
37 | 什么时候会使用内部临时表？

2019-02-06 林晓斌

今天是大年初二，在开始我们今天的学习之前，我要先和你道一声春节快乐！

在第16和第34篇文章中，我分别和你介绍了sort buffer、内存临时表和join buffer。这三个数据

结构都是用来存放语句执行过程中的中间数据，以辅助SQL语句的执行的。其中，我们在排序的

时候用到了sort buffer，在使用join语句的时候用到了join buffer。

然后，你可能会有这样的疑问，MySQL什么时候会使用内部临时表呢？

今天这篇文章，我就先给你举两个需要用到内部临时表的例子，来看看内部临时表是怎么工作

的。然后，我们再来分析，什么情况下会使用内部临时表。

union 执行流程

为了便于量化分析，我用下面的表t1来举例。

https://time.geekbang.org/column/article/73479
https://time.geekbang.org/column/article/79700

然后，我们执行下面这条语句：

这条语句用到了union，它的语义是，取这两个子查询结果的并集。并集的意思就是这两个集合

加起来，重复的行只保留一行。

下图是这个语句的explain结果。

图1 union语句explain 结果

可以看到：

第二行的key=PRIMARY，说明第二个子句用到了索引id。

第三行的Extra字段，表示在对子查询的结果集做union的时候，使用了临时表(Using

temporary)。

这个语句的执行流程是这样的：

1. 创建一个内存临时表，这个临时表只有一个整型字段f，并且f是主键字段。

create table t1(id int primary key, a int, b int, index(a));

delimiter ;;

create procedure idata()

begin

 declare i int;

 set i=1;

 while(i<=1000)do

 insert into t1 values(i, i, i);

 set i=i+1;

 end while;

end;;

delimiter ;

call idata();

(select 1000 as f) union (select id from t1 order by id desc limit 2);

2. 执行第一个子查询，得到1000这个值，并存入临时表中。

3. 执行第二个子查询：

拿到第一行id=1000，试图插入临时表中。但由于1000这个值已经存在于临时表了，违

反了唯一性约束，所以插入失败，然后继续执行；

取到第二行id=999，插入临时表成功。

4. 从临时表中按行取出数据，返回结果，并删除临时表，结果中包含两行数据分别是1000和

999。

这个过程的流程图如下所示：

图 2 union 执行流程

可以看到，这里的内存临时表起到了暂存数据的作用，而且计算过程还用上了临时表主键id的唯

一性约束，实现了union的语义。

顺便提一下，如果把上面这个语句中的union改成union all的话，就没有了“去重”的语义。这样执

行的时候，就依次执行子查询，得到的结果直接作为结果集的一部分，发给客户端。因此也就不

需要临时表了。

图3 union all的explain结果

可以看到，第二行的Extra字段显示的是Using index，表示只使用了覆盖索引，没有用临时表

了。

group by 执行流程

另外一个常见的使用临时表的例子是group by，我们来看一下这个语句：

这个语句的逻辑是把表t1里的数据，按照 id%10 进行分组统计，并按照m的结果排序后输出。它

的explain结果如下：

图4 group by 的explain结果

在Extra字段里面，我们可以看到三个信息：

Using index，表示这个语句使用了覆盖索引，选择了索引a，不需要回表；

Using temporary，表示使用了临时表；

Using filesort，表示需要排序。

这个语句的执行流程是这样的：

1. 创建内存临时表，表里有两个字段m和c，主键是m；

2. 扫描表t1的索引a，依次取出叶子节点上的id值，计算id%10的结果，记为x；

如果临时表中没有主键为x的行，就插入一个记录(x,1);

如果表中有主键为x的行，就将x这一行的c值加1；

3. 遍历完成后，再根据字段m做排序，得到结果集返回给客户端。

这个流程的执行图如下：

select id%10 as m, count(*) as c from t1 group by m;

