You are the religion of my soul.

━━━

JavaScript基础教程
1．JavaScript：
是一种客户端语言，设计它的目的是在用户的机器上执行任务，而不是在服务器上。它不允许读写客户机器上的文件，不允许写服务器上的文件，不能关闭不是由它自己打开的窗口，不能从来自另一个浏览器的已经打开的网页中读取信息。
2．Ajax：
Asynchronous JavaScript and XML(异步JavaScript 和XML)的缩写，只是JavaScript的一小部分，应用程序的大多数处理在用户的浏览器中发生，对服务器的数据请求往往很短，可以用来建立功能丰富的应用程序，是以下技术的组合：
· XHTML

· CSS

· 使用JavaScript访问的DOM（Document Object Model，文档对象模型）
· XML（在服务器和客户端之间传输的数据格式）
· XMLHttpRequest，用来从服务器获取数据。
3．组合式（snap-together）语言：

JavaScript是面向对象的语言，对象（Object）具有属性（Property），对象可以做的事情称为方法（Method），将对象、属性、方法组合在一起，更好的描述对象或过程，这些成分由点号分隔，称为点号语法（dot syntax）。
4．DOM简介：
在网页中，组成页面（或文档）的对象被组织在一个树形结构中，JavaScript将文档树中的每一项都当作对象，可以使用JavaScript操纵这些对象，用来表示对象的标准模型称为DOM（Document Obiect Model）。树中的每个对象为树的节点（Node），可以修改树的任何方面，包括添加、访问、修改、删除树上的节点，如果节点包含HTML标签，就是元素节点(element node)，否则就是文本节点（text node），元素节点可以包含文本节点。
5．处理事件：
事件（Event）是用户在访问页面时执行的操作，JavaScript使用称为事件处理程序（event handler）的命令来处理事件。用户在页面上的操作会触发脚本中的事件处理程序。
6．值和变量操作符：
JavaScript是区分大小写的，变量名不能包含空格或其它标点符号，也不能以数字开头，不能是保留字。
如果将两个值相加时混合使用数字和字符串，结果就是一个字符串。
7．脚本位置：
可以放在HTML的两个位置：<head></head>标签之间的称为头脚本（header script），<body></body>标签之间的称为体脚本（body script）。标出脚本的HTML容器，标签以<script>开头，以</script>结束。在页面上直接使用的脚本称内部脚本（internal script），共享的脚本称外部脚本(external script)。在head中添加：
<script type=“text/javascript” src=“..jasc/script.js”></script>

8．关于函数：
函数（function）是一组执行某一任务的JavaScript语句，每个函数必须有一个名称，并可被脚本的其它部分调用（invoke/call）。函数由单词function加上函数名组成，如：
function saySomething(){

 alert(“Four score and seven years ago”);

}

JS1-1

条件语句分成三部分：if，then和可选的else部分，如：
if (confirm(“Are you sure you want to do that?”){

 alert(“you said yes”);

}

else{

 alert(“you said no”);

}

JS1-2

9．提示用户做出响应：
使用对话框询问用户并处理回复：
var ans=prompt(“Are you sure you want to do that?”,”“);

if (ans){

 alert(“You said “ + ans);

}

else{

 alert(“You refused to answer”);

}

JS1-3

在这里，使用var声明了一个变量，被赋值为prompt()的结果，也就是用户在提示对话框中输入的文本。传递给prompt()方法的是由
逗号分隔的两段信息（参数 parameter），请注意在ans存在时响应的文本字符末尾的额外空格。使用var创建一个变量，并定义了变量的作用域（scope）。
10．用链接对用户进行复位向：
根据用户是否打开了JavaScript功能，无缝地对用户进行复位向（redirection），就是将用户转到另一个页面。如在点击了链接：
Welcome to our site… come in!时，调用脚本：
window.onload = initAll;

function initAll(){

 document.getElementById(“redirect”).onclick = initRedirect;

}

function initRedirect(){

 window.location = “jswelcome.html”;

 return false;

}

JS1-4

这样，当页面加载时，会触发initAll()函数，将window.location（即浏览器中显示的页面）设置为一个新页面。Return false表示停止对用户点击的处理，这样就不会加载href指向的页面。
11．改进链接：
在点击链接之后，转到目的地之前，希望执行的操作，如发出警告，给出提示。如：
window.onload = initAll;

function initAll(){

 document.getElementById(“redirect”).onclick = initRedirect;

}

function initRedirect(){

 alert(“We are not responsible for the content of pages outsider our site”);

 window.location = this;

 return false;

}

JS1-5

在点击链接之后，会显示这个警告。window.location = this 将浏览器窗口设置为关键字this指定的位置，this包含这个链接。关键字this使脚本能够根据使用这个关键字的上下文将值传递给函数。这使得如果用户浏览器不支持JavaScript，只会加载页面，不会显示警告，而且只改变HTML，与JavaScript无关。
这种编程方式称为无干扰脚本编程（unobtrusive scripting），它将代码与HTML分隔开，从而使两者更加灵活。
12．常见术语：
· DOM脚本编程（DOM scripting）：使用Javascript编写网页的方式，代码只通过操纵W3C DOM来修改页面，不使用专有的，非标准的或已废弃的属性。
· 无干扰脚本编程（unobtrusive scripting）：使用JavaScript编写网页的方式，网页的行为和它的内容是分开的，即HTML在一个文件中，JavaScript在另一个文件中。这样，没有JavaScript支持的访问者也能够使用站点的所有功能。
13．多级条件：
两个以上的选择，使用switch/case构造。如：
window.onload = initAll;

function initAll(){

 document.getElementById(“Lincoln”).onclick = saySomething;

 document.getElementById(“Kennedy”).onclick = saySomething;

 document.getElementById(“Nixon”).onclick = saySomething;

}

function saySomething(){

 switch(this.id){

 case “Lincoln”:

 alert(“Four score and seven years ago…”);

 break;

 case “Kennedy”:

 alert(“Ask not what your country can do for you…”):

 break;

 case “Nixon”:

 alert(“I am not a crook!”):

 break;

 default:

}

}

JS1-6

例子用三个按钮设置onclick处理程序，因为执行了需要的操作，希望离开这个switch语句，所以使用了break语句。如果用户的输入与条件都不匹配，就会执行default代码，这部分是可选的，但包含default块是个好的编程习惯。
14．处理错误：
使用try/throw/catch命令产生友好有用的错误消息，例子为平方根计算：
window.onload = initAll;

function initAll(){

 var ans = prompt(“Enter a number”,”“);

 try{

 if (!ans || isNaN(ans) || ans<0){

 throw new Error(“Not a valid number”);

 }

 alert(“The square root of “+ans+”is “+Math.sqrt(ans));

 }

 catch(errMsg){

 alert(errMsg.message);

 }

 }

JS1-7

try检查输入是否有效，如果未输入，输入不为数字（内置的方法isNaN: not a number）或小于零，就会跳出try并寻找对应的catch语句，Error作为参数传递给catch语句，它显示错误的message部分。
15．循环：
window.onload = initAll;

function initAll(){

 if(document.getElementById){

 for (var i=0; i<24; i++){

 setSquare(i);

}

}

 else{

alert(“Sorry, your browser doesnot support this script”);

}

function setSquare(thisSquare){

 var currSquare=“square”+ thisSquare;

 var newNum = Math.floor(Math.random()*75)+1;

 document.getElementById(currSquare).innerHTML = newNum;

}

JS1-8

内置的Math.random命令生成0~1之间的一个随机数，对结果进行Math.floor计算会得到整数部分。
在编写脚本时，检查浏览器是否有能力理解要使用的对象，进行这种检查的方法称为对象探测（object detection）。方法是对要寻找的对象进行条件测试。如例子中的if (document.getElementById){ 如果对象存在，脚本继续执行，如果浏览器不理解对象，就会执行条件语句的else部分。
16．数组：
数组是可以存储一组信息的变量，可以包含任何类型的数据。声明如下：
var newCars = new Array(“a”,”b”,”c”,”d”);

要访问数组内容，用变量名和数组成员的索引号（index number），索引号放在方括号中，编号从零开始。
Var sueNums = new Array(76);

另一种数组声明方法，为一个包含76个对象的新数组，它们是布尔值。
17．有返回值的函数：
function getNewNum(){

 return Math.floor(Math.random()*75);

}

JS1-9

在可以使用变量或数字的地方，都可以使用这个函数。
18．组合使用JavaScript和CSS：
document.getElementById(currSquare).className=““;

document.getElementById(currSquare).onmousedown=toggleColor;

function toggleColor(evt){

 if(evt){

 var thisSquare = evt.target;

 }

 else{

 var thisSquare=window.event.srcElement;

 }

if(thisSquare.className==““){

 thisSquare.className=“pickedBG”;

}

 else{

 thisSquare.className=““;

}
}

JS1-10

然后在CSS中为类pickedBG声明样式。首先要检查点击的是哪个格子，IE方式和其它所有浏览器处理事件方式不同，如果一个称为evt的值被传递给这个函数，说明不是IE，可以看到evt，如果是IE，就需要查看window对象的event属性的srcElement属性，无论哪种方式，都会得到thisSquare方式。
19．创建翻转器：
原理：有两个图像，原始图像（original）与网页的其它部分一起加载和显示，当用户将鼠标移动到原始图像上时，浏览器快速的将图像替换（replacement），这样就产生了运动或动画效果，但要确保替换图像立刻出现，不能有延迟。
例：为按钮button创建三状态的翻转器，

HTML1-1

window.onload=rolloverInit;

function rolloverInit(){

 for(var i=0; i<document.images.length; i++){

 if (document.image[i].parentNode.tagName==“A”){

 setupRollover(document.image[i]);

}

}

}

function setupRollover(thisImage){

 thisImage.outImage = new Image();

 thisImage.outImage.src = thisImage.src;

 thisImage.onmouseout = function(){

 this.src = this.outImage.src;

}

thisImage.clickImage = new Image();

 thisImage.clickImage.src = “image/” + thisImage.id + “_click.gif”;

 thisImage.onclick = function(){

 this.src = this.clickImage.src;

}

thisImage.overImage = new Image();

 thisImage.overImage.src = “image/” + thisImage.id + “_on.gif”;

 thisImage.onmouseover = function(){

 this.src = this.overImage.src;

}

}

JS1-11

id对每个对象是唯一的，脚本使用图像的id使翻转器发挥作用。在页面加载完成后，会触发事件。
函数rolloverInit()扫描页面的每个图像，检查图像外边的标签是否是锚<a>，如果是，就说明它是一个链接。document.image[i]是当前图像，它的parentNode属性是包围它的容器标签，而tagName提供容器标签的名称。
函数setupRollover(thisImage)将新的属性添加到传递给它的图像对象中。新属性是outImage(鼠标不在图像上时)、clickImage（鼠标按下图像时）、overImage(鼠标在图像上时)，它们本身就是图像对象，所以被创建后，就可以添加src属性。OutImage的src值是当前图像的src，clickImage,overImage的src值是根据原图像的id属性计算出来的。
ThisImage.outImage = new Image()：获得传递进来的图像对象，并在其中添加新的outImage属性，thisImage.outImage.src = thisImage.src：将新的outImage的图像来源设置为与thisImage的来源相同（或不同）。
ThisImage.onmousout=function(){ this.src=thisoutImage.src;}：定义了一个匿名函数，可以指定一个名称，但因为只有一行代码，没有必要。告诉浏览器当用户把鼠标移出图像时应触发的。
20．由链接触发翻转器：
让翻转器在用户将鼠标指向文本链接时翻转，这种技术可以提供预览，鼠标在链接上时，在预览区中显示一张图像。例：一个链接和一个图像
<h3>Next page</h3>

HTML1-2

widow.onload=rolloverInit;

function rolloverInit(){

 for (var i=0; i<document.links.length; i++){

 var linkObj = document.links[i];

 if (linkObj.id){

 var imgObj = document.getElementById(linkObj.id+”Img”);

 if (imgObj.id){

 setupRollover(linkObj, imgObj):

 }

 }

 }

}

function setupRollover(thisLink, thisImage){

 thisLink.imgToChange = thisImage;

 thisLink.onmouseout = function(){

 this.imgToChange.src = this.outImage.src;

 }

 thisLink.onmouseover = function(){

 thisimgToChange.src = this.overImage.src;

 }

 thisLink.outImage = new Image();

 thisLink.outImage.src = thisImage.src;

 thisLink.overImage = new Image();

 thisLink.overImage.src = “images/” + thisLink.id + “on.gif”;

}

JS1-12

setupRollover()函数利用传递给它的链接和图像参数，在链接对象中添加一个新的属性imgToChange,用来存储当鼠标停留在链接上时要改变的图像。
21．多个链接触发一个翻转器：
function rolloverInit(){

 for (var i=0; i<document.links.length; i++){

 var linkObj = document.links[i];

 if (linkObj.className){

 var imgObj = document.getElementById(linkObj.className);

 if (imgObj.id){

 setupRollover(linkObj, imgObj):

 }

 }

 }

}

function setupRollover(thisLink, textImage){

 thisLink.imgToChange = textImage;

 thisLink.onmouseout = function(){

 this.imgToChange.src = this.outImage.src;

 }

 thisLink.onmouseover = function(){

 thisimgToChange.src = this.overImage.src;

 }

 thisLink.outImage = new Image();

 thisLink.outImage.src = textImage.src;

 thisLink.overImage = new Image();

 thisLink.overImage.src = “images/” + thisLink.id + “text.gif”;

}

JS1-13

所有翻转图像必须为改变过的图像的上的地提供同样的值，因此使用class属性，var imgObj = document.getElementById(linkObj.className)：寻找链接对象的className。
22．处理多个翻转器：
如果希望触发翻转器的图像本身也是一个翻转器：即其本身也会翻转到另一个图像。
function rolloverInit(){

 for (var i=0; i<document.links.length; i++){

 var linkObj = document.links[i];

 if (linkObj.className){

 var imgObj = document.getElementById(linkObj.className);

 if (imgObj.id){

 setupRollover(linkObj, imgObj):

 }

 }

 }

}

function setupRollover(thisLink, textImage){

 thisLink.imgToChange = new Array;

 thisLink.outImage = new Array;

 thisLink.overImage = new Array;

thisLink.imgToChange[0] = textImage;

 thisLink.onmouseout = rollOut;

 thisLink.onmouseover = rollOver;

 thisLink.outImage[0] = new Image();

 thisLink.outImage[0].src = textImage.src;

 thisLink.overImage[0] = new Image();

 thisLink.overImage[0].src = “images/” + thisLink.id + “text.gif”;

 over rolloverObj = document.getElementById(thisLink.id + “Img”);

 if(rolloverObj){

 thisLink.imgToChange[1] = rolloverObj;

 thisLink.outImage[1] = new Image();

 thisLink.outImge[1].src = rolloverObj.src;

 thisLink.overImage[1] = new Image();

 thisLink.overImge[1].src = “images/” + thisLink.id + “_on.gif”;

}

}

function rollOver(){

 for (var i=0; i<this.imgToChange.length; i++){

 this.imgToChange[i].src = this.overImage[i].src;

}

}

function rollOut(){

 for (var i=0; i<this.imgToChange.length; i++){

 this.imgToChange[i].src = this.outImage[i].src;

}

}

JS1-14

这个脚本有更多的图像要处理(每个翻转器有两个图像)，在每一行中，为thisLink创建一个新属性，每个属性都是一个数组。
23．循环的广告条：

HTML1-3

window.onload = initBannerLink;

var thisAd = 0;

function initBannerLink(){

 if (document.getElementById(“adBanner”).parentNode.tagName==“A” {

 document.getElementById(“adBanner”).parentNode.onclick = newLocation;

 }

 rotate();

}

function newLocation(){

 var adURL = new Array(“baidu.com”, “sun.com”, “hdu.edu.cn”);

 document.location.href = http://www. + adURL[thisAd]);

 return false;

}

function rotate(){

var adImage = new Array(“images/banner1.gif”,”“,”“);

 thisAd++;

 if (thisAd==adImages.length){

 thisAd = 0;

 }

 document.getElementById(“adBanner”).src= adImages[thisAd];

 setTimeout(rotate, 3*1000);

}

JS1-15

内置命令setTimeout设定一个操作应该间隔多长时间执行一次（单位：毫秒）。
24．循环式幻灯片：

Previous Next

HTML1-4

window.onload = initLinks;

var myPix = new Array(“images/robot1.gif”,”“,”“);

var thisPic = 0;

function initLinks(){

 document.getElementById(“prevLink”).onclick = processPrevious;

 document.getElementById(“nextLink”).onclikc = processNext;

}

function processPrevious(){

 if (thisPic == 0){

 thisPic = myPix.length;

 }

 thisPix--;

 document.getElementById(“mypicture”).src = myPix[thisPic];

 return false;

}

function processPrevious(){

 thisPic++;

if (thisPic == myPix.length){

 thisPic = 0;

 }

 document.getElementById(“mypicture”).src = myPix[thisPic];

 return false;

}

JS1-16

这个脚本构建的幻灯片是循环式的（wrap around）。
25．显示随机图像：
window.onLoad = choosePic;

function choosePic(){

 var myPic = new Array(“images/lion.gif”,”“,”“);

 var randomNum = Math.floor(Math.random()*myPix.length));

 document.getElementById(“mypicture”).src = myPic[randomNum];

}

JS1-17

26．随机开始循环显示图像：
每次加载页面时都随机开始显示，是前面循环广告和随机图像的结合：
window.onload = choosePic;

var Images = new Array(“images/reading1.gif”,”“,”“,”“);

var thsiAd = 0;

function choosePic(){

 thisAd = Math.floor(Math.random()*Images.length));

 document.getElementById(“mypicture”).src = Images[thisAd];

 rotate();

}

function rotate(){

 thisAd++;

 if (thisAd == Images.length){

 thisAd = 0;

 }

 document.getElementById(“mypicture”).src = Images[thisAd];

 setTimeout(rotate, 3*1000);

}

JS1-18

27．打开新窗口：
<h2>Pixel</h2>

HTML1-6

window.onload = newWinLinks;

function newWinLinks(){
 for (var i = 0; i <document.links.length; i++){

 if (document.links[i].className == “newWin”){

 document.links[i].onclick = newWindow;

}

}

}

function newWindow(){

var catWindow=window.open(“pixel.jpg”,”catwin”,”resiable=no,width=350,height=260”);

 return false;

}

JS1-19

变量catwindow包含一个新的窗口对象，它引用图像文件，名称是catwin，必须设置名称，在宽度和高度参数中的逗号之间不能有任何空格。
对应于open()命令的参数有：地址栏(location)，工具栏(toolbar)，状态栏(status)，菜单栏（menubar），滚动条(scrollbars)，大小调整控件(resizable)，使用时，放入open()命令的引号中，需要的特性后面加上=yes，不要的特性后面加=no(常为默认值)。
28．将不同的内容加载进新窗口：
页面上多个链接，以同一个新窗口为目标，点击不同的链接，窗口的内容不同。
window.onload = newWinLinks;

function newWinLinks(){
 for (var i = 0; i <document.links.length; i++){

 if (document.links[i].className == “newWin”){

 document.links[i].onclick = newWindow;

}

}

}

function newWindow(){

var catWindow=window.open(this.href, “catwin”,”resiable=no,width=350,height=260”);

catWindow.focus();

 return false;

}

JS1-20

focus()方法告诉浏览器，应该将刚打开的窗口放在前面。与它相反的方法是blur()，会使窗口退到当前打开的任何其它窗口的后面，window对象的focus()和blur()方法与onfocus和onblur事件处理程序相关联，使可以在窗口获得或失去焦点时进行适当的操作。

29．打开多个窗口：
点击一个控件，通过创建的脚本打开不同的窗口。
window.onload = newWinLinks;

function newWinLinks(){
 for (var i = 0; i <document.links.length; i++){

 if (document.links[i].className == “newWin”){

 document.links[i].onclick = newWindows;

}

}

}

function newWindows(){

 for(var I=1; I<5; I++){

 var imgName = “images/pixel” + I +”.jpg”;

 var winName= “window” + I;

 var catWindow = window.open(imgName, winName, “width=350,height=260”);

 }

 return false;

}

JS1-21

imgName变量包含构造好的图像路径。WinName变量是在Window后面加上I的当前值。
CatWindow变量打开包含图像的窗口，添加窗口名称并指定窗口的大小。关键是winName（window.open的第二个参数）唯一。因此，只要每个窗口名称不一样，就会打开新窗口。
30．从一个窗口更新另一个窗口：
当处理表单和用户输入内容，将一个窗口中的输入信息传送到另一个窗口中显示。例：
主窗口是父窗口，接收和显示 在子窗口中的输入内容。父窗口中有input的id为msgLine,

