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1. ExtJs 结构树
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2. 对ExtJs的态度
extjs的确是个好东西，但是，它的优点也就是它的缺点：

· 加载页面慢
· 时间一长，浏览器占内存就会疯长
· 服务器端功能极度削弱，除了数据库操作外，几乎所有功能都到了客户端，还得用javascript来写。
· 功能全到了客户端，而客户端语言javascript的编写还是有许多的麻烦，真正精通它的人极少。
· javascript对于大部分人来说，不易调试
· 大量存在的javascript代码难以维护
· 开发速度极慢。
· extjs本身还存在一些问题
　　正是因为有这么多的问题，老板们都得掂量一下了。用它倒底值不值。当然，这儿也得说一下它的优点：

· 因为一切都是javascript搞定，所以，界面上的问题再也不像以前一样让人郁闷了，客户端对界面的的操作取得极大的便利，而不像以前一样，服务器端生成n多垃圾代码，以前的时代就彷佛隔靴搔痒，服务器端企图布置好一切。现在不同了，客户端用一个Ext.Ajax.Request请求数据方便，然后，显示出来也容易。
· 又回到了c/s时代。c/s让人神往啊。web该死的无状态让人郁闷
· 学习extjs的一个极大的好处，所有当前web开发界面上的需求都可以在这儿找到答案。通过研究它的代码，我们可以开发出自己的ajax框架来，可以写出适合于自己的widgets来。而不用背着extjs那个大乌龟壳。
　　我认为，不宜用extjs来开发整个应用，但是，在极为需要的地方用一用，还是蛮好的，整个站点都用它那就麻烦了。现在我对于选择ajax框架有了一点心得。

　　不要使用extjs来开发，但是，一定要学习、研究它，研究它之后才会晓得，我们写代码应当这么写才优美、才合适。研究了它后就应当选一款轻量型的框架了。然后自己写组件。用以取代：Ext.Window、Ext.TabPanel、Ext.Panel这些好东西。

　　研究了extjs，我敢说：一览众山小啊！什么prototype、dojo、jQuery之类，就容易多了。

 

　　真正要用的ajax框架，我看，倒不如选择prototype，它是个轻量型，我觉得，一个ajax，只要封装了三个东西就行了：

　　一、Element。把dom元素要封装一下，加入动画、求取、设置各种参数值的功能
　　二、XMLHttpRequest，要把它封装一下，这个所有框架都做了
　　三、把事件机制要封装一下，最好像extjs一样，xxx.on('click',function(){});就成了。
　　有了这三个就差不多了，那些什么window、tabs，网上多的是代码，搞些下来改篇改篇就成了。

　　关于prototype，我找到了它的中文文档(1.5的)，1.5的大小是93.7k，事实上，这个大小还可以缩小，可以使用工具去掉多余的空格，差不多了。

3. Ext.form概述

　　Ext.form中封装了是输入组件。input、textArea、frameSet、form等元素都被包装起来了。我刚才发了点时间对它的类图分析了一下，用StartUML做了图如下：





　　Ext.form中的组件太多，实在不大

4. Ext.TabPanel篇
　　Ext.TabPanel这个东西是最常用的组件之一，它继承自Ext.Panel。看了一个下午的源代码，对它的一些基本原理有所了解了。

　　下面要讲一些问题，这些问题绝对是本人独门秘笈，非入室弟子不传。哈哈哈。

　　一、组件的组成：
　　因为继承自Ext.Panel，所以，它也是由header、tbar、body、bbar、footer这几个部分构成，有人问：TabPanel的面板标签是在哪儿呢(就是你点击换页的东西)？它默认是放在header中的。但是，如果设置了：tabPosition的话就不一定了，tabPosition可取两个值：top、bottom。所以，标签可以是放在下面，但是，Ext目前还不支技放在左边、右边。

　　那么，不同的标签是用什么元素来组织的呢？用ul。一页对应一个li。li的id的取值有规律哦，它的取值公式如下：tabpanel.id+tabpanel.idDelimiter+面板的id。正是因为有了这个规律，才能根据点击的标签而找到对应的面板。这个问题是一大主题，在下面讲。

　　这是面板的标签，下面的面板呢？简单！！！一个Ext.Panel对应一个面板，注意：这儿的面板是没有header的，如果你想tab.items.get(1).header，在这儿，header===undefined。为什么为面板定义的title会对应到标签中去呢？这个是TabPanel的特意处理的。至于换页效果是怎么出来的？CardLayout。这下组件的大概结构都清楚了。还有不明白，自己new Ext.TabPanel({……})一个，然后在FireBug下面去查看dom结构，就一清二楚了。

　　二、处理标签的事件
　　为什么要研究这个问题？有需求的，如何在鼠标移到标签上时就显示对应的面板呢？默认情况下，TabPanel是不支持这个功能的，但是，这个功能有时是需要的。这儿有点小技巧。

　　看Ext.TabPanel源代码中关于标签的事件处理：

        this.strip.on('mousedown', this.onStripMouseDown, this);
        this.strip.on('click', this.onStripClick, this);
        this.strip.on('contextmenu', this.onStripContextMenu, this);
        if(this.enableTabScroll){
            this.strip.on('mousewheel', this.onWheel, this);
        }
　　这段代码写在initEvents函数中，先解释一下，this.strip是指头部放标签的那个ul元素，相信，98%的读者会想，要注册事件也应当是为li元素注册，怎么会统统注册到ul这个父容器上面呢？原理就是事件冒泡。关于事件传递的原理，本人在下一文中有详细的实验、明确的结论，不再赘言。

　　ul元素捕获了事件，怎样在事件处理函数中得知倒底是哪个li发生了事件呢？Ext写了个函数：findTargets。详情请见如下代码：

    findTargets : function(e){
        var item = null;
        var itemEl = e.getTarget('li', this.strip);
        if(itemEl){
            item = this.getComponent(itemEl.id.split(this.idDelimiter)[1]);
            if(item.disabled){
                return {
                    close : null,
                    item : null,
                    el : null
                };
            }
        }
        return {
            close : e.getTarget('.x-tab-strip-close', this.strip),
            item : item,
            el : itemEl
        };
    },
    // private
    onStripMouseDown : function(e){
        e.preventDefault();
        if(e.button != 0){
            return;
        }
        var t = this.findTargets(e);
        if(t.close){
            this.remove(t.item);
            return;
        }
        if(t.item && t.item != this.activeTab){
            this.setActiveTab(t.item);
        }
    },
　　一切的关键就在于li元素的id的命名规则，从中取出对应的面板的id，这样就能getComponent，从而获得对应的面板引用，再setActiveTab就办成了。至于getTarget这个是EventObject中封装的函数，作用是在事件传播路径上查找满足指定选择条件的元素。这个函数的详情见它的源码。

　　到了这里，之前所讲的鼠标悬停问题只要依照方面方法解决就是了，切记，不要处理mouseout事件，不然，事情就麻烦了，详情见我以前写过的关于mouseover事件的一篇文章。

5. Function扩展篇
　　ExtJs对JavaScript的内建对象进行了扩展，对什么Object、Date、Array、Function、String的扩展，扩展方法想必诸位都烂熟于心了：用prototype的办法。这一篇讲一讲Function扩展的精妙之处，之所以突然研究这个问题，是因为我在研究Ext.data.Store的源代码时，看到一行代码：

　　this.reader.onMetaChange = this.onMetaChange.createDelegate(this);
　　当初，我在研究Ext.js中的代码时，对于Function的几个扩展想不透、看不明，今日大悟。且见扩展的源代码：

    createDelegate : function(obj, args, appendArgs){
        var method = this;
        return function() {
            var callArgs = args || arguments;
            if(appendArgs === true){
                callArgs = Array.prototype.slice.call(arguments, 0);
                callArgs = callArgs.concat(args);
            }else if(typeof appendArgs == "number"){
                callArgs = Array.prototype.slice.call(arguments, 0); // copy arguments first
                var applyArgs = [appendArgs, 0].concat(args); // create method call params
                Array.prototype.splice.apply(callArgs, applyArgs); // splice them in
            }
            return method.apply(obj || window, callArgs);
        };
    },
　　createDelegate函数的作用是，为指定函数创建一个回调函数，注意是创建一个新的函数返回，它返回的是一个新函数。我以前一直不明白，为什么要这么做，就像上面红色的那行代码，相信大伙与我一样，都在想，为什么不是写成这样：

　　this.reader.onMetaChange=this.onMetaChange;
　　不是应当这样写的吗？如果用过dotnet，那么委托一定是晓得了，javascript中的函数跟c#的委托一样，有很相近的意义，为什么c#中能这样写，JavaScript中不能这样写呢？

　　一切都因为this，this这个东西见风使舵，像上面onMetaChange这函数，实际调用时是在reader中，那么如果onMetaChange中使用了this关键字，那么，this是指向reader的，而不是指向onMetaChange的定义环境所对应的this。而事实上，我们往往想把这个this指向函数的定义环境，这也正是回调的最招人喜欢的地方，然而，因为this的问题，回调就不能像上面那样直接赋值。还得做些手脚，得让函数调用时scope为当前定义环境。

　　改变一个函数执行的scope，熟翻JavaScript的兄弟一定晓得要用：call、apply。至此，createDelegate的产生背景、作用都作了个交代。

　　createDelegate(this)，调用时，一般直接传个this就行了，当真是妙啊。事实上，我上面讲的一通道理清楚了，这个函数的代码就没有秘密可言了。关键就是一个this。我现在感叹，你对JavaScript的造诣与你对this的领悟层次成正比。

　　既然讲了createDelegate，其他几个扩展函数一并讲了。

    createCallback : function(/*args...*/){
        // make args available, in function below
        var args = arguments;
        var method = this;
        return function() {
            return method.apply(window, args);
        };
    }
　　也是创建调用者的回调，不过，回调函数的scope为window。相当于createDelegate(window)。没什么讲的。

    defer : function(millis, obj, args, appendArgs){
        var fn = this.createDelegate(obj, args, appendArgs);
        if(millis){
            return setTimeout(fn, millis);
        }
        fn();
        return 0;
    },
　　此函数调用一次就让函数延迟调用一次。对setTimeout的封装罢了。如果没有定义延时参数，那么就马上执行。这个函数也没有技术性可言。

    createSequence : function(fcn, scope){
        if(typeof fcn != "function"){
            return this;
        }
        var method = this;
        return function() {
            var retval = method.apply(this || window, arguments);
            fcn.apply(scope || this || window, arguments);
            return retval;
        };
    },
　　这个函数就有点意思了，刚开始研究ext.js的时候还没有看明白，它的作用是在返回一个函数，此函数先调用“调用函数”，后调用传递进来的函数。这句话可能还没说清，见示例如下：

　　function A(){alert("第一个执行！");return 1;}
　　function B(){alert("第二个执行！");return 2;}
　　function C(){alert("第三个执行！");return 3;}
　　var D=A.createSequence(B).createSequence(C);
　　var result=D();
　　上面代码产生的效果是：

　　第一弹出框显示：第一个执行！
　　第二弹出框显示：第二个执行！
　　第三弹出框显示：第三个执行！
　　result的值为：3。
　　这下子诸位都明白了吧。用过dotnet的知道，委托变量有这种类似的功能。就是累加执行的效果。

    createInterceptor : function(fcn, scope){
        if(typeof fcn != "function"){
            return this;
        }
        var method = this;
        return function() {
            fcn.target = this;
            fcn.method = method;
            if(fcn.apply(scope || this || window, arguments) === false){
                return;
            }
            return method.apply(this || window, arguments);
        };
    }
　　这个函数也有点意思，有创意，它返回被调用函数的回调，这个回调是条件执行的，执行条件是createInterceptor传入的那个函数返回真。示例代码如下：

　　function A(){}
　　var B=A.createInterceptor(function(i){return i>0;});
　　B(1)，则A被执行，如果调用B(-1)，A则不被执行。B的作用就是如果传入的第一个参数的值大于0时A才被执行，否则不执行。

　　相当于原有函数的功能不变，只是加个执行条件。这个想法着实巧妙。这一招现在想来，也可以用到c#中。

6. Ext.data.Store篇
　　Ext.data.Store，这个东西是JavaScript版的DataTable啊。貌似其他Ajax框架都没有这个玩意啊。可见啦，Ext是真的打算把b/s开发重新变成c/s开发啊。哈哈哈。便宜我等了。待某细研之。

　　Store类提供对记录集(Record)的包装，通过前面的研究可知，DataProxy取数据(url或数组或xml或json)，DataReader用于从不规范的数据取出并格式化指定结构的记录集。记录的结构由Record.create创建。

　　DataProxy通过对Connection的调用取得数据(Response)后，在回调中调用DataReader的read函数，从而把response中的数据解析成记录集，这个记录集将再以回调参数的形式传出来，store实现这个回调，并把里面的Recodrd[]取出来，放到data这个成员中。store.data是一个MixedCollection对象，MixedCollection作什么用的前面也讲过，它本质就是一个容器，ExtJs确实很好，连容器类都写了。

　　有了store.data，数据进了这儿，就好办了，store调用MixedCollection的功能，实现了一些通用的函数，如取指定成员、查询、遍历、事务等等，这些都不足道。什么提交修改、取消修改的功能却是根源于Record。Record类自身就封装了这个功能，Store中只是再次封装罢了，这个原理也很简单。看代码即知。

　　上面讲的是通用原理，是大概，下面拣紧要的代码说一下。

　　它定义了构造函数，继承自Ext.Observable。第一行代码就是个重点：

　　this.data = new Ext.util.MixedCollection(false);
　　这是定义data，所有记录都将保存在它里面。

    this.baseParams = {};
    // private
    this.paramNames = {
        "start" : "start",
        "limit" : "limit",
        "sort" : "sort",
        "dir" : "dir"
    };
　　baseParams将在调用HttpProxy时用到，它将作为params附加到url末尾。这个东西没有悬念。至于paramsNames用于保存参数名，start、limit应当用于分页，sort、dir用于排序，不过，我看了通篇的代码，发现，Store本身不提供任何其他分页、排序功能的实现，还是得依靠服务器端的。只不过，这儿提供一种统一的方式罢了。

    if(config && config.data){
        this.inlineData = config.data;
        delete config.data;
    }
　　意思是说，如果创建store时，设了config，且config.data存在，那么，将直接从config.data中loadData。构造函数后面一点就有。inlineData这个属性没活多久就被delete了。

    if(this.url && !this.proxy){
        this.proxy = new Ext.data.HttpProxy({url: this.url});
    }
    if(this.reader){ // reader passed
        if(!this.recordType){
            this.recordType = this.reader.recordType;
        }
        if(this.reader.onMetaChange){
            this.reader.onMetaChange = this.onMetaChange.createDelegate(this);
        }
    }
    if(this.recordType){
        this.fields = this.recordType.prototype.fields;
    }
　　就是根据config中的情况，创建成员：proxy，reader，recordType，onMetaChange。这了这四个，就好方便在下面定义的load中加载数据并完全记录集的封装。说出来一文不值。

　　this.modified = [];
　　这个东西用于保存那些有修改过的记录的旧值。之所以能取消修改，正是源于此啊。

　　关于addEvents那个语句，就没必要讲了，大伙都懂。

    if(this.proxy){
        this.relayEvents(this.proxy,  ["loadexception"]);
    }
    this.sortToggle = {};
　if(this.sortInfo){
　　this.setDefaultSort(this.sortInfo.field, this.sortInfo.direction);
　}
    Ext.data.Store.superclass.constructor.call(this);
    if(this.storeId || this.id){
        Ext.StoreMgr.register(this);
    }
    if(this.inlineData){
        this.loadData(this.inlineData);
        delete this.inlineData;
    }else if(this.autoLoad){
        this.load.defer(10, this, [
            typeof this.autoLoad == 'object' ?
                this.autoLoad : undefined]);
    }
　　第一个语句中主要就是一个relayEvents，意为延迟事件，这个延迟不是时间延迟哦。它是将当前对像的某些事件处理函数作为另一个对象的处理函数，同者共享，事实上，它的作用就是利用另一对象的事件来触发本对象的事件，从而引发事件处理函数的执行(说得太拗口了吧)。

　　那个inlineData上面讲了的，现在应验了，不多讲。从这儿可以看出，如果已从config中传过来数据，那么以直接传的数据为准，如果没有直接传数据，而是通过url，且autoLoad为true，这时就在构造函数中加载数据且完全数据的封装。

　　重点代码至此讲了一半，另一半就是load、loadRecords了。

7. Ext.data.JsonReader篇一
嘿，别看关键就在这儿，事实上，它的代码很少的哦。加上注释才219行。研究研究。

　　有个事要说一下：DataProxy的子类呢，都有一个load来加载数据，DataReader的子类呢，都有一个read来读取数据。

　　而Ext.data.JsonReader有两个关键函数：read、readRecords。好了。来研究一下。

　　Ext.data.JsonReader = function(meta, recordType){
    　　　meta = meta || {};
    　　　Ext.data.JsonReader.superclass.constructor.call(this, meta, recordType || meta.fields);
　　};
　　这是构造函数。简单。meta是数据格式定义，recordType是记录类型。其中recordType可以是一个定义记录的数组，也可以不传，而把记录的各个字段的定义放到meta中的fields字段中。且看它对父类构造函数的调用：

