

www.leadfar.org

李腾飞学习笔记

HttpClient 入门

版本 1.0

李腾飞学习笔记 版本: 1.0
HttpClient 入门 更新日期: 2010-08-12 8:31

Confidential ©www.leadfar.org, 2010 Page 2 of 12

修订历史记录
日期 版本 说明 作者

8/12/2010 1.0 创建 李腾飞

李腾飞学习笔记 版本: 1.0
HttpClient 入门 更新日期: 2010-08-12 8:31

Confidential ©www.leadfar.org, 2010 Page 3 of 12

目录

1. HttpClient 概述 4

2. 了解 JDK 中有关 HTTP URL 处理的 API 4
2.1 最简单的获取网页内容的示例 4
2.2 URLConnection 的基本用法 4
2.3 HttpURLConnection 的用法 4

3. 使用 HttpClient 获取网页内容 6
3.1 使用 GET 方式向后台递交请求 6
3.2 自动获得响应的编码信息 7
3.3 设置代理服务器，访问网站 7
3.4 获得重定向之后的网址信息 9
3.5 自动 Cookie 处理 10

李腾飞学习笔记 版本: 1.0
HttpClient 入门 更新日期: 2010-08-12 8:31

Confidential ©www.leadfar.org, 2010 Page 4 of 12

HttpClient 入门

1. HttpClient 概述

HttpClient 是 apache 组织下面的一个用于处理 HTTP 请求和响应的开源工具。它不是一个浏览器，也不处

理客户端缓存等浏览器的功能。它只是一个类库！它在 JDK 的基本类库基础上做了更好的封装！

HttpClient 目前（写作本文日期：2010 年 8 月）最新版本是 4.0.1，官方网址：

http://hc.apache.org/httpcomponents-client-4.0.1/index.html

HttpClient 项目依赖于 HttpCore（处理核心的 HTTP 协议）、commons-codec（处理与编码有关的问题的项

目）和 commons-logging（处理与日志记录有关问题的项目）。

如果你希望能够通过 HttpClient 向服务器上传文件等与 multipart 编码类型有关的请求，以及其它复杂的

MIME 类型，那么，你需要另外一个依赖包：HttpMime（它是专门处理与 MIME 类型有关问题的项目），在

下载的 HttpClient 包中（下载地址为：http://hc.apache.org/downloads.cgi）已经包含了 HttpMime。

在本文中，我们使用的 HttpClient 版本为：4.0.1GA

开始使用 HttpClient，我们加入了下列依赖包：

httpclient-4.0.1.jar

httpcore-4.0.1.jar

httpmime-4.0.1.jar

 - 又依赖于 mime4j（apache-mime4j-0.6.jar）

commons-codec-1.4.jar

commons-logging-1.1.1.jar

commons-io-1.4.jar – 为了更方便处理与 IO 有关的需求

【如果你下载的是包含依赖包的压缩包，那么上述依赖包（除 commons-io-1.4.jar 外）都已经在其中

了！】

2. 了解 JDK 中有关 HTTP URL 处理的 API

因为 HttpClient 是对 JDK 中 java.net.*包下面的有关基础类库的封装，所以，我们有必要了解一下，这

些基础类库的简单用法和概念。

2.1 最简单的获取网页内容的示例

try {
 String urlString = "http://localhost:8080/cms/";
 URL url = new URL(urlString); //代表了一个网址
 InputStream is = url.openStream(); //获得网页的内容

 //将InputStream转换为Reader，并使用缓冲读取，提高效率，同时可以按行读取内容
 BufferedReader br = new BufferedReader(new InputStreamReader(is,"UTF-
8"));
 String line = null;
 while((line = br.readLine()) != null){
 System.out.println(line);
 }
 is.close();

李腾飞学习笔记 版本: 1.0
HttpClient 入门 更新日期: 2010-08-12 8:31

Confidential ©www.leadfar.org, 2010 Page 5 of 12

} catch (Exception e) {
 e.printStackTrace();
}

上述例子，直接通过 URL 获得输入流，然后对其进行处理！

2.2 URLConnection 的基本用法

上述例子太过简单，假如你需要通过代理来访问网络，那么，你需要的是 URLConnection！即，在获取内

容之前，先设置代理！

 public void testFetch02(){
 try {
 String urlString =
"http://www.ibm.com/developerworks/cn/java/j-javaroundtable/index.html";
 URL url = new URL(urlString); //代表了一个网址

 //首先创建HTTP代理，指定代理的地址和端口
 Proxy proxy = new Proxy(Proxy.Type.HTTP,new
InetSocketAddress("79.120.193.53",80));