图5 group by执行流程

图中最后一步，对内存临时表的排序，在第17篇文章中已经有过介绍，我把图贴过来，方便你

回顾。

https://time.geekbang.org/column/article/73795

图6 内存临时表排序流程

其中，临时表的排序过程就是图6中虚线框内的过程。

接下来，我们再看一下这条语句的执行结果：

图 7 group by执行结果

如果你的需求并不需要对结果进行排序，那你可以在SQL语句末尾增加order by null，也就是改

成：

这样就跳过了最后排序的阶段，直接从临时表中取数据返回。返回的结果如图8所示。

图8 group + order by null 的结果（内存临时表）

由于表t1中的id值是从1开始的，因此返回的结果集中第一行是id=1；扫描到id=10的时候才插入

m=0这一行，因此结果集里最后一行才是m=0。

这个例子里由于临时表只有10行，内存可以放得下，因此全程只使用了内存临时表。但是，内

存临时表的大小是有限制的，参数tmp_table_size就是控制这个内存大小的，默认是16M。

如果我执行下面这个语句序列：

把内存临时表的大小限制为最大1024字节，并把语句改成id % 100，这样返回结果里有100行数

据。但是，这时的内存临时表大小不够存下这100行数据，也就是说，执行过程中会发现内存临

时表大小到达了上限（1024字节）。

那么，这时候就会把内存临时表转成磁盘临时表，磁盘临时表默认使用的引擎是InnoDB。 这

select id%10 as m, count(*) as c from t1 group by m order by null;

set tmp_table_size=1024;

select id%100 as m, count(*) as c from t1 group by m order by null limit 10;

时，返回的结果如图9所示。

图9 group + order by null 的结果（磁盘临时表）

如果这个表t1的数据量很大，很可能这个查询需要的磁盘临时表就会占用大量的磁盘空间。

group by 优化方法 --索引

可以看到，不论是使用内存临时表还是磁盘临时表，group by逻辑都需要构造一个带唯一索引的

表，执行代价都是比较高的。如果表的数据量比较大，上面这个group by语句执行起来就会很

慢，我们有什么优化的方法呢？

要解决group by语句的优化问题，你可以先想一下这个问题：执行group by语句为什么需要临时

表？

group by的语义逻辑，是统计不同的值出现的个数。但是，由于每一行的id%100的结果是无序

的，所以我们就需要有一个临时表，来记录并统计结果。

那么，如果扫描过程中可以保证出现的数据是有序的，是不是就简单了呢？

假设，现在有一个类似图10的这么一个数据结构，我们来看看group by可以怎么做。

图10 group by算法优化-有序输入

可以看到，如果可以确保输入的数据是有序的，那么计算group by的时候，就只需要从左到右，

顺序扫描，依次累加。也就是下面这个过程：

当碰到第一个1的时候，已经知道累积了X个0，结果集里的第一行就是(0,X);

当碰到第一个2的时候，已经知道累积了Y个1，结果集里的第一行就是(1,Y);

按照这个逻辑执行的话，扫描到整个输入的数据结束，就可以拿到group by的结果，不需要临时

表，也不需要再额外排序。

你一定想到了，InnoDB的索引，就可以满足这个输入有序的条件。

在MySQL 5.7版本支持了generated column机制，用来实现列数据的关联更新。你可以用下面的

方法创建一个列z，然后在z列上创建一个索引（如果是MySQL 5.6及之前的版本，你也可以创建

普通列和索引，来解决这个问题）。

这样，索引z上的数据就是类似图10这样有序的了。上面的group by语句就可以改成：

alter table t1 add column z int generated always as(id % 100), add index(z);

优化后的group by语句的explain结果，如下图所示：

图11 group by 优化的explain结果

从Extra字段可以看到，这个语句的执行不再需要临时表，也不需要排序了。

group by优化方法 --直接排序

所以，如果可以通过加索引来完成group by逻辑就再好不过了。但是，如果碰上不适合创建索引

的场景，我们还是要老老实实做排序的。那么，这时候的group by要怎么优化呢？

如果我们明明知道，一个group by语句中需要放到临时表上的数据量特别大，却还是要按照“先

放到内存临时表，插入一部分数据后，发现内存临时表不够用了再转成磁盘临时表”，看上去就

有点儿傻。

那么，我们就会想了，MySQL有没有让我们直接走磁盘临时表的方法呢？

答案是，有的。

在group by语句中加入SQL_BIG_RESULT这个提示（hint），就可以告诉优化器：这个语句涉

及的数据量很大，请直接用磁盘临时表。

MySQL的优化器一看，磁盘临时表是B+树存储，存储效率不如数组来得高。所以，既然你告诉

我数据量很大，那从磁盘空间考虑，还是直接用数组来存吧。

因此，下面这个语句

的执行流程就是这样的：

1. 初始化sort_buffer，确定放入一个整型字段，记为m；

2. 扫描表t1的索引a，依次取出里面的id值, 将 id%100的值存入sort_buffer中；

3. 扫描完成后，对sort_buffer的字段m做排序（如果sort_buffer内存不够用，就会利用磁盘临

时文件辅助排序）；

select z, count(*) as c from t1 group by z;

select SQL_BIG_RESULT id%100 as m, count(*) as c from t1 group by m;

