
38 | 都说InnoDB好，那还要不要使用Memory引擎？

2019-02-08 林晓斌

我在上一篇文章末尾留给你的问题是：两个group by 语句都用了order by null，为什么使用内存

临时表得到的语句结果里，0这个值在最后一行；而使用磁盘临时表得到的结果里，0这个值在

第一行？

今天我们就来看看，出现这个问题的原因吧。

内存表的数据组织结构

为了便于分析，我来把这个问题简化一下，假设有以下的两张表t1 和 t2，其中表t1使用Memory

引擎， 表t2使用InnoDB引擎。

然后，我分别执行select * from t1和select * from t2。

create table t1(id int primary key, c int) engine=Memory;

create table t2(id int primary key, c int) engine=innodb;

insert into t1 values(1,1),(2,2),(3,3),(4,4),(5,5),(6,6),(7,7),(8,8),(9,9),(0,0);

insert into t2 values(1,1),(2,2),(3,3),(4,4),(5,5),(6,6),(7,7),(8,8),(9,9),(0,0);

图1 两个查询结果-0的位置

可以看到，内存表t1的返回结果里面0在最后一行，而InnoDB表t2的返回结果里0在第一行。

出现这个区别的原因，要从这两个引擎的主键索引的组织方式说起。

表t2用的是InnoDB引擎，它的主键索引id的组织方式，你已经很熟悉了：InnoDB表的数据就放

在主键索引树上，主键索引是B+树。所以表t2的数据组织方式如下图所示：

图2 表t2的数据组织

主键索引上的值是有序存储的。在执行select *的时候，就会按照叶子节点从左到右扫描，所以

得到的结果里，0就出现在第一行。

与InnoDB引擎不同，Memory引擎的数据和索引是分开的。我们来看一下表t1中的数据内容。

图3 表t1 的数据组织

可以看到，内存表的数据部分以数组的方式单独存放，而主键id索引里，存的是每个数据的位

置。主键id是hash索引，可以看到索引上的key并不是有序的。

在内存表t1中，当我执行select *的时候，走的是全表扫描，也就是顺序扫描这个数组。因此，0

就是最后一个被读到，并放入结果集的数据。

可见，InnoDB和Memory引擎的数据组织方式是不同的：

InnoDB引擎把数据放在主键索引上，其他索引上保存的是主键id。这种方式，我们称之为索

引组织表（Index Organizied Table）。

而Memory引擎采用的是把数据单独存放，索引上保存数据位置的数据组织形式，我们称之

为堆组织表（Heap Organizied Table）。

从中我们可以看出，这两个引擎的一些典型不同：

1. InnoDB表的数据总是有序存放的，而内存表的数据就是按照写入顺序存放的；

2. 当数据文件有空洞的时候，InnoDB表在插入新数据的时候，为了保证数据有序性，只能在

固定的位置写入新值，而内存表找到空位就可以插入新值；

3. 数据位置发生变化的时候，InnoDB表只需要修改主键索引，而内存表需要修改所有索引；

4. InnoDB表用主键索引查询时需要走一次索引查找，用普通索引查询的时候，需要走两次索

引查找。而内存表没有这个区别，所有索引的“地位”都是相同的。

5. InnoDB支持变长数据类型，不同记录的长度可能不同；内存表不支持Blob 和 Text字段，并

且即使定义了varchar(N)，实际也当作char(N)，也就是固定长度字符串来存储，因此内存表

的每行数据长度相同。

由于内存表的这些特性，每个数据行被删除以后，空出的这个位置都可以被接下来要插入的数据

复用。比如，如果要在表t1中执行：

就会看到返回结果里，id=10这一行出现在id=4之后，也就是原来id=5这行数据的位置。

需要指出的是，表t1的这个主键索引是哈希索引，因此如果执行范围查询，比如

是用不上主键索引的，需要走全表扫描。你可以借此再回顾下第4篇文章的内容。那如果要让内

存表支持范围扫描，应该怎么办呢 ？

hash索引和B-Tree索引

实际上，内存表也是支B-Tree索引的。在id列上创建一个B-Tree索引，SQL语句可以这么写：

这时，表t1的数据组织形式就变成了这样：

delete from t1 where id=5;

