
验证与授权
人人网 开放平台

实践

开 场 白

我叫戴洵
API

OAuthT/Z

http://renren.com/xundai

人人Profile

xun.dai@me.com

Email

目录
•  开放带来的问题
•  OAuth 1.0的帅呆与鸭梨
•  OAuth 2.0的弹性
•  OAuth 2.0的Single Sign On

–  Web SSO、Mobile SSO
•  OAuth 2.0实现的经验

–  Token的设计
–  HTTPS的问题

•  Autht = Authentication（验证）
•  Authz = Authorization（授权）
•  中间凭证 = Authorization Grant
•  Password = Resource Owner Password Credentials

缩写

实践之路
•  07年11月：OAuth Core 1.0（社区）
•  07年12月：OpenID 2.0 正式发布
•  08年07月：人人（校内）网开放平台正式发布
•  09年05月：人人 Connect 发布
•  09年07月：OAuth 1.0a Draft 00
•  09年09月：人人OAuth 1.0
•  10年07月：OAuth 2.0 Draft 00
•  10年11月：人人 OAuth 2.0

场景 1
开放带来的问题

2008年

互联网上有很多
APP

APP
人人

APP
人人

APP
人人

APP
X X

Internet

APP
人人

APP
X X

“嘿！我的用户想访问他们
 存储在你那里的资源。”

人人

+
API

APP
X X

“出来混都不容易，我顶你！

我开放API！”

HTTP
BASIC

人人

+
API

APP
X X

“给你钥匙，要慎用哦！”

人人

+
API

APP
坏坏

某哥哥：“妹妹，
今晚7点村头玉
米地见。”

某姐姐：“我银
行密码是XXX。”

悲了个剧
用户再也不敢
随便输入密码

COUGH

给我个安全的验证与授权机制先！！

用户伤不起！！！

场景 2
OAuth1.0的
帅呆与鸭梨

2009年

APP
X X

“嘿！我们的用户想访问他们
存储在你那里的YY资源。”

人人

+
API

人人

+
API

APP
X X

“把用户交给我的管家
（OAuth）吧！”

人人

+
API

APP
X X

人人

+
API

APP
X X

人人

+
API

APP
X X

“密码是神马？”

“password”

他们在
干神马？

人人

+
API

APP
X X

“XX要YY。给吗？”

“给！”

YY…

人人

+
API

APP
X X

“要YY请刷卡！”

帅呆
总是？

智能手机

2009年 2010年 2011年

时间飞逝

?
Native APP

Native APP

复 杂

人人

+
API

APP
X X

“不对！不对！
先XX,再…”

“先获取YY,再换XX再,
换ZZ,再SIG,再…”

鸭 梨

场景 3
OAuth2.0的弹性

2010年

人人

+
API

WEB
APP
X X

1、Authz Code

人人

+
API

2、Implicit

人人

+
API

APP
XX

3、Password

人人

+
API

APP
XX

3、Password

人人

+
API

APP
XX

3、Password

人人

+
API

APP
XX

3、Password

人人

+
API

APP
X X

4、Client Credentials

人人

+
API

APP
X X

4、Client Credentials

APP
人人

APP
X X

<TSL>

简 单

弹 性

UNIT 4
OAuth 2.0

SSO
2011年

简单、快速、安全的
验证用户

安全可控的允许第三方访
问用户数据

SSO

SSO
保持登录
状态

安全的回调
登录界面

可被调用

APP
人人

User Agent

APP
X X

Browser

4:Exchange token

抽象流程

3:Callback

2:Authorization

Authentication

WEB SSO
单点：Browser
状态：Cookie
回调：redirect_uri(URL)
回调安全：域名

Mobile SSO
单点：人人客户端
状态：本地存储的票
回调：Android(Activity) ; iOS(AppDelegate)

回调安全：App签名/标识

/Browser

x_sso_ticket in query

ticket in cookie

User Autht

Authz Request

GET /oauth/authorize?client_id=aclient
 &redirect_uri=http%3A//www.example.com/cb
 &response_type=code
 &scope=bread+milk+car HTTP/1.1

Host: graph.renren.com
Cookie: ticket=aticket(renren.com)

redirect_uri: http://www.example.com/cb

Authz Request

redirect_uri: http://renren.com/cb?android_key=ak

GET /oauth/authorize?client_id=aclient
 &redirect_uri=http%3a%2f%2frenren.com%2fcb

%3fandroid_key%3dak
 &response_type=code
 &scope=bread+milk+car
 &x_sso_ticket=xst HTTP/1.1

Host: graph.renren.com

void android.app.Activity.startActivity(Intent intent)

http://renren.com/cb?app_store_id=sid
&ios_bundle_id=ibid

GET /oauth/authorize?client_id=aclient
 &redirect_uri=http%3a%2f%2frenren.com%2fcb

%3fapp_store_id%3dsid%26ios_bundle_id%3dibid
 &response_type=code
 &scope=bread+milk+car
 &x_sso_ticket=xst HTTP/1.1

Host: graph.renren.com

Authz Request

redirect_uri:

[[UIApplication sharedApplication] openURL:
[NSURL URLWithString:url]];

	
�
	
�
	
�
	
�
	
�
	
�
	
�
	
�
	
�
	
�
	
�
	
�
	
�
RR	
�

Service	
�

	
�
	
�
	
�
	
�
	
�
	
�
	
�
	
�
	
�
	
�
	
�
	
�
	
�
RR	
�

Client	
�

	
�
	
�
	
�
	
�
	
�
	
�
	
�
	
�
	
�
	
�
	
�
	
�

RR SDK/	
�
Third	
�
Apps	
�

1第三方app请求sso	
�

取得
App标
识	
�
	
�

23请求OAuth服务	
�

验证第三
方应用	
�

4

5

0
User 登录	
�

用户授权信息	
�

展示给用
户，用户
授权	
�

6

返回授权页面	
�

7

生成Token	
�

9
返回Token	
� A

将Token交给第三方app	
�

验证是否是RR客
户端	
�

8

UNIT 5
OAuth 2.0实现的

经验

Access Token的设计	
�

•  Access Token的组成

•  生成Access Token(sig & expires)	
�

sig life expires user

1000|2.b9fa896206de940a2b9cf416ffa30e83.3600.1271271600-240650143

type app

expires = current + life;
//每天随机生成UUID：key
date = (Date) current
key = getEncryptionKey(date);
sig = md5sum(type + life + expires + user + app + key);

Access Token的设计	
�

•  Access Token的检验
if (current > expires) return false;
date = expires – life;
key = getEncryptionKey(date);
sig2 = md5sum(type + life + expires + user + app+ key);
if (sig == sig2) return true;
return false;

Access Token的设计	
�

•  优点
–  低耗验票
–  全内存操作
–  后端服务依赖少

•  缺点
–  更改状态难

Access Token 生命周期	
�

•  OAuth2.0 Access Token的理念
–  Bearer
–  Short-life Access Token
–  Long-life Refresh Token	
�

HTTPS页面包含非HTTPS静态文件警告问题	
�

•  End-point在HTTPS下
•  中间显示页面放到HTTP下

http://www.qconbeijing.com/
http://qconhangzhou.com/

