
北京圣思园科技有限公司
http://www.shengsiyuan.com

OOAD与UML

• 理解与掌握面向对象的概念与方法

• 使用UML

• 完成面向对象的分析与设计工作

• 了解OO的设计原则及一些典型的设计模式

• 面向对象（ Object-Orientation ，简称OO）是一种系统
建模技术

• 面向对象编程（ Object-Orientation Programming，简
称OOP）是按照OO的方法学来开发程序的过程

• 通过分析系统内对象的交互来描述或建模一个系统

• 交互的对象最终以类的形式组织

• OO的方法由三部分组成

 — 过程

 — 标识

 — 规则

• 是一个客观存在的、唯一的实体

• 是面向对象编程过程中分析与解决问题的出发点与基础

• 拥有自己的标识、数据与行为

• 可以简单或复杂

• 可以抽象或具体

• 在OOP中是一个类的动态实例

• 如Student——id,name,age(attributes)

 ——
setName,getName,countScore(methods)

 ——new Student()

• 类是对象的模板

• 对象通过类实例化产生

• 一个类可以创建多个对象

class1

obj1 obj3 obj2

• OOAD是根据OO的方法学，对软件系统进
行分析和设计的过程

 —— OOA 分析阶段

 —— OOD 设计阶段

• 分析阶段主要解决以下问题

 —— 建立针对业务问题域的清晰视图

 —— 列出系统必须要完成的核心任务

 —— 针对问题域建立公共词汇表

 —— 列出针对此问题域的最佳解决方案

• 此阶段要解决的核心问题是“What to
do?”

• 设计阶段主要解决以下问题

 —— 如何解决具体的业务问题

 —— 引入系统工作所需的支持元素

 —— 定义系统的实现策略

• 此阶段要解决的核心问题是“How to
do?”

• 抽象(abstract)

• 封装(encapsulation)

• 继承(inheritance)

• 多态(polymorphism)

• 关联(association)

• 聚合(aggregation)

• 组合(composition)

• 内聚与耦合(cohesion & coupling)

• 忽略掉一个对象或实体的细节而只关注其
本质特征的过程

• 简化功能与格式

• 帮助用户与对象交互

• 隐藏数据和实现

• 提供公共方法供用户调用功能

• 对象的两种视图

 —— 外部视图：对象能做的工作

 —— 内部视图：对象如何完成工作

• 通过存在的类型定义新类型的机制

• 通常在两个类型之间存在“is a”或“kind
of”这样的关系

• 通过继承可实现代码重用，另外继承也是
多态的基础

• 如苹果“is a”水果

• 一个名称，多种形式

• 基于继承的多态

• 调用方法时根据所给对象的不同选择不同
的处理方式

• 如Football——play()：使用脚来完成

• Basketball——play()：使用手来完成

• 给出一个具体的足球或篮球，用户自动知
道该使用谁的方式去执行play()

• 对象之间交互时的一种引用方式

• 当一个对象通过对另一个对象的引用去使
用另一个对象的服务或操作时，两个对象
之间便产生了关联

• 如person使用computer，person与
computer之间就存在了关联关系

• 关联关系的一种，一个对象成为另外一个对象的
组成部分

• 是一种关系较强的关联

• 在两个对象之间存在“has a”这样的关系，一个
对象作为另一个对象的属性存在，在外部对象被
生产时，可由客户端指定与其关联的内部对象

• 如汽车与轮胎，轮胎作为汽车的一个组成部分，
它和汽车可以分别生产以后装配起来使用，但汽
车可以换新轮胎，轮胎也可以卸下来给其它汽车
使用

• 当一个对象包含另一个对象时，外部对象
负责管理内部对象的生命周期的情况

• 关联关系中最为强烈的一种

• 内部对象的创建由外部对象自己控制

• 外部对象不存在时，内部对象也不能存在

• 如电视机与显示器

• 域模型是面向对象的。在面向对象术语中
，域模型也可称为设计模型。域模型由以
下内容组成：
–具有状态和行为的域对象

–域对象之间的关系
• 关联

• 依赖

• 聚集

• 一般化（泛化）

• 关联(Association)

• 依赖(Dependency)

• 聚集(Aggregation)

• 一般化(Generalization)

