

陈皓

2012年10月

技术趋势和个人发展

个人简介

• 行业背景

• 金融行业(Thomson Reuters)

• 计算平台(Platform)

• 电子商务(Amazon)

• 技术背景

• C/C++/Java

• Unix/Linux/Windows

• Web
Weibo: @左耳朵耗子

Twitter: @haoel
Blog: http://coolshell.cn/

我的个性

• 码农兼包工头

• 敏捷恐怖分子

• Unix/Linux/C/C++脑残粉

• C2C痛恨者

• CSDN腾讯百度批评人

• “技术部门无技术种族”歧视者

• 程序员文化民族主义者

大纲

• 编程语言的变迁

• 系统架构的变迁

• 技术人员的发展

如何了解技术发展的趋势

• 回顾历史，切勿追新

• 朝着球的运动的方向去，而不是球的当前位置

• 注重基础，了解原理

• 基础上的东西的变化少，基础上的东西一通百通

• 多看多想，多多实践

• 国外的站点：Wikipedia, Hacker News, StackOverflow, GitHub, Reddit,

Stanford Online Course, ….

编程语言的变迁

主流语言的进化

• 静态语言
• C  C++  Java / C#

• 脚本语言（动态语言）
• Shell（grep, sed, awk …） Perl / PHP / Ruby / Python

• 跨平台
• 编译器虚拟机 JVM 解释器基于JVM的语言

• 编程方式
• 面向过程泛型 / 面向对象 / 函数式

C语言

• C语言可以学到什么？

• 内存管理的基础

• 程序编译的过程（预编译，编译，链接）

• 程序的执行效率

• 用C语言实现数据结构和算法

• 操作系统的系统调用

• 学好C语言有什么用？

• 很多语言都借鉴于C语言，如：C++,C#, D, Go, Java, JavaScript,

Limbo, LPC, Objective-C, Perl, PHP, Python, Unix Shell

• 了解系统底层，系统调优，任何东西都会反馈到操作系统层。

C  C++

• C++ 填C的坑
• 结构体的内存问题（拷贝构造，赋值函数）

• 宏的问题 （const/inline/template）

• 指针的问题（引用，RTTI）

• 类型转换问题（四种cast）

• 封装和重载问题

• 资源回收问题（RAII – 智能指针）

• 大量的if-else多种逻辑混在一起的问题（面向对象，泛型）

• C++ 的强大之处是 “泛型编程”

• C++ 的危险之处是“滥用”

C/C++  JAVA

• Java解决C/C++的问题

• 指针的各种问题（引用）

• 内存管理的各种问题（垃圾回收）

• 错误处理（异常）

• 纯面向对象（接口编程）

• 跨平台问题（JVM）

• 程序模块的耦合（反射,动态代理 IOC/AOP）

• Java 的强大之处在于“面向对象”和“J2EE系统框架”

• Java 的问题在屏蔽底层细节

动态语言

• Python

• Mutable type

• 无需链接，无需编译，模块拿来就用

• 语言更简洁，数据操作更自然

• 支持命令式编程，面向对象，函数式，面向切面，泛型

• 完美地结合C, C++, Java 和Unix Shell

• “用一种方法，最好只有一种方法来干一件事”

• 优势：生产率，自然，灵活……

• 劣势：性能

基于JVM的语言

• 企图使用JVM对脚本语言优化

• 更好的GC，更好的异步I/O, JVM优化，JIT

• 主流的基于JVM的语言

• 动态脚本：Jython, JRuby, Groovy

• 静态语言： Scala

系统架构的变迁

单机时代

• 数据库、SQL、业务逻辑、界面全在一台机器

• 一些技术

• Foxbase / Foxpro

• VB + Access

• Delphi + Interbase

客户端/ 服务器时代

• 服务器端 数据库

• 客户端界面，业务逻辑，SQL

• 主流相关技术

• Powerbuilder + IDBC/ADO + SQL Server

• Delphi + IDBC/ADO +SQL Server

• C/C++ + EC + RDBMS

浏览器/ 服务器时代

• 服务器 UI, 业务逻辑，SQL，RDMBS

• 客户端浏览器

• 主流相关技术

• LAMP

• IIS+ Delphi + CGI/ISAPI + ODBC/ADO + RDBMS

• Tomcat+ JSP/Servlet + JDBC + RDBMS

• IIS+ ASP + ODBC/ADO + RDBMS

• ActiveX

三层结构

• 数据库服务器数据存储

• 应用服务器业务逻辑，SQL

• Web服务器 UI

• 主流相关技术

• J2EE - Websphere / WebLogic

• 中间件 IBM CICS, BEA Tuxedo

• RPC

• COM, CORBA

分布式计算

• 数据库服务器分布式

• 应用服务器分布式

• Web前端服务器分布式

• 相关主流技术

• 数据库同步、分区。

• 缓冲机制。NoSQL – MongoDB, Redis …

• 消息机制。JMS, MessgeQueue, Thrift …

• 异步机制。Workflow Engine, Pub/Sub …

• 负载均衡。

• 分布式一致性。

• P2P技术。

云

其它技术

其它技术

• 操作系统 – POSIX 标准

• 网络协议 – TCP/UDP – Socket

• I/O模型 （异步）

• 设计

• 模块依赖接口依赖

• 低耦合，高内聚，拼装

• 测试/部署（自动化）

• 数据库（RDBMS  NoSQL RDBMS）

• 前端（PC  Web 移动 Web）

怎么面对技术

技术方面

• 语言 （逻辑控制）

• 算法 + 数据结构 （数据处理）

• 系统 （内存，文件，I/O，网络，进程/线程，UI）

• 设计（代码组织，模块组织）

• 工具（开发调试，版本管理，测试，部署，监控）

软件开发的“三重门”

• 1、业务功能 – 粗放地开垦 （劳动密集型公司）

• 使用各种编程语言工具堆功能

• 2、业务性能 – 扩大化生产（技术型公司，工程师文化）

• 深入了解技术的原理和基础

• 3、业务智能 – 精耕细作（创新型公司）

• 机器学习，数据挖掘，算法，数据，统计学，人工智能……

态度方面

• 技术无贵贱，不要挑食

• 前端和后端一样，都是编程。前端侧重用户的嗅觉，后端侧重
各种机制原理的深入。

• 小心“我会在我需要的时候再学”

• 你不可能学习那些你以为不存在的东西

• 是人都能做网站，但不是每个人都能做出支持百万用户的网站

• 广度的知识是深度研究的副产品 （wikipedia）

• 死记硬背 vs 深度研究

• 和高手工作

• 重要的是你要让高手想和你一起工作

态度方面

• 对技术有热情就是不给自己找借口

• 我没有时间，我太忙，所以我没学

• 我没有经历过这样的项目，所以我不会

• 对于某些事情，如果以前没有在你身上发生过，那么这个事情
在未来也不会发生。

• 挑战无处不在

• 那怕是一个很小的功能做到极致都有很大的挑战

• 我们的身边有很多很多的东西都应该让我们去思考去求解

选择

• 户口，薪资，相比起你的人生经历，你的眼界，你的
发展，什么都不是。

• 眼界和经历最重要。价值并不仅仅是名利权。

• 和有激情能做事的人做有意义的事。

三个问题

• 早晨，是什么驱动着你开始新的一天？

• 你现在的正在经历的有没有让你感到兴奋？

• 你经历过的有没有让你觉得没有荒度？

谢谢！