　　Ext.data.DataReader = function(meta, recordType){
　　　this.meta = meta;
　　　this.recordType = Ext.isArray(recordType) ? 
　　　Ext.data.Record.create(recordType) : recordType;
　　};
  
　　Ext.data.DataReader.prototype = { };
　　这下全明白了吧。recordType可以是记录类型，可以是字段定义数组，还可以不传。

　　所以，构造函数就是定义两个属性：meta、recordType。这两东西后面有用。

　　这个meta、recordType组成如何？这个必须说明，不然，这个类也就没法用了。

　　meta:
　　totalProperty　　　　json数据中，保存总记录数的属性
　　successProperty 　　json数据中，保存是否返回成功的属性名
　　root　　　　　　　　json数据中，保存记录集的属性的属性名
　　id　　　　　　　　　json数据中，记录中主键所对应的列的属性名
　　recordType：
　　这个东西，事实上要去看Ext.data.Record的create函数的文档，我且把它翻译一下，如下：

create( [Array o] ) : function
创建包含指定字段结构的继承自Ext.data.Record的类。静态方法。

参数：
　　o : Array
    一个定义记录结构的字段信息数组。每个数组元素包含name，其他可选的有：mapping、type。通过它们，可以让Ext.data.Reader从一个数据对象中获取各字段的值。每个字段定义对象都可能包含如下属性：

　　　　　name : String
　　　　　在记录中标志一个字段的名字。它通常用于引用指定字段，例如，在定义Ext.grid.ColumnModel的dataIndex属性时，要传过去的。
　　　　　
　　　　　mapping : String
　　　　　当在Ext.data.Reader中创建记录时，如何将json对象中指定属性值映射到此字段。

　　　　　type : String
　　　　　字段的类型，可能值为：
　　　　　　　auto(默认值，没有任何转化)、string、int、float、boolean、date
          
          　　sortType : Mixed
　　　　　Ext.data.SortTypes中的一个成员。

　　　　　sortDir : String
　　　　　排序方式，"ASC"或者"DESC"。

　　　　　convert : Function
　　　　　如果要对这个字段的值进行一些物殊处理，这时需要一个能定制的回调，用它来手工处理值。它的参数如下：
　　　　　　　　v : Mixed
　　　　　　　　通过mapping映射找到的值。已从json中取出来的。
　　　　　　　　rec : Mixed
　　　　　　　　在json中的，对应于此记录的json对象。

　　　　　dateFormat : String
　　　　　用于Date.parseDate函数的格式化字符串。

　　　　　defaultValue : Mixed
　　　　　当字段值在原数据中不存在时所取的默认值，默认为空字符串。

用法：

var TopicRecord = Ext.data.Record.create([
    {name: 'title', mapping: 'topic_title'},
    {name: 'author', mapping: 'username'},
    {name: 'totalPosts', mapping: 'topic_replies', type: 'int'},
    {name: 'lastPost', mapping: 'post_time', type: 'date'},
    {name: 'lastPoster', mapping: 'user2'},
    {name: 'excerpt', mapping: 'post_text'}
]);

var myNewRecord = new TopicRecord({
    title: 'Do my job please',
    author: 'noobie',
    totalPosts: 1,
    lastPost: new Date(),
    lastPoster: 'Animal',
    excerpt: 'No way dude!'
});
myStore.add(myNewRecord);

 

　　好了，这一篇差不多了，未尽内容放下一篇中了。

 

8. Ext.data.JsonReader篇二
有了上一篇中所讲内容，一般情况下就可以应付了，不过，JsonReader有一些细节问题，还要细究。待某家一一道来。

　　构造函数已讲，下面依代码顺序讲解了。

    read : function(response){
        var json = response.responseText;
        var o = eval("("+json+")");
        if(!o) {
            throw {message: "JsonReader.read: Json object not found"};
        }
        return this.readRecords(o);
    },
　　这个是整个JsonReader的关键所在了。君可找到Ext.data.HttpProxy中的loadResponse函数，里面有这么一行代码：

　　result = o.reader.read(response);
　　可见，是proxy里面调用reader.read方法才得以取出结果集的。这是要表明：read乃JsonReader三军中军之所在。read又调用readRecords，read把json字符串转化为对象然后交给readRecords。这个本无不妥，但是，asp.net中，它的结果有点曲折，结果是放在o.d中，而不能直接从o中取得。所以，事实上应当这么写：this.readRecords(o.d)。这就成了。继续往下面看：

    onMetaChange : function(meta, recordType, o){

    }

　　这个函数说是要由store实现的，现在不知道它的用处。还往下看：
    simpleAccess: function(obj, subsc) {
     return obj[subsc];
    },
    getJsonAccessor: function(){
        var re = /[\[\.]/;
        return function(expr) {
            try {
                return(re.test(expr))
                    ? new Function("obj", "return obj." + expr)
                    : function(obj){
                        return obj[expr];
                    };
            } catch(e){}
            return Ext.emptyFn;
        };
    }(),
　　取一对象的属性有两种方法，前面都已提及：

　　一、obj.xxxx
　　二、obj[xxxx]
　　这两种都行。但是，如果传过来一个对象，已知其对象的引用obj，但是有的只是它的属性名的字符串，这时就可以用第二种方法取出，但是，如属性名中含[]，那么就不大方便了，又或者是属性又带属性，这事也只能用第一种方法。这两个函数正是为事而来。且看那getJsonAccessor，着实巧妙，函数返回一函数，这不是巧妙之处，这个我以前就见识了，关键在于new Function("obj","return "obj."+expr)。多么巧妙啊。此之中巧，不足以言语道哉。

　　这下面就是真正的好戏了，看一看readRecords函数。

        this.jsonData = o;
        if(o.metaData){
            delete this.ef;
            this.meta = o.metaData;
            this.recordType = Ext.data.Record.create(o.metaData.fields);
            this.onMetaChange(this.meta, this.recordType, o);
        }
　　定义一个jsonData属性以保存原始json对象。然后如果传过的json对象中就有metaData。那么，就用它自带的meta来取代JsonReader构造函数中所传入的meta。以原来自带的为主。这个功能方档未曾提及，但我辈不可不察也。

        var s = this.meta, Record = this.recordType,
            f = Record.prototype.fields, fi = f.items, fl = f.length;
　　有人不理解了，为什么非得这样呢？这是节省带宽啊。如果这些东西以后多说现几次，那么每个用户都要多下载一些东西，成千上万人能节省多少啊。

        if (!this.ef) {
            if(s.totalProperty) {
             this.getTotal = this.getJsonAccessor(s.totalProperty);
         }
         if(s.successProperty) {
             this.getSuccess = this.getJsonAccessor(s.successProperty);
         }
         this.getRoot = s.root ? this.getJsonAccessor(s.root) : function(p){return p;};
         if (s.id) {
          var g = this.getJsonAccessor(s.id);
          this.getId = function(rec) {
           var r = g(rec);
           return (r === undefined || r === "") ? null : r;
          };
         } else {
          this.getId = function(){return null;};
         }
            this.ef = [];
            for(var i = 0; i < fl; i++){
                f = fi[i];
                var map = (f.mapping !== undefined && f.mapping !== null) ? f.mapping : f.name;
                this.ef[i] = this.getJsonAccessor(map);
            }
        }
　　因为要根据meta.id、meta.root。这两值都是字符串，这就要用到前面定义的getJsonAccessor函数了。这儿正是来生成几个取json对象中属性的函数，如：getTotal、getSuccess、getRoot、getId、ef数组，一个ef数组就解决了属性映射的问题，真是漂亮。

     var root = this.getRoot(o), c = root.length, totalRecords = c, success = true;
     if(s.totalProperty){
            var v = parseInt(this.getTotal(o), 10);
            if(!isNaN(v)){
                totalRecords = v;
            }
        }
        if(s.successProperty){
            var v = this.getSuccess(o);
            if(v === false || v === 'false'){
                success = false;
            }
        }
　　这儿是求totalRecords、success。有一事要注意：其中：

　　c = root.length, totalRecords = c
　　这上c后面要用来循环的，而totalRecords是要返回的，而后，又求了totalRecords，这个意思是：如果结果中没有totalProperty这一属性，那么就自动求取，如果存在，则以定义的totalProperty为主，由此可见，totalProperty是可有可无的。这个问题文档不曾见之。诸位可无忧矣。

     var records = [];
     for(var i = 0; i < c; i++){
      var n = root[i];
         var values = {};
         var id = this.getId(n);
         for(var j = 0; j < fl; j++){
             f = fi[j];
                var v = this.ef[j](n);
                values[f.name] = f.convert((v !== undefined) ? v : f.defaultValue, n);
         }
         var record = new Record(values, id);
         record.json = n;
         records[i] = record;
     }
     return {
         success : success,
         records : records,
         totalRecords : totalRecords
     };
　　这是剩余的代码了，由for(var i = 0; i < c; i++)可知，循环的时候还是用root.length的。而不是totalProperty。这个要分清，事实上，totalProperty只是直接返回罢了，未做任何改动。里面就转化成Record了。其中，这个ef数组用得巧妙。类型转化用了convert。这个东西前文已讲，不足道哉。

　　var record = new Record(values, id);
　　id=this.getId(n)，可见啦，id并非前文所说的主键，它只是一个用来做客户端唯一编号的东西，如对此有疑，可见于Ext.data.Record类。

　　record.json = n，json这个属性我在Ext.data.Record类中并未曾得见，诸君注意了，这个东西也许会有用。另外，readRecords返回的不只是一个records数组，而是一个json对象，包含success、records、totalRecords。

　　至此，JsonReader源代码分析完毕，呵呵，因为这个类代码量较少，故讲得详细。

　　

9. Ext.data.HttpProxy篇
关于Ext.data中各个类的关系图我在前面已经做了一个，不用多言。其实啊。关于数据的显示，一般要经历三个流程：DataProxy－－>DataReader－－>Store。当然，三个部分都得是具体的类，这三个是抽象类。

　　如果按照一般性的理解，那么应当先从Proxy开始了。

　　出人意料：DataProxy的代码就是一空架子。且看：

Ext.data.DataProxy = function(){
    this.addEvents(
        'beforeload',
        'load'
    );
    Ext.data.DataProxy.superclass.constructor.call(this);
};
Ext.extend(Ext.data.DataProxy, Ext.util.Observable);
　　就是加两事件，从Observable继承了。如此而己，看代码就看晴晰了。再看一看HttpProxy，它的代码也就一百来行。比起其他类来说，真是小巫见大巫了。

　　先为Ext.data.HttpProxy给个描述吧：从一个Ext.data.Connection中读取数据到一个数据对象、从Ext.data.DataProxy继承的类。这个类不能跨站出数据，记住了。

　　此类构函数的文档中说：

　　HttpProxy( Object conn )
　　conn是一个connection对象或者是一个传给Ext.Ajax.request的options。如果传给它的是一个options，那么，将使用Ext.Ajax.request获取数据。
　　这个地方要注意一下。

　　下面来讲一下load函数，HttpProxy的一切精髓皆在于此。HttpProxy唯一的一个公开的函数。

load( Object params, Ext.data.DataReader reader, Function callback, Object scope, Object arg ) : void
从一个配置好的Ext.data.Connection中读取数据，它通过传递过来的实现自Ext.data.DataReader的对象来读取数据放到一个Ext.data.Records中。并且，在callback中处理这个结果数据。

参数：
　　params : Object
　　用于Ext.data.connection.request的options中的params。

　　reader : Ext.data.DataReader
　　被用来转化数据的。把数据转化成Ext.data.Records的形式。

　　callback : Function
    用于处理最终结果的回调，当HttpProxy取得connection中的数据，然后交给reader转化了数据后，所得结果集就会交给callback。它的参数如下：
　　　　　object result
　　　　　一个记录集对象。

　　　　　object arg
　　　　　就是load函数中传过来的arg。

　　　　　boolean success
　　　　　是否请求数据成功。

　　scope : Object
　　用于callback的scope。

　　arg : Object
　　用于callback的arg。
　　

　　本来看文档没看出明堂来，一结合代码就明白了。原来callback就是用来处理数据的。如果正常的话，这个callback应当是由store来提供吧。它实现这个接口，然后把数据从HttpProxy中接手过来。然后就后就得包装成store了。这还只是我的猜测，具体情况就要看store的代码了。

　　现在，一切都明显了，取数据是connection的事，不用我们费心了，转换数据成记录集，这个是reader的事，也不用我们费心了。HttpProxy的作用事实就是二者的外观类。现在就要研究一下Ext.data.JsonReader了。

10. Ext.data.Connection篇一
ExtJs之所以能异步请求数据，全依赖于Ext.data.Connection。而Ext.Ajax只不过是Ext.data.Connection的一个实例罢了。当然Ext.Ajax比Ext.data.Connection多了一个函数：serializeForm(form)，这个函数的作用是把一个表单里面的表单元素序列化。结果形式为：name1=value1&name2=value2……不过，如果是我的话，一般不会用这个东西，因为平常都是传json数据的，当然，如果不是请求WebService，而是请求aspx页面，那么这个东西还是有点用的。

　　先把它的官方文档翻译一下吧。

全　　称:Ext.data.Connection
命名空间:Ext.data
定义　于:Connection.js
类　　名:Connection
子　　类:Ajax
父　　类:Observable
　　这个类封装了到页面所在主机的连接，允许通过一个配置好的URL来请求数据，也可以临时在请求时传递一个URL。

　　通过这个类获得的请求都是异步的，并且马上返回，调用request后，它并不马上返回数据，要处理数据，要在调用request时传入的options对象中，配置callback或者是success、failure。这三个是回调函数。其区别将在下文具体交待。当然，你也可以使用Connection的事件处理来做一些事情。

　　注意：如果你是要上传文件，你的回调、事件处理函数将不会获得通常意义上的response对象。上传通过IFrame来捕获，所以就没有XMLHttpRequest了。这时，response还是被创建，不过，它的responseText等于IFrame的document.innerHTML，responseXML等于IFrame的document中的xml数据。当然，这个前提是它们存在的时候。


　　这意味着必面回一个合法的XML或HTML document。如果返回的是JSON数据，那么建议你把数据放到<textarea>标记中，返回时通过正则表达式从responseText中取出来了。如果返回的是XML数据，建议放到CDATA里面，通过标准DOM方法从responseXMl中取得数据。


Options：
autoAbort : Boolean
取消当前请求，不管当前请求是不是存在。默认值为false。


defaultHeaders : Object
默认头部，每个HTTP请求分成两部：头部、数据。数据就是post的部分，头部包含了请求的一些基本属性，此对象定义了用当前connection对象发起的请求的默认头部，默认值为undefined。


disableCaching : Boolean
是否为GET请求加入一个唯一标志的参数缓存。

extraParams : Object
一般情况下，加在encodeURL(params)后面。默认值为：undefined。

method : String
就是http请求的method属性。默认情况下是未定义的(undefined)；如果没有设置，但是调用request时设了params，那么将使用POST方式，否则使用GET。


timeout : Number
请求超时，默认值为：30000。单位是millisecond(毫秒？)。


url : String
用此connection对象发起的请求的默认URL。默认值为：undefined。


无公共属性

公共函数(只讲connection自身的，不包括从Observable中继承来的)：
Connection( Object config )
构造函数，没有悬念。


abort( [Number transactionId] ) : void
取消指定id的请求，如果没有指定则取消当前请求。


isLoading( [Number transactionId] ) : Boolean
判断指定id的请求是不是正在请求中(?)。


request( [Object options] ) : Number
发送一个HTTP请求到远程主机上。
重点：Ajax服务请求都是异步的，并且这个请求将在response(响应)返回之前返回，也就是说，你绝对无法通过此函数来直接返回数据，你得通过定义回调函数来处理返回的数据。
参数：
　　options : Object
　　　　一个可能包含下面属性的对象:
        url : String (Optional)
        请求对应的URL，默认值是connection的options配置的那个url。
　　　　params : Object/String/Function (Optional)
　　　　用于提供url后面的请求参数(俗称查询字符串)，可以是json对象，可以是直接的字符串，可以是一个函数。
　　　　method : String (Optional)
　　　　此http请求的method。默认值为connection的options中配置的method。如果没有设置它，那么就要看params是否设了，如果设了就以POST方式请求，如果没有就以GET方式请求，注意：method名是大小敏感的，必须全面大写。
　　　　callback : Function (Optional)
　　　　无论请求成功还是失败它都被执行，其参数如下：
　　　　　　　options : Object
　　　　　　　不用说了。
　　　　　　　success : Boolean
　　　　　　　是否请求成功了。
　　　　　　　response : Object
　　　　　　　一个包含响应数据的XMLHttpRequest对象。
　　　　success : Function (Optional)
　　　　请求成功时执行的回调。它的参数如下：
　　　　　　　response : Object
　　　　　　　一个包含响应数据的XMLHttpRequest对象。
　　　　　　　options : Object
　　　　　　　不用说了。
　　　　failure : Function (Optional)
　　　　请求失败时执行的回调。它的参数如下：
　　　　　　　response : Object
　　　　　　　一个包含响应数据的XMLHttpRequest对象。
　　　　　　　options : Object
　　　　　　　不用说了。
　　　　scope : Object (Optional)
　　　　回调函数执行时所使用的scope。
　　　　form : Object/String (Optional)
　　　　将用于构造查询字符串的form的引用或id。
　　　　isUpload : Boolean (Optional)
　　　　当前请求是否是在上传文件(通常是自动检测的)。
　　　　文件上传不是通过通常的Ajax技术实现，它们通过在form提交时动态插入一个iframe，返回时又移除这个iframe来实现，一通的英文，就是说响应数据是直接交给浏览器的，这时，就有点能理解为什么要用iframe了。因为它返回的东西会被浏览器直接插入到document对象下面，直给放当前页，那么页面当前内容将消失。所以，只有放一个iframe中了。且这个iframe得隐藏起来。
　　　　如果返回结果是json，那么头部要设一下content-type:text/html。
　　　　headers : Object (Optional)
　　　　请求的头部。
　　　　xmlData : Object (Optional)
　　　　如果有它，那么params就不会起作用。
　　　　jsonData : Object/String (Optional)
　　　　如果有它，那么params就不会起作用。
　　　　disableCaching : Boolean (Optional)
　　　　为真时为Get请求创建一个param缓存。
　　　　这个options对象也可以包含其他你需要用于回调的属性，大伙都晓得，这个options最后回被传给回调函数的，所以，也可以加入自己想要的东西。
　　　　返回值：
　　　　一个请求的id。它用于取消请求。。

