
35 | join语句怎么优化？

2019-02-01 林晓斌

在上一篇文章中，我和你介绍了join语句的两种算法，分别是Index Nested-Loop Join(NLJ)和

Block Nested-Loop Join(BNL)。

我们发现在使用NLJ算法的时候，其实效果还是不错的，比通过应用层拆分成多个语句然后再拼

接查询结果更方便，而且性能也不会差。

但是，BNL算法在大表join的时候性能就差多了，比较次数等于两个表参与join的行数的乘积，很

消耗CPU资源。

当然了，这两个算法都还有继续优化的空间，我们今天就来聊聊这个话题。

为了便于分析，我还是创建两个表t1、t2来和你展开今天的问题。

为了便于后面量化说明，我在表t1里，插入了1000行数据，每一行的a=1001-id的值。也就是

说，表t1中字段a是逆序的。同时，我在表t2中插入了100万行数据。

Multi-Range Read优化

在介绍join语句的优化方案之前，我需要先和你介绍一个知识点，即：Multi-Range Read优化

(MRR)。这个优化的主要目的是尽量使用顺序读盘。

在第4篇文章中，我和你介绍InnoDB的索引结构时，提到了“回表”的概念。我们先来回顾一下这

个概念。回表是指，InnoDB在普通索引a上查到主键id的值后，再根据一个个主键id的值到主键

索引上去查整行数据的过程。

然后，有同学在留言区问到，回表过程是一行行地查数据，还是批量地查数据？

我们先来看看这个问题。假设，我执行这个语句：

create table t1(id int primary key, a int, b int, index(a));

create table t2 like t1;

drop procedure idata;

delimiter ;;

create procedure idata()

begin

 declare i int;

 set i=1;

 while(i<=1000)do

 insert into t1 values(i, 1001-i, i);

 set i=i+1;

 end while;

 set i=1;

 while(i<=1000000)do

 insert into t2 values(i, i, i);

 set i=i+1;

 end while;

end;;

delimiter ;

call idata();

https://time.geekbang.org/column/article/69236

主键索引是一棵B+树，在这棵树上，每次只能根据一个主键id查到一行数据。因此，回表肯定是

一行行搜索主键索引的，基本流程如图1所示。

图1 基本回表流程

如果随着a的值递增顺序查询的话，id的值就变成随机的，那么就会出现随机访问，性能相对较

差。虽然“按行查”这个机制不能改，但是调整查询的顺序，还是能够加速的。

因为大多数的数据都是按照主键递增顺序插入得到的，所以我们可以认为，如果按照主键

的递增顺序查询的话，对磁盘的读比较接近顺序读，能够提升读性能。

这，就是MRR优化的设计思路。此时，语句的执行流程变成了这样：

1. 根据索引a，定位到满足条件的记录，将id值放入read_rnd_buffer中;

2. 将read_rnd_buffer中的id进行递增排序；

3. 排序后的id数组，依次到主键id索引中查记录，并作为结果返回。

select * from t1 where a>=1 and a<=100;

