

内 容 简 介

本书由基础知识、安装与部署、研发与维护、进阶知识、企业应用 5个模块构成，并细分为 20个章节，

其中“基础知识”6章、“安装与部署”4章、“研发与维护”4章、“进阶知识”5章、“企业应用”1章，分别

介绍了 Storm 的安装与配置、Storm 的基本原理、Topology 组件、Spout 组件、Bolt 组件、ZooKeeper 集群、

实战环节等内容，包括理论基础、环境搭建、研发准备、应用案例等。

本书理论联系实际，通过大量实例分析，让读者在较短的时间内掌握 Storm的使用，搭建并研发出自己

的基于 Storm的大数据处理平台。

本书适合所有大数据处理、实时流数据处理、Storm 的开发者或爱好者，也适合高等院校和培训学校相

关专业的师生参考使用。

本书封面贴有清华大学出版社防伪标签，无标签者不得销售。

版权所有，侵权必究。侵权举报电话：010-62782989 13701121933

图书在版编目（CIP）数据

从零开始学 Storm/赵必厦，程丽明编著. —北京：清华大学出版社，2014

ISBN 978-7-302-37245-5

Ⅰ. ①从… Ⅱ. ①赵… ②程… Ⅲ. ①数据处理软件 Ⅳ. ①TP274

中国版本图书馆 CIP 数据核字（2014）第 154066 号

责任编辑：王金柱

封面设计：王 翔

责任校对：闫秀华

责任印制：

出版发行：清华大学出版社

网 址：http://www.tup.com.cn，http://www.wqboOK 按钮.com

地 址：北京清华大学学研大厦 A座 邮 编：100084

社 总 机：010-62770175 邮 购：010-62786544

投稿与读者服务：010-62776969，c-service@tup.tsinghua.edu.cn

质量反馈：010-62772015，zhiliang@tup.tsinghua.edu.cn

印 装 者：

经 销：全国新华书店

开 本：190mm×260mm 印 张：23.75 字 数：608 千字

版 次：2014 年 9 月第 1版 印 次：2014 年 9 月第 1次印刷

印 数：1~3000 册

定 价：59.00 元

产品编号：056158-01

前 言

Storm是一个免费开源的分布式实时计算系统。Storm能轻松可靠地处理无界的数据流，就

像Hadoop批处理一样对数据进行实时处理；但是Storm能持续运作下去，并且Storm的使用十

分简单，开发人员可以使用任何编程语言对它进行操作，得到满意的结果。

本书以Storm官方网站最新的Release版本Storm 0.9.0.1进行讲解，从零开始，使读者在较

短的时间内系统掌握Storm的理论基础，面向Linux平台搭建与研发自己基于Storm的大数据处

理平台。全书分为 5个模块，共 20章内容，其中“基础知识”6章、“安装与部署”4章、“研

发与维护”4章、“进阶知识”5章、“企业应用”1章，分别介绍了Storm的安装与配置、Storm

的基本原理、Topology组件、Spout组件、Bolt组件、ZooKeeper集群、实战环节等内容，包括

理论基础、环境搭建、研发准备、应用案例等。

作为国内第一本介绍Storm方面的书籍，本书的Storm理论部分主要参考了Storm Wiki；

另外，为了更好地理解Storm，也参考了不少Storm爱好者的中文翻译文章；而Storm的应用

部分，是本书编者的实战应用经验与理论相结合的结晶。本书在编写过程中，得到了多位

Storm开发者/爱好者的帮助以及对本书的校验和建议，在此表示感谢，特别要感谢赵鸿、陈

险峰两位同志。

由于编者水平有限，且本书涉及的知识点较多，书中难免有不妥和错误之处，敬请广大

读者批评指正。

书中的源代码主要来自storm-starter项目，下载地址为：https://github.com/nathanmarz/

storm-starter。

为了更有效地学习，建议读者在开始学习或阅读本书前先了解Linux的基本操作、Shell脚

本的基本语法、Java语言的基本语法等内容。

编者

2014年 4月

目 录

第 1章 Storm简介

1.1 什么是 Storm .. 2

1.2 Storm的诞生 .. 3

1.2.1 从 Twitter说起.. 3

1.2.2 Twitter需要处理大批实时性要求高的大数据业务 .. 4

1.2.3 Storm帮助 Twitter解决实时海量大数据处理问题... 4

1.3 Storm的成长 .. 5

1.3.1 Storm正式开源 .. 5

1.3.2 Storm的核心技术和基本组成 .. 6

1.3.3 Storm的项目小组 .. 7

1.3.4 Storm的技术支持网站 .. 12

1.4 Storm的优势 .. 15

1.4.1 集成多种技术 ... 15

1.4.2 简单的 API.. 16

1.4.3 可扩展的 ... 16

1.4.4 容错的 ... 16

1.4.5 保证数据处理 ... 17

1.4.6 可以使用任何语言 ... 17

1.4.7 部署和操作简单 ... 17

1.4.8 自由开源 ... 17

1.5 Storm的应用现状和发展趋势 .. 18

1.5.1 应用现状 ... 18

1.5.2 发展趋势 ... 20

1.6 如何学习 Storm .. 22

1.7 本书的章节安排及学习建议 ... 23

1.7.1 本书的章节安排 ... 23

1.7.2 关于如何阅读本书的建议 ... 24

1.8 本章小结 ... 24

IV

从零开始学 Storm

第 2章 Storm的基本知识

2.1 概念 ... 26

2.1.1 元组（Tuple） .. 26

2.1.2 流（Stream） .. 27

2.1.3 喷口（Spout）.. 28

2.1.4 螺栓（Bolt） .. 28

2.1.5 拓扑（Topology）.. 29

2.1.6 主控节点与工作节点 ... 29

2.1.7 Nimbus进程与 Supervisor进程 .. 29

2.1.8 流分组（Stream grouping） .. 30

2.1.9 工作进程（Worker） ... 30

2.1.10 任务（Task）.. 30

2.1.11 执行器（Executor）... 30

2.1.12 可靠性（Reliability） .. 30

2.2 Storm的配置 .. 31

2.2.1 Storm的配置类型 .. 31

2.2.2 defaults.yaml文件 .. 32

2.2.3 storm.yaml文件 .. 35

2.2.4 Config类 ... 36

2.3 序列化（Serialization） ... 37

2.3.1 动态类型 ... 37

2.3.2 自定义序列化 ... 37

2.3.3 Java序列化 ... 38

2.3.4 特定组件序列化注册 ... 38

2.4 容错机制 ... 39

2.4.1 Worker进程死亡 .. 39

2.4.2 节点死亡 ... 39

2.4.3 Nimbus或者 Supervisor守护进程死亡 .. 39

2.4.4 Nimbus是否是“单点故障”的 ... 39

2.5 可靠性机制——保证消息处理 ... 40

2.5.1 消息被“完全处理”的含义 ... 40

2.5.2 如果一个消息被完全处理或完全处理失败会发生什么... 41

2.5.3 Storm如何保证可靠性 .. 41

2.5.4 Storm如何实现可靠性 .. 44

2.5.5 调节可靠性 ... 45

2.6 消息传输机制 ... 46

2.6.1 ZeroMQ ... 46

V

目 录

2.6.2 Netty .. 46

2.6.3 自定义消息通信机制 ... 47

2.7 Storm的开发环境与生产环境 .. 47

2.7.1 开发环境与本地模式 ... 47

2.7.2 生产环境与远程模式 ... 47

2.7.3 开发环境与生产环境的对比 ... 48

2.8 Storm拓扑的并行度（parallelism）... 49

2.8.1 工作进程、执行器和任务 ... 49

2.8.2 配置拓扑的并行度 ... 50

2.8.3 拓扑示例 ... 51

2.8.4 如何改变运行中拓扑的并行度 ... 52

2.9 Storm命令行客户端 .. 53

2.10 Javadoc文档 ... 57

2.11 本章小结 ... 57

第 3章 拓扑详解

3.1 什么是拓扑 ... 59

3.2 TopologyBuilder .. 59

3.3 流分组 ... 61

3.3.1 什么是流分组 ... 61

3.3.2 不同的流分组方式 ... 62

3.4 一个简单的拓扑 ... 66

3.5 在本地模式下运行拓扑 ... 69

3.6 在生产集群上运行拓扑 ... 70

3.6.1 常见的配置 ... 71

3.6.2 杀死拓扑 ... 72

3.6.3 更新运行中的拓扑 ... 72

3.6.4 监控拓扑 ... 72

3.7 拓扑的常见模式 ... 72

3.7.1 流连接（Stream Join） .. 72

3.7.2 批处理（Batching）... 73

3.7.3 BasicBolt ... 73

3.7.4 内存中缓存与字段的组合 ... 73

3.7.5 流的 top N ... 74

3.7.6 高效保存最近更新缓存对象的 TimeCacheMap（已弃用） .. 76

3.7.7 分布式 RPC的 CoordinatedBolt与 KeyedFairBolt.. 76

3.8 本地模式与 StormSubmitter的对比.. 76

VI

从零开始学 Storm

3.9 多语言协议（Multi-Language Protocol） .. 78

3.10 使用非 JVM语言操作 Storm .. 82

3.10.1 支持的非 Java语言 .. 82

3.10.2 对 Storm使用非 Java语言 .. 82

3.10.3 实现非 Java DSL的笔记 ... 82

3.11 Hook... 83

3.12 本章小结 ... 84

第 4章 组件详解

4.1 基本接口 ... 86

4.1.1 IComponent接口 .. 86

4.1.2 ISpout接口 ... 86

4.1.3 IBolt接口 .. 88

4.1.4 IRichSpout与 IRichBolt接口 .. 89

4.1.5 IBasicBolt接口 ... 90

4.1.6 IStateSpout与 IRichStateSpout接口 ... 90

4.2 基本抽象类 ... 91

4.2.1 BaseComponent抽象类.. 91

4.2.2 BaseRichSpout抽象类 ... 92

4.2.3 BaseRichBolt抽象类 .. 93

4.2.4 BaseBasicBolt抽象类 .. 93

4.3 事务接口 ... 94

4.3.1 IPartitionedTransactionalSpout ... 94

4.3.2 IOpaquePartitionedTransactionalSpout... 95

4.3.3 ITransactionalSpout... 96

4.3.4 ICommitterTransactionalSpout ... 98

4.3.5 IBatchBolt.. 98

4.4 组件之间的相互关系 ... 98

4.5 本章小结 ... 100

第 5章 Spout详解

5.1 可靠的与不可靠的消息 ... 102

5.2 Spout获取数据的方式 ... 104

5.2.1 直接连接（Direct Connection）.. 105

5.2.2 消息队列（Enqueued Messages） .. 106

5.2.3 DRPC（分布式 RPC） .. 106

5.3 常用的 Spout... 107

VII

目 录

5.3.1 Kestrel作为 Spout的数据源 ... 107

5.3.2 AMQP作为 Spout的数据源 ... 107

5.3.3 JMS作为 Spout的数据源 ... 107

5.3.4 Redis作为 Spout的数据源.. 108

5.3.5 beanstalkd作为 Spout的数据源 ... 108

5.4 学习编写 Spout类 .. 108

5.5 本章小结 ... 109

第 6章 Bolt详解

6.1 Bolt概述 ..111

6.2 可靠的与不可靠的 Bolt ... 112

6.2.1 使用 Anchoring机制实现可靠的 Bolt .. 112

6.2.2 使用 IBasicBolt接口实现自动确认 .. 113

6.3 复合流与复合 Anchoring ... 114

6.3.1 复合流 ... 114

6.3.2 复合 Anchoring ... 114

6.4 使用其他语言定义 Bolt ... 114

6.5 学习编写 Bolt类 .. 115

6.5.1 可靠的 Bolt ... 115

6.5.2 不可靠的 Bolt ... 116

6.6 本章小结 ... 117

第 7章 ZooKeeper详解

7.1 ZooKeeper简介 .. 119

7.2 ZooKeeper的下载和部署 .. 119

7.2.1 ZooKeeper的下载 .. 119

7.2.2 ZooKeeper的部署 .. 120

7.3 ZooKeeper的配置 .. 121

7.4 ZooKeeper的运行 .. 123

7.5 ZooKeeper的本地模式实例 .. 125

7.6 ZooKeeper的数据模型 .. 126

7.6.1 ZNode .. 126

7.6.2 ZooKeeper中的时间 .. 127

7.6.3 ZooKeeper的 Stat结构 .. 128

7.7 ZooKeeper的命令行操作范例 .. 128

7.8 Storm在 ZooKeeper中的目录结构 .. 131

7.9 本章小结 ... 132

VIII

从零开始学 Storm

第 8章 基础软件的安装与使用

8.1 Linux的基本操作... 134

8.1.1 环境变量 ... 134

8.1.2 常用命令 ... 135

8.2 JDK的下载与配置 ... 138

8.2.1 Sun JDK的下载 ... 138

8.2.2 在 Linux下安装 JDK ... 140

8.2.3 在Windows下安装 JDK ... 141

8.3 GitHub托管项目的下载 .. 146

8.4 Maven的下载与配置 ... 147

8.4.1 Maven的下载 ... 148

8.4.2 在 Linux下部署Maven ... 149

8.4.3 在Windows下部署Maven.. 149

8.5 其他软件——Notepad++ ... 151

8.6 本章小结 ... 151

第 9章 Storm的安装与配置

9.1 Storm集群的安装步骤与准备工作 .. 153

9.1.1 搭建 ZooKeeper集群 ... 153

9.1.2 安装 Storm的本地依赖 ... 153

9.1.3 下载并解压 Storm发行版本 ... 156

9.1.4 配置 storm.yaml文件 ... 157

9.1.5 启动 Storm的守护进程 ... 159

9.2 本地模式的 Storm完整的配置命令 ... 161

9.3 本章小结 ... 162

第 10章 Storm集群搭建实践

10.1 准备工作 ... 164

10.1.1 概述 ... 164

10.1.2 配置 hosts文件... 164

10.1.3 配置静态 IP .. 165

10.1.4 集群 SSH无密码 ... 166

10.1.5 修改主机名 ... 167

10.1.6 关闭防火墙 ... 168

10.1.7 同步时间 ... 168

IX

目 录

10.1.8 安装 JDK .. 168

10.2 ZooKeeper集群的搭建 .. 169

10.2.1 部署第一个节点... 169

10.2.2 部署第 i个节点.. 170

10.2.3 启动 ZooKeeper集群... 171

10.2.4 查看 ZooKeeper状态... 171

10.2.5 关闭 ZooKeeper集群... 171

10.2.6 清理 ZooKeeper集群... 171

10.3 Storm集群的搭建 .. 172

10.3.1 安装 Storm依赖（每个 Storm节点） ... 172

10.3.2 部署第一个节点... 173

10.3.3 部署第 i个节点.. 174

10.3.4 启动 Storm守护进程 ... 174

10.4 本章小结 ... 175

第 11章 准备 Storm的开发环境

11.1 Storm的开发环境... 177

11.1.1 什么是 Storm的开发环境 ... 177

11.1.2 如何管理 Storm .. 177

11.1.3 如何提交拓扑到集群 ... 181

11.2 Eclipse的下载与配置... 182

11.2.1 Eclipse的下载 .. 182

11.2.2 Eclipse的配置与运行 .. 183

11.2.3 Eclipse插件的安装 .. 184

11.3 使用Maven管理项目 .. 186

11.3.1 Maven的下载与配置... 186

11.3.2 配置 pom.xml文件... 186

11.3.3 运行Maven命令 .. 188

11.4 使用 Nexus搭建本地Maven私服 .. 188

11.4.1 下载 Nexus.. 189

11.4.2 运行 Nexus.. 189

11.4.3 登录 Nexus后台... 190

11.4.4 配置 Repositories .. 191

11.4.5 配置 setting.xml文件 ... 192

11.4.6 修改 Eclipse的Maven插件的配置 .. 194

11.5 使用 SVN管理代码版本 ... 195

11.5.1 在Windows下搭建 SVN服务器.. 195

11.5.2 在 Linux下搭建 SVN服务器 ... 196

X

从零开始学 Storm

11.5.3 安装 SVN客户端 ... 197

11.6 部署单节点的 Storm集群.. 197

11.6.1 部署伪分布的 ZooKeeper.. 197

11.6.2 部署伪分布的 Storm集群 ... 198

11.7 本章小结 ... 199

第 12章 开发自己的 Storm应用

12.1 新建Maven项目 .. 201

12.2 修改为适合 Storm开发的项目 ... 203

12.2.1 对包名进行分类管理... 203

12.2.2 修改 pom.xml文件 .. 204

12.3 编写代码 ... 206

12.3.1 编写 Spout类 ... 206

12.3.2 编写 Bolt类 .. 207

12.3.3 编写 Topology类 ... 208

12.4 本地测试运行 ... 209

12.5 提交到 Storm集群运行 ... 210

12.5.1 使用Maven打包.. 210

12.5.2 提交 jar包到集群... 210

12.6 本章小结 ... 211

第 13章 storm-starter详解

13.1 storm-starter项目概述.. 213

13.2 storm-starter的下载.. 215

13.3 使用Maven进行管理 .. 215

13.3.1 使用Maven打包 storm-starter .. 215

