Efficient and portable data

~ processing with Apache Beam and
. HBase

d
4

Agenda

The Evolution of Apache Beam

—
PDF PDF PDF PDF
. G . I Colossus BigTable PubSub Dremel @
oogie -
Google Cloud
Dataflow
L Spanner Megastore Millwheel Flume o—
i
PDF
MapReduce
—e —
APACHE
spok &P ©osso
L . SOAWEAQNHTE | BH‘SE CRUNCH p
@ APACHE é ! & i_==la
[=Talalaio) DR”—L .'_—-’;
[[1(=1 de L) IVE
— o—

(2008) FlumeJava

High-level API
(2004) MapReduce —>-<:>-— (2014) Dataflow (2016) Apache Beam
SELECT + GROUPBY Batch/streaming agnostic, == Open ecosystem,
Infinite out-of-order data, Community-driven
— (2013) Millwheel Portable Vendor-independent
/ Deterministic =
Streaming 6
%Qm.

%

O

Beam model: Unbounded, temporal, out-of-order data

Unified No concept of "batch" / "streaming" at all

Time Event time (when it happened, not when we saw it)
Windowing Aggregation within time windows

Keys Windows scoped to a key (e.g. user sessions)

Triggers When is a window "complete enough"
What to do when late data arrives

are you computing?
in event time?
When in processing time?

Triggers
How do refinements relate?

- transforms

What When How

Pipeline p = Pipeline.create(options);

p.apply((

.apply((

word — Arrays.aslList(word.split())))
.apply((word — !word.isEmpty()))
.apply(())
.apply((

count — count.getKey() + + count.getValue())
.apply(())s

p.run();

)

Where - windowing

e \Vindowing divides data into event-time-based finite chunks.

Fixed Sliding Sessions

1 2 3

Key 1

Key 2

Key 3

e Required when doing aggregations over unbounded data.

What Where When How

When - triggers

Control when a
Watermark window emits results
of aggregation

Often relative to the

watermark (promise

about lateness of a
Event Time source)

Processing Time

Where When How

How do refinements relate?

PCollection<KV<String, Integer>> output = input
.apply(Window.into(Sessions.withGapDuration(Minutes(1)))
.trigger(AtWatermark()
.withEarlyFirings(AtPeriod(Minutes(1)))
.withLateFirings(AtCount(1)))
.accumulatingAndRetracting())

.apply()5

Where When How

Customizing What Where When How

12000 12001 12002 1203 1204 1205 1206 1207 12:08 1209

1.Classic Batch 2. Batch with Fixed
Windows

Speculative + Late Data

What Where When How

€ Apache Beam Project

What is Apache Beam?

1. The Beam Model: How

2. SDKs for writing Beam pipelines -- Java, Python

3. Runners for Existing Distributed Processing

Backends

O

(@)

(@)

Apache Apex

Apache Flink

Apache Spark

Google Cloud Dataflow
(WIP) Gearpump and others

Local (in-process) runner for testing

The Apache Beam Vision % $

1. End users: who want to write Beam
pipelines in a language that's Python
familiar.

2. SDK writers: who want to make
Beam concepts available in new

languages. Apache Cloud
Dataflow

3. Runner writers: who have a
distributed processing environment
and want to support Beam pipelines

Execution

Apache Beam ecosystem

End-user's pipeline 8_’-_’
B o o -

Language-specific SDK Java Python

Beam model (ParDo, GBK, Windowing...)

Runner

_

02/25/2016
1st commit to
ASF repository

Early 2016

05/2017
Beam 2.0
First Stable Release

Internal API redesign Late 2016
and relative chaos Multiple runners
—-- - =
Mid 2016 Early 2017
Stabilizic;’;;ln of New Polish and stability
S
02/01/2016
Enter Apache

Incubator

Apache Beam Community

178 contributors
24 committers from 8 orgs (none >50%)
>3300 PRs, >8600 commits, 27 releases

>20 |10 (storage system) connectors

5 runners

<1> Beam and HBase

Beam |0 connector ecosystem

Many uses of Beam = importing data from one place to another

Files Text, Avro, XML, TFRecord (pluggable FS - local, HDFS, GCS)
Hadoop ecosystem HBase, HadooplnputFormat, Hive (HCatalog)

Streaming systems Kafka, Kinesis, MQTT, JMS, (WIP) AMQP

Google Cloud Pubsub, BigQuery, Datastore, Bigtable, Spanner

Other JDBC, Cassandra, Elasticsearch, MongoDB, GridFS

HBaselO

PCollection<Result> data = p.apply(
HBaseIO.read()
.withConfiguration(conf)
.withTableId(table)
. withScan, withFilter ...)

PCollection<KV<byte[], Iterable<Mutation>>> mutations = ...;

mutations.apply(
HBaseIO.write()
.withConfiguration(conf))
.withTableId(table)

O Connectors = just Beam transforms

Made of Beam primitives

ParDo, GroupByKey, ...

Write = often a simple ParDo

Read = a couple of ParDo,
“Source API” for power users

= straightforward to develop, clean API, very flexible,
batch/streaming agnostic

Beam Write with HBase

A bundle is a group of elements processed and committed together.
APIs (ParDo/DoFn):

setup() -> Creates Connection
startBundle() -> Gets BufferedMutator

_ processElement() -> Applies Mutation(s)
Transaction finishBundle() -> BufferedMutator flush

tearDown() -> Connection close

Mutations must be idempotent, e.g. Put or Delete.
Increment and Append should not be used.

Beam Source API

(similar to Hadoop InputFormat, but cleaner / more general)
Estimate size

Split into sub-sources (of ~given size)

LT
lterate
Get progress
Dynamic split

Note: Separate API for unbounded sources + (WIP) a new unified API

HBase on Beam Source API

HBaseSource Scan
Estimate RegionSizeCalculator

Split RegionLocation

Read
lterate ResultScanner
Get progress Key interpolation

Dynamic split* RangeTracker

* Dynamic Split for HBaselO PR in progress

Region Server 1

Region Server 2

Digression: Stragglers

A

I . 5

Workers

Time

Workers

Beam approach: Dynamic splitting*

A

(—

*Currently implemented only by Dataflow

Autoscaling

Y WP GNP a1

Learn Morel
Apache Beam

The World Beyond Batch 101 & 102

No Shard Left Behind

Join the mailing lists!
user-subscribe@beam.apache.org
dev-subscribe@beam.apache.org

Follow @ApacheBeam on Twitter

https://beam.apache.org
https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-101
https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-102
https://qconlondon.com/london-2017/london-2017/presentation/straggler-free-data-processing-cloud-dataflow.html

Thank you