事件：
　　beforerequest : ( Connection conn, Object options )
　　在请求发生之前触发。

　　requestcomplete : ( Connection conn, Object response, Object options )
　　请求结束时触发。

　　requestexception : ( Connection conn, Object response, Object options )
　　当http请求处于错误状态时触发。

11. Ext.data.Connection篇二
上一篇主要是扎扎实实地翻译了一下Ext.data.Connection的官文档。尽管网上有位大侠也搞了个中文文档，但是，有不少遗漏的地方。这篇主要是研究一下文档中有些语焉不详的地方，这些问题只能透过研究代码来解释了。

　　一、Ext.data.Connection是否有依赖的模块
　　有。它建立在一个适配器类：Ext.lib.Ajax的基础之上，有人看了Ext.js的代码，发现，Ext貌似没有什么底层适配器，事实上，是有的，Ext.lib.Ajax提供了对XMLHttpRequest对象的底层的封装(我直接用ext-base.js)。

　　二、在options中哪些东西会被编码到url后面
　　params、extraParams、form。

　　三、url参数与jsonData、xmlData的关系
　　这是个非常重大的问题，且见Connection的代码：

　　if((method == 'GET' || o.xmlData || o.jsonData) && p){
　　　　url += (url.indexOf('?') != -1 ? '&' : '?') + p;
　　　　p = '';
　　}
　　看这三行代码，觉得实在讲不清啦。但是，至少一件事是明白的：如果定义了xmlData、jsonData，且又定义了params/extraParams/form，那么并不会造成参数无用。还是照样传过去了的。

　　至于xmlData与jsonData的优先级关系，这个要看Ext.lib.Ajax的源码了。源码如下：

                if(options.xmlData){
                    if (!hs || !hs['Content-Type']){
                        this.initHeader('Content-Type', 'text/xml', false);
                    }
                    method = (method ? method : (options.method ? options.method : 'POST'));
                    data = options.xmlData;
                }else if(options.jsonData){
                    if (!hs || !hs['Content-Type']){
                        this.initHeader('Content-Type', 'application/json', false);
                    }
                    method = (method ? method : (options.method ? options.method : 'POST'));
                    data = typeof options.jsonData == 'object' ? Ext.encode(options.jsonData) : options.jsonData;
                }
　　可见，如果同时定义了xmlData和jsonData，那么将按发送xmlData中的数据，jsonData中的数据被忽略。

　　四、那个disableCaching倒底有什么鸟用？
　　貌似是否使用缓存的意思？文档让人郁闷，且见代码：

　　if(method == 'GET' && (this.disableCaching && o.disableCaching !== false) || o.disableCaching === true){
　　　　url += (url.indexOf('?') != -1 ? '&' : '?') + '_dc=' + (new Date().getTime());
　　}
　　原来是加个时间参数。拜托了。搞得我们一头的雾水啊。

 

　　至此，关于Ext.data.Connection的相关问题都差不多扫清，它的使用例子，前面的“通信篇”中有代码。可以参见。

12. Ext.Updater篇一
　　上几篇中老老实实地把Ext.data.Connection翻了个遍。这是基础。我记得Ext.Element有一个方法：

load( String/Function url, [String/Object params], [Function callback], [Boolean discardUrl] ) : Ext.Element
直接调用Ext.Updater.update方法处理(它们使用一样的参数)
参数：
　　url : String/Function
　　用于请求的url字符串或能返回url的函数。
　　
　　params : String/Object
　　放到url后面的查询参数
　　callback : Function
　　当请求完毕时执行的回调
　　discardUrl : Boolean
　　默认情况下，每执行一次update，defaultUrl属性就会被改成上一次使用过的url，如果为真，则这一次除外，不用保存到defaultUrl。
　　这个函数在前面没有讲过，事实上它是很多问题的基础，因为一切都建立在Ext.Element基础之上。它的源代码为：

　　load : function(){
　　　　var um = this.getUpdater();
　　　　um.update.apply(um, arguments);
　　　　return this;
　　}
　　超简单。Element有一个方法getUpdater，用于获得一个Ext.Updater类的实例。然后调用它的update方法。所以，一切的关键在Ext.Updater。下面是getUpdater的源代码：

　　getUpdater : function(){
　　　　if(!this.updateManager){
　　　　　　this.updateManager = new Ext.Updater(this);
　　　　}
　　　　return this.updateManager;
　　}
　　看Ext.Updater代码去也。

　　上面对于load的作用还没有说明。这儿正经地说一下：用于从一个ajax请求中获取数据并更新到此元素中。

　　Ext.Updater的主要功能有：

　　一、基于Ext.Ajax请求数据
　　二、能定时发送请求，也就是说能定时更新某一元素
　　三、能在更新时显示一个表示正在加载中的“指示器”字符串。
　　四、提供一个接口用于自定义数据显示：Ext.Updater.BasicRenderer。
　　功能还是蛮强悍的。

　　这是初步介绍，下一篇将将Ext.Updater的官方文档翻译一下。

13. Ext.Updater篇二
全　　称:Ext.Updater
命名空间:Ext
定义　于:UpdateManager.js
类　　名:Updater
父　　类:Observable
为Element对象提供Ajax式的更新能力。Updater能用于更新Element一次或者使用startAutoRefresh让Element具备定时更新的能力。
用法：
//从一个Ext.Element对象获得Updater的引用
var el = Ext.get("foo");
var mgr = el.getUpdater();
mgr.update({
url: "http://myserver.com/index.php", 
params: {
　　param1: "foo",
　　param2: "bar"
}
});
...
mgr.formUpdate("myFormId", "http://myserver.com/index.php");


//或者直接通过Updater构造函数来创建
var mgr = new Ext.Updater("myElementId");
mgr.startAutoRefresh(60, "http://myserver.com/index.php");
mgr.on("update", myFcnNeedsToKnow);

   //从element对象的简捷调用方式
   Ext.get("foo").load({
        url: "bar.php",
        scripts: true,
        params: "param1=foo&param2=bar",
        text: "Loading Foo..."
   });


总结上一面共计有四种更新方法：
updater.update({……});
updater.formUpdate(formname,url);
updater.startAutoRefresh(second,url);
Element.load({……});

 

公共属性：
defaultUrl : String
保存updater上一次更新时使用的url。

disableCaching : Boolean
是否在url后面上一个唯一标志的参数(当前时间，见Ext.data.Connection),默认值为：Ext.Updater.defaults.disableCaching.


el : Ext.Element
updater使用的element。

formUpdateDelegate : Function
相当于dotnet中的delegate。在别的地方定义，到这儿来调用。回调啦。内部使用方法如下：myUpdater.formUpdateDelegate.createCallback(arg1, arg2)

indicatorText : String
指示器文本(正在加载的时候)，默认值为：Ext.Updater.defaults.indicatorText。

loadScripts : Boolean
输出的时候是不是加过脚本(?)，默认值为：Ext.Updater.defaults.loadScripts。

refreshDelegate : Function
用于refresh()内的委托，scope使用this。内部使用方法如下：myUpdater.refreshDelegate.createCallback(arg1, arg2)。

renderer : Object
Updater的呈现器(默认值为：Ext.Updater.BasicRenderer)

showLoadIndicator : String
是否在加载过程中显示指示器文本，默认值为：Ext.Updater.defaults.showLoadIndicator。文档有误，应当是boolean类型。


sslBlankUrl : String
空页面url，用于SSL文件上传。默认值为：Ext.Updater.defaults.sslBlankUrl。

timeout : Number
请求超时。单位是秒。默认值为：Ext.Updater.defaults.timeout。

transaction : Object
当前事务对象，如果没有当前事务则为null。

updateDelegate : Function
用于更新(update())的委托。内部使用方式为：myUpdater.updateDelegate.createCallback(arg1, arg2)

 

公共方法：
Updater( Mixed el, [Boolean forceNew] )
直接创建一个新的Updater对象。


Updater.updateElement( Mixed el, String url, [String/Object params], [Object options] ) : void

不赞成. 一个静态方法. 反对用此函数取代el.load({url:'foo.php', ...})

用法：Ext.Updater.updateElement("my-div", "stuff.php");

abort() : void
取消当前正在执行的事务。

formUpdate( String/HTMLElement form, [String url], [Boolean reset], [Function callback] ) : void

执行一个异步form post。用返回的响应数据更新element。如果form有一个属性：enctype="multipart/form-data"，它表示这是上传文件，将使用this.sslBlankUrl来阻止IE安全警告。

　参数：
　　　form : String/HTMLElement
　　　form的id或者是element。

　　　url : String
　　　用于form.action。即提交的网址。

　　　reset : Boolean
　　　是否在更新完后重置表单。

　　　callback : Function
　　　当事务完毕后执和，它有如下参数：

　　　　　　el : Ext.Element
　　　　　　正在执行更新的元素

　　　　　　success : Boolean
　　　　　　是否更新成功。

　　　　　　response : XMLHttpRequest
　　　　　　响应结果。。

 

getEl() : Ext.Element
获得要更新的元素。


getRenderer() : void
取得当前内容呈现器。到Ext.Updater.BasicRenderer.render看更多的细节。

isAutoRefreshing() : void
是否是定时更新。。

isUpdating() : Boolean
是否处于正在更新中。

refresh( [Function callback] ) : void
用上一次更新的地址(defaultUrl)再次更新一下。如果没有就马上返回。
　　callback : Function　　
　　更新完毕后调用。

setDefaultUrl( String/Function defaultUrl ) : void
设置defaultUrl。

setRenderer( Object renderer ) : void
设置呈现器。

showLoading() : void
显示指示器。

startAutoRefresh( Number interval, [String/Object/Function url], [String/Object params], [Function callback], [Boolean refreshNow] ) : void
把这个元素设置为自动更新。通过使用stopAutoRefresh来停止自动更新。

stopAutoRefresh() : void
停止自动更新。

update( Object options ) : void

发起一次异步请求，使用请求的响应结果来更新元素内容。

注意：由于异步请求的一般是远程主机，所以元素不会在此函数返回时更新。要处理返回的数据，请使用回调或事件。

　　参数：
　　　　options : Object
　　　　一个包含如下属性的配置对象。
　　　　
　　　　　url : String/Function
　　　　　请求所需要的url或能返回url的函数。

　　　　　method : String
　　　　　Post或者是GET。全为大写。

　　　　　params : String/Object/Function
　　　　　见Ext.data.Connection中的options.params的说明。

　　　　　scripts : Boolean
　　　　　当响应数据中包含<script>……</script>，即包含脚本或脚本引用时，是否提取并执行。为真则执行。默认值为：Ext.Updater.defaults.loadScripts。如果这个属性在options中设置了，那么回调将在此script执行完后再执行。

　　　　　callback : Function
　　　　　当响应结果已返回时调用，它有如下参数：
　　　　　　　el : Ext.Element
　　　　　　　正在更新的元素的引用。

　　　　　　　success : Boolean
　　　　　　　是否更新成功。

　　　　　　　response : XMLHttpRequest
　　　　　　　包含响应数据的XMLHttpRequest。

　　　　　　　options : Object
　　　　　　　传给update方法的options。

　　　　　scope : Object
　　　　　回调使用的scope。

　　　　　discardUrl : Boolean
　　　　　是否抛弃当前更新的url，不保存到defaultUrls。

　　　　　timeout : Number
          超时设置，单位为秒。默认值为：Ext.Updater.defaults.timeout。

　　　　　text : String
　　　　　这个text与indicatorText的区别在于，请见代码：
　　　　　this.indicatorText = '<div class="loading-indicator">'+cfg.text+"</div>";

　　　　　nocache : Boolean
　　　　　用于Ext.data.Connection.disableCaching。
　　

　　　　　示例代码：
　　　　　um.update({
    　　　　　url: "your-url.php",
    　　　　　params: {param1: "foo", param2: "bar"}, // or a URL encoded string
    　　　　　callback: yourFunction,
    　　　　　scope: yourObject, //(optional scope)  
    　　　　　discardUrl: true,
    　　　　　nocache: true,
    　　　　　text: "Loading...",
    　　　　　timeout: 60,
    　　　　　scripts: false // Save time by avoiding RegExp execution.
　　　　　});


公共事件：
beforeupdate : ( Ext.Element el, String/Object/Function url, String/Object params )
在更新之前触发。。

failure : ( Ext.Element el, Object oResponseObject )
更新失败时触发。


update : ( Ext.Element el, Object oResponseObject )
更新成功时触发。

14. JSON序列化篇
　　ExtJs有一个类：Ext.util.JSON，它提供两个函数：encode、decode。用于序列化和反序列化，功能蛮强大的，也差不多了，但是，在WebService中序列化DataTable、DataSet时，遇到麻烦。这个问题只有自己解决了。

　　其实这个问题简单的很，没什么大不了的。这儿有一篇文章有代码！就是循环做事嘛。但是，我觉得，如果要用于ExtJs的话，这个代码还不够。因为JsonReader好像还需要一些其他的东西。所以呢，代码还是要修正一下的。

　　上一篇中，用到了：Ext.util.JSON.decode。事实上，这个函数有简写方式的：Ext.decode。事实上Ext类中两个关JSON序列化的函数：Ext.encode、Ext.decode。以方便使用。

　　Ext.data.JsonReader需要三个东西：id(主键)、root(记录集的引用)、记录数。为此，我修改了上面的代码，得验证通过的代码如下：

public static class Json
{
    public static string toJson(DataTable dt)
    {
        StringBuilder JsonString = new StringBuilder();
        //Exception Handling        
        if (dt != null && dt.Rows.Count > 0)
        {
            JsonString.Append("{ ");
            JsonString.Append("\"count\":" + dt.Rows.Count + ",");
            JsonString.Append("\"rows\":[ ");
            for (int i = 0; i < dt.Rows.Count; i++)
            {
                JsonString.Append("{ ");
                for (int j = 0; j < dt.Columns.Count; j++)
                {
                    if (j < dt.Columns.Count - 1)
                    {
                        JsonString.Append("\"" + dt.Columns[j].ColumnName.ToString() + "\":" + "\"" + dt.Rows[i][j].ToString() + "\",");
                    }
                    else if (j == dt.Columns.Count - 1)
                    {
                        JsonString.Append("\"" + dt.Columns[j].ColumnName.ToString() + "\":" + "\"" + dt.Rows[i][j].ToString() + "\"");
                    }
                }
                /**//*end Of String*/
                if (i == dt.Rows.Count - 1)
                {
                    JsonString.Append("} ");
                }
                else
                {
                    JsonString.Append("}, ");
                }
            }
            JsonString.Append("]}");
            return JsonString.ToString();
        }
        else
        {
            return null;
        }
    }
}
　　实验所得结果如下：





 HYPERLINK "http://img.blog.163.com/photo/ojqUtTz1EA4R96Dwunh1qw==/1467047578616352200.jpg" \t "_blank" 
　　这下子就很明显了。在客户端反序列化的方法如下：

