
MapReduce

10 10

 1
 2
 3

......

10

MapReduce

1 map

“ ”
map

2 reduce

reduce

MapReduce

4 4

Text 1: the weather is good

Text 2: today is good

1. MapReduce

MapReduce

MapReduce

MapReduce

Text 3: good weather is good

Text 4: today has good weather

1

map 1

“the weather is good”

(the, 1), (weather, 1), (is, 1), (good, 1)

map 2

“today is good”

(today, 1), (is, 1), (good, 1)

map 3

“good weather is good”

(good, 1), (weather, 1), (is, 1), (good, 1)

map 4

“today has good weather”

(today, 1), (has, 1), (good, 1), (weather, 1)

2

map 1

map 2

map 3

map 4

3

map 1

map 2

map 3

map 4

4

map reduce

3 reduce 4 map
26 3 3 reduce

reduce

 mapreduce

mapredude

MapReduce

1. 4 4 map
2. map

3.
4. 3 reduce
5. reduce map
6. reduce

MapReduce
2

1. map -
2. reduce - map

map reduce
job hadoop

 map reduce
map map reduce reduce

 MapReduce
 map reduce

WordCount helloword
wordcount mapreduce

 hadoop 2.7.3

hadoop virtualbox
vagrant hadoop

2. MapReduce - WordCount

2.1 Hadoop

1 virtualbox

https://www.virtualbox.org/wiki/Downloads

2 vagrant

windows

: https://pan.baidu.com/s/1pKKQGHl : eykr

Mac

: https://pan.baidu.com/s/1slts9yt : aig4

 vagrant

3 hadoop

: https://pan.baidu.com/s/1bpaisnd : pn6c

4

 hadoop

vagrant box add { } { }

 hadoop d:\hadoop.box

vagrant box add hadoop d:\hadoop.box

 d:\hdfstest

cd d:\hdfstest
vagrant init hadoop

vagrant up

SSH hadoop

IP 127.0.0.1
 2222
 root

 vagrant

 hadoop hdfs yarn mapreduce

start-dfs.sh
start-yarn.sh

 hadoop

 wordcount pom.xml

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="h
ttp://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http:
//maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>

 <groupId>demo.mr</groupId>
 <artifactId>mapreduce-wordcount</artifactId>
 <version>0.0.1-SNAPSHOT</version>
 <packaging>jar</packaging>

 <name>mapreduce-wordcount</name>
 <url>http://maven.apache.org</url>

 <properties>

2.2

 <project.build.sourceEncoding>UTF-8</project.build.sour
ceEncoding>
 </properties>

 <dependencies>
 <!-- https://mvnrepository.com/artifact/commons-beanuti
ls/commons-beanutils -->
 <dependency>
 <groupId>commons-beanutils</groupId>
 <artifactId>commons-beanutils</artifactId>
 <version>1.9.3</version>
 </dependency>

 <!-- https://mvnrepository.com/artifact/org.apache.hado
op/hadoop-common -->
 <dependency>
 <groupId>org.apache.hadoop</groupId>
 <artifactId>hadoop-common</artifactId>
 <version>2.7.3</version>
 </dependency>
 <!-- https://mvnrepository.com/artifact/org.apache.hado
op/hadoop-hdfs -->
 <dependency>
 <groupId>org.apache.hadoop</groupId>
 <artifactId>hadoop-hdfs</artifactId>
 <version>2.7.3</version>
 </dependency>
 <!-- https://mvnrepository.com/artifact/org.apache.hado
op/hadoop-mapreduce-client-common -->
 <dependency>
 <groupId>org.apache.hadoop</groupId>
 <artifactId>hadoop-mapreduce-client-common</artifac
tId>
 <version>2.7.3</version>
 </dependency>
 <!-- https://mvnrepository.com/artifact/org.apache.hado
op/hadoop-mapreduce-client-core -->
 <dependency>
 <groupId>org.apache.hadoop</groupId>
 <artifactId>hadoop-mapreduce-client-core</artifactI
d>
 <version>2.7.3</version>
 </dependency>
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>3.8.1</version>

 <scope>test</scope>
 </dependency>
 </dependencies>
</project>

 src/main/java

├── pom.xml
!""!"" src
│ └── main
│ └── java

mapper src/main/java/WordcountMapper.java

import java.io.IOException;

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;

public class WordcountMapper extends Mapper<LongWritable, Text,
 Text, IntWritable> {
 @Override
 protected void map(LongWritable key, Text value, Context co
ntext)
 throws IOException, InterruptedException {

 //
 String line = value.toString();

 //
 String[] words = line.split(" ");

 //
 for (String word : words) {
 context.write(new Text(word), new IntWritable(1));

2.3

 }
 }
}

 mapper map

mapreduce map

map key value
 key value

Mapper<LongWritable, Text, Text, IntWritable>

4 key value key
value

mapreduce key value key mr
Long value mr

String

 key value key
key value value

 key word value

 mapreduce
 Long hadoop

 LongWritable String Text int
IntWritable

reduce src/main/java/WordCountReducer.java

import java.io.IOException;

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;

public class WordCountReducer extends Reducer<Text, IntWritable
, Text, IntWritable> {
 @Override

 protected void reduce(Text key, Iterable<IntWritable> value
s,
Context context) throws IOException, InterruptedException {

 Integer count = 0;
 for (IntWritable value : values) {
 count += value.get();
 }
 context.write(key, new IntWritable(count));
 }
}

 Reducer reduce

Reducer<Text, IntWritable, Text, IntWritable>

4 key value key
value

reduce key

reduce map

(good,1) (good,1) (good,1) (good,1)

 reduce

key : good
value : (1,1,1,1)

reduce key value

 src/main/java/WordCountMapReduce.java

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class WordCountMapReduce {
 public static void main(String[] args) throws Exception{
 //
 Configuration conf = new Configuration();

 // job
 Job job = Job.getInstance(conf, "wordcount");

 // job
 job.setJarByClass(WordCountMapReduce.class);

 // mapper
 job.setMapperClass(WordcountMapper.class);

 // reduce
 job.setReducerClass(WordCountReducer.class);

 // map key value
 job.setMapOutputKeyClass(Text.class);
 job.setOutputValueClass(IntWritable.class);

 // reduce key value
 job.setOutputKeyClass(Text.class);
 job.setOutputValueClass(IntWritable.class);

 //
 FileInputFormat.setInputPaths(job, new Path(args[0]));
 FileOutputFormat.setOutputPath(job, new Path(args[1]));

 // job
 boolean b = job.waitForCompletion(true);

 if(!b){
 System.out.println("wordcount task fail!");
 }
 }
}

 main job

 pom.xml

2.4

mvn package

 target jar

├── pom.xml
├── src
│ └── main
│ └── java
│ ├── WordCountMapReduce.java
│ ├── WordCountReducer.java
│ └── WordcountMapper.java
└── target
 ├── ...
 ├── mapreduce-wordcount-0.0.1-SNAPSHOT.jar

 target jar hadoop

 hadoop hdfs hadoop txt
 hdfs

cd $HADOOP_HOME
hdfs dfs -mkdir -p /wordcount/input
hdfs dfs -put *.txt /wordcount/input

 wordcount jar

hadoop jar mapreduce-wordcount-0.0.1-SNAPSHOT.jar WordCountMapR
educe /wordcount/input /wordcount/output

hdfs dfs -cat /wordcount/output/*

2.5

 job

1

client hdfs

a.txt 0-128M task 128-256M task b.txt 0-128M
task 128-256M task ... job.split

 job.split jar xml yarn hadoop

2 appmaster

appmaster job maptask reducetask

yarn appmaster job.split jar xml

3. MapReduce

3 maptask

appmaster job.split maptask
 maptask

 maptask maptask datanode

4 maptask

maptask map map
map context.write

key reducer

5 reducetask

maptask appmaster reducetask maptask
 reducetask

6 reducetask

reducetask maptask
reducetask_01

reducetask key reduce

13726230501 200 1100

13396230502 300 1200

13897230503 400 1300

13897230503 100 300

13597230534 500 1400

13597230534 300 1200

4. 1 -

4.1

4.1.1

 13897230503

13797230503, 500, 1600, 2100

map

key value

 key value

 Text
bean

key: 13897230503
value: < upFlow:100, dFlow:300, sumFlow:400 >

reduce

 key bean

key:
13897230503

value:
< upFlow:400, dFlow:1300, sumFlow:1700 >,
< upFlow:100, dFlow:300, sumFlow:400 >

bean bean

< upFlow:400+100, dFlow:1300+300, sumFlow:1700+400 >

4.1.2

key: 13897230503
value: < upFlow:500, dFlow:1600, sumFlow:2100 >

 serializebean pom.xml :

