一 javascript正则表达式的基本知识

1 javascript 正则对象创建 和用法

 声明javascript 正则表达式

 var reCat = new RegExp("cat");
 你也可以
 var reCat = /cat/; //Perl 风格 （推荐）

2 学习最常用的 test exec match search replace split 6个方法

 1） test 检查指定的字符串是否存在

 var data = "123123";
 var reCat = /123/gi;
 alert(reCat.test(data)); //true

 //检查字符是否存在 g 继续往下走 i 不区分大小写

 2） exec 返回查询值

 var data = "123123,213,12312,312,3,Cat,cat,dsfsdfs,";
 var reCat = /cat/i;
 alert(reCat.exec(data)); //Cat null

 3）match 得到查询数组

 var data = "123123,213,12312,312,3,Cat,cat,dsfsdfs,";
 var reCat = /cat/gi;
 var arrMactches = data.match(reCat)

 for (var i=0;i < arrMactches.length ; i++)
 {
 alert(arrMactches[i]); //Cat cat
 }

 4） search 返回搜索位置 类似于indexof

 var data = "123123,213,12312,312,3,Cat,cat,dsfsdfs,";
 var reCat = /cat/gi;
 alert(data.search(reCat)); //23

 5） replace 替换字符 利用正则替换

 var data = "123123,213,12312,312,3,Cat,cat,dsfsdfs,";
 var reCat = /cat/gi;
 alert(data.replace(reCat,"libinqq"));

 6）split 利用正则分割数组

 var data = "123123,213,12312,312,3,Cat,cat,dsfsdfs,";
 var reCat = /\,/;
 var arrdata = data.split(reCat);

 for (var i = 0; i < arrdata.length; i++)
 {
 alert(arrdata[i]);
 }
JavaScript RegExp 对象参考手册

RegExp 对象

RegExp 对象表示正则表达式，它是对字符串执行模式匹配的强大工具。

直接量语法

/pattern/attributes

创建 RegExp 对象的语法：

new RegExp(pattern, attributes);

参数

参数 pattern 是一个字符串，指定了正则表达式的模式或其他正则表达式。

参数 attributes 是一个可选的字符串，包含属性 "g"、"i" 和 "m"，分别用于指定全局匹配、区分大小写的匹配和多行匹配。ECMAScript 标准化之前，不支持 m 属性。如果 pattern 是正则表达式，而不是字符串，则必须省略该参数。

返回值

一个新的 RegExp 对象，具有指定的模式和标志。如果参数 pattern 是正则表达式而不是字符串，那么 RegExp() 构造函数将用与指定的 RegExp 相同的模式和标志创建一个新的 RegExp 对象。

如果不用 new 运算符，而将 RegExp() 作为函数调用，那么它的行为与用 new 运算符调用时一样，只是当 pattern 是正则表达式时，它只返回 pattern，而不再创建一个新的 RegExp 对象。

