

7
第七章

JSTL 1.1

JSTL全名为 JavaServer Pages Standard Tag Library，目前最新的版本为 1.1
版。JSTL是由 JCP(Java Community Process)所制定的标准规范，它主要提供给
Java Web开发人员一个标准通用的标签函数库。

Web程序员能够利用 JSTL和 EL来开发Web程序，取代传统直接在页面上
嵌入 Java程序(Scripting)的做法，以提高程序的阅读性、维护性和方便性。

本章中，笔者将详细介绍如何使用 JSTL中各种不同的标签，将依序介绍条
件、循环、URL、U18N、XML、SQL等标签的用法，让读者对 JSTL有更深层
的了解，并且能够学会如何使用 JSTL。本章将分 6节来介绍：

7-1 JSTL 1.1 简介

7-2 核心标签库 (Core tag library)

7-3 I18N 格式标签库 (I18N-capable formatting tags library)

7-4 SQL 标签库 (SQL tag library)

7-5 XML 标签库 (XML tag library)

7-6 函数标签库 (Functions tag library)

JSP2.0技术手册

第七章 JSTL 1.1 126

JSP2.0技术手册

7-1 JSTL 1.1简介

JavaServer Pages Standard Tag Library (1.1)，它的中文名称为 JSP标准标签函数库。JSTL是
一个标准的已制定好的标签库，可以应用于各种领域，如：基本输入输出、流程控制、循环、

XML文件剖析、数据库查询及国际化和文字格式标准化的应用等。从表 7-1可以知道，JSTL
所提供的标签函数库主要分为五大类：
（1） 核心标签库 (Core tag library)
（2） I18N格式标签库 (I18N-capable formatting tag library)
（3） SQL标签库 (SQL tag library)
（4） XML标签库 (XML tag library)
（5） 函数标签库 (Functions tag library)

表 7-1

JSTL 前置名称 URI 范 例
核心标签库 c http://java.sun.com/jsp/jstl/core <c:out>
I18N格式标签库 fmt http://java.sun.com/jsp/jstl/xml <fmt:formatDate>
SQL标签库 sql http://java.sun.com/jsp/jstl/sql <sql:query>
XML标签库 xml http://java.sun.com/jsp/jstl/fmt <x:forBach>
函数标签库 fn http://java.sun.com/jsp/jstl/functions <fn:split>

 另外，JSTL也支持 EL(Expression Language)语法，例如：在一个标准的 JSP页面中可能会
使用到如下的写法：

<%= userList.getUser().getPhoneNumber() %>

 使用 JSTL搭配传统写法会变成这样：

<c_rt:out value="<%= userList.getUser().getPhoneNumber() %>" />

 使用 JSTL搭配 EL，则可以改写成如下的形式：

<c:out value="${userList.user.phoneNumber}" />

 虽然对网页设计者来说，假如没有学过 Java Script或者是第一次看到这种写法时，可能会
搞不太懂，但是与 Java语法相比，这应该更加容易学习。

7-1-1 安装使用 JSTL 1.1

JSTL 1.1必须在支持Servlet 2.4且 JSP 2.0以上版本的Container才可使用。JSTL主要由Apache组织
的 Jakarta Project所实现，因此读者可以到 http://jakarta.apache.org/builds/jakarta-taglibs/releases/standard/ 下载实
现好的 JSTL 1.1，或者直接使用本书光盘中 JSTL 1.1，软件名称为：jakarta-taglibs-standard-current.zip。

下载完后解压缩，可以发现文件夹中所包含的内容如图 7-1所示：

http://java.sun.com/jsp/jstl/core
http://java.sun.com/jsp/jstl/xml
http://java.sun.com/jsp/jstl/sql
http://java.sun.com/jsp/jstl/fmt
http://java.sun.com/jsp/jstl/functions
http://jakarta.apache.org/taglibs/index.html

7-1 JSTL 1.1简介 127

图 7-1 jakarta-taglibs-standard-1.1.0-B1的目录结构

将 lib中的 jstl.jar、standard.jar复制到 Tomcat的WEB-INF\lib中，然后就可以在 JSP网页中使
用 JSTL了。除了复制 .jar文件外，最好也把 tld文件的目录也复制到WEB-INF中，以便日后使用。

注意
lib目录下，除了 jstl.jar和 standard.jar之外，还有 old-dependencies目录，这目录里面的东西是
让之前 JSTL 1.0的程序也能够在 JSTL 1.1环境下使用。tld目录下有许多 TLD文件，其中大部
分都是 JSTL 1.0的 TLD文件，例如：c-1_0.tld和 c-1_0-rt.tld。

 下面写一个测试用的范例程序HelloJSTL.jsp，程序主要是显示浏览器的版本和欢迎的字符串。

HelloJSTL.jsp �
<%@ page contentType="text/html;charset=GB2312" %>
<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>

<html>
 <head>
 <title>测试你的第一个使用到 JSTL的网页</title>
 </head>

 <body>
 <c:out value="欢迎测试你的第一个使用到 JSTL的网页"/>
 </br>你使用的浏览器是：</br>
 <c:out value="${header['User-Agent']}"/>
 <c:set var="a" value="David O'Davies" />
 <c:out value="David O'Davies" escapeXml="true"/>
 </body>
</html>

 在 HelloJSTL.jsp的范例里，笔者用到核心标签库(Core)中的标准输出功能和 EL的 header
隐含对象。若要在 JSP网页中使用 JSTL时，一定要先做下面这行声明：

<

%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>

 这段声明表示我将使用 JSTL的核心标签库。一般而言，核心标签库的前置名称(prefix)都

JSP2.0技术手册

http://java.sun.com/jsp/jstl/core

第七章 JSTL 1.1 128

为 c，当然你也可以自行设定。不过 uri此时就必须为 http://java.sun.com/jsp/jstl/core。

注意
JSTL 1.0中，核心标签库的 uri默认为 http://java.sun.com/jstl/core，比 JSTL 1.1少一个 jsp/ 的路径。
因为 JSTL 1.1同时支持 JSTL 1.0和 1.1，所以假若核心标签库的 uri为 http://java.sun.com/jstl/core，
则将会使用到 JSTL 1.0的核心标签库。

 接下来使用核心标签库中的 out标签，显示 value的值。${header['User-Agent']}表示取
得表头里的 User-Agent的值，即有关用户浏览器的种类。

