
40 | insert语句的锁为什么这么多？

2019-02-13 林晓斌

在上一篇文章中，我提到MySQL对自增主键锁做了优化，尽量在申请到自增id以后，就释放自增

锁。

因此，insert语句是一个很轻量的操作。不过，这个结论对于“普通的insert语句”才有效。也就是

说，还有些insert语句是属于“特殊情况”的，在执行过程中需要给其他资源加锁，或者无法在申

请到自增id以后就立马释放自增锁。

那么，今天这篇文章，我们就一起来聊聊这个话题。

insert … select 语句

我们先从昨天的问题说起吧。表t和t2的表结构、初始化数据语句如下，今天的例子我们还是针

对这两个表展开。

现在，我们一起来看看为什么在可重复读隔离级别下，binlog_format=statement时执行：

这个语句时，需要对表t的所有行和间隙加锁呢？

其实，这个问题我们需要考虑的还是日志和数据的一致性。我们看下这个执行序列：

图1 并发insert场景

实际的执行效果是，如果session B先执行，由于这个语句对表t主键索引加了(-∞,1]这个next-key

lock，会在语句执行完成后，才允许session A的insert语句执行。

但如果没有锁的话，就可能出现session B的insert语句先执行，但是后写入binlog的情况。于

是，在binlog_format=statement的情况下，binlog里面就记录了这样的语句序列：

CREATE TABLE t̀ ̀(

 ìd ̀int(11) NOT NULL AUTO_INCREMENT,

 `c ̀int(11) DEFAULT NULL,

 `d ̀int(11) DEFAULT NULL,

 PRIMARY KEY (̀ id)̀,

 UNIQUE KEY `c ̀(̀ c)̀

) ENGINE=InnoDB;

insert into t values(null, 1,1);

insert into t values(null, 2,2);

insert into t values(null, 3,3);

insert into t values(null, 4,4);

create table t2 like t

insert into t2(c,d) select c,d from t;

insert into t values(-1,-1,-1);

insert into t2(c,d) select c,d from t;

这个语句到了备库执行，就会把id=-1这一行也写到表t2中，出现主备不一致。

insert 循环写入

当然了，执行insert … select 的时候，对目标表也不是锁全表，而是只锁住需要访问的资源。

如果现在有这么一个需求：要往表t2中插入一行数据，这一行的c值是表t中c值的最大值加1。

此时，我们可以这么写这条SQL语句 ：

这个语句的加锁范围，就是表t索引c上的(3,4]和(4,supremum]这两个next-key lock，以及主键索

引上id=4这一行。

它的执行流程也比较简单，从表t中按照索引c倒序，扫描第一行，拿到结果写入到表t2中。

因此整条语句的扫描行数是1。

这个语句执行的慢查询日志（slow log），如下图所示：

图2 慢查询日志--将数据插入表t2

通过这个慢查询日志，我们看到Rows_examined=1，正好验证了执行这条语句的扫描行数为1。

那么，如果我们是要把这样的一行数据插入到表t中的话：

语句的执行流程是怎样的？扫描行数又是多少呢？

这时候，我们再看慢查询日志就会发现不对了。

图3 慢查询日志--将数据插入表t

可以看到，这时候的Rows_examined的值是5。

insert into t2(c,d) (select c+1, d from t force index(c) order by c desc limit 1);

insert into t(c,d) (select c+1, d from t force index(c) order by c desc limit 1);