4. 排序完成后，就得到了一个有序数组。

根据有序数组，得到数组里面的不同值，以及每个值的出现次数。这一步的逻辑，你已经从前面

的图10中了解过了。

下面两张图分别是执行流程图和执行explain命令得到的结果。

图12 使用 SQL_BIG_RESULT的执行流程图

图13 使用 SQL_BIG_RESULT的explain 结果

从Extra字段可以看到，这个语句的执行没有再使用临时表，而是直接用了排序算法。

基于上面的union、union all和group by语句的执行过程的分析，我们来回答文章开头的问题：

MySQL什么时候会使用内部临时表？

1. 如果语句执行过程可以一边读数据，一边直接得到结果，是不需要额外内存的，否则就需要

额外的内存，来保存中间结果；

2. join_buffer是无序数组，sort_buffer是有序数组，临时表是二维表结构；

3. 如果执行逻辑需要用到二维表特性，就会优先考虑使用临时表。比如我们的例子中，union

需要用到唯一索引约束， group by还需要用到另外一个字段来存累积计数。

小结

通过今天这篇文章，我重点和你讲了group by的几种实现算法，从中可以总结一些使用的指导原

则：

1. 如果对group by语句的结果没有排序要求，要在语句后面加 order by null；

2. 尽量让group by过程用上表的索引，确认方法是explain结果里没有Using temporary 和 Using

filesort；

3. 如果group by需要统计的数据量不大，尽量只使用内存临时表；也可以通过适当调大

tmp_table_size参数，来避免用到磁盘临时表；

4. 如果数据量实在太大，使用SQL_BIG_RESULT这个提示，来告诉优化器直接使用排序算法

得到group by的结果。

最后，我给你留下一个思考题吧。

文章中图8和图9都是order by null，为什么图8的返回结果里面，0是在结果集的最后一行，而图

9的结果里面，0是在结果集的第一行？

你可以把你的分析写在留言区里，我会在下一篇文章和你讨论这个问题。感谢你的收听，也欢迎

你把这篇文章分享给更多的朋友一起阅读。

上期问题时间

上期的问题是：为什么不能用rename修改临时表的改名。

在实现上，执行rename table语句的时候，要求按照“库名/表名.frm”的规则去磁盘找文件，但是

临时表在磁盘上的frm文件是放在tmpdir目录下的，并且文件名的规则是“#sql{进程id}_{线程id}_

序列号.frm”，因此会报“找不到文件名”的错误。

评论区留言点赞板：

@poppy 同学，通过执行语句的报错现象推测了这个实现过程。

老杨同志  1

请教一个问题：如果只需要去重，不需要执行聚合函数，distinct 和group by那种效率高一些呢
？

课后习题:
图8，把统计结果存内存临时表，不排序。id是从1到1000，模10的结果顺序就是1、2、3、4、
5。。。
图9，老师把tmp_table_size改小了，内存临时表装不下，改用磁盘临时表。根据老师讲的流程
，id取模的结果，排序后存入临时表，临时的数据应该是0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,
......
从这个磁盘临时表读取数据汇总的结果的顺序就是0,1,2,3,4,5。。。

2019-02-06

 作者回复

新年好

好问题，我加到后面文章中。

简单说下结论，只需要去重的话，如果没有limit，是一样的；

有limit的话，distinct 快些。

漂亮的回答�

精选留言

javascript:;

2019-02-07

Long  0

老师，新年好！ :-)

有几个版本差异的问题：

（1）图1中的执行计划应该是5.7版本以后的吧，貌似没找到说在哪个环境，我在5.6和5.7分别
测试了，id = 2的那个rows，在5.6版本（5.6.26）是1000，在5.7版本是2行。应该是5.7做的优
化吧？