13.3.2 使用Maven直接运行WordCountTopology... 216

13.3.3 使用Maven运行单元测试.. 216

13.4 在 Eclipse中运行 ... 216

13.4.1 新建Maven项目的方式.. 216

13.4.2 导入已存在的项目的方式... 218

13.5 storm-starter的入门例子.. 219

13.5.1 ExclamationTopology ... 219

13.5.2 WordCountTopology... 222

13.5.3 ReachTopology.. 224

13.6 storm-starter的其他例子.. 230

13.6.1 BasicDRPCTopology .. 230

XI

目 录

13.6.2 ManualDRPC .. 231

13.6.3 PrintSampleStream.. 231

13.6.4 RollingTopWords .. 232

13.6.5 SingleJoinExample.. 233

13.6.6 TransactionalGlobalCount .. 234

13.6.7 TransactionalWords... 234

13.7 本章小结 ... 235

第 14章 研发与集群管理技巧

14.1 使用 daemontools监控 Storm进程 ... 237

14.1.1 daemontools简介 ... 237

14.1.2 安装 daemontools ... 237

14.1.3 编写监控脚本... 238

14.2 使用Monit监控 Storm... 240

14.2.1 Monit简介 .. 240

14.2.2 安装Monit .. 240

14.2.3 配置Monit .. 242

14.2.4 启动Monit .. 244

14.2.5 获取Monit帮助信息 ... 245

14.3 常用的集群操作命令 ... 246

14.4 使用 Storm的经验与建议 ... 247

14.5 本章小结 ... 248

第 15章 DRPC详解

15.1 概述 ... 250

15.2 DRPCTopologyBuilder ... 251

15.2.1 LinearDRPCTopologyBuilder... 251

15.2.2 LinearDRPCTopologyBuilder提供的方法 ... 251

15.2.3 LinearDRPCTopologyBuilder使用范例 ... 252

15.2.4 LinearDRPCTopologyBuilder的工作原理 ... 253

15.2.5 LinearDRPCTopologyBuilder目前已弃用 ... 254

15.3 本地模式的 DRPC.. 254

15.4 远程模式的 DRPC.. 254

15.5 一个复杂的 DRPC例子（计算 reach值） .. 255

15.6 非线性 DRPC.. 257

15.7 本章小结 ... 257

XII

从零开始学 Storm

第 16章 事务拓扑详解

16.1 什么是事务拓扑 ... 259

16.1.1 设计 1.. 259

16.1.2 设计 2.. 260

16.1.3 设计 3（Storm的设计).. 260

16.2 事务拓扑的设计细节 ... 261

16.3 事务拓扑的实现细节 ... 261

16.3.1 事务 Spout的工作原理 ... 262

16.3.2 “对于给定的事务 id不能发射相同的 Batch”的处理 ... 262

16.3.3 更多的细节 ... 264

16.4 事务拓扑 API.. 264

16.4.1 Bolt .. 264

16.4.2 事务 Spout .. 266

16.4.3 配置 ... 266

16.5 TransactionalTopologyBuilder .. 267

16.5.1 TransactionalTopologyBuilder提供的方法... 267

16.5.2 TransactionalTopologyBuilder类已弃用... 270

16.6 一个简单的例子 ... 270

16.7 本章小结 ... 273

第 17章 Trident详解

17.1 Trident概述... 275

17.1.1 简单的例子——单词统计（TridentWordCount） .. 275

17.1.2 另一个例子——计算 Reach值（TridentReach） ... 278

17.1.3 字段和元组 ... 280

17.1.4 状态（State） ... 281

17.1.5 Trident拓扑的执行 .. 282

17.2 Trident API .. 283

17.2.1 概述 ... 283

17.2.2 本地分区操作... 283

17.2.3 重新分区操作... 288

17.2.4 聚合操作 ... 288

17.2.5 流分组操作 ... 288

17.2.6 合并与连接 ... 289

17.3 Trident的状态... 290

17.3.1 Trident状态分类 .. 290

XIII

目 录

17.3.2 事务 Spout（Transactional Spout） .. 291

17.3.3 不透明事务 Spout（Opaque Transactional Spout） ... 292

17.3.4 非事务 Spout（Non-transactional Spout） ... 294

17.3.5 Spout与 State之间的联系 .. 294

17.3.6 State API.. 294

17.3.7 persistentAggregate方法.. 298

17.3.8 实现 MapStates .. 299

17.4 Trident Spout ... 299

17.4.1 流水线（Pipelining） .. 300

17.4.2 Trident Spout的类型.. 300

17.5 本章小结 ... 300

第 18章 Storm的内部实现

18.1 文件系统分析 ... 302

18.2 数据目录结构 ... 303

18.2.1 Nimbus节点的目录结构 ... 303

18.2.2 Supervisor节点的目录结构 .. 304

18.3 代码库的结构 ... 305

18.3.1 storm.thrift... 305

18.3.2 Java接口... 312

18.3.3 实现 ... 312

18.4 拓扑的生命周期 ... 314

18.4.1 启动拓扑 ... 315

18.4.2 监控拓扑 ... 317

18.4.3 杀死拓扑 ... 317

18.5 Acking框架的实现 .. 318

18.5.1 异或计算的基本原理... 318

18.5.2 Acking框架的实现原理 .. 318

18.5.3 Acker的 execute方法.. 319

18.5.4 待定元组（pending tuple）和 RotatingMap... 319

18.6 Metric... 319

18.7 本章小结 ... 325

第 19章 Storm相关的其他项目

19.1 JStorm项目 ... 327

19.1.1 项目简介 ... 327

19.1.2 下载与部署 ... 328

XIV

从零开始学 Storm

19.1.3 源代码编译 ... 329

19.2 storm-deploy项目 ... 329

19.3 Storm与 Kafka.. 329

19.3.1 Kafka简介 .. 329

19.3.2 Kafka的安装 .. 330

19.3.3 启动服务 ... 331

19.3.4 测试运行 ... 331

19.3.5 Storm与 Kafka的项目 .. 333

19.4 storm-kestrel项目 ... 334

19.4.1 storm-kestrel项目简介... 334

19.4.2 使用 storm-kestrel项目.. 334

19.4.3 Kestrel服务器和队列 .. 335

19.4.4 添加元素到 kestrel ... 336

19.4.5 从 Kestrel中移除元素 ... 336

19.4.6 持续添加元素到 Kestrel .. 337

19.4.7 使用 KestrelSpout... 338

19.4.8 执行 ... 339

19.5 本章小结 ... 339

第 20章 企业应用案例

20.1 Storm席卷众多互联网企业 .. 341

20.1.1 Storm的典型应用场景 .. 341

20.1.2 Storm的三大基本应用 .. 341

20.2 Storm在 Twitter中的应用 ... 342

20.2.1 Twitter公司简介 .. 342

20.2.2 Storm帮助 Twitter提升产品性能 .. 343

20.2.3 MapR在 Twitter中的应用简介 .. 343

20.3 Storm在阿里巴巴集团的应用 .. 344

20.3.1 阿里巴巴集团简介... 345

20.3.2 Storm在阿里巴巴的应用 .. 345

20.3.3 Storm在淘宝公司的应用 .. 346

20.3.4 Storm在支付宝公司的应用 .. 347

20.4 其他应用 Storm的知名企业和项目 ... 347

20.5 本章小结 ... 363

参考资料 ..364

Storm简介

本章主要介绍 Storm 的起源，Storm 的基本概念、特征和优势，从哪里可以找

到 Storm的学习和源代码参考的网站，以及 Storm的应用现状和发展趋势。通过本

章的学习，读者将对 Storm有一个基本的了解。

2

从零开始学 Storm

1.1 什么是 Storm

Storm 是一个免费开源的分布式实时计算系统。Storm 能轻松可靠地处理无界的数据流，

就像 Hadoop 批处理一样对数据进行实时处理；但是 Storm 能持续地运作下去，并且要掌握

Storm十分简单，开发人员可以使用任何编程语言对它进行操作，得到满意的结果。

Storm能用到很多场景中，包括实时分析、在线机器学习、连续计算、分布式 RPC、ETL

等。Storm的处理速度非常快，每个节点每秒钟可以处理 100万条消息。同时，Storm是可伸

缩的、容错的，并且能保证数据根据用户的设定被妥善处理，便于进行设置和操作。Storm的

抽象示意图如图 1.1所示。

图 1.1 Storm的抽象示意图

Storm集成了许多消息队列和数据库技术。Storm的 Topology消耗数据流，以任意复杂的

方式处理这些流，并且在每个需要计算的阶段以这些流进行重新划分。Storm的开发语言主要

是 Java和 Clojure，其中 Java定义骨架，Clojure编写核心逻辑。Storm具有多语言功能，Java

是Storm的主要使用语言，但Python也是Storm的常用语言之一（本书的一些例子将使用Python

语言）。

Storm 公开一组原语进行实时计算。使用这些简单的原语，能实现类似 MapReduce 的效

果。Storm的原语极大地简化了并行实时计算的编写，最终使并行批处理的编写变得易于实现。

Storm具有的关键特征如下。

（1）用例非常广泛（Extremely broad set of use cases）

Storm 可以用于处理消息和更新数据库（即流处理），完成数据流的持续查询任务，然后

把结果流送到客户端（持续计算）。Storm 并行密集查询能持续进行，完成搜索查询（分布式

RPC）和更多的业务功能。仅一个小小的 Storm的原语集便可以处理惊人数量的用例。

3

第 1章 Storm简介

（2）可伸缩性（Scalable）

Storm每秒处理大量的消息。要对一个拓扑进行扩展，用户所需要做的仅仅是向拓扑中添

加主机，然后增加拓扑的并行设置。让我们来看下 Storm规模化的一个例子，最初的 Storm应

用程序在一个 10节点集群（作为拓扑的一部分）上每秒处理 1 000 000条消息，这还包括每秒

数以百计的数据库调用。Storm使用 ZooKeeper协调集群，使其可以扩展到更大的集群规模。

（3）保证没有数据丢失（Guarantees no data loss）

一个实时系统必须强有力地保证数据能按照用户设定而被成功处理。一个丢失数据的系统

是不优秀的，仍拥有非常有限的用例。Storm能保证每条消息都会被妥善处理，这与其他系统

（例如 S4）形成了非常直接的对比。

（4）强壮的鲁棒性（Extremely robust）

不同于鲁棒性差的甚至难以管理的 Hadoop 系统，Storm 集群非常健壮，能有效地运行。

强壮的鲁棒性是 Storm项目的一个明确目标，旨在让用户尽可能简单地管理 Storm集群。

（5）容错性好（Fault-tolerant）

如果在执行用户设定的计算时有错误发生，Storm 只需要重新分配任务再执行。Storm 能

保证计算可以永远运行，直到用户结束计算进程为止。

（6）编程语言无关（Programming language agnostic）

健壮的、可伸缩的实时处理不应该局限于单一的平台。Storm的拓扑和处理组件可以使用

任何语言定义。这一编程语言无关性使得 Storm可以被几乎任何一个用户轻松使用。

1.2 Storm的诞生

Storm 是随着实时大数据处理的需求而生的，最早用在微博社交工具 Twitter 上，在分布

式的环境下不间断地实时处理少量的数据。Storm 获得了极大的成功。之后由 Twitter 开源，

成为处理实时大数据的最实用工具之一。

1.2.1 从 Twitter说起

Twitter（中文译名：推特）是美国的一个社交网络及微博客服务的网站，由利兹·斯通、

埃文·威廉姆斯和杰克·多尔西于 2006年共同创建，总部位于美国加州旧金山。Twitter利用

无线网络、有线网络等通信技术进行即时通信，是微博的鼻祖。它允许用户将自己的最新动态

4

从零开始学 Storm

和想法以短消息的形式（推文）发布（发推），可绑定 IM即时通信软件。所有的 Twitter消息

都被限制在 140个字符之内。

1.2.2 Twitter需要处理大批实时性要求高的大数据业务

Twitter 业务的实时处理需求极高。几十亿的用户在不同高峰段通过手机、平板电脑、个

人计算机等终端发布大量（说海量真是名副其实）的信息，同时大量的用户在 Twitter 上从这

些海量的信息中搜索、查看关心的话题并且对它们进行转发和评论。这一切都需要强大的实时

处理海量数据的能力。

除基本的推文发布功能之外，Twitter还有大量的统计类应用，主要包括 doesfollow（判断

某用户是否 follow了另一用户）、TweetStats（分析用户自身或其他用户的 Twitter内容，如发

推常见时间段、主要交流用户等）、Twitterholic（统计出用户的一些基本数据，更能将这些数

据与其他 Twitter用户进行比较，而得出一个排名）、TwitterRank（根据用户所有推文和其他用

户互动等信息，进行 Twitter的细分排名）、Tweetwasters（在 Twitter上总的花费时间及细项统

计）和 monitter（根据用户设定选择三个关键词进行监控）。从以上的简要介绍来看，这些业

务都需要实时对最新的大量数据进行统计。

Twitter 本身还有一些需要进行大数据处理的业务，另外还向第三方开发者提供开放 API

（Twitter将自己的网站服务封装成一系列 API开放出去，供第三方开发者使用以开发 Twitter

相关的应用，通过 Twitter获得收益）。Twitter需要对这些应用提供实时的大数据服务，主要有：

TwitterMap（用户根据 Twitter 的 Username进行地理位置的搜索，显示用户公开的 Twitter 留

言以及地理位置等相关信息），TwitterBar（将用户当前浏览的网站地址收藏到自己的 Twitter 账

号中，还可见当前访问网站的相关信息等），Twittervision（在 Google Map上实时显示用户更

新 Twitter的内容），Twitter tools（WordPress插件，用户可以在自己的WP平台上发送以及显

示自己的 Twitter留言等），Twitteroo（安装在Windows下的桌面软件，允许用户在不登入 Twitter

的情况下向自己的账号中发送信息），Twitter Badges（Twitter提供的一款小型应用，用户可以

通过它将自己的心情放在自己的博客中）。

1.2.3 Storm帮助 Twitter解决实时海量大数据处理问题

过去的十年经历了数据处理的革命。MapReduce、Hadoop 以及相关技术，已经能够对先

前难以想象的大规模数据进行存储和处理。然而，这些数据处理技术并不是实时的，也注定不

是实时的。没有高手会把 Hadoop变成一个实时系统，实时数据处理相对于批处理有一个从本

质上不同的需求集。

然而，企业越来越要求超大规模的实时数据处理。缺乏实时处理能力的 Hadoop已经成为

数据处理生态系统中最大的缺陷。

Storm 填补了这一缺陷。Storm 是一个分布式实时计算系统。类似于提供了一组通用原语

进行批处理的 Hadoop，Storm提供了一组通用原语进行实时计算。Storm是简单的，可以使用

5

第 1章 Storm简介

任何编程语言，很多公司使用它并且有很浓厚的兴趣去使用它。

在 Storm出现之前，通常需要手工搭建一个消息队列和Worker组成的网络进行实时处理。

工作节点会处理从消息队列弹出的消息，然后更新数据库，并发送新消息到其他队列进行进一

步处理。可惜，这种方法具有严重的局限性。

（1）很乏味

用户用大部分的开发时间来配置向何处发送消息、部署工作节点、部署中间队列等工作，

而用户关心的实时处理逻辑只占用户代码库中一个相对小的百分比。

（2）系统很脆弱

有很小的容错功能，用户的职责是保证每个工作节点和消息队列运行起来。

（3）很难对规模进行扩展

当一个工作节点或队列的消息吞吐量达到高点，用户需要决定对数据如何传播进行划分。

用户需要重新配置其他工作节点，让它们知道发送消息的新位置。这就引入了移动组件和新的

可以失败的组件。

尽管可将队列和工作节点范例分解为大量的消息，但是消息处理显然是实时计算的基本范

例。问题是如何在不丢失数据，扩展到很大规模，并且可以简单地使用和操作的前提下，做到

这些？而 Storm可满足这一目标。

2011年 7月，Twitter 正式收购了 BackType公司。BackType公司提供的服务主要为：分

析一个组织在 Twitter发布的信息的影响力，并且总结分析 Twitter消息为他人重复转发的频率。

同年 8月 4日 Twitter将 Storm正式开源。具有实时、快速地处理海量大数据的能力，Storm能

帮助 Twitter和其他有此类需求的企业解决实时大数据处理问题。

1.3 Storm的成长

Storm自开源后，得到了原项目小组和其他热心贡献者的帮助，其组成技术不断地发展，

拥有了广大的支持者和技术兴趣者。这些支持者和技术兴趣者中也成立了许多技术支持网站，

以向学习者提供帮助及技术爱好者之间相互交流。

1.3.1 Storm正式开源

Twitter将 Storm正式开源了，这是一个分布式的、容错的实时计算系统，它被托管在GitHub

上，遵循 Eclipse Public License 1.0。Storm是由 BackType开发的实时处理系统，BackType现

在已在 Twitter麾下。GitHub上的最新版本是 Storm 0.9.0.1，基本是用 Clojure写的。

Storm为分布式实时计算提供了一组通用原语，可用于“流处理”之中，实时处理消息并

更新数据库。这是管理队列及工作者集群的另一种方式。Storm 也可被用于“连续计算”

