
30 | 答疑文章（二）：用动态的观点看加锁

2019-01-21 林晓斌

在第20和21篇文章中，我和你介绍了InnoDB的间隙锁、next-key lock，以及加锁规则。在这两

篇文章的评论区，出现了很多高质量的留言。我觉得通过分析这些问题，可以帮助你加深对加锁

规则的理解。

所以，我就从中挑选了几个有代表性的问题，构成了今天这篇答疑文章的主题，即：用动态的观

点看加锁。

为了方便你理解，我们再一起复习一下加锁规则。这个规则中，包含了两个“原则”、两

个“优化”和一个“bug”：

原则1：加锁的基本单位是next-key lock。希望你还记得，next-key lock是前开后闭区间。

原则2：查找过程中访问到的对象才会加锁。

优化1：索引上的等值查询，给唯一索引加锁的时候，next-key lock退化为行锁。

优化2：索引上的等值查询，向右遍历时且最后一个值不满足等值条件的时候，next-key lock

退化为间隙锁。

一个bug：唯一索引上的范围查询会访问到不满足条件的第一个值为止。

接下来，我们的讨论还是基于下面这个表t：

https://time.geekbang.org/column/article/75173
https://time.geekbang.org/column/article/75659

不等号条件里的等值查询

有同学对“等值查询”提出了疑问：等值查询和“遍历”有什么区别？为什么我们文章的例子里

面，where条件是不等号，这个过程里也有等值查询？

我们一起来看下这个例子，分析一下这条查询语句的加锁范围：

利用上面的加锁规则，我们知道这个语句的加锁范围是主键索引上的 (0,5]、(5,10]和(10, 15)。也

就是说，id=15这一行，并没有被加上行锁。为什么呢？

我们说加锁单位是next-key lock，都是前开后闭区间，但是这里用到了优化2，即索引上的等值

查询，向右遍历的时候id=15不满足条件，所以next-key lock退化为了间隙锁 (10, 15)。

但是，我们的查询语句中where条件是大于号和小于号，这里的“等值查询”又是从哪里来的呢？

要知道，加锁动作是发生在语句执行过程中的，所以你在分析加锁行为的时候，要从索引上的数

据结构开始。这里，我再把这个过程拆解一下。

如图1所示，是这个表的索引id的示意图。

CREATE TABLE t̀ ̀(

 ìd ̀int(11) NOT NULL,

 `c ̀int(11) DEFAULT NULL,

 `d ̀int(11) DEFAULT NULL,

 PRIMARY KEY (̀ id)̀,

 KEY `c ̀(̀ c)̀

) ENGINE=InnoDB;

insert into t values(0,0,0),(5,5,5),

(10,10,10),(15,15,15),(20,20,20),(25,25,25);

begin;

select * from t where id>9 and id<12 order by id desc for update;

图1 索引id示意图

1. 首先这个查询语句的语义是order by id desc，要拿到满足条件的所有行，优化器必须先找

到“第一个id<12的值”。

2. 这个过程是通过索引树的搜索过程得到的，在引擎内部，其实是要找到id=12的这个值，只

是最终没找到，但找到了(10,15)这个间隙。

3. 然后向左遍历，在遍历过程中，就不是等值查询了，会扫描到id=5这一行，所以会加一个

next-key lock (0,5]。

也就是说，在执行过程中，通过树搜索的方式定位记录的时候，用的是“等值查询”的方法。

等值查询的过程

与上面这个例子对应的，是@发条橙子同学提出的问题：下面这个语句的加锁范围是什么？

这条查询语句里用的是in，我们先来看这条语句的explain结果。

begin;

select id from t where c in(5,20,10) lock in share mode;

