
Spring 快速入门教程
──开发你的第一个Spring程序

翻译整理：Hantsy Bai<hantsy@tom.com>

本章学习用struts MVC框架作前端，Spring做中间层，Hibernate作后端来开发一个

简单的Spring应用程序。在第4章将使用Spring MVC框架对它进行重构。

本章包含以下内容：

编写功能性测试。

配置Hibernate和 Transaction。

载入Spring的 applicationContext.xml文件。

设置业务代理(business delegates)和 DAO的依赖性。

把spring写入Struts 程序。

概述

你将会创建一个简单的程序完成最基本的CRUD(Create, Retrieve, Update和 Delete)

操作。这个程序叫 MyUsers，作为本书的样例。这是一个 3层架构的 web 程序，通过一个

Action 来调用业务代理，再通过它来回调 DAO类。下面的流程图表示了MyUsers是如何工

作的。数字表明了流程的先后顺序，从web层(UserAction)到中间层(UserManager)，再到

数据层(UserDAO)，然后返回。

鉴于大多数读者都比较熟悉struts，本程序采用它作为MVC 框架。Spring的魅力在于

它宣称式的事务处理，依懒性的绑定和持久性的支持。第4 章中将用 Spring框架对它进行

重构。

接下来你会进行以下几个步骤：

1.下载Struts和 Spring。

2.创建项目目录和ant Build文件。

3.为持久层创建一个单元测试(unit tests)。

4.配置Hibernate和 Spring。

5.编写HIbernate DAO的实现。

6.进行单元测试，通过DAO验证CRUD。

7.创建一个Manager来声明事务处理。

8.为 struts Action 编写测试程序。

9.为 web层创建一个Action 和 model(DynaActionForm)。

10.进行单元测试，通过Action验证CRUD。

11.创建JSP页面，以通过浏览器来进行CRUD操作。

12.通过浏览器来验证JSP页面的功能。

13.用 velocity模板替换JSP页面。

14.使用Commons Validator添加验证。

下载Struts和 Spring

1.下载安装以下组件：

• JDK1.4.2(或以上)

• Tomcat5.0+

• Ant 1.6.1+

2.设置以下环境变量：

• JAVA_HOME

• ANT_HOME

• CATALINA_HOME

3.把以下路径添加到PATH中：

• JAVA_HOME/bin

• ANT_HOME/bin

• CATALINA_HOME/bin

为了开发基于java的 web项目，开发人员必须事先下载必需的jars,建好开发目录结

构和ant build文件。对于单一的struts项目，可以利用struts中现成的struts-

blank.war。对于基于Spring MVC 框架的项目，可以用Spring中的webapp-minimal.war。

这只为开发作准备，两者都没有进行struts-spring集成，也没有考虑单元测试。为此，我

们为读者准备了Equinox。

Equinox为开发Struts-spring式的程序提供一个基本框架。它已经定义好了目录结构，

和ant build文件(针对compiling,deploying,testing)，并且提供了struts, spring,

Hibernate开发要用到的jars文件。Equinox中大部分目录结构和ant build文件来自我的

开源项目──AppFuse。可以说，Equinox是一个简化的AppFuse，它在最小配置情况下，为

快速web开发提供了便利。由于Equinox源于AppFuse,所以在包名，数据库名，及其它地方

都找到它的影子。这是为让你从基于Equinox的程序过渡到更为复杂的AppFuse。

从http://sourcebeat.com/downloads上下载Equinox，解压到一个合适的位置，开始

准备MyUsers的开发。

创建项目目录和ant build文件

为了设置初始的目录结构，把下载的Equinox解压到硬盘。建议 windows用户把项目放

在C:\Source，Unix/Linux用户放在~/dev(译注：在当前用户目录建一个dev目录)中。

windows用户可以设置一个HOME环境变量，值为C:\Source。最简单的方法是把Equinox解

压到你的喜欢的地方，进入equinox目录，运行ant new -Dapp.anme=myusers。

tips:在windows使用cygwin(www.cygwin.org)就可以像 Unix/Linux系统一样使用正

斜杠，本书所有路径均采用正斜杠。其它使用反斜杠系统(如 windows中命令行窗口)的用户

请作相应的调整。

现在MyUsers程序已经有如下的目录结构：

Equinox包含一个简单而功能强大的build.xml,它可以用ant来进行编译，布署，和测

试。ant中已经定义好targets,在 equinox运行ant,将看到如下内容：

[echo] Available targets are:

[echo] compile --> Compile all Java files

[echo] war --> Package as WAR file

[echo] deploy --> Deploy application as directory

[echo] deploywar --> Deploy application as a WAR file

[echo] install --> Install application in Tomcat

[echo] remove --> Remove application from Tomcat

[echo] reload --> Reload application in Tomcat

[echo] start --> Start Tomcat application

[echo] stop --> Stop Tomcat application

[echo] list --> List Tomcat applications

[echo] clean --> Deletes compiled classes and WAR

[echo] new --> Creates a new project

Equinox支持tomcat的 ant tasks(任务)。这些已经集成在Equinox中，解讲一下如何

进行集成的有助于理解它们的工作原理。

Tomcat 和 ant

tomcat中定义了一组任务，可以通过Manager来安装(install),删除(remove)，重载

(reload)webapps。要使用这些任务，可以把所有的定义写在一个属性文件中。在Eqinox的

根目录下，有一个名为tomcatTasks.properties包含如下内容。

deploy=org.apache.catalina.ant.DeployTask

undeploy=org.apache.catalina.ant.UndeployTask

remove=org.apache.catalina.ant.RemoveTask

reload=org.apache.catalina.ant.ReloadTask

start=org.apache.catalina.ant.StartTask

stop=org.apache.catalina.ant.StopTask

list=org.apache.catalina.ant.ListTask

在 build.xml定义一些任务来安装，删除，重新载入应用程序。

<!-- Tomcat Ant Tasks -->

<taskdef file="tomcatTasks.properties">

 <classpath>

<pathelement path="${tomcat.home}/server/lib/catalina-ant.jar"/>

</classpath>

</taskdef>

<target name="install" description="Install application in Tomcat"