 /**
 * 首先打开一个连接对象
 * 可以通过这个对象，在真正发起请求之前，设置一些其它的信息
 * 比如：代理服务器等
 */
 URLConnection conn = url.openConnection(proxy);
 InputStream is = conn.getInputStream(); //获得网页的内容

 //将InputStream转换为Reader，并使用缓冲读取，提高效率，同时可以按行

读取内容
 BufferedReader br = new BufferedReader(new
InputStreamReader(is,"UTF-8"));
 String line = null;
 while((line = br.readLine()) != null){
 System.out.println(line);
 }
 is.close();
 } catch (Exception e) {
 e.printStackTrace();
 }

可以设置 HTTP 或 SOCKS 代理，只要指定不同的代理类型即可！

2.3 HttpURLConnection 的用法

HttpURLConnection 是 URLConnection 的子类，它提供了更多与 HTTP 有关的处理方法，

* 比如：如果你希望获得服务器响应的HTTP代码，比如：2XX，3XX等
* 比如：你希望设置是否自动进行客户端重定向（缺省是自动重定向）
* 比如：你希望指定向服务器提交的 HTTP METHOD（GET 或 POST 等）

等等等等

李腾飞学习笔记 版本: 1.0
HttpClient 入门 更新日期: 2010-08-12 8:31

Confidential ©www.leadfar.org, 2010 Page 6 of 12

 try {
 String urlString =
"http://localhost:8080/cms/backend/main.jsp";
 URL url = new URL(urlString); //代表了一个网址

 //设置是否自动进行重定向，缺省这个值为true
 HttpURLConnection.setFollowRedirects(false);
 HttpURLConnection conn =
(HttpURLConnection)url.openConnection();
 //设置HTTP METHOD
 conn.setRequestMethod("GET");
 int code = conn.getResponseCode();
 System.out.println("服务器响应代码为："+code);
 InputStream is = conn.getInputStream();

 //将InputStream转换为Reader，并使用缓冲读取，提高效率，同时可以按行

读取内容
 BufferedReader br = new BufferedReader(new
InputStreamReader(is,"UTF-8"));
 String line = null;
 while((line = br.readLine()) != null){
 System.out.println(line);
 }
 is.close();
 } catch (Exception e) {
 e.printStackTrace();
 }

上述例子中，由于设置了不自动重定向，所以，加入 main.jsp 返回的是一个 3XX 代码（客户端重定向），

那么将获取不到任何内容！假如设置了自动重定向，将获得重定向之后的网页的内容！

3. 使用 HttpClient 获取网页内容

在进行下述例子之前，请添加上面所用到的依赖包！

3.1 使用 GET 方式向后台递交请求

 public void testFetch01(){
 try {
 //HttpClient主要负责执行请求
 HttpClient httpclient = new DefaultHttpClient();

 //利用HTTP GET向服务器发起请求
 HttpGet get = new HttpGet("http://localhost:8080/cms");

 //获得服务器响应的的所有信息
 HttpResponse response = httpclient.execute(get);

 //获得服务器响应回来的消息体（不包括HTTP HEAD）

李腾飞学习笔记 版本: 1.0
HttpClient 入门 更新日期: 2010-08-12 8:31

Confidential ©www.leadfar.org, 2010 Page 7 of 12

 HttpEntity entity = response.getEntity();
 if(entity != null){
 InputStream is = entity.getContent();
 //将InputStream转换为Reader，并使用缓冲读取，提高效率，同时

可以按行读取内容
 BufferedReader br = new BufferedReader(new
InputStreamReader(is,"UTF-8"));
 String line = null;
 while((line = br.readLine()) != null){
 System.out.println(line);
 }

 is.close();
 }

 //释放所有的链接资源，一般在所有的请求处理完成之后，才需要释放
 httpclient.getConnectionManager().shutdown();
 } catch (ClientProtocolException e) {
 e.printStackTrace();
 } catch (IOException e) {
 e.printStackTrace();
 }
 }

3.2 自动获得响应的编码信息

我们希望程序能够自动分辨响应的内容的编码
 public void testFetch02(){
 try {
 //HttpClient主要负责执行请求
 HttpClient httpclient = new DefaultHttpClient();

 //利用HTTP GET向服务器发起请求
 HttpGet get = new HttpGet("http://www.baidu.com/");//new
HttpGet("http://localhost:8080/cms");

 //获得服务器响应的的所有信息
 HttpResponse response = httpclient.execute(get);

 //获得服务器响应回来的消息体（不包括HTTP HEAD）
 HttpEntity entity = response.getEntity();
 if(entity != null){
 //获得响应的字符集编码信息
 //即获取HTTP HEAD的：Content-
Type:text/html;charset=UTF-8中的字符集信息
 String charset =
EntityUtils.getContentCharSet(entity);
 System.out.println("响应的字符集是："+charset);
 InputStream is = entity.getContent();
 //使用响应中的编码来解释响应的内容
 BufferedReader br = new BufferedReader(new
InputStreamReader(is,charset));
 String line = null;
 while((line = br.readLine()) != null){