<c:out value="欢迎测试你的第一个使用到 JSTL的网页" />
<c:out value="${header['User-Agent']}" />

HelloJSTL.jsp的执行结果如图 7-2所示。

图 7-2 HelloJSTL.jsp的执行结果

假若读者想要自定义 taglib的 uri时，那就必须在 web.xml中加入设定值。例如：假若 uri
想要改为 http://www.javaworld.com.tw/jstl/core时，web.xml就必须加入如下设定：

<web-app>
：
 <jsp-config>
 <taglib>
 <taglib-uri>http://www.javaworld.com.tw/jstl/core</taglib-uri>
 <taglib-location>/WEB-INF/tld/c.tld</taglib-location>
 </taglib>
 </jsp-config>
：
</web-app>

 在上面的设定中，<taglib-uri>主要是设定标签库的 URI；而<taglib-location>则是用来设
定标签对应的 TLD文件。因此，使用<%@ taglib %>指令时，可以直接写成如下语句：

<%@ taglib prefix="c" uri="http://www.javaworld.com.tw/jsp/jstl/core" %>

7-1-2 JSTL 1.1 VS. JSTL 1.0

JSTL 1.0更新至 JSTL 1.1时，有以下几点不同：

JSP2.0技术手册

http://java.sun.com/jstl/core
http://java.sun.com/jstl/core

7-1 JSTL 1.1简介 129

JSP2.0技术手册

(1) EL原本是定义在 JSTL 1.0的，现在 EL已经正式纳入 JSP 2.0标准规范中，所以在 JSTL
1.1规范中，已经没有 EL的部分，但是 JSTL依旧能使用 EL。

(2) JSTL 1.0中，又分 EL和 RT两种函数库，到了 JSTL 1.1之后，已经不再分这两种了。
以下说明 EL和 RT的差别：
 EL

� 完全使用 Expression Language
� 简单
� 建议使用

RT
� 使用 Scriptlet
� Java语法
� 供不想转换且习惯旧表示法的开发者使用

笔者在此强烈建议大家使用 EL来做，简单又方便。
(3) JSTL 1.1新增函数(functions)标签库，主要提供一些好用的字符串处理函数，例如：

 fn:contains、 fn:containsIgnoreCase、 fn:endsWith、 fn:indexOf、 fn:join、 fn:length、
fn:replace、fn:split、fn:startsWith和 fn:substring 等等。

 除了上述三项比较大的改变之外，还包括许多小改变，在此不多加说明，有兴趣的读者可
以去看 JSTL 1.1附录 B“Changes”部分，那里有更详尽的说明。

7-1-3 安装 standard-examples

当解压缩 jakarta-taglibs-standard-current.zip后，文件夹内(见图7-1)有一个standard-examples.war
的文件，将它移至 Tomcat的 webapps后，重新启动 Tomcat会发现，在 webapps目录下多
了一个 standard-examples 的目录。接下来我们打开 IE，在 URL 位置上输入 http://localhost:8080/
standard-examples，你将会看到图 7-3所示的画面。

这个站台有很多 JSTL的范例，它包括以下几部分：
z General Purpose Tags
z Conditional Tags
z Iterator Tags
z Import Tags
z I18N & Formatting Tags
z XML Tags
z SQL Tags
z Functions
z Tag Library Validators
z Miscellaneous

http://localhost:8080/ standard-examples
http://localhost:8080/ standard-examples

第七章 JSTL 1.1 130

图 7-3 standard-examples站台

这些范例程序几乎涵盖了所有的 JSTL标签函数库，假若读者对哪一个标签的使用有问题，
可以先来找一找这里的范例程序，应该或多或少会有所帮助。

7-2 核心标签库 (Core tag library)

首先介绍的核心标签库(Core)主要有：基本输入输出、流程控制、迭代操作和 URL 操作。
详细的分类如表 7-2所示，接下来笔者将为读者一一介绍每个标签的功能。

表 7-2

分 类 功能分类 标签名称

表达式操作

out
set
remove
catch

流程控制

if
choose
 when
 otherwise

Core

迭代操作
forEach
forTokens

JSP2.0技术手册

7-2 核心标签库 (Core tag library) 131

JSP2.0技术手册

续表
分 类 功能分类 标签名称

Core URL操作

import
 param
url
 param
redirect
 param

在 JSP中要使用 JSTL中的核心标签库时，必须使用<%@ taglib %>指令，并且设定 prefix
和 uri的值，通常设定如下：

<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>

上述的功用在于声明将使用 JSTL的核心标签库。

注意
假若没有上述声明指令，将无法使用 JSTL的核心功能，这是读者在使用 JSTL时必须要小心的地方。

7-2-1 表达式操作

表达式操作分类中包含四个标签：<c:out>、<c:set>、<c:remove>和<c:catch>。接下来将
依序介绍这四个标签的用法。

● <c:out>
 <c:out>主要用来显示数据的内容，就像是 <%= scripting-language %> 一样，例如：

Hello ! <c:out value="${username}" />

语法

语法1：没有本体(body)内容
<c:out value="value" [escapeXml="{true|false}"] [default="defaultValue"] />

语法2：有本体内容
<c:out value="value" [escapeXml="{true|false}"]>
default value
</c:out>

属性

名 称 说 明 EL 类 型 必 须 默认值

value 需要显示出来的值 Y Object 是 无

default 如果 value的值为 null，则显示 default的值 Y Object 否 无

escapeXml 是否转换特殊字符，如：< 转换成 < Y boolean 否 true

第七章 JSTL 1.1 132

JSP2.0技术手册

注意
表格中的 EL字段，表示此属性的值是否可以为 EL表达式，例如：Y表示 attribute = "${表达
式}" 为符合语法的，N则反之。

Null 和 错误处理

· 假若 value为 null，会显示 default的值；假若没有设定 default的值，则会显示一个空的字符串。

说明

一般来说，<c:out>默认会将 <、>、’、” 和 & 转换为 <、>、'、" 和
&。假若不想转换时，只需要设定<c:out>的 escapeXml属性为 fasle就可以了（见表 7-3）。

表 7-3

字符 Entity
< <
> >
’ '
” "
& &

范例

<c:out value="Hello JSP 2.0 !! " />
<c:out value="${ 3 + 5 }" />
<c:out value="${ param.data }" default="No Data" />
<c:out value="<p>有特殊字符</p>" />
<c:out value="<p>有特殊字符</p>" escapeXml="false" />