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="h
ttp://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http:
//maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>

 <groupId>demo.mr</groupId>
 <artifactId>mapreduce-serializebean</artifactId>
 <version>0.0.1-SNAPSHOT</version>
 <packaging>jar</packaging>

 <name>mapreduce-serializebean</name>
 <url>http://maven.apache.org</url>

 <properties>
 <project.build.sourceEncoding>UTF-8</project.build.sour
ceEncoding>
 </properties>

 <dependencies>
 <!-- https://mvnrepository.com/artifact/commons-beanuti
ls/commons-beanutils -->
 <dependency>
 <groupId>commons-beanutils</groupId>
 <artifactId>commons-beanutils</artifactId>
 <version>1.9.3</version>
 </dependency>

 <!-- https://mvnrepository.com/artifact/org.apache.hado
op/hadoop-common -->
 <dependency>
 <groupId>org.apache.hadoop</groupId>
 <artifactId>hadoop-common</artifactId>
 <version>2.7.3</version>
 </dependency>

4.2

4.2.1

 <!-- https://mvnrepository.com/artifact/org.apache.hado
op/hadoop-hdfs -->
 <dependency>
 <groupId>org.apache.hadoop</groupId>
 <artifactId>hadoop-hdfs</artifactId>
 <version>2.7.3</version>
 </dependency>
 <!-- https://mvnrepository.com/artifact/org.apache.hado
op/hadoop-mapreduce-client-common -->
 <dependency>
 <groupId>org.apache.hadoop</groupId>
 <artifactId>hadoop-mapreduce-client-common</artifac
tId>
 <version>2.7.3</version>
 </dependency>
 <!-- https://mvnrepository.com/artifact/org.apache.hado
op/hadoop-mapreduce-client-core -->
 <dependency>
 <groupId>org.apache.hadoop</groupId>
 <artifactId>hadoop-mapreduce-client-core</artifactI
d>
 <version>2.7.3</version>
 </dependency>
 </dependencies>
</project>

 src/main/java

├── pom.xml
#""#"" src
 └── main
 └── java

bean src/main/java/FlowBean

import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;

4.2.2

import org.apache.hadoop.io.Writable;

public class FlowBean implements Writable {
 private long upFlow;
 private long dFlow;
 private long sumFlow;

 public FlowBean(){

 }

 public FlowBean(long upFlow, long dFlow){
 this.upFlow = upFlow;
 this.dFlow = dFlow;
 this.sumFlow = upFlow + dFlow;
 }

 public long getUpFlow() {
 return upFlow;
 }

 public void setUpFlow(long upFlow) {
 this.upFlow = upFlow;
 }

 public long getdFlow() {
 return dFlow;
 }

 public void setdFlow(long dFlow) {
 this.dFlow = dFlow;
 }

 public long getSumFlow() {
 return sumFlow;
 }

 public void setSumFlow(long sumFlow) {
 this.sumFlow = sumFlow;
 }

 public void write(DataOutput out) throws IOException {
 out.writeLong(upFlow);
 out.writeLong(dFlow);
 out.writeLong(sumFlow);
 }

 public void readFields(DataInput in) throws IOException {
 upFlow = in.readLong();
 dFlow = in.readLong();
 sumFlow = in.readLong();
 }

 @Override
 public String toString() {

 return upFlow + "\t" + dFlow + "\t" + sumFlow;
 }
}

mapreduce src/main/java/FlowCount

import java.io.IOException;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class FlowCount {
 static class FlowCountMapper extends Mapper<LongWritable, T
ext, Text, FlowBean> {
 @Override
 protected void map(LongWritable key, Text value, Mapper
<LongWritable, Text, Text, FlowBean>.Context context)
 throws IOException, InterruptedException {

 // string
 String line = value.toString();
 //
 String[] fields = line.split("\t");
 //
 String phoneNbr = fields[0];
 //
 long upFlow = Long.parseLong(fields[1]);
 long dFlow = Long.parseLong(fields[2]);

 context.write(new Text(phoneNbr), new FlowBean(upFl
ow, dFlow));
 }
 }

 static class FlowCountReducer extends Reducer<Text, FlowBea
n, Text, FlowBean> {
 @Override
 protected void reduce(Text key, Iterable<FlowBean> valu
es,
 Reducer<Text, FlowBean, Text, FlowBean>.Context
 context) throws IOException, InterruptedException {

 long sum_upFlow = 0;
 long sum_dFlow = 0;

 // bean
 for (FlowBean bean : values) {
 sum_upFlow += bean.getUpFlow();
 sum_dFlow += bean.getdFlow();
 }

 FlowBean resultBean = new FlowBean(sum_upFlow, sum_
dFlow);
 context.write(key, resultBean);
 }
 }

 public static void main(String[] args) throws Exception {

 Configuration conf = new Configuration();
 Job job = Job.getInstance(conf);

 // jar
 job.setJarByClass(FlowCount.class);

 // job mapper/Reducer
 job.setMapperClass(FlowCountMapper.class);
 job.setReducerClass(FlowCountReducer.class);

 // mapper kv
 job.setMapOutputKeyClass(Text.class);
 job.setMapOutputValueClass(FlowBean.class);

 // kv
 job.setOutputKeyClass(Text.class);
 job.setOutputValueClass(FlowBean.class);

 // job
 FileInputFormat.setInputPaths(job, new Path(args[0]));
 // job
 FileOutputFormat.setOutputPath(job, new Path(args[1]));

 // job job java jar
yarn
 /*job.submit();*/
 boolean res = job.waitForCompletion(true);
 System.exit(res?0:1);
 }
}

 pom.xml

mvn package

 target jar

├── pom.xml
├── src
│ └── main
│ └── java
│ ├── FlowBean.java
│ └── FlowCount.java
└── target
 ├── ...
 ├── mapreduce-serializebean-0.0.1-SNAPSHOT.jar

 target jar hadoop

: https://pan.baidu.com/s/1skTABlr : tjwy

4.2.3

4.2.4

 hdfs

hdfs dfs -mkdir -p /flowcount/input
hdfs dfs -put flowdata.log /flowcount/input

hadoop jar mapreduce-serializebean-0.0.1-SNAPSHOT.jar FlowCount
 /flowcount/input /flowcount/output2

hdfs dfs -cat /flowcount/output/*

13726230501 200 1100

13396230502 300 1200

13897230503 400 1300

13897230503 100 300

13597230534 500 1400

13597230534 300 1200

5. 2 -

5.1

5.1.1

 137 138

map reduce 2

1 Partitioner

 reducetask reducetask

2 main Partitioner

 custom_partion pom.xml :

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="h
ttp://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http:
//maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>

 <groupId>demo.mr</groupId>
 <artifactId>mapreduce-custompartion</artifactId>
 <version>0.0.1-SNAPSHOT</version>
 <packaging>jar</packaging>

5.1.2

5.2

5.2.1

 <name>mapreduce-custompartion</name>
 <url>http://maven.apache.org</url>

 <properties>
 <project.build.sourceEncoding>UTF-8</project.build.sour
ceEncoding>
 </properties>