depends="war">

<deploy url="${tomcat.manager.url}" username="${tomcat.manager.username}"

password="${tomcat.manager.password}" path="/${webapp.name}" war="file:$

{dist.dir}/${webapp.name}.war"/>

 </target>

<target name="remove" description="Remove application from Tomcat">

<undeploy url="${tomcat.manager.url}" username="${tomcat.manager.username}"

password="${tomcat.manager.password}" path="/${webapp.name}"/>

</target>

<target name="reload" description="Reload application in Tomcat">

<reload url="${tomcat.manager.url}" username="${tomcat.manager.username}"

password="${tomcat.manager.password}" path="/${webapp.name}"/>

</target>

<target name="start" description="Start Tomcat application">

<start url="${tomcat.manager.url}" username="${tomcat.manager.username}"

password="${tomcat.manager.password}" path="/${webapp.name}"/>

</target> <target name="stop" description="Stop Tomcat application">

 <stop url="${tomcat.manager.url}" username="${tomcat.manager.username}"

password="${tomcat.manager.password}" path="/${webapp.name}"/>

</target>

<target name="list" description="List Tomcat applications">

<list url="${tomcat.manager.url}"

 username="${tomcat.manager.username}"

 password="${tomcat.manager.password}"/>

</target>

在上面列出的target中，必须定义一些${tomcat.*}变量。在根目录下有一个

build.properties默认定义如下：

Properties for Tomcat Server

tomcat.manager.url=http://localhost:8080/manager

tomcat.manager.username=admin

tomcat.manager.password=admin

确保 admin用户可以访问 Manager应用，打开$CATALINA_HOME/conf/tomcat-

users.xml中是否存在下面一行。如果不存在，请自己添加。注意，roles属性可能是一个

以逗号(“,”)隔开的系列。

<user username="admin" password="admin" roles="manager"/>

为了测试所有修改，保存所有文件，启动 tomcat。从命令行中进行myusers目录，运

行ant list，可以看到 tomcat server上运行的应用程序。

好了，现在运行 ant deploy来安装MyUsers。打开浏览器，在地址栏中输入

http://localhost:8080/myusers，出现如图2.4的“Equinox Welcome”画面。

下一节，将写一个User对象和一个维护其持久性的Hibernate DAO对象。用Sping来

管理DAO 类及其依赖性。最会写一个业务代理，用到AOP和声明式事务处理。

为持久层编写单元测试

在 myUsers 程序，使用 Hibernat 作为持久层。Hinbernate 是一个 O/R映像框架，用来关

联 java 对象和数据库中的表(tables)。它使得对象的 CRUD 操作变得非常简单，Spring 结合了

Hibernate 变得更加容易。从 Hibernate转向 Spring+Hibernate 会减少 75%的代码。这主要是因

为，ServiceLocater 和一些DAOFactory类的废弃，spring 的实时异常代替了 Hibernate 的检测

式的异常。

写一个单元测试有助于规范 UserDAO 接口。为 UserDAO 写一个 JUint 测试程序，要完

成以下几步：

1.在 test/org/appfuse/dao 下新建一个 UserDAOTest.java 类。它继承了同一个包中的

BaseDAOTestCase，其父类初始化了 Spring 的 ApplictionContext(来自web/WEB-

INF/applictionContext.xml)，以下是 JUnit 测试的代码。

package org.appfuse.dao;

// use your IDE to handle imports

public class UserDAOTest extends BaseDAOTestCase {

private User user = null;

private UserDAO dao = null;

protected void setUp() throws Exception {

 log = LogFactory.getLog(UserDAOTest.class);

 dao = (UserDAO) ctx.getBean("userDAO");

 }

protected void tearDown() throws Exception {

 dao = null;

}

public static void main(String[] args) {

 junit.textui.TestRunner.run(UserDAOTest.class);

 }

}

这个类还不能编译，因为还没有 UserDAO 接口。在这之前，来写一些来验证 User 的

CRUD 操作。

2.为 UserDAOTest 类添加 testSave 和 testAddAndRemove方法，如下：

public void testSaveUser() throws Exception {

 user = new User();

user.setFirstName("Rod");

user.setLastName("Johnson");

 dao.saveUser(user);

assertTrue("primary key assigned", user.getId() != null);

log.info(user);

assertTrue(user.getFirstName() != null);

 }

public void testAddAndRemoveUser() throws Exception {

 user = new User();

user.setFirstName("Bill");

user.setLastName("Joy");

dao.saveUser(user);

 assertTrue(user.getId() != null);

 assertTrue(user.getFirstName().equals("Bill"));

 if (log.isDebugEnabled()) {

log.debug("removing user...");

}

dao.removeUser(user.getId());

assertNull(dao.getUser(user.getId()));

}

从这些方法中可以看到，你需要在 UserDAO 创建以下方法：

 saveUser(User)

 removeUser(Long)

 getUser(Long)

 getUsers() (返回数据库的所有用户)

3.在 src/org/appfuse/dao 目录下建一个名为 UserDAO.java 类的，输入以下代码：

tips:如果你使用 eclipse,idea 之类的 IDE，左边会出现在一个灯泡，提示类不存在，可以

即时创建。

package org.appfuse.dao;

// use your IDE to handle imports

public interface UserDAO extends DAO {

public List getUsers();

public User getUser(Long userId);

public void saveUser(User user);

public void removeUser(Long userId);