6

从零开始学 Storm

（Continuous Computation），对数据流做连续查询，在计算时就将结果以流的形式输出给用户。

它还可用于“分布式 RPC”，以并行的方式运行昂贵的运算。

Storm可以方便地在一个计算机集群中编写与扩展复杂的实时计算，Storm之于实时处理，

就好比 Hadoop 之于批处理。Storm 保证每个消息都会得到处理，而且它速度很快——在一个

小集群中，每秒可以处理数以百万计的消息。更棒的是可以使用任意编程语言来进行开发。

1.3.2 Storm的核心技术和基本组成

Storm框架的核心由 7个部分组成，如图 1.2所示，它们同时也是 Storm的基本组成部分。

图 1.2 Storm的核心技术组成

� Topology（拓扑）

一个拓扑是一个图的计算。用户在一个拓扑的每个节点包含处理逻辑，节点之间的链接显

示数据应该如何在节点之间传递。Topology的运行是很简单的。

� Stream（流）

流是 Storm的核心抽象。一个流是一个无界 Tuple序列，Tuple可以包含整形、长整形、

短整形、字节、字符、双精度数、浮点数、布尔值和字节数组。用户可以通过定义序列化器，

在本机 Tuple使用自定义类型。

� Spout（喷口）

Spout是 Topology流的来源。一般 Spout从外部来源读取 Tuple，提交到 Topology（如Kestrel

队列或 Twitter API）。Spout可分为可靠的和不可靠的两种模式。Spout可以发出超过一个流。

� Bolt（螺栓）

Topology 中的所有处理都在 Bolt 中完成。Bolt 可以完成过滤、业务处理、连接运算、连

接、访问数据库等业务。Bolt 可以做简单的流的转换，发出超过一个流，主要方法是 execute

方法。完全可以在 Bolt中启动新的线程做异步处理。

� Stream grouping（流分组）

流分组在 Bolt 的任务中定义流应该如何分区。Storm 有 7 个内置的流分组接口随机分组

（Shuffle grouping）、字段分组（Fields grouping）、全部分组（All grouping）、全局分组（Global

grouping）、无分组（None grouping）、直接分组（Direct grouping）、本地或者随机分组（Local

7

第 1章 Storm简介

or shuffle grouping）。

� Task（任务）

每个 Spout 或者 Bolt 在集群执行许多任务。每个任务对应一个线程的执行，流分组定义

如何从一个任务集到另一个任务集发送 Tuple。可通过 TopologyBuilder 类的 setSpout()和

setBolt()方法来设置每个 Spout或者 Bolt的并行度。

� Worker（工作进程）

Topology 跨一个或多个 Worker 节点的进程执行。每个 Worker 节点的进程是一个物理的

JVM和 Topology执行所有任务的一个子集。

1.3.3 Storm的项目小组

Storm项目小组的构成如图 1.3所示。

图 1.3 Storm项目小组的构成

1. 项目主管

Nathan Marz，Storm的作者和主工程师，Twitter首席工程师。

Nathan Marz原是 BackType的主力工程师。BackType于 2011年 7

月被 Twitter 收购。收购后不久，Storm 对外开源，许多互联网公司纷

纷采纳这一系统。

Nathan Marz依然带领其团队继续从事 Storm的相关工作。过去很

长时间内 Nathan Marz 热衷于研究 Java、Ruby、Python，现在则使用

Clojure。Clojure非常有趣，它给 Storm项目组带来了巨大的效能。

Nathan Marz坚信开源的力量，并发表了一些开源项目。Cascalog

是用于 MapReduce 的高度抽象的库，用 Clojure 编写，拥有活跃的用

户社区，并有大量企业使用。Storm用十分流行的 Java、Scala或 Clojure语言编写。目前 Nathan

Marz正在编写 Big Data一书，主要介绍可扩展的实时数据系统的原则与实践。

8

从零开始学 Storm

2. 项目核心贡献者

（1）徐明明

中国阿里巴巴的徐明明是 Storm 项目的核心贡献者。他的英文名为

James Xu，Twitter账号为 xumingming。

徐明明于 2007 年毕业，一直从事互联网方面的工作，目前在阿里巴巴

做交易相关的开发工作。当 Storm开源的时候他正好在做数据统计相关的项

目，对 Storm产生了浓厚的兴趣，并且为 Storm的发展做出了巨大的贡献，

属于 Storm的学术型使用者。图 1.4显示了徐明明对 Storm的贡献。

图 1.4 徐明明的贡献图

徐明明主要关注 java、Clojure、开源、大数据相关的技术。他翻译了《Clojure 编程》一

书（http://book.douban.com/subject/21661495/）。

可 以 从 以 下 网 站 访 问 徐 明 明 的 最 新 成 果 ： https://github.com/xumingming ，

http://stackoverflow.com/users/238546/james-xu，http://weibo.com/64398966。

（2）P. Taylor Goetz

P. Taylor Goetz是 Storm项目在GitHub网站上排名第 2的核心贡献者，

主要的贡献有 storm-signals、storm-jms、storm-cassandra、storm-maven-plugin

和 duke。他对 storm项目特别是最新的 0.9 版本做出了极大的贡献，图 1.5

显示了 P. Taylor Goetz对 Storm的贡献。

图 1.5 P. Taylor Goetz的贡献图

9

第 1章 Storm简介

可以从以下网站访问 P. Taylor Goetz 的最新成果： https://github.com/ptgoetz，

http://ptgoetz.github.io/blog/archives/。

（3）Mike Heffner

Mike Heffner是 Storm项目在 GitHub网站上排名第 3的核心贡献者，

主要的贡献有 awsam、rails_datatables、octoglassformtastic-sass和 ofxsh。他

对 Storm的贡献如图 1.6所示。

图 1.6 Mike Heffner的贡献图

Mike Heffner的 Twitter主页是：http://twitter.com/mheffner。您可以通过 Twitter与他进行

Storm技术的交流。

（4）Jason Jackson

Jason Jackson在 Twitter、BackType、Google、UWaterloo担任过软件工

程师。Jason Jackson的 Twitter主页是：http://twitter.com/jason_j。您可以通

过 Twitter与他进行 Storm技术的交流。

（5）Andy Feng

Andy Feng是 Storm项目的核心贡献者。Andy Feng主要关注 Java、

Shell、JavaScript语言。同样，Andy Feng对 Storm做出了巨大的贡献，他

对 Storm的贡献如图 1.7所示。

10

从零开始学 Storm

图 1.7 Andy Feng的贡献图

可以从以下网站位置访问 Andy Feng的最新成果：https://github.com/anfeng。

3. 项目的其他贡献者

以下是 Storm项目的其他贡献者以及他们的个人/贡献成果介绍。

Christopher Bertels

http://twitter.com/bakkdoor

Michael Montano

http://twitter.com/michaelmontano

Dennis Zhuang

https://github.com/killme2008

Trevor Smith

https://github.com/trevorsummerssmith

Ben Hughes

https://github.com/schleyfox

Alexey Kachayev

https://github.com/kachayev

Haitao Yao

https://github.com/haitaoyao

Dan Dillinger

https://github.com/ddillinger

Kang Xiao

https://github.com/xiaokang

Gabriel Grant

https://github.com/gabrielgrant

Travis Wellman

11

第 1章 Storm简介

https://github.com/travisfw

Kasper Madsen

https://github.com/KasperMadsen

Michael Cetrulo

https://github.com/git2samus

Thomas Jack

https://github.com/tomo

Nicolas Yzet

https://github.com/nicoo

Fabian Neumann

https://github.com/hellp

Soren Macbeth

https://github.com/sorenmacbeth

Ashley Brown

https://github.com/ashleywbrown

Guanpeng Xu

https://github.com/herberteuler

Vinod Chandru

https://github.com/vinodc

Martin Kleppmann

https://github.com/ept

Evan Chan

https://github.com/velvia

Sjoerd Mulder

https://github.com/sjoerdmulder

Yuta Okamoto

https://github.com/okapies

Barry Hart

https://github.com/barrywhart

Sergey Lukjanov

https://github.com/Frostman

Ross Feinstein

https://github.com/rnfein

Junichiro Takagi

https://github.com/tjun

12

从零开始学 Storm

Bryan Peterson

https://github.com/Lazyshot

Sam Ritchie

https://github.com/sritchie

Stuart Anderson

https://github.com/emblem

Robert Evans

https://github.com/revans2

Lorcan Coyle

https://github.com/lorcan

Derek Dagit

https://github.com/d2r

Andrew Olson

https://github.com/noslowerdna

Gavin Li

https://github.com/lyogavin

Tudor Scurtu

https://github.com/tscurtu

Homer Strong

https://github.com/strongh

Sean Melody

https://github.com/srmelody

Jake Donham

https://github.com/jaked

Ankit Toshniwal

https://github.com/ankitoshniwal

1.3.4 Storm的技术支持网站

1. Storm项目的官方网址

Storm项目的官方网址为：

http://storm-project.net/

使用浏览器打开官网网址，其首页如图 1.8所示。

13

第 1章 Storm简介

图 1.8 Storm项目的官方网址图

2. GitHub上的 Storm项目

Storm项目在 GitHub上的网址为：

https://github.com/nathanmarz/storm

在 GitHub主页 https://github.com/上可以搜索到 GitHub上与 Storm相关的所有项目，如图

1.9和图 1.10所示。

图 1.9 在 GitHub网站上搜索 Storm项目

14

从零开始学 Storm

图 1.10 GitHub网站上的 Storm项目

在这个网站上，可以找到 Storm的相关代码和相关项目。

特别说明，GitHub网站上的 Storm Wiki有 storm-contrib项目外的其他值得注意的 Storm

相关项目的链接。

此外，还可以在 Storm Wiki上找到 Storm的相关文档和教程，Storm Wiki的网址为

https://github.com/nathanmarz/storm/wiki

GitHub网站上的 Storm Wiki如图 1.11所示。

图 1.11 GitHub网站上的 Storm wiki

3. 在Wiki上的 Storm介绍

在Wiki上可以对 Storm项目有一个总体的了解，可以找到 Storm的一些相关网站链接，

如图 1.12所示。

15

第 1章 Storm简介

图 1.12 Storm Wiki的网站图

4. Storm的邮件列表

Storm的邮件列表地址如下：

http://groups.google.com/group/storm-user

用户可在 Storm的邮件列表中进行提问。

用户也可以到 freenode网站（http://freenode.net/）的#storm-user的空间找到 Storm开发者

来帮助你。

1.4 Storm的优势

Storm的主要优势如下。

1.4.1 集成多种技术

Storm 集成了一些消息队列系统和数据库系统，Storm 的 Spout 抽象使得它很容易集成一

些新的消息队列系统。消息队列集成主要有：

� Kestrel

� RabbitMQ/AMQP

� Kafka

� JMS

同样，Storm也可以很容易地和数据库系统集成。简单打开一个数据库连接，就可以像平

常一样进行读写，Storm会自动完成并行化、分区、在失败时尝试连接等操作。

16

从零开始学 Storm

1.4.2 简单的 API

Storm有简单且易于使用的 API。当使用 Storm编程的时候，用户可以使用相应的 API来

操纵和变换 Tuple 的流。一个 Tuple 是一个命名的值列表。Tuple 可以包含任何类型的对象，

如果想使用一个 Storm不知道的类型，可以通过序列化注册该类型然后在程序中进行应用。

Storm只有三个抽象类型：Spout、Bolt和拓扑。Spout是计算流的来源。通常在系统中 Spout

从 Kestrel、RabbitMQ 和 Kafka 等消息队列进行读取，但 Spout 还可以生成自己的流或者从

Twitter流的 API的某个地方读取。Spout实现了现有的大多数队列系统。

Bolt 处理任意数量的输入流，并且产生任意数量的新的输出流。大多数的逻辑计算进入

Bolt，如功能、过滤、流连接与数据库交互等。

Topology是一个由很多 Spout和 Bolt组成的网络，网络上的每条边代表了一个 Bolt 订阅

的数据流，这些数据流包括从 Spout或从 Bolt 输出的数据流。一个 Topology实际上就是一个

任意复杂的多级流计算过程。当 Topology 在服务器上部署完之后，它就会一直运行下去，直

到用户禁止相应的进程。

Storm 有一个“本地模式”，用户可以在进程里面模拟一个 Storm 集群，然后进行类似实

际集群上的开发工作。这种模式对于开发和测试十分有用。当用户准备好在一个真正的集群上

提交 Topology执行的时候，可以使用 Storm命令行方便地从客户端提交一个 Topology到集群

上运行。

1.4.3 可扩展的

Storm的 Topology是并行计算的，它运行在一个集群主机上面。可以对 Topology的不同

部分单独调整它们的并行扩展。Storm 命令行客户端的 rebalance 命令可以调整并行运行的

Topology。

Storm内在的并行度意味着它能以低延迟速度来处理高吞吐量的消息。根据 Storm官方网

站的资料介绍，Storm的一个节点（Intel E5645@2.4Ghz的 CPU，24 GB的内存）在 1秒钟能

够处理 100万个 100字节的消息。

1.4.4 容错的

Storm是容错的。当Worker死亡，Storm会自动重新启动它们。如果一个节点死亡，Worker

将在另一个节点上重新启动。

Storm 的守护进程 Nimbus 和 Supervisor 被设计为无状态和快速失败的，所以如果它们死

亡，它们会重启，就像什么都没发生过。这意味着可以使用 kill -9命令来强制杀死 Storm守护

进程而不影响集群或者 Topology的健康。

17

第 1章 Storm简介

1.4.5 保证数据处理

Storm 保证每一个 Tuple 都能被完全处理。Storm 的核心机制之一是能够通过一种非常有

效的 Topology方式来跟踪 Tuple。

Storm保证每个消息至少能得到一次完整处理。任务失败时，它会负责从消息源重试消息。

使用 Trident（一种在 Storm的基本抽象上更高层次的抽象），用户可以实现一次且仅一次

处理的语义。

1.4.6 可以使用任何语言

Storm可与任何编程语言一起使用。Storm的核心是一个定义和提交 Topology的 Thrift定

义。因为 Thrift可以用于任何语言，所以 Topology可以用任何语言进行定义并提交。

同样，用户可以使用任何语言来定义 Spout和 Bolt。非 JVM的 Spout和 Bolt可通过一个

基于 JSON协议的 stdin/stdout与 Storm通信。目前有 Ruby、Python、Javascript、Perl和 PHP

实现这个协议的适配器。

Storm-starter有一个使用 Python实现一个 Bolt的 Topology的例子。

1.4.7 部署和操作简单

Storm 集群是易于部署的，仅需要少量的安装和配置就可以运行，Storm 的“开箱即用”

配置十分适合生产环境。

如果用户在 EC2 环境上开展业务，通过 storm-deploy 项目提供的简单方式就可以完成准

备、配置和安装一个 Storm集群的工作——用户仅仅需要点击一个按钮！

此外，Storm部署之后也很容易操作。现在 Storm被设计得极为健壮，使用 Storm的集群

会日复一日持续地稳定运行。

1.4.8 自由开源

Storm是 Eclipse Public License许可证下的一个免费开放源码项目，目前被托管在 GitHub

上。Eclipse Public License（EPL）是一个非常宽容的许可，允许用户使用 Storm用于开源的或

者专有的目的。

Storm项目使用的是 Eclipse Public License 1.0授权，官方原文如下：

The use and distribution terms for this software are covered by the Eclipse Public License 1.0

（http://opensource.org/licenses/eclipse-1.0.php） which can be found in the file LICENSE.html at the

root of this distribution. By using this software in any fashion， you are agreeing to be bound by the

terms of this license. You must not remove this notice， or any other，from this software.

Storm有巨大的并且日益增长的生态系统库，以及与 Storm协同使用的工具。storm-contrib

项目是一个为社区贡献的中央知识库，storm-contrib内所有的内容都是在 Eclipse Public License

18

从零开始学 Storm

许可证下的。当然，许多社区成员也会选择 storm-contrib外的 Storm相关的项目。

1.5 Storm的应用现状和发展趋势

Storm作为最成功的实时大数据处理工具之一，在实时处理海量数据的领域中得到了充分

的应用，以下作简单的介绍，使用 Storm 的公司及其相关项目的更多内容可参考本书的第 20

章。

1.5.1 应用现状

1. Storm应用方向

目前 Storm主要应用在以下这 3个方面。

（1）流处理（Stream Processing）

Storm最基本的用例是“流处理”。Storm可以用来处理源源不断流进来的消息，处理之后

将结果写入到某个存储中去。

（2）连续计算（Continuous Computation）

Storm的另一个典型用例是“连续计算”。Storm能保证计算可以永远运行，直到用户结束

计算进程为止。

（3）分布式 RPC（Distributed RPC）

Storm 的第三个典型用例是“分布式 RPC”，由于 Storm 的处理组件是分布式的，而且处

理延迟极低，所以可以作为通用的分布式 RPC 框架来使用。当然，其实搜索引擎本身也是一

个分布式 RPC系统。

2. 使用 Storm的企业和组织

自 2011年 8月 Twitter将 Storm正式开源以来，Storm在全球众多互联网企业得到了广泛

的应用。表 1.1是使用 Storm的主要企业和组织。

表 1.1 使用 Storm的主要企业和组织

企业/项目名称 简单介绍

Twitter

社交网络及微博客服务的网站，利用无线网络、有线网络等通信技术进行即时通

信，是微博的典型应用。

Twitter 正式收购了 BackType 公司，并在不久后将 Storm 开源。Storm 大大提升

了 Twitter 的众多系统的性能，包括探索发现、实时分析、个性化、搜索、收入

优化等

19

第 1章 Storm简介

（续表）

企业/项目名称 简单介绍

阿里巴巴集团

阿里巴巴集团旗下的企业包括企业对企业的网上贸易市场平台阿里巴巴，亚太最

大的网络零售商圈淘宝网，国内领先的独立第三方支付平台支付宝公司。

阿里巴巴是国内最早采用 Storm技术的企业，也为 Storm的发展和开源做出了极

大的贡献。阿里巴巴使用 Storm来处理应用程序日志和数据库中的数据变化，搭

建了基于 Storm的实时计算架构，为数据应用程序提供实时统计

Groupon 国外知名团购公司。Groupon使用 Storm构建实时数据集成系统

The Weather Channel
公司成立于 1982年，是美国一家基本有线和卫星电线节目提供商，向公众提供世

界各地天气的实时信息。公司利用多个 Storm Topology来采集并持久化天气数据

FullContact

公司旨在解决世界联系信息的难题，使用 Storm作为系统的骨干支柱，用以将第

三方提供的服务与公司的云通信录同步及向公司的联系图分析和联邦名片搜索

系统提供实时的支持

雅虎
雅虎公司是美国著名的互联网门户网站，利用 Storm 和 Hadoop 开发一个支持大

数据的融合和低延迟处理的下一代平台

3. Storm的相关项目

� storm-website项目

这是 storm-project.net网站的源代码，使用 Jekyll（https://github.com/mojombo/jekyll）编写。

storm-website项目的网址为：https://github.com/nathanmarz/storm-website。

� storm-starter项目

storm-starter项目的网址为：https://github.com/nathanmarz/storm-starter。

storm-starter项目包含了大量使用 Storm的例子。

如果读者是第一次接触 Storm，建议首先了解以下 3个主要的 Storm的 Topology。

� ExclamationTopology：全由 Java编写的基本 Topology；

� WordCountTopology：使用 Python实现 Bolt的使用 multilang的基本 Topology；

� ReachTopology：在 Storm上面的复杂的 DRPC例子。

� storm-deploy项目

storm-deploy项目的网址为：https://github.com/nathanmarz/storm-deploy

如果读者在 AWS上使用 Storm，那么可以考虑使用 storm-deploy项目。storm-deploy项目

使得我们能够非常简单地在 AWS上部署 Storm集群。storm-deploy在 EC2上完全自动化地供

给、配置和安装 Storm 集群，它还为你设置 Ganglia，你可以使用 Ganglia监视 CPU、磁盘和

网络。

� storm-contrib项目

storm-contrib项目的网址为：https://github.com/nathanmarz/storm-contrib

storm-contrib是一个使用 Storm模块的社区库，其中包含了大量的集成了 Redis、Kafka、

MongoDB等其他系统的 Spout/Bolt，以及 Storm开发者遇到的常见任务的代码。

storm-contrib是被组织成每个模块一个子文件夹的“超级项目”，每个模块是分别独立的，

模块所有者负责分配。

一些 storm-contrib模块是 git子模块（链接到外部的 github库）。这允许 storm-contrib子项

20

从零开始学 Storm

目可以被外部维护（所以那些项目可以保持独立的分支和标签），但也包含在 storm-contrib项

目中，以便增加社区可见度。

storm-contrib内所有的内容都是在 Eclipse Public License许可证下的。storm-contrib包括：

� Spouts：Spouts集成 JMS、Kafka、Redis pub/sub等消息队列系统。

� storm-state：storm-state 使得用户在其计算过程中能以一种可靠的方式来很容易地管理

大量的内存状态——通过持久地使用一个分布式文件系统。

� 数据库集成：有许多Bolt帮助集成各种数据库，如MongoDB、关系数据库、Cassandra等。

� 其他繁杂的公用组件。

� storm-mesos项目

storm-mesos项目在Mesos集群资源管理器上运行 Storm。Storm与Mesos集群资源管理器

整合在一起，这个项目已用于 Twitter产品。

用户可以像将 Topology 提交给正常的 Storm 集群的方式来将 Topology 提交给

Storm/Mesos。

Storm/Mesos提供了在Topology之间进行隔离的技术。通过这种技术，用户无需为Topology

之间可能的干扰而担心。

� storm-yarn项目

storm-yarn项目的网址为：https://github.com/yahoo/storm-yarn。

storm-yarn是 Yahoo！公司的开源项目，使 Storm集群可以被部署到 Hadoop YARN管理的

主机上，这仍然是进行中的工作。

本项目的贡献者有：Andy Feng （@anfeng）、Robert Evans （@revans2）、Derek Dagit

（@d2r）、Nathan Roberts （@ynroberts）。

� 其他 storm相关的项目

可以在 GitHub的官方网站（https://github.com/）搜索 Storm相关的开源项目。

1.5.2 发展趋势

1. Storm技术发展情况

2012年，Storm各系列的版本已经在各大公司得到广泛使用；2013年 12月，Storm 0.9.0

已经成功发布，当前最新版本为 0.9.0.1。现已有不少的企业组织或个人开始使用这一新的版本。

但目前主要使用的版本为 0.8版本。

2012年 8月发布的 0.8 版本中引入了 State，使得其从一个纯计算框架演变为一个包含存

储和计算的实时计算利器。

另外 0.8版本也引入了 Trident——一个高级抽象实时计算系统，这是实时计算领域的巨大

跨越。Trident提供更加友好的接口，同时可定制 Scheduler的特性也为其针对不同的应用场景

做优化提供了更便利的手段，也有人已经在基于 Storm的实时 QL（Query Language）上迈出

了一步。

21

第 1章 Storm简介

在服务化方面，Storm一直在朝着融入 Mesos 框架的方向努力。同时，Storm也在实

现细节上不断地优化，使用很多优秀的开源产品以进行产品功能的扩展，包括 Kryo、

Disruptor和 Curator等。

Storm 集成了许多库，支持包括 Kestrel、Kafka、JMS、Cassandra、Memcached 以及更多

系统。随着支持的库越来越多，Storm更容易与现有的系统协作。

Storm的性能提升超过 10倍。经在 Twitter内部集群测试，单节点每秒完成 100万条信息。

Storm团队正在积极地为推动 Storm而努力。目前，团队正在开发一项监测功能，用于观

察用户拓扑网络中的实时状态。Storm 团队的另外一项庞大的计划用于提高 Trident 的性能，

集成更多的数据存储输入源。

2. Storm研究人员发展情况

Storm开源已经两年有余，在过去的两年中得到了飞速的发展，2012年就已经有 27个公

司宣布正在产品中使用 Storm，现在使用 Storm 的公司的数量还在继续增加。2012 年，Storm

的邮件列表已有 1300多个成员，每月超过 500条信息；在 GitHub上超过 4000个项目负责人；

同期 Twitter@stormprocessor上的粉丝超过 1200个；在旧金山，超过 230名会员定期参加讨论

活动。目前，世界各地有各种各样针对 Storm的讨论活动和兴趣小组；在中国也有很多 Storm

相关的学习、讨论网站和社交兴趣组。

目前，除项目主管 Nathan Marz，项目核心贡献者徐明明、P. Taylor Goetz、Mike Heffner、

Jason Jackson、Andy Feng外，全球共有 41名代码贡献者。有关 Storm的图书已经出版，Amazon

网站上的英文版 Storm 书籍已有十多本（其中包括 O'Reilly 出版的 Storm 图书），但目前尚未

有中文版 Storm书籍面世。

3. Storm版本发展情况

Storm 0.7 和 Storm 0.8 系列的版本已在各大公司得到了广泛使用。目前最新的版本是

Storm0.9.0.1。

2013年 12月，Storm 0.9.0成功发布。这个版本较之前版本新增的功能如下。

� 消息通知机制变更：引入了使用纯 Java语言编写的 Netty作为我们的传输层，也就是

说消息通知机制支持 Netty。这一特性是这个版本最大的变化，也使得 Storm具有更好

的跨平台能力。

� UI变更：支持 Topology控制命令，支持查看 Nimbus和 Topology的配置值，支持 UI

上查看各个 work的日志。

� 安全性增强：Storm 的安全保障能力较弱，此版本在这方面有了一定的加强——提供

了 API用来实现可插拔的 Tuple序列化，并且有一个基于 BlowFish的加密算法用于加

密 Tuple的实现。

Storm在实现细节上不断地优化，使用很多优秀的开源产品，包括 Kryo、Disruptor和

Curator等。

22

从零开始学 Storm

可以想像，当 Storm发展到 1.0版本时，一定是一款无比杰出的产品，让我们拭目以待。

1.6 如何学习 Storm

Storm官方建议的学习 Storm的过程如下。

1. Storm的基本知识

� Javadoc文档

� 概念

� 配置

� 保证消息处理（Guaranteeing message processing）

� 容错（Fault-tolerance）

� 命令行客户端（Command line client）

� 理解 Storm拓扑的并行度

� 常见问题解答 FAQ

2. Trident

Trident是 Storm的高层抽象，它提供了仅一次处理，“事务性”数据存储持久性和共同流

集合的分析操作。

3. 安装和部署

� 安装 Storm集群

� 本地模式

� 故障排除

� 在生产集群运行拓扑

� 使用Maven或 Leiningen创建 Storm

4. Storm的进阶知识

� 序列化（Serialization）

� 常见的模式（Common patterns）

� Clojure DSL（Clojure DSL）

� 使用非 JVM语言与风暴（Using non-JVM languages with Storm）

� 分布式 RPC（Distributed RPC）

� 事务拓扑（Transactional topologies）

� Kestrel与 Storm（Kestrel and Storm）

� 直接分组（Direct groupings）

23

第 1章 Storm简介

� 钩子（Hooks）

� 衡量指标（Metrics）

� Trident元组的生命周期（Lifecycle of a trident tuple）

5. Storm的高阶知识

� 为 Storm定义一个非 JVM语言的 DSL

� 多语言协议（Multilang protocol）：如何为另一种语言提供支持

� 实现文档（Implementation docs）

1.7 本书的章节安排及学习建议

1.7.1 本书的章节安排

本书一共 20 章，其中“基础知识”6 章，“安装与部署”4 章，“研发与维护”4 章，“进

阶知识”5章，“企业应用”1章。本书的章节安排如表 1.2所示。

表 1.2 本书的章节安排

所属模块 包含章节

基础知识

Storm简介

Storm的基础知识

拓扑详解

组件详解

Spout详解

Bolt详解

安装与部署

Zookeeper详解

基础软件的安装与使用

Storm的安装与配置

Storm集群搭建实践

研发与维护

准备 Storm的开发环境

开发自己的 Storm应用

storm-starter详解

研发与集群管理技巧

进阶知识

DRCP详解

事务拓扑详解

Trident详解

Storm的内部实现

Storm相关的其他项目

企业应用 企业应用实例

24

从零开始学 Storm

1.7.2 关于如何阅读本书的建议

1. 为了调研 Storm

建议优先阅读本书的首末两章，即“第 1章 Storm简介”和“第 20章 企业应用案例”，

再阅读“第 2 章 Storm的基本知识”，也可以阅读完第 1 章到第 6 章“基础知识”模块的全

部 6个章节，最后阅读本书的其他章节。

2. 为了学习 Storm的理论基础

建议优先阅读第 1章到第 6章“基础知识”模块的全部 6个章节，然后阅读第 15章到第

19章“进阶知识”模块的全部 5个章节，最后阅读本书的其他章节。

3. 为了学习 Storm的应用实践

建议优先阅读第 7章到第 10章“安装与部署”模块的全部 4个章节，然后阅读第 11章到

第 14章“研发与维护”模块的全部 4个章节，最后阅读本书的其他章节。

在开始相关章节的学习之前，请读者预先准备安装好如下的软硬件环境。

（1）生产环境（集群环境）节点

建议使用 64位的 CentOS 6.0以上的英文版 Linux操作系统。

（2）开发环境（试验环境）主机

32位或者 64位，Linux或者Windows操作系统都可以，无特殊要求。

但是，为了更好地与集群环境进行交互，建议使用 64位的 CentOS 6.0以上的 Linux操作

系统。

1.8 本章小结

本章简单介绍了 Storm 的基本概念，然后介绍 Storm 的起源、特征和优势。同时介绍了

Storm的项目小组以及从何处可以获得 Storm技术支持、技术讨论，以便于读者找到 Storm的

学习和源代码参考的网站。之后，本章还重点介绍了 Storm的应用方向、使用 Storm的企业和

组织，以及 Storm相关的项目，例如 storm-starter、storm-deploy和 storm-contrib等。在本章末

尾给出了学习 Storm 的官方建议、本书的章节安排及学习建议。通过本章的学习，读者将对

Storm有一个基本的了解。

Storm的基本知识

本章将学习 Storm 的基本知识，包括 Storm 的基本概念、配置、序列化、容

错机制、可靠性机制、消息机制、开发环境与生产环境、并行度和命令行客户端

等内容。

26

从零开始学 Storm

2.1 概念

2.1.1 元组（Tuple）

元组（Tuple），是消息传递的基本单元，是一个命名的值列表，元组中的字段可以是任何

类型的对象。Storm使用元组作为其数据模型，元组支持所有的基本类型、字符串和字节数组

作为字段值，只要实现类型的序列化接口就可以使用该类型的对象。元组本来应该是一个

key-value 的 Map，但是由于各个组件间传递的元组的字段名称已经事先定义好，所以只要按

序把元组填入各个 value即可，所以元组是一个 value的 List。

拓扑的每个节点必须声明 emit（发射）的元组的输出字段。例如，下面的

DoubleAndTripleBolt类在 declareOutputFields方法中声明输出字段为["double", "triple"]二元组。

public class DoubleAndTripleBolt extends BaseRichBolt {

 private OutputCollectorBase _collector;

 @Override

 public void prepare(Map conf, TopologyContext context, OutputCollectorBa

se collector) {

 _collector = collector;

