
24 | MySQL是怎么保证主备一致的？

2019-01-07 林晓斌

在前面的文章中，我不止一次地和你提到了binlog，大家知道binlog可以用来归档，也可以用来

做主备同步，但它的内容是什么样的呢？为什么备库执行了binlog就可以跟主库保持一致了呢？

今天我就正式地和你介绍一下它。

毫不夸张地说，MySQL能够成为现下最流行的开源数据库，binlog功不可没。

在最开始，MySQL是以容易学习和方便的高可用架构，被开发人员青睐的。而它的几乎所有的

高可用架构，都直接依赖于binlog。虽然这些高可用架构已经呈现出越来越复杂的趋势，但都是

从最基本的一主一备演化过来的。

今天这篇文章我主要为你介绍主备的基本原理。理解了背后的设计原理，你也可以从业务开发的

角度，来借鉴这些设计思想。

MySQL主备的基本原理

如图1所示就是基本的主备切换流程。

图 1 MySQL主备切换流程

在状态1中，客户端的读写都直接访问节点A，而节点B是A的备库，只是将A的更新都同步过

来，到本地执行。这样可以保持节点B和A的数据是相同的。

当需要切换的时候，就切成状态2。这时候客户端读写访问的都是节点B，而节点A是B的备库。

在状态1中，虽然节点B没有被直接访问，但是我依然建议你把节点B（也就是备库）设置成只读

（readonly）模式。这样做，有以下几个考虑：

1. 有时候一些运营类的查询语句会被放到备库上去查，设置为只读可以防止误操作；

2. 防止切换逻辑有bug，比如切换过程中出现双写，造成主备不一致；

3. 可以用readonly状态，来判断节点的角色。

你可能会问，我把备库设置成只读了，还怎么跟主库保持同步更新呢？

这个问题，你不用担心。因为readonly设置对超级(super)权限用户是无效的，而用于同步更新的

线程，就拥有超级权限。

接下来，我们再看看节点A到B这条线的内部流程是什么样的。图2中画出的就是一个update

语句在节点A执行，然后同步到节点B的完整流程图。

图2 主备流程图

图2中，包含了我在上一篇文章中讲到的binlog和redo log的写入机制相关的内容，可以看到：主

库接收到客户端的更新请求后，执行内部事务的更新逻辑，同时写binlog。

备库B跟主库A之间维持了一个长连接。主库A内部有一个线程，专门用于服务备库B的这个长连

接。一个事务日志同步的完整过程是这样的：

1. 在备库B上通过change master命令，设置主库A的IP、端口、用户名、密码，以及要从哪个

位置开始请求binlog，这个位置包含文件名和日志偏移量。

2. 在备库B上执行start slave命令，这时候备库会启动两个线程，就是图中的io_thread和

sql_thread。其中io_thread负责与主库建立连接。

3. 主库A校验完用户名、密码后，开始按照备库B传过来的位置，从本地读取binlog，发给B。

4. 备库B拿到binlog后，写到本地文件，称为中转日志（relay log）。

5. sql_thread读取中转日志，解析出日志里的命令，并执行。

这里需要说明，后来由于多线程复制方案的引入，sql_thread演化成为了多个线程，跟我们今天

要介绍的原理没有直接关系，暂且不展开。

分析完了这个长连接的逻辑，我们再来看一个问题：binlog里面到底是什么内容，为什么备库拿

过去可以直接执行。

binlog的三种格式对比

我在第15篇答疑文章中，和你提到过binlog有两种格式，一种是statement，一种是row。可能你

在其他资料上还会看到有第三种格式，叫作mixed，其实它就是前两种格式的混合。

为了便于描述binlog的这三种格式间的区别，我创建了一个表，并初始化几行数据。

如果要在表中删除一行数据的话，我们来看看这个delete语句的binlog是怎么记录的。

注意，下面这个语句包含注释，如果你用MySQL客户端来做这个实验的话，要记得加-c参数，否

则客户端会自动去掉注释。

当binlog_format=statement时，binlog里面记录的就是SQL语句的原文。你可以用

mysql> CREATE TABLE t̀ ̀(

 ìd ̀int(11) NOT NULL,

 `a ̀int(11) DEFAULT NULL,

 t̀_modified ̀timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP,

 PRIMARY KEY (̀ id)̀,

 KEY `a ̀(̀ a)̀,

 KEY t̀_modified (̀̀ t_modified)̀

) ENGINE=InnoDB;