 <dependencies>
 <!-- https://mvnrepository.com/artifact/commons-beanuti
ls/commons-beanutils -->
 <dependency>
 <groupId>commons-beanutils</groupId>
 <artifactId>commons-beanutils</artifactId>
 <version>1.9.3</version>
 </dependency>

 <!-- https://mvnrepository.com/artifact/org.apache.hado
op/hadoop-common -->
 <dependency>
 <groupId>org.apache.hadoop</groupId>
 <artifactId>hadoop-common</artifactId>
 <version>2.7.3</version>
 </dependency>
 <!-- https://mvnrepository.com/artifact/org.apache.hado
op/hadoop-hdfs -->
 <dependency>
 <groupId>org.apache.hadoop</groupId>
 <artifactId>hadoop-hdfs</artifactId>
 <version>2.7.3</version>
 </dependency>
 <!-- https://mvnrepository.com/artifact/org.apache.hado
op/hadoop-mapreduce-client-common -->
 <dependency>
 <groupId>org.apache.hadoop</groupId>
 <artifactId>hadoop-mapreduce-client-common</artifac
tId>
 <version>2.7.3</version>
 </dependency>
 <!-- https://mvnrepository.com/artifact/org.apache.hado
op/hadoop-mapreduce-client-core -->
 <dependency>
 <groupId>org.apache.hadoop</groupId>
 <artifactId>hadoop-mapreduce-client-core</artifactI
d>
 <version>2.7.3</version>
 </dependency>

 </dependencies>
</project>

 src/main/java

├── pom.xml
#""#"" src
 └── main
 └── java

bean: src/main/java/FlowBean.java

import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;

import org.apache.hadoop.io.Writable;

public class FlowBean implements Writable {
 private long upFlow;
 private long dFlow;
 private long sumFlow;

 public FlowBean(){

 }

 public FlowBean(long upFlow, long dFlow){
 this.upFlow = upFlow;
 this.dFlow = dFlow;
 this.sumFlow = upFlow + dFlow;
 }

 public long getUpFlow() {
 return upFlow;
 }

 public void setUpFlow(long upFlow) {
 this.upFlow = upFlow;
 }

5.2.2

 public long getdFlow() {
 return dFlow;
 }

 public void setdFlow(long dFlow) {
 this.dFlow = dFlow;
 }

 public long getSumFlow() {
 return sumFlow;
 }

 public void setSumFlow(long sumFlow) {
 this.sumFlow = sumFlow;
 }

 public void write(DataOutput out) throws IOException {
 out.writeLong(upFlow);
 out.writeLong(dFlow);
 out.writeLong(sumFlow);
 }

 public void readFields(DataInput in) throws IOException {
 upFlow = in.readLong();
 dFlow = in.readLong();
 sumFlow = in.readLong();
 }

 @Override
 public String toString() {

 return upFlow + "\t" + dFlow + "\t" + sumFlow;
 }
}

src/main/java/ProvincePartitioner.java

import java.util.HashMap;

import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Partitioner;

public class ProvincePartitioner extends Partitioner<Text, Flow
Bean>{

 public static HashMap<String, Integer> proviceDict = new Ha
shMap<String, Integer>();
 static{
 proviceDict.put("137", 0);
 proviceDict.put("133", 1);
 proviceDict.put("138", 2);
 proviceDict.put("135", 3);
 }

 @Override
 public int getPartition(Text key, FlowBean value, int numPa
rtitions) {
 String prefix = key.toString().substring(0, 3);
 Integer provinceId = proviceDict.get(prefix);

 return provinceId==null?4:provinceId;
 }

}

 hashmap

 getPartition
‘ ’ 4

mapreduce src/main/java/FlowCount.java

import java.io.IOException;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class FlowCount {
 static class FlowCountMapper extends Mapper<LongWritable, T
ext, Text, FlowBean> {
 @Override
 protected void map(LongWritable key, Text value, Mapper

<LongWritable, Text, Text, FlowBean>.Context context)
 throws IOException, InterruptedException {

 // string
 String line = value.toString();
 //
 String[] fields = line.split("\t");
 //
 String phoneNbr = fields[0];
 //
 long upFlow = Long.parseLong(fields[1]);
 long dFlow = Long.parseLong(fields[2]);

 context.write(new Text(phoneNbr), new FlowBean(upFl
ow, dFlow));
 }
 }

 static class FlowCountReducer extends Reducer<Text, FlowBea
n, Text, FlowBean> {
 @Override
 protected void reduce(Text key, Iterable<FlowBean> valu
es,
 Reducer<Text, FlowBean, Text, FlowBean>.Context
 context) throws IOException, InterruptedException {

 long sum_upFlow = 0;
 long sum_dFlow = 0;

 // bean
 for (FlowBean bean : values) {
 sum_upFlow += bean.getUpFlow();
 sum_dFlow += bean.getdFlow();
 }

 FlowBean resultBean = new FlowBean(sum_upFlow, sum_
dFlow);
 context.write(key, resultBean);
 }
 }

 public static void main(String[] args) throws Exception {

 Configuration conf = new Configuration();
 Job job = Job.getInstance(conf);

 // jar

 job.setJarByClass(FlowCount.class);

 // job mapper/Reducer
 job.setMapperClass(FlowCountMapper.class);
 job.setReducerClass(FlowCountReducer.class);

 //
 job.setPartitionerClass(ProvincePartitioner.class);
 // “ ” reducetask
 job.setNumReduceTasks(5);

 // mapper kv
 job.setMapOutputKeyClass(Text.class);
 job.setMapOutputValueClass(FlowBean.class);

 // kv
 job.setOutputKeyClass(Text.class);
 job.setOutputValueClass(FlowBean.class);

 // job
 FileInputFormat.setInputPaths(job, new Path(args[0]));
 // job
 FileOutputFormat.setOutputPath(job, new Path(args[1]));

 // job job java jar
yarn

 /* job.submit(); */
 boolean res = job.waitForCompletion(true);
 System.exit(res ? 0 : 1);
 }
}

main

job.setPartitionerClass(ProvincePartitioner.class);

 pom.xml

mvn package

 target jar

5.2.3

├── pom.xml
├── src
│ └── main
│ └── java
│ ├── FlowBean.java
│ ├── FlowCount.java
│ └── ProvincePartitioner.java
└── target
 ├── ...
 ├── mapreduce-custompartion-0.0.1-SNAPSHOT.jar

 target jar hadoop

hadoop jar mapreduce-custompartion-0.0.1-SNAPSHOT.jar FlowCount
 /flowcount/input /flowcount/output-part

hdfs dfs -ls /flowcount/output-part

id id

Order_0000001 Pdt_01 222.8

Order_0000001 Pdt_05 25.8

5.2.4

6. 3 -

6.1

6.1.1

Order_0000002 Pdt_03 522.8

Order_0000002 Pdt_04 122.4

Order_0000003 Pdt_01 222.8

 GroupingComparator

 wordcount

wordcount map

<good,1>
<good,1>
<good,1>
<is,1>
<is,1>

reducer key

<good, [1,1,1]>
<is, [1,1]>

 reduce(key, Iterable, ...)

