
参考色

Large scale data near-line loading

method and architecture

FiberHome Telecommunication
2017-7-19

参考色

/usr/bin/whoami

Shuaifeng Zhou(周帅锋):

• Big data research and development director (Fiberhome 2013-)

• Software engineer (Huawei 2007-2013)

• Use and contribute to HBase since 2009

• sfzhou1791@fiberhome.com

参考色

Motivation 1

Contents

Solution 2

Optimization 3

Tests 4

Summarize 5

参考色

HBase Realtime Data Loading

WAL/Flush/Compact

Triple IO pressure

Read/Write operations

share resource:

 Cpu

 Network

 Disk IO

 Handler

Read performance

decrease too much when

write load is heavy

参考色

Why near-line data loading?
Delay Scale

Reliable Resource

Large scale data loading reliably with acceptable time delay and resource occupation

Billions write ops per
region server one day

Usually, several minutes
delay is acceptable for
customers

Resource occupied can
be limited under an

acceptable level

Write op can be
repeated
Optimistic failure
handling

HBase

参考色

Motivation 1

Contents

Solution 2

Optimization 3

Tests 4

Summarize 5

参考色

Read-Write split data loading

 Independent WriterServer to

handle put request

 RegionServer only handle

read request

 WriteServer write HFile on

HDFS, send do-bulkload

operation.

 Several minutes delay

between put and data

readable.

参考色

Architecture

Kafka

WriteServer Master HMaster

HDFS

WriteServer
Slave

WriteServer
Slave

RegionServer RegionServer

Data
Stream

Topic
Discovery

Contral Message Contral Message

Read Write Read/Write

参考色

WriteServer Master

Task Management

• Create new loading tasks

every five minutes or every

10,000 records

• Find a slave to load the task

• Task status control

Topic Management

• Discover new kafka topics

• Receive loading request

• Loading records statistic

Slaves Management

• Slave status report to

master

• Balance

• failover

参考色

WriteServer Slave

参考色

Failure Handling

Meta Data

based

Failure

Handling

Recover: Redo failed tasks when slave

down or master restart.

Task Meta Data is constructed when a

task is created by master, and change

status to succeed when slave finish the

task.

Task Meta Data is the descricption info of

a task, include the topic, partitions, start

and end offset, status. Stored on disk.

参考色

Motivation 1

Contents

Solution 2

Optimization 3

Tests 4

Summarize 5

参考色

Balance

Load balance according tasks:
• Send new tasks to slaves with less tasks on handling

• Try to send tasks of one topic to a few fixed slaves

−avoid one region open everywhere

−Less region open, less small files

• Keep region opened for a while, even there are no tasks

− avoid region open/close too frequently

参考色

Compact

2

1

3 4 6

5

7 8

9

• Small files with higher priority

• Avoid one large file together with many small
files compact again and again

compact compact

参考色

StoreEngine

Customized store engine:
• organize store files in two queues

−one can be read and compact

−The other can only be compact

−If there are too many files, new file will not be readable
until they are compact

• Some new files discovered later better than all files can not
be read before time out

− Occasionally data explosion can be handled

− Region need split

− “Hot key” should be handled

参考色

HDFS Heterogeneous Storage Usage
• Use SSD storage as WriteServer tmp dir

• Use SATA as HBase data dir storage

− WriteServer write HFile on SSD

− Load HFile to HBase(Only move)

− Change to SATA storage after compact by regionServer

HDFS

SSD Storage SATA Storage compact

WriteServer RegionServer

参考色

Resource Control

Resource used by WriteServer should be
controllable:
• Memory:

−JVM parameters 30~50GB memory

−Large Memory Store will avoid small files

−Too Large memory store will cause gc problems

• CPU:

− Slave can use 80% cpu cores at most

− Compare to real-time data load, a big optimize is we can control
the cpu occupation by write operations.

参考色

Motivation 1

Contents

Solution 2

Optimization 3

Tests 4

Summarize 5

参考色

Loading Performance

WriterServer Slave
CPU Intel(R) Xeon(R) CPU E5-2640 v2 @ 2.00GHz

Memory 128G

Disk 1TB SSD * 4

Network 10GE

Record size 1KB

Compress Snappy

Performance 300,000 records/s

One WriteServer slave can match 5 RegionServer’s loading requirements before
RegionServer reach compact limitation.

参考色

Resource Performance

0

20

40

60

80

100

1
3

:1
6

13
:2

2

13
:2

9

1
3

:3
6

1
3

:4
2

1
3

:4
9

1
3

:5
5

1
4

:0
2

1
4

:0
8

1
4

:1
5

1
4

:2
1

1
4

:2
8

1
4

:3
4

1
4

:4
1

1
4

:4
7

1
4

:5
4

15
:0

0

15
:0

7

1
5

:1
3

1
5

:2
0

1
5

:2
6

1
5

:3
3

1
5

:3
9

1
5

:4
6

1
5

:5
2

1
5

:5
9

1
6

:0
5

1
6

:1
2

1
6

:1
8

1
6

:2
5

1
6

:3
1

CPU Total WS-Slave5 – 2017/2/17

User% Sys% Wait%

-400

-200

0

200

400

600

1
3

:1
9

1
3

:2
5

1
3

:3
2

1
3

:3
8

1
3

:4
5

1
3

:5
1

1
3

:5
8

1
4

:0
4

1
4

:1
1

1
4

:1
7

1
4

:2
4

1
4

:3
0

1
4

:3
7

1
4

:4
3

1
4

:5
0

1
4

:5
6

1
5

:0
3

1
5

:0
9

1
5

:1
6

1
5

:2
2

1
5

:2
9

1
5

:3
5

1
5

:4
2

1
5

:4
8

1
5

:5
5

1
6

:0
1

1
6

:0
8

1
6

:1
4

1
6

:2
1

1
6

:2
7

1
6

:3
4

Network I/O WS-Slave5 (MB/s) - 2017/2/17

Total-Read Total-Write (-ve)

0

500

1000

1500

2000

0

100

200

300

400

13
:1

9
13

:2
7

13
:3

4
13

:4
2

13
:5

0
13

:5
7

14
:0

5
14

:1
3

14
:2

0
14

:2
8

14
:3

6
14

:4
3

14
:5

1
14

:5
9

15
:0

6
15

:1
4

15
:2

2
15

:2
9

15
:3

7
15

:4
5

15
:5

2
16

:0
0

16
:0

8
16

:1
5

16
:2

3
16

:3
1

IO
/s

ec

M
B

/s
ec

Disk total MB/s WS-Slave5- 2017/2/17

Disk Read KB/s Disk Write KB/s IO/sec

Memory

JVM: aways use memory as much as

assigned

GC: config gc policy to avoid full gc.

参考色

Motivation 1

Contents

Solution 2

Optimization 3

Tests 4

Summarize 5

参考色

Summarize

We proposed an read-write split near-line
loading method and architecture:
• Increase loading performance

• Control resource used by write operation, make sure read
operation can not be starved

• Provide an architecture corresponding with kafka and hdfs

• Provide some optimize method, eg: compact, balance, etc.

• Provide test result

参考色

FiberHome
 Questions ?

参考色

Thanks

