
1

Ecosystems built with HBase and

CloudTable service at Huawei

Jieshan Bi, Yanhui Zhong



2

Agenda

CTBase: A light weight HBase client for structured data

Tagram: Distributed bitmap index implementation with HBase

CloudTable service(HBase on Huawei Cloud) 



3

CTBase Design Motivation

 Most of our customer scenarios are structured data

 HBase secondary index is a basic requirement

 New application indicated new HBase secondary development

 Simple cross-table join queries are common

 Full text index is also required for some customer scenarios



4

CTBase Features

 Schematized table

 Global secondary index

 Cluster table for simple cross-table join queries

 Online schema changes

 JSON based query DSL



5

Schematized Table

UserTable
Service conceptual user table for 
storing user data

Column

User table column:
Each column indicates an 
attribute of service data.

Index
Primary index:
Rowkey of table that stored the user data,
indicating the search scenario with the
highest probability
Secondary index:
Saves the information about the index to
the primary index.

Qualifier

HBase column:
Each column indicates a 
KeyValue.

contains

contains mapping

Index RowKey 
Column 1 Column 2 Column 3

Schematized Tables is better for structured user data storage. A 

lot of modern NewSQL databases likes MegaStore, Spanner, F1, 

Kudu are designed based on schematized tables.



6

CTBase provide schema definition API. Schema definition includes:

 Table Creation 

A user table will be exist as simple or cluster table mode.

 Column Definition

Column is a similar concept with RDBMS. A column has specific type and length limit.

 Qualifier Definition

Column to ColumnFamily:Qualifier mapping. CTBase supports composite column, multiple column 

can be stored into one same ColumnFamily:Qualifier.

 Index Definition

An index is either primary or secondary. The major part of index definition is the index rowkey

definition. Some hot columns can also be stored in secondary row.

Schema Manager



7

 Meta Cache

Each client has a schema locally in memory for fast data conversion. 

 Meta Backup/Recovery Tool

Schema data can be exported as data file for fast recovery.

 Schema Changes

• Column changes

• Qualifier changes

• Index changes

Some changes are light-weight since they can take advantage of the scheme-less characteristics

of HBase. But some changes may cause the existing data to rebuild. 

Schema Manager Cont.



8

HBase Global Secondary Index

NAME ID

Ariya I0000005

Bai I0000006

He I0000004

Lily I0000001

Lina I0000003

Lina I9999999

Lisa I0000008

Wang I0000002

Wang I0000007

……. ………….

Xiao I0000009

ID NAME PROVINCE GENDER PHONE AGE

I0000001 Lily Shandong MALE 13322221111 20

I0000002 Wang Guangdong FEMAIL 13222221111 15

I0000003 Lina Shanxi FEMAIL 13522221111 13

I0000004 He Henan MALE 13333331111 18

I0000005 Ariya Hebei FEMAIL 13344441111 28

I0000006 Bai Hunan MALE 15822221111 30

I0000007 Wang Hubei FEMAIL 15922221111 35

I0000008 Lisa Heilongjiang MALE 15844448888 38

I0000009 Xiao Jilin MALE 13802514000 38

…………. ……. …… ………. ………………….. ….

I9999999 Lina Liaoning MALE 13955225522 70

NAME =‘Lina’

Secondary index is for non-key column based queries.
Global secondary index is better for OLTP-like queries with 
small batch results.

Region1

Region2

Region3

Region4

IndexRegionA

IndexRegionB

User Region Index Region



9

HBase Global Secondary Index Cont.

Section Section Section

Index RowKey Format

Suppose table UserInfo includes below 5 columns：
ID, NAME, ADDRESS, PHONE,DATE

Primary key are composed with 3 sections：
Section 1: ID
Section 2: NAME
Section 3: truncate(DATE, 8)

So the primary rowkey is:

Secondary Index Key

IDNAME

Secondary index key for NAME index:

Ｈ Ｈ

Secondary index key for PHONE index:

ID NAME truncate(DATE, 8)

………….

