
19 | 为什么我只查一行的语句，也执行这么慢？

2018-12-26 林晓斌

一般情况下，如果我跟你说查询性能优化，你首先会想到一些复杂的语句，想到查询需要返回大

量的数据。但有些情况下，“查一行”，也会执行得特别慢。今天，我就跟你聊聊这个有趣的话

题，看看什么情况下，会出现这个现象。

需要说明的是，如果MySQL数据库本身就有很大的压力，导致数据库服务器CPU占用率很高或

ioutil（IO利用率）很高，这种情况下所有语句的执行都有可能变慢，不属于我们今天的讨论范

围。

为了便于描述，我还是构造一个表，基于这个表来说明今天的问题。这个表有两个字段id和c，

并且我在里面插入了10万行记录。



接下来，我会用几个不同的场景来举例，有些是前面的文章中我们已经介绍过的知识点，你看看

能不能一眼看穿，来检验一下吧。

第一类：查询长时间不返回

如图1所示，在表t执行下面的SQL语句：

查询结果长时间不返回。

图1 查询长时间不返回

一般碰到这种情况的话，大概率是表t被锁住了。接下来分析原因的时候，一般都是首先执行一

下show processlist命令，看看当前语句处于什么状态。

mysql> CREATE TABLE t̀  ̀(

  ìd  ̀int(11) NOT NULL,

  `c  ̀int(11) DEFAULT NULL,

  PRIMARY KEY (̀ id )̀

) ENGINE=InnoDB;

delimiter ;;

create procedure idata()

begin

  declare i int;

  set i=1;

  while(i<=100000)do

    insert into t values(i,i);

    set i=i+1;

  end while;

end;;

delimiter ;

call idata();

mysql> select * from t where id=1;



然后我们再针对每种状态，去分析它们产生的原因、如何复现，以及如何处理。

等MDL锁

如图2所示，就是使用show processlist命令查看Waiting for table metadata lock的示意图。

图2 Waiting for table metadata lock状态示意图

出现这个状态表示的是，现在有一个线程正在表 t上请求或者持有MDL写锁，把select语句

堵住了。

在第6篇文章《全局锁和表锁 ：给表加个字段怎么有这么多阻碍？》中，我给你介绍过一种复现

方法。但需要说明的是，那个复现过程是基于MySQL 5.6版本的。而MySQL 5.7版本修改了MDL

的加锁策略，所以就不能复现这个场景了。

不过，在MySQL 5.7版本下复现这个场景，也很容易。如图3所示，我给出了简单的复现步骤。

图3 MySQL 5.7中Waiting for table metadata lock的复现步骤

session A 通过lock table命令持有表t的MDL写锁，而session B的查询需要获取MDL读锁。所

以，session B进入等待状态。

这类问题的处理方式，就是找到谁持有MDL写锁，然后把它kill掉。

但是，由于在show processlist的结果里面，session A的Command列是“Sleep”，导致查找起来

很不方便。不过有了performance_schema和sys系统库以后，就方便多了。（MySQL启动时需

要设置performance_schema=on，相比于设置为off会有10%左右的性能损失)

通过查询sys.schema_table_lock_waits这张表，我们就可以直接找出造成阻塞的process id，把

这个连接用kill 命令断开即可。

https://time.geekbang.org/column/article/69862


图4 查获加表锁的线程id

等 flush

接下来，我给你举另外一种查询被堵住的情况。

我在表t上，执行下面的SQL语句：

这里，我先卖个关子。

你可以看一下图5。我查出来这个线程的状态是Waiting for table flush，你可以设想一下这是什

么原因。

图5 Waiting for table flush状态示意图

这个状态表示的是，现在有一个线程正要对表t做flush操作。MySQL里面对表做flush操作的用

法，一般有以下两个：

这两个flush语句，如果指定表t的话，代表的是只关闭表t；如果没有指定具体的表名，则表示关

闭MySQL里所有打开的表。

但是正常这两个语句执行起来都很快，除非它们也被别的线程堵住了。

所以，出现Waiting for table flush状态的可能情况是：有一个flush tables命令被别的语句堵住

mysql> select * from information_schema.processlist where id=1;

flush tables t with read lock;

flush tables with read lock;