李腾飞学习笔记 版本: 1.0
HttpClient 入门 更新日期: 2010-08-12 8:31

Confidential ©www.leadfar.org, 2010 Page 8 of 12

 System.out.println(line);
 }

 is.close();
 }

 //释放所有的链接资源，一般在所有的请求处理完成之后，才需要释放
 httpclient.getConnectionManager().shutdown();
 } catch (ClientProtocolException e) {
 e.printStackTrace();
 } catch (IOException e) {
 e.printStackTrace();
 }
 }

上述例子，主要是通过 EntityUtils.getContentCharSet 方法来获得编码信息

3.3 设置代理服务器，访问网站

 public void testFetch03(){
 try {
 //HttpClient主要负责执行请求
 HttpClient httpclient = new DefaultHttpClient();

 //设置代理服务器

 httpclient.getParams().setParameter(ConnRoutePNames.DEFAULT_PROXY, new
HttpHost("121.12.249.207",3128));

 //利用HTTP GET向服务器发起请求
 HttpGet get = new HttpGet("http://www.baidu.com/");//new
HttpGet("http://localhost:8080/cms");

 //获得服务器响应的的所有信息
 HttpResponse response = httpclient.execute(get);

 //获得服务器响应回来的消息体（不包括HTTP HEAD）
 HttpEntity entity = response.getEntity();
 if(entity != null){
 //获得响应的字符集编码信息
 //即获取HTTP HEAD的：Content-
Type:text/html;charset=UTF-8中的字符集信息
 String charset =
EntityUtils.getContentCharSet(entity);
 System.out.println("响应的字符集是："+charset);
 InputStream is = entity.getContent();
 //使用响应中的编码来解释响应的内容
 BufferedReader br = new BufferedReader(new
InputStreamReader(is,charset));
 String line = null;
 while((line = br.readLine()) != null){
 System.out.println(line);
 }

李腾飞学习笔记 版本: 1.0
HttpClient 入门 更新日期: 2010-08-12 8:31

Confidential ©www.leadfar.org, 2010 Page 9 of 12

 is.close();
 }

 //释放所有的链接资源，一般在所有的请求处理完成之后，才需要释放
 httpclient.getConnectionManager().shutdown();

 } catch (ClientProtocolException e) {
 e.printStackTrace();
 } catch (IOException e) {
 e.printStackTrace();
 }
 }

主要通过 httpclient.getParams().setParameter 方法设置代理服务器。
HttpHost 是 HttpClient 中用来表示一台主机的类。

3.4 获得重定向之后的网址信息

HttpClient 缺省情况下自动处理客户端重定向，即当你访问网页（比如 A网页）之后，假设被重定向到了

B网页，那么，HttpClient 将自动返回 B网页的内容，无需再编程处理它！有时候我们可能想要知道 A网

页被重定向到了哪里，也就是取得 B网页的网址，那么可以通过下述例子获得：
 public void testFetch04(){
 try {
 //HttpClient主要负责执行请求
 HttpClient httpclient = new DefaultHttpClient();

 HttpContext context = new BasicHttpContext();

 //利用HTTP GET向服务器发起请求
 HttpGet get = new
HttpGet("http://localhost:8080/cms/backend/main.jsp");

 //获得服务器响应的的所有信息
 HttpResponse response = httpclient.execute(get,context);

 //获得重定向之后的主机地址信息
 HttpHost targetHost =
(HttpHost)context.getAttribute(ExecutionContext.HTTP_TARGET_HOST);
 System.out.println(targetHost); // http://localhost:8080

 //获得实际的请求对象的URI（即重定向之后的

"/cms/backend/login.jsp"）
 HttpUriRequest actualRequest = (HttpUriRequest)
context.getAttribute(ExecutionContext.HTTP_REQUEST);
 System.out.println(actualRequest.getURI());

 //获得服务器响应回来的消息体（不包括HTTP HEAD）
 HttpEntity entity = response.getEntity();

 if(entity != null){
 //获得响应的字符集编码信息

李腾飞学习笔记 版本: 1.0
HttpClient 入门 更新日期: 2010-08-12 8:31

Confidential ©www.leadfar.org, 2010 Page 10 of 12

 //即获取HTTP HEAD的：Content-
Type:text/html;charset=UTF-8中的字符集信息
 String charset =
EntityUtils.getContentCharSet(entity);
 System.out.println("响应的字符集是："+charset);
 InputStream is = entity.getContent();
 //使用响应中的编码来解释响应的内容
 BufferedReader br = new BufferedReader(new
InputStreamReader(is,charset));
 String line = null;
 while((line = br.readLine()) != null){
 System.out.println(line);
 }

 is.close();
 }

 //释放所有的链接资源，一般在所有的请求处理完成之后，才需要释放
 httpclient.getConnectionManager().shutdown();
 } catch (Exception e) {
 e.printStackTrace();
 }
 }