（2）图 9 group + order by null 的结果（此盘临时表），这里面mysql5.6里面执行的结果是（1
，10），（2，10）...(10，10)，执行计划都是只有一样，没找到差异。
跟踪下了下optimizer trace，发现问题应该是在临时表空间满的的时候，mysql5.7用的是：con
verting_tmp_table_to_ondisk "location": "disk (InnoDB)",，而mysql 5.6用的是converting_tmp_t
able_to_myisam "location": "disk (MyISAM)"的原因导致的。
查了下参数：

default_tmp_storage_engine。（5.6，5.7当前值都是innodb）
internal_tmp_disk_storage_engine（只有5.7有这个参数，当前值是innodb），5.6应该是默认磁
盘临时表就是MyISAM引擎的了，由于本地测试环境那个临时表的目录下找不到临时文件，也
没法继续分析了。。。

至于为什么MySQL 5.6中结果展示m字段不是0-9而是1-10，还得请老师帮忙解答下了。

还有几个小问题，为了方便解答，序号统一了：

（3）在阅读mysql执行计划的时候，看了网上有很多说法，也参考了mysql官网对id（select_id
）的解释：

id (JSON name: select_id)
The SELECT identifier. This is the sequential number of the SELECT within the query.（感觉这
个读起来也有点歧义，这个sequential字面解释感觉只有顺序的号码，并咩有说执行顺序）
比如图1，文中解释就是从ID小的往大的执行的，网上有很多其他说法，有的是说ID从大到小执
行，遇到ID一样的，就从上往下执行。有的说是从小往大顺序执行。不知道老师是否可以官方
讲解下。

（4）我发现想搞懂一个原理，并且讲清楚让别人明白，真的是很有难度，非常感谢老师的分享
。这次专栏结束，还会推出的新的专栏吗？ 非常期待。

2019-02-10

Laputa  0

老师好，文中说的不需要排序为什么不直接把orderby去掉而是写order by null

2019-02-08

 作者回复

javascript:;
javascript:;

MySQL 语义上这么定义的…
2019-02-08

HuaMax  0

课后题解答。图8是用内存临时表，文中已经提到，是按照表t1的索引a顺序取出数据，模10得0
的id是最后一行；图9是用硬盘临时表，默认用innodb 的索引，主键是id%10，因此存入硬盘后
再按主键树顺序取出，0就排到第一行了。

2019-02-07

Li Shunduo  0

请问Group By部分的第一个语句 explain select id%10 as m, count(*) as c from t1 group by m；
为什么选择的是索引a，而不是primary key？如果字段a上有空值，使用索引a岂不是就不能取
到所有的id值了？

2019-02-07

 作者回复

因为索引c的信息也足够，而且比主键索引小，使用索引c更会好。

“如果字段a上有空值，使用索引a岂不是就不能取到所有的id值了？”，不会的
2019-02-07

牛牛  0

新年快乐～、感谢有您～^_^～

2019-02-06

 作者回复

新年快乐~�
2019-02-07

poppy  0

老师，春节快乐，过年还在更新，辛苦辛苦。

关于思考题，我的理解是图8中的查询是使用了内存临时表，存储的顺序就是id%10的值的插入
顺序，而图9中的查询，由于内存临时表大小无法满足，所以使用了磁盘临时表，对于InnoDB
来说，就是对应B+树这种数据结构，这里会按照id%100(即m)的大小顺序来存储的，所以返回
的结果当然也是有序的

2019-02-06

 作者回复

新年好~

�
2019-02-07

张八百  0

春节快乐，老师。谢谢你让我学到不少知识

2019-02-06

javascript:;
javascript:;
javascript:;
javascript:;
javascript:;

 作者回复

新年快乐�
2019-02-06

某、人  0

老师春节快乐，辛苦了

2019-02-06

 作者回复

春节快乐，�
2019-02-06

长杰  0

图九使用的是磁盘临时表，磁盘临时表使用的引擎是innodb，innodb是索引组织表，按主键顺
序存储数据，所以是按照m字段有序的。

2019-02-06

 作者回复

��

春节快乐

2019-02-06

javascript:;
javascript:;

	37 | 什么时候会使用内部临时表？
	union 执行流程
	group by 执行流程
	group by 优化方法 --索引
	group by优化方法 --直接排序
	小结
	上期问题时间
	精选留言