了，然后它又堵住了我们的select语句。

现在，我们一起来复现一下这种情况，复现步骤如图6所示：

图6 Waiting for table flush的复现步骤

在session A中，我故意每行都调用一次sleep(1)，这样这个语句默认要执行10万秒，在这期间表

t一直是被session A“打开”着。然后，session B的flush tables t命令再要去关闭表t，就需要等

session A的查询结束。这样，session C要再次查询的话，就会被flush 命令堵住了。

图7是这个复现步骤的show processlist结果。这个例子的排查也很简单，你看到这个show

processlist的结果，肯定就知道应该怎么做了。

图 7 Waiting for table flush的show processlist 结果

等行锁

现在，经过了表级锁的考验，我们的select 语句终于来到引擎里了。

上面这条语句的用法你也很熟悉了，我们在第8篇《事务到底是隔离的还是不隔离的？》文章介

绍当前读时提到过。

由于访问id=1这个记录时要加读锁，如果这时候已经有一个事务在这行记录上持有一个写锁，我

们的select语句就会被堵住。

复现步骤和现场如下：

mysql> select * from t where id=1 lock in share mode; 

https://time.geekbang.org/column/article/70562


图 8 行锁复现

图 9 行锁show processlist 现场

显然，session A启动了事务，占有写锁，还不提交，是导致session B被堵住的原因。

这个问题并不难分析，但问题是怎么查出是谁占着这个写锁。如果你用的是MySQL 5.7版本，可

以通过sys.innodb_lock_waits 表查到。

查询方法是：

mysql> select * from t sys.innodb_lock_waits where locked_table= '̀test'.'t'̀ \G



图10 通过sys.innodb_lock_waits 查行锁

可以看到，这个信息很全，4号线程是造成堵塞的罪魁祸首。而干掉这个罪魁祸首的方式，就是

KILL QUERY 4或KILL 4。

不过，这里不应该显示“KILL QUERY 4”。这个命令表示停止4号线程当前正在执行的语句，而这

个方法其实是没有用的。因为占有行锁的是update语句，这个语句已经是之前执行完成了的，

现在执行KILL QUERY，无法让这个事务去掉id=1上的行锁。

实际上，KILL 4才有效，也就是说直接断开这个连接。这里隐含的一个逻辑就是，连接被断开的

时候，会自动回滚这个连接里面正在执行的线程，也就释放了id=1上的行锁。

第二类：查询慢

经过了重重封“锁”，我们再来看看一些查询慢的例子。

先来看一条你一定知道原因的SQL语句：

mysql> select * from t where c=50000 limit 1;