图2 in语句的explain结果

可以看到，这条in语句使用了索引c并且rows=3，说明这三个值都是通过B+树搜索定位的。

在查找c=5的时候，先锁住了(0,5]。但是因为c不是唯一索引，为了确认还有没有别的记录c=5，

就要向右遍历，找到c=10才确认没有了，这个过程满足优化2，所以加了间隙锁(5,10)。

同样的，执行c=10这个逻辑的时候，加锁的范围是(5,10] 和 (10,15)；执行c=20这个逻辑的时

候，加锁的范围是(15,20] 和 (20,25)。

通过这个分析，我们可以知道，这条语句在索引c上加的三个记录锁的顺序是：先加c=5的记录

锁，再加c=10的记录锁，最后加c=20的记录锁。

你可能会说，这个加锁范围，不就是从(5,25)中去掉c=15的行锁吗？为什么这么麻烦地分段说

呢？

因为我要跟你强调这个过程：这些锁是“在执行过程中一个一个加的”，而不是一次性加上去的。

理解了这个加锁过程之后，我们就可以来分析下面例子中的死锁问题了。

如果同时有另外一个语句，是这么写的：

此时的加锁范围，又是什么呢？

我们现在都知道间隙锁是不互锁的，但是这两条语句都会在索引c上的c=5、10、20这三行记录

上加记录锁。

这里你需要注意一下，由于语句里面是order by c desc， 这三个记录锁的加锁顺序，是先锁

c=20，然后c=10，最后是c=5。

也就是说，这两条语句要加锁相同的资源，但是加锁顺序相反。当这两条语句并发执行的时候，

就可能出现死锁。

关于死锁的信息，MySQL只保留了最后一个死锁的现场，但这个现场还是不完备的。

有同学在评论区留言到，希望我能展开一下怎么看死锁。现在，我就来简单分析一下上面这个例

子的死锁现场。

select id from t where c in(5,20,10) order by c desc for update;

