
北京圣思园科技有限公司
http://www.shengsiyuan.com

• 教学目标

– 了解Servlet的功能

– 了解Servlet的生命周期

– 了解Servlet的API

– 掌握创建并发布HttpServlet的方法

– 理解ServletContext与JavaWeb应用的关系

• Java Servlet是和平台无关的服务器端组件，它运行在
Servlet容器中。Servlet容器负责Servlet和客户的通信以及
调用Servlet的方法，Servlet和客户的通信采用“请求/响应”
的模式。

• Servlet可完成如下功能：

– 创建并返回基于客户请求的动态HTML页面。

– 创建可嵌入到现有 HTML 页面中的部分 HTML 页面（HTML 片
段）。

– 与其它服务器资源（如数据库或基于Java的应用程序）进行通信
。

• Servlet的框架是由两个Java包组成：
– javax.servlet包：定义了所有的Servlet类都必须实现或扩展

的通用接口和类。

– javax.servlet.http 包 ： 定 义 了 采 用 HTTP 协 议 通 信 的
HttpServlet类。

• Servlet的框架的核心是javax.servlet.Servlet接口
，所有的Servlet都必须实现这一接口。在Servlet接
口中定义了五个方法，其中有三个方法代表了
Servlet的生命周期:

– init方法：负责初始化Servlet对象；

– service方法：负责响应客户的请求；

– destroy方法：当Servlet对象退出生命周期时，负责释放
占用的资源。

• 如果你的Servlet类扩展了HttpServlet类，你通常不必实现
service方法，因为HttpServlet类已经实现了service方法，
该方法的声明形式如下:

 protected void service(HttpServletRequest request,

 HttpServletResponse response) throws ServletException,

 IOException;

• 在 HttpServlet 的 service 方 法 中 ， 首 先 从
HttpServletRequest对象中获取HTTP请求方式的信息，然后
再根据请求方式调用相应的方法。例如：如果请求方式为GET
，那么调用doGet方法；如果请求方式为POST，那么调用
doPost方法。

• ServletRequest接口中封装了客户请求信息，如客户
请求方式、参数名和参数值、客户端正在使用的协议,
以 及 发 出 客 户 请 求 的 远 程 主 机 信 息 等 。
ServletRequest接口还为Servlet提供了直接以二进制
方式读取客户请求数据流的ServletInputStream。

• ServletRequest的子类可以为Servlet提供更多的和特
定协议相关的数据. 例如: HttpServletRequest 提供
了读取HTTP Head信息的方法。

• getAttribute 根据参数给定的属性名返回属性值

• getContentType 返回客户请求数据MIME类型

• getInputStream 返回以二进制方式直接读取客户请求数据
的输入流

• getParameter 根据给定的参数名返回参数值

• getRemoteAddr 返回远程客户主机的IP地址

• getRemoteHost 返回远程客户主机名

• getRemotePort 返回远程客户主机的端口

• ServletResponse 接口为Servlet提供了返回响应结果
的方法。它允许Servlet设置返回数据的长度和MIME
类型, 并且提供输出流ServletOutputStream。

• ServletResponse子类可以提供更多和特定协议相关
的方法。例如: HttpServletResponse 提供设定HTTP
HEAD信息的方法。

• getOutputStream 返回可以向客户端发送二进制数据的输出流对
象ServletOutputStream

• getWriter 返回可以向客户端发送字符数据的PrintWriter对象

• getCharacterEncoding 返回Servlet发送的响应数据的字符编
码

• getContentType 返回Servlet发送的响应数据的MIME类型

• setContentType 设置Servlet发送的响应数据的MIME类型

• Servlet 的生命周期可以分为三个阶段:
– 初始化阶段

– 响应客户请求阶段

– 终止阶段

• 在javax.servlet.Servlet接口中定义了三个
方法init(), service(), destroy()，它们将分
别 在 Servlet 的 不 同 阶 段 被 调 用 。

• 在下列时刻Servlet容器装载Servlet：
– Servlet容器启动时自动装载某些Servlet

– 在Servlet容器启动后，客户首次向 Servlet 发出请求

– Servlet的类文件被更新后，重新装载Servlet

• Servlet被装载后，Servlet容器创建一个 Servlet 实
例并且调用 Servlet 的 init()方法进行初始化。在
Servlet的整个生命周期中，init方法只会被调用一次。

• 对于到达Servlet容器的客户请求，Servlet容器创建特
定于这个请求的ServletRequest对象和
ServletResponse对象，然后调用 Servlet 的
service方法。service方法从ServletRequest对象获
得客户请求信息、处理该请求，并通过
ServletResponse对象向客户返回响应结果。

• 当Web应用被终止，或Servlet容器终止运行，或
Servlet容器重新装载Servlet的新实例时，Servlet容
器会先调用 Servlet的destroy方法。在destroy方法
中，可以释放Servlet所占用的资源。