 GroupingComparator key

 Partitioner map GroupingComparator
 reduce

1 bean

6.1.2

{ itemid, amount }

 compareTo

2 Partitioner

hashcode
reduce

 bean

 map key bean value null

map

1 2

<{ Order_0000001 222.8 }, null> <{ Order_0000002 522.8 }, null>

<{ Order_0000001 25.8 }, null> <{ Order_0000002 122.4 }, null>

<{ Order_0000003 222.8 }, null>

3 GroupingComparator

 map key bean
 bean

1

<{ Order_0000001 222.8 }, null>,
<{ Order_0000001 25.8 }, null>,
<{ Order_0000003 222.8 }, null>

 key
 key

<{ Order_0000001 222.8 }, [null, null]>,

<{ Order_0000003 222.8 }, [null]>

 reduce key

 groupcomparator pom.xml :

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="h
ttp://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http:
//maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>

 <groupId>demo.mr</groupId>
 <artifactId>mapreduce-groupcomparator</artifactId>
 <version>0.0.1-SNAPSHOT</version>
 <packaging>jar</packaging>

 <name>mapreduce-groupcomparator</name>
 <url>http://maven.apache.org</url>

 <properties>
 <project.build.sourceEncoding>UTF-8</project.build.sour
ceEncoding>
 </properties>

6.2

6.2.1

 <dependencies>
 <!-- https://mvnrepository.com/artifact/commons-beanuti
ls/commons-beanutils -->
 <dependency>
 <groupId>commons-beanutils</groupId>
 <artifactId>commons-beanutils</artifactId>
 <version>1.9.3</version>
 </dependency>

 <!-- https://mvnrepository.com/artifact/org.apache.hado
op/hadoop-common -->
 <dependency>
 <groupId>org.apache.hadoop</groupId>
 <artifactId>hadoop-common</artifactId>
 <version>2.7.3</version>
 </dependency>
 <!-- https://mvnrepository.com/artifact/org.apache.hado
op/hadoop-hdfs -->
 <dependency>
 <groupId>org.apache.hadoop</groupId>
 <artifactId>hadoop-hdfs</artifactId>
 <version>2.7.3</version>
 </dependency>
 <!-- https://mvnrepository.com/artifact/org.apache.hado
op/hadoop-mapreduce-client-common -->
 <dependency>
 <groupId>org.apache.hadoop</groupId>
 <artifactId>hadoop-mapreduce-client-common</artifac
tId>
 <version>2.7.3</version>
 </dependency>
 <!-- https://mvnrepository.com/artifact/org.apache.hado
op/hadoop-mapreduce-client-core -->
 <dependency>
 <groupId>org.apache.hadoop</groupId>
 <artifactId>hadoop-mapreduce-client-core</artifactI
d>
 <version>2.7.3</version>
 </dependency>
 </dependencies>
</project>

 src/main/java

├── pom.xml
#""#"" src
 └── main
 └── java

** bean: ** src/main/java/OrderBean.java

import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;

import org.apache.hadoop.io.DoubleWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.WritableComparable;

public class OrderBean implements WritableComparable<OrderBean>
 {

 private Text itemid;
 private DoubleWritable amount;

 public OrderBean() {
 }

 public OrderBean(Text id, DoubleWritable amount){
 this.set(id, amount);
 }

 public void set(Text id, DoubleWritable amount){
 this.itemid = id;
 this.amount = amount;
 }

 public Text getItemid() {
 return itemid;
 }

 public void setItemid(Text itemid) {
 this.itemid = itemid;
 }

 public DoubleWritable getAmount() {

6.2.2

 return amount;
 }

 public void setAmount(DoubleWritable amount) {
 this.amount = amount;
 }

 public void readFields(DataInput in) throws IOException {
 this.itemid = new Text(in.readUTF());
 this.amount = new DoubleWritable(in.readDouble());
 }

 public void write(DataOutput out) throws IOException {
 out.writeUTF(itemid.toString());
 out.writeDouble(amount.get());
 }

 public int compareTo(OrderBean o) {
 int ret = this.itemid.compareTo(o.getItemid());
 if(ret == 0){
 ret = -this.amount.compareTo(o.getAmount());
 }
 return ret;
 }
 @Override
 public String toString() {
 return itemid.toString() + "\t" + amount.get();
 }
}

 src/main/java/ItemIdPartitioner.java

import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.mapreduce.Partitioner;

public class ItemIdPartitioner extends Partitioner<OrderBean, N
ullWritable>{

 @Override
 public int getPartition(OrderBean bean, NullWritable value,
 int numReduceTasks) {
 // id bean partition
 // reduce task
 return (bean.getItemid().hashCode() & Integer.MAX_VALUE
) % numReduceTasks;
 }

}

 src/main/java/MyGroupingComparator.java

import org.apache.hadoop.io.WritableComparable;
import org.apache.hadoop.io.WritableComparator;

public class MyGroupingComparator extends WritableComparator {
 public MyGroupingComparator() {
 super(OrderBean.class, true);
 }

 @Override
 public int compare(WritableComparable a, WritableComparable
 b) {
 OrderBean ob1 = (OrderBean)a;
 OrderBean ob2 = (OrderBean)b;
 return ob1.getItemid().compareTo(ob2.getItemid());
 }
}

mapreduce src/main/java/GroupSort.java

import java.io.IOException;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.DoubleWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class GroupSort {
 static class SortMapper extends Mapper<LongWritable, Text,
OrderBean, NullWritable> {
 OrderBean bean = new OrderBean();

 @Override

 protected void map(LongWritable key, Text value, Contex
t context) throws IOException, InterruptedException {

 String line = value.toString();
 String[] fields = line.split(",");
 bean.set(new Text(fields[0]), new DoubleWritable(Do
uble.parseDouble(fields[2])));
 context.write(bean, NullWritable.get());
 }
 }

 static class SortReducer extends Reducer<OrderBean, NullWri
table, OrderBean, NullWritable> {
 @Override
 protected void reduce(OrderBean key, Iterable<NullWrita
ble> val, Context context)
 throws IOException, InterruptedException {

 context.write(key, NullWritable.get());
 }
 }

 public static void main(String[] args) throws Exception {
 //
 Configuration conf = new Configuration();
 Job job = Job.getInstance(conf);
 job.setJarByClass(GroupSort.class);

 //
 job.setOutputKeyClass(OrderBean.class);
 job.setOutputValueClass(NullWritable.class);

 // map reduce
 job.setMapperClass(SortMapper.class);
 job.setReducerClass(SortReducer.class);

 job.setGroupingComparatorClass(MyGroupingComparator.cla
ss);
 job.setPartitionerClass(ItemIdPartitioner.class);
 job.setNumReduceTasks(2);

 //
 FileInputFormat.setInputPaths(job, new Path(args[0]));
 FileOutputFormat.setOutputPath(job, new Path(args[1]));

 //
 job.waitForCompletion(true);

 }
}

 pom.xml

mvn package

 target jar

├── pom.xml
├── src
│ └── main
│ └── java
│ ├── GroupSort.java
│ ├── ItemIdPartitioner.java
│ ├── MyGroupingComparator.java
│ └── OrderBean.java
└── target
 ├── ...
 ├── mapreduce-groupcomparator-0.0.1-SNAPSHOT.jar

 target jar hadoop

: https://pan.baidu.com/s/1pKKlvh5 : 43xa

 hdfs

hdfs dfs -put orders.txt /

6.2.3

6.2.4

hadoop jar mapreduce-groupcomparator-0.0.1-SNAPSHOT.jar GroupSo
rt /orders.txt /outputOrders

hdfs dfs -ls /outputOrders
hdfs dfs -cat /outputOrders/*

 map inputformat
 key value map

7. 4 -

7.1

7.1.1

7.1.2

 inputformat RecordReader

 inputformat RecordReader RecordReader
 key value

map key value

reduce
 SequenceFileOutPutFormat

 reduce key value reduce
 TextOutputFormat ID

 SequenceFileOutPutFormat

 inputformat pom.xml :

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="h
ttp://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http:
//maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>

 <groupId>demo.mr</groupId>

7.2

7.2.1

 <artifactId>mapreduce-inputformat</artifactId>
 <version>0.0.1-SNAPSHOT</version>
 <packaging>jar</packaging>

 <name>mapreduce-inputformat</name>
 <url>http://maven.apache.org</url>

 <properties>
 <project.build.sourceEncoding>UTF-8</project.build.sour
ceEncoding>
 </properties>

 <dependencies>
 <!-- https://mvnrepository.com/artifact/commons-beanuti
ls/commons-beanutils -->
 <dependency>
 <groupId>commons-beanutils</groupId>
 <artifactId>commons-beanutils</artifactId>
 <version>1.9.3</version>
 </dependency>