insert into t values(1,1,'2018-11-13');

insert into t values(2,2,'2018-11-12');

insert into t values(3,3,'2018-11-11');

insert into t values(4,4,'2018-11-10');

insert into t values(5,5,'2018-11-09');

mysql> delete from t /*comment*/ where a>=4 and t_modified<='2018-11-10' limit 1;

mysql> show binlog events in 'master.000001';

https://time.geekbang.org/column/article/73161

命令看binlog中的内容。

图3 statement格式binlog 示例

现在，我们来看一下图3的输出结果。

第一行SET @@SESSION.GTID_NEXT='ANONYMOUS’你可以先忽略，后面文章我们会在

介绍主备切换的时候再提到；

第二行是一个BEGIN，跟第四行的commit对应，表示中间是一个事务；

第三行就是真实执行的语句了。可以看到，在真实执行的delete命令之前，还有一个“use

‘test’”命令。这条命令不是我们主动执行的，而是MySQL根据当前要操作的表所在的数据库，

自行添加的。这样做可以保证日志传到备库去执行的时候，不论当前的工作线程在哪个库

里，都能够正确地更新到test库的表t。

use 'test’命令之后的delete 语句，就是我们输入的SQL原文了。可以看到，binlog“忠实”地记

录了SQL命令，甚至连注释也一并记录了。

最后一行是一个COMMIT。你可以看到里面写着xid=61。你还记得这个XID是做什么用的吗？

如果记忆模糊了，可以再回顾一下第15篇文章中的相关内容。

为了说明statement 和 row格式的区别，我们来看一下这条delete命令的执行效果图：

图4 delete执行warnings

可以看到，运行这条delete命令产生了一个warning，原因是当前binlog设置的是statement格

式，并且语句中有limit，所以这个命令可能是unsafe的。

为什么这么说呢？这是因为delete 带limit，很可能会出现主备数据不一致的情况。比如上面这个

例子：

1. 如果delete语句使用的是索引a，那么会根据索引a找到第一个满足条件的行，也就是说删除

的是a=4这一行；

2. 但如果使用的是索引t_modified，那么删除的就是 t_modified='2018-11-09’也就是a=5这一

行。

https://time.geekbang.org/column/article/73161

由于statement格式下，记录到binlog里的是语句原文，因此可能会出现这样一种情况：在主库

执行这条SQL语句的时候，用的是索引a；而在备库执行这条SQL语句的时候，却使用了索引

t_modified。因此，MySQL认为这样写是有风险的。

那么，如果我把binlog的格式改为binlog_format=‘row’， 是不是就没有这个问题了呢？我们先来

看看这时候binog中的内容吧。

图5 row格式binlog 示例

可以看到，与statement格式的binlog相比，前后的BEGIN和COMMIT是一样的。但是，row格式

的binlog里没有了SQL语句的原文，而是替换成了两个event：Table_map和Delete_rows。

1. Table_map event，用于说明接下来要操作的表是test库的表t;

2. Delete_rows event，用于定义删除的行为。

其实，我们通过图5是看不到详细信息的，还需要借助mysqlbinlog工具，用下面这个命令解析和

查看binlog中的内容。因为图5中的信息显示，这个事务的binlog是从8900这个位置开始的，所以

可以用start-position参数来指定从这个位置的日志开始解析。

mysqlbinlog -vv data/master.000001 --start-position=8900;