这里，read_rnd_buffer的大小是由read_rnd_buffer_size参数控制的。如果步骤1

中，read_rnd_buffer放满了，就会先执行完步骤2和3，然后清空read_rnd_buffer。之后继续找

索引a的下个记录，并继续循环。

另外需要说明的是，如果你想要稳定地使用MRR优化的话，需要设置set

optimizer_switch="mrr_cost_based=off"。（官方文档的说法，是现在的优化器策略，判断消耗

的时候，会更倾向于不使用MRR，把mrr_cost_based设置为off，就是固定使用MRR了。）

下面两幅图就是使用了MRR优化后的执行流程和explain结果。

图2 MRR执行流程

图3 MRR执行流程的explain结果

从图3的explain结果中，我们可以看到Extra字段多了Using MRR，表示的是用上了MRR优化。

而且，由于我们在read_rnd_buffer中按照id做了排序，所以最后得到的结果集也是按照主键id递

增顺序的，也就是与图1结果集中行的顺序相反。

到这里，我们小结一下。

MRR能够提升性能的核心在于，这条查询语句在索引a上做的是一个范围查询（也就是说，这

是一个多值查询），可以得到足够多的主键id。这样通过排序以后，再去主键索引查数据，才能

体现出“顺序性”的优势。

Batched Key Access

理解了MRR性能提升的原理，我们就能理解MySQL在5.6版本后开始引入的Batched Key

Acess(BKA)算法了。这个BKA算法，其实就是对NLJ算法的优化。

我们再来看看上一篇文章中用到的NLJ算法的流程图：

图4 Index Nested-Loop Join流程图

NLJ算法执行的逻辑是：从驱动表t1，一行行地取出a的值，再到被驱动表t2去做join。也就是

说，对于表t2来说，每次都是匹配一个值。这时，MRR的优势就用不上了。

那怎么才能一次性地多传些值给表t2呢？方法就是，从表t1里一次性地多拿些行出来，一起传给

表t2。

既然如此，我们就把表t1的数据取出来一部分，先放到一个临时内存。这个临时内存不是别人，

就是join_buffer。

通过上一篇文章，我们知道join_buffer 在BNL算法里的作用，是暂存驱动表的数据。但是在NLJ

算法里并没有用。那么，我们刚好就可以复用join_buffer到BKA算法中。

如图5所示，是上面的NLJ算法优化后的BKA算法的流程。

图5 Batched Key Acess流程

图中，我在join_buffer中放入的数据是P1~P100，表示的是只会取查询需要的字段。当然，如果

join buffer放不下P1~P100的所有数据，就会把这100行数据分成多段执行上图的流程。

那么，这个BKA算法到底要怎么启用呢？

如果要使用BKA优化算法的话，你需要在执行SQL语句之前，先设置

其中，前两个参数的作用是要启用MRR。这么做的原因是，BKA算法的优化要依赖于MRR。

set optimizer_switch='mrr=on,mrr_cost_based=off,batched_key_access=on';