 }

为了 UserDAO.java,UserDAOTest.java 编译通过，还要建一个 User.java 类。

4.在 src/org/appfuse/model 下建一个 User.java 文件，添加几个成员变量：

id,firstName,lastName，如下。

 package org.appfuse.model;

 public class User extends BaseObject {

private Long id;

private String firstName;

private String lastName;

/* 用你熟悉的 IDE 来生成 getters 和 setters，Eclipse 中右击> Source -> Generate Getters

and Setters */

}

注意，你继承了 BaseObject 类，它包含几个有用的方法：toString(),equlas(),hasCode(),

后两个是 Hibernate 必须的。建好 User 后，用 IDE打开 UserDAO 和 UserDAOTest 两个类，

优化导入。

配置 Hibernate 和 Spring

现在已经有了 POJO(Plain Old Java Object),写一个映像文件 Hibernate就可能维护它。

1.在 org/appfuse/model 中新建一个名为 User.hbm.xml 文件，内容如下：

<?xml version="1.0" encoding="UTF-8"?>

 <!DOCTYPE hibernate-mapping PUBLIC "-//Hibernate/Hibernate Mapping DTD 2.0//EN"

"http://hibernate.sourceforge.net/hibernate-mapping-2.0.dtd">

 <hibernate-mapping>

<class name="org.appfuse.model.User" table="app_user">

<id name="id" column="id" unsaved-value="0">

 <generator class="increment" />

</id>

<property name="firstName" column="first_name" not-null="true"/>

<property name="lastName" column="last_name" not-null="true"/>

</class>

</hibernate-mapping>

2.在 web/WEB-INF/下的 applictionContext.xml 中添加映像。打开文件，找到<property

name= mappingResources >，改成如下：

<property name="mappingResources">

<list>

<value>org/appfuse/model/User.hbm.xml</value>

</list>

</property>

在 applictionContext.xml 中，你可以看到数据库是怎幺工作的，Hibernate 和 Spring 是如

何协作的。Eqinox 会使用名为 db/appfuse 的 HSQL 数据库。它将在你的 ant “db”目录下创建，

详细配置在“How Spring Is Configured in Equinox ”一节中描述。

3.运行 ant deploy reload(Tomcat正在运行)，在 Tomcat控制台的日志中可以看到，数据

表正在创建。

INFO - SchemaExport.execute(98) | Running hbm2ddl schema export

INFO - SchemaExport.execute(117) | exporting generated schema to database

INFO - ConnectionProviderFactory.newConnectionProvider(53) | Initializing connection

provider: org.springframework.orm.hibernate.LocalDataSourceConnectionProvider

INFO - DriverManagerDataSource.getConnectionFromDriverManager(140) | Creating new

JDBC connection to [jdbc:hsqldb:db/appfuse]

INFO - SchemaExport.execute(160) | schema export complete

Tip: 如果你想看到更多或更少的日志，修改 web/WEB-INF/ classes/log4j.xml 的设置。

4.为了验证数据库已经建好，运行 ant browser启动 hsql console 。你会看到如的 HSQL

Database Manager。

Equinox 中 spring 是怎幺配置的

使用 Spring 配置任何基于 j2ee 的 web 程序都很简单。至少，你简单的添加 Spring 的

ContextLoaderListener 到你的 web.xml 中。

<listener>

<listener-class>

 org.springframework.web.context.ContextLoaderListener

</listener-class>

</listener>

这是一个 ServletContextListener，它会在启动web 应用进行初始化。默认情况下，它会

查找web/WEB-INF/applictionContext.xml 文件，你可以指定名为 contextConfigLocation 的

<context-param>元素来进行修改，例如：

<context-param>

<param-name>contextConfigLocation</param-name>

 <param-value>/WEB-INF/sampleContext.xml</param-value>

</context-param>

<param-value>元素可以是以空格或是逗号隔开的一系列路径。在 Equnox 中，Spring

的配置使用了这个 Listener 和默认的 contextConfigLocation。

那幺，Spring怎幺知道Hibernate 的存在？这就 Spring 的魅力所在，它让依赖性的绑定

变得非常简单。请参阅 applicationContext.xml 的全部内容：

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN"

"http://www.springframework.org/dtd/spring-beans.dtd">

 <beans>

<bean id="dataSource"

class="org.springframework.jdbc.datasource.DriverManagerDataSource">

<property name="driverClassName">

<value>org.hsqldb.jdbcDriver</value>

</property>

<property name="url">

<value>jdbc:hsqldb:db/appfuse</value>

</property>

<property name="username">

<value>sa</value>

</property>

<property name="password">

<value></value>

</property> </bean>

<!-- Hibernate SessionFactory -->

<bean id="sessionFactory"

class="org.springframework.orm.hibernate.LocalSessionFactoryBean">

<property name="dataSource">

<ref local="dataSource"/>

</property>

<property name="mappingResources">

<list>

<value>org/appfuse/model/User.hbm.xml</value>

</list>

</property>

<property name="hibernateProperties">

<props>

<prop key="hibernate.dialect"> net.sf.hibernate.dialect.HSQLDialect </prop>

<prop key="hibernate.hbm2ddl.auto">create</prop>

</props>

</property>

</bean>

<!-- Transaction manager for a single Hibernate SessionFactory (alternative to JTA) -->