Primary Key

Section is normally related to one user column, but can also be a 
constant or a random number.

truncate(DATE, 8)
Ｈ

ID NAME
ＨＨ

truncate(DATE, 8)
Ｈ

PHONE

NOTE：Sections with         are also exist in primary key Ｈ



10

Example:  select  a.account_id, a.amount, b.account_name, b.account_balance from Transactions a
left join AccountInfo b  on a.account_id = b.account_id where a.account_id = “xxxxxxx”

account_id amount time

A0001 $100 12/12/2014 18:00:02

A0001 $1020 10/12/2014 15:30:05

A0001 $89 09/12/2014 13:00:07

A0002 $105 11/12/2014 20:15:00

account_id account_name account_balance

A0001 Andy $100232

A0002 Lily $902323

A0003 Selina $90000

A0004 Anna $102320

A0001 Andy $100232

A0001 $100 12/12/2014 18:00:02

A0001 $1020 10/12/2014 15:30:05

A0001 $89 09/12/2014 13:00:07

A0002 Lily $902323

A0002 $105 11/12/2014 20:15:00

A0002 $129 11/11/2014 18:15:00

Records from different 

business-level user 

table stored together

Transaction record

AccountInfo record

Pre-Joining with Keys: A better solution for cross-table join in 
HBase. Records come from different tables but have some same 
primary key columns can be stored adjacent to each other, so the 
cross-table join turns into a sequential scan.

Cluster Table



11

Table table = null;

try {

table = conn.getTable(TABLE_NAME);

// Generate RowKey.

String rowKey = record.getId() + SEPERATOR + record.getName();

Put put = new Put(Bytes.toBytes(rowKey));

// Add name.

put.add(FAMILY, Bytes.toBytes("N"), Bytes.toBytes(record.getName()));

// Add phone.

put.add(FAMILY, Bytes.toBytes("P"), Bytes.toBytes(record.getPhone()));

// Add composite columns.

String compositeColumn = record.getAddress() + SEPERATOR

+ record.getAge() + SEPERATOR + record.getGender();

put.add(FAMILY, Bytes.toBytes("Z"), Bytes.toBytes(compositeColumn));

table.put(put);

} catch (IOException e) {

// Handle exception. 

} finally {

// ……..

}

ClusterTableInterface table = null;

try {

table = new ClusterTable(conf, CLUSTER_TABLE);

CTRow row = new CTRow();

// Add all columns.

row.addColumn("ID", record.getId());

row.addColumn("NAME", record.getName());

row.addColumn("Address", record.getAddress());

row.addColumn("Phone", record.getPhone());

row.addColumn("Age", record.getAge());

row.addColumn("Gender", record.getGender());

table.put(USER_TABLE, row);

} catch (IOException e) {

// Handle exception.

} finally {

// ………….

}

RowKey/Put/KeyValue are not visible to application directly. 
Secondary index row will be auto-generated by CTBase. 

ClusterTable Write Vs. HBase Write



12

JSON Based Query DSL

{

table: “TableA",

conditions: [“ID": “23470%", “CarNo": “A1?234", 

“Color”: “Yello || Black || White”],

columns: ["ID", “Time", “CarNo", “Color”],

caching: 100

}

 Flexible and powerful query API.

 Support for below operators: 

Range Query Operator:   >, >=, <, <=

Logic Operator: &&, ||

Fuzzy Query Operator: ?, *, %

 Index name can be specified, or just depend 
on imbedded RBO to choose the best index.

 Using exist or customized filters to push 
down queries for decreasing query latency.

JSON

Query Executor

JSON Analyzer

Rule Based Optimizer

Query Plan

Result Scanner

Result



13

Bulk Load

Local 
Schema

Structured 
Data

KeyValue
(User data)

KeyValue
(Index data)

HFile

HFile

 Schema has been defined in advance, including columns, column to qualifier 

mappings, index row key format, etc.  The only required configuration for bulk load 

task is the column orders of the data file.

 Secondary index related HFiles can be generated together in one bulk load task.



14

Future Work For CTBase

1. Better Full-Text index support.

2. Active-Active Clusters Client.

3. Better HFile format for structured data.



15

Agenda

CTBase: A  light weight HBase client for structured data

Tagram: Distributed Bitmap index implementation with HBase

CloudTable service(HBase on Huawei Cloud)



16

 Low-cardinality attributes are popularly used in Personas area,  these attributes are 

used to describe user/entity typical characteristics, behavior patterns, motivations. E.g. 