怎么看死锁？

图3是在出现死锁后，执行show engine innodb status命令得到的部分输出。这个命令会输出很

多信息，有一节LATESTDETECTED DEADLOCK，就是记录的最后一次死锁信息。

图3 死锁现场

我们来看看这图中的几个关键信息。

1. 这个结果分成三部分：

(1) TRANSACTION，是第一个事务的信息；

(2) TRANSACTION，是第二个事务的信息；

WE ROLL BACK TRANSACTION (1)，是最终的处理结果，表示回滚了第一个事务。

2. 第一个事务的信息中：

WAITING FOR THIS LOCK TO BE GRANTED，表示的是这个事务在等待的锁信息；

index c of table t̀est .̀̀ t`，说明在等的是表t的索引c上面的锁；

lock mode S waiting 表示这个语句要自己加一个读锁，当前的状态是等待中；

Record lock说明这是一个记录锁；

n_fields 2表示这个记录是两列，也就是字段c和主键字段id；

0: len 4; hex 0000000a; asc ;;是第一个字段，也就是c。值是十六进制a，也就是10；

1: len 4; hex 0000000a; asc ;;是第二个字段，也就是主键id，值也是10；

这两行里面的asc表示的是，接下来要打印出值里面的“可打印字符”，但10不是可打印

字符，因此就显示空格。

第一个事务信息就只显示出了等锁的状态，在等待(c=10,id=10)这一行的锁。

当然你是知道的，既然出现死锁了，就表示这个事务也占有别的锁，但是没有显示出

来。别着急，我们从第二个事务的信息中推导出来。

3. 第二个事务显示的信息要多一些：

“ HOLDS THE LOCK(S)”用来显示这个事务持有哪些锁；

index c of table t̀est .̀̀ t ̀表示锁是在表t的索引c上；

hex 0000000a和hex 00000014表示这个事务持有c=10和c=20这两个记录锁；

WAITING FOR THIS LOCK TO BE GRANTED，表示在等(c=5,id=5)这个记录锁。

从上面这些信息中，我们就知道：

1. “lock in share mode”的这条语句，持有c=5的记录锁，在等c=10的锁；

2. “for update”这个语句，持有c=20和c=10的记录锁，在等c=5的记录锁。

因此导致了死锁。这里，我们可以得到两个结论：

1. 由于锁是一个个加的，要避免死锁，对同一组资源，要按照尽量相同的顺序访问；

2. 在发生死锁的时刻，for update 这条语句占有的资源更多，回滚成本更大，所以InnoDB选

择了回滚成本更小的lock in share mode语句，来回滚。

怎么看锁等待？

看完死锁，我们再来看一个锁等待的例子。

在第21篇文章的评论区，@Geek_9ca34e 同学做了一个有趣验证，我把复现步骤列出来：

图4 delete导致间隙变化

可以看到，由于session A并没有锁住c=10这个记录，所以session B删除id=10这一行是可以

的。但是之后，session B再想insert id=10这一行回去就不行了。

现在我们一起看一下此时show engine innodb status的结果，看看能不能给我们一些提示。锁信

息是在这个命令输出结果的TRANSACTIONS这一节。你可以在文稿中看到这张图片

图 5 锁等待信息

我们来看几个关键信息。

1. index PRIMARY of table t̀est .̀̀ t ̀，表示这个语句被锁住是因为表t主键上的某个锁。

2. lock_mode X locks gap before rec insert intention waiting 这里有几个信息：

insert intention表示当前线程准备插入一个记录，这是一个插入意向锁。为了便于理

解，你可以认为它就是这个插入动作本身。

gap before rec 表示这是一个间隙锁，而不是记录锁。

3. 那么这个gap是在哪个记录之前的呢？接下来的0~4这5行的内容就是这个记录的信息。

4. n_fields 5也表示了，这一个记录有5列：

0: len 4; hex 0000000f; asc ;;第一列是主键id字段，十六进制f就是id=15。所以，这时我

们就知道了，这个间隙就是id=15之前的，因为id=10已经不存在了，它表示的就是

(5,15)。

1: len 6; hex 000000000513; asc ;;第二列是长度为6字节的事务id，表示最后修改这一

行的是trx id为1299的事务。

2: len 7; hex b0000001250134; asc % 4;; 第三列长度为7字节的回滚段信息。可以看

到，这里的acs后面有显示内容(%和4)，这是因为刚好这个字节是可打印字符。

后面两列是c和d的值，都是15。

因此，我们就知道了，由于delete操作把id=10这一行删掉了，原来的两个间隙(5,10)、(10,15）

变成了一个(5,15)。

说到这里，你可以联合起来再思考一下这两个现象之间的关联：

1. session A执行完select语句后，什么都没做，但它加锁的范围突然“变大”了；

2. 第21篇文章的课后思考题，当我们执行select * from t where c>=15 and c<=20 order by c

desc lock in share mode; 向左扫描到c=10的时候，要把(5, 10]锁起来。

也就是说，所谓“间隙”，其实根本就是由“这个间隙右边的那个记录”定义的。

update的例子

看过了insert和delete的加锁例子，我们再来看一个update语句的案例。在留言区中@信信 同学

做了这个试验：

图 6 update 的例子

你可以自己分析一下，session A的加锁范围是索引c上的 (5,10]、(10,15]、(15,20]、(20,25]和

(25,supremum]。

之后session B的第一个update语句，要把c=5改成c=1，你可以理解为两步：

1. 插入(c=1, id=5)这个记录；

2. 删除(c=5, id=5)这个记录。

按照我们上一节说的，索引c上(5,10)间隙是由这个间隙右边的记录，也就是c=10定义的。所以

通过这个操作，session A的加锁范围变成了图7所示的样子：

注意：根据c>5查到的第一个记录是c=10，因此不会加(0,5]这个next-key lock。

图 7 session B修改后， session A的加锁范围

好，接下来session B要执行 update t set c = 5 where c = 1这个语句了，一样地可以拆成两步：

1. 插入(c=5, id=5)这个记录；

2. 删除(c=1, id=5)这个记录。

第一步试图在已经加了间隙锁的(1,10)中插入数据，所以就被堵住了。

小结

今天这篇文章，我用前面第20和第21篇文章评论区的几个问题，再次跟你复习了加锁规则。并

且，我和你重点说明了，分析加锁范围时，一定要配合语句执行逻辑来进行。

在我看来，每个想认真了解MySQL原理的同学，应该都要能够做到：通过explain的结果，就能

够脑补出一个SQL语句的执行流程。达到这样的程度，才算是对索引组织表、索引、锁的概念有

了比较清晰的认识。你同样也可以用这个方法，来验证自己对这些知识点的掌握程度。

在分析这些加锁规则的过程中，我也顺便跟你介绍了怎么看show engine innodb status输出结果

中的事务信息和死锁信息，希望这些内容对你以后分析现场能有所帮助。

老规矩，即便是答疑文章，我也还是要留一个课后问题给你的。

https://time.geekbang.org/column/article/75173
https://time.geekbang.org/column/article/75659