　　Ext.decode(Ext.decode(response.responseText).d)
　　一般的情况下应当不会传DataSet吧。实在要传DataSet也容易。调用上面的就行了。写个toJson(DataSet ds)，ok了。

15. 通信篇
　javascript通过XHR调用WebService。两个问题必须解决：

　　一、如何传值给WebService，有什么格式要求没有？
　　二、如何接收从WebService传过来的结果？
　　此二者我辈不能不察也。asp.net的WebService默认是序列化成json格式的，所以，我们在客户端传值时，最好用json传，反映到ExtJs中。就是Ext.Ajax.request({url:'xxxx/method',jsonData:{paramName:value,……},method:'post',success:function(response,options){……}})。这是在ExtJs中进行异步请求的通式。红色部分就是要传的值了。要注意的是，paramName必须与服务器端的那些参数名相同，不然，WebService怎么晓得你传过去的值是给哪个参数的呢？这是个约定。

　　下面来研究一下传值的情况：

　　一、如果传、收数值类型、整型、数组类型
　　这个毫无悬念，只要调用Ext.util.JSON.decode(response.responseText).d就可以取出来。如果是数组，那么很简单：Ext.util.JSON.decode(response.responseText).d[x]。

　　二、如果传、收的是日期类型
　　传过去没什么问题，但是收过来的时候就麻烦了。我试了好久才研究出来。像上面通过：Ext.util.JSON.decode(response.responseText).d得到的是一个字符串，这个字符串的结构一般是：/Date(1212756402000)/。那个数值据说是UTC时间，我把它取出来传到Date里面来构造日期，结果得到了一个1970的某日，郁闷，事实上应当是2008年6月5日才对。突然，我灵光一闪，asp.net为什么要在数值外面加个Date()呢，写了如下表达式，结果成功了：

　　eval("new "+eval("/Date(1212756402000)/").source)
　　结果为：Fri Jun 06 2008 20:46:42 GMT+0800
　　正确无误了。eval真是一个好东西啊。

　　三、如果传、收的是集合
　　对于客户端来说，集合有两种形式，呵呵，这个是在总结JavaScript哦：

　　1.数组array[x]
　　2.对象成员object.xxxx或object[xxxx]
　　传过去很简单，没有悬念。无论WebService中的参数类型为数组还是List<xxxx>。对应在这边都是数组。如果是Dictionary<X,Y>。那么它对应的就是：object了(上面的第二种情况)。

　　还是给个代码出来吧，不然，说服力还是不够的：

   Ext.get("btnList").on("click",function(){
         
         var arr=new Array();
         for(var i=1;i<=10;i++) arr.push(i);
         
         Ext.Ajax.request({url:'MyService.asmx/fun5',
                           jsonData:{list:arr},
                           method:'post',
                           success:function(response,options){
                                var result=Ext.util.JSON.decode(response.responseText);
                           }});
    });
　　服务器端WebService中的方法为：

    [WebMethod]
    public List<string> fun5(List<int> list)
    {
        List<string> list2 = new List<string>();
        foreach (int i in list)
            list2.Add("值为：" + i);
        return list2;
    }
　　最后result.d的值为：

["值为：1", "值为：2", "值为：3", "值为：4", "值为：5", "值为：6", "值为：7", "值为：8", "值为：9", "值为：10"]
　　上面要注意的是：list这个原始参数是不能修改原有值，但是，能在原有值的基础上增加成员。这个问题比较奇怪，我试着修改原有成员，结果，错误希奇古怪。什么“Ext is not defined”。事实上Ext不可能没被定义的。

　　四、如果传、收的值为一个自定义类的引用时
　　这是个普遍性的问题，广泛存在着。本人定义了一个简单的类来作实验：

        public class Cat
        {
            public Cat() { }
            public string Name { get; set; }
            public string Desc { get; set; }
            public int Price { get; set; }
            public int Weight { get; set; }
        }
　　客户端JavaScript代码：

        function Cat(){
            this.Name='';
            this.Desc='';
            this.Price=50;
            this.Weight=1;
        }
       Ext.get("btnCat").on("click",function(){
             
             var cat=new Cat();
             cat.Name="加菲猫";
             cat.Weight=12;
             cat.Price=100;
             
             Ext.Ajax.request({url:'MyService.asmx/fun6',
                               jsonData:{cat:cat},
                               method:'post',
                               success:function(response,options){
                                    var result=Ext.util.JSON.decode(response.responseText);
                               }});
        });
　　服务器端WebService里面的方法：

        [WebMethod]
        public Cat fun6(Cat cat)
        {
            cat.Desc = cat.Desc + "加个随机数字吧："+(new Random()).Next(1,20);
            return cat;
        }
　　实验结果result.d的值为：

　　



　　注意：这个结果多了个东西：__type。这是asp.net的webservice在序列化返回值时加上去的。这个成员在post到服务器时并没有。

　　这个中间有个关键，那就是在客户端也要用JavaScript定义一个Cat类．当然，也可以不定义．这个问题留待各位去研究一下．

　　五、传、收DataTable对象
　　尽管我现在搞N层结构，不用传DataTable了。但是，相信许多兄弟还要直接来传它。这是个经典问题。

　　不好意思啊。我实验了，结果response.responseText里面返回了一大通的错误信息，说不能把DataTable序列化。这下子没有什么直接的办法的，除非自己写个类来序列化DataTable。这个需要研究一下了。

　　六、要调用的WebService的方法没有参数，但是有返回值时
　　这个时候要小心了，要注意几个问题：

　　1.在Ext.Ajax.request({……})中不要加jsonData这个成员了。也不要写成：jsonData:{}。这会引发服务器端序列化错误。

　　2.在Ext.Ajax.request({……})中加上一条：headers:{'Content-Type':'application/json; charset=utf-8'},否则，返回值是xml，而不是json字符串了。

 

　　好了，这个通信问题言尽于此，差不多了。

16. extJs 2.0学习笔记(Ajax篇)
　　一听到Ajax，我与大家一样，如雷贯耳，都说XXX Ajax框架，事实上，这一部分内容在ExtJs中是基础中的基础，就那个样。这儿主要是讨论一些资料、书本都不会涉及的领域。这些东西平常只能由自己摸索的。

　　在此话题之先，先解决一个问题，现在用asp.net的人多了，但是，用asp.net ajax并不爽，但是asp.net ajax能直接调用webservice，看起来很眼谗，在extJs 2.1之前，是没有办法的，但是在2.1时，就能直接调用asp.net的webservice了。这个我实验证明了。详情点此处参见！

　　我总结一下用ExtJs访问asp.net service的要点：

　　一、Url的写法：asmx地址+/+方法名

　　二、method:post（也可以是get，这样，传参数就得用params，用post的话呢就用jsonData）

　　三、success:function(response,options)，其中response.responseText如果是一个json字符串，那么就要转化，如果只返回一个结果，那么，所得的json对象默认有一个d成员，结果就在它里面。

 

　　上面这个问题其实是主客交流的一种最简单的情况。然而，这些其实都不是重点，真正的关键如下：

　　一、客户端序列化为json字符串后传过去，服务器端怎样取值
　　二、服务器端把各种数据类型的数据是序列化成何种格式的，客户端如何取。
　　这两个问题正是我将要研究的。内容将比较多，留在下文了。

17. extJs 2.0学习笔记(Ext.data序论篇)
　昨天就说过了，ExtJs的UI部分不会花什么时间了，是时候来研究一下Ext如何发送json数据，如何解析数据，如何显示到我们的widgets。如何管理异步请求。这些问题貌似都在Ext.data里面。本人总结了一张UML图。可以得到一个大概关系。





　　其中，像Observable、DataReader、Record、SortTypes这四个类没有标出父类，是因为它们继承自Object，就省了。这个图还清晰吧。

　　由这个图可知，ExtJs的数据处理包括三个部分：proxy、reader、store。至于connection、ajax，这个是对于XHR(XmlHttpRequest)的封装。没什么好讲的。关于XHR对象，本人前面作过一文，点此查阅！至于tree、node这两个类与数据处理根本无关，Record相当于dotnet中的DataRow。表示一行记录。我们通过它来构造自己的记录类。

　　关于proxy、reader、store三者之间的关系，网上有少数资料讲到，不过，人云亦云如何求得大道。我打算在解决了Connection、Ajax这两个类后把它给研究透彻。



　　这两天极为不爽，加上，越来越明白ExtJs的局限性。把ExtJs真正应用于项目只怕还是有麻烦的。不过，它很值得借鉴。不为别的，只为它优秀的理念、结构、UI。不得不令人佩服。不过，大量的js代码，伴随着需求的不断变化，这些js代码如何有效、方便地维护。这足以让大部分流口水的人掉头就走啊。没想到又是一个虎头蛇尾啊。

18. extJs 2.0学习笔记(Ext.Panel终结篇)
　　怪不得我对Ext.Panel穷追猛打，前面已经写过四篇针对它的文章了。不过。Ext.Panel的问题搞得差不多了。下面我贴出研究代码，及效果图。再解释一下。这下图文结合了。以后自己忘记了，看一下就明白了。

var panel1;
function newPanel1(){
 var config1={title:'这是标题栏',
     width:300,
     height:300,
     floating:true,
     renderTo:Ext.getBody(),
     draggable:{
       insertProxy: false,
     
       onDrag : function(e){
        var pel = this.proxy.getEl();
        this.x = pel.getLeft(true);
        this.y = pel.getTop(true);
     
        var s = this.panel.getEl().shadow;
        if (s) {
         s.realign(this.x, this.y, pel.getWidth(), pel.getHeight());
        }
       },
     
       endDrag : function(e){
        this.panel.setPosition(this.x, this.y);
       }
     },
     tools:[{id:close,handler:function(event, toolEl, panel){panel.hide();}}],
     layout:'border',
     items: [{
       title: '左边栏',
       region: 'west',
       split:true,       
       height: 100,
       width:200,
       minSize: 75,
       maxSize: 250,
       margins: '5 0 5 5'
      },{
       title: '中间主体部分',
       region:'center',
       margins:'5 5 5 0',
       split:true,
       minSize: 100,
      }],
     tbar:['请输入关键字:',
　　　　{xtype:'textfield',width:80},'-',
　　　　{text:'有种就点一下',handler:function(){alert("小子，你刚才点了此按钮！");}}],
     collapsible:true,
     shadow:false};
 
 panel1=new Ext.Panel(config1);
 panel1.setPosition(0,0);
 
 var resizer=new Ext.Resizable(panel1.getEl(),{handlers:'all'});
 resizer.on('resize',function(){panel1.updateBox(panel1.getSize());});
}
Ext.onReady(newPanel1);
　　效果图如下：

　　



　　看了上面的效果心里痒了吧。多漂亮啊。上面代码的要点基本上在前面第四篇中讲过了。也有一些事还没有来得及讲。我分门别类的补充一下。

　　一、Ext.Panel的组成
　　Ext.Panel有五个部分，即：header、body、tbar、bbar、footer。在创建了panel的实例后，这五个对象就能被引用了，它们分别指向panel五个最重要的部分，tbar就是上面的工具栏，bbar就是下面的工具栏，footer就是放buttons的地方，它处于最下面。body就是整个panel的主体部分了。事实上，大伙只要用FireBug去看一下panel的dom结构就会发现，body外面还有一个div。这个div也有一个引用，叫：bwrap。不过，官方API文档中没有提及，想必是不想让大伙去用它，怕以后会有变更。另外，tbar、bbar也是非文档支持的。官方推荐使用：getTopToolbar()、getBottomToolbar()，用它们来获得上下两个工具栏的引用，不过，这种方法只有在render后才有效，有的兄弟使用了它，结果鸟结果都没有。大惑、不解。如果要在render前操作工具栏，还是要用tbar、bbar的。

　　header、body、footer在官方文档中都有说明，是Ext.Element类型。不用说了。

　　基本上，有了这五个对象我们可以用它们来设置panel的各个部分了。

　　二、如臂使指的操作Ext.Panel的每一寸土地
　　有了上面五个对象，能搞定一些事情，但是，要说完全控制Ext.Panel这头驴还有所不及啊。这个问题一般人俺是不给他讲的哦。哈哈哈。

　　panel最外层的那个div，可以用panel.el或panel.getEl()来获得它的Element引用。很多人不能理解，有了它有个屁用？一个Panel能玩出前面所说的这么多的花样足够了。够用了。然而永远不要小看客户的花花肠子。他们名堂多着呐。有了panel.el，能有什么好处，嘿，晓得Ext.Fx不？Element能用到所有在它里面定义的特效(animations)。而在Panel中，你去看一看官方API文档，没一字提及。也没法控制它搞点特效出来。你哪怕看了Ext.Panel也不会结果的。怎么办，得依靠Element了。我现在庆幸当初把Element的API研究得很彻底。

　　特效是一方面，另外，你去看一看Ext.Window的API文档，会发现，它有alignTo、anchorTo的功能了，这可是好东西啊。但是，Ext.Panel没有这个功能。我不用去看Ext.Window的代码就晓得，这肯定是取了panel.el来搞的，Element有alignTo、anchorTo这两个API。例如：如何使Panel居中：panel.el.center()就行了。超强大啊。

　　所以啊。有了panel.el这个引用，依托于ExtJs对dom的强大封装结果所得的Element。我们可以做任何事(你能想到的、不能想到的)。

　　另外，还有一个东西没有被文档公开：component.container。那指向component.el的父元素(div)。也是个Element引用。尽管我们能用这个Element做事，但是，貌似还没有用到它的时候。机会不多。

　　好了，这儿谈到的都是关于控制Panel自身的架子的，说通俗点，架子是衣柜，但是衣柜里面的衣服怎么取出来呢？panel.el已经能很好地控制整个衣柜，但是，衣服还是一件都取不出来啊。有兄弟发火了，不是骗我吗？这就是所谓的控制每一寸土地吗？鉴于这个内容层次问题，把它放下一小节。

　　三、取panel这个衣柜里的衣服
　　这个问题是我老刘的独门武学，我敢保证晓得这事的人不多。晓得这事的人必定是用FireBug研究过panel的dom结构的人或者是研究过layout的源代码的人。这种人不多啊。大伙都本着能用就行的想法啊。不吹了。还记得Ext.Panel的API文档上面一句话：

　　If this Panel is intended to be used as the host of a Layout (See layout then the body Element must not be loaded or changed - it is under the control of the Panel's Layout.
　　这是关于body的说明中的一句话，说得好，精辟，它说，如果你想在panel中用布局类，那么你不得以任意方式来修改body。不要想着用panel.body.update(xxxx)来干活了。因为文档说了：it is under the control of the Panel's Layout。它正处在panel的layout的控制之下，嘿，这是我的layout的地盘，你就不要来整蛊了。

　　就是说，要么用body，要么就只能用layout。双方是排斥的，这不难理解。我一个小时前，在FireBug写了条命令语句：

　　console.dir(panel1);
　　这个东西诸位不晓得的话，那意味着你要去研究一下FireBug了。它的作用是把panel1的所有成员都输出到控制台窗口中。我看了输出的结果，发现：panel有一个layout的成员，如图：





　　可能图看不清，诸位点一下看原图吧。我发现了个有趣的结果：

　　layout有两个成员：center、west。

　　这儿我用的是border layout。因为这儿我只用到两个区，所以只有center、west。如果五个区都有了，推理得：那就会有五个了：west/east/center/south/north。原来，borderlayout是有五个这样的引用，可供我们来控制这五个区域。

　　哈哈哈，有了这五个对象，就相当于衣柜中有五个格子，我的手又能伸进更细致的地方了。

　　依此推理(我还没来得及研究layout的源代码)可知，我们是有能力利用layout的提供的一些接口来控制body内部的细节的。

　　刚才灵光一闪，API文档中，提到两个类：

　　Ext.layout.BorderLayout.Region
　　Ext.layout.BorderLayout.SplitRegion
　　我在FireBug控制台写下如下实验代码：

　　panel1.layout.west instanceof Ext.layout.BorderLayout.SplitRegion

　　结果为：true
　　嘿，可见，borderLayout是内部是以区域对象来进行控制的。不过，在BorderLayout的官方文档中没有对此提及，Ext.layout.BorderLayout.Region这两个类的文档倒是有的。

　　总结经验：layout不仅仅只是设计时布局，也许它提供给我们一些有意思的接口啊，只是，这个可能需要自己去研究、琢磨。

 　　四、关于BorderLayout的钉子
　　再次吹牛，这个问题老实说，在API上面是没有讲到的。就是在定义borderLayout的各个区域时，注意要设几个量：region/split/margins/cmargins。这个用法应当不用讲了，自己瞎琢磨去吧。那个cmargins的用法我还没有摸明白。网上关于这方面的细节资料太少了，一个劲地在那儿打屁。难有实质性内容，真是的。