子窗口(child.html)中input的id为childField。代码如下：
window.onload = initWindows

function initWindows(){

 if(document.getElementById(“childField”)){

 document.getElementById(“childField).onchange = updateParent;

 }

 else{

newwindow = window.open(“child.html”, “newWin”, “status = yes,width=300,

height=300”);

}

}

function updateParent(){

 opener.document.getElementById(“msgLine”).value = “hello” + this.value + “!”;

}

JS1-22

两个页面（父子窗口）都调用这个脚本，检查childField对象是否存在，如果不存在则打开子窗口。引入opener属性，使可以身后引用打开子窗口的父文档，这行指示opener文档（父文档）窗口寻找称为msgLine的元素，并且将它的值设置为单词hello加上this.value的内容，最后加上叹号。
31．关闭窗口：
例如下：父窗口包含open和close链接，每个链接都胡一个供脚本使用的id:

 open a new window

close a new window

HTML1-7

var newWindow = null;

window.onload = newWinLinks;

function newWinLinks(){

 for (var i=0; i<document.links.length; i++){
 document.link[i].onclick = chgWindowState;

}

}

function windowOpen(){

 if (newWindow && !newWindow.closed){

 return true;

 }

 return false;

}

function chgWindowState(){

 if (this.id = “closeWin”){
if(windowOpen(){

 newWindow.close();

}

 else{

 alert(“the window isnot open”);

}

}

if(this.id = “openWin”){
 if (windowOpen(){

 alert(“the window is already open”);

}

else{

 newWindow = window.open(““,newWin, “toolbar, location = yes, width = 300, height = 300”);

}

}

return false;

}

JS1-23

对newWindow对象的值进行初始化，大多数浏览器会自动进行，但有些不会，在此初始化，可以避免发生错误。
本例中，newWindow必须存在，而且没有关闭，如果窗口打开时，windowOpen就返回true，否则返回false。
32．把窗口放在指定位置：
例：如上例，用链接打开一个窗口，链接id分别为topLeftWin, topRightWin, bottomLeftWin

bottomRightWin, closeWin，脚本如下：
var newWindow = null;

window.onload = newWinLinks;

function newWinLinks(){

 for (var i=0; i<document.links.length; i++){
 document.link[i].onclick = chgWindowState;

}

}

function windowOpen(){

 if (newWindow && !newWindow.closed){

 return true;

 }

 return false;

}

function chgWindowState(){

 if (this.id = “closeWin”){
if(windowOpen(){

 newWindow.close();

}

 else{

 alert(“the window isnot open”);

}

return falsw;

}

var topPos = 0;

var leftPos = 0;

if (this.id.indexOf(“bottom”)> -1){

 topPos = screen.availHeight – 200;

}

if (this.id.indexOf(“Right)> -1){

 leftPos = screen.availWidth – 300;

}

if (windowOpen()){

 newWindow.moveTo(leftPos,topPos);

}

 else {

 newWindow = window.open(““, “newWin”, “toolbar,location=yes,width=300, height=200, left =“ + leftPos +”,top=“+ topPos);

}

return false;

}

JS1-24

根据screen.availHeight和screen.availWidth创建两个新变量：topPos, leftPos，它的工作方式是，如果id中有单词bottom，就知道新打开的窗口应该在屏幕的底部，所以将topPos设置为屏幕的可用高度减200（要打开窗口的高度），如果id中没有bottom（导致indexOf()函数返回-1，表示没有发现），topPos就保持它的初始值0，对leftPos用相同的方法，搜索单词”right”。如果窗口已打开，就把窗口移到定义位置，如果没有打开，就在指定位置打开。
如果希望改变窗口的尺寸而不是位置，可以使用resizeTo()。
33．处理表单：
填写表单之后，点击submit按钮将信息发送到Web服务器，在服务器上CGI程序（Common Gateway Interface 是在Web服务器上运行的一个脚本）会解释并操作这些数据，然后存储到数据库中。在服务器端存储数据之前，需要保证数据是干净的，即是准确的且有正确的格式。JavaScript是检查数据的好方法，这种技术称为表单验证（form validation）。尽管CGI可以完成验证，（而且应该作为预防措施，因为许多用户关闭JavaScript功能。）
34．选择并转移导航菜单：
标准的导航菜单，可以选择菜单中的一个选项并点击Go按钮，就能转到对应的目的地。加上脚本，可以只通过菜单选择进入不同的目的地，而不再需要Go按钮，这种增强菜单称为“选择并转移”。例如下：
<form action = “gotoLocation.cgi”>

 <select id=“newLocation”>

 <option selected=“selected”>select a topic</option>

 <option value=“next.html”> next page</option>……..

</select>

<noscript>

<input type = “sumbit” value=“Go” />

</noscript>

</form>

HTML1-9
window.onload = initForm;
window.onunload = function(){};

function initForm(){

 document.getElementById(“newLocation”).selectedEndex = 0;

 document.getElementById(“newLocation”).onchange = jumpPage;

}

function jumpPage(){

 var newLoc = document.getElementById(“newLocation”);

 var newPage = newLoc.option[newLoc.selectedIndex].value;

 if (newPage != ““){

 window.location = newPage;

}

}

JS1-25

在加载窗口时调用function()是处理浏览器古怪行为的变通方法，当卸载窗口（关闭窗口或转到另一网址）时，调用一个匿名函数（anonymous function），即没有名称的函数。因为必须将onunload设置为某些东西，否则，当点击浏览器的back按钮时就不会触发onload事件，因为在某些浏览器中页面会被缓存，让onunload执行任何操作，页面就不会被缓存，当后退时，会发生onload事件，另有两个非标准的窗口事件处理程序：onpageshow和onpagehide，也可以写成：
window.onpageshow = initForm

但只在Firefox中起作用。
使用这个脚本，在添加修改或改变下拉菜单项时，根本不需要修改这个函数。只需要修改菜单的值（跳转到的URL），因此很适合WYSIWYG（What You See Is What Yor Get）页面编辑器，DW中称为跳转菜单（jump menu）。
当浏览器不支持JavaScript时，就会显示Go按钮，用表单从一个页面跳转到另一个页面而不使用JavaScript的唯一方法是使用CGI，且只在不支持JavaScript时，脚本在下面调用了CGI <form action = “gotoLocation.cgi”>。
35．CGI：
CGI（Common Gateway Interface）公共网关接口，运行在服务器上，用来解释处理来自表单的输入信息，并在服务器产生相应的处理，或将相应的信息反馈组浏览器，使网页具有交互功能，需要配置成功才能在计算机中运行。它补充了HTML的不足。
处理步骤如下：
· 通过Internet把用户请求传送到服务器。
· 服务器接收请求并交给CGI程序处理。
· CGI程序把处理结果传送给服务器。
· 服务器把结果送回给客户。
36．动态地改变菜单：
如两个弹出菜单，选择一个月份时，脚本根据所选月份的天数，填充第二个弹出菜单。
<form action=“#”>

 <select id=“months”>

 <option value=““>Month</option>

 <option value=“0”>January</option>…….

 </select> <select><option>Day</option></select>

</form>

HTML1-10

window.onload = initForm;

function initForm(){

 document.getElementById(“months”).selectedIndex = 0;

 document.getElementById(“months”).onchange = populateDays;

}

function populateDays(){

 var monthDays = new Array(31,28,31,30,31,30,31,31,30,31,30,31);

 var monthStr = this.options[this.selectedIndex].value;

 if (monthstr !=““){

 var theMonth = parseInt(monthStr);

 document.getElementById(“days”).options.length = 0;

 for (var I=0; I<monthDays[theMonth]; I++){

 document.getElementById(“days”).option[I] = new Option(I+1);

}

}
}

JS1-26

parseInt(string s, int radix)使用第二个参数指定的基数，将字符串解析为有符号的整数。如：parseInt(110,2)=6.

37．建立必须填写的字段及检查：
用于指定某些字段必须填写的检查，检查在表单提交时进行。通过红色边框和黄色内部颜色突出显示未填写的字段，并让标签显示为红色字体。并检查两次输入数据是否一致，标示出有问题的字段。
<form action=“#”>

 <label for=“username”>User<input type=“text” id=“username” class=“reqd”/></label>

 <label for=“pw”>PW<input type=“password” id=“pw” class=“reqd”></label>

 <label for=“pw2><PW2<input type=“password” id=“pw2” class=“reqd pwdl”/></label>

 <input type=“submit” value=“Submit”/><input type=“reset” value=“Reset”/>

</form>

HTML1-11

下面一段无效的CSS样式用于设置检查信息：
input .invalid{ background:#FF9; border:2px red inset;}

label.invalid{ color: #F00; font-weight:bold;}

CSS1-1

window.onload = initForm;

function initForm(){

 for (var i=0;i<document.forms.length;i++){

 document.forms[i].onsubmit = function(){return validForm();}

 }

}

function validForm(){

 var allGood=true;

 var allTags=document.getElementsByTagName(“*”);

 for (var i=0; i<allTags.length; i++){

 if(!validTag(allTags[i])){

 allGood = false;

}
}

return allGood;

 function validTag(){
var outClass=““;

 var allClass = thisTag.className.split(“ “);

for(var j=0; j<allClass.length; j++){

outClass += validBasedOnClass(allClasses[j]) + “ “;

}

thisTag.className=outClass;

if(outClass.indexOf(“invalid”)>-1) {

 invalidLabed(thisTag.parentNode);

 thisTag.focus();

 if(thisTag.nodeName == “INPUT”)

 {thisTag.select();

}

 return false;

}

return true;

function validBasedOnClass(thisClass){

 var classBack = ““;

 switch(thisClass){

 case ““:

 case “invalid”:

 break;

 case “reqd”:

 if (allGood && thisTag.value == ““){

 classBack = “invalid”;

 }

 classBack += thisClass;

 break;

 default:

 if(allGood && !crossCheck(thisTag,thisClass)){

 classBack = “invalid”;

 }

 classBack += thisClass;

 }

 return classBack;

 }

function crossCheck(inTag, otherFieldID){

 if (!document.getElementById(otherFieldID)){

 return false;

 }

 return (inTag.value == document.getElementById(otherFieldID).value);

 }

 function invalidLabel(parentTag){

 if(parentTag.nodeName == “LABLE”{

 parentTag.className += “ invalid”:

 }

 }

}

}

JS1-27

38．split()函数：
用于把一个字符串分割成字符串数组。stringObject(separator,howmany) 参数separator必须的，字符串或正则表达式，从该参数指定的地方分割。howmany可选参数，指定返回的数组的最大长度，如果设置了该参数，返回的子串不会多于这个参数指定的数组。如果滑设置该参数，整个字符串都会被分割，不考虑它的长度。返回的数组中的字串不包括separator自身。但，如果sepatator是包含子表达式的正则表达式，那么返回的数组中包括与这些子表达式匹配的字串（但不包括与整个正则表达式匹配的文本）。如果把空字符串（““）用作separator，那么stringObject中的每个字符之间都会被分割。
39．.do

.do是一种网页后台程序，*.jsp或者struts的组件文件*.do ，它不是一个文件,并没有一个真正的.do文件存在。 它不能用编辑器直接打开
struts使用一个特殊的servlet作为“交换机”，将来自web浏览器的请求转到相应的serverpage。在开发web应用时有一个必须要写的部署描述文件（web-inf/web.xml）。 这个文件描述了你的web应用的配置，包括欢迎页面（welcome pages）（当请求没有指定时，出现在目录下的文件）、servlet（路径或者扩展名）和那些servlets的参数的映像。 在这个文件中，你配置struts actionservlet作为一个操控所有指定映像（通常以.do为扩展名）请求的servlet——这就是“交换机”。
40．进行表单验证：
JS1-27很大程度上独立于使用它的HTML页面，可以改用一个完全不同的页面，其中包含完全不同的表单，而且只需对脚本略做修改，就可以执行需要的所有验证任务。新的HTML页面如下：
<body>

<h2 algin=“center”>Car picker</h2>

<form action = “someAction.cgi”>

<p><label for “emailAddr”>Email :<input id=“emailAddr” type=“text” size=“30” class=“reqd email”/></label></p>

<p><label for =“color”>Colors:

<select id=“color” class=“reqd”>

<option value=““ selected=“selected”>choose a color></option>

<option value=“red”>Red</option> <option value=“Green”>Green</option>

</select> </label></p>

<p>Options:

<label for=“sunroof”><input type=“checkbox” id=“sunroof” value=“yes”/>Sunroof(Two door only)</label>

<label for=“pWindows”><input type=“checkbox” id=“pWindows” value=“yes”/>Power Windows </label> </p>

<p><label for=“DoorCt”>Doors:

<input type=“radio” id=“twoDoor” name=“DoorCt” value=“twoDoor” class=“radio”/>Two

<input type=“radio” id=“fourDoor” name=“DoorCt” value=“fourDoor” class=“radio”/>Four

</label> </p>

<p><label for=“zip”>Enter your Zipcode or pick the dealer nearest your:

Zip:<input id=“zip” type=“text” size=“5”,maxlength=“5” class=“isZip dealerList”/>

<select id=“dealerList” size=“4” class=“zip”>

<option value=“California—Lemon Grove”>California—Lemon Grove</option>

……

</select> </label> </p>"submit"

<p><input type=“submit” value=’submit” />;<input type=“reset”/> </p>

</form> </body>

HTML1-12

网页内容如下图1：
[image: image1.png]Car picker

Enail:
Colors: [chooseacdor 7]

Options: I~ Sunroof(Two door only) I~ Power Windows

Doors: € Two € Four

Enter your Zipoode or pick the dealer nearest your:

IMG1-1

window.onload = initForm;

function initForm(){

 for (var i=0;i<document.forms.length;i++){

 document.forms[i].onsubmit = function(){return validForm();}

 }

 document.getElementById(“sunroof”).onclick = doorSet;

}

function validForm(){

 var allGood=true;

 var allTags=document.getElementsByTagName(“*”);

 for (var i=0; i<allTags.length; i++){

 if(!validTag(allTags[i])){

 allGood = false;

}
}

return allGood;

 function validTag(){
var outClass=““;

 var allClass = thisTag.className.split(“ “);

for(var j=0; j<allClass.length; j++){

outClass += validBasedOnClass(allClasses[j]) + “ “;

}

thisTag.className=outClass;

if(outClass.indexOf(“invalid”)>-1) {

 invalidLabed(thisTag.parentNode);

 thisTag.focus();

 if(thisTag.nodeName == “INPUT”)

 {thisTag.select();

}

 return false;

}

return true;

function validBasedOnClass(thisClass){

 var classBack = ““;

 switch(thisClass){

 case ““:

 case “invalid”:

 break;

 case “reqd”:

 if (allGood && thisTag.value == ““){

 classBack = “invalid ”;

 }

 classBack += thisClass;

 break;

 case”radio”:

 if (allGood&&!radioPicked(thisTag.name)){

 classBack = “invalid ”;

 case”isNum”:

 if (allGood&&!isNum(thisTag.value)){

 classBack = “invalid ”;

 }

 classBack+= thisClass;

 break;

 case”isZip”:

 if (allGood&&!isNum(thisTag.value)){

 classBack = “invalid ”;

 }

 classBack+= thisClass;

 break;

 case”email”:

 if (allGood&&!validEmail(thisTag.value)){

 classBack = “invalid ”;

 }

 classBack+= thisClass;

 break;

 default:

 if(allGood && !crossCheck(thisTag,thisClass)){

 classBack = “invalid ”;

 }

 classBack += thisClass;

 }

 return classBack;

 }

function crossCheck(inTag, otherFieldID){

 if (!document.getElementById(otherFieldID)){

 return false;

 }

 return (inTag.value !=”” | document.getElementById(otherFieldID).value!=””);

 }

 function radioPicked(radioName){

 var radioSet=””;

 for (var k=0; k<document.forms.length;k++){

 if(!radioSet){

 radioSet = document.fors[k][radioName];

}

}

 if(!radioSet){

 return false;

}

for(k=0; k<radioSet.length; k++){

 if(radioSet[k].checked){
 return true;
}

}

return false;

}

 function isNum(passedVal){

 if (passedVal == “”){

 return false;

}

for(var k=0;k<passedVal.length; k++){

 if (passedVal.charAt(k) < “0” {

 return false;

}

if (passedVal.charAt(k)>”9”){

 return false;

}

}

return false;

}

function isZip(inZip){

 if (inZip == “”){

 return true;

}

return (isNum(inZip));

}

function validEmail(email){

 var invlidChars = “ /:,;”;

 if (email == “”){

 return false;

}

for(var k=0; k<invalidChars.length; k++){

 var badChar = invalidChars.charAt(k);

 if (email.indexOf(badChar) > -1){

 return false;

 }

}

var atPos = email.indexOf(“@”,1);

if(atPos == -1){

 return false;

}

if (email.indexOf(“@”,atPos+1!=-1){

 return false;

}

var periodPos = email.indexOf(“.”,atPos);

if (periodPos == -1){

 return false;

}

if(periodPos+3>email.length){

 return false;

}

return true;

}

 function invalidLabel(parentTag){

 if(parentTag.nodeName == “LABLE”{

 parentTag.className += “ invalid”:

 }

 }

}

}

function doorSet(){

 if (this.checked){

 document.getElementById(“twoDoor”).checked = true;

}

else{

 document.getElementById(“twoDoor”).checked = false;

}

}

JS1-28

所有具有相同name属性的<input>标签都属于同一个单选按钮组。遍历页面上的所有表单，我们知道单选按钮组的名称，但是不知道它是哪个表单的一部分，而给定的页面上可能有多个表单，尝试将radioSet设置为正在查看的表单中单选按钮组的名称，如果找到这个单选按钮组，radioSet就会包含一个值。在循环结束时，查看radioSet，如果还没有设置它，就返回false，因为无法找到要找的单选按键组，所以不能选择单选按钮。已经找到了要检查的单选按钮组，当发现一个被选中时，就返回true，如果到达了循环末尾的这个语句，那么已经检查了整个单选按钮组而且没有单选按钮被选中，就返回false，并改变类的值，将单选按钮改为红色的粗体。
在表单上常见的一种情况是，如果用户做出一个选择，这个选择会影响表单上的其它字段的值，如只有两门汽车才能选择遮阳篷选项，所以如果用户选择了遮阳篷，脚本就会自动选中两门选项。
Zip编码字段中输入的内容只包含数字。charAt()函数检查位置K上的字符，如果小于0或者大于9，就不是数字，返回false。在这个表单中，Zip为空是合法的，因此先检查用户是否在这个字段中输入了任何内容，如果没有，返回true，这是合法的输入。但是如果输入内容，就必须是数字。
电子邮件的形式错误可以检查，如输入了非法字符，但拼字错误不好检查。在invalidChars中包含电子邮件地址中最可能出现的五个无效字符：空格，斜杠，冒号，逗号和分号。如果包含这些字符或重复@，或在@后有重复的“.“，都是错误的。
41．正则表达式：
正则表达式（regular expression，缩写为regexp）是对文本字符串进行难和格式化的极其强大的方式，是一种用特殊符号的编写模式，描述一个或多个文本字符串，使用正则表达式匹配文本的模式，这样脚本就可以轻松地识别和操纵文本。
42．用正则表达式验证电子邮件地址：
<body>

<h2 align="center">Email Validation</h2>

<form action="someAction.cgi">

<p><label>Email Address:<input class="email" type="text" size="30" /></label></p>

<p><input type="reset" value="reset" /> <input type="submit" value="submit" /></p>

</form>

</body>

HTML1-13

[image: image2.png]Email Validation

Enail Address:
et submit

IMG1-2

CSS与脚本CSS1-1相同。
window.onload = initForms;

function initForms(){

 for(var i=0; i<document.forms.length; i++){

 document.forms[i].onsubmit = function().{return validForm();}

 }

}

function validForm(){

var allGood = true;

var allTags = document.getElementsByTagName("*");

for (var i=0; i<allTags.length; i++){

if(!validTag(allTags[i])) {

allGood = false;

}

}

return allGood;

function validTag(thisTag){

var outClass = "";

var allClasses = thisTag.className.split(" ");

for (var j=0; j<allClasses.length; j++){

outClass += validBasedOnClass(allClasses[j]) + " ";

}

thisTag.className = outClass;

if(outClass.indexOf("invalid")>-1){

invalidLabel(thisTag.parentNode);

thisTag.focus();

if(thisTag.nodeName == "INPUT"){

thisTag.select();

}

return false;

}

return true;

function validBaseOnClass(thisClass){

var classBack="";

switch(thisClass){

case "":

case "invalid":

break;

case "email":

if(allGood && !validEmail(thisTag.value))classBack = "invalid ";

default:

 classBack += thisClass;

}

return classBack;

}

function validEmail(email){

var re=/^\w+([\.-]?\w+)*@\w+ ([\.-]?\w=)*(\.\w{2,3})+$/;

return re.test(email);

