gohbase
Pure Go HBase Client

Andrey Elenskiy « Bug Breeder at Arista Networks

What's so special?

e A (sorta)-fully-functional driver for HBase written in Go

e Kinda based on AsyncHBase Java client

e Fast enough
e Small and simple codebase (for now)

e No Java (not a single AbstractFactoryObserverService)

https://golang.org/
http://opentsdb.github.io/asynchbase/

Top contributors (2,000 ++)

e Timoha (Andrey Elenskiy) AR I STA

e tsuna (Benoit Sigoure)

e dgonyeo (Derek Gonyeo) é

e CurleySamuel (Sam Curley) CLOUDFLARE

https://github.com/Timoha
https://github.com/Timoha
https://github.com/tsuna
https://github.com/tsuna
https://github.com/dgonyeo
https://github.com/dgonyeo
https://github.com/CurleySamuel
https://github.com/CurleySamuel

So much failure

e HBase's feature-set is huge — bunch of small projects — bugs
e Asynch, wannabe lock-free architecture + handling failures = :coding_horror:
e Benchmarking is tricky

e Found some HBase issues in the process

Go is pretty cool | guess

goroutines and channels FTW

func main() {

ch := make(chan string)
go func() {
time.Sleep(time.Second)
ch <- "...wait for it..."
3O
go func() {
time.Sleep(2 * time.Second)
ch <- "...dary"
3O

Legen...
fmt.Println("Legen...") . 0
fnt.Println(<-ch) ...wailt for 1t...

fmt.Println(<-ch)

...dary

Program exited.

context.Context

func main() {
ch := make(chan string)
ctx, cancel := context.WithTimeout(context.Background(), 100*time.Millisecond)
defer cancel()
go func() {
time.Sleep (100 * time.Millisecond)
ch <- "SWAG"

14Q)

// 50/50 chance to fall into either
select { SWAG
case s := <-ch: // could be HERE
fmt.Println(s)
case <-ctx.Done():
fmt.Println("YOLO") // could or HERE

Program exited.

Example

func main() {
client := gohbase.NewClient("localhost")
// set a timeout for get to be 100 ms
ctx, cancel := context.WithTimeout(context.Background(), 100*time.Millisecond)
getRequest, err := hrpc.NewGetStr(ctx, "table", "row")
// this will fail if it takes longer than 100 ms
getResponse, err := client.Get(getRequest)

e context is usually used throughout a web app, so it fits to the API nicely
e chaining contexts is useful

func main() {

parent, cancel := context.WithCancel(context.Background())
child, _ := context.WithTimeout(parent, 100*365*24*time.Hour) // wait for 100 years
cancel()

<-child.Done()
fmt.Println("YO")

Internal architecture in a nutshell

Case A: Normal (95%)

3

Step 1: Get region in B+Tree

Step 2: write () to RS

")
3

Step 3: receiveRPCs ()

Step 4: rpc.ResultChan () <-res

Case A: Normal

e Client’s goroutine writes rpc to RS connection
e One goroutine in RegionClient to read from RS connection
e Asynchronous internals. Synchronous API.

Case B: Cache miss/failure

1. Go to B+tree cache for region of the RPC

2-100. ...Magic...

101. rpc.ResultChan () <-res

Magic?

2. Mark region as unavailable in cache
3. Block all new RPCs for region by reading on its "availability” channel

func main() {
ch := make(chan struct{})

go func() { 2009-11-10 23:00:00 +0000 UTC sleeping
fmt.Println(time.Now(), "sleeping") 2009-11-10 23:00:01 +0000 UTC done
time.Sleep(time.Second)
close(ch) .

1O Program exited.

<-ch

fmt.Println(time.Now(), "done")
}

4. Start a goroutine to reestablish the region

5. Replace all overlapping regions in cache with new looked up region

6. Connect to Region Server

7. Probe the region to see if it's being served

8. Close "availability” channel to unblock RPCs and let them find new region in cache
9.write() to RS

10-100. PROFIT!!!

How do you benchmark this stuff?

Requirements:

e Nodisk IO

e No network
Tried:

e Standalone

e Pseudo-distributed (MiniHBaseCluster from HBaseTestingUtility)
e Distributed on the same node with Docker

e 16 node HBase cluster

| want my cores

e Using 70% CPU per Region Server on client side
e Region Server is chilling and not using all CPUs per connection
e \Where’s the bottleneck?