图6 row格式binlog 示例的详细信息

从这个图中，我们可以看到以下几个信息：

server id 1，表示这个事务是在server_id=1的这个库上执行的。

每个event都有CRC32的值，这是因为我把参数binlog_checksum设置成了CRC32。

Table_map event跟在图5中看到的相同，显示了接下来要打开的表，map到数字226。现在我

们这条SQL语句只操作了一张表，如果要操作多张表呢？每个表都有一个对应的Table_map

event、都会map到一个单独的数字，用于区分对不同表的操作。

我们在mysqlbinlog的命令中，使用了-vv参数是为了把内容都解析出来，所以从结果里面可以

看到各个字段的值（比如，@1=4、 @2=4这些值）。

binlog_row_image的默认配置是FULL，因此Delete_event里面，包含了删掉的行的所有字段

的值。如果把binlog_row_image设置为MINIMAL，则只会记录必要的信息，在这个例子里，

就是只会记录id=4这个信息。

最后的Xid event，用于表示事务被正确地提交了。

你可以看到，当binlog_format使用row格式的时候，binlog里面记录了真实删除行的主键id，这样

binlog传到备库去的时候，就肯定会删除id=4的行，不会有主备删除不同行的问题。

为什么会有mixed格式的binlog？

基于上面的信息，我们来讨论一个问题：为什么会有mixed这种binlog格式的存在场景？推论

过程是这样的：

因为有些statement格式的binlog可能会导致主备不一致，所以要使用row格式。

但row格式的缺点是，很占空间。比如你用一个delete语句删掉10万行数据，用statement的

话就是一个SQL语句被记录到binlog中，占用几十个字节的空间。但如果用row格式的binlog，

就要把这10万条记录都写到binlog中。这样做，不仅会占用更大的空间，同时写binlog也要耗

费IO资源，影响执行速度。

所以，MySQL就取了个折中方案，也就是有了mixed格式的binlog。mixed格式的意思

是，MySQL自己会判断这条SQL语句是否可能引起主备不一致，如果有可能，就用row格式，

否则就用statement格式。

也就是说，mixed格式可以利用statment格式的优点，同时又避免了数据不一致的风险。

因此，如果你的线上MySQL设置的binlog格式是statement的话，那基本上就可以认为这是一个

不合理的设置。你至少应该把binlog的格式设置为mixed。

比如我们这个例子，设置为mixed后，就会记录为row格式；而如果执行的语句去掉limit 1，就会

记录为statement格式。

当然我要说的是，现在越来越多的场景要求把MySQL的binlog格式设置成row。这么做的理由有

很多，我来给你举一个可以直接看出来的好处：恢复数据。

接下来，我们就分别从delete、insert和update这三种SQL语句的角度，来看看数据恢复的问

题。

通过图6你可以看出来，即使我执行的是delete语句，row格式的binlog也会把被删掉的行的整行

信息保存起来。所以，如果你在执行完一条delete语句以后，发现删错数据了，可以直接把

binlog中记录的delete语句转成insert，把被错删的数据插入回去就可以恢复了。

如果你是执行错了insert语句呢？那就更直接了。row格式下，insert语句的binlog里会记录所有的

字段信息，这些信息可以用来精确定位刚刚被插入的那一行。这时，你直接把insert语句转成

delete语句，删除掉这被误插入的一行数据就可以了。

如果执行的是update语句的话，binlog里面会记录修改前整行的数据和修改后的整行数据。所

以，如果你误执行了update语句的话，只需要把这个event前后的两行信息对调一下，再去数据

库里面执行，就能恢复这个更新操作了。

其实，由delete、insert或者update语句导致的数据操作错误，需要恢复到操作之前状态的情

况，也时有发生。MariaDB的Flashback工具就是基于上面介绍的原理来回滚数据的。

虽然mixed格式的binlog现在已经用得不多了，但这里我还是要再借用一下mixed格式来说明一个

问题，来看一下这条SQL语句：

如果我们把binlog格式设置为mixed，你觉得MySQL会把它记录为row格式还是statement格式

呢？

先不要着急说结果，我们一起来看一下这条语句执行的效果。

图7 mixed格式和now()

可以看到，MySQL用的居然是statement格式。你一定会奇怪，如果这个binlog过了1分钟才传给

备库的话，那主备的数据不就不一致了吗？

接下来，我们再用mysqlbinlog工具来看看：

mysql> insert into t values(10,10, now());