抛出

SyntaxError - 如果 pattern 不是合法的正则表达式，或 attributes 含有 "g"、"i" 和 "m" 之外的字符，抛出该异常。

TypeError - 如果 pattern 是 RegExp 对象，但没有省略 attributes 参数，抛出该异常。

修饰符

	修饰符
	描述

	i
	执行对大小写不敏感的匹配。

	g
	执行全局匹配（查找所有匹配而非在找到第一个匹配后停止）。

	m
	执行多行匹配。

方括号

方括号用于查找某个范围内的字符：

	表达式
	描述

	[abc]
	查找方括号之间的任何字符。

	[^abc]
	查找任何不在方括号之间的字符。

	[0-9]
	查找任何从 0 至 9 的数字。

	[a-z]
	查找任何从小写 a 到小写 z 的字符。

	[A-Z]
	查找任何从大写 A 到大写 Z 的字符。

	[A-z]
	查找任何从大写 A 到小写 z 的字符。

	[adgk]
	查找给定集合内的任何字符。

	[^adgk]
	查找给定集合外的任何字符。

	(red|blue|green)
	查找任何指定的选项。

元字符

元字符（Metacharacter）是拥有特殊含义的字符：

	元字符
	描述

	.
	查找单个字符，除了换行和行结束符。

	\w
	查找单词字符。

	\W
	查找非单词字符。

	\d
	查找数字。

	\D
	查找非数字字符。

	\s
	查找空白字符。

	\S
	查找非空白字符。

	\b
	查找位于单词的开头或结尾的匹配。

	\B
	查找不处在单词的开头或结尾的匹配。

	\0
	查找 NUL 字符。

	\n
	查找换行符。

	\f
	查找换页符。

	\r
	查找回车符。

	\t
	查找制表符。

	\v
	查找垂直制表符。

	\xxx
	查找以八进制数 xxx 规定的字符。

	\xdd
	查找以十六进制数 dd 规定的字符。

	\uxxxx
	查找以十六进制数 xxxx 规定的 Unicode 字符。

量词

	量词
	描述

	n+
	匹配任何包含至少一个 n 的字符串。

	n*
	匹配任何包含零个或多个 n 的字符串。

	n?
	匹配任何包含零个或一个 n 的字符串。

	n{X}
	匹配包含 X 个 n 的序列的字符串。

	n{X,Y}
	匹配包含 X 或 Y 个 n 的序列的字符串。

	n{X,}
	匹配包含至少 X 个 n 的序列的字符串。

	n$
	匹配任何结尾为 n 的字符串。

	^n
	匹配任何开头为 n 的字符串。

	?=n
	匹配任何其后紧接指定字符串 n 的字符串。

	?!n
	匹配任何其后没有紧接指定字符串 n 的字符串。

RegExp 对象属性

FF: Firefox, IE: Internet Explorer

	属性
	描述
	FF
	IE

	global
	RegExp 对象是否具有标志 g。
	1
	4

	ignoreCase
	RegExp 对象是否具有标志 i。
	1
	4

	lastIndex
	一个整数，标示开始下一次匹配的字符位置。
	1
	4

	multiline
	RegExp 对象是否具有标志 m。
	1
	4

	source
	正则表达式的源文本。
	1
	4

RegExp 对象方法

FF: Firefox, IE: Internet Explorer

	方法
	描述
	FF
	IE

	compile
	编译正则表达式。
	1
	4

	exec
	检索字符串中指定的值。返回找到的值，并确定其位置。
	1
	4

	test
	检索字符串中指定的值。返回 true 或 false。
	1
	4

支持正则表达式的 String 对象的方法

FF: Firefox, IE: Internet Explorer

	方法
	描述
	FF
	IE

	search
	检索与正则表达式相匹配的值。
	1
	4

	match
	找到一个或多个正则表达式的匹配。
	1
	4

	replace
	替换与正则表达式匹配的子串。
	1
	4

	split
	把字符串分割为字符串数组。
	1
	4

一个正则表达式就是由普通字符（例如字符 a 到 z）以及特殊字符（称为元字符）组成的文字模式。该模式描述在查找文字主体时待匹配的一个或多个字符串。正则表达式作为一个模板，将某个字符模式与所搜索的字符串进行匹配。
这里有一些可能会遇到的正则表达式示例：

	JScript
	VBScript
	匹配

	/^\[\t]*$/
	"^\[\t]*$"
	匹配一个空白行。

	/\d{2}-\d{5}/
	"\d{2}-\d{5}"
	验证一个ID 号码是否由一个2位数字，一个连字符以及一个5位数字组成。

	/<(.*)>.*<\/\1>/
	"<(.*)>.*<\/\1>"
	匹配一个 HTML 标记。

下表是元字符及其在正则表达式上下文中的行为的一个完整列表：

	字符
	描述

	\
	将下一个字符标记为一个特殊字符、或一个原义字符、或一个 后向引用、或一个八进制转义符。例如，'n' 匹配字符 "n"。'\n' 匹配一个换行符。序列 '\\' 匹配 "\" 而 "\(" 则匹配 "("。

	^
	匹配输入字符串的开始位置。如果设置了 RegExp 对象的 Multiline 属性，^ 也匹配 '\n' 或 '\r' 之后的位置。

	$
	匹配输入字符串的结束位置。如果设置了RegExp 对象的 Multiline 属性，$ 也匹配 '\n' 或 '\r' 之前的位置。

	*
	匹配前面的子表达式零次或多次。例如，zo* 能匹配 "z" 以及 "zoo"。 * 等价于{0,}。

	+
	匹配前面的子表达式一次或多次。例如，'zo+' 能匹配 "zo" 以及 "zoo"，但不能匹配 "z"。+ 等价于 {1,}。

	?
	匹配前面的子表达式零次或一次。例如，"do(es)?" 可以匹配 "do" 或 "does" 中的"do" 。? 等价于 {0,1}。

	{n}
	n 是一个非负整数。匹配确定的 n 次。例如，'o{2}' 不能匹配 "Bob" 中的 'o'，但是能匹配 "food" 中的两个 o。

	{n,}
	n 是一个非负整数。至少匹配n 次。例如，'o{2,}' 不能匹配 "Bob" 中的 'o'，但能匹配 "foooood" 中的所有 o。'o{1,}' 等价于 'o+'。'o{0,}' 则等价于 'o*'。