1．在网页上显示 Hello JSP 2.0 !! ；
2．在网页上显示 8；
3．在网页上显示由窗体传送过来的 data参数之值，假若没有 data参数，或 data参数的值为

null时，则网页上会显示 No Data；
4．在网页上显示“<p>有特殊字符</p>”；
5．在网页上显示“有特殊字符”。
● <c:set>
 <c:set>主要用来将变量储存至 JSP范围中或是 JavaBean的属性中。

语法
语法1：将 value的值储存至范围为scope的 varName 变量之中
<c:set value="value" var="varName"
[scope="{ page|request|session|application }"]/>

语法2：将本体内容的数据储存至范围为scope的 varName 变量之中
<c:set var="varName" [scope="{ page|request|session|application }"]>
… 本体内容
</c:set>

7-2 核心标签库 (Core tag library) 133

JSP2.0技术手册

语法3：将 value的值储存至 target 对象的属性中
<

c:set value="value" target="target" property="propertyName" />

语法4：将本体内容的数据储存至 target 对象的属性中
<c:set target="target" property="propertyName">
… 本体内容
</c:set>

属性

名 称 说 明 EL 类型 必须 默认值

value 要被储存的值 Y Object 否 无

var 欲存入的变量名称 N String 否 无

scope var变量的 JSP范围 N String 否 page

target 为一JavaBean或 java.util.Map对象 Y Object 否 无

property 指定 target对象的属性 Y String 否 无

Null 和 错误处理

语法・ 3和语法 4会产生异常错误，有以下两种情况：
 ・target为 null
 ・target不是 java.util.Map或 JavaBean对象
假若・ value为 null时：将由储存变量改为移除变量

 语法・ 1：由 var和 scope所定义的变量，将被移除
 若・ scope已指定时，则 PageContext.removeAttribute(varName, scope)
 若・ scope未指定时，则 PageContext.removeAttribute(varName)
 语法・ 3：
 假若・ target为Map时，则Map.remove(property)
 假若・ target为 JavaBean时，property指定的属性为 null

说明

使用<c:set>时，var主要用来存放表达式的结果；scope则是用来设定储存的范围，例如：
假若 scope="session"，则将会把数据储存在 session中。如果<c:set>中没有指定 scope时，则
它会默认存在 Page范围里。

注意
var和 scope这两个属性不能使用表达式来表示，例如：我们不能写成 scope="${ourScope}"或者
是 var="${username}"。

 我们考虑下列的写法：

<c:set var="number" scope="session" value="${1 + 1}"/>

第七章 JSTL 1.1 134

JSP2.0技术手册

 把 1+1 的结果 2 储存到 number 变量中。如果<c:set>没有 value 属性，此时 value 之值
在<c:set>和</c:set>之间，本体内容看下面的范例：

<c:set var="number" scope="session">
<c:out value="${1+1}" />
</c:set>

 上面的 <c:out value="${1+1}" /> 部分可以改写成 2或是 <%=1+1%> ，结果都会一样，
也就是说，<c:set>是把本体(body)运算后的结果来当做 value 的值。另外，<c:set>会把 body
中最开头和结尾的空白部分去掉。如：

<c:set var="number" scope="session">
 1 + 1
</c:set>

则 number中储存的值为 1 + 1而不是 1 + 1。

范例

<c:set var="number" scope="request" value="${1 + 1}" />
<c:set var="number" scope="session" />
${3 + 5}
</c:set>
<c:set var="number" scope="request" value="${ param.number }" />
<c:set target="User" property="name" value="${ param.Username}" />

1．将 2存入 Request范围的 number变量中；
2．将 8存入 Session范围的 number变量中；
3． 假若 ${param.number}为 null时，则移除 Request范围的 number变量；若${param.number}
不为 null时，则将 ${param.number}的值存入 Request范围的 number变量中；

4．假若 ${param.Username}为 null 时，则设定 User(JavaBean)的 name 属性为 null；若不为
null时，则将 ${param.Username}的值存入 User(JavaBean)的 name属性(setter机制)。

注意
上述范例的 3.中，假若 ${param.number}为 null时，则表示移除 Request范围的 number变量。

● <c:remove>
 <c:remove>主要用来移除变量。

语法

<c:remove var="varName" [scope="{ page|request|session|application }"] />

属性

名 称 说 明 EL 类型 必须 默认值

var 欲移除的变量名称 N String 是 无

scope var变量的 JSP范围 N String 否 page

7-2 核心标签库 (Core tag library) 135

JSP2.0技术手册

说明

<c:remove>必须要有 var属性，即要被移除的属性名称，scope则可有可无，例如：

<c:remove var="number" scope="session" />

 将 number变量从 Session范围中移除。若我们不设定 scope，则<c:remove>将会从 Page、
Request、Session 及 Application 中顺序寻找是否存在名称为 number 的数据，若能找到时，则
将它移除掉，反之则不会做任何的事情。

范例

 笔者在这里写一个使用到<c:set>和<c:remove>的范例，能让读者可以更快地了解如何使用
它们，此范例的名称为 Core_set_remove.jsp。

� Core_set_remove.jsp
<%@ page contentType="text/html;charset=GB2312" %>
<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>

<html>
<head>
 <title>CH7 - Core_set_remove.jsp</title>
</head>
<body>

<h2><c:out value="<c:set>和<c:remove> 的用法" /></h2>

<c:set scope="page" var="number">
<c:out value="${1+1}"/>
</c:set>

<c:set scope="request" var="number">
<%= 3 %>
</c:set>

<c:set scope="session" var="number">
4
</c:set>

初始设置
<table border="1" width="30%">
<tr>
 <th>pageScope.number</th>
 <td><c:out value="${pageScope.number}" default="No Data" /></td>
</tr>
<tr>
 <th>requestScope.number</th>
 <td><c:out value="${requestScope.number}" default="No Data" /></td>

第七章 JSTL 1.1 136

JSP2.0技术手册

</tr>
<tr>
 <th>sessionScope.number</th>
 <td><c:out value="${sessionScope.number}" default="No Data" /></td>
</tr>
</table></br>

<c:out value='<c:remove var="number" scope="page" />之后'/>
<c:remove var="number" scope="page" />
<table border="1" width="30%">
<tr>
 <th>pageScope.number</th>
 <td><c:out value="${pageScope.number}" default="No Data" /></td>
</tr>
<tr>
 <th>requestScope.number</th>
 <td><c:out value="${requestScope.number}" default="No Data" /></td>
</tr>
<tr>
 <th>sessionScope.number</th>
 <td><c:out value="${sessionScope.number}" default="No Data" /></td>
</tr>
</table></br>