由于字段c上没有索引，这个语句只能走id主键顺序扫描，因此需要扫描5万行。

作为确认，你可以看一下慢查询日志。注意，这里为了把所有语句记录到slow log里，我在连接

后先执行了 set long_query_time=0，将慢查询日志的时间阈值设置为0。

图11 全表扫描5万行的slow log

Rows_examined显示扫描了50000行。你可能会说，不是很慢呀，11.5毫秒就返回了，我们线上

一般都配置超过1秒才算慢查询。但你要记住：坏查询不一定是慢查询。我们这个例子里面只

有10万行记录，数据量大起来的话，执行时间就线性涨上去了。

扫描行数多，所以执行慢，这个很好理解。

但是接下来，我们再看一个只扫描一行，但是执行很慢的语句。

如图12所示，是这个例子的slow log。可以看到，执行的语句是

虽然扫描行数是1，但执行时间却长达800毫秒。

图12 扫描一行却执行得很慢

是不是有点奇怪呢，这些时间都花在哪里了？

如果我把这个slow log的截图再往下拉一点，你可以看到下一个语句，select * from t where id=1

lock in share mode，执行时扫描行数也是1行，执行时间是0.2毫秒。

图 13 加上lock in share mode的slow log

看上去是不是更奇怪了？按理说lock in share mode还要加锁，时间应该更长才对啊。

可能有的同学已经有答案了。如果你还没有答案的话，我再给你一个提示信息，图14是这两个

mysql> select * from t where id=1；



语句的执行输出结果。

图14 两个语句的输出结果

第一个语句的查询结果里c=1，带lock in share mode的语句返回的是c=1000001。看到这里应该

有更多的同学知道原因了。如果你还是没有头绪的话，也别着急。我先跟你说明一下复现步骤，

再分析原因。

图15 复现步骤

你看到了，session A先用start transaction with consistent snapshot命令启动了一个事务，之后

session B才开始执行update 语句。

session B执行完100万次update语句后，id=1这一行处于什么状态呢？你可以从图16中找到答

案。



图16 id=1的数据状态

session B更新完100万次，生成了100万个回滚日志(undo log)。

带lock in share mode的SQL语句，是当前读，因此会直接读到1000001这个结果，所以速度很

快；而select * from t where id=1这个语句，是一致性读，因此需要从1000001开始，依次执行

undo log，执行了100万次以后，才将1这个结果返回。

注意，undo log里记录的其实是“把2改成1”，“把3改成2”这样的操作逻辑，画成减1的目的是方

便你看图。

小结

今天我给你举了在一个简单的表上，执行“查一行”，可能会出现的被锁住和执行慢的例子。这其

中涉及到了表锁、行锁和一致性读的概念。

在实际使用中，碰到的场景会更复杂。但大同小异，你可以按照我在文章中介绍的定位方法，来

定位并解决问题。

最后，我给你留一个问题吧。

我们在举例加锁读的时候，用的是这个语句，select * from t where id=1 lock in share mode。由



于id上有索引，所以可以直接定位到id=1这一行，因此读锁也是只加在了这一行上。

但如果是下面的SQL语句，

这个语句序列是怎么加锁的呢？加的锁又是什么时候释放呢？

你可以把你的观点和验证方法写在留言区里，我会在下一篇文章的末尾给出我的参考答案。感谢

你的收听，也欢迎你把这篇文章分享给更多的朋友一起阅读。

上期问题时间

在上一篇文章最后，我留给你的问题是，希望你可以分享一下之前碰到过的、与文章中类似的场

景。

@封建的风 提到一个有趣的场景，值得一说。我把他的问题重写一下，表结构如下：

假设现在表里面，有100万行数据，其中有10万行数据的b的值是’1234567890’， 假设现在执行

语句是这么写的:

这时候，MySQL会怎么执行呢？

最理想的情况是，MySQL看到字段b定义的是varchar(10)，那肯定返回空呀。可惜，MySQL并没

有这么做。

那要不，就是把’1234567890abcd’拿到索引里面去做匹配，肯定也没能够快速判断出索引树b上

并没有这个值，也很快就能返回空结果。

begin;

select * from t where c=5 for update;

commit;

mysql> CREATE TABLE t̀able_a  ̀(

  ìd  ̀int(11) NOT NULL,

  `b  ̀varchar(10) DEFAULT NULL,

  PRIMARY KEY (̀ id )̀,

  KEY `b  ̀(̀ b )̀

) ENGINE=InnoDB;

mysql> select * from table_a where b='1234567890abcd';



但实际上，MySQL也不是这么做的。

这条SQL语句的执行很慢，流程是这样的：

1. 在传给引擎执行的时候，做了字符截断。因为引擎里面这个行只定义了长度是10，所以只截

了前10个字节，就是’1234567890’进去做匹配；

2. 这样满足条件的数据有10万行；

3. 因为是select *， 所以要做10万次回表；

4. 但是每次回表以后查出整行，到server层一判断，b的值都不是’1234567890abcd’;