　　五、关于Toolbar的事
　　关于工具栏类我现在还没有来得及研究。不过初步用法还是要说一下：

　　'xxxxx'相当于{xtype:'tbtext',text:'xxxxx'}

　　'-'相当于{xtype:'tbseparator'}

　　也是个简写法。

　　六、关于resize功能与Ext.Panel的一些冲突
　　pinned:true不能设、shadow必须为false。不然冲突起来的效果……描述出来。这个是我个人摸索的结果。不想描述。试一试就出来了。

 

　　至此，Ext.Panel总算终结了。我等不及了，得研究一下Ext.data中的东西了。关于UI，一个理，把Element、Component、Observable、BoxComponent好好的研究一把，UI就触类旁通了。

　　伯平经验：要研究ExtJs，先把JavaScript+DOM搞得炉火纯青了再说(比欲练此功，挥刀自宫容易多了吧！[image: image8.png]


)。
　　祝诸君学有所成。

19. extJs 2.0学习笔记(事件注册总结篇)
本来，我也没把这档子事放在眼里，因为简单，例如：

　　Ext.get("elem").on("click",{fn:function(){alert("此元素被单击了！");}};
　　这样的代码谁不会写啊。一个on就了结了。但是，今天，我在研究Ext.Panel的tbar时，发现，那现工具栏按钮的事件注册不一样：

　　元素注册、组件注册都是：{fn:……}
　　工具栏按钮的事件注册：{handler:……}
　　嘿，我就在想，为什么Ext的作者就不统一一下呢，都是fn多好。省得我分心了。一不小心准搞错了。还好，不是fn就是handler，凡是工具栏上面的东西注册事件，一般都是用handler，平常组件注册事件统统都用fn。

　　关于组件的事件注册，一般都是创建时就定义好，而不是创建后再来on。所以，用extjs写程序，常常看到Ext.onReady里面嵌套了无数层，items里面还有items，items里面还有listeners。然后listeners里面定义事件处理器。这样，代码就比较难看了。有人说：extJs写的代码莫名其妙。呵呵，可见大伙不大喜欢这种写法啊。

　　关于事件处理，我把Element的API文档翻译了一下。事实上事件注册都是建立在Element之上的。

　　一、元素的事件注册
　　on( String eventName, Function fn, [Object scope], [Object options] ) : void
　　其中：
    eventName：String
　　事件名称
　　fn:Function
　　　　事件处理函数，它有三个参数
　　　　evt:EventObject　事件对象
　　　　t:Element　　　　事件发生的目标Element，注意：它将被delegate选项所筛选(很有用)。
　　　　o:Object　　　　　addListener函数传入的options对象。

　　scope:Object　范围
　　options:Object　选项参数
　　一个包含了事件配置属性的对象，它可能包括如下属性：
　　scope {Object} :它表示事件处理函数的执行范围，即处理函数时面的this的上下文。
　　delegate {String} :一个简单的selector，用于过滤target或者找target的子孙。
　　stopEvent {Boolean} :为true就停止事件，即停止事件的传播和阻止默认行为。
　　preventDefault {Boolean} :阻止默认行为
　　stopPropagation {Boolean}:停止事件的传播
　　normalized {Boolean} : 为false的话就传递一个浏览器的原装事件对象给函数，而不是Ext.EventObject。
　　delay {Number} : 这个值表示事件发生后多少毫秒，事件处理函数才被执行。
　　single {Boolean} : 为真的话呢就表示这个事件处理器只执行一次，之后自删除。
　　buffer {Number} :它的作用就是执行缓冲，有时候，用户点按钮做死的点，一秒点它几十次，难道让事件处理函数执行几十次吗？其实，用户并不一定是执行多次。如果真的就这样老老实实执行了，很可能就坏事了，做了无用功。
　　这个值表示，在事件发生后，事件处理函数将放到Ext.util.DelayedTask中去计划执行，多少毫秒之内，如果再次发生同一事件，那么，这一事件将覆盖原来的事件。只执行后面那一次，当然，那个缓冲时间也在后一次时被刷新。


　　组合Options中的选项
　　在下面的例子中，on这种快捷的方式比冗长的addListener好用的多了。两者是等价的。使用Options作参数，它能组合多种不同的事件处理器：
　　一个普通的，能延时执行的，只执行一次的，能自动停止事件的，还有一个自定义参数(forumId)在options对象，这个Options对象是合法的。代码如下：

el.on('click', this.onClick, this, {
    single: true,
    delay: 100,
    stopEvent : true,
    forumId: 4
});

　　一次注册多个事件
　　这个方法也允许只传一个config，但是一个config中包含多个事件处理信息。代码如下：
el.on({
    'click' : {
        fn: this.onClick,
        scope: this,
        delay: 100
    },
    'mouseover' : {
        fn: this.onMouseOver,
        scope: this
    },
    'mouseout' : {
        fn: this.onMouseOut,
        scope: this
    }
});
或者是以下简捷语法：
el.on({
    'click' : this.onClick,
    'mouseover' : this.onMouseOver,
    'mouseout' : this.onMouseOut,
    scope: this
});

 

　　上面是一般事件，还有快捷键注册的问题，事实上，Ext对快捷键这个功能的封装其实就是对keypress这个事件的改造。怎样定义快捷键映射呢，Ext.Element.addKeyMap(config)。所以，问题的重心又到了config这个东西了。我找到Ext.KeyMap这个类，研究一下：
　　config的属性有：
　　key:number/string/Array,例如：
　　　　key: 13, // or Ext.EventObject.ENTER
　　　　key: "a\r\n\t"
　　　　key: [10,13],　　　　//回车键被按了
　　　　key: "abc"　　　　　//按了a或b或c
　　　　key: "\t"
　　　　由上可知，可以是设成单个按键，也可是多个按键，可是ascii码，也可以是那个字母。
　　fn:Function
　　　　相关联的处理函数，例如：
　　　　fn: function(){ alert("Return was pressed"); }
　　ctrl:Boolean
　　shift:Boolean
　　Alt:Boolean
　　scope:Object

　　

　　总结上面，Element中的事件注册方法都差不多。

 

　　二、关于组件上的事件注册
　　组件的事件注册有它的特点了，尽管本质上还是on、un。如果用on、un,它的语法跟Element的语一样，没什么差别，关键是，组件允许在创建时的config中用listeners:{xxx:{},yyyy:{}}的形式的注册事件。不过，listeners里面的写法跟on的组合写法是一样的。这个我研究了。例如：
　　listeners:{'select': {fn:this.sortImages, scope:this}}
　　还是：事件名:options
　　
　　组件没有什么快捷键关联的功能，不过，能通过元素的快捷键注册功能来得到。这个没什么问题。Ext.Window

有一个Keys config的属性，用它可以定义快捷键。　　

20. extJs 2.0学习笔记(Ext.Panel篇一)
　　老实不客气的说：没有Panel，就没有extjs的盛名。那些最常见的UI组件都是继承自它。暴爽的东西啊。我就在想，这么好的东西怎么会出现得这么晚呢？

　　在这一篇中，将详细讲一讲Ext.Panel的方方面面。

　　现在遇到了一些问题：

　　一、显示的问题
　　事实上，这个问题是所有组件的问题，凡是从Ext.Component继承的类都面临这个问题。

　　例如，我写了一行这样的代码，但是没有任何结果：

　　var panel=new Ext.Panel({width:300,height:300,title:'标题栏'});
　　这是什么原因呢？

　　if(this.applyTo){
　　　　this.applyToMarkup(this.applyTo);
　　　　delete this.applyTo;
　　}else if(this.renderTo){
　　　　this.render(this.renderTo);
　　　　delete this.renderTo;
　　}
　　这几行代码是写在Ext.Component的构造函数中的。它标示如果applyTo、renderTo有值，就会在对象创建的时候直接呈现，如果这两值都没有，那就只能手工调用render函数了。

　　然而这有一个问题，applyTo与renderTo倒底有什么区别，它们取值类型可以是哪些呢？看代码。

　　applyTo的情况依赖于this.applyToMarkup来实现呈现。找到它的代码：

　　applyToMarkup : function(el){
　　　this.allowDomMove = false;
　　　this.el = Ext.get(el);
　　　this.render(this.el.dom.parentNode);
　　}

　　而renderTo的情况是直接依赖于this.render(this.renderTo)的。这两者的差别很明显了，但是，这个问题到目前还不能说清楚，我发现，Ext.Panel最后生成的代码如下：

　　<div id="panel2" class="x-panel" style="width: 300px;">
　　　　<div id="ext-gen14" class="x-panel-header x-unselectable" style="-moz-user-select: none; cursor: move;">
　　　　　　<span id="ext-gen18" class="x-panel-header-text">这是标题栏</span>
　　　　</div>
　　　　<div id="ext-gen15" class="x-panel-bwrap">
　　　　　　<div id="ext-gen16" class="x-panel-body" style="width: 298px; height: 273px;">这是面板的内容！！！</div>
　　　　</div>
　　</div>

　　由上代码可知，panel的代码总是外面一个容器：x-panel，然后里面几个，这儿是：x-panel-header、x-panel-bwrap。现在可以说一说renderTo与appplyTo的区别了。

　　renderTo与applyTo的传入参数的数据类型与Ext.get的参数类型一样，可是dom、string、Element。它们最大的不同在于容器，这个容器不是指x-panel所对应的元素，而是指x-panel所对应元素的父元素。由源代码可知：

　　当为applyTo时，它调用render(this.el.dom.parentNode);可见，x-panel的容器为applyTo对应元素的父元素。也即是applyTo事实上就是x-panel。而renderTo时，renderTo所对应元素是x-panel的容器。如何验证这个问题呢？请到FireBug中看一看就晓得了。

　　上面说了一大通，我再总结一下：

　　renderTo：对应x-panel所在div的父元素；

　　applyTo：对应x-panel所在div本身。

　　二、Ext.Component的几个极其重要的成员
　　component.el：在panel中相当于x-panel所对应的div。它表示Component所对应的最外层html元素。

　　component.id：在panel中相当于x-panel所对应的div的id，如果x-panel所在div没有id，那么就自己分配一个。

　　component.container：它在panel中相当于x-panel所在div的父元素。即x-panel的容器。也即是：component的容器。

　　如果没有分清楚这个问题，那么下面代码会产生问题：

　　var p=new Ext.Panel({title:'my title',width:300,height:300,renderTo:'panel1'});

　　console.info(Ext.getCmp('panel1'));

　　结果如何呢？undefined！！

　　为什么是这样呢，因为，getCmp用的id即是component.id。而这个id对应的是x-panel所在元素的id或者自由分配的。而renderTo对应的元素不是x-panel。而是x-panel的父亲。这个问题极容易搞错。

　　这儿的两个问题其实都是Ext.Component那里的。下一篇正式研究一下Ext.Panel的API了。

21. extJs 2.0学习笔记(Ext.Panel篇二)
　　这一篇翻译自extJs 2.0官方文档。花了我一个晚上加一个上午的时间才搞定。这篇是关于config的。

　　我在网上查了很久，关于ExtJs的core部分的中文文档还是有不少，但是关于panel，window这些呢就好像不大齐全，而且，在js堂，它的文档翻译还在1.1。所以呢想翻译出来，以后大家也好查阅。
　　本人js水平、英文水平都有限，还好，通过看源代码两相印证，终于还是搞出来了。欢迎各位提出宝贵的意见。事实上，只要搞定了panel，其也组件的config差不多。大同小异。嘿嘿。一通百通啊。
activeItem : String/Number
用于设置当前活动的子组件，取值为此子组件的序号或者是id。但是它只能应用于那种一次只能显示一个子组件的布局类，例如：Ext.layout.Accordion, Ext.layout.CardLayout和Ext.layout.FitLayout。

allowDomMove;Boolean
是否可以在组件呈现的过程中移动组件的dom节点。默认值为true。

animCollapse : Boolean
设置是否在面板收缩时起用动画，如果Ext.Fx有效(被包含进来)则默认为true,否则为false。

applyTo:Mixed
x-panel对应的div的id。


autoDestroy : Boolean
如果要把一个子组件从panel中移除且此值为true，则在移除的过程中自动会销毁此组件，返之，则不会，必须要手工销毁，默认值为true。


autoHeight : Boolean
如果为true,把this.el.dom.style.height='auto'。默认值为false。

autoScroll : Boolean
为true时，则把this.body.dom.style.overflow='auto'。默认值为false。

autoShow : Boolean
为true时，检查组件是否被设成隐藏，如果有，则移除这个效果。

autoWidth : Boolean
同autoHeight一样。。

baseCls : String
this.baseCls的class(默认值为'x-panel')

bbar : Object/Array
面板底部的工具栏。它可是一个Ext.Toolbar对象，也可以是一个toolbar的config对象，或者是一个要加入到工具栏的按钮的config的数组。注意：这个属性在render后就无效了，如果要在render后使用它，请使用 getBottomToolbar获得引用。

bodyBorder : Boolean
如果为true则为this.el对应的元素显示边框，默认值为true。这只在border==true时才有效。如果border==true且bodyBorder==false，那么将显示1px的inset边框。给予this.el inset的效果。

bodyStyle : String/Object/Function
要应用到this.el上的css class。它的格式需求与Ext.Element.applyStyle一样，默认值为null。

border : Boolean
也是设this.body的边框的，默认值为true，此时，默认情况下边框为2px。当然，它还会被bodyBorder影响。

buttonAlign : String
加入到面板中的按钮的对齐方式，合法值为：'right','left','cente',默认值为'right'。

buttons : Array
Ext.Button的config数组，用于加入按钮到面板的footer中。

cls : String
this.el的class。

collapseFirst : Boolean
当显示title bar时，是否总把收缩、展开按钮放在所有其他按钮的前面。默认值为true。

collapsed : Boolean
在呈现时，是收缩还是展开。为true则收缩，默认值为false。


collapsedCls : String
当面板处于收缩状态时，this.el所对应的class，默认值为'x-panel-collapsed'。

collapsible : Boolean
此面板是否可收缩或者说是否能显示收缩、伸展按钮。真为显示。默认值为false。

contentEl : String
一个已存在的dom的id。作用是用于在afterRender后把它this.body.dom.appendChild掉。默认值为''。

ctCls : String
设this.container的class。

defaultType : String
当在构造函数中用items填加新成员时，如果没有设xType，那么就会以这个默认类型为xType加入组件。默认值为'panel'。


defaults : Object
加入此组件的所有子组件的默认config。如果这些加入的子组件设了config的话就以新设的为准。例如：{bodyStyle:'padding:15px'}。


disabledClass : String
当组件被设成disabled时的css，默认值为："x-item-disabled"。

draggable : Boolean
是否能被拖动。默认值为false。当然也可以是一个Ext.Panel.DD config。Ext.Panel.DD是一个internal但非公开的类(我没有找到它的源代码)，它的作用是移动一个proxy元素(Element)以代替本应跟随鼠标移动的panel.el。但是它在拖动过程中、放下时不提供任何其他动作，也就是说，如果你不作处理的话，鼠标一松，panel仍然在老地方。它是Ext.dd.DragSource的子类，所以，必须通过实现Ext.dd.DragDrop的方法来产生动作。示例代码如下：

new Ext.Panel({
    title: 'Drag me',
    x: 100,
    y: 100,
    renderTo: Ext.getBody(),
    floating: true,
    frame: true,
    width: 400,
    height: 200,
    draggable: {
//      Config option of Ext.Panel.DD class.
//      It's a floating Panel, so do not show a placeholder proxy in the original position.
        insertProxy: false,

//      Called for each mousemove event while dragging the DD object.
        onDrag : function(e){
//          Record the x,y position of the drag proxy so that we can
//          position the Panel at end of drag.
            var pel = this.proxy.getEl();
            this.x = pel.getLeft(true);
            this.y = pel.getTop(true);

//          Keep the Shadow aligned if there is one.
            var s = this.panel.getEl().shadow;
            if (s) {
                s.realign(this.x, this.y, pel.getWidth(), pel.getHeight());
            }
        },

//      Called on the mouseup event.
        endDrag : function(e){
            this.panel.setPosition(this.x, this.y);
        }
    }
}).show();

 

elements : String
一个panel有五个部分：header、tbar、body、bbar、footer。elements就是保存当前panel包含了几个部分，例如，一个panel有header、body，那么：element=='body,header'，默认值为：'body'。


floating : Boolean
为true的话，它会使panel.el.style.position=absolute。并且，默认情况下带有shimming和shadow。为false则不改变原有显示方式。
注意：把floating设为true会导致panel以offsets大量负偏移的方式隐藏。这个诸　位试一下就晓得了。所以呢，如果设了floating=true。那么，你render后最好还要setPostion(x,y)一下。当然如果你让面板浮动，也要把width设成一个固定值，不然，它会向右扩展到viewport的边缘。


footer : Boolean
为true则明确地创建footer，为false就不创建，默认情况下，如果对footer没有什么特殊的，那么当一个或多个按钮被加到footer上面时，footer会被自动创建。


frame : Boolean
为true的话呢就就在panel外面加上自定义的圆角边框，为false的话就是1px宽的长方形边框。


header : Boolean
为true时header被创建，反之不被创建，默认情况下，当header不处于特殊情况时，如果title被设置，它会被自动创建，否则不会被创建，如是果title被设置，但是header为false，那么header也不会被创建。


headerAsText : Boolean
为真是在header中显示title，为假时隐藏它。默认值为true.