<c:out value='<c:remove var="number" />之后'/>
<c:remove var="number" />
<table border="1" width="30%">
<tr>
 <th>pageScope.number</th>
 <td><c:out value="${pageScope.number}" default="No Data" /></td>
</tr>
<tr>
 <th>requestScope.number</th>
 <td><c:out value="${requestScope.number}" default="No Data" /></td>
</tr>
<tr>
 <th>sessionScope.number</th>
 <td><c:out value="${sessionScope.number}" default="No Data" /></td>
</tr>
</table>
</body>
</html>

笔者一开始各在 Page、Request和 Session三个属性范围中储存名称为 number的变量。然
后先使用<c:remove var="number" scope="page" />把 Page中的 number变量移除，最后再使
用<c:remove var="number" />把所有属性范围中 number的变量移除。Core_set_remove.jsp
的执行结果如图 7-4所示：

7-2 核心标签库 (Core tag library) 137

图 7-4 Core_set_remove.jsp的执行结果

● <c:catch>
 <c:catch>主要用来处理产生错误的异常状况，并且将错误信息储存起来。

语法

<c:catch [var="varName"] >

… 欲抓取错误的部分
</c:catch>

属性

名 称 说 明 EL 类型 必须 默认值

var 用来储存错误信息的变量 N String 否 无

说明

 <c:catch>主要将可能发生错误的部分放在<c:catch>和</c:catch>之间。如果真的发生错
误，可以将错误信息储存至 varName变量中，例如：

<c:catch var="message">
： //可能发生错误的部分
</c:catch>

JSP2.0技术手册

第七章 JSTL 1.1 138

 另外，当错误发生在<c:catch>和</c:catch>之间时，则只有<c:catch>和</c:catch>之间的
程序会被中止忽略，但整个网页不会被中止。

范例

笔者写一个简单的范例，文件名为 Core_catch.jsp，来让大家看一下<c:catch>的使用方式。

Core_catch.jsp �
<%@ page contentType="text/html;charset=GB2312 " %>
<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>

<html>
<head>
 <title>CH7 - Core_catch.jsp</title>
</head>
<body>

<h2><c:out value="<c:catch> 的用法" /></h2>

<c:catch var="error_Message">
<%
 String eFormat = "not number";
 int i = Integer.parseInt(eFormat);
%>
</c:catch>
${error_Message}
</body>
</html>

笔者将一个字符串转成数字，如果字符串可以转为整数，则不会发生错误。但是这里笔者故

意传入一个不能转成数字的字符串，让<c:catch>之间产生错误。当错误发生时，它会自动将错误
存到 error_Message变量之中，最后再用<c:out>把错误信息显示出来，执行结果如图 7-5所示。

图 7-5 Core_catch.jsp的执行结果

可以发现到网页确实显示格式错误的信息。如果我们不使用<c:catch>，而把范例中的
<c:catch>和</c:catch>拿掉，结果如图 7-6所示。

JSP2.0技术手册

7-2 核心标签库 (Core tag library) 139

图 7-6 Core_catch.jsp没有<c:catch>和</c:catch>的执行结果

7-2-2 流程控制

流程控制分类中包含四个标签：<c:if>、<c:choose>、<c:when>和<c:otherwise>，笔者依
此顺序依次说明这四个标签的使用。

● <c:if>
 <c:if>的用途就和我们一般在程序中用的 if一样。

语法

语法1：没有本体内容(body)
<c:if test="testCondition" var="varName"

[scope="{page|request|session|application}"]/>

语法2：有本体内容
<c:if test="testCondition" [var="varName"]

[scope="{page|request|session|application}"]>
本体内容
</c:if>

JSP2.0技术手册

第七章 JSTL 1.1 140

JSP2.0技术手册

属性

名 称 说 明 EL 类 型 必 须 默认值

test 如果表达式的结果为 true，则执行本体内容，false则相反 Y boolean 是 无

var 用来储存 test运算后的结果，即 true或 false N String 否 无

scope var变量的 JSP范围 N String 否 page

说明

 <c:if> 标签必须要有 test属性，当 test中的表达式结果为 true时，则会执行本体内容；如
果为 false，则不会执行。例如：${param.username = = 'admin'}，如果 param.username等

admin时，结果为 true；若它的内容不等于 admin时，则为 false。 于

 接下来看下列的范例：

<c:if test="${param.username = = 'admin' }">
ADMIN您好!! //body部分
</c:if>

如果名称等于 admin，则会显示"ADMIN您好!! "的动作，如果相反，则不会执行<c:if>的

body部分，所以不会显示"ADMIN您好!! //body部分"。另外<c:if>的本体内容除了能放纯文字，
还可以放任何 JSP程序代码(Scriptlet)、JSP 标签或者 HTML码。

除了 test属性之外，<c:if>还有另外两个属性 var和 scope。当我们执行<c:if>的时候，可
以将这次判断后的结果存放到属性 var 里；scope 则是设定 var 的属性范围。哪些情况才会用
到 var和 scope这两个属性呢？例如：当表达式过长时，我们会希望拆开处理，或是之后还须
使用此结果时，也可以用它先将结果暂时保留，以便日后使用。

范例

 笔者写了一个简单的范例，名称为 Core_if.jsp。

� Core_if.jsp
<%@ page contentType="text/html;charset=GB2312 " %>
<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core"%>

<html>
<head>
 <title>CH7 - Core_if.jsp</title>
</head>
<body>

<h2><c:out value="<c:if> 的用法" /></h2>

<c:if test="${param.username == 'Admin'}" var="condition" scope="page">
您好 Admin先生
</c:if></br>

7-2 核心标签库 (Core tag library) 141

JSP2.0技术手册

执行结果为: ${condition}
</body>
</html>

笔者在判断用户送来的参数时，如果 username的值等于 Admin时，则会将 condition设
为 true并存放于 pageScope中，否则存放于 condition中，最后再显示结果。因为 JSTL会自
动 找 寻 condition 所 存 在 的 属 性 范 围 ， 因 此 只 须 使 用 ${condition}， 而 不 用
${pageScope.condition}。Core_if.jsp的执行结果如图 7-7。

注意
执行本范例时，请在 Core_if.jsp后加上?username=Admin。

图 7-7 Core_if.jsp的执行结果

● <c:choose>
 <c:choose>本身只当做 <c:when> 和 <c:otherwise> 的父标签。

语法

<c:choose>

 本体内容(<when> 和 <otherwise>)