HttpContext，实际上是客户端用来在多次请求-响应的交互中，保持状态信息用的。假如我们在调用

httpclient.execute 方法的时候，将 HttpContext 对象作为参数传给这个方法（请看上述例子），那么

HttpClient 将把请求-响应交互过程中的状态信息存储在 HttpContext 中。

比如上面的例子中，HttpClient 把主机信息和真正的请求对象（所谓真正的请求对象，因为我们发出的是

main.jsp 的请求，但这个请求实际上被重定向到了 login.jsp，所以真正的请求对象实际上是

login.jsp）等信息（请参考文档说明）放到了 HttpContext 中！

我们自己也可以利用 HttpContext 来存放一些我们想要存放的其它信息，以便下次请求的时候，能够把这

些信息拿出来使用！

3.5 自动 Cookie 处理

HttpClient 能够支持自动 Cookie 处理。设想一个典型的场景：首先打开登录页面，然后输入用户名和密

码登录，然后访问那些只有登录之后才能访问的网页……

如果我们用浏览器，因为浏览器可以将登录之后的会话信息用 Cookie 存储在本地，所以，登录之后的每次

请求，都会自动向服务器发送 Cookie 的信息，我们利用 HttpClient，这些过程都全部可以自动化处理

了。

 public void testFetch05(){
 try {
 //HttpClient主要负责执行请求
 HttpClient httpclient = new DefaultHttpClient();

 HttpContext context = new BasicHttpContext();

李腾飞学习笔记 版本: 1.0
HttpClient 入门 更新日期: 2010-08-12 8:31

Confidential ©www.leadfar.org, 2010 Page 11 of 12

 //利用HTTP GET向服务器发起请求，
 HttpGet get = new
HttpGet("http://localhost:8080/cms/backend/login.jsp");

 //获得服务器响应的的所有信息
 HttpResponse response = httpclient.execute(get,context);

 //获得服务器响应回来的消息体（不包括HTTP HEAD）
 HttpEntity entity = response.getEntity();
 String charset = null;
 if(entity != null){
 //获得响应的字符集编码信息
 //即获取HTTP HEAD的：Content-
Type:text/html;charset=UTF-8中的字符集信息
 charset = EntityUtils.getContentCharSet(entity);
 System.out.println("响应的字符集是："+charset);
 InputStream is = entity.getContent();
 //使用响应中的编码来解释响应的内容
 BufferedReader br = new BufferedReader(new
InputStreamReader(is,charset));
 String line = null;
 while((line = br.readLine()) != null){
 System.out.println(line);
 }

 is.close();
 }

 //************* 执行登录请求 ********************//
 HttpPost post = new
HttpPost("http://localhost:8080/cms/backend/LoginServlet");

 //添加POST参数
 List<NameValuePair> nvps = new ArrayList<NameValuePair>();
 nvps.add(new BasicNameValuePair("username","admin"));
 nvps.add(new BasicNameValuePair("password","admin"));
 post.setEntity(new UrlEncodedFormEntity(nvps,charset));

 response = httpclient.execute(post);
 entity = response.getEntity();
 if(entity != null){
 InputStream is = entity.getContent();
 //使用响应中的编码来解释响应的内容
 BufferedReader br = new BufferedReader(new
InputStreamReader(is,charset));
 String line = null;
 while((line = br.readLine()) != null){
 System.out.println(line);
 }

 is.close();
 }

 //******************* 请求文章查询 ********************//

李腾飞学习笔记 版本: 1.0
HttpClient 入门 更新日期: 2010-08-12 8:31

Confidential ©www.leadfar.org, 2010 Page 12 of 12

 get = new
HttpGet("http://localhost:8080/cms/backend/ArticleServlet");
 response = httpclient.execute(get);
 entity = response.getEntity();
 if(entity != null){
 InputStream is = entity.getContent();
 //使用响应中的编码来解释响应的内容
 BufferedReader br = new BufferedReader(new
InputStreamReader(is,charset));
 String line = null;
 while((line = br.readLine()) != null){
 System.out.println(line);
 }

 is.close();
 }

 //释放所有的链接资源，一般在所有的请求处理完成之后，才需要释放
 httpclient.getConnectionManager().shutdown();
 } catch (Exception e) {
 e.printStackTrace();
 }
 }