	{n,m}
	m 和 n 均为非负整数，其中n <= m。最少匹配 n 次且最多匹配 m 次。刘， "o{1,3}" 将匹配 "fooooood" 中的前三个 o。'o{0,1}' 等价于 'o?'。请注意在逗号和两个数之间不能有空格。

	?
	当该字符紧跟在任何一个其他限制符 (*, +, ?, {n}, {n,}, {n,m}) 后面时，匹配模式是非贪婪的。非贪婪模式尽可能少的匹配所搜索的字符串，而默认的贪婪模式则尽可能多的匹配所搜索的字符串。例如，对于字符串 "oooo"，'o+?' 将匹配单个 "o"，而 'o+' 将匹配所有 'o'。

	.
	匹配除 "\n" 之外的任何单个字符。要匹配包括 '\n' 在内的任何字符，请使用象 '[.\n]' 的模式。

	(pattern)
	匹配pattern 并获取这一匹配。所获取的匹配可以从产生的 Matches 集合得到，在VBScript 中使用 SubMatches 集合，在JScript 中则使用 $0…$9 属性。要匹配圆括号字符，请使用 '\(' 或 '\)'。

	(?:pattern)
	匹配 pattern 但不获取匹配结果，也就是说这是一个非获取匹配，不进行存储供以后使用。这在使用 "或" 字符 (|) 来组合一个模式的各个部分是很有用。例如， 'industr(?:y|ies) 就是一个比 'industry|industries' 更简略的表达式。

	(?=pattern)
	正向预查，在任何匹配 pattern 的字符串开始处匹配查找字符串。这是一个非获取匹配，也就是说，该匹配不需要获取供以后使用。例如， 'Windows (?=95|98|NT|2000)' 能匹配 "Windows 2000" 中的 "Windows" ，但不能匹配 "Windows 3.1" 中的 "Windows"。预查不消耗字符，也就是说，在一个匹配发生后，在最后一次匹配之后立即开始下一次匹配的搜索，而不是从包含预查的字符之后开始。

	(?!pattern)
	负向预查，在任何不匹配Negative lookahead matches the search string at any point where a string not matching pattern 的字符串开始处匹配查找字符串。这是一个非获取匹配，也就是说，该匹配不需要获取供以后使用。例如'Windows (?!95|98|NT|2000)' 能匹配 "Windows 3.1" 中的 "Windows"，但不能匹配 "Windows 2000" 中的 "Windows"。预查不消耗字符，也就是说，在一个匹配发生后，在最后一次匹配之后立即开始下一次匹配的搜索，而不是从包含预查的字符之后开始

	x|y
	匹配 x 或 y。例如，'z|food' 能匹配 "z" 或 "food"。'(z|f)ood' 则匹配 "zood" 或 "food"。

	[xyz]
	字符集合。匹配所包含的任意一个字符。例如， '[abc]' 可以匹配 "plain" 中的 'a'。

	[^xyz]
	负值字符集合。匹配未包含的任意字符。例如， '[^abc]' 可以匹配 "plain" 中的'p'。

	[a-z]
	字符范围。匹配指定范围内的任意字符。例如，'[a-z]' 可以匹配 'a' 到 'z' 范围内的任意小写字母字符。

	[^a-z]
	负值字符范围。匹配任何不在指定范围内的任意字符。例如，'[^a-z]' 可以匹配任何不在 'a' 到 'z' 范围内的任意字符。

	\b
	匹配一个单词边界，也就是指单词和空格间的位置。例如， 'er\b' 可以匹配"never" 中的 'er'，但不能匹配 "verb" 中的 'er'。

	\B
	匹配非单词边界。'er\B' 能匹配 "verb" 中的 'er'，但不能匹配 "never" 中的 'er'。

	\cx
	匹配由x指明的控制字符。例如， \cM 匹配一个 Control-M 或回车符。 x 的值必须为 A-Z 或 a-z 之一。否则，将 c 视为一个原义的 'c' 字符。

	\d
	匹配一个数字字符。等价于 [0-9]。

	\D
	匹配一个非数字字符。等价于 [^0-9]。

	\f
	匹配一个换页符。等价于 \x0c 和 \cL。

	\n
	匹配一个换行符。等价于 \x0a 和 \cJ。

	\r
	匹配一个回车符。等价于 \x0d 和 \cM。

	\s
	匹配任何空白字符，包括空格、制表符、换页符等等。等价于 [\f\n\r\t\v]。

	\S
	匹配任何非空白字符。等价于 [^ \f\n\r\t\v]。

	\t
	匹配一个制表符。等价于 \x09 和 \cI。

	\v
	匹配一个垂直制表符。等价于 \x0b 和 \cK。

	\w
	匹配包括下划线的任何单词字符。等价于'[A-Za-z0-9_]'。

	\W
	匹配任何非单词字符。等价于 '[^A-Za-z0-9_]'。

	\xn
	匹配 n，其中 n 为十六进制转义值。十六进制转义值必须为确定的两个数字长。例如， '\x41' 匹配 "A"。'\x041' 则等价于 '\x04' & "1"。正则表达式中可以使用 ASCII 编码。.