5. 返回结果是空。

这个例子，是我们文章内容的一个很好的补充。虽然执行过程中可能经过函数操作，但是最终在

拿到结果后，server层还是要做一轮判断的。

评论区留言点赞板：

@赖阿甘 提到了等号顺序问题，时间上MySQL优化器执行过程中，where 条件部分， a=b和

b=a的写法是一样的。

@沙漠里的骆驼 提到了一个常见的问题。相同的模板语句，但是匹配行数不同，语句执行时

间相差很大。这种情况，在语句里面有order by这样的操作时会更明显。

@Justin 回答了我们正文中的问题，如果id 的类型是整数，传入的参数类型是字符串的时候，

可以用上索引。



某、人   15

最近几张干货越来越多了,很实用,收获不少.先回答今天的问题
版本5.7.13
rc模式下:
session 1:
begin;
select * from t where c=5 for update; 
session 2:
delete from t where c=10 --等待
session 3:
insert into t values(100001,8) --成功
session 1:
commit
session 2:事务执行成功
rr模式下:
begin;
select * from t where c=5 for update; 
session 2:
delete from t where c=10 --等待
session 3:
insert into t values(100001,8) --等待
session 1:
commit
session 2:事务执行成功
session 3：事务执行成功
从上面这两个简单的例子,可以大概看出上锁的流程.
不管是rr模式还是rc模式,这条语句都会先在server层对表加上MDL S锁,然后进入到引擎层。

rc模式下,由于数据量不大只有10W。通过实验可以证明session 1上来就把该表的所有行都锁住
了。

导致其他事务要对该表的所有现有记录做更新,是阻塞状态。为什么insert又能成功?
说明rc模式下for update语句没有上gap锁,所以不阻塞insert对范围加插入意向锁,所以更新成功
。

session 1commit后,session 2执行成功。表明所有行的x锁是在事务提交完成以后才释放。

rr模式下,session 1和session 2与rc模式下都一样,说明rr模式下也对所有行上了X锁。
唯一的区别是insert也等待了,是因为rr模式下对没有索引的更新,聚簇索引上的所有记录，都被
加上了X锁。其次，聚簇索引每条记录间的间隙(GAP)，也同时被加上了GAP锁。由于gap锁阻

精选留言

javascript:;


塞了insert要加的插入意向锁,导致insert也处于等待状态。只有当session 1 commit完成以后。s
ession 1上的所有锁才会释放,S2,S3执行成功

由于例子中的数据量还比较小,如果数据量达到千万级别,就比较直观的能看出,上锁是逐行上锁
的一个过程.扫描一条上一条,直到所有行扫描完,rc模式下对所有行上x锁。rr模式下不仅对所有
行上X锁,还对所有区间上gap锁.直到事务提交或者回滚完成后,上的锁才会被释放。

2018-12-26

 作者回复

分析得非常好。

两个模式下，各增加一个session 4 : update t set c=100 where id=10看看哦

基本就全了��
2018-12-26

薛畅   9

回来老师的问题：

在 Read Committed 隔离级别下，会锁上聚簇索引中的所有记录；
在 Repeatable Read 隔离级别下，会锁上聚簇索引中的所有记录，并且会锁上聚簇索引内的所
有 GAP；
在上面两个隔离级别的情况下，如果设置了 innodb_locks_unsafe_for_binlog 开启 semi-consis
tent read 的话，对于不满足查询条件的记录，MySQL 会提前放锁，不过加锁的过程是不可避
免的。

2018-12-26

似水流年   4

请问老师，为什么select blocking_pid from sys.schema_table_lock_waits;查不到mdl锁的进程i
d，显示为空。

2018-12-28

沙漠里的骆驼   4

@高枕
这里有些资料提供给你参考: 
1. 何登成的技术博客: 加锁分析 http://hedengcheng.com/?p=771
2. 锁的常见种类: http://www.aneasystone.com/archives/2017/11/solving-dead-locks-two.html

2018-12-26

尘封   3

课后问题：d这一列不存在，但是还是要加MDL锁，释放时间应该是事务提交时。

2018-12-26

 作者回复

抱歉，是要写成where c=5 , 发起堪误了
2018-12-26

尘封   3

javascript:;
javascript:;
javascript:;
javascript:;
javascript:;