上面我们提到一个很重要的点：所谓“间隙”，其实根本就是由“这个间隙右边的那个记录”定义

的。

那么，一个空表有间隙吗？这个间隙是由谁定义的？你怎么验证这个结论呢？

你可以把你关于分析和验证方法写在留言区，我会在下一篇文章的末尾和你讨论这个问题。感谢

你的收听，也欢迎你把这篇文章分享给更多的朋友一起阅读。

上期问题时间

我在上一篇文章最后留给的问题，是分享一下你关于业务监控的处理经验。

在这篇文章的评论区，很多同学都分享了不错的经验。这里，我就选择几个比较典型的留言，和

你分享吧：

@老杨同志 回答得很详细。他的主要思路就是关于服务状态和服务质量的监控。其中，服务

状态的监控，一般都可以用外部系统来实现；而服务的质量的监控，就要通过接口的响应时

间来统计。

@Ryoma 同学，提到服务中使用了healthCheck来检测，其实跟我们文中提到的select 1的模

式类似。

@强哥 同学，按照监控的对象，将监控分成了基础监控、服务监控和业务监控，并分享了每

种监控需要关注的对象。

这些都是很好的经验，你也可以根据具体的业务场景借鉴适合自己的方案。

令狐少侠  2

有个问题想确认下，在死锁日志里，lock_mode X waiting是间隙锁+行锁，lock_mode X locks
rec but not gap这种加but not gap才是行锁？
老师你后面能说下group by的原理吗，我看目录里面没有

2019-01-22

 作者回复

对， 好问题

lock_mode X waiting表示next-key lock；

lock_mode X locks rec but not gap是只有行锁；

还有一种 “locks gap before rec”，就是只有间隙锁；
2019-01-23

Ryoma  2

删除数据，导致锁扩大的描述：“因此，我们就知道了，由于 delete 操作把 id=10 这一行删掉了
，原来的两个间隙 (5,10)、(10,15）变成了一个 (5,15)。”
我觉得这个提到的(5, 10) 和 (10, 15)两个间隙会让人有点误解，实际上在删除之前间隙锁只有
一个(10, 15)，删除了数据之后，导致间隙锁左侧扩张成了5，间隙锁成为了(5, 15)。

2019-01-22

 作者回复

嗯 所以我这里特别小心地没有写“锁“这个字。

间隙 (5,10)、(10,15）是客观存在的。

你提得也很对，“锁”是执行过程中才加的，是一个动态的概念。

这个问题也能够让大家更了解我们标题的意思，置顶了哈 �
2019-01-22

�  1

老师好：

select * from t where c>=15 and c<=20 order by c desc for update;
为什么这种c=20就是用来查数据的就不是向右遍历
select * from t where c>=15 and c<=20 这种就是向右遍历
怎么去判断合适是查找数据，何时又是遍历呢，是因为第一个有order by desc，然后反向向左
遍历了吗？所以只需要[20,25)来判断已经是最后一个20就可以了是吧

2019-01-22

 作者回复

索引搜索就是 “找到第一个值，然后向左或向右遍历”，

order by desc 就是要用最大的值来找第一个；

精选留言

javascript:;
javascript:;
javascript:;

order by就是要用做小的值来找第一个；

“所以只需要[20,25)来判断已经是最后一个20就可以了是吧”，

你描述的意思是对的，但是在MySQL里面不建议写这样的前闭后开区间哈，容易造成误解。

可以描述为：

“取第一个id=20后，向右遍历(25,25)这个间隙”^_^
2019-01-22

老杨同志  1

先说结论：空表锁 (-supernum，supernum],老师提到过mysql的正无穷是supernum，在没有数
据的情况下，next-key lock 应该是supernum前面的间隙加 supernum的行锁。但是前开后闭的
区间，前面的值是什么我也不知道，就写了一个-supernum。
稍微验证一下

session 1）
begin;
select * from t where id>9 for update;
session 2）
begin;
insert into t values(0,0,0),(5,5,5);
（block）