insert into t1 values(10,10);

select * from t1;

select * from t1 where id<5;

alter table t1 add index a_btree_index using btree (id);

https://time.geekbang.org/column/article/69236

图4 表t1的数据组织--增加B-Tree索引

新增的这个B-Tree索引你看着就眼熟了，这跟InnoDB的b+树索引组织形式类似。

作为对比，你可以看一下这下面这两个语句的输出：

图5 使用B-Tree和hash索引查询返回结果对比

可以看到，执行select * from t1 where id<5的时候，优化器会选择B-Tree索引，所以返回结果是

0到4。 使用force index强行使用主键id这个索引，id=0这一行就在结果集的最末尾了。

其实，一般在我们的印象中，内存表的优势是速度快，其中的一个原因就是Memory引擎支持

hash索引。当然，更重要的原因是，内存表的所有数据都保存在内存，而内存的读写速度总是

比磁盘快。

但是，接下来我要跟你说明，为什么我不建议你在生产环境上使用内存表。这里的原因主要包括

两个方面：

1. 锁粒度问题；

2. 数据持久化问题。

内存表的锁

我们先来说说内存表的锁粒度问题。

内存表不支持行锁，只支持表锁。因此，一张表只要有更新，就会堵住其他所有在这个表上的读

写操作。

需要注意的是，这里的表锁跟之前我们介绍过的MDL锁不同，但都是表级的锁。接下来，我通

过下面这个场景，跟你模拟一下内存表的表级锁。

图6 内存表的表锁--复现步骤

在这个执行序列里，session A的update语句要执行50秒，在这个语句执行期间session B的查询

会进入锁等待状态。session C的show processlist 结果输出如下：

图7 内存表的表锁--结果

跟行锁比起来，表锁对并发访问的支持不够好。所以，内存表的锁粒度问题，决定了它在处理并

发事务的时候，性能也不会太好。

数据持久性问题

接下来，我们再看看数据持久性的问题。

数据放在内存中，是内存表的优势，但也是一个劣势。因为，数据库重启的时候，所有的内存表

都会被清空。

你可能会说，如果数据库异常重启，内存表被清空也就清空了，不会有什么问题啊。但是，在高

可用架构下，内存表的这个特点简直可以当做bug来看待了。为什么这么说呢？

我们先看看M-S架构下，使用内存表存在的问题。

图8 M-S基本架构

我们来看一下下面这个时序：

1. 业务正常访问主库；

2. 备库硬件升级，备库重启，内存表t1内容被清空；

3. 备库重启后，客户端发送一条update语句，修改表t1的数据行，这时备库应用线程就会报

错“找不到要更新的行”。

这样就会导致主备同步停止。当然，如果这时候发生主备切换的话，客户端会看到，表t1的数

据“丢失”了。

在图8中这种有proxy的架构里，大家默认主备切换的逻辑是由数据库系统自己维护的。这样对客

户端来说，就是“网络断开，重连之后，发现内存表数据丢失了”。

你可能说这还好啊，毕竟主备发生切换，连接会断开，业务端能够感知到异常。

但是，接下来内存表的这个特性就会让使用现象显得更“诡异”了。由于MySQL知道重启之后，内

存表的数据会丢失。所以，担心主库重启之后，出现主备不一致，MySQL在实现上做了这样一

件事儿：在数据库重启之后，往binlog里面写入一行DELETE FROM t1。

如果你使用是如图9所示的双M结构的话：

图9 双M结构

在备库重启的时候，备库binlog里的delete语句就会传到主库，然后把主库内存表的内容删除。

这样你在使用的时候就会发现，主库的内存表数据突然被清空了。

基于上面的分析，你可以看到，内存表并不适合在生产环境上作为普通数据表使用。

有同学会说，但是内存表执行速度快呀。这个问题，其实你可以这么分析：

1. 如果你的表更新量大，那么并发度是一个很重要的参考指标，InnoDB支持行锁，并发度比

内存表好；

2. 能放到内存表的数据量都不大。如果你考虑的是读的性能，一个读QPS很高并且数据量不大

的表，即使是使用InnoDB，数据也是都会缓存在InnoDB Buffer Pool里的。因此，使用