 }

 @Override

 public void execute(Tuple input) {

 int val = input.getInteger(0);

 _collector.emit(input, new Values(val*2, val*3));

 _collector.ack(input);

 }

 @Override

 public void declareOutputFields(OutputFieldsDeclarer declarer) {

 declarer.declare(new Fields("double", "triple"));

 }

}

首先，在 declareOutputFields方法中声明了输出为["double", "triple"]的二元组。接着，在

prepare 方法中把 OutputCollectorBase 对象赋给私有成员变量_collector。最后，使用_collector

27

第 2章 Storm的基本知识

发射元组，输出元组是一个二元组，第 1个值为原值的 2倍，第 2个值为原值的 3倍，并使用

_collector的 ack方法，保证消息处理，提供可靠性机制。

2.1.2 流（Stream）

流（Stream）是 Storm的核心抽象，是一个无界的元组序列。源源不断传递的元组就组成

了流，在分布式环境中并行地进行创建和处理。

流被定义成一个为流中元组字段进行命名的模式，默认情况下，元组可以包含整形

（integer）、长整形（long）、短整形（short）、字节（byte）、字符（string）、双精度数（double）、

浮点数（float）、布尔值（boolean）和字节数组（byte array），还可以自定义序列化器，以便

本地元组可以使用自定义类型。

流由元组组成，使用 OutputFieldsDeclarer 声明流及其模式。Serialization是 Storm的动态

元组类型的信息，声明自定义序列化。自定义序列化必须实现 ISerialization接口，自定义序列

化可以注册使用 CONFIG.TOPOLOGY_SERIALIZATIONS这个配置。

Storm 提供可靠的方式把原语转换成一个新的分布式的流，执行流转换的基本元素是

Spout和 Bolt。

Spout是流的源头，通常从外部数据源读取元组，并 emit到拓扑中。例如，Spout从 Kestrel

队列中读取元组，并作为一个流提交到拓扑。

Bolt接收任何数量的输入流，执行处理后，可能提交新的流。复杂流的转换，如从 tweets

流中计算一个热门话题，需要多个步骤，因此需要多个 Bolt。Bolt可以执行运行函数、过滤元

组、连接流和连接数据库等任何事情。

如图 2.1 所示，Spout 和 Bolt 的网络被打包成一个“拓扑”，即顶级抽象，之后提交这个

拓扑到 Storm 集群中执行。拓扑是一个图的流转换，节点表示 Spout 或 Bolt，弧边指示哪些

Bolt 订阅了该流。当一个 Spout 或 Bolt 发射一个元组到一个流时，它会发射元组到每一个订

阅该流的 Bolt。

图 2.1 拓扑示例

拓扑节点之间的链接表示元组应该如何传递。例如，如果从 Spout A到 Bolt B有一个链接，

28

从零开始学 Storm

从 Spout A到 Bolt C有一个链接，从 Bolt B到 Bolt C有一个链接，那么每次 Spout A将同时发

射元组到 Bolt B与 Bolt C，Bolt B也会发射元组到 Bolt C。

一个 Storm拓扑中的每个节点均可以并行执行，也可以指定拓扑中跨集群执行的线程数量。

一个拓扑会一直运行，直到你杀死它。Storm会自动重新分配任何失败的任务。此外，即

使主机已经关闭，消息已经被删除，Storm也能保证不会有数据丢失。

每个流被声明后都会赋予一个 id。因为单个流的 Spout 和 Bolt 是如此普遍，

OutputFieldsDeclarer 有方便的方法来声明一个不指定 id 的单流。在这种情况下，流被赋予默

认的 id值。

2.1.3 喷口（Spout）

喷口（Spout）是拓扑的流的来源，是一个拓扑中产生源数据流的组件。通常情况下，Spout

会从外部数据源（例如 Kestrel队列或 Twitter API）中读取数据，然后转换为拓扑内部的源数

据。Spout可以是可靠的，也可以是不可靠的。如果 Storm处理元组失败，可靠的 Spout能够

重新发射，而不可靠的 Spout就尽快忘记发出的元组。Spout是一个主动的角色，其接口中有

个 nextTuple()函数，Storm框架会不停地调用此函数，用户只要在其中生成源数据即可。

Spout可以发出超过一个流。为此，使用 OutputFieldsDeclarer类的 declareStream方法来声

明多个流，使用 SpoutOutputCollector类的 emit执行流的提交。

Spout 的主要方法是 nextTuple()。nextTuple()会发出一个新 Tuple 到拓扑，如果没有新的

元组发出则简单地返回。nextTuple()方法不阻止任何 Spout的实现，因为 Storm在同一线程调

用所有的 Spout方法。

Spout的其他主要方法是 ack()和 fail()。当 Storm 检测到一个元组从 Spout发出时，ack()和

fail()会被调用，要么成功完成通过拓扑，要么未能完成。ack()和 fail()仅被可靠的 Spout调用。

IRichSpout是 Spout必须实现的接口。

2.1.4 螺栓（Bolt）

在拓扑中的所有处理都在 Bolt 中完成，Bolt 是流的处理节点，从一个拓扑接收数据然后

执行进行处理的组件。Bolt可以完成过滤、业务处理、连接运算、连接与访问数据库等任何操

作。Bolt是一个被动的角色，其接口中有一个 execute()方法，在接收到消息后会调用此方法，

用户可以在其中执行自己希望的操作。

Bolt可以完成简单的流的转换，而完成复杂的流的转换通常需要多个步骤，因此需要多个

Bolt。例如，将 tweet数据流转换为热门图片流至少需要两个步骤：首先一个 Bolt为每个图像

的转发做一个滚动的计数，然后一个或多个 Bolt流找出排名前 X的图片（也可以使用 3个 Bolt

代替使用 2个 Bolt，一个更具有伸缩性的方式，来做这种特殊的流转换）。

Bolt可以发出超过一个的流。为此，使用 OutputFieldsDeclarer类的 declareStream()方法声

明多个流，并使用 OutputCollector类的 emit()方法指定发射的流。

29

第 2章 Storm的基本知识

当声明一个 Bolt 的输入流时，总是订阅另一个组件的特定流。如果想订阅另一个组件的

所有的流，必须订阅每一个过程。InputDeclarer()方法有语法以订阅声明默认流 id 的流：

declarer.shuffleGrouping("1")是指订阅组件 1 的默认流，相当于 declarer.shuffleGrouping("1",

DEFAULT_STREAM_ID)。

Bolt 的主要方法是 execute()方法，该方法将一个新的元组作为输入。Bolt 使用

OutputCollector对象发射新的元组。Bolt必须为它们处理的每个元组调用 OutputCollector类的

ack()方法，以便 Storm知道什么时候元组会完成（并最终确定它是安全应答原始的 Spout的元

组）。对于处理一个输入元组的常见情况是发射 0个或者更多基于该元组的元组，然后应答输

入元组（Storm提供了一个自动应答的 IBasicBolt接口）。

我们完全可以在 Bolt中启动新的线程进行异步处理。OutputCollector类是线程安全的，可

以在任何时间被调用。

IRichBolt 是 Bolt 的通用接口。IBasicBolt 是定义 Bolt 进行过滤或简单功能的一个很方便

的接口。使用 OutputCollector类的实例可以让 Bolt发送元组到其输出流。

2.1.5 拓扑（Topology）

拓扑（Topology）是 Storm中运行的一个实时应用程序，因为各个组件间的消息流动而形

成逻辑上的拓扑结构。

把实时应用程序的运行逻辑打成 jar包后提交到 Storm的拓扑（Topology）。Storm的拓扑

类似于 MapReduce 的作业（Job）。其主要的区别是，MapReduce 的作业最终会完成，而一个

拓扑永远都在运行直到它被杀死。一个拓扑是一个图的 Spout和 Bolt的连接流分组。

在 Java中，使用 TopologyBuilder类来构造拓扑。

2.1.6 主控节点与工作节点

Storm集群中有两类节点：主控节点（Master Node）和工作节点（Worker Node）。其中，

主控节点只有一个，而工作节点可以有多个。

2.1.7 Nimbus进程与 Supervisor进程

主控节点运行一个称为 Nimbus的守护进程，类似于 Hadoop的 JobTracker。Nimbus 负责

在集群中分发代码，对节点分配任务，并监视主机故障。

每个工作节点运行一个称为 Supervisor的守护进程。Supervisor监听其主机上已经分配的

主机的作业，启动和停止 Nimbus已经分配的工作进程。

30

从零开始学 Storm

2.1.8 流分组（Stream grouping）

流分组，是拓扑定义中的一部分，为每个 Bolt 指定应该接收哪个流作为输入。流分组定

义了流/元组如何在 Bolt的任务之间进行分发。

Storm内置了 7种流分组方式，通过实现 CustomStreamGrouping接口可以实现自定义的流

分组。

2.1.9 工作进程（Worker）

Worker是 Spout/Bolt中运行具体处理逻辑的进程。拓扑跨一个或多个Worker进程执行。

每个Worker进程是一个物理的 JVM和拓扑执行所有任务的一个子集。例如，如果合并并行度

的拓扑是 300，已经分配 50个Worker，然后每个Worker将执行 6个任务（作为在Worker内

的线程）。Storm尝试在所有Worker上均匀地发布任务。

可使用 Config.TOPOLOGY_WORKERS配置项设置执行拓扑时分配的Worker的数量。

2.1.10 任务（Task）

Worker中每一个 Spout/Bolt的线程称为一个任务（Task）。每个 Spout或者 Bolt在集群中

执行许多任务。每个任务对应一个线程的执行，流分组定义如何从一个任务集到另一个任务集

发射元组。可以通过 TopologyBuilder类的 setSpout()方法和 setBolt()方法来设置每个 Spout或

者 Bolt的并行度（parallelism）。

2.1.11 执行器（Executor）

在 Storm 0.8以后，Task不再与物理线程对应，同一个 Spout/Bolt的 Task可能会共享一个

物理线程，该线程称为执行器（Executor）。

2.1.12 可靠性（Reliability）

Storm保证每一个 Spout元组将被拓扑完全可靠地处理。它跟踪每个 Spout元组的元组树，

检测树中的元组什么时候可以成功完成。每个拓扑都有“消息超时时间”，如果 Storm在超时

之前未能检测到 Spout元组已经完成，那么会设元组为失败并在之后重新发射它。

要利用 Storm 的可靠性优势，当元组树的新边缘被创建时必须通知 Storm，并告之 Storm

什么时候处理完该元组。这些都是通过使用 OutputCollector 对象实现的，Bolt 使用

OutputCollector 对象发射元组。在 emit()方法中完成 Anchoring，声明已经使用 ack()方法完成

一个元组。

31

第 2章 Storm的基本知识

2.2 Storm的配置

2.2.1 Storm的配置类型

Storm有大量的配置，可以调整 Nimbus、Supervisor、拓扑运行的参数，其中有些配置是

不能修改的系统配置，而其他配置是可以修改的。

每个配置会有一个默认值，该值定义在 Storm代码库的 defaults.yaml文件中。在 Nimbus

和 Supervisor的类路径中定义一个 storm.yaml文件，可以覆盖这些配置值。使用 StormSubmitter

提交拓扑的时候，可以定义一个指定拓扑的配置，但是只能覆盖前缀为 TOPOLOGY的配置项。

Storm 0.7.0以后的版本开始允许在 Spout/Bolt中覆盖配置，可以修改的配置主要有：

� "topology.debug"。

� "topology.max.spout.pending"。

� "topology.max.task.parallelism"。

� "topology.kryo.register"。

topology.kryo.register与其他的配置有所不同，它的序列化会应用到拓扑上的所有组件。

Storm的 Java API也提供了两种方式指定组件的配置。

� 内部的（Internally）

在 Spout或者 Bolt类中，覆盖 getComponentConfiguration方法，返回组件配置的Map对象。

getComponentConfiguration方法定义如下：

Map<String, Object> getComponentConfiguration()

� 外部的（Externally）

使用 TopologyBuilder 类的 setSpout 方法返回 SpoutDeclarer 对象，使用 setBolt 方法返回

BoltDeclarer对象。SpoutDeclarer与 BoltDeclarer实现了 ComponentConfigurationDeclarer接口，

该接口有 addConfiguration方法和 addConfigurations方法，可以通过调用这两个方法来覆盖组

件的配置。

SpoutDeclarer接口的定义代码如下：

public interface SpoutDeclarer extends

ComponentConfigurationDeclarer<SpoutDeclarer> {

}

BoltDeclarer接口的定义代码如下：

public interface BoltDeclarer extends InputDeclarer<BoltDeclarer>,

 ComponentConfigurationDeclarer<BoltDeclarer> {

32

从零开始学 Storm

}

ComponentConfigurationDeclarer接口的定义代码如下：

public interface ComponentConfigurationDeclarer<T

extends ComponentConfigurationDeclarer> {

 T addConfigurations(Map conf);

 T addConfiguration(String config, Object value);

 T setDebug(boolean debug);

 T setMaxTaskParallelism(Number val);

 T setMaxSpoutPending(Number val);

 T setNumTasks(Number val);

}

Storm配置值的优先顺序为：

defaults.yaml < storm.yaml < 特定拓扑的配置 < 内部特定组件的配置 < 外部特定组件的配置

2.2.2 defaults.yaml文件

在Storm的源代码中，文件夹conf下有一个名为defaults.yaml的文件，即conf/defaults.yaml，

defaults.yaml文件记录着所有配置的默认值。

defaults.yaml文件的详细清单如下：

########### defaults.yaml文件存储的是默认值

###########可以在 storm.yaml文件中写入额外的配置

java.library.path: "/usr/local/lib:/opt/local/lib:/usr/lib"

storm.* 配置是普通的配置

storm.local.dir是保存 jar包的目录

storm.local.dir: "storm-local"

storm.zookeeper.servers:

 - "localhost"

storm.zookeeper.port: 2181

storm.zookeeper.root: "/storm"

storm.zookeeper.session.timeout: 20000

storm.zookeeper.connection.timeout: 15000

storm.zookeeper.retry.times: 5

storm.zookeeper.retry.interval: 1000

storm.zookeeper.retry.intervalceiling.millis: 30000

storm.cluster.mode: "distributed" # can be distributed or local

storm.local.mode.zmq: false

storm.thrift.transport: "backtype.storm.security.auth.SimpleTransportPlugin"

storm.messaging.transport: "backtype.storm.messaging.netty.Context"

nimbus.* 配置应用于主节点

33

第 2章 Storm的基本知识

nimbus.host: "localhost"

nimbus.thrift.port: 6627

nimbus.thrift.max_buffer_size: 1048576

nimbus.childopts: "-Xmx1024m"

nimbus.task.timeout.secs: 30

nimbus.supervisor.timeout.secs: 60

nimbus.monitor.freq.secs: 10

nimbus.cleanup.inbox.freq.secs: 600

nimbus.inbox.jar.expiration.secs: 3600

nimbus.task.launch.secs: 120

nimbus.reassign: true

nimbus.file.copy.expiration.secs: 600

nimbus.topology.validator: "backtype.storm.nimbus.DefaultTopologyValidator"

ui.* 配置应用于主节点

ui.port: 8080

ui.childopts: "-Xmx768m"

logviewer.port: 8000

logviewer.childopts: "-Xmx128m"

logviewer.appender.name: "A1"

drpc.port: 3772

drpc.worker.threads: 64

drpc.queue.size: 128

drpc.invocations.port: 3773

drpc.request.timeout.secs: 600

drpc.childopts: "-Xmx768m"

transactional.zookeeper.root: "/transactional"

transactional.zookeeper.servers: null

transactional.zookeeper.port: null

supervisor.* 配置应用于 Supervisor节点

定义可以在本机上运行的工作进程的数量，每个工作进程分配一个通信端口

supervisor.slots.ports:

 - 6700

 - 6701

 - 6702

 - 6703

supervisor.childopts: "-Xmx256m"

Supervisor等待多长时间确保工作进程已经启动

supervisor.worker.start.timeout.secs: 120

Supervisor认为工作进程死亡并试图进行重启的心跳时间的大小

supervisor.worker.timeout.secs: 30

Supervisor检查工作进程的状态的频率，Supervisor会在必要时重启工作进程

34

从零开始学 Storm

supervisor.monitor.frequency.secs: 3

Supervisor到 Nimbus的心跳的频率

supervisor.heartbeat.frequency.secs: 5

supervisor.enable: true

worker.* 配置应用于工作进程的任务

worker.childopts: "-Xmx768m"

worker.heartbeat.frequency.secs: 1

task.heartbeat.frequency.secs: 3

task.refresh.poll.secs: 10

zmq.threads: 1

zmq.linger.millis: 5000

zmq.hwm: 0

storm.messaging.netty.server_worker_threads: 1

storm.messaging.netty.client_worker_threads: 1

storm.messaging.netty.buffer_size: 5242880 #5MB缓存

storm.messaging.netty.max_retries: 30

storm.messaging.netty.max_wait_ms: 1000

storm.messaging.netty.min_wait_ms: 100

topology.* 配置应用于具体执行的 Storm

topology.enable.message.timeouts: true

topology.debug: false

topology.optimize: true

topology.workers: 1

topology.acker.executors: null

topology.tasks: null

消息超时时间，如果超时，消息被认为是失败的

topology.message.timeout.secs: 30

topology.skip.missing.kryo.registrations: false

topology.max.task.parallelism: null

topology.max.spout.pending: null

topology.state.synchronization.timeout.secs: 60

topology.stats.sample.rate: 0.05

topology.builtin.metrics.bucket.size.secs: 60

topology.fall.back.on.java.serialization: true

topology.worker.childopts: null

topology.executor.receive.buffer.size: 1024

topology.executor.send.buffer.size: 1024

topology.receiver.buffer.size: 8 #设置过高会导致很多问题，如心跳线程饿死、吞吐量大幅

下跌

topology.transfer.buffer.size: 1024

topology.tick.tuple.freq.secs: null

topology.worker.shared.thread.pool.size: 4

35

第 2章 Storm的基本知识

topology.disruptor.wait.strategy: "com.lmax.disruptor.BlockingWaitStrategy"

topology.spout.wait.strategy: "backtype.storm.spout.SleepSpoutWaitStrategy"

topology.sleep.spout.wait.strategy.time.ms: 1

topology.error.throttle.interval.secs: 10

topology.max.error.report.per.interval: 5

topology.kryo.factory: "backtype.storm.serialization.DefaultKryoFactory"

topology.tuple.serializer: "backtype.storm.serialization.types.ListDelegate

Serializer"

topology.trident.batch.emit.interval.millis: 500

dev.zookeeper.path: "/tmp/dev-storm-zookeeper"

2.2.3 storm.yaml文件

修改 STORM_HOME 目录下的 conf/storm.yaml 文件，可以覆盖 Storm 配置的默认值。

storm.yaml会覆盖 defaults.yaml中的任何内容。以下几个配置是必须要设置的。

（1）storm.zookeeper.servers

这是一个为 Storm集群服务的 ZooKeeper集群的主机列表，它的配置应该类似于：

storm.zookeeper.servers:

- "111.222.333.444"

- "555.666.777.888"

如果你的 ZooKeeper集群使用的端口和默认的端口不相同，应该也设置“storm.zookeeper.port”

的值。

（2）storm.local.dir

Nimbus和 Supervisor守护进程需要在本地硬盘的一个目录存储少量的状态（如 jars、confs

等）。你应该在每台主机上创建该目录，赋予它适当的权限，然后使用该配置填写目录位置。

例如：

storm.local.dir: "/mnt/storm"

（3）java.library.path

这是加载 Storm 使用的本地库的路径，例如 ZeroMQ 库和 JZMQ 库。默认的

/usr/local/lib:/opt/local/lib:/usr/lib 适用于大多数安装，一般不需要设置此配置。

（4）nimbus.host

工作节点为了下载拓扑的 jar和 confs文件，需要知道哪些主机是主控节点。例如：

nimbus.host: "111.222.333.44"

（5）supervisor.slots.ports

对于每个工作节点，可以通过该配置项来设置该节点上运行多少个Worker。每个Worker

使用一个端口接收消息，此设置定义为使用哪些端口是打开的。如果在这里定义 5个端口，然

36

从零开始学 Storm

后 Storm将分配到 5个 Worker在这台主机上运行。如果定义 3个端口，Storm只会分配 3个

Worker。此设置默认为在端口 6700、6701、6702和 6703上配置运行 4个Worker。例如：

supervisor.slots.ports:

- 6700

- 6701

- 6702

- 6703

2.2.4 Config类

Config类，即 backtype.storm.Config，是一个所有配置的清单，一个创建拓扑特定配置的

helper类。

Config 类提供了方便的方法来创建一个拓扑配置 Map，为所有可以设置的配置项提供了

setter方法，这也使得它很容易实现序列化。

Config类还提供了Storm集群和Storm拓扑上所有可能的配置的常量，可以在 defaults.yaml

文件中找到默认值。

可以把其他的配置项添加到 Config类中。Storm会忽略任何它不能识别的配置项，但是拓

扑可以在 Bolt的 prepare()方法或者 Spout的 open()方法中自由地使用这些配置项。

Config类的继承关系如图 2.2所示。

图 2.2 Config的继承关系图

Config类的 setter方法如下：

public void setDebug(boolean isOn)

public void setFallBackOnJavaSerialization(boolean fallback)

public void setKryoFactory(Class<? extends IKryoFactory> klass)

public void setMaxSpoutPending(int max)

public void setMaxTaskParallelism(int max)

public void setMessageTimeoutSecs(int secs)

public void setNumAckers(int numExecutors)

public void setNumWorkers(int workers)

public void setOptimize(boolean isOn)

public void setSkipMissingKryoRegistrations(boolean skip)

public void setStatsSampleRate(double rate)

