Lift the Celiling of Throughputs

Yu Li, Lijin Bin

{jueding.ly, tianzhao.blj}
@alibaba-inc.com

f Alibaba Group

&2 Agenda

= What/Where/When

@ History of HBase in Alibaba Search
= Why

® Throughputs mean a lot

= How
® Lift the ceiling of read throughputs

® Lift the ceiling of write throughputs
® About future

& 2 HBase in Alibaba Search

™ HBase is the core storage in Alibaba search system, since 2010

W History of version used online
® 2010~2014: 0.20.60.90.3>0.92.150.94.150.94.250.94.5
® 2014~2015: 0.94->0.98.1>0.98.4->0.98.8>0.98.12
® 2016:0.98.12>1.1.2

& Cluster scale and use case
® Multiple clusters, largest with more than 1,500 nodes
® Co-located with Flink/Yarn, serving over 40Million/s Ops throughout the day

® Main source/sink for search and machine learning platform

& 2 | Throughputs mean a lot

® Machine learning generates huge workloads
©® Both read and write, no upper limit
® Both IO and CPU bound
™ Throughputs decides the speed of ML processing
® More throughputs means more iterations in a time unit
W Speed of processing decides accuracy of decision made

® Recommendation quality

® Fraud detection accuracy

& 2 | Lift ceiling of read throughput

™ NettyRpcServer (HBASE-17263) C Client j
® Why Netty? =7 \quue'st
B Enlightened by real world suffering respond 4
® HBASE-11297 EGY\/eY SOC\(@
B Better thread model and performance \
® Effect E vespowndevr th\reaj E veadev thma
B Online RT under high pressure: 0.92ms->0.25ms \ L/

B Throughputs almost doubled
Eavxd\er threa

& 2 | Lift ceiling of read throughput

& NettyRpcServer (HBASE-17263) E Client j
® Why Netty? =7 \vequést
B Enlightened by real world suffering vespond A
® HBASE-11297 EG\(\/eY SOCk@

B Better thread model and performance \\,

® Effect [f netty thvead '

B Online RT under high pressure: 0.92ms->0.25ms ‘\ I/

B Throughputs almost doubled
Eahd\er thVe@

& 2 | Lift ceiling of read throughput (con’t)

™ RowIndexDBE (HBASE-16213)
® Why
B Seek in the row when random reading is one of the main consumers of CPU
B All DBE except Prefix Tree use sequential search.
® How
B Add row index in a HFileBlock for binary search. (HBASE-16213)
® Effect

B Use less CPU and improve throughput , KeyValues<64B, increased >10%

& 2 | Lift ceiling of read throughput (con’t)

¥ End-to-end read path offheap

® Why
B Advanced disk IO capability cause quicker cache eviction
B Suffering from GC caused by on-heap copy

® How
B Backport E2E read-path offheap to branch-1 (HBASE-17138)
B More details please refer to Anoop/Ram’s session

® Effect
B Throughput increased 30%

B Much more stable, less spike

& 2 | Lift ceiling of read throughput (con’t)

® End-to-end read path offheap
® Before

Total QPS —QPS: 17.86 Mil

15:30 15:40 15:50 16:00 16:10 16:20 16:30 16:40 16:50 17:00 17:10 17:20 17:30 17:40 18:00 18:10 18:20 18:30 18:40

Total QPS

2016-09-30 12:10:00

10:40 10:50 11:00 11:10 11:20 11:30 11:40 11:50 12:00 12:10 " —QPS: 25.31Mil

40 13:10 13:20 13:30

& 2 Lift ceiling of write throughput

W MVCC pre-assign (HBASE-16698, HBASE-17509/17471)
® Why
B Issue located from real world suffering: no more active handler
B MVCCis assigned after WAL append
B WAL append is designed to be RS-level sequential, thus throughput limited
® How
B Assign mvcc before WAL append, meanwhile assure the append order

® Original designed to use lock inside FSHLog (HBASE-16698)
® Improved by generating sequence id inside MVCC existing lock (HBASE-17471)

® Effect
B SYNC_WAL throughput improved 30% , ASYNC_WAL even more (>70%)

& 2 Lift ceiling of write throughput (cont’d)

W Refine the write path (Experimenting)
® Why
B Far from taking full usage of 10 capacity of new hardware like PCle-SSD
B WAL sync is IO-bound, while RPC handling is CPU-bound
® Write handlers should be non-blocking: do not wait for sync
® Respond asynchronously
B WAL append is sequential, while region puts are parallel
® Unnecessary context switch
B WAL append is IO-bound, while MemStore insertion is CPU-bound

® Possible to parallelize?

& 2 Lift ceiling of write throughput (cont’d)

W Refine the write path (Experimenting)
® How
B Break the write path into 3 stages
® Pre-append, sync, post-sync
® Buffer/queue between stages
B Handlers only handle pre-append stage, respond in post-sync stage
B Bind regions to specific handler

® Reduce unnecessary context switch

& 2 Lift ceiling of write throughput (cont’d)

W Refine the write path (Experimenting)
® Effect (Lab data)
B Throughput tripled: 140K > 420K with PCle-SSD
® TODO
B Currently PCle-SSD IO util only reached 20%, much more space to improve
B Integration with write-path offheap — more to expect

B Upstream the work after it’s verified online

& 2 About Future

™ HBase is still a kid — only 10 years' old
® More ceilings to break
B Improving, but still long way to go
B Far from fully utilizing the hardware capability, no matter CPU or IO
® More scenarios to try
B Embedded-mode (HBASE-17743)
® More to expect

B 2.0 coming, 3.0 in plan

® Hopefully more community involvement from Asia

® More upstream, less private

Thank Youl!