</c:choose>

属性

无

限制

<c:choose>的本体内容只能有：
·空白

·1或多个 <c:when>
·0或多个 <c:otherwise>

第七章 JSTL 1.1 142

JSP2.0技术手册

说明

 若使用<c:when>和<c:otherwise>来做流程控制时，两者都必须为<c:choose>的子标签，即：

<c:choose>
：
<c:when>
</c:when>
：
<c:otherwise>
</c:otherwise>
：

</c:choose>

● <c:when>
 <c:when> 的用途就和我们一般在程序中用的 when一样。

语法

<c:when test="testCondition" >
本体内容
</c:when>

属性

名 称 说 明 EL 类型 必须 默认值
test 如果表达式的结果为 true，则执行本体内容，false 则
相反

Y boolean 是 无

限制

・<c:when> 必须在 <c:choose> 和 </c:choose>之间
在同一个・ <c:choose> 中时，<c:when> 必须在 <c:otherwise> 之前

说明

 <c:when>必须有 test属性，当 test中的表达式结果为 true时，则会执行本体内容；如果
为 false时，则不会执行。

● <c:otherwise>
 在同一个 <c:choose> 中，当所有 <c:when> 的条件都没有成立时，则执行 <c:otherwise>
的本体内容。

7-2 核心标签库 (Core tag library) 143

JSP2.0技术手册

语法

<c:otherwise>
本体内容
</c:otherwise>

属性

无

限制

·<c:otherwise> 必须在 <c:choose> 和 </c:choose>之间
·在同一个 <c:choose> 中时，<c:otherwise> 必须为最后一个标签

说明

 在同一个 <c:choose> 中，假若所有 <c:when> 的 test 属性都不为 true 时，则执行
<c:otherwise> 的本体内容。

范例

 笔者举一个典型的 <c:choose>、<c:when>和<c:otherwise>范例：

<c:choose>

<c:when test="${condition1}">
condition1为 true
</c:when>

<c:when test="${ condition2}">
condition2为 true
</c:when>

<c:otherwise>
condition1和 condition2都为 false
</c:otherwise>

</c:choose>

范例说明：当condition1为true时，会显示“condition1为true”；当condition1为false且

condition2为true时，会显示“condition2为true”，如果两者都为false，则会显示“condition1
和condition2都为false”。

注意
假若 condition1和 condition2两者都为 true时，此时只会显示"condition1 为 true"，这是因为在
同一个<c:choose>下，当有好几个<c:when>都符合条件时，只能有一个<c:when>成立。

第七章 JSTL 1.1 144

JSP2.0技术手册

7-2-3 迭代操作

迭代(Iterate)操作主要包含两个标签：<c:forEach>和<c:forTokens>，笔者依此顺序依次说
明这两个标签的使用。

● <c:forEach>
 <c:forEach> 为循环控制，它可以将集合(Collection)中的成员循序浏览一遍。运作方式为
当条件符合时，就会持续重复执行<c:forEach>的本体内容。

语法

语法1：迭代一集合对象之所有成员
<c:forEach [var="varName"] items="collection" [varStatus="varStatusName"]

[begin="begin"] [end="end"] [step="step"]>

本体内容
<

/c:forEach>

语法2：迭代指定的次数
<c:forEach [var="varName"] [varStatus="varStatusName"] begin="begin"

end="end" [step="step"]>

本体内容
</c:forEach>

属性

名 称 说 明 EL 类型 必须 默认值
var 用来存放现在指到的成员 N String 否 无

items 被迭代的集合对象 Y

Arrays
Collection
Iterator

Enumeration
Map

String

否 无

varStatus 用来存放现在指到的相关成员信息 N String 否 无
begin 开始的位置 Y int 否 0
end 结束的位置 Y int 否 最后一个成员
step 每次迭代的间隔数 Y int 否 1

限制

·假若有 begin属性时，begin必须大于等于 0
·假若有 end属性时，必须大于 begin

7-2 核心标签库 (Core tag library) 145

JSP2.0技术手册

·假若有 step属性时，step必须大于等于 0

Null 和 错误处理

·假若 items为 null时，则表示为一空的集合对象
·假若 begin大于或等于 items时，则迭代不运算

说明

 如果要循序浏览一个集合对象，并将它的内容显示出来，就必须有 items属性。

范例

 下面的范例 Core_forEach.jsp是将数组中的成员一个个显示出来的：

� Core_forEach.jsp
<%@ page contentType="text/html;charset=GB2312 " %>
<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>

<html>
<head>
 <title>CH7 - Core_forEach.jsp</title>
</head>
<body>

<h2><c:out value="<c:forEach> 的用法" /></h2>

<%
 String atts[] = new String [5];
 atts[0]="hello";
 atts[1]="this";
 atts[2]="is";
 atts[3]="a";
 atts[4]="pen";
 request.setAttribute("atts", atts);
%>

<c:forEach items="${atts}" var="item" >
${item}</br>
</c:forEach>

</body>
</html>

 在上述范例中，笔者先产生一个字符串数组，然后将此数组 atts储存至 Request的属性
范围中，再用<c:forEach>将它循序浏览一遍。这里 items 表示被浏览的集合对象，var 用
来存放指定的集合对象中成员，最后使用<c:out>将 item 的内容显示出来，执行结果如图

-8所示。 7

第七章 JSTL 1.1 146

图 7-8 Core_forEach.jsp的执行结果

注意
varName的范围只存在<c:forEach>的本体中，如果超出了本体，则不能再取得 varName的值。
上个例子中，若${item} 是在</c:forEach>之后执行时，如：

<c:forEach items="${atts}" var="item" >
</c:forEach>
${item}</br>

${item}则不会显示 item的内容。

<c:forEach>除了支持数组之外，还有标准 J2SE 的集合类型，例如：ArrayList、List、
LinkedList、Vector、Stack和 Set 等等；另外还包括 java.util.Map类的对象，例如：HashMap、
Hashtable、Properties、Provider和 Attributes。

<c:forEach>还有 begin、end和 step这三种属性：begin主要用来设定在集合对象中开始
的位置(注意：第一个位置为 0)；end 用来设定结束的位置；而 step 则是用来设定现在指到的
成员和下一个将被指到成员之间的间隔。我们将之前的范例改成如下：

Core_forEach1.jsp �
<%@ page contentType="text/html;charset=GB2312" %>
<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>