https://mariadb.com/kb/en/library/flashback/

图8 TIMESTAMP 命令

从图中的结果可以看到，原来binlog在记录event的时候，多记了一条命令：SET

TIMESTAMP=1546103491。它用 SET TIMESTAMP命令约定了接下来的now()函数的返回时

间。

因此，不论这个binlog是1分钟之后被备库执行，还是3天后用来恢复这个库的备份，这个insert

语句插入的行，值都是固定的。也就是说，通过这条SET TIMESTAMP命令，MySQL就确保了

主备数据的一致性。

我之前看过有人在重放binlog数据的时候，是这么做的：用mysqlbinlog解析出日志，然后把里面

的statement语句直接拷贝出来执行。

你现在知道了，这个方法是有风险的。因为有些语句的执行结果是依赖于上下文命令的，直接执

行的结果很可能是错误的。

所以，用binlog来恢复数据的标准做法是，用 mysqlbinlog工具解析出来，然后把解析结果整个发

给MySQL执行。类似下面的命令：

这个命令的意思是，将 master.000001 文件里面从第2738字节到第2973字节中间这段内容解析

出来，放到MySQL去执行。

循环复制问题

通过上面对MySQL中binlog基本内容的理解，你现在可以知道，binlog的特性确保了在备库执行

相同的binlog，可以得到与主库相同的状态。

因此，我们可以认为正常情况下主备的数据是一致的。也就是说，图1中A、B两个节点的内容是

一致的。其实，图1中我画的是M-S结构，但实际生产上使用比较多的是双M结构，也就是图9所

示的主备切换流程。

mysqlbinlog master.000001 --start-position=2738 --stop-position=2973 | mysql -h127.0.0.1 -P13000 -u$user -p$pwd;