height : Number
panel的高度，默认为auto。


hideBorders : Boolean
为true时，隐藏panel的所有子组件的边框，为false则尊从子组件原有边框设置。

hideCollapseTool : Boolean
当collapsible=true且hideCollapseTool=true时，则隐藏控制收缩、伸展的那个按钮，为false时就显示它，默认值为false。


hideMode : String
隐藏模式，有三种： "visibility" (css visibility), "offsets" (negative offset position) and "display" (css display) - defaults to "display"。

hideParent : Boolean
用于设置是否隐藏组件的容器，即component.container。

html : String/Object
一个html碎片，或者是满足DomHelper语法的object，它用于设置panel的body部分的内容。默认值为''。

iconCls : String
用于设置header上的图标的class。例如：.my-icon { background: url(../images/my-icon.gif) 0 6px no-repeat !important;}


id : String
一个为component统一分配的id值。默认值为panel.el.id。

items : Mixed
单个成员或一个子组件的数组。每个成员都可以是任何从Ext.Component继承的object。

它的成员可以是component的引用，这样就会马上render，也可以是component的config。这时就会lazy render。当然，在config中，要注意加上xtype。这个东西不用讲了吧。

关于xtype的所有取值情况，请见Ext.Component.xtype的config说明。里面有讲到。关于它的值，其实很多例子上都有，如果传一个成员，则像：items:{……},传多个的话呢，就像：[{……},{……}]。

keys : Object/Array
一个keyMap config object。用于设置快捷键的。默认值为null。


layout : String
设置panel.container的布局。如果没有设置，那么默认为Ext.layout.ContainerLayout，合法的值有：absolute, accordion, anchor, border, card, column, fit, form和table。如果要设置布局的细节，则要用到layoutConfig了。


layoutConfig : Object
用于设置布局细节的，当layout有合法设置时它才有效果。如果要知道关于这个config的设置细节，请见各布局类：
Ext.layout.Absolute
Ext.layout.Accordion
Ext.layout.AnchorLayout
Ext.layout.BorderLayout
Ext.layout.CardLayout
Ext.layout.ColumnLayout
Ext.layout.FitLayout
Ext.layout.FormLayou
Ext.layout.TableLayout

listeners : Object
一个config对象用于包含一个或多个事件handler，它被addListener使用来注册事件。

maskDisabled : Boolean
是否在panel.disabled的时候显示mask。为true显示。反之不显示。
默认情况下，panel哪怕在disabled时，它的子元素也显示得很正常，用户根本不知道这个panel被禁用了，这给用户带来困扰，但是，有了mask，用户就能得到提示，哦，这个panel是不可用的，被禁用了。这给用户带来了新的体验。


minButtonWidth : Number
panel上所有按钮的最小宽度，单位是px。

monitorResize : Boolean
为true时，它自动监控window的resize事件，并且让viewport因此而变化。这个东西的经典应用就是为layout服务，而不用我们手工去调整某些组件的大小来适应窗口大小的变化。


overCls : String
当鼠标放到panel.el上面时的class。最爽的是，当鼠标out时，它会被自动删除，从而产生hover效果。


pageX : Number
组件相对于页面的x坐标

pageY : Number
组件相对于页面的y坐标

plugins : Object/Array
一个对象或对象数组，它为component提供自定义的功能。每个对象都是一个插件的引用，当然，前提是这个插件定义了init方法，在component初始化时，这个init方法将被调用。没用着。不说了。难翻译啊。

renderTo : Mixed
Ext.get(panel.renderTo)就是panel.container。用语言说不清楚，这样直接了当。

shadow : Boolean/String
为true就给panel显示一个阴影，为false不显示。当然，也可设置成为shadow的类型，详情见Ext.Shadow、Ext.Shadow.mode。注意，这个选项只有在floating = true时才发生作用。

shadowOffset : Number
阴影偏移，默认值为4，只有在floating = true时才发生作用。

shim : Boolean
是否为组件创建shim，什么是shim呢？存在这样的情况，用div做的菜单，但是，好死不死有个applet或flash盖在上面的话，那菜单就会被盖在下面。这件事情曾经一度让b/s人员郁闷，ext提供一个通用的解决方案，在要避免这个问题的组件的同一位置创建一个与它大小一样的iframe，且使得这个组件的z-index大于iframe。由于iframe不会被其他东西遮住，所以，z-index在iframe之上的东西也不会被遮，iframe相当于个垫子，把我们要用的东西垫高了，而shim英语里面也是薄垫片的意思。高呼extjs万岁。当然，iframe的src必须为''。

stateEvents : Array
事件数组，当这此事件触发时，组件状态被保存。

stateId : String
用于管理组件状态的id,默认值为组件的id.

stateful : Boolean
一个标志，它表示组件在创建时是否从某个地方加载组件状态。哪些属性能作为状态保存呢？只有internal属性可以。
为了让组件状态能保存，组件状态管理器提供者必须实现Ext.state.Provider，也就是要实重写它的set、get方法以保存/重读键/值对，一个内键的提供者是： Ext.state.CookieProvider。

为当前页面设置状态提供者的方法如下：
Ext.state.Manager.setProvider(new Ext.state.CookieProvider());

组件试图在stateEvents里面配置了事件时保存状态。你可以自己写点代码进行一处理，如在：beforestaterestore, staterestore, beforestatesave和statesave事件的处理代码中。

style : String
一个应用于panel.el上的样式，语法必须满足Ext.Element.applyStyles的接口。


tabTip : String
当panel是Ext.TabPanel中的一页时，为这个panel设tooltips的。不过，在render之前得先调用Ext.QuickTips.init()初始化一下。

tbar : Object/Array
panel顶部的工具栏，它可以是一个Ext.Toolbar，也可以是一个按钮数组或一个按钮的config。注意：在render之后，这个引用就没用了。如果要处理它请使用getTopToolbar。

title : String
显示在panel的header中的标题，当title被设置时，header就会被创建，除非header被设成false。如果你需要title,但不是在panel创建时，而是在之后的某个时刻，这时你需要为title设置一个非空值(如一个空格)或者是把header设为true。这样，panel在创建时才会创建header，不然，header将不会被创建。

titleCollapse : Boolean
当collapsible = true且titleCollapse=true时，用户点击panel标题栏的任意一处都会产生折叠/伸展效果，否则则只能通过单击那个按钮(上文有讲到)来产生这个效果了。


tools : Array
一个工具栏按钮数组，这个工具栏非同一般哦，不是tbar，也不是bbar，而是header上的标题栏，header上的标题栏是怎样的概念？你看到的panel的关闭按钮这个钮，超爽吧。每个工具栏元素以一个Element引用的方式向开发人员公开，通过
　　　tools.<tool-type>的方式引用。暴爽。
每个工具栏成员的config要包含下面属性：
id:string
　　必需的，工具栏按钮的类型，可取值如下：

toggle (Created by default when collapsible is true)
close
minimize
maximize
restore
gear
pin
unpin
right
left
up
down
refresh
minus
plus
help
search
save
print

handler : Function
必需，当按钮被单击时被执行。它的参数说明如下：
　　event:Ext.EventObject
　　toolel:Ext.Element
　　Panel : Ext.Panel宿主panel

scope : Object
qtip:String/Object
一个tips字符串或者是tips config，用于Ext.QuickTip.register.

hidden : Boolean
on : Object
自定义事件处理器的config，为addListener所用。


示例如下：
tools:[{
    id:'refresh',
    qtip: 'Refresh form Data',
    // hidden:true,
    handler: function(event, toolEl, panel){
        // refresh logic
    }
}]
　　注意：除了toggle之外，其他工具栏成员都只是提供一个可视化的图标，没有任何功能，所以，如果你要加入它们，得自己写处理函数。


width : Number
component的宽度，单位用px，默认值为：auto。

x : Number
获得组件的x,相当于panel.el.style.left

xtype : String
这个东西不用说了，见Ext.Component的config里面的xtype。

y : Number
与x同理。

22. extJs 2.0学习笔记(Ext.Panel篇三)
　　上一篇中把panel的config部分的文档翻译了一下，事实上，好多东西都加上了我自己的看法，也不能说完全是翻译。真是个苦差使啊。这一次主要是来研究一下Ext.Panel的属性、函数。

属性：

body : Ext.Element
它是指向panel的body的Element引用。它被用于包含html内容。可以通过html config，或者是autoLoad config，又或者是通过panel的Updater来设置内容。此属性只读。
如果此属性被任何方法加载了html内容，那么这个panel就不能通过布局类来控制布局了。
如果这个panel已被布局类所管理，那么就不能对body进行任何改动，或加载什么内容。因为它正处于panel的布局管理类的控制之下。

buttons : Array
panel的button数组，它通过buttons config创建，只读。

dd : Ext.dd.DragSource.
如果此panel配置了draggable属性，这个属性将包含一个Ext.dd.DragSource的实例。开发人员通过必须提供对Ext.dd.DragSource的抽象方法的实现来达到支持drag/drop动作的目的。详情可见draggable。

disabled : Boolean
如果组件是disabled，那么它为true。只读。


footer : Ext.Element
指向panel footer的Element的引用。只读。它用于存放panel的buttons所定义的按钮。一般不要用它来放按钮。


header : Ext.Element
指向panel header的Element的引用。只读。这个元素用于存放title和tools。

hidden : Boolean
如果组件是隐藏的，那么它为true，只读。


initialConfig : Object
组件的config。只读。

items : MixedCollection
panel中的子组件的集合。

ownerCt : Ext.Container
组件的父组件，默认值为undefined，并且在加入到一个容器中时会被自动设置。只读。


rendered : Boolean
组件是否已经被呈现。。

 

公共方法：
Panel( Object config )

addButton( String/Object config, Function handler, Object scope ) : Ext.Button
config:如果是个字符串就被当作是按钮的text，如果是个object，那么它被当作config了。
handler:被按钮的Ext.Button.click调用。
scope：范围。
返回：被加入的按钮的实例。


collapse( Boolean animate ) : Ext.Panel
收缩面板


destroy() : void
看一下源码就知道，把组件挂接的事件、子元素什么的全部移除、delete。在什么Ext.ComponentMgr里面注册的东西也注销掉。


disable() : Ext.Component
没悬念。。使组件不可用。相当于大伙在dotnet中用得很爽的enabled。


doLayout( [Boolean shallow] ) : void
强制容器重新计算布局，就是刷新布局啦。它的作用就是当在render之后加入了一个组件时，这时就需要调用它来刷新一下了。又或者是改变了子组件的大小、位置，这时也要刷新一下。


expand( Boolean animate ) : Ext.Panel
伸展panel。


getBottomToolbar() : Ext.Toolbar
获得panel的bbar。

 

getFrameHeight() : Number
它的高度包括：header,tbar,bbar,footer，但是不包括body。单位是像素(px)。如果要获得body的高度，请使用getInnerHeight。


getFrameWidth() : Number
获得panel的边框宽度。当然是不包括body的宽度的，要获得body的宽度用getInnerWidth。

getId() : String
获得组件的id。


getInnerHeight() : Number
仅仅返回panel.body的高度。不包括其余四个部分。


getInnerWidth() : Number
仅仅返回panel.body的宽度。

getTopToolbar() : Ext.Toolbar
取得tbar的引用。

getUpdater() : Ext.Updater
通过Ext.Updater获得此panel的updater，有了它就能通过ajax更新panel.body了。

load( Object/String/Function config ) : Ext.Panel
通过一个XHR(XmlHttpRequest)调用马上加载内容。
示例代码如下：
panel.load({
    url: "your-url.php",
    params: {param1: "foo", param2: "bar"}, //或者是url编码的字符串
    callback: yourFunction,
    scope: yourObject,
    discardUrl: false,
    nocache: false,
    text: "Loading...",
    timeout: 30,
    scripts: false
});

这里面，唯一一个必须的属性就是url。


setIconClass( String cls ) : void
用于设置panel上的所有的icon的样式，如果哪个图标设置了样式，都会被它所替代。


toggleCollapse( Boolean animate ) : Ext.Panel
如果处理收缩状态就伸展，如果是伸展就收缩。总之与当前状态相反。


事件呢就不用了。


这个还是蛮容易的，个把小时搞定了。

23. extJs 2.0学习笔记(Ext.Panel篇四)
　　我刚才禁不住诱惑去看了一下Ext.Window的API文档，发现只是比Panel多了点什么最大化、最小化、关闭、置前、置后、动画引发目标设置、可调整大小这些功能。像什么标题栏、工具栏之类的东西在Ext.Panel早就封装好了。搞定了Ext.Panel终于可以闷声发大财罗。哈哈哈。

　　这一文主要总结一下，panel的常见用法。

　　一、使Panel的标题栏隐藏
　　这是常有的事，常常，一个栏目并不需要标题。有什么办法呢，创建时config中加上：header:false。就ok了。

　　二、如何使Panel能被拖动
　　确保config中如下设置：

 var config1={title:'这是标题栏',
     width:300,
     height:300,
     header:false,
     floating:true,
     renderTo:Ext.getBody(),
     draggable:{
　　　insertProxy: false,
     
　　　onDrag : function(e){
　　　var pel = this.proxy.getEl();
　　　this.x = pel.getLeft(true);
　　　this.y = pel.getTop(true);
     
　　　var s = this.panel.getEl().shadow;
　　　if (s) {
　　　　　s.realign(this.x, this.y, pel.getWidth(), pel.getHeight());
　　　}
       },
     
　　endDrag : function(e){
　　　　this.panel.setPosition(this.x, this.y);
       }
     },
     html:'这是面板的内容！！！',
     layout:'fit',
     collapsible:true};

　　好了，关键就是上面红色部分了，由前面的文档可知：Ext.Panel.DD这个类只是提供移动Proxy元素的效果，鼠标一松，panel仍在老地方，所以得写代码实现。关于Ext.Panel.DD，这个类是非公开的，我在源代码中也没有找到。不晓得放在哪。最后，我只得打开FireFox+FireBug才看到它里面的东西。

　　为什么一定要floating:true呢？原因很简单，要能拖动，那么这个div就是absolute的，而一个panel.el默认不会是absolute。所以非得设成floating，以让它能浮动。

　　三、如何有Panel能折叠、展开效果。
　　这个很简单，panel在title tools中提供一个toggle的工具，就是用它干这事的，不过，默认情况下，panel的这个功能是被关闭的。panel还提供一个功能，单击title的任意一处都会产生toggle collapse效果。相关的config属性我提出来如下：

　　animCollapse : Boolean
　　collapseFirst : Boolean
　　collapsed : Boolean
　　collapsedCls : String
　　collapsible : Boolean　　//事实上，把它设成true就ok了，其它几个可以不设置。
　　titleCollapse : Boolean
　　关于它们的使用说明请参见前面的API文档。不过，单看名字应当就晓得用了，取名很直观。

　　四、怎样为panel设置title tools。
　　就是怎样为Panel的标题栏添加按钮，这个容器，在config中类似如下代码即可：

　　tools:[{id:close,handler:function(event, toolEl, panel){panel.hide();}}],

　　格式一般是：tools:[{……},{……},{……}]

　　五、怎样显示、隐藏panel
　　这个很容易,panel.show()/hide()就行了。但是，如果floating:true的话，那就麻烦了，show都显示不了，我在FireBug中一看，panel.el.dom.style.left="-10000px"。这当然是显示不出来的。所以，你show了还要setPosition一下。这才行了。

　　六、为panel添加子组件
　　简单，在config中加items属性，类似于如下代码：

　　items:[{id:'win1',xtype:'window',title:'title',height:100,width:100}],

　　格式一般是：items:[{……},{……},{……}]

　　如果在定义时，没有设置xtype，则子组件创建是xtype取defaultType的值。像上面，由于window创建后是不显示的，所以，只得show出来。所以，我在定义时给它一个id。这样在Ext.onReady()中就可以：Ext.getCmp("win1").show()。嘿，就出来了。其他组件的加入类似。一个{}是一个组件。

　　像上面那样的叫惰性呈现，还有一种写法是：items:[new XXX(config)]。这样的定义会在组件创建时直接呈现。

　　七、为panel设置布局
　　这个是关键了。就是要设layout、layoutConfig。这个要详细的讲一下。平常要用嘛。这儿用BorderLayout的文档上的代码为例：

     layout:'border',
     items: [{
       title: 'South Panel',
       region: 'south',
       height: 100,
       minSize: 75,
       maxSize: 250,
       margins: '0 5 5 5'
      },{
       title: 'West Panel',
       region:'west',
       margins: '5 0 0 5',
       cmargins: '5 5 0 5',
       width: 200,
       minSize: 100,
       maxSize: 300
      },{
       title: 'Main Content',
       region:'center',
       margins: '5 5 0 0'
      }],
　　其实，布局类的api接口很简单，使用也不复杂。果然是把swing的那一套学过来了。