BNL算法的性能问题

说完了NLJ算法的优化，我们再来看BNL算法的优化。

我在上一篇文章末尾，给你留下的思考题是，使用Block Nested-Loop Join(BNL)算法时，可能会

对被驱动表做多次扫描。如果这个被驱动表是一个大的冷数据表，除了会导致IO压力大以外，还

会对系统有什么影响呢？

在第33篇文章中，我们说到InnoDB的LRU算法的时候提到，由于InnoDB对Bufffer Pool的LRU

算法做了优化，即：第一次从磁盘读入内存的数据页，会先放在old区域。如果1秒之后这个数据

页不再被访问了，就不会被移动到LRU链表头部，这样对Buffer Pool的命中率影响就不大。

但是，如果一个使用BNL算法的join语句，多次扫描一个冷表，而且这个语句执行时间超过1秒，

就会在再次扫描冷表的时候，把冷表的数据页移到LRU链表头部。

这种情况对应的，是冷表的数据量小于整个Buffer Pool的3/8，能够完全放入old区域的情况。

如果这个冷表很大，就会出现另外一种情况：业务正常访问的数据页，没有机会进入young区

域。

由于优化机制的存在，一个正常访问的数据页，要进入young区域，需要隔1秒后再次被访问

到。但是，由于我们的join语句在循环读磁盘和淘汰内存页，进入old区域的数据页，很可能在1

秒之内就被淘汰了。这样，就会导致这个MySQL实例的Buffer Pool在这段时间内，young区域的

数据页没有被合理地淘汰。

也就是说，这两种情况都会影响Buffer Pool的正常运作。

大表 join操作虽然对 IO有影响，但是在语句执行结束后，对 IO的影响也就结束了。但是，

对Buffer Pool的影响就是持续性的，需要依靠后续的查询请求慢慢恢复内存命中率。

为了减少这种影响，你可以考虑增大join_buffer_size的值，减少对被驱动表的扫描次数。

也就是说，BNL算法对系统的影响主要包括三个方面：

1. 可能会多次扫描被驱动表，占用磁盘IO资源；

2. 判断join条件需要执行M*N次对比（M、N分别是两张表的行数），如果是大表就会占用非常

多的CPU资源；

3. 可能会导致Buffer Pool的热数据被淘汰，影响内存命中率。

我们执行语句之前，需要通过理论分析和查看explain结果的方式，确认是否要使用BNL算法。如

果确认优化器会使用BNL算法，就需要做优化。优化的常见做法是，给被驱动表的join字段加上

索引，把BNL算法转成BKA算法。

https://time.geekbang.org/column/article/79407

接下来，我们就具体看看，这个优化怎么做？

BNL转BKA

一些情况下，我们可以直接在被驱动表上建索引，这时就可以直接转成BKA算法了。

但是，有时候你确实会碰到一些不适合在被驱动表上建索引的情况。比如下面这个语句：

我们在文章开始的时候，在表t2中插入了100万行数据，但是经过where条件过滤后，需要参与

join的只有2000行数据。如果这条语句同时是一个低频的SQL语句，那么再为这个语句在表t2的

字段b上创建一个索引就很浪费了。

但是，如果使用BNL算法来join的话，这个语句的执行流程是这样的：

1. 把表t1的所有字段取出来，存入join_buffer中。这个表只有1000行，join_buffer_size默认值

是256k，可以完全存入。

2. 扫描表t2，取出每一行数据跟join_buffer中的数据进行对比，

如果不满足t1.b=t2.b，则跳过；

如果满足t1.b=t2.b, 再判断其他条件，也就是是否满足t2.b处于[1,2000]的条件，如果

是，就作为结果集的一部分返回，否则跳过。

我在上一篇文章中说过，对于表t2的每一行，判断join是否满足的时候，都需要遍历join_buffer中

的所有行。因此判断等值条件的次数是1000*100万=10亿次，这个判断的工作量很大。

图6 explain结果

图7 语句执行时间

可以看到，explain结果里Extra字段显示使用了BNL算法。在我的测试环境里，这条语句需要执

select * from t1 join t2 on (t1.b=t2.b) where t2.b>=1 and t2.b<=2000;

行1分11秒。

在表t2的字段b上创建索引会浪费资源，但是不创建索引的话这个语句的等值条件要判断10亿

次，想想也是浪费。那么，有没有两全其美的办法呢？

这时候，我们可以考虑使用临时表。使用临时表的大致思路是：

1. 把表t2中满足条件的数据放在临时表tmp_t中；

2. 为了让join使用BKA算法，给临时表tmp_t的字段b加上索引；

3. 让表t1和tmp_t做join操作。

此时，对应的SQL语句的写法如下：

图8就是这个语句序列的执行效果。

图8 使用临时表的执行效果

可以看到，整个过程3个语句执行时间的总和还不到1秒，相比于前面的1分11秒，性能得到了大

幅提升。接下来，我们一起看一下这个过程的消耗：

1. 执行insert语句构造temp_t表并插入数据的过程中，对表t2做了全表扫描，这里扫描行数是

100万。

create temporary table temp_t(id int primary key, a int, b int, index(b))engine=innodb;

insert into temp_t select * from t2 where b>=1 and b<=2000;

select * from t1 join temp_t on (t1.b=temp_t.b);