}

function invalidLabel(parentTag){

if(parentTag.nodeName == "LABEL"){

parentTag.className +="invalid"

}

}

}

}

JS1-29

· 正则表达式总是以斜杠（/）开头和结尾，之间的所有内容都是表达式的组成部分。
· 脱字符（^）表示要用这个表达式检查以特定的字符串开头的字符串，如果去掉脱字符，那么即使字符串开头有一堆“垃圾字符”，电子邮件地址也可能被认为是有效的。
· 表达式\w表示任意单一字符，包括a~z、A~Z、0~9或下划线，电子邮件地址必须以这些字符之一开头。
· 加号+表示要寻找前面条目的一次或多次出现。这个示例中，电子邮件地址必须以字符数字或下划线的任意组合开头。
· 前圆括号（表示一个组。这意味着后面将要引用圆括号中的所有内容，所以现在将它们放在一个组中。
· 方括号【】用来表示可以出现其中的任意一个字符。这个示例中，方括号内包含字符\.-。我们希望允许用户输入点号或连字符，但是点号对于正则表达式有特殊意义，所以需要在它前面加上反斜杠\，这表示指的实际上是点号本身，而不是其它特殊意义。在特殊字符前面使用反斜杠称为“对字符转义”。因为有方括号，输入的字符串在这个位置可以有一个点号或一个连字符，但是两者不能同时存在。注意，连字符不代表任何特殊字符，反以不用加反斜杠。
· 问号？表示前面的条目可以不出现或出现一次。所以，在电子邮件地址的第一部分（在@前面的部分）中可以有一个点号或一个连字符，也可以没有。在？后面，再次使用\w+，这表示点号或连字符后面必须有其它一些字符。
· 后圆括号）表示这个组结束了，在此之后是一个星号，表示前面的条目（在这个示例中，指圆括号中的所有内容）可以不出现或者出现多次，所以如果zichu是有效的电子邮件前缀，zichu-zichu-1-1-3也是。
· @字符仅仅代表它本身，没有任何其它意义，这个字符位于电子邮件地址前缀和域名之间。
· 再次使用\w+，这表示域名必须以一个或多个a~z、A~Z、0~9或下划线字符开头，在此之后同样是([\.-]?\w+)*，表示电子邮件地址的后缀中允许有点号或连字符。
· 然后，一在对圆括号中建立另一个组：\.\w{2,3}，表示希望找到一个点号，后面跟着一些字符。这个示例中，花括号中的数字表示前面和条目（本例中是\w，表示字母数字或下划线）可以出现2次或3次，在这个组的后圆括号后面是一个+，也表示前面的条目（这个组）必须出现一次或多次，这会匹配.com或.edu之类的，也与ox.ax.uk匹配。
· 最后，表达式的末尾是一个$，表示匹配的字符串必须在这里结束。这使脚本能够拒绝那些形状正确，但是在末尾包含垃圾字符的电子邮件地址。斜杠结束正则表达式，分号和原来一样结束JavaScript语句。
return re.test(email)这一行获得前一步中定义的正则表达式，并使用test()方法难电子邮件地址的有效性。如果输入的字符串不符合re中存储的模式，test()就返回false，错误 的字段用其标签变成红色字体，如果输入有效，就返回true，表单将提交给一个CGI程序进行进一步处理。
someAction.cgi只是一个CGI程序的示例名称，如果想学习编写CGI，推荐Elizabeth Castro 的书Perl and CGI for the World Wide Web, Second Edition: Visual QuickStart Guide.

正则表达式中的特殊字符（有时称元字符，meta character）是区分大小写的。有一些字符可以改变其它操作符的行为，如下表：
Table1-1:正则表达示中的特殊字符

	字符
	匹配

	\
	在字面意义和特殊意义之间进行切换

	^
	字符串的开头

	$
	字符串的结尾

	*
	零次或多次

	+
	一次或多次

	？
	零次或一次

	.
	除换行符外的任何字符

	\b
	单词边界

	\B
	非单词边界

	\d
	0~9的任何数字（同【0－9】）

	\D
	任何非数字

	\f
	换页符(form feed)

	\n
	换行符

	\r
	回车符

	\s
	任何一个空白字符（与【\f\n\r\t\v】相同）

	\S
	任何一个非空白字符

	字符
	匹配

	\t
	制表符

	\v
	垂直制表符

	\w
	任何字母数字及下划线（与【a-zA-Z0-9_】同）

	\W
	除数字字母及下划线外的其它字符

	\xnn
	十六进制数字nn定义的ASCII字符

	\onn
	八进制数字nn定义的ASCII字符

	\cX
	控制字符X

	【abcde】
	与其中任何字符匹配的字符集

	【^abcde】
	字符补集，与其中任何字符都不匹配的字符集

	【a-e】
	与其中的字符范围匹配的字符集

	【\b】
	退格字符的字面意义（不同于\b）

	{n}
	前面的字符正好出现n次

	{n,}
	前面的字符至少出现n次

	{n,m}
	前面的字符出现n~m次

	（）
	一个组，可以在后面引用它

	x|y
	x或y

Table1-2正则表达式修饰符

	修饰符
	含义

	g
	搜索所有的匹配（全局），不只是第一处匹配

	i
	进行不区分大小写的搜索

43．验证文件名：
可以用正则表达式做很多事情，但最有用的功能之一是验证网页上表单中的输入字段。脚本JS1-30希望用户输入一个图像的有效URL，正则表达式有助于确保用户的输入符合要求（文件名必须有表示图像文件的后缀）。如果URL通过了验证，就在页面上显示这个图像。脚本如下：
window.onload = initForms;

function initForms(){

 for(var i=0; i<document.forms.length; i++){

 document.forms[i].onsubmit = function().{return validForm();}

 }

}

function validForm(){

var allGood = true;

var allTags = document.getElementsByTagName("*");

for (var i=0; i<allTags.length; i++){

if(!validTag(allTags[i])) {

allGood = false;

}

}

return allGood;

function validTag(thisTag){

var outClass = "";

var allClasses = thisTag.className.split(" ");

for (var j=0; j<allClasses.length; j++){

outClass += validBasedOnClass(allClasses[j]) + " ";

}

thisTag.className = outClass;

if(outClass.indexOf("invalid")>-1){

invalidLabel(thisTag.parentNode);

thisTag.focus();

if(thisTag.nodeName == "INPUT"){

thisTag.select();

}

return false;

}

return true;

function validBaseOnClass(thisClass){

var classBack="";

switch(thisClass){

case "":

case "invalid":

break;

case "imgURL":

if(allGood && !imgURL(thisTag.value))classBack = "invalid ";

default:

 classBack += thisClass;

}

return classBack;

}

function imgURL(newURL){

var re = /^(file|http):\/\/S+\/\S+\.(gif |jpg|jpeg|png)$/i;

 if (re.text(newURL)){

 document.getElementById(“chgImg”).src = newURL;

 return true;

 }

 return false;

}

function invalidLabel(parentTag){

if(parentTag.nodeName == "LABEL"){

parentTag.className +="invalid"

}

}

}

}

JS1-30

我们希望检查输入的整个字段，所以正则表达式以/^开关，以$/结束。输入可以以文本http或file开头，所以将这两个字符串放在一个组中，用|分隔，表示可以接受两者之一。无论用户是从本地硬盘还是从Web获得图像，://几个字符必须的，所以接下来检查这些字符，注意，每个前向斜杠必须分别进行转义，因为前向斜杠是正则表达式特殊字符。
在此之后，几乎可以出现任何字符，所以使用\S+表示后面是一个或多个非空格字符，然后需要另一个前向斜杠（同样经过转义）来分隔域名和文件名，然后是一个\S+，用来处理文件名。文件名需要以点号和gif、jpg、jpeg、png结束，点号经过转义，两个后缀组合在一起，表示接受其中之一。
在这个正则表达式后面，使用修饰符i允许用户输入大写或小写字母，这个修饰符让正则表达式不区分大小写。
44．提取字符串：
字符串提取(extraction)可以提取并操作字符串的一部分，对最终结果进行更细的控制。在如下事例中，我们获得一系列输入的姓名，其中名字在前，姓氏在后，然后交换名和姓的次序。
window.onload = initForms;

function initForms(){

 for(var i=0; i<document.forms.length; i++){

 document.forms[i].onsubmit = function().{return validForm();}

 }

}

function validForm(){

var allTags = document.getElementsByIdTagName("*");

for (var i=0; i<allTags.length; i++){

validTag(allTag[i]);

}

return false;

function validTag(thisTag){

var allClasses = thisTag.className.split(" ");

for (var j=0; j<allClasses.length; j++){

validBaseOnClass(allClasses[j];

}

function validBasedOnClass(thisClass){

switch(thisClass){

case "":

break;

case "nameList":

thisTag.value = nameList(thisTag.value);

default;

}

}

function nameList(inNameList){

var newNames = new Array;

var newNameField = "";

var re=/\s*\n\s*/;

var nameList = inNameList.split(re);

re = /(\S+)\s(\S+)/;

for (var k=0;k<nameList.length; k++){

newNames[k] = nameList[k].replace(re,"$2, $1");

}

for(k=0; k<newNames.length; k++){

newNameField += newNames[k] + "\n";

}

return newNameField;

}

}

}

JS1-31

var re = /\S*\n\S*/;这是一个新的正则表达式，它搜索的文本模式是由任何空白字符
(\s*)，然后是换行符(\n),再后同样是任何空白字符(\s*)组成的。
字符串方法split()获得正则表达式，并且将它应用于用户输入的存储在inNameList中的数据，每个换行符分隔一个姓名，split()将每行上的输入数据分隔开，结果是一个输入的姓名的字符串数组，其中每个数组元素都是一个姓名，存储在数组nameList中。
接下来需要另一个正则表达式，它可以将每个姓名分隔成名字和姓氏，它搜索的是任何非空白字符(\S+)，然后是一个空白字符(\s)，最后是任何非空白字符(\S+)，每组非空白字符需要加上圆括号，以便在后面引用这些字符。
当执行replace()方法时，正则表达式re将nameList的数组元素分隔成名字和姓氏。这些圆括号让JavaScript将名字存储在正则表达式属性$1中，将姓氏存储在正则表达式属性$2中。然后，replace()方法使用传递给它的第二个参数，返回新的字符串：首先是姓氏$2，然后是一个逗号，最后是名字$1，现在将姓氏在前的姓名存储在新数组newNames中。
45．对字符串进行格式化：
用户常常很随意的格式输入数据，如果你希望输入符合一种标准格式，最好自己处理格式化。下面脚本将获得一系列姓名并且将它们转换为标准的首字母大写格式。
window.onload = initForms;

function initForms(){

 for(var i=0; i<document.forms.length; i++){

 document.forms[i].onsubmit = function().{return validForm();}

 }

}

function validForm(){

var allTags = document.getElementsByIdTagName("*");

for (var i=0; i<allTags.length; i++){

validTag(allTag[i]);

}

return false;

function validTag(thisTag){

var allClasses = thisTag.className.split(" ");

for (var j=0; j<allClasses.length; j++){

validBaseOnClass(allClasses[j];

}

function validBasedOnClass(thisClass){

switch(thisClass){

case "":

break;

case "nameList":

thisTag.value = nameList(thisTag.value);

default;

}

}

function nameList(inNameList){

var newNames = new Array;

var newNameField = "";

var re=/\s*\n\s*/;

var nameList = inNameList.split(re);

re = /^(\S)(\S+)\s(\S)(\S+)$/;

for (var k=0;k<nameList.length; k++){

if (nameList[k]){

 re.exec(nameList[k]);

 newName[k] = RegExp.$1.toUpperCase()+ RegExp.$2.toLowerCase() + “” +RegExp.$3.toUpperCase() + RegExp.$4.toLowerCase();

 }

}

for(k=0; k<newNames.length; k++){

newNameField += newNames[k] + "\n";

}

return newNameField;

}

}

}

JS1-32

re这个正则表达式同样寻找符合“名字，空格，姓氏”次序的姓名，并且将每个姓名分隔成四部分：名字的首字母^(\S)、名字的剩余字母(\S+)、姓氏的首字母(\S)以及姓氏的剩余字母(\S+)$。注意，^和$迫使字符串在这两个位置开始和结束。
检查nameList数组中的每个姓名。
re.exec(nameList[k]);使用exec()方法在字符串nameList[k]上执行正则表达式re，从而将字符串分隔为四个部分，并且自动地设置JavaScript内置的RegExp对象。这四个部分分别存储在RgeExp.$1、RgeExp.$2、RgeExp.$3、RgeExp.$4中。转换后的姓名存储在newNames数组中，它包含转换为大写的名字首字母（RgeExp.$1），转换为小写的名字剩余字母（RgeExp.$2），然后是一个空格，然后是转换为大写的姓氏首字母（RgeExp.$3），最后是转换为小写的姓氏剩余字母（RgeExp.$4）。然后显示姓名。
46．RgeExp对象：
内置的对象，每当脚本执行正则表达式方法时，会自动地设置（和重新设置）这个对象，属性和方法见下。它并不是一个包含正则表达式操作结果的变量，而是包含正则表达式所描述的模式，脚本可以通过对象的属性和方法访问文本模式的各个部分。

Table1-3 RegExp对象的属性

	属性
	意义

	$1
	圆括号包围的子字符串匹配

	$_
	相当于input

	$*
	相当于multiline

	$&
	相当于lastMatch

	$+
	相当于lastParen

	$`
	相当于leftContext

	$’
	相当于rightContext

	constructor
	指定创建对象原型的函数

	global
	全局搜索（使用g修饰符）

	ignoreCase
	不区分大小写搜索（使用i修饰符）

	Input
	如果没有传递的字符串，这就是要搜索的字符串

	lastIndex
	继续匹配的起始位置

	lastMatch
	最后一个匹配的字符串

	lastParen
	最后的圆括号包围的子字符串匹配

	lastContext
	最近一个匹配字符串左边的子字符串

	multiline
	是否跨多行搜索字符串

	prototype
	允许在所有对象中添加属性

	rightContext
	最近一个匹配字符串右边的子字符串

	source
	正则表达式模式本身

Table1-4 RegExp对象的方法

	方法
	意义

	Compile(pattern,[,”g”|”i”|”gi”])
	对正则表达式进行编译

	exec(string)
	搜索匹配

	test(string)
	测试匹配

	toSource
	返回一个代表对象的字面值

	toString()
	返回一个代表指定对象的字符串

	valueOf()
	返回指定对象的原始值

Table1-5 字符串方法

	方法
	意义

	Match(re)
	在一个字符串中寻找与一个正则表达式模式(re)的匹配

	Replace(re,replaceStr)
	使用正则表达式(re)执行所需的替换

	Search(re)
	搜索与正则表达式(re)的匹配

	Split(re)
	根据正则表达式(re)对字符串进行分隔

47．对字符串进行格式化和排序：
另一种典型任务是对一组姓名进行排序，脚本是将前两个示例组合起来并添加了排序功能。最终结果是一个姓氏在前的姓名列表，采用首字母大写形式，并且按照字母表排序。
window.onload = initForms;

function initForms(){

 for(var i=0; i<document.forms.length; i++){

 document.forms[i].onsubmit = function().{return validForm();}

 }

}

function validForm(){

var allTags = document.getElementsByIdTagName("*");

for (var i=0; i<allTags.length; i++){

validTag(allTag[i]);

}

return false;

function validTag(thisTag){

var allClasses = thisTag.className.split(" ");

for (var j=0; j<allClasses.length; j++){

validBaseOnClass(allClasses[j];

}

function validBasedOnClass(thisClass){

switch(thisClass){

case "":

break;

case "nameList":

thisTag.value = nameList(thisTag.value);

default;

}

}

function nameList(inNameList){

var newNames = new Array;

var newNameField = "";

var re=/\s*\n\s*/;

var nameList = inNameList.split(re);

re = /^(\S)(\S+)\s(\S)(\S+)$/;

for (var k=0;k<nameList.length; k++){

if (nameList[k]){

 re.exec(nameList[k]);

 newName[k] = RegExp.$3.toUpperCase()+ RegExp.$4.toLowerCase() + “, ” +RegExp.$1.toUpperCase() + RegExp.$2.toLowerCase();

 }

}

 newNames.sort();

for(k=0; k<newNames.length; k++){

newNameField += newNames[k] + "\n";

}

return newNameField;

}

}

}

JS1-33

数组方法sort()对数组中的元素进行排序，并覆盖原来的内容。
48．对字符串进行格式化和验证：
用户输入任意格式的电话号码，最终结果根系是一个结过格式化的电话号码，要么是输入框变成红色，标签变成红色的粗体。
window.onload = initForms;

function initForms(){

 for(var i=0; i<document.forms.length; i++){

 document.forms[i].onsubmit = function().{return validForm();}

 }

}

function validForm(){

var allTags = document.getElementsByIdTagName("*");

for (var i=0; i<allTags.length; i++){

validTag(allTag[i]);

}

return false;

function validTag(thisTag){

 var outClass = "";

var allClasses = thisTag.className.split(" ");

for (var j=0; j<allClasses.length; j++){

 outClass += validBasedOnClass(allClasses[j]) + " ";

}

 thisTag.ClassName = outClass;

 if (outClass.indexOf("invalid")> -1){

 invalidLabel(thisTag.parentNode);

 thisTag.focus();

 if(thisTag.nodeName == "INPUT"{

 thisTag.select();+

 }

 }

function validBasedOnClass(thisClass){

switch(thisClass){

case "":

 case “invalid”:

 break;

case "phone":

if(!vaildPhone(thisTag.value))

classBack = "invalid";

default;

 classBack += thisClass;

}

 return classBack;

}

function validPhone(phoneNum){

var
re = /^\(?(\d{3})\)?[\.\-\/]?(\d{3})[\.\-\/]?(\d{4})$/;

 var phoneArray = re.exec(phoneNum);

 if (phoneArray){

 document.getElementById("phoneField").value = "(" + phoneArray[1] + ")" +

 phoneArray[2] + "-"+ phoneArray[3];

 return true;

 }

 return false;

 }

function invalidLabel(parentTag){

 if (parentTag.nodeName == "LABEL"){

 parentTag.className += " invalid";

}

}

}

}

JS1-34

re 这个正则表达式寻找这样的字符串：有一个可选的前圆括号\(? 有三个数字(\d{3}) 有一个可选的后圆括号\)? 有一个可选的点号，连字符，前向斜杠或空格[\.\-\/]? 有三个数字(\d{3}) 有一个可选的点号，连字符，前向斜杠或空格[\.\-\/]? 有四个数字(\d{4}) 这个模式指定了字符串的开头和结尾，所以如果有额外的字符，字符串就不匹配。如果找到三位的地区编码数字，三位的前缀和四位的后缀，就分别保存它们。
exec()方法在phoneNum上执行re中存储的正则表达式。如果没有找到要搜索的模式，phoneArray就被设置为null，否则就设置为一个数组，其中包含正则表达式存储的值。
如果phoneArray非空，就会成功地通过这个测试，这说明数组已经初始化了，所以将页面上的表单字段重新设置为标准格式：包围在圆括号避的地区编码，加一个空格，然后是前缀，连字符和后缀。
49．使用正则表达式替换元素：
正则表达式在搜索、匹配和替换字符串方面很强大，还可以用它替换页面元素的名称。JS 1-13更改建立一个三状态的翻转器，有一个缺点，要求给希望操纵的每个图像加上它自己的id，但是可以使用JavaScript构建页面元素的名称，从而减少工作量。JS 1-13 原来根据每个图像的id动态地创建图像的_click和_on名称，现在根据每个图像的_off名称动态地创建_click和_on名称，这样就不需要图像id了。下面脚本演示了实现方法。
window.onload = rolloverInit;

function rolloverInit(){

 for (var i=0; i<document.links.length; i++){

 if(document.images[i].parentNode.tagName.toLowerCase() == "a"){

 setupRollover(linkObj, imgObj):

 }

 }

 }

function setupRollover(thisImage){

 var re=/\s*_off\s*/;

 thisImage.outImage = new Image();

 thisImage.outImage.src= thisImage.src;

 thisImage.onmouseout = function(){

 this.scr = this.outImage.src;

 }

 thisImage.overImage = new Image();

 thisImage.overImage.src = thisImage.src.replace(re,"_on");

 thisImage.onmouseover = function(){

 this.src = this.overImage.src;

 }

 thisImage.clickImage = new Image();

 thisImage.clickImage.src = thisImage.src.replace(re,"_click");

 thisImage.onclikc = function(){

 this.src = this.clickImage.src;

 }

 thisImage.parentNode.childImg = thisImage;

 thisImage.parentNode.onblur = function(){

 this.childImg.src = this.childImg.outImage.src;

 }

 thisImage.parnetNode.onfocus = function(){

 this.childImg.src = this.childImg.overImage.src;