图 9 MySQL主备切换流程--双M结构

对比图9和图1，你可以发现，双M结构和M-S结构，其实区别只是多了一条线，即：节点A和B

之间总是互为主备关系。这样在切换的时候就不用再修改主备关系。

但是，双M结构还有一个问题需要解决。

业务逻辑在节点A上更新了一条语句，然后再把生成的binlog 发给节点B，节点B执行完这条更新

语句后也会生成binlog。（我建议你把参数log_slave_updates设置为on，表示备库执行relay log

后生成binlog）。

那么，如果节点A同时是节点B的备库，相当于又把节点B新生成的binlog拿过来执行了一次，然

后节点A和B间，会不断地循环执行这个更新语句，也就是循环复制了。这个要怎么解决呢？

从上面的图6中可以看到，MySQL在binlog中记录了这个命令第一次执行时所在实例的server

id。因此，我们可以用下面的逻辑，来解决两个节点间的循环复制的问题：

1. 规定两个库的server id必须不同，如果相同，则它们之间不能设定为主备关系；

2. 一个备库接到binlog并在重放的过程中，生成与原binlog的server id相同的新的binlog；

3. 每个库在收到从自己的主库发过来的日志后，先判断server id，如果跟自己的相同，表示这

个日志是自己生成的，就直接丢弃这个日志。

按照这个逻辑，如果我们设置了双M结构，日志的执行流就会变成这样：

1. 从节点A更新的事务，binlog里面记的都是A的server id；

2. 传到节点B执行一次以后，节点B生成的binlog 的server id也是A的server id；

3. 再传回给节点A，A判断到这个server id与自己的相同，就不会再处理这个日志。所以，死循

环在这里就断掉了。

小结

今天这篇文章，我给你介绍了MySQL binlog的格式和一些基本机制，是后面我要介绍的读写分

离等系列文章的背景知识，希望你可以认真消化理解。

binlog在MySQL的各种高可用方案上扮演了重要角色。今天介绍的可以说是所有MySQL高可用

方案的基础。在这之上演化出了诸如多节点、半同步、MySQL group replication等相对复杂的方

案。

我也跟你介绍了MySQL不同格式binlog的优缺点，和设计者的思考。希望你在做系统开发时候，

也能借鉴这些设计思想。

最后，我给你留下一个思考题吧。

说到循环复制问题的时候，我们说MySQL通过判断server id的方式，断掉死循环。但是，这个机

制其实并不完备，在某些场景下，还是有可能出现死循环。

你能构造出一个这样的场景吗？又应该怎么解决呢？

你可以把你的设计和分析写在评论区，我会在下一篇文章跟你讨论这个问题。感谢你的收听，也

欢迎你把这篇文章分享给更多的朋友一起阅读。

上期问题时间

上期我留给你的问题是，你在什么时候会把线上生产库设置成“非双1”。我目前知道的场景，有

以下这些：

1. 业务高峰期。一般如果有预知的高峰期，DBA会有预案，把主库设置成“非双1”。

2. 备库延迟，为了让备库尽快赶上主库。@永恒记忆和@Second Sight提到了这个场景。

3. 用备份恢复主库的副本，应用binlog的过程，这个跟上一种场景类似。

4. 批量导入数据的时候。

一般情况下，把生产库改成“非双1”配置，是设置innodb_flush_logs_at_trx_commit=2、

sync_binlog=1000。

评论区留言点赞板：

Sinyo  2

@way 同学提到了一个有趣的现象，由于从库设置了 binlog_group_commit_sync_delay和

binlog_group_commit_sync_no_delay_count导致一直延迟的情况。我们在主库设置这两个参

数，是为了减少binlog的写盘压力。备库这么设置，尤其在“快要追上”的时候，就反而会受这

两个参数的拖累。一般追主备就用“非双1”（追上记得改回来）。

@一大只 同学验证了在sync_binlog=0的情况下，设置sync_delay和sync_no_delay_count的

现象，点赞这种发现边界的意识和手动验证的好习惯。是这样的：sync_delay和

sync_no_delay_count的逻辑先走，因此该等还是会等。等到满足了这两个条件之一，就进入

sync_binlog阶段。这时候如果判断sync_binlog=0，就直接跳过，还是不调fsync。

@锅子 同学提到，设置sync_binlog=0的时候，还是可以看到binlog文件马上做了修改。这个

是对的，我们说“写到了page cache”，就是文件系统的page cache。而你用ls命令看到的就是

文件系统返回的结果。

精选留言

javascript:;

主库 A 从本地读取 binlog，发给从库 B；
老师，请问这里的本地是指文件系统的 page cache还是disk呢？

2019-01-21

 作者回复

好问题，

是这样的，对于A的线程来说，就是“读文件”，

1. 如果这个文件现在还在 page cache中，那就最好了，直接读走；

2. 如果不在page cache里，就只好去磁盘读

这个行为是文件系统控制的，MySQL只是执行“读文件”这个操作
2019-01-21

Leon�  1

老师，我想问下双M架构下，主从复制，是不是一方判断自己的数据比对方少就从对方复制，
判断依据是什么

2019-01-25

 作者回复

好问题。

一开始创建主备关系的时候， 是由备库指定的。

比如基于位点的主备关系，备库说“我要从binlog文件A的位置P”开始同步， 主库就从这个指定

的位置开始往后发。

而主备复制关系搭建完成以后，是主库来决定“要发数据给备库”的。

所以主库有生成新的日志，就会发给备库。

2019-01-25

观弈道人  6

老师你好，问个备份问题，假如周日23点做了备份，周二20点需要恢复数据，那么在用binlog
恢复时，如何恰好定位到周日23点的binlog,谢谢。

2019-01-07

 作者回复

Mysqlbinlog有个参数—stop-datetime
2019-01-07

堕落天使  3

老师，您好，问一个关于change buffer的问题。
对于insert语句来说，change buffer的优化主要在非唯一的二级索引上，因为主键是唯一索引，
插入必须要判断是否存在。

那么对于update语句呢？如下（假设c有非唯一索引，id是主键，d没有索引）：

javascript:;
javascript:;
javascript:;

update t set d=2 where c=10;
原先以为：从索引c取出id之后，不会回表，也不会把修改行的数据读入内存，而是直接在chan
ge buffer中记录一下。但看了今天得内容之后又迷糊了，因为如果不把修改行的数据读入内存
，它又怎么把旧数据写入binlog中呢？
所以我想问的就是，上面的sql语句会不会把修改行的内容也读进内存？如果读进内存，那读进
内存的这一步难道就为了写binlog吗？如果不读进内存，那binlog中的旧数据又是怎么来的呢？
还有delete语句也同理。

2019-01-07

 作者回复

修改的行要读入内存呀

写binlog只需要主键索引上的值

你这个语句的话，如果字段c d上都有索引，那么c用不上chsnge buffer,

D可能可以同上
2019-01-07

hua168  2

大神，我前些天去面试，面试官问了一题:
mysql做主从，一段时间后发现从库在高峰期会发生一两条条数据丢失（不记得是查询行空白
还是查询不到了），主从正常，怎么判断？

1.我问他是不是所以从库都是一样，他说不一样
2.我说低峰期重做新的从库观察，查看日志有没有报错？他好像不满意这个答案。

二、他还问主库挂了怎么办？

1. mysql主从+keepalived/heartbeat
有脑裂，还是有前面丢数据问题

2. 用MMM或HMA之类
3.用ZK之类

三、写的压力大怎么办？

我回答，分库，分表

感觉整天他都不怎么满意，果然没让我复试了，我郁闷呀，我就面试运维的，问数据这么详细

。�
大神，能说下我哪里有问题吗？现在我都想不明白�

2019-01-08

 作者回复

运维现在要求也挺高的

第一个问题其实我也没看懂，“高峰期丢数据”是指主备延迟查不到数据，还是真的丢了，得先

问清楚下

javascript:;