2. 之后的join语句，扫描表t1，这里的扫描行数是1000；join比较过程中，做了1000次带索引

的查询。相比于优化前的join语句需要做10亿次条件判断来说，这个优化效果还是很明显

的。

总体来看，不论是在原表上加索引，还是用有索引的临时表，我们的思路都是让join语句能够用

上被驱动表上的索引，来触发BKA算法，提升查询性能。

扩展-hash join

看到这里你可能发现了，其实上面计算10亿次那个操作，看上去有点儿傻。如果join_buffer里面

维护的不是一个无序数组，而是一个哈希表的话，那么就不是10亿次判断，而是100万次hash查

找。这样的话，整条语句的执行速度就快多了吧？

确实如此。

这，也正是MySQL的优化器和执行器一直被诟病的一个原因：不支持哈希join。并且，MySQL官

方的roadmap，也是迟迟没有把这个优化排上议程。

实际上，这个优化思路，我们可以自己实现在业务端。实现流程大致如下：

1. select * from t1;取得表t1的全部1000行数据，在业务端存入一个hash结构，比如C++里的

set、PHP的dict这样的数据结构。

2. select * from t2 where b>=1 and b<=2000; 获取表t2中满足条件的2000行数据。

3. 把这2000行数据，一行一行地取到业务端，到hash结构的数据表中寻找匹配的数据。满足

匹配的条件的这行数据，就作为结果集的一行。

理论上，这个过程会比临时表方案的执行速度还要快一些。如果你感兴趣的话，可以自己验证一

下。

小结

今天，我和你分享了Index Nested-Loop Join（NLJ）和Block Nested-Loop Join（BNL）的优化

方法。

在这些优化方法中：

1. BKA优化是MySQL已经内置支持的，建议你默认使用；

2. BNL算法效率低，建议你都尽量转成BKA算法。优化的方向就是给被驱动表的关联字段加上

索引；

3. 基于临时表的改进方案，对于能够提前过滤出小数据的join语句来说，效果还是很好的；

4. MySQL目前的版本还不支持hash join，但你可以配合应用端自己模拟出来，理论上效果要好

于临时表的方案。

最后，我给你留下一道思考题吧。

我们在讲join语句的这两篇文章中，都只涉及到了两个表的join。那么，现在有一个三个表join的

需求，假设这三个表的表结构如下：

语句的需求实现如下的join逻辑：

现在为了得到最快的执行速度，如果让你来设计表t1、t2、t3上的索引，来支持这个join语句，

你会加哪些索引呢？

同时，如果我希望你用straight_join来重写这个语句，配合你创建的索引，你就需要安排连接顺

序，你主要考虑的因素是什么呢？

你可以把你的方案和分析写在留言区，我会在下一篇文章的末尾和你讨论这个问题。感谢你的收

听，也欢迎你把这篇文章分享给更多的朋友一起阅读。

上期问题时间

我在上篇文章最后留给你的问题，已经在本篇文章中解答了。

这里我再根据评论区留言的情况，简单总结下。根据数据量的大小，有这么两种情况：

@长杰 和 @老杨同志 提到了数据量小于old区域内存的情况；

CREATE TABLE t̀1 ̀(

 ìd ̀int(11) NOT NULL,

 `a ̀int(11) DEFAULT NULL,

 `b ̀int(11) DEFAULT NULL,

 `c ̀int(11) DEFAULT NULL,

 PRIMARY KEY (̀ id)̀

) ENGINE=InnoDB;

create table t2 like t1;

create table t3 like t2;

insert into ... //初始化三张表的数据

select * from t1 join t2 on(t1.a=t2.a) join t3 on (t2.b=t3.b) where t1.c>=X and t2.c>=Y and t3.c>=Z;

@Zzz 同学，很认真地看了其他同学的评论，并且提了一个很深的问题。对被驱动表数据量

大于Buffer Pool的场景，做了很细致的推演和分析。

给这些同学点赞，非常好的思考和讨论。

郭健  2

老师，有几个问题还需要请教一下:
1.上一章t1表100条数据，t21000条数据，mysql会每次都会准确的找出哪张表是合理的驱动表
吗？还是需要人为的添加straight_join。
2.像left join这种，左边一定是驱动表吧？以左边为标准查看右边有符合的条件，拼成一条数据
，看到你给其他同学的评论说可能不是，这有些疑惑。

3.在做join的时候，有些条件是可以放在on中也可以放在where中，比如(t1.yn=1 和t2.yn=1)这种
简单判断是否删除的。最主要的是，需要根据两个条件才能join的(productCode和custCode),需
要两个都在on里，还是一个在on中，一个在where中更好呢？

2019-02-07

 作者回复

1. 正常是会自己找到合理的，但是用前explain是好习惯哈

2. 这个问题的展开我放到答疑文章中哈

3. 这也是好问题，需要分析是使用哪种算法，也放到答疑文章展开哈。

精选留言

javascript:;