<html>
<head>
 <title>CH7 - Core_forEach1.jsp</title>
</head>
<body>

<h2><c:out value="<c:forEach> begin、end和 step的用法" /></h2>

<%

JSP2.0技术手册

7-2 核心标签库 (Core tag library) 147

JSP2.0技术手册

 String atts[] = new String [5];
 atts[0]="hello";
 atts[1]="this";
 atts[2]="is";
 atts[3]="a";
 atts[4]="pen";
 request.setAttribute("atts", atts);
%>

<c:forEach items="${atts}" var="item" begin="1" end="4" step="2" >
${item}</br>
</c:forEach>

</body>
</html>

<c:forEach>中指定的集合对象 atts 将会从第 2 个成员开始到第 5 个成员，并且每执
行一次循环都会间隔一个成员浏览。因此结果是只显示 atts[1]和 atts[3]的内容，如图 7-9
所示。

图 7-9 Core_forEach1.jsp的执行结果

为了方便详细介绍 begin、end和 step的不同设定下所产生的结果，笔者将上面的范例改成
如下：

<%
 int atts[] = {1,2,3,4,5,6,7,8,9,10};
 request.setAttribute("atts", atts);
%>
<c:forEach items="${atts}" var="item" begin="0" end="9" step="1" >
${item}</br>
</c:forEach>

 这里笔者改变 begin、end和 step的值时，在网页上输出结果的变化如表 7-4。

第七章 JSTL 1.1 148

JSP2.0技术手册

表 7-4

begin end step 结 果
- - - 1 2 3 4 5 6 7 8 9 10
5 - - 6 7 8 9 10
- 5 - 1 2 3 4 5 6
- - 5 1 6
5 5 - 6
5 5 5 6
0 8 2 1 3 5 7 9
0 8 3 1 4 7
0 8 4 1 5 9

15 20 - 无
20 8 - 空白结果
0 20 - 1 2 3 4 5 6 7 8 9 10

 从表 7-4中可以发现：

(1) 当 begin超过 end时将会产生空的结果；
(2) 当 begin虽然小于 end的值，但是当两者都大过容器的大小时，将不会输出任何东西；
(3) 最后如果只有 end的值超过集合对象的大小，则输出就和没有设定 end的情况相同；
(4) <c:forEach>并不只是用来浏览集合对象而已，读者可以从表 7-4中发现，items并不是
一定要有的属性，但是当没有使用 items属性时，就一定要使用 begin和 end这两个
属性。下面为一个简单的范例：

� Core_forEach2.jsp
<%@ page contentType="text/html;charset=GB2312" %>
<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>

<html>
<head>
 <title>CH7 - Core_forEach2.jsp</title>
</head>
<body>

<h2><c:out value="<c:forEach> 循环" /></h2>

<c:forEach begin="1" end="10" var="item" >
${item}</br>
</c:forEach>

</body>
</html>

上述范例中，我们并没有执行浏览集合对象，只是设定 begin和 end属性的值，这样它就
变成一个普通的循环。此范例是将循环设定为：从 1 开始跑到 10，总共会重复循环 10 次，并

7-2 核心标签库 (Core tag library) 149

且将数字放到 item的属性当中。Core_forEach2.jsp的执行结果如图 7-10所示。

图 7-10 Core_forEach2.jsp的执行结果

当然它也可以搭配 step使用，如果将 step设定为 2，结果如图 7-11所示。

图 7-11 当 step设定为 2时的结果

另外，<c:forEach>还提供 varStatus属性，主要用来存放现在指到之成员的相关信息。例
如：我们写成 varStatus="s"，那么将会把信息存放在名称为 s的属性当中。varStatus属性还
有另外四个属性：index、count、first和 last，它们各自代表的意义如表 7-5：

表 7-5

属 性 类 型 意 义

index number 现在指到成员的索引

count number 总共指到成员的总数

first boolean 现在指到的成员是否为第一个成员

last boolean 现在指到的成员是否为最后一个成员

JSP2.0技术手册

第七章 JSTL 1.1 150

JSP2.0技术手册

�

我们可以使用 varStatus属性取得循环正在浏览之成员的信息，下面为一个简单的范例：

Core_forEach3.jsp
<%@ page contentType="text/html;charset=GB2312" %>
<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>

<html>
<head>
 <title>CH7 - Core_forEach3.jsp</title>
</head>
<body>

<h2><c:out value="<c:forEach> varStatus 的四种属性" /></h2>

<%
 String atts[] = new String [5];
 atts[0]="hello";
 atts[1]="this";
 atts[2]="is";
 atts[3]="a";
 atts[4]="pen";
 request.setAttribute("atts", atts);
%>
<c:forEach items="${atts}" var="item"varStatus="s">
<h2><c:out value="${item}"/>的四种属性：</h2>
index：${s.index}</br>
count：${s.count}</br>
first：${s.first}</br>
last：${s.last}</br>
</c:forEach>

</body>
</html>

 执行结果如图 7-12所示。
● <c:forTokens>
 <c:forTokens> 用来浏览一字符串中所有的成员，其成员是由定义符号(delimiters)所分隔
的。

语法

<c:forTokens items="stringOfTokens" delims="delimiters" [var="varName"]

[varStatus="varStatusName"] [begin="begin"] [end="end"] [step="step"]>
本体内容
</c:forTokens>

7-2 核心标签库 (Core tag library) 151

图 7-12 Core_forEach3.jsp的执行结果

属性

名 称 说 明 EL 类 型 必 须 默认值
var 用来存放现在指到的成员 N String 否 无
items 被迭代的字符串 Y String 是 无
delims 定义用来分割字符串的字符 N String 是 无
varStatus 用来存放现在指到的相关成员信息 N String 否 无
begin 开始的位置 Y int 否 0
end 结束的位置 Y int 否 最后一个成员
step 每次迭代的间隔数 Y int 否 1

限制

·假若有 begin属性时，begin必须大于等于 0
·假若有 end属性时，必须大于 begin
·假若有 step属性时，step必须大于等于 0

Null 和 错误处理

·假若 items为 null时，则表示为一空的集合对象
·假若 begin大于或等于 items的大小时，则迭代不运算

JSP2.0技术手册

第七章 JSTL 1.1 152

JSP2.0技术手册

说明

 <c:forTokens>的 begin、end、step、var和 varStatus用法都和<c:forEach>一样，因此，
笔者在这里就只介绍 items和 delims两个属性：items的内容必须为字符串；而 delims是用
来分割 items中定义的字符串之字符。

