Ecosystems built with HBase and

CloudTable service at Huawei

Jieshan Bi, Yanhui Zhong

Agenda

CTBase: A light weight HBase client for structured data
Tagram: Distributed bitmap index implementation with HBase

CloudTable service(HBase on Huawei Cloud)

W2 Huawel

CTBase Design Motivation

® Most of our customer scenarios are structured data

® HBase secondary index is a basic requirement

® New application indicated new HBase secondary development
® Simple cross-table join queries are common

® Full text index is also required for some customer scenarios

W2 Huawel

CTBase Features

® Schematized table

® Global secondary index

® Cluster table for simple cross-table join queries
® Online schema changes

® JSON based query DSL

W2 Huawel

Schematized Table

@ = rTTTTTTTTTITToTTToTTToTTToTTTooTooomooomoooooooooes 1
~— 1 o go |
— : Column Qualifier !
D ! - . .. |

UserTable YrE === :

! = - - . !

) H =) User table column: @B @B @ HBase column: \

Service conceptual user table for I v Each column indicates an Each column indicatesa 1

storing user data i ______latibuteofservicedata. | KeyValue_ _________)

Index

1
1
Primary index: '
1
1
1
1

Index RowKey

e Rowkey of table that stored the user data, Columnl * Column2 *# Column3

@ indicating the search scenario with the

@ highest probability B e M - -
Secondary index: i = = =
Saves the information about the iNdeX t0 = =« o o o o & - C - C o o o o oo C e mmmmmmmmemmmmo -)
the primary index.

Schematized Tables is better for structured user data storage. A
lot of modern NewSQL databases likes MegaStore, Spanner, F1,

Kudu are designed based on schematized tables.

/3

%2 HUAWEI

Schema Manager

CTBase provide schema definition API. Schema definition includes:
® Table Creation
A user table will be exist as simple or cluster table mode.

® Column Definition
Column is a similar concept with RDBMS. A column has specific type and length limit.

® Qualifier Definition

Column to ColumnFamily:Qualifier mapping. CTBase supports composite column, multiple column
can be stored into one same ColumnFamily:Qualifier.

® Index Definition

An index is either primary or secondary. The major part of index definition is the index rowkey

definition. Some hot columns can also be stored in secondary row.

V2 Huawer

/3

Schema Manager Cont.

® Meta Cache

Each client has a schema locally in memory for fast data conversion.

® Meta Backup/Recovery Tool

Schema data can be exported as data file for fast recovery.

® Schema Changes

« Column changes

« Qualifier changes

« Index changes

Some changes are light-weight since they can take advantage of the scheme-less characteristics

of HBase. But some changes may cause the existing data to rebuild.

%2 HUAWEI

HBase Global Secondary Index

User Region

; .
. .
| .
. .
. .
| .
: . :
: Regionl . i
|

L
| b |
: i
| . A
1 -4 '
| Region2 ¢
: L 1Y
E % 4

j

E ¥
:
' il N
: /iR
: Region3 . i/
1 S
] in
1 [N
' "
: 4
: 'y
|]
| .
: Region4 :
| .
. .
. .
| .
. .
. .
| .
. .
. .
| .
. .
. .
| .
. .
. .
. .

Index Region

Secondary index is for non-key column based queries.

Global secondary index is better for OLTP-like queries with

small batch results.

_______________________________ , fem - ————
i : | NAME = ‘Lina’ |

D b | I 1_________I ID NAME PROVINCE GENDER PHONE AGE
E i 10000001 Lil Shandon MALE 13322221111 20

: 5 NAME [/ y 9

5 : Ariya |['10000005 10000002 Wang Guangdong FEMAIL 13222221111 15

: Bai | 10000006 10000003 | Lina Shanxi FEMAIL 13522221111 13

E i E T 10000004 He Henan MALE 13333331111 18

i1 IndexRegionA || |He | 10000004

E) 1 Lily " 10000001 10000005 Ariya Hebei FEMAIL 13344441111 28

v ; \

A 5 tina Y | 10000003 10000006 Bai Hunan MALE 15822221111 30

\ i E Lina 19999999 10000007 Wang Hubei FEMAIL 15922221111 35

"‘:\ E Lisa 10000008 10000008 Lisa Heilongjiang MALE 15844448888 38

L E Wang | 10000002

\\‘ E Wang 10000007 10000009 Xiao Jilin MALE 13802514000 38

41 IndexRegionB || [. [| e e e [

L E Xiao 10000009 19999999 Lina Liaoning MALE 13955225522 70

HBase Global Secondary Index Cont.