Attributes for describing buyer personas can help identify where your best customers 

spend time on the internet.

 Ad-hoc queries must be supported. Likes: 

“How many male customers have age < 30?”

“How many customers have these specific attributes?” 

“Which people appeared in Area-A, Area-B and Area-C between 9:00 and 12:00?”

 Solr/Elasticsearch based solutions are not fast enough for low-cardinality attributes 

based ad-hoc queries.   

Tagram Design Motivation



17

Tagram Introduction

 Distributed bitmap index implementation uses 

HBase as backend storage. 

 Milliseconds level latency for attribute based ad-

hoc queries.

 Each attribute value is called a Tag. Entity is called 

a TagHost. Each Tag relates to an independent 

bitmap. Hot tags related bitmaps are memory-

resident. 

 A Tag is either static or dynamic. Static tags must 

be defined in advance. Dynamic tags have no such 

restriction, likes Time-Space related tags.

Condition
GENDER:Male AND MARRIAGE:Married AND AGE:25-30

AND BLOOD_TYPE:A AND CAROWNER

Tagram Client

Query 
Execution

TagZone

101111010010...

011001011110...

101001011010...

101111011010...

101010011010...

&

&

&

&

Query 
Execution

Conditions

AST Tree

Query 
Optimization

Query Plan

TagZone

001111010010...

111001011110...

001101011010...

101001011010...

000010011010...

&

&

&

&

101111010010101...

Each bit represent 
whether an Entity 
have this attribute 

Each attribute value 
relates to a Bitmap

Conditions

AST Tree

Query 
Optimization

Query Plan



18

TagZone

HBase

Checkpoint Checkpoint

HDFS

Bitmap Container

Bitmap Bitmap Bitmap …

Dynamic Tag Loader

Query Cache

TagHostGroup

TagSource

StaticTag
ChangeLog

DynamicTag
PostingList

DTag

DynamicTag PostingList

Checkpoint

Bitmap Latest Data View

Changes
Base Delta

Service Threads

TagZone

Query CacheService Threads

Tagram Architecture

 TagZone service is initialized by 

HBase coprocessor. 

 Each TagZone is an independent 

bitmap computing unit.

 All the real-time writes and logs 

are stored in HBase.

 Use bitmap checkpoint for fast 

recovery during service initialization.

Bitmap Container

Bitmap Bitmap Bitmap …

Dynamic Tag Loader



19

Data Model

TagSource

TagHostGroup

TagHostGroup_TAGZONE

M

1

1

1

Inverted index of Tag to TagHosts

TagHost to Tags

TagHostID
(Any Type)

TID
(Integer)

Tags Meta data storage
 TagSource: Meta data storage for static tags, includes 

configurations per tag. 

 TagHostGroup: Uses TagHostID as key, and store all the 

tags as columns.

 TagZone:  Inverted index from Tag to TagHost list. 

Bitmap related data is also stored in this table. Partitions 

are decided during table creation, and can not split in 

future. 

 Each table is an independent HBase table.



20

Query 

Query grammar in BNF:
Query ::= ( Clause )+
Clause ::= ["AND", "OR", "NOT"] ([TagName:]TagValue| "(" Query ")" )

 A Query is a series of Clauses. Each Clause can also be a nested query.

 Supports AND/OR/NOT operators. AND indicates this clause is required, NOT 

indicates this clause is prohibited, OR indicates this clause should appear in the 

matching results. The default operator is OR is none operator specified.

 Parentheses “(” “)” can be used to improve the priority of a sub-query.



21

Query Example 

 Normal Query:

GENDER:Male AND MARRIAGE:Married AND AGE:25-30 AND BLOOD_TYPE:A

 Use parentheses “(” “)” to improve the priority of sub-query:

GENDER:Male AND MARRIAGE:Married AND (AGE:25-30 OR AGE:30-35) AND BLOOD_TYPE:A

 Minimum Number Should Match Query:

At least 2  of below 4 groups of conditions should be satisfied:  

(A1 B1 C1 D1 E1 F1 G1 H1) (A2 B2 C2 D2 E2 F2 G2 H2) (A3 B3 C3 D3 E3 F3 G3 H3) (A4 B4 C4 D4 E4 F4 G4 H4)

 Complex query with static and dynamic tags:

GENDER:Male AND MARRIAGE:Married AND AGE:25-30 AND CAROWNER AND $D:DTag1 AND $D:DTag2



22

Evaluation

Bitmap Cardinality In-memory Bytes On-Disk Size Bytes

5,000,000 15426632 10387402

10,000,000 29042504 20370176

50,000,000 140155632 99812920

100,000,000 226915200 198083304

Test results on small cluster：
3 Huawei 2288 Servers(256GB Memory, Intel(R) Xeon(R) CPU E5-2618L v3 @2.30GHZ*2 SATA,4TB*14)

1.5 Billion TagHosts, ~60 static Tags per TagHost.

Query with 10 random tags(Hundreds of thousands satisfied results), count and only return first screen 

results. Average query latency: 60ms。

Bitmap in-memory and on-disk size：

NOTE: 1. Bitmap cardinality is the number of bit 1 from the bitmap in binary form.
2. The positions with bit 1 are random integers between 0 and Integer.Max.
3. The distribution of bit 1(In Bitmap binary form) and the range may affect the bitmap size.              



23

Future Work For Tagram

1. Multiple TagZone Replica.

2. Async Tagram/HBase Client.

3. Better Bitmap Memory Management.

4. Integration with Graph/Full-Text index.



24

Agenda

CTBase: A light weight HBase client for structured data

Tagram: Distributed Bitmap index implementation with HBase

CloudTable service(HBase on Huawei Cloud)



25

 Easy Maintenance

 Security

 High Performance

 SLA

 High Availability

 Low Cost

CloudTable Service Features



26

VPC1 HBase VPC2 HBase

RegionServer

HDFS

HMaster HRegion
Memstoe
HFile

…

RegionS
erver

…ZK
…

Tenant VPC
Tenant

VPC

VPC3 HBase

Tenant
VPC

 Isolation by VPC

 Shared Storage

CloudTable Service On Huawei Cloud



27

HBase

Disk Disk Disk

Block 
Device

FileSystem

HDFS

HBase HBase

Disk Disk Disk Disk

Distribute Pool(Append only)

HDFS Interface

HBase HBase HBase

• A low-latency IO stack
• Deep Optimization With hardware

FileSystem FileSystem

Block 
Device

Block 
Device

Native HBase IO Stack

CloudTable IO Stack

CloudTable – IO Optimization



28

Region

HFile

HFile

HFile

HFile

HFile

HFile

HFile

HFile

HFile

HFile

HDFS Data Node

Region

HFile

HFile

HFile

HFile

HFile

HFile

Region Server

Read Write

Compaction Region

HFile

HFile

HFile

HFile

HFile

HFile

HFile

HFile

HFile

HFile

HDFS Data Node

Region

HFile

HFile

HFile

HFile

HFile

HFile

Region Server

Read

Write

Compaction

CMD：compactionOffload compaction

Smooth Performance

0

5000

10000

15000

20000

25000

1 4 7

1
0

1
3

1
6

1
9

2
2

2
5

2
8

3
1

3
4

3
7

4
0

4
3

4
6

4
9

5
2

5
5

5
8

6
1

6
4

6
7

7
0

7
3

7
6

7
9

8
2

8
5

8
8

9
1

9
4

9
7

1
0

0

1
0

3

1
0

6

1
0

9

1
1

2

1
1

5

1
1

8

1
2

1

1
2

4

1
2

7

1
3

0

TP
S normal

offload

CloudTable – Offload Compaction



29

HBase

Cluster

Arbitration 

Node1

Arbitration Cluster

Arbitration 

Node2

Arbitration 

Node3

HBase

Cluster

HBase

Cluster

HBase

Cluster

AZ1 AZ2

Sync Replication

Sync Replication

Heartbeat
 Cross AZ Replication

 Write: Strong Consistency

 Read: Timeline Consistency

 99.99% Availability

 99.9999999 Durability

 Auto Failover

CloudTable – High Availability



30

Disk Disk Disk Disk

Distribute Pool(Append only)

HDFS Interface

HBase Solr Other 
Services

Disk

 40% resource savings
From:Flash Storage Disaggregation

CloudTable – Low Cost



31

Thank You！

bijieshan@huawei.com zhongyanhui@huawei.com