2019-01-21

 作者回复

赞

show engine innodb status 有惊喜�
2019-01-21

Long  0

感觉这篇文章以及前面加锁的文章，提升了自己的认知。还有，谢谢老师讲解了日志的对应细

节……还愿了

2019-01-28

 作者回复

� �
2019-01-28

滔滔  0

老师，有个疑问，select * from t where c>=15 and c<=20 order by c desc lock in share mode;
向左扫描到 c=10 的时候，为什么要把 (5, 10] 锁起来？不锁也不会出现幻读或者逻辑上的不一
致吧�

2019-01-23

 作者回复

会加锁，insert into t values (6,6,6) 被堵住了
2019-01-23

尘封  0

javascript:;
javascript:;
javascript:;

尘封  0

老师，咨询个问题，本来想在后面分区表的文章问，发现大纲里没有分区表这一讲。

1，timestamp类型为什么不支持分区？
2，前面的文章讲过分区不要太多，这个多了会怎么样？比如一个表一千多个分区
谢谢

2019-01-23

 作者回复

会讲的哈~

新春快乐~
2019-02-04

长杰  0

老师，还是select * from t where c>=15 and c<=20 order by c desc in share mode与select * fro
m t where id>10 and id<=15 for update的问题，为何select * from t where id>10 and id<=15 for
update不能解释为：根据id=15来查数据，加锁(15, 20]的时候，可以使用优化2，
这个等值查询是根据什么规则来定的？ 如果select * from t where id>10 and id<=15 for update
加上order by id desc是否可以按照id=15等值查询，利用优化2？多谢指教。

2019-01-22

 作者回复

1. 代码实现上，传入的就是id>10里面的这个10

2. 可以的，不过因为id是主键，而且id=15这一行存在，我觉得用优化1解释更好哦
2019-01-23

堕落天使  0

老师，您好：

我执行“explain select id from t where c in(5,20,10) lock in share mode;” 时，显示的rows对应的
值是4。为什么啊？
我的mysql版本是：5.7.23-0ubuntu0.16.04.1，具体sql语句如下：
mysql> select * from t;
+----+------+------+
| id | c | d |
+----+------+------+
0	0	0
5	5	5
10	10	10
15	15	15
20	20	20
25	25	25
30	10	30
+----+------+------+
7 rows in set (0.00 sec)

mysql> explain select id from t where c in(5,20,10) lock in share mode;

javascript:;
javascript:;
javascript:;

+----+-------------+-------+------------+-------+---------------+------+---------+------+------+----------+--------
------------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered |
Extra |
+----+-------------+-------+------------+-------+---------------+------+---------+------+------+----------+--------
------------------+
| 1 | SIMPLE | t | NULL | range | c | c | 5 | NULL | 4 | 100.00 | Using where; Using index |
+----+-------------+-------+------------+-------+---------------+------+---------+------+------+----------+--------
------------------+
1 row in set, 1 warning (0.00 sec)

2019-01-22

 作者回复

你这个例子里面有两行c=10
2019-01-23

Ivan  0

Jan 17 23:52:27 prod-mysql-01 kernel: [pid] uid tgid total_vm rss cpu oom_adj oom_score_adj
name
Jan 17 23:52:27 prod-mysql-01 kernel: [125254] 0 125254 27087 5 0 0 0 mysqld_safe
Jan 17 23:52:27 prod-mysql-01 kernel: [126004] 498 126004 24974389 22439356 5 0 0 mysqld
Jan 17 23:52:27 prod-mysql-01 kernel: [5733] 0 5733 7606586 6077037 7 0 0 mysql
---------------------------系统日志--