<bean id="transactionManager"

class="org.springframework.orm.hibernate.HibernateTransactionManager">

<property name="sessionFactory">

<ref local="sessionFactory"/>

 </property>

</bean>

</beans>

第一 bean 代表 HSQL 数据库，Spring仅仅是调用 LocalSessionFactoryBeanr 的

setDataSource(DataSource)使之工作。如果你想用 JNDI DataSource 替换，可以 bean 的定义改

成类似下面的几行：

<bean id="dataSource" class="org.springframework.jndi.JndiObjectFactoryBean">

<property name="jndiName">

<value>java:comp/env/jdbc/appfuse</value>

 </property>

</bean>

 hibernate.hbm2ddl.auto 属性在 sessionFactory定义中，这个属性是为了在应用启动时自

动创建表，也可能是 update 或 create-drop。

最后一个 bean 是 transactionManager(你也可以使用 JTA transaction)，在处理跨越两个

数据库的分布式的事务处理中尤其重要。如果你想使用 jta transaction manager ，将此 bean 的

class属性改成

org.springframework.transaction.jta.JtaTransactionManager

下面实现 UserDAO 类。

用 hibernate 实现 UserDAO

为了实现 Hibernate UserDAO，需要完成以下几步：

1.在 src/org/appfuse/dao/hibernate(你要新建这个目录/包) 新建一个文件

UserDAOHibernate.ava。这个类继承了 HibernatDaoSupport 类，并实现了 UserDAO 接口。

package org.appfuse.dao.hibernate;

// use your IDE to handle imports

public class UserDAOHibernate extends HibernateDaoSupport implements UserDAO {

private Log log = LogFactory.getLog(UserDAOHibernate.class);

public List getUsers() {

return getHibernateTemplate().find("from User");

 }

public User getUser(Long id) {

 return (User) getHibernateTemplate().get(User.class, id);

}

public void saveUser(User user) {

getHibernateTemplate().saveOrUpdate(user);

if (log.isDebugEnabled()) {

log.debug(userId set to: + user.getID());

}

}

public void removeUser(Long id) {

Object user = getHibernateTemplate().load(User.class, id);

getHibernateTemplate().delete(user);

 }

}

Spring 的 HibernateDaoSupport 类是一个方便实现 Hibernate DAO 的超类，你可以它的

一些有用的方法，来获得Hibernate DAO 或是 SessionFactory。最方便的方法是

getHibernateTemplate()，它返回一个 HibernateTempalte 对象。这个模板把检测式异常

(checked exception)包装成实时式异常(runtime exception)，这使得你的 DAO 接口无需抛出

Hibernate异常。

程序还没有把 UserDAO 绑定到 UserDAOHibernate 上，必须创建它们之间的关联。

2.在 Spring 配置文件(web/WEB-INF/applictionContext.xml)中添加以下内容：

<bean id="userDAO" class="org.appfuse.dao.hibernate.UserDAOHibernate">

<property name="sessionFactory">

<ref local="sessionFactory"/>

</property>

</bean>

这样就在你的 UserDAOHibernate(从 HibernateDaoSupport 的 setSessionFactory继承)中建

了一个 Hibernate Session Factory。Spring 会检测一个 Session(也就是，它在 web 层是开放的)

是否已经存在，并且直接使用它，而不是新建一个。这样你可以使用 Spring 流行的 “

Open Session in View ” 模式来载入 collections。

进行单元测试，来验证 DAO的 CRUD 操作

在进行第一个测试之前，把你的日志级别从“INFO”调到“WARN”。

1.把 log4j.xml(在 web/WEB-INF/classes 目录下)中<level value="INFO"/>改为<level

value="WARN"/>。

2.键入 ant test 来运行 UserDAOTest。如果你有多个测试，你必须用 ant test

-Dtestcase=UserDAOTest 来指定要运行的测试。运行之后，你会如下类似的一些日志信息。

创建 Manager，声明事务处理(create manager and declare
transactions)

J2EE开发中建议将各层进行分离。换言之，不要把数据层(DAOs)和 web层(servlets)

混在一起。使用Spring,很容易做到这一点，但使用“业务代理”(business delegate)模

式, 可以对这些层进一步分离。

使用业务代理模式的主要原因是：

● 大多数持久层组件执行一个业务逻辑单元，把逻辑放在一非 web类中的最大好处是，

web service或是丰富平台客户端(rich platform client)可以像使用servlet一样

来用同一API。

● 大多数业务逻辑都在同一方法中完成，当然可能多个DAO。使用业务代理，使得你

可以高级业务代理层(level)使用Spring的声明式业务代理特性。

MyUsers应用中UserManager和 UserDAO拥有相同的一个方法。主要不同的是Manager

对于web更为友好(web-friendly)，它可以接受 Strings,而 UserDAO只能接受 Longs, 并且

它可以在saveUser方法中返回一个User对象。这在插入一个新用户比如，要获得主键，是

非常方便的。Manager(或称为业务代理)中也可以添加一些应用中所需要的其它业务逻辑。

1.启动“service”层，在test/org/appfuse/service(你必须先建好这个目录)中新建

一个UserManagerTest类，这个类继承了JUnit 的 TestCase类，代码如下：

package org.appfuse.service;

// use your IDE to handle imports

public class UserManagerTest extends TestCase {

private static Log log = LogFactory.getLog(UserManagerTest.class);

private ApplicationContext ctx;

private User user;

private UserManager mgr;

protected void setUp() throws Exception {

String[] paths = {"/WEB-INF/applicationContext.xml"};

ctx = new ClassPathXmlApplicationContext(paths);

mgr = (UserManager) ctx.getBean("userManager");

}

protected void tearDown() throws Exception {

user = null;

mgr = null;

}

// add testXXX methods here

public static void main(String[] args) {

junit.textui.TestRunner.run(UserDAOTest.class);

}

在setup方法中，使用ClassPathXmlApplicationContext把 applicationContext.xml

载入变量ApplicationContext中。载入ApplictionContext有几种途径，从classpath中，

文件系统，或web 应用内。这些方法将在第三章(The BeanFactory and How It Works.)