37

第 2章 Storm的基本知识

2.3 序列化（Serialization）

本节将介绍 Storm的序列化系统如何运行，适合 0.6.0之后的版本。在 0.6.0之前，Storm

使用不同的序列化系统。

元组可以包含任何类型的对象。因为 Storm是一个分布式系统，它需要知道当元组在任务

之间传递时如何序列化和反序列化对象。

Storm使用 Kryo序列化。Kryo是一个灵活和快速的序列化库，产生很小的序列化。

默认情况下，Storm可以序列化原始类型、字符串、字节数组、ArrayList、HashMap、HashSet

和 Clojure集合类型。如果想在元组中使用另一种类型，则需要注册一个自定义序列化器。

2.3.1 动态类型

Storm 在一个元组中没有为字段声明类型。当把对象放置到字段，Storm 动态地找出它并

序列化。在我们开始序列化接口前，先花一分钟了解为什么 Storm的元组是动态类型的。

首先添加静态类型到元组字段会给 Storm的 API增加复杂性。例如，Hadoop是静态类型

的键和值，但在用户部分需要大量的注释。对于 Hadoop 的 API 使用这些是一种负担，“类型

安全”不值得花费如此多的资源，而动态类型则简单并且容易使用。

进一步来说，以任何合理的方式使 Storm 的元组变成静态类型都是不可能的。假设一个

Bolt订阅多个流，从所有这些流的元组可能有不同的类型穿过字段。当一个 Bolt在 execute方

法中接收到一个元组，元组可能来自任何流，所以可能有任何类型的组合。可能你可以做一些

反射原理，为 Bolt 订阅的每一个元组流声明不同的方法，但 Storm 选择动态类型是一种更简

单和更直接的方法。

最后，使用动态类型的另一个原因是，Storm可以被动态类型语言（如 Clojure和 Jruby）

以一种简单易懂的方式使用。

2.3.2 自定义序列化

正如前面所提到的，Storm使用 Kryo来序列化。要实现自定义序列化器，需要用 Kryo注

册新的序列化器。强烈推荐读者阅读 Kryo主页以理解它是如何处理自定义序列化的。

添加自定义序列化器是通过拓扑配置的 topology.kryo.register 属性完成的。它需要一个注

册的列表，每个注册项可以采取两种形式：

� 类名注册。在这种情况下，Storm将使用 Kryo的 FieldsSerializer来序列化该类。这可

能是也可能不是该类最好的选择——更多的细节可以查看 Kryo文档。

� 实现了 com.esotericsoftware.kryo.Serializer接口的类名注册的映射。

让我们看下面的例子。

38

从零开始学 Storm

topology.kryo.register:

- com.mycompany.CustomType1

- com.mycompany.CustomType2: com.mycompany.serializer.CustomType2Serializer

- com.mycompany.CustomType3

com.mycompany.CustomType1和 com.mycompany.CustomType3使用FieldsSerializer来进行

序列化，而 com.mycompany.CustomType2使用 com.mycompany.serializer.CustomType2Serializer

来进行序列化。

Storm为拓扑配置里的注册序列化提供了帮助。Config类中有一个名为 registerSerialization

的方法，可以把注册添加到配置中。

另外，还有一个 Config.TOPOLOGY_SKIP_MISSING_KRYO_REGISTRATIONS的高级配

置。如果设置为 true，Storm会忽略任何已经注册但在类路径中没有其代码的序列化；否则，

当 Storm找不到一个序列化，它将抛出错误。如果你运行很多各有不同的序列化的拓扑集群，

这是有用的，除非想在 storm.yaml文件中声明所有的序列化。

2.3.3 Java序列化

如果 Storm 遇到一种没有序列化注册的类型，如果可能的话，它将使用 Java 序列化。如

果对象不能被 Java序列化所处理，那么 Storm将抛出一个错误。

注意，Java序列化所耗资源是极其昂贵的，无论是从 CPU成本还是序列化对象的大小来

看。当你把拓扑放在生产上面使用时，强烈建议注册自定义序列化器。Java 序列化的行为，

很容易原型化新的拓扑。

可以通过设置 Config.TOPOLOGY_FALL_BACK_ON_JAVA_SERIALIZATION 配置项为

false，关掉依靠 Java序列化行为。

2.3.4 特定组件序列化注册

Storm 0.7.0允许设置特定组件的配置。当然，如果一个组件定义了一个序列化，序列化需

要对于其他 Bolt可用，否则它们无法从这些组件接收到任何消息！

当一个拓扑被提交，单一的序列化集会被选择用于拓扑中的所有组件发送消息。这是通过

合并特定组件的序列化器注册与常规的序列化注册集来完成的。如果两个组件对同一个类定义

序列化器，其中一个序列化器将是任意选择的。

如果两个特定组件的注册有冲突，Storm会强制对一个特定的类进行序列化。只需要在特

定于拓扑配置定义你想要使用的序列化器。对于序列化注册，这个特定拓扑的配置优先于特定

组件的配置。

39

第 2章 Storm的基本知识

2.4 容错机制

本节将介绍 Storm作为一个容错系统的设计细节。

2.4.1 Worker进程死亡

当一个Worker（工作进程）死亡，Supervisor会尝试重启它。如果它在启动时连续失败了

一定的次数，无法发送心跳信息到 Nimbus，Nimbus将在另一台主机上重新分配Worker。

2.4.2 节点死亡

如果节点死亡，分配给该节点主机的任务会暂停，Nimbus 会把这些任务重新分配给其他

节点主机。

2.4.3 Nimbus或者 Supervisor守护进程死亡

Nimbus 和 Supervisor 守护进程被设计成快速失败的（每当遇到任何意外的情况，进程自

动毁灭）和无状态的（所有状态都保存在 ZooKeeper或者磁盘上）。如创建 Storm集群中所述，

Nimbus 和 Supervisor 守护进程应该使用 daemontools 或者 monit 工具监控运行。所以，如果

Nimbus或 Supervisor守护进程死亡，它们重启并会像什么事情都没发生一样正常工作。

Nimbus或者 Supervisor的死亡不影响Worker进程的工作。这与 Hadoop不同，在 Hadoop

中，如果 JobTracker进程死亡，所有正在运行的 Job都会丢失。

2.4.4 Nimbus是否是“单点故障”的

如果失去了 Nimbus 节点，Worker 也会继续执行。另外，如果 Worker 死亡，Supervisor

也会继续重启它们。但是，没有 Nimbus，Worker 不会在必要时（例如，失去一个 Worker 的

主机）被安排到其他主机。

所以 Nimbus“在某种程度上”是单点故障（Single Point Of Failure，SPOF）。在实践中，

这不是一个大问题，因为 Nimbus 守护进程死亡，不会发生灾难性的问题。Storm 官方计划让

Nimbus在未来实现高可用性。

40

从零开始学 Storm

2.5 可靠性机制——保证消息处理

Storm保证每个来自 Spout的消息将被完全地处理。

2.5.1 消息被“完全处理”的含义

如同蝴蝶效应一样，一个来自 Spout的元组可以引发基于它所创建的数以千计的元组。例

如，流的单词统计的拓扑定义如下：

TopologyBuilder builder = new TopologyBuilder();

builder.setSpout("sentences", new KestrelSpout("kestrel.backtype.com",

 22133, "sentence_queue",new StringScheme()));

builder.setBolt("split", new SplitSentence(), 10)

 .shuffleGrouping("sentences");

builder.setBolt("count", new WordCount(), 20)

 .fieldsGrouping("split", new Fields("word"));

此拓扑从一个 Kestrel队列读取句子，分割句子为单词，然后对每个单词在 emit之前进行计

数。来自 Spout 的一个元组会触发很多基于它创建的元组：一个是句子中每个单词的元组，一

个是为每个单词更新计数的元组。如图 2.3所示为句子 the cow jumped over the moon的元组树。

图 2.3 WordCount的某个句子的元组树

当树创建完毕，并且树中的每一个消息都已经被处理时，Storm认为来自 Spout的元组是

“完全处理”的。当一个元组的消息树在指定的超时范围内不能被完全处理，则元组被认为是

失败的。超时的默认值为 30 秒，对于一个特定的拓扑，可以使用 Config.TOPOLOGY_

MESSAGE_TIMEOUT_SECS来配置修改。

41

第 2章 Storm的基本知识

2.5.2 如果一个消息被完全处理或完全处理失败会发生什么

首先，让我们看看 Spout的元组的生命周期。ISpout接口的定义如下：

public interface ISpout extends Serializable {

 void open(Map conf, TopologyContext context, SpoutOutputCollector colle-

ctor);

 void close();

 void nextTuple();

 void ack(Object msgId);

 void fail(Object msgId);

}

首先，Storm通过调用 Spout的 nextTuple()方法从 Spout请求一个元组。Spout使用 open()

方法提供的 SpoutOutputCollector对象发射一个元组到它的输出流。当发射元组时，Spout会提

供一个“消息 id”，以便用来识别元组。例如，KestrelSpout从 Kestrel消息队列中读取一个消

息时，会发射 Kestrel提供的“消息 id”。下面发射一个消息到 SpoutOutputCollector对象：

_collector.emit(new Values("field1", "field2", 3) , msgId);

接下来，元组被发送到 Bolt，同时 Storm负责跟踪创建的消息树。如果 Storm检测到一个

元组是完全处理的，Storm将调用原 Spout任务的 ack()方法，把 Spout提供给 Storm的消息 id

作为输入参数。同样，如果元组超时，Storm将调用 Spout的 fail()方法。注意，一个元组将由

Spout 任务来确认成功或失败，这个 Spout 任务是创建此元组的完全相同的 Spout 任务。如果

一个 Spout跨集群执行很多任务，元组是不会被创建它的那个任务外的其他任务确认成功或失

败的。

当 KestrelSpout 从 Kestrel 队列取出一个消息时，它将“打开”消息。这意味着消息实际

上还没有从队列取出，而是放在“待定”状态等待确认消息已经完成。当在“待定”状态时，

一个消息将不会被发送到其他消费者队列。如果客户端断开连接，所有“待定”状态的消息会

放回到队列。当消息被打开时，Kestrel 向客户端提供信息的数据以及消息的惟一 id。当发射

元组到 SpoutOutputCollector时，KestrelSpout使用精确的 id作为元组的“消息 id”。之后，当

KestrelSpout的 ack()或者 fail()方法被调用时，KestrelSpout会把一个 ack或 fail消息以及此消

息的 id一起发送到 Kestrel，以便从队列取出或恢复。

2.5.3 Storm如何保证可靠性

作为受益于 Storm可靠性功能的用户，有两件事情必须完成：一是当在树的元组上创建一

个新链接时需要通知 Storm，二是处理完成一个单一元组时需要通知 Storm。通过这两件事情，

当树上的元组被完全处理时 Storm 可以检测到，并且可以相应地对 Spout 的元组进行确认。

Storm的 API提供了一个简洁的方法来完成这些任务。

42

从零开始学 Storm

在元组树中指定一个链接，此链接被称为锚定（Anchoring）。Anchoring 在发射一个新的

元组的同一时间完成。让我们使用以下 Bolt为例进行介绍，这个 Bolt将包含一个句子的元组

划分为一个包含每个单词的锚定：

public class SplitSentence extends BaseRichBolt {

 OutputCollector _collector;

 public void prepare(Map conf, TopologyContext context, OutputCollector

collector) {

 _collector = collector;

 }

 public void execute(Tuple tuple) {

 String sentence = tuple.getString(0);

 for(String word: sentence.split(" ")) {

 _collector.emit(tuple, new Values(word));

 }

 _collector.ack(tuple);

 }

 public void declareOutputFields(OutputFieldsDeclarer declarer) {

 declarer.declare(new Fields("word"));

 }

}

通过指定输入元组作为第一个参数来发射，每个单词元组被锚定（anchored）。因为这个

单词元组是被锚定的，如果单词元组未能被下游处理，树的根的 Spout元组将在稍后重发。相

反，如果单词元组的发射操作如下，让我们看看会发生什么：

_collector.emit(new Values(word));

这种方式发射的单词元组导致未被锚定（unanchored）。如果元组未被下游处理，根元组

将不会重发。这取决于你需要的 Topology 的容错保证，有时候需要相应地发射一个未被锚定

的元组。

一个输出元组可以被锚定到多个输入元组。在做流媒体连接或聚合时，这是有用的。一个

复合锚定（multi-anchore）元组未能被处理将导致来自 Spout的多个元组重发。复合锚定是通

过指定一个元组列表而不仅仅是一个元组来完成的。例如：

List<Tuple> anchors = new ArrayList<Tuple>();

anchors.add(tuple1);

anchors.add(tuple2);

43

第 2章 Storm的基本知识

_collector.emit(anchors, new Values(1, 2, 3));

复合锚定添加输出元组到多个元组树。请注意，对于复合锚定还可以打破树结构，创建元

组的有向无环图，如图 2.4所示。

图 2.4 创建元组的有向无环图

Storm的实现适用于有向无环图以及元组树。

锚定是你如何指定元组树。当完成处理元组树中的单个元组时，Storm的可靠 API将指定

下一个元组和最后一个元组。这是通过使用 OutputCollector类的 ack和 fail方法完成的。如果

回顾 SplitSentence示例，可以看到输入元组处于 acked状态，毕竟这个单词元组已经被发射。

可以使用 OutputCollector类的 fail()方法立即失败在元组树的根部的 Spout的元组。例如，

应用程序可以选择从数据库客户端捕获到一个异常，明确失败输入元组。由于没有明确的元组，

Spout元组回放的速度比等待 tuple超时的速度更快。

你处理的每一个元组必须 ack 或者 fail。Storm 使用内存来追踪每个元组，所以如果不

ack/fail每个元组，任务最终会耗尽内存。

很多 Bolt遵循一个读取一个输入元组，发射元组，在 execute方法确认元组的通用模式。

这些 Bolt 具有类别过滤器和简单的功能。Storm 有一个接口称为 BasicBolt，为你封装这个模

式。SplitSentence的例子可以使用 BasicBolt写成：

public class SplitSentence extends BaseBasicBolt {

 public void execute(Tuple tuple, BasicOutputCollector collector) {

 String sentence = tuple.getString(0);

 for(String word: sentence.split(" ")) {

 collector.emit(new Values(word));

 }

 }

 public void declareOutputFields(OutputFieldsDeclarer declarer) {

 declarer.declare(new Fields("word"));

 }

}

这个实现与之前的实现相比，语义上是相同的，但是更简单。元组发射到

44

从零开始学 Storm

BasicOutputCollectorare是自动 Anchoring到输入元组，当 execute方法完成时，输入元组自动

为你确认。

与此相反，做聚合或者连接操作的 Bolt 可能会延迟确认一个元组，直到它基于一群元组

计算完结果。聚合和连接一般也会 multi-anchore 它们输出元组。这些东西不属于简单的

IBasicBolt模式。

2.5.4 Storm如何实现可靠性

一个 Storm拓扑有一组特殊的 Acker任务，对于每一个 Spout元组，跟踪元组的有向无环

图。当一个 Acker看到有向无环图是完整的，它发送一个消息到 Spout任务，创造 Spout元组

来证实消息。可以在拓扑配置中使用 Config.TOPOLOGY_ACKERS 为一个拓扑设置 Acker 任

务的数量。Storm默认 TOPOLOGY_ACKERS是 1个，对于拓扑处理大量的信息，需要增加这

个数字。

理解 Storm可靠性实现的最好方式，是看元组的生命周期和元组的有向无环图。当元组在

拓扑中被创建，无论是在一个 Spout或 Bolt中，它是给定一个随机抽取的 64位 id。这些 id被

Acker用来对每一个 Spout元组跟踪元组的有向无环图。

每个元组知道所有 Spout 元组的 id（因为它在元组树中存在）。当你在一个 Bolt发射一

个新的元组时，来自元组的锚的 Spout 元组的 id 都复制到新的 tuple。当一个元组是 acked

时，它发射一个消息以及关于为什么元组树被改变的信息到相应的 Acker任务；特别是它告

诉 Acker“我现在在这个 Spout 元组的元组树里面完成了，而在树上的新的元组被锚定到我

这里。”

例如，如果基于元组 C 创建元组 D 和 E，当 C 是 acked 时，元组树就改变了，如图 2.5

所示。

图 2.5 元组树的例子

从树中移除 C的同时，D和 E被添加到其中，因此树永远不会过早地完成。

之前已经提到，在一个 Topology里可以拥有任意数量的 Acker任务。这导致了以下问题：

当一个元组在 Topology里面是 acked时，它如何知道是哪一个 Acker任务发送这些信息的呢？

Storm使用取模哈希映射一个 Spout元组 id到一个 Acker任务。由于知道每一个元组与其

存在于所有树的 Spout的元组的 id，它们知道该与哪些 Acker任务沟通。

Storm 的另一个细节是 Acker 任务如何追踪了解哪个 Spout 任务是负责它们跟踪的 Spout

元组：当一个 Spout任务发送一个新的元组时，它只是将消息发送给适当的 Acker，告知其任

45

第 2章 Storm的基本知识

务 id 负责 Spout 元组；然后当一个 Acker 看到一棵树已经完成，它知道发送完成消息到哪个

任务 id。

Acker 任务不显式跟踪元组树。对于大量的元组树与成千上万的节点（或更多），跟踪所

有的元组树可能会超过 Acker所使用的内存容量。相反，Acker采取不同的策略，只需要每个

Spou 元组一个固定的空间量（约 20 个字节）。这种跟踪算法是 Storm 如何工作的关键，这是

Storm的一个重大突破。

一个 Acker任务存储来自 Spout 元组 id的 map的一对值。第一个值是创建 Spout 元组的

任务 id，用于稍后发送完成消息。第二个值是一个 64位的值，称为 ack val。ack val是整个元

组树的表示状态，不管多大多小；它仅仅是所有元组 id的 XOR，已经在树上被创建和/或 acked。

当一个Acker任务看到 ack val已经成为 0，它就知道元组树已经完成了。因为元组 id是随机

的 64位数字，ack val意外地成为 0的可能性是非常小的。如果每秒 1万的 ack，直到一个错误发

生，它需要五百万年。另外，即使元组在这个 Topology发生失败，只会导致数据丢失。

既然了解了可靠性算法，让我们复习一下所有的失败案例，看看在每种情况下 Storm如何

避免数据丢失。

（1）任务挂了导致元组没有被 ack：

在这种情况下，在树根的失败元组的 Spout元组 id会超时并被重发。

（2）Acker任务挂了：

在这种情况下，所有的 Spout元组跟踪的 Acker会超时并被重发。

（3）Spout任务挂了：

在这种情况下，Spout任务通信的来源负责重放消息。例如，当客户端断开连接时，Kestrel

和 RabbitMQ等消息队列会将所有等待的消息放回队列中。

如你所见，Storm的可靠性机制是完全分布式、可伸缩的、容错的。

2.5.5 调节可靠性

Acker任务是轻量级的，所以不需要很多的拓扑。可以通过 Storm UI（组件 id为“__acker”）

跟踪它们的性能。如果吞吐量看起来不太对，需要添加更多的 Acker任务。

如果可靠性对你来说不是很重要——也就是说，你不在乎在失败的情况下失去元组，那么

可以不跟踪 Spout元组的元组树以提高 Storm性能。没有跟踪一个元组树部分转移的消息数量，

通常对于元组树的每一个元组存在一个 ack 消息。此外，它需要更少的 id 保存在每个下游的

消息，减少带宽使用情况。

有三种方法可以删除可靠性。

第一种是设置 Config.TOPOLOGY_ACKERS为 0。在这种情况下，Storm会在 Spout发射

一个元组后，立即调用 Spout的 ack方法。元组树不会被跟踪。

第二种方法是通过消息基础删除消息的可靠性。可以在 SpoutOutputCollector.emit 方法中

忽略消息 id，关掉对于个别的 Spout元组的追踪。

46

从零开始学 Storm

最后一种方法是，如果你不介意是否一个拓扑下游元组的特定子集无法被处理，可以作为

非固定元组发射它们。因为它们没有固定到任何 Spout 元组，所以，如果它们没有 acked，不

会造成任何 Spout元组失败。

2.6 消息传输机制

2.6.1 ZeroMQ

ØMQ 也称为 ZeroMQ、0MQ 或者 zmq，是一个简单好用的传输层，一个像框架一样的

Socket 库，一个消息处理队列库。它使得 Socket 编程更加简单，性能更高，可以跨进程内、

进程间、TCP、多播等进行传输，支持 C、C++、Java、NET、Python 等 40 多种语言，支持

Linux、Windows、OS X等大多数操作系统，以 LGPLv3协议进行开源。

ZeroMQ是 Storm一直都在使用的消息传输机制。但是，ZeroMQ有其局限性。主要体现

在如下几个方面。

� ZeroMQ是一个本地化的消息库，它过度依赖操作系统环境；

� ZeroMQ的安装比较麻烦；

� ZeroMQ的稳定性在不同版本之间差异巨大，并且目前只有 2.1.7版本的 ZeroMQ能与

Storm协调工作。

2.6.2 Netty

Netty是 Storm 0.9版本新引入的传输机制。Netty提供了一个纯 Java的消息通信解决方案，

消除了 Storm对本地库的依赖。Netty的传输性能是 ZeroMQ的两倍，并且它使得工作进程之

间的授权和认证成为可能。

Storm 默认使用 ZeroMQ 作为传输层，如果要在 Storm 中使用 Netty，只需要把下面的内

容加入到 storm.yaml文件中，并根据实际情况作适当调整即可。

storm.messaging.transport: "backtype.storm.messaging.netty.Context"