我在前面的文章中提到过，希望你都能够学会用explain的结果来“脑补”整条语句的执行过程。今

天，我们就来一起试试。

如图4所示就是这条语句的explain结果。

图4 explain结果

从Extra字段可以看到“Using temporary”字样，表示这个语句用到了临时表。也就是说，执行过

程中，需要把表t的内容读出来，写入临时表。

图中rows显示的是1，我们不妨先对这个语句的执行流程做一个猜测：如果说是把子查询的结果

读出来（扫描1行），写入临时表，然后再从临时表读出来（扫描1行），写回表t中。那么，这

个语句的扫描行数就应该是2，而不是5。

所以，这个猜测不对。实际上，Explain结果里的rows=1是因为受到了limit 1 的影响。

从另一个角度考虑的话，我们可以看看InnoDB扫描了多少行。如图5所示，是在执行这个语句前

后查看Innodb_rows_read的结果。

图5 查看 Innodb_rows_read变化

可以看到，这个语句执行前后，Innodb_rows_read的值增加了4。因为默认临时表是使用

Memory引擎的，所以这4行查的都是表t，也就是说对表t做了全表扫描。

这样，我们就把整个执行过程理清楚了：

1. 创建临时表，表里有两个字段c和d。

2. 按照索引c扫描表t，依次取c=4、3、2、1，然后回表，读到c和d的值写入临时表。这

时，Rows_examined=4。

3. 由于语义里面有limit 1，所以只取了临时表的第一行，再插入到表t中。这

时，Rows_examined的值加1，变成了5。

也就是说，这个语句会导致在表t上做全表扫描，并且会给索引c上的所有间隙都加上共享的next-

key lock。所以，这个语句执行期间，其他事务不能在这个表上插入数据。

至于这个语句的执行为什么需要临时表，原因是这类一边遍历数据，一边更新数据的情况，如果

读出来的数据直接写回原表，就可能在遍历过程中，读到刚刚插入的记录，新插入的记录如果参

与计算逻辑，就跟语义不符。

由于实现上这个语句没有在子查询中就直接使用limit 1，从而导致了这个语句的执行需要遍历整

个表t。它的优化方法也比较简单，就是用前面介绍的方法，先insert into到临时表temp_t，这样

就只需要扫描一行；然后再从表temp_t里面取出这行数据插入表t1。

当然，由于这个语句涉及的数据量很小，你可以考虑使用内存临时表来做这个优化。使用内存临

时表优化时，语句序列的写法如下：

insert 唯一键冲突

前面的两个例子是使用insert … select的情况，接下来我要介绍的这个例子就是最常见的insert语

句出现唯一键冲突的情况。

对于有唯一键的表，插入数据时出现唯一键冲突也是常见的情况了。我先给你举一个简单的唯一

键冲突的例子。

create temporary table temp_t(c int,d int) engine=memory;

insert into temp_t (select c+1, d from t force index(c) order by c desc limit 1);

insert into t select * from temp_t;

drop table temp_t;

图6 唯一键冲突加锁

这个例子也是在可重复读（repeatable read）隔离级别下执行的。可以看到，session B要执行

的insert语句进入了锁等待状态。

也就是说，session A执行的insert语句，发生唯一键冲突的时候，并不只是简单地报错返回，还

在冲突的索引上加了锁。我们前面说过，一个next-key lock就是由它右边界的值定义的。这时

候，session A持有索引c上的(5,10]共享next-key lock（读锁）。

至于为什么要加这个读锁，其实我也没有找到合理的解释。从作用上来看，这样做可以避免这一

行被别的事务删掉。

这里官方文档有一个描述错误，认为如果冲突的是主键索引，就加记录锁，唯一索引才加next-

key lock。但实际上，这两类索引冲突加的都是next-key lock。

有同学在前面文章的评论区问到，在有多个唯一索引的表中并发插入数据时，会出现死锁。但

是，由于他没有提供复现方法或者现场，我也无法做分析。所以，我建议你在评论区发问题的时

候，尽量同时附上复现方法，或者现场信息，这样我才好和你一起分析问题。

这里，我就先和你分享一个经典的死锁场景，如果你还遇到过其他唯一键冲突导致的死锁场景，

也欢迎给我留言。

图7 唯一键冲突--死锁

在session A执行rollback语句回滚的时候，session C几乎同时发现死锁并返回。

这个死锁产生的逻辑是这样的：

1. 在T1时刻，启动session A，并执行insert语句，此时在索引c的c=5上加了记录锁。注意，这

个索引是唯一索引，因此退化为记录锁（如果你的印象模糊了，可以回顾下第21篇文章介绍

的加锁规则）。

备注：这个bug，是我在写这篇文章查阅文档时发现的，已经发给官方并被verified了。

https://dev.mysql.com/doc/refman/8.0/en/innodb-locks-set.html
https://bugs.mysql.com/bug.php?id=93806
https://time.geekbang.org/column/article/75659