 }

}

JS1-35

re这一行设置一个新的正则表达式模式，它在字符串中的任何地方寻找文本_off。
this.Image.overImage.src = thisImage.src.peplace(re,”_on”);使用re模式查找特殊字符串，如果找到就替换它。本例搜索字符串中的_off，并把它替换为_on。这样就不需要图像的id了。
如果图像采用GIF和JPEG两种格式，这个脚本会更方便。
50．窗口事件处理：
当用户执行某些会影响整个浏览器窗口的操作时，就会发生窗口事件。最常见的窗口事件是通过打开某个网页来加载窗口，还有在窗口关闭，移动或转到后台时触发事件处理程序的事件。使用点号语法将事件处理程序与一个对象连接起来，像这样将事件处理程序作为对象的一部分使用时，事件处理程序名称是全小写的，且将事件处理程序放在外部脚本而不是HTML标签中，这样可以将JavaScript代码与HTML代码分隔开。
51．onload事件：
当用户进入页面而且所有页面元素都完成了加载时，就会触发这个事件，流行的广告弹出窗口就是使用onload事件处理程序的典型例子。加载页面时进行多个操作，例：
<body id=“pagebody”>
 <h1>welcome to my website!</h1>

</body>

HTML 1-14
addOnload(initOne);

addOnload(initTwo);

addOnload(initThree):

function addOnload(newFunction){
 var oldOnload = window.onload;

 if (typeof oldOnload == “function”){ //检查oldOnload变量的类型
 window.onload = function(){

 if(oldOnload){

 oldOnload();

 }

 newFunction():

 }

 }

 else{

 window.onload = newFunction;

 }

}

function initOne(){

 document.getElementById(“pageBody”).style.backgroundColor = “#00F”;

}

function initTwo(){

 document.getElementById(“pageBody”).style.color = “#F00”;

}

function initThree(){

 var allTags = document.getElementsByTagName(“*”);

 for (var i = 0; i<allTags.length; i++){
 if(allTags[i].nodeName==“H1”){

 allTags[i].style.border = “5px green solid”’;

 allTags[i].style.padding = “25px”;

 allTags[i].style.backgroundColor = “#FFF”;

 }

 }

}

JS1-36

首次加载页面时，我们希望发生完全不同的三种情况，设置window.onload三次是不行的，前面的会被后面的覆盖，所以调用一个新的函数addOnload()，由它处理onload程序，对于每个调用，传递一个参数：在触发onload事件时希望运行的函数名称。声明一个新变量oldOnload，如果已经设置了window.onload，就将它的值存储在这里，如果还没有设置，也没关系。如果已设置了window.onload，它应该是一个函数调用（否则是空），如果是函数，就重新设置window.onload的值来完成两种操作：它之前所做的操作以及参数中传递的新函数。window.onload事件处理程序设置为一个匿名函数。然后，如果oldOnload有值，就执行原本应该完成的操作，但是在函数结束之前，还要执行newFunction()。如果oldOnload不是函数，就在页面完成加载时执行新函数，按照这种方式，可以多次调用addOnload():第一次它将自己的函数赋值给window.onload;第二次和第三次会创建匿名函数，让JavaScript执行以前设置的操作和新添加的函数。
提示：
· 如果想让一个onload处理程序执行多个操作，最简单的方法是创建一个执行所有操作的函数，然后让onload处理程序调用这个函数，但是，要确保每个函数都返回。例如，如果你的函数包含对本身的setTimeout()调用，它将不会返回，因此不会到达被调用函数的其余部分。
· 任何HTML页面都可以调用多个外部JavaScript文件，这些文件都是可以设置事件处理程序，如果其中一个文件直接设置了window.onload，每次你都在此之后调用addOnload()，不会有问题，但是，如果在设置window.onload（无论是直接，还是通过addOnload()）,之后，再设置window.onload，原来设置的函数就会丢失。
52．onunload事件：
当用户离开网页时，就会触发这个事件，最常见的用途是，当离开某些商业站点（尤其是色情站点）时弹出广告窗口。如果访问色情站点的话，会发现几乎不可能离开—每当试图关闭窗口或导航到别处时，就会出现一个接一个的窗口，其中重新打开同样的页面或同类的其它页面。因此，这个事件是非常讨厌的，应用时要慎重。
53．onresize事件：
Netscape 4.x有一个bug，当调整网页的大小时，它不会重新绘制动态内容。调用脚本，使页面重新加载。代码如下：
window.onresize = resizeFix; //事件处理程序与window对象连接在一起，它调用函数
if (document.layers){

 var origWidth = window.innerWidth;

 var origHeight = window.innerHeight;

}

function resizeFix(){

 if (document.layers){

 if(window.innerWidth!= origWidth || wondow.innerHeight != origHeight){
window.location.reload();

}

}

}

JS1-37

layers对象只在Netscape 4.x中存在，所以是检查这种浏览器的最简单的方法。如果用户使用Netscape 4.x，就保存当前窗口的宽高度，供以后使用。发现窗口的高度或宽度改变，就重新加载窗口。
54．onmove事件：
当窗口移动时，会触发这个事件。
55．onabort事件：
当用户取消网页上的图像加载时，会触发onabort事件，不太常用，而且并不是所有的浏览器都支持它。
56．onerror事件：
当页面上发生JavaScript错误时，可能会触发该事件，在Web上的复杂页面中，设置onerror = null会比较好。这样，某错误消息将不会向用户显示，用户就会少受干扰，但是，究竟隐藏哪些错误取决于浏览器。
57．onfocus与onblur事件：
这两个事件正好相反，当一个页面成为最活动窗口时，就会触发onfocus处理程序。如果希望一个窗口总是出现在所有窗口前面，或者永远不会出现在最前面时可用以下代码：
window.onfocus = moveBack;

window.onblur = moveUp;

fucntion moveBack(){

 self.blur();

}

function moveUp(){

 self.focus();

}

JS1-38

不要打开两个包含这些代码的窗口，浏览器很可能无法妥善处理这种情况。onblur有更讨厌的用作，在浏览的当前网页后面悄悄打开一个广告窗口，直到你关闭了当前窗口，才发现后面已经堆了许多窗口。
58．鼠标事件处理：
用户与页面的许多交互都是通过鼠标移动或点击进行的。JavaScript为这些事件提供了一组强健的处理程序。
用户与页面的许多交互都是通过鼠标移动或点击进行的。JavaScript为这些事件提供了一组强健的处理程序。
59．onmousedown事件：
无法对页面的用户隐藏脚本，如果用户有毅力的话，总有办法查明代码的内容。但对一般水平的用户，可以防止通过鼠标点击打开快捷菜单，从而防止查看页面的源代码。
if (typeof document.oncontextmenu == “object”){ //检查浏览器是否是Firefox.
 if (document.all){ //检查浏览器是否是IE.
 document.onmousedown = captureMousedown;

 }

 else{ //说明浏览器是Safari.
 document.oncontextmenu = captureMousedown;

 }

}

else{ //是Firefox时执行.
 window.oncontextmenu = captureMousedown;

}

function captureMousedown(evt){

 if (evt){

 var mouseClick = evt.which;

 }

 else {

 var mouseClick = window.event.button;

}

if (mouseClick == 1 || mouseClick == 2 || mouseClick == 3){

 alert(“menu Disabled”):

 return false;

 }

}

JS1-39

Firefox浏览器使用window.oncontextmenu(因此不知道document.oncontext.menu)，如果它不是Firefox，再检查document.all，这是检查浏览器是否是IE的简单方法，如果是，就触发onmousedown时运行captureMousedown()。
Safari浏览器需要在document对象上设置oncontextmenu。
如果是Firefox，就让window的oncontextmenu事件调用captureMousedown()函数。
函数captureMousedwon(evt)处理onmousedown和oncontextmenu事件。如果evt变量存在，就可以通过检查evt.which来判断用户点击的是哪个按钮。如果用户使用IE，用户操作的结果会在window.event.button中找到，无论哪种情况，结果都存储在mouseClick变量中。如果mouseClick是1、2、3，就弹出一个警告框，向用户指出这个功能已禁用了，并返回false，会防止显示菜单窗口。
我们检查了三种鼠标点击，一种从理论上是够的，但在实际中是不够的。这种方法可能有负面效果，成功阻止了左键点击和右键点击，但也阻止用户点击页面上的任何链接。
对有经验的访问者，回避这个脚本的控制很容易，只要关闭浏览器JavaScript功能就可以了。将JavaScript代码放在外部 文件中也能阻止，但可以查看硬盘上的缓存文件夹，也可以查看页面的源代码，找到外部脚本文件的名称，然后在浏览器中输入外部文件的URL，就可以正常显示文件的内容。如果确实不想源代码外泄，唯一可靠的方法是不把它放在Web上。
60．鼠标点击编码：
Table1-6 鼠标点击编码

	编码
	浏览器事件

	1
	所有Mac浏览器/按Control同时左键点击 IE左键点击

	2
	IE右键点击

	3
	Firefox/右键点击 所有Mac浏览器右键点击

61．onmouseup事件：
与onmousedown事件相似，会在用户点击鼠标然后释放按键时触发。
62．onmouseover事件：
当页面的访问者移动鼠标时，会触发些事件，本例中，让用户觉得有一双眼睛盯着鼠标移动。
<body>

</body>

HTML 1-15

body { background-color:#FFF;}

#lEye, #rEye{position:absolute; top:100px;}

#lDot, #rDot{position:absolute; top:113px;}

#lEye{left:100px;} #rEye{left:150px;} #lDot{left:118px;} #rDot{left:153px;}

CSS1-2
document.onmousemove = moveHandler;

function moveHandler(evt){

 if(!evt){

 evt = window.event;

 }

 animateEyes(evt.clientX,evt.clientY);

}

function animateEyes(xPos,yPos){

 var rightEye = document.getElementById(“rEye”);

 var leftEye = document.getElementById(“lEye”);

 var rightEyeball = document.getElementById(“rDot”).style;

 var leftEyeball = document.getElementById(“lDot”).style;

 leftEyeball.left = newEyeballPos(xPos, leftEye.offsetLeft);

 leftEyeball.top = newEyeballPos(yPos, leftEye.offsetTop):

 rightEyeball.left = newEyeballPos(xPos, rightEye.offsetLeft):

 rightEyeball.top = newEyeballPos(yPos, rightEye.offsetTop):

 function newEyeballPos(currPos, eyePos){

 return Math.min(Math.max(currPos, eyePos+3),eyePos + 17) + “px”;

 }

}

JS1-40

对于所有浏览器，如果触发了mousemove事件，就调用mouseHandler()函数。如果访问者使用IE，就需要对evt进行初始化，然后对于所有浏览器，调用animateEyes()函数并且将鼠标指针的X和Y坐标传递给它。函数animateEyes()根据传递给它的X和Y坐标转动眼睛。根据鼠标指针的位置绘制眼球，使用了下一步中定义的newEyeballPos()函数的结果，确保眼球尽可能接近鼠标指针，同时仍在眼框范围内。
63．onouseover事件：
曾利用它实现图像翻转，当鼠标移动进任何注册了该事件的区域时，就触发这个事件。
64．onmouseout事件：
当鼠标离开一个注册了此事件的区域时，触发这个事件。
65．ondbclick事件：
Web的缺点之一是，用户已习惯的用户界面元素在Web上改变了。如，最早学习的双击，但是在Web上没有双击操作，至少不曾用过。下面脚本检查双击操作：
<h3>Double click on an image to see the full size verion </h3>

HTML 1-16

window.onload = initImages;

function initImages(){

 for(var i=0; i<document.images.length; i++){

 document.images[i].ondbclick = newWindow;

 }

}

function newWindow(){

 var imgName = “images/”+this.id+”.jpg”

 var imgWindow = window.open(imgName, “imgWin”,”width=320, height=240, scrollbars=no”)

}

JS1-41

当用户双击缩略图之一时，就会触发newWindow()事件处理函数，此时弹出一个新窗口，显示图像的大版本。
66．onclick事件：
处理程序的工作方式与ondbclick相似，差异仅仅是它由单击触发，onmousup也相似，差异是onclick要求用户按下鼠标按键并放开才能触发，而onmousup只需要后者是。
67．表单事件处理：
主要验证表单，通过使用下列的事件，可以处理用户在表单上所做的任何操作。
68．onsubmit事件：
当点击Submit按键来提交表单时触发。根据浏览器的不同，当用户退出表单上的最后一个文本输入字段时，也可能会触发它。如果脚本包含onsubmit处理程序，而且这个处理程序的结果是false，那么表单就不会发送回服务器。
69．onreset事件：
当用户点击表单上的Reset按键时，就会触发。如果表单具有在加载页面默认值，这会非常方便----如果用户点击Reset按键，就需要用脚本动态地重新设置默认值。
70．onchange事件：
当用户修改表单字段时，就会触发。这可以用来立即验证输入的信息，或者在用户点击Submit按键之前对用户的选择做出响应。
71．onselect事件：
如果用户选择了一个input或textarea表单区域中的文本，就会触发。
72．onclick事件：
当用户点击复选框或单选按键时，就会触发。
73．onblur事件：
可用于浏览器窗口，也经常用于表单上。以下程序演示迫使用户在一个字段中输入数据。
<form action=“#”>

email address:<input type=“text” class=“reqd”/><br \><br \>

name(optional):<input type=“text” value=“admin” readonly=“readonly”/>

</form>
HTML 1-17
body{backgroud-color:#FFF}
.highlight{background-color:#FF9;}

CSS1-3
window.onload = initForm;

function initForm(){

 var allTags = document.getElementByTagName(“*”);

 for (var i=0; i<allTags.length; i++){
 if(allTags[i].className.indexOf(“reqd”)>-1){
 allTags[i].onblur = fieldCheck;

 }

 }

}

function fieldCheck(){
 if(this.value == ““){
 this.className +=“highlight”;

 this.focus();

 }

else{

 this.className = “reqd”;

 }

}

JS1-42

当用户在改变字段之后离开它时，会触发onblur和onchange两种事件，如果用户在没有改变字段内容的情况下离开，就只会触发onblur处理程序。
74．onfocus事件：
有时，页面上某个表单字段包含只读数据，这一数据要在表单上显示，但是不希望用户修改它，可以使用HTML属性readonly愕然用户修改字段，但是并非所有浏览器都支持这个属性，使用脚本可以迫使用户离开这个字段，从而避免用户修改。
window.onload = initForm;

function initForm(){

 var allTags = document.getElementByTagName(“*”);

 for(var i=0; i<allTags.length; i++){
 if(allTags[i].readOnly){
 allTags[i].onfocus = function(){

 this.blur():

 }

 }

 }

}

JS 1-43

当用户试图进入这个字段时，焦点会立刻自动转移，因为onfocus事件处理程序调用一个匿名函数：在当前字段上调用blur(),从而使焦点转移。
75．键盘事件处理：
除了鼠标之外，另一种主要的输入设备是键盘。
76．onkeydown事件：
通过使用键盘事件处理程序，可以在用户按下适当的键盘时执行相应的操作。下例通过左右箭头键，可以查看标准的幻灯片。
<body bgcolor=“#FFF” align=“center”>

<br \>

use the right and left arrows on your keyboard to view this slideshow

</body>

HTML 1-17

document.onkeydown = keyHit;

var thisPic = 0;

function keyHit(evt){
 var myPix = new Array(“mages/callisto.jpg”,”images/europa.jpg”,”images/io.jpg”);

 var imgCt = myPix.length – 1;

 var ltArrow = 37;

 var rtArrow = 39;

 if (evt){

 var thisKey = evt.which;

 }

 alert(thisKey);

 else{

 var thisKey = window.event.keyCode;

}

if (thisKey == ltArrow){

 chgSlid(-1);

}

else if(thisKey ==rtArrow){

chgSlide(1);

}

return false;

function chgSlid(direction){

 thisPic= thisPic + direction;

 if (thisPic> imgCt){

 thisPic = 0;

 }

 if (thisPic <0){

 thisPic = imgCt;

 }

 document.getElementById(“myPicture”).src = myPic[thisPic];

 }

}

JS1-44

左箭头产生数字37，右箭头产生39，了解用户按下哪个键的方法取决于他们使用的浏览器。如果是Firefox或Safari，就查看evt.which，这个属性包含键的编码。如果是IE，那么编码包含在window.event.keyCode中。无论是哪种情况，都将结果保存在thisKey中。如果用户按下左箭头，就将幻灯片退后一帧，如果按下右箭头，就将幻灯片前进一帧，如果是按下其它键，就不执行任何操作。
return false这句是用来处理Safari浏览器的一个bug。其它浏览器可以很好地处理前面的代码，但若按下向下的箭头时，会触发两次击键而不是一次（这导致触发两次onkeydown），如果返回false值，Safari就知道应该停止处理这些事件，而其它浏览器不会受到影响。
77．onkeyup事件：
与onkeydown事件相同，唯一的差异是，它是在用户按下键并且正在释放这个键时触发。
78．onkeypress事件：
当用户按下一个键和已经释放这个键时，就会触发此事件。如果不确定某个键值，可以将注释行去掉，看到警告框中的键值。
79．cookie：
在Web术语中，cookie是一小段信息，当用户第一访问Web服务器，服务器将这些信息发送给浏览器。这个用户以后每次访问这个Web站点时，服务器可以通过cookie识别这个用户，远程服务器保存cookie的一部分，其中包含关于访问者的信息，浏览器将cookie作为纯文本文件保存在计算机上。如果你的站点要求注册，那么可以用cookie将访问者的用户名和密码保存在他们的硬盘上，这样就不需要在每次访问时都输入用户名和密码。可以跟踪用户已经访问过的站点的哪些部分，以级统计用户的访问次数。
cookie无法获得用户的任何真实信息，比如电子邮件地址；无法查看用户硬盘上的内容，无法传输病毒。这只是用户硬盘上一个简单的文本文件，可以在其中存储一些信息，仅此而已。
cookie总是包含发送它的服务器地址，技术背后的本质是识别，可以把它看作Web上的CallerID，只是在形式方面有各种变化-----每个使用cookie的Web站点向用户的浏览器授予某种形式的个性化ID，这样在用户下一次访问这个站点时就能够识别出它，当用户再次访问以前向它传递过cookie的Web服务器时，服务器可以向浏览器进行查询，了解用户是否拥有它的cookie，如果是，服务器就可以获取原来传递的cookie中存储的信息。cookie只识别使用的计算机，而不识别使用计算机的人。
80．第一个cookie：
cookie是一个具有特定格式的文本字符串：
cookieName=cookieValue;expires=expirationDateGMT;path=URLpath;domain= siteDomain

给cookie命名并给它赋值，这是唯一必须有的部分，其余部分都是可选的。接下来是cookie的过期日期，当到了这个日期，浏览器会自动删除这个cookie，后面是一个URL路径，这允许在cookie中存储一个URL，最后可以在cookie中存储一个域值。例：
<body bgcolor = “#FFF”>

<form id=“cookieForm” action = “#”>

<h1>Enter your name:<input type=“text” id=“nameField”/></h1>

</form>

</body>

HTML 1-18

window.onload = nameFieldInit;

function nameFieldInit(){

 var userName = ““;

 if (document.cookie != ““){

 userName = document.cookie.split(“=“)[1];

 }

 document.getElementById(“nameField”).value = userName;

 document.getElementById(“nameField”).onblur = setCookie;

 document.getElementById(“cookieForm”).onsubmit = setCookie;

}

function setCookie(){

 var expireDate = new Date();

 expireDate.setMonth(expireDate.getMonth()+6);

 var userName = document.getElementById(“nameField”).value;

 document.cookie = “userName=“ + userName +”; expires = “+expireDate.toGMTString();

document.getElementById(“nameField”).blur();

retuen false;

}

JS1-45

测试检查document.cookie对象是否不包含空值，split(“=”)方法将cookie分隔成一个数组,数组中第一个元素([0])是cookie的名称，第二个元素([1])是cookie的值，如果吟游诗人中存储了一个用户名，在加载页面时设置会把这个用户名放进文本字段中。
当用户离开这个文本字段时，onblur事件处理程序会调用setCookie()函数，表单事件处理程序做同样的事情。如果用户在输入姓名后按Entert键，IE不会触发onblur处理程序（由于某些原因），添加onsubmit处理程序是为了适应所有浏览器。
获得当前日期并且将它赋值给新变量expireDate，取出expireDate的月份部分，在月份上加6，然后将月份部分设置为新的值。即它将cookie的过期日期设置为创建cookie之后六个月。
最后两行代码，设置表单，从而允许以两种方式调用setCookie，如果浏览器是IE，第一行使焦点离开name字段，从而表明发生了某些事情，第二行防止实际提交表单。如果浏览器不是IE，第一行没有任何作用，第二行防止触发表单提交。
cookie仅仅是一个文本字符串，所以可以使用任何文本字符串操作来建立cookie，比如使用加号来连接字符串，设置表单，从而允许以两种方式调用setCookie()，如果浏览器是IE，那么第一行使焦点离开name字段，从而表明发生了某些情况，第二行（返回false值）防止实际提交表单。如果不是IE，那么第一行没有任何作用（我们已离开了name字段，所以再次离开不会有影响），第二行防止触发表单提交。
可以在一个页面上设置多个cookie,同样，只有名称和值对是必须有的字段。split(“: “)命令将多个cookie记录分隔为数组，各个cookie从零开始编号。这个命令中的分号有一个空格。cookieArray[0]是多个cookie记录中的第一个，以此类推。
81．读取cookie：
设置cookie之后，需要获得它，前一示例设置了文本字符串Tom，下脚本演示如何获得这个值并显示在屏幕上。
<body>