InnoDB表的读性能也不会差。

所以，我建议你把普通内存表都用 InnoDB表来代替。但是，有一个场景却是例外的。

这个场景就是，我们在第35和36篇说到的用户临时表。在数据量可控，不会耗费过多内存的情

况下，你可以考虑使用内存表。

内存临时表刚好可以无视内存表的两个不足，主要是下面的三个原因：

1. 临时表不会被其他线程访问，没有并发性的问题；

2. 临时表重启后也是需要删除的，清空数据这个问题不存在；

3. 备库的临时表也不会影响主库的用户线程。

现在，我们回过头再看一下第35篇join语句优化的例子，当时我建议的是创建一个InnoDB临时

表，使用的语句序列是：

了解了内存表的特性，你就知道了， 其实这里使用内存临时表的效果更好，原因有三个：

1. 相比于InnoDB表，使用内存表不需要写磁盘，往表temp_t的写数据的速度更快；

2. 索引b使用hash索引，查找的速度比B-Tree索引快；

3. 临时表数据只有2000行，占用的内存有限。

因此，你可以对第35篇文章的语句序列做一个改写，将临时表t1改成内存临时表，并且在字段b

上创建一个hash索引。

create temporary table temp_t(id int primary key, a int, b int, index(b))engine=innodb;

insert into temp_t select * from t2 where b>=1 and b<=2000;

select * from t1 join temp_t on (t1.b=temp_t.b);

create temporary table temp_t(id int primary key, a int, b int, index (b))engine=memory;

insert into temp_t select * from t2 where b>=1 and b<=2000;

select * from t1 join temp_t on (t1.b=temp_t.b);

https://time.geekbang.org/column/article/80147

图10 使用内存临时表的执行效果

可以看到，不论是导入数据的时间，还是执行join的时间，使用内存临时表的速度都比使用

InnoDB临时表要更快一些。

小结

今天这篇文章，我从“要不要使用内存表”这个问题展开，和你介绍了Memory引擎的几个特性。

可以看到，由于重启会丢数据，如果一个备库重启，会导致主备同步线程停止；如果主库跟这个

备库是双M架构，还可能导致主库的内存表数据被删掉。

因此，在生产上，我不建议你使用普通内存表。

如果你是DBA，可以在建表的审核系统中增加这类规则，要求业务改用InnoDB表。我们在文中

也分析了，其实InnoDB表性能还不错，而且数据安全也有保障。而内存表由于不支持行锁，更

新语句会阻塞查询，性能也未必就如想象中那么好。

基于内存表的特性，我们还分析了它的一个适用场景，就是内存临时表。内存表支持hash索

引，这个特性利用起来，对复杂查询的加速效果还是很不错的。

最后，我给你留一个问题吧。

假设你刚刚接手的一个数据库上，真的发现了一个内存表。备库重启之后肯定是会导致备库的内

存表数据被清空，进而导致主备同步停止。这时，最好的做法是将它修改成InnoDB引擎表。

假设当时的业务场景暂时不允许你修改引擎，你可以加上什么自动化逻辑，来避免主备同步停止

呢？

你可以把你的思考和分析写在评论区，我会在下一篇文章的末尾跟你讨论这个问题。感谢你的收

听，也欢迎你把这篇文章分享给更多的朋友一起阅读。

上期问题时间

今天文章的正文内容，已经回答了我们上期的问题，这里就不再赘述了。

评论区留言点赞板：

Long  2

老师新年好 :-)
刚好遇到一个问题。

本来准备更新到，一个查询是怎么运行的里面的，看到这篇更新文章，就写在这吧，希望老师

帮忙解答。

关于这个系统memory引擎表：information_schema.tables
相关信息如下

（1）Verison: MySQL 5.6.26
（2）数据量table_schema = abc的有接近4W的表，整个实例有接近10W的表。（默认innodb
引擎）