Primary Key

Suppose table UserInfo includes below 5 columns : i
ID, NAME, ADDRESS, PHONE,DATE i

Primary key are composed with 3 sections : i
Section 1: ID !
Section 2: NAME i
Section 3: truncate(DATE, 8) |

So the primary rowkey is: i

[o |0 [NamE |C D truncate(DATE, 8) |

__

W2 Huawel

Section is normally related to one user column, but can also be a
constant or a random number.

__

Secondary Index Key

Secondary index key for NAME index:

i [C:] ID: [:::]| truncate(DATEfH i
| H l

Secondary index key for PHONE index:

phone |0 [10 | [name |]| truncate(DATE,%
L(% \—d y

NOTE : Sections with (i are also exist in primary key

Cluster Table

Example: select a.account_id, a.amount, b.account_name, b.account_balance from Transactions a
left join AccountInfo b on a.account_id = b.account_id where a.account_id = “xxxxxxx"

cross-table join turns into a sequential scan.

i account_id amount time i : A0001 Andy $100232 i
! A0001 $100 12/12/2014 18:00:02 : i . Records from different i
| B A0001 $100 12/12/2014 18:00:02 || business-level user |
: A0001 $1020 10/12/2014 15:30:05 : : A0OOL $1020 10/12/2014 15:30:05 table stored together i
P A% ° 09/12/2014 130007 ' 1| Aooo1 $89 09/12/2014 13:00:07 |
: A0002 $105 11/12/2014 20:15:00 : : . :
: D A0002 Lily $902323 ﬁ AccountlInfo record \ :
| ' 1| Aooo2 $105 11/12/2014 20:15:00 !
' account_id account_name account_balance ! '] !
| o A0002 $129 11/11/2014 18:15:00 ﬁ Transaction record ’ !
! A0001 Andy $100232 . ! :
i A0002 Lily $902323 i

:) ' Pre-Joining with Keys: A better solution for cross-table join in

1 A0003 Selina $90000 ! N

! ' HBase. Records come from different tables but have some same

| nooos Anna $102320 +primary key columns can be stored adjacent to each other, so the

ClusterTable Write Vs. HBase Write

__

Table table = null; ClusterTablelnterface table = null;

try { try {
table = conn.getTable(TABLE_NAME); table = new ClusterTable(conf, CLUSTER_TABLE);

I/l Generate RowKey.
String rowKey = record.getld() + SEPERATOR + record.getName();

CTRow row = new CTRow();

/I Add all columns.
row.addColumn(*ID", record.getld());
row.addColumn("NAME", record.getName());

Put put = new Put(Bytes.toBytes(rowKey)); i i
i row.addColumn("Address", record.getAddress()); i

// Add name.
put.add(FAMILY, Bytes.toBytes("*'N'"), Bytes.toBytes(record.getName()));
// Add phone.

i row.addColumn(*Phone", record.getPhone());
put.add(FAMILY, Bytes.toBytes("'P""), Bytes.toBytes(record.getPhone())); !

row.addColumn(*"Age", record.getAge());
row.addColumn("Gender", record.getGender());
table.put(USER_TABLE, row);

} catch (IOException e) {
/I Handle exception.

} finally {
Moo

// Add composite columns.
String compositeColumn = record.getAddress() + SEPERATOR

+ record.getAge() + SEPERATOR + record.getGender();
put.add(FAMILY, Bytes.toBytes(*'Z""), Bytes.toBytes(compositeColumn));

table.put(put);
} catch (IOException e) {
// Handle exception.

} finally {

0 RowKey/Put/KeyValue are not visible to application directly.

Secondary index row will be auto-generated by CTBase.

W2 Huawel

JSON Based Query DSL

JSON \ | table: “TableA",
: : conditions: [“ID": “23470%", “CarNo": “Al1?234",
\—/1/_ : : “Color” : “Yello || Black || White”],
: : columns: ["ID", “Time", “CarNo", “Color”],
Query Executor : - caching: 100

[JsoN Ai”a'yzer | ® Flexible and powerful query APL

® Support for below operators:
| Range Query Operator: >, >=, <, <=
v Logic Operator: &8&, ||

Rule Based Optimizer

| Query Plan | | Fuzzy Query Operator: ?, *, %

| Result icanner | ® Index name can be specified, or just depend
1 on imbedded RBO to choose the best index.

| Result | ® Using exist or customized filters to push

down queries for decreasing query latency.