<h1 id="nameField"> </h1>

</body>

HTML 1-19

window.onload = nameFieldInit;

function nameFieldInit(){

if (document.cookie != ""){

document.getElementById("nameField").innerHTML = "Hello, "+document.cookie.split("=")[1];

}

}

JS1-46

确保document.cookie对象中的值非空，如果非空，就向屏幕上写一个文本字符串，显示提取中的cookie值。不需要指定要读取cookie文件中的哪个cookie，这是因为一个cookie只能由最初写它的服务器读取。浏览器内部的cookie机制不允许你读或写别人所写的cookie，只能访问自己的cookie。
82．显示cookie：
读取来自服务器的所有cookie，并且显示它们的名称和值，如果没有cookie，脚本就显示There are no cookies here .如果有，就将每个的内容显示在单独的行上。
window.onload = showCookies;

function showCookies(){

var outMsg = "";

if(document.cookie == ""){

outMsg="There are no cookies here";

}

else{

var thisCookie = document.cookie.split("; ");

for (var i=0; i<thisCookie.length; i++){

outMsg += "Cookie name is '"+ thisCookie[i].split("=")[0];

outMsg += "', and the value is '" + thisCookie[i].split("=")[1]+"'
";

}

}

document.getElementById("cookieData").innerHTML = outMsg;

}

JS1-47

如果cookie存在，就使用document.cookie.split(“; “)获得所有cookie的值，并且将这些值存储进数组thisCookie。命令split(“; “)创建一个包含所有cookie的数组，然后脚本就能够引用这个数组中的每个值。
83．使用cookie作为计数器：
因为cookie是持久性的，即可以跨Web服务器和浏览器之间的多次会话持久地存在，所有可以使用它存储特定用户访问某个页面的次数。但是，这并不是在许多网页上看到的页面计数器。因为cookie是与一个用户相关联的，所以只能记录这个用户的访问次数，不能使用cookie存储所有用户访问这个页面的次数，但，了解如何创建这样的计数器是有意义的，可以修改脚本来完成其它任务。
window.onload = initPage;

function initPage(){

var expireDate = new Date();

expireDate.setMonth(expireDate.getMonth()+6);

var hitCt = parseInt(cookieVal("pageHit"));

hitCt++;

document.cookie = "pageHit =" + hitCt + ;"expires="+expireDate.toGMTString();

document.getElementById("pageHits").innerHTML = "you have ivsited this page "+ hitCt + "times.";

}

function cookieVal(cookieName){

var thisCookie = document.cookie.split("; ");

for (var i=0; i<thiscookie.length; i++){

if (cookieName==thisCookie[i].split("=")[0]){

return thisCookie[i].split("=")[1];

}

}

return 0;

}

JS1-48

字符串pageHit是这个cookie的名称，从cookieVal()获得cookie的名字，并且用parseInt()它转换为数字，然后将结果存储进变量hitCt，将hitCt的值加1，从而递增计数器。将更新后的信息写回cookie，写入的内容是一个文本字符串，其中包括字符串pageHit=，递增后的hitCt值，expires=”和过期日期（这个日期在步骤1 中设置为当前日期后的六个月。）
在文档窗口中显示用户消息，在“page”后面和”times”前面有额外的空格，这会使消息在屏幕上看起来意义更明确。
创建新函数cookieVal()，需要向它传递一些数据，在函数中可以用变量cookiName引用这些数据。将变量设置为split(“; “)方法生成的数组。检查cookieName是否与cookie数组中的第i个元素的名称相同。如果测试成功，就返回cookie的值，如果检查了数组中的所有元素，但是没有找到匹配，就返回0值。
当对调用这个脚本的HTML页面进行加载时，在浏览器中按Reload按键就会看到计数器递增。
可以修改脚本完成其它任务，如记录特定用户上一次访问站点的时间，并且根据这个时间显示不同的页面。
84．删除cookie：
将其过期日期设置为过去的某个日期，浏览器自动地删除它。
window.onload = cookieDelete;

function cookiDelete(){

var cookieCt = 0;

if(document.cookie!="" && confirm("do you want to delete the cookies?")){

var thisCookie = document.cookie.split("; ");

cookieCt = thisCookie.length;

var expireDate = new Date();

expireDate.setDate(expireDate.getDate()-1);

for(var i=0; i<cookieCt; i++){

var cookieName= thisCookie[i].split("=")[0];

document.cookie = cookieName + "=; expires = "+expireDate.toGMTString();

}

}

document.getElementById("cookieData").innerHTML = "number of cookies deleted :"+cookieCt;

}

JS1-49

这个脚本要记录删除了多少个cookie，所以首先创建并且将它设置为零。确保cookie不包含空值，如果是空，就不做任何操作。浏览器弹出一个确认对话框，如果返回true，就知道用户希望删除，每当删除任何东西时，都要让用户进行确认，这是一种良好的界面设计习惯。将cookie的内容用split(“; “)分隔成数组，并赋值给一个变量，创建一个新日期，设置为当前日期减1即昨天。开始一个循环，将cookie删除并计数。因为将innerHTML设置为一个值，所以没有cookie存在，或用户取消删除，也会跳出信息显示已删除的个数(为零)。
85．处理多个cookie：
脚本演示如何读取多个cookie并且显示其中的信息。
window.onload = initPage;

function initPage(){

var now = new Date();

var expireDate = new Date();

expireDate.setMonth(expireDate.getMonth() +6);

var hitCt = parseInt(cookieVal("pageHit"));

hitCt++;

var lastVisit = cookieVal("pageVisit");

if(lastVisit == 0){

lastVisit = "";

}

document.cookie = "pageHit=" +hitCt +"; expires = " + expireDate.toGMTString();

document.cookie = " pageVisit = "+ now +";expires = "+ expireDate.toGMTString();

var outMsg = "you have visited this page " + hitCt + "times";

if(lastVisit !=""){

outMsg += "
your last visit was " + lastVisit;

}

document.getElementById("cookieDate").innerHTML = outMsg;

}

function cookieVal(cookieName){

var thisCookie = document.cookie.split("; ");

for (var i=0; i<thiscookie.length; i++){

if(cookieName == thisCookie[i].split("=")[0]{

return thisCookie[i].split("=")[1];

}

}

return 0;

}

JS1-50

首先将字符串pageVisit传递给cookieVal()函数，从而寻找名为pageVisit的cookie，它返回一个值，然后将这个值存储在lastVist中。
如果lastVisit的值为零，就将空值族里lastVisit。就知道这个用户以前没有访问过这里。将两个cookie硬盘，其中的信息包括更新后的点击次数和访问时间。outMsg变量存储要向站点显示的消息。其中第一部分显示用户的访问次数。后面几行检查用户以前是否访问过这个页面，如果访问过，就显示他上一次访问的时间。最后，将消息显示在屏幕上，告诉用户以前他访问这个页面的情况。
86．显示新内容提醒信息：
可以使用cookie和JavaScript提醒经学访问站点的用户注意他们没看到过的内容。如果通过cookie发现一些内容是在访问者上次访问之后添加的，就在这些行的意态由来画不成加一个小的New!图像。
<p> negrino and smith's most recent books;</p>

<p id="new-20080901">javascript & Ajax for the web:visual quickstart guid,7th edition</p>

<p id="new-20071027">adobe dreamweaver for windows&macintosh:visual quickstart guide</p>

HTML 1-20

body{

 background-color:#fff;

 }

p.newImg{

 padding-left:35px;

 background-image:url(images/new.gif);

 bgackground-repeat:no-repeat;

 }

CSS1-4
window.onload = initPage;

function initPage(){

var now = new Date();

var lastVisit = new Date(cookieVal("pageVisit"));

var expireDate = new Date();

expireDate.setMonth(expireDate.getMonth() +6);

document.cookie ="pageVisit = " + now +"; expires = " + expireDate.toGMTString();

var allGrafs = document.getElementsByTagName("p");

for (var i = 0; i<allGrafs.length; i++){

if(allGrafs[i].id.indexOf("New-")!=-1){

newCheck(allGrafs[i],allGrafs[i].id.substring(4));

}

}

function newCheck(grafElement,dtString){

var yyyy = parseInt(dtString, sbustring(0,4),10);

var mm = parseInt(dtString,substirng(4,6),10);

var dd parseInt(dtString, substring(6,8),10);

var lastChgd= new Date(yyyy,mm-1,dd);

if(lastChgd.getTime()> lastvisit, getTime()){

grafElement.className += " newImg";

}

}

}

function cookieVal(cookieName){

var thisCookie = document.cookie.split("; ");

for(var i =0; i<thisCookie.lentgh; i++){

if(cookieName == thisCookie[i].split("=")[0]{

 return thiscookie[i].split("=")[1];

 }

}

retrun"1 january 1970";

}

JS1-51

段落中的id包含的日期与后面步骤中建立的信息进行比较。nweCheck()检查段落是否是这个访问者没有看过的，传递给它的参数有两个：当前的段落元素（allGrafs[i]）和id发发的第二部分。substring()从字符串中提取出第五个字符到末尾的子字符串，因为它是我们在此所关心的一切，所以我们敢将只传输这一切.字符串的字符是从零开始编号的,所以字符串中的第五个字符在位置4上。从字符串中解析日期，JavaScript的日期格式非常古怪，必须将月分减一才能得到正确的结果——实际上，月份是基于零的，而年和日是基于1 的。然后对两个日期进行比较，只有在最后修改页面信息的日期晚于访问者上次访问的日期时，才执行以下操作。然后对符合条件的段落添加属性值，之后，会立即触发浏览器的呈现引擎，自动地将样式应用于这个元素，从而使图像出现。如果没有找到名字指定的cookie，它会返回“1 January 1970”，而不是零，这会简化其它地方的代码，这是JavaScript能够识别的最早的日期，所以其它日期都应晚于这个日期，这个日期并不向用户显示，它只是内部引用的日期。
parseInt()传递两个参数，要转换的字符串和10，后一个参数让它问题返回十进制的数字，如果不这样，把以0开头的字符串传递给它时，可能把结果转换为八进制。
87．substring()：
substring(to,from)命令返回一个字符串中从to开始，到from 位置前面结束的字符（字符从零开始编号），from参数是可选的，如果省略它，就表示要获得从to 位置开始到末尾的所有字符。
88．节点操纵：
w3C建议符合标准的浏览器采用节点操纵（node manipulation）的方式支持网页，使页面表现得更像应用程序，而不是一般的标准静态页面。尽管可以像本书一样使用innerHTML这样的技术，但本章讲解官方支持的方式。JavaScript为“组合式”语言，因为可以将对象、属性和方法组合在一起来构建出应用程序，还有一种看待HTML页面的方式：由节点组成的树结构。可以使用JavaScript修改这个树结构的任何方面，包括添加、访问、修改和删除树中的节点，如果一个节点包含HTML标签，那么它就称为元素节点(element node)，否则，它称为文本节点（text node），当然，元素节点可以包含文本节点。
89．添加删除节点：
学习节点最容易的方法是首先在文档末尾追加一个元素节点，以下脚本让用户输入一些数据并且点击一个按钮，然后将一个新段落添加到页面中。
<form action="#">

 <p><textarea id="textArea" rows="5" cols="30"></textarea></p>

<input type="submit" value="Add some text to the page"/>

delete last paragraph

</form>

HTML 1-21

window.onload = initAll;

function initAll(){

document.getElementByTagName("form")[0].onsubmit = addNode;

document.getElementByid("deleteNode").onclick = delNode;

}

function addNode(){

var inText = document.getElementById("textArea").value;

var newText = document.createTextNode(inText);

var newGraf = document.createElement("p");

newGraf.appendChild(newText);

var docBody = document.getelementsByTagName("body")[0];

docBody.appendChild(newGraf);

return false;

}

function delNode(){

var allGrafs = document.getElementsByTagName("p");

if(allGrafs.length >1){

var lastGraf = allGrafs.item(allGrafs.length -1);

var docBody = document.getElementsByTagName("body")[0];

}

else {

alert("nothing to remove");

}

return false;

}

JS1-52

首先，使用createTextNode()方法创建一个新的文本节点，它将包含在textArea中找到的文本。接下来，用createElement()方法创建一个新的元素节点，这里是一个段落标签，也可以是任何HTML容器。调用appendChild()才能将文本添加到新段落中，这是nweGraf元素的一个方法，将newText传递给它时，就会将文本节点放进段落中。为了将新节点添加到文档的body中，需要查明body的位置，如果页面符合标准，就会只有一个body标签，getElementsByTagName()方法会给出页面的所有body标签，[0]是第一个。我们将它存储在docBody中，然后将newGraf追加到docBody中，从而将用户输入的新文本放到页面上。
删除节点时，收集页面上的所有段落标签，如果有段落标签，以数组长度减一作为索引来获得最后一个段落，找到body的内容，然后调用docBody.removeChild()方法并且将lastGraf传递给它，在页面上，会立刻显示少了一个段落。
90．删除特定节点，在特定位置插入节点，替换节点：

选择要删除的段落。
<form action="#">

 <p><textarea id="textArea" rows="5" cols="30"></textarea></p>

 <p><label><input type="radio" name="nodeAction"/>Add node</label>

<label><input type="radio" name="nodeAction"/>Delete node</label>
<label><input type="radio" name="nodeAction"/>insert before node</label>

</p>

paragerph#:<select id="grafCount"></select>

<input type="submit" value="submit"/>

</form>

<div id="modifiable"></div>

HTML 1-22

[image: image3.png]Caddnode Delete node
 insert before node
 replace node

paragerphits| 7! subnit

IMG 1-3
window.onload = initAll;

var nodeChgArea;

function initAllI(){

document.getElementsByTagName("form")[0].onsubmit = nodeChanger;

nodeChgArea = document.getElementById("modifiable");

}

function addNode(){

var inText = document.getElementById("textArea").value;

var newText = document.createTextNode(intext);

var newGraf = document.createElement("p");

newGraf.appendChild(newText);

nodeChgArea.appendChild(newGraf);

}

function delNode(){

var grafChoice = document.getElementById("grafCount").selectedIndex;

var allGrafs = nodeChgArea.getElementsByTagName("p");

var oldGraf = allGrafs.item(grafChoice);

nodeChgArea.removeChild(oldGraf);

}

function insertNode(){

var grafChoice=document.getElementById("grafCount").selectedIndex;

var inText = document.getElementById("textArea").value;

var newtext = document.createtextNode("inText");

var newGraf = document.createElement("p");

newGraf.appendchild(newtext);

var allGrafs = nodeChgArea.getElementsByTagName("p");

var oldGraf= allGrafs.item(grafChoice);

nodechgArea.insertBefore(newGraf,oldGraf);

}
function replaceNode(){

var grafChoice=document.getElementById("grafCount").selectedIndex;

var inText = document.getElementById("textArea").value;

var newtext = document.createtextNode("inText");

var newGraf = document.createElement("p");

newGraf.appendchild(newtext);

var allGrafs = nodeChgArea.getElementsByTagName("p");

var oldGraf= allGrafs.item(grafChoice);

nodeChgArea.replaceChild(newGraf,oldGraf);

}
function nodeChanger(){

var actionType = -1;

var pGrafCt = nodeChgArea.getElementsByTagName("p").length;

var radioButtonSet = document.getElementsByTagName("form")[0].nodeAction;

for(var i = 0; i<radioButtonSet.length; i++){

if(radioButtonSet[i].checked){

actionType = i;

}

}

switch (actionType){

case 0:

addNode();

break;

case 1:

if(pGrafCt>0){

delNode();

break;

}

case 2:

if(pgrafCt>0){

insertNode();

break;

}

 case 3:

if(pGrafCt>0){

replaceNode();

break;

}

default:

alert("No valid action was chosen");

}

document.getElementById("grafCount").options.length = 0;

for(i=0; i<nodeChgArea.getElementsByTagName("p").length; i++){

document.getElementById("grafCount")).options[i] = new Option(i+1);

}

return false;

}
JS1-53

因为HTML页面现在有多个段落，所以不容易跟踪哪些段落可以删除，建立一个全新的区域：一个id为modifiable的div。在这里，将全局变量nodeChgArea设置为这个元素节点。选择要删除的段落时，从grafCount中读取段落号，并且将它存储在grafChoice中，然后将allGrafs变量设置为nodeChgArea中的所有段落，并且将要删除的段落存储在oldGraf中。
在程序设计中，一种非常常见的方法是，建立一个由简单例程组成的库，然后根据需要，将它们组合成更复杂的完整程序。在本例中，我们只搜索页面的一部分而不是整个页面。
要插入一个段落，要知道两个信息：用户希望插入段落的位置（grafChoice）以及他们希望插入的文本(inText)。本例是创建新的段落节点并且以用户文本填充它的标准方法。收集区域中的所有p标签，然后将目标段落存储在oldGraf中，插入新节点的方法是调用insertBefore()方法并传递两个参数：新节点和一个现在的节点（新节点要插入在这个节点前面）。

注意：只有insertBefore()方法，而没有insertAfter()方法。

91．对象字面值：
到目前为止看到的JavaScript都是标准的过程式，它们采用点号表示格式。如：

var myCat = new Object;

myCat.name = "pixel";

mycat.breed = "tuxedo";

mycat.website= "www.pixel.mu";

function allAboutMyCat(){

alert("can i tell you about my cat ?");

tellMeMore = true;

}
JS1-54

如果采用对象字面值格式，这段代码下面这样：

var myCat ={

name :"pixel",

breed:"tuxedo",

website:"www.pixel.mu",

allAbout:function(){

alert("cna i tell you about my cat? ");

tellMeMore=true;

}

}
JS1-55
对于这两种格式，都可以用点号表示法引用myCat的属性比如myCat.name，但是在采用对象字面值格式时，变成myCat.allAbout()而不是allAboutMyCat()。在基本的层面上，它实际上是一个属性-值对的列表，属性和值之间以冒号分隔，各个属性-值对之间有一个分隔符。在使用对象字面值时要记住几点差异：
· 使用：设置属性而不是用=；
· 行以，结尾而不是；

· 在对象中的最后一个语句上不需要逗号。

使用对象字面值的原因：

· 因为每个对象（包括方法和属性）都包含在一个父对象中，所以不会遇到无意间覆盖别人代码的问题，但如果多人协作编程，就会，解决方案是确保不使用全局变量，而实现这一点最简单的方法就是把你的所有代码都放在一个对象字面值中。

· 对象字面值的一个子集被称为JavaScript Object Notation 简称JSON，是Ajax中最常用的格式之一，因此在使用Ajax时经常会遇到这种格式。
· JavaScript正在经历第二次飞越，当前的潮流倾向于使用对象字面值。
92．用对象字面值编写代码：

window.onload= initAll;

function initAll(){

document.getElementsByTagName("form")[0].onsubmit = nodeChanger;

chgNodes.init();

}

function nodeChanger(){

return chgNodes.doAction();

}

var chgNodes = {

actionType :function (){

var radioButtonSet= document.getElementsByTagName("form")[0].nodeAction;

for(var i = 0;i<radioButtonSet.length; i++){

if(radioButtonSet[i].checked){

return i;

}

}

return -1;

},

allGrafs:function(){

return this.nodeChgArea.getElementsByTagName("p");

},

pGrafCt:function(){

return this.allGrafs().length;

},

inText:function(){

return document.getElementById("textArea").value;

},

newtext: function(){

return document.createTextNode(this.inText());

},

grafChoice:function(){

return document.getElementById("grafCount").selectedIndex;

},

newGraf:function (){

var myNewGraf = document.createElement("p");

myNewGraf.appendChild(this.newText());

return myNewGraf;

},

oldGraf :function(){

return this.allGrafs().item(this.grafChoice());

},

doAction :function(){

switch(this.actionType(){

 case 0:

 this.nodeChgArea.appendChild(this.newGraf());

 break;

 case 1:

 if(this.pGrafCt()>0){

this.nodeChgArea.insertBefore(this.newGraf(),this.oldGraf());

 break;

 }

 case 3:

 if(this.pGrafCt()>0){

 this.nodeChgArea.replaceChild(this.newGraf(),this.oldGraf());

 break;