	\num
	匹配 num，其中 num 是一个正整数。对所获取的匹配的引用。例如，'(.)\1' 匹配两个连续的相同字符。

	\n
	标识一个八进制转义值或一个后向引用。如果 \n 之前至少 n 个获取的子表达式，则 n 为后向引用。否则，如果 n 为八进制数字 (0-7)，则 n 为一个八进制转义值。

	\nm
	标识一个八进制转义值或一个后向引用。如果 \nm 之前至少有is preceded by at least nm 个获取得子表达式，则 nm 为后向引用。如果 \nm 之前至少有 n 个获取，则 n 为一个后跟文字 m 的后向引用。如果前面的条件都不满足，若 n 和 m 均为八进制数字 (0-7)，则 \nm 将匹配八进制转义值 nm。

	\nml
	如果 n 为八进制数字 (0-3)，且 m 和 l 均为八进制数字 (0-7)，则匹配八进制转义值 nml。

	\un
	匹配 n，其中 n 是一个用四个十六进制数字表示的 Unicode 字符。例如， \u00A9 匹配版权符号 (?)。

定义正则表达式
1）定义正则表达式有两种形式，一种是普通方式，一种是构造函数方式。
2）普通方式：var reg=/表达式/附加参数
表达式：一个字符串，代表了某种规则，其中可以使用某些特殊字符，来代表特殊的规则，后面会详细说明。
附加参数：用来扩展表达式的含义，目前主要有三个参数：
g：代表可以进行全局匹配。
i：代表不区分大小写匹配。
m：代表可以进行多行匹配。
上面三个参数，可以任意组合，代表复合含义，当然也可以不加参数。
例子：
var reg=/a*b/;
var reg=/abc+f/g;
3）构造函数方式：var reg=new RegExp(“表达式”,”附加参数”);
其中“表达式”与“附加参数”的含义与上面那种定义方式中的含义相同。
例子：
var reg=new RegExp(“a*b”);
var reg=new RegExp(“abc+f”,”g”);
4）普通方式与构造函数方式的区别
普通方式中的表达式必须是一个常量字符串，而构造函数中的表达式可以是常量字符串，也可以是一个js变量，例如根据用户的输入来作为表达式参数等等：
var reg=new RegExp(document.forms[0].exprfiled.value,”g”);

表达式模式
1）表达式模式，是指表达式的表达方式与样式， 即 var reg=/表达式/附加参数 中的“表达式”怎样去描述？
2）从规范上讲，表达式模式分为简单模式和复合模式。
3）简单模式：是指通过普通字符的组合来表达的模式，例如
var reg=/abc0d/;
可见简单模式只能表示具体的匹配。
4）复合模式：是指含有通配符来表达的模式，例如：
var reg=/a+b?\w/;
其中的+、?和\w都属于通配符，代表着特殊的含义。因此复合模式可以表达更为抽象化的逻辑。
下面我们着重说一下复合模式中各个通配符的含义及其使用。

贪婪的、惰性的和支配性的量词
贪婪量词：先看整个的字符串是不是一个匹配，如果没有发现匹配，它去掉字符串中的最后一个字符，并再次尝试。直到发现一个匹配字符或者字符串不剩任何字符。
惰性量词：先看字符串中的第一个字线是不是一个匹配。如果单独这个字符还不够，就读入下一个字符，组成两个字符的字符串，如果还是没有发现匹配，继续添加字会直到发现一个或者整个字符都检查过也没有匹配。其工作方式恰好与贪婪相反。
支配量词：只尝试匹配整个字符串。如果整个字符串不能产生匹配，不做进一步尝试。
表示方法如下表

	贪婪
	惰性
	支配
	描述

	?
	??
	?+
	零次或一次出现

	*
	*?
	*+
	零次或多次出现

	+
	+?
	++
	一次或多次出现

	{n}
	{n}?
	{n}+
	恰好n次出现

	{n,m}
	{n,m}?
	{n,m}+
	至少n次至多m次出现

	{n,}
	{n,}?
	{n,}+
	至少n次出现

