲画了一个redo log的示意

图，这里我改成环形，便于大家理解。

图2 redo log状态图

checkpoint可不是随便往前修改一下位置就可以的。比如图2中，把checkpoint位置从CP推进到

CP’，就需要将两个点之间的日志（浅绿色部分），对应的所有脏页都flush到磁盘上。之后，图

中从write pos到CP’之间就是可以再写入的redo log的区域。

第二种场景是，这一天生意太好，要记住的事情太多，掌柜发现自己快记不住了，赶紧找出

账本把孔乙己这笔账先加进去。

这种场景，对应的就是系统内存不足。当需要新的内存页，而内存不够用的时候，就要淘汰

一些数据页，空出内存给别的数据页使用。如果淘汰的是“脏页”，就要先将脏页写到磁盘。

你一定会说，这时候难道不能直接把内存淘汰掉，下次需要请求的时候，从磁盘读入数据

页，然后拿redo log出来应用不就行了？这里其实是从性能考虑的。如果刷脏页一定会写盘，

就保证了每个数据页有两种状态：

一种是内存里存在，内存里就肯定是正确的结果，直接返回；

另一种是内存里没有数据，就可以肯定数据文件上是正确的结果，读入内存后返回。

这样的效率最高。

第三种场景是，生意不忙的时候，或者打烊之后。这时候柜台没事，掌柜闲着也是闲着，不

如更新账本。

这种场景，对应的就是MySQL认为系统“空闲”的时候。当然，MySQL“这家酒店”的生意好起

来可是会很快就能把粉板记满的，所以“掌柜”要合理地安排时间，即使是“生意好”的时候，也

要见缝插针地找时间，只要有机会就刷一点“脏页”。

第四种场景是，年底了咸亨酒店要关门几天，需要把账结清一下。这时候掌柜要把所有账都

记到账本上，这样过完年重新开张的时候，就能就着账本明确账目情况了。

这种场景，对应的就是MySQL正常关闭的情况。这时候，MySQL会把内存的脏页都flush到磁

盘上，这样下次MySQL启动的时候，就可以直接从磁盘上读数据，启动速度会很快。

接下来，你可以分析一下上面四种场景对性能的影响。

其中，第三种情况是属于MySQL空闲时的操作，这时系统没什么压力，而第四种场景是数据库

本来就要关闭了。这两种情况下，你不会太关注“性能”问题。所以这里，我们主要来分析一下前

两种场景下的性能问题。

第一种是“redo log写满了，要flush脏页”，这种情况是InnoDB要尽量避免的。因为出现这种情况

的时候，整个系统就不能再接受更新了，所有的更新都必须堵住。如果你从监控上看，这时候更

新数会跌为0。

第二种是“内存不够用了，要先将脏页写到磁盘”，这种情况其实是常态。InnoDB用缓冲池

（buffer pool）管理内存，缓冲池中的内存页有三种状态：

第一种是，还没有使用的；

第二种是，使用了并且是干净页；

第三种是，使用了并且是脏页。

InnoDB的策略是尽量使用内存，因此对于一个长时间运行的库来说，未被使用的页面很少。

而当要读入的数据页没有在内存的时候，就必须到缓冲池中申请一个数据页。这时候只能把最久

不使用的数据页从内存中淘汰掉：如果要淘汰的是一个干净页，就直接释放出来复用；但如果是

脏页呢，就必须将脏页先刷到磁盘，变成干净页后才能复用。

所以，刷脏页虽然是常态，但是出现以下这两种情况，都是会明显影响性能的：

1. 一个查询要淘汰的脏页个数太多，会导致查询的响应时间明显变长；

2. 日志写满，更新全部堵住，写性能跌为0，这种情况对敏感业务来说，是不能接受的。