• （1） 扩展 HttpServlet 抽象类。

• （2） 覆盖HttpServlet的部分方法，如覆盖doGet()或
doPost()方法。

• （3） 获取HTTP 请求信息，例如通过HttpServletRequest
对象来检索 HTML 表单所提交的数据或 URL 上的查询字符串
。无论是HTML表单数据还是URL 上的查询字符串，在
HttpServletRequest 对象中都以参数名/参数值的形式存放，
你可以通过getParameter(String name)方法检索参数信息
。

• （4） 生成 HTTP 响应结果。通过
HttpServletResponse 对象可以生成响应结果。
HttpServletResponse 对象有一个 getWriter()方
法，该方法返回一个 PrintWriter 对象。使用
PrintWriter 的 print()或 println()方法可以向客户
端发送字符串数据流。

• 第一步： 扩展 HttpServlet 抽象类。

 public class HelloServlet extends HttpServlet

• 第二步：覆盖doGet()方法
 public void doGet(HttpServletRequest request,

 HttpServletResponse response)

 throws IOException ,ServletException

• 第三步：获取HTTP 请求中的参数信息

 String clientName=request.getParameter("clientName");

 if(clientName!=null)

 clientName=

 new String(clientName.getBytes("ISO-8859-
1"),"GB2312");

 else

 clientName="我的朋友";

• 第四步：生成 HTTP响应结果

 PrintWriter out;

 String title="HelloServlet";

 String heading1="This is output from HelloServlet by

 doGet:";

 // set content type.

 response.setContentType("text/html;charset=GB2312");

• 第四步：生成 HTTP 响应结果（续）
 // write html page.

 out = response.getWriter();

out.print("<HTML><HEAD><TITLE>"+title+"</TITLE>"
);

 out.print("</HEAD><BODY>");

 out.print(heading1);

 out.println("<h1><P> "+clientName+" : 您好</h1>");

 out.print("</BODY></HTML>");

 //close out.

 out.close();

• 在web.xml中为HelloServlet类加上如下<servlet>和
<servlet-mapping>元素：
 <servlet>

 <servlet-name>HelloServlet</servlet-name>

 <servlet-class>com.test.servlet.HelloServlet</servlet-class>

 </servlet>

 <servlet-mapping>

 <servlet-name>HelloServlet</servlet-name>

 <url-pattern>/hello</url-pattern>

 </servlet-mapping>

• 通过如下URL访问HelloServlet
http://localhost:8080/test/hello?clientName=张三

• 默认情况下，当Web客户第一次请求访问某个Servlet时，Web容器创
建这个Servlet的实例

• 如果设置了<servlet>元素的<load-on-startup>子元素，Servlet容
器在启动Web应用时，将按照指定的顺序创建并初始化这个Servlet。

 <servlet>

 <servlet-name>HelloServlet</servlet-name>

 <servlet-class>com.test.servlet.HelloServlet</servlet-
class>

 <load-on-startup>2</load-on-startup>

 </servlet>

• 当Servlet容器启动时，会启动所有的Web应用

• 通过控制台启动Web应用

• 当Servlet容器启动Web应用时，并为每个Web应用创建惟一
的ServletContext对象。你可以把ServletContext看成是一
个Web应用的服务器端组件的共享内存。在ServletContext
中可以存放共享数据，它提供了读取或设置共享数据的方法:

– setAttribute（String name,Object object）把一个对象和一
个属性名绑定，将这个对象存储在ServletContext中。

– getAttribute（String name）根据给定的属性名返回所绑定的
对象

• CounterServlet在ServletContext中存放了一个
count属性：

ServletContext context = getServletContext();

// 从ServletContext读取count属性

Integer count = (Integer)context.getAttribute("count");

if (count == null) {

 count = new Integer(0);

 context.setAttribute("count", new Integer(0));

}

• 每次访问CounterServlet，它会把count属

性的值增1，然后把它存储到
ServletContext中：

// 创建新的count对象，其值增1

count = new Integer(count.intValue() + 1);

// 将新的count属性存储到ServletContext中

context.setAttribute("count", count);

• （1）通过如下URL访问CounterServlet:
 http://localhost:8080/test/counter

• 当你第一次访问该Servlet，你会在浏览器上看到count值为0
。

• （2）刷新该页面，你会看到每刷新一次count值增加1，假定
最后一次刷新后count值为5。

• （3）再打开一个新的浏览器，访问CounterServlet。此时
count值为6。

• （4）重新启动Tomcat服务器，然后再访问CounterServlet
，你会看到count值又被初始化为0。

• Servlet/JSP技术和ASP、PHP等相比，由于其多线程运行而
具有很高的执行效率。

• 由于Servlet/JSP默认是以多线程模式执行的，所以，在编写
代码时需要非常细致地考虑多线程的同步问题。

• 如果在编写Servlet/JSP程序时不注意到多线程同步的问题，
这往往造成编写的程序在少量用户访问时没有任何问题，而在
并发用户上升到一定值时，就会经常出现一些莫明其妙的问题
，对于这类随机性的问题调试难度也很大。

public class HelloServlet2 extends HttpServlet {

 String clientName=null;

 public void doGet(HttpServletRequest request,

 HttpServletResponse response) throws IOException
,ServletException

 {

 clientName=request.getParameter("clientName");

 if(clientName!=null)

 clientName=new String(clientName.getBytes("ISO-8859-
1"),"GB2312");

 else

 clientName="我的朋友";