　　Ext.layout.BorderLayout是一个比较特殊的布局类，它没有什么正儿八经的config，不像Panel它们。只需设一下layout，然后，在成员组件那儿用region标明是哪个区域就是了。Ext.layout.BorderLayout把一块地盘分成五个区：east、west、south、north、center。

　　我个人非常喜欢这个布局，因为以它作为外层布局的话，就能很方便的实现cnblogs一样的效果，我到现在还不知道那个左边列固定宽，右边列占满剩余屏幕的布局是怎么搞的，除非写javascript代码在window.onload中手工调，否则，全靠css，真的是想不出办法来，后来，我也找到一个办法：用table。table有一个特性，可以把它设成占满整个水平方向，第一列固定宽，第二列自动就是剩余的。不过，不晓得有没有纯css的解决方式，老实说，div+css实在太难控制了，table在水平方向上的布局优势还是很大的。比如，同一行，放两个内容，左边的左对齐，右边的右对齐，用div就麻烦了，又是浮动，挖空心思，用table就很显然，两个格：一个align=left，一个align=right。这话题扯远了。发牢骚罢了。

　　八、怎样使得Panel能被改变大小
　　事实上，如果真的panel能被改变大小，那么可以考虑使用window。只要把dragable设成false就成了。如果不喜欢那些按钮，应当也可以想到办法去掉的。panel本身没有这个功能。不过，ExtJs有一个类提供这种功能，即：Ext.Resizable。它的用法很简单，如下：

var resizer = new Ext.Resizable("element-id", {
    handles: 'all',
    minWidth: 200,
    minHeight: 100,
    maxWidth: 500,
    maxHeight: 400,
    pinned: true
});
　　由上可知，它的功能是为一个指定的元素提供可改变大小的功能。这个功能不出奇吧。怎么把它用于panel。嘿，其实就一个关键，怎样取得x-panel所在元素的id。这个好办，事实上，这件事我曾在Ext.Panel篇一中就论述了。二种方法：panel.el或者panel.getEl()都一样。

　　因此，代码应当这么写：

　　var resizer=new Ext.Resizable(panel1.getEl(),{handlers:'all',pinned:true});
　　resizer.on('resize'，function(){panel1.updateBox(panel1.getSize());});
　　在创建好panel之后，紧跟着加上这两行代码就行了。为什么要加上后面的那行呢？因为这个Ext.Resizable只会改变panel.getEl()的大小，但是里面的内容并不会因此而发生变化，结果是新增加的那一部分是灰色的。那是proxy的颜色吧。要把panel的子组件调整到实质大小必须要updateBox，可者是setWidth、setHeight。

　　这个功能蛮简单，如果要对Ext.Resizable的详情进行了解，请参见其官方文档。

　　九、怎样为Panel提供工具栏
　　这个问题重要，panel提供两种工具栏：tbar、bbar。但是定义的方法都一样。首先，我要研究一下tbar的类型：Object/Array，api文档说：可以是toolbar对象、可以是toolbar的config、还可以是按钮的数组，当然也可以是前两者的数组。目标清楚了，就要小小地研究一下toolbar，toolbar这个主题比较大，事实上应当作为一个专题来搞的。不过，先搞清楚个大概用着先吧。

　　这儿有一篇关于Ext.Toolbar的好文章，点此处查看！关于在Ext.Panel中使用工具栏，最直观、傻瓜式的用法，点此处查看。关于toolbar的更详细的研究、使用方法将在下一篇中给出。

 

　　至此，关于Ext.Panel的常见问题都在这儿了，搞清楚了这些，基本上常规需求都可以实现了。

24. extJs 2.0学习笔记(组件总论篇)
　　组件正是extJs的亮点所在，像平常要用的Ext.Window、Ext.tabpanel都是我们最喜欢的好东西。要彻底弄清楚这中间的机制啊。

　　我查到了一些参考资料：

· Ext组件结构分析
· Ext组件概述
· Ext组件模型概况
· Ext组件的生命周期
· Ext.Component的Render方法详解
· ExtJs实用开发教程
· asp.net中使用JSON
· Ex的树组件的使用(从底层到表现到异步加载)
　　本来打算仔细分析一下Observable、Component、BoxComponent、Container这几个基类的源代码，但是不巧，正好看到了上面列出的教程中的“ExtJs实用开发教程”，这个系列教程写得太好了，以至于只要看一看教程就可以写出满足常见需求的代码来。而且，有了它，对于所有组件使用都有了一个大概映像。不至于不晓得如何下手，而非得去啃代码了。万岁啊。

　　现在大概映像有了。继续看代码。

　　Observable类是整个组件架构的最顶层的类。它的用途就是为组件提供统一的事件管理接口，有人问？怎么又是事件管理啊。Ext.Element不是已经封装了事件管理的机制了吗？也有人问：不是有了Ext.Element了吗，为什么还要Ext.Component呢？其实这两个问题是一件事。

　　Component是组件，组件不是一个元素，而是若干个元素的有机集合。Element的确是有事件，但是，组件的事件不同于元素的事件，它是一个更高级别的概念。

　　Observable类没什么了不起的。事件管理吗？其本质就相当于c#/java中的容器类，原理就是内置一个数组或者是{}，然后提供一个接口来add、remove、removeAll、find。这些东西在c#/java中早就炒得滚瓜烂熟了。而所谓的addEvents方法本质就是为一个map加了一群的key。找到代码，果不其然，就是依赖于this.events，它初始值为{}。它怎样实现事件的注册、反注册、事件包装呢？说出来也蛮容易。内部依托于一些容器(像数组、json对象)，然后把所有的要监听的元素、监听元素的事件、事件处理函数、scope、options都保存在里面，时机一至就fireEvent了。怎么包装事件呢？那段代码我也没有去看了，方法无法两种：

　　一、对于原本就有事件，类为对应元素创建一个默认处理函数，在这个处理函数里面会FireEvent对应元素此事件的事件处理函数。

　　二、原本没有事件，像Ext.Component的beforeDestory之类的事件，这种事件就要自己在相应的地方手工FireEvent了。

　　Ext.Component类，这是个很重要的类。对此我只有两点要介绍：
　　一、关注它的config。组件构造函数的形参Ext.Element/String/Object。最为重要的是，形参可以是一个json对象，对于这个对象的各个成员的意义，这个是以后写代码的关键，例如：

　　var wnd=new Ext.Window({titile:"这是伯平的标题栏",html:"这是窗口的内容！",width:400,height:300,layout:"fit"});
　　上面代码是创建一个简单的div窗口，这是最普通的构造了，一般，还有一个items的成员，在它里面定义窗口的内容。items是一个数组，不过我与大伙一样都会产生一个疑问：只凭一个数组就能定义窗口吗？那些窗口成员的位置、大小怎么搞呢？关于样式，当然可以为每个数组成员填加一个成员cls，用它设class。但是，布局呢？难道全部是absolute不成？有门的。你看上面定义窗口的时候不是有一个layout吗？fit是一种布局方式，它的作用是，容器中只能一个可见成员，且这个成员会填充满整个容器。关于布局类这些东西，作者是参考自java的swing了。现在，就连dotnet的winforms也有类似的内容了。

　　二、组件的统一管理，在Ext.Component的构造函数中有如下代码：
　　Ext.ComponentMgr.register(this);
　　extJs提供一个全局的类Ext.ComponentMrg。顾名思意：component manager。我跑过去看这个类的源代码，它内部用一个叫：Ext.util.MixedCollection的类来做容器，整个代码很少，加上注释才100来行。register就是往Ext.util.MixedCollection里面add而己。当然，有add就有remove。这儿也有两个东西要注意：

1. 关于Ext.getCmp(id)
getCmp : function(id){ return Ext.ComponentMgr.get(id); }这是Ext类中的代码，这个get现在能理解它的用途了吧，也就是说，只要一个组件被创建出来，它就会被加到这个容器中来，然后随时可以用它的id取出来继续用。所以，你甚至不用保存创建的组件的实例。可以直接用getCmp取出来。

2. 关于Ext.reg
它用于注册一种组件类型，这个东西我在以前也没有发现它的作用，现在看了Ext.Component才明白。且看它的代码：
registerType : function(xtype, cls){
            types[xtype] = cls;
            cls.xtype = xtype;
}
xtype就是新注册的组件类型，它是字符串，而cls不是class哦，它是这个类对应的function，文档上说是这个类对应的构造函数(就是constructor啦)。真相大白了。

　　关于Component，我要说的就这么多：一个config，一个组件管理器。

 

　　Ext.BoxComponent类
　　Ext.BoxComponent继承自Ext.Component，它的主要作用是封装元素的设置位置、宽度的功能。有人说，位置、宽度的设置在Ext.Element不是早就封装了一大把吗？这是个编程技巧，在组件这种高层面上，元素是低层面的，应当尽量把这些内部实现的东西隐藏。不然，不管三七二十一什么事都去访问Ext.Component.getEl()方法，然后为所欲为，那就打破了封装性了。这相当于设计模式中的“外观模式”。功能早就有，只是提供一个高层的接口来访问罢了。

 

　　Ext.Container类
　　Ext.Container继承自Ext.BoxComponent。对于它，我先介绍一篇分析得不错的文章！点此处进入。

　　一句话，这个类是封装布局细节的类，用专业的术语来讲，它是extJs中一堆布局类的外观类，通过它，我们基本上不要去管那些布局细节的事情了，只要在创建组件实例时的config中，加入一个layout:XXXX就成了。如果要对layout初妈化配置，传说中，Ext.Container的config json提供一个叫：layoutConfig的成员。它的详细文档就得看API了。当然，这儿我还是要点一下一些最常用的API。

　　config object：width/height/activeItem/defaultType/default/items/layout/layoutConfig/listeners/moniterResize

　　常用属性：items/ownerCt

　　常用方法：add/insert/remove/findXXXX

　　你看，这个使用简单啊。那么是不是所有其他组件都是继承自Ext.Container呢。当然不是，只有像Ext.Panel、Ext.TabPanel、Ext.Window这种复合型的组件才是从Ext.Container继承的。

　　到此为止，一定有人对于使用常用组件有些迫不急待了，点此处让大伙来瞧瞧。

 

　　好了，大概就是这样了，下面提供一个ExtJs 2.0的组件结构图：

　　



25. extJs 2.0学习笔记(Ext.Element API总结)
　　Ext.Element API比较多，大伙用的时候也难以在短时间把住它的脉络，主要功能。这个给个总结，而不是一个API说明。说到API说明，网上早有大侠做得蛮不错的了。

位置设置：

getX()   取得相对于页面的x坐标
getY()   取得相对于页面的y坐标
getXY()　取得相对于页面的x,y坐标，用法：ele.getXY()[0]/[1]
getOffsetsTo(el)  取得相对元素el的坐标，返回值[x,y]
setX(x,animate)   设相对于页面的x坐标,animate为true则开启默认动画效果
setY(y,animate)　　同上
setLeft(left)　　　设style.left
setTop(top)　　　　设style.top
setRight(right)　　设style.right
setBottom(bottom)　设style.bottom
setXY(pos,animate)　设相对于页面的x,y，相当于setX,setY。用法：setXY([x,y],true)
setLocation(x,y,animate)　相当于setXY。
getRegion()        return {top=t,left=l,width=w,height=r}
getHeight(true|false)    true不包括边框、内边距，false包括
getBorderWidth(anthor)
getPadding(anthor)
getComputedHeight()  包括边框、内边距
getComputedWidth()
getSize()   相当于getWidth、getHeight   {width:w,height:h}
getStyleSize()   取style.width、style.height，且不包括边框{width:w,height:h}
getViewSize()    取视口大小{width:w,height:h}
getValue()     如果有value属必就取它
setWidth(width,animate)     设style.width
setHeight(height,animate)    设style.height
setSize(width,height,animate)
setBounds(x,y,width,height,animate)   相当于setSize、setXY
setRegion(region,animate)      相当于setBounds
getScroll()            取得当前视口在文档中水平、垂直方向上的偏移,返回{left:l,top:t}

setOpacity(opacity,animate)
getLeft(local)    false相当于getX,true相当于style.left
getRight(local)   false相当于getX+getWidth,true相当于getLeft(true)+getWidth()
getTop(local)　　 false相当于getY,true相当于style.top
getBottom(local)
position(pos,zIndex,x,y)  string:pos,取static,relative,absolute,fixed
                          zIndex设z序，x,y用来调用setXY的
clearPositionsing(value)  作用非得看代码
    clearPositioning : function(value){
        value = value ||'';
        this.setStyle({
            "left": value,
            "right": value,
            "top": value,
            "bottom": value,
            "z-index": "",
            "position" : "static"
        });
        return this;
    }

getPositioning()　　取值格式如上{……}
setPositioning(pc)  用法同applyStyles
setLeftTop(left,top)  就是设style.left,style.top


moveTo(x,y,animate)　　　　相当于setXY
move(direction,distance,animate)   很有用，direction移动方向，取t,l,r,b。
                    distance是移动的距离，animate是否启用动画效果

getAnchorXY（anchor,local,s)　　　取得对齐到某处的页面x,y坐标
getCenterXY()　　　　　　　　　　取得对齐到视口中央的页面x,y坐标
getAlignToXY(el,p,o)　　　　　　　取得对齐到某元素某处的页面x,y坐标

alignTo(element,position,offsets,animate)　　对齐到元素的某处，允许偏移、动画
anchorTo(el,alignment,offsets,animate,monitorScroll,callback)　　对齐到元素


center(centerIn)　　　对齐到视口中央
getBox(contentBox,local)　　contentBox＝false包括边框、内边距　local＝false获取页面坐标
setBox(box,adjust,animate)   box包括边框、内边距
getFrameWidth(sides,onlycontentBox)

repaint()    强制刷新元素

 


关于样式、属性设置

addClass(String/Array className )
removeClass(String/Array className)
replaceClass(String oldClassName, String newClassName )
radioClass(String/Array className )
toggleClass(String className )
setStyle(name,value)
getStyle(name)
hasClass(className)

addClassOnClick(classname)
addClassOnFocus(classname)
addClassOnOver(classname)
hover(classsname,bool preventFlicker)

页点操作：
append(ele)
appendTo(ele)
replace(ele)
replaceWith(ele)
insertBefore(ele)
insertAfter(ele)
insertFirst(ele)
insertHtml(where,html,returnEl)
insertSibling(el,where,returnDom)
remove()
createChild(config,HTMLElement insertbefore,returndom)


first(selector,returndom)
last(selector,returndom)
next(selector,returndom)
prev(selector,returndom)
parent(selector,returndom)
child(selector,returndom)
up(selector,maxdepth)
down(selector,maxdepth)

query(selector)

contains(HTMLElement/string el)

show(animate)
hide(animate)
toggle(animate)
setVisible(boolean visible,animate)


update(html, loadScripts, callback)

特殊的
hover( Function overFn, Function outFn, [Object scope] ) : Ext.Element
mask(msg, msgCls)
unmask()
load( String/Function url, [String/Object params], [Function callback], [Boolean discardUrl] ) 
focus()
blur()


事件注册：
on(eventname,fun)
un(eventname,fun)
addListenser/removeListenser/removeAllListeners

 

　　在上面，我把Ext.Element的所有API进行分类，平常要完成什么功能，一查即知，而且，我这儿给出那些只有细微差别的API的不同之处。让人一看即知，当然，如果对最基础的API都有疑问，这儿有一篇好文章，可以补此不足，点此处访问它。

26. extJs 2.0学习笔记(Element.js篇)
　　Element.js这个文件包含了整个extjs框架中最为核心的部分，它对DOM元素进行超强的封装。源文件就有3054行，尽管这中间有好多是注释，但是，在个把月前，我不敢想像我会要拿着几千行的js文件来研究。呵呵。

　　就我目前而得知的情报，Ext.Element类至少包含如下功能：

　　一、为许多DOM动作创建Animation(动画)，例如setWidth，它提供一个可选项来获得动画效果
　　二、提供一个伟大的load方法，可以直接ele.load({url:xxxxx}的方式来异步加载数据。超爽、超酷啊。
　　其他功能我目前不知，这是看了别人的教程有了这样一个大概的映像。如果要对它获得一个大概映像，点此处访问相关资源！通过这个资源，几乎就可以动手写程序了。

　　废话就不多讲了，还是来研究研究源代码。

　　一、Ext.Element的缓存机制
Ext.Element = function(element, forceNew){
    var dom = typeof element == "string" ?
            document.getElementById(element) : element;
    if(!dom){ // invalid id/element
        return null;
    }
    var id = dom.id;
    if(forceNew !== true && id && Ext.Element.cache[id]){ // element object already exists
        return Ext.Element.cache[id];
    }
    this.dom = dom;
    this.id = id || Ext.id(dom);
};
　　Ext.Element提供了缓存机制，作用：提高性能；原理：让构造过Ext.Element存放在json对象中，如果要再次获得这个对象就不用再次构造，只需从缓存中取出即可。原理很简单。