在BusinessService类中访问Customer类的方法，并且构造Customer类的
实例

• 聚集指的是整体与部分之间的关系，在实
体域对象之间很常见

• 一般化指的是类之间的继承关系。

• 内聚：度量一个类独立完成某项工作的能
力

• 耦合：度量系统内或系统之间依赖关系的
复杂度

• 设计原则：增加内聚，减少耦合

• 传统开发过程

 ——瀑布模型

• 统一软件开发过程（USDP）

Requirements

Analysis

Design

Implementation

Test

Time

• 大项目分解为一些子项目

• 使用UML工具

• 统一软件开发过程是一个迭代、递增的开
发过程

• 项目是迭代、递增的

• 迭代指生命周期中的一个步骤

• 迭代导致“递增”或者是整个项目的增长

• 大项目分解为子项目

• 在每一个迭代的阶段，应该做以下工作

 —— 选择并分析相关用例

 —— 根据所选架构进行设计

 —— 在组件层次实现设计

 —— 验证组件满足用例的需要

• 当一次迭代满足目标后，开发进入下一个
迭代周期

Inception—start up

Elaboration—refine

Construction—implement

Transition—promotion

• 每一个周期包含一次或多次迭代

• 一个阶段的结束称之为“里程碑”（
milestone）

• 该阶段的增量集中于：

 —— 项目启动

 —— 建立业务模型

 —— 定义业务问题域

 —— 找出主要的风险因素

 —— 定义项目需求的外延

 —— 创建业务问题域的相关说明文档

• 本阶段的增量集中于：

 —— 高层的分析与设计

 —— 建立项目的基础框架

 —— 监督主要的风险因素

 —— 制订达成项目目标的创建计划

• 本阶段的增量集中于：

 —— 代码及功能的实现

• 本阶段的增量集中于：

 —— 向用户发布产品

 —— beta测试

 —— 执行性能调优，用户培训和接收测试

• 每一次递增都由5部分工作流组成

 —— 需求与初始分析

 —— 分析

 —— 设计

 —— 实现

 —— 测试

 —— 每一次迭代执行工作流的深度不同

 —— 早期的迭代在深度上覆盖初始工作流，后期迭代在
深度上覆盖后期工作流

 —— 80/20原则

Requirements

Analysis

Design

Implementation

Test

Time

• 降低成本

• 便于更好地维护项目进度

• 便于团队的协作开发

• 便于适应用户需求的动态变化

• 描述UML在OOAD过程中的作用

• 熟悉UML中的九种基本图形

• 统一建模语言（UML）是一种图形化的语
言，它可以帮助我们在OOAD过程中标识
元素、构建模块、分析过程并可通过文档
说明系统中的重要细节

• 静态模型（static model）

• 动态模型（dynamic model）

• 创建并记录一个系统的静态特征

• 反映一个软件系统基础、固定的框架结构

• 创建相关问题域主要元素的视图

• 静态建模包括：

 —— 用例图（use case diagrams）

 —— 类图（class diagrams）

 —— 对象图（object diagrams）

 —— 组件图（component diagrams）

 —— 部署图（deployment diagrams）

• 动态建模用以展示系统的行为

• 动态建模包括：

 —— 时序图（sequence diagrams）

 —— 协作图（collaboration diagrams）

 —— 状态图（state chart diagrams）

 —— 活动图（activity diagrams）

• 包（package）

• UML的扩展机制

 —— 注释（comments）

 —— 构造型（stereotypes）

 —— 标记值（tagged values）

 —— 限制（constraints）

• 用例图

 展示系统的核心功能及与其交互的用户

 用户被称之为“活动者”（Actor）

 用例使用椭圆表示

 为简化建模过程，用例图可标注优先级

• 表现类的特征

• 类图描述了多个类、接口的特征，以及对
象之间的协作与交互

• 由一个或多个矩形区域构成，内容包括：

 —— 类型（类名）

 —— 属性（可选）

 —— 操作（可选）

• 表现对象的特征

• 对象图展现了多个对象的特征及对象之间
的交互

homePC :
Computer

Tom :
Author

officePC :
Computer

use

use

• 表现软件组件之间的关系

• 表现用于部署软件应用的物理设备信息

• 捕捉一段时间范围内多个对象之间的交互
信息

• 强调消息交互的时间顺序

• 表现一定范围内对象之间协作的信息

• 强调参与信息交流的对象之间的组织结构

• 强调一个对象在不同事件触发时，其内部
状态的转变过程

• 描述活动的流程

• 引用一组相关实体

• 通常可用于划分类的命名空间

• 包可用于

 —— 命名(Naming)

 —— 成员可见度(Member visibility)

 —— 导入(Importing)

 —— 继承(Extending)

 —— 泛化(Generalization)