Linux TCP loopback

PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
3867 root 20 @ 2314m 2548 2000 S 75 0.0 1:31.09 tcpkali

4955 root 20 0 85796 2156 2004 S 73 0.0 1:16.10 tcpkali

e 100K QPS (10us per operation)
e 2us context switch on same hardware
e Where's ~50% cpu?

Linux TCP loopback

PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
3867 root 20 @ 2314m 2548 2000 S 75 0.0 1:31.09 tcpkali
4055 root 20 0 85796 2156 2004 S 73 0.0 1:16.10 tcpkali

100K QPS (10pus per operation)
2us context switch on same hardware
Where’s ~50% cpu?

[kernel]
[kernel]
[kernel]
[kernel]
[kernel]
[kernel]
[kernel]
[kernel]
[kernel]
[kernel]
[kernel]
[kernel]
[kernel]
[kernel]
[kernel]

copy_user_generic_string
do_raw_spin_lock
ipt_do_table
_raw_spin_lock_irgsave
nf_iterate
skb_copy_datagram_iovec
get_page_from_freelist
tcp_recvmsg

tcp_packet

__sSlab_free

tcp_sendmsg
tcp_transmit_skb
tcp_vé4_rcv

__alloc_skb

tcp_poll

Linux TCP loopback

PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
3867 root 20 @ 2314m 2548 2000 S 75 0.0 1:31.09 tcpkali
4055 root 20 0 85796 2156 2004 S 73 0.0 1:16.10 tcpkali

[kernel] copy_user_generic_string
[kernel] do_raw_spin_lock

e 100K QPS (10us per operation)
e 2us context switch on same hardware

Where’s ~50% cpu?

Read/Write syscall is slow?
One connection, one core

Gone too deep, | just wanted to

benchmark the client...

&

[kernel]
[kernel]
[kernel]
[kernel]
[kernel]
[kernel]
[kernel]
[kernel]
[kernel]
[kernel]
[kernel]
[kernel]
[kernel]

ipt_do_table
_raw_spin_lock_irgsave
nf_iterate
skb_copy_datagram_iovec
get_page_from_freelist
tcp_recvmsg

tcp_packet

__sSlab_free
tcp_sendmsg
tcp_transmit_skb
tcp_vé4_rcv

__alloc_skb

tcp_poll

fast.patch [HBASE-15594]

BN 131 M 1.3.1 with fastpatch

latency (mean ms) throughput (combined MB/s)

24 clients doing 1M random reads each to one HBase 1.3.1 regionserver

https://issues.apache.org/jira/browse/HBASE-15594

fast.patch [HBASE-15594]

e Withit, same %75/ %75 CPU utilization per connection

e Without it, RegionServer is 100% CPU per connection: probably wasting time
context switching

e More threads, more throughput
e More connections, even more throughput

https://issues.apache.org/jira/browse/HBASE-15594

Benchmark Results

30M rows with 26 byte keys and 100 byte vlaues
200 regions

3 runs of each benchmark

16 regionservers with 32 cores 64gb ram

One Arista switch ;)

RandomRead

Threads / Seconds Threads / MB

—8— gohbase —@— HTable —8— gohbase —@— HTable
600

300000
400

200000
200

100000

16 24 128 250 16 24 128 250

With lots of threads gohbase is 10% faster
3 times less memory allocated though (/)

Scan

40 Threads / Seconds Threads / MB

—8— gohbase —@— HTable —8— gohbase —@— HTable

™ - .\—r’/’"’\.

20 28000

10 24500 ® > . .

16 24 128 250 16 24 128 250

With more threads, gohbase is comparable to HTable

0.

30% less total memory allocated ()

RandomWrite”? (gohbase only)

Threads and Time (sec) Total Alloc (mb) vs. Threads

165400

600 -@- Total Alloc (mb)
600 165350
400 165300
200 165250
0 165200

48 128 250 48 128 250
Threads # Threads

Best: 250 threads, 270sec, 165,218mb total

Benchmarking was “entertaining” &

Region split/merge bug [HBASE-18066]

WTF
Get with closest row before can return empty cells during a region
split/merge

It's not you, it's me
Stayed as skeptical about the bug in HBase as possible, but then gave up and
started blaming it

Bug breeding
A bug in gohbase exposed a bug in HBase

https://issues.apache.org/jira/browse/HBASE-18066

What's missing?

e Your usage
e Your contribution
e More unit tests...

Thank you

Andrey Elenskiy
Bug Breeder at Arista Networks
andrey.elenskiy@gmail.com

mailto:andrey.elenskiy@gmail.com
mailto:andrey.elenskiy@gmail.com

