
孙立@qunar.com
weibo.com@sunli1223

误用和常见陷阱分析

大纲

被误用的NoSQL

NoSQL陷阱

NoSQL与MySQL

NoSQL无处不在

NoSQL运维

被误用的NoSQL

非常容易出现的错误使用方法

循环网络调用

•  Memcached的循环和批量GET对比
Map<String,	
 String>	
 result=new	
 HashMap<String,	
 String>();	

	
 	
 	
 	
 	
 for	
 (int	
 i	
 =	
 0,len=keys.length;	
 i	
 <	
 len;	
 i++)	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 //循环获取memcached数据	
 	
 	
 	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 result.put(keys[i],	
 memcacheGet(keys[i]));	

 }

//使用批量get协议
 Map<String, Object> objMap = client.get(Arrays.asList(keys));

5倍性能的影响

10个key消耗10ms

10个key消耗2ms

循环网络调用

•  Redis的循环和批量GET对比
Map<String,	
 String>	
 result=new	
 HashMap<String,	
 String>();	

	
 	
 	
 	
 	
 for	
 (int	
 i	
 =	
 0,len=keys.length;	
 i	
 <	
 len;	
 i++)	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 //循环获取memcached数据	
 	
 	
 	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 result.put(keys[i],	
 jredis.get(keys[i]));	

 }

//循环从redis	
 get数据
 jredis.mget(keys);

100个key消耗10ms

100个key消耗5ms

2倍性能的影响

不压缩大数据

•  压缩的分类

不压缩

NoSQ存储
压缩

外部
client压

缩

不压缩大数据

•  内部压缩和外部压缩

内部压缩

web

web

web

NoSQL内部压缩，可以减小存储，提
升IO性能，不能提升网络IO性能

Web-外部压缩

Web-外部压缩

Web-外部压缩

外部压缩，可以减小存储，提升IO性能，
并且能够提升网络IO性能

不压缩大数据

•  压缩对比

内部压缩

web

web

web

Web-外部压缩

Web-外部压缩

Web-外部压缩

无压缩的原始数据 压缩后的数据

(1000*1024*1024/8)/(10*1024)=12800 qps (1000*1024*1024/8)/(4*1024)=32000 qps

 1000Mb网卡单条数据10KB的理论qps

CPU消耗可扩展

CPU消耗不可扩展

跨语言交互

NoSQL

serialize

PHP Other

能unserialize?

NoSQL

某压缩算法

JAVA Other

 能解压吗？

NoSQL陷阱

 NoSQL是一个新兴的话题，大量的NoSQL产品

也都是新出来的，难免出现各式各样的陷阱。

 不能避免陷阱，但是得掉进去可以爬出来。

官方数据很美好

•  官方数据
•  很少有提及缺点的

Tokyo Cabinet 的官方数据。实际测试
你会发现，数据增加后，速度会骤减

场景错误

•  Redis做持久存储
– 单点、复制问题
– 数据超过内存性能急剧下降
– 扩容问题

•  Redis做Cache存储
– 性能极高
– 数据结构丰富
– 可以持久化、避免雪崩现象

细节描述不清楚

•  Ttserver=>兼容memcached协议

不支持memcached的flag参数

早期版本increment与memcached不一致

Stats命令不一致

缓存重建

•  系统重启后，大部分请求到磁盘
•  整个系统的性能可能出现抖动
•  出现连锁雪崩反应

NoSQL陷阱-32bit问题

•  Ttserver -2GB（32bit）
•  Mongodb-2.5GB (32 bit)

Ttserver在32bit下，到达2g数据大小
将出现无法启动的现象

版本升级问题

•  版本升级带来兼容问题（官方未声明的）
•  版本升级可能导致适用场景变化

NoSQL与MySQL

不要犹豫该用MySQL还是NoSQL，在你还没有掌握

NoSQL前，最好先在小项目尝试下。

选择NoSQL需要考虑

•  数据的安全性-是否久经考验
•  事务性的保障
•  数据的重要性
•  是否有DBA运维
•  未来的业务需求变化

性能之争—差别在哪里？

•  普通磁盘的IOPS(几百个)
•  寻道时间、延迟时间
•  顺序读和顺序写吞吐上百MB/S

随机写变顺序写

内存索引-热数据cache

读写算法优化（场景化）

网络协议优化

NoSQL在普通
磁盘的优化

如果是SSD?

NoSQL无处不在

不管你信不信，你很可能早已在接触NoSQL了。

Memcached缓存

SVN使用的BDB 比如：

为什么要构建自己的NoSQL

•  考察清楚场景和需求
•  现有产品满足需求成本高
•  针对特殊场景，也许比想象的简单
•  可掌控

构建自己的NoSQL

•  IP查询
TreeMap<IPEntry, String> 可轻松完成

构建自己的NoSQL

•  通过MySQL构建

GET

SET

DELETE

MySQL

接口封
装 MySQL

MySQL

这样也是NoSQL

NoSQL运维

并不像官方宣称的那样，NoSQL无需DBA运维

运维NoSQL并不容易

•  文档齐全吗？
•  网上交流多嘛？
•  周边工具齐全吗？
•  出现意外问题你能搞定吗？

出现意外问题，很难求助到人

监控-运维之本

•  IO
•  CPU
•  延迟
•  QPS
•  抖动
•  数据量

除了操作系统最基本的监控，还应该监控

备份很重要

•  避免单点
•  定期数据库备份
•  开发前做好切换准备（能切换到其他产品）

 谢谢！

http://www.qconbeijing.com/
http://qconhangzhou.com/