 <!-- https://mvnrepository.com/artifact/org.apache.hado
op/hadoop-common -->
 <dependency>
 <groupId>org.apache.hadoop</groupId>
 <artifactId>hadoop-common</artifactId>
 <version>2.7.3</version>
 </dependency>
 <!-- https://mvnrepository.com/artifact/org.apache.hado
op/hadoop-hdfs -->
 <dependency>
 <groupId>org.apache.hadoop</groupId>
 <artifactId>hadoop-hdfs</artifactId>
 <version>2.7.3</version>
 </dependency>
 <!-- https://mvnrepository.com/artifact/org.apache.hado
op/hadoop-mapreduce-client-common -->
 <dependency>
 <groupId>org.apache.hadoop</groupId>
 <artifactId>hadoop-mapreduce-client-common</artifac
tId>
 <version>2.7.3</version>
 </dependency>
 <!-- https://mvnrepository.com/artifact/org.apache.hado
op/hadoop-mapreduce-client-core -->
 <dependency>
 <groupId>org.apache.hadoop</groupId>

 <artifactId>hadoop-mapreduce-client-core</artifactI
d>
 <version>2.7.3</version>
 </dependency>
 </dependencies>
</project>

 src/main/java

├── pom.xml
#""#"" src
 └── main
 └── java

inputform src/main/java/MyInputFormat.java

import java.io.IOException;
import java.io.Reader;

import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.BytesWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.mapreduce.InputSplit;
import org.apache.hadoop.mapreduce.JobContext;
import org.apache.hadoop.mapreduce.RecordReader;
import org.apache.hadoop.mapreduce.TaskAttemptContext;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;

public class MyInputFormat extends FileInputFormat<NullWritable
, BytesWritable> {
 @Override
 protected boolean isSplitable(JobContext context, Path file
name) {
 // , key-value
 return false;
 }

 @Override
 public RecordReader<NullWritable, BytesWritable> createReco
rdReader(InputSplit split, TaskAttemptContext context)

7.2.2

 throws IOException, InterruptedException {

 MyRecordReader recordReader = new MyRecordReader();
 recordReader.initialize(split, context);
 return recordReader;
 }
}

 createRecordReader reader

reader src/main/java/MyRecordReader.java

import java.io.IOException;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FSDataInputStream;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.BytesWritable;
import org.apache.hadoop.io.IOUtils;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.mapreduce.InputSplit;
import org.apache.hadoop.mapreduce.RecordReader;
import org.apache.hadoop.mapreduce.TaskAttemptContext;
import org.apache.hadoop.mapreduce.lib.input.FileSplit;

public class MyRecordReader extends RecordReader<NullWritable,
BytesWritable> {

 private FileSplit fileSplit;
 private Configuration conf;
 private BytesWritable value = new BytesWritable();
 private boolean processed = false;

 @Override
 public void close() throws IOException {
 }

 @Override
 public NullWritable getCurrentKey() throws IOException, Int
erruptedException {
 return NullWritable.get();
 }

 @Override
 public BytesWritable getCurrentValue() throws IOException,

InterruptedException {
 return value;
 }

 @Override
 public float getProgress() throws IOException, InterruptedE
xception {
 return processed ? 1.0f : 0.0f;
 }

 @Override
 public void initialize(InputSplit split, TaskAttemptContext
 context) throws IOException, InterruptedException {
 this.fileSplit = (FileSplit) split;
 this.conf = context.getConfiguration();
 }

 @Override
 public boolean nextKeyValue() throws IOException, Interrupt
edException {
 if (!processed) {
 byte[] contents = new byte[(int) fileSplit.getLengt
h()];
 Path file = fileSplit.getPath();
 FileSystem fs = file.getFileSystem(conf);
 FSDataInputStream in = null;
 try {
 in = fs.open(file);
 IOUtils.readFully(in, contents, 0, contents.len
gth);
 value.set(contents, 0, contents.length);
 } finally {
 IOUtils.closeStream(in);
 }
 processed = true;
 return true;
 }
 return false;
 }

}

3 nextKeyValue getCurrentKey getCurrentValue

 nextKeyValue map key value

 getCurrentKey getCurrentValue key value

 RecordReader nextKeyValue key value
 getCurrentKey getCurrentValue key value

 nextKeyValue value

mapreduce src/main/java/ManyToOne.java

import java.io.IOException;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.BytesWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.InputSplit;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.FileSplit;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.SequenceFileOutpu
tFormat;

public class ManyToOne {
 static class FileMapper extends Mapper<NullWritable, BytesW
ritable, Text, BytesWritable> {
 private Text filenameKey;
 @Override
 protected void setup(Context context)
 throws IOException, InterruptedException {

 InputSplit split = context.getInputSplit();
 Path path = ((FileSplit) split).getPath();
 filenameKey = new Text(path.toString());
 }
 @Override
 protected void map(NullWritable key, BytesWritable valu
e, Context context)
 throws IOException, InterruptedException {
 context.write(filenameKey, value);
 }
 }

 public static void main(String[] args) throws Exception {

 Configuration conf = new Configuration();
 Job job = Job.getInstance(conf);
 job.setJarByClass(ManyToOne.class);

 job.setInputFormatClass(MyInputFormat.class);
 job.setOutputFormatClass(SequenceFileOutputFormat.class
);
 job.setOutputKeyClass(Text.class);
 job.setOutputValueClass(BytesWritable.class);
 job.setMapperClass(FileMapper.class);

 FileInputFormat.setInputPaths(job, new Path(args[0]));
 FileOutputFormat.setOutputPath(job, new Path(args[1]));

 job.waitForCompletion(true);
 }
}

main MyInputFormat
 SequenceFileOutputFormat

 pom.xml

mvn package

 target jar

├── pom.xml
├── src
│ └── main
│ └── java
│ ├── ManyToOne.java
│ ├── MyInputFormat.java
│ └── MyRecordReader.java
└── target
 ├── ...
 ├── mapreduce-inputformat-0.0.1-SNAPSHOT.jar

7.2.3

 target jar hadoop

hadoop hdfs

hdfs dfs -mkdir /files
hdfs dfs -put $HADOOP_HOME/etc/hadoop/*.xml /files

hadoop jar mapreduce-inputformat-0.0.1-SNAPSHOT.jar ManyToOne /
files /onefile

hdfs dfs -ls /onefile

id id

Order_0000001 Pdt_01 222.8

Order_0000001 Pdt_05 25.8

Order_0000002 Pdt_05 325.8

Order_0000002 Pdt_03 522.8

Order_0000002 Pdt_04 122.4

Order_0000003 Pdt_01 222.8

7.2.4

8. 5 -

8.1

8.1.1

Order_0000003 Pdt_01 322.8

id id

 MultipleOutputs

 reducer 'part-r-
00000' MultipleOutputs key ‘Order_0000001-r-
00000’

 map ‘ id’ key reduce
MultipleOutputs key key

 ‘Order_0000001-r-00000’

Order_0000001,Pdt_05,25.8
Order_0000001,Pdt_01,222.8

 multioutput pom.xml :

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="h
ttp://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http:
//maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>

 <groupId>demo.mr</groupId>
 <artifactId>mapreduce-multipleOutput</artifactId>
 <version>0.0.1-SNAPSHOT</version>
 <packaging>jar</packaging>

 <name>mapreduce-multipleOutput</name>
 <url>http://maven.apache.org</url>

8.1.2

8.2

8.2.1

 <properties>
 <project.build.sourceEncoding>UTF-8</project.build.sour
ceEncoding>
 </properties>

 <dependencies>
 <!-- https://mvnrepository.com/artifact/commons-beanuti
ls/commons-beanutils -->
 <dependency>
 <groupId>commons-beanutils</groupId>
 <artifactId>commons-beanutils</artifactId>
 <version>1.9.3</version>
 </dependency>