W2 Huawel

Bulk Load

KeyValue HFile

Structured oy Local (User data) — e
Data Schema
KeyVaIue HFile
(Index data) H—

Y

Y

® Schema has been defined in advance, including columns, column to qualifier
mappings, index row key format, etc. The only required configuration for bulk load
task is the column orders of the data file.

® Secondary index related HFiles can be generated together in one bulk load task.

W2 Huawel

Future Work For CTBase

1. Better Full-Text index support.
2. Active-Active Clusters Client.

3. Better HFile format for structured data.

W2 Huawel

Agenda

CTBase: A light weight HBase client for structured data
Tagram: Distributed Bitmap index implementation with HBase

CloudTable service(HBase on Huawei Cloud)

2 Huawel

Tagram Design Motivation

® Low-cardinality attributes are popularly used in Personas area, these attributes are
used to describe user/entity typical characteristics, behavior patterns, motivations. E.g.
Attributes for describing buyer personas can help identify where your best customers
spend time on the internet.
® Ad-hoc queries must be supported. Likes:
“How many male customers have age < 307"
“How many customers have these specific attributes?”
“Which people appeared in Area-A, Area-B and Area-C between 9:00 and 12:007”
® Solr/Elasticsearch based solutions are not fast enough for low-cardinality attributes

based ad-hoc queries.

W2 Huawel

Tagram Introduction

Tagram Client

Each

..................................

attribute value

relates to a Bitmap

GENDER:Male AND MARRIAGE:Married AND AGE:25-30
AND BLOOD_TYPE:A AND CAROWNER

Condition

1011110?;0010101...

/

/

TagZone

Conditions

AST Tree

Optimization

| 001111010010...

N

wh

‘ Each bit represent

ether an Entity ’

have this attribute

Conditions

TagZoné\‘ \

101111010010...

111001011110...

001101011010...

AST Tree

fil

011001011110...

i

101001011010...

101001011010...

000010011010...

I

Query

\ Execution Y

W2 Huawel

[Query] 101111011010...
Optimization
101010011010...
Query Plan Query
K \ Execution /}

® Distributed bitmap index implementation uses
HBase as backend storage.

® Milliseconds level latency for attribute based ad-
hoc queries.

® Each attribute value is called a Tag. Entity is called
a TagHost. Each Tag relates to an independent
bitmap. Hot tags related bitmaps are memory-
resident.

® A Tagis either static or dynamic. Static tags must
be defined in advance. Dynamic tags have no such

restriction, likes Time-Space related tags.

Tagram Architecture

TagZone TagZone ® TagZone service is initialized by

Bitmap Bitmap gitmap |-.. || HBase coprocessor.

Bltmap Contamer[Dynamic Tag Loader | | | @ Each TagZone is an independent

...

[Service Threads][Query Cache] bltmap computing unit.

® All the real-time writes and logs

Changes Checkpoint)
- are stored in HBase.

Bitmap Latest Data Vie\qlv

® Use bitmap checkpoint for fast

recovery during service initialization.

DynamlcTag
PostingList

1 TagSource ’ 1

Checkpoint Checkpoint

StaticTag
Changelog

‘ TagHostGroup ’ ‘

Data Model

<P ® TagSource: Meta data storage for static tags, includes
TagS S { Tags Meta data storage]
r . .
e configurations per tag.

® TagHostGroup: Uses TagHostID as key, and store all the
[2 . DDDDDD} tags as columns.
| iy ® TagZone: Inverted index from Tag to TagHost list.
3 - ~ Bitmap related data is also stored in this table. Partitions
e 2%%2%%% are decided during table creation, and can not split in
/\mverted index of Tag to TagHostsj\ Crure,
| L Tee |2 Linegen ® Each table is an independent HBase table.

W2 Huawel

Query

Query grammar in BNF:
Query ::= (Clause)+
Clause = ["AND", "OR", "NOT"] ([TagName:]TagValue| "(" Query ")")
® A Query is a series of Clauses. Each Clause can also be a nested query.
® Supports AND/OR/NQOT operators. AND indicates this clause is required, NOT
indicates this clause is prohibited, OR indicates this clause should appear in the
matching results. The default operator is OR is none operator specified.

® Parentheses “(" “)" can be used to improve the priority of a sub-query.