新年快乐~
2019-02-07

Geek_02538c  1

过年了，还有新文章，给个赞。 另，where 和 order 与索引的关系，都讲过了，group by 是否
也搞个篇章说一下。

2019-02-02

 作者回复

你说得对^_^ 第37篇就是，新年快乐
2019-02-03

Ryoma  1

read_rnd_buffer_length 参数应该是 read_rnd_buffer_size，见文档：https://dev.mysql.com/doc/
refman/8.0/en/server-system-variables.html#sysvar_read_rnd_buffer_size

2019-02-02

 作者回复

你说得对，多谢

发起勘误了

新年快乐

2019-02-03

Mr.Strive.Z.H.L  1

老师您好，新年快乐~~

关于三表join有一个疑惑点需要确认：

老师您在评论中说到，三表join不会是前两个表join后得到结果集，再和第三张表join。
针对这句话，我的理解是：

假设我们不考虑BKA，就按照一行行数据来判断的话，流程应该如下（我会将server端和innod
b端分的很清楚）：
表是t1 ,t2 ,t3。 t1 straight_join t2 straight_join t3，这样的join顺序。
1. 调用innodb接口，从t1中取一行数据，数据返回到server端。
2. 调用innodb接口，从t2中取满足条件的数据，数据返回到server端。
3. 调用innodb接口，从t3中取满足条件的数据，数据返回到server端。
上面三步之后，驱动表 t1的一条数据就处理完了，接下来重复上述过程。
（如果采用BKA进行优化，可以理解为不是一行行数据的提取，而是一个范围内数据的提取）
。

按照我上面的描述，确实没有前两表先join得结果集，然后再join第三张表的过程。
不知道我上面的描述的流程对不对？（我个人觉得，将innodb的处理和server端的处理分隔清
晰，对于sql语句的理解，会透彻很多）

javascript:;
javascript:;
javascript:;

2019-02-02

 作者回复

新年快乐，分析得很好。

可以再补充一句，会更好理解你说的这个过程 ：

如果采用BKA进行优化,每多一个join，就多一个join_buffer
2019-02-02

LY  1

order by cjsj desc limit 0,20 explain Extra只是显示 Using where ，执行时间 7秒钟
order by cjsj desc limit 5000,20 explain Extra只是显示 Using index condition; Using where; Usin
g filesort, 执行时间 0.1 秒
有些许的凌乱了@^^@

2019-02-01

 作者回复

这正常的，一种可能是这样的：

Using where 就是顺序扫，但是这个上要扫很久才能扫到满足条件的20个记录；

虽然有filesort，但是如果参与排序的行数少，可能速度就更快，而且limit 有堆排序优化哦
2019-02-01

郭健  0

老师，新年快乐！！看到您给我提问的回答，特别期待您之后的答疑，因为dba怕我们查询数
据库时连接时间过长，影响线上实际运行。所以就开发出一个网页，让我们进行查询，但是超

过几秒(具体不知道，查询一个200w的数据，条件没有加索引有时候都会)就会返回time out，所
以当查询大表并join的时候，就会很吃力！想法设法的缩小单位，一般我们都不会为createTime
建一个索引，所以在根据时间缩小范围的时候有时候也并不是很好的选择。我们线上做统计sql
的时候，因为数据量比较大，筛选条件也比较多，一个sql可能在0.4s多，这已经是属于慢sql了
。感谢老师对我提问的回答！！

2019-02-09

磊  0

一直对多表的join有些迷惑，希望老师后面专门把这块给讲的透彻些

2019-02-03

 作者回复

这一期45篇 join差不多就讲这些了�

有问题在评论区提出来哈

2019-02-03

bluefantasy3  0

请教老师一个问题：innodb的Buffer Pool的内存是innodb自己管理还是使用OS的page cache?
我理解应该是innodb自己管理。我在另一个课程里看到如果频繁地把OS的/proc/sys/vm/drop_c
aches 改成 1会影响MySQL的性能，如果buffer pool是MySQL自己管理，应该不受这个参数影

javascript:;
javascript:;
javascript:;
javascript:;