 <!-- https://mvnrepository.com/artifact/org.apache.hado
op/hadoop-common -->
 <dependency>
 <groupId>org.apache.hadoop</groupId>
 <artifactId>hadoop-common</artifactId>
 <version>2.7.3</version>
 </dependency>
 <!-- https://mvnrepository.com/artifact/org.apache.hado
op/hadoop-hdfs -->
 <dependency>
 <groupId>org.apache.hadoop</groupId>
 <artifactId>hadoop-hdfs</artifactId>
 <version>2.7.3</version>
 </dependency>
 <!-- https://mvnrepository.com/artifact/org.apache.hado
op/hadoop-mapreduce-client-common -->
 <dependency>
 <groupId>org.apache.hadoop</groupId>
 <artifactId>hadoop-mapreduce-client-common</artifac
tId>
 <version>2.7.3</version>
 </dependency>
 <!-- https://mvnrepository.com/artifact/org.apache.hado
op/hadoop-mapreduce-client-core -->
 <dependency>
 <groupId>org.apache.hadoop</groupId>
 <artifactId>hadoop-mapreduce-client-core</artifactI
d>
 <version>2.7.3</version>
 </dependency>
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>

 <version>3.8.1</version>
 <scope>test</scope>
 </dependency>
 </dependencies>
</project>

 src/main/java

├── pom.xml
#""#"" src
 └── main
 └── java

mapreduce src/main/java/MultipleOutputTest.java

import java.io.IOException;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.MultipleOutputs;

public class MultipleOutputTest {
 static class MyMapper extends Mapper<LongWritable, Text, Te
xt, Text> {
 @Override
 protected void map(LongWritable key, Text value, Contex
t context) throws IOException, InterruptedException {

 String line = value.toString();
 String[] fields = line.split(",");
 context.write(new Text(fields[0]), value);

8.2.2

 }
 }

 static class MyReducer extends Reducer<Text, Text, NullWrit
able, Text> {
 private MultipleOutputs<NullWritable, Text> multipleOut
puts;

 protected void setup(Context context) throws IOExceptio
n, InterruptedException {
 multipleOutputs = new MultipleOutputs<NullWritable,
 Text>(context);
 }

 @Override
 protected void reduce(Text key, Iterable<Text> values,
Context context)
 throws IOException, InterruptedException {

 for (Text value : values) {
 multipleOutputs.write(NullWritable.get(), value
, key.toString());

 }
 }

 protected void cleanup(Context context) throws IOExcept
ion, InterruptedException {
 multipleOutputs.close();
 }
 }

 public static void main(String[] args) throws Exception {
 Configuration conf = new Configuration();
 Job job = Job.getInstance(conf);
 job.setJarByClass(MultipleOutputTest.class);

 job.setMapperClass(MyMapper.class);
 job.setReducerClass(MyReducer.class);

 job.setMapOutputKeyClass(Text.class);
 job.setMapOutputValueClass(Text.class);

 job.setOutputKeyClass(NullWritable.class);
 job.setOutputValueClass(Text.class);

 FileInputFormat.setInputPaths(job, new Path(args[0]));

 FileOutputFormat.setOutputPath(job, new Path(args[1]));

 //
 job.waitForCompletion(true);
 }
}

 pom.xml

mvn package

 target jar

├── pom.xml
├── src
│ └── main
│ └── java
│ └── MultipleOutputTest.java
└── target
 ├── ...
 ├── mapreduce-multipleOutput-0.0.1-SNAPSHOT.jar

 target jar hadoop

hadoop jar mapreduce-multipleOutput-0.0.1-SNAPSHOT.jar Multiple
OutputTest /orders.txt /output-multi

hdfs dfs -ls /output-multi

8.2.3

8.2.4

 MapReduce

1 maptask
2 mapper map
3 reducer map reduce

 MapReduce

 mapper
inputform RecordReader reducer GroupingComparator

1

9. MapReduce

maptask

inputformat RecordReader
RecordReader key value Mapper map

2

 Mapper map context.write ‘ ’

 context.write OutputCollector
OutputCollector ‘ ’

‘ ’

80%

 map

map

reducetask maptask

 GroupingComparaor

reducetask

 key

 reduce

 map reduce

2

 order

id date pid amount

10. 6 - join

10.1

10.1.1

1001 20170310 P0001 2

1002 20170410 P0001 3

1002 20170410 P0002 3

 product

id pname category_id price

P0001 5 1000 2

P0002 T1 1000 3

 mapreduce SQL

select o.id order_id, o.date, o.amount, p.id p_id, p.pname, p.c
ategory_id, p.price
from t_order o join t_product p on o.pid = p.id

SQL

order_id date p_id pname category_id price

1001 20170310 P0001 5 1000 2

1002 20170410 P0001 5 1000 2

1002 20170410 P0002 T1 1000 3

1 bean

SQL bean

bean flag

2 map

10.1.2

map

 bean flag 0 order,
1 product

join 'productid' key bean value

3 reduce

reduce pid bean

 bean bean
bean

bean bean

 jointest pom.xml :

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="h
ttp://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http:
//maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>

 <groupId>demo.mr</groupId>
 <artifactId>mapreduce-jointest</artifactId>
 <version>0.0.1-SNAPSHOT</version>
 <packaging>jar</packaging>

 <name>mapreduce-jointest</name>
 <url>http://maven.apache.org</url>

 <properties>
 <project.build.sourceEncoding>UTF-8</project.build.sour
ceEncoding>
 </properties>

10.2

10.2.1

 <dependencies>
 <!-- https://mvnrepository.com/artifact/commons-beanuti
ls/commons-beanutils -->
 <dependency>
 <groupId>commons-beanutils</groupId>
 <artifactId>commons-beanutils</artifactId>
 <version>1.9.3</version>
 </dependency>

 <!-- https://mvnrepository.com/artifact/org.apache.hado
op/hadoop-common -->
 <dependency>
 <groupId>org.apache.hadoop</groupId>
 <artifactId>hadoop-common</artifactId>
 <version>2.7.3</version>
 </dependency>
 <!-- https://mvnrepository.com/artifact/org.apache.hado
op/hadoop-hdfs -->
 <dependency>
 <groupId>org.apache.hadoop</groupId>
 <artifactId>hadoop-hdfs</artifactId>
 <version>2.7.3</version>
 </dependency>
 <!-- https://mvnrepository.com/artifact/org.apache.hado
op/hadoop-mapreduce-client-common -->
 <dependency>
 <groupId>org.apache.hadoop</groupId>
 <artifactId>hadoop-mapreduce-client-common</artifac
tId>
 <version>2.7.3</version>
 </dependency>
 <!-- https://mvnrepository.com/artifact/org.apache.hado
op/hadoop-mapreduce-client-core -->
 <dependency>
 <groupId>org.apache.hadoop</groupId>
 <artifactId>hadoop-mapreduce-client-core</artifactI
d>
 <version>2.7.3</version>
 </dependency>
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>3.8.1</version>
 <scope>test</scope>
 </dependency>
 </dependencies>

</project>

 src/main/java

├── pom.xml
#""#"" src
 └── main
 └── java

** bean: ** src/main/java/InfoBean.java

import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;

import org.apache.hadoop.io.Writable;

public class InfoBean implements Writable {

 private int order_id;
 private String dateString;
 private String p_id;
 private int amount;
 private String pname;
 private int category_id;
 private float price;

 // flag=0
 // flag=1
 private String flag;

 public InfoBean() {
 }

 public void set(int order_id, String dateString, String p_i
d, int amount, String pname, int category_id, float price, Stri
ng flag) {
 this.order_id = order_id;
 this.dateString = dateString;
 this.p_id = p_id;