storm.messaging.netty.server_worker_threads: 1

storm.messaging.netty.client_worker_threads: 1

storm.messaging.netty.buffer_size: 5242880

storm.messaging.netty.max_retries: 100

storm.messaging.netty.max_wait_ms: 1000

storm.messaging.netty.min_wait_ms: 100

47

第 2章 Storm的基本知识

2.6.3 自定义消息通信机制

如果不喜欢 Netty或者 ZeroMQ，只要通过实现 backtype.storm.messaging.IContext接口，

就可以自定义消息通信机制。

2.7 Storm的开发环境与生产环境

Storm的环境一般分为生产环境与开发环境两种。

2.7.1 开发环境与本地模式

Storm的开发环境是指供 Storm 开发人员进行 Storm 程序开发与测试的环境。Storm 的硬

件环境只需要一台普通 PC主机，软件环境需要主机安装 Linux或者Windows操作系统，另外

需要安装与配置 JDK、Maven、Eclipse等软件。

在开发环境上面开发 Storm应用，称为本地模式。

本地模式在进程里面模拟了一个 Storm集群，用于开发和测试拓扑。在本地模式下运行拓

扑类似于在集群上运行拓扑。

2.7.2 生产环境与远程模式

Storm的生产环境，也就是 Storm集群环境，需要 3台或者更多的主机作为节点，安装 Linux

操作系统，同时需要安装与配置 JDK、ZooKeeper、Storm、ZeroMQ、JZMQ、Python和 unzip等。

在生产环境上运行 Storm应用，称为远程模式。

从集群的角度来看，Storm的生产环境主要包括 ZooKeeper集群和 Storm集群。Storm集

群的拓扑结构如图 2.6所示。

图 2.6 Storm集群的拓扑结构

48

从零开始学 Storm

Storm集群类似于 Hadoop集群，Hadoop上运行的是“MapReduce作业”，而在 Storm上

运行的是“拓扑”。“作业”和“拓扑”本身是非常不同的，一个关键的区别是，MapReduce

作业最后是完成的，而拓扑永不休止地处理消息（或直到你杀死它）。Hadoop与 Storm的对比

如表 2.1所示。

表 2.1 Hadoop与 Storm的对比

对比项 Hadoop Storm

JobTracker Nimbus

TaskTracker Supervisor 系统角色

Child Worker（工作进程）

应用名称 Job Topology（拓扑）

组件接口 Mapper/Reducer Spout/Bolt

在 Storm集群中有两种类型的节点，即主控节点（the master node）和工作节点（the worker

nodes）。其中，主控节点只有一个，而工作节点可以有多个。

主控节点运行一个守护进程，称为 Nimbus，类似于 Hadoop 的 JobTracker。Nimbus 负责

在集群中分发代码，对节点分配任务，并监视主机故障。

每个工作节点运行一个守护进程，称为 Supervisor。Supervisor 监听已经分配到它的节点

的作业，启动和停止 Nimbus已经分配给它的工作进程。每个工作进程执行 Topology的一个子

集；一个运行的 Topology包含扩散到许多主机的许多工作进程。Nimbus和 Supervisor之间的

所有的协调工作是由 ZooKeeper集群完成的。另外，Nimbus 守护进程与 Supervisor 守护进程

是快速失败和无状态的。所有状态都保存在 ZooKeeper中或者本地磁盘上。这意味着可以使用

“kill -9”强制杀死 Nimbus或者 Supervisor，之后他们会开始备份，像什么都没发生一样。这

种设计使 Storm集群变得非常稳定。

2.7.3 开发环境与生产环境的对比

表 2.2列出了搭建 Storm所需的硬件环境，表 2.3展示了搭建 Storm生产环境所需的主要

软件及下载方式。

表 2.2 搭建 Storm所需的硬件环境

比较项 开发环境 生产环境

操作系统 Linux/Windows Linux

主机数量 1台 3台或者更多

表 2.3 搭建 Storm生产环境所需的主要软件及下载方式

软件 环境 下载地址 推荐版本

JDK 开发/生产
http://www.oracle.com/technetwork/java/javase/downl

oads/index.html
1.6以上

ZooKeeper 生产 http://zookeeper.apache.org/releases.html 最新稳定版

49

第 2章 Storm的基本知识

（续表）

软件 环境 下载地址 推荐版本

Storm 生产 http://storm-project.net/downloads.html 最新稳定版

ZeroMQ 生产 http://www.zeromq.org/area:download 2.1.7

JZMQ 生产 https://github.com/nathanmarz/jzmq 最新稳定版

Python 生产 http://www.python.org/download/ 2.6.6以上

unzip 生产 http://www.info-zip.org/UnZip.html#Downloads 最新稳定版

Maven 开发 http://maven.apache.org/download.cgi 最新稳定版

Eclipse 开发 http://www.eclipse.org/downloads/
for Java EE Developers

版本

2.8 Storm拓扑的并行度（parallelism）

2.8.1 工作进程、执行器和任务

Storm区分以下 3个主要实体，用来在 Storm群集中运行拓扑。

� 工作进程（Worker Process）

� 执行器（Executor），即线程（Thread）

� 任务（Task）

工作进程、执行器、任务三者之间关系的一个简单例子如图 2.7所示。

图 2.7 工作进程、执行器、任务三者之间的关系

Storm集群的一个节点可能有一个或者多个工作进程运行在一个或者多个拓扑上，一个工

作进程执行拓扑的一个子集。工作进程属于一个特定的拓扑，并可能为这个拓扑的一个或多个

组件（Spout或 Bolt）运行一个或多个执行器。一个运行中的拓扑包括多个运行在 Storm集群

内多个节点的进程。

一个或者多个执行器可能运行在一个工作进程内，执行器是由工作进程产生的一个线程，

它可能为相同的组件（Spout或 Bolt）运行一个或多个任务。

任务执行真正的数据处理，代码中实现的每个 Spout或 Bolt，作为很多任务跨集群执行。

50

从零开始学 Storm

一个组件的任务数量始终贯穿拓扑的整个生命周期，但一个组件的执行器（线程）数量可以随

时间而改变。这意味着，下述条件成立：#threads ≤ #tasks。默认情况下，任务的数量被设定

为相同的执行器的数量，即 Storm会使用每个线程执行一个任务。

2.8.2 配置拓扑的并行度

请注意，Storm的术语“并行度（parallelism）”专门用于描述所谓的并行度暗示，表示一

个组件的执行器（线程）的初始数量。在这个文件中，虽然我们使用“并行度”在更一般的意

义上描述了如何配置执行器的数量、工作进程的数量和 Storm拓扑的任务数量；但我们将特别

指出，“并行度”是用在 Storm中正常的、狭窄的定义。

以下给出各种配置选项的概述以及如何在代码中进行设置。虽然设置这些选项的方法不止

一种，但是表格中只列出了其中的一些。Storm 目前有如下配置设置的优先级顺序：

defaults.yaml<storm.yaml<特定拓扑的配置<内部特定组件的配置<外部特定组件的配置。

1. 工作进程的数量

描述：集群中不同节点的拓扑可以创建多少个工作进程。

配置选项：TOPOLOGY_WORKERS

如何在代码中设置示例：

Config#setNumWorkers

2. 执行器/线程的数量

描述：每个组件产生多少个执行器。

配置选项：暂无

如何在代码中设置示例：

TopologyBuilder#setSpout()

TopologyBuilder#setBolt()

Storm 的 parallelism_hint 参数现在指定为 Bolt 的执行者初始数量，而不是任务的初始

数量。

3. 任务的数量（Number of tasks）

描述：每个组件创建多少个任务。

配置选项：TOPOLOGY_TASKS

（http://nathanmarz.github.io/storm/doc-0.8.1/backtype/storm/Config.html#TOPOLOGY_TASKS）

如何在代码中设置示例：

ComponentConfigurationDeclarer#setNumTasks()

T setNumTasks(java.lang.Number val)

51

第 2章 Storm的基本知识

下面是一个例子的代码片断，在实践中显示这些设置：

topologyBuilder.setBolt("green-bolt", new GreenBolt(), 2)

 .setNumTasks(4)

 .shuffleGrouping("blue-spout);

在上面的代码中，我们配置 Storm运行 GreenBolt，并初始化两个执行器及 4个相关任务。

Storm会为每个执行器/线程运行两个任务。如果不显式配置任务的数量，Storm默认每个执行

器运行一个任务。

2.8.3 拓扑示例

下面定义一个名为 mytopology 的拓扑，由一个 Spout 组件（BlueSpout）、两个 Bolt 组件

（GreenBolt和 YellowBolt）共 3个组件构成。

Config conf = new Config();

conf.setNumWorkers(2); // 使用两个工作进程

topologyBuilder.setSpout("blue-spout", new BlueSpout(), 2); // 设并行度为 2

topologyBuilder.setBolt("green-bolt", new GreenBolt(), 2)

 .setNumTasks(4) // 使用 4个任务

 .shuffleGrouping("blue-spout");

topologyBuilder.setBolt("yellow-bolt", new YellowBolt(), 6)

 .shuffleGrouping("green-bolt");

StormSubmitter.submitTopology(

 "mytopology",

 conf,

 topologyBuilder.createTopology()

);

mytopology拓扑的描述如下：

� 拓扑将使用两个工作进程（Worker）；

� Spout是 id为 blue-spout、并行度为 2的 BlueSpout实例（产生两个执行器和两个任

务）；

� 第一个 Bolt 是 id 为 green-bolt、并行度为 2、任务数为 4、使用随机分组方式接收

blue-spout所发射元组的 GreenBolt实例（产生两个执行器和 4个任务）；

� 第二个 Bolt是 id为 yellow-bolt、并行度为 6、使用随机分组方式接收 green-bolt所发

射元组的 YellowBolt实例（产生 6个执行器和 6个任务）。

所以，该拓扑一共有两个工作进程（Worker），2+2+6=10个执行器（Executor），2+4+6=12

个任务。因此，每个工作进程可以分配到 10/2=5个执行器，12/2=6个任务。默认情况下，一

52

从零开始学 Storm

个执行器执行一个任务，但是如果指定了任务的数目，则任务会平均分配到执行器中，因此，

GreenBolt的实例 green-bolt的一个执行器将会分配到 4/2=2个任务。mytopology的拓扑及其对

应的资源分配如图 2.8所示。

图 2.8 mytopology的拓扑及其对应的资源分配

Storm 提供了设置拓扑的并行度的其他方法，目前主要有 TOPOLOGY_MAX_TASK_

PARALLELISM，即设置单个组件产生的执行器的最大数量。通常在测试阶段使用，限制在

本地模式运行拓扑时产生的线程数量，可以通过 Config#setMaxTaskParallelism()方法来配置

该选项。

2.8.4 如何改变运行中拓扑的并行度

Storm一个很好的特性是，可以增加或减少工作进程（Worker）和/或执行器（Executor）

的数量而不需要重新启动群集或拓扑，这样的行为被称为再平衡（rebalancing）。

有两种方式可实现拓扑再平衡：

� 使用 Storm Web UI。

� 使用 CLI工具。

下面是使用 CLI工具实现拓扑再平衡的一个示例：

53

第 2章 Storm的基本知识

重新配置拓扑

"mytopology" 拓扑使用 5个 Worker进程

"blue-spout" Spout使用 3个 Executor

"yellow-bolt" Bolt使用 10个 Executor

$ storm rebalance mytopology -n 5 -e blue-spout=3 -e yellow-bolt=10

2.9 Storm命令行客户端

在 Linux终端直接输入 storm，不带任何参数信息，或者输入 storm help，可以查看 Storm

命令行客户端（Command line client）提供的帮助信息。

Storm 0.9.0.1版本在 Linux终端直接输入 storm后的输出内容如下：

Commands:

 activate

 classpath

 deactivate

 dev-zookeeper

 drpc

 help

 jar

 kill

 list

 localconfvalue

 logviewer

 nimbus

 rebalance

 remoteconfvalue

 repl

 shell

 supervisor

 ui

 version

Help:

 help

 help <command>

54

从零开始学 Storm

Documentation for the storm client can be found at https://github.com/nathan

marz/storm/wiki/Command-line-client

Configs can be overridden using one or more -c flags, e.g. "storm list -c nim

bus.host=nimbus.mycompany.com"

由此可知，新版 Storm的命令行客户端提供了 19个命令。

1. activate

激活指定的拓扑 Spout。语法如下：

storm activate topology-name

2. classpath

打印出 Storm客户端运行命令时使用的类路径（classpath）。语法如下：

storm classpath

3. deactivate

禁用指定的拓扑 Spout。语法如下：

storm deactivate topology-name

4. dev-zookeeper

以 dev.zookeeper.path配置的值作为本地目录，以 storm.zookeeper.port配置的值作为端口，

启动一个新的 ZooKeeper服务，仅用来开发/测试。语法如下：

storm dev-zookeeper

5. drpc

启动一个 DRPC守护进程。语法如下：

storm drpc

该命令应该使用 daemontools或者 monit工具监控运行。

6. help

打印一条帮助消息或者可用命令的列表。语法如下：

storm help

storm help <command>

直接输入不带参数的 storm，也可以启动 storm help命令。

55

第 2章 Storm的基本知识

7. jar

运行类的指定参数的 main方法。语法如下：

storm jar topology-jar-path class ...

把 Storm的 jar文件和“~/.storm”的配置放到类路径（classpath）中，以便当拓扑提交时，

StormSubmitter会上传 topology-jar-path的 jar文件。

8. kill

杀死名为 topology-name的拓扑。语法如下：

storm kill topology-name [-w wait-time-secs]

Storm 首先会在拓扑的消息超时时间期间禁用 Spout，以允许所有正在处理的消息完成处

理。然后，Storm将会关闭Worker并清理它们的状态。可以使用-w标记覆盖 Storm在禁用与

关闭期间等待的时间长度。

9. list

列出正在运行的拓扑及其状态。语法如下：

storm list

10. localconfvalue

打印出本地 Storm配置的 conf-name的值。语法如下：

storm localconfvalue conf-name

本地 Storm配置是~/.storm/storm.yaml与 defaults.yaml合并的结果。

11. logviewer

启动 Logviewer守护进程。语法如下：

storm logviewer

Logviewer 提供一个 Web 接口查看 Storm 日志文件。该命令应该使用 daemontools 或者

monit工具监控运行。

12. nimbus

启动 Nimbus守护进程。语法如下：

storm nimbus

该命令应该使用 daemontools或者 monit工具监控运行。

56

从零开始学 Storm

13. rebalance

语法如下：

storm rebalance topology-name [-w wait-time-secs]

有时你可能希望扩散一些正在运行的拓扑的Worker。例如，假设你有一个 10个节点的集

群，每个节点运行 4 个 Worker，然后假设需要添加另外 10 个节点到集群中。你可能希望有

Spout 扩散正在运行中的拓扑的 Worker，这样每个节点运行两个 Worker。解决的一种方法是

杀死拓扑并重新提交拓扑，但 Storm 提供了一个 rebalance 的命令，我们可以用一种更简单的

方法来做到这一点。

rebalance 首先会在消息超时时间内禁用拓扑，使用-w 可以覆盖超时时间，然后重新均衡

分配集群的 Worker，拓扑会返回到它原来的状态，即禁用的拓扑仍将禁用，激活的拓扑继续

激活。

14. remoteconfvalue

打印出远程集群 Storm配置的 conf-name的值。语法如下：

storm remoteconfvalue conf-name

集群 Storm配置是$STORM-PATH/conf/storm.yaml与 defaults.yaml合并的结果。该命令必

须在集群节点上运行。

15. repl

打开一个包含类路径（classpath）中的 jar文件和配置的 Clojure REPL，以便调试时使用。

语法如下：

storm repl

Clojure可以作为一种脚本语言内嵌到 Java中，但是 Clojure的首选编程方式是使用 REPL，

REPL是一个简单的命令行接口。使用 REPL，可以输入命令并执行，然后查看结果。

16. shell

执行 Shell脚本。语法如下：

storm shell resourcesdir command args

17. supervisor

启动 Supervisor守护进程。语法如下：

storm supervisor

该命令应该使用 daemontools或者 monit工具监控运行。

57

第 2章 Storm的基本知识

18. ui

启动 UI守护进程。语法如下：

storm ui

UI为 Storm集群提供了一个Web界面并显示运行拓扑的详细统计信息。该命令应该使用

daemontools或者 monit工具监控运行。

19. version

打印 Storm发布的版本号。语法如下：

storm version

2.10 Javadoc文档

对于最新的 Storm提供的在线 Javadoc文档信息，可以参考如下网址：

http://nathanmarz.github.io/storm/

目前，Storm提供的在线 Javadoc文档如表 2.4所示。

表 2.4 Storm提供的在线 Javadoc文档

Storm版本 Javadoc文档的链接地址

Storm 0.8.1 http://nathanmarz.github.io/storm/doc-0.8.1/index.html

Storm 0.8.0 http://nathanmarz.github.io/storm/doc-0.8.0/index.html

Storm 0.7.1 http://nathanmarz.github.io/storm/doc-0.7.1/index.html

Storm 0.7.0 http://nathanmarz.github.io/storm/doc-0.7.0/index.html

Storm 0.6.2 http://nathanmarz.github.io/storm/doc-0.6.2/index.html

2.11 本章小结

本章对 Storm 的基础知识作了一系列的描述。通过本章的学习，读者应该了解 Storm 的基

本概念，流由元组组成，Spout是流的来源，Bolt是流的处理单元，拓扑是 Spout和 Bolt的有向

图；了解 Storm 的配置、序列化、容错机制、可靠性机制、消息传输机制、开发环境与生产环

境；理解 Storm拓扑的并行度（parallelism）；熟悉 Storm命令行客户端、Javadoc文档等内容。

拓扑详解

在这一章，你将学会如何在 Storm拓扑的不同组件之间传输元组，以及如何部

署拓扑到一个运行中的 Storm集群。

59

第 3章 拓扑详解

3.1 什么是拓扑

要使用 Storm做实时计算，首先需要创建所谓的“拓扑（Topology）”。一个拓扑是一个有

向图的计算。在一个拓扑中的每个节点包含处理逻辑，节点之间的连接显示数据应该如何在节

点之间传递。

拓扑的运行是很简单的。首先，打包所有的代码和依赖到一个单独的大 jar包中。然后，

运行如下命令：

storm jar all-my-code.jar backtype.storm.MyTopology arg1 arg2

该命令使用参数 arg1和 arg2来运行 all-my-code.jar包里面的类 backtype.storm.MyTopology。

类的主要功能是定义了拓扑，并将它提交到Nimbus。storm jar命令部分负责连接Nimbus和上传

jar包。

因为拓扑的定义是 Thrift结构，而 Nimbus是一个 Thrift服务，所以可以使用任何编程语

言来创建并提交 Topology。上面的命令是基于 JVM语言实现的最简单方法。

3.2 TopologyBuilder

TopologyBuilder 是构建拓扑的类，用于指定执行的拓扑。拓扑底层是 Thrift 结构，由于

Thrift API非常冗长，使用 TopologyBuilder可以极大地简化建立拓扑的过程。

TopologyBuilder的公有方法如图 3.1所示。

图 3.1 TopologyBuilder的公有方法

创建和提交拓扑的过程如下：首先，使用 new关键字创建一个 TopologyBuilder对象，然

后调用 setSpout方法设置 Spout，接着调用 setBolt方法设置 Bolt，最后调用 createTopology方

法返回 StormTopology对象给 submitTopology方法作为输入参数。

创建并提交 Topology到 Storm集群的完整代码如下：

60

从零开始学 Storm

// 创建 TopologyBuilder对象

TopologyBuilder builder = new TopologyBuilder();

// 添加一个 id为“1”，并行度为 5的 TestWordSpout对象

builder.setSpout("1", new TestWordSpout(true), 5);

// 添加一个 id为“2”，并行度为 3的 TestWordSpout对象

builder.setSpout("2", new TestWordSpout(true), 3);

// 添加一个 id为“3”，并行度为 3的 TestWordCounter对象

// 对 id为“1”的组件按“word”字段进行分组

// 对 id为“2”的组件按“word”字段进行分组

builder.setBolt("3", new TestWordCounter(), 3)

 .fieldsGrouping("1", new Fields("word"))

 .fieldsGrouping("2", new Fields("word"));

// 添加一个 id为“4”，并行度为 1的 TestGlobalCount对象

// 对 id为“1”的组件按全局分组

builder.setBolt("4", new TestGlobalCount(),1)

 .globalGrouping("1");

Map conf = new HashMap(); // 创建 HashMap对象

conf.put(Config.TOPOLOGY_WORKERS, 4); // 设置 Worker的数量为 4

// 提交拓扑

StormSubmitter.submitTopology("mytopology", conf, builder.createTopology());

在本地模式（进程中）下运行完全相同的拓扑的代码如下：

TopologyBuilder builder = new TopologyBuilder(); // 创建 TopologyBuilder对象

// 添加一个 id为“1”，并行度为 5的 TestWordSpout对象

builder.setSpout("1", new TestWordSpout(true), 5);

// 添加一个 id为“2”，并行度为 3的 TestWordSpout对象

builder.setSpout("2", new TestWordSpout(true), 3);

// 添加一个 id为“3”，并行度为 3的 TestWordCounter对象

// 对 id为“1”的组件按“word”字段进行分组

// 对 id为“2”的组件按“word”字段进行分组

builder.setBolt("3", new TestWordCounter(), 3)

 .fieldsGrouping("1", new Fields("word"))

 .fieldsGrouping("2", new Fields("word"));

// 添加一个 id为“4”，并行度为 1的 TestGlobalCount对象

// 对 id为“1”的组件按全局分组

61

第 3章 拓扑详解

builder.setBolt("4", new TestGlobalCount(),1)

 .globalGrouping("1");

Map conf = new HashMap(); // 创建 HashMap对象

conf.put(Config.TOPOLOGY_WORKERS, 4); // 设置 Worker的数量为 4

conf.put(Config.TOPOLOGY_DEBUG, true); // 设置调试模式为 true

LocalCluster cluster = new LocalCluster(); // 创建 LocalCluster对象

// 提交拓扑

cluster.submitTopology("mytopology", conf, builder.createTopology());