2. 在T2时刻，session B要执行相同的insert语句，发现了唯一键冲突，加上读锁；同样

地，session C也在索引c上，c=5这一个记录上，加了读锁。

3. T3时刻，session A回滚。这时候，session B和session C都试图继续执行插入操作，都要加

上写锁。两个session都要等待对方的行锁，所以就出现了死锁。

这个流程的状态变化图如下所示。

图8 状态变化图--死锁

insert into … on duplicate key update

上面这个例子是主键冲突后直接报错，如果是改写成

的话，就会给索引c上(5,10] 加一个排他的next-key lock（写锁）。

insert into … on duplicate key update 这个语义的逻辑是，插入一行数据，如果碰到唯一

键约束，就执行后面的更新语句。

insert into t values(11,10,10) on duplicate key update d=100;

注意，如果有多个列违反了唯一性约束，就会按照索引的顺序，修改跟第一个索引冲突的行。

现在表t里面已经有了(1,1,1)和(2,2,2)这两行，我们再来看看下面这个语句执行的效果：

图9 两个唯一键同时冲突

可以看到，主键id是先判断的，MySQL认为这个语句跟id=2这一行冲突，所以修改的是id=2的

行。

需要注意的是，执行这条语句的affected rows返回的是2，很容易造成误解。实际上，真正更新

的只有一行，只是在代码实现上，insert和update都认为自己成功了，update计数加了1， insert

计数也加了1。

小结

今天这篇文章，我和你介绍了几种特殊情况下的insert语句。

insert … select 是很常见的在两个表之间拷贝数据的方法。你需要注意，在可重复读隔离级别

下，这个语句会给select的表里扫描到的记录和间隙加读锁。

而如果insert和select的对象是同一个表，则有可能会造成循环写入。这种情况下，我们需要引入

用户临时表来做优化。

insert 语句如果出现唯一键冲突，会在冲突的唯一值上加共享的next-key lock(S锁)。因此，碰到

由于唯一键约束导致报错后，要尽快提交或回滚事务，避免加锁时间过长。

最后，我给你留一个问题吧。

你平时在两个表之间拷贝数据用的是什么方法，有什么注意事项吗？在你的应用场景里，这个方

法，相较于其他方法的优势是什么呢？

你可以把你的经验和分析写在评论区，我会在下一篇文章的末尾选取有趣的评论来和你一起分

析。感谢你的收听，也欢迎你把这篇文章分享给更多的朋友一起阅读。

上期问题时间

我们已经在文章中回答了上期问题。

有同学提到，如果在insert … select 执行期间有其他线程操作原表，会导致逻辑错误。其实，这

是不会的，如果不加锁，就是快照读。

一条语句执行期间，它的一致性视图是不会修改的，所以即使有其他事务修改了原表的数据，也

不会影响这条语句看到的数据。

评论区留言点赞板：

huolang  8

老师，死锁的例子，关于sessionA拿到的c=5的记录锁，sessionB和sessionC发现唯一键冲突
会加上读锁我有几个疑惑：

1. sessionA拿到的c=5的记录锁是写锁吗？
2. 为什么sessionB和sessionC发现唯一键冲突会加上读锁？
3. 如果sessionA拿到c=5的记录所是写锁，那为什么sessionB和sessionC还能加c=5的读锁，
写锁和读锁不应该是互斥的吗？

4. sessionA还没有提交，为什么sessionB和sessionC能发现唯一键冲突？

2019-02-13

@长杰 同学回答得非常准确。

精选留言

javascript:;

 作者回复

1. 是的

2. 这个我觉得是为了防止这个记录再被删除（不过这个理由不是很硬，我还没有找到其他解释

3. 互斥的，所以这两个语句都在等待。注意next-key lock是由间隙锁和记录锁组成的哦， 间隙

锁加成功了的。好问题。

4. 还没有提交，但是这个记录已经作为最新记录写进去了，复习一下08篇哈
2019-02-14

老杨同志  4

课后问题：

我用的最多还是insert into select 。如果数量比较大，会加上limit 100,000这种。并且看看后面
的select条件是否走索引。缺点是会锁select的表。方法二：导出成excel，然后拼sql 成 insert i
nto values(),(),()的形式。方法3，写类似淘宝调动的定时任务，任务的逻辑是查询100条记录，
然后多个线程分到几个任务执行，比如是个线程，每个线程10条记录，插入后，在查询新的10
0条记录处理。