10.2.2

 this.amount = amount;
 this.pname = pname;
 this.category_id = category_id;
 this.price = price;
 this.flag = flag;
 }

 public int getOrder_id() {
 return order_id;
 }

 public void setOrder_id(int order_id) {
 this.order_id = order_id;
 }

 public String getDateString() {
 return dateString;
 }

 public void setDateString(String dateString) {
 this.dateString = dateString;
 }

 public String getP_id() {
 return p_id;
 }

 public void setP_id(String p_id) {
 this.p_id = p_id;
 }

 public int getAmount() {
 return amount;
 }

 public void setAmount(int amount) {
 this.amount = amount;
 }

 public String getPname() {
 return pname;
 }

 public void setPname(String pname) {
 this.pname = pname;
 }

 public int getCategory_id() {
 return category_id;
 }

 public void setCategory_id(int category_id) {
 this.category_id = category_id;
 }

 public float getPrice() {
 return price;
 }

 public void setPrice(float price) {
 this.price = price;
 }

 public String getFlag() {
 return flag;
 }

 public void setFlag(String flag) {
 this.flag = flag;
 }

 /**
 * private int order_id; private String dateString; private
 int p_id;
 * private int amount; private String pname; private int ca
tegory_id;
 * private float price;
 */
 public void write(DataOutput out) throws IOException {
 out.writeInt(order_id);
 out.writeUTF(dateString);
 out.writeUTF(p_id);
 out.writeInt(amount);
 out.writeUTF(pname);
 out.writeInt(category_id);
 out.writeFloat(price);
 out.writeUTF(flag);

 }

 public void readFields(DataInput in) throws IOException {
 this.order_id = in.readInt();
 this.dateString = in.readUTF();
 this.p_id = in.readUTF();

 this.amount = in.readInt();
 this.pname = in.readUTF();
 this.category_id = in.readInt();
 this.price = in.readFloat();
 this.flag = in.readUTF();

 }

 @Override
 public String toString() {
 return "order_id=" + order_id + ", dateString=" + dateS
tring + ", p_id=" + p_id + ", amount=" + amount + ", pname=" +
pname + ", category_id=" + category_id + ", price=" + price + "
, flag=" + flag;
 }
}

mapreduce src/main/java/JoinMR.java

import java.io.IOException;
import java.util.ArrayList;

import org.apache.commons.beanutils.BeanUtils;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.FileSplit;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class JoinMR {
 static class JoinMRMapper extends Mapper<LongWritable, Text
, Text, InfoBean> {
 InfoBean bean = new InfoBean();
 Text k = new Text();

 @Override
 protected void map(LongWritable key, Text value, Contex
t context) throws IOException, InterruptedException {

 String line = value.toString();

 String[] fields = line.split("\t");

 FileSplit inputSplit = (FileSplit) context.getInput
Split();
 String filename = inputSplit.getPath().getName();

 String pid = "";
 if (filename.startsWith("order")) {
 pid = fields[2];
 bean.set(Integer.parseInt(fields[0]), fields[1]
, pid, Integer.parseInt(fields[3]), "", 0, 0, "0");
 } else {
 pid = fields[0];
 bean.set(0, "", pid, 0, fields[1], Integer.pars
eInt(fields[2]), Float.parseFloat(fields[3]), "1");
 }

 k.set(pid);
 context.write(k, bean);
 }
 }

 static class JoinMRReducer extends Reducer<Text, InfoBean,
InfoBean, NullWritable> {
 @Override
 protected void reduce(Text pid, Iterable<InfoBean> bean
s, Context context)
 throws IOException, InterruptedException {

 InfoBean pdBean = new InfoBean();
 ArrayList<InfoBean> orderBeans = new ArrayList<Info
Bean>();

 try {
 for (InfoBean bean : beans) {
 // product
 if ("1".equals(bean.getFlag())) {
 BeanUtils.copyProperties(pdBean, bean);
 }else{
 InfoBean odbean = new InfoBean();
 BeanUtils.copyProperties(odbean, bean);
 orderBeans.add(odbean);
 }
 }
 } catch (Exception e) {

 }

 for(InfoBean bean : orderBeans){
 bean.setPname(pdBean.getPname());
 bean.setCategory_id(pdBean.getCategory_id());
 bean.setPrice(pdBean.getPrice());

 context.write(bean, NullWritable.get());
 }
 }
 }

 public static void main(String[] args) throws Exception {
 Configuration conf = new Configuration();
 Job job = Job.getInstance(conf);

 // jar
 job.setJarByClass(JoinMR.class);

 // job mapper/Reducer
 job.setMapperClass(JoinMRMapper.class);
 job.setReducerClass(JoinMRReducer.class);

 // mapper kv
 job.setMapOutputKeyClass(Text.class);
 job.setMapOutputValueClass(InfoBean.class);

 // kv
 job.setOutputKeyClass(InfoBean.class);
 job.setOutputValueClass(NullWritable.class);

 // job
 FileInputFormat.setInputPaths(job, new Path(args[0]));
 // job
 FileOutputFormat.setOutputPath(job, new Path(args[1]));

 // job job java jar
yarn
 /*job.submit();*/
 boolean res = job.waitForCompletion(true);
 System.exit(res?0:1);
 }
}

 pom.xml

10.2.3

mvn package

 target jar

├── pom.xml
├── src
│ └── main
│ └── java
│ ├── InfoBean.java
│ └── JoinMR.java
└── target
 ├── ...
 ├── mapreduce-jointest-0.0.1-SNAPSHOT.jar

 target jar hadoop

: https://pan.baidu.com/s/1pLRnm47 : cg7x

: https://pan.baidu.com/s/1pLrvsfT : j2zb

 hdfs

hdfs dfs -mkdir -p /jointest/input
hdfs dfs -put order.txt /jointest/input
hdfs dfs -put product.txt /jointest/input

hadoop jar joinmr.jar com.dys.mapreducetest.join.JoinMR /jointe
st/input /jointest/output

10.2.4

hdfs dfs -cat /jointest/output/*

A:B,C,D,F,E,O
B:A,C,E,K
C:F,A,D,I
D:A,E,F,L
E:B,C,D,M,L
F:A,B,C,D,E,O,M
G:A,C,D,E,F
H:A,C,D,E,O
I:A,O
J:B,O
K:A,C,D
L:D,E,F
M:E,F,G
O:A,H,I,J

2 C E A B

A-B E C
A-C D F
A-D E F
A-E D B C
A-F O B C D E

11. 7 -

11.1

11.1.1

11.1.2

 mapreduce 2 mapreduce

1 1 mapreduce

map

 A:B,C,D,F,E,O A
 A

 <B,A> <C,A> <D,A> <F,A> <E,A> <O,A>

 B:A,C,E,K

 <A,B> <C,B> <E,B> <K,B>

...

reduce

key

 <C,A><C,B><C,E><C,F><C,G>......

key C

value: [A, B, E, F, G]

C

 value

A B C
A E C
...
B E C
B F C

<A-B,C>
<A-E,C>

<A-F,C>
<A-G,C>
<B-E,C>
<B-F,C>
.....

2 2 mapreduce

map

 key value

 <A-B,C>

 <A-B,C>

reduce

key

 <A-B,C><A-B,F><A-B,G>.......