中描述。

2.输入第一个测试方法的代码，来验证Manager成功完成添加或是删除 User对象。

public void testAddAndRemoveUser() throws Exception {

user = new User();

user.setFirstName("Easter");

user.setLastName("Bunny");

user = mgr.saveUser(user);

assertTrue(user.getId() != null);

if (log.isDebugEnabled()) {

log.debug("removing user...");

}

String userId = user.getId().toString();

mgr.removeUser(userId);

user = mgr.getUser(userId);

if (user != null) {

fail("User object found in database!");

}

}

这个测试实际上是一个集成测试(integration test)，而不是单元测试(unit test)。

为了更接近单元测试，可以使用EasyMock或是类似工具来“伪装”(fake) DAO。这样，就

不必关心 ApplictionContext和任何依赖Spring API 的东西。建议在测试项目依赖

(Hibernate,Spring,自己的类)的内部构件，包括数据库。第9章，讨论重构

UserManagerTest,使用mock解决 DAO的依赖性。

3.为了编译UserManagerTest，在src/org/appfuse/service中新建一个接口─

─UserManager。在org.appfuse.service包中创建这个类，代码如下：

package org.appfuse.service;

// use your IDE to handle imports

 public interface UserManager {

public List getUsers();

 public User getUser(String userId);

public User saveUser(User user);

public void removeUser(String userId);

}

4.建一个名为org.appfuse.service.impl的子包，新建一个类实现UserManager 接口

的。

package org.appfuse.service.impl;

// use your IDE to handle imports

public class UserManagerImpl implements UserManager {

private static Log log = LogFactory.getLog(UserManagerImpl.class);

private UserDAO dao;

 public void setUserDAO(UserDAO dao) {

this.dao = dao;

}

public List getUsers() {

return dao.getUsers();

}

public User getUser(String userId) {

User user = dao.getUser(Long.valueOf(userId));

if (user == null) {

 log.warn("UserId '" + userId + "' not found in database.");

 }

return user;

}

public User saveUser(User user) {

dao.saveUser(user);

 return user;

}

public void removeUser(String userId) {

 dao.removeUser(Long.valueOf(userId));

 }

}

这个类看不出你在使用Hibernate。当你打算把持久层转向一种不同的技术时，这样做

很重要。

这个类提供一个私有dao成员变量，和setUserDAO方法一样。这样能够让 Spring能够

表演“依赖性绑定”魔术(perform “dependency binding” magic)，把这些对象扎在一起。

在使用mock重构这个类时，你必须在UserManager接口中添加serUserDAO 方法。

5.在进行测试之前，配置Spring,让 getBeans返回一个UserManagerImpl类。在

web/WEB-INF/applicationContext.xml文件中，添加以下几行：

<bean id="userManager" class="org.appfuse.service.UserManagerImpl">

<property name="userDAO">

<ref local="userDAO"/>

</property>

</bean>

唯一的问题，你还没有使Spring的 AOP,特别是声明式的事务处理发挥作用。

6.为了达到目的，使用ProxyFactoryBean代替userManager。ProxyFactoryBean是一

个类的不同的实现，这样AOP 能够解释和覆盖调用的方法。在事务处理中，使用

TransactionProxyFactoryBean代替UserManagerImpl 类。在context文件中添加下面bean

的定义：

<bean id="userManager"

class="org.springframework.transaction.interceptor.TransactionProxy

FactoryBean">

<property name="transactionManager">

<ref local="transactionManager"/>

</property>

<property name="target">

<ref local="userManagerTarget"/>

</property>

<property name="transactionAttributes">

<props>

<prop key="save*">PROPAGATION_REQUIRED</prop>

<prop key="remove*">PROPAGATION_REQUIRED</prop>

<prop key="*">PROPAGATION_REQUIRED,readOnly</prop>

</props>

</property>

</bean>

从这个xml代码片断中可以看出，TransactionProxyFactoryBean必须有一个

transactionManager 属性设置和transactionAttributes 定义。

7.让事务处理代理服务器(Transaction Proxy)知道你要模仿的对象：

userManagerTarget。作为新 bean的一部分，把原来的userManager bean改成拥有一个

userManagerTarget的 id属性。

编辑 applictionContext.xml添加 userManager 和 userManagerTarget 的定义后，

运行ant test -Dtestcase=UserManager ,看看终端输出：

8.如果你想看看事务处理的执行和提交情况，在log4j.xml中添加:

<logger name="org.springframework.transaction">

<level value="DEBUG"/>

<!-- INFO does nothing -->

</logger>

重新运行测试，将看到大量日志信息，如它相关的对象，事务的创建和提交等。测试

完毕，最好删除上面的日志定义(logger)。

祝贺你！你已经实现了一个web应用的Spring/Hibernate后端解决方案。并且你已经

用AOP和声明式业务处理配置好了业务代理。了不起，自我鼓励一下！(This is no small

feat; give yourself a pat on the back!)

对象 struts Action 进行单元测试

 业务代理和DAO都起作用，我们看看 MVC框架吸盘(sucker)的上部。停！不止这些

吧，你可以进行C(Controller),不是V(View)。为了管理用户建一个Struts Action,继续进

行驱动测试(Test-Driven)开发。

Equinox是为Struts配置的。配置Struts需要在web.xml 中进行一些设置，并在

web/WEB-INF下定义一个struts-config.xml文件。由于Struts开发人员比较多，这里先使

用Struts。第4 章用Spring进行处理。你想跳过这一节，直接学习Spring MVC方法，请

参考第4章：Spring s MVC Framework。

在test/org/appfuse/web目录下新建一个文件UserActionTest.java，开发你的第一

个Struts Aciton单元测试。文件内容如下：

package org.appfuse.web;

// use your IDE to handle imports

public class UserActionTest extends MockStrutsTestCase {

public UserActionTest(String testName) {

super(testName);

}

public void testExecute() {

setRequestPathInfo("/user");

addRequestParameter("id", "1");

actionPerform();

verifyForward("success");

verifyNoActionErrors();

}

}

为 web 层创建 Action 和 Model(DynaActionForm)