不过你回答的第二点不太好，低峰期重做这个大家都知道要这么做，而且只是修复动作，没办

法用来定位原因，面试官是要问你分析问题的方法（方向错误）

重搭从库错误日志里面什么都没有的（这个比较可惜，暴露了对字节不够了解，一般不了解的

方法在面试的时候是不如不说的）

第二个问题三点都是你回答的吗？那还算回答得可以的，但是不能只讲名词，要找个你熟悉细

节的方案展开一下

三方向也是对的

我估计就是第一个问题减分比较厉害

2019-01-08

HuaMax  2

课后题。如果在同步的过程中修改了server id，那用原server id 生成的log被两个M认为都不是
自己的而被循环执行，不知这种情况会不会发生

2019-01-07

 作者回复

是的，会

2019-01-07

风二中  1

在主库执行这条 SQL 语句的时候，用的是索引 a；而在备库执行这条 SQL 语句的时候，却使
用了索引 t_modified
老师，您好，这里索引选择不一样，是因为前面提到的mysql 会选错索引吗？这种情况应该发
生比较少吧，这里应该都会选择索引a吧，还是说这里只是一个事例，还有更复杂的情况

2019-01-12

 作者回复

对，只是一个举例的

2019-01-12

夜空中最亮的星（华仔）  1

级联复制，3个数据库，首尾相连，应会出现死循环

2019-01-08

 作者回复

不会哦，1给2，2给3，3给1，1就放弃了

不过引入第三个节点的思路是对的哈�
2019-01-08

changshan  1

javascript:;
javascript:;
javascript:;
javascript:;

老师好，mixed是row和statement的优点整合折中方案，这应该是好多系统设计理念吧？那么
问题一：mixed既然能判断是什么时候使用row，什么时候使用statement，那么为什么好多推
荐都是使用row而且不是使用mixed呢？是因为mixed这种模式下的自动选择转换不准确可能会
出现主从问题吗？问题二：当使用mixed模式情况下，mysql内部是怎么判断的呢？比如有limit
语句就会选择记录row格式，有now()函数还是同样会记录statement格式，mysql只是简单的某
些特定场景下会使用记录row格式吗？谢谢。

2019-01-07

 作者回复

1. 就是我们文中后面说的那些原因，要用这些binlog的内容去做别的事情�

2. 对，固定模式下的。好问题，我去拉不下最新版本代码看下规则
2019-01-07

柚子  1

大佬您好，文中说现在越来越多的使用row方式的binlog，那么只能选择接受写入慢和占用空间
大的弊端么？

2019-01-07

 作者回复

是的，当然还有minimal可选，会好些�
2019-01-07

汪炜  0

老师，问个问题，希望能被回答：

mmysql不是双一设置的时候，破坏了二阶段提交，事务已提交，redo没有及时刷盘，binlog刷
盘了，这种情况，mysql是怎么恢复的，这个事务到底算不算提交？

2019-01-23

 作者回复

如果”redo没有及时刷盘，binlog刷盘了”之后瞬间数据库所在主机掉电，

主机重启，MySQL重启以后，这个事务会丢失；这里确实会引起日志和数据不一致，

这个就是我们说要默认设置为双1的原因之一哈
2019-01-23

Mackie .Weng  0

老师，你的课真好， 你讲的都是生产实际用到的，点赞~
不过近期有点苦恼，要请教一下近期遇到的事

场景：

SSD硬盘，我们数据一天一备份，想通过昨天凌晨备份+binlog恢复到最新数据，导出的binlog
为2G，然后发现导入binlog花费了4，5小时，看了下binlog日志里面有很多这种信息
at 2492
#190108 17:08:38 server id 2 end_log_pos 2601 CRC32 0x8b0598ec Query thread_id=1227779
5 exec_time=0 error_code=0
SET TIMESTAMP=1546938518/*!*/;
BEGIN

javascript:;
javascript:;
javascript:;

/*!*/;
at 2601
at 2633
at 2919
#190108 17:08:38 server id 2 end_log_pos 2950 CRC32 0x13806369 Xid = 1924155105
COMMIT/*!*/;