2019-02-13

 作者回复

�
2019-02-14

sonic  3

你好，

我想问下文章中关于为什么需要创建临时表有这一句话：

如果读出来的数据直接写回原表，就可能在遍历过程中，读到刚刚插入的记录，新插入的记录

如果参与计算逻辑，就跟语义不符。

我的疑问是：既然隔离级别是可重复读，照理来说新插入的的记录应该不会参与计算逻辑呀。

2019-02-14

 作者回复

可重复读隔离级别下，事务是可以看到自己刚刚修改的数据的 ，好问题
2019-02-16

滔滔  2

老师，之前提到的一个有趣的问题"A、B两个用户，如果互相喜欢，则成为好友。设计上是有
两张表，一个是like表，一个是friend表，like表有user_id、liker_id两个字段，我设置为复合唯
一索引即uk_user_id_liker_id。语句执行顺序是这样的：
以A喜欢B为例：
1、先查询对方有没有喜欢自己（B有没有喜欢A）
select * from like where user_id = B and liker_id = A
2、如果有，则成为好友
insert into friend
3、没有，则只是喜欢关系
insert into like"，这个问题中如果把select语句改成"当前读"，则当出现A,B两个人同时喜欢对方

javascript:;
javascript:;
javascript:;

的情况下，是不是会出现由于"当前读"加的gap锁导致后面insert语句阻塞，从而发生死锁？

2019-02-13

 作者回复

好问题

这种情况下一般是造成锁等待，不会造成死锁吧 �
2019-02-14

夹心面包  2

1 关于insert造成死锁的情况,我之前做过测试,事务1并非只有insert,delete和update都可能造成死
锁问题,核心还是插入唯一值冲突导致的.我们线上的处理办法是 1 去掉唯一值检测 2减少重复值
的插入 3降低并发线程数量
2 关于数据拷贝大表我建议采用pt-archiver,这个工具能自动控制频率和速度,效果很不错,提议在
低峰期进行数据操作

2019-02-13

 作者回复

�，这两点都是很有用的建议
2019-02-13

王伯轩  1

老师你好,去年双11碰到了dbcrash掉的情况.至今没有找到答案,心里渗得慌.老师帮忙分析下.
我是一个开发,关于db的知识更多是在应用和基本原理上面,实在是找不到原因. 我也搜了一些资
料 感觉像是mysql的bug,不过在其buglist中没有找到完全一致的，当然也可能是我们业务也许导
致库的压力大的原因.
应用端看到的现象是db没有响应，应用需要访问db的线程全部僵死.db表现是hang住 , 当时的诊
断日志如下，表面表现为一直获取不到latch锁（被一个insert线程持有不释放） https://note.you
dao.com/ynoteshare1/index.html?id=1771445db3ff1e08cbdd8328ea6765a7&type=note#/ 隔离
级别是rr

同样的crash双11当天后面又出现了一次（哭死）,
都是重启数据库解决的,

后面应用层面做了一样优化,没有再crash过，优化主要如下：
1.减小读压力，去除一些不必要的查询，
2.优化前，有并发事务写和查询同一条数据记录，即事务a执行insert 尚未提交，事务b就来查询
（快照读），优化后保证查询时insert事务已经提交

2019-02-19

 作者回复

这就是压力太大了。。 一般伴随着ioutil很大，语句执行特别慢，别的语句就被堵着等锁，等超

时就自己crash
2019-02-19

phpzheng-好客旅游网  1

javascript:;
javascript:;
javascript:;

phpzheng-好客旅游网  1

循环插入数据，然后拿着刚刚插入的主键id，更新数据。请问怎么提高这个情况的效率

2019-02-15

 作者回复

insert以后

select last_insert_id,

再update，

只能这么做啦

如果要快一些，可能可以考虑减少交互，比如写成存储过程

2019-02-16

伟仔_Hoo  0

老师，看到您的回复，当select c+1, d from t force index(c) order by c desc limit 1;这条语句单
独执行是会在c索引上加(4,sup] 这个next key lock, 于是我进行了尝试
sessionA:
begin;
select c+1, d from t3 force index(c) order by c desc limit 1;
sessionB:
insert into t3 values(5, 5, 5);
结果是，sessionB插入成功，是不是我哪里理解错了？我的版本是5.7.23

2019-03-15

 作者回复

session A的select语句没有加 for update 或者 lock in share mode ?
2019-03-16

猫小妖的尾巴  0

老师，我们的业务中有用到insert …on duplicate key update导致死锁的情况，表是有唯一索引，
DBA那边的解释是有唯一索引的insert需要两把锁，事务1先申请X锁成功, 然后申请S锁, 但是事
务2正在申请X锁, 与事务1的S锁冲突, 系统决定回滚事务2，然后我就改成先查询存在直接updat
e不存在再用原来的逻辑，不过我感觉还是不太明白，你可以解释一下吗