1.在 src/org/appfuse/web下新建一个文件UserAction.java。这个扩展了

DispatchAction，你可以花几分钟，在这个类中，创建CRUD方法。

package org.appfuse.web;

// use your IDE to handle imports

public class UserAction extends DispatchAction {

private static Log log = LogFactory.getLog(UserAction.class);

public ActionForward execute(ActionMapping mapping,

 ActionForm form,

HttpServletRequest request,

HttpServletResponse response) throws Exception{

request.getSession().setAttribute("test", "succeeded!");

 log.debug("looking up userId: " + request.getParameter("id"));

 return mapping.findForward("success");

}

}

2.为了配置Struts,使”/user”这个请求路径代表其它。在web/WEB-INF/struts-

config.xml中加入一个action-mapping。打开文件加入：

<action path="/user" type="org.appfuse.web.UserAction">

<forward name="success" path="/index.jsp"/>

</action>

3.执行命令 ant test -Dtestcase=UserAction ，你会看到友好的“BUILD

SUCCESSFUL” 信息。

4.在 struts-config.xml中添加 form-bean定义。对于Struts ActionForm,使用

DynaActionForm,这是一个javabean，可以从 XML定义中动态的创建。

<form-bean name="userForm" type="org.apache.struts.action.DynaActionForm">

<form-property name="user" type="org.appfuse.model.User"/>

</form-bean>

这里没有使用具体的ActionForm,因为只使用一个User 对象的包装器。理想情况下，

你可以User 对象，但会失去 Struts环境下的一些特性：验证属性(validate

properties)，checkbox复位(reset checkboxs)。后面，将演示用Spring怎幺会更加简单，

它可以让你在web层使用 User对象。

5.修改 action定义,在 request中使用这个 form。

<action path="/user" type="org.appfuse.web.UserAction" name="userForm"

scope="request">

<forward name="success" path="/index.jsp"/>

</action>

6.修改 UserActionTest，测试不同的 CRUD方法。

public class UserActionTest extends MockStrutsTestCase {

public UserActionTest(String testName) {

super(testName);

}

// Adding a new user is required between tests because HSQL creates

// an in-memory database that goes away during tests.

public void addUser() {

setRequestPathInfo("/user");

addRequestParameter("method", "save");

addRequestParameter("user.firstName", "Juergen");

addRequestParameter("user.lastName", "Hoeller");

actionPerform();

verifyForward("list");

verifyNoActionErrors();

}

public void testAddAndEdit() {

addUser();

// edit newly added user

addRequestParameter("method", "edit");

addRequestParameter("id", "1");

actionPerform();

verifyForward("edit");

verifyNoActionErrors();

}

public void testAddAndDelete() {

addUser();

// delete new user

setRequestPathInfo("/user");

addRequestParameter("method", "delete");

addRequestParameter("user.id", "1");

actionPerform();

verifyForward("list");

verifyNoActionErrors();

}

public void testList() {

addUser();

setRequestPathInfo("/user");

addRequestParameter("method", "list");

actionPerform();

verifyForward("list");

verifyNoActionErrors();

List users = (List) getRequest().getAttribute("users");

assertNotNull(users);

assertTrue(users.size() == 1);

}

}

7.修改 UserAction，这样测试程序才能通过，并能处理(客户端)请求。最简单的方法

是添加edit,save和 delete方法，请确保你事先已经删除了execute方法。下面是修改过

的UserAction.java文件。

public class UserAction extends DispatchAction {

private static Log log = LogFactory.getLog(UserAction.class);

private UserManager mgr = null;

public void setUserManager(UserManager userManager) {

this.mgr = userManager;

}

public ActionForward delete(ActionMapping mapping,

ActionForm form,

HttpServletRequest request,

HttpServletResponse response) throws Exception{

if (log.isDebugEnabled()) {

log.debug("entering 'delete' method...");

 }

mgr.removeUser(request.getParameter("user.id"));

ActionMessages messages = new ActionMessages();

messages.add(ActionMessages.GLOBAL_MESSAGE, new ActionMessage

("user.deleted"));

saveMessages(request, messages);

return list(mapping, form, request, response);

}

public ActionForward edit(ActionMapping mapping,

 ActionForm form,

HttpServletRequest request,

HttpServletResponse response) throws Exception {

if (log.isDebugEnabled()) {

log.debug("entering 'edit' method...");

}

DynaActionForm userForm = (DynaActionForm) form;

String userId = request.getParameter("id");

// null userId indicates an add

if (userId != null) {

User user = mgr.getUser(userId);

if (user == null) {

ActionMessages errors = new ActionMessages();

errors.add(ActionMessages.GLOBAL_MESSAGE, new ActionMessage

("user.missing"));

saveErrors(request, errors);

return mapping.findForward("list");

}

userForm.set("user", user);

}

return mapping.findForward("edit");

 }

public ActionForward list(ActionMapping mapping,

 ActionForm form,

HttpServletRequest request,

HttpServletResponse response) throws Exception {

if (log.isDebugEnabled()) {

log.debug("entering 'list' method...");

}

request.setAttribute("users", mgr.getUsers());

return mapping.findForward("list");

}

public ActionForward save(ActionMapping mapping,

 ActionForm form,

 HttpServletRequest request,

 HttpServletResponse response) throws Exception {

if (log.isDebugEnabled()) {

log.debug("entering 'save' method...");

}

DynaActionForm userForm = (DynaActionForm) form;

mgr.saveUser((User)userForm.get("user"));

ActionMessages messages = new ActionMessages();

messages.add(ActionMessages.GLOBAL_MESSAGE, new ActionMessage

("user.saved"));

saveMessages(request, messages);

return list(mapping, form, request, response);