 }

 default:

 alert("no valid action was chosen");

 }

 document.getElementById("grafCount").options.length =0;

 for(var i =0;i<this.pGrafCt(); i++){

document.getElementById("grafCount").options[i] = new Option(i+1);

}

 return fasle;

},

init:function(){

this.nodeChgArea = document.getElementById("modifiable");

}

}
JS1-56

在对象字面值中，只需通过引用this，就能够引用这个对象的所有属性和方法。如果使用var命令，它就是一般变量，不能在父对象之外访问它。如果不使用var，而且问题以this.XX形式引用它们，这些发发就成为对象本身的组成部分。但是，对象字面值的this必须遵守JavaScript对于this的一般规定——this引用的内容取决于调用它的位置。如果从表单直接调用chgNodes.doAction()，那么this引用的是表单对象，这不是想要的结果，在nodeChanger()中调用chgNodes.doAction()就能够解决这个问题。
93．动态页面：

加快页面加载的方法之一，是在用户的浏览器中使用JavaScript对单独的页面元素进行更新，脚本利用用户计算机的能力构造出页面可以称为动态页面（dynamic page）。

94．在网页上显示日期：

JavaScript可以判断出计算机上的当前日期和时间（以数字形式），然后以许多方式操作这个数字。但是，脚本必须处理从数字到文本型的转换。脚本演示如何获得当前日期，将它人数标准的日期，然后将结果写到文档窗口。
window.onload = initDate;

function initDate(){

var dayName= new Array("Sunday","Monday","Tuesday","Wednesday","Thursday","Friday","Saturday");

var monName = new Array("January","February","March","April","May","June","July","August","September","Octomber","November","December");

var now = new Date();

var dtString = dayName[now.getDay()] +", "+ monName[now.getMonth()]+" "+now.getDate();

document.getElementById("dtField").innerHTML = dtString;

}
JS1-57

JavaScript在大多数情况下是从零开始编号的，但是日期是从1开始的。所以月份和周中日的数组从零开始。小时是从0（午夜）开始到23（晚上11点）。
95．处理周中日：

如果某一天是周末，你可能希望向用户显示不同的消息：

window.onload = initDate;

function initDate(){

var now = new Date();

if(now.getDay()>0 && now.getDay()<6){

var dtString = "sorry ,it is a weekday.";

}

else{

var dtString ="Hoorday,it is a weekend!";

}

document.getElementById("dtField").innerHTML = dtString;

}

JS1-58
96．根据时间对消息进行定制：

在不同的时间显示不同的内容，主要用于提供友好的问候语。

window.onload = initDate;

function initDate(){

var now = new Date();

document.getElementById("dtField").innerHTML = timeString(now.getHours());

function timeString(theHour){

if(theHour <5){

return "what are you doing up so late?";

}

if(theHour <9){

return "Good Morning .";

}

if(theHour<17){

return "no surfing during working hours!";

}

return "good evening";

}

}
JS1-59
97．根据时区显示日期：
在默认情况下，显示的日期和时间是用户计算机上的日期和时间。如果希望显示其它地方的日期，就需要根据协调世界时（Coordinated Universal Time, UTC）计算它。UTC本质上是格林尼治标准时间（Greenwich Mean Time ,GMT）的别名，也称“协调时间”和“世界时间”。脚本演示了如何计算其它时区中的日期。
<h3>our office hours are 9:00 am to 5:00 pm, monday through friday, at each of our locations. it is now </h3>

 in san francisco

 in new york

 in london

 in hongkong

HTML 1-23

window.onload = initDate;

function initDate(){

var allTags = document.getElementsByTagName("*");

for(var i=0;i<allTags.length;i++){

if(allTags[i].className.indexOf("tz")==0){

showTheTime(allTags[i],allTags[i].className.substring(2));

}

}

}

function showTheTime(currElem,tzOffset){

var dayName= new Array("Sunday","Monday","Tuesday","Wednesday","Thursday","Friday","Saturday");

var thatTz = new Date();

var dateStr= thatTz.toUTCString();

dateStr = dateStr.substr(0,dateStr.length - 3);

thatTZ.setTime(Date.parse(dateStr));

thatTZ.setHours(thatTz.getHours() + parseInt(tzOffset));

currElem.innerHTML = showTheHours(thatTz.getHours())+ showZeroFilled(thatTZ.getMinutes())+showAmPm(thatTZ.getHoursK()) + dayName[thatTZ.getDay()];

function showTheHours(theHour){

if(theHour==0){

return 12;

}

if(theHour<13){

return theHour;

}

return theHour-12;

}

function showZeroFilled(inValue){

if(inValue >9){

return ":" + inValue;

}

return ":0"+ inValue;

}

function showAmPm(thattime){

if(thatTime <12){

return " AM ";

}

return " PM ";

}

}
JS1-60
创建一个新的日期变量thatTZ，将日期和时间（基于UTC格式）转换，将结果存储在dateStr中，我们希望将thatTZ重新设置为基于UTC而不是本地时间，然后就能够加上传递进来的偏移量以获得所需的结果，但是，JavaScript不允许这么简单地处理。我们需要获得日期和时间的字符串版本，并且去掉最后的三个字符（UTC），再使用parse方法将日期转换为毫秒，然后用setTime方法将thatTZ设置为需要的时间，然后加上传递进来的小时数，即与UTC的偏移量，使用parseInt()将这个字符串转换成-12~12的一个数字，然后将它与当前日期相加。结果就是需要的值。当分钟数或秒数小于等于9时，在数字前面加上一个零。
98．把24小时制转换成12小时制：

上例中已有的功能。

<body>

<h2 id="showTime"></h2>

<form action="#">

display 24-hour clock?

<input type="radio" name="timeClock" id="show24" checked="checked"/>

<label for="show24">Yes</label>

<input type="radio" name="timeClock" id="show12" />

<label for="show12">No</label>

</form>

</body>
HTML 1-24

[image: image4.png]display 24-hour clock?
& Yes O No

IMG 1-4

window.onload = showTheTime;

function showTheTime(){

var now = new Date();

document.getElementById("showTime").innerHTML = showTheHours(now.getHours()) + showZeroFilled(now.getMinutes()) +showZeroFilled(now.getSeconds()) + showAmPm();

setTimeout(showTheTime,1000);

function showTheHours(theHour){

if(show24Hour() || (theHour >0 && theHour<13)){

return theHour;

}

if(theHour==0){

return 12;

}

return theHour-12;

}

function showZeroFilled(inValue){

if(inValue >9){

return ":" + inValue;

}

return ":0"+inValue;

}

function show24Hour(){

return (document.getElementById("show24").checked);

}

function showAmPm(){

if(show24Hour()){

return "";

}

if((now.getHours()<12){

 return " Am";

 }

 return " Pm";

}

}
JS1-61

99．创建倒数计数器：

<p> zichu says:</p>

<p>It is only days until my birthday and days until Christmas; so you would better start shopping now!</p>

<p>And it is only days until our anniversary ...</p>
HTML 1-25
window.onload = showDays;

function showDays(){

var allTags = document.getElementByTagName("*");

for(var i=0;i<allTags.length;i++){

if(allTags[i].className.indexOf("daysTill")>-1){

allTags[i].innerHTML = showTheDaysTill(allTags[i].id);

}

}

function showTheDaysTill(thisDate){

var theDays;

switch(thisDate){

case "anniv":

theDays = daysTill(3,3);

break;

case "bday":

theDays = daysTill(12,12);

break;

case "xmas":

theDays = dyasTill(12,25);

break;

default:

}

return theDays + " ";

}

function daysTill(mm,dd){

var now = new Date();

var inDate = new Date(now.getFullYear(),mm-1,dd);

if(inDate.getTime() < now.getTime()){

inDate.setYear(now.getFullYear() +1);

}

return (Math.ceil(dayToDays(inDate) - dayToDays(now)));

}

function dayToDays(inTime){

return (inTime.getTime() /(1000*60*60*24));

}

}
JS1-62

变量inDate设置为当前年份以及传递进来的月份（要减一才能得到正确的结果）和日编号。然后对这个日期和今天进行比较，如果今年的这个日期已经过了，就将年份递增，从而以下一年的日期作为对比的目标。计算inDate与当前日期之间的天数，math.ceil方法确保结果是一个整数。JavaScript将日期存储为自1970年1月1日以来的毫秒数，为了比较两个日期，需要把它改为这天以来的天数。首先，计算一天的毫秒数，将getTime()返回的毫秒数除以这个数字，就会得到这个天数。
100．隐藏和显示层：

使用CSS来设置它的z-index，决定哪个对象显示在上面。
<div id="annoyingAdvert">

This is an incredibly annoying ad of the type you might find on some web sites.

<div id="closeBox"> ⊗</div>

</div>

<p>...</p><p>...</p>
HTML 1-26
body{ background-color:#fff; }

#annoyingAdvert {position:absolute; z-index:2; display:none; width:100px; background-color: #ffc; padding:10px; margin:10px; border:5px solid yellow; }
#closeBox{ position:absolute; color:red; font-size:1.5em; top:0; right:0; }

 CSS1-5
window.onload = initAdvert;

function initAdvert(){

document.getElementById("annoyingAdvert").style.display = "block";

document.getElementById("closeBox").onclick = function (){

document.getElementById("annoyingAdvert").style.display = "none";

}

}
JS1-63
101．移动文档中的对象：

这个事例中，会看到前一任务中的广告图像是如何更令人讨厌的。现在，当用户关闭广告层时，它会跑开，在跑出屏幕之前会停下来。
window.onload = initAdvert;

function initAdvert(){

document.getElementById("annoyingAdvert").style.display = "block";

document.getElementById("annoyingAdvert").onmouseover = slide;

document.getElementById("closeBox").onclick = function (){

document.getElementById("annoyingAdvert").style.display = "none";

}

}

function slide(){

if(currPos("annoyingAdvert")<document.body.clientWidth -150)){

document.getElementById("annoyingAdvert").style.left=currPos("annoyingAdvert") +1 + "px";

setTimeout(slide,100);

}

function currPos(elem){

return document.getElementById(elem). offsetLeft;

}

}
JS1-64

在移动之前，要检查综的位置是否处于限制范围内，方法是获取综的当前位置，并与文档窗口的宽度做比较，如果当前集团小于窗口宽度（减去150px是为了把层本身的宽度考虑进去），就希望继续移动。获取对象的当前位置，加1，最后添加px，这样就形成了style.left属性所需的格式，只要修改这个属性，对象就移动到新的位置。通过调用setTimeout()，每100毫秒重复调用slide()，从而让对象一直移动。
102．日期方法：

UTC(Coordinated Universal Time),1986年取代Greenwich Mean Time(GMT)成为世界标准。
Table1-7 日期方法：
	方法
	描述
	返回值
	版本

	getDate()
	月中的日
	1~31
	1.0

	getUTCDate()
	
	
	1.2

	getday()
	周中的日（整数值）
	0~6
	1.0

	getUTCday()
	
	
	1.2

	getFullYear()
	完整的四位年份
	1900+
	1.2

	getUTCFullYear()
	
	
	

	getHour()
	日中的时（整数值）
	0~23
	1.0

	getUTCHour()
	
	
	1.2

	getMilliseconds()
	自上一秒以来的毫秒数
	0~999
	1.2

	getUTCMilliseconds()
	
	
	

	getMinutes()
	自上一小时以来的分钟数
	0~59
	1.0

	getUTCMinutes()
	
	
	1.2

	getMonth()
	年中的月份
	0~11
	1.0

	getUTCMonth()
	
	
	1.2

	getSeconds()
	自上一分钟以来的秒数
	0~59
	1.0

	getUTCSeconds()
	
	
	1.2

	getTime()
	自1970年1月1日午夜以来的毫秒数
	
	1.0

	getTimezoneOffset()
	本地时间和GMT之间相差的分钟数
	0~1439
	1.0

	getYear()
	日期的年份部分
	0~99/四位数
	1.0

	parse()
	日期/时间字符串，1970.1.1以来毫秒数
	
	1.0

	setDate()
	给出1~31之间的数字，设置天
	以毫秒数表示的日期
	1.0

	setUTCDate()
	
	
	1.2

	setFullYear()
	给出四位的年份，设置年份
	以毫秒数表示的日期
	1.2

	setUTCFullYear()
	
	
	

	setHours()
	给出0~23之间的数字，设置小时
	以毫秒数表示的日期
	1.0

	setUTCHours()
	
	
	

	setMilliseconds()
	给出0~999之间的数字，设置毫秒
	以毫秒数表示的日期
	1.2

	setUTCMilliseconds()
	
	
	

	setMonth()
	给出0~11之间的数字，设置月份
	以毫秒数表示的日期
	

	setUTCMonth()
	
	
	

	setSeconds()
	给出0~59之间的数字，设置秒
	以毫秒数表示的日期
	

	setUTCSeconds()
	
	
	

	setTime()
	自1970.1.1午夜以来毫秒数，设置日期
	
	

	setYear()
	给出两位或四位数字值，设置年份。
	
	

	toGMTString()
	字符串格式的GMT日期和时间
	Day dd mm yyyy hh:mm:ss GMT
	1.2

	toUTCString
	
	
	

	toLocaleString()
	字符串格式的本地日期和时间
	OS，地方、浏览器不同而不同。
	1.0

	toString()
	
	
	

	UTC()
	给出年月日格式日期，返回毫秒数
	毫秒数表示的日期
	1.0

	valueOf()
	自1970.1.1午夜以来的毫秒数。
	毫秒数表示的日期
	1.0

103．Ajax简介：

Asynchronus JavaScript and XML（异步JavaScript和XML），是由几种长期存在的Web技术组合而成的：

· 使用XHTML和CSS控制页面结构和表示方式：

· 使用DOM显示和操纵页面：

· 使用浏览器的XMLHttpRequest对象在客户机和服务器之间传输数据：

· 使用XML在客户机和服务器之间传输的数据的格式；

· 使用JavaScript动态地显示所有内容并且提供交互功能。
104．使用下拉菜单：
<h1>Shakespear's plays</h1>

<div> comedies

 <ul class="menu" id="menu1">

 All's well that ends well

 As you like it

 Love is labour's lost

 The comedy of errors

</div>

<div> Tragedies

 <ul class="menu" id="menu2">

 Anthony $amp; cleopatra

 Hamlet

 Romeo and Juliet

</div>

<div> Histories

 <ul class="menu" id="menu3">

 henry IV,part1

 henry IV,part2

</div>
HTML 1-27
body{background-color:white; color:balck;}

div {margin-bottom:10px; width:20em; background-color:#9CF; float:left;}

ul.menu{display:none; list-style-type:none; margin:0; padding:0;}

ul.menu li{font:1em arial, helvetica,sans-serif; padding-left:10px;}

a.menuLink, li a{text-decoration:none; color:#006;}

a.menuLink{font-size:1.2em; font-weight:bold;}

ul.menu li a:hover{background-color:#006; color:white; padding-right:10px;}
CSS1-6
window.onload=initAll;

function initAll(){

var allLinks=document.getElementsByTagName("a");

for(var i=0;i<allLinks.length;i++){

if(allLinks[i].className.indexOf("menuLink")>-1){

allLinks[i].onmouseover = toggleMenu;

allLinks[i].onclick = clickHandler;

}

}

}

function clickHandler(evt){

if(evt){

if(typeof evt.target == "string"){

toggleMenu(evt,evt.target);

}

else{

toggleMenu(evt,evt.target.toString());

}

}

else{

toggleMenu(evt,window.event.srcElement.href);

}

return false;

}

function toggleMenu(evt,curreMenu){

if(toggleMenu.arguments.length < 2){

var currMenu = this.href;

}

var startMenu = currMenu.lastIndexOf("/")+1;

var stopMenu = currMenu.lastIndexOf(".");

var thisMenuName = currMenu.substring(startMenu,stopMenu);

var thisMenu = document.getElementById(thisMenuName);

thisMenu.style.display = "block";

thisMenu.parentNode.className= thisMenuName;

thisMenu.parentNode.onmouseout = function(){

document.getElementById(this.className).style.display="none";

}

thisMenu.parentNode.onmouseover = function (){

document.getElementById(this.className).style.display="block";

}

}
JS1-66

让onclick总是返回false ——不希望它进行任何操作，而让onmouseover调用toggleMenu()，这意味着当用户将鼠标移动到这个链接上时，菜单就会展开，并设置为显示状态。当鼠标离开触发菜单的链接时，菜单并不关闭，只有鼠标在离开整个div时，才应该关闭菜单。将一个class属性分配给当前的父元素（即包围这个的div）这样就能够跟踪触发最初切换的菜单。如果执行到这里，根据定义，鼠标指针应该已经在div中了。因此，只需设置父div的onmouseover事件处理程序，就会马上触发它。还要告诉父div什么时候打开和什么时候关闭，并不把div设置为一直打开，而是在鼠标指针离开整个div区域时把它设置为隐藏。并让整个div（再次）显示，否则当鼠标离开链接时，菜单就会关闭。
如果希望通过键盘操作菜单，添加事件处理程序clickHAndler(evt)，要处理浏览器在事件传递浏览器在事件传递机制方面的差异。首先检查是否有事件对象，也就是evt是否存在。如果有有，就检查它的target属性是否是一个字符串，如果是，就把事件和它的目标传递给toggleMenu()。如果目标不是字符吕，就通过调用toString()方法把它转换为字符串，然后使用这个字符串作为参数。如果没有事件对象，就向toggleMenu()传递一个伪evt对象和window.event.srcElement.href（这是IE存储需要的值的位置）。因为单击和鼠标移动都可以触发菜单的显示，所以toggleMenu()比较复杂，这个函数有两个参数，但JavaScript函数有一个重要的特点：即使函数期望传递两个参数，也并不意味着必须传递两个参数。由于编写toggleMenu()的方式，它可以应对三种情况：
· 当浏览器是IE并通过鼠标触发时，不传递参数。

· 当浏览器不是IE并通过鼠标触发时，传递一个参数（事件对象）。

· 当通过clickHandler()调用时，传递两个参数（事件对象和菜单名）。

如果不传递参数或只传递一个参数（可以通过查看toggleMenu.arguments.length来检查），就说明可以通过this.href找到菜单名，换句话说，应该采用与冯前一样的方式。但是，因为需要这个值在currMenu中，所以要存储它。因为不能总是引用this，所以把当前菜单存储在thisMenu中，然后像以前一样让它显示出来。最后，必须修改父节点的类名，让它与菜单的id匹配。
105．带说明的幻灯片：
可以显示随图片更改的说明。

<h1>Our summer vactation slideshow</h1>

<div id="imgText"> </div> <br clear="all" /> <form action="#">

<input type="button" id="prevLink" value="« Previous"/>

<input type="button" id="nextLink" value="Next »" />

</form>
HTML 1-28
body{background-color:white; color:balck; font:12px arial, helvetica,sans-serif}

h1 {font:24px; margin-left:100px;}

form{margin-left:100px;}

#slideshow{padding:0 10px 10px 10px; float:left;}

#imgText{padding:10px 0 0 10px ; float:left; width:200px; height:150px;

 border-color:black;border-width:1px 0 0 1px; border-style:solid;}
CSS1-7
window.onload=initAll;

var currImg = 0;

var captionText = new Array("1","2","3","4","5","6","7","71","8","9");

function initAll(){

document.getElementById("imgText").innerHTML = captionText[0];

document.getElementById("prevLink").onclick = function (){

newSlide(-1);

}

document.getElementById("nextLink").onclick = function(){

newSlide(1);

}

}

function newSlide(direction){

var imgCt= captionText.length;

currImg=currImg + direction;

if(currImg<0){

currImg = imgCt -1;

}

if(currImg == imgCt){

currImg = 0;

}

document.getElementById("slideshow").src = "images/Img" + currImg + ".jpg";

document.getElementById("imgText").innerHTML = captionText[currImg];

}
JS1-67

initAll()函数需要设置三个东西，第一张幻灯片的照片说明，前进和后退按钮的onclick处理程序。
106．样式表切换器：
<head>

<title>Untitled Document</title>

<meta http-equiv="Content-Type" content="text/html; charset=gb2312" />

<link type="text/css" href="sans.css" rel="stylesheet" title="default" />

<link type="text/css" href="serif.css" rel="alternate stylesheet" title="serif" />

