
gohbase
Pure Go HBase Client

Andrey Elenskiy • Bug Breeder at Arista Networks

What’s so special?
● A (sorta)-fully-functional driver for HBase written in Go

● Kinda based on AsyncHBase Java client

● Fast enough

● Small and simple codebase (for now)

● No Java (not a single AbstractFactoryObserverService)

https://golang.org/
http://opentsdb.github.io/asynchbase/

Top contributors (2,000 ++)
● Timoha (Andrey Elenskiy)

● tsuna (Benoit Sigoure)

● dgonyeo (Derek Gonyeo)

● CurleySamuel (Sam Curley)

https://github.com/Timoha
https://github.com/Timoha
https://github.com/tsuna
https://github.com/tsuna
https://github.com/dgonyeo
https://github.com/dgonyeo
https://github.com/CurleySamuel
https://github.com/CurleySamuel

So much failure
● HBase's feature-set is huge → bunch of small projects → bugs

● Asynch, wannabe lock-free architecture + handling failures = :coding_horror:

● Benchmarking is tricky

● Found some HBase issues in the process

Go is pretty cool I guess

goroutines and channels FTW
func main() {

 ch := make(chan string)

 go func() {

 time.Sleep(time.Second)

 ch <- "...wait for it..."

 }()

 go func() {

 time.Sleep(2 * time.Second)

 ch <- "...dary"

 }()

 fmt.Println("Legen...")

 fmt.Println(<-ch)

 fmt.Println(<-ch)

}

Legen...
...wait for it...
...dary

Program exited.

context.Context
func main() {

 ch := make(chan string)

 ctx, cancel := context.WithTimeout(context.Background(), 100*time.Millisecond)

 defer cancel()

 go func() {

 time.Sleep(100 * time.Millisecond)

 ch <- "SWAG"

 }()

 // 50/50 chance to fall into either

 select {

 case s := <-ch: // could be HERE

 fmt.Println(s)

 case <-ctx.Done():

 fmt.Println("YOLO") // could or HERE

 }

}

SWAG

Program exited.

Example
func main() {

 client := gohbase.NewClient("localhost")

 // set a timeout for get to be 100 ms

 ctx, cancel := context.WithTimeout(context.Background(), 100*time.Millisecond)

 getRequest, err := hrpc.NewGetStr(ctx, "table", "row")

 // this will fail if it takes longer than 100 ms

 getResponse, err := client.Get(getRequest)

}

● context is usually used throughout a web app, so it fits to the API nicely
● chaining contexts is useful

func main() {

 parent, cancel := context.WithCancel(context.Background())

 child, _ := context.WithTimeout(parent, 100*365*24*time.Hour) // wait for 100 years

 cancel()

 <-child.Done()

 fmt.Println("YO")

}

Internal architecture in a nutshell

Case A: Normal (95%)

Step 1: Get region in B+Tree

Step 2: write() to RS

Step 3: receiveRPCs()

Step 4: rpc.ResultChan()<-res

Case A: Normal

● Client’s goroutine writes rpc to RS connection
● One goroutine in RegionClient to read from RS connection
● Asynchronous internals. Synchronous API.

Case B: Cache miss/failure

1. Go to B+tree cache for region of the RPC

2-100. ...Magic...

101. rpc.ResultChan()<-res

Magic?
2. Mark region as unavailable in cache
3. Block all new RPCs for region by reading on its "availability" channel

4. Start a goroutine to reestablish the region
5. Replace all overlapping regions in cache with new looked up region
6. Connect to Region Server
7. Probe the region to see if it’s being served
8. Close "availability" channel to unblock RPCs and let them find new region in cache
9. write() to RS
10-100. PROFIT!!!

func main() {

 ch := make(chan struct{})

 go func() {

 fmt.Println(time.Now(), "sleeping")

 time.Sleep(time.Second)

 close(ch)

 }()

 <-ch

 fmt.Println(time.Now(), "done")

}

2009-11-10 23:00:00 +0000 UTC sleeping
2009-11-10 23:00:01 +0000 UTC done

Program exited.

How do you benchmark this stuff?
Requirements:

● No disk IO
● No network

Tried:

● Standalone
● Pseudo-distributed (MiniHBaseCluster from HBaseTestingUtility)
● Distributed on the same node with Docker
● 16 node HBase cluster

I want my cores
● Using 70% CPU per Region Server on client side
● Region Server is chilling and not using all CPUs per connection
● Where’s the bottleneck?

Linux TCP loopback

● 100K QPS (10μs per operation)
● 2μs context switch on same hardware
● Where’s ~50% cpu?

Linux TCP loopback

● 100K QPS (10μs per operation)
● 2μs context switch on same hardware
● Where’s ~50% cpu?

Linux TCP loopback

● 100K QPS (10μs per operation)
● 2μs context switch on same hardware
● Where’s ~50% cpu?

● Read/Write syscall is slow?
● One connection, one core
● Gone too deep, I just wanted to

benchmark the client…

fast.patch [HBASE-15594]

24 clients doing 1M random reads each to one HBase 1.3.1 regionserver

https://issues.apache.org/jira/browse/HBASE-15594

fast.patch [HBASE-15594]

● With it, same %75 / %75 CPU utilization per connection
● Without it, RegionServer is 100% CPU per connection: probably wasting time

context switching
● More threads, more throughput
● More connections, even more throughput

https://issues.apache.org/jira/browse/HBASE-15594

Benchmark Results
● 30M rows with 26 byte keys and 100 byte vlaues
● 200 regions
● 3 runs of each benchmark
● 16 regionservers with 32 cores 64gb ram
● One Arista switch ;)

RandomRead

With lots of threads gohbase is 10% faster
3 times less memory allocated though

Scan

With more threads, gohbase is comparable to HTable
30% less total memory allocated

RandomWrite? (gohbase only)

Best: 250 threads, 270sec, 165,218mb total

Benchmarking was “entertaining”

Region split/merge bug [HBASE-18066]
WTF
Get with closest_row_before can return empty cells during a region
split/merge

It's not you, it's me
Stayed as skeptical about the bug in HBase as possible, but then gave up and
started blaming it

Bug breeding

A bug in gohbase exposed a bug in HBase

https://issues.apache.org/jira/browse/HBASE-18066

What's missing?
● Your usage
● Your contribution
● More unit tests...

Thank you
Andrey Elenskiy
Bug Breeder at Arista Networks
andrey.elenskiy@gmail.com

mailto:andrey.elenskiy@gmail.com
mailto:andrey.elenskiy@gmail.com