（3）mysql.user和mysql.db的数据量都是100-200的行数，MyISAM引擎。

@老杨同志、@poppy、@长杰 这三位同学给出了正确答案，春节期间还持续保持跟进学习，

给你们点赞。

精选留言

javascript:;

（4）默认事务隔离级别RC

在运行查询语句1的时候：select * from information_schema.tables where table_schema = 'abc
';
状态一直是check permission，opening tables，其他线程需要打开的表在opend tables里面被
刷掉的，会显示在opening tables，可能需要小几秒后基本恢复正常。

但是如果在运行查询语句2：select count(1) from information_schema.tables where table_sche
ma = 'abc'; 这个时候语句2本身在profiling看长期处于check permission状态，其他线程就会出
现阻塞现象，大部分卡在了opening tables，小部分closing tables。我测试下了，当个表查询的
时候check permission大概也就是0.0005s左右的时间，4W个表理论良好状态应该是几十秒的
事情。

但是语句1可能需要5-10分钟，语句2需要5分钟。

3个问题，请老师抽空看下：
（1）information_schema.tables的组成方式，是我每次查询的时候从数据字典以及data目录下
的文件中实时去读的吗？

（2）语句1和语句2在运行的时候的过程分别是怎样的，特别是语句2。
（3）语句2为什么会出现大量阻塞其他事务，其他事务都卡在opening tables的状态。

PS: 最后根据audit log分析来看，语句实际上是MySQL的一个客户端Toad发起的，当使用Toad
的object explorer的界面来查询表，或者设置connection的时候指定的的default schema是大域
的时候就会run这个语句：（table_schema改成了abc，其他都是原样）
SELECT COUNT(1) FROM information_schema.tables WHERE table_schema = 'abc' AND ta
ble_type != 'VIEW';

再次感谢！

2019-02-08

放  1

老师新年快乐！过年都不忘给我们传授知识！

2019-02-08

 作者回复

新年快乐�
2019-02-08

于家鹏  1

新年好！

课后作业：在备库配置跳过该内存表的主从同步。

javascript:;
javascript:;

有一个问题一直困扰着我：SSD以及云主机的广泛运用，像Innodb这种使用WAL技术似乎并不
能发挥最大性能（我的理解：基于SSD的WAL更多的只是起到队列一样削峰填谷的作用）。对
于一些数据量不是特别大，但读写频繁的应用（比如点赞、积分），有没有更好的引擎推荐。

2019-02-08

 作者回复

即使是SSD，顺序写也比随机写快些的。 不过确实没有机械盘那么明显。
2019-02-08

长杰  0

内存表一般数据量不大，并且更新不频繁，可以写一个定时任务，定期检测内存表的数据，如

果数据不空，就将它持久化到一个innodb同结构的表中，如果为空，就反向将数据写到内存表
中，这些操作可设置为不写入binlog。

2019-02-09

往事随风，顺其自然  0

为什么memory 引擎中数据按照数组单独存储，0索引对应的数据怎么放到数组的最后

2019-02-09

 作者回复

这就是堆组织表的数据存放方式

2019-02-09

HuaMax  0

课后题。是不是可以加上创建表的操作，并且是innodb 类型的？

2019-02-09

老杨同志  0

安装之前学的知识，把主库delete语句的gtid，设置到从库中，就可以跳过这条语句了吧。
但是主备不一致是不是要也处理一下，将主库的内存表数据备份一下。然后delete数据，重新
插入。

等备件执行者两个语句后，主备应该都有数据了

2019-02-08

 作者回复

题目里说的是 “备库重启”哈
2019-02-09

javascript:;
javascript:;
javascript:;
javascript:;

	38 | 都说InnoDB好，那还要不要使用Memory引擎？
	内存表的数据组织结构
	hash索引和B-Tree索引
	内存表的锁
	数据持久性问题
	小结
	上期问题时间
	精选留言