所以，InnoDB需要有控制脏页比例的机制，来尽量避免上面的这两种情况。

InnoDB刷脏页的控制策略

接下来，我就来和你说说InnoDB脏页的控制策略，以及和这些策略相关的参数。

首先，你要正确地告诉InnoDB所在主机的IO能力，这样InnoDB才能知道需要全力刷脏页的时

候，可以刷多快。

这就要用到innodb_io_capacity这个参数了，它会告诉InnoDB你的磁盘能力。这个值我建议你设

置成磁盘的IOPS。磁盘的IOPS可以通过fio这个工具来测试，下面的语句是我用来测试磁盘随机

读写的命令：

其实，因为没能正确地设置innodb_io_capacity参数，而导致的性能问题也比比皆是。之前，就

曾有其他公司的开发负责人找我看一个库的性能问题，说MySQL的写入速度很慢，TPS很低，

但是数据库主机的IO压力并不大。经过一番排查，发现罪魁祸首就是这个参数的设置出了问题。

他的主机磁盘用的是SSD，但是innodb_io_capacity的值设置的是300。于是，InnoDB认为这个

系统的能力就这么差，所以刷脏页刷得特别慢，甚至比脏页生成的速度还慢，这样就造成了脏页

累积，影响了查询和更新性能。

虽然我们现在已经定义了“全力刷脏页”的行为，但平时总不能一直是全力刷吧？毕竟磁盘能力不

能只用来刷脏页，还需要服务用户请求。所以接下来，我们就一起看看InnoDB怎么控制引擎按

照“全力”的百分比来刷脏页。

根据我前面提到的知识点，试想一下，如果你来设计策略控制刷脏页的速度，会参考哪些因

素呢？

这个问题可以这么想，如果刷太慢，会出现什么情况？首先是内存脏页太多，其次是redo log写

满。

所以，InnoDB的刷盘速度就是要参考这两个因素：一个是脏页比例，一个是redo log写盘速度。

 fio -filename=$filename -direct=1 -iodepth 1 -thread -rw=randrw -ioengine=psync -bs=16k -size=500M -numjobs=10 -runtime=10 -group_reporting -name=mytest

InnoDB会根据这两个因素先单独算出两个数字。

参数innodb_max_dirty_pages_pct是脏页比例上限，默认值是75%。InnoDB会根据当前的脏页

比例（假设为M），算出一个范围在0到100之间的数字，计算这个数字的伪代码类似这样：

InnoDB每次写入的日志都有一个序号，当前写入的序号跟checkpoint对应的序号之间的差值，

我们假设为N。InnoDB会根据这个N算出一个范围在0到100之间的数字，这个计算公式可以记为

F2(N)。F2(N)算法比较复杂，你只要知道N越大，算出来的值越大就好了。

然后，根据上述算得的F1(M)和F2(N)两个值，取其中较大的值记为R，之后引擎就可以按

照 innodb_io_capacity定义的能力乘以R%来控制刷脏页的速度。

上述的计算流程比较抽象，不容易理解，所以我画了一个简单的流程图。图中的F1、F2就是上

面我们通过脏页比例和redo log写入速度算出来的两个值。

F1(M)

{

 if M>=innodb_max_dirty_pages_pct then

 return 100;

 return 100*M/innodb_max_dirty_pages_pct;