}

}

接下来，你可以修改这个类的CRUD方法。

8.修改 struts-config.xml，使用ContextLoaderPlugin来配置Spring的 UserManager

设置。要配置ContextLoaderPlugin,把下面内容添加到你的struts-config.xml中。

<plug-in className= org.springframework.web.struts.ContextLoaderPlugIn >

<set-property property= contextConfigLocation value= /WEB-

INF/applicationContext.xml, /WEB-INF/action-servlet.xml />

</plug-in>

默认情况下这个插件会载入action-servlet.xml文件。要让 Test Action 知道你的

Manager，必须配置这个插件，如同载入applicationContext。

9.对每个使用Spring的 action,定义一个type=

org.springframework.web.struts.DelegatingActionProxy 的 action-mapping,为每个

Spring action 声明一个配对的Spring bean。这样修改一下你的action mapping就能使用

这个新类。

10.为 DispatchAction修改 action mapping。

为了让 DispatchAction运行，在mapping中添加参数parameter= “method” , 它表

示(在一个URL 或是隐藏字段 hidden field)要调用的方法，同时转向(forwards)edit和

list forwards(参考能进行CRUD操作的UserAction类).

<action path="/user"

type="org.springframework.web.struts.DelegatingActionProxy" name="userForm"

scope="request" parameter="method">

 <forward name="list" path="/userList.jsp"/>

<forward name="edit" path="/userForm.jsp"/>

</action>

确保 web目录下已经建好userList.jsp和 userForm.jsp两个文件。暂时不必在文件中

写入内容。

11.作为插件的一部分，配置Spring,将/user bean设置成“UserManager”。在

we/WEB-INF/action-servlet.xml中添加以下定义。

<bean name="/user" class="org.appfuse.web.UserAction" singleton="false">

<property name="userManager">

<ref bean="userManager"/>

</property>

</bean>

定义中，使用singleton= false 。这样就为每个请求，新建一个Action，减少线程

安全的Action需求。不管是Manager还是DAO都有成员变量，可能不需要这些属性(默认

singleton= true)。

12.在 message.properties上配置资源绑定。

在userAction类中，在完成一些操作后，会显示“成功”或是“错误”页面，这些信

息的键可以存放在这个应用的ResourceBundle(或 messages.properties文件中)。特别是:

● user.saved

● user.missing

● user.deleted

把这些键存入web/WEB-INF/下的messages.properties文件中。例如：

user.saved=User has been saved successfully.

user.missing=No user found with this id.

user.deleted=User successfully deleted.

这个文件通过struts-config.xml中的<message-resources>元素进行加载。

<message-resources parameter="messages"/>

运行 ant test -Dtestcase=UserAction. 输出结果如下：

填充 JSP 文件，这样可以通过浏览器来进行 CRUD 操作

1.在你的jsp文件(userFrom.jsp 和 userList.jsp)中添加代码，这样它们可以表示

actions的结果。如果还事先准备，在web目录下建一个文件 userList.jsp。添加一些代码

你就可以看到数据库中所有的用户资料。在下面代码中，第一行包含(include)了一个文件

taglibs.jsp。这个文件包含了应用所有JSP Tag Library的声明。大部分是Struts

Tag,JSTL和 SiteMesh(用来美化 JSP页面)。

<%@ include file="/taglibs.jsp"%>

<title>MyUsers ~ User List</title>

<button onclick="location.href='user.do?method=edit'">Add User</button>

<table class="list">

<thead>

<tr>

<th>User Id</th>

<th>First Name</th>

<th>Last Name</th>

</tr>

</thead>

<tbody>

<c:forEach var="user" items="${users}" varStatus="status">

<c:choose>

<c:when test="${status.count % 2 == 0}">

<tr class="even">

</c:when>

<c:otherwise>

<tr class="odd">

</c:otherwise>

</c:choose>

<td>${user.id}</ td>

<td>${user.firstName}</td>

<td>${user.lastName}</td>

</tr>

</c:forEach>

</tbody>

</table>

你可以有一行“标题头”(headings)(在<thead>中)。JSTL 的 <c:forEach>进行结果

迭代，显示所有的用户。

2.向数据库添加一些数据，你就会看到一些真实(actual)的用户(users)。你可以选择

一种方法，手工添加，使用ant browse,或是在build.xml中添加如下的target：

<target name="populate">

<echo message="Loading sample data..."/>

<sql driver="org.hsqldb.jdbcDriver" url="jdbc:hsqldb:db/appfuse"

userid="sa" password="">

<classpath refid="classpath"/>

INSERT INTO app_user (id, first_name, last_name) values (5, 'Julie',

'Raible');

INSERT INTO app_user (id, first_name, last_name) values (6, 'Abbie',

'Raible');

</sql>

</target>

警告:为了使内置的HSQLDB正常工作，从能运行ant的目录下启动 tomcat。在

Unix/Linux键入 $CATALINA_HOME/bin/startup.sh ，在win上 %CATALINA_HOME%

\bin\startup.bat 。

通过浏览器验证 JSP 的功能

1.有了这个JSP文件和里面的样例数据，就可以通过浏览器来查看这个页面。运行ant

deploy reload,转到地址 http://localhost:8080/myusers/user.do?method=list。出现以

下画面：

2.这个样例中，缺少国际化的页面标题头，和列标题头(column headings)。在

web/WEB-INF/classes中 messages.properties中加入一些键：

user.id=User Id

user.firstName=First Name

user.lastName=Last Name

修改过的国际化的标题头如下：

<thead>

<tr>

<th><bean:message key= user.id /></th>

<th><bean:message key= user.firstName /></th>

<th><bean:message key= user.lastName /></th>

</tr>

</thead>

注意同样可以使用JSTL的<fmt:message key= ... >标签。如果想为表添加排序和分

布功能，可以使用 Display Tag (http://displaytag.sf.net)。下面是使用这个标签的一

个样例：

<display:table name="users" pagesize="10" styleClass="list"

requestURI="user.do?method=list">

<display:column property="id" paramId="id" paramProperty="id"