System.out.println(Thread.currentThread().getName());

 try{Thread.sleep(10000); }catch(Exception e){}

 // 第四步：生成 HTTP 响应结果。

 PrintWriter out;

 ……

 out.println("<h1><P> "+clientName+" : 您好</h1>");

 out.print("</BODY></HTML>");

 //close out.

 out.close();

 }

}

• Servlet实现javax.servlet.SingleThreadModel（Servlet2.4中已经废弃
该接口），此时Servlet容器将保证Servlet实例以单线程方式运行，也就是
说，同一时刻，只会有一个线程执行Servlet的service()方法。

• 去除实例变量，使用局部变量，参见HelloServlet

• 使用同步代码块：

 synchronized{…}

• Cookie的英文原意是“点心”，它是用户
访问Web服务器时，服务器在用户硬盘上
存放的信息，好像是服务器送给客户的“
点心”。

• 服务器可以根据Cookie来跟踪用户，这对
于需要区别用户的场合（如电子商务）特
别有用。

• 一个Cookie包含一对Key/Value。下面
的代码生成一个Cookie并将它写到用户
的硬盘上：

Cookie theCookie=new Cookie("cookieName","cookieValue");

response.addCookie(the Cookie);

• 从用户硬盘上获取Cookie

• 参见程序 : CookieServlet.java

• 参见程序 : jspCookie.jsp

• 有许多相似之处，都可以生成动态网页

• JSP的优点是擅长于网页制作，生成动态页
面，比较直观。JSP的缺点是不容易跟踪与
排错。

• Servlet是纯Java语言，擅长于处理流程和
业务逻辑。Servlet的缺点是生成动态网页
不直观。

• 问题：HttpServletRequest对象是由谁创建的?

• 选项:

– (A)由Servlet容器负责创建，对于每个HTTP请求， Servlet
容器都会创建一个HttpServletRequest对象

– (B)由JavaWeb应用的Servlet或JSP组件负责创建，当
Servlet或JSP组件响应HTTP请求时，先创建
HttpServletRequest对象

• 问题：从HTTP请求中，获得请求参数，应该调用哪个方法?

• 选项:

– (A)调用HttpServletRequest对象的getAttribute()方法

– (B)调用ServletContext对象的getAttribute()方法

– (C)调用HttpServletRequest对象的getParameter()方法

• 问题：ServletContext对象是由谁创建的?

• 选项:

– (A)由Servlet容器负责创建，对于每个HTTP请求， Servlet
容器都会创建一个ServletContext对象

– (B)由JavaWeb应用本身负责为自己创建一个
ServletContext对象

– (C)由Servlet容器负责创建，对于每个JavaWeb应用，在启
动时，Servlet容器都会创建一个ServletContext对象

• 运行LifeServlet类，它用于测试Servlet的生命周
期。通过浏览器访问:
http://localhost:8080/test/life

分析它的输出结果。

• 分析ServletRequest、ServletResponse、
Servlet、ServletContext等对象的生命周期，
何时被创建，何时被销毁。

• 问题：jspForward1.jsp要把请求转发给
jspForward2.jsp，应该在
jspForward1.jsp中如何实现?

• 选项：

– (A) jspForward2.jsp

– (B) <jsp:forward
page=“jspForward2.jsp”>

• 问题：jspForward1.jsp要把请求转发给
jspForward2.jsp，在转发的时候，希望
把用户名 “小新”传给jspForward2.jsp
，如何实现?

• 选项：
– (A) request.setParameter(“小新”);

– (B) request.setAttribute(“username”, “小新”);

– (C) <a href=“jspForward2.jsp?username=小新
”>jspForward2.jsp

• 问题：当浏览器第二次访问该JSP网页时的
输出结果是什么?

<!% int a=0; %>

<%

 int b=0;

 a++;

 b++;

%>

 a:<%= a %>

 b:<%= b %>

• 问题:request.getAttribute()和
request.getParameter()方法有什么异同？

• 选项：
– (A)前者返回Object类型的对象，后者返回String类型的对象

– (B)request.getAttribute()和request.setAttribute()对应

– (c) request.getParameter()和request.setParameter()对应。

– (D)当两个Web组件之间为链接关系时，被链接的组件通过getParameter()方法来
获得请求参数

– (E)当两个Web组件之间为转发关系时，转发目标组件通过getAttribute()方法来
和转发源组件共享request范围内的数据。

– (F)request.getParameter()方法传递的数据，会从Web客户端传到Web服务器端，
代表HTTP请求数据。

– (G)request.setAttribute()和getAttribute()方法传递的数据只会存在于Web容
器内部，在具有转发关系的Web组件之间共享。

