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•  Autht = Authentication（验证） 
•  Authz = Authorization（授权） 
•  中间凭证 = Authorization Grant 
•  Password = Resource Owner Password Credentials 

缩写 



实践之路 
•  07年11月：OAuth Core 1.0（社区） 
•  07年12月：OpenID 2.0 正式发布 
•  08年07月：人人（校内）网开放平台正式发布 
•  09年05月：人人 Connect 发布 
•  09年07月：OAuth 1.0a Draft 00 
•  09年09月：人人OAuth 1.0 
•  10年07月：OAuth 2.0 Draft 00 
•  10年11月：人人 OAuth 2.0 



场景 1 
开放带来的问题 

2008年 



互联网上有很多 
APP 
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“嘿！我的用户想访问他们 
        存储在你那里的资源。” 
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“出来混都不容易，我顶你！

我开放API！” 
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“给你钥匙，要慎用哦！” 
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APP 
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某哥哥：“妹妹，
今晚7点村头玉
米地见。” 

某姐姐：“我银
行密码是XXX。” 



悲了个剧 
用户再也不敢 
随便输入密码 

*COUGH* 



给我个安全的验证与授权机制先！！ 

用户伤不起！！！ 



场景 2 
OAuth1.0的 
帅呆与鸭梨 

2009年 
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“密码是神马？” 

“password” 

他们在
干神马？ 
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“XX要YY。给吗？” 

“给！” 

YY… 
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“要YY请刷卡！” 



帅呆 
总是？ 



智能手机 

2009年  2010年  2011年  

时间飞逝 
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“不对！不对！ 
先XX,再…” 

“先获取YY,再换XX再, 
换ZZ,再SIG,再…” 
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场景 3 
OAuth2.0的弹性 

2010年 
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4、Client Credentials 
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UNIT 4 
OAuth 2.0 

SSO 
2011年 



简单、快速、安全的
验证用户 

安全可控的允许第三方访
问用户数据 

SSO 



SSO 
保持登录
状态 

安全的回调 
登录界面 

可被调用 
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WEB SSO 
单点：Browser 
状态：Cookie 
回调：redirect_uri(URL) 
回调安全：域名 



Mobile SSO 
单点：人人客户端 
状态：本地存储的票 
回调：Android(Activity) ; iOS(AppDelegate) 

回调安全：App签名/标识 

/Browser 



x_sso_ticket in query 

ticket in cookie 

User Autht 



Authz Request 

GET /oauth/authorize?client_id=aclient 
 &redirect_uri=http%3A//www.example.com/cb 
 &response_type=code 
 &scope=bread+milk+car HTTP/1.1 

Host: graph.renren.com 
Cookie: ticket=aticket(renren.com) 

redirect_uri: http://www.example.com/cb 



Authz Request 

redirect_uri: http://renren.com/cb?android_key=ak 

GET /oauth/authorize?client_id=aclient 
 &redirect_uri=http%3a%2f%2frenren.com%2fcb

%3fandroid_key%3dak 
 &response_type=code 
 &scope=bread+milk+car 
 &x_sso_ticket=xst HTTP/1.1 

Host: graph.renren.com 

void android.app.Activity.startActivity(Intent intent)  



http://renren.com/cb?app_store_id=sid 
&ios_bundle_id=ibid 

GET /oauth/authorize?client_id=aclient 
 &redirect_uri=http%3a%2f%2frenren.com%2fcb

%3fapp_store_id%3dsid%26ios_bundle_id%3dibid 
 &response_type=code 
 &scope=bread+milk+car 
 &x_sso_ticket=xst HTTP/1.1 

Host: graph.renren.com 

Authz Request 

redirect_uri:  

[[UIApplication sharedApplication] openURL:
[NSURL URLWithString:url]]; 
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UNIT 5 
OAuth 2.0实现的 

经验 





Access Token的设计	
�

•  Access Token的组成 

•  生成Access Token(sig & expires)	
�

sig life expires user 

1000|2.b9fa896206de940a2b9cf416ffa30e83.3600.1271271600-240650143 

type app 

expires = current + life; 
//每天随机生成UUID：key 
date = (Date) current 
key = getEncryptionKey(date); 
sig = md5sum(type + life + expires + user + app + key); 



Access Token的设计	
�

•  Access Token的检验 
if (current > expires) return false; 
date = expires – life; 
key = getEncryptionKey(date); 
sig2 = md5sum(type + life + expires + user + app+ key); 
if (sig == sig2) return true; 
return false; 



Access Token的设计	
�

•  优点 
–  低耗验票 
–  全内存操作 
–  后端服务依赖少 

•  缺点 
–  更改状态难 



Access Token 生命周期	
�

•  OAuth2.0 Access Token的理念 
–  Bearer 
–  Short-life Access Token 
–  Long-life Refresh Token	
�



HTTPS页面包含非HTTPS静态文件警告问题	
�

•  End-point在HTTPS下 
•  中间显示页面放到HTTP下 





http://www.qconbeijing.com/
http://qconhangzhou.com/