<script type="text/javascript" src="script1.js" ></script>

</head>
<body>

<div class="navBar"><p>change your font:</p>

<form actioon="#">

<input type="button" classs="typeBtn" value="Sm Sans" id="default" />

<input type="button" class="typeBtn2" value="Lg Serif" id="serif" />

</form>

<br clear = "all"/>

</div>

<p>....</p>
</body>
HTML 1-29
body{margin:0 20px; padding:0; background-color:white; color:black;}

div.navBar{background-color:#ccc; width:175px; position:relative; top:-1.0em;

 right:-20px; float:right; padding:20px 0 0 20px; border-left:2px groove #999;

 border-bottom:2px groove #999;}

.typeBtn{font:9px/10px verdana,geneva,arial,helvetica,sans-serif;}

.typeBtn2{font:14px/15px "Times New Roman" ,Times, serif;}
CSS1-8
body,p,td,ol,ul,select,span,div,input{font: .9em/1.1em verdana, Geneva, Arial, Helvetica,sans-serif ;}
CSS1-9 sans.css
body,p,td,ol,ul,select,span,div,input{font:1.1em/1.2em "Times New Roman", Times, serif;}
CSS1-10 serif.css
window.onload = initStyle;

window.onunload = unloadStyle;

function initStyle(){

var thisCookie = cookieVal("style");

if(thisCookie){

var title = thisCookie;

}

else{

var title = getPreferredStylesheet();

}

setActiveStylesheet(title);

var allButtons = document.getelementsbyTagName("input");

for(var i=0; i<allButtons.length; i++){

if(allButtons[i].type == "button"){

allButtons[i].onclick = setActiveStylesheet;

}

}

}

function unloadStyle(){

var expireDate = new Date();

expireDate.setYear(expireDate.getFullYear()+1);

document.cookie = "style = " + getActiveStylesheet() + ";

 expires ="+expireDate.toGMTString()+";path=/";

}

function getPreferredStylesheet(){

var thisLink, relAttribute;

var linksFound= document.getElementsByTagName("link");

for(var i=0; i<linksFound.length;i++){

thisLink = linksFound[i];

relAttribute = thisLink.getAttribute("rel");

if(relAttribute.indexOf("styel")>-1 && relAttribute.indexOf("alt")== -1 &&

thisLink.getAtttribute("title")){

return thisLinik.getAttribute("title");

}

}

return "";

}

function getActiveStylesheet(){

var thisLink;

var linksFound = document.getelementsByTagName("link");

for(var i=0; i<linksFound.length; i++){

thisLink = linksFound[i];

if(thisLink.getAttribute("rel").indexOf("style")>-1 && thisLink.getAttribute("title")

 &&!thisLink.disabled){

return thisLink.getAttribute("title");

}

}

return "";

}

function setActiveStyelsheet(inVal){

var thisLink;

var linksFound = document.getElementsByTagName("link");

if(inVal){

if(typeof inVal == "string"){

var title = inVal;

}

else {

var title = inVal.target.id;

}

}

else {

var title =window.event.srcElement.id;

}

for(var i=0; i<linksFound.length; i++){

thisLink = linksFound[i];

if(thisLink.getAttribute("rel").indexOf("styel")>-1 && thisLink.getAttribute("title")){

thisLink.disabled = true;

if(thisLink.getAttribute("title")==title){

thisLink.disabled = false;

}

}

}

}

function cookieVal(cookieName){

var thisCookie = document.cookie.split("; ");

for(var i =0;I,thisCookie.length; i++){

if(cookieName== thisCookie[i].split("=")[0]){

return thiscookie[i].split("=")[1];

}

}

return "";

}

JS1-68

首先，对页面需要的所有东西进行初始化，检查这个用户是否已经设置了cookie，cookieVal()函数读取cookie并且检查是否有称为style的cookie，如果有，它的值就是需要的样式表。如果没有，就调用 getPreferredStylesheet()，知道了所需的样式表之后，就调用setActiveStylesheet()来设置页面外观。按钮的事件处理程序，也调用这个函数。当页面卸载时，要设置cookie供以后使用，其终止日期设置为一年之后，然后调用getActiveStylesheet()获得当前的设置，并且写出cookie以后使用。
如果在加载页面时，没有cookie能够提供用户以前选择的样式，脚本就需要判断首选的样式表。getPreferredStylesheet()实现这个功能，这个函数遍历每个链接标签，检查它们是否有rel属性，这个属性的值是否包含style，是否不包含alt以及标签是否有title属性。如果找到符合所有这些条件的链接标签，它链接的就是首选样式表，所以返回它的title属性。
当用户加载这个页面时，调用setActiveStylesheet()函数并且传递一个参数，这个参数在函数内称为inVal，但是在点击按钮之后也会调用这个函数，这种情况下，根据使用的浏览器和其处理事件的方式，可能传递参数，也可能不传递，在这里进行检查，从而判断哪个函数调用 了这个函数以及用户希望的操作，有以下三种可能：
· initStyle()调用了这个函数，并且传递给它一个包含首选样式表的字符串，inVal存在而且它是一个字符串，所以将title设置为inVal。
· 在支持W3C样式事件的浏览器中，点击了样式按钮，inVal自动设置为触发此函数的事件，所以inVal存在，但它不是字符串，事件的target(即导致触发事件的目标)就是被按钮，这个按钮的id存储着所需样式的名称。

· 在不支持W3C标准但支持IE样式模型的浏览器中，点击了样式按钮，inVal变量不存在，所以要从window.event.srcElement.id获得所需的样式。
setActiveStylesheet()函数遍历文档中所有链接标签，检查每个标签是否同时具有包含style的rel属性title属性。如果有这两个条件都成立，那么首先禁用这个链接，然后在并且只在title属性设置为title值的情况下重新启用它。所以如果当前使用的样式表的title属性为default，而用户点击了Lg Serif按钮，就知道应该装载serif样式表，有一个link标签具有title属性serif，所以禁用所胡其它样式表，只打开serif样式表。
107．自动补全表单字段：

降低在字段中输入数据的复杂性，帮助用户填写有大量选项的表单。例如：当用户填写时会显示与输入的字母匹配的美国州名列表，随着用户输入更多的字母，这个列表会逐渐缩短，直到只有一个，然后会自动放进输入字段中，列表也会消失。
<form actioon="#">

please enter your state:

<input type="text" id="searchField" autocomplete="off" />

<div id="popups">

</div>

</form>
HTML 1-30
body,#searchfield{font:1.2em arial,helvetica,sans-serif;}

.sugggestions{background-color:#FFF; padding:2px 6px; border:1px solid #000;}

.suggestions:hover{background-color:#69F;}

#popups{position:absolute;}

#searchField.error{background-color:#FFC;}
CSS1-11
window.onload = initAll;

var xhr = false;

var statesArry = new Array();

function initAll(){

document.getElementById("searchField").onkeyup = searchSuggest;

if(window.XMLHttpRequest){

xhr = new XMLHttpRequest();

}

else{

if(window.ActivexObject){

try{

xhr = new ActiveXObject("Microsoft.XMLHTTP");

}

catch(e){ }

}

}

if(xhr){

xhr.onreadystatechange = setStatesArray;

xhr.open("GET","us-states.xml",true);

xhr.send(null);

}

else{

alert("sorry, but i could not create an XMLHttpRequest");

}

}

function setStateArray(){

if(xhr.readyState ==4){

if(xhr.status ==200){

if(xhr.responseXML){

var allStates = xhr.responseXML.getElementsByTagName("item");

for(var i=0;i<allStates.length;i++){

statesArray[i] = allStates[i].getElementsByTagName("label")[0].firstChild;

}

}

}

else{

alert("There was a problem with the request " + xhr.status);

}

}

}

function searchSuggest(){

var str=doucment.getElementById("searchField").value;

document.getElementById("searchField").className = "";

if(str !=""){

document.getElementById("popups").innerHTML = "";

for(var i=0;i<statesArray.length;i++){

var thisState = stateArray[i].nodeValue;

if(thisState.toLowerCase().indexOf(str.toLowerCase() == 0){

var tempDiv = document.createelement("div");

tempDiv.innerHTML=thisState;

tempDiv.onclick = makeChoice;

tempDiv.className="suggestions";

document.getElementById("popups").appendChild(tempDiv);

 }

}

var foundCt = document.getElementById("popups").childNodes.length;

if(foundCt ==0){

document.getElementById("searchFieldr").className="error";

}

if(foundCt ==1){

document.getElementById("searchField").value = document.getElementById("popups").firstchild.innerHTML;

document.getElementById("popups").innerHTML = "";

}

}

}

function makeChoice(evt){

if(evt){

var thisDiv = evt.target;

}

else{

var thisDiv=window.event.srcElement;

}

document.getElementById("searchField").value=thisDiv.innerHTML;

document.getElementById("popups").innerHTML = "";

}
JS1-69

<?xml version="1.0" encoding="gb2312"?>

<choices xml:lang="EN">

<item><label>Alabama</label><value>AL</value></item>

<item><label>Alaska</label><value>AK</value></item>

......

<item><label>Wyoming</label><value>WY</value></item>

</choices>
XML 1-1
 autocomplete属性是非标准兼容的，它告诉浏览器不要在这个字段上执行任何自动补全，因为将用脚本处理自动补全。与XMLHttpRequest一样，尽管不是任何W3C建议的一部分，但得到了很好的跨浏览器支持。为了捕捉和处理每次按键，需要一个事件处理程序，这是在initAll()中设置的。美国的州名不太可能发生变化，所以我们只读取XML文件一次，对数组进行初始化，并且可靠地假设列表在这次会话结束之前一直是有效的。读取文件，查看每个item节点，寻找其中的label节点，并且存储label的firstChild（州名本身）。每个州名存储在StatesArray数组中的一个元素中。

当开始在字段中进行输入时，就会执行searchSuggest()事件处理程序中的代码，首先获得searchField的值，也就是到目前为止已经输入的信息。接下来清空这个字段的class属性。如果还没有输入任何信息，就不做任何事，所以要检查确保已经输入了某个值，然后再弹出可能值的列表。如果已输入了某些值，就清空可能值为的列表。遍历州名，并且将当前查看的州名存储在thisState中。

希望检查用户到目前为止输入的内容是否是某个州名的一部分。如果indexOf()返回0（在thisState的开头位置处找到了输入的字符串），就找到了一个匹配。因为这个州名是一个可能值，希望将它添加到要显示的列表中，实现方法是，创建一个临时的div，将它的innerHTML设置为这个州名，添加onclick处理程序和className，然后将整个div追加到popups div中，将每个州名作为单独的div添加，就能使用JavaScript和CSS操作每个州名。当遍历完成所有州名之后，要建立弹出窗口，还要计算得到的州名个数foundCt。如果是0，用户输入了错误信息，将className设置为error，从而让用户知道输入错了，这一设置会使输入字段显示浅黄色背景。如果是1，就知道找到了唯一匹配，所以可以将这个州名放进字段，使用popups中唯一的div填写输入字段，从而自动地提供完整的州名，然后清空popups div。
输入州名的另一种方法是，点击弹出列表中的一个州名，会调用makeChoice()事件处理程序，首先通过检查事件的目标，查明用户点击了哪个州名，这会提供一个特定div。查看这个div的innerHTML会提供州名，将这个州名放进输入字段，最后，清空可能值的弹出列表。
108．用Ajax预览链接：
当用户将鼠标指针移动到链接上时，链接的目标页面上的前几行就会出现在鼠标指针下的浮动窗口中。
<h2>A Gentle Introduction to JavaScript</h2>

August

September

October

November

<div id="previewWin"></div>
HTML 1-31
#previewWin{background-color:#FF9; width:400px; height:100px; font:.8em arial, Geneva, Arial, Helvetica, sans-serif; padding:5px; position:absolute; visibility:hidden; top: 10px; left:10px;

border:1px #C00 solid; clip: auto; overflow:hidden;}

#previewWin h1, #previewWin h2{font-size:1.0em;}
CSS1-12
window.onload = initAll;

var xhr = false;

var xPos, yPos;

function initAll(){

var allLinks = document.getElementsByTagName("a");

for(var i=0;i<allLinks.length;i++){

allLinks[i].onmouseover= showPreview;

allLinks[i].onmouseout=hiddenPreview;

}

}

function showPreview(evt){

getPreview(evt);

return false;

}

function hiddenPreview(){

document.getElementById("previewWin").style.visibility = "hidden";

}

function getPreview(evt){

if(evt){

var url = evt.target;

}

else{

evt = window.event;

var url= evt.srcElement;

}

xPos = evt.clientX;

yPos = evt.clientY;

if(window.XMLHttpRequest){

xhr = new XMLHttpRequest();

}

else{

if(window.ActiveXObject){

try{

xhr = new ActiveXObject("Microsoft.XMLHTTP");

}

catch (e){ }

}

}

if(xhr){

xhr.onreadystatechange = showContents;

xhr.open("GET",url,true);

xhr.send(null);

}

else{

alert("Sorry, but I couldn't create an XMLHttpRequest");

}

}

function showContents(){

var prevWin = document.getElementById("previewWin");

if(xhr.readyState == 4){

if(xhr.status == 200){

prevWin.innerHTML = xhr.responseText;

}

else{

prevWin.innerHTML = "There was a problem with the request " + xhr.status;

}

prevWin.style.top = parseInt(yPos)+2 +"px";

prevwin.style.left = parseInt(xPos)+2+"px";

prevWin.style.visibility ="visible";

prevWin.onmouseout = hiddenPreview;

}

}
JS1-70

showPreview()事件处理程序将触发函数调用的事件传递给getPreview()，此函数将执行实际工作。首先需要查明要读取哪个文件，这就要查看事件的属性，根据访问者使用的浏览器不同，URL保存在evt.target或window.event.srcElement中，获得了URL之后，就可以获得鼠标的X和Y位置供以后使用。使用Ajax读取文件之后，现在进入了showContents()函数，将previewWin元素存储在prevWin中以备后用，当xhr.readyState为4时，就该显示预览了。如果一切正常，那么xhr.status为200，而且放在prevWin.innerHTML中的数据已经存在于xhr.responseText中了，如果出现问题，就在prevWin.innerHTML中放一个错误信息。
在此之后，需要查明在哪里显示预览窗口，也就是当前的鼠标x和y坐标。这是一个弹出窗口，所以将它放在触发该调用的当前鼠标位置向下和向右一点儿的地方。最后，将prevWin设置为可见，并且让JavaScript知道，当鼠标离开预览窗口时，应该隐藏prevWin。
读取的数据是HTML格式，将xhr.responseText放进innerHTML就会告诉浏览器，当显示预览窗口时，它应该将这里的内容解释为HTML。如果希望显示别的东西，那么可以在显示预览之前修改innerHTML中的内容。
Ajax要求被读取的文件驻留在同一服务器上，但不要求在同一目录中。如果要读取的页面在另一个目录中，而且页面包含相对链接，那么这些链接将不起作用。如果页面引用某个CSS文件，图像或JavaScript，就不能预览文件的这些部分，对此采用同样的解决方案：在显示之前修改prevWin.innerHTML。
109．Ajax工具包：
是一些已经编写好的函数库，大多数是免费的。其中YUI（Yahoo! User Interface）库是一种可以免费下载的开源实用程序和控件集，可以帮助你构建具有交互性的Web应用程序，会获得一个带子文件夹的文件夹，其中包含所有库组件（build）、文档文件（docs）和examples文件夹。还需要将要使用的JavaScript和CSS文件从build文件夹传到服务器上，而且需要在XHTML页面的<link>和<script>标签中指定这些文件路径。根据使用的库组件不同，需要上传的文件有所不同。它们的大多数JavaScript文件有以下三个版本：
· libName.js：库的标准版本。
· libName-min.js：库的最小化版本。其中包含换行注释和空白之外的所有功能。

· libName-debug.js：包含标准版本中的所有功能，还增加了日志记录语句，这有助于跟踪代码中发生的情况。在生产环境中不个版本，但在调试时它很有帮助。

比较流行的工具包还有：

· Dojo（dojotoolkit.org）；

· jQuery（query.com）；

· Prototype （prototypejs.org）。

110．拖放页面元素：

示例中，创建一个用于设计Web幻灯片的页面，可以通过拖放调整图像在页面上的次序。

<head>

<title>Untitled Document</title>

<meta http-equiv="Content-Type" content="text/html; charset=gb2312" />

<link type="text/css" href="01.css" rel="stylesheet" />

<script type="text/javascript" src="yui/yahoo-dom-event.js" ></script>

<script type="text/javascript" src="yui/animation.js" ></script>

<script type="text/javascript" src="yui/dragdrop.js" ></script>

<script type="text/javascript" src="ddlist.js" ></script>

<script type="text/javascript" src="01.js" ></script>

</head>
<body>

<h1>Sildeshow Builder</h1>

<ul id="ul1" class="draglist">

<li id="li0" class="xortList">

<li id="li1" class="xortList">

<li id="li2" class="xortList">

<li id="li3" class="xortList">

<li id="li4" class="xortList">

<br clear= "all" />

<div>

<form action="#">

<input id="build" type="submit" value="Build it!" />

<input id="revert" type="reset" value="Revert" />

</form>

</div>
</body>
HTML 1-32
h1,form{margin-left:40px;}

li{list-style-type:none; float:left; margin:0 16px 16px 0; }

.sortList{width:130px; }

ul{ width:600px; }
CSS1-13
var Dom = YAHOO.util.Dom;

var Event = YAHOO.util.Event;

var DOM = YAHOO.util.DragDropMgr;
YAHOO.DDApp = {

init:function(){

new YAHOO.util.DDTarget("ul1");

for(var i=0;i<5;i++){

new YAHOO.DDList("li" + i);

}

},

};

Event.onDOMReady(YAHOO.DDapp.init, YAHOO.DDApp,true);
JS1-71

只需要在HTML页面上包含到YUI文件的链接，差不多就可以完成YUI的大多数处理工作。使用工具包的最大优点是众多根本不必了解所有细节，按照Yahoo！的示例和说明去做，就能正常工作。CSS脚本设置列表样式，让列表不显示为列表的形式，JavaScript代码先建立在页面初次加载时要初始化的一些变量，所胡的函数和变量名都以YAHOO开头，这使它们能够与其它代码共存，并且确保不会相互干扰。
在加载页面时，需要告诉YUI和浏览器要拖动哪些元素，在这里要拖动和其中所有的标签，所以把前者设置为一个DDTarget，把后者设置为DDList的所有实例。Event.onDOMReady是一个定制的YUI事件，当DOM准备好操作时会触发这个事件，此时我们希望开始初始化新的框架。
· 在这个示例中，Build it!按钮不具备实际的功能，能够起作用的只有拖放功能，构建示例请参看以前。

· 还应该研究一下YUI库中的CSS Tools，它和YUI库的其它部分在同一个页面上，包含Grids CSS组件，这是一套网页模板，可以在每个模板中创建一到四列的网格。还有CSS Fonts和CSS Reset组件，分别提供对字体显示和HTML呈现的更多控制能力。

· 在下载YUI文件时，它们根据相关联的任务分组在不同的目录中。但不必保持目录结构，可以按照最适合自己风格的方式移动它们，在本例中，将所有文件都移动到一个yui目录中。
111．在页面上添加日历：
<head>

<title>Calendar</title>

<meta http-equiv="Content-Type" content="text/html; charset=gb2312" />

<link type="text/css" rel="stylesheet" href="calendar.css" />

<link type="text/css" rel="stylesheet" href="01.css" />

<script type="text/javascript" src="yui/yahoo-dom-event.js" ></script>

<script type="text/javascript" src="yui/calendar.js" ></script>

<script type="text/javascript" src="yui/dragdrop.js" ></script>

<script type="text/javascript" src="01.js" ></script>

</head>

<body>

<div class="column left">

<h1>Make a Reservation </h1>

<p>Use the calendar to your right to pick your preferred date to visit:</p>

<p id="datePicked"></p>

</div>

<div class="column right yui-skin-sam">

<div id="callContainer"></div>

Reset

Choose Date

</div>

</body>
HTML 1-33
a.navLink{ font-size:12px; text-decoration:underline;

 padding:5px;color:#000; cursor:pointer;}

div.right div{ margin-left:auto; margin-right:auto; width:150px; }

h1{ font-size:1.5em; }

.column p{ margin:10px 0; font:normal 12px verdana, sans-serif; line-height:15px; }

.column.right{ text-align:center; background-color:#C2C2D7;

 float:left; margin-left:10px; width:200px;

 padding:50px 0 50px 25px; height:425px; font-size:.8em; }

 .column.left{ float:left;display:inline; margin-left:80px; width:300px;}
CSS1-14
YAHOO.namespace("calendar");

YAHOO.calendar.init = function (){

YAHOO.calendar.cal1 = new YAHOO.widget.Calendar("cal1Container");

resetcal();

document.getElementById("resetCal").onclick = resetCal;

document.getElementById("getSelectedDate").onclick = showSelected;

function resetCal(){

YAHOO.calendar.cal1.cfg.setProperty("pagadate",new Date());

YAHOO.calendar.cal1.cft.setProperty("selected","");

YAHOO.calendar.cal1.render();