2 Huawel

Query Example

W2 Huawel

Normal Query:
GENDER:Male AND MARRIAGE:Married AND AGE:25-30 AND BLOOD_TYPE:A

Use parentheses “(" “)" to improve the priority of sub-query:

GENDER:Male AND MARRIAGE:Married AND (AGE:25-30 OR AGE:30-35) AND BLOOD_TYPE:A

Minimum Number Should Match Query:

At least 2 of below 4 groups of conditions should be satisfied:

(A1B1C1 D1E1F1 Gl HI1) (A2 B2 C2 D2 E2 F2 G2 H2) (A3 B3 C3 D3 E3 F3 G3 H3) (A4 B4 C4 D4 E4 F4 G4 H4)
Complex query with static and dynamic tags:

GENDER:Male AND MARRIAGE:Married AND AGE:25-30 AND CAROWNER AND $D:DTagl AND $D:DTag2

Evaluation

Bitmap in-memory and on-disk size :

Bitmap Cardinality In-memory Bytes On-Disk Size Bytes
5,000,000 15426632 10387402
10,000,000 29042504 20370176
50,000,000 140155632 99812920
100,000,000 226915200 198083304

NOTE: 1. Bitmap cardinality is the number of bit 1 from the bitmap in binary form.
2. The positions with bit 1 are random integers between 0 and Integer.Max.
3. The distribution of bit 1(In Bitmap binary form) and the range may affect the bitmap size.

Test results on small cluster :

3 Huawei 2288 Servers(256GB Memory, Intel(R) Xeon(R) CPU E5-2618L v3 @2.30GHZ*2 SATA,4TB*14)

1.5 Billion TagHosts, ~60 static Tags per TagHost.

Query with 10 random tags(Hundreds of thousands satisfied results), count and only return first screen

results. Average query latency: 60ms,

W2 Huawel

Future Work For Tagram

W2 Huawel

. Multiple TagZone Replica.
. Async Tagram/HBase Client.
. Better Bitmap Memory Management.

. Integration with Graph/Full-Text index.

Agenda

CTBase: A light weight HBase client for structured data
Tagram: Distributed Bitmap index implementation with HBase

CloudTable service(HBase on Huawei Cloud)

W2 Huawel

CloudTable Service Features

® Easy Maintenance
® Security

® High Performance
® SLA

® High Availability

® Low Cost

W2 Huawel

CloudTable Service On Huawei Cloud

Tenant Tenant
Tenant VPC VPC VPC
\ 4 \ \L
/ VPC1 HBase \ /VPCZ HBase VPC3 HBase
RegionServer Region$S
. erver
ZK HMaster HRegion
Memstoe
l \ 2

| HDFS |

® Isolation by VPC
® Shared Storage

W2 Huawel

CloudTable — 10 Optimization

HBase HBase

\ 4 y

HBase

HDFS Interface

Distribute Pool(Append only)

Disk Disk

Disk

Disk

Native HBase 10 Stack

W2 Huawel

HBase HBase HBase
\ 4 Y Y
HDFS
FileSystem FileSystem FileSystem
Block Block Block
Device Device Device
Disk Disk Disk

CloudTable 10 Stack

* Alow-latency 10 stack

* Deep Optimization With hardware

CloudTable - Offload Compaction

Region Server Region Server
Region - Regioq:wmyon Region Region
R/eaa
I _HDFS Data Node

25000
20000
v 15000
a e normal
— 10000
5000 e offload
0
<t ™~ O M O O N N 0 d < N O M LW OO AN W O A < N O W O AN N 0 A S N O N W O N N ~N O
T H H 4 N N NOOOND TN DN O O O NDNMNNDNOGOOOOOWOOOOOOO AN A AN N ™M
™ = = " " "

Smooth Performance

V2 Huawel

CloudTable — High Availability

Arbitration Arbitration Arbitration
Nodel Node2 Node3
Arbitration Cluster
/'ﬁ:\
_______________________________ o Heartbdats

S ’ N7

/./ '\" ./. '\ .," “«

RO o,

HBase o ,gync Replication % \; HBase
Cluster s x Cluster
¢! Py
/7 \

3 \

, .

/ ! ! \

g 5 E \

HBase é : Sync Replication! HBase
Cluster i i Cluster
AZ1 AZ2

W2 Huawel

® Cross AZ Replication

® Write: Strong Consistency
® Read: Timeline Consistency
® 99.99% Availability

® 99.9999999 Durability

® Auto Failover

w

CloudTable — Low Cost

HBase Solr Other 10%
Services 8
L 30%
£
. 20%
>
HDFS Interface [
3 - 10%
Distribute Pool(Append only) %
Q
£
Disk Disk Disk Disk Disk 8

2 4 6 8 10
. Storage Capacity Scaling Factor
® 40% resource savings drapetigei

From:Flash Storage Disaggregation

HUAWEI

Thank You !