}

图3 InnoDB刷脏页速度策略

现在你知道了，InnoDB会在后台刷脏页，而刷脏页的过程是要将内存页写入磁盘。所以，无论

是你的查询语句在需要内存的时候可能要求淘汰一个脏页，还是由于刷脏页的逻辑会占用IO资源

并可能影响到了你的更新语句，都可能是造成你从业务端感知到MySQL“抖”了一下的原因。

要尽量避免这种情况，你就要合理地设置innodb_io_capacity的值，并且平时要多关注脏页比

例，不要让它经常接近75%。

其中，脏页比例是通过Innodb_buffer_pool_pages_dirty/Innodb_buffer_pool_pages_total得到

的，具体的命令参考下面的代码：

接下来，我们再看一个有趣的策略。

一旦一个查询请求需要在执行过程中先flush掉一个脏页时，这个查询就可能要比平时慢了。而

MySQL中的一个机制，可能让你的查询会更慢：在准备刷一个脏页的时候，如果这个数据页旁

边的数据页刚好是脏页，就会把这个“邻居”也带着一起刷掉；而且这个把“邻居”拖下水的逻辑还

可以继续蔓延，也就是对于每个邻居数据页，如果跟它相邻的数据页也还是脏页的话，也会被放

到一起刷。

在InnoDB中，innodb_flush_neighbors 参数就是用来控制这个行为的，值为1的时候会有上述

的“连坐”机制，值为0时表示不找邻居，自己刷自己的。

找“邻居”这个优化在机械硬盘时代是很有意义的，可以减少很多随机IO。机械硬盘的随机IOPS

一般只有几百，相同的逻辑操作减少随机IO就意味着系统性能的大幅度提升。

而如果使用的是SSD这类IOPS比较高的设备的话，我就建议你把innodb_flush_neighbors的值

设置成0。因为这时候IOPS往往不是瓶颈，而“只刷自己”，就能更快地执行完必要的刷脏页操

作，减少SQL语句响应时间。

在MySQL 8.0中，innodb_flush_neighbors参数的默认值已经是0了。

小结

今天这篇文章，我延续第2篇中介绍的WAL的概念，和你解释了这个机制后续需要的刷脏页操作

和执行时机。利用WAL技术，数据库将随机写转换成了顺序写，大大提升了数据库的性能。

但是，由此也带来了内存脏页的问题。脏页会被后台线程自动flush，也会由于数据页淘汰而触

发flush，而刷脏页的过程由于会占用资源，可能会让你的更新和查询语句的响应时间长一些。

在文章里，我也给你介绍了控制刷脏页的方法和对应的监控方式。

文章最后，我给你留下一个思考题吧。

mysql> select VARIABLE_VALUE into @a from global_status where VARIABLE_NAME = 'Innodb_buffer_pool_pages_dirty';

select VARIABLE_VALUE into @b from global_status where VARIABLE_NAME = 'Innodb_buffer_pool_pages_total';

select @a/@b;

一个内存配置为128GB、innodb_io_capacity设置为20000的大规格实例，正常会建议你将redo

log设置成4个1GB的文件。

但如果你在配置的时候不慎将redo log设置成了1个100M的文件，会发生什么情况呢？又为什么

会出现这样的情况呢？

你可以把你的分析结论写在留言区里，我会在下一篇文章的末尾和你讨论这个问题。感谢你的收

听，也欢迎你把这篇文章分享给更多的朋友一起阅读。

上期问题时间

上期我留给你的问题是，给一个学号字段创建索引，有哪些方法。

由于这个学号的规则，无论是正向还是反向的前缀索引，重复度都比较高。因为维护的只是一个

学校的，因此前面6位（其中，前三位是所在城市编号、第四到第六位是学校编号）其实是固定

的，邮箱后缀都是@gamil.com，因此可以只存入学年份加顺序编号，它们的长度是9位。

而其实在此基础上，可以用数字类型来存这9位数字。比如201100001，这样只需要占4个字

节。其实这个就是一种hash，只是它用了最简单的转换规则：字符串转数字的规则，而刚好我

们设定的这个背景，可以保证这个转换后结果的唯一性。

评论区中，也有其他一些很不错的见解。

评论用户@封建的风 说，一个学校的总人数这种数据量，50年才100万学生，这个表肯定是小

表。为了业务简单，直接存原来的字符串。这个答复里面包含了“优化成本和收益”的思想，我觉

得值得at出来。

@小潘 同学提了另外一个极致的方向。如果碰到表数据量特别大的场景，通过这种方式的收益

是很不错的。

评论区留言点赞板：

@lttzzlll ，提到了用整型存“四位年份+五位编号”的方法；

由于整个学号的值超过了int上限，@老杨同志 也提到了用8个字节的bigint来存的方法。

	12 | 为什么我的MySQL会“抖”一下？
	你的SQL语句为什么变“慢”了
	InnoDB刷脏页的控制策略
	小结
	上期问题时间