响呀？请解答。

2019-02-02

 作者回复

1. 是MySQL 自己管理的

2. 一般只有数据文件是o_direct的，redo log 和 binlog 都是有用到文件系统的page cache, 因此

多少有影响的

好问题��
2019-02-03

信信  0

老师好，有两点疑问请老师解惑：

1、图8上面提到的关于临时表的第三句是不是还是使用straight_join好一些？不然有可能temp_t
被选为驱动表？

2、图8下面提到join过程中做了1000次带索引的查询，这里的1000也是在打开mrr的情况下的吗
？是进行了1000次树搜索，还是找到第一个后，依次挨着读呢？

2019-02-02

 作者回复

1. 写straight_join能确定顺序，也可以的，这里写join 也ok的

2. 是进行了1000次树搜索
2019-02-02

HuaMax  0

前提假设：t1.c>=X可以让t1成为小表。同时打开BKA和MRR。
1、t1表加（c,a)索引。理由：A、t1.c>=X可以使用索引；B、加上a的联合索引，join buffer里放
入的是索引（c,a）而不是去主键表取整行，用于与表t2的t1.a = t2.a的join查询，不过返回SELE
CT * 最终还是需要回表。
2、t2表加(a,b,c)索引。理由：A、加上a避免与t1表join查询的BNL；B、理由同【1-B】；C、加
上c不用回表判断t2.c>=Y的筛选条件
3、t3表加（b,c）索引。理由：A、避免与t2表join查询的BNL;C、理由同【2-C】

问题：

1、【1-B】和【2-B】由于select *要返回所有列数据，不敢肯定join buffer里是回表的整行数据
还是索引（c,a)的数据，需要老师解答一下；不过值得警惕的是，返回的数据列对sql的执行策
略有非常大的影响。

2、在有join查询时，被驱动表是先做join连接查询，还是先筛选数据再从筛选后的临时表做join
连接？这将影响上述的理由【2-C】和【3-C】

使用straight_join强制指定驱动表，我会改写成这样:select * from t2 STRAIGHT_JOIN t1 on(t1.
a=t2.a) STRAIGHT_JOIN t3 on (t2.b=t3.b) where t1.c>=X and t2.c>=Y and t3.c>=Z;
考虑因素包括：

1、驱动表使用过滤条件筛选后的数据量，使其成为小表，上面的改写也是基于t2是小表

javascript:;
javascript:;

2、因为t2是跟t1,t3都有关联查询的，这样的话我猜测对t1,t3的查询是不是可以并行执行，而如
果使用t1,t3作为主表的话，是否会先跟t2生成中间表，是个串行的过程？
3、需要给t1加（a,c)索引，给t2加（c,a,b）索引。

2019-02-02

 作者回复

� 很深入的思考哈

1. select * ，所以放整行；你说得对，select * 不是好习惯；

2. 第一次join后就筛选；第二次join再筛选；

新春快乐~
2019-02-04

库淘淘  0

set optimizer_switch='mrr=on,mrr_cost_based=off,batched_key_access=on';
create index idx_c on t2(c);
create index idx_a_c on t1(a,c);
create index idx_b_c on t3(b,c);
mysql> explain select * from t2
-> straight_join t1 on(t1.a=t2.a)
-> straight_join t3 on(t2.b=t3.b)
-> where t1.c> 800 and t2.c>=600 and t3.c>=500;
+----+-------------+-------+------------+---------------------------------------
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered |
Extra +--
| 1 | SIMPLE | t2 | NULL | range | idx_c | idx_c | 5 | NULL | 401 | 100.00 | Using index condition
; Using where; Using MRR |
| 1 | SIMPLE | t1 | NULL | ref | idx_a_c | idx_a_c | 5 | test.t2.a | 1 | 33.33 | Using index conditio
n; Using join buffer (Batched Key Access) |
| 1 | SIMPLE | t3 | NULL | ref | idx_b_c | idx_b_c | 5 | test.t2.b | 1 | 33.33 | Using index conditio
n; Using join buffer (Batched Key Access) |
+----+-------------+-------+------------+-----+---------------------------------------
3 rows in set, 1 warning (0.00 sec)
以自己理解如下，有问题请老师能够指出