老师你好，请教一个问题 ，我在mysql服务器上本地登录，执行了一个SQL（select b.id,b.statu
s from rb_bak b where id not in (select id from rb);该语句问了找不同数据， rb和 rb_bak 数据
量均为500万左右），SQL很慢，30分钟也没结果；
在SQL语句执行期间，发生了OOM，mysql服务被kill。查看系统日志发现 mysqld 占用内存基
本没有变，但是本机连接mysql的客户端进程（5733）却占用了内存近20G，这很让人费解，S
QL没有执行完，客户端怎么会占用这么多内存？
用其他SQL查询查询不同数据，也就十几条数据，更不可能占用这么多内存呀。还请老师帮忙
分析一下，谢谢。

2019-01-22

 作者回复

好问题，第33篇会说到哈

你可以在mysql客户端参数增加 --quick 再试试
2019-01-23

PengfeiWang  0

老师，您好：

对文中以下语句感到有困惑：

我们说加锁单位是 next-key lock，都是前开后闭区，但是这里用到了优化 2，即索引上的等值
查询，向右遍历的时候id=15不满足条件，所以 next-key lock 退化为了间隙锁 (10, 15)。
SQL语句中条件中使用的是id字段（唯一索引），那么根据加锁规则这里不应该用的是优化 2，

javascript:;
javascript:;

而是优化 1，因为优化1中明确指出给唯一索引加锁，从而优化 2的字面意思来理解，它适用于
普通索引。不知道是不是我理解的不到位？

2019-01-22

 作者回复

主要是这里这一行不存在。。

如果能够明确找到一行锁住的话，使用优化1就更准确些
2019-01-23

Justin  0

想咨询一下 普通索引 如果索引中包括的元素都相同 在索引中顺序是怎么排解的呢 是按主键排
列的吗 比如(name ,age) 索引 name age都一样 那索引中会按照主键排序吗？

2019-01-22

 作者回复

会的

2019-01-23

ServerCoder  0

林老师我有个问题想请教一下，描述如下，望给予指点，先谢谢了！

环境：虚拟机，CPU 4核，内存8G，系统CentOS7.4，MySQL版本5.6.40
数据库配置：

bulk_insert_buffer_size = 256M
sql_mode=NO_ENGINE_SUBSTITUTION,STRICT_TRANS_TABLES
secure_file_priv=''
default-storage-engine=MYISAM
测试场景修改过的参数(以下这些参数得调整对加载效率没有实质的提升)：
myisam_repair_threads=3
myisam_sort_buffer_size=256M
net_buffer_length=1M
myisam_use_mmap=ON
key_buffer_size=256M

测试场景：测试程序多线程，通过客户端API，执行load data infile语句加载数据文件
三个线程，三个文件(每个文件100万条数据、150MB)，三张表(表结构相同，字段类型均为整
形，没有定义主键，有一个字段加了非唯一索引)，一一对应进行数据加载，数据库没有使用多
核，而是把一个核心的利用率均分给了三个线程。

单个线程加载一个文件大约耗时3秒
单线程加载三个文件到三张表大约耗时9秒
三个线程分别加载三个文件到三张表，则每个线程均耗时大约9秒。从这个效果看，单线程顺序
加载和三线程并发加载耗时相同，没有提升效果。

三线程加载过程中查看processlist发现时间主要耗费在了网络读取上。

问题：为啥这种场景下MySQL不利用多核？这种并行加载的情况要如何才能让其利用多核，提

javascript:;
javascript:;

升加载速度

2019-01-22

 作者回复

可以用到多核呀，你是怎么得到 “时间主要耗费在了网络读取上。”这个结论的？

另外，把这三个文件先拷贝到数据库本地，然后本地执行load看看什么效果？
2019-01-23

慕塔  0

是这样的 假设只有一主一从 1)是集群只有一个sysbench实例，产生的数据流通过中间件，主
机分全部写，和30%的读，另外70%的读全部分给从机。2)有两个sysbench，一个读写加压到
主机，另一个只有加压到从机。主从复制之间通过binlog。问题在1)的QPS累加与2)QPS累加
意义一样吗 1)的一条事务有读写，而2)的情况，主机与1)一样，从机的读事务与主机里的读不
一样吧�

2019-01-22

 作者回复

我觉得这两个对比不太公平^_^

1）的测试可能会出现中间件瓶颈，

a)网络环节中间增加了一跳；

b) 如果是小查询，可能proxy先打到瓶颈

2)的测试结论一般会比1）好些

但是有这个架构，你肯定是从中间件访问数据库的，所以应该以1的测试结果为准
2019-01-23

Jason_鹏  0

最后一个update的例子，为没有加（0，5）的间隙呢？我理解应该是先拿c＝5去b+树搜索，按
照间隙索最右原则，应该会加（0，5]的间隙，然后c＝5不满足大于5条件，根据优化2原则退化
成（0，5）的间隙索，我是这样理解的

2019-01-22

 作者回复

根据c>5查到的第一个记录是c=10，因此不会加(0,5]这个next-key lock。

你提醒得对，我应该多说明这句， 我加到文稿中啦�
2019-01-22

长杰  0

老师，之前讲这个例子时，select * from t where c>=15 and c<=20 order by c desc in share m
ode;
最右边加的是 (20, 25)的间隙锁，
而这个例子select * from t where id>10 and id<=15 for update中，最右边加的是(15,20]的next-k

javascript:;
javascript:;
javascript:;

ey锁，
这两个查询为何最后边一个加的gap锁，一个加的next-key锁，他们都是<=的等值范围查询，区
别在哪里？

2019-01-22

 作者回复

select * from t where c>=15 and c<=20 order by c desc in share mode;

这个语句是根据 c=20 来查数据的，所以加锁(20,25]的时候，可以使用优化2；

select * from t where id>10 and id<=15 for update；

这里的id=20，是用“向右遍历”的方式得到的，没有优化，按照“以next-key lock”为加锁单位来执

行

2019-01-22

库淘淘  0

对于问题 我理解是这样
session 1：
delete from t;
begin; select * from t for update;
session 2:
insert into t values(1,1,1);发生等待
show engine innodb status\G;
.....
------- TRX HAS BEEN WAITING 5 SEC FOR THIS LOCK TO BE GRANTED:
RECORD LOCKS space id 75 page no 3 n bits 72 index PRIMARY of table `test`.`t` trx id 75209
0 lock_mode X insert intention waiting
Record lock, heap no 1 PHYSICAL RECORD: n_fields 1; compact format; info bits 0
0: len 8; hex 73757072656d756d; asc supremum;;
其中申请插入意向锁与间隙锁 冲突，supremum这个能否理解为 间隙右边的那个记录

2019-01-21

 作者回复

发现了��
2019-01-22

慕塔  0

大佬 请教下一主多从集群性能测试性能计算问题 如果使用基准测试工具sysbench。数据流有
两种

1)
sysbench---mycat---mysql主机(读写) TPS QPS1
| |binlog
mysql从机(只读)QPS2
那性能指标 TPS QPS=QPS1+QPS2

javascript:;
javascript:;

2)
sysbench---mysql主机(读写) TPS QPS1
| binlog
sysbench---mysql从机(只读)TPS QPS2
集群性能指标TPS QPS=QPS1+QPS2
这两种哪种严谨些啊？mycat的损失忽略。
生产中的集群性能怎么算的呢？？？(还是学生 谢谢！)

2019-01-21

 作者回复

TPS就看主库的写入

QPS就看所有从库的读能力加和

不过没看懂你问题中1）和2）的区别�
2019-01-22

HuaMax  0

删除导致锁范围扩大那个例子，id>10 and id<=15，锁范围为什么没有10呢？不是应该（5，10]
吗？

2019-01-21

 作者回复

不是的，要找id>10的，并没有命中id=10哦，你可以理解成就是查到了(10,15)这个间隙
2019-01-21

llx  0

回复@往事随风，顺其自然
前面有解释为什么，这篇文章有更详细的解释。Gap lock 由右值指定的，由于 c 不是唯一键，
需要到10，遍历到10的时候，就把 5-10 锁了

2019-01-21

 作者回复

�
2019-01-21

javascript:;
javascript:;

	30 | 答疑文章（二）：用动态的观点看加锁
	不等号条件里的等值查询
	等值查询的过程
	怎么看死锁？
	怎么看锁等待？
	update的例子
	小结
	上期问题时间
	精选留言