尘封   3

老师，有没有遇到过select语句一直处于killed状态的情况？

2018-12-26

 作者回复

有� 这个是在后面的文章中会用到的例子
2018-12-26

蠢蠢欲动的腹肌   2

老师，您好

我的mysql版本5.7.24，尝试的时候发现了如下问题
锁住了表T
mysql> lock table T write;
Query OK, 0 rows affected (0.00 sec)
另一个terminal查询时被阻塞，但是查不到blocking_pid ，这是什么情况呢
mysql> select blocking_pid from sys.schema_table_lock_waits;
Empty set (0.00 sec)
ps:发现查询schema_table_lock_waits表与lock table的语句不能放在一个terminal执行，否则会
报

Table 'schema_table_lock_waits' was not locked with LOCK TABLES
自行尝试的同学要注意下，老师有空的话也可以帮看看为什么。。。

2018-12-28

小李子   2

老师，为什么session B 执行了 select in share mode ，在等行锁的时候，session C 执行 
select * from sys.innodb_lock_waits where locked_table='`test`.`t`' 会报这个错 
[Err] 1356 - View 'sys.innodb_lock_waits' references invalid table(s) or column(s) or function(s) 
or definer/invoker of view lack rights to use them，而超时之后，又可以查了？另外，\G 参数会
报语法错误？

2018-12-27

Tony Du   2

对于课后问题，select * from t where c=5 for update，
当级别为RR时，因为字段c上没有索引，会扫主键索引，这时会把表中的记录都加上X锁。同
时，因为对于innodb来说，当级别为RR时，是可以解决幻读的，此时对于每条记录的间隙还要
加上GAP锁。也就是说，表上每一条记录和每一个间隙都锁上了。
当级别为RC时，因为字段c上没有索引，会扫主键索引，这时会把表中的记录都加上X锁。

另外，之前看过相关文章，MySQL在实际实现中有些优化措施，比如当RC时，在MySQL serv
er过滤条件，发现不满足后，会把不满足条件的记录释放锁（这里就是把 c!=5的记录释放锁）
，这里会违背两阶段的约束。当然，之前每条记录的加锁操作还是不能省略的。

还有，对于semi consistent read开启的情况下，也会提前释放锁。

2018-12-27

信信   2

javascript:;
javascript:;
javascript:;
javascript:;


老师你好，图3上方提到MySQL 5.7 版本修改了 MDL 的加锁策略，不能复现第六章的场景。但
我认为只要仍然满足：DML操作加MDL读锁，DDL操作加MDL写锁，并且事务提交才释放锁，
那么就可以复现啊。。。所以5.7到底是改了什么导致无法复现的呢？

2018-12-27

某、人   2

老师我请教一个问题:
flush tables中close table的意思是说的把open_tables里的表全部关闭掉?下次如果有关于某张表
的操作

又把frm file缓存进Open_table_definitions,把表名缓存到open_tables,还是open_table只是一个计
数?
不是特别明白flush table和打开表是个什么流程

2018-12-26

 作者回复

Flush tables是会关掉表，然后下次请求重新读表信息的

第一次打开表其实就是open_table_definitions，包括读表信息一类的

之后再有查询就是拷贝一个对象，加一个计数这样的

2018-12-26

老杨同志   2

愉快的做一下思考题

begin;
select * from t where c=5 for update;
commit;
历史知识的结论是，innodb先锁全表的所有行，返回server层，判断c是否等于5，然后释放c！
=5的行锁。
验证方法：

事务A执行 锁住一行c！=5的记录 比如id =3 c=3
select * from t where id = 3 for update 或者 update t set c=4 where id =3
然后启动新事务B执行上面的语句select * from t where c=5 for update; 看看有没有被阻塞。
用于判断事务B的语句会不会试图锁不满足条件的记录。
然后把事务A和事务B的执行顺序对调一下，也就是先执行B在执行A。看看有没有阻塞，
判断在事务B加锁成功的情况下会不会释放不满足查询条件记录的行锁。

2018-12-26

 作者回复

�� 思路清晰

隔离级别再愉快地改成RR试试�
2018-12-26

javascript:;
javascript:;