1.根据查询因是select * 肯定回表的，其中在表t2创建索引idx_c,为了能够使用ICP,MRR，如果c
字段重复率高或取值行数多，可以考虑不建索引

2.已t2 作为驱动表，一方面考虑其他两表都有关联,t2表放入join buffer后关联t1后，再关联t2 得
出结果 再各回t2,t3表取出 得到结果集（之前理解都是t1和t2join得结果集再与t3join，本次理解
太确定）

3.t2、t3表建立联合查询目的能够使用ICP

2019-02-01

 作者回复

�

javascript:;

BKA是从Index Nexted-Loop join 优化而来的，并不是“t1和t2join得结果集再与t3join”，而是直接

嵌套循环执行下去。

这个效果相当不错了，MRR，BKA都用上
2019-02-02

LY  0

刚刚凌乱了的那个问题，经explain验证，explain SELECT a.* FROM sys_xxtx a JOIN baq_ryxx
r ON a.ryid = r.ID WHERE a.dwbh = '7E0A13A14101D0A8E0430A0F23BCD0A8' ORDER BY tx
sj DESC LIMIT 0,20;
使用的索引是txsj ；
explain SELECT a.* FROM sys_xxtx a JOIN baq_ryxx r ON a.ryid = r.ID WHERE a.dwbh = '7E0
A13A14101D0A8E0430A0F23BCD0A8' ORDER BY txsj DESC LIMIT 5000,20;使用的索引是dw
bh ；
然后回忆起了第10张：MySQL为什么有时候会选错索引？
但是从扫描行数、是否使用排序等来看在 LIMIT 5000,20时候也应该优选txsj ?可是这个时候选
择的索引是dwbh, 查询时间也大大缩短

2019-02-01

 作者回复

嗯，这个跟我们第十篇那个例子挺像的

我们把limit 1 改成limit 100的时候，MySQL认为，要扫描到“100行那么多”，

你这里是limit 5000，200， 这个5000会让优化器认为，选txsj会要扫“很多行，可能很久”

这个确实是优化器还不够完善的地方，有时候不得不用force index~
2019-02-02

dzkk  0

老师，对于关联查询（inner join），个人有几点理解，请帮助审核是否正确，谢了。
正确选择：

结果集小的为驱动表，且被驱动表有索引

未知效果选择：

1）结果集小的为驱动表，但是被驱动表没有索引
2）结果集大的为驱动表，但是被驱动表有索引
最差选择：

结果集大的为驱动表，且被驱动表没有索引

2019-02-01

 作者回复

未知效果选择 是啥意思^_^
2019-02-02

老杨同志  0

我准备给

javascript:;
javascript:;
javascript:;

t1增加索引c
t2增加组合索引b,c
t3增加组合索引b,c
select * from t1 straight_join t2 on(t1.a=t2.a) straight_join t3 on (t2.b=t3.b) where t1.c>=X and t2
.c>=Y and t3.c>=Z;

另外我还有个问题，开篇提到的这句sql select * from t1 where a>=1 and a<=100;
a是索引列，如果这句索引有order by a，不使用MRR 优化，查询出来就是按a排序的，使用了
mrr优化，是不是要额外排序

2019-02-01

 作者回复

对，好问题，用了order by就不用MRR了
2019-02-02

poppy  0

select * from t1 join t2 on(t1.a=t2.a) join t3 on (t2.b=t3.b) where t1.c>=X and t2.c>=Y and t3.c>=
Z;
老师，我的理解是真正做join的三张表的大小实际上是t1.c>=X、t2.c>=Y、t3.c>=Z对应满足条
件的行数，为了方便快速定位到满足条件的数据，t1、t2和t3的c字段最好都建索引。对于join操
作，按道理mysql应该会优先选择join之后数量比较少的两张表先来进行join操作，例如满足t1.a
=t2.a的行数小于满足t2.b=t3.b的行数，那么就会优先将t1和t2进行join，选择t1.c>=X、t2.c>=Y
中行数少的表作为驱动表，另外一张作为被驱动表，在被驱动表的a的字段上建立索引，这样就
完成了t1和t2的join操作并把结果放入join_buffer准备与t3进行join操作，则在作为被驱动表的t3
的b字段上建立索引。不知道举的这个例子分析得是否正确，主要是这里不知道t1、t2、t3三张
表的数据量，以及满足t1.c>=X ，t2.c>=Y ，t3.c>=Z的数据量，还有各个字段的区分度如何，
是否适合建立索引等。