href="user.do?method=edit" sort="true"/>

<display:column property="firstName" sort="true"/>

<display:column property="lastName" sort="true"/>

</display:table>

请参考 display tag文档中有关的列标题头国际化的部分。

3.你已经建好了显示(list),创建 form就可以添加/编辑(add/edit)数据。如果事先没

有准备，可以在web目录下新建一个userForm.jsp文件。向文件中添加以下代码：

<%@ include file="/taglibs.jsp"%>

<title>MyUsers ~ User Details</title>

<p>Please fill in user's information below:</p>

<html:form action="/user" focus="user.firstName">

<input type="hidden" name="method" value="save"/>

<html:hidden property="user.id"/>

<table>

<tr>

<th><bean:message key="user.firstName"/>: </th>

<td><html:text property="user.firstName"/></td>

</tr>

<tr>

<th><bean:message key="user.lastName"/>: </th>

<td><html:text property="user.lastName"/></td>

</tr>

<tr>

<td></td>

<td> <html:submit styleClass="button">Save</html:submit>

<c:if test="${not empty param.id}">

<html:submit styleClass="button" onclick="this.form.method.value='delete'">

Delete</html:submit>

</c:if>

</td>

</table>

</html:form>

注意：如果你正在开发一个国际化的应用，把上面的信息和按钮标签替换成

<bean:message> 或是 <fmt:message> 标签。这是一个很好的练习。对于信息 message,建

议把key 名称写成”pageName.message”(例如：userForm.message)的形式，按钮名字写

成“button.name”(例如button.save)。

4.运行ant deploy ，通过浏览器页面的user form来进行 CRUD 操作。

最后大部分 web应用都需要验证。下一节中，配置struts validator，要求用户的

last name 是必填的。

用 commons Validator 添加验证

为了在Struts中使用验证，执行以下几步：

1.在 struts-config.xml中添加ValidatorPlugin。

2.创建validation.xml，指定lastName为必填字段。

3.仅为save()方法设置验证(validation)。

4.在 message.properties中添加validation errors。

在 struts-config.xml 中添加 ValidatorPlugin

配置Validatorp plugins,添加以下片断到struts-config.xml(紧接着 Spring

plugin):

<plug-in className="org.apache.struts.validator.ValidatorPlugIn">

<set-property property="pathnames" value="/WEB-INF/validator-

rules.xml, /WEB-INF/validation.xml"/>

</plug-in>

从这里你可以看出，Validator会查找WEB-INF下的两个文件validator-ruls.xml和

validation.xml。第一个文件，validator-rules.xml,是一个标准文件，作为Struts的一

部分发布，它定义了所有可用的验证器(validators)，功能和客户端的javascript类似。

第二个文件，包含针对每个 form的验证规则。

创建 validation.xml，指定 lastName 为必填字段

validation.xml文件中包含很多DTD定义的标准元素。但你只需要如下所示的<form>

和<field>,更多信息请参阅 Validator的文档。在web/WEB-INF/validation.xml中的 form-

validation标签之间添加 form-set元素。

<formset>

<form name="userForm">

<field property="user.lastName" depends="required">

</form>

</formset>

把 DynaActionForm 改为 DynaValidatorForm

把struts-config.xml中的DynaActionForm 改为 DynaValidatorForm。

<form-bean name="userForm"

type="org.apache.struts.validator.DynaValidatorForm">

为 save()方法设置验证(validation)

使用Struts DispatchAction 弊端是，验证会在映射层(mapping level)激活。为了在

list和 edit页面关闭验证。你必须单独建一个”validate=false”的映射。例如，

AppFuse 的 UserAction 有两个映射：”/editUser” 和”/listUser”。然而有一个更简单

的方法，可以减少 xml，只是多了一些 java 代码。

1.在/user映射中，添加 validate=false 。

2.修改UserAction 中的 save()方法，调用 form.validate()方法，如果发现错误，返回编辑

页面。

if (log.isDebugEnabled()) {

log.debug("entering 'save' method...");

 }

// run validation rules on this form

 ActionMessages errors = form.validate(mapping, request);

if (!errors.isEmpty()) {

saveErrors(request, errors);

return mapping.findForward("edit");

 }

DynaActionForm userForm = (DynaActionForm) form;

当 dispatchAction运行时，与附带一个属性的两个映射相比，这样更加简洁。但用两个

映射也有一些优点：

● 验证失败时，可以指定转向”input”属性。

● 在映射中可以添加“role”属性，可以指定谁有访问权限。例如，任何人都可以看到

编辑(edit)页面，但只有管理员可以保存(save)。

运行 ant deploy重新载入(reload)，尝试添加一个新用户，不要填写 lastName。你会看到

一个验证错误，表明 lastName 是必填字段，如下所示：

Struts Validator的另一种比较好的特性是客户端验证(client-side validation)。

4.在 form标签(web/userForm.jsp)中添加”onsubmit”属性，在 form末尾添加

<html:javascript>。

<html:form action="/user" focus="user.firstName" onsubmit="return

validateUserForm(this)">

 ...

 </html:form>

<html:javascript formName="userForm"/>

现在如果运行ant deploy,试图保存一个lastname为空的用户，会弹出一个

JavaScript提示：“Last Name is required”。这里有一个问题，这个带 JavaScript的

form 把 validator的 JavaScript功能都载入了页面。再好的方法是，从外部文件导入

Javascript。参见第5章。

恭喜你！你已经开发一个web应用，它包含数据库交互，验证实现，成功信息和错误

信息的显示。第4 章，将会把这个转向 Spring 框架。第5章中，会添加异常处理，文件上

传，邮件发送等特性。第6章会看一下JSP的替代品，在第7章，会添加 DAO的不同实现，

包括 iBATIS, JDO 和 Spring 的 JDBC。