2019-03-10

涵涵妈 lilian  0

老师，能帮忙看下这个死锁记录吗？对于duplicate key插入有什么阻止的好方法？LATEST DE
TECTED DEADLOCK

190222 8:37:45
*** (1) TRANSACTION:
TRANSACTION 16FEC1AE, ACTIVE 0 sec inserting
mysql tables in use 1, locked 1
LOCK WAIT 6 lock struct(s), heap size 1248, 3 row lock(s)
MySQL thread id 169973, OS thread handle 0x2ba0fa040700, query id 41915315 10.45.133.181

javascript:;
javascript:;
javascript:;

W59FFHKU
INSERT INTO resource (
Id
, Name
, Date
, User
) VALUES (99127, 'RS_2098185e367d11e9878202a98a7af318', '', 'JR')
*** (1) WAITING FOR THIS LOCK TO BE GRANTED:
RECORD LOCKS space id 78 page no 71 n bits 160 index `PRIMARY` of table `resource` trx id
16FEC1AE lock_mode X insert intention waiting
Record lock, heap no 1 PHYSICAL RECORD: n_fields 1; compact format; info bits 0
0: len 8; hex 73757072656d756d; asc supremum;;
*** (2) TRANSACTION:
TRANSACTION 16FEC1AF, ACTIVE 0 sec inserting
mysql tables in use 1, locked 1
6 lock struct(s), heap size 1248, 3 row lock(s)
MySQL thread id 169996, OS thread handle 0x2ba0ffec2700, query id 41915317 10.45.133.181
W59FFHKU
INSERT INTO resource (
Id
, Name
, Date
, User
) VALUES (99125, 'RS_2098b778367d11e9878202a98a7af318', '', 'JR')
*** (2) HOLDS THE LOCK(S):
RECORD LOCKS space id 78 page no 71 n bits 160 index `PRIMARY` of table `resource` trx id
16FEC1AF lock mode S
Record lock, heap no 1 PHYSICAL RECORD: n_fields 1; compact format; info bits 0
0: len 8; hex 73757072656d756d; asc supremum;;
*** (2) WAITING FOR THIS LOCK TO BE GRANTED:
RECORD LOCKS space id 78 page no 71 n bits 160 index `PRIMARY` of table `resource` trx id
16FEC1AF lock_mode X insert intention waiting
Record lock, heap no 1 PHYSICAL RECORD: n_fields 1; compact format; info bits 0
0: len 8; hex 73757072656d756d; asc supremum;;
*** WE ROLL BACK TRANSACTION (2)

2019-03-10

涵涵妈 lilian  0

老师，重复主键插入冲突是否推荐insert ignore方法？

2019-03-09

 作者回复

这个取决于业务需求，如果是明确会存在这样的情况，并且可以忽略，是可以这么用的

2019-03-09

javascript:;

轻松的鱼  0

老师好，想请教一下死锁的例子中：

1. 在 session A rollback 前，session B/C 都因为唯一性冲突申请了 S Next-key lock，但是被 s
ession A 的 X but not gap lock 阻塞；
2. 在 session A rollbak 后，session B/C 顺利获得 S Next-key lock，并且都要继续进行插入，
这时候我认为是因为插入意向锁（LOCK_INSERT_INTENTION）导致的死锁，因为插入意向
锁会被 gap lock 阻塞，造成了相互等待。还没有进入到记录 X lock。
不知道我分析的对不对？

2019-03-06

张永志  0

对主键插入加读锁的个人理解，两个会话insert同样记录，在没有提交情况下，insert主键加读
锁是为了避免第一个会话回滚后，第二个会话可以正常执行；第一个会话提交后，第二个会话

再报错。

2019-02-28

 作者回复

是为了实现这个目的，是吧�
2019-02-28

Mr.Strive.Z.H.L  0

老师您好：

关于文中的锁描述有所疑惑。

文中出现过 共享的next-key锁 和 排他的next-key锁。

我们知道next-key是由 gap lock 和 行锁组成的。

我一直以来的认知是 gap lock都是s锁，没有x锁。
而行锁有s锁和x锁。
比如 select………lock in share mode，行锁是s
锁。

比如select………for update，行锁就是x锁。
但是gap lock 始终是s锁。

文中直接描述next-key lock是排他的，总让我认为gap lock和行锁都是x锁。

不知道我理解得对不对？

2019-02-27

 作者回复

是这样的，gap lock是无所谓S还是X的。

但是record lock 有。

javascript:;
javascript:;
javascript:;