　　上面函数是Ext.Element的构造函数，其中forceNew表示是否强制创建一个新对象，不管缓存中是否已存在。这个构造函数还强制为元素生成id。

　　缓存定义在哪？在代码的最后面有一行代码：El.cache = {};可见，缓存是全局的。这是必然。再看看大伙平常用得最多的函数。Ext.Element.get。这个函数都有四十几行的代码，因为整个函数考虑到可能传入参数的类型有好几种的情况，情况多起来，所以有点多。

　　二、Ext.fly倒底有什么用？
　　Ext.Element有一静态成员fly。它也是获得一个Ext.Flyweight对象的实例。当然，它也是对元素的包装，请见代码：

　　var flyFn = function(){};
　　flyFn.prototype = El.prototype;
　　var _cls = new flyFn();
　　// dom is optional
　　El.Flyweight = function(dom){
　　　this.dom = dom;
　　};
　　El.Flyweight.prototype = _cls;
　　El.Flyweight.prototype.isFlyweight = true;
　　看清代码了吧？可以说，Flyweight是继承自Element的。不过，正如其名，它是轻量级的。为什么这么说呢？见fly的代码：

El.fly = function(el, named){
    named = named || '_global';
    el = Ext.getDom(el);
    if(!el){
        return null;
    }
    if(!El._flyweights[named]){
        El._flyweights[named] = new El.Flyweight();
    }
    El._flyweights[named].dom = el;
    return El._flyweights[named];
};
　　这个代码的关键是，它总是会取得同一个Flyweight对象，用fly取的时候，只要没有传named，所有取的对象都同一个，换的只是dom罢了。

　　有人问这有什么好处？好处大了，如果有1000个元素，要调用它们的hide隐藏，如果用Ext.get的话，就会创建1000个Element对象，如果用fly，那只会创建一个对象。这对性能带来巨的提升。所以，在有一些批量式的操作时，用fly要好一些。

　　三、对Element.findParent、Element.findParentNode的质疑！！
　　原来如此，本来以为它是寻找的对象不包括自己，我总以为没有得到结果，原来，这两个函数是从自己找起的，如果一个元素是div，如果它用findParent找div祖先的话，那找的总是自己。

　　这个问题是解决了，不过，我对findParent的代码有疑问，它里面用Ext.getDom(maxDepth)来获得最极限层次的那个节点，事实上，我把getDom传数字的话只会返回数字本身，根本不会返回元素。这个问题我一直想不通。不过，这并不会影响表面上的功能。只是设maxDepth相当于白设了。

　　四、Element的动画支持
　　Element要使用动画有三大类方法。

1. 直接调用Ext.Element的animate函数，它建立于Ext.lib.Anim类的基础之上，而Ext.lib.Anim是Adapter里面的类。
2. 在调用Ext.Element的一些设置大小、位置、范围、透时度时，那些函数往往有一个参数,anim，设一设它，也能获得动画效果。
3. 调用从Ext.Fx类中继承过来的方法，如果页面包含了Ext.Fx，那么就可以用所有在Ext.Fx中定义过的函数了。
　　一般多用后面两种方法。出人意料的是，Ext.Element继承了Ext.Fx。代码上反应在哪里呢，在Ext.Fx的最后面，有这样一行代码：Ext.apply(Ext.Element.prototype, Ext.Fx);这样一来，在Element中就可放心地使用特效了。关于对Element使用动画，这个现在不是研究重点，这个Ext.Fx要研究的内容。在此一笔带过，实在急于这个问题的，可以点此处阅读相关参考资料！

　　五、设置位置、大小、绝对位置、相对位置等等于关定位、范围的函数
　　这是个大问题，事实上，前一周我重点就在搞这个问题，例如：

1. 如何取得相对于定位容器的坐标
2. 如可取得相对于页面文档的坐标
3. 如何取得元素的大小，包括边框、内边距、实际内容
4. 如何取得相对于元素的坐标(偏移量)
5. 如何取得视口大小
6. 如何取得当前文档水平滚动、垂直滚动的距离
7. 如何取得当前元素相对于视口左上角的坐标
　　问题多吧。这些问题在平常计算时多要用到这些量，然而这些量与浏览器类型严重相关。不同浏览器取法不一样。麻烦、头痛啦。还好，这个问题Ext.Element都对此进行了封装。不用我们烦心了。当然，上面还仅仅是取得，还有设置这些量的问题，这就至少十五、六个函数了。Ext.Element又是英文文档，给我们的理解造成了困难呐。下面来把这些东西找出来。到了这里，我再次想起asp.net ajax，这个东西现在与extJs比起来屁都不是啊。在asp.net ajax中，就封装一丁点的东西，它里面的DomElement相当于Element了，只是功能完全不能比，就只有create、addClass、removeClass、toggleClass，关于我上面提出的七个问题，一个都没有解决。这个框架有跟没有一样。如果有兄弟正在用asp.net ajax，最好还是换一换，换谁都不要用asp.net ajax啊。

　　关于这个问题，我一并交到下一文中，下一篇中主要是把Ext.Element中的API归类，比如要创建元素节点并插入某个地方，有哪些方法？

27. extJs 2.0学习笔记(DomHelper.js篇)
　　这个文件定义的是Ext.DomHelper类。作用是提供一些Dom的操作。这个类不是静态类。

　　这个类第一个函数createHtml是一个私有函数，用于从指定转入创建对应的html文本。这个类有多种情况，根据源代码分析：

　　var createHtml = function(o)｛｝

　　o的取值可能有：string(现成的html字符串)、Array(JSON对象数组)、object(JSON对象)

　　可见，createHtml的主要作用是把一个JSON序列化为html字符串。那么，createHtml能识别的JSON对象有什么格式要求呢？当然有，描述如下：

　　{tag:string,　　　　　　　　　　//元素的标记名，如果没有，默认为div
　　children|cn:string|Array|json,　　//子结点对应的json数组或字节点的html或单个json
　　html:string,　　　　　　　　　　//对应的html，如果有cn或children属性就忽略
　　style:function|string|json,　　　　//元素的样式，可以是函数，字符串，json对象
　　cls:string,　　　　　　　　　　　//元素的class属性的值
　　htmlFor:string　　　　　　　　　//元素的For属性，
　　x:y　　　　　　　　　　　　　　//x表示其他名字，y表示非函数、非空内容
　　}
　　我发现，style尽管允许是放一个function，但是，如果真是function的话，那么对应的style并不会生成，因为如下代码：

　　if(attr == "tag" || attr == "children" || attr == "cn" || attr == "html" || typeof o[attr] == "function") continue;

　　如果值是函数，就continue了。这应当是extJs程序员不小心的bug。

 

　　下面有一个私有函数：createDom，定义为var createDom = function(o, parentNode)｛……｝，用于根据一个o创建dom结构树，并把它放到parentNode这个节点下。o的情况跟上面的createHtml一样。这儿我学到的是：documentFragment，这个函数用于创建一个文档碎片，为什么用它呢？点此处见详情！document结构下，每appendChild一次就引发一次树的刷新，这将影响性能，而使用Fragment，相当于先将所节点创建好好一缓存，然后一次性appendChild到document(注意，这儿的document泛指文档树)下。

 

　　var insertIntoTable = function(tag, where, el, html){……}

　　它的作用是往表里面插入单元格或行、或tbody或在table之前或之后插入指定html内容的文本。即：

　　tag:null/td/tr/tbody

　　where:beforebegin/afterend/afterbegin

　　el:节点的引用

　　html:要插入的内容

 

　　后面就是insertHtml了，这个函数是关键，可惜里面好多函数不熟，整个DomHelper中的那些函数，好多都是建立在它的基础之上的。像什么：insertBefore、insertEnd、insertFirst、append。overwrite是重写已有节点的innerHTML用的。至此功能倒是齐全了。

　　其实，总结Dom操作，无非就是插、删、修改。这儿封装的都是插入，因为修改简单，改它的innerHTMl就是了，况且这儿还有一个overwrite。删也简单，有Ext.destroy。Ext.Element.remove。

　　

　　今天精神有点不好，我看了一大把的js文件。每个文件的代码量都不少。这要看到什么时候啊。不能这么干了。不过，还是打算花大力气研究一下Ext.Element。

28. extJs 2.0学习笔记(ext.js篇)
　要是以前，我铁定整天到处找教程看，光说不练，现在觉悟了，看教程看得最多，不一定能看完，看完了不一定能比作者更明白，看明白了不一定能用得好。所以看教程其实好处不大，只能作为小小的参考。很多东西看别人的始终是没有用。只有将实验进行到底才是王道……

　　这儿主要是代码分析。

　　研究工具：Dreamweave cs3(装那个extJs 2.0插件老装不上)、Aptana(一个好处，好看代码，有括号匹配，json语法好是好，就是括号多了，搞清在哪儿结束)
　　发现，extJs的代码最喜欢用json语法定义，类基本上都是用json语法定义的。而不是在外面一大路的xx.prototype.yyyy=function(){……}。不过这种语法蛮清晰。我喜欢。

　　extJs时面只有一个类：Ext，它是一个静态类。提供了经常要用到的函数。

Ext.apply = function(o, c, defaults){
    if(defaults){
        // no "this" reference for friendly out of scope calls
        Ext.apply(o, defaults);
    }
    if(o && c && typeof c == 'object'){
        for(var p in c){
            o[p] = c[p];
        }
    }
    return o;
};
　　这是apply函数，作用其实相当于克隆，它把对象c中的成员全部复制到o中去。如果有defaults，也把它的内容复制到o中。这儿其实揭示javascript的一种语法：

　　javascript中的对象的成员有两种引用方法：

　　一、o.propertyName

　　二、o[propertyName]

　　这段代码关键就在o[p]=c[p]。这个要理解。尽管如此，但是不能像下面一样做：

　　var newelem=new Object();
　　Ext.apply(newelem,Ext.getDom("a1"));
　　Ext.getDom("form1").appendChild(newelem);

 

　　下面一大段的代码，由于dw不好看代码，半天才晓得那儿是个(function(){……Ext.apply(Ext,{……}})()，这是我把概述出来。这样写呢，实在有点叫人别扭，作者的意图是想把这相关的一段全部放到括号中，以免造成理解上的混乱。能理解。不过，这种写法不大招人喜欢。

 

        applyIf : function(o, c){
            if(o && c){
                for(var p in c){
                    if(typeof o[p] == "undefined"){ o[p] = c[p]; }
                }
            }
            return o;
        }
　　这是applyIf的代码，事实上，在文档上面，它的描述有问题，应当是是当o,c两个对象都存在时，则把o中不存在，c中存在的属性复制到o中，且属性名不变。而不是所谓“如果o不存在时就把属性复制到o中”，哪有这种说法的。另外，判断一个对象是不是存在，最严谨的还是用typeof的方法。

 

addBehaviors : function(o){
            if(!Ext.isReady){
                Ext.onReady(function(){
                    Ext.addBehaviors(o);
                });
                return;
            }
            var cache = {}; 
            for(var b in o){
                var parts = b.split('@');
                if(parts[1]){ // for Object prototype breakers
                    var s = parts[0];
                    if(!cache[s]){
                        cache[s] = Ext.select(s);
                    }
                    cache[s].on(parts[1], o[b]);
                }
            }
            cache = null;
        }
　　这个地方巧妙在于依赖于Ext.isReady。这个属性我估计应当是在onload第一行将它设成true的，它的作用就是用于标志当前是不是已经文档模型加载完了。前面几行的意思：如果dom模型还没有加载完，没有准备好，就将这些事件注册代码交给onload去做。即Ext.onReady。

　　如果DOM模型已加载完，那么就马上注册事件，区别：前者是延迟注册、后者是马上注册。为什么要延迟，因为DOM都没有创建完，有些元素在DOM树中还不存在，当然就没法设置它了。其余的地方则不足道，后面的关键就是Ext.select了。

 

        id : function(el, prefix){
            prefix = prefix || "ext-gen";
            el = Ext.getDom(el);
            var id = prefix + (++idSeed);
            return el ? (el.id ? el.id : (el.id = id)) : id;
        }
　　这儿有一个技巧：prefix = prefix || "ext-gen"，这是最简捷的代码啊。本来要一个if语句的。

 

　　extend、namespace两个函数硬是没有看懂，等水平高了再来研究。

 

　　urlEncode的源代码原理简单，但是，要是我的话还是没法写得这么清楚，主要是情况比较多。这儿主要是学到了数组的push，原来以为push只能传一个参数，没想到能一次传多个。发现，很多时候，在构造一个复杂的字符串时都是用到数组的。至于urlEncode的作用，就是把一个JSON对象编码成一个查询字符串。

        each : function(array, fn, scope){
            if(!Ext.isArray(array)){
                array = [array];
            }
            for(var i = 0, len = array.length; i < len; i++){
                if(fn.call(scope || array[i], array[i], i, array) === false){ return i; };
            }
        }
　　这个函数的功能并不是像它的名字一样简单啊，这儿又学到了：

　　一、原来构造单元素数组可以直接这样写：a=[a]。

　　二、scope在这儿是默认伪调用者，同时，还把当前数组元素值、序号、数组引用都传过去了。这个可能在fn中用得着。要注意。

　　另外就是x===false这个语句要注意。要知道undefined==false。

        callback : function(cb, scope, args, delay){
            if(typeof cb == "function"){
                if(delay){
                    cb.defer(delay, scope, args || []);
                }else{
                    cb.apply(scope, args || []);
                }
            }
        }
　　吃了一惊，Function什么时候有个成员叫defer了？后来才知，defer是extJs扩展出来的。delay是时延。老实说scope这个东西不能言传只可意会，不看代码是不清楚的。事实上javascript中的确是存在defer属性的。用于修饰script元素的，确实是用于延迟script里面内容的加载。详情见此处。

        destroy : function(){
            for(var i = 0, a = arguments, len = a.length; i < len; i++) {
　　　　　　 var as = a[i];
　　　　　　if(as){
　　　　　　　　if(typeof as.destroy == 'function'){
　　　　　　　　　　as.destroy();
　　　　　　}
　　　　　　else if(as.dom){
　　　　　　　　　　as.removeAllListeners();
　　　　　　　　　　as.remove();
　　　　　　}
                }
            }
        }
　　这个函数用来销毁对象，由代码可知一点，extJs鼓励大家在创建自己的类有必要的话就写destroy。如大量没用的dom元素。在这里，destory相当于析构造函数一样。至于removeAllListenners，remove这两个函数，它们是Ext.Element类的成员。

　　removeNode : isIE ? function(){
            var d;
            return function(n){
                if(n && n.tagName != 'BODY'){
                    d = d || document.createElement('div');
                    d.appendChild(n);
                    d.innerHTML = '';
                }
            }
        }() : function(n){
            if(n && n.parentNode && n.tagName != 'BODY'){
                n.parentNode.removeChild(n);
            }
        }
　　这个代码作用显然，就是删除一个结点。但是这个代码的写法实在有点让人难以接受啊。最郁闷是如果ie，那么，那个参数n是怎么传进去的呢，因为外面罩住的那个函数没有参数，本来没有参数也好办，关键是外面的那个函数根本没有传参数给return里面的函数，这居然也能传进去，见识到了。

　　经过一番实验与琢磨，发现，其实并不是外面的函数能传参给里面的那个函数，实在是因为那个()用得好，如有：

　　var do1=function(){return function(n){}}();

　　关键是要外面的函数{}之后要马上“自调用”一下，这样就会返回一个结果，这个结果是个函数表达式，它就能传参了。所以如果外面的函数没有()的话，那么实际调用将必须写成：do1()(3)的形式，连写两个括号。。这个问题我想了好久，终于想清楚了。

    createCallback : function(/*args...*/){
        // make args available, in function below
        var args = arguments;
        var method = this;
        return function() {
            return method.apply(window, args);
        };
    }
　　顾名思意，回调。这个函数是对Function对象的原型扩展。所以，所有函数都有这个成员。例如：

　　function A(){}

　　B=A.createCallback();

　　B();

　　最后B()执行调用的是A。有人说，既然调用B就相当于调用A，还不如直接用

　　function B(){A.apply(window,this.argments);}

　　的确，这样确实可以达到差不多的目的，但是，写代码要注意封装。尽管这只有一行代码，但是，相对于客户程序员来说，createCallback比apply亲切多了，而且，它还节省了不少字符，这就节省带宽。

　　什么时回调？让别人来调，那为什么不定义在那个调用者里面？因为，只有定义在别人的里面才可以获得别人的信息。

　　当然，在这儿我还是学到了一点，以前没意识到，怎样把外层的this传给内层的function。只需method=this。

　　有一些Ext下的函数并没有定义在ext.js中。如：Ext.onReady、Ext.reg、Ext.select、Ext.query。