}

}

YAHOO.util.Event.onDOMReady(YAHOO.calendar.init);

function shsowSelected(){

var dateString = "Please select a date";

var pickedDate = YAHOO.calendar.cal1.getSelecteddates()[0];

if(pickedDate){

var outDate = YAHOO.calendar.cal1.locale.WEEKDAYS_LONG[pickedDate.getDay()]+","+ YAHOO.calendar.cal1.Locale.MONTHS_LONG[pickedDate.getMonth()]+"" + pickeddate.getDate() +".";

dateString ="We are looking forward to seeing your on " + outDate;

}

document.getElementById("datePicked").

innerHTML = dateString;

}
JS1-72
开头一行告诉浏览器将操作YUI日历所需的变量和对象，这样的话，就不会干扰非YUI代码，而且不会干扰来自其它YUI模块的代码。init()函数中的代码会在这个页面初次加载时调用，首先创建一个新的日历对象cal1，还为两人具链接设置事件处理程序，resetCal（重新设置日历上的日期）和getSelectedDate（允许用户在日历上选择日期）。最后定义恢复函数，将日期重新设置为默认值并呈现日历。
有时，Web应用程序需要YUI没有提供的功能，在用户选择一个日期之后，希望以用户友好的方式显示选择的日期。调用showSelected()函数，YUI工具集把需要的日期存储在YAHOO.claendar.cal1.getSelectedDates()[0]中，我们把实验室存储在pickedDate变量中。如果pickedDate已存在，就说明用户选择了日期，因此把outdate设置为希望在屏幕上显示的字符串，这里使用YUI内置的，两个都是数组，分别包含周中的日和月份的名称，最后通过设置datePicked的innerHTML来显示消息。
112．使用容器实用程序，添加动画效果，实现用于调试的Logger控件：
容器(container)是一个包含任何内容的对象，有两种基本容器类型：Module和Overlay，前者可以出现在页面的任何地方，而且用户将它作为单一的单元对待。Overlay是Module扩展，它浮动在文档的行内内容上面，而且不影响页面上的文本和图像流。有另外四种与Overlay相关的容器类型。Tooltip创建小的浮动框，Panel模拟操作系统窗口。Dialog创建标准的对话框，Simple Dialog的表现就像是操作系统警告。示例创建一个新的Dialog，它就像是天气应用程序的设置对话框。
YUI库的Animation Utility使能够在YUI对象上添加许多动画效果，可以让图像或其它对象变大或变小，淡入或淡出，随时间改变颜色，让对象在页面上移动，让对象沿着指定路径移动，让文本字段水平垂直或双向滚动。
在进行Ajax开发时，浏览器会在幕后做许多工作，想尽可能多地了解发生的情况，可以用YUI中的Logger控件，脚本让Logger在页面上显示。
head>

<meta http-equiv="Content-Type" content="text/html; charset=gb2312" />

<title>Accordion meuns</title>

<link type="text/css" rel="stylesheet" href="yui/container.css" />

<link type="text/css" rel="stylesheet" href="yui/button.css" />
<link type="text/css" rel="stylesheet" href="yui/logger.css" />
<link type="text/css" rel="stylesheet" href="02.css" />

<script type="text/javascript" src="yui/yahoo-dom-event.js"></script>

<script type="text/javascript" src="yui/dragdrop.js"></script>

<script type="text/javascript" src="yui/element-beta.js"></script>
<script type="text/javascript" src="yui/animation.js"></script>
<script type="text/javascript" src="yui/button.js"></script>

<script type="text/javascript" src="yui/container.js"></script>

<script type="text/javascript" src="02.js"></script>

</head>

<body class="yui-skin-sam">

<div id="WeatherWidget">

<div id="header">

edit

Your Local Weather

</div>

Sonoma, CA

<div class="weatherFig">Tonight

..</div>

<div class="weatherFig">Today

..</div>

91°F
Clear

</div>

<div id="dlg">

<div class="hd">Your weather preference:</div>

<div class="bd">

<form name="dlgForm" action="#">

<p> <label for="radiobuttons">Temperature:</label>

<input type="radio" name="radiobuttons[]" value="C" checked="checked" />C

<input type="radio" name="radiobuttons[]" value="F" />F</p>

<p><label for="zip">Zip code:</label><input type="text" name="zip" size="5" /></p>

</form>

</div>

</div>
<div id="logArea"></div>

</body>
HTML 1-34
#WeatherWidget{ font-family:verdana, arial, sans-serif;

 font-size:12px; width:300px;}

#header{background-color:#E4ECF9; border-top:1px blue solid;

 margin-bottom:10px; color:#36C; font-size:18px; }

#loadDialog{float:right; padding:2px 5px 0 0; font-size:12px; }

.big{ font-size:16px;}

div.weatherFig{ float:right; text-align:center;

 padding:0 10px; font-size:10px; }

form p{ margin-left:20px;}
CSS1-15
YAHOO.namespace("container");

function init(){

var handleSubmit= function(){
 YAHOO.log("Dialog submitted", "warn");

this.hide();

}

var handleCancel= function(){

this.hide();

}

YAHOO.container.dialog1=new YAHOO.widget.Dialog("dlg",{

width:"250px",

fixedcenter:true;

 visibel:false;

constraintoviewport:true;

buttons:[

{text:"submit",handler:handleSubmit, isDefault:true;},

{text:"Cancel",handler:handleCancel}

],
 effect:{effect:YAHOO.widget.

 ContainerEffect:FADE,duration:0.25}

}

);

YAHOO.container.dialog1.render();

document.getElementById("loadDialog").onclick = function(){
 YAHOO.log("Animation starting now");

YAHOO.container.dialog1.show();

}
 var myLogReader = new YAHOO.widget.LogReader("logArea");

}

YAHOO.util.Event.onDOMReady(init);
JS1-73
看起来像容器，所以链接cantainer.css来处理样式需求。当页面初次加载时，”dlg”这个div是不可见的，它一直隐藏到用户点击edit链接为止。触发它的onclick事件处理程序，show()让浏览器将对话框显示出来，编码是对象字面值格式。添加代码实现淡入淡出的效果，它只是在创建对话框时传递给YAHOO.widget.Dialog的一组参数。
如果要将信息写到日志文件中，只需调用YAHOO.log()，Logger知道的信息有五种：
info, warn error, time, window，这个消息是warn。如果根本不提供第二个参数，那么Logger会假设它是一个info消息，onclick处理程序中的这个消息说明动画开始了。创建时，只需要把HTML页面中的伪<div>的名称告诉YAHOO.widget.LogReader()，它就会在其中显示出来。
113．突出显示新元素：
按照正式说法：Ajax是JavaScript的XMLHttpRequest（）与XML的结合，但是在实践中，这个名称常常指用来为站点提供“Web2.0”风格的某些其它类型的JavaScript和CSS功能，它只是为了实现某种界面外观。“黄色淡出”差不多已成了Ajax的标志：当页面上出现新内容时，它会先显示在黄色背景上，然后黄色背景慢慢蜕变成白色(即站点的一般背景颜色)，这种做法能够提醒访问者注意发生变化的内容。本例使用了jQuery。
head>

<title>Show/Hide Text</title>

<meta http-equiv="Content-Type" content="text/html; charset=gb2312" />

<script type="text/javascript" src="jquery/jquery.js" ></script>

<script type="text/javascript" src="jquery/effects.core.js" ></script>

<script type="text/javascript" src="jquery/effects.highlight.js" ></script>

<script type="text/javascript" src="01.js" ></script>

</head>

<body>

show/hide text

<div id="bodyText">....</div>

</body>
HTML 1-34
$(document).ready(function(){

$("#bodyText").hide();

$("#textToggle").toggle(

function(){

$("#bodyText").show("slow");

$("#bodyText").effect("highlight",{},2000);

},

function(){

$("#bodyText").hide();

}

);

});

JS1-73
为了让脚本能够使用jQuery，它需要访问三个文件：jquery.js，effects.core.js，effects.highlight.js这些文件都包含在标准的jQuery下载包中。按照jQuery的语法，$是指它本身（而不是其它 JavaScript对象）。向jQuery传递document对象，也就是当前文档。然后使用其内置的ready()方法，当开始准备好开始处理事件时，会自动触发这个方法。希望在加载文档时执行的所有代码都必须传递给$(document).ready()。在这里，传递一个匿名函数。jQuery最有用的特性之一是指定要操作的对象 的方式——这种方式实际上很像CSS，在编写CSS规则时，如果希望隐藏id为bodyText的元素，可能会编写下面这样的代码：

#bodyText{display:none;}
JavaScript命令：document.getElementById(“bodyText”).style.display = “none”; 与$(“#bodyText”).hide()相同，它让浏览器不显示指定的元素，它使用jQuery内置的hide()方法，这个方法不需要参数。然后调用另一人jQuery内置方法：toggle()，前一步中的代码在加载文档时运行，而这一行由某一事件触发——它在点击id为textToggle的元素时运行。需要通过参数向toggle()方法传递两个参数，分别包含在toggle()的两种状态下应该执行的代码。toggle()方法会记住它的当前状态，所以会在被触发时自动切换到另一状态（即运行另一个函数中的代码）。

Function () 是传递给toggle()的第一个参数，首先，让jQuery寻找id为bodyText的元素，这是在调用show()时要显示的元素，show()方法有一个参数：字符串“slow”，这让jQuery缓慢地显示出新元素。完成之后，调用 effect()方法并传递三个参数。Highlight：我们需要的效果。{}：所需效果的选项，黄色淡出技术非常流行，所以黄色是默认颜色，因此这里不需要修改任何选项。2000：希望显示效果的速度，是毫秒数。如果希望让文本缓慢地消失，可以在最后一步中向hide()传递字符串”slow”，另外，取消传递给show()的”slow”参数，元素会立即显示而不是缓慢显示。
114．jQuery：
jQuery有以下优点：

· 轻量：这意味着使用它的站点的加载速度更快。

· 活跃的开发社区：主站：http://www.jquery.com/.

· 插件体系结构：

· 速度：

· 便于新手使用：

115．创建可折叠菜单：
可折叠菜单（accordion menu）中，当打开一个部分时，其它部分会自动关闭，与选项卡式界面类似，是一种常用的设计元素。

<head>

<meta http-equiv="Content-Type" content="text/html; charset=gb2312" />

<title>Accordion meuns</title>

<link type="text/css" rel="stylesheet" href="jquery/theme/floar/floar.accordion.css" />

<link type="text/css" rel="stylesheet" href="02.css" />

<script type="text/javascript" src="jquery/jquery.js"></script>

<script type="text/javascript" src="jquery/ui.core.js"></script>

<script type="text/javascript" src="jquery/ui.accordion.js"></script>

<script type="text/javascript" src="02.js"></script>

</head>
<body>

<h1>shakespeare's plays</h1>

<ul id="theMenu">

 Comedies

All's Well That Ends Well

.....

Tragedies

....

</body>
HTML 1-35
#theMenu{width:230px;}

ul li ul{margin-left:10px; padding-right:10px; background-color:#A0DF82;

 list-style-type:none;}
CSS1-16
$(document).ready(function(){

 $("#theMenu").accordion({

alwaysOpen:false;

active:false,

autoHeitht:false,

animated:false,

header:".menuLink",

event:"mouseover"

});

 });
JS1-74
如果希望在加载页面时运行某些代码，就需要把代码放在ready()函数中。HTML通过一个大纲构造菜单，并用无序列表项构造每个菜单的内容，jQuery只需获得顶层ul的id（这里是theMenu），然后对它应用内置的accordion()方法。需要设置几个选项：
· alwaysOpen：可折叠菜单最初的状态应该是闭合的。
· active：如果可折叠菜单应该总是打开一个菜单项，那么把这个选项设置为在加载页面时应该打开的菜单项的类。
· autoHeight：迫使可折叠区域部是具有固定的高度（基于所需的最大区域）。
· animated：如果希望在显示菜单项时具有动画效果，那以把这个选项设置为所需的效果名称（如slide, easeslide）。

· header：用来识别菜单的标题。

· event：当鼠标悬停在菜单上时打开可折叠菜单。
· 还有其它选项，这里是我们希望覆盖默认设置的。
116．创建更漂亮的对话框：
希望在页面上显示一个可拖动的模态对话框。
<head>

<meta http-equiv="Content-Type" content="text/html; charset=gb2312" />

<title>Accordion meuns</title>

<link type="text/css" rel="stylesheet" href="jquery/theme/contrast.css" />

<script type="text/javascript" src="jquery/jquery.js"></script>

<script type="text/javascript" src="jquery/ui.core.js"></script>

<script type="text/javascript" src="jquery/ui.dialog.js"></script>

<script type="text/javascript" src="jquery/ui.draggable.js"></script>

<script type="text/javascript" src="02.js"></script>

</head>

<body>

<div id="example" title="This is a modal dialog">

so long as you can see this dialog
you can't touch the page below

</div>

<h1>welcome to my page</h1>

<div id="bodyText"></div>

</body>
HTML 1-36
$(document).ready(function(){

 $("#example").dialog({

modal:true;

resizable:false;

overlay:{

opacity:0.4,

background:"black"

},

buttons:{

"OK":function(){

$(this).dialog("close");

}

}

});

 });
JS1-75
加载页面时运行代码查找example元素并用这个元素作为对话框的基础，这个对话框是模态的（modal:true），而且不能调整大小 (resizable:false)。还添加了覆盖(overlay)，对话框背后的页面变暗，表示它不可访问，这是通过overlay实现的，其中设置了不透明度和背景覆盖颜色。这个对话框只有一个Ok按钮，如果需要更多按钮或执行更多操作，可编写代码。默认情况下，对话框是可调整大小和可拖动的，如果要调整大小，添加一个调用ui.resizable.js的<script>标签，删除resizable:false。
117．条纹表格：

<head>

<meta http-equiv="Content-Type" content="text/html; charset=gb2312" />

<title>Accordion meuns</title>

<link type="text/css" rel="stylesheet" href="02.css" />

<script type="text/javascript" src="jquery/jquery.js"></script>

<script type="text/javascript" src="02.js"></script>

</head>

<body>

<table><thead> </thead><tr></tr></table>

</body>
HTML 1-37
table{border-collapse:collapse;}

tr.even{background-color:#C2C8D4;}

tr.over{background-color:#8797B7;}

td{border-bottom:1px solid #C2C8D4; padding:5px;}

th{border-right:2px solid #FFF; color:#FFF; padding-right:40px;

 padding-left:20px;background-color:#626975;}
CSS1-17
$(document).ready(function(){

 $("tr").mouseover(function(){

$(this).addClass("over");

});

 $("tr").mouseout(function(){

$(this).removeClass("over");

 });

 $("tr:even").addClass("even");

 });
JS1-76
代码起到翻转器的作用，当鼠标移动到某一行时，触发tr的mouseover，这让jQuery在此行中添加”over”类。jQuery理解奇数行和偶数行的概念，所以可以让它把所有偶数行的类属性设置为”even”，自动设置偶数行的颜色。
118．读取服务器数据：

使用XMLHttpRequest对象获得和显示来自服务器的数据：
<p> Request a text file

Request an XML file </p>

<div id="updateArea"> </div>
HTML 1-27
window.onload = initAll;

var xhr = false;

function initAll(){

document.getElementById("makeTextRequest").onclick = getNewFile;

document.getElementById("makeXMLRequest").onclick = getNewFile;

}

function getNewFile(){

makeRequest(this.href);

return false;

}

function makeRequest(url){

if(window.XMLHttpRequest){

xhr = new XMLHttpRequest();

}

else{

if(window.ActiveObject){

try{

xhr = new ActiveObject("Microsoft.XMLHTTP");

}

catch(e){}

}

}

if(xhr){

xhr.onreadystatechange = showContents;

xhr.open("GET",url,true);

xhr.send(null);

}

else{

document.getElementById("updateArea").innerHTML = "Sorry , but I could not create an XMLHttpRequest";

}

}

function showContents(){

if(xhr.readyState == 4){

if(xhr.status==200){

if(xhr.responseXML && xhr.responseXML.contentType=="text/xml"){

var outMsg= xhr.responseXML.getElementByTagName("choices")[0].textContent;

}

else {

var outMsg=xhr.responseText;

}

}

else{

var outMsg = "There was a problem with the request " + xhr.status;

}

document.getElementById("updateArea").innerHTML = outMsg;

}

}
JS1-65

变量xhr是一个XMLHttpRequest对象（或者说在初始化之后将成为XMLHttpRequest对象），创建它为全局变量。点用户点击链接时，执行操作调用makeRequest()，它接受参数this.href，当函数返回时，操作就完成了，所以返回false值，这告诉浏览器不希望加载新的网页。
现代浏览器支持一个本机XMLHttpRequest对象，这个对象是window的一个属性，所以检查这个属性是否存在，如果存在，就创建一个新的XMLHttpRequest对象。虽然微软的IE（版本5.5和6）支持XMLHttpRequest，但是不有这个对象的本机版本。在这种情况下，必须检查浏览器是否支持ActiveX。如果支持的话，就检查是否能够根据ActiveX创建XMLHttpRequest对象（使用try/catch异常处理结构）。如果可以，就这么做。无论采用哪种方式，都应该会获得一个新的xhr对象，如果获得了，就需要用它做三件事：

· 设置xhr的onreadystatechange事件处理程序，每当xhr.readyState属性值发生变化时，就会触发这个处理程序。
· 调用open()并用传递三个参数：一个HTTP请求方法（GET，POST，HEAD），服务器上一个文件的URL和一个布尔值，这个布尔值告诉服务器请求是否异步（也就是说，我们是否会等待请求完成）。
· 最后，用send()发送刚才创建的请求，如果要请求POST，就传递这里给出的参数。
readState属性值可能是几个之一，而且每当服务器改变它的值时，就会触发showContents()函数，但是在请求完成之前，实际上不希望执行任何操作，所以首先检查readyState是否等于4，如果是，就可以继续执行，检查请求返回的是什么。
Table1-8 readyState属性值：

	值
	意义

	0
	未初始化，对象不包含数据

	1
	正在加载，对象当前正在加载它的数据

	2
	已经加载，对象已经完成了数据加载

	3
	交互式的，即使对象还未完全加载它，用户也可能与对象进行交互

	4
	完成。对象已经完成了初始化

首先检查的是请求的状态，即服务器的状态码，（浏览器只在出错时显示它们）例如：状态码200表示一切正常。如果请求的文件不存在，就会从Web服务器得到404错误。我们可以读取的文件有两种类型，所以需要检查返回的数据类型。如果数据是XML，responseXML属性就包含数据。如果是contentType属性（也可以称为MIME类型）包含”text/xml”，那么就知道已经得到了一个具有适当格式的DOM对象，可以使用以前见过的命令（如getElementByTagName()）来搜索和操作它的节点。在这里，我们只想方式是否能够获得服务器，所以获得所有数据并且将它转储到outMsg中。如果得到的数据不是有效的XML，那么就是文本文件，将xhr的responseText属性放到outMsg中。如果返回200之外的其它状态在码，就是出了问题，所以设置outMsg来指出错误，并且附加上状态错误，让用户判断出了什么问题。最后将outMsg输出到屏幕。
由于Ajax的工作方式，进行开发和测试时，要读取的文件必须驻留在服务器上，而不能是本地文件。
在IE7有了本机对象，所以不再需要ActiveX控件，但是，必须先检查本机对象是否存在——如果先检查window.ActiveXObject，那么IE7也会通过这个测试，所以会进入错误的代码路径。许多在ie7之前编写的Ajax代码都有这个问题。
如果要进一步检查实际获得的微软ActiveX对象的版本，可以使用以下代码：
if (window.ActiveXObject){

 try{

xhr=new ActiveXObject(“Msxml2.XMLHTTP”);

 }

 catch (e) {

 try{

 xhr = new ActiveXObject(“Microsoft.XMLHTTP”);

 }

 catch (e){ }

}

这个方法首先尝试使用XMLHttpRequest对象的IE6版本，如果找不到这个对象版本，就尝试老版本。但是，Microsoft.XMLHTTP应该会提供PC上可用的最新版本，所以只在配音中使用这样的代码，因为老代码最终会废弃的。

Ajax调用的缺点之一是它们可能被缓存，所以添加以下请求首部可以迫使服务器提供最新数据：
xhr.setRequestHeader(“If-Modified-Since”, “Web, 15 Jan 1995 01:00:00 GMT”);
xhr.setRequestHeader(“Cache-Control”, “no-cache”);

xhr.setRequestHeader(“Cache-Control”, must-revalidate”);
xhr.setRequestHeader(“Cache-Control”,”no-store”);

xhr.setRequestHeader(“Pragma”,”no-cache”);

xhr.setRequestHeader(“Expires”,”0”);
通过覆盖MIME类型，可以迫使调用返回XML数据：

xhr.overrideMimeType(“text/xm”);

但是，对于某些浏览器和配置，这可能会造成问题，所以要慎用。
PAGE
103

I do not want to live, I want to love first, and live incidentally.

子初制作