2019-02-01

 作者回复

嗯 这个问题就是留给大家自己设定条件然后分析的，分析得不错哦
2019-02-02

Destroy、  0

BNL 算法效率低，建议你都尽量转成 BKA 算法。优化的方向就是给驱动表的关联字段加上索
引；

老师最后总结的时候，这句话后面那句，应该是给被驱动表的关联字段加上索引吧。

2019-02-01

 作者回复

对的，�细致

已经发起勘误，谢谢你哦，新年快乐

2019-02-01

LY  0

javascript:;
javascript:;
javascript:;

LY 0

YEAR(txsj) = '2018' 有结果集，YEAR(txsj) = '2019' 无结果集，
YEAR(txsj) = '2018' 和 YEAR(txsj) = '2019' 查询所需时间 后者是前者的10倍
请老师分析下大概什么原因？

2019-02-01

 作者回复

这个信息太不足了�

我第一时间反应是不是有limit？

你给贴一下表结构，

sql语句，还有explain这个语句的结果�，我们再来分析下哈
2019-02-01

John  0

期待這一篇很久啦 終於出來啦 臨時表和範圍搜索實在是醍醐灌頂 謝謝老師

2019-02-01

永恒记忆  0

老师，记得之前看目录之后要将一篇标题大概为“我的mysql为啥莫名其妙重启了”，最近看怎么
没有了？我们确实遇到这种问题，在系统日志里也找不到OOM信息，现象是半个月左右就会自
动重启一下，时间不固定，想请教下是什么问题呢？

2019-02-01

 作者回复

贴一下errorlog里面看看有没有异常信息 如果比较大的文件可以发我微博私信附件

写文章的过程中根据大家的评论问题，发现有些知识点应该优先写，目录有做调整哈

2019-02-01

郭江伟  0

select * from t1 join t2 on(t1.a=t2.a) join t3 on (t2.b=t3.b) where t1.c>=X and t2.c>=Y and t3.c>=
Z;
这个语句建索引需要考虑三个表的数据量和相关字段的数据分布、选择率、每个条件返回行数

占比等

我的测试场景是：

t1 1000行数据 t2 100w行数据 t3 100w行，关联字段没有重复值，条件查询返回行数占比很少，
此时索引为：
alter table t1 add key t1_c(c);
alter table t2 add key t2_ac(a,c);
alter table t3 add key t3_bc(b,c);
测试sql无索引是执行需要2分钟多，加了索引后需要0.01秒，加索引后执行计划为：
mysql> explain select * from t1 join t2 on(t1.a=t2.a) join t3 on (t2.b=t3.b) where t1.c>=100 and t
2.c>=10 and t3.c>=90;
+----+-------------+-------+------------+------+---------------+-------+---------+---------------+------+----------

javascript:;
javascript:;
javascript:;

+------------------------------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered |
Extra |
+----+-------------+-------+------------+------+---------------+-------+---------+---------------+------+----------
+------------------------------------+
| 1 | SIMPLE | t1 | NULL | ALL | t1_a | NULL | NULL | NULL | 1000 | 90.10 | Using where |
| 1 | SIMPLE | t2 | NULL | ref | t2_ac | t2_ac | 5 | sysbench.t1.a | 1 | 33.33 | Using index conditi
on; Using where |
| 1 | SIMPLE | t3 | NULL | ref | t3_bc | t3_bc | 5 | sysbench.t2.b | 1 | 33.33 | Using index conditi
on |
+----+-------------+-------+------------+------+---------------+-------+---------+---------------+------+----------
+------------------------------------+
另外，select * 如果改成具体字段的话考虑覆盖索引 可能需要建立不同的索引。

2019-02-01

 作者回复

�验证的结果最有说服力
2019-02-01

	35 | join语句怎么优化？
	Multi-Range Read优化
	Batched Key Access
	BNL算法的性能问题
	BNL转BKA
	扩展-hash join
	小结
	上期问题时间
	精选留言