范例

 下面为一个典型的<c:forTokens>的范例：

<c:forTokens items="A,B,C,D,E" delims="," var="item" >
${item}
</c:forTokens>

上面范例执行后，将会在网页中输出 ABCDE。它会把符号“,”当做分割的标记，拆成 5
个部分，也就是执行循环 5次，但是并没有将 A,B,C,D,E中的“,”显示出来。items也可以放
入 EL的表达式，如下：

<%
 String phoneNumber = "123-456-7899";
 request.setAttribute("userPhone", phoneNumber);
%>
<c:forTokens items="${userPhone}" delims="-" var="item" >
${item}
</c:forTokens>

这个范例将会在网页上打印 1234567899，也就是把 123-456-7899以“-”当做分割标记，
将字符串拆为 3 份，每执行一次循环就将浏览的部分放到名称为 item的属性当中。delims 不
只指定一种字符来分割字符串，它还可以一次设定多个分割字符串用的字符。如下面这个范例：
<c:forTokens items="A,B;C-D,E" delims=",;-" var="item" >
${item}
</c:forTokens>

此范例会在网页输出 ABCDE，也就是说，delims可以一次设定所有想当做分割字符串用
的字符。其实用<c:forEach>也能做到分割字符串，写法如下：

<c:forEach items="A,B,C,D,E" var="item" >
${item}
</c:forEach>

上述范例同样也会在网页输出 ABCDE。<c:forEach>并没有 delims 这个属性，因此

<c:forEach>无法设定分割字符串用的字符，而<c:forEach>分割字符串用的字符只有“,”，这
和使用<c:forTokens>，delims属性设为“,”的结果相同。所以如果使用<c:forTokens>来分割
字符串，功能和弹性上会比使用<c:forEach>来得较大。

7-2-4 URL操作

JSTL包含三个与 URL操作有关的标签，它们分别为：<c:import>、<c:redirect>和<c:url>。
它们主要的功能是：用来将其他文件的内容包含起来、网页的导向，还有 url 的产生。笔者将

7-2 核心标签库 (Core tag library) 153

JSP2.0技术手册

依序介绍这三个标签。

● <c:import>
 <c:import> 可以把其他静态或动态文件包含至本身 JSP 网页。它和 JSP Action 的
<jsp:include>最大的差别在于：<jsp:include>只能包含和自己同一个web application下的文件；
而<c:import>除了能包含和自己同一个 web application 的文件外，亦可以包含不同 web
application或者是其他网站的文件。

语法

语法1：
<c:import url="url" [context="context"] [var="varName"]

[scope="{page|request|session|application}"]

[charEncoding="charEncoding"]>

本体内容
</c:import>

语法2：
<c:import url="url" [context="context"] varReader="varReaderName"

[charEncoding="charEncoding"]>

本体内容
</c:import>

属性

名 称 说 明 EL 类 型 必须 默认值
url 一文件被包含的地址 Y String 是 无
context 相同 Container下，其他 web站台必须以“/”开头 Y String 否 无
var 储存被包含的文件的内容(以 String类型存入) N String 否 无
scope var变量的 JSP范围 N String 否 Page
charEncoding 被包含文件之内容的编码格式 Y String 否 无
varReader 储存被包含的文件的内容(以 Reader类型存入) N String 否 无

Null 和 错误处理

·假若 url为 null或空时，会产生 JspException

说明

首先<c:import>中必须要有 url 属性，它是用来设定被包含网页的地址。它可以为绝对地
址或是相对地址，使用绝对地址的写法如下：
<c:import url="http://java.sun.com" />

第七章 JSTL 1.1 154

JSP2.0技术手册

<c:import>就会把 http://java.sun.com的内容加到网页中。

另外<c:import>也支持 FTP协议，假设现在有一个 FTP站台，地址为 ftp.javaworld.com.tw，
它里面有一个文件 data.txt，那么可以写成如下方式将其内容显示出来：

<c:import url="ftp://ftp.cse.yzu.edu.tw/data.txt" />

如果是使用相对地址，假设存在一个文件名为 Hello.jsp，它和使用<c:import>的网页存在
于同一个 webapps的文件夹时，<c:import>的写法如下：

<c:import url="Hello.jsp" />

如果以“/”开头，那么就表示跳到 web 站台的根目录下，以 Tomcat 为例，即 webapps 目
录。假设一个文件为 hello.txt，存在于 webapps/examples/images里，而 context为 examples，
可以写成以下方式将 hello.txt文件包含进我们的 JSP页面之中：

<c:import url="images/hello.txt" />

接下来如果要包含在同一个服务器上，但并非同一个 web 站台的文件时，就必须加上

context属性。假设此服务器上另外还有一个 web站台，名为 others，others站台底下有一个
件夹为 jsp，且里面有 index.html这个文件，那么就可以写成如下方式将此文件包含进来： 文

<c:import url="/jsp/index.html" context="/others" />

注意
被包含文件的 web站台必须在 server.xml 中定义过，且<Context>的 crossContext 属性值必须为
true，这样一来，others目录下的文件才可以被其他 web站台调用。
s

erver.xml的设定范例如下：

：

<Context path="/others" docBase="others" debug="0"

 reloadable="true" crossContext="true"/>

：

除此之外，<c:import>也提供 var和 scope属性。当 var属性存在时，虽然同样会把其他文
件的内容包含进来，但是它并不会输出至网页上，而是以String的类型储存至 varName中。scope
则是设定 varName的范围。储存之后的数据，我们在需要用时，可以将它取出来，代码如下：

<c:import url="/images/hello.txt" var="s" scope="session" />

我们可以把常重复使用的商标、欢迎语句或者是版权声明，用此方法储存起来，想输出在网页

上时，再把它导入进来。假若想要改变文件内容时，可以只改变被包含的文件，不用修改其他网页。

另外，可以在<c:import>的本体内容中使用<c:param>，它的功用主要是：可以将参数传

http://java.sun.com/
ftp://ftp.javaworld.com.tw/

7-2 核心标签库 (Core tag library) 155

JSP2.0技术手册

递给被包含的文件，它有两个属性 name和 value，如表 7-6所示：

表 7-6

名 称 说 明 EL 类 型 必 须 默认值

name 参数名称 Y String 是 无

value 参数的值 Y String 否 本体内容

这两个属性都可以使用 EL，所以我们写成如下形式：

<c:import url="http://java.sun.com" >
<c:param name="test" value="1234" />
</c:import>

这样的做法等于是包含一个文件，并且所指定的网址会变成如下：

http://java.sun.com?test=1234

范例

 下面为一用到 <c:import> 、 <c:param> 及属性范围的范例， Core_import.jsp 和
Core_imported.jsp：

� Core_import.jsp
<%@ page contentType="text/html;charset=GB2312" %>
<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>