Utils.sleep(10000); // 线程睡眠 10秒，即拓扑可以运行 10秒

cluster.shutdown(); // 关闭拓扑

3.3 流分组

3.3.1 什么是流分组

流分组是拓扑定义的一部分，为每个 Bolt 指定应该接收哪个流作为输入。流分组定义了

流/元组如何在 Bolt的任务之间进行分发。

在集群中，Spout和 Bolt并行执行许多任务。如果你在任务层看拓扑是怎样执行的，则会

看到流分组的示意图，如图 3.2所示。

图 3.2 流分组的示例图

当 Bolt A的任务发送元组到 Bolt B时，它应该发送给 Bolt B的哪一个任务呢？“流分组”

回答了这个问题，告诉 Storm如何在任务集之间发送元组。

在设计拓扑的时候，需要做的一件最重要的事情，就是定义数据如何在组件之间进行交换

62

从零开始学 Storm

（流如何被 Bolt消耗）。一个流分组指定每个 Bolt消耗哪个流，流将如何被消耗。

一个节点可以发出多个数据流，流分组允许我们有选择地接收流。

在深入研究不同类型的流分组之前，让我们先来看看 storm-starter 项目的

WordCountTopology拓扑。WordCountTopology从一个 Spout中读取句子，WordCountBolt统计

单词的总次数。WordCountTopology的定义代码如下：

TopologyBuilder builder = new TopologyBuilder();

builder.setSpout("sentences", new RandomSentenceSpout(), 5);

builder.setBolt("split", new SplitSentence(), 8)

 .shuffleGrouping("sentences");

builder.setBolt("count", new WordCount(), 12)

 .fieldsGrouping("split", new Fields("word"));

SplitSentence为它接收的每个句子的每个单词发送一个元组，WordCount就在内存中保持

一个单词到计数的映射。WordCount每次收到一个词，就会更新其状态并发送新单词的计数。

Storm内置了 7种流分组方式，通过实现 CustomStreamGrouping接口可以实现自定义的流

分组。

3.3.2 不同的流分组方式

InputDeclarer接口定义了不同的流分组方式。每当 TopologyBuilder的 setBolt方法被调用

就返回该对象，用于声明一个 Bolt 的输入流，以及这些流应该如何分组。InputDeclarer 接口

的完整定义代码如下：

public interface InputDeclarer<T extends InputDeclarer> {

 // 字段分组

 public T fieldsGrouping(String componentId, Fields fields);

 public T fieldsGrouping(String componentId, String streamId, Fields fields);

 // 全局分组

 public T globalGrouping(String componentId);

 public T globalGrouping(String componentId, String streamId);

 // 随机分组

 public T shuffleGrouping(String componentId);

 public T shuffleGrouping(String componentId, String streamId);

 // 本地或者随机分组

 public T localOrShuffleGrouping(String componentId);

63

第 3章 拓扑详解

 public T localOrShuffleGrouping(String componentId, String streamId);

 // 无分组

 public T noneGrouping(String componentId);

 public T noneGrouping(String componentId, String streamId);

 // 广播分组

 public T allGrouping(String componentId);

 public T allGrouping(String componentId, String streamId);

 // 直接分组

 public T directGrouping(String componentId);

 public T directGrouping(String componentId, String streamId);

 // 自定义分组

 public T customGrouping(String componentId, CustomStreamGrouping grouping);

 public T customGrouping(String componentId, String streamId, CustomStre

amGrouping grouping);

 public T grouping(GlobalStreamId id, Grouping grouping);

}

从 InputDeclarer 接口中可以看出，流分组的方式主要有 fieldsGrouping（字段分组）、

globalGrouping（全局分组）、shuffleGrouping（随机分组）、localOrShuffleGrouping（本地或者

随机分组）和 noneGrouping（无分组）、allGrouping（广播分组）、directGrouping（直接分组）、

customGrouping（自定义分组）这 8种不同的流分组方式。每个 InputDeclarer实例可以有不止

一个源，每个源可以用不同的流分组方式来分组。

1. 随机分组

随机分组（Shuffle Grouping）是最常用的流分组方式，它随机地分发元组到 Bolt上的任

务，这样能保证每个任务得到相同数量的元组。

随机分组执行原子操作，这是非常有用的，例如数学运算。但是，如果操作不能被随机分

发的话，应该考虑使用其他的分组方式，例如，在单词统计（WordCount）例子中，需要计算

单词，就不适合使用随机分组。

2. 字段分组

字段分组（Fields Grouping）根据指定字段对流进行分组。例如，如果流是按 user-id字段

进行分组，具有相同 user-id的元组总是被分发到相同的任务，具有不同 user-id的元组可能被

分发到不同的任务。

64

从零开始学 Storm

字段分组是实现流连接和关联，以及大量其他的用例的基础。在实现上，字段分组使用取

模散列来实现。

3. 广播分组

广播分组（All Grouping）是指流被发送到所有 Bolt的任务中。使用这个分组方式时要

小心。

4. 全局分组

全局分组（Global Grouping）是指全部流都发送到 Bolt 的同一个任务中，再具体一点，

是发送给 ID最小的任务。

5. 无分组

假定你不关心流是如何分组的，则可以使用这种分组方式。目前这种分组和随机分组是一

样的效果，有一点不同的是 Storm会把这个 Bolt放到 Bolt的订阅者的同一个线程中执行。

6. 直接分组

直接分组（Direct Grouping）是一种特殊的分组。这种方式的流分组意味着由元组的生产

者决定元组的消费者的接收元组的任务。直接分组只能在已经声明为直接流（Direct Stream）

的流中使用，并且元组必须使用 emitDirect 方法来发射。Bolt 通过 TopologyContext 对象或者

OutputCollector类的 emit方法的返回值，可以得到其消费者的任务 id列表（List<Integer>）。

7. 本地或者随机分组

如果目标 Bolt在同一工作进程存在一个或多个任务，元组会随机分配给这些任务。否则，

该分组方式与随机分组方式是一样的。

8. 自定义分组

可以自定义流分组的方式，通过实现 CustomStreamGrouping接口来创建自定义的流分组。

CustomStreamGrouping接口的定义如下：

public interface CustomStreamGrouping extends Serializable {

 void prepare(WorkerTopologyContext context, GlobalStreamId stream, List

<Integer> targetTasks);

 List<Integer> chooseTasks(int taskId, List<Object> values);

}

CustomStreamGrouping接口主要有两个方法：prepare和 chooseTasks。CustomStreamGrouping

接口的具体实现，可以参考如下的代码类：

65

第 3章 拓扑详解

� storm.trident.partition.GlobalGrouping

� storm.trident.partition.IdentityGrouping

� storm.trident.partition.IndexHashGrouping

� backtype.storm.testing.NGrouping

让我们来看一个简单的自定义流分组的实现，它来自 storm.trident.partition.

GlobalGrouping。GlobalGrouping 是 Trident 中实现全局分组功能的自定义流分组类。

GlobalGrouping的类定义代码如下：

public class GlobalGrouping implements CustomStreamGrouping {

 List<Integer> target;

 @Override

 public void prepare(WorkerTopologyContext context, GlobalStreamId stream,

 List<Integer> targets) {

 List<Integer> sorted = new ArrayList<Integer>(targets);

 Collections.sort(sorted);

 target = Arrays.asList(sorted.get(0));

 }

 @Override

 public List<Integer> chooseTasks(int i, List<Object> list) {

 return target;

 }

}

自定义流分组的使用是很简单的。假设对 ExclamationTopology 使用自定义流分组。

ExclamationTopology的“exclaim2”Bolt原来是对“exclaim1”Bolt使用随机分组，代码如下：

builder.setBolt("exclaim2", new ExclamationBolt(), 2)

 .shuffleGrouping("exclaim1");

现在，修改为“exclaim2”Bolt 对“exclaim1”Bolt 使用自定义流分组 GlobalGrouping，

代码如下：

builder.setBolt("exclaim2", new ExclamationBolt(), 2)

 .customGrouping("exclaim1", new GlobalGrouping());

66

从零开始学 Storm

3.4 一个简单的拓扑

下面来看一个简单的拓扑，这是来自 storm-starter 项目的 ExclamationTopology 类。

ExclamationTopology的定义如下：

TopologyBuilder builder = new TopologyBuilder();

builder.setSpout("words", new TestWordSpout(), 10);

builder.setBolt("exclaim1", new ExclamationBolt(), 3)

 .shuffleGrouping("words");

builder.setBolt("exclaim2", new ExclamationBolt(), 2)

 .shuffleGrouping("exclaim1");

ExclamationTopology包含一个 Spout和两个 Bolt。Spout发射单词，每个 Bolt在输入处追

加字符串 “!!!”。节点排列在一条线上：Spout发送给第一个 Bolt，第一个 Bolt发送给第二个

Bolt。如果 Spout 发送 Tuple["bob"]和["john"]，那么第二个 Bolt 将发送单词["bob!!!!!!"]和

["john!!!!!!"]。

这段代码使用 setSpout和 setBolt方法定义节点。这些方法将一个用户指定的 id、一个包

含了处理逻辑的对象、大量的并行度需要节点作为输入。在这个例子中，Spout给定 id“words”

和 Bolt给定 id“exclaim1”和“exclaim2”。

对象包含了处理逻辑，实现了 Spout的 IRichSpout接口，Bolt的 IRichBolt接口。

最后一个参数确定想要多少个节点并行，是可选的。它表明有多少线程应该执行跨集群的

组件。如果忽略它，Storm只会对该节点分配一个线程。

setBolt 返回一个 InputDeclarer 对象，用于定义 Bolt 的输入。在这里，组件“exclaim1”

声明，它想读取“words”组件随机分组发送的所有 Tuple，“exclaim2”组件声明，它想要读

取“exclaim1”组件随机分组发送的所有 Tuple。“随机分组”意味着 Tuple应该从输入任务到

Bolt的任务进行随机分配。有很多方法可对组件之间的数据进行分组。

如果希望组件“exclaim2”读取“words”和“exclaim1”两个组件发送的所有的 Tuple，

可以编写组件“exclaim2”的定义如下：

builder.setBolt("exclaim2", new ExclamationBolt(), 5)

 .shuffleGrouping("words")

 .shuffleGrouping("exclaim1");

正如你可以看到的，输入声明可以被链接到指定 Bolt的多个来源。

让我们研究一下这个拓扑的 Spout和 Bolt的实现。Spout负责发送新消息到 Topology。在

此 Topology 的 TestWordSpout 每 100 毫秒从列表["nathan"， "mike"， "jackson"， "golda"，

"bertels"]中随机发送一个的单词作为一个元组。在 TestWordSpout中的 nextTuple()的实现类似

这样：

67

第 3章 拓扑详解

public void nextTuple() {

 Utils.sleep(100);

 final String[] words = new String[] {"nathan", "mike", "jackson", "golda",

 "bertels"};

 final Random rand = new Random();

 final String word = words[rand.nextInt(words.length)];

 _collector.emit(new Values(word));

}

正如可以看到的，实现非常简单。

ExclamationBolt 追加字符串“!!!”作为它的输入。让我们看看 ExclamationBolt 类的完整

实现：

public static class ExclamationBolt implements IRichBolt {

 OutputCollector _collector;

 public void prepare(Map conf, TopologyContext context, OutputCollector

collector) {

 _collector = collector;

 }

 public void execute(Tuple tuple) {

 _collector.emit(tuple, new Values(tuple.getString(0) + "!!!"));

 _collector.ack(tuple);

 }

 public void cleanup() {

 }

 public void declareOutputFields(OutputFieldsDeclarer declarer) {

 declarer.declare(new Fields("word"));

 }

 public Map getComponentConfiguration() {

 return null;

 }

}

prepare方法为 Bolt提供一个 OutputCollector对象，用于从这个 Bolt发射 Tuple。Tuple可

以随时从 Bolt发射，从 Bolt的 prepare、execute或者 cleanup方法，甚至是在另一个线程的异

68

从零开始学 Storm

步方法发射。这个 prepare方法实现简单地把 OutputCollector对象作为一个实例变量保存，使

得稍后可以在 execute方法中使用。

execute方法从一个 Bolt的输入接收一个 Tuple。这个 ExclamationBolt从元组中取出第一

个字段，把字符串“!!!”追加到它后面，然后发射出一个新的元组。如果要实现一个订阅多个

输入来源的 Bolt，通过使用 Tuple.getSourceComponent方法，可以找出 Tuple来自哪个组件。

在 execute方法中有一些其他的东西，即输入元组作为第一个传递参数来发射，输入元组

在最后一行确认。这些是 Storm的可靠 API的一部分，保证没有数据丢失。

当 Bolt被关闭时，cleanup方法被调用来清理任何已经打开的资源。但不能保证这个方法

会被集群调用，例如，如果节点上运行的任务被取消了，就没有办法调用该方法。cleanup 方

法适用于当在本地模式（一个 Storm集群是在进程中模拟）下运行拓扑，希望能够在没有遭受

资源泄漏的情况下，运行和杀死一些拓扑。

declareOutputFields方法声明 ExclamationBolt类发射一个字段名为“word”的一元组。

getComponentConfiguration方法允许你配置关于这个组件如何运行的很多参数。

cleanup和 getComponentConfiguration方法往往不需要在一个 Bolt中实现。可以通过使用

一个基类 BaseRichBolt 更简洁地定义 Bolt，这个基类在适当的地方提供了默认的实现。

ExclamationBolt可以通过继承 BaseRichBolt类，写得更简洁一些：

public static class ExclamationBolt extends BaseRichBolt {

 OutputCollector _collector;

 public void prepare(Map conf, TopologyContext context, OutputCollector

collector) {

 _collector = collector;

 }

 public void execute(Tuple tuple) {

 _collector.emit(tuple, new Values(tuple.getString(0) + "!!!"));

 _collector.ack(tuple);

 }

 public void declareOutputFields(OutputFieldsDeclarer declarer) {

 declarer.declare(new Fields("word"));

 }

}

69

第 3章 拓扑详解

3.5 在本地模式下运行拓扑

下面，我们看看如何在本地模式下运行 ExclamationTopology，以及它的工作原理。

Storm 有两种操作模式，即本地模式和分布式模式。在本地模式下，Storm 通过模拟工作

节点的线程在进程中执行完成。本地模式对于测试和开发拓扑是有用的。当你在 storm-starter

中运行拓扑，它们将在本地模式下运行，可以看到每个组件发射的消息。

在分布式模式下，Storm如同一个集群一样运转。当你提交一个拓扑到主控节点时，也提

交了运行拓扑所需的所有代码。主控节点会好好分发你的代码，分配Worker去运行你的拓扑。

如果Worker们瘫痪了，主控节点会在别的地方重新分配它们。

在本地模式下运行 ExclamationTopology的代码如下：

Config conf = new Config();

conf.setDebug(true);

conf.setNumWorkers(2);

LocalCluster cluster = new LocalCluster();

cluster.submitTopology("test", conf, builder.createTopology());

Utils.sleep(10000);

cluster.killTopology("test");

cluster.shutdown();

首先，创建了一个 LocalCluster对象，定义了一个进程内的集群。然后提交拓扑到这个虚

拟集群，这等同于提交拓扑到分布的集群。它通过调用 submitTopology 方法提交一个拓扑到

LocalCluster，并把运行中的拓扑的名称、配置和拓扑本身作为输入参数。

名称用来识别拓扑，以便你可以在以后杀死它。一个拓扑将不停地运行下去，直到你杀

死它。

配置用于优化运行的拓扑的各个方面。下面指定的两个配置是很常见的。

（1）TOPOLOGY_WORKERS（参考 setNumWorkers方法）

该配置指定想要分配多少进程到集群去执行拓扑。拓扑中的每个组件将执行尽可能多的线

程。分配到一个特定组件的线程的数量是通过 setBolt 和 setSpout 方法配置的。这些线程存在

于工作进程中。每个工作流程包含它自身在内的某些组件的某些线程。例如，可能在所有组件

指定有 300个线程，在配置里面指定了 50个工作进程。每个工作进程将执行 6个线程，每个

线程都可能属于一个不同的组件。你可以调优 Storm 拓扑的性能，通过调整每个组件的并行

度，以及线程应该在其里面运行的工作进程的数量。

（2）TOPOLOGY_DEBUG（参考 setDebug方法）

当该值设置成真时，每一个组件发射的每一个消息都让 Storm记录到日志中。这在本地模

70

从零开始学 Storm

式下测试拓扑是非常有用的，但当在集群上运行拓扑时，你可能想保持这个选项关闭。

还可以为拓扑设置许多其他的配置。可以在 Config的 Java文档中找到各种配置的详细信息。

3.6 在生产集群上运行拓扑

在生产集群上运行拓扑，与在本地模式下运行拓扑不同，其步骤如下。

 定义拓扑。如果使用的是 Java语言，可以使用 TopologyBuilder类来定义。

 使用 StormSubmitter 提交拓扑到集群。StormSubmitter 需要拓扑的名称、拓扑配置

Config对象、TopologyBuilder对象作为输入参数。示例代码如下：

Config conf = new Config();

conf.setNumWorkers(20);

conf.setMaxSpoutPending(5000);

StormSubmitter.submitTopology("mytopology", conf, topology);

 创建一个包含代码和所有依赖包（除 Storm之外，因为 Storm的 jar包会添加到Worker

节点的类路径上）的 jar包。

如果使用 Maven，则只需要在 pom.xml 文件中添加如下几行代码，就可以使用

maven-assembly-plugin打包插件的功能，把所有依赖的 jar都一起打包。

<plugin>

 <artifactId>maven-assembly-plugin</artifactId>

 <configuration>

 <descriptorRefs>

 <descriptorRef>jar-with-dependencies</descriptorRef>

 </descriptorRefs>

 <archive>

 <manifest>

 <mainClass>com.path.to.main.Class</mainClass>

 </manifest>

 </archive>

 </configuration>

</plugin>

然后运行 mvn assembly:assembly命令进行打包，并得到打包好的 jar文件。

注意，请确认已经排除了 Storm的 jar包，因为集群的类路径上已经存在 Storm的 jar包了。

 使用 Storm客户端提交拓扑到集群。

71

第 3章 拓扑详解

一般，使用 Storm客户端的 storm jar命令提交 jar包到集群。

storm jar命令需要指定 jar包的路径、执行拓扑类的名称与输入参数，命令用法如下：

storm jar path/to/allmycode.jar org.me.MyTopology arg1 arg2 arg3

其中，path/to/allmycode.jar是 jar包的路径，org.me.MyTopology是拓扑类的完整类名，arg1、

arg2、arg3是拓扑类的输入参数。

为了使得 Storm 客户端能够与 Storm 集群进行通信，需要在~/.storm/storm.yaml 文件中配

置 Nimbus 节点的主机名或者 IP 地址。假如 Nimbus 节点的主机名为 node200，则

~/.storm/storm.yaml里面的内容如下：

nimbus.host: "node200"

3.6.1 常见的配置

可以为每个拓扑设置大量的配置。一个可以设置的所有配置的列表可以在这个类

（backtype.storm.Config）找到。那些前缀为 TOPOLOGY 的属性可以被特定拓扑所覆盖，其

他的是集群配置，不能被覆盖。下面是一些常见的拓扑设置。

（1）Config.TOPOLOGY_WORKERS

这个设置执行 topology 的工作进程的数量。例如，如果你将这个参数设置为 25，则将会

有 25个 Java进程跨集群执行所有的任务。如果你有一个跨拓扑中的所有组件的组合 150并行

度，每个工作进程将有 6个任务作为线程运行。

（2）Config.TOPOLOGY_ACKERS

这是设置任务的数量，该任务将跟踪元组树，当 Spout 元组已经完全处理时进行检测。

Acker是 Storm的可靠性模型不可或缺的一部分，你可以在 2.5小节“可靠性机制——保证消

息处理”阅读到关于它们的更多信息。

（3）Config.TOPOLOGY_MAX_SPOUT_PENDING

这是设置一次可以在 Spout任务等待 Spout元组的最大数量。等待意味着元组还尚未确认

（acked）或失败（failed）。强烈推荐设置这个配置项防止队列溢出。

（4）Config.TOPOLOGY_MESSAGE_TIMEOUT_SECS

这是一个 Spout 元组在它被认为是失败前必须完全完成的最大超时时间。这个值默认为

30 秒，这对于大多数拓扑来说是足够的。关于 Storm 的可靠性模型如何工作可查阅“可靠性

机制——保证消息处理”小节以获得更多信息。

（5）Config.TOPOLOGY_SERIALIZATIONS

可以使用这个配置注册更多的序列化器，这样就可以在元组里面使用自定义类型。

72

从零开始学 Storm

3.6.2 杀死拓扑

希望杀死一个拓扑，只需要运行如下的命令：

storm kill {stormname}

stormname参数是提交拓扑时使用的名称，使用 storm kill命令，就可以杀死拓扑。

Storm不会立即杀死拓扑。反而，它使所有的 Spout无效，这样它们不会发送新的 Tuple。

Storm等待若干秒后，该时间由 Config.TOPOLOGY_MESSAGE_TIMEOUT_SECS配置项的值

决定，摧毁所有的Worker。这就给拓扑足够的时间来完成已存在的 Tuple的处理工作。

3.6.3 更新运行中的拓扑

更新运行中的拓扑，目前唯一的方法是先杀死当前拓扑，然后启动一个新的拓扑。一个计

划中的特性是实现一个 storm swap 命令，用一个新的拓扑交换一个运行中的拓扑，保证最小

的停机时间，但是两个拓扑不可能在同一时间处理元组。

3.6.4 监控拓扑

监视拓扑的最好方法是使用 Storm UI。Storm UI提供了有错误发生的任务和吞吐量的细粒

度统计、每个运行中拓扑的每个组件的延迟性能等信息。

也可以查阅集群节点上面的工作日志。

3.7 拓扑的常见模式

Storm拓扑中的一些常见模式主要有：

� 流连接

� 批处理

� BasicBolt

� 内存中缓存与字段的组合

� 计算 top N

� 高效保存最近更新对象缓存的 TimeCacheMap

� 分布式 RPC的 CoordinatedBolt与 KeyedFairBolt

3.7.1 流连接（Stream Join）

流连接基于一些常用字段，把两个或者更多的数据流结合到一起，形成一个新的数据流。

73

第 3章 拓扑详解

拿数据库的表连接与流连接进行对比，一个普通数据库连接有有限的输入和清晰的语义，而一

个流连接可以有无限的输入，并且对于应该连接什么在语义上是不明确的。

每个应用的连接类型是不同的，一些应用使用两个流来连接所有元组——不管经过多长

时间，另一些应用希望对于每个连接字段每次连接恰好一个元组。在所有这些连接类型中，

常见的模式是以相同的方式划分多个输入流。在 Storm里对输入流在相同的字段使用字段分

组，例如：

builder.setBolt("join", new MyJoiner(), parallelism)