问题：

1、在导出binlog为2G而且看了下里面很多这种事务，这是什么东西，有什么用吗
2、这种事务在导出binlog的时候可以不记录吗，然后来提高恢复数据的速度？
3、如果这是正常的情况，有无推荐更好的数据恢复方案或者工具

感谢老师

2019-01-14

 作者回复

1. 有用，最好保留这些信息一起执行；

2. 提升不了多少速度的，花时间主要还是在更新数据的那些日志上，那些日志又不能去掉的：

）

3. 这个方案是串行恢复。你可以把全量恢复出来的库，接成线上一个从库的备库，开并行复制

，

2019-01-14

秋一匹  0

老师，您好。我这慢了一步。。。学习晚了点。我这之前碰到了个问题，有一段时间主从复制

延迟比较厉害，达到5s左右吧，一般都是1～2秒吧。首先排除不是网络原因。想问下还有哪些
因素会影响主从复制呢？

2019-01-10

 作者回复

还是要给一下更具体的信息

比如主库的tps

备库的跟复制相关的配置等信息

2019-01-10

Mr.Strive.Z.H.L  0

老师你好：

有一个疑惑，多条语句同时在commit阶段过程中，如果发生写入binlog和写入redolog的顺序不
一致的情况。主从备份的时候，从库是不是会导致数据不一致呀？

2019-01-10

未知  0

老师在讲row模式的数据恢复时，感觉insert，update，delete的数据格式和undo log的差不多。
之前文章一直说redo和binlog，老师抽空也讲下undo和回滚段的知识。

2019-01-10

javascript:;
javascript:;
javascript:;

 作者回复

Undo前面大致有说过了，你要了解undo的什么内容呢
2019-01-10

光  0

林老师今天遇到个问题就是主从同步延迟，查到主从状态中出现：Slave_SQL_Running_State:
Waiting for Slave Workers to free pending events。不知道这个是否会引起延迟。查了些资料说
得都不是很明白。老师是否可以简短解答下。以及这种延迟如何避免。

2019-01-09

 作者回复

这个的意思是， 现在工作线程里面等待的队列太多，都已经超过上限了，要等工作线程消化掉

一些事务再分

简单说，就是备库的应用日志的队列太慢了。。

2019-01-10

梁中华  0

我有一个比较极端一点的HA问题，假设主库的binlog刚写成功还未来得及把binlog同步到从库，
主库就掉电了，这时候从库的数据会不完整吗？

第二个问题，原主库重启加入集群后，那条没有传出去的binlog会如何处理？

2019-01-09

不迷失  0

请教一下，生产环境能不能使用正常使用表连接？要注意哪些地方？DBA总是说不建议用，还
催促我将使用了表连接的地方改造，但也说不出个所以然。目前在两个百万级数据的表中有用

到内连接，并没有觉得有什么问题

2019-01-08

 作者回复

索引使用正确，不要出现全表扫描，其实OK的
2019-01-08

hua168  0

这样，我是想增加一些经验，怕后面试又遇到，想问一下大神分析思路，这种问题没经验回答

。

我就差点回答用阿里云的DRDS了�

现在开源的mysql中间件生存环境中用什么比较多呀？mycat还是网易的cetus？

海量存储阿里云有OSS，有没有对应的开源软件呀？用于生存环境的，没有接触过，想问下，
搞下实验后再去找工作。�

2019-01-08

 作者回复

中间件作为练手这些都可以的

javascript:;
javascript:;
javascript:;
javascript:;

你搜“开源分布式存储系统”
2019-01-08

React  0

老师好，文章前面说主从最好从机设置readonly.那么在双主的情况(互为主备)下，设置不同的
自增值是否就可以不用设置只读了？且此时复制是否可以跳过主键冲突，因为自增值不同？

2019-01-08

 作者回复

如果自增值严格控制了，也没必要设置跳过主键冲突了对吧（反正不冲突）

除非你的业务就是设计好支持多点写入，否则还是把不写入的都设置上readonly吧
2019-01-08

javascript:;

	24 | MySQL是怎么保证主备一致的？
	MySQL主备的基本原理
	binlog的三种格式对比
	为什么会有mixed格式的binlog？
	循环复制问题
	小结
	上期问题时间
	精选留言