<html>
<head>
 <title>CH7 - Core_import.jsp</title>
</head>
<body>

<h2><c:out value="<c:import> 的用法" /></h2>

<c:set var="input1" value="使用属性范围传到 Core_imported.jsp中"
scope="request"/>包含 core_imported.jsp中<hr/>

<c:import url="Core_imported.jsp"charEncoding="GB2312" >
<c:param name="input2" value="使用<c:param>传到 Core_imported.jsp中"/>
</c:import><hr/>

${output1}

</body>
</html>

 程序中，笔者分别使用<c:set>和<c:param>来传递参数。

http://java.sun.com/?test=1234

第七章 JSTL 1.1 156

JSP2.0技术手册

� Core_imported.jsp
<%@ page contentType="text/html;charset=GB2312" %>
<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>
<%@ taglib prefix="fmt" uri="http://java.sun.com/jsp/jstl/fmt" %>

<html>
<head>
 <title>CH7 - Core_imported.jsp</title>
</head>
<body>

<fmt:requestEncoding value="GB2312" />
<c:set var="output1" value="使用属性范围传到 Core_import.jsp中"
scope="request"/>
${input1}</br>
<c:out value="${param.input2}" escapeXml="true" />

</body>
</html>

Core_imported.jsp 是被包含的文件，它会把从 Core_import.jsp 传来的参数分别输出到页
面上，必须注意的是 input1 参数是使用属性范围来传递的，因此可以直接用${input1}来得到
参数，而 input2则必须使用${param.input2}来得到参数。

此外，笔者还使用<c:set>来传递值给 Core_import.jsp，这就是<c:param>无法做到的动作，

<c:param>只能从包含端抛给被包含端，但是在属性范围中，可以让包含端也能得到被包含端
传来的数据。Core_import.jsp的执行结果如图 7-13所示：

图 7-13 Core_import.jsp的执行结果

● <c:url>
 <c:url>主要用来产生一个 URL。

7-2 核心标签库 (Core tag library) 157

JSP2.0技术手册

语法

语法1：没有本体内容
<c:url value="value" [context="context"] [var="varName"]

[scope="{page|request|session|application}"] />

语法2：本体内容代表查询字符串(Query String)参数
<c:url value="value" [context="context"] [var="varName"]

[scope="{page|request|session|application}"] >
 <c:param> 标签
</c:url>

属性

名称 说 明 EL 类型 必 须 默认值

value 执行的 URL Y String 是 无

context 相同 Container下，其他 web站台必须以 “/” 开头 Y String 否 无

var 储存被包含文件的内容(以 String类型存入) N String 否 无

scope var变量的 JSP范围 N String 否 Page

说明

 在这里笔者直接使用例子来说明。

<c:url value="http://www.javaworld.com.tw " >
<c:param name="param" value="value"/>
</c:url>

 读者可以发现<c:url>也可以搭配<c:param>使用，上面执行结果将会产生一个网址为
http://www.javaworld.com.tw?param=value，我们更可以搭配 HTML的<a>使用，如下：

<a href="
 <c:url value="http://www.javaworld.com.tw " >
 <c:param name="param" value="value"/>
</c:url>">台湾 Java 技术论坛

另外<c:url>还有三个属性，分别为 context、var和 scope。context属性和之前的<c:import>
相同，可以用来产生一个其他 web 站台的网址。如果<c:url>有 var 属性时，则网址会被存到
varName中，而不会直接输出网址。

哪些状况下才会去使用<c:url>？例如：当我们须动态产生网址时，有可能传递的参数不固定，
或者是需要一个网址能连至同服务器的其他 web站台之文件，而且<c:url>更可以将产生的网址储
存起来重复使用。另外，在以前我们必须使用相对地址或是绝对地址去取得需要的图文件或文件，

现在我们可以直接利用<c:url>从web站台的角度来设定需要的图文件或文件的地址，如下：

<img src="<c:url value="/images/code.gif" />" />

第七章 JSTL 1.1 158

JSP2.0技术手册

如此就会自动产生连到 image文件夹里的 code.gif的地址，不再须耗费精神计算相对地址，
并且当网域名称改变时，也不用再改变绝对地址。

● <c:redirect>
 <c:redirect>可以将客户端的请求从一个 JSP网页导向到其他文件。

语法

语法1：没有本体内容
<c:redirect url="url" [context="context"] />

语法2：本体内容代表查询字符串(Query String)参数
<c:redirect url="url" [context="context"] >

 <c:param>

</c:redirect >

属性

名 称 说 明 EL 类 型 必须 默认值

url 导向的目标地址 Y String 是 无

context 相同Container下，其他 web站台必须以 “/” 开头 Y String 否 无

说明

 url就是设定要被导向到的目标地址，它可以是相对或绝对地址。例如：我们写成如下：

<c:redirect url="http://www.javaworld.com.tw" />

 那么网页将会自动导向到 http://www.javaworld.com.tw。另外，我们也可以加上 context这个属性，
用来导向至其他 web站台上的文件，例如：导向到 /others下的 /jsp/index.html时，写法如下：

<c:redirect url="/jsp/index.html" context="/others" />

 <c:redirect> 的功能不止可以导向网页，同样它还可以传递参数给目标文件。在这里我们
同样使用<c:param>来设定参数名称和内容。

范例

� Core_redirect.jsp
<%@ page contentType="text/html;charset=GB2312" %>
<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>

<html>

http://java.sun.com/

7-2 核心标签库 (Core tag library) 159

JSP2.0技术手册

<head>
 <title>CH7 - Core_redirect.jsp</title>
</head>
<body>

<h2><c:out value="<c:redirect> 的用法" /></h2>

<c:redirect url="http://java.sun.com">
<c:param name="param" value="value"/>
</c:redirect>

<c:out value="不会执行喔!!!" />

</body>
</html>

执行结果如图 7-14，可以发现网址部分为 http://java.sun.com/?param=value：

图 7-14 Core_redirect.jsp的执行结果

	第七章
	JSTL 1.1
	7-1 JSTL 1.1简介
	7-1-1 安装使用JSTL 1.1
	7-1-2 JSTL 1.1 VS. JSTL 1.0
	7-1-3 安装standard-examples

	7-2 核心标签库 \(Core tag library\)
	7-2-1 表达式操作
	7-2-2 流程控制
	7-2-3 迭代操作
	7-2-4 URL操作