 .fieldsGrouping("1", new Fields("joinfield1", "joinfield2"))

 .fieldsGrouping("2", new Fields("joinfield1", "joinfield2"))

 .fieldsGrouping("3", new Fields("joinfield1", "joinfield2"));

当然，不同的流不需要有相同的字段名字。

3.7.2 批处理（Batching）

通常因为效率或者其他原因，希望对一组元组进行批处理而不是单独地处理。例如，可能

想要批量更新到数据库或者做一些排序的流连接。

如果想要在数据处理时具有可靠性，正确的方法是当 Bolt 等待做批处理时，在一个实例

变量中保存元组的引用。一旦你做批处理操作，可以 ack到你已经保存引用的所有元组。

如果 Bolt发射元组，那么你可能想要使用多锚来保证可靠性。这一切都取决于具体的应用。

3.7.3 BasicBolt

许多 Bolt 遵循读取一个输入元组类似的模式，根据输入元组发射零个或多个元组，然后

在 execute方法的最后立即 ack输入元组。此模式相匹配的 Bolt是一些函数和过滤器之类的东

西。这是一个常见的模式，Storm提供了接口，名称为 IBasicBolt，自动为你实现这种模式。

3.7.4 内存中缓存与字段的组合

在 Storm 的 Bolt 内存中保留缓存，是很常见的做法。当你把缓存和一个字段分组进行合

并时，缓存就会变得特别大。例如，假如有一个 Bolt，扩展短 URL到长 URL，如 bit.ly、t.co

等。你可以保留一个短 URL到长 URL的扩展的 LRU缓存，避免反复做相同的 HTTP请求，

从而提高性能。假设组件 urls发射短 URL，组件 expand扩展短 URL到长 URL并保留一个内

部缓存。在以下代码片段中，可以思考一下两者的区别：

builder.setBolt("expand", new ExpandUrl(), parallelism)

 .shuffleGrouping(1);

builder.setBolt("expand", new ExpandUrl(), parallelism)

 .fieldsGrouping("urls", new Fields("url"));

74

从零开始学 Storm

第二种方法比第一种方法更有效，因为相同的 URL总是到相同的任务。这样可以避免重

复跨任务中的缓存，使短 URL更有可能命中缓存。

3.7.5 流的 top N

在 Storm里，一个常见的持续计算是一些排序的“流的 top N”。假设有一个 Bolt发出元

组["value", "count"]，希望另一个 Bolt发射出基于统计的 top N元组。最简单的方法是有一个

Bolt在流中做全局分组，并且在内存中维护 top N的列表。

这种方法显然不能扩展到很大的流，因为整个流都要通过一个任务，单任务的计算能力是

有限的。一个更好的方法是跨流的分区并行做很多 top N的计算，然后合并那些 top N到一起，

得到全局的 top N。其模式看起来就像这样：

builder.setBolt("rank", new RankObjects(), parallellism)

 .fieldsGrouping("objects", new Fields("value"));

builder.setBolt("merge", new MergeObjects())

 .globalGrouping("rank");

这种模式行得通，因为第一个 Bolt 进行字段分组，给出需要的分区，这在语义上是正确

的。这种模式在 storm-starter中的一个例子如下：

package storm.starter;

import backtype.storm.Config;

import backtype.storm.testing.TestWordSpout;

import backtype.storm.topology.TopologyBuilder;

import backtype.storm.tuple.Fields;

import storm.starter.bolt.IntermediateRankingsBolt;

import storm.starter.bolt.RollingCountBolt;

import storm.starter.bolt.TotalRankingsBolt;

import storm.starter.util.StormRunner;

public class RollingTopWords {

 private static final int DEFAULT_RUNTIME_IN_SECONDS = 60;

 private static final int TOP_N = 5;

 private final TopologyBuilder builder;

 private final String topologyName;

 private final Config topologyConfig;

 private final int runtimeInSeconds;

75

第 3章 拓扑详解

 public RollingTopWords() throws InterruptedException {

 builder = new TopologyBuilder();

 topologyName = "slidingWindowCounts";

 topologyConfig = createTopologyConfiguration();

 runtimeInSeconds = DEFAULT_RUNTIME_IN_SECONDS;

 wireTopology();

 }

 private static Config createTopologyConfiguration() {

 Config conf = new Config();

 conf.setDebug(true);

 return conf;

 }

 private void wireTopology() throws InterruptedException {

 String spoutId = "wordGenerator";

 String counterId = "counter";

 String intermediateRankerId = "intermediateRanker";

 String totalRankerId = "finalRanker";

 builder.setSpout(spoutId, new TestWordSpout(), 5);

 builder.setBolt(counterId, new RollingCountBolt(9, 3), 4).fieldsGrouping

(spoutId, new Fields("word"));

 builder.setBolt(intermediateRankerId, new IntermediateRankingsBolt(TOP_

N), 4).fieldsGrouping(counterId, new Fields("obj"));

 builder.setBolt(totalRankerId, new TotalRankingsBolt(TOP_N)).globalGrou

ping(intermediateRankerId);

 }

 public void run() throws InterruptedException {

 StormRunner.runTopologyLocally(builder.createTopology(), topologyName,

topologyConfig, runtimeInSeconds);

 }

 public static void main(String[] args) throws Exception {

 new RollingTopWords().run();

 }

}

76

从零开始学 Storm

3.7.6 高效保存最近更新缓存对象的 TimeCacheMap（已弃用）

有时程序员会希望在内存中保持最近“活跃”的缓存对象，而已经不活动的对象在一段时

间后会自动到期。TimeCacheMap是实现这种功能的一种高效数据结构，它提供了钩子，这样

当一个对象过期失效，可以插入回调函数。

TimeCacheMap 用于清除在配置的秒数内没有更新的到期主键。使用该算法将花费

expirationSecs到 expirationSecs×(1 + 1 / (numBuckets-1))之间的时间来实际清除到期的消息。

运行 get、put、remove、containsKey、size 操作只花费 O(numBuckets)的时间。这种设计的优

点是，过期线程只锁定对象 O(1)时间，意味着对象本质上总可以进行 get/put操作。

目前，该类 backtype.storm.utils.TimeCacheMap<K,V>已经弃用。

3.7.7 分布式 RPC的 CoordinatedBolt与 KeyedFairBolt

在 Storm 上构建分布式 RPC 应用有两种常见的模式，它们封装在 CoordinatedBolt 和

KeyedFairBolt中，属于 Storm代码库附带的“标准库”的一部分。

CoordinatedBolt 封装了包含你的逻辑的 Bolt，当你的 Bolt 已收到所有元组，就会为任何

给定的请求计算出结果。它大量使用直接流（Direct Stream）来做到这一点。

KeyedFairBolt也封装了包含你的逻辑的 Bolt，并且保证你的拓扑可以同时处理多个 DRPC

调用，而不是串行地一次处理一个。

3.8 本地模式与 StormSubmitter的对比

现在，已经使用一个名为 LocalCluster的工具在本地计算机上运行 Topology。在计算机上

运行 Storm 基础设施，可以很容易地运行与调试不同的 Topology。但如果你想要提交你的

Topology 到运行中的 Storm 集群呢？Storm 的一个有趣特性是，它很容易发送你的 Topology

去运行在一个真正的集群中。你需要做的是将 LocalCluster 改为 StormSubmitter，实现

submitTopology方法，submitTopology方法负责发送 Topology到集群。

可以在下面的代码中看到变化：

// LocalCluster cluster = new LocalCluster();

// cluster.submitTopology("Count-Word-Topology-With-Refresh-Cache", conf,

 builder.createTopology());

StormSubmitter.submitTopology("Count-Word-Topology-With-Refresh-Cache", conf,

 builder.createTopology());

// Thread.sleep(1000);

// cluster.shutdown();

77

第 3章 拓扑详解

当使用 StormSubmitter时，不能在代码中控制集群，这和 LocalCluster是不一样的。

接下来，需要打包源代码到一个 jar文件中。当运行 Storm客户端命令提交 Topology时，

会发送该 jar文件。如果你使用Maven，唯一需要做的就是到源代码文件夹下运行以下命令：

mvn package

一旦生成了 jar文件，就可以使用 storm jar命令来提交 Topology。语法如下：

Storm jar allmycode.jar org.me.MyTopology arg1 arg2 arg3

在这个例子中，在 Topology源代码项目文件夹下运行如下命令：

storm jar target/Topologies-0.0.1-SNAPSHOT.jar countword.TopologyMain src/m

ain/resources/words.txt

使用完这些命令，就会提交 Topology到集群中。

为了停止或者杀死 Storm，可以运行如下命令：

storm kill Count-Word-Topology-With-Refresh-Cache

Topology的名字必须具有唯一性。

本地模式（Local mode）

本地模式在进程中模拟了一个 Storm集群，用于开发和测试 Topology。在本地模式下运行

Topology类似于在集群上运行 Topology。

只需使用 LocalCluster类就可以创建一个进程内的集群，例如：

import backtype.storm.LocalCluster;

LocalCluster cluster = new LocalCluster();

然后，可以使用 LocalCluster 对象的 submitTopology 方法来提交 Topology。就像在

StormSubmitter中相应的方法一样，submitTopology方法需要一个名字、一个 Topology配置和

Topology 对象。然后，你可以使用 killTopology 方法，将 Topology 名称作为参数，杀死一个

Topology。

关闭一个本地集群，只需要简单地调用：

cluster.shutdown();

1. 常见的本地模式的配置

acktype.storm.Config类用来配置 Storm，它的继承关系如下：

java.lang.Object

 └java.util.AbstractMap<K,V>

78

从零开始学 Storm

 └java.util.HashMap<java.lang.String,java.lang.Object>

 └backtype.storm.Config

All Implemented Interfaces:

java.io.Serializable, java.lang.Cloneable, java.util.Map<java.lang.String,

java.lang.Object>

2. Config.TOPOLOGY_MAX_TASK_PARALLELISM

这个配置项是组件产生线程数量的上限。通常生产环境的拓扑并行度很大（数以百计的线

程），可以尝试在本地模式下测试拓扑，找出不合理负荷的地方。这个配置项使你可以很容易

地控制并行度。

3. Config.TOPOLOGY_DEBUG

当设置为 true时，每次从 Spout或者 Bolt发送元组，Storm都会写进日志，这对于调试程

序是非常有用的。

3.9 多语言协议（Multi-Language Protocol）

本节将解释 Storm多语言协议，适用于 Storm 0.7.1及以后的版本，0.7.1之前的版本使用

不同的协议，有兴趣的读者可以参考下列链接中的英文原文：

https://github.com/nathanmarz/storm/wiki/Storm-multi-language-protocol-

(versions-0.7.0-and-below)

支持多种语言是通过 ShellBolt、ShellSpout、ShellProcess类实现的，这些类实现了 IBolt、

ISpout接口，可使用 Java的 ProcessBuilder类调用 shell脚本或程序执行协议。

输出字段（Output field）是 Thrift定义拓扑的一部分。这意味着当你在 Java中使用多语言

时，需要创建一个继承ShellBolt实现 IRichBolt接口的Bolt，并且在该Bolt的 declareOutputFields

方法中声明字段。ShellSpout也是一样。

通过 STDIN和 STDOUT执行脚本或程序，可以实现一个简单的协议。所有处理的数据交

换都是以 JSON编码的，因此支持几乎任何可能的语言。

在集群上运行一个 Shell组件提交给主控节点，shell脚本必须在 jar包的 resources目录中。

但是，如果是在本地机器上进行开发或测试，只需要 resources目录在类路径（classpath）

中即可。

1. 协议（Protocol）

协议的两端用行读机制，所以一定要从输入去掉换行符，并把它们添加到输出。

所有 JSON的输入输出被终止，通过单行含有“end”。请注意，此分隔符本身不是 JSON

79

第 3章 拓扑详解

编码。

2. 初始握手（Initial Handshake）

初始握手对于这两种类型的 shell组件是相同的：

STDIN：设置信息。这是一个包含 Storm配置、拓扑上下文、PID目录的 JSON对象。

{

 "conf": {

 "topology.message.timeout.secs": 3,

 // etc

 },

 "context": {

 "task->component": {

 "1": "example-spout",

 "2": "__acker",

 "3": "example-bolt"

 },

 "taskid": 3

 },

 "pidDir": "..."

}

你的脚本应该在这个目录创建一个以 PID命名的空文件。例如，PID为 1234，所以在目录中

创建一个名为 1234的空文件。这个文件使 Supervisor知道 PID，以后它可以用来关闭进程。

STDOUT：PID的 JSON对象类似是这样的：

{"PID":1234 }

shell组件将记录 PID到日志中。接下来会发生什么取决于组件的类型。

3. Spouts

Shell Spout是同步的。其他发生在“while(true)”循环中：

STDIN：next、ack或者 fail命令。

“next”是 ISpout的 nextTuple相等。它看起来像：

{"command": "next"}

“ack”看起来像：

{"command": "ack", "id": "1231231"}

“fail”看起来像：

{"command": "fail", "id": "1231231"}

STDOUT：Spout的前面命令的结果。这可以是一个 emit序列和 log。

“emit”看起来像：

80

从零开始学 Storm

{

 "command": "emit",

 // The id for the tuple. Leave this out for an unreliable emit. The id can

 // be a string or a number.

 "id": "1231231",

 // The id of the stream this tuple was emitted to. Leave this empty to em

it to default stream.

 "stream": "1",

 // If doing an emit direct, indicate the task to send the tuple to

 "task": 9,

 // All the values in this tuple

 "tuple": ["field1", 2, 3]

}

如果不做直接 emit，你将马上在 STDIN收到发射元组的任务 id作为 JSON数组。

“log”会在Worker的日志中记录一条消息。它看起来像：

{

 "command": "log",

 // the message to log

 "msg": "hello world!"

}

STDOUT：“sync”命令结束 emit序列和 log。它看起来像：

{"command": "sync"}

在 sync命令后，ShellSpout不会读取输出，直到它发送另一个 next、ack或 fail命令。

注意，类似于 ISpout，Worker中所有的 Spout在 next、ack或者 fail命令之后被锁定，直

到 sync命令。对于 ISpout，如果对 next没有发射元组，你应该在 sync之前 sleep少量时间。

ShellSpout不会自动为你 sleep。

4. Bolts

Shell Bolt 协议是异步的。你会在 STDIN 中获得元组只要元组可用，你可以在任何时间

emit、ack、fail和 log，并写到 STDOUT。

STDIN：一个元组。这是一个 JSON编码结构，是这样的：

{

 // The tuple's id - this is a string to support languages lacking 64-bit

precision

 "id": "-6955786537413359385",

 // The id of the component that created this tuple

 "comp": "1",

 // The id of the stream this tuple was emitted to

 "stream": "1",

 // The id of the task that created this tuple

 "task": 9,

81

第 3章 拓扑详解

 // All the values in this tuple

 "tuple": ["snow white and the seven dwarfs", "field2", 3]

}

STDOUT：ack、fail、emit、log.。

“emit”看起来像：

{

 "command": "emit",

 // The ids of the tuples this output tuples should be anchored to

 "anchors": ["1231231", "-234234234"],

 // The id of the stream this tuple was emitted to. Leave this empty to em

it to default stream.

 "stream": "1",

 // If doing an emit direct, indicate the task to send the tuple to

 "task": 9,

 // All the values in this tuple

 "tuple": ["field1", 2, 3]

}

如果不做直接 emit，你将收到的任务 id，从 STDIN上发出的元组的任务 id，作为一个 JSON

数组。注意，由于 shell bolt协议的异步特性，当你在 emit后读取，你可能接收不到任务 id。

然而，你可以为前一次 emit 替换读取任务 id 或者处理一个新的元组。你将收到与相应 emit

相同顺序的任务 id列表。

“ack”看起来像：

{

 "command": "ack",

 // the id of the tuple to ack

 "id": "123123"

}

“fail”看起来像：

{

 "command": "fail",

 // the id of the tuple to fail

 "id": "123123"

}

“fail”会在Worker日志中记录消息。它看起来像：

{

 "command": "log",

 // the message to log

 "msg": "hello world!"

}

Storm 0.7.1版本不再需要 shell bolt做“sync”操作。

82

从零开始学 Storm

3.10 使用非 JVM语言操作 Storm

3.10.1 支持的非 Java语言

Storm支持如下的非 Java的 DSL（Domain Specific Language，领域特定语言）。

� Scala DSL，项目主页为：https://github.com/velvia/ScalaStorm。

� JRuby DSL，项目主页为：http://github.com/colinsurprenant/storm-jruby。

� Clojure DSL，项目主页为：http://github.com/nathanmarz/storm/wiki/Clojure-DSL。

� io-storm，项目主页为：https://github.com/gphat/io-stormPerl。

3.10.2 对 Storm使用非 Java语言

对 Storm使用非 Java语言分为两部分：使用非 Java语言创建拓扑以及使用非 Java语言实

现 Spout和 Bolt。

使用非 Java创建拓扑是很容易的，因为拓扑是 Thrift结构的，可以参考 storm.thrift。

使用非 Java语言实现 Spout和 Bolt会调用多语言组件或者 shelling。

这里有一个规范的协议：Multilang protocol。

Thrift结构允许你显式定义多语言组件作为一个程序和脚本，例如 python和文件实现你的

Bolt的文件。

在 Java中，你会覆盖 ShellBolt或者 ShellSpout来创建多语言组件。

注意，输出字段声明（output fields declaration）中发生的 thrift结构，所以在 Java中创建

多语言组件如下。

在 Java中声明字段，通过在 ShellBolt的构造函数中指定它，使用其他语言来处理代码。

多语言在 stdin/stdout中使用 json消息与子流程进行通信。

Storm由 ruby、python和 fancy的适配器来实现协议。

python支持发射（Emitting）、锚定（Anchoring）、确认（Acking）和日志记录（Logging）

操作。

“storm shell”命令使得构建 jar和上传到 Nimbus变得容易。

可使用 Nimbus的主机名、端口和 jar文件的 id调用你的程序

3.10.3 实现非 Java DSL的笔记

正确的起点是 src/storm.thrift。因为 Storm拓扑是 Thrift结构，Nimbus是一个 Thrift守护

进程，你可以使用任何语言创建和提交拓扑。

83

第 3章 拓扑详解

当你为 Spout和 Bolt创建 Thrift结构时，应该在 ComponentObject结构体中指定 Spout或

者 Bolt。

union ComponentObject {

 1: binary serialized_java;

 2: ShellComponent shell;

 3: JavaObject java_object;

}

对于一个非 Java的 DSL，你应该会使用“2”和“3”。ShellComponent允许你指定一个脚

本运行该组件，例如，python代码。JavaObject允许你为组件指定本地 java的 Spout和 Bolt，

Storm将使用反射来创建 Spout或者 Bolt。

“storm shell”命令将帮助你提交一个拓扑。它的用法如下：

storm shell resources/ python topology.py arg1 arg2

storm shell 然后会把“resources/”打包到 jar 文件，并上传 jar 到 Nimbus。调用你的

Topology.py的脚步命令如下：

python topology.py arg1 arg2 {nimbus-host} {nimbus-port} {uploaded-jar-location}

然后，可以使用 Thrift API 连接到 Nimbus，提交拓扑，传送{uploaded-jar-location}到

submitTopology方法。下面是 submitTopology的定义。

void submitTopology(1: string name, 2: string uploadedJarLocation, 3: string

 jsonConf, 4: StormTopology topology) throws (1: AlreadyAliveException e, 2: Inv

alidTopologyException ite);

3.11 Hook

Storm提供了 Hook（钩子），使用它可以在 Storm内部插入自定义代码来运行任意数量的

事件。可以通过继承 BaseTaskHook 类创建一个 Hook，为要捕获的事件重写适当的方法。有

两种方法来注册你的钩子：

� 在 Spout 的 open()方法或者 Bolt 的 prepare()方法中，使用 TopologyContext＃

addTaskHook。

� 通过在 Storm的配置中使用 topology.auto.task.hooks配置。这些钩子在每个 Spout或者

Bolt中自动注册，它们对于在自定义的监控系统中进行集成是很有用的。

84

从零开始学 Storm

3.12 本章小结

本章介绍了 Storm拓扑的相关内容，包括什么是 Storm拓扑、TopologyBuilder及其使用、

流分组、拓扑定义的例子，以及如何在本地模式与生产集群上运行拓扑、拓扑的常见模式等。

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Impact
 /LucidaConsole
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (Japan Color 2001 Coated)
 /PDFXOutputConditionIdentifier (JC200103)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName (Japan Color 2001 Coated)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions false
 /ConvertStrokesToOutlines true
 /ConvertTextToOutlines true
 /GradientResolution 400
 /LineArtTextResolution 1200
 /PresetName <FEFF51FA>
 /PresetSelector /UseName
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 0
 /MarksWeight 0.283460
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /JapaneseWithCircle
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

