
Building Online HBase Cluster of Zhihu Based on Kubernetes

• HBase at Zhihu
• Using Kubernetes
• HBase Online Platform

Agenda

• HBase at Zhihu
• Using Kubernetes
• HBase Online Platform

HBase at Zhihu

• Offline

• Physical machine, more than 200 nodes.

• Working with Spark/Hadoop.

• Online

• Based on Kubernetes, more than 300 containers.

Our online storage
• mysql

• used in most business

• some need scale, some need transform

• all SSD expensive

• Redis

• cache and partial storage

• no shard

• expensive

• HBase / Cassandra / Rocksdb etc. ?

At the beginning

• All business at one big cluster

• Also runs Nodemanager and ImpalaServer

• Basically operation

• Physical node level monitor

What we want
• From Business Sight

• environment isolation

• SLA definition

• business level monition

• From Operation Sight

• balance resource (CPU, I/O, RAM)

• friendly api

• controllable costs

Make HBase as a Service.

In one word:

• HBase at Zhihu
• Using Kubernetes
• HBase Online Platform

Zhihu’s Unified Cluster Manage Platfom

Kubernetes
• Cluster resource manager and scheduler

• Using container to isolate resource

• Application management

• Perfect API and active community

Failover Design
• Component Level

• Cluster Level

• Data Replication

• HMaster -> use ZooKeeper

• RegionServer -> Stateless designed

• ThriftServer -> use proxy

• HFile -> ???

Component Level

Component Level - HFile

• Shared HDFS Cluster

• Keep the whole cluster stateless

Cluster Level

• What if cluster is down ?

• Component -> Kubernetes ReplicationSet

• What if Kubernetes is down ?

• Mixed deployment

• Few physical nodes with high CPU && RAM

Data Replication

• Replication in cluster

• HDFS built in (3 replicas)

• Replication between clusters

• snapshot + bulk load

• HBase replication

• Offline cluster doing MR / Spark

• HBase at Zhihu
• Using Kubernetes
• HBase Online Platform

Physical Node Resource

• CPU: 2 * 12 core

• Memory: 128 G

• Disk: 4 T

Resource Definition (1)

• Minimize the resource

• Business scaled by number of containers

• Pros

• reduce resource wasted per node

• simplified debug

• Cons

• minimum resource not easy to define by business

• hardly tune params for RAMs and GC

Resource Definition (2)

• Customize container resource by business

• Business scaled by number of containers

• Pros

• flexible RAM config and tuning (especially
non-heap size)

• used in production

Container Configuration
• Params inject to container via ENV

• Add xml config to container

• Use start-env.sh to init configuration

• Modify params during cluster running is permitted

RegionServer G1GC (thanks Xiaomi)
-XX:+UnlockExperimentalVMOptions

-XX:MaxGCPauseMillis=50

-XX:G1NewSizePercent=5

-XX:InitiatingHeapOccupancyPercent=45

-XX:+ParallelRefProcEnabled

-XX:ConcGCThreads=2

-XX:ParallelGCThreads=8

-XX:MaxTenuringThreshold=15

-XX:G1OldCSetRegionThresholdPercent=10

-XX:G1MixedGCCountTarget=16

-XX:MaxDirectMemorySize=256M

Network
• Dedicated ip per container

• DNS register/deregister automatically

• Modified /etc/hosts for pod

Manage Cluster

• Platform controls cluster

• Kubernetes schedule resources

• Shared HDFS and ZK cluster

• Cons:

• fully scan still impact whole cluster

• no locality && short circuit holly

Client Design

• For Java/Scala

• native HBase client

• only offer ZK address to business

• For Python

• happybase

• client proxy

• service discovery

API Server

• Bridge between Kubernetes and business user

• Encapsulate component of a HBase cluster

• Restful API

• Friendly interface

Monitor Cluster
• Physical nodes Level

• nodes cpu loads && usage (via IT)

• Cluster Level

• pods cpu loads (via Kubernetes)

• read && write rate , P95, cacheHit (via JMX)

• Table Level

• client write speed && read latency (via tracing)

• thrift server (via JMX)

• proxy concurrency (via DNS/haproxy monitor)

Current Situation

• 10 online business on platform

• More than 300 containers

• 100% SLA

Benefits
• Easy

• Isolate

• Flexible

Easy

• No code needed

• HBase container publish independently

• Deployment and orchestration straight forward

• Decoupled from physical nodes

Isolate
• table

• thrift

• monitor

Flexible
• Muti version

• mostly cdh5.5.0-hbase1.0.0

• one upgrade to 1.2 (HBASE-14283)

• customize version easily

• Configuration motivated by business

• low latency -> replica read

• high random read -> closed block cache

• etc.

https://issues.apache.org/jira/browse/HBASE-14283

Next
• Enhance performance

• Use Netty on ThriftServer

• Python HBase Client

• SSD for Datanode

• Auto scale

• by RegionServer number

• by JVM heap

• etc.

Thanks!

