
 

 

Efficient and portable data 
processing with Apache Beam and 
HBase
Eugene Kirpichov, Google



 

History of Beam

Philosophy of the Beam programming model

Agenda

1

2

Apache Beam project3

Beam and HBase4



The Evolution of Apache Beam

MapReduce

BigTable DremelColossus

FlumeMegastoreSpanner

PubSub

Millwheel
Apache 
Beam

Google Cloud 
Dataflow



  

(2008) FlumeJava

High-level API

(2016) Apache Beam

Open ecosystem,
Community-driven

Vendor-independent

(2004) MapReduce

SELECT + GROUPBY

(2013) Millwheel

Deterministic
Streaming

(2014) Dataflow

Batch/streaming agnostic,
Infinite out-of-order data,

Portable



  

Beam model: Unbounded, temporal, out-of-order data

Unified No concept of "batch" / "streaming" at all

Time Event time (when it happened, not when we saw it)

Windowing Aggregation within time windows

Keys Windows scoped to a key (e.g. user sessions)

Triggers When is a window "complete enough"
What to do when late data arrives



  

What are you computing? Transforms

Where in event time? Windowing

When in processing time?

How do refinements relate?
Triggers



 What Where When How

What - transforms

Element-Wise Aggregating Composite



 

   Pipeline p = Pipeline.create(options);

   p.apply(TextIO.Read.from("gs://dataflow-samples/shakespeare/*"))

    .apply(FlatMapElements.via(

        word → Arrays.asList(word.split("[^a-zA-Z']+"))))

    .apply(Filter.byPredicate(word → !word.isEmpty()))

    .apply(Count.perElement())

    .apply(MapElements.via(

        count → count.getKey() + ": " + count.getValue())

    .apply(TextIO.Write.to("gs://.../..."));

   p.run();



 

Where - windowing

What Where When How

● Windowing divides data into event-time-based finite chunks.

● Required when doing aggregations over unbounded data.



 
What Where When How

When - triggers

Control when a 
window emits results 
of aggregation

Often relative to the 
watermark (promise 
about lateness of a 
source)

Pr
oc

es
si

ng
 T

im
e

Event Time

Watermark



 

PCollection<KV<String, Integer>> output = input
  .apply(Window.into(Sessions.withGapDuration(Minutes(1)))
               .trigger(AtWatermark()
                 .withEarlyFirings(AtPeriod(Minutes(1)))
                 .withLateFirings(AtCount(1)))
               .accumulatingAndRetracting())
  .apply(Sum.integersPerKey());

What Where When How

How do refinements relate?



 

1.Classic Batch 2. Batch with Fixed 
Windows

3. Streaming 4. Streaming with 
Speculative + Late Data

Customizing What Where When How

What Where When How



 

Apache Beam Project3



 

What is Apache Beam?

1. The Beam Model: What / Where / When / How

2. SDKs for writing Beam pipelines -- Java, Python

3. Runners for Existing Distributed Processing 

Backends

○ Apache Apex

○ Apache Flink

○ Apache Spark

○ Google Cloud Dataflow

○ (WIP) Gearpump and others

○ Local (in-process) runner for testing



 

The Apache Beam Vision

1. End users: who want to write 
pipelines in a language that’s 
familiar.

2. SDK writers: who want to make 
Beam concepts available in new 
languages.

3. Runner writers: who have a 
distributed processing environment 
and want to support Beam pipelines

Beam Model: Fn Runners

Apache 
Flink

Apache 
Spark

Beam Model: Pipeline Construction

Other
LanguagesBeam Java

Beam 
Python

Execution Execution

Cloud 
Dataflow

Execution



 

Apache Beam ecosystem

End-user's pipeline

Libraries: transforms, sources/sinks etc.

Language-specific SDK

Beam model (ParDo, GBK, Windowing…)

Runner

Execution environment

Java ...Python



 

02/01/2016
Enter Apache 

Incubator

Early 2016
Internal API redesign 

and relative chaos

Mid 2016
Stabilization of New 

APIs

Late 2016
Multiple runners

02/25/2016
1st commit to 
ASF repository

05/2017
Beam 2.0

First Stable Release

Early 2017
Polish and stability



 

Apache Beam Community

178 contributors

24 committers from 8 orgs (none >50%)

>3300 PRs, >8600 commits, 27 releases

>20 IO (storage system) connectors

5 runners



 

Beam and HBase4



 

Beam IO connector ecosystem
Many uses of Beam = importing data from one place to another

Files Text, Avro, XML, TFRecord (pluggable FS - local, HDFS, GCS)

Hadoop ecosystem HBase, HadoopInputFormat, Hive (HCatalog)

Streaming systems Kafka, Kinesis, MQTT, JMS, (WIP) AMQP

Google Cloud Pubsub, BigQuery, Datastore, Bigtable, Spanner

Other JDBC, Cassandra, Elasticsearch, MongoDB, GridFS



 

HBaseIO

PCollection<Result> data = p.apply(
HBaseIO.read()
       .withConfiguration(conf)
       .withTableId(table)
       … withScan, withFilter …)

PCollection<KV<byte[], Iterable<Mutation>>> mutations = …;
mutations.apply(

HBaseIO.write()
       .withConfiguration(conf))
       .withTableId(table)



 

IO Connectors = just Beam transforms

Made of Beam primitives

ParDo, GroupByKey, …

Write = often a simple ParDo

Read = a couple of ParDo,
“Source API” for power users

⇒ straightforward to develop, clean API, very flexible, 
batch/streaming agnostic



 

Beam Write with HBase

A bundle is a group of elements processed and committed together.

APIs (ParDo/DoFn):

          setup()          -> Creates Connection
          startBundle()    -> Gets BufferedMutator
          processElement() -> Applies Mutation(s)
          finishBundle()   -> BufferedMutator flush
          tearDown()       -> Connection close

Mutations must be idempotent, e.g. Put or Delete.
Increment and Append should not be used.

Transaction



 

Beam Source API

(similar to Hadoop InputFormat, but cleaner / more general)
Estimate size
Split into sub-sources (of ~given size)
Read

Iterate
Get progress
Dynamic split

Note: Separate API for unbounded sources + (WIP) a new unified API



 

HBase on Beam Source API

HBaseSource Scan
Estimate RegionSizeCalculator
Split RegionLocation
Read

Iterate ResultScanner
Get progress Key interpolation
Dynamic split* RangeTracker

Region Server 1

Region Server 2

* Dynamic Split for HBaseIO PR in progress



Google Cloud Platform 26

Digression: Stragglers
W

or
ke

rs

Time



 

Beam approach: Dynamic splitting*
W

or
ke

rs

Time

Now Avg completion time

*Currently implemented only by Dataflow



 

Autoscaling



 

Learn More!

Apache Beam
 https://beam.apache.org

The World Beyond Batch 101 & 102 
https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-101  
https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-102 

No Shard Left Behind
Straggler Free Data Processing in Cloud Dataflow

Join the mailing lists!  
user-subscribe@beam.apache.org
dev-subscribe@beam.apache.org

Follow @ApacheBeam on Twitter

https://beam.apache.org
https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-101
https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-102
https://qconlondon.com/london-2017/london-2017/presentation/straggler-free-data-processing-cloud-dataflow.html


 

 

Thank you