Gap lock + 排他的record 就称作 排他的next-key lock 吧�

2019-02-27

滔滔  0

老师，select c+1, d from t force index(c) order by c desc limit 1;这条语句如果单独执行，是会
对表t进行全表加锁，还是只加(3,4],(4,sup]这两个next key锁。还有一个问题，这里为什么要加f
orce index(c)，不加会是怎样的效果呢？�

2019-02-24

 作者回复

(4,sup]

以防优化器不走索引，影响我们结论（比如数据量比较小的时候）

2019-02-25

发条橙子 。  0

老师，年后过来狂补课程了哈哈 ， 看到老师的bug留言已经被fix掉准备在最新版本发布了呢。

这里我有一个疑问， 我之前以为只有更新的时候才会加锁， 参考前面的文章，innodb要先扫描
表中数据，被扫描到的行要加锁 。

或者我们执行 select 的时候手动加上 排他锁 或者 共享锁，也会锁住。

这里老师讲到如果索引唯一键冲突， innodb为了做处理加了 next_key lock（S） 这个可以理解
。

insert .. select 也是因为有 select 索引会加锁 也可以理解

问题 ：

图7那个死锁的案例， session A 的时候 只是执行了 insert 语句，执行 insert的时候也没有sele
ct之类的，为什么也会在索引c上加个锁， 是什么时候加的呢 ？？？ 是 insert 语句有索引的话
都会给索引加锁么？？

2019-02-23

 作者回复

不是都会，是在要写入的时候，发现有主键冲突，才会加上这个next-key lock的锁
2019-02-23

滔滔  0

老师，有个问题insert into … on duplicate key update语句在发生冲突的时候是先加next key读锁
，然后在执行后面的update语句时再给冲突记录加上写锁，从而把之前加的next key读锁变成了
写锁，是这样的吗？

javascript:;
javascript:;
javascript:;

2019-02-21

 作者回复

不是，发现冲突直接加的就是写锁

2019-02-24

王伯轩  0

内存锁 大大计划讲下么,实际中碰到内存锁被持有后一直不释放导致db直接crash掉

2019-02-18

 作者回复

这个系列里没讲到了

这种我碰到比较多的是io压力特别大，导致有的事务执行不下去，但是占着锁

然后其他事务就拿不到锁，有一个600计时，超过就crash了
2019-02-18

信信  0

老师好，文中提到：insert into t2(c,d) (select c+1, d from t force index(c) order by c desc limit 1
)的加锁范围是表 t 索引 c 上的 (4,supremum] 这个 next-key lock 和主键索引上 id=4 这一行。
可是如果我把表t的id为3这行先删除，再执行这个insert...select，那么别的会话执行insert into t
values(3,3,3)会被阻塞，这说明4之前也是有间隙锁的？
另外，select c+1, d from t force index(c) order by c desc limit 1 for update 是不是不能用作等值
查询那样分析？因为如果算等值查询，根据优化1是没有间隙锁的。

2019-02-17

 作者回复

你说的对，这里其实是“向左扫描”，加锁范围应该是(3,4] 和 (4, supremum]。

�
2019-02-17

Justin  0

插入意向锁的gal lock和next key lock中的 gaplock互斥吗？

2019-02-15

 作者回复

额，

这里我们要澄清一下哈

只有一个gap lock，就是 next key lock = gap lock + record lock；

我们说一个insert语句如果要插入一个间隙，而这个间隙上有gap lock的话，insert语句会被堵住

，这个被堵住的效果，实现机制上是用插入意向锁和gap lock相互作用来实现的。

gap lock并不属于插入意向锁的一部分 ，就没有“插入意向锁的gal lock”这个概念哈
2019-02-16

javascript:;
javascript:;
javascript:;

	40 | insert语句的锁为什么这么多？
	insert … select 语句
	insert 循环写入
	insert 唯一键冲突
	insert into … on duplicate key update
	小结
	上期问题时间
	精选留言