 A-B C,F,G,.....

 jointest pom.xml :

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="h
ttp://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http:
//maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>

11.2

11.2.1

 <groupId>demo.mr</groupId>
 <artifactId>mapreduce-friends</artifactId>
 <version>0.0.1-SNAPSHOT</version>
 <packaging>jar</packaging>

 <name>mapreduce-friends</name>
 <url>http://maven.apache.org</url>

 <properties>
 <project.build.sourceEncoding>UTF-8</project.build.sour
ceEncoding>
 </properties>

 <dependencies>
 <!-- https://mvnrepository.com/artifact/commons-beanuti
ls/commons-beanutils -->
 <dependency>
 <groupId>commons-beanutils</groupId>
 <artifactId>commons-beanutils</artifactId>
 <version>1.9.3</version>
 </dependency>

 <!-- https://mvnrepository.com/artifact/org.apache.hado
op/hadoop-common -->
 <dependency>
 <groupId>org.apache.hadoop</groupId>
 <artifactId>hadoop-common</artifactId>
 <version>2.7.3</version>
 </dependency>
 <!-- https://mvnrepository.com/artifact/org.apache.hado
op/hadoop-hdfs -->
 <dependency>
 <groupId>org.apache.hadoop</groupId>
 <artifactId>hadoop-hdfs</artifactId>
 <version>2.7.3</version>
 </dependency>
 <!-- https://mvnrepository.com/artifact/org.apache.hado
op/hadoop-mapreduce-client-common -->
 <dependency>
 <groupId>org.apache.hadoop</groupId>
 <artifactId>hadoop-mapreduce-client-common</artifac
tId>
 <version>2.7.3</version>
 </dependency>
 <!-- https://mvnrepository.com/artifact/org.apache.hado
op/hadoop-mapreduce-client-core -->
 <dependency>

 <groupId>org.apache.hadoop</groupId>
 <artifactId>hadoop-mapreduce-client-core</artifactI
d>
 <version>2.7.3</version>
 </dependency>
 </dependencies>
</project>

 src/main/java

├── pom.xml
#""#"" src
 └── main
 └── java

 mapreduce src/main/java/StepFirst.java

import java.io.IOException;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class StepFirst {
 static class FirstMapper extends Mapper<LongWritable, Text,
 Text, Text> {
 @Override
 protected void map(LongWritable key, Text value, Mapper
<LongWritable, Text, Text, Text>.Context context)
 throws IOException, InterruptedException {

 String line = value.toString();
 String[] arr = line.split(":");
 String user = arr[0];

11.2.2

 String friends = arr[1];

 for(String friend : friends.split(",")){
 context.write(new Text(friend), new Text(user))
;
 }
 }
 }

 static class FirstReducer extends Reducer<Text, Text, Text,
 Text> {
 @Override
 protected void reduce(Text friend, Iterable<Text> users
, Context context)
 throws IOException, InterruptedException {

 StringBuffer buf = new StringBuffer();
 for(Text user : users){
 buf.append(user).append(",");
 }

 context.write(new Text(friend), new Text(buf.toStri
ng()));
 }
 }

 public static void main(String[] args) throws Exception {
 //
 Configuration conf = new Configuration();
 Job job = Job.getInstance(conf);
 job.setJarByClass(StepFirst.class);

 //
 job.setOutputKeyClass(Text.class);
 job.setOutputValueClass(Text.class);

 // map reduce
 job.setMapperClass(FirstMapper.class);
 job.setReducerClass(FirstReducer.class);

 //
 FileInputFormat.setInputPaths(job, new Path(args[0]));
 FileOutputFormat.setOutputPath(job, new Path(args[1]));

 //
 job.waitForCompletion(true);

 }
}

 mapreduce src/main/java/StepSecond.java

import java.io.IOException;
import java.util.Arrays;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class StepSecond {
 static class SecondMapper extends Mapper<LongWritable, Text
, Text, Text> {
 @Override
 protected void map(LongWritable key, Text value, Mapper
<LongWritable, Text, Text, Text>.Context context)
 throws IOException, InterruptedException {

 String line = value.toString();
 String[] friend_users = line.split("\t");

 String friend = friend_users[0];
 String[] users = friend_users[1].split(",");

 Arrays.sort(users);

 for(int i=0; i<users.length - 1; i++){
 for(int j=i+1; j<users.length; j++){
 //
 context.write(new Text(users[i] + "-" + use
rs[j]), new Text(friend));
 }
 }
 }
 }

 static class SecondReducer extends Reducer<Text, Text, Text
, Text> {

 @Override
 protected void reduce(Text user_user, Iterable<Text> fr
iends, Context context)
 throws IOException, InterruptedException {

 StringBuffer buf = new StringBuffer();
 for(Text friend : friends){
 buf.append(friend).append(" ");
 }

 context.write(user_user, new Text(buf.toString()));
 }
 }

 public static void main(String[] args) throws Exception {
 //
 Configuration conf = new Configuration();
 Job job = Job.getInstance(conf);
 job.setJarByClass(StepSecond.class);

 //
 job.setOutputKeyClass(Text.class);
 job.setOutputValueClass(Text.class);

 // map reduce
 job.setMapperClass(SecondMapper.class);
 job.setReducerClass(SecondReducer.class);

 //
 FileInputFormat.setInputPaths(job, new Path(args[0]));
 FileOutputFormat.setOutputPath(job, new Path(args[1]));

 //
 job.waitForCompletion(true);

 }
}

 pom.xml

mvn package

11.2.3

 target jar

├── pom.xml
├── src
│ └── main
│ └── java
│ ├── StepFirst.java
│ └── StepSecond.java
└── target
 ├── ...
 ├── mapreduce-friends-0.0.1-SNAPSHOT.jar

 target jar hadoop

: https://pan.baidu.com/s/1o8fmfbG : kbut

 hdfs

hdfs dfs -mkdir -p /friends/input
hdfs dfs -put friendsdata.txt /friends/input

hadoop jar mapreduce-friends-0.0.1-SNAPSHOT.jar StepFirst /frie
nds/input/friendsdata.txt /friends/output01

hadoop jar mapreduce-friends-0.0.1-SNAPSHOT.jar StepSecond /fri
ends/output01/part-r-00000 /friends/output02

11.2.4

hdfs dfs -ls /friends/output02
hdfs dfs -cat /friends/output02/*

MapReduce MapReduce

 yogoup

12.

	1. MapReduce 基本原理
	MapReduce 通俗解释
	MapReduce中有两个核心操作

	MapReduce 工作过程拆解
	处理过程

	MapReduce 编程思路

	2. MapReduce 入门示例 - WordCount 单词统计
	2.1 安装 Hadoop 实践环境
	2.2 创建项目
	2.3 代码
	2.4 编译打包
	2.5 运行

	3. MapReduce 执行过程分析
	4. 实例1 - 自定义对象序列化
	4.1 需求与实现思路
	4.1.1 需求
	4.1.2 实现思路

	4.2 代码实践
	4.2.1 创建项目
	4.2.2 代码
	4.2.3 编译打包
	4.2.4 运行

	5. 实例2 - 自定义分区
	5.1 需求与实现思路
	5.1.1 需求
	5.1.2 实现思路

	5.2 代码实践
	5.2.1 创建项目
	5.2.2 代码
	5.2.3 编译打包
	5.2.4 运行

	6. 实例3 - 计算出每组订单中金额最大的记录
	6.1 需求与实现思路
	6.1.1 需求
	6.1.2 实现思路

	6.2 代码实践
	6.2.1 创建项目
	6.2.2 代码
	6.2.3 编译打包
	6.2.4 运行

	7. 实例4 - 合并多个小文件
	7.1 需求与实现思路
	7.1.1 需求
	7.1.2 实现思路

	7.2 代码实践
	7.2.1 创建项目
	7.2.2 代码
	7.2.3 编译打包
	7.2.4 运行

	8. 实例5 - 分组输出到多个文件
	8.1 需求与实现思路
	8.1.1 需求
	8.1.2 实现思路

	8.2 代码实践
	8.2.1 创建项目
	8.2.2 代码
	8.2.3 编译打包
	8.2.4 运行

	9. MapReduce 核心流程梳理
	maptask 中的处理流程
	reducetask 的处理流程
	整体流程

	10. 实例6 - join 操作
	10.1 需求与实现思路
	10.1.1 需求
	10.1.2 实现思路

	10.2 代码实践
	10.2.1 创建项目
	10.2.2 代码
	10.2.3 编译打包
	10.2.4 运行

	11. 实例7 - 计算出用户间的共同好友
	11.1 需求与实现思路
	11.1.1 需求
	11.1.2 实现思路

	11.2 代码实践
	11.2.1 创建项目
	11.2.2 代码
	11.2.3 编译打包
	11.2.4 运行

	12. 小结