小确幸   1

问一下：索引扫描与全表扫描，有什么异同点？

2018-12-26

 作者回复

一般说全表扫描默认是值“扫瞄主键索引”
2018-12-26

陈旭   1

老师，最近遇到了一个问题，看您有什么建议。

业务场景是这样的：

1.开启事务
2.在表a插入一条记录
3.在表b更新一条记录
4.在表c更新一条记录
5.提交事务
看程序日志所有sql都没问题（没看数据库日志），但是结果是2的那条插入了，3和4都没更新
，这个问题有哪几种情况？

2018-12-26

 作者回复

这是被别的并发事务又改回去了吗�

要么是update的值跟原值相同

要么是update条件没有匹配到行

额，最好给一下每个语句执行后的affacted rows , 还有binlog里的日志内容，才好分析
2018-12-26

杰之7   0

通过这一节的阅读学习，老师讲述了一个查询语句被锁住和查询慢的两种情况。

在被锁住中，通过等MDL锁，堵住了select查询语句，可以通过kiss掉持有MDL写锁。第二种
是flush被别的语句堵住，然后flush堵住select语句。第三种是等行锁，通过sys.innodb_lock_w
ait查到，然后kill。

在查询慢中，lock in sharde mode直接读1000001
而select * from t where id=1需要从1000001执行100百万行，所以查询就慢了。

老师昨天给我了学习的建议，每个事例在Mysql中去运行做，有不懂的问老师。真的非常感动
，也给我了会一直跟随老师学习的动力和勇气。学了专栏的一半，需要把之前学的内容复习，

接下来我会跟进老师的课程同时动手做之前的案例，不懂有我的思考之后，会及时请教老师。

2019-01-21

唐名之   0

show VARIABLES LIKE 'performance%';
performance_schema ON

javascript:;
javascript:;
javascript:;
javascript:;


配置已经是打开的

2019-01-11

 作者回复

诶。。那奇怪了

执行

select * from performance_schema.metadata_locks; 看看？
2019-01-11

唐名之   0

环境：mysql-5.7.24
show VARIABLES LIKE 'performance%';
performance_schema ON

A窗口执行：lock table t WRITE;

B窗口执行：select * from t where id=1;

C窗口执行：show PROCESSLIST;
53 slave_user DESKTOP-00HHFO4:63064 Binlog Dump 3027 Master has sent all binlog to sla
ve; waiting for more updates 
54 root localhost:64572 Sleep 157 
55 root localhost:64573 mysql_action Sleep 158 
56 root localhost:64575 mysql_action Sleep 156 
57 root localhost:64576 mysql_action Sleep 156 
58 root localhost:64577 mysql_action Sleep 156 
59 root localhost:64578 mysql_action Sleep 156 
60 root localhost:64579 mysql_action Sleep 144 
61 root localhost:64581 mysql_action Query 140 Waiting for table metadata lock select * from t
where id=1
62 root localhost:64583 mysql_action Query 0 starting 

show PROCESSLIST
已出现：“Waiting for table metadata ” 但这三张表都查不出数据，求解；
SELECT * FROM INFORMATION_SCHEMA.INNODB_LOCKS;
SELECT * FROM INFORMATION_SCHEMA.INNODB_LOCK_WAITS；
SELECT * from sys.schema_table_lock_waits;

2019-01-11

 作者回复

SELECT * from sys.schema_table_lock_waits; 是需要配置里面把performance_schema打开的

；

前面两个语句是只会显示跟innodb的行锁相关的，表级的锁不会显示在这两个表
2019-01-11

javascript:;


M   0

老师讲的很好

2019-01-09

 作者回复

多谢鼓励

看文章的同学都很细致，不敢不认真�
2019-01-09

alias cd=rm -rf   0

思考题

c无索引x锁应该是锁表。
解锁我觉得应该是sessionb的事物提交之后

2019-01-08

 作者回复

不是锁表哈，innodb里面除非明确写lock table，不会锁表；

解锁时机对的

2019-01-10

ʘᴗʘ小白帽ʘᴗʘ   0

涨知识了

2019-01-04

javascript:;
javascript:;
javascript:;

	19 | 为什么我只查一行的语句，也执行这么慢？
	第一类：查询长时间不返回
	等MDL锁
	等flush
	等行锁

	第二类：查询慢
	小结
	上期问题时间
	精选留言


